NASA Astrophysics Data System (ADS)
Shokory, Suzyanty Mohd; Suradi, Nur Riza Mohd
2018-04-01
The current study examines the impact of transformational and transactional leadership of project manager on the extra-role performance of project team members. In addition, this study also identifies factor dominant to extra-role performance of project team members when the transformational and transactional leadership of project managers are analyzed simultaneously. The study involved 175 of project team members from 35 project teams (each project team consists of different contracting companies registered in the Selangor (N = 175 from 35 contractors company). A multilevel analysis with hierarchical linear modeling (HLM) approach was used in this study. The analysis showed that transformational and transactional leadership of the project manager is a positive significant with extra-role performance project team members when analyzed separately. However when the two constructs (transformational leadership and transactional leadership of project manager) were analyzed simultaneously, transformational leadership was found to have more impact on extra-role performance project team members compared to transactional leadership. These findings explained that although transformational and transactional leadership of project managers can improve extra-role performance project team members, but this study has proved that transformational leadership of project managers affect extra-role performance project team members more as compared to transactional leadership.
Researchers' Roles in Patient Safety Improvement.
Pietikäinen, Elina; Reiman, Teemu; Heikkilä, Jouko; Macchi, Luigi
2016-03-01
In this article, we explore how researchers can contribute to patient safety improvement. We aim to expand the instrumental role researchers have often occupied in relation to patient safety improvement. We reflect on our own improvement model and experiences as patient safety researchers in an ongoing Finnish multi-actor innovation project through self-reflective narration. Our own patient safety improvement model can be described as systemic. Based on the purpose of the innovation project, our improvement model, and the improvement models of the other actors in the project, we have carried out a wide range of activities. Our activities can be summarized in 8 overlapping patient safety improvement roles: modeler, influencer, supplier, producer, ideator, reflector, facilitator, and negotiator. When working side by side with "practice," researchers are offered and engage in several different activities. The way researchers contribute to patient safety improvement and balance between different roles depends on the purpose of the study, as well as on the underlying patient safety improvement models. Different patient safety research paradigms seem to emphasize different improvement roles, and thus, they also face different challenges. Open reflection on the underlying improvement models and roles can help researchers with different backgrounds-as well as other actors involved in patient safety improvement-in structuring their work and collaborating productively.
NASA Astrophysics Data System (ADS)
Achutarao, K. M.; Singh, R.
2017-12-01
There are various sources of uncertainty in model projections of future climate change. These include differences in the formulation of climate models, internal variability, and differences in scenarios. Internal variability in a climate system represents the unforced change due to the chaotic nature of the climate system and is considered irreducible (Deser et al., 2012). Internal variability becomes important at regional scales where it can dominate forced changes. Therefore it needs to be carefully assessed in future projections. In this study we segregate the role of internal variability in the future temperature and precipitation projections over the Indian region. We make use of the Coupled Model Inter-comparison Project - phase 5 (CMIP5; Taylor et al., 2012) database containing climate model simulations carried out by various modeling centers around the world. While the CMIP5 experimental protocol recommended producing numerous ensemble members, only a handful of the modeling groups provided multiple realizations. Having a small number of realizations is a limitation in producing a quantification of internal variability. We therefore exploit the Community Earth System Model Large Ensemble (CESM-LE; Kay et al., 2014) dataset which contains a 40 member ensemble of a single model- CESM1 (CAM5) to explore the role of internal variability in Future Projections. Surface air temperature and precipitation change projections over regional and sub-regional scale are analyzed under the IPCC emission scenario (RCP8.5) for different seasons and homogeneous climatic zones over India. We analyze the spread in projections due to internal variability in the CESM-LE and CMIP5 datasets over these regions.
ERIC Educational Resources Information Center
Sperandio, Jill
2008-01-01
This article examines how mentoring and female role models enhance perceptions of self-worth and career aspirations for adolescent girls from low socioeconomic backgrounds. It describes an eight-week project that provided nine girls from the slums of Bangladesh with female role models and mentors in a modern work environment. The project involved…
ERIC Educational Resources Information Center
Murphy, Jody
A model career decision-making program to reduce the effects of sex-role stereotyping in career choices of senior high school students was conducted at Columbine High School (Lakewood, Colorado). Project goals included the following: (1) to provide students with self-awareness and career-decision-making activities designed to broaden options these…
ERIC Educational Resources Information Center
Jo, Il-Hyun
2011-01-01
The purpose of this study was to investigate the cognitive mechanism of project-based learning teams of college students on the basis of the Shared Mental Model (SMM) theory. The study participants were 237 female college students in Korea organized into 51 project teams. To test the study hypotheses, a structural equation modeling was employed.…
Caruana, C J; Wasilewska-Radwanska, M; Aurengo, A; Dendy, P P; Karenauskaite, V; Malisan, M R; Meijer, J H; Mornstein, V; Rokita, E; Vano, E; Wucherer, M
2009-09-01
The role of the biomedical physicist in the education of the healthcare professions has not yet been studied in a systematic manner. This article presents the first results of an EFOMP project aimed at researching and developing this important component of the role of the biomedical physicist. A background to the study expands on the reasons that led to the need for the project. This is followed by an extensive review of the published literature regarding the role. This focuses mainly on the teaching contributions within programmes for physicians, diagnostic radiographers, radiation therapists, and the postgraduate medical specializations of radiology, radiotherapy, interventional radiology and cardiology. Finally a summary list of the specific research objectives that need to be immediately addressed is presented. These are the carrying out of a Europe-wide position audit for the role, the construction of a strategic role development model and the design of a curriculum development model suitable for modern healthcare professional education.
NASA Astrophysics Data System (ADS)
Giannini, A.
2016-12-01
The uncertainty in CMIP multi-model ensembles of regional precipitation change in tropical regions is well known: taken at face value, models do not agree on the direction of precipitation change. Consequently, in adaptation discourse, either projections are discounted, e.g., by giving more relevance to temperature projections, or outcomes are grossly misrepresented, e.g., in extrapolating recent drought into the long-term future. That this is an unsatisfactory state of affairs, given the dominant role of precipitation in shaping climate-sensitive human endeavors in the tropics, is an understatement.Here I will provide a dynamical characterization of the uncertainty in regional precipitation projections that exploits the CMIP multi-model ensembles. This characterization is based on decomposing the moisture budget and relating its terms to the influence of the oceans, specifically to the roles of moisture supply and stabilization of the vertical profile. I will discuss some preliminary findings highlighting the relevance of lessons learned from seasonal-to-interannual prediction. One such lesson is to go beyond the projection taken at face value, and understand physical processes, specifically, the role of the oceans, in order to be able to make qualitative arguments, in addition to quantitative predictions. One other lesson is to abandon the search for the "best model" and exploit the multi-model ensemble to characterize "emergent constraints".
Measuring research progress in photovoltaics
NASA Technical Reports Server (NTRS)
Jackson, B.; Mcguire, P.
1986-01-01
The role and some results of the project analysis and integration function in the Flat-plate Solar Array (FSA) Project are presented. Activities included supporting the decision-making process, preparation of plans for project direction, setting goals for project activities, measuring progress within the project, and the development and maintenance of analytical models.
Changing Role of the USAF Noncommissioned Officer.
1987-03-01
Megatrend model is used to determine the national environment at the turn of the century. The Air Force Project 2000 model is used to establish the Air Force...Force and the fulfillment of its responsibilities. The author selected two future oriented models to 3 WON C -.Maw frame the role of the AF NCO in the...supervisor, the NCO performs a critical role with individual airmen. The NCO is a role model . Discipline and enforcement of standards are also NCO
Nurse Project Consultant: Critical Care Nurses Move Beyond the Bedside to Affect Quality and Safety.
Mackinson, Lynn G; Corey, Juliann; Kelly, Veronica; O'Reilly, Kristin P; Stevens, Jennifer P; Desanto-Madeya, Susan; Williams, Donna; O'Donoghue, Sharon C; Foley, Jane
2018-06-01
A nurse project consultant role empowered 3 critical care nurses to expand their scope of practice beyond the bedside and engage within complex health care delivery systems to reduce harms in the intensive care unit. As members of an interdisciplinary team, the nurse project consultants contributed their clinical expertise and systems knowledge to develop innovations that optimize care provided in the intensive care unit. This article discusses the formal development of and institutional support for the nurse project consultant role. The nurse project consultants' responsibilities within a group of quality improvement initiatives are described and their challenges and lessons learned discussed. The nurse project consultant role is a new model of engaging critical care nurses as leaders in health care redesign. ©2018 American Association of Critical-Care Nurses.
Implementation of Building Information Modeling (BIM) in Construction: A Comparative Case Study
NASA Astrophysics Data System (ADS)
Rowlinson, Steve; Collins, Ronan; Tuuli, Martin M.; Jia, Yunyan
2010-05-01
Building Information Modeling (BIM) approach is increasingly adopted in coordination of construction projects, with a number of parties providing BIM services and software solutions. However, the empirical impact of BIM on construction industry has yet to be investigated. This paper explores the interaction between BIM and the construction industry during its implementation, with a specific focus on the empirical impacts of BIM on the design and construction processes and professional roles during the process. Two cases were selected from recent construction projects coordinated with BIM systems: the Venetian Casino project in Macau and the Cathy Pacific Cargo Terminal project in Hong Kong. The former case illustrates how the conflicts emerged during the design process and procurement were addressed by adopting a BIM approach. The latter demonstrates how the adoption of BIM altered the roles of architect, contractor, and sub-contractors involved in the project. The impacts of BIM were critically reviewed and discussed.
Teaching Macro Practice: An Experiential Learning Project
ERIC Educational Resources Information Center
Carey, Lois A.
2007-01-01
This paper presents a model for teaching an undergraduate social work macro practice course utilizing an experiential learning paradigm. The model provides a campus-based project with social work majors in simultaneous dual roles of students and grassroots leaders, focusing on rape and sexual assault prevention training for college students. This…
Theory, modeling, and integrated studies in the Arase (ERG) project
NASA Astrophysics Data System (ADS)
Seki, Kanako; Miyoshi, Yoshizumi; Ebihara, Yusuke; Katoh, Yuto; Amano, Takanobu; Saito, Shinji; Shoji, Masafumi; Nakamizo, Aoi; Keika, Kunihiro; Hori, Tomoaki; Nakano, Shin'ya; Watanabe, Shigeto; Kamiya, Kei; Takahashi, Naoko; Omura, Yoshiharu; Nose, Masahito; Fok, Mei-Ching; Tanaka, Takashi; Ieda, Akimasa; Yoshikawa, Akimasa
2018-02-01
Understanding of underlying mechanisms of drastic variations of the near-Earth space (geospace) is one of the current focuses of the magnetospheric physics. The science target of the geospace research project Exploration of energization and Radiation in Geospace (ERG) is to understand the geospace variations with a focus on the relativistic electron acceleration and loss processes. In order to achieve the goal, the ERG project consists of the three parts: the Arase (ERG) satellite, ground-based observations, and theory/modeling/integrated studies. The role of theory/modeling/integrated studies part is to promote relevant theoretical and simulation studies as well as integrated data analysis to combine different kinds of observations and modeling. Here we provide technical reports on simulation and empirical models related to the ERG project together with their roles in the integrated studies of dynamic geospace variations. The simulation and empirical models covered include the radial diffusion model of the radiation belt electrons, GEMSIS-RB and RBW models, CIMI model with global MHD simulation REPPU, GEMSIS-RC model, plasmasphere thermosphere model, self-consistent wave-particle interaction simulations (electron hybrid code and ion hybrid code), the ionospheric electric potential (GEMSIS-POT) model, and SuperDARN electric field models with data assimilation. ERG (Arase) science center tools to support integrated studies with various kinds of data are also briefly introduced.[Figure not available: see fulltext.
Bridges and the City: An Interdisciplinary Project.
ERIC Educational Resources Information Center
Singer, Judith Y.; Goodman, Cecelia; Ridley, Theodora; Singer, Alan
2000-01-01
Describes an interdisciplinary project to help elementary school children discover the relationship among technology, history, and geography that involved the building of a model Brooklyn Bridge and considering the history and role of the real bridge. Suggestions for similar projects for other cities are appended. (JPB)
The NBS Energy Model Assessment project: Summary and overview
NASA Astrophysics Data System (ADS)
Gass, S. I.; Hoffman, K. L.; Jackson, R. H. F.; Joel, L. S.; Saunders, P. B.
1980-09-01
The activities and technical reports for the project are summarized. The reports cover: assessment of the documentation of Midterm Oil and Gas Supply Modeling System; analysis of the model methodology characteristics of the input and other supporting data; statistical procedures undergirding construction of the model and sensitivity of the outputs to variations in input, as well as guidelines and recommendations for the role of these in model building and developing procedures for their evaluation.
Collaboration using roles. [in computer network security
NASA Technical Reports Server (NTRS)
Bishop, Matt
1990-01-01
Segregation of roles into alternative accounts is a model which provides not only the ability to collaborate but also enables accurate accounting of resources consumed by collaborative projects, protects the resources and objects of such a project, and does not introduce new security vulnerabilities. The implementation presented here does not require users to remember additional passwords and provides a very simple consistent interface.
Software for the Application of Discrete Latent Structure Models to Item Response Data.
ERIC Educational Resources Information Center
Haertel, Edward H.
These FORTRAN programs and MATHEMATICA routines were developed in the course of a research project titled "Achievement and Assessment in School Science: Modeling and Mapping Ability and Performance." Their use is described in other publications from that project, including "Latent Traits or Latent States? The Role of Discrete Models…
Project K.I.C.K., A School-Based Drug Education Research Project--Peers, Parents and Kids.
ERIC Educational Resources Information Center
Rollin, Stephen A.; And Others
1994-01-01
Evaluated first phase of three-phase research project, Project KICK (Kids in Cooperation with Kids) by examining interaction between parent education, positive peer role modeling, and drug education for third graders. Hypothesized that intervention would lead to increase in self-esteem, improved attitudes, increased knowledge regarding drugs, and…
Parents and Schools: A Partnership Model.
ERIC Educational Resources Information Center
Hauser-Cram, Penny; And Others
Project Partnership was designed to promote parent/professional collaboration in the education of young handicapped children. The project intended to have positive impacts on the home and on the teachers, who are asked to allow for greater communication between the school and home by redefining their roles. The project's approaches include team…
An Entrepreneurial Approach to Project-Based Courses
ERIC Educational Resources Information Center
Pilskalns, Orest
2009-01-01
A senior project course is often employed to expose students to industrial problems and teamwork. Students are expected to use industrial strength tools to deal with issues such as requirements, design, process models, collaboration, management, testing, maintenance and more. In addition, the senior project often plays a large role in satisfying…
The evaluator as technical assistant: A model for systemic reform support
NASA Astrophysics Data System (ADS)
Century, Jeanne Rose
This study explored evaluation of systemic reform. Specifically, it focused on the evaluation of a systemic effort to improve K-8 science, mathematics and technology education. The evaluation was of particular interest because it used both technical assistance and evaluation strategies. Through studying the combination of these roles, this investigation set out to increase understanding of potentially new evaluator roles, distinguish important characteristics of the evaluator/project participant relationship, and identify how these roles and characteristics contribute to effective evaluation of systemic science education reform. This qualitative study used interview, document analysis, and participant observation as methods of data collection. Interviews were conducted with project leaders, project participants, and evaluators and focused on the evaluation strategies and process, the use of the evaluation, and technical assistance. Documents analyzed included transcripts of evaluation team meetings and reports, memoranda and other print materials generated by the project leaders and the evaluators. Data analysis consisted of analytic and interpretive procedures consistent with the qualitative data collected and entailed a combined process of coding transcripts of interviews and meetings, field notes, and other documents; analyzing and organizing findings; writing of reflective and analytic memos; and designing and diagramming conceptual relationships. The data analysis resulted in the development of the Multi-Function Model for Systemic Reform Support. This model organizes systemic reform support into three functions: evaluation, technical assistance, and a third, named here as "systemic perspective." These functions work together to support the project's educational goals as well as a larger goal--building capacity in project participants. This model can now serve as an informed starting point or "blueprint" for strategically supporting systemic reform.
From scenarios to domain models: processes and representations
NASA Astrophysics Data System (ADS)
Haddock, Gail; Harbison, Karan
1994-03-01
The domain specific software architectures (DSSA) community has defined a philosophy for the development of complex systems. This philosophy improves productivity and efficiency by increasing the user's role in the definition of requirements, increasing the systems engineer's role in the reuse of components, and decreasing the software engineer's role to the development of new components and component modifications only. The scenario-based engineering process (SEP), the first instantiation of the DSSA philosophy, has been adopted by the next generation controller project. It is also the chosen methodology of the trauma care information management system project, and the surrogate semi-autonomous vehicle project. SEP uses scenarios from the user to create domain models and define the system's requirements. Domain knowledge is obtained from a variety of sources including experts, documents, and videos. This knowledge is analyzed using three techniques: scenario analysis, task analysis, and object-oriented analysis. Scenario analysis results in formal representations of selected scenarios. Task analysis of the scenario representations results in descriptions of tasks necessary for object-oriented analysis and also subtasks necessary for functional system analysis. Object-oriented analysis of task descriptions produces domain models and system requirements. This paper examines the representations that support the DSSA philosophy, including reference requirements, reference architectures, and domain models. The processes used to create and use the representations are explained through use of the scenario-based engineering process. Selected examples are taken from the next generation controller project.
NASA Astrophysics Data System (ADS)
Duan, Kai; Sun, Ge; McNulty, Steven G.; Caldwell, Peter V.; Cohen, Erika C.; Sun, Shanlei; Aldridge, Heather D.; Zhou, Decheng; Zhang, Liangxia; Zhang, Yang
2017-11-01
This study examines the relative roles of climatic variables in altering annual runoff in the conterminous United States (CONUS) in the 21st century, using a monthly ecohydrological model (the Water Supply Stress Index model, WaSSI) driven with historical records and future scenarios constructed from 20 Coupled Model Intercomparison Project Phase 5 (CMIP5) climate models. The results suggest that precipitation has been the primary control of runoff variation during the latest decades, but the role of temperature will outweigh that of precipitation in most regions if future climate change follows the projections of climate models instead of the historical tendencies. Besides these two key factors, increasing air humidity is projected to partially offset the additional evaporative demand caused by warming and consequently enhance runoff. Overall, the projections from 20 climate models suggest a high degree of consistency on the increasing trends in temperature, precipitation, and humidity, which will be the major climatic driving factors accounting for 43-50, 20-24, and 16-23 % of the runoff change, respectively. Spatially, while temperature rise is recognized as the largest contributor that suppresses runoff in most areas, precipitation is expected to be the dominant factor driving runoff to increase across the Pacific coast and the southwest. The combined effects of increasing humidity and precipitation may also surpass the detrimental effects of warming and result in a hydrologically wetter future in the east. However, severe runoff depletion is more likely to occur in the central CONUS as temperature effect prevails.
Microcirculation and the physiome projects.
Bassingthwaighte, James B
2008-11-01
The Physiome projects comprise a loosely knit worldwide effort to define the Physiome through databases and theoretical models, with the goal of better understanding the integrative functions of cells, organs, and organisms. The projects involve developing and archiving models, providing centralized databases, and linking experimental information and models from many laboratories into self-consistent frameworks. Increasingly accurate and complete models that embody quantitative biological hypotheses, adhere to high standards, and are publicly available and reproducible, together with refined and curated data, will enable biological scientists to advance integrative, analytical, and predictive approaches to the study of medicine and physiology. This review discusses the rationale and history of the Physiome projects, the role of theoretical models in the development of the Physiome, and the current status of efforts in this area addressing the microcirculation.
NASA Astrophysics Data System (ADS)
Borodina, Aleksandra; Fischer, Erich M.; Knutti, Reto
2017-04-01
Model projections of heavy rainfall are uncertain. On timescales of few decades, internal variability plays an important role and therefore poses a challenge to detect robust model responses. We show that spatial aggregation across regions with intense heavy rainfall events, - defined as grid cells with high annual precipitation maxima (Rx1day), - allows to reduce the role of internal variability and thus to detect a robust signal during the historical period. This enables us to evaluate models with observational datasets and to constrain long-term projections of the intensification of heavy rainfall, i.e., to recalibrate full model ensemble consistent with observations resulting in narrower range of projections. In the regions of intense heavy rainfall, we found two present-day metrics that are related to a model's projection. The first metric is the observed relationship between the area-weighted mean of the annual precipitation maxima (Rx1day) and the global land temperatures. The second is the fraction of land exhibiting statistically significant relationships between local annual precipitation maxima (Rx1day) and global land temperatures over the historical period. The models that simulate high values in both metrics are those that are in better agreement with observations and show strong future intensification of heavy rainfall. This implies that changes in heavy rainfall are likely to be more intense than anticipated from the multi-model mean.
The Role of Communication and Cohesion in Reducing Social Loafing in Group Projects
ERIC Educational Resources Information Center
Lam, Chris
2015-01-01
This study examines previously untested variables that influence social loafing in professional and technical communication group projects by determining the influence of communication quality and task cohesion on social loafing. A set-up factors model, which included group size, peer review, project scope, and method of team formation, was also…
GMMIP (v1.0) contribution to CMIP6: Global Monsoons Model Inter-comparison Project
NASA Astrophysics Data System (ADS)
Zhou, Tianjun; Turner, Andrew G.; Kinter, James L.; Wang, Bin; Qian, Yun; Chen, Xiaolong; Wu, Bo; Wang, Bin; Liu, Bo; Zou, Liwei; He, Bian
2016-10-01
The Global Monsoons Model Inter-comparison Project (GMMIP) has been endorsed by the panel of Coupled Model Inter-comparison Project (CMIP) as one of the participating model inter-comparison projects (MIPs) in the sixth phase of CMIP (CMIP6). The focus of GMMIP is on monsoon climatology, variability, prediction and projection, which is relevant to four of the "Grand Challenges" proposed by the World Climate Research Programme. At present, 21 international modeling groups are committed to joining GMMIP. This overview paper introduces the motivation behind GMMIP and the scientific questions it intends to answer. Three tiers of experiments, of decreasing priority, are designed to examine (a) model skill in simulating the climatology and interannual-to-multidecadal variability of global monsoons forced by the sea surface temperature during historical climate period; (b) the roles of the Interdecadal Pacific Oscillation and Atlantic Multidecadal Oscillation in driving variations of the global and regional monsoons; and (c) the effects of large orographic terrain on the establishment of the monsoons. The outputs of the CMIP6 Diagnostic, Evaluation and Characterization of Klima experiments (DECK), "historical" simulation and endorsed MIPs will also be used in the diagnostic analysis of GMMIP to give a comprehensive understanding of the roles played by different external forcings, potential improvements in the simulation of monsoon rainfall at high resolution and reproducibility at decadal timescales. The implementation of GMMIP will improve our understanding of the fundamental physics of changes in the global and regional monsoons over the past 140 years and ultimately benefit monsoons prediction and projection in the current century.
Clinical Knowledge Governance Framework for Nationwide Data Infrastructure Projects.
Wulff, Antje; Haarbrandt, Birger; Marschollek, Michael
2018-01-01
The availability of semantically-enriched and interoperable clinical information models is crucial for reusing once collected data across institutions like aspired in the German HiGHmed project. Funded by the Federal Ministry of Education and Research, this nationwide data infrastructure project adopts the openEHR approach for semantic modelling. Here, strong governance is required to define high-quality and reusable models. Design of a clinical knowledge governance framework for openEHR modelling in cross-institutional settings like HiGHmed. Analysis of successful practices from international projects, published ideas on archetype governance and own modelling experiences as well as modelling of BPMN processes. We designed a framework by presenting archetype variations, roles and responsibilities, IT support and modelling workflows. Our framework has great potential to make the openEHR modelling efforts manageable. Because practical experiences are rare, prospectively our work will be predestinated to evaluate the benefits of such structured governance approaches.
A Model Marine Science Laboratory, North Kitsap Marine Environmental Center.
ERIC Educational Resources Information Center
Driscoll, Andrew L.; And Others
The project had two overall goals: (1) to establish and maintain a model marine science facility to be used as a teaching station and a base for research; and (2) to increase student and public awareness about the oceans and the important role they will play in man's future. The project served all the school districts in Kitsap County (Washington)…
Theory-based practice in a major medical centre.
Alligood, Martha Raile
2011-11-01
This project was designed to improve care quality and nursing staff satisfaction. Nursing theory structures thought and action as demonstrated by evidence of improvement in complex health-care settings. Nursing administrators selected Modelling and Role-Modelling (MRM) for the theory-based practice goal in their strategic plan. An action research approach structured implementation of MRM in a 1-year consultation project in 2001-2002. Quality of health care improved according to national quality assessment ratings, as well as patient satisfaction and nurse satisfaction. Modelling and Role-Modelling demonstrated capacity to structure nursing thought and action in patient care in a major medical centre. Uniformity of patient care language was valued by nurses as well as by allied health providers who wished to learn the holistic MRM style of practice. The processes of MRM and action research contributed to project success. A positive health-care change project was carried out in a large medical centre with action research. Introducing MRM theory-based practice was a beneficial decision by nursing administration that improved care and nurse satisfaction. Attention to nursing practice stimulated career development among the nurses to pursue bachelors, masters, and doctoral degrees. © 2011 Blackwell Publishing Ltd.
Bouska, Kristen; Whitledge, Gregory W.; Lant, Christopher; Schoof, Justin
2018-01-01
Land cover is an important determinant of aquatic habitat and is projected to shift with climate changes, yet climate-driven land cover changes are rarely factored into climate assessments. To quantify impacts and uncertainty of coupled climate and land cover change on warm-water fish species’ distributions, we used an ensemble model approach to project distributions of 14 species. For each species, current range projections were compared to 27 scenario-based projections and aggregated to visualize uncertainty. Multiple regression and model selection techniques were used to identify drivers of range change. Novel, or no-analogue, climates were assessed to evaluate transferability of models. Changes in total probability of occurrence ranged widely across species, from a 63% increase to a 65% decrease. Distributional gains and losses were largely driven by temperature and flow variables and underscore the importance of habitat heterogeneity and connectivity to facilitate adaptation to changing conditions. Finally, novel climate conditions were driven by mean annual maximum temperature, which stresses the importance of understanding the role of temperature on fish physiology and the role of temperature-mitigating management practices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seneviratne, Sonia I.; Wartenburger, Richard; Guillod, Benoit
This article investigates projected changes in temperature and water cycle extremes at 1.5°C global warming, and highlights the role of land processes and land-use changes (LUC) for these projections. We provide new comparisons of changes in climate at 1.5°C vs 2°C based on empirical sampling analyses of transient simulations vs simulations from the “Half a degree Additional warming, Prognosis and Projected Impacts” (HAPPI) multi-model experiment. The two approaches yield overall similar results regarding changes in climate extremes on land, and reveal a substantial difference in regional extremes occurrence at 1.5°C vs 2°C. Land processes mediated through soil moisture feedbacks andmore » land-use forcing play a major role for projected changes in extremes at 1.5°C in most mid-latitude regions, including densely populated areas in North America, Europe and Asia. This has important implications for low-emissions scenarios derived from Integrated Assessment Models (IAMs), which include major LUC in ambitious mitigation pathways (e.g. associated with increased bioenergy use), but are also shown to differ in the simulated LUC patterns. Biogeophysical effects from LUC are not considered in the development of IAM scenarios, but play an important role for projected regional changes in climate extremes, and are thus of high relevance for sustainable development pathways.« less
Assessment of soil organic carbon stocks under future climate and land cover changes in Europe.
Yigini, Yusuf; Panagos, Panos
2016-07-01
Soil organic carbon plays an important role in the carbon cycling of terrestrial ecosystems, variations in soil organic carbon stocks are very important for the ecosystem. In this study, a geostatistical model was used for predicting current and future soil organic carbon (SOC) stocks in Europe. The first phase of the study predicts current soil organic carbon content by using stepwise multiple linear regression and ordinary kriging and the second phase of the study projects the soil organic carbon to the near future (2050) by using a set of environmental predictors. We demonstrate here an approach to predict present and future soil organic carbon stocks by using climate, land cover, terrain and soil data and their projections. The covariates were selected for their role in the carbon cycle and their availability for the future model. The regression-kriging as a base model is predicting current SOC stocks in Europe by using a set of covariates and dense SOC measurements coming from LUCAS Soil Database. The base model delivers coefficients for each of the covariates to the future model. The overall model produced soil organic carbon maps which reflect the present and the future predictions (2050) based on climate and land cover projections. The data of the present climate conditions (long-term average (1950-2000)) and the future projections for 2050 were obtained from WorldClim data portal. The future climate projections are the recent climate projections mentioned in the Fifth Assessment IPCC report. These projections were extracted from the global climate models (GCMs) for four representative concentration pathways (RCPs). The results suggest an overall increase in SOC stocks by 2050 in Europe (EU26) under all climate and land cover scenarios, but the extent of the increase varies between the climate model and emissions scenarios. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Ten years of experience from interactive ergonomics projects.
Eklund, J; Karltun, J
2012-01-01
This paper highlights experiences from ergonomics projects, applying an interactive research approach. The aim of this paper is to summarise experiences from seven interactive ergonomics projects with the aim to improve ergonomics and organizational performance jointly. Results from these seven projects were analysed with a model for assessing sustainable change, including the factors active ownership, professional management, competent project leadership, and involved participants. All factors were found giving support to impact and sustainability of the change projects. However, the role of the researcher is difficult and demanding.
ERIC Educational Resources Information Center
Smith, Dedrick A.
2010-01-01
This dissertation reviews the knowledge management's role in organizational maturity in project management. It draws a direct linked between organizational maturity knowledge channels both informal and then formal and organizational project management maturity. The study uses a mixed method approach through online and telephone surveys that draws…
Kai Duan; Ge Sun; Steven G. McNulty; Peter V. Caldwell; Erika C. Cohen; Shanlei Sun; Heather D. Aldridge; Decheng Zhou; Liangxia Zhang; Yang Zhang
2017-01-01
This study examines the relative roles of cli- matic variables in altering annual runoff in the contermi- nous United States (CONUS) in the 21st century, using a monthly ecohydrological model (the Water Supply Stress In- dex model, WaSSI) driven with historical records and future scenarios constructed from 20 Coupled Model Intercompar- ison Project Phase 5 (CMIP5)...
GMMIP (v1.0) contribution to CMIP6: Global Monsoons Model Inter-comparison Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Tianjun; Turner, Andrew G.; Kinter, James L.
The Global Monsoons Model Inter-comparison Project (GMMIP) has been endorsed by the panel of Coupled Model Inter-comparison Project (CMIP) as one of the participating model inter-comparison projects (MIPs) in the sixth phase of CMIP (CMIP6). The focus of GMMIP is on monsoon climatology, variability, prediction and projection, which is relevant to four of the “Grand Challenges” proposed by the World Climate Research Programme. At present, 21 international modeling groups are committed to joining GMMIP. This overview paper introduces the motivation behind GMMIP and the scientific questions it intends to answer. Three tiers of experiments, of decreasing priority, are designed to examinemore » (a) model skill in simulating the climatology and interannual-to-multidecadal variability of global monsoons forced by the sea surface temperature during historical climate period; (b) the roles of the Interdecadal Pacific Oscillation and Atlantic Multidecadal Oscillation in driving variations of the global and regional monsoons; and (c) the effects of large orographic terrain on the establishment of the monsoons. The outputs of the CMIP6 Diagnostic, Evaluation and Characterization of Klima experiments (DECK), “historical” simulation and endorsed MIPs will also be used in the diagnostic analysis of GMMIP to give a comprehensive understanding of the roles played by different external forcings, potential improvements in the simulation of monsoon rainfall at high resolution and reproducibility at decadal timescales. The implementation of GMMIP will improve our understanding of the fundamental physics of changes in the global and regional monsoons over the past 140 years and ultimately benefit monsoons prediction and projection in the current century.« less
ERIC Educational Resources Information Center
Pickeral, Terry, Ed.; Peters, Karen, Ed.
Prepared as part of a project to promote service-learning activities at community colleges, this sourcebook presents essays by college faculty detailing service-learning models and strategies. Following a brief foreword, an introductory essay describes the project, indicating that it involves a team of five faculty members who have built…
The Role of Ocean and Atmospheric Heat Transport in the Arctic Amplification
NASA Astrophysics Data System (ADS)
Vargas Martes, R. M.; Kwon, Y. O.; Furey, H. H.
2017-12-01
Observational data and climate model projections have suggested that the Arctic region is warming around twice faster than the rest of the globe, which has been referred as the Arctic Amplification (AA). While the local feedbacks, e.g. sea ice-albedo feedback, are often suggested as the primary driver of AA by previous studies, the role of meridional heat transport by ocean and atmosphere is less clear. This study uses the Community Earth System Model version 1 Large Ensemble simulation (CESM1-LE) to seek deeper understanding of the role meridional oceanic and atmospheric heat transports play in AA. The simulation consists of 40 ensemble members with the same physics and external forcing using a single fully coupled climate model. Each ensemble member spans two time periods; the historical period from 1920 to 2005 using the Coupled Model Intercomparison Project Phase 5 (CMIP5) historical forcing and the future period from 2006 to 2100 using the CMIP5 Representative Concentration Pathways 8.5 (RCP8.5) scenario. Each of the ensemble members are initialized with slightly different air temperatures. As the CESM1-LE uses a single model unlike the CMIP5 multi-model ensemble, the internal variability and the externally forced components can be separated more clearly. The projections are calculated by comparing the period 2081-2100 relative to the time period 2001-2020. The CESM1-LE projects an AA of 2.5-2.8 times faster than the global average, which is within the range of those from the CMIP5 multi-model ensemble. However, the spread of AA from the CESM1-LE, which is attributed to the internal variability, is 2-3 times smaller than that of the CMIP5 ensemble, which may also include the inter-model differences. CESM1LE projects a decrease in the atmospheric heat transport into the Arctic and an increase in the oceanic heat transport. The atmospheric heat transport is further decomposed into moisture transport and dry static energy transport. Also, the oceanic heat transport is decomposed into the Pacific and Atlantic contributions.
Teachers as Metacognitive Role Models
ERIC Educational Resources Information Center
Wall, Kate; Hall, Elaine
2016-01-01
This paper draws on data collected during a longitudinal collaborative project with teachers in England from schools and further education colleges. The project investigated "Learning to Learn" in partnership with teacher-researchers with a focus on how metacognitive awareness can be improved by enquiring into creative combinations of…
America's Favorite Pastime: Learning.
ERIC Educational Resources Information Center
Taylor, Gene
1989-01-01
Examines the role of "relief" teacher at a Navajo Reservation elementary boarding school: developer of academic projects based on student interests and abilities. Describes a whale project that involved building a life-size model, information searches, letter and report writing, and a student-organized demonstration of exhibits. (SV)
NASA Astrophysics Data System (ADS)
Lapola, David M.; Oyama, Marcos D.; Nobre, Carlos A.
2009-09-01
Tropical South America vegetation cover projections for the end of the century differ considerably depending on climate scenario and also on how physiological processes are considered in vegetation models. In this paper we use a potential vegetation model (CPTEC-PVM2) to analyze biome distribution in tropical South America under a range of climate projections and a range of estimates about the effects of increased atmospheric CO2. We show that if the CO2 "fertilization effect" indeed takes place and is maintained in the long term in tropical forests, then it will avoid biome shifts in Amazonia in most of the climate scenarios, even if the effect of CO2 fertilization is halved. However, if CO2 fertilization does not play any important role on tropical forests in the future or if dry season is longer than 4 months (projected by 2/14 GCMs), then there is replacement of large portions of Amazonia by tropical savanna.
NASA Astrophysics Data System (ADS)
Pontes, G. M.; Gupta, A. Sen; Taschetto, A. S.
2016-09-01
The South Atlantic (SA) circulation plays an important role in the oceanic teleconnections from the Indian, Pacific and Southern oceans to the North Atlantic, with inter-hemispheric exchanges of heat and salt. Here, we show that the large-scale features of the SA circulation are projected to change significantly under ‘business as usual’ greenhouse gas increases. Based on 19 models from the Coupled Model Intercomparison Project phase 5 there is a projected weakening in the upper ocean interior transport (<1000 m) between 15° and ˜32°S, largely related to a weakening of the wind stress curl over this region. The reduction in ocean interior circulation is largely compensated by a decrease in the net deep southward ocean transport (>1000 m), mainly related to a decrease in the North Atlantic deep water transport. Between 30° and 40°S, there is a consistent projected intensification in the Brazil current strength of about 40% (30%-58% interquartile range) primarily compensated by an intensification of the upper interior circulation across the Indo-Atlantic basin. The Brazil-Malvinas confluence is projected to shift southwards, driven by a weakening of the Malvinas current. Such a change could have important implications for the distribution of marine species in the southwestern SA in the future.
Project Super Heart--Year One.
ERIC Educational Resources Information Center
Bellardini, Harry; And Others
1980-01-01
A model cardiovascular disease prevention program for young children is described. Components include physical examinations, health education (anatomy and physiology of the cardiovascular system), nutrition instruction, first aid techniques, role modeling, and environmental engineering. (JN)
DOT National Transportation Integrated Search
2012-05-01
The role of the REMI Policy Insight+ model in socioeconomic forecasting and economic impact analysis of transportation projects was assessed. The REMI : PI+ model is consistent with the state of the practice in forecasting and impact analysis. REMI P...
DOT National Transportation Integrated Search
2012-05-01
The role of the REMI Policy Insight+ model in socioeconomic forecasting and economic impact analysis of transportation projects was assessed. The REMI : PI+ model is consistent with the state of the practice in forecasting and impact analysis. REMI P...
Compatibility of Common Instructional Models with the DACUM Process
ERIC Educational Resources Information Center
Wyrostek, Warren; Downey, Steven
2017-01-01
Practitioners use an expansive array of instructional design models. Although many of these models acknowledge the need for analyzing occupational roles, they do not define steps for conducting these analyses. This article reviews prominent models and provides prescriptive guidance for selecting appropriate models given a project's (a) Product…
Should Male Primary School Teachers Be There Principally as Role Models for Boys?
ERIC Educational Resources Information Center
Faulstich-Wieland, Hannelore
2013-01-01
There is a worldwide debate about the need for male teachers as role-models especially for boys. This might motivate young men to start a teacher career expecting that their gender is the essential qualification. In a German project we interviewed upper secondary students regarding their study plans and found that most of them thought that…
A Praxeological Perspective for the Design and Implementation of a Digital Role-Play Game
ERIC Educational Resources Information Center
Sanchez, Eric; Monod-Ansaldi, Réjane; Vincent, Caroline; Safadi-Katouzian, Sina
2017-01-01
This paper draws on an empirical work dedicated to discussing a theoretical model for design-based research. The context of our study is a research project for the design, the implementation and the analysis of Insectophagia, a digital role-play game implemented in secondary schools. The model presented in this paper aims at conceptualizing…
The Construction of Teaching Roles at Aalborg University Centre, 1970-1980
ERIC Educational Resources Information Center
Servant-Miklos, Virginie F. C.; Spliid, Claus M.
2017-01-01
This paper proposes a historical analysis of the development of teaching roles at Aalborg University Centre in its first 10 years. The research highlights three processes through which the interpretation of the new "supervisor" roles was constructed within the problem-oriented, project-based educational model of AUC. First, the authors…
ERIC Educational Resources Information Center
Green, Crystal D.
2010-01-01
This action research study investigated the perceptions that student participants had on the development of a career exploration model and a career exploration project. The Holland code theory was the primary assessment used for this research study, in addition to the Multiple Intelligences theory and the identification of a role model for the…
Climate extremes, land–climate feedbacks and land-use forcing at 1.5°C
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seneviratne, Sonia I.; Wartenburger, Richard; Guillod, Benoit P.
This article investigates projected changes in temperature and water cycle extremes at 1.5°C global warming, and highlights the role of land processes and land-use changes (LUC) for these projections. We provide new comparisons of changes in climate at 1.5°C vs 2°C based on empirical sampling analyses of transient simulations vs simulations from the 'Half a degree Additional warming, Prognosis and Projected Impacts' (HAPPI) multi-model experiment. The two approaches yield overall similar results regarding changes in climate extremes on land, and reveal a substantial difference in regional extremes occurrence at 1.5°C vs 2°C. Land processes mediated through soil moisture feedbacks andmore » land-use forcing play a major role for projected changes in extremes at 1.5°C in most mid-latitude regions, including densely populated areas in North America, Europe and Asia. This has important implications for low-emissions scenarios derived from Integrated Assessment Models (IAMs), which include major LUC in ambitious mitigation pathways (e.g. associated with increased bioenergy use), but are also shown to differ in the simulated LUC patterns. Biogeophysical effects from LUC are not considered in the development of IAM scenarios, but play an important role for projected regional changes in climate extremes, and are thus of high relevance for sustainable development pathways.« less
Climate extremes, land–climate feedbacks and land-use forcing at 1.5°C
Seneviratne, Sonia I.; Wartenburger, Richard; Guillod, Benoit P.; ...
2018-04-02
Here, this article investigates projected changes in temperature and water cycle extremes at 1.5°C of global warming, and highlights the role of land processes and land-use changes (LUCs) for these projections. We provide new comparisons of changes in climate at 1.5°C versus 2°C based on empirical sampling analyses of transient simulations versus simulations from the ‘Half a degree Additional warming, Prognosis and Projected Impacts’ (HAPPI) multi-model experiment. The two approaches yield similar overall results regarding changes in climate extremes on land, and reveal a substantial difference in the occurrence of regional extremes at 1.5°C versus 2°C. Land processes mediated throughmore » soil moisture feedbacks and land-use forcing play a major role for projected changes in extremes at 1.5°C in most mid-latitude regions, including densely populated areas in North America, Europe and Asia. This has important implications for low-emissions scenarios derived from integrated assessment models (IAMs), which include major LUCs in ambitious mitigation pathways (e.g. associated with increased bioenergy use), but are also shown to differ in the simulated LUC patterns. Biogeophysical effects from LUCs are not considered in the development of IAM scenarios, but play an important role for projected regional changes in climate extremes, and are thus of high relevance for sustainable development pathways.« less
Climate extremes, land–climate feedbacks and land-use forcing at 1.5°C
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seneviratne, Sonia I.; Wartenburger, Richard; Guillod, Benoit P.
Here, this article investigates projected changes in temperature and water cycle extremes at 1.5°C of global warming, and highlights the role of land processes and land-use changes (LUCs) for these projections. We provide new comparisons of changes in climate at 1.5°C versus 2°C based on empirical sampling analyses of transient simulations versus simulations from the ‘Half a degree Additional warming, Prognosis and Projected Impacts’ (HAPPI) multi-model experiment. The two approaches yield similar overall results regarding changes in climate extremes on land, and reveal a substantial difference in the occurrence of regional extremes at 1.5°C versus 2°C. Land processes mediated throughmore » soil moisture feedbacks and land-use forcing play a major role for projected changes in extremes at 1.5°C in most mid-latitude regions, including densely populated areas in North America, Europe and Asia. This has important implications for low-emissions scenarios derived from integrated assessment models (IAMs), which include major LUCs in ambitious mitigation pathways (e.g. associated with increased bioenergy use), but are also shown to differ in the simulated LUC patterns. Biogeophysical effects from LUCs are not considered in the development of IAM scenarios, but play an important role for projected regional changes in climate extremes, and are thus of high relevance for sustainable development pathways.« less
Integrating HCI Specialists into Open Source Software Development Projects
NASA Astrophysics Data System (ADS)
Hedberg, Henrik; Iivari, Netta
Typical open source software (OSS) development projects are organized around technically talented developers, whose communication is based on technical aspects and source code. Decision-making power is gained through proven competence and activity in the project, and non-technical end-user opinions are too many times neglected. In addition, also human-computer interaction (HCI) specialists have encountered difficulties in trying to participate in OSS projects, because there seems to be no clear authority and responsibility for them. In this paper, based on HCI and OSS literature, we introduce an extended OSS development project organization model that adds a new level of communication and roles for attending human aspects of software. The proposed model makes the existence of HCI specialists visible in the projects, and promotes interaction between developers and the HCI specialists in the course of a project.
Workflows and the Role of Images for Virtual 3d Reconstruction of no Longer Extant Historic Objects
NASA Astrophysics Data System (ADS)
Münster, S.
2013-07-01
3D reconstruction technologies have gained importance as tools for the research and visualization of no longer extant historic objects during the last decade. Within such reconstruction processes, visual media assumes several important roles: as the most important sources especially for a reconstruction of no longer extant objects, as a tool for communication and cooperation within the production process, as well as for a communication and visualization of results. While there are many discourses about theoretical issues of depiction as sources and as visualization outcomes of such projects, there is no systematic research about the importance of depiction during a 3D reconstruction process and based on empirical findings. Moreover, from a methodological perspective, it would be necessary to understand which role visual media plays during the production process and how it is affected by disciplinary boundaries and challenges specific to historic topics. Research includes an analysis of published work and case studies investigating reconstruction projects. This study uses methods taken from social sciences to gain a grounded view of how production processes would take place in practice and which functions and roles images would play within them. For the investigation of these topics, a content analysis of 452 conference proceedings and journal articles related to 3D reconstruction modeling in the field of humanities has been completed. Most of the projects described in those publications dealt with data acquisition and model building for existing objects. Only a small number of projects focused on structures that no longer or never existed physically. Especially that type of project seems to be interesting for a study of the importance of pictures as sources and as tools for interdisciplinary cooperation during the production process. In the course of the examination the authors of this paper applied a qualitative content analysis for a sample of 26 previously published project reports to depict strategies and types and three case studies of 3D reconstruction projects to evaluate evolutionary processes during such projects. The research showed that reconstructions of no longer existing historic structures are most commonly used for presentation or research purposes of large buildings or city models. Additionally, they are often realized by interdisciplinary workgroups using images as the most important source for reconstruction as far as important media for communication and quality control during the reconstruction process.
Understanding Gulf War Illness: An Integrative Modeling Approach
2014-10-01
Broderick , PhD, James O’Callaghan, 5d. PROJECT NUMBER PhD and James Blount 5e. TASK NUMBER E-Mail:mmorris1@nova.edu, jblountjr...charge of the animal research. Oversees hiring of all personnel. Funding Support: NIH Name: Gordon Broderick , PhD Project Role: Co-Director
Learning to Live Together: The Contribution of Intercultural Education
ERIC Educational Resources Information Center
Martins, Isabel Ferreira
2008-01-01
This article reflects the 17 years of experience of the "Entreculturas project" in Portugal, where the "Learning to live together" dimension has played a central role. It questions how intercultural education and training can contribute to promote and model an intercultural citizenship societal project and looks back at the…
Participacion infantil (Child Participation).
ERIC Educational Resources Information Center
Moreno Garcia, Teresa, Ed.
2000-01-01
This Spanish- and Portuguese-language bulletin presents articles focusing on early childhood and elementary-age initiatives in which the children play a more active role than the usual model of teachers/adult project leaders taking the lead and the children following their directions. Each article covers a distinct project, thus examining the…
Teachers' Journeys towards Critical Use of ICT
ERIC Educational Resources Information Center
Schibeci, Renato; MacCallum, Judith; Cumming-Potvin, Wendy; Durrant, Cal; Kissane, Barry; Miller, Erica-Jane
2008-01-01
Teachers have a central role in developing new learning models in schools. This paper describes a study that explored teachers' confidence and competence in using Information and Communication Technologies (ICT) as they participated in an ICT development project conducted by an Australian education system in 12 primary schools. The project aimed…
The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6
O'Neill, Brian C.; Tebaldi, Claudia; van Vuuren, Detlef P.; ...
2016-09-28
Projections of future climate change play a fundamental role in improving understanding of the climate system as well as characterizing societal risks and response options. The Scenario Model Intercomparison Project (ScenarioMIP) is the primary activity within Phase 6 of the Coupled Model Intercomparison Project (CMIP6) that will provide multi-model climate projections based on alternative scenarios of future emissions and land use changes produced with integrated assessment models. Here, we describe ScenarioMIP's objectives, experimental design, and its relation to other activities within CMIP6. The ScenarioMIP design is one component of a larger scenario process that aims to facilitate a wide rangemore » of integrated studies across the climate science, integrated assessment modeling, and impacts, adaptation, and vulnerability communities, and will form an important part of the evidence base in the forthcoming Intergovernmental Panel on Climate Change (IPCC) assessments. Furthermore, it will provide the basis for investigating a number of targeted science and policy questions that are especially relevant to scenario-based analysis, including the role of specific forcings such as land use and aerosols, the effect of a peak and decline in forcing, the consequences of scenarios that limit warming to below 2°C, the relative contributions to uncertainty from scenarios, climate models, and internal variability, and long-term climate system outcomes beyond the 21st century. In order to serve this wide range of scientific communities and address these questions, a design has been identified consisting of eight alternative 21st century scenarios plus one large initial condition ensemble and a set of long-term extensions, divided into two tiers defined by relative priority. Some of these scenarios will also provide a basis for variants planned to be run in other CMIP6-Endorsed MIPs to investigate questions related to specific forcings. Harmonized, spatially explicit emissions and land use scenarios generated with integrated assessment models will be provided to participating climate modeling groups by late 2016, with the climate model simulations run within the 2017–2018 time frame, and output from the climate model projections made available and analyses performed over the 2018–2020 period.« less
The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Neill, Brian C.; Tebaldi, Claudia; van Vuuren, Detlef P.
2016-01-01
Projections of future climate change play a fundamental role in improving understanding of the climate system as well as characterizing societal risks and response options. The Scenario Model Intercomparison Project (ScenarioMIP) is the primary activity within Phase 6 of the Coupled Model Intercomparison Project (CMIP6) that will provide multi-model climate projections based on alternative scenarios of future emissions and land use changes produced with integrated assessment models. In this paper, we describe ScenarioMIP's objectives, experimental design, and its relation to other activities within CMIP6. The ScenarioMIP design is one component of a larger scenario process that aims to facilitate amore » wide range of integrated studies across the climate science, integrated assessment modeling, and impacts, adaptation, and vulnerability communities, and will form an important part of the evidence base in the forthcoming Intergovernmental Panel on Climate Change (IPCC) assessments. At the same time, it will provide the basis for investigating a number of targeted science and policy questions that are especially relevant to scenario-based analysis, including the role of specific forcings such as land use and aerosols, the effect of a peak and decline in forcing, the consequences of scenarios that limit warming to below 2 °C, the relative contributions to uncertainty from scenarios, climate models, and internal variability, and long-term climate system outcomes beyond the 21st century. To serve this wide range of scientific communities and address these questions, a design has been identified consisting of eight alternative 21st century scenarios plus one large initial condition ensemble and a set of long-term extensions, divided into two tiers defined by relative priority. Some of these scenarios will also provide a basis for variants planned to be run in other CMIP6-Endorsed MIPs to investigate questions related to specific forcings. Harmonized, spatially explicit emissions and land use scenarios generated with integrated assessment models will be provided to participating climate modeling groups by late 2016, with the climate model simulations run within the 2017–2018 time frame, and output from the climate model projections made available and analyses performed over the 2018–2020 period.« less
The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6
NASA Astrophysics Data System (ADS)
O'Neill, Brian C.; Tebaldi, Claudia; van Vuuren, Detlef P.; Eyring, Veronika; Friedlingstein, Pierre; Hurtt, George; Knutti, Reto; Kriegler, Elmar; Lamarque, Jean-Francois; Lowe, Jason; Meehl, Gerald A.; Moss, Richard; Riahi, Keywan; Sanderson, Benjamin M.
2016-09-01
Projections of future climate change play a fundamental role in improving understanding of the climate system as well as characterizing societal risks and response options. The Scenario Model Intercomparison Project (ScenarioMIP) is the primary activity within Phase 6 of the Coupled Model Intercomparison Project (CMIP6) that will provide multi-model climate projections based on alternative scenarios of future emissions and land use changes produced with integrated assessment models. In this paper, we describe ScenarioMIP's objectives, experimental design, and its relation to other activities within CMIP6. The ScenarioMIP design is one component of a larger scenario process that aims to facilitate a wide range of integrated studies across the climate science, integrated assessment modeling, and impacts, adaptation, and vulnerability communities, and will form an important part of the evidence base in the forthcoming Intergovernmental Panel on Climate Change (IPCC) assessments. At the same time, it will provide the basis for investigating a number of targeted science and policy questions that are especially relevant to scenario-based analysis, including the role of specific forcings such as land use and aerosols, the effect of a peak and decline in forcing, the consequences of scenarios that limit warming to below 2 °C, the relative contributions to uncertainty from scenarios, climate models, and internal variability, and long-term climate system outcomes beyond the 21st century. To serve this wide range of scientific communities and address these questions, a design has been identified consisting of eight alternative 21st century scenarios plus one large initial condition ensemble and a set of long-term extensions, divided into two tiers defined by relative priority. Some of these scenarios will also provide a basis for variants planned to be run in other CMIP6-Endorsed MIPs to investigate questions related to specific forcings. Harmonized, spatially explicit emissions and land use scenarios generated with integrated assessment models will be provided to participating climate modeling groups by late 2016, with the climate model simulations run within the 2017-2018 time frame, and output from the climate model projections made available and analyses performed over the 2018-2020 period.
The materials processing research base of the Materials Processing Center. Report for FY 1982
NASA Technical Reports Server (NTRS)
Flemings, M. C.
1983-01-01
The work described, while involving research in the broad field of materials processing, has two common features: the problems are closed related to space precessing of materials and have both practical and fundamental significance. An interesting and important feature of many of the projects is that the interdisciplinary nature of the problem mandates complementary analytical modeling/experimental approaches. An other important aspect of many of the projects is the increasing use of mathematical modeling techniques as one of the research tools. The predictive capability of these models, when tested against measurements, plays a very important role in both the planning of experimental programs and in the rational interpretation of the results. Many of the projects described have a space experiment as their ultimate objective. Mathematical models are proving to be extremely valuable in projecting the findings of ground - based experiments to microgravity conditions.
Uncertain soil moisture feedbacks in model projections of Sahel precipitation
NASA Astrophysics Data System (ADS)
Berg, Alexis; Lintner, Benjamin R.; Findell, Kirsten; Giannini, Alessandra
2017-06-01
Given the uncertainties in climate model projections of Sahel precipitation, at the northern edge of the West African Monsoon, understanding the factors governing projected precipitation changes in this semiarid region is crucial. This study investigates how long-term soil moisture changes projected under climate change may feedback on projected changes of Sahel rainfall, using simulations with and without soil moisture change from five climate models participating in the Global Land Atmosphere Coupling Experiment-Coupled Model Intercomparison Project phase 5 experiment. In four out of five models analyzed, soil moisture feedbacks significantly influence the projected West African precipitation response to warming; however, the sign of these feedbacks differs across the models. These results demonstrate that reducing uncertainties across model projections of the West African Monsoon requires, among other factors, improved mechanistic understanding and constraint of simulated land-atmosphere feedbacks, even at the large spatial scales considered here.
Lee, K-E; Lee, E-J; Park, H-S
2016-08-30
Recent advances in computational epigenetics have provided new opportunities to evaluate n-gram probabilistic language models. In this paper, we describe a systematic genome-wide approach for predicting functional roles in inactive chromatin regions by using a sequence-based Markovian chromatin map of the human genome. We demonstrate that Markov chains of sequences can be used as a precursor to predict functional roles in heterochromatin regions and provide an example comparing two publicly available chromatin annotations of large-scale epigenomics projects: ENCODE project consortium and Roadmap Epigenomics consortium.
The ABAG biogenic emissions inventory project
NASA Technical Reports Server (NTRS)
Carson-Henry, C. (Editor)
1982-01-01
The ability to identify the role of biogenic hydrocarbon emissions in contributing to overall ozone production in the Bay Area, and to identify the significance of that role, were investigated in a joint project of the Association of Bay Area Governments (ABAG) and NASA/Ames Research Center. Ozone, which is produced when nitrogen oxides and hydrocarbons combine in the presence of sunlight, is a primary factor in air quality planning. In investigating the role of biogenic emissions, this project employed a pre-existing land cover classification to define areal extent of land cover types. Emission factors were then derived for those cover types. The land cover data and emission factors were integrated into an existing geographic information system, where they were combined to form a Biogenic Hydrocarbon Emissions Inventory. The emissions inventory information was then integrated into an existing photochemical dispersion model.
NASA Astrophysics Data System (ADS)
Shongwe, M.
2014-12-01
The warming rates projected by an ensemble of the Coupled Model Intercomparion Project Phase 5 (CMIP5) global climate models (GCMs) over southern Africa (south of 10 degrees latitude) are investigated. In all RCPs, CMIP5 models project a higher warming rate over the southwestern parts centred around the arid Kalahari and Namib deserts. The higher warming rates over these areas outpace global warming by up to a factor 2 in some GCMs. The projected warming is associated with an increase in heat waves. There is notable consensus across the models with little intermodel spread, suggesting a strong robustness of the projections. Mechanisms underlying the enhanced warming are investigated. A positive soil moisture-temperature feedback is suggested to contribute to the accelerated temperature increase. A decrease in soil moisture is projected by the GCMs over the area of highest warming. The reduction in soil wetness reduces evapotranspiration rates over the area where evaporation is dependent on available soil moisture. The reduction is evapotranspiration affects the partitioning of turbulent energy fluxes from the soil surface into the atmosphere and translates into an increase of the Bowen ratio featuring an increase in sensible relative to latent heat flux. An increase in sensible heat flux leads to an increase in near-surface temperature. The increase in temperature leads to a higher vapour pressure deficit and evaporative demand and evapotranspiration from the dry soils, possibly leading to a further decrease in soil moisture. A precipitation-soil moisture feedback is also suggested. A decrease in mean precipitation and an increase in drought conditions are projected over the area of enhanced warming. The reduced precipitation results in drier soils. The drier soil translates to reduced evapotranspiration for cloud and rainfall formation. However, the role played by the soil moisture-precipitation feedback loop is still inconclusive and characterized by some degree of uncertainty given that the strength of the local moisture recycling has not been explicitly quantified. An alternative mechanism involving the impact of soil moisture anomalies on boundary-layer stability and precipitation formation will be investigated.
Projective Ponzano-Regge spin networks and their symmetries
NASA Astrophysics Data System (ADS)
Aquilanti, Vincenzo; Marzuoli, Annalisa
2018-02-01
We present a novel hierarchical construction of projective spin networks of the Ponzano-Regge type from an assembling of five quadrangles up to the combinatorial 4-simplex compatible with a geometrical realization in Euclidean 4-space. The key ingredients are the projective Desargues configuration and the incidence structure given by its space-dual, on the one hand, and the Biedenharn-Elliott identity for the 6j symbol of SU(2), on the other. The interplay between projective-combinatorial and algebraic features relies on the recoupling theory of angular momenta, an approach to discrete quantum gravity models carried out successfully over the last few decades. The role of Regge symmetry-an intriguing discrete symmetry of the 6j which goes beyond the standard tetrahedral symmetry of this symbol-will be also discussed in brief to highlight its role in providing a natural regularization of projective spin networks that somehow mimics the standard regularization through a q-deformation of SU(2).
Langston, Anne; Weiss, Jennifer; Landegger, Justine; Pullum, Thomas; Morrow, Melanie; Kabadege, Melene; Mugeni, Catherine; Sarriot, Eric
2014-08-01
The Kabeho Mwana project (2006-2011) supported the Rwanda Ministry of Health (MOH) in scaling up integrated community case management (iCCM) of childhood illness in 6 of Rwanda's 30 districts. The project trained and equipped community health workers (CHWs) according to national guidelines. In project districts, Kabeho Mwana staff also trained CHWs to conduct household-level health promotion and established supervision and reporting mechanisms through CHW peer support groups (PSGs) and quality improvement systems. The 2005 and 2010 Demographic and Health Surveys were re-analyzed to evaluate how project and non-project districts differed in terms of care-seeking for fever, diarrhea, and acute respiratory infection symptoms and related indicators. We developed a logit regression model, controlling for the timing of the first CHW training, with the district included as a fixed categorical effect. We also analyzed qualitative data from the final evaluation to examine factors that may have contributed to improved outcomes. While there was notable improvement in care-seeking across all districts, care-seeking from any provider for each of the 3 conditions, and for all 3 combined, increased significantly more in the project districts. CHWs contributed a larger percentage of consultations in project districts (27%) than in non-project districts (12%). Qualitative data suggested that the PSG model was a valuable sub-level of CHW organization associated with improved CHW performance, supervision, and social capital. The iCCM model implemented by Kabeho Mwana resulted in greater improvements in care-seeking than those seen in the rest of the country. Intensive monitoring, collaborative supervision, community mobilization, and CHW PSGs contributed to this success. The PSGs were a unique contribution of the project, playing a critical role in improving care-seeking in project districts. Effective implementation of iCCM should therefore include CHW management and social support mechanisms. Finally, re-analysis of national survey data improved evaluation findings by providing impact estimates.
NASA Astrophysics Data System (ADS)
Jayasankar, C. B.; Surendran, Sajani; Rajendran, Kavirajan
2015-05-01
Coupled Model Intercomparison Project phase 5 (Fifth Assessment Report of Intergovernmental Panel on Climate Change) coupled global climate model Representative Concentration Pathway 8.5 simulations are analyzed to derive robust signals of projected changes in Indian summer monsoon rainfall (ISMR) and its variability. Models project clear future temperature increase but diverse changes in ISMR with substantial intermodel spread. Objective measures of interannual variability (IAV) yields nearly equal chance for future increase or decrease. This leads to discrepancy in quantifying changes in ISMR and variability. However, based primarily on the physical association between mean changes in ISMR and its IAV, and objective methods such as k-means clustering with Dunn's validity index, mean seasonal cycle, and reliability ensemble averaging, projections fall into distinct groups. Physically consistent groups of models with the highest reliability project future reduction in the frequency of light rainfall but increase in high to extreme rainfall and thereby future increase in ISMR by 0.74 ± 0.36 mm d-1, along with increased future IAV. These robust estimates of future changes are important for useful impact assessments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Castro, Ricardo
The report describes in details the achievements of the project addressing the performance of nanomaterials in radioactive environments. The project addresses the fundamentals of the role of interface features on the defect dynamics during irradiation and present models to predict behavior based on thermodynamic properties. Papers and products, including formation of students in this strategic area, are presented in details as well.
ERIC Educational Resources Information Center
Vigh, Pia
The paper presents the model behind net2art, a joint Nordic project of creating a platform for Nordic net art. The projects background and scope, organization, impact and experiences, funding structures, and copyright issues are covered. The paper argues that museums do not have a natural role in the distribution of net art (i.e., art that is made…
Final-Year Education Projects for Undergraduate Chemistry Students
ERIC Educational Resources Information Center
Page, Elizabeth
2011-01-01
The Undergraduate Ambassadors Scheme provides an opportunity for students in their final year of the chemistry degree course at the University of Reading to choose an educational project as an alternative to practical research. The undergraduates work in schools where they can be regarded as role models and offer one way of inspiring pupils to…
Habitat modeling for biodiversity conservation.
Bruce G. Marcot
2006-01-01
Habitat models address only 1 component of biodiversity but can be useful in addressing and managing single or multiple species and ecosystem functions, for projecting disturbance regimes, and in supporting decisions. I review categories and examples of habitat models, their utility for biodiversity conservation, and their roles in making conservation decisions. I...
The Dog Aging Project: Translational Geroscience in Companion Animals
Kaeberlein, Matt; Creevy, Kate E.; Promislow, Daniel E. L.
2016-01-01
Studies of the basic biology of aging have identified several genetic and pharmacological interventions that appear to modulate the rate of aging in laboratory model organisms, but a barrier to further progress has been the challenge of moving beyond these laboratory discoveries to impact health and quality of life for people. The domestic dog, Canis familiaris, offers a unique opportunity for surmounting this barrier in the near future. In particular, companion dogs share our environment and play an important role in improving the quality of life for millions of people. Here we present a rationale for increasing the role of companion dogs as an animal model for both basic and clinical Geroscience and describe complementary approaches and ongoing projects aimed at achieving this goal. PMID:27143112
2016-10-01
Righting Reflex of rats following double blast exposure. 0 4 8 12 16 20 R ig ht in g Re fle x (m in ut es ) PLACEBO FISH OIL Total Lived Died...experiments. Funding Support: Geneva Foundation contractor – WRAIR Name: Joseph B. Long, Ph.D. Project Role: Co-Investigator – WRAIR Researcher...Funding Support: Clinical Research Management contractor Name: Andrew B. Batuure Project Role: Technician - WRAIR Researcher Identifier (e.g. ORCID
ERIC Educational Resources Information Center
Justi, Rosaria; van Driel, Jan
2006-01-01
Models play an important role in science education. However, previous research has revealed that science teachers' content knowledge, curricular knowledge, and pedagogical content knowledge on models and modelling are often incomplete or inadequate. From this perspective, a research project was designed which aimed at the development of beginning…
Representation of the Great Lakes in the Coupled Model Intercomparison Project Version 5
NASA Astrophysics Data System (ADS)
Briley, L.; Rood, R. B.
2017-12-01
The U.S. Great Lakes play a significant role in modifying regional temperatures and precipitation, and as the lakes change in response to a warming climate (i.e., warmer surface water temperatures, decreased ice cover, etc) lake-land-atmosphere dynamics are affected. Because the lakes modify regional weather and are a driver of regional climate change, understanding how they are represented in climate models is important to the reliability of model based information for the region. As part of the Great Lakes Integrated Sciences + Assessments (GLISA) Ensemble project, a major effort is underway to evaluate the Coupled Model Intercomparison Project version (CMIP) 5 global climate models for how well they physically represent the Great Lakes and lake-effects. The CMIP models were chosen because they are a primary source of information in many products developed for decision making (i.e., National Climate Assessment, downscaled future climate projections, etc.), yet there is very little description of how well they represent the lakes. This presentation will describe the results of our investigation of if and how the Great Lakes are represented in the CMIP5 models.
Second Wind: A Program for Returning Women Students.
ERIC Educational Resources Information Center
Carter, Jane O., Ed.
Since most college programs are designed for young people, new programs need to be developed that overcome personal and institutional barriers, including sex-role stereotyping and sex-role socialization, that restrict returning women's educational opportunities on the college campus. This project establishes a model low-cost, self-perpetuating…
Boosting innovation in the water sector--the role and lessons learned from collaborative projects.
Alegre, H; Coelho, S T; Feliciano, J F; Matos, R
2015-01-01
A key worldwide challenge in most sectors is to boost the effective adoption of innovation, as underpinned by the new European Union research programme Horizon 2020, which focuses on increasing innovation in Europe from 2014 to 2020. This is particularly relevant in the water sector, often perceived as conservative and averse to change. This paper discusses the role that collaborative knowledge-transfer projects can play in effectively rolling out R&D in the water industry. LNEC (Laboratório Nacional de Engenharia Civil) has designed a structured model based on a phased programme and a network of utilities and researchers. The paper presents the core principles, the rationale, the model and methods used, and the theoretical background, as well as the project's impact, outcomes and products. The discussion highlights the lessons learnt and provides a formal analysis of the advantages of focusing on middle management as an effective entry point, even if innovation is needed across the organization. Making training materials, guidelines, use cases, data and software publicly available after the project's end has proven to have a decisive multiplying effect. The paper also argues in favour of the collaborative model as a basis for R&D sustainability, and details on-going and planned developments.
Boyle, D M
1994-01-01
To discuss and project cancer care needs and a vision of oncology nursing in the next century. Scholarly, professional, and governmental sources of information. Projections of a changed patient/family profile, social support dilemmas, and a new "hybrid" oncology nurse. Opportunities for nurses, resulting from these projections, include roles as minority needs specialist, director of new care-delivery models, facilitator of intergenerational support teams, overseer of neighborhood-based care systems, multispecialty nursing care provider, cancer care policy activist. Nursing education, community models, and current care-delivery settings will all be affected by the projected changes and will all need to consider adjusting to meet the demands that will be placed on them to facilitate change.
Engaging students in learning: findings from a study of project-led education
NASA Astrophysics Data System (ADS)
Fernandes, Sandra; Mesquita, Diana; Assunção Flores, Maria; Lima, Rui M.
2014-01-01
This paper reports on findings from a three-year study of project-based learning implemented in the first year of the Industrial Engineering and Management programme, at the University of Minho, Portugal. This particular model was inspired on project-led education (PLE), following Powell and Weenk's [2003. Project-Led Engineering Education. Utrecht: Lemma] work. It aims to analyse students' perceptions of PLE as a learning device and its implications for faculty and students' role in teaching and learning. Data collection took place in two phases through individual surveys and focus groups to students. Findings suggest the importance of PLE as a device to enhance meaningful learning and provide evidence from students that it helps to increase their engagement in learning. Implications of PLE for faculty and students role in teaching and learning will be discussed in the paper.
ERIC Educational Resources Information Center
Josten, LaVohn; And Others
This report discusses the role of graduate nurses in public health leadership and the development of new models of graduate education to prepare nurses for public health leadership. It reviews the need for graduate nurses in public health leadership positions, the health needs of the population, the role of public health in a changing health care…
Do telemonitoring projects of heart failure fit the Chronic Care Model?
Willemse, Evi; Adriaenssens, Jef; Dilles, Tinne; Remmen, Roy
2014-01-01
This study describes the characteristics of extramural and transmural telemonitoring projects on chronic heart failure in Belgium. It describes to what extent these telemonitoring projects coincide with the Chronic Care Model of Wagner. Background The Chronic Care Model describes essential components for high-quality health care. Telemonitoring can be used to optimise home care for chronic heart failure. It provides a potential prospective to change the current care organisation. Methods This qualitative study describes seven non-invasive home-care telemonitoring projects in patients with heart failure in Belgium. A qualitative design, including interviews and literature review, was used to describe the correspondence of these home-care telemonitoring projects with the dimensions of the Chronic Care Model. Results The projects were situated in primary and secondary health care. Their primary goal was to reduce the number of readmissions for chronic heart failure. None of these projects succeeded in a final implementation of telemonitoring in home care after the pilot phase. Not all the projects were initiated to accomplish all of the dimensions of the Chronic Care Model. A central role for the patient was sparse. Conclusion Limited financial resources hampered continuation after the pilot phase. Cooperation and coordination in telemonitoring appears to be major barriers but are, within primary care as well as between the lines of care, important links in follow-up. This discrepancy can be prohibitive for deployment of good chronic care. Chronic Care Model is recommended as basis for future. PMID:25114664
Do telemonitoring projects of heart failure fit the Chronic Care Model?
Willemse, Evi; Adriaenssens, Jef; Dilles, Tinne; Remmen, Roy
2014-07-01
This study describes the characteristics of extramural and transmural telemonitoring projects on chronic heart failure in Belgium. It describes to what extent these telemonitoring projects coincide with the Chronic Care Model of Wagner. The Chronic Care Model describes essential components for high-quality health care. Telemonitoring can be used to optimise home care for chronic heart failure. It provides a potential prospective to change the current care organisation. This qualitative study describes seven non-invasive home-care telemonitoring projects in patients with heart failure in Belgium. A qualitative design, including interviews and literature review, was used to describe the correspondence of these home-care telemonitoring projects with the dimensions of the Chronic Care Model. The projects were situated in primary and secondary health care. Their primary goal was to reduce the number of readmissions for chronic heart failure. None of these projects succeeded in a final implementation of telemonitoring in home care after the pilot phase. Not all the projects were initiated to accomplish all of the dimensions of the Chronic Care Model. A central role for the patient was sparse. Limited financial resources hampered continuation after the pilot phase. Cooperation and coordination in telemonitoring appears to be major barriers but are, within primary care as well as between the lines of care, important links in follow-up. This discrepancy can be prohibitive for deployment of good chronic care. Chronic Care Model is recommended as basis for future.
2016-06-01
control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. The major goal of this research project was to genetically and pharmacologically ...with three different pharmacologic PAK inhibitors to determine if targeted PAK inhibition in a preclinical model of schwannoma genesis rescues tumor...this research project was to genetically and pharmacologically test the requirement of Group A PAK signaling in Nf2 deficient schwannoma genesis. We
Milly, Paul C.D.; Dunne, Krista A.
2011-01-01
Hydrologic models often are applied to adjust projections of hydroclimatic change that come from climate models. Such adjustment includes climate-bias correction, spatial refinement ("downscaling"), and consideration of the roles of hydrologic processes that were neglected in the climate model. Described herein is a quantitative analysis of the effects of hydrologic adjustment on the projections of runoff change associated with projected twenty-first-century climate change. In a case study including three climate models and 10 river basins in the contiguous United States, the authors find that relative (i.e., fractional or percentage) runoff change computed with hydrologic adjustment more often than not was less positive (or, equivalently, more negative) than what was projected by the climate models. The dominant contributor to this decrease in runoff was a ubiquitous change in runoff (median -11%) caused by the hydrologic model’s apparent amplification of the climate-model-implied growth in potential evapotranspiration. Analysis suggests that the hydrologic model, on the basis of the empirical, temperature-based modified Jensen–Haise formula, calculates a change in potential evapotranspiration that is typically 3 times the change implied by the climate models, which explicitly track surface energy budgets. In comparison with the amplification of potential evapotranspiration, central tendencies of other contributions from hydrologic adjustment (spatial refinement, climate-bias adjustment, and process refinement) were relatively small. The authors’ findings highlight the need for caution when projecting changes in potential evapotranspiration for use in hydrologic models or drought indices to evaluate climate-change impacts on water.
Feed-forward segmentation of figure-ground and assignment of border-ownership.
Supèr, Hans; Romeo, August; Keil, Matthias
2010-05-19
Figure-ground is the segmentation of visual information into objects and their surrounding backgrounds. Two main processes herein are boundary assignment and surface segregation, which rely on the integration of global scene information. Recurrent processing either by intrinsic horizontal connections that connect surrounding neurons or by feedback projections from higher visual areas provide such information, and are considered to be the neural substrate for figure-ground segmentation. On the contrary, a role of feedforward projections in figure-ground segmentation is unknown. To have a better understanding of a role of feedforward connections in figure-ground organization, we constructed a feedforward spiking model using a biologically plausible neuron model. By means of surround inhibition our simple 3-layered model performs figure-ground segmentation and one-sided border-ownership coding. We propose that the visual system uses feed forward suppression for figure-ground segmentation and border-ownership assignment.
Feed-Forward Segmentation of Figure-Ground and Assignment of Border-Ownership
Supèr, Hans; Romeo, August; Keil, Matthias
2010-01-01
Figure-ground is the segmentation of visual information into objects and their surrounding backgrounds. Two main processes herein are boundary assignment and surface segregation, which rely on the integration of global scene information. Recurrent processing either by intrinsic horizontal connections that connect surrounding neurons or by feedback projections from higher visual areas provide such information, and are considered to be the neural substrate for figure-ground segmentation. On the contrary, a role of feedforward projections in figure-ground segmentation is unknown. To have a better understanding of a role of feedforward connections in figure-ground organization, we constructed a feedforward spiking model using a biologically plausible neuron model. By means of surround inhibition our simple 3-layered model performs figure-ground segmentation and one-sided border-ownership coding. We propose that the visual system uses feed forward suppression for figure-ground segmentation and border-ownership assignment. PMID:20502718
The life cycle of a genome project: perspectives and guidelines inspired by insect genome projects.
Papanicolaou, Alexie
2016-01-01
Many research programs on non-model species biology have been empowered by genomics. In turn, genomics is underpinned by a reference sequence and ancillary information created by so-called "genome projects". The most reliable genome projects are the ones created as part of an active research program and designed to address specific questions but their life extends past publication. In this opinion paper I outline four key insights that have facilitated maintaining genomic communities: the key role of computational capability, the iterative process of building genomic resources, the value of community participation and the importance of manual curation. Taken together, these ideas can and do ensure the longevity of genome projects and the growing non-model species community can use them to focus a discussion with regards to its future genomic infrastructure.
Activation of Corticostriatal Circuitry Relieves Chronic Neuropathic Pain
Lee, Michelle; Manders, Toby R.; Eberle, Sarah E.; Su, Chen; D'amour, James; Yang, Runtao; Lin, Hau Yueh; Deisseroth, Karl; Froemke, Robert C.
2015-01-01
Neural circuits that determine the perception and modulation of pain remain poorly understood. The prefrontal cortex (PFC) provides top-down control of sensory and affective processes. While animal and human imaging studies have shown that the PFC is involved in pain regulation, its exact role in pain states remains incompletely understood. A key output target for the PFC is the nucleus accumbens (NAc), an important component of the reward circuitry. Interestingly, recent human imaging studies suggest that the projection from the PFC to the NAc is altered in chronic pain. The function of this corticostriatal projection in pain states, however, is not known. Here we show that optogenetic activation of the PFC produces strong antinociceptive effects in a rat model (spared nerve injury model) of persistent neuropathic pain. PFC activation also reduces the affective symptoms of pain. Furthermore, we show that this pain-relieving function of the PFC is likely mediated by projections to the NAc. Thus, our results support a novel role for corticostriatal circuitry in pain regulation. PMID:25834050
Articulation Model, K-14 Health Occupations Education. Final Report.
ERIC Educational Resources Information Center
Success Research Consultants, Inc., Tinley Park, IL.
A project was undertaken in Illinois to develop an articulation model in health occupations education for grades K-14 in order to provide a standard guide for curriculum; for the functions of educational, health, and community resource institutions; and for the roles of educators and guidance personnel. A three-dimensional model was developed…
NASA Astrophysics Data System (ADS)
Vicuña, Luis; Jurt, Christine; Minan, Fiorella; Huggel, Christian
2014-05-01
Models in a range of scientific disciplines are increasingly seen as indispensable for successful adaptation. Governments as well as international organizations and cooperations put their efforts in basing their adaptation projects on scientific results. Thereby, it is critical that scientific models are first put into the particular context in which they will be applied. This paper addresses the experience of the project 'Glaciers 513- Climate change adaptation and disaster risk management for glacier retreat in the Andes' conducted in the districts of Carhuaz (Ancash region) and Santa Teresa (Cusco region) in Peru. The Peruvian and the Swiss governments put their joint efforts in an adaptation project in the context of climate change and the retreat of the glaciers. The project is led by a consortium of Care Peru and the University of Zurich with additional Swiss partners and its principal aim is to improve the capacity for integral adaptation and reduce the risk of disasters from glaciers and high-mountain areas, and effects of climate change, particularly in the regions of Cusco and Ancash. The paper shows how the so called "human dimension" on the one hand, and models from a range of disciplines, including climatology, glaciology, and hydrology on the other hand, were conceptualized and perceived by the different actors involved in the project. Important aspects have been, among others, the role of local knowledge including ancestral knowledge, demographic information, socio-economic indicators as well as the social, political and cultural framework and the historical background. Here we analyze the role and context of local knowledge and the historical background. The analysis of the implications of the differences and similarities of the perceptions of a range of actors contributes to the discussion about how, and to what extent scientific models can be contextualized, what kind of information can be helpful for the contextualization and how it can be obtained. The results, thus, should contribute to more concerted, locally based and accepted risk and adaptation measures.
The "Spring Bulbs for Schools" Project
ERIC Educational Resources Information Center
Cowell, Danielle; Watkins, Richard
2007-01-01
It is becoming clear that human influences are a significant factor driving climate change. Education is one of the main weapons in influencing patterns of behaviour and teachers inevitably have a crucial role to play. Teachers need to be fully aware of issues surrounding climate change in order to be positive role models for children and to…
Teaching Citizenship: Student-Led Documentary Film Projects in the Communication Classroom
ERIC Educational Resources Information Center
Jarvis, Sharon E.; Han, Soo-Hye
2010-01-01
Courses: Communication and civic participation course; rhetorical theory, political communication, leadership. Objective: Students will explore citizenship through role models and story-telling. (Contains 1 table.)
2017-06-01
Kinases in Schwannoma Formation Using a Novel Genetically Engineered Murine Model that Closely Phenocopies Human NF2 Disease The views, opinions and...Role of p21 Activated Kinases in Schwannoma Formation Using a Novel Genetically Engineered Murine Model that Closely Phenocopies Human NF2 Disease Form...NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. The major goal of this research project was to genetically and pharmacologically test the requirement of PAK
Climate extremes, land–climate feedbacks and land-use forcing at 1.5°C
Wartenburger, Richard; Guillod, Benoit P.; Hirsch, Annette L.; Vogel, Martha M.; Brovkin, Victor; van Vuuren, Detlef P.; Schaller, Nathalie; Boysen, Lena; Calvin, Katherine V.; Doelman, Jonathan; Greve, Peter; Havlik, Petr; Humpenöder, Florian; Krisztin, Tamas; Mitchell, Daniel; Popp, Alexander; Riahi, Keywan; Rogelj, Joeri; Schleussner, Carl-Friedrich; Sillmann, Jana; Stehfest, Elke
2018-01-01
This article investigates projected changes in temperature and water cycle extremes at 1.5°C of global warming, and highlights the role of land processes and land-use changes (LUCs) for these projections. We provide new comparisons of changes in climate at 1.5°C versus 2°C based on empirical sampling analyses of transient simulations versus simulations from the ‘Half a degree Additional warming, Prognosis and Projected Impacts’ (HAPPI) multi-model experiment. The two approaches yield similar overall results regarding changes in climate extremes on land, and reveal a substantial difference in the occurrence of regional extremes at 1.5°C versus 2°C. Land processes mediated through soil moisture feedbacks and land-use forcing play a major role for projected changes in extremes at 1.5°C in most mid-latitude regions, including densely populated areas in North America, Europe and Asia. This has important implications for low-emissions scenarios derived from integrated assessment models (IAMs), which include major LUCs in ambitious mitigation pathways (e.g. associated with increased bioenergy use), but are also shown to differ in the simulated LUC patterns. Biogeophysical effects from LUCs are not considered in the development of IAM scenarios, but play an important role for projected regional changes in climate extremes, and are thus of high relevance for sustainable development pathways. This article is part of the theme issue ‘The Paris Agreement: understanding the physical and social challenges for a warming world of 1.5°C above pre-industrial levels'. PMID:29610382
Climate extremes, land-climate feedbacks and land-use forcing at 1.5°C.
Seneviratne, Sonia I; Wartenburger, Richard; Guillod, Benoit P; Hirsch, Annette L; Vogel, Martha M; Brovkin, Victor; van Vuuren, Detlef P; Schaller, Nathalie; Boysen, Lena; Calvin, Katherine V; Doelman, Jonathan; Greve, Peter; Havlik, Petr; Humpenöder, Florian; Krisztin, Tamas; Mitchell, Daniel; Popp, Alexander; Riahi, Keywan; Rogelj, Joeri; Schleussner, Carl-Friedrich; Sillmann, Jana; Stehfest, Elke
2018-05-13
This article investigates projected changes in temperature and water cycle extremes at 1.5°C of global warming, and highlights the role of land processes and land-use changes (LUCs) for these projections. We provide new comparisons of changes in climate at 1.5°C versus 2°C based on empirical sampling analyses of transient simulations versus simulations from the 'Half a degree Additional warming, Prognosis and Projected Impacts' (HAPPI) multi-model experiment. The two approaches yield similar overall results regarding changes in climate extremes on land, and reveal a substantial difference in the occurrence of regional extremes at 1.5°C versus 2°C. Land processes mediated through soil moisture feedbacks and land-use forcing play a major role for projected changes in extremes at 1.5°C in most mid-latitude regions, including densely populated areas in North America, Europe and Asia. This has important implications for low-emissions scenarios derived from integrated assessment models (IAMs), which include major LUCs in ambitious mitigation pathways (e.g. associated with increased bioenergy use), but are also shown to differ in the simulated LUC patterns. Biogeophysical effects from LUCs are not considered in the development of IAM scenarios, but play an important role for projected regional changes in climate extremes, and are thus of high relevance for sustainable development pathways.This article is part of the theme issue 'The Paris Agreement: understanding the physical and social challenges for a warming world of 1.5°C above pre-industrial levels'. © 2018 The Authors.
Lee, Shin J.; Kirigiti, Melissa; Lindsley, Sarah R; Loche, Alberto; Madden, Christopher J.; Morrison, Shaun F.; Smith, M Susan; Grove, Kevin L.
2013-01-01
The dorsomedial hypothalamus (DMH) has long been implicated in feeding behavior and thermogenesis. The DMH contains orexigenic neuropeptide Y (NPY) neurons, but the role of these neurons in the control of energy homeostasis is not well understood. NPY expression in the DMH is low under normal conditions in adult rodents, but is significantly increased during chronic hyperphagic conditions such as lactation and diet-induced obesity (DIO). To better understand the role of DMH-NPY neurons, we characterized the efferent projections of DMH-NPY neurons using the anterograde tracer biotinylated dextran amine (BDA) in lactating rats and DIO mice. In both models, BDA and NPY co-labeled fibers were mainly limited to the hypothalamus including the paraventricular nucleus of the hypothalamus (PVH), lateral hypothalamus/perifornical area (LH/PFA), and anteroventral periventricular nucleus (AVPV). Specifically in lactating rats, BDA and NPY co-labeled axonal swellings were in close apposition to CART expressing neurons in the PVH and AVPV. Although the DMH neurons project to the rostral raphe pallidus (rRPa) these projections did not contain NPY immunoreactivity in either the lactating rat or DIO mouse. Instead, the majority of BDA-labeled fibers in the rRPa were orexin positive. Furthermore, DMH-NPY projections were not observed within the nucleus of the solitary tract (NTS), another brainstem site critical for the regulation of sympathetic outflow. The present data suggest that NPY expression in the DMH during chronic hyperphagic conditions plays important roles in feeding behavior and thermogenesis by modulating neuronal functions within the hypothalamus, but not in the brainstem. PMID:23172177
Climate extremes, land-climate feedbacks and land-use forcing at 1.5°C
NASA Astrophysics Data System (ADS)
Seneviratne, Sonia I.; Wartenburger, Richard; Guillod, Benoit P.; Hirsch, Annette L.; Vogel, Martha M.; Brovkin, Victor; van Vuuren, Detlef P.; Schaller, Nathalie; Boysen, Lena; Calvin, Katherine V.; Doelman, Jonathan; Greve, Peter; Havlik, Petr; Humpenöder, Florian; Krisztin, Tamas; Mitchell, Daniel; Popp, Alexander; Riahi, Keywan; Rogelj, Joeri; Schleussner, Carl-Friedrich; Sillmann, Jana; Stehfest, Elke
2018-05-01
This article investigates projected changes in temperature and water cycle extremes at 1.5°C of global warming, and highlights the role of land processes and land-use changes (LUCs) for these projections. We provide new comparisons of changes in climate at 1.5°C versus 2°C based on empirical sampling analyses of transient simulations versus simulations from the `Half a degree Additional warming, Prognosis and Projected Impacts' (HAPPI) multi-model experiment. The two approaches yield similar overall results regarding changes in climate extremes on land, and reveal a substantial difference in the occurrence of regional extremes at 1.5°C versus 2°C. Land processes mediated through soil moisture feedbacks and land-use forcing play a major role for projected changes in extremes at 1.5°C in most mid-latitude regions, including densely populated areas in North America, Europe and Asia. This has important implications for low-emissions scenarios derived from integrated assessment models (IAMs), which include major LUCs in ambitious mitigation pathways (e.g. associated with increased bioenergy use), but are also shown to differ in the simulated LUC patterns. Biogeophysical effects from LUCs are not considered in the development of IAM scenarios, but play an important role for projected regional changes in climate extremes, and are thus of high relevance for sustainable development pathways. This article is part of the theme issue `The Paris Agreement: understanding the physical and social challenges for a warming world of 1.5°C above pre-industrial levels'.
Integrating knowledge representation and quantitative modelling in physiology.
de Bono, Bernard; Hunter, Peter
2012-08-01
A wealth of potentially shareable resources, such as data and models, is being generated through the study of physiology by computational means. Although in principle the resources generated are reusable, in practice, few can currently be shared. A key reason for this disparity stems from the lack of consistent cataloguing and annotation of these resources in a standardised manner. Here, we outline our vision for applying community-based modelling standards in support of an automated integration of models across physiological systems and scales. Two key initiatives, the Physiome Project and the European contribution - the Virtual Phsysiological Human Project, have emerged to support this multiscale model integration, and we focus on the role played by two key components of these frameworks, model encoding and semantic metadata annotation. We present examples of biomedical modelling scenarios (the endocrine effect of atrial natriuretic peptide, and the implications of alcohol and glucose toxicity) to illustrate the role that encoding standards and knowledge representation approaches, such as ontologies, could play in the management, searching and visualisation of physiology models, and thus in providing a rational basis for healthcare decisions and contributing towards realising the goal of of personalized medicine. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Milly, P.C.D.; Dunne, K.A.
2011-01-01
Hydrologic models often are applied to adjust projections of hydroclimatic change that come from climate models. Such adjustment includes climate-bias correction, spatial refinement ("downscaling"), and consideration of the roles of hydrologic processes that were neglected in the climate model. Described herein is a quantitative analysis of the effects of hydrologic adjustment on the projections of runoff change associated with projected twenty-first-century climate change. In a case study including three climate models and 10 river basins in the contiguous United States, the authors find that relative (i.e., fractional or percentage) runoff change computed with hydrologic adjustment more often than not was less positive (or, equivalently, more negative) than what was projected by the climate models. The dominant contributor to this decrease in runoff was a ubiquitous change in runoff (median 211%) caused by the hydrologic model's apparent amplification of the climate-model-implied growth in potential evapotranspiration. Analysis suggests that the hydrologic model, on the basis of the empirical, temperature-based modified Jensen-Haise formula, calculates a change in potential evapotranspiration that is typically 3 times the change implied by the climate models, which explicitly track surface energy budgets. In comparison with the amplification of potential evapotranspiration, central tendencies of other contributions from hydrologic adjustment (spatial refinement, climate-bias adjustment, and process refinement) were relatively small. The authors' findings highlight the need for caution when projecting changes in potential evapotranspiration for use in hydrologic models or drought indices to evaluate climatechange impacts on water. Copyright ?? 2011, Paper 15-001; 35,952 words, 3 Figures, 0 Animations, 1 Tables.
On the Developing Role of Physical Models in Engineering Design Education
ERIC Educational Resources Information Center
Green, Graham; Smrcek, Ladislav
2006-01-01
Recent research, undertaken using participative observation methods within the Leonardo Da Vinci project "Open-Dynamic-Design", provides evidence that EU industrial practice continues to value the flexibility of physical models across a range of disciplines. This research is placed within the philosophical educational framework…
ERIC Educational Resources Information Center
Curry, Elizabeth A.
2005-01-01
How can training develop the philosophical commitment that library staff members need to successfully lead collaborative projects? How do conversation as a training model and play as an activity shape the collaborative learning process? How do we stimulate libraries and library staff to assume leadership roles in community building? This article…
The development of an acute care case manager orientation.
Strzelecki, S; Brobst, R
1997-01-01
The authors describe the development of an inpatient acute care case manager orientation in a community hospital. Benner's application of the Dreyfus model of skill acquisition provides the basis for the orientation program. The candidates for the case manager position were expert clinicians. Because of the role change it was projected that they would function as advanced beginners. It was also predicted that, as the case managers progressed within the role, the educational process would need to be adapted to facilitate progression of skills to the proficient level. Feedback from participants reinforced that the model supported the case manager in the role transition. In addition, the model provided a predictive framework for ongoing educational activities.
DECOVALEX Project: from 1992 to 2007
NASA Astrophysics Data System (ADS)
Tsang, Chin-Fu; Stephansson, Ove; Jing, Lanru; Kautsky, Fritz
2009-05-01
The DECOVALEX project is a unique international research collaboration, initiated in 1992, for advancing the understanding and mathematical modelling of coupled thermo-hydro-mechanical (THM) and thermo-hydro-mechanical-chemical (THMC) processes in geological systems—subjects of importance for performance assessment of radioactive waste repositories in geological formations. From 1992 up to 2007, the project has made important progress and played a key role in the development of numerical modelling of coupled processes in fractured rocks and buffer/backfill materials. The project has been conducted by research teams supported by a large number of radioactive-waste-management organizations and regulatory authorities, including those of Canada, China, Finland, France, Japan, Germany, Spain, Sweden, UK, and the USA. Through this project, in-depth knowledge has been gained of coupled THM and THMC processes associated with nuclear waste repositories, as well as numerical simulation models for their quantitative analysis. The knowledge accumulated from this project, in the form of a large number of research reports and international journal and conference papers in the open literature, has been applied effectively in the implementation and review of national radioactive-waste-management programmes in the participating countries. This paper presents an overview of the project.
Analytical Performance Modeling and Validation of Intel’s Xeon Phi Architecture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chunduri, Sudheer; Balaprakash, Prasanna; Morozov, Vitali
Modeling the performance of scientific applications on emerging hardware plays a central role in achieving extreme-scale computing goals. Analytical models that capture the interaction between applications and hardware characteristics are attractive because even a reasonably accurate model can be useful for performance tuning before the hardware is made available. In this paper, we develop a hardware model for Intel’s second-generation Xeon Phi architecture code-named Knights Landing (KNL) for the SKOPE framework. We validate the KNL hardware model by projecting the performance of mini-benchmarks and application kernels. The results show that our KNL model can project the performance with prediction errorsmore » of 10% to 20%. The hardware model also provides informative recommendations for code transformations and tuning.« less
Campbell, Erin J.; Whitaker, Leslie R.; Harvey, Brandon K.; Kaganovsky, Konstantin; Adhikary, Sweta; Hope, Bruce T.; Heins, Robert C.; Prisinzano, Thomas E.; Vardy, Eyal; Bonci, Antonello; Bossert, Jennifer M.
2016-01-01
In many human alcoholics, abstinence is self-imposed because of the negative consequences of excessive alcohol use, and relapse is often triggered by exposure to environmental contexts associated with prior alcohol drinking. We recently developed a rat model of this human condition in which we train alcohol-preferring P rats to self-administer alcohol in one context (A), punish the alcohol-reinforced responding in a different context (B), and then test for relapse to alcohol seeking in Contexts A and B without alcohol or shock. Here, we studied the role of projections to nucleus accumbens (NAc) shell from ventral subiculum (vSub), basolateral amygdala, paraventricular thalamus, and ventral medial prefrontal cortex in context-induced relapse after punishment-imposed abstinence. First, we measured double-labeling of the neuronal activity marker Fos with the retrograde tracer cholera toxin subunit B (injected in NAc shell) and demonstrated that context-induced relapse is associated with selective activation of the vSub→NAc shell projection. Next, we reversibly inactivated the vSub with GABA receptor agonists (muscimol+baclofen) before the context-induced relapse tests and provided evidence for a causal role of vSub in this relapse. Finally, we used a dual-virus approach to restrict expression of the inhibitory κ opioid-receptor based DREADD (KORD) in vSub→NAc shell projection neurons. We found that systemic injections of the KORD agonist salvinorin B, which selectively inhibits KORD-expressing neurons, decreased context-induced relapse to alcohol seeking. Our results demonstrate a critical role of vSub in context-induced relapse after punishment-imposed abstinence and further suggest a role of the vSub→NAc projection in this relapse. SIGNIFICANCE STATEMENT In many human alcoholics, abstinence is self-imposed because of the negative consequences of excessive use, and relapse is often triggered by exposure to environmental contexts associated with prior alcohol use. Until recently, an animal model of this human condition did not exist. We developed a rat model of this human condition in which we train alcohol-preferring P rats to self-administer alcohol in one context (A), punish the alcohol-reinforced responding in a different context (B), and test for relapse to alcohol seeking in Contexts A and B. Here, we used neuroanatomical, neuropharmacological, and chemogenetic methods to demonstrate a role of ventral subiculum and potentially its projections to nucleus accumbens in context-induced relapse after punishment-imposed abstinence. PMID:26985037
Marchant, Nathan J; Campbell, Erin J; Whitaker, Leslie R; Harvey, Brandon K; Kaganovsky, Konstantin; Adhikary, Sweta; Hope, Bruce T; Heins, Robert C; Prisinzano, Thomas E; Vardy, Eyal; Bonci, Antonello; Bossert, Jennifer M; Shaham, Yavin
2016-03-16
In many human alcoholics, abstinence is self-imposed because of the negative consequences of excessive alcohol use, and relapse is often triggered by exposure to environmental contexts associated with prior alcohol drinking. We recently developed a rat model of this human condition in which we train alcohol-preferring P rats to self-administer alcohol in one context (A), punish the alcohol-reinforced responding in a different context (B), and then test for relapse to alcohol seeking in Contexts A and B without alcohol or shock. Here, we studied the role of projections to nucleus accumbens (NAc) shell from ventral subiculum (vSub), basolateral amygdala, paraventricular thalamus, and ventral medial prefrontal cortex in context-induced relapse after punishment-imposed abstinence. First, we measured double-labeling of the neuronal activity marker Fos with the retrograde tracer cholera toxin subunit B (injected in NAc shell) and demonstrated that context-induced relapse is associated with selective activation of the vSub→NAc shell projection. Next, we reversibly inactivated the vSub with GABA receptor agonists (muscimol+baclofen) before the context-induced relapse tests and provided evidence for a causal role of vSub in this relapse. Finally, we used a dual-virus approach to restrict expression of the inhibitory κ opioid-receptor based DREADD (KORD) in vSub→NAc shell projection neurons. We found that systemic injections of the KORD agonist salvinorin B, which selectively inhibits KORD-expressing neurons, decreased context-induced relapse to alcohol seeking. Our results demonstrate a critical role of vSub in context-induced relapse after punishment-imposed abstinence and further suggest a role of the vSub→NAc projection in this relapse. In many human alcoholics, abstinence is self-imposed because of the negative consequences of excessive use, and relapse is often triggered by exposure to environmental contexts associated with prior alcohol use. Until recently, an animal model of this human condition did not exist. We developed a rat model of this human condition in which we train alcohol-preferring P rats to self-administer alcohol in one context (A), punish the alcohol-reinforced responding in a different context (B), and test for relapse to alcohol seeking in Contexts A and B. Here, we used neuroanatomical, neuropharmacological, and chemogenetic methods to demonstrate a role of ventral subiculum and potentially its projections to nucleus accumbens in context-induced relapse after punishment-imposed abstinence. Copyright © 2016 the authors 0270-6474/16/363282-14$15.00/0.
Beischel, Kelly P; Hart, Julie; Turkelson, Sandra L
2016-01-01
Multisite education research projects have many benefits as well as perceived barriers. In this article, we share our experiences with a multisite education research project and the barriers we overcame to reap the benefits. The outcome of our research resulted in increased rigor, role-modeling professional collaboration, and promotion of future multisite education studies. The strategies presented in this article will help alleviate perceived barriers and ameliorate the process of conducting multisite education research studies.
Students Working Online for Group Projects: A Test of an Extended Theory of Planned Behaviour Model
ERIC Educational Resources Information Center
Cheng, Eddie W. L.
2017-01-01
This study examined an extended theory of planned behaviour (TPB) model that specified factors affecting students' intentions to collaborate online for group work. Past behaviour, past experience and actual behavioural control were incorporated in the extended TPB model. The mediating roles of attitudes, subjective norms and perceived behavioural…
Langston, Anne; Weiss, Jennifer; Landegger, Justine; Pullum, Thomas; Morrow, Melanie; Kabadege, Melene; Mugeni, Catherine; Sarriot, Eric
2014-01-01
ABSTRACT Background: The Kabeho Mwana project (2006–2011) supported the Rwanda Ministry of Health (MOH) in scaling up integrated community case management (iCCM) of childhood illness in 6 of Rwanda's 30 districts. The project trained and equipped community health workers (CHWs) according to national guidelines. In project districts, Kabeho Mwana staff also trained CHWs to conduct household-level health promotion and established supervision and reporting mechanisms through CHW peer support groups (PSGs) and quality improvement systems. Methods: The 2005 and 2010 Demographic and Health Surveys were re-analyzed to evaluate how project and non-project districts differed in terms of care-seeking for fever, diarrhea, and acute respiratory infection symptoms and related indicators. We developed a logit regression model, controlling for the timing of the first CHW training, with the district included as a fixed categorical effect. We also analyzed qualitative data from the final evaluation to examine factors that may have contributed to improved outcomes. Results: While there was notable improvement in care-seeking across all districts, care-seeking from any provider for each of the 3 conditions, and for all 3 combined, increased significantly more in the project districts. CHWs contributed a larger percentage of consultations in project districts (27%) than in non-project districts (12%). Qualitative data suggested that the PSG model was a valuable sub-level of CHW organization associated with improved CHW performance, supervision, and social capital. Conclusions: The iCCM model implemented by Kabeho Mwana resulted in greater improvements in care-seeking than those seen in the rest of the country. Intensive monitoring, collaborative supervision, community mobilization, and CHW PSGs contributed to this success. The PSGs were a unique contribution of the project, playing a critical role in improving care-seeking in project districts. Effective implementation of iCCM should therefore include CHW management and social support mechanisms. Finally, re-analysis of national survey data improved evaluation findings by providing impact estimates. PMID:25276593
Arctic Sea Ice Decline: Observations, Projections, Mechanisms, and Implications
NASA Astrophysics Data System (ADS)
DeWeaver, Eric T.; Bitz, Cecilia M.; Tremblay, L.-Bruno
This volume addresses the rapid decline of Arctic sea ice, placing recent sea ice decline in the context of past observations, climate model simulations and projections, and simple models of the climate sensitivity of sea ice. Highlights of the work presented here include • An appraisal of the role played by wind forcing in driving the decline; • A reconstruction of Arctic sea ice conditions prior to human observations, based on proxy data from sediments; • A modeling approach for assessing the impact of sea ice decline on polar bears, used as input to the U.S. Fish and Wildlife Service's decision to list the polar bear as a threatened species under the Endangered Species Act; • Contrasting studies on the existence of a "tipping point," beyond which Arctic sea ice decline will become (or has already become) irreversible, including an examination of the role of the small ice cap instability in global warming simulations; • A significant summertime atmospheric response to sea ice reduction in an atmospheric general circulation model, suggesting a positive feedback and the potential for short-term climate prediction. The book will be of interest to researchers attempting to understand the recent behavior of Arctic sea ice, model projections of future sea ice loss, and the consequences of sea ice loss for the natural and human systems of the Arctic.
Dislocation dynamics: simulation of plastic flow of bcc metals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lassila, D H
This is the final report for the LDRD strategic initiative entitled ''Dislocation Dynamic: Simulation of Plastic Flow of bcc Metals'' (tracking code: 00-SI-011). This report is comprised of 6 individual sections. The first is an executive summary of the project and describes the overall project goal, which is to establish an experimentally validated 3D dislocation dynamics simulation. This first section also gives some information of LLNL's multi-scale modeling efforts associated with the plasticity of bcc metals, and the role of this LDRD project in the multiscale modeling program. The last five sections of this report are journal articles that weremore » produced during the course of the FY-2000 efforts.« less
Smith, Naomi; Barnes, Marian
2013-01-01
The Partnerships for Older People Projects programme provided government funding for local and health authorities to pilot prevention and intervention services in partnership with the voluntary sector and older people between 2006 and 2009. This local evaluation of a pilot in southern England undertaken between 2007 and 2009 used a Theory of Change approach to gathering and reflecting on data with different groups involved in the delivery of this whole-system based model of prevention. The model was delivered in the same way in seven social services locality areas within a large county authority. The method of data gathering enabled structured reflection on the implementation, development and projected outcomes of the model and a consideration of the key learning of working in a whole-system way with partners and stakeholders. The whole-system model, although complex and challenging to implement, was considered overall to have been a success and provided significant learning for partners and stakeholders on the challenges and benefits of working across professional and sectoral boundaries. New posts were created as part of the model. Two of these, recruited to and managed by voluntary sector partners, were identified as 'new jobs', but echoed 'old roles' within community and voluntary sector based health and social care. The authors reflect on the parallels of these roles with previously existing roles and ways of working and reflect on how the whole-system approach of this particular pilot enabled these new jobs to develop in particularly appropriate and successful ways. © 2012 Blackwell Publishing Ltd.
USDA-ARS?s Scientific Manuscript database
Weather plays a critical role in eco-environmental and agricultural systems. Limited availability of meteorological records often constrains the applications of simulation models and related decision support tools. The Vegetation/Ecosystem Modeling and Analysis Project (VEMAP) provides daily weather...
Ingroup Rejection among Women: The Role of Personal Inadequacy
ERIC Educational Resources Information Center
Cowan, Gloria; Ullman, Jodie B.
2006-01-01
We examined predictors and outcomes of women's hostility toward other women. Based on a projection model, we hypothesized and tested the theory via structural equation modeling that women's sense of personal inadequacy, the tendency to stereotype, and general anger would predict hostility toward women, and hostility toward women would predict…
ERIC Educational Resources Information Center
Nee, John G.
This paper describes a project designed to: (1) develop a model for determining occupational activity components to be used in any vocational-technical program, (2) produce a list of occupational activity components (tasks) for the occupational roles identified, (3) determine scores, ranks and percentages for each component from each occupational…
Exploring role confusion in nurse case management.
Gray, Frances C; White, Ann; Brooks-Buck, Judith
2013-01-01
This is a report of the results of a pilot project conducted to identify the areas where role confusion/ambiguity exists in the practice of nurse case management. A convenience sample of 25 registered nurses practicing as case managers in a small east coast medical treatment facility's outpatient clinics. Participants responded to 2 Likert-type surveys designed to evaluate role confusion from an individual and a team membership perspective. Analysis indicated that nurse case managers experience role confusion in the specific areas of conflicts between time resources, capabilities, and multiple individual roles. There was no identified role confusion associated with membership on multidisciplinary teams. The application of the Synergy Model as a theoretical framework for nurse case management serves as a benchmark for the implementation of evidence-based practices. This project could serve as the starting point for the development of a skill set for nurse case managers, for the standardization of the practice, and for the recognition of nurse case management as a legitimate nursing subspecialty.
Clein, Joy S.; Kwiatkowski, B.L.; McGuire, A.D.; Hobbie, J.E.; Rastetter, E.B.; Melillo, J.M.; Kicklighter, D.W.
2000-01-01
We are developing a process-based modelling approach to investigate how carbon (C) storage of tundra across the entire Arctic will respond to projected climate change. To implement the approach, the processes that are least understood, and thus have the most uncertainty, need to be identified and studied. In this paper, we identified a key uncertainty by comparing the responses of C storage in tussock tundra at one site between the simulations of two models - one a global-scale ecosystem model (Terrestrial Ecosystem Model, TEM) and one a plot-scale ecosystem model (General Ecosystem Model, GEM). The simulations spanned the historical period (1921-94) and the projected period (1995-2100). In the historical period, the model simulations of net primary production (NPP) differed in their sensitivity to variability in climate. However, the long-term changes in C storage were similar in both simulations, because the dynamics of heterotrophic respiration (RH) were similar in both models. In contrast, the responses of C storage in the two model simulations diverged during the projected period. In the GEM simulation for this period, increases in RH tracked increases in NPP, whereas in the TEM simulation increases in RH lagged increases in NPP. We were able to make the long-term C dynamics of the two simulations agree by parameterizing TEM to the fast soil C pools of GEM. We concluded that the differences between the long-term C dynamics of the two simulations lay in modelling the role of the recalcitrant soil C. These differences, which reflect an incomplete understanding of soil processes, lead to quite different projections of the response of pan-Arctic C storage to global change. For example, the reference parameterization of TEM resulted in an estimate of cumulative C storage of 2032 g C m-2 for moist tundra north of 50??N, which was substantially higher than the 463 g C m-2 estimated for a parameterization of fast soil C dynamics. This uncertainty in the depiction of the role of recalcitrant soil C in long-term ecosystem C dynamics resulted from our incomplete understanding of controls over C and N transformations in Arctic soils. Mechanistic studies of these issues are needed to improve our ability to model the response of Arctic ecosystems to global change.
The Role of Akt Isoforms in Colorectal Cancer
2015-09-01
AD_________________ Award Number: W81XWH-13-1-0198 TITLE: The Role of Akt Isoforms in Colorectal Cancer PRINCIPAL INVESTIGATOR: Jatin Roper...CONTRACT NUMBER The Role of Akt Isoforms in Colorectal Cancer 5b. GRANT NUMBER W81XWH-13-1-0198 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER...substantially reduces colorectal tumorigenesis in our genetically engineered mouse model. We also successfully ablated novel downstream targets of Akt in our
ERIC Educational Resources Information Center
Castro, Edward Anthony
2010-01-01
Purpose: The study's purpose was to determine the degree to which connoisseurship and educational criticism exists in student work evaluation; to identify master teachers' methods utilizing verbal feedback; and to determine the degree that project-based learning (PBL) principles serve as a "model of practice" for selected PBL technology…
Minimizing delays in the Jordanian construction industry by adopting BIM technology
NASA Astrophysics Data System (ADS)
Btoush, M.; Harun, A. T.
2017-11-01
The Jordanian construction industry plays a significant role and contributes immensely to the gross domestic product (GDP) of the economy. However, the Jordanian public work and housing ministry and most industry players including engineers and contractors have reported that most of the projects experience delays which lead time and cost overruns, and extra efforts. The main causes of delays identified by researchers include poor scheduling and planning, change orders, site conditions, weather, late deliveries, incompetent technical staff. To address these challenges, the implementation of building information modelling (BIM) is paramount. This paper presents BIM as a powerful tool for reducing delays in Jordan construction projects. The paper focuses on two main parts; the first part involves the identification of the major causes of delays, and the second part is to accurately outline the roles and responsibilities of BIM specialist in construction projects. Finally, the paper matches the roles and responsibilities of BIM specialist and the causes of delays, and how the delays are addressed through BIM specialist.
NASA Technical Reports Server (NTRS)
Kidder, Stanley Q.; Hafner, Jan
2001-01-01
The goal of Project ATLANTA is to derive a better scientific understanding of how land cover changes associated with urbanization affect climate and air quality. In this project the role that clouds play in this relationship was studied. Through GOES satellite observations and RAMS modeling of the Atlanta area, we found that in Atlanta (1) clouds are more frequent than in the surrounding rural areas; (2) clouds cool the surface by shading and thus tend to counteract the warming effect of urbanization; (3) clouds reflect sunlight, which might other wise be used to produce ozone; and (4) clouds decrease biogenic emission of ozone precursors, and they probably decrease ozone concentration. We also found that mesoscale modeling of clouds, especially of small, summertime clouds, needs to be improved and that coupled mesoscale and air quality models are needed to completely understand the mediating role that clouds play in the relationship between land use/land cover change and the climate and air quality of Atlanta. It is strongly recommended that more cities be studied to strengthen and extend these results.
The life cycle of a genome project: perspectives and guidelines inspired by insect genome projects
Papanicolaou, Alexie
2016-01-01
Many research programs on non-model species biology have been empowered by genomics. In turn, genomics is underpinned by a reference sequence and ancillary information created by so-called “genome projects”. The most reliable genome projects are the ones created as part of an active research program and designed to address specific questions but their life extends past publication. In this opinion paper I outline four key insights that have facilitated maintaining genomic communities: the key role of computational capability, the iterative process of building genomic resources, the value of community participation and the importance of manual curation. Taken together, these ideas can and do ensure the longevity of genome projects and the growing non-model species community can use them to focus a discussion with regards to its future genomic infrastructure. PMID:27006757
ERIC Educational Resources Information Center
Hall, McClellan
The National Indian Youth Leadership (NIYL) model was created to develop leadership skills for Indian youth to perform their future roles in the family, school, tribe, and nation. The model not only instills leadership skills and values through hands-on learning opportunities, but also challenges youth to apply those skills through projects they…
ERIC Educational Resources Information Center
National School-to-Work Opportunities Office, Washington, DC.
The National School-to-Work Office in collaboration with the National Association for Gifted Children, the Council for Exceptional Children, the Association for the Gifted, and the Council of State Directors of Programs for the Gifted have identified 11 gifted education/school-to-work (GT/STW) models that are either best practices or unique…
NASA Astrophysics Data System (ADS)
Kusano, K.
2016-12-01
Project for Solar-Terrestrial Environment Prediction (PSTEP) is a Japanese nation-wide research collaboration, which was recently launched. PSTEP aims to develop a synergistic interaction between predictive and scientific studies of the solar-terrestrial environment and to establish the basis for next-generation space weather forecasting using the state-of-the-art observation systems and the physics-based models. For this project, we coordinate the four research groups, which develop (1) the integration of space weather forecast system, (2) the physics-based solar storm prediction, (3) the predictive models of magnetosphere and ionosphere dynamics, and (4) the model of solar cycle activity and its impact on climate, respectively. In this project, we will build the coordinated physics-based model to answer the fundamental questions concerning the onset of solar eruptions and the mechanism for radiation belt dynamics in the Earth's magnetosphere. In this paper, we will show the strategy of PSTEP, and discuss about the role and prospect of the physics-based space weather forecasting system being developed by PSTEP.
Technology mediator: a new role for the reference librarian?
Howse, David K; Bracke, Paul J; Keim, Samuel M
2006-01-01
The Arizona Health Sciences Library has collaborated with clinical faculty to develop a federated search engine that is useful for meeting real-time clinical information needs. This article proposes a technology mediation role for the reference librarian that was inspired by the project, and describes the collaborative model used for developing technology-mediated services for targeted users. PMID:17040566
Community-Based Mentorships for Gifted and Talented. Final Report.
ERIC Educational Resources Information Center
National Commission on Resources for Youth, Inc., New York, NY.
The final report of a program offering community-based mentorships for secondary level gifted and talented students contains information on 11 model projects located in the West, Midwest, and Northeast. Offered is a rationale for the use of mentors to provide instruction and role models for gifted students. Criteria for selection of the model…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elsworth, Derek; Izadi, Ghazal; Gan, Quan
This work has investigated the roles of effective stress induced by changes in fluid pressure, temperature and chemistry in contributing to the evolution of permeability and induced seismicity in geothermal reservoirs. This work has developed continuum models [1] to represent the progress or seismicity during both stimulation [2] and production [3]. These methods have been used to resolve anomalous observations of induced seismicity at the Newberry Volcano demonstration project [4] through the application of modeling and experimentation. Later work then focuses on the occurrence of late stage seismicity induced by thermal stresses [5] including the codifying of the timing andmore » severity of such responses [6]. Furthermore, mechanistic linkages between observed seismicity and the evolution of permeability have been developed using data from the Newberry project [7] and benchmarked against field injection experiments. Finally, discontinuum models [8] incorporating the roles of discrete fracture networks have been applied to represent stimulation and then thermal recovery for new arrangements of geothermal wells incorporating the development of flow manifolds [9] in order to increase thermal output and longevity in EGS systems.« less
Uncertainty in Indian Ocean Dipole response to global warming: the role of internal variability
NASA Astrophysics Data System (ADS)
Hui, Chang; Zheng, Xiao-Tong
2018-01-01
The Indian Ocean Dipole (IOD) is one of the leading modes of interannual sea surface temperature (SST) variability in the tropical Indian Ocean (TIO). The response of IOD to global warming is quite uncertain in climate model projections. In this study, the uncertainty in IOD change under global warming, especially that resulting from internal variability, is investigated based on the community earth system model large ensemble (CESM-LE). For the IOD amplitude change, the inter-member uncertainty in CESM-LE is about 50% of the intermodel uncertainty in the phase 5 of the coupled model intercomparison project (CMIP5) multimodel ensemble, indicating the important role of internal variability in IOD future projection. In CESM-LE, both the ensemble mean and spread in mean SST warming show a zonal positive IOD-like (pIOD-like) pattern in the TIO. This pIOD-like mean warming regulates ocean-atmospheric feedbacks of the interannual IOD mode, and weakens the skewness of the interannual variability. However, as the changes in oceanic and atmospheric feedbacks counteract each other, the inter-member variability in IOD amplitude change is not correlated with that of the mean state change. Instead, the ensemble spread in IOD amplitude change is correlated with that in ENSO amplitude change in CESM-LE, reflecting the close inter-basin relationship between the tropical Pacific and Indian Ocean in this model.
NASA Astrophysics Data System (ADS)
Aloysius, Noel; Saiers, James
2017-08-01
Despite their global significance, the impacts of climate change on water resources and associated ecosystem services in the Congo River basin (CRB) have been understudied. Of particular need for decision makers is the availability of spatial and temporal variability of runoff projections. Here, with the aid of a spatially explicit hydrological model forced with precipitation and temperature projections from 25 global climate models (GCMs) under two greenhouse gas emission scenarios, we explore the variability in modeled runoff in the near future (2016-2035) and mid-century (2046-2065). We find that total runoff from the CRB is projected to increase by 5 % [-9 %; 20 %] (mean - min and max - across model ensembles) over the next two decades and by 7 % [-12 %; 24 %] by mid-century. Projected changes in runoff from subwatersheds distributed within the CRB vary in magnitude and sign. Over the equatorial region and in parts of northern and southwestern CRB, most models project an overall increase in precipitation and, subsequently, runoff. A simulated decrease in precipitation leads to a decline in runoff from headwater regions located in the northeastern and southeastern CRB. Climate model selection plays an important role in future projections for both magnitude and direction of change. The multimodel ensemble approach reveals that precipitation and runoff changes under business-as-usual and avoided greenhouse gas emission scenarios (RCP8.5 vs. RCP4.5) are relatively similar in the near term but deviate in the midterm, which underscores the need for rapid action on climate change adaptation. Our assessment demonstrates the need to include uncertainties in climate model and emission scenario selection during decision-making processes related to climate change mitigation and adaptation.
Westbrook, Johanna I; Braithwaite, Jeffrey; Gibson, Kathryn; Paoloni, Richard; Callen, Joanne; Georgiou, Andrew; Creswick, Nerida; Robertson, Louise
2009-11-08
Widespread adoption of information and communication technologies (ICT) is a key strategy to meet the challenges facing health systems internationally of increasing demands, rising costs, limited resources and workforce shortages. Despite the rapid increase in ICT investment, uptake and acceptance has been slow and the benefits fewer than expected. Absent from the research literature has been a multi-site investigation of how ICT can support and drive innovative work practice. This Australian-based project will assess the factors that allow health service organisations to harness ICT, and the extent to which such systems drive the creation of new sustainable models of service delivery which increase capacity and provide rapid, safe, effective, affordable and sustainable health care. A multi-method approach will measure current ICT impact on workforce practices and develop and test new models of ICT use which support innovations in work practice. The research will focus on three large-scale commercial ICT systems being adopted in Australia and other countries: computerised ordering systems, ambulatory electronic medical record systems, and emergency medicine information systems. We will measure and analyse each system's role in supporting five key attributes of work practice innovation: changes in professionals' roles and responsibilities; integration of best practice into routine care; safe care practices; team-based care delivery; and active involvement of consumers in care. A socio-technical approach to the use of ICT will be adopted to examine and interpret the workforce and organisational complexities of the health sector. The project will also focus on ICT as a potentially disruptive innovation that challenges the way in which health care is delivered and consequently leads some health professionals to view it as a threat to traditional roles and responsibilities and a risk to existing models of care delivery. Such views have stifled debate as well as wider explorations of ICT's potential benefits, yet firm evidence of the effects of role changes on health service outcomes is limited. This project will provide important evidence about the role of ICT in supporting new models of care delivery across multiple healthcare organizations and about the ways in which innovative work practice change is diffused.
The sensitivity of the ESA DELTA model
NASA Astrophysics Data System (ADS)
Martin, C.; Walker, R.; Klinkrad, H.
Long-term debris environment models play a vital role in furthering our understanding of the future debris environment, and in aiding the determination of a strategy to preserve the Earth orbital environment for future use. By their very nature these models have to make certain assumptions to enable informative future projections to be made. Examples of these assumptions include the projection of future traffic, including launch and explosion rates, and the methodology used to simulate break-up events. To ensure a sound basis for future projections, and consequently for assessing the effectiveness of various mitigation measures, it is essential that the sensitivity of these models to variations in key assumptions is examined. The DELTA (Debris Environment Long Term Analysis) model, developed by QinetiQ for the European Space Agency, allows the future projection of the debris environment throughout Earth orbit. Extensive analyses with this model have been performed under the auspices of the ESA Space Debris Mitigation Handbook and following the recent upgrade of the model to DELTA 3.0. This paper draws on these analyses to present the sensitivity of the DELTA model to changes in key model parameters and assumptions. Specifically the paper will address the variation in future traffic rates, including the deployment of satellite constellations, and the variation in the break-up model and criteria used to simulate future explosion and collision events.
Assessment of the uncertainty in future projection for summer climate extremes over the East Asia
NASA Astrophysics Data System (ADS)
Park, Changyong; Min, Seung-Ki; Cha, Dong-Hyun
2017-04-01
Future projections of climate extremes in regional and local scales are essential information needed for better adapting to climate changes. However, future projections hold larger uncertainty factors arising from internal and external processes which reduce the projection confidence. Using CMIP5 (Coupled Model Intercomparison Project Phase 5) multi-model simulations, we assess uncertainties in future projections of the East Asian temperature and precipitation extremes focusing on summer. In examining future projection, summer mean and extreme projections of the East Asian temperature and precipitation would be larger as time. Moreover, uncertainty cascades represent wider scenario difference and inter-model ranges with increasing time. A positive mean-extreme relation is found in projections for both temperature and precipitation. For the assessment of uncertainty factors for these projections, dominant uncertainty factors from temperature and precipitation change as time. For uncertainty of mean and extreme temperature, contributions of internal variability and model uncertainty declines after mid-21st century while role of scenario uncertainty grows rapidly. For uncertainty of mean precipitation projections, internal variability is more important than the scenario uncertainty. Unlike mean precipitation, extreme precipitation shows that the scenario uncertainty is expected to be a dominant factor in 2090s. The model uncertainty holds as an important factor for both mean and extreme precipitation until late 21st century. The spatial changes for the uncertainty factors of mean and extreme projections generally are expressed according to temporal changes of the fraction of total variance from uncertainty factors in many grids of the East Asia. ACKNOWLEDGEMENTS The research was supported by the Korea Meteorological Administration Research and Development program under grant KMIPA 2015-2083 and the National Research Foundation of Korea Grant funded by the Ministry of Science, ICT and Future Planning of Korea (NRF-2016M3C4A7952637) for its support and assistant in completion of the study.
The critical role of uncertainty in projections of hydrological extremes
NASA Astrophysics Data System (ADS)
Meresa, Hadush K.; Romanowicz, Renata J.
2017-08-01
This paper aims to quantify the uncertainty in projections of future hydrological extremes in the Biala Tarnowska River at Koszyce gauging station, south Poland. The approach followed is based on several climate projections obtained from the EURO-CORDEX initiative, raw and bias-corrected realizations of catchment precipitation, and flow simulations derived using multiple hydrological model parameter sets. The projections cover the 21st century. Three sources of uncertainty are considered: one related to climate projection ensemble spread, the second related to the uncertainty in hydrological model parameters and the third related to the error in fitting theoretical distribution models to annual extreme flow series. The uncertainty of projected extreme indices related to hydrological model parameters was conditioned on flow observations from the reference period using the generalized likelihood uncertainty estimation (GLUE) approach, with separate criteria for high- and low-flow extremes. Extreme (low and high) flow quantiles were estimated using the generalized extreme value (GEV) distribution at different return periods and were based on two different lengths of the flow time series. A sensitivity analysis based on the analysis of variance (ANOVA) shows that the uncertainty introduced by the hydrological model parameters can be larger than the climate model variability and the distribution fit uncertainty for the low-flow extremes whilst for the high-flow extremes higher uncertainty is observed from climate models than from hydrological parameter and distribution fit uncertainties. This implies that ignoring one of the three uncertainty sources may cause great risk to future hydrological extreme adaptations and water resource planning and management.
Khorasani, Parvaneh; Rassouli, Maryam; Parvizy, Soroor; Zagheri-Tafreshi, Mansoureh; Nasr-Esfahani, Mahmood
2015-01-01
Patient education is among the lowest met need of patients in Iran; therefore, expansion of that role can result in greater professional accountability. This study aimed to explain the practical science of the process, structure, and outcomes of a nurse-led action research project to expand the nurses' role in patient education in Iran. This study was part of a participatory action research. Daily communications and monthly joint meetings were held from January 2012 to February 2014 for planning and management. These were based on the research protocol, and the conceptual framework included the Mobilizing for Action through Planning and Partnerships process by means of Leadership for Change skills. Data were produced and gathered through participant observations. Administrative data included project records, official documents, artifacts, news, and reports, which were analyzed through qualitative content analysis. A participatory project was established with three groups of participants organized from both academic and clinical fields. These consisted of a "core research support team," "two steering committees," and community representatives of clients and professionals as "feedback groups." A seven-stage process, named the "Nurse Educators: Al-Zahra Role Expansion Action Research" (NEAREAR) process, resulted from the project, in which strategic issues were gradually developed and implemented through 32 action plans and quality improvement cycles of action research. Audits and supervision evaluations showed meaningful changes in capacity building components. A nurse-led ad hoc structure with academic-clinical partnerships and strategic management process was suggested as a possible practical model for expanding nurses' educational role in similar contexts. Implications and practical science introduced in this action research could also be applicable for top managers and health system policy makers in a wider range of practice.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Notz, Dirk; Jahn, Alexandra; Holland, Marika
A better understanding of the role of sea ice for the changing climate of our planet is the central aim of the diagnostic Coupled Model Intercomparison Project 6 (CMIP6)-endorsed Sea-Ice Model Intercomparison Project (SIMIP). To reach this aim, SIMIP requests sea-ice-related variables from climate-model simulations that allow for a better understanding and, ultimately, improvement of biases and errors in sea-ice simulations with large-scale climate models. This then allows us to better understand to what degree CMIP6 model simulations relate to reality, thus improving our confidence in answering sea-ice-related questions based on these simulations. Furthermore, the SIMIP protocol provides a standardmore » for sea-ice model output that will streamline and hence simplify the analysis of the simulated sea-ice evolution in research projects independent of CMIP. To reach its aims, SIMIP provides a structured list of model output that allows for an examination of the three main budgets that govern the evolution of sea ice, namely the heat budget, the momentum budget, and the mass budget. Furthermore, we explain the aims of SIMIP in more detail and outline how its design allows us to answer some of the most pressing questions that sea ice still poses to the international climate-research community.« less
Notz, Dirk; Jahn, Alexandra; Holland, Marika; ...
2016-09-23
A better understanding of the role of sea ice for the changing climate of our planet is the central aim of the diagnostic Coupled Model Intercomparison Project 6 (CMIP6)-endorsed Sea-Ice Model Intercomparison Project (SIMIP). To reach this aim, SIMIP requests sea-ice-related variables from climate-model simulations that allow for a better understanding and, ultimately, improvement of biases and errors in sea-ice simulations with large-scale climate models. This then allows us to better understand to what degree CMIP6 model simulations relate to reality, thus improving our confidence in answering sea-ice-related questions based on these simulations. Furthermore, the SIMIP protocol provides a standardmore » for sea-ice model output that will streamline and hence simplify the analysis of the simulated sea-ice evolution in research projects independent of CMIP. To reach its aims, SIMIP provides a structured list of model output that allows for an examination of the three main budgets that govern the evolution of sea ice, namely the heat budget, the momentum budget, and the mass budget. Furthermore, we explain the aims of SIMIP in more detail and outline how its design allows us to answer some of the most pressing questions that sea ice still poses to the international climate-research community.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
van Gestel, Natasja; Jan van Groenigen, Kees; Osenberg, Craig
This project examined the sensitivity of carbon in land ecosystems to environmental change, focusing on carbon contained in soil, and the role of carbon-nitrogen interactions in regulating ecosystem carbon storage. The project used a combination of empirical measurements, mathematical models, and statistics to partition effects of climate change on soil into processes enhancing soil carbon and processes through which it decomposes. By synthesizing results from experiments around the world, the work provided novel insight on ecological controls and responses across broad spatial and temporal scales. The project developed new approaches in meta-analysis using principles of element mass balance and largemore » datasets to derive metrics of ecosystem responses to environmental change. The project used meta-analysis to test how nutrients regulate responses of ecosystems to elevated CO2 and warming, in particular responses of nitrogen fixation, critical for regulating long-term C balance.« less
An Adaptation Dilemma Caused by Impacts-Modeling Uncertainty
NASA Astrophysics Data System (ADS)
Frieler, K.; Müller, C.; Elliott, J. W.; Heinke, J.; Arneth, A.; Bierkens, M. F.; Ciais, P.; Clark, D. H.; Deryng, D.; Doll, P. M.; Falloon, P.; Fekete, B. M.; Folberth, C.; Friend, A. D.; Gosling, S. N.; Haddeland, I.; Khabarov, N.; Lomas, M. R.; Masaki, Y.; Nishina, K.; Neumann, K.; Oki, T.; Pavlick, R.; Ruane, A. C.; Schmid, E.; Schmitz, C.; Stacke, T.; Stehfest, E.; Tang, Q.; Wisser, D.
2013-12-01
Ensuring future well-being for a growing population under either strong climate change or an aggressive mitigation strategy requires a subtle balance of potentially conflicting response measures. In the case of competing goals, uncertainty in impact estimates plays a central role when high confidence in achieving a primary objective (such as food security) directly implies an increased probability of uncertainty induced failure with regard to a competing target (such as climate protection). We use cross sectoral consistent multi-impact model simulations from the Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP, www.isi-mip.org) to illustrate this uncertainty dilemma: RCP projections from 7 global crop, 11 hydrological, and 7 biomes models are combined to analyze irrigation and land use changes as possible responses to climate change and increasing crop demand due to population growth and economic development. We show that - while a no-regrets option with regard to climate protection - additional irrigation alone is not expected to balance the demand increase by 2050. In contrast, a strong expansion of cultivated land closes the projected production-demand gap in some crop models. However, it comes at the expense of a loss of natural carbon sinks of order 50%. Given the large uncertainty of state of the art crop model projections even these strong land use changes would not bring us ';on the safe side' with respect to food supply. In a world where increasing carbon emissions continue to shrink the overall solution space, we demonstrate that current impacts-modeling uncertainty is a luxury we cannot afford. ISI-MIP is intended to provide cross sectoral consistent impact projections for model intercomparison and improvement as well as cross-sectoral integration. The results presented here were generated within the first Fast-Track phase of the project covering global impact projections. The second phase will also include regional projections. It is the aim of the project to build up a CMIP like open archive for climate impact projections allowing for the necessary sharpening the our picture of a 1,2,3,4 degrees warmer world.
Final Technical Report for Award # ER64999
DOE Office of Scientific and Technical Information (OSTI.GOV)
Metcalf, William W.
2014-10-08
This report provides a summary of activities for Award # ER64999, a Genomes to Life Project funded by the Office of Science, Basic Energy Research. The project was entitled "Methanogenic archaea and the global carbon cycle: a systems biology approach to the study of Methanosarcina species". The long-term goal of this multi-investigator project was the creation of integrated, multiscale models that accurately and quantitatively predict the role of Methanosarcina species in the global carbon cycle under dynamic environmental conditions. To achieve these goals we pursed four specific aims: (1) genome sequencing of numerous members of the Order Methanosarcinales, (2) identificationmore » of genomic sources of phenotypic variation through in silico comparative genomics, (3) elucidation of the transcriptional networks of two Methanosarcina species, and (4) development of comprehensive metabolic network models for characterized strains to address the question of how metabolic models scale with genetic distance.« less
Assessing Inter-Sectoral Climate Change Risks: The Role of ISIMIP
NASA Technical Reports Server (NTRS)
Rosenzweig, Cynthia; Arnell, Nigel W.; Ebi, Kristie L.; Lotze-Campen, Hermann; Raes, Frank; Rapley, Chris; Smith, Mark Stafford; Cramer, Wolfgang; Frieler, Katja; Reyer, Christopher P. O.;
2017-01-01
The aims of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP) are to provide a framework for the intercomparison of global and regional-scale risk models within and across multiple sectors and to enable coordinated multi-sectoral assessments of different risks and their aggregated effects. The overarching goal is to use the knowledge gained to support adaptation and mitigation decisions that require regional or global perspectives within the context of facilitating transformations to enable sustainable development, despite inevitable climate shifts and disruptions. ISIMIP uses community-agreed sets of scenarios with standardized climate variables and socioeconomic projections as inputs for projecting future risks and associated uncertainties, within and across sectors. The results are consistent multi-model assessments of sectoral risks and opportunities that enable studies that integrate across sectors, providing support for implementation of the Paris Agreement under the United Nations Framework Convention on Climate Change.
The key role of dry days in changing regional climate and precipitation regimes
Polade, Suraj; Pierce, David W.; Cayan, Daniel R.; Gershunov, Alexander; Dettinger, Michael D.
2014-01-01
Future changes in the number of dry days per year can either reinforce or counteract projected increases in daily precipitation intensity as the climate warms. We analyze climate model projected changes in the number of dry days using 28 coupled global climate models from the Coupled Model Intercomparison Project, version 5 (CMIP5). We find that the Mediterranean Sea region, parts of Central and South America, and western Indonesia could experience up to 30 more dry days per year by the end of this century. We illustrate how changes in the number of dry days and the precipitation intensity on precipitating days combine to produce changes in annual precipitation, and show that over much of the subtropics the change in number of dry days dominates the annual changes in precipitation and accounts for a large part of the change in interannual precipitation variability.
Wade, A J; Black, E; Brayshaw, D J; El-Bastawesy, M; Holmes, P A C; Butterfield, D; Nuimat, S; Jamjoum, K
2010-11-28
This paper is concerned with the quantification of the likely effect of anthropogenic climate change on the water resources of Jordan by the end of the twenty-first century. Specifically, a suite of hydrological models are used in conjunction with modelled outcomes from a regional climate model, HadRM3, and a weather generator to determine how future flows in the upper River Jordan and in the Wadi Faynan may change. The results indicate that groundwater will play an important role in the water security of the country as irrigation demands increase. Given future projections of reduced winter rainfall and increased near-surface air temperatures, the already low groundwater recharge will decrease further. Interestingly, the modelled discharge at the Wadi Faynan indicates that extreme flood flows will increase in magnitude, despite a decrease in the mean annual rainfall. Simulations projected no increase in flood magnitude in the upper River Jordan. Discussion focuses on the utility of the modelling framework, the problems of making quantitative forecasts and the implications of reduced water availability in Jordan.
ERIC Educational Resources Information Center
Smith, Andrew; Courvisanos, Jerry; Tuck, Jacqueline; McEachern, Steven
2011-01-01
This literature review examines the role of human capital formation in building innovative capacity in firms. The aim of the review is to develop a model of human capital development factors to be used as a basis for a larger research project where the factors that develop innovation capacity in enterprises will be investigated. The review finds…
NASA Astrophysics Data System (ADS)
Russell, J. L.; Sarmiento, J. L.
2017-12-01
The Southern Ocean is central to the climate's response to increasing levels of atmospheric greenhouse gases as it ventilates a large fraction of the global ocean volume. Global coupled climate models and earth system models, however, vary widely in their simulations of the Southern Ocean and its role in, and response to, the ongoing anthropogenic forcing. Due to its complex water-mass structure and dynamics, Southern Ocean carbon and heat uptake depend on a combination of winds, eddies, mixing, buoyancy fluxes and topography. Understanding how the ocean carries heat and carbon into its interior and how the observed wind changes are affecting this uptake is essential to accurately projecting transient climate sensitivity. Observationally-based metrics are critical for discerning processes and mechanisms, and for validating and comparing climate models. As the community shifts toward Earth system models with explicit carbon simulations, more direct observations of important biogeochemical parameters, like those obtained from the biogeochemically-sensored floats that are part of the Southern Ocean Carbon and Climate Observations and Modeling project, are essential. One goal of future observing systems should be to create observationally-based benchmarks that will lead to reducing uncertainties in climate projections, and especially uncertainties related to oceanic heat and carbon uptake.
Wilson, M; Kahn, N; Wartman, S
2001-04-01
Implementation of the Interdisciplinary Generalist Curriculum (IGC) Project involved complex processes that reflect structural, funding, and intervention design considerations. Among structural considerations, the IGC Project benefited from a national structure above the level of the demonstration schools. Governance by committee was highly effective because it harnessed and balanced power. At the national level, governance by committee was enhanced by strong central coordination, and it had a role-modeling effect for governance at the school level. The IGC experience over the seven-year course of the project suggests that it is important to revisit the role of a national advisory committee over time and to revise that role as warranted. Funding considerations, including the importance of funding evaluation for a period of time long enough to measure intended impacts and the length and amount of funding to demonstration schools, are discussed. Prescription of the IGC intervention and the focus on years one and two of medical education are critical design considerations. The authors conclude that the IGC Project used relatively few federal dollars to demonstrate a highly prescribed intervention in a limited number of medical schools toward a clear and limited goal. IGC lessons apply to programs specifically targeting primary care education, but also to other medical school curricular innovations, and perhaps, to a larger framework of multi-site educational interventions.
Study on optimized decision-making model of offshore wind power projects investment
NASA Astrophysics Data System (ADS)
Zhao, Tian; Yang, Shangdong; Gao, Guowei; Ma, Li
2018-02-01
China’s offshore wind energy is of great potential and plays an important role in promoting China’s energy structure adjustment. However, the current development of offshore wind power in China is inadequate, and is much less developed than that of onshore wind power. On the basis of considering all kinds of risks faced by offshore wind power development, an optimized model of offshore wind power investment decision is established in this paper by proposing the risk-benefit assessment method. To prove the practicability of this method in improving the selection of wind power projects, python programming is used to simulate the investment analysis of a large number of projects. Therefore, the paper is dedicated to provide decision-making support for the sound development of offshore wind power industry.
Progress on the Fabric for Frontier Experiments Project at Fermilab
NASA Astrophysics Data System (ADS)
Box, Dennis; Boyd, Joseph; Dykstra, Dave; Garzoglio, Gabriele; Herner, Kenneth; Kirby, Michael; Kreymer, Arthur; Levshina, Tanya; Mhashilkar, Parag; Sharma, Neha
2015-12-01
The FabrIc for Frontier Experiments (FIFE) project is an ambitious, major-impact initiative within the Fermilab Scientific Computing Division designed to lead the computing model for Fermilab experiments. FIFE is a collaborative effort between experimenters and computing professionals to design and develop integrated computing models for experiments of varying needs and infrastructure. The major focus of the FIFE project is the development, deployment, and integration of Open Science Grid solutions for high throughput computing, data management, database access and collaboration within experiment. To accomplish this goal, FIFE has developed workflows that utilize Open Science Grid sites along with dedicated and commercial cloud resources. The FIFE project has made significant progress integrating into experiment computing operations several services including new job submission services, software and reference data distribution through CVMFS repositories, flexible data transfer client, and access to opportunistic resources on the Open Science Grid. The progress with current experiments and plans for expansion with additional projects will be discussed. FIFE has taken a leading role in the definition of the computing model for Fermilab experiments, aided in the design of computing for experiments beyond Fermilab, and will continue to define the future direction of high throughput computing for future physics experiments worldwide.
Smoke and Emissions Model Intercomparison Project (SEMIP)
NASA Astrophysics Data System (ADS)
Larkin, N. K.; Raffuse, S.; Strand, T.; Solomon, R.; Sullivan, D.; Wheeler, N.
2008-12-01
Fire emissions and smoke impacts from wildland fire are a growing concern due to increasing fire season severity, dwindling tolerance of smoke by the public, tightening air quality regulations, and their role in climate change issues. Unfortunately, while a number of models and modeling system solutions are available to address these issues, the lack of quantitative information on the limitations and difference between smoke and emissions models impedes the use of these tools for real-world applications (JFSP, 2007). We describe a new, open-access project to directly address this issue, the open-access Smoke Emissions Model Intercomparison Project (SEMIP) and invite the community to participate. Preliminary work utilizing the modular BlueSky framework to directly compare fire location and size information, fuel loading amounts, fuel consumption rates, and fire emissions from a number of current models that has found model-to-model variability as high as two orders of magnitude for an individual fire. Fire emissions inventories also show significant variability on both regional and national scales that are dependant on the fire location information used (ground report vs. satellite), the fuel loading maps assumed, and the fire consumption models employed. SEMIP expands on this work and creates an open-access database of model results and observations with the goal of furthering model development and model prediction usability for real-world decision support.
Evaluating the role of private investment in infrastructure assets.
DOT National Transportation Integrated Search
2015-10-01
Public Private Partnership (P3) projects are likely to fundamentally impact entire : transportation systems. However, most studies are focused on system modeling rather than : policy analysis, and few studies have examined the impacts of P3s on real-...
Are Quantum Models for Order Effects Quantum?
NASA Astrophysics Data System (ADS)
Moreira, Catarina; Wichert, Andreas
2017-12-01
The application of principles of Quantum Mechanics in areas outside of physics has been getting increasing attention in the scientific community in an emergent disciplined called Quantum Cognition. These principles have been applied to explain paradoxical situations that cannot be easily explained through classical theory. In quantum probability, events are characterised by a superposition state, which is represented by a state vector in a N-dimensional vector space. The probability of an event is given by the squared magnitude of the projection of this superposition state into the desired subspace. This geometric approach is very useful to explain paradoxical findings that involve order effects, but do we really need quantum principles for models that only involve projections? This work has two main goals. First, it is still not clear in the literature if a quantum projection model has any advantage towards a classical projection. We compared both models and concluded that the Quantum Projection model achieves the same results as its classical counterpart, because the quantum interference effects play no role in the computation of the probabilities. Second, it intends to propose an alternative relativistic interpretation for rotation parameters that are involved in both classical and quantum models. In the end, instead of interpreting these parameters as a similarity measure between questions, we propose that they emerge due to the lack of knowledge concerned with a personal basis state and also due to uncertainties towards the state of world and towards the context of the questions.
NASA Technical Reports Server (NTRS)
Eller, E. L.
1976-01-01
The project scientists is in a position which rates very high in terms of behavioral study recommendations. His influence over objectives is generally considered to be important. He is highly autonomous in a moderately coordinated environment. He has diverse managerial and technical functions and the performance of these functions require him to grow beyond his role as an experimenter. However, the position within the line organization for those interviewed is also very stimulating, rating almost as high by the same criteria. The role of project scientist may not be the dominant means of professional growth for the experienced scientific investigators. The influence which the project scientist exerts on the project and the stimulation of that position for him are determined largely by his position outside the defined project scientist role. The role of the project scientist is changing because the environment of those who become project scientists is changing.
Methodologies for Active Aging in the Manufacturing Sector
NASA Astrophysics Data System (ADS)
Fornasiero, Rosanna; Berdicchia, Domenica; Zambelli, Mario; Masino, Giovanni
The research project named “Flexibly Beyond” studied and experimented innovative models for the enhancement of the role of senior workers and prolongation of their working life. The research was based on the application of innovative methods and tools to the ageing society and in particular to the European manufacturing companies represented in the project by apparel and footwear sectors. The project was funded under the Innovative Measures of the art.6 of the European Social Fund (VS/2006/0353) and coordinated by Politecnico Calzaturiero. The real strength of the project was the large network including all the actors of the value chain which allows transferring the theoretical findings to practical level in SMEs manufacturing context.
Sohn, S Y; Gyu Joo, Yong; Kyu Han, Hong
2007-02-01
Financial support on the R&D in Science & Technology for SMEs at the governmental level plays a crucial role on the improvement of the national competitiveness. Korea Science & Engineering Foundation (KOSEF) has supported the R&D projects of SMEs with the competitive technology ability by way of the Science and Technology Promotion Fund. In this paper, we propose a structural equation model (SEM) to evaluate the performance of such a funding program in terms of three aspects: output, outcome and impact under given funding inputs, R&D environment of a recipient company, and external evaluation programs of funding organization. We adopt Malcolm Baldrige National Quality Award (MBNQA) criteria to assess the R&D environmental factors of recipient companies. In addition, we test the effect of interim evaluation of the funded project. The proposed model is applied to the real case and is used to identify the best practices as well as to provide feedback information for the improvement of the government funding programs of the R&D projects of SMEs.
Regional Climate Change Impact on Agricultural Land Use in West Africa
NASA Astrophysics Data System (ADS)
Ahmed, K. F.; Wang, G.; You, L.
2014-12-01
Agriculture is a key element of the human-induced land use land cover change (LULCC) that is influenced by climate and can potentially influence regional climate. Temperature and precipitation directly impact the crop yield (by controlling photosynthesis, respiration and other physiological processes) that then affects agricultural land use pattern. In feedback, the resulting changes in land use and land cover play an important role to determine the direction and magnitude of global, regional and local climate change by altering Earth's radiative equilibrium. The assessment of future agricultural land use is, therefore, of great importance in climate change study. In this study, we develop a prototype land use projection model and, using this model, project the changes to land use pattern and future land cover map accounting for climate-induced yield changes for major crops in West Africa. Among the inputs to the land use projection model are crop yield changes simulated by the crop model DSSAT, driven with the climate forcing data from the regional climate model RegCM4.3.4-CLM4.5, which features a projected decrease of future mean crop yield and increase of inter-annual variability. Another input to the land use projection model is the projected changes of food demand in the future. In a so-called "dumb-farmer scenario" without any adaptation, the combined effect of decrease in crop yield and increase in food demand will lead to a significant increase in agricultural land use in future years accompanied by a decrease in forest and grass area. Human adaptation through land use optimization in an effort to minimize agricultural expansion is found to have little impact on the overall areas of agricultural land use. While the choice of the General Circulation Model (GCM) to derive initial and boundary conditions for the regional climate model can be a source of uncertainty in projecting the future LULCC, results from sensitivity experiments indicate that the changes in land use pattern are robust.
NASA Astrophysics Data System (ADS)
Ahmadalipour, Ali; Moradkhani, Hamid; Demirel, Mehmet C.
2017-10-01
The changing climate and the associated future increases in temperature are expected to have impacts on drought characteristics and hydrologic cycle. This paper investigates the projected changes in spatiotemporal characteristics of droughts and their future attributes over the Willamette River Basin (WRB) in the Pacific Northwest U.S. The analysis is performed using two subsets of downscaled CMIP5 global climate models (GCMs) each consisting of 10 models from two future scenarios (RCP4.5 and RCP8.5) for 30 years of historical period (1970-1999) and 90 years of future projections (2010-2099). Hydrologic modeling is conducted using the Precipitation Runoff Modeling System (PRMS) as a robust distributed hydrologic model with lower computational cost compared to other models. Meteorological and hydrological droughts are studied using three drought indices (i.e. Standardized Precipitation Index, Standardized Precipitation Evapotranspiration Index, Standardized Streamflow Index). Results reveal that the intensity and duration of hydrological droughts are expected to increase over the WRB, albeit the annual precipitation is expected to increase. On the other hand, the intensity of meteorological droughts do not indicate an aggravation for most cases. We explore the changes of hydrometeolorogical variables over the basin in order to understand the causes for such differences and to discover the controlling factors of drought. Furthermore, the uncertainty of projections are quantified for model, scenario, and downscaling uncertainty.
Halcomb, Elizabeth J; Davidson, Patricia M; Yallop, Julie; Griffiths, Rhonda; Daly, John
2007-08-01
Practice nursing is an integral component of British and New Zealand primary care, but in Australia it remains an emerging specialty. Despite an increased focus on the Australian practice nurse role, there has been limited strategic role development, particularly relating to national health priority areas. This paper reports the third stage of a Project exploring the Australian practice nurse role in the management of cardiovascular disease (CVD). This stage involved a consensus development conference, undertaken to identify strategic, priority recommendations for practice nurse role development. 1. Practice nurses have an important role in developing systems and processes for CVD management; 2. A change in the culture of general practice is necessary to promote acceptance of nurse-led CVD management; 3. Future research needs to evaluate specific models of care, incorporating outcome measures sensitive to nursing interventions; 4. Considerable challenges exist in conducting research in general practice; and 5. Changes in funding models are necessary for widespread practice nurse role development. The shifting of funding models provides evidence to support interdisciplinary practice in Australian general practice. The time is ripe, therefore, to engage in prospective and strategic planning to inform development of the practice nurse role.
Hydrological changes in the tropics: an Holocene perspective
NASA Astrophysics Data System (ADS)
Braconnot, Pascale
2015-04-01
Past climates offer a large set of natural experiences that can be used to better understand the relative role of different climate feedbacks arising from changes in the Earth's global energetics, Earth's hydrological cycle or from the coupling between climate and biogeochemical cycles. In addition, the numerous climate reconstructions from different and independent ice, marine and terrestrial climate archives allow to test how climate models reproduce past changes and to assess their credibility when used for future climate projections. The presentation will review some of the mechanisms affecting the long term trend in the location of the intertropical convergence zone and the Afro-Asian monsoon. Using simulations of the PMIP project, as well as sensitivity experiments with the IPSL model, I'll discuss the role of monsoon changes in the global Earth's energetics and the different feedbacks from ocean and land-surface. The presentation will contrast the conditions in the Early, the mid and late Holocene and show how robust features of monsoon changes can be used to better assess future changes in regions where model results are uncertain, such as West Africa.
NASA Technical Reports Server (NTRS)
Vairo, Daniel M.
1998-01-01
The removal and installation of sting-mounted wind tunnel models in the National Transonic Facility (NTF) is a multi-task process having a large impact on the annual throughput of the facility. Approximately ten model removal and installation cycles occur annually at the NTF with each cycle requiring slightly over five days to complete. The various tasks of the model changeover process were modeled in Microsoft Project as a template to provide a planning, tracking, and management tool. The template can also be used as a tool to evaluate improvements to this process. This document describes the development of the template and provides step-by-step instructions on its use and as a planning and tracking tool. A secondary role of this document is to provide an overview of the model changeover process and briefly describe the tasks associated with it.
Modelling indirect interactions during failure spreading in a project activity network.
Ellinas, Christos
2018-03-12
Spreading broadly refers to the notion of an entity propagating throughout a networked system via its interacting components. Evidence of its ubiquity and severity can be seen in a range of phenomena, from disease epidemics to financial systemic risk. In order to understand the dynamics of these critical phenomena, computational models map the probability of propagation as a function of direct exposure, typically in the form of pairwise interactions between components. By doing so, the important role of indirect interactions remains unexplored. In response, we develop a simple model that accounts for the effect of both direct and subsequent exposure, which we deploy in the novel context of failure propagation within a real-world engineering project. We show that subsequent exposure has a significant effect in key aspects, including the: (a) final spreading event size, (b) propagation rate, and (c) spreading event structure. In addition, we demonstrate the existence of 'hidden influentials' in large-scale spreading events, and evaluate the role of direct and subsequent exposure in their emergence. Given the evidence of the importance of subsequent exposure, our findings offer new insight on particular aspects that need to be included when modelling network dynamics in general, and spreading processes specifically.
Overlooked Role of Mesoscale Winds in Powering Ocean Diapycnal Mixing.
Jing, Zhao; Wu, Lixin; Ma, Xiaohui; Chang, Ping
2016-11-16
Diapycnal mixing affects the uptake of heat and carbon by the ocean as well as plays an important role in global ocean circulations and climate. In the thermocline, winds provide an important energy source for furnishing diapycnal mixing primarily through the generation of near-inertial internal waves. However, this contribution is largely missing in the current generation of climate models. In this study, it is found that mesoscale winds at scales of a few hundred kilometers account for more than 65% of near-inertial energy flux into the North Pacific basin and 55% of turbulent kinetic dissipation rate in the thermocline, suggesting their dominance in powering diapycnal mixing in the thermocline. Furthermore, a new parameterization of wind-driven diapycnal mixing in the ocean interior for climate models is proposed, which, for the first time, successfully captures both temporal and spatial variations of wind-driven diapycnal mixing in the thermocline. It is suggested that as mesoscale winds are not resolved by the climate models participated in the Coupled Model Intercomparison Project Phase 5 (CMIP5) due to insufficient resolutions, the diapycnal mixing is likely poorly represented, raising concerns about the accuracy and robustness of climate change simulations and projections.
Overlooked Role of Mesoscale Winds in Powering Ocean Diapycnal Mixing
Jing, Zhao; Wu, Lixin; Ma, Xiaohui; Chang, Ping
2016-01-01
Diapycnal mixing affects the uptake of heat and carbon by the ocean as well as plays an important role in global ocean circulations and climate. In the thermocline, winds provide an important energy source for furnishing diapycnal mixing primarily through the generation of near-inertial internal waves. However, this contribution is largely missing in the current generation of climate models. In this study, it is found that mesoscale winds at scales of a few hundred kilometers account for more than 65% of near-inertial energy flux into the North Pacific basin and 55% of turbulent kinetic dissipation rate in the thermocline, suggesting their dominance in powering diapycnal mixing in the thermocline. Furthermore, a new parameterization of wind-driven diapycnal mixing in the ocean interior for climate models is proposed, which, for the first time, successfully captures both temporal and spatial variations of wind-driven diapycnal mixing in the thermocline. It is suggested that as mesoscale winds are not resolved by the climate models participated in the Coupled Model Intercomparison Project Phase 5 (CMIP5) due to insufficient resolutions, the diapycnal mixing is likely poorly represented, raising concerns about the accuracy and robustness of climate change simulations and projections. PMID:27849059
NONMEMory: a run management tool for NONMEM.
Wilkins, Justin J
2005-06-01
NONMEM is an extremely powerful tool for nonlinear mixed-effect modelling and simulation of pharmacokinetic and pharmacodynamic data. However, it is a console-based application whose output does not lend itself to rapid interpretation or efficient management. NONMEMory has been created to be a comprehensive project manager for NONMEM, providing detailed summary, comparison and overview of the runs comprising a given project, including the display of output data, simple post-run processing, fast diagnostic plots and run output management, complementary to other available modelling aids. Analysis time ought not to be spent on trivial tasks, and NONMEMory's role is to eliminate these as far as possible by increasing the efficiency of the modelling process. NONMEMory is freely available from http://www.uct.ac.za/depts/pha/nonmemory.php.
DOE Contribution to the 2015 US CLIVAR Project Office Budget
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeWeaver, Eric; Patterson, Michael
The primary goal of the US Climate Variability and Predictability (CLIVAR) Project Office is to enable science community planning and implementation of research to understand and predict climate variability and change on intraseasonal-to-centennial timescales, through observations and modeling with emphasis on the role of the ocean and its interaction with other elements of the Earth system, and to serve the climate community and society through the coordination and facilitation of research on outstanding climate questions.
NASA Astrophysics Data System (ADS)
Smith, Ted
1994-11-01
A broadband communication infrastructure (over 150 megabits per second), deployed almost everywhere outside the third world within 20 years, is a common planning assumption of governments, communication carriers, and information providers. The "structure" of this infrastructure has been variously projected as being that of the telephone network, the cable system, or the Internet. An argument is made that the telephone model, with features borrowed from the other two, will prevail. This model is used to project broad features of printing, publishing, and advertising. In support of this projection, printing is modeled purposefully, a document is printed to either archive it, give it to someone else, or use it (read, mark up, take along, etc.). In the broadband future, only the last is sustainable. Publishing is modeled as a four-stage chain of commerce from creator to buyer. The progress of both the document and its chain of payments is considered today and in the broadband scenario. Finally, advertising today and tomorrow is modeled as a 2x2x2 cube. One dimension contrasts the "notify/inform" and "persuade" aspects of advertising; another contrasts the consumer's role as passive recipient vs. active controller of what s/he hears and sees; the third views the institution of advertising as reflecting or setting societal values.
ENES the European Network for Earth System modelling and its infrastructure projects IS-ENES
NASA Astrophysics Data System (ADS)
Guglielmo, Francesca; Joussaume, Sylvie; Parinet, Marie
2016-04-01
The scientific community working on climate modelling is organized within the European Network for Earth System modelling (ENES). In the past decade, several European university departments, research centres, meteorological services, computer centres, and industrial partners engaged in the creation of ENES with the purpose of working together and cooperating towards the further development of the network, by signing a Memorandum of Understanding. As of 2015, the consortium counts 47 partners. The climate modelling community, and thus ENES, faces challenges which are both science-driven, i.e. analysing of the full complexity of the Earth System to improve our understanding and prediction of climate changes, and have multi-faceted societal implications, as a better representation of climate change on regional scales leads to improved understanding and prediction of impacts and to the development and provision of climate services. ENES, promoting and endorsing projects and initiatives, helps in developing and evaluating of state-of-the-art climate and Earth system models, facilitates model inter-comparison studies, encourages exchanges of software and model results, and fosters the use of high performance computing facilities dedicated to high-resolution multi-model experiments. ENES brings together public and private partners, integrates countries underrepresented in climate modelling studies, and reaches out to different user communities, thus enhancing European expertise and competitiveness. In this need of sophisticated models, world-class, high-performance computers, and state-of-the-art software solutions to make efficient use of models, data and hardware, a key role is played by the constitution and maintenance of a solid infrastructure, developing and providing services to the different user communities. ENES has investigated the infrastructural needs and has received funding from the EU FP7 program for the IS-ENES (InfraStructure for ENES) phase I and II projects. We present here the case study of an existing network of institutions brought together toward common goals by a non-binding agreement, ENES, and of its two IS-ENES projects. These latter will be discussed in their double role as a means to provide and/or maintain the actual infrastructure (hardware, software, skilled human resources, services) to achieve ENES scientific goals -fulfilling the aims set in a strategy document-, but also to inform and provide to the network a structured way of working and of interacting with the extended community. The genesis and evolution of the network and the interaction network/projects will also be analysed in terms of long-term sustainability.
Hypothalamic Projections to the Optic Tectum in Larval Zebrafish
Heap, Lucy A.; Vanwalleghem, Gilles C.; Thompson, Andrew W.; Favre-Bulle, Itia; Rubinsztein-Dunlop, Halina; Scott, Ethan K.
2018-01-01
The optic tectum of larval zebrafish is an important model for understanding visual processing in vertebrates. The tectum has been traditionally viewed as dominantly visual, with a majority of studies focusing on the processes by which tectal circuits receive and process retinally-derived visual information. Recently, a handful of studies have shown a much more complex role for the optic tectum in larval zebrafish, and anatomical and functional data from these studies suggest that this role extends beyond the visual system, and beyond the processing of exclusively retinal inputs. Consistent with this evolving view of the tectum, we have used a Gal4 enhancer trap line to identify direct projections from rostral hypothalamus (RH) to the tectal neuropil of larval zebrafish. These projections ramify within the deepest laminae of the tectal neuropil, the stratum album centrale (SAC)/stratum griseum periventriculare (SPV), and also innervate strata distinct from those innervated by retinal projections. Using optogenetic stimulation of the hypothalamic projection neurons paired with calcium imaging in the tectum, we find rebound firing in tectal neurons consistent with hypothalamic inhibitory input. Our results suggest that tectal processing in larval zebrafish is modulated by hypothalamic inhibitory inputs to the deep tectal neuropil. PMID:29403362
Hypothalamic Projections to the Optic Tectum in Larval Zebrafish.
Heap, Lucy A; Vanwalleghem, Gilles C; Thompson, Andrew W; Favre-Bulle, Itia; Rubinsztein-Dunlop, Halina; Scott, Ethan K
2017-01-01
The optic tectum of larval zebrafish is an important model for understanding visual processing in vertebrates. The tectum has been traditionally viewed as dominantly visual, with a majority of studies focusing on the processes by which tectal circuits receive and process retinally-derived visual information. Recently, a handful of studies have shown a much more complex role for the optic tectum in larval zebrafish, and anatomical and functional data from these studies suggest that this role extends beyond the visual system, and beyond the processing of exclusively retinal inputs. Consistent with this evolving view of the tectum, we have used a Gal4 enhancer trap line to identify direct projections from rostral hypothalamus (RH) to the tectal neuropil of larval zebrafish. These projections ramify within the deepest laminae of the tectal neuropil, the stratum album centrale (SAC)/stratum griseum periventriculare (SPV), and also innervate strata distinct from those innervated by retinal projections. Using optogenetic stimulation of the hypothalamic projection neurons paired with calcium imaging in the tectum, we find rebound firing in tectal neurons consistent with hypothalamic inhibitory input. Our results suggest that tectal processing in larval zebrafish is modulated by hypothalamic inhibitory inputs to the deep tectal neuropil.
NASA Astrophysics Data System (ADS)
Seneviratne, S. I.; Vogel, M.; Zscheischler, J.; Schwingshackl, C.; Davin, E.; Gudmundsson, L.; Guillod, B.; Hauser, M.; Hirsch, A.; Hirschi, M.; Humphrey, V.; Thiery, W.
2017-12-01
Regional hot extremes are projected to increase more strongly than the global mean temperature, with substantially larger changes than 2°C even if global warming is limited to this level (Seneviratne et al. 2016). This presentation will highlight the processes underlying this behavior, which is strongly related to land-climate feedbacks (Vogel et al. 2017). The identified feedbacks are also affecting the occurrence probability of compound drought and heat events (Zscheischler and Seneviratne 2017), with high relevance for impacts on forest fire and agriculture production. Moreover, the responsible land processes strongly contribute to the inter-model spread in the projections, and can thus be used to derive observations-based constraints to reduce the uncertainty of projected changes in climate extremes. Finally, we will also discuss the role of soil moisture effects on carbon uptake and their relevance for projections, as well as the role of land use changes in affecting the identified feedbacks and projected changes in climate extremes. References: Seneviratne, S.I., M. Donat, A.J. Pitman, R. Knutti, and R.L. Wilby, 2016: Allowable CO2 emissions based on regional and impact-related climate targets. Nature, 529, 477-483, doi:10.1038/nature16542. Vogel, M.M., R. Orth, F. Cheruy, S. Hagemann, R. Lorenz, B.J.J.M. Hurk, and S.I. Seneviratne, 2017: Regional amplification of projected changes in extreme temperatures strongly controlled by soil moisture-temperature feedbacks. Geophysical Research Letters, 44(3), 1511-1519, doi:10.1002/2016GL071235. Zscheischler, J., and S.I. Seneviratne, 2017: Dependence of drivers affects risks associated with compound events. Science Advances, 3(6), doi: 10.1126/sciadv.1700263
Flow experience in teams: The role of shared leadership.
Aubé, Caroline; Rousseau, Vincent; Brunelle, Eric
2018-04-01
The present study tests a multilevel mediation model concerning the effect of shared leadership on team members' flow experience. Specifically, we investigate the mediating role of teamwork behaviors in the relationships between 2 complementary indicators of shared leadership (i.e., density and centralization) and flow. Based on a multisource approach, we collected data through observation and survey of 111 project teams (521 individuals) made up of university students participating in a project management simulation. The results show that density and centralization have both an additive effect and an interaction effect on teamwork behaviors, such that the relationship between density and teamwork behaviors is stronger when centralization is low. In addition, teamwork behaviors play a mediating role in the relationship between shared leadership and flow. Overall, the findings highlight the importance of promoting team-based shared leadership in organizations to favor the flow experience. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Hello oil rig: The role of simulacra images in producing future reality
NASA Astrophysics Data System (ADS)
Ibrahim, Abdallah
This project is the first approach to address the problem of the image through a discussion between science, philosophy, art history, art theory, and fine arts based on one body of specific art work designed especially to explain the role of the image in producing future reality models. This study is a continuation of the dialogue between important philosophers and thinkers about the image and its place in the contemporary scene. The technical fossil medium used in painting this project crosses the boundary between scientific research with its data sheets to art theory and fine arts with their aesthetic rhetoric thus bringing many disciplines together. Seven images were created to discuss the problem. The artwork and the academic research are both interacting in this paper in a multidiscipline discussion to uncover the role of the images in creating a new reality and in forging the hyperreal culture.
The role of the resid solvent in coprocessing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Curtis, C.W.
1995-12-31
The objective of this project is to determine the role of petroleum resid in coprocessing of coal and resid. The question being asked is whether the resid is a reactant in the system or whether the resid is a merely a diluent that is being simultaneously upgraded? To fulfill the objective the hydrogen transfer from model compounds, naphthenes that represent petroleum resids to model acceptors is being determined. The specificity of different catalytic systems for promoting the hydrogen transfer from naphthenes to model acceptors and to coal is also being determined. In addition the efficacy of hydrogen transfer from andmore » solvancy of whole and specific resid fractions under coprocessing conditions is being determined.« less
Impact of climate change on water resources status: A case study for Crete Island, Greece
NASA Astrophysics Data System (ADS)
Koutroulis, Aristeidis G.; Tsanis, Ioannis K.; Daliakopoulos, Ioannis N.; Jacob, Daniela
2013-02-01
SummaryAn assessment of the impact of global climate change on the water resources status of the island of Crete, for a range of 24 different scenarios of projected hydro-climatological regime is presented. Three "state of the art" Global Climate Models (GCMs) and an ensemble of Regional Climate Models (RCMs) under emission scenarios B1, A2 and A1B provide future precipitation (P) and temperature (T) estimates that are bias adjusted against observations. The ensemble of RCMs for the A1B scenario project a higher P reduction compared to GCMs projections under A2 and B1 scenarios. Among GCMs model results, the ECHAM model projects a higher P reduction compared to IPSL and CNCM. Water availability for the whole island at basin scale until 2100 is estimated using the SAC-SMA rainfall-runoff model And a set of demand and infrastructure scenarios are adopted to simulate potential water use. While predicted reduction of water availability under the B1 emission scenario can be handled with water demand stabilized at present values and full implementation of planned infrastructure, other scenarios require additional measures and a robust signal of water insufficiency is projected. Despite inherent uncertainties, the quantitative impact of the projected changes on water availability indicates that climate change plays an important role to water use and management in controlling future water status in a Mediterranean island like Crete. The results of the study reinforce the necessity to improve and update local water management planning and adaptation strategies in order to attain future water security.
Projecting and attributing future changes of evaporative demand over China in CMIP5 climate models
NASA Astrophysics Data System (ADS)
Liu, Wenbin; Sun, Fubao
2017-04-01
Atmospheric evaporative demand plays a pivotal role in global water and energy budgets and its change is very important for drought monitoring, irrigation scheduling and water resource management under a changing environment. Here, we first projected and attributed future changes of pan evaporation (E_pan), a measurable indictor for atmospheric evaporative demand, over China through a physical- based approach, namely PenPan model, forced with outputs form twelve state-of-the-art Coupled Model Intercomparison Project Phase 5 (CMIP5) climate models. An equidistant quantile mapping method was also used to correct the biases in GCMs outputs to reduce uncertainty in〖 E〗_pan projection. The results indicated that the E_panwould increase during the periods 2021-2050 and 2071-2100 relative to the baseline period 1971-2000 under the Representative Concentration Pathway (RCP) 4.5 and 8.5 scenarios, which can mainly be attributed to the projected increase in air temperature and vapour pressure deficit over China. The percentage increase of E_pan is relatively larger in eastern China than that in western China, which is due to the spatially inconsistent increases in air temperature, net radiation, wind speed and vapour pressure deficit over China. The widely reported "pan evaporation paradox" was not well reproduced for the period 1961-2000 in the climate models, before or after bias correction, suggesting discrepancy between observed and modeled trends. With that caveat, we found that the pan evaporation has been projected to increase at a rate of 117 167 mm/yr per K (72 80 mm/yr per K) over China using the multiple GCMs under the RCP4.5 (RCP8.5) scenario with increased greenhouse gases and the associated warming of the climate system. References: Liu W, and Sun F, 2017. Projecting and attributing future changes of evaporative demand over China in CMIP5 climate models, Journal of Hydrometeorology, doi: 10.1175/JHM-D-16-0204.1
Atmospheric, Climatic, and Environmental Research
NASA Technical Reports Server (NTRS)
Broecker, Wallace S.; Gornitz, Vivien M.
1994-01-01
The climate and atmospheric modeling project involves analysis of basic climate processes, with special emphasis on studies of the atmospheric CO2 and H2O source/sink budgets and studies of the climatic role Of CO2, trace gases and aerosols. These studies are carried out, based in part on use of simplified climate models and climate process models developed at GISS. The principal models currently employed are a variable resolution 3-D general circulation model (GCM), and an associated "tracer" model which simulates the advection of trace constituents using the winds generated by the GCM.
Early Student Support to Investigate the Role of Sea Ice-Albedo Feedback in Sea Ice Predictions
2014-09-30
Ice - Albedo Feedback in Sea Ice Predictions Cecilia M. Bitz Atmospheric Sciences MS351640 University of Washington Seattle, WA 98196-1640 phone...TERM GOALS The overarching goals of this project are to understand the role of sea ice - albedo feedback on sea ice predictability, to improve how... sea - ice albedo is modeled and how sea ice predictions are initialized, and then to evaluate how these improvements
Toward a Model of Expert Knowledge Structure and Their Role in Cognitive Task Performance
1993-11-01
ONR. I I ’Ibis project addressed the role of knowledge organization in skilled cognitive task performance. In particular, this work focused on three...aspects. I EDETERMKNOWLEDGES STRUCTURE MEASURES Figure 1. Knowledge Structure Domain. The work performed under this contract is divided into three...for knowledge structure development would lead to a more global training approach. As such, this effort attempted to define the scope of further work
Potential role of vegetation dynamics on recent extreme droughts over tropical South America
NASA Astrophysics Data System (ADS)
Wang, G.; Erfanian, A.; Fomenko, L.
2017-12-01
Tropical South America is a drought hot spot. In slightly over a decade (2005-2016), the region encountered three extreme droughts (2005, 2010, and 2016). Recurrent extreme droughts not only impact the region's eco-hydrology and socio-economy, but are also globally important as they can transform the planet's largest rainforest, the Amazon, from a carbon sink to a carbon source. Understanding drought drivers and mechanisms underlying extreme droughts in tropical South America can help better project the fate of the Amazon rainforest in a changing climate. In this study we use a regional climate model (RegCM4.3.4) coupled with a comprehensive land-surface model (CLM4.5) to study the present-day hydroclimate of the region, focusing specifically on what might have caused the frequent recurrence of extreme droughts. In the context of observation natural variability of the global oceanic forcing, we tackle the role of land-atmosphere interactions and ran the model with and without dynamic vegetation to study how vegetation dynamics and carbon-nitrogen cycles may have influenced the drought characteristics. Our results demonstrate skillful simulation of the South American climate in the model, and indicate substantial sensitivity of the region's hydroclimatology to vegetation dynamics. This presentation will compare the role of global oceanic forcing versus regional land surface feedback in the recent recurrent droughts, and will characterize the effects of vegetation dynamics in enhancing the drought severity. Preliminary results on future projections of the regional ecosystem and droughts perspective will be also presented.
NASA Technical Reports Server (NTRS)
Tao, W. -K.; Halverson, J.; Adler, R.; Garstang, M.; Houze, R., Jr.; LeMone, M.; Pielke, R., Sr.; Woodley, W.; O'C.Starr, David (Technical Monitor)
2001-01-01
This AMS Meteorological Monographs is dedicated to Dr. Joanne Simpson for her many pioneering research efforts in tropical meteorology during her fifty-year career. Dr. Simpson's major areas of scientific research involved the "hot tower" hypothesis and its role in hurricanes, structure and maintenance of trade winds, air-sea interaction, and observations and the mechanism for hurricanes and waterspouts. She was also a pioneer in cloud modeling with the first one-dimensional model and had the first cumulus model on a computer. She also played a major role in planning and leading observational experiments on convective cloud systems. The launch of the Tropical Rainfall Measuring Mission (TRMM) satellite, a joint U.S.-Japan project, in November of 1997 made it possible for quantitative measurements of tropical rainfall to be obtained on a continuous basis over the entire global tropics. Dr. Simpson was the TRAM Project Scientist from 1986 until its launch in 1997. Her efforts during this crucial period ensured that the mission was both well planned scientifically and well engineered as well as within budget. In this paper, Dr. J. Simpson's nine specific accomplishments during her fifty-year career: (1) hot tower hypothesis, (2) hurricanes, (3) airflow and clouds over heated islands, (4) cloud models, (5) trade winds and their role in cumulus development, (6) air-sea interaction, (7) cloud-cloud interactions and mergers, (8) waterspouts, and (9) TRMM science, will be described and discussed.
Becoming a Professional Leader.
ERIC Educational Resources Information Center
Lemlech, Johanna K., Ed.
This book is about teacher-leaders who work in schools, universities, district and county offices, and other educational institutions and who serve as consultants, mentors, principals, project leaders, and teacher educators. The professional model of teaching emphasizes the role of teachers as informed, responsible decision makers, grounded in the…
Management Internship Program: A Model.
ERIC Educational Resources Information Center
Zabezensky, Ferne; And Others
1986-01-01
Examines the Maricopa Community College District's management internship program, detailing the history and operation of the program. Describes program eligibility criteria, the intern's role as Vice Chancellor for Human Services, the provision of a graduate course in management, the rotation of assignments, intern projects, and evaluation.…
TOXICITY, INTERACTIONS, AND METABOLISM OF FORMAMIDINE PESTICIDES IN MAMMALS
The overall goal of this research project was to investigate the mechanism(s) of acute toxicity of formamidine pesticides in mammals using chlordimeform (N'-(4-chloro-o-tolyl)-N,N-dimethylformamidine) and its metabolites as the primary model compounds. The role of biotransformati...
Molecular Analysis Research at Community College of Philadelphia
2015-09-21
projects presented below fall under the category of "molecular genetics ", as presented in ARO Solicitation Number W911NF-12-R-0012-01. These projects...role of the GADD45 family of genes in innate immunity and sepsis. In addition to studying genetic components of the molecular response of myeloid...Equipment in left column, procedure in right column. kinetics of these molecular signaling pathways in genetic variants (gene KO models) has yet to
Effects of DTM resolution on slope steepness and soil loss prediction on hillslope profiles
Eder Paulo Moreira; William J. Elliot; Andrew T. Hudak
2011-01-01
Topographic attributes play a critical role in predicting erosion in models such as the Water Erosion Prediction Project (WEPP). The effects of four different high resolution hillslope profiles were studied using four different DTM resolutions: 1-m, 3-m, 5-m and 10-m. The WEPP model used a common scenario encountered in the forest environment and the selected hillslope...
ERIC Educational Resources Information Center
Lennett, Benjamin; Morris, Sarah J.; Byrum, Greta
2012-01-01
Based on a request for information (RFI) submitted to The University Community Next Generation Innovation Project (Gig.U), the paper describes a model for universities to develop next generation broadband infrastructure in their communities. In the our view universities can play a critical role in spurring next generation networks into their…
Khorasani, Parvaneh; Rassouli, Maryam; Parvizy, Soroor; Zagheri-Tafreshi, Mansoureh; Nasr-Esfahani, Mahmood
2015-01-01
Background: Patient education is among the lowest met need of patients in Iran; therefore, expansion of that role can result in greater professional accountability. This study aimed to explain the practical science of the process, structure, and outcomes of a nurse-led action research project to expand the nurses’ role in patient education in Iran. Materials and Methods: This study was part of a participatory action research. Daily communications and monthly joint meetings were held from January 2012 to February 2014 for planning and management. These were based on the research protocol, and the conceptual framework included the Mobilizing for Action through Planning and Partnerships process by means of Leadership for Change skills. Data were produced and gathered through participant observations. Administrative data included project records, official documents, artifacts, news, and reports, which were analyzed through qualitative content analysis. Results: A participatory project was established with three groups of participants organized from both academic and clinical fields. These consisted of a “core research support team,” “two steering committees,” and community representatives of clients and professionals as “feedback groups.” A seven-stage process, named the “Nurse Educators: Al-Zahra Role Expansion Action Research” (NEAREAR) process, resulted from the project, in which strategic issues were gradually developed and implemented through 32 action plans and quality improvement cycles of action research. Audits and supervision evaluations showed meaningful changes in capacity building components. Conclusions: A nurse-led ad hoc structure with academic–clinical partnerships and strategic management process was suggested as a possible practical model for expanding nurses’ educational role in similar contexts. Implications and practical science introduced in this action research could also be applicable for top managers and health system policy makers in a wider range of practice. PMID:26120341
The role of bias in simulation of the Indian monsoon and its relationship to predictability
NASA Astrophysics Data System (ADS)
Kelly, P.
2016-12-01
Confidence in future projections of how climate change will affect the Indian monsoon is currently limited by- among other things-model biases. That is, the systematic error in simulating the mean present day climate. An important priority question in seamless prediction involves the role of the mean state. How much of the prediction error in imperfect models stems from a biased mean state (itself a result of many interacting process errors), and how much stems from the flow dependence of processes during an oscillation or variation we are trying to predict? Using simple but effective nudging techniques, we are able to address this question in a clean and incisive framework that teases apart the roles of the mean state vs. transient flow dependence in constraining predictability. The role of bias in model fidelity of simulations of the Indian monsoon is investigated in CAM5, and the relationship to predictability in remote regions in the "free" (non-nudged) domain is explored.
The Role of Independent V&V in Upstream Software Development Processes
NASA Technical Reports Server (NTRS)
Easterbrook, Steve
1996-01-01
This paper describes the role of Verification and Validation (V&V) during the requirements and high level design processes, and in particular the role of Independent V&V (IV&V). The job of IV&V during these phases is to ensure that the requirements are complete, consistent and valid, and to ensure that the high level design meets the requirements. This contrasts with the role of Quality Assurance (QA), which ensures that appropriate standards and process models are defined and applied. This paper describes the current state of practice for IV&V, concentrating on the process model used in NASA projects. We describe a case study, showing the processes by which problem reporting and tracking takes place, and how IV&V feeds into decision making by the development team. We then describe the problems faced in implementing IV&V. We conclude that despite a well defined process model, and tools to support it, IV&V is still beset by communication and coordination problems.
Effects of recent energy system changes on CO2 projections for the United States.
Lenox, Carol S; Loughlin, Daniel H
2017-09-21
Recent projections of future United States carbon dioxide (CO 2 ) emissions are considerably lower than projections made just a decade ago. A myriad of factors have contributed to lower forecasts, including reductions in end-use energy service demands, improvements in energy efficiency, and technological innovations. Policies that have encouraged these changes include renewable portfolio standards, corporate vehicle efficiency standards, smart growth initiatives, revisions to building codes, and air and climate regulations. Understanding the effects of these and other factors can be advantageous as society evaluates opportunities for achieving additional CO 2 reductions. Energy system models provide a means to develop such insights. In this analysis, the MARKet ALlocation (MARKAL) model was applied to estimate the relative effects of various energy system changes that have happened since the year 2005 on CO 2 projections for the year 2025. The results indicate that transformations in the transportation and buildings sectors have played major roles in lowering projections. Particularly influential changes include improved vehicle efficiencies, reductions in projected travel demand, reductions in miscellaneous commercial electricity loads, and higher efficiency lighting. Electric sector changes have also contributed significantly to the lowered forecasts, driven by demand reductions, renewable portfolio standards, and air quality regulations.
Radon measurements aboard the Kuiper Airborne Observatory
NASA Technical Reports Server (NTRS)
Kritz, Mark A.; Rosner, Stefan W.
1995-01-01
We have carried out three (piggyback) radon-related projects aboard the KAO. The first, which was limited to upper tropospheric measurements while in level flight, revealed the systematic occurrence of unexpectedly high radon concentrations in this region of the atmosphere. The second project was an instrument development project, which led to the installation of an automatic radon measurement system aboard the NASA ER-2 High Altitude Research Aircraft. In the third, we installed a new system capable of collecting samples during the normal climb and descent of the KAO. The results obtained in these projects have resulted in significant contributions to our knowledge of atmospheric transport processes, and are currently playing a key role in the validation of global circulation and transport models.
Progress on the FabrIc for Frontier Experiments project at Fermilab
Box, Dennis; Boyd, Joseph; Dykstra, Dave; ...
2015-12-23
The FabrIc for Frontier Experiments (FIFE) project is an ambitious, major-impact initiative within the Fermilab Scientific Computing Division designed to lead the computing model for Fermilab experiments. FIFE is a collaborative effort between experimenters and computing professionals to design and develop integrated computing models for experiments of varying needs and infrastructure. The major focus of the FIFE project is the development, deployment, and integration of Open Science Grid solutions for high throughput computing, data management, database access and collaboration within experiment. To accomplish this goal, FIFE has developed workflows that utilize Open Science Grid sites along with dedicated and commercialmore » cloud resources. The FIFE project has made significant progress integrating into experiment computing operations several services including new job submission services, software and reference data distribution through CVMFS repositories, flexible data transfer client, and access to opportunistic resources on the Open Science Grid. Hence, the progress with current experiments and plans for expansion with additional projects will be discussed. FIFE has taken a leading role in the definition of the computing model for Fermilab experiments, aided in the design of computing for experiments beyond Fermilab, and will continue to define the future direction of high throughput computing for future physics experiments worldwide« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Box, D.; Boyd, J.; Di Benedetto, V.
2016-01-01
The FabrIc for Frontier Experiments (FIFE) project is an initiative within the Fermilab Scientific Computing Division designed to steer the computing model for non-LHC Fermilab experiments across multiple physics areas. FIFE is a collaborative effort between experimenters and computing professionals to design and develop integrated computing models for experiments of varying size, needs, and infrastructure. The major focus of the FIFE project is the development, deployment, and integration of solutions for high throughput computing, data management, database access and collaboration management within an experiment. To accomplish this goal, FIFE has developed workflows that utilize Open Science Grid compute sites alongmore » with dedicated and commercial cloud resources. The FIFE project has made significant progress integrating into experiment computing operations several services including a common job submission service, software and reference data distribution through CVMFS repositories, flexible and robust data transfer clients, and access to opportunistic resources on the Open Science Grid. The progress with current experiments and plans for expansion with additional projects will be discussed. FIFE has taken the leading role in defining the computing model for Fermilab experiments, aided in the design of experiments beyond those hosted at Fermilab, and will continue to define the future direction of high throughput computing for future physics experiments worldwide.« less
Physicians' accounts of frontline tensions when implementing pilot projects to improve primary care.
Mansfield, Elizabeth; Bhattacharyya, Onil; Christian, Jennifer; Naglie, Gary; Steriopoulos, Vicky; Webster, Fiona
2018-03-19
Purpose Canada's primary care system has been described as "a culture of pilot projects" with little evidence of converting successful initiatives into funded, permanent programs or sharing project outcomes and insights across jurisdictions. Health services pilot projects are advocated as an effective strategy for identifying promising models of care and building integrated care partnerships in local settings. In the qualitative study reported here, the purpose of this paper is to investigate the strengths and challenges of this approach. Design/methodology/approach Semi-structured interviews were conducted with 34 primary care physicians who discussed their experiences as pilot project leads. Following thematic analysis methods, broad system issues were captured as well as individual project information. Findings While participants often portrayed themselves as advocates for vulnerable patients, mobilizing healthcare organizations and providers to support new models of care was discussed as challenging. Competition between local healthcare providers and initiatives could impact pilot project success. Participants also reported tensions between their clinical, project management and research roles with additional time demands and skill requirements interfering with the work of implementing and evaluating service innovations. Originality/value Study findings highlight the complexity of pilot project implementation, which encompasses physician commitment to addressing care for vulnerable populations through to the need for additional skill set requirements and the impact of local project environments. The current pilot project approach could be strengthened by including more multidisciplinary collaboration and providing infrastructure supports to enhance the design, implementation and evaluation of health services improvement initiatives.
NASA Astrophysics Data System (ADS)
Valkov, V. V.; Dzebisashvili, D. M.; Barabanov, A. F.
2017-05-01
The spin-fermion model, which is an effective low-energy realization of the three-band Emery model after passing to the Wannier representation for the px and py orbitals of the subsystem of oxygen ions, reduces to the generalized Kondo lattice model. A specific feature of this model is the existence of spin-correlated hoppings of the current carriers between distant cells. Numerical calculations of the spectrum of spin-electron excitations highlight the important role of the long-range spin-correlated hoppings.
Lay health advisers: scoping the role and intervention landscape.
Carr, Susan M; Lhussier, Monique; Forster, Natalie
2017-01-01
The use of lay health advisers has become an established approach within public health, in particular for impact on health inequalities and engaging socially excluded groups. Evidence on how differences in terms of the multiple role dimensions impact the outcomes of programs is limited. This creates ambiguity for decision makers on which roles should be implemented in different contexts for different needs. This paper applies realist logic to an inquiry to explore the mechanisms that may operate in lay-led intervention models and understand how, why, and in what respect these lead to particular outcomes. It draws on a project focusing on health-related lifestyle advisers and further insights gained from a subsequent related project about outreach with traveler communities. Analysis highlights multiple and potentially interacting aspects of lay health-adviser roles that may influence their success, including characteristics of lay health advisers, characteristics of target populations, purpose or intent of interventions, and how advice is given. A model is proposed from which to examine the contexts and mechanisms of lay health advisers that may impact outcomes, and is subsequently applied to two examples of reported lay health-adviser interventions. The combination of skills and characteristics of lay health advisers must be considered when planning which interventions might be appropriate when targeting specific needs or target populations. Focus only on the peer/layperson distinction may overlook other potentially important skills and mechanisms of action integral to lay health-adviser roles.
NASA Astrophysics Data System (ADS)
Ibrahim, Alaa; Ahmed, Yasmin
2015-04-01
Fulfilling the broader impact of a research project in Earth and environmental sciences is an excellent opportunity for educational and outreach activities that connect scientists and society and enhance students and community engagement in STEM fields in general and in Earth, space, and environmental sciences in particular. Here we present the experience developed in this endeavor as part of our Partnerships for Enhanced Engagement in Research (PEER) project sponsored by USAID/NSF/NAS. The project introduced educational and outreach activities that included core curriculum course development for university students from all majors, community-based learning projects, citizen science and outreach programs to school students and community members. Through these activities, students worked with the project scientists on a variety of activities that ranged from citizen science and undergraduate research to run mass experiments that measure the quality of air, drinking water, and ultraviolet level in greater Cairo, Egypt, to community awareness campaigns through the production of short documentaries and communicating them with stakeholders and target groups, including schools and TV stations. The activities enhanced students learning and the public awareness on climate change and the underlying role of human activities. It also connected effectively the project scientists with college and university students a well as the wider segments of the society, which resulted in a host of benefits including better scientific literacy and appreciation to the role of scientists, promoting scientists as role models, sharing the values of science, and motivating future generations to puruse a career in science This work is part of the PEER research project 2-239 sponsored by USAID/NSF/NAS Project Link (at National Academies website): http://sites.nationalacademies.org/PGA/dsc/peerscience/PGA_084046.htm website: http://CleanAirEgypt.org Links to cited work: Core Curriculum Course: http://bit.ly/FutureLife Citizen Science Project: Quality of Air, Drinking Water, and U.V. Level in Greater Cairo: Map 1: http://bit.ly/AirWaterLightMap1 Map 2: http://bit.ly/AirWaterLightMap2 Short Documentaries Student Projects: https://vimeo.com/science2society/videos Project video: https://vimeo.com/100427525
NASA Astrophysics Data System (ADS)
Ibrahim, A. I.; Tutwiler, R.; Zakey, A.; Shokr, M. E.; Ahmed, Y.; Jereidini, D.; Eid, M.
2014-12-01
Fulfilling the broader impact of a research project in Earth and environmental sciences is an excellent opportunity for educational and outreach activities that connect scientists and society and enhance students and community engagement in STEM fields in general and in Earth, space, and environmental sciences in particular. Here we present the experience developed in this endeavor as part of our Partnerships for Enhanced Engagement in Research (PEER) project sponsored by USAID/NSF/NAS. The project introduced educational and outreach activities that included core curriculum course development for university students from all majors, community-based learning projects, citizen science and outreach programs to school students and community members. Through these activities, students worked with the project scientists on a variety of activities that ranged from citizen science and undergraduate research to run mass experiments that measure the quality of air, drinking water, and ultraviolet level in greater Cairo, Egypt, to community awareness campaigns through the production of short documentaries and communicating them with stakeholders and target groups, including schools and TV stations. The activities enhanced students learning and the public awareness on climate change and the underlying role of human activities. It also connected effectively the project scientists with college and university students a well as the wider segments of the society, which resulted in a host of benefits including better scientific literacy and appreciation to the role of scientists, promoting scientists as role models, sharing the values of science, and motivating future generations to puruse a career in science Note: This presentation is a PEER project sponsored by USAID/NSF/NAS Project Link (at National Academies website): http://sites.nationalacademies.org/PGA/dsc/peerscience/PGA_084046.htmwebsite: http://CleanAirEgypt.orgLinks to cited work: Core Curriculum Course: http://bit.ly/FutureLife Citizen Science Project: Quality of Air, Drinking Water, and U.V. Level in Greater Cairo: Map 1: http://bit.ly/AirWaterLightMap1 Map 2: http://bit.ly/AirWaterLightMap2 Short Documentaries Student Projects: https://vimeo.com/science2society/videos Project video: http://CleanAirEgypt.org
Mexican American intergenerational caregiving model.
Escandón, Socorro
2006-08-01
This study employed grounded theory to formulate a conceptual model of intergenerational caregiving among Mexican American families. The sample consisted of 10 Mexican American caregivers of various generations older than 21 who provided at least one intermittent service (without pay at least once a month) to an elder, related through consanguinal or acquired kinship ties. The inductively generated theory of role acceptance is composed of four phases: (a) introduction--early caregiving experiences, (b) role reconciliation, (c) role imprint, and (d) providing or projecting care. This model can be used to study varied generations of Mexican American caregivers. It also provides a framework for comparison with other groups of caregivers. The results can help in designing nursing interventions to support caregivers based on understanding the issues, to create and design systems that address the varying and ever-changing needs of informal caregivers, and to assist in the formulation of policy that supports Mexican American caregivers.
Flickering Clusters: Women, Science, and Collaborative Transformations.
ERIC Educational Resources Information Center
Ney, Cheryl, Ed; Ross, Jacqueline, Ed.; Stempel, Laura, Ed.
The essays in this collection discuss the development and implementation of the collaborative Women and Science Project, which aimed to improve undergraduate science education by increasing faculty expertise in gender and science scholarship and pedagogy, and by providing role models of professional women scientists, improving the classroom…
ERIC Educational Resources Information Center
National Council for Resource Development, Washington, DC.
This document compiles nine papers issued by the National Council for Resource Development. Papers include: (1) "How to Be Successful at Grantsmanship--Guidelines for Proposal Writing--Foundation Proposals"; (2) "A Federal Glossary" (acronyms); (3) "Special Projects" (a working model for an institutional development office); (4) "The Role of the…
Gender Disparity in Third World Technological, Social, and Economic Development.
ERIC Educational Resources Information Center
Akubue, Anthony I.
2001-01-01
Socialization of women in developing countries inhibits their education and employment in scientific and technical fields. This mindset perpetuates poverty and limits economic and social development. Solutions include elimination of gender bias, information dissemination, replication of successful development projects, use of role models, and…
Implementing healthcare excellence: the vital role of the CEO in evidence-based design.
Zimring, Craig; Augenbroe, Godfried L; Malone, Eileen B; Sadler, Blair L
2008-01-01
This paper explores the role of the chief executive officer (CEO) in evidence-based design (EBD), discussing the internal and external challenges that a CEO faces, such as demands for increased quality, safety, patient-and-family-centeredness, increased revenue, and reduced cost. Based on a series of interviews and case studies and the experience of the authors as researchers, consultants, and CEOs, this paper provides a model for EBD and recommends actions that a CEO can undertake to create an effective project over the life cycle of a building. TOPICAL HEADINGS: Evidence-Based Design: A Performance-Based Approach to Achieving Key Goals; Key Approaches to Executing Evidence-Based Design; Overcoming Barriers to Innovation: The CEO's Vital Role in Implementing Evidence-Based Design The CEO bears special responsibility for successful facility project implementation. Only the CEO possesses the responsibility and authority to articulate the strategy, vision, goals, and resource constraints that frame every project. With the support of their boards, CEOs set the stage for the transformation of an organization's culture and fuel clinical and business process reengineering by encouraging and, if necessary, forcing collaboration between the strong disciplinary and departmental divisions found in healthcare systems.
ERIC Educational Resources Information Center
Aquino, Karl; Serva, Mark A.
2005-01-01
This article describes a project that simulates the interplay between management and development project teams in a business environment. Each student team was assigned a management role supervising one project and a development role implementing another project. Results indicate that teams that communicate regularly and interact socially outside…
Projecting climate change impacts on hydrology: the potential role of daily GCM output
NASA Astrophysics Data System (ADS)
Maurer, E. P.; Hidalgo, H. G.; Das, T.; Dettinger, M. D.; Cayan, D.
2008-12-01
A primary challenge facing resource managers in accommodating climate change is determining the range and uncertainty in regional and local climate projections. This is especially important for assessing changes in extreme events, which will drive many of the more severe impacts of a changed climate. Since global climate models (GCMs) produce output at a spatial scale incompatible with local impact assessment, different techniques have evolved to downscale GCM output so locally important climate features are expressed in the projections. We compared skill and hydrologic projections using two statistical downscaling methods and a distributed hydrology model. The downscaling methods are the constructed analogues (CA) and the bias correction and spatial downscaling (BCSD). CA uses daily GCM output, and can thus capture GCM projections for changing extreme event occurrence, while BCSD uses monthly output and statistically generates historical daily sequences. We evaluate the hydrologic impacts projected using downscaled climate (from the NCEP/NCAR reanalysis as a surrogate GCM) for the late 20th century with both methods, comparing skill in projecting soil moisture, snow pack, and streamflow at key locations in the Western United States. We include an assessment of a new method for correcting for GCM biases in a hybrid method combining the most important characteristics of both methods.
Leaving No Stone Unturned in the Pursuit of New Physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cohen, Timothy
The major goal of this project was to investigate a variety of topics in theoretical particle physics, with an emphasis on beyond the Standard Model phenomena. A particular emphasis is placed on making a connection to ongoing experimental efforts designed to extend our knowledge of the fundamental physics frontiers. The principal investigator aimed to play a leading role in theoretical research that complements this impressive experimental endeavor. Progress requires a strong synergy between the theoretical and experimental communities to design and interpret the data that is produced. Thus, this project's main goal was to improve our understanding of models, signatures,more » and techniques as we continue the hunt for new physics.« less
New era / new solutions: The role of alternative tariff structures in water supply projects.
Pinto, F Silva; Marques, R Cunha
2017-12-01
Water utilities face different challenges that may force them to seek prioritized objectives. When doing so, particular projects may have to be developed, being important to understand their impact on water tariffs, and thus, on customers. Such consequences may bear an increased relevance in cases stressed with, e.g., resource scarcity, poverty, and the need for infrastructure investments. The resulting cost and revenue variability demand a comprehensive study. If the first may require a stochastic modeling (in major cost components) in order to consider its inherent uncertainty, the second needs to be modeled following context-specific objectives set by the relevant stakeholders. The solutions achieved will likely promote distinct revenue sources, as well as diversified water tariff structures. A multi-objective optimization model (i.e., a Framework for Suitable Prices) is built to deal with those diversified requirements (e.g., stochastic energy costs, affordability, cost recovery, or administrative simplicity). The model is solved through achievement scalarizing functions with several weighting coefficients for a reference point, so as to provide a significant perception of possible revenue options (and their impact) to the decision makers. The proposed method is applied to a case study, Boa Vista Island in Cabo Verde, in which the background characteristics, namely water sources availability (e.g., the adoption of desalination technologies), economic development and other contextual factors were considered. The key role of tariff structure selection is displayed, instead of assuming it a priori, giving important insights regarding project feasibility. Copyright © 2017 Elsevier Ltd. All rights reserved.
Health economics in radiation oncology: introducing the ESTRO HERO project.
Lievens, Yolande; Grau, Cai
2012-04-01
New evidence based regimens and novel high precision technology have reinforced the important role of radiotherapy in the management of cancer. Current data estimate that more than 50% of all cancer patients would benefit from radiotherapy during the course of their disease. Within recent years, the radiotherapy community has become more than conscious of the ever-increasing necessity to come up with objective data to endorse the crucial role and position of radiation therapy within the rapidly changing global oncology landscape. In an era of ever expanding health care costs, proven safety and effectiveness is not sufficient anymore to obtain funding, objective data about cost and cost-effectiveness are nowadays additionally requested. It is in this context that ESTRO is launching the HERO-project (Health Economics in Radiation Oncology), with the overall aim to develop a knowledge base and a model for health economic evaluation of radiation treatments at the European level. To accomplish these objectives, the HERO project will address needs, accessibility, cost and cost-effectiveness of radiotherapy. The results will raise the profile of radiotherapy in the European cancer management context and help countries prioritizing radiotherapy as a highly cost-effective treatment strategy. This article describes the different steps and aims within the HERO-project, starting from evidence on the role of radiotherapy within the global oncology landscape and highlighting weaknesses that may undermine this position. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Wooten, Kevin C; Dann, Sara M; Finnerty, Celeste C; Kotarba, Joseph A
2014-07-01
The development of leadership and project management skills is increasingly important to the evolution of translational science and team-based endeavors. Team science is dependent upon individuals at various stages in their careers, inclusive of postdocs. Data from case histories, as well as from interviews with current and former postdocs, and those supervising postdocs, indicate six essential tasks required of project managers in multidisciplinary translational teams, along with eight skill-related themes critical to their success. To optimize the opportunities available and to ensure sequential development of team project management skills, a life cycle model for the development of translational team skills is proposed, ranging from graduate trainees, postdocs, assistant professors, and finally to mature scientists. Specific goals, challenges and project management roles and tasks are recommended for each stage for the life cycle.
Wooten, Kevin C.; Dann, Sara M.; Finnerty, Celeste C.; Kotarba, Joseph A.
2015-01-01
The development of leadership and project management skills is increasingly important to the evolution of translational science and team-based endeavors. Team science is dependent upon individuals at various stages in their careers, inclusive of postdocs. Data from case histories, as well as from interviews with current and former postdocs, and those supervising postdocs, indicate six essential tasks required of project managers in multidisciplinary translational teams, along with eight skill-related themes critical to their success. To optimize the opportunities available and to ensure sequential development of team project management skills, a life cycle model for the development of translational team skills is proposed, ranging from graduate trainees, postdocs, assistant professors, and finally to mature scientists. Specific goals, challenges and project management roles and tasks are recommended for each stage for the life cycle. PMID:25621288
The Role of Mental Models in Dynamic Decision-Making
2009-03-01
Humansystems® Incorporated 111 Farquhar St., Guelph, ON N1H 3N4 Project Manager : Lisa A. Rehak PWGSC Contract No.: W7711-078110/001/TOR Call...simulate the processes that people use to manage complex systems. These analogies, moreover, represent one way to help people to form more accurate...make complex decisions. Control theory’s primary emphasis is on the role of feedback while managing a complex system. What is common to all of these
The role of historical forcings in simulating the observed Atlantic multidecadal oscillation
NASA Astrophysics Data System (ADS)
Murphy, Lisa N.; Bellomo, Katinka; Cane, Mark; Clement, Amy
2017-03-01
We analyze the Atlantic multidecadal oscillation (AMO) in the preindustrial (PI) and historical (HIST) simulations from the Coupled Model Intercomparison Project Phase 5 (CMIP5) to assess the drivers of the observed AMO from 1865 to 2005. We draw 141 year samples from the 41 CMIP5 model's PI runs and compare the correlation and variance between the observed AMO and the simulated PI and HIST AMO. The correlation coefficients in 38 forced (HIST) models are above the 90% confidence level and explain up to 56% of the observed variance. The probability that any of the unforced (PI) models do as well is less than 3% in 31 models. Multidecadal variability is larger in 39 CMIP5 HIST simulations and in all HIST members of the Community Earth System Model Large Ensemble than their corresponding PI. We conclude that there is an essential role for external forcing in driving the observed AMO.
CHEMICAL STRUCTURE INDEXING OF TOXICITY DATA ON ...
Standardized chemical structure annotation of public toxicity databases and information resources is playing an increasingly important role in the 'flattening' and integration of diverse sets of biological activity data on the Internet. This review discusses public initiatives that are accelerating the pace of this transformation, with particular reference to toxicology-related chemical information. Chemical content annotators, structure locator services, large structure/data aggregator web sites, structure browsers, International Union of Pure and Applied Chemistry (IUPAC) International Chemical Identifier (InChI) codes, toxicity data models and public chemical/biological activity profiling initiatives are all playing a role in overcoming barriers to the integration of toxicity data, and are bringing researchers closer to the reality of a mineable chemical Semantic Web. An example of this integration of data is provided by the collaboration among researchers involved with the Distributed Structure-Searchable Toxicity (DSSTox) project, the Carcinogenic Potency Project, projects at the National Cancer Institute and the PubChem database. Standardizing chemical structure annotation of public toxicity databases
Wang, Wenzhou; Wang, Bin; Yang, Ke; Yang, Chong; Yuan, Wenlong; Song, Shanghao
2018-01-01
Facing a remarkably changing world, researchers have gradually shifted emphasis from successful experiences to failures. In the current study, we build a model to explore the relationship between project commitment and learning from failure, and test how emotion (i.e., perceived shame after failure) and cognition (i.e., attribution for failure) affect this process. After randomly selecting 400 firms from the list of high-tech firms reported by the Beijing Municipal Science and Technology Commission, we use a two-wave investigation of the employees, and the final sample consists of 140 teams from 58 companies in the technology industry in mainland China. The results provide evidence for the positive role of personal control attribution in the relationship between project commitment and learning from failure. However, in contrast to previous studies, perceived shame, as the negative emotion after failed events, could bring desirable outcomes during this process. Based on the results, we further expand a model to explain the behavioral responses after failure, and the implications of our findings for research and practice are discussed. The failures and reverses which await men - and one after another sadden the brow of youth - add a dignity to the prospect of human life, which no Arcadian success would do. —Henry David Thoreau PMID:29467699
Wang, Wenzhou; Wang, Bin; Yang, Ke; Yang, Chong; Yuan, Wenlong; Song, Shanghao
2018-01-01
Facing a remarkably changing world, researchers have gradually shifted emphasis from successful experiences to failures. In the current study, we build a model to explore the relationship between project commitment and learning from failure, and test how emotion (i.e., perceived shame after failure) and cognition (i.e., attribution for failure) affect this process. After randomly selecting 400 firms from the list of high-tech firms reported by the Beijing Municipal Science and Technology Commission, we use a two-wave investigation of the employees, and the final sample consists of 140 teams from 58 companies in the technology industry in mainland China. The results provide evidence for the positive role of personal control attribution in the relationship between project commitment and learning from failure. However, in contrast to previous studies, perceived shame, as the negative emotion after failed events, could bring desirable outcomes during this process. Based on the results, we further expand a model to explain the behavioral responses after failure, and the implications of our findings for research and practice are discussed. The failures and reverses which await men - and one after another sadden the brow of youth - add a dignity to the prospect of human life, which no Arcadian success would do. -Henry David Thoreau.
Conflict in a changing climate
NASA Astrophysics Data System (ADS)
Carleton, T.; Hsiang, S. M.; Burke, M.
2016-05-01
A growing body of research illuminates the role that changes in climate have had on violent conflict and social instability in the recent past. Across a diversity of contexts, high temperatures and irregular rainfall have been causally linked to a range of conflict outcomes. These findings can be paired with climate model output to generate projections of the impact future climate change may have on conflicts such as crime and civil war. However, there are large degrees of uncertainty in such projections, arising from (i) the statistical uncertainty involved in regression analysis, (ii) divergent climate model predictions, and (iii) the unknown ability of human societies to adapt to future climate change. In this article, we review the empirical evidence of the climate-conflict relationship, provide insight into the likely extent and feasibility of adaptation to climate change as it pertains to human conflict, and discuss new methods that can be used to provide projections that capture these three sources of uncertainty.
A Neuron-Based Model of Sleep-Wake Cycles
NASA Astrophysics Data System (ADS)
Postnova, Svetlana; Peters, Achim; Braun, Hans
2008-03-01
In recent years it was discovered that a neuropeptide orexin/hypocretin plays a main role in sleep processes. This peptide is produced by the neurons in the lateral hypothalamus, which project to almost all brain areas. We present a computational model of sleep-wake cycles, which is based on the Hodgkin-Huxley type neurons and considers reciprocal glutaminergic projections between the lateral hypothalamus and the prefrontal cortex. Orexin is released as a neuromodulator and is required to keep the neurons firing, which corresponds to the wake state. When orexin is depleted the neurons are getting silent as observed in the sleep state. They can be reactivated by the circadian signal from the suprachiasmatic nucleus and/or external stimuli (alarm clock). Orexin projections to the thalamocortical neurons also can account for their transition from tonic firing activity during wakefulness to synchronized burst discharges during sleep.
Piotrow, P T; Coleman, P L
1992-03-01
This article describes how the Population Communication Services (PCS) has seized on the "enter-educate" approach, the blending of popular entertainment with social messages, to change reproductive health behavior. The enter-educate approach spreads its message through songs, soap operas, variety shows, and other types of popular entertainment mediums. Because they entertain, enter-educate projects can capture the attention of an audience -- such as young people -- who would otherwise scorn social messages. And the use of population mediums makes it possible to reach a variety of audiences. Funded by USAID, PCS began its first enter-educate project in response to the increasing number of teenage pregnancies in Latin America. PCS developed 2 songs and videos, which featured popular teenage singers to serve as role models, to urge abstinence. The songs became instant hits. Since then, PCS has mounted more then 80 major projects in some 40 countries. Highlights of programs range from a successful multi-media family planning campaign in Turkey to humorous television ads in Brazil promoting vasectomy. Recently, PCS initiated projects to teach AIDS awareness. At the core of the enter-educate approach is the social learning theory which holds that much behavior is learned through the observation of role-models. Health professionals work alongside entertainers to produce works that have audience appeal and factual social messages. The enter-educate approach works because it is popular, pervasive, personal, persuasive, and profitable. PCS has found that enter-educate programs pay for themselves through cost sharing and cost recovery.
Crooks, Claire V; Exner-Cortens, Deinera; Siebold, Wendi; Moore, Kami; Grassgreen, Lori; Owen, Patricia; Rausch, Ann; Rosier, Mollie
2018-04-01
Collaborative partnerships are critical to achieving health equity. As such, it is important to understand what contributes to the success of such partnerships. This paper describes the Alaska Fourth R collaborative, a multisectoral group of agencies (including education, health and human services, the violence against women sector, the governor's council on domestic violence, and an external evaluator) that successfully planned, implemented and evaluated a multi-focus health education program statewide. The purpose of this paper was to explore the ways in which seven pre-identified factors contributed to the successful achievement of the collaborative's goals. This project was grounded in community-based research principles, and collectively, the group chose to use Roussos and Fawcett's (2000) seven-factor model as the basis for the project. Using this model as a guide, semi-structured interviews were conducted with five leaders from the key organizations in the collaborative. In interviews, stakeholders described how each of the seven factors functioned in the Alaska collaborative to contribute to project success, with a particular focus on the critical role of relationships. Three specific relationship facets emerged as cross-cutting themes: flexibility, transparency, and prioritization. In sum, taking the time to build deep and authentic relationships, and then developing a shared vision and mission within the context of relationships that are flexible, transparent and prioritized, provided a strong foundation for future success in this collaborative. Copyright © 2017 Elsevier Ltd. All rights reserved.
The Agricultural Model Intercomparison and Improvement Project (AgMIP): Protocols and Pilot Studies
NASA Technical Reports Server (NTRS)
Rosenzweig, C.; Jones, J. W.; Hatfield, J. L.; Ruane, A. C.; Boote, K. J.; Thorburn, P.; Antle, J. M.; Nelson, G. C.; Porter, C.; Janssen, S.;
2012-01-01
The Agricultural Model Intercomparison and Improvement Project (AgMIP) is a major international effort linking the climate, crop, and economic modeling communities with cutting-edge information technology to produce improved crop and economic models and the next generation of climate impact projections for the agricultural sector. The goals of AgMIP are to improve substantially the characterization of world food security due to climate change and to enhance adaptation capacity in both developing and developed countries. Analyses of the agricultural impacts of climate variability and change require a transdisciplinary effort to consistently link state-of-the-art climate scenarios to crop and economic models. Crop model outputs are aggregated as inputs to regional and global economic models to determine regional vulnerabilities, changes in comparative advantage, price effects, and potential adaptation strategies in the agricultural sector. Climate, Crop Modeling, Economics, and Information Technology Team Protocols are presented to guide coordinated climate, crop modeling, economics, and information technology research activities around the world, along with AgMIP Cross-Cutting Themes that address uncertainty, aggregation and scaling, and the development of Representative Agricultural Pathways (RAPs) to enable testing of climate change adaptations in the context of other regional and global trends. The organization of research activities by geographic region and specific crops is described, along with project milestones. Pilot results demonstrate AgMIP's role in assessing climate impacts with explicit representation of uncertainties in climate scenarios and simulations using crop and economic models. An intercomparison of wheat model simulations near Obregón, Mexico reveals inter-model differences in yield sensitivity to [CO2] with model uncertainty holding approximately steady as concentrations rise, while uncertainty related to choice of crop model increases with rising temperatures. Wheat model simulations with midcentury climate scenarios project a slight decline in absolute yields that is more sensitive to selection of crop model than to global climate model, emissions scenario, or climate scenario downscaling method. A comparison of regional and national-scale economic simulations finds a large sensitivity of projected yield changes to the simulations' resolved scales. Finally, a global economic model intercomparison example demonstrates that improvements in the understanding of agriculture futures arise from integration of the range of uncertainty in crop, climate, and economic modeling results in multi-model assessments.
ERIC Educational Resources Information Center
Meehan, Peter M.; Beal, George M.
The objective of this monograph is to contribute to the further understanding of the knowledge-production-and-utilization process. Its primary focus is on a model both general and detailed enough to provide a comprehensive overview of the diverse functions, roles, and processes required to understand the flow of knowledge from its point of origin…
DOT National Transportation Integrated Search
2017-11-30
The objective of this project is to explore the role of visual information in determining the users subjective valuation of multidimensional trip attributes that are relevant in decision-making, but are neglected in standard travel demand models. ...
Power and the Role of the Superintendent
ERIC Educational Resources Information Center
Miller, Teresa Northern; Salsberry, Trudy A.; Devin, Mary A.
2009-01-01
This study of the superintendent focus group interviews from the "Voices 3" project adds to the research base with regard to the range and nature of the types of power experienced or used by superintendents. Using the French & Raven/Andrews & Baird model of seven types of power, the authors analyzed superintendents'…
Student-Teacher Linkage Verification: Model Process and Recommendations
ERIC Educational Resources Information Center
Watson, Jeffery; Graham, Matthew; Thorn, Christopher A.
2012-01-01
As momentum grows for tracking the role of individual educators in student performance, school districts across the country are implementing projects that involve linking teachers to their students. Programs that link teachers to student outcomes require a verification process for student-teacher linkages. Linkage verification improves accuracy by…
Myself and Women Heroes in My World. National Women's History Project.
ERIC Educational Resources Information Center
National Women's History Project, Windsor, CA.
This guide presents biographies of the following women: Sojourner Truth, Harriet Tubman, Queen Liliuokalani, Amelia Earhart, Maria Tallchief, and Sonia Manzano. The use of biographies as history provides historical information and role models in a form comprehensible to young students. The personal history booklet that concludes this document…
Caballero, Rodrigo; Huber, Matthew
2013-08-27
Projections of future climate depend critically on refined estimates of climate sensitivity. Recent progress in temperature proxies dramatically increases the magnitude of warming reconstructed from early Paleogene greenhouse climates and demands a close examination of the forcing and feedback mechanisms that maintained this warmth and the broad dynamic range that these paleoclimate records attest to. Here, we show that several complementary resolutions to these questions are possible in the context of model simulations using modern and early Paleogene configurations. We find that (i) changes in boundary conditions representative of slow "Earth system" feedbacks play an important role in maintaining elevated early Paleogene temperatures, (ii) radiative forcing by carbon dioxide deviates significantly from pure logarithmic behavior at concentrations relevant for simulation of the early Paleogene, and (iii) fast or "Charney" climate sensitivity in this model increases sharply as the climate warms. Thus, increased forcing and increased slow and fast sensitivity can all play a substantial role in maintaining early Paleogene warmth. This poses an equifinality problem: The same climate can be maintained by a different mix of these ingredients; however, at present, the mix cannot be constrained directly from climate proxy data. The implications of strongly state-dependent fast sensitivity reach far beyond the early Paleogene. The study of past warm climates may not narrow uncertainty in future climate projections in coming centuries because fast climate sensitivity may itself be state-dependent, but proxies and models are both consistent with significant increases in fast sensitivity with increasing temperature.
Disease management projects and the Chronic Care Model in action: baseline qualitative research.
Walters, Bethany Hipple; Adams, Samantha A; Nieboer, Anna P; Bal, Roland
2012-05-11
Disease management programs, especially those based on the Chronic Care Model (CCM), are increasingly common in The Netherlands. While disease management programs have been well-researched quantitatively and economically, less qualitative research has been done. The overall aim of the study is to explore how disease management programs are implemented within primary care settings in The Netherlands; this paper focuses on the early development and implementation stages of five disease management programs in the primary care setting, based on interviews with project leadership teams. Eleven semi-structured interviews were conducted at the five selected sites with sixteen professionals interviewed; all project directors and managers were interviewed. The interviews focused on each project's chosen chronic illness (diabetes, eating disorders, COPD, multi-morbidity, CVRM) and project plan, barriers to development and implementation, the project leaders' action and reactions, as well as their roles and responsibilities, and disease management strategies. Analysis was inductive and interpretive, based on the content of the interviews. After analysis, the results of this research on disease management programs and the Chronic Care Model are viewed from a traveling technology framework. This analysis uncovered four themes that can be mapped to disease management and the Chronic Care Model: (1) changing the health care system, (2) patient-centered care, (3) technological systems and barriers, and (4) integrating projects into the larger system. Project leaders discussed the paths, both direct and indirect, for transforming the health care system to one that addresses chronic illness. Patient-centered care was highlighted as needed and a paradigm shift for many. Challenges with technological systems were pervasive. Project leaders managed the expenses of a traveling technology, including the social, financial, and administration involved. At the sites, project leaders served as travel guides, assisting and overseeing the programs as they traveled from the global plans to local actions. Project leaders, while hypothetically in control of the programs, in fact shared control of the traveling of the programs with patients, clinicians, and outside consultants. From this work, we can learn what roadblocks and expenses occur while a technology travels, from a project leader's point of view.
NASA Astrophysics Data System (ADS)
Hasan, M. A.; Akanda, A. S.; Jutla, A.; Huq, A.; Colwell, R. R.
2017-12-01
Diarrheal diseases remain a major threat to global public health and are the second largest cause of death for children under the age of five. Cholera and Rotavirus diarrhea together comprise more than two-thirds of the diarrheal morbidity in South Asia. Recent studies have shown strong influences of hydrologic processes and climatic variabilities on the onset, intensity, and seasonality of the outbreaks of these diseases. However, our understanding of the propagation and manifestation of these diseases in a changing climate in vulnerable regions of the world are still limited. In this study, we build on our understanding of the role of the hydro-climatic drivers of diarrheal diseases in South Asia in recent decades to project the probable risks of the diseases in this century using the climate projection scenarios from dynamically downscaled climate models. To build the current model, we conducted a multivariate logistic regression assessment using 34 climate indices to examine the role of temperature and rainfall extremes over the seasonality of rotavirus and cholera over a South Asian country, Bangladesh. We utilize the availability of long and reliable time-series of cholera and rotavirus from Bangladesh and conducted a temporal and spatial analysis derived from both ground and satellite observations. For projecting the future risks of the diseases, we used five bias-corrected Regional Climate Model (RCM) results of the CMIP5 series under the RCP 4.5 scenario. Cholera risk shows a significantly higher rate of increase compared to Rotavirus in Bangladesh in the 21st century. As the disease is significantly influenced by extreme rainfall, majority projections showed a significant increase in flood-driven cholera risk. Most RCMs suggest a warmer winter in future years, suggesting reduced risk for Rotavirus. However, as the dryness of the climate is also highly correlated with rotavirus epidemics, the incremental risk of the disease due to drier winters would likely undermine the reduced risk due to temperature increase. Probabilistic risk assessments of these diarrheal diseases with respect to hydro-climatic variability will, not only improve the local policymaking processes, but also allow us to pinpoint the climate-health hotspots around the globe.
NASA Astrophysics Data System (ADS)
Shin, Sun-Hee; Kim, Ok-Yeon; Kim, Dongmin; Lee, Myong-In
2017-07-01
Using 32 CMIP5 (Coupled Model Intercomparison Project Phase 5) models, this study examines the veracity in the simulation of cloud amount and their radiative effects (CREs) in the historical run driven by observed external radiative forcing for 1850-2005, and their future changes in the RCP (Representative Concentration Pathway) 4.5 scenario runs for 2006-2100. Validation metrics for the historical run are designed to examine the accuracy in the representation of spatial patterns for climatological mean, and annual and interannual variations of clouds and CREs. The models show large spread in the simulation of cloud amounts, specifically in the low cloud amount. The observed relationship between cloud amount and the controlling large-scale environment are also reproduced diversely by various models. Based on the validation metrics, four models—ACCESS1.0, ACCESS1.3, HadGEM2-CC, and HadGEM2-ES—are selected as best models, and the average of the four models performs more skillfully than the multimodel ensemble average. All models project global-mean SST warming at the increase of the greenhouse gases, but the magnitude varies across the simulations between 1 and 2 K, which is largely attributable to the difference in the change of cloud amount and distribution. The models that simulate more SST warming show a greater increase in the net CRE due to reduced low cloud and increased incoming shortwave radiation, particularly over the regions of marine boundary layer in the subtropics. Selected best-performing models project a significant reduction in global-mean cloud amount of about -0.99% K-1 and net radiative warming of 0.46 W m-2 K-1, suggesting a role of positive feedback to global warming.
Coordination of Mesoscale Meteorological Research between ASL and European Group
1993-12-01
have been influenced by the Panel’s advice. Attention is drawn to the role of the Panel in involving the wider mesomet modelling community in ASL’s...during the contract period It is difficult to measure precisely the influence which the Panel has brought to bear on ASL’s policy-making and activities...the Arm-y"s Mesoscale Model Comparison Project. Their use has led to considerably increased insight into the behaviour of the models tested and
Implication of Agricultural Land Use Change on Regional Climate Projection
NASA Astrophysics Data System (ADS)
Wang, G.; Ahmed, K. F.; You, L.
2015-12-01
Agricultural land use plays an important role in land-atmosphere interaction. Agricultural activity is one of the most important processes driving human-induced land use land cover change (LULCC) in a region. In addition to future socioeconomic changes, climate-induced changes in crop yield represent another important factor shaping agricultural land use. In feedback, the resulting LULCC influences the direction and magnitude of global, regional and local climate change by altering Earth's radiative equilibrium. Therefore, assessment of climate change impact on future agricultural land use and its feedback is of great importance in climate change study. In this study, to evaluate the feedback of projected land use changes to the regional climate in West Africa, we employed an asynchronous coupling between a regional climate model (RegCM) and a prototype land use projection model (LandPro). The LandPro model, which was developed to project the future change in agricultural land use and the resulting shift in natural vegetation in West Africa, is a spatially explicit model that can account for both climate and socioeconomic changes in projecting future land use changes. In the asynchronously coupled modeling framework, LandPro was run for every five years during the period of 2005-2050 accounting for climate-induced change in crop yield and socioeconomic changes to project the land use pattern by the mid-21st century. Climate data at 0.5˚ was derived from RegCM to drive the crop model DSSAT for each of the five-year periods to simulate crop yields, which was then provided as input data to LandPro. Subsequently, the land use land cover map required to run RegCM was updated every five years using the outputs from the LandPro simulations. Results from the coupled model simulations improve the understanding of climate change impact on future land use and the resulting feedback to regional climate.
Detailed assessment of global transport-energy models’ structures and projections
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yeh, Sonia; Mishra, Gouri Shankar; Fulton, Lew
This paper focuses on comparing the frameworks and projections from four major global transportation models with considerable transportation technology and behavioral detail. We analyze and compare the modeling frameworks, underlying data, assumptions, intermediate parameters, and projections to identify the sources of divergence or consistency, as well as key knowledge gaps. We find that there are significant differences in the base-year data and key parameters for future projections, especially for developing countries. These include passenger and freight activity, mode shares, vehicle ownership rates, and even energy consumption by mode, particularly for shipping, aviation and trucking. This may be due in partmore » to a lack of previous efforts to do such consistency-checking and “bench-marking.” We find that the four models differ in terms of the relative roles of various mitigation strategies to achieve a 2°C / 450 ppm CO2e target: the economics-based integrated assessment models favor the use of low carbon fuels as the primary mitigation option followed by efficiency improvements, whereas transport-only and expert-based models favor efficiency improvements of vehicles followed by mode shifts. We offer recommendations for future modeling improvements focusing on (1) reducing data gaps; (2) translating the findings from this study into relevant policy implications such as feasibility of current policy goals, additional policy targets needed, regional vs. global reductions, etc.; (3) modeling strata of demographic groups to improve understanding of vehicle ownership levels, travel behavior, and urban vs. rural considerations; and (4) conducting coordinated efforts in aligning input assumptions and historical data, policy analysis, and modeling insights.« less
New insights for the hydrology of the Rhine based on the new generation climate models
NASA Astrophysics Data System (ADS)
Bouaziz, Laurène; Sperna Weiland, Frederiek; Beersma, Jules; Buiteveld, Hendrik
2014-05-01
Decision makers base their choices of adaptation strategies on climate change projections and their associated hydrological consequences. New insights of climate change gained under the new generation of climate models belonging to the IPCC 5th assessment report may influence (the planning of) adaption measures and/or future expectations. In this study, hydrological impacts of climate change as projected under the new generation of climate models for the Rhine were assessed. Hereto we downscaled 31 General Circulation Models (GCMs), which were developed as part of the Coupled Model Intercomparison Project Phase 5 (CMIP5), using an advanced Delta Change Method for the Rhine basin. Changes in mean monthly, maximum and minimum flows at Lobith were derived with the semi-distributed hydrological model HBV of the Rhine. The projected changes were compared to changes that were previously obtained in the trans-boundary project Rheinblick using eight CMIP3 GCMs and Regional Climate Models (RCMs) for emission scenario A1B. All eight selected CMIP3 models (scenario A1B) predicted for 2071-2100 a decrease in mean monthly flows between June and October. Similar decreases were found for some of the 31 CMIP5 models for Representative Concentration Pathways (RCPs) 4.5, 6.0 and 8.5. However, under each RCP, there were also models that projected an increase in mean flows between June and October and on average the decrease was smaller than for the eight CMIP3 models. For 2071-2100, also the mean annual minimum 7-days discharge decreased less in the CMIP5 model simulations than was projected in CMIP3. When assessing the response of mean monthly flows of the CMIP5 simulation with the CSIRO-Mk3-6-0 and HadGEM2-ES models with respect to initial conditions and RCPs, it was found that natural variability plays a dominant role in the near future (2021-2050), while changes in mean monthly flows are dominated by the radiative forcing in the far future (2071-2100). According to RCP 8.5 model simulations, the change in mean monthly flow from May to November may be half the change in mean monthly flow projected by RCP 4.5. From January to March, RCP 8.5 simulations projected higher changes in mean monthly flows than RCP 4.5 simulations. These new insights based on the CMIP5 simulations imply that for the Rhine, the mean and low flow extremes might not decrease as much in summer as was expected under CMIP3. Stresses on water availability during summer are therefore also less than expected from CMIP3.
2012-09-30
Ice Cover in the Beaufort and Chukchi Seas Atmospheric Observations and Modeling as Part of the Seasonal Ice Zone Reconnaissance Surveys Axel...temperatures. These changes in turn will affect the evolution of the SIZ. An appropriate representation of this feedback loop in models is critical if we... modeling experiments as part of the atmospheric component of the Seasonal Ice Zone Reconnaissance Survey project (SIZRS). We will • Determine the role
NASA Astrophysics Data System (ADS)
Lockwood, Timothy A.
Federal legislative changes in 2006 no longer entitle cogeneration project financings by law to receive the benefit of a power purchase agreement underwritten by an investment-grade investor-owned utility. Consequently, this research explored the need for a new market-risk model for future cogeneration and combined heat and power (CHP) project financing. CHP project investment represents a potentially enormous energy efficiency benefit through its application by reducing fossil fuel use up to 55% when compared to traditional energy generation, and concurrently eliminates constituent air emissions up to 50%, including global warming gases. As a supplemental approach to a comprehensive technical analysis, a quantitative multivariate modeling was also used to test the statistical validity and reliability of host facility energy demand and CHP supply ratios in predicting the economic performance of CHP project financing. The resulting analytical models, although not statistically reliable at this time, suggest a radically simplified CHP design method for future profitable CHP investments using four easily attainable energy ratios. This design method shows that financially successful CHP adoption occurs when the average system heat-to-power-ratio supply is less than or equal to the average host-convertible-energy-ratio, and when the average nominally-rated capacity is less than average host facility-load-factor demands. New CHP investments can play a role in solving the world-wide problem of accommodating growing energy demand while preserving our precious and irreplaceable air quality for future generations.
How Configuration Management (CM) Can Help Project Teams To Innovate and Communicate
NASA Technical Reports Server (NTRS)
Cioletti, Louis
2009-01-01
Traditionally, CM is relegated to a support role in project management activities. CM s traditional functions of identification, change control, status accounting, and audits/verification are still necessary and play a vital role. However, this presentation proposes CM s role in a new and innovative manner that will significantly improve communication throughout the organization and, in turn, augment the project s success. CM s new role is elevated to the project management level, above the engineering or sub-project level in the Work Breakdown Structure (WBS), where it can more effectively accommodate changes, reduce corrective actions, and ensure that requirements are clear, concise, and valid, and that results conform to the requirements. By elevating CM s role in project management and orchestrating new measures, a new communication will emerge that will improve information integrity, structured baselines, interchangeability/traceability, metrics, conformance to standards, and standardize the best practices in the organization. Overall project performance (schedule, quality, and cost) can be no better than the ability to communicate requirements which, in turn, is no better than the CM process to communicate project decisions and the correct requirements.
Professional development for design-based learning in engineering education: a case study
NASA Astrophysics Data System (ADS)
Gómez Puente, Sonia M.; van Eijck, Michiel; Jochems, Wim
2015-01-01
Design-based learning (DBL) is an educational approach in which students gather and apply theoretical knowledge to solve design problems. In this study, we examined how critical DBL dimensions (project characteristics, design elements, the teacher's role, assessment, and social context) are applied by teachers in the redesign of DBL projects. We conducted an intervention for the professional development of the DBL teachers in the Mechanical Engineering and the Electrical Engineering departments. We used the Experiential Learning Cycle as an educational model for the professionalisation programme. The findings show that the programme encouraged teachers to apply the DBL theoretical framework. However, there are some limitations with regard to specific project characteristics. Further research into supporting teachers to develop open-ended and multidisciplinary activities in the projects that support learning is recommended.
Replication of clinical innovations in multiple medical practices.
Henley, N S; Pearce, J; Phillips, L A; Weir, S
1998-11-01
Many clinical innovations had been successfully developed and piloted in individual medical practice units of Kaiser Permanente in North Carolina during 1995 and 1996. Difficulty in replicating these clinical innovations consistently throughout all 21 medical practice units led to development of the interdisciplinary Clinical Innovation Implementation Team, which was formed by using existing resources from various departments across the region. REPLICATION MODEL: Based on a model of transfer of best practices, the implementation team developed a process and tools (master schedule and activity matrix) to quickly replicate successful pilot projects throughout all medical practice units. The process involved the following steps: identifying a practice and delineating its characteristics and measures (source identification); identifying a team to receive the (new) practice; piloting the practice; and standardizing, including the incorporation of learnings. The model includes the following components for each innovation: sending and receiving teams, an innovation coordinator role, an innovation expert role, a location expert role, a master schedule, and a project activity matrix. Communication depended on a partnership among the location experts (local knowledge and credibility), the innovation coordinator (process expertise), and the innovation experts (content expertise). Results after 12 months of working with the 21 medical practice units include integration of diabetes care team services into the practices, training of more than 120 providers in the use of personal computers and an icon-based clinical information system, and integration of a planwide self-care program into the medical practices--all with measurable improved outcomes. The model for sequential replication and the implementation team structure and function should be successful in other organizational settings.
Changes in seasonal climate outpace compensatory density-dependence in eastern brook trout
Bassar, Ronald D.; Letcher, Benjamin H.; Nislow, Keith H.; Whiteley, Andrew R.
2016-01-01
Understanding how multiple extrinsic (density-independent) factors and intrinsic (density-dependent) mechanisms influence population dynamics has become increasingly urgent in the face of rapidly changing climates. It is particularly unclear how multiple extrinsic factors with contrasting effects among seasons are related to declines in population numbers and changes in mean body size and whether there is a strong role for density-dependence. The primary goal of this study was to identify the roles of seasonal variation in climate driven environmental direct effects (mean stream flow and temperature) versus density-dependence on population size and mean body size in eastern brook trout (Salvelinus fontinalis). We use data from a 10-year capture-mark-recapture study of eastern brook trout in four streams in Western Massachusetts, USA to parameterize a discrete-time population projection model. The model integrates matrix modeling techniques used to characterize discrete population structures (age, habitat type and season) with integral projection models (IPMs) that characterize demographic rates as continuous functions of organismal traits (in this case body size). Using both stochastic and deterministic analyses we show that decreases in population size are due to changes in stream flow and temperature and that these changes are larger than what can be compensated for through density-dependent responses. We also show that the declines are due mostly to increasing mean stream temperatures decreasing the survival of the youngest age class. In contrast, increases in mean body size over the same period are the result of indirect changes in density with a lesser direct role of climate-driven environmental change.
NASA Astrophysics Data System (ADS)
Seager, R.; Liu, H.; Henderson, N.; Kushnir, Y.; Ting, M.; Cook, B.; Nakamura, J.
2013-12-01
The latest generation of global coupled climate models from the Coupled Model Intercomparison Project Five (CMIP5), much anticipated after the prior CMIP3 models projected the southwest of North America to transition in the near term to a more arid climate, turned out to be a case of deja-vu all over again. While suggesting that northern California might get more midwinter precipitation, overall the CMIP5 models, like their CMIP3 precursors, project that the interior southwest of the U.S., most of Mexico, Texas and the southern Plains, will progressively transition to a more arid climate with reduced precipitation and increased potential evapotranspiration driving a reduction in soil moisture and streamflow. An about 10% reduction of Colorado River flow for the 2021-2040 period relative to the last half of the 20th Century appears a good ball park number to motivate adaptation efforts. Here we will present new detailed analyses of Reanalysis and CMIP5 model moisture budgets to determine the causes of the projected aridification. The role of moisture convergences by the mean and transient flows will be addressed as well as the dynamical causes of the shifts in atmospheric circulation that contribute to drying or locally offset it. The hydroclimate history of the West for the past few decades will also be examined for evidence that model projected aridification is in progress or cannot currently be detected amidst the large natural variability of hydroclimate in the region. But it will be cautioned that waiting for statistical significance might be as fruitful as Waiting for Godot while, during the wait, the southwest will already have transitioned into a troublingly drier climate with serious impacts on people, societies, ecosystems and agriculture.
Managing Large Scale Project Analysis Teams through a Web Accessible Database
NASA Technical Reports Server (NTRS)
O'Neil, Daniel A.
2008-01-01
Large scale space programs analyze thousands of requirements while mitigating safety, performance, schedule, and cost risks. These efforts involve a variety of roles with interdependent use cases and goals. For example, study managers and facilitators identify ground-rules and assumptions for a collection of studies required for a program or project milestone. Task leaders derive product requirements from the ground rules and assumptions and describe activities to produce needed analytical products. Disciplined specialists produce the specified products and load results into a file management system. Organizational and project managers provide the personnel and funds to conduct the tasks. Each role has responsibilities to establish information linkages and provide status reports to management. Projects conduct design and analysis cycles to refine designs to meet the requirements and implement risk mitigation plans. At the program level, integrated design and analysis cycles studies are conducted to eliminate every 'to-be-determined' and develop plans to mitigate every risk. At the agency level, strategic studies analyze different approaches to exploration architectures and campaigns. This paper describes a web-accessible database developed by NASA to coordinate and manage tasks at three organizational levels. Other topics in this paper cover integration technologies and techniques for process modeling and enterprise architectures.
NASA Astrophysics Data System (ADS)
Mann, M. E.; Rahmstorf, S.; Kornhuber, K.; Steinman, B. A.; Miller, S. K.; Coumou, D.
2017-12-01
Persistent episodes of extreme weather in the Northern Hemisphere summer are typically associated with high-amplitude quasi-stationary atmospheric Rossby waves with zonal wavenumbers. Such disturbances are favoured by the phenomenon of Quasi-Resonant Amplification (QRA). A fingerprint for the occurrence of QRA can be defined in terms of the zonally-averaged surface temperature field. Examining future state-of-the-art (CMIP5) climate model projections we find that such events are likely to increase by 50% over the next century under business-as-usual carbon emissions, but there is considerable variation among climate models, with some models predicting a near tripling of QRA events by the end of the century. These results are strongly dependent on assumptions regarding the prominence of changes in radiative forcing associated with anthropogenic aerosols over the next century.
Epigenetic Mediation of Endocrine and Immune Response in an Animal Model of Gulf War Illness
2016-10-01
Illness 5b. GRANT NUMBER W81XWH-14-1-0550 5c. PROGRAM ELEMENT NUMBER Patrick O. McGowan, PhD, Gordon Broderick , PhD, James O’Callaghan, PhD...Nova Southeastern) as part of IAME/CFS meeting, hosted by Nova, to meet with Drs. Broderick (Co-PI) Oct 27- 2016. Co-PI and PI arranged to meet with...project. Direct supervision of molecular biology studies related to epigenetics data. Funding Support: Name: Gordon Broderick , PhD Project Role: Co
Virtual reality haptic dissection.
Erolin, Caroline; Wilkinson, Caroline; Soames, Roger
2011-12-01
This project aims to create a three-dimensional digital model of the human hand and wrist which can be virtually 'dissected' through a haptic interface. Tissue properties will be added to the various anatomical structures to replicate a realistic look and feel. The project will explore the role of the medical artist, and investigate cross-discipline collaborations in the field of virtual anatomy. The software will be used to train anatomy students in dissection skills, before experience on a real cadaver. The effectiveness of the software will be evaluated and assessed both quantitatively as well as qualitatively.
NASA Technical Reports Server (NTRS)
Starr, D. OC. (Editor); Melfi, S. Harvey (Editor)
1991-01-01
The proposed GEWEX Water Vapor Project (GVaP) addresses fundamental deficiencies in the present understanding of moist atmospheric processes and the role of water vapor in the global hydrologic cycle and climate. Inadequate knowledge of the distribution of atmospheric water vapor and its transport is a major impediment to progress in achieving a fuller understanding of various hydrologic processes and a capability for reliable assessment of potential climatic change on global and regional scales. GVap will promote significant improvements in knowledge of atmospheric water vapor and moist processes as well as in present capabilities to model these processes on global and regional scales. GVaP complements a number of ongoing and planned programs focused on various aspects of the hydrologic cycle. The goal of GVaP is to improve understanding of the role of water vapor in meteorological, hydrological, and climatological processes through improved knowledge of water vapor and its variability on all scales. A detailed description of the GVaP is presented.
Implementing Comprehensive School Health in Alberta, Canada: the principal's role.
Roberts, Erica; McLeod, Nicole; Montemurro, Genevieve; Veugelers, Paul J; Gleddie, Doug; Storey, Kate E
2016-12-01
Comprehensive School Health (CSH) is an internationally recognized framework that moves beyond the individual to holistically address school health, leading to the development of health-enhancing behaviors while also improving educational outcomes. Previous research has suggested that principal support for CSH implementation is essential, but this role has yet to be explored. Therefore, the purpose of this research was to examine the role of the principal in the implementation of a CSH project aimed at creating a healthy school culture. This research was guided by the grounded ethnography method. Semi-structured interviews were conducted with APPLE School principals (n = 29) to qualitatively explore their role in creating a healthy school culture. A model consisting of five major themes emerged, suggesting that the principal played a fluid role throughout the CSH implementation process. Principals (i) primed the cultural change; (ii) communicated the project's importance to others; (iii) negotiated concerns and collaboratively planned; (iv) held others accountable to the change, while enabling them to take ownership and (v) played an underlying supportive role, providing positive recognition and establishing ongoing commitment. This research provides recommendations to help establish effective leadership practices in schools, conducive to creating a healthy school culture. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Disease management projects and the Chronic Care Model in action: baseline qualitative research
2012-01-01
Background Disease management programs, especially those based on the Chronic Care Model (CCM), are increasingly common in the Netherlands. While disease management programs have been well-researched quantitatively and economically, less qualitative research has been done. The overall aim of the study is to explore how disease management programs are implemented within primary care settings in the Netherlands; this paper focuses on the early development and implementation stages of five disease management programs in the primary care setting, based on interviews with project leadership teams. Methods Eleven semi-structured interviews were conducted at the five selected sites with sixteen professionals interviewed; all project directors and managers were interviewed. The interviews focused on each project’s chosen chronic illness (diabetes, eating disorders, COPD, multi-morbidity, CVRM) and project plan, barriers to development and implementation, the project leaders’ action and reactions, as well as their roles and responsibilities, and disease management strategies. Analysis was inductive and interpretive, based on the content of the interviews. After analysis, the results of this research on disease management programs and the Chronic Care Model are viewed from a traveling technology framework. Results This analysis uncovered four themes that can be mapped to disease management and the Chronic Care Model: (1) changing the health care system, (2) patient-centered care, (3) technological systems and barriers, and (4) integrating projects into the larger system. Project leaders discussed the paths, both direct and indirect, for transforming the health care system to one that addresses chronic illness. Patient-centered care was highlighted as needed and a paradigm shift for many. Challenges with technological systems were pervasive. Project leaders managed the expenses of a traveling technology, including the social, financial, and administration involved. Conclusions At the sites, project leaders served as travel guides, assisting and overseeing the programs as they traveled from the global plans to local actions. Project leaders, while hypothetically in control of the programs, in fact shared control of the traveling of the programs with patients, clinicians, and outside consultants. From this work, we can learn what roadblocks and expenses occur while a technology travels, from a project leader’s point of view. PMID:22578251
Getting to social action: the Youth Empowerment Strategies (YES!) project.
Wilson, Nance; Minkler, Meredith; Dasho, Stefan; Wallerstein, Nina; Martin, Anna C
2008-10-01
This article describes the social action component of the Youth Empowerment Strategies (YES!) project funded by the Centers for Disease Control and Prevention through its community-based prevention research (CBPR) initiative. YES! is designed to promote problem-solving skills, social action, and civic participation among underserved elementary and middle school youth. The after-school program focuses on identifying and building youths' capacities and strengths as a means of ultimately decreasing rates of alcohol, tobacco, and other drug use and other risky behaviors. The article discusses the conceptual models of risk and intervention and factors contributing to successful social action work, including group dynamics, intragroup leadership, facilitator skills, and school-community contexts. Attention is focused on how the nature of the projects themselves played a key role in determining the likelihood of experiencing success. Implications and recommendations for other youth-focused empowerment education projects are discussed, including the effective use of Photovoice in such projects.
Camera calibration based on the back projection process
NASA Astrophysics Data System (ADS)
Gu, Feifei; Zhao, Hong; Ma, Yueyang; Bu, Penghui
2015-12-01
Camera calibration plays a crucial role in 3D measurement tasks of machine vision. In typical calibration processes, camera parameters are iteratively optimized in the forward imaging process (FIP). However, the results can only guarantee the minimum of 2D projection errors on the image plane, but not the minimum of 3D reconstruction errors. In this paper, we propose a universal method for camera calibration, which uses the back projection process (BPP). In our method, a forward projection model is used to obtain initial intrinsic and extrinsic parameters with a popular planar checkerboard pattern. Then, the extracted image points are projected back into 3D space and compared with the ideal point coordinates. Finally, the estimation of the camera parameters is refined by a non-linear function minimization process. The proposed method can obtain a more accurate calibration result, which is more physically useful. Simulation and practical data are given to demonstrate the accuracy of the proposed method.
Projection of ambient PM2.5 exposure in India and associated health burden
NASA Astrophysics Data System (ADS)
Chowdhury, Sourangsu; Dey, Sagnik; Smith, Kirk
2017-04-01
Ambient particulate matter with diameter < 2.5 µm (PM2.5) is the major criteria pollutant for health assessments of air quality. (WHO, 2006). Exposure to PM2.5 has potential health risks due to cardiovascular and respiratory diseases leading to premature mortality. The annual premature mortality burden from ambient PM2.5 exposure in India is large ( 0.6-0.8 million). It is important to understand how the ambient PM2.5 concentration will change in future under the warming climate and how it translates into premature mortality, when the population distribution exposed to the pollution and baseline mortality are expected to change in response to changes in socio-economic condition to adapt to climate change impacts. We estimate ambient PM2.5 future (up to 2100) by adopting 2 approaches. In the first approach, PM2.5 is estimated as a product of AOD from the CMIP5 models (under both RCP4.5 and RCP8.5 scenarios) and the present day conversion factor estimated by the Geos-CHEM model as a function of present day meteorological conditions and emission. The second approach involves adding up all the PM2.5 components (SO4, NH4, BC, SOA, POA, a fraction of sea salt and dust) available from 13 CMIP5 models under the RCP4.5 and RCP8.5 climate change scenarios. The change is represented in relative terms with respect to the baseline period PM2.5 exposure (2001-2005), when satellite data are available and the CMIP5 models are run in historical mode. The difference between these two approaches implies the role of meteorology in modulating PM2.5 exposure for future due to climate change. We present the decadal statistics and separate the role of meteorology from the combined role of meteorology and emission in modulating PM2.5 variability. We project premature mortality for future using population for future, projected under 5 SSP (Shared Socioeconomic Pathways) scenarios (definitions of these scenarios are provided in Table 1) developed by IIASA. The population under these five scenarios have varying capability to adapt and mitigate to cope up with the changing climate. We estimate premature mortality for two cases, (i) assuming BM to remain constant as of the present day, and (ii) modifying the BM as a function of gross development product. Relative risk is estimated using the IER function. Hence we develop customized scenarios for estimating premature death by linking projected PM2.5 under 2 RCP scenarios with population and baseline mortality from 5 SSP scenarios for each decade up to 2100, creating a total of 10 combined scenarios for each decade. We project that if baseline mortality remains as of present day (WHO 2011) then premature mortality increases up to the middle of the century and then decreases, but never decreases below the present day premature mortality, whereas if we assume that baseline mortality varies as a exponentially decaying function of GDP, premature mortality for future decades are projected to decrease below the present day estimate of premature mortality as GDP is projected to increase in all the 5 SSP scenarios. We further separate the effect of future meteorology, epidemiological changes and demographic changes in future on projected premature mortality. This study can help in the government in developing policies for future in order to avert the projected mortality and follow all the requirements that the best case scenario deserves in order to mitigate the effect of PM2.5 on mortality.
Multi-Role Project (MRP): A New Project-Based Learning Method for STEM
ERIC Educational Resources Information Center
Warin, Bruno; Talbi, Omar; Kolski, Christophe; Hoogstoel, Frédéric
2016-01-01
This paper presents the "Multi-Role Project" method (MRP), a broadly applicable project-based learning method, and describes its implementation and evaluation in the context of a Science, Technology, Engineering, and Mathematics (STEM) course. The MRP method is designed around a meta-principle that considers the project learning activity…
NASA Integrated Model Centric Architecture (NIMA) Model Use and Re-Use
NASA Technical Reports Server (NTRS)
Conroy, Mike; Mazzone, Rebecca; Lin, Wei
2012-01-01
This whitepaper accepts the goals, needs and objectives of NASA's Integrated Model-centric Architecture (NIMA); adds experience and expertise from the Constellation program as well as NASA's architecture development efforts; and provides suggested concepts, practices and norms that nurture and enable model use and re-use across programs, projects and other complex endeavors. Key components include the ability to effectively move relevant information through a large community, process patterns that support model reuse and the identification of the necessary meta-information (ex. history, credibility, and provenance) to safely use and re-use that information. In order to successfully Use and Re-Use Models and Simulations we must define and meet key organizational and structural needs: 1. We must understand and acknowledge all the roles and players involved from the initial need identification through to the final product, as well as how they change across the lifecycle. 2. We must create the necessary structural elements to store and share NIMA-enabled information throughout the Program or Project lifecycle. 3. We must create the necessary organizational processes to stand up and execute a NIMA-enabled Program or Project throughout its lifecycle. NASA must meet all three of these needs to successfully use and re-use models. The ability to Reuse Models a key component of NIMA and the capabilities inherent in NIMA are key to accomplishing NASA's space exploration goals. 11
Modeling transport of nutrients & sediment loads into Lake Tahoe under climate change
Riverson, John; Coats, Robert; Costa-Cabral, Mariza; Dettinger, Mike; Reuter, John; Sahoo, Goloka; Schladow, Geoffrey
2013-01-01
The outputs from two General Circulation Models (GCMs) with two emissions scenarios were downscaled and bias-corrected to develop regional climate change projections for the Tahoe Basin. For one model—the Geophysical Fluid Dynamics Laboratory or GFDL model—the daily model results were used to drive a distributed hydrologic model. The watershed model used an energy balance approach for computing evapotranspiration and snowpack dynamics so that the processes remain a function of the climate change projections. For this study, all other aspects of the model (i.e. land use distribution, routing configuration, and parameterization) were held constant to isolate impacts of climate change projections. The results indicate that (1) precipitation falling as rain rather than snow will increase, starting at the current mean snowline, and moving towards higher elevations over time; (2) annual accumulated snowpack will be reduced; (3) snowpack accumulation will start later; and (4) snowmelt will start earlier in the year. Certain changes were masked (or counter-balanced) when summarized as basin-wide averages; however, spatial evaluation added notable resolution. While rainfall runoff increased at higher elevations, a drop in total precipitation volume decreased runoff and fine sediment load from the lower elevation meadow areas and also decreased baseflow and nitrogen loads basin-wide. This finding also highlights the important role that the meadow areas could play as high-flow buffers under climatic change. Because the watershed model accounts for elevation change and variable meteorological patterns, it provided a robust platform for evaluating the impacts of projected climate change on hydrology and water quality.
A mathematical model of embodied consciousness.
Rudrauf, David; Bennequin, Daniel; Granic, Isabela; Landini, Gregory; Friston, Karl; Williford, Kenneth
2017-09-07
We introduce a mathematical model of embodied consciousness, the Projective Consciousness Model (PCM), which is based on the hypothesis that the spatial field of consciousness (FoC) is structured by a projective geometry and under the control of a process of active inference. The FoC in the PCM combines multisensory evidence with prior beliefs in memory and frames them by selecting points of view and perspectives according to preferences. The choice of projective frames governs how expectations are transformed by consciousness. Violations of expectation are encoded as free energy. Free energy minimization drives perspective taking, and controls the switch between perception, imagination and action. In the PCM, consciousness functions as an algorithm for the maximization of resilience, using projective perspective taking and imagination in order to escape local minima of free energy. The PCM can account for a variety of psychological phenomena: the characteristic spatial phenomenology of subjective experience, the distinctions and integral relationships between perception, imagination and action, the role of affective processes in intentionality, but also perceptual phenomena such as the dynamics of bistable figures and body swap illusions in virtual reality. It relates phenomenology to function, showing the computational advantages of consciousness. It suggests that changes of brain states from unconscious to conscious reflect the action of projective transformations and suggests specific neurophenomenological hypotheses about the brain, guidelines for designing artificial systems, and formal principles for psychology. Copyright © 2017 Elsevier Ltd. All rights reserved.
CDK5-A Novel Role in Prostate Cancer Immunotherapy
2017-10-01
of the involvement of a T cell antitumor response in impaired growth of prostate cancer in immunocompetent murine models of prostate cancer, and...of immune system activation by Cdk5 deletion in prostate cancer. We will confirm the involvement of a T cell antitumor response in impaired growth of...project? Major Task 1: Involvement of T cell anticancer immune response in impaired growth of TRAMP Cdk5-/- model. Months 1-10. Completed, month 10
The Role of the National Defense Stockpile in the Supply of Strategic and Critical Materials
2008-05-09
Insurance Trust Fund and the Federal Supplementary Medical Trust Fund.53 12 Analysis of NDS Operations and Alternatives The current method of determining...requirements are based upon analysis of military, industrial, and essential civilian materials needs in light of conflict scenarios found in the National...Defense Strategy. The bulk of this analysis is done utilizing computer modeling. First, the model projects the needs for finished products and services
Creative cross-organizational collaboration: coming to a project near you.
Reeve, Brock C
2012-03-01
Historically, the pharmaceutical industry has provided investors with robust growth and patients with a range of life-enhancing treatments; academic institutions conducted early-stage research largely supported by the government; disease foundations funded projects in their areas of interest; and venture capital built exciting new startups with bold ambitions. Today, those institutions are all facing scientific, economic and operating challenges. As a result, they are experimenting with new organizational and funding models. We consider some of those models in the life sciences in general, as well as in the development and delivery of novel regenerative medicines. In particular, the changing roles of the venture capital and disease foundation communities are considered in the context of academic and commercial collaborations.
NASA Astrophysics Data System (ADS)
Li, Xiaoqiong; Ting, Mingfang
2017-10-01
Future hydroclimate projections from state-of-the-art climate models show large uncertainty and model spread, particularly in the tropics and over the monsoon regions. The precipitation and circulation responses to rising greenhouse gases involve a fast component associated with direct radiative forcing and a slow component associated with sea surface temperature (SST) warming; the relative importance of the two may contribute to model discrepancies. In this study, regional hydroclimate responses to greenhouse warming are assessed using output from coupled general circulation models in the Coupled Model Intercomparison Project-Phase 5 (CMIP5) and idealized atmospheric general circulation model experiments from the Atmosphere Model Intercomparison Project. The thermodynamic and dynamic mechanisms causing the rainfall changes are examined using moisture budget analysis. Results show that direct radiative forcing and SST change exert significantly different responses both over land and ocean. For most part of the Asian monsoon region, the summertime rainfall changes are dominated by the direct CO2 radiative effect through enhanced monsoon circulation. The response to SST warming shows a larger model spread compared to direct radiative forcing, possibly due to the cancellation between the thermodynamical and dynamical components. While the thermodynamical response of the Asian monsoon is robust across the models, there is a lack of consensus for the dynamical response among the models and weak multi-model mean responses in the CMIP5 ensemble, which may be related to the multiple physical processes evolving on different time scales.
Using mathematics to solve real world problems: the role of enablers
NASA Astrophysics Data System (ADS)
Geiger, Vincent; Stillman, Gloria; Brown, Jill; Galbriath, Peter; Niss, Mogens
2018-03-01
The purpose of this article is to report on a newly funded research project in which we will investigate how secondary students apply mathematical modelling to effectively address real world situations. Through this study, we will identify factors, mathematical, cognitive, social and environmental that "enable" year 10/11 students to successfully begin the modelling process, that is, formulate and mathematise a real world problem. The 3-year study will take a design research approach in working intensively with six schools across two educational jurisdictions. It is anticipated that this research will generate new theoretical and practical insights into the role of "enablers" within the process of mathematisation, leading to the development of principles for the design and implementation for tasks that support students' development as modellers.
A Clinical Consultation Model for Child Welfare Supervisors
ERIC Educational Resources Information Center
Strand, Virginia C.; Badger, Lee
2007-01-01
This article presents findings from a consultation project conducted by faculty from six schools of social work with approximately 150 child welfare supervisors over a two-year period. The purpose of the program was to assist supervisors with their roles as educators, mentors, and coaches for casework staff, specifically in relationship to case…
ERIC Educational Resources Information Center
Miljevic-Ridicki, Renata; Pahic, Tea; Šaric, Marija
2013-01-01
In the project "Methods and Models in the Education of Preschool Children in Kindergartens" conducted at the Faculty of Teacher Education in Zagreb, we were interested in practitioners' and kindergarten teacher students' opinions, motivation, satisfaction, expectations and attitudes with regard to their work. Two open-ended questions…
The Radio Communication Project in Nepal: A Culture-Centered Approach to Participation
ERIC Educational Resources Information Center
Dutta, Mohan Jyoti; Basnyat, Iccha
2008-01-01
Considerable research has been conducted on the topic of entertainment-education (EE), the method of using entertainment platforms such as popular music, radio, and television programming to diffuse information, attitudes, and behaviors via role modeling. A significant portion of the recently published EE literature has used the case of the Radio…
Middle Managers in UK Higher Education Conceptualising Experiences in Support of Reflective Practice
ERIC Educational Resources Information Center
Birds, Rachel
2014-01-01
This paper examines the role of reflexivity in supporting middle managers in understanding and facilitating large-scale change management projects in their organisations. Utilising an example from a UK university, it is argued that the development of a conceptual model to fit local circumstances enables deeper understanding and better informed…
The Preliminary Program of University Construction Projects in Portugal: 10 Case Studies
ERIC Educational Resources Information Center
Carrasco Campos, M. Helena; Teixeira, J. Manuel Cardoso
2012-01-01
Currently, societies exert varied and sometimes contradictory pressures on universities. These pressures have been provoking discussion on the best role of these institutions to meet the needs of contemporary societies. Universities will assume different forms and models of organization, according to what each one will define as being its mission…
Using Mathematics to Solve Real World Problems: The Role of Enablers
ERIC Educational Resources Information Center
Geiger, Vincent; Stillman, Gloria; Brown, Jill; Galbriath, Peter; Niss, Mogens
2018-01-01
The purpose of this article is to report on a newly funded research project in which we will investigate how secondary students apply mathematical modelling to effectively address real world situations. Through this study, we will identify factors, mathematical, cognitive, social and environmental that "enable" year 10/11 students to…
Using Digital Learning Platforms to Extend the Flipped Classroom
ERIC Educational Resources Information Center
Balzotti, Jonathan M.; McCool, Lynn B.
2016-01-01
Although digital environments already play a vital role in the flipped classroom model, this research project shows that in university writing classrooms, innovative content design and delivery systems can extend the walls of the classroom to areas beyond, in which students transfer and connect course content with the professional world. In this…
Children and Drug Education: The P.I.E.D. Pipers.
ERIC Educational Resources Information Center
Gloss, Elizabeth
1995-01-01
Developing coping skills for preventing substance abuse and promoting interaction and role modeling among older and younger children were the goals of the P.I.E.D. (People Involved in Education about Drugs) Pipers project. Nurses taught content to student trainees who presented information to peers and younger children. (SK)
How School Volunteers Can Help To Raise Standards and Enthusiasm for Literacy.
ERIC Educational Resources Information Center
Williams, Mary; Thorogood, Lynne; Jones, Deborah
2002-01-01
Discusses findings from evaluation of national "School Friends" project set up by British Telecom (BT) in the United Kingdom, in which BT employees volunteered to assist with literacy learning in primary schools. Notes evaluation findings that industry role models raised students' confidence and enthusiasm for reading, especially among…
A Classroom on the Mall: Indigenous Women and the Culture of Development.
ERIC Educational Resources Information Center
Farmelo, Martha
1995-01-01
When rural women do not participate in relevant decision making, development projects risk diminished effectiveness and may increase already onerous workloads. Consisting of 139 Mapuche women textile artisans in Chile, the Casa de la Mujer Mapuche provides its members with income, role models, and a platform to express women's needs and…
ERIC Educational Resources Information Center
Merideth, Emily
1994-01-01
Casa en Casa, a popular education project of an Oakland, California, community health clinic, has two key weaknesses: volunteers received little orientation to the role of health promoter, and promoters were given content knowledge without development of the skills needed to use it. (SK)
2010-12-01
nature of basic information exchange to an awareness of the environment. In addition, Experience played a very small role in SA Level 3 (Projection......ADMINISTRATIVE INFORMATION This report was prepared for prepared for the Office of Naval Research, Arlington, VA, by the Applied Research Branch, Space and
USDA-ARS?s Scientific Manuscript database
Background: Understanding the role of host genetics in resistance to porcine reproductive and respiratory syndrome virus (PRRSV) infection, and the effects of PRRS on pig health and related growth, are goals of the PRRS Host Genetics Consortium (PHGC). Methods: The project uses a nursery pig model ...
The Role of Digital Technologies in Numeracy Teaching and Learning
ERIC Educational Resources Information Center
Geiger, Vince; Goos, Merrilyn; Dole, Shelley
2015-01-01
This paper presents a model of numeracy that integrates the use of digital technologies among other elements of teaching and learning mathematics. Drawing on data from a school-based project, which includes records of classroom observations, semi-structured teacher interviews and artefacts such as student work samples, a classroom-based vignette…
Modelling of thermoacoustic phenomena in an electrically heated Rijke tube
NASA Astrophysics Data System (ADS)
Beke, Tamas
2010-11-01
Thermoacoustic instability plays an important role in various technical applications, for instance in jet or rocket motors, thermoacoustic engines, pulse combustors and industrial burners. The main objective of this paper is to present the theory of thermoacoustic oscillations, and for this purpose a Rijke-type thermal device was built. The Rijke tube is a simple device open at both ends with a mean airflow and a concentrated heat source (a heated wire grid). It serves as a convenient prototypical example to understand thermoacoustic effects since it is a simplified thermoacoustic resonator; once excited, under certain conditions, it is capable of creating a sustained sound when thermal energy is added. In this paper we present a project that includes physical measuring, examination and modelling. We have employed electrically heated Rijke tubes in our thermoacoustic school project work, and present a numerical algorithm to predict the transition to instability; in this model the effects of the main system parameters are demonstrated. The aim of our project is to help our students enhance their knowledge about thermoacoustics and develop their applied information technology skills.
Impacts of Climate Change on Forest Isoprene Emission: Diversity Matters
NASA Astrophysics Data System (ADS)
Wang, B.; Shugart, H. H., Jr.; Lerdau, M.
2016-12-01
Many abiotic and biotic factors influence volatile organic compound (VOC) production and emission by plants; for example, climate warming is widely projected to enhance VOC emissions by stimulating their biosynthesis. The species-dependent nature of VOC production by plants indicates that changes in species abundances may play an important role in determining VOC production and emission at the ecosystem scale. To date, however, the role of species abundances in affecting VOC emissions has not been well studied. We examine the role of forest systems as sources of VOC's in terms of how species diversity and abundance influence isoprene emission under climate warming by using an individual-based forest VOC emission model—UVAFME-VOC 1.0—that can explicitly simulate forest compositional and structural change and VOC production/emission at the individual and canopy scales. We simulate isoprene emissions under two warming scenarios (warming by 2 and 4 °C) for temperate deciduous forests of the southeastern United States, where the dominant isoprene-emitting species are oaks (Quercus). The simulations show that, contrary to previous expectations, a warming by 2 °C does not affect isoprene emissions, while a further warming by 4 °C causes a large reduction of isoprene emissions. Interestingly, climate warming can directly enhance isoprene emission and simultaneously indirectly reduce it by lowering the abundance of isoprene-emitting species. Under gradual continuous warming, the indirect effect outweighs the direct effect, thus reducing overall forest isoprene emission. This modelling study shows that climate warming does not necessarily stimulate ecosystem VOC emissions and, more generally, that ecosystem diversity and composition can play a significant role in determining vegetation VOC emission capacity. Future earth system models and climate-chemistry models should better represent species diversity in projecting climate-air quality feedbacks and making management policy recommendations.
Rabei, Rana; Kaganovsky, Konstantin; Caprioli, Daniele; Bossert, Jennifer M.; Bonci, Antonello
2014-01-01
In human alcoholics, abstinence is often self-imposed, despite alcohol availability, because of the negative consequences of excessive use. During abstinence, relapse is often triggered by exposure to contexts associated with alcohol use. We recently developed a rat model that captures some features of this human condition: exposure to the alcohol self-administration environment (context A), after punishment-imposed suppression of alcohol self-administration in a different environment (context B), provoked renewal of alcohol seeking in alcohol-preferring P rats. The mechanisms underlying context-induced renewal of alcohol seeking after punishment-imposed abstinence are unknown. Here, we studied the role of the lateral hypothalamus (LH) and its forebrain projections in this effect. We first determined the effect of context-induced renewal of alcohol seeking on Fos (a neuronal activity marker) expression in LH. We next determined the effect of LH reversible inactivation by GABAA + GABAB receptor agonists (muscimol + baclofen) on this effect. Finally, we determined neuronal activation in brain areas projecting to LH during context-induced renewal tests by measuring double labeling of the retrograde tracer cholera toxin subunit B (CTb; injected in LH) with Fos. Context-induced renewal of alcohol seeking after punishment-imposed abstinence was associated with increased Fos expression in LH. Additionally, renewal was blocked by muscimol + baclofen injections into LH. Finally, double-labeling analysis of CTb + Fos showed that context-induced renewal of alcohol seeking after punishment-imposed abstinence was associated with selective activation of accumbens shell neurons projecting to LH. The results demonstrate an important role of LH in renewal of alcohol seeking after punishment-imposed abstinence and suggest a role of accumbens shell projections to LH in this form of relapse. PMID:24872550
Marchant, Nathan J; Rabei, Rana; Kaganovsky, Konstantin; Caprioli, Daniele; Bossert, Jennifer M; Bonci, Antonello; Shaham, Yavin
2014-05-28
In human alcoholics, abstinence is often self-imposed, despite alcohol availability, because of the negative consequences of excessive use. During abstinence, relapse is often triggered by exposure to contexts associated with alcohol use. We recently developed a rat model that captures some features of this human condition: exposure to the alcohol self-administration environment (context A), after punishment-imposed suppression of alcohol self-administration in a different environment (context B), provoked renewal of alcohol seeking in alcohol-preferring P rats. The mechanisms underlying context-induced renewal of alcohol seeking after punishment-imposed abstinence are unknown. Here, we studied the role of the lateral hypothalamus (LH) and its forebrain projections in this effect. We first determined the effect of context-induced renewal of alcohol seeking on Fos (a neuronal activity marker) expression in LH. We next determined the effect of LH reversible inactivation by GABAA + GABAB receptor agonists (muscimol + baclofen) on this effect. Finally, we determined neuronal activation in brain areas projecting to LH during context-induced renewal tests by measuring double labeling of the retrograde tracer cholera toxin subunit B (CTb; injected in LH) with Fos. Context-induced renewal of alcohol seeking after punishment-imposed abstinence was associated with increased Fos expression in LH. Additionally, renewal was blocked by muscimol + baclofen injections into LH. Finally, double-labeling analysis of CTb + Fos showed that context-induced renewal of alcohol seeking after punishment-imposed abstinence was associated with selective activation of accumbens shell neurons projecting to LH. The results demonstrate an important role of LH in renewal of alcohol seeking after punishment-imposed abstinence and suggest a role of accumbens shell projections to LH in this form of relapse. Copyright © 2014 the authors 0270-6474/14/347447-11$15.00/0.
The Use of Operational Excellence Principles in a University Hospital.
Edelman, Eric R; Hamaekers, Ankie E W; Buhre, Wolfgang F; van Merode, Godefridus G
2017-01-01
The introduction of Operational Excellence in the Maastricht University Medical Center (MUMC+) has been the first of its kind and scale for a university hospital. The policy makers of the MUMC+ have combined different elements from various other business, management, and healthcare philosophies and frameworks into a unique mix. This paper summarizes the journey of developing this system and its most important aspects. Special attention is paid to the role of the operating rooms and the improvements that have taken place there, because of their central role in the working of the hospital. The MUMC+ is the leading tertiary healthcare center for the South-East region of The Netherlands and beyond. Regional, national, and international developments encouraged the MUMC+ to start significantly reorganizing its care processes from 2009 onward. First experiments with Lean Six Sigma and Business Modeling were combined with lessons learned from other centers around the world to form the MUMC+'s own type of Operational Excellence. At the time of writing, many improvement projects of different types have been successfully completed. Every single department in the hospital now uses Operational Excellence and design thinking in general as a method to develop new models of care. An evaluation in 2014 revealed several opportunities for improvement. A large number of projects were in progress, but 75% of all projects had not been completed, despite the first projects being initiated back in 2012. This led to a number of policy changes, mainly focusing on more intensive monitoring of projects and trying to do more improvement projects directly under the responsibility of the line manager. Focusing on patient value, continuous improvement, and the reduction of waste have proven to be very fitting principles for healthcare in general and specifically for application in a university hospital. Approaching improvement at a systems level while directly involving the people on the work floor in observing opportunities for improvement and realizing these has shown itself to be essential.
The Use of Operational Excellence Principles in a University Hospital
Edelman, Eric R.; Hamaekers, Ankie E. W.; Buhre, Wolfgang F.; van Merode, Godefridus G.
2017-01-01
The introduction of Operational Excellence in the Maastricht University Medical Center (MUMC+) has been the first of its kind and scale for a university hospital. The policy makers of the MUMC+ have combined different elements from various other business, management, and healthcare philosophies and frameworks into a unique mix. This paper summarizes the journey of developing this system and its most important aspects. Special attention is paid to the role of the operating rooms and the improvements that have taken place there, because of their central role in the working of the hospital. The MUMC+ is the leading tertiary healthcare center for the South-East region of The Netherlands and beyond. Regional, national, and international developments encouraged the MUMC+ to start significantly reorganizing its care processes from 2009 onward. First experiments with Lean Six Sigma and Business Modeling were combined with lessons learned from other centers around the world to form the MUMC+’s own type of Operational Excellence. At the time of writing, many improvement projects of different types have been successfully completed. Every single department in the hospital now uses Operational Excellence and design thinking in general as a method to develop new models of care. An evaluation in 2014 revealed several opportunities for improvement. A large number of projects were in progress, but 75% of all projects had not been completed, despite the first projects being initiated back in 2012. This led to a number of policy changes, mainly focusing on more intensive monitoring of projects and trying to do more improvement projects directly under the responsibility of the line manager. Focusing on patient value, continuous improvement, and the reduction of waste have proven to be very fitting principles for healthcare in general and specifically for application in a university hospital. Approaching improvement at a systems level while directly involving the people on the work floor in observing opportunities for improvement and realizing these has shown itself to be essential. PMID:28752089
NASA Astrophysics Data System (ADS)
Sippel, Sebastian; Zscheischler, Jakob; Mahecha, Miguel D.; Orth, Rene; Reichstein, Markus; Vogel, Martha; Seneviratne, Sonia I.
2017-05-01
The Earth's land surface and the atmosphere are strongly interlinked through the exchange of energy and matter. This coupled behaviour causes various land-atmosphere feedbacks, and an insufficient understanding of these feedbacks contributes to uncertain global climate model projections. For example, a crucial role of the land surface in exacerbating summer heat waves in midlatitude regions has been identified empirically for high-impact heat waves, but individual climate models differ widely in their respective representation of land-atmosphere coupling. Here, we compile an ensemble of 54 combinations of observations-based temperature (T) and evapotranspiration (ET) benchmarking datasets and investigate coincidences of T anomalies with ET anomalies as a proxy for land-atmosphere interactions during periods of anomalously warm temperatures. First, we demonstrate that a large fraction of state-of-the-art climate models from the Coupled Model Intercomparison Project (CMIP5) archive produces systematically too frequent coincidences of high T anomalies with negative ET anomalies in midlatitude regions during the warm season and in several tropical regions year-round. These coincidences (high T, low ET) are closely related to the representation of temperature variability and extremes across the multi-model ensemble. Second, we derive a land-coupling constraint based on the spread of the T-ET datasets and consequently retain only a subset of CMIP5 models that produce a land-coupling behaviour that is compatible with these benchmark estimates. The constrained multi-model simulations exhibit more realistic temperature extremes of reduced magnitude in present climate in regions where models show substantial spread in T-ET coupling, i.e. biases in the model ensemble are consistently reduced. Also the multi-model simulations for the coming decades display decreased absolute temperature extremes in the constrained ensemble. On the other hand, the differences between projected and present-day climate extremes are affected to a lesser extent by the applied constraint, i.e. projected changes are reduced locally by around 0.5 to 1 °C - but this remains a local effect in regions that are highly sensitive to land-atmosphere coupling. In summary, our approach offers a physically consistent, diagnostic-based avenue to evaluate multi-model ensembles and subsequently reduce model biases in simulated and projected extreme temperatures.
NASA Astrophysics Data System (ADS)
Cohen, K. K.; Klara, S. M.; Srivastava, R. D.
2004-12-01
The U.S. Department of Energy's (U.S. DOE's) Carbon Sequestration Program is developing state-of-the-science technologies for measurement, mitigation, and verification (MM&V) in field operations of geologic sequestration. MM&V of geologic carbon sequestration operations will play an integral role in the pre-injection, injection, and post-injection phases of carbon capture and storage projects to reduce anthropogenic greenhouse gas emissions. Effective MM&V is critical to the success of CO2 storage projects and will be used by operators, regulators, and stakeholders to ensure safe and permanent storage of CO2. In the U.S. DOE's Program, Carbon sequestration MM&V has numerous instrumental roles: Measurement of a site's characteristics and capability for sequestration; Monitoring of the site to ensure the storage integrity; Verification that the CO2 is safely stored; and Protection of ecosystems. Other drivers for MM&V technology development include cost-effectiveness, measurement precision, and frequency of measurements required. As sequestration operations are implemented in the future, it is anticipated that measurements over long time periods and at different scales will be required; this will present a significant challenge. MM&V sequestration technologies generally utilize one of the following approaches: below ground measurements; surface/near-surface measurements; aerial and satellite imagery; and modeling/simulations. Advanced subsurface geophysical technologies will play a primary role for MM&V. It is likely that successful MM&V programs will incorporate multiple technologies including but not limited to: reservoir modeling and simulations; geophysical techniques (a wide variety of seismic methods, microgravity, electrical, and electromagnetic techniques); subsurface fluid movement monitoring methods such as injection of tracers, borehole and wellhead pressure sensors, and tiltmeters; surface/near surface methods such as soil gas monitoring and infrared sensors and; aerial and satellite imagery. This abstract will describe results, similarities, and contrasts for funded studies from the U.S. DOE's Carbon Sequestration Program including examples from the Sleipner North Sea Project, the Canadian Weyburn Field/Dakota Gasification Plant Project, the Frio Formation Texas Project, and Yolo County Bioreactor Landfill Project. The abstract will also address the following: How are the terms ``measurement,'' ``mitigation''and ``verification'' defined in the Program? What is the U.S. DOE's Carbon Sequestration Program Roadmap and what are the Roadmap goals for MM&V? What is the current status of MM&V technologies?
Reality of using a model from local governments' perspective-How science community can help?
NASA Astrophysics Data System (ADS)
Mirzazad, S.
2016-12-01
Local governments across the US use historic data to approve capital improvement projects and update comprehensive/zoning plans. Due to the effects of climate change, historic data sets are no longer suitable, which requires communities to use climate models to project the future. However, the use of climate models also presents challenges for local governments such as: Variations between models: Because model-development methodologies vary, different climate models provide different end results. A local governments' decision concerning which climate model to use is tricky because the model drives policy direction and infrastructure investments that can be both expensive and controversial. Communicating the gaps of a model: There are always uncertainties associated with modeling. These gaps may range from the scale of a model to the type of data used in modeling. Effectively communicating this to a community is crucial to gain political support. Managing politics associated with using a model: In many cases, models project changes to the built environment that will detrimentally affect private property owners. This can result in strong push back from the community and could threaten the local tax base. Scientists have important roles; from development to delivery of models to assisting local governments navigate through these challenges. Bringing in entities with experience of working with local governments can contribute to a successful outcome. In this proposed session, ICLEI-Local Governments for Sustainability will use the USGS CoSMoS as a case study for lessons learned in establishing a framework for effective collaboration between local governments and the science community.
The role of intergenerational influence in waste education programmes: The THAW project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maddox, P.; Doran, C.; Williams, I.D., E-mail: idw@soton.ac.uk
Highlights: > Children can be effective advocates in changing their parents' lifestyles. > We investigated the role of intergenerational influence in waste education programmes. > Waste Watch's Take Home Action on Waste project worked with 6705 children in 39 schools. > The results showed increased participation in recycling and declines in residual waste. > The study shows that recycling behaviour is positively impacted by intergenerational influence. - Abstract: Whilst the education of young people is often seen as a part of the solution to current environmental problems seeking urgent attention, it is often forgotten that their parents and other householdmore » members can also be educated/influenced via home-based educational activities. This paper explores the theory of intergenerational influence in relation to school based waste education. Waste Watch, a UK-based environmental charity ((www.wastewatch.org.uk)), has pioneered a model that uses practical activities and whole school involvement to promote school based action on waste. This methodology has been adopted nationally. This paper outlines and evaluates how effective school based waste education is in promoting action at a household level. The paper outlines Waste Watch's 'Taking Home Action on Waste (THAW)' project carried out for two and half years in Rotherham, a town in South Yorkshire, England. The project worked with 6705 primary age children in 39 schools (44% of primary schools in the project area) to enable them to take the 'reduce, reuse and recycle message' home to their families and to engage these (i.e. families) in sustainable waste management practices. As well as substantial increases in students' knowledge and understanding of waste reduction, measurement of the impact of the project in areas around 12 carefully chosen sample schools showed evidence of increased participation in recycling and recycling tonnages as well as declining levels of residual waste. Following delivery of the project in these areas, an average increase of 8.6% was recorded in recycling set out rates which led to a 4.3% increase in paper recycling tonnages and an 8.7% increase in tonnages of cans, glass and textiles collected for recycling. Correspondingly, there was a 4.5% fall in tonnages of residual waste. Waste Watch's THAW project was the first serious attempt to measure the intergenerational influence of an education programme on behaviour at home (i.e. other than schools' own waste). It clearly shows that household recycling behaviour can be positively impacted by intergenerational influence via a practical school-based waste education model. However, although the model could potentially have a big impact if rolled out nationally, it will require seed funding and the long-term durability of the model has not yet been fully quantified.« less
Extended MHD modeling of nonlinear instabilities in fusion and space plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Germaschewski, Kai
A number of different sub-projects where pursued within this DOE early career project. The primary focus was on using fully nonlinear, curvilinear, extended MHD simulations of instabilities with applications to fusion and space plasmas. In particular, we performed comprehensive studies of the dynamics of the double tearing mode in different regimes and confi gurations, using Cartesian and cyclindrical geometry and investigating both linear and non-linear dynamics. In addition to traditional extended MHD involving Hall term and electron pressure gradient, we also employed a new multi-fluid moment model, which shows great promise to incorporate kinetic effects, in particular off-diagonal elements ofmore » the pressure tensor, in a fluid model, which is naturally computationally much cheaper than fully kinetic particle or Vlasov simulations. We used our Vlasov code for detailed studies of how weak collisions effect plasma echos. In addition, we have played an important supporting role working with the PPPL theory group around Will Fox and Amitava Bhattacharjee on providing simulation support for HED plasma experiments performed at high-powered laser facilities like OMEGA-EP in Rochester, NY. This project has support a great number of computational advances in our fluid and kinetic plasma models, and has been crucial to winning multiple INCITE computer time awards that supported our computational modeling.« less
NASA Astrophysics Data System (ADS)
Jobst, Andreas M.; Kingston, Daniel G.; Cullen, Nicolas J.; Schmid, Josef
2018-06-01
As climate change is projected to alter both temperature and precipitation, snow-controlled mid-latitude catchments are expected to experience substantial shifts in their seasonal regime, which will have direct implications for water management. In order to provide authoritative projections of climate change impacts, the uncertainty inherent to all components of the modelling chain needs to be accounted for. This study assesses the uncertainty in potential impacts of climate change on the hydro-climate of a headwater sub-catchment of New Zealand's largest catchment (the Clutha River) using a fully distributed hydrological model (WaSiM) and unique ensemble encompassing different uncertainty sources: general circulation model (GCM), emission scenario, bias correction and snow model. The inclusion of snow models is particularly important, given that (1) they are a rarely considered aspect of uncertainty in hydrological modelling studies, and (2) snow has a considerable influence on seasonal patterns of river flow in alpine catchments such as the Clutha. Projected changes in river flow for the 2050s and 2090s encompass substantial increases in streamflow from May to October, and a decline between December and March. The dominant drivers are changes in the seasonal distribution of precipitation (for the 2090s +29 to +84 % in winter) and substantial decreases in the seasonal snow storage due to temperature increase. A quantitative comparison of uncertainty identified GCM structure as the dominant contributor in the seasonal streamflow signal (44-57 %) followed by emission scenario (16-49 %), bias correction (4-22 %) and snow model (3-10 %). While these findings suggest that the role of the snow model is comparatively small, its contribution to the overall uncertainty was still found to be noticeable for winter and summer.
What Is My Role? Establishing Teacher and Youth Worker Responsibilities in Social Action Projects
ERIC Educational Resources Information Center
Epstein, Shira Eve
2013-01-01
In this research, I analyze the roles of teachers and youth workers from a community-based organization in the context of two high school social action projects. Both the teachers and the youth workers assumed distinct roles while working together during the civic project enactments. The teachers were largely positioned as responsible for…
RCP Local School Projects in Alabama.
ERIC Educational Resources Information Center
Regional Curriculum Project, Atlanta, GA.
One of 6 state reports generated by the Regional Curriculum Project (funded under the Elementary and Secondary Education Act), the document describes 4 specific projects implemented through the Alabama State Superintendent's Office beginning in 1966. All 4 projects were designed to improve instructional leadership by defining the role(s) of the…
Caballero, Rodrigo; Huber, Matthew
2013-01-01
Projections of future climate depend critically on refined estimates of climate sensitivity. Recent progress in temperature proxies dramatically increases the magnitude of warming reconstructed from early Paleogene greenhouse climates and demands a close examination of the forcing and feedback mechanisms that maintained this warmth and the broad dynamic range that these paleoclimate records attest to. Here, we show that several complementary resolutions to these questions are possible in the context of model simulations using modern and early Paleogene configurations. We find that (i) changes in boundary conditions representative of slow “Earth system” feedbacks play an important role in maintaining elevated early Paleogene temperatures, (ii) radiative forcing by carbon dioxide deviates significantly from pure logarithmic behavior at concentrations relevant for simulation of the early Paleogene, and (iii) fast or “Charney” climate sensitivity in this model increases sharply as the climate warms. Thus, increased forcing and increased slow and fast sensitivity can all play a substantial role in maintaining early Paleogene warmth. This poses an equifinality problem: The same climate can be maintained by a different mix of these ingredients; however, at present, the mix cannot be constrained directly from climate proxy data. The implications of strongly state-dependent fast sensitivity reach far beyond the early Paleogene. The study of past warm climates may not narrow uncertainty in future climate projections in coming centuries because fast climate sensitivity may itself be state-dependent, but proxies and models are both consistent with significant increases in fast sensitivity with increasing temperature. PMID:23918397
Modeling effects of climate change and phase shifts on detrital production of a kelp bed.
Krumhansl, Kira A; Lauzon-Guay, Jean-Sébastien; Scheibling, Robert E
2014-03-01
The exchange of energy and nutrients between ecosystems (i.e., resource subsidies) plays a central role in ecological dynamics over a range of spatial and temporal scales. Little attention has been paid to the role of anthropogenic impacts on natural systems in altering the magnitude, timing, and quality of resource subsidies. Kelp ecosystems are highly productive on a local scale and export over 80% of kelp primary production as detritus, subsidizing consumers across broad spatial scales. Here, we generate a model of detrital production from a kelp bed in Nova Scotia to hindcast trends in detrital production based on temperature and wave height recorded in the study region from 1976 to 2009, and to project changes in detrital production that may result from future climate change. Historical and projected increases in temperature and wave height led to higher rates of detrital production through increased blade breakage and kelp dislodgment from the substratum, but this reduced kelp biomass and led to a decline in detrital production in the long-term. We also used the model to demonstrate that the phase shift from a highly productive kelp bed to a low-productivity barrens, driven by the grazing activity of sea urchins, reduces kelp detrital production by several orders of magnitude, an effect that would be exacerbated by projected increases in temperature and wave action. These results indicate that climate-mediated changes in ecological dynamics operating on local scales may alter the magnitude of resource subsidies to adjacent ecosystems, affecting ecological dynamics on regional scales.
Wittich, Christopher M; Reed, Darcy A; Ting, Henry H; Berger, Richard A; Nowicki, Kelly M; Blachman, Morris J; Mandrekar, Jayawant N; Beckman, Thomas J
2014-10-01
To validate a measure of reflection on participation in quality improvement (QI) activities and to identify associations with characteristics of QI projects, participants, and teams. This was a prospective validation study of all Mayo Clinic team participants who submitted QI projects for maintenance of certification (MOC) credit from 2010 to 2012. The authors developed a measure of reflection on participation in QI activities and explored associations between participants' overall reflection scores and characteristics of projects, participants, and teams. A total of 922 participants (567 physicians) on 118 teams completed QI projects and reflections. Factor analysis revealed a two-dimensional model with good internal consistency reliabilities (Cronbach alpha) for high (0.85) and low (0.81) reflection. Reflection scores (mean [standard deviation]) were associated with projects that changed practice (yes: 4.30 [0.51]; no: 3.71 [0.57]; P < .0001), changed the health care system (yes: 4.25 [0.54]; no: 4.03 [0.62]; P < .0001), and impacted patient safety (P < .0001). Physicians' reflection scores (4.27 [0.57]) were higher than support staff scores (4.07 [0.55]; P = .0005). A positive association existed between reflection scores and the number of QI roles per participant (P < .0001). There were no associations with participant gender, team size, or team diversity. The authors identified associations between participant reflection and the impact of QI projects, participants' professional roles, and participants' involvement with projects. With further study, the authors anticipate that the new measure of reflection will be useful for determining meaningful engagement in MOC.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Yang; Lu, Jian; Leung, L. Ruby
This study investigates the North Atlantic atmospheric rivers (ARs) making landfall over western Europe in the present and future climate from the multi-model ensemble of the Coupled Model Intercomparison Project Phase 5 (CMIP5). Overall, CMIP5 captures the seasonal and spatial variations of historical landfalling AR days, with the large inter-model variability strongly correlated with the inter-model spread of historical jet position. Under RCP 8.5, AR frequency is projected to increase a few times by the end of this century. While thermodynamics plays a dominate role in the future increase of ARs, wind changes associated with the midlatitude jet shifts alsomore » significantly contribute to AR changes, resulting in dipole change patterns in all seasons. In the North Atlantic, the model projected jet shifts are strongly correlated with the simulated historical jet position. As models exhibit predominantly equatorward biases in the historical jet position, the large poleward jet shifts reduce AR days south of the historical mean jet position through the dynamical connections between the jet positions and AR days. Using the observed historical jet position as an emergent constraint, dynamical effects further increase AR days in the future above the large increases due to thermodynamical effects. In the future, both total and extreme precipitation induced by AR contribute more to the seasonal mean and extreme precipitation compared to present primarily because of the increase in AR frequency. While AR precipitation intensity generally increases more relative to the increase in integrated vapor transport, AR extreme precipitation intensity increases much less.« less
Approaches to modeling landscape-scale drought-induced forest mortality
Gustafson, Eric J.; Shinneman, Douglas
2015-01-01
Drought stress is an important cause of tree mortality in forests, and drought-induced disturbance events are projected to become more common in the future due to climate change. Landscape Disturbance and Succession Models (LDSM) are becoming widely used to project climate change impacts on forests, including potential interactions with natural and anthropogenic disturbances, and to explore the efficacy of alternative management actions to mitigate negative consequences of global changes on forests and ecosystem services. Recent studies incorporating drought-mortality effects into LDSMs have projected significant potential changes in forest composition and carbon storage, largely due to differential impacts of drought on tree species and interactions with other disturbance agents. In this chapter, we review how drought affects forest ecosystems and the different ways drought effects have been modeled (both spatially and aspatially) in the past. Building on those efforts, we describe several approaches to modeling drought effects in LDSMs, discuss advantages and shortcomings of each, and include two case studies for illustration. The first approach features the use of empirically derived relationships between measures of drought and the loss of tree biomass to drought-induced mortality. The second uses deterministic rules of species mortality for given drought events to project changes in species composition and forest distribution. A third approach is more mechanistic, simulating growth reductions and death caused by water stress. Because modeling of drought effects in LDSMs is still in its infancy, and because drought is expected to play an increasingly important role in forest health, further development of modeling drought-forest dynamics is urgently needed.
2016-03-01
regression models that yield hedonic price indexes is closely related to standard techniques for developing cost estimating relationships ( CERs ...October 2014). iii analysis) and derives a price index from the coefficients on variables reflecting the year of purchase. In CER development, the...index. The relevant cost metric in both cases is unit recurring flyaway (URF) costs. For the current project, we develop a “Baseline” CER model, taking
NASA Astrophysics Data System (ADS)
Zhang, K.; Castanho, A. D.; Moghim, S.; Bras, R. L.; Coe, M. T.; Costa, M. H.; Levine, N. M.; Longo, M.; McKnight, S.; Wang, J.; Moorcroft, P. R.
2012-12-01
Deforestation and drought have imposed regional-scale perturbations onto Amazonian ecosystems and are predicted to cause larger negative impacts on the Amazonian ecosystems and associated regional carbon dynamics in the 21st century. However, global climate models (GCMs) vary greatly in their projections of future climate change in Amazonia, giving rise to uncertainty in the expected fate of the Amazon over the coming century. In this study, we explore the possible eco-hydrological consequences of the Amazonian ecosystems under projected climate and land-use changes in the 21st century using two state-of-the-art terrestrial ecosystem models—Ecosystem Demography Model 2.1(ED2.1) and Integrated Biosphere Simulator model (IBIS)—driven by three representative, bias-corrected climate projections from three IPCC GCMs (NCARPCM1, NCARCCSM3 and HadCM3), coupled with two land-use change scenarios (a business-as-usual and a strict governance scenario). We also analyze the relative roles of climate change, CO2 fertilization, land-use change and fire in driving the projected composition and structure of the Amazonian ecosystems. Our results show that CO2 fertilization enhances vegetation productivity and above-ground biomass (AGB) in the region, while land-use change and fire cause AGB loss and the replacement of forests by the savanna-like vegetation. The impacts of climate change depend strongly on the direction and severity of projected precipitation changes in the region. In particular, when intensified water stress is superimposed on unregulated deforestation, both ecosystem models predict large-scale dieback of Amazonian rainforests.
Wu, Zezhou; Yu, Ann T W; Shen, Liyin
2017-02-01
The abundant generation of construction and demolition (C&D) waste presents a significant challenge to the sustainable development of the construction industry in Mainland China. As the implementer of construction activities, the contractor's C&D waste management performance plays an important role in C&D waste minimization. This paper aims to investigate the determinants of the contractor's C&D waste management behavior in Mainland China. The Theory of Planned Behavior (TPB) was selected as the basis of the theoretical model. In addition, three contextual constructs (i.e., economic viability, governmental supervision, and project constraints) were introduced, formulating the initial model. Based on the initial model, eight constructs were identified and seven hypotheses were proposed. A questionnaire survey was conducted to collect data and a Structural Equation Modeling (SEM) analysis was employed to test the proposed hypotheses. Results showed that the C&D waste management intention is not a significant determinant of contractor's C&D waste management behavior. The most important determinant is economic viability, followed by governmental supervision as the second most important determinant. Nevertheless, the construct of project constraints is an insignificant determinant for contractor's adoption of C&D waste management behavior. The research findings imply that, in Mainland China, the government, at this stage, plays an important role in guiding and promoting the contractor to exhibit better C&D waste management behavior. Copyright © 2016 Elsevier Ltd. All rights reserved.
2015-10-01
patients, there is little evidence for a role of ACE2/A( 1 -7)/Mas axis, only a solitary assessment showing decreased ACE2 levels in the CSF of MS...project? Major Goals (Year 1 ): 1 : Measure levels of RAS components in the spinal cord of mice with EAE (animal model of MS) prior to, and at multiple...AWARD NUMBER: W81XWH-14- 1 -0523 TITLE: Reducing Disease Activity in Animal Models of MS by Activation of the Protective Arm of the Renin
Powell, Adam
2017-01-01
Durham University's 'Hearing the Voice' project involves a multi-disciplinary exploration of hallucinatory-type phenomena in an attempt to revaluate and reframe discussions of these experiences. As part of this project, contemporaneous religious experiences (supernatural voices and visions) in the United States from the first half of the nineteenth century have been analysed, shedding light on the value and applicability of contemporary bio-cultural models of religious experience for such historical cases. In particular, this essay outlines four historical cases, seeking to utilise and to refine four theoretical models, including anthropologist Tanya Luhrmann's 'absorption hypothesis', by returning to something like William James' concern with 'discordant personalities'. Ultimately, the paper argues that emphasis on the role of identity dissonance must not be omitted from the analytical tools applied to these nineteenth-century examples, and perhaps should be retained for any study of religious experience generally.
Project-oriented teaching model about specialized courses in the information age
NASA Astrophysics Data System (ADS)
Chen, Xiaodong; Wang, Jinjiang; Tian, Qingguo; Wang, Yi; Cai, Huaiyu
2017-08-01
Specialized courses play a significant role in the usage of basic knowledge in the practical application for engineering college students. The engineering data available has sharply increased since the beginning of the information age in the 20th century, providing much more approaches to study and practice. Therefore, how to guide students to make full use of resources for active engineering practice learning has become one of the key problems for specialized courses. This paper took the digital image processing course for opto-electronic information science and technology major as an example, discussed the teaching model of specialized course in the information age, put forward the "engineering resource oriented model", and fostered the ability of engineering students to use the basic knowledge to innovate and deal with specific project objectives. The fusion of engineering examples into practical training and teaching encourages students to practice independent engineering thinking.
PBL and CDIO: complementary models for engineering education development
NASA Astrophysics Data System (ADS)
Edström, Kristina; Kolmos, Anette
2014-09-01
This paper compares two models for reforming engineering education, problem/project-based learning (PBL), and conceive-design-implement-operate (CDIO), identifying and explaining similarities and differences. PBL and CDIO are defined and contrasted in terms of their history, community, definitions, curriculum design, relation to disciplines, engineering projects, and change strategy. The structured comparison is intended as an introduction for learning about any of these models. It also invites reflection to support the understanding and evolution of PBL and CDIO, and indicates specifically what the communities can learn from each other. It is noted that while the two approaches share many underlying values, they only partially overlap as strategies for educational reform. The conclusions are that practitioners have much to learn from each other's experiences through a dialogue between the communities, and that PBL and CDIO can play compatible and mutually reinforcing roles, and thus can be fruitfully combined to reform engineering education.
I think of Ronald Reagan: future selves in the present.
Roberts, P
1992-01-01
A nonlinear perspective on time (where the future exists in and affects the present) has been described by several theorists but there is little research on the extent, quality or origins of the personal future perspective. The present study examined the existence and origin of the future in the present by asking adults aged nineteen to eighty-three to: 1) project themselves into the oldest age imaginable, 2) describe their hopes and fears for that age, and 3) name role models for those hopes and fears. Data analysis revealed that length of future perspective, number of hopes and number of role models for the distant future declined with age. In addition, types of fears for the future varied with age, with older adults stressing dependency issues while younger adults reported concerns about personality and mental health. Despite age differences, most participants could name role models for both their hopes and fears for aging, but specific models were identified more often for hopes than for fears. Personalized hopes and fears for the distant future as motivators for the present are discussed.
NASA 1990 Multisensor Airborne Campaigns (MACs) for ecosystem and watershed studies
NASA Technical Reports Server (NTRS)
Wickland, Diane E.; Asrar, Ghassem; Murphy, Robert E.
1991-01-01
The Multisensor Airborne Campaign (MAC) focus within NASA's former Land Processes research program was conceived to achieve the following objectives: to acquire relatively complete, multisensor data sets for well-studied field sites, to add a strong remote sensing science component to ecology-, hydrology-, and geology-oriented field projects, to create a research environment that promotes strong interactions among scientists within the program, and to more efficiently utilize and compete for the NASA fleet of remote sensing aircraft. Four new MAC's were conducted in 1990: the Oregon Transect Ecosystem Research (OTTER) project along an east-west transect through central Oregon, the Forest Ecosystem Dynamics (FED) project at the Northern Experimental Forest in Howland, Maine, the MACHYDRO project in the Mahantango Creek watershed in central Pennsylvania, and the Walnut Gulch project near Tombstone, Arizona. The OTTER project is testing a model that estimates the major fluxes of carbon, nitrogen, and water through temperate coniferous forest ecosystems. The focus in the project is on short time-scale (days-year) variations in ecosystem function. The FED project is concerned with modeling vegetation changes of forest ecosystems using remotely sensed observations to extract biophysical properties of forest canopies. The focus in this project is on long time-scale (decades to millenia) changes in ecosystem structure. The MACHYDRO project is studying the role of soil moisture and its regulating effects on hydrologic processes. The focus of the study is to delineate soil moisture differences within a basin and their changes with respect to evapotranspiration, rainfall, and streamflow. The Walnut Gulch project is focused on the effects of soil moisture in the energy and water balance of arid and semiarid ecosystems and their feedbacks to the atmosphere via thermal forcing.
Riordan, Erin Coulter; Rundel, Philip W
2014-01-01
Given the rapidly growing human population in mediterranean-climate systems, land use may pose a more immediate threat to biodiversity than climate change this century, yet few studies address the relative future impacts of both drivers. We assess spatial and temporal patterns of projected 21(st) century land use and climate change on California sage scrub (CSS), a plant association of considerable diversity and threatened status in the mediterranean-climate California Floristic Province. Using a species distribution modeling approach combined with spatially-explicit land use projections, we model habitat loss for 20 dominant shrub species under unlimited and no dispersal scenarios at two time intervals (early and late century) in two ecoregions in California (Central Coast and South Coast). Overall, projected climate change impacts were highly variable across CSS species and heavily dependent on dispersal assumptions. Projected anthropogenic land use drove greater relative habitat losses compared to projected climate change in many species. This pattern was only significant under assumptions of unlimited dispersal, however, where considerable climate-driven habitat gains offset some concurrent climate-driven habitat losses. Additionally, some of the habitat gained with projected climate change overlapped with projected land use. Most species showed potential northern habitat expansion and southern habitat contraction due to projected climate change, resulting in sharply contrasting patterns of impact between Central and South Coast Ecoregions. In the Central Coast, dispersal could play an important role moderating losses from both climate change and land use. In contrast, high geographic overlap in habitat losses driven by projected climate change and projected land use in the South Coast underscores the potential for compounding negative impacts of both drivers. Limiting habitat conversion may be a broadly beneficial strategy under climate change. We emphasize the importance of addressing both drivers in conservation and resource management planning.
NASA Astrophysics Data System (ADS)
Dolman, Albertus J. Han
2013-04-01
The carbon balance of regions, the size of continents, can be determined, albeit with significant uncertainty, by combining several bottom up and top down methods. The bottom up methods use eddy covariance techniques, biometric inventory measurements and modeling, while the top down methods use atmospheric observations and inverse models. There has been considerable progress in the last few years in determining these balances through more or less standard protocols, as highlighted for instance by studies of the REgional Carbon Cycle Assessment and Processes (RECAPP) project of the Global Carbon Project. Important areas where uncertainty creeps in are the scaling of point measurements in the bottom up methods, the sparseness of the observation network and the role of model and other errors in the inversion methods. Typically these balances hold for periods of several years. They therefore do not resolve the impact of anomalies in weather and climate directly. The role of management in these balances also differs for different continents. For instance in Europe management plays a strong role in the carbon balance, whereas for the Russian continent this is less important. Management in the European carbon balance may potentially override climatically driven variability. In contrast, for Russia, the importance of the role of forest is paramount, but there the vulnerability of the Arctic regions and permafrost is a key uncertainty for future behaviour. I hope to show the importance of these different aspects of the terrestrial carbon balance by comparing the two continents, and also discuss the significant uncertainty we still face in determining the carbon budgets of large areas. I will argue that we need to get a clearer picture of the role of management in these budgets, but also of the time variability of the budgets to be able to determine the impact of anomalous weather and the vulnerability in a future climate.
Han, Meekyung; Cao, Lien; Anton, Karen
2015-01-01
Vietnamese Americans are at high risk for developing mental health disorders due to multiple risk factors such as trauma and acculturative stress. However, the utilization of mental health services has been low. The pilot project Tam An was implemented to raise mental health awareness by engaging community resources in the Vietnamese population. Informed by the Community Readiness Model and through local ethnic media sources, messages to destigmatize mental health and promote the willingness to initiate mental health treatment were presented. Using an exploratory perspective, findings from focus group data suggest that the project improved the community's stage of readiness.
NASA Astrophysics Data System (ADS)
Pincus, R.; Stevens, B. B.; Forster, P.; Collins, W.; Ramaswamy, V.
2014-12-01
The Radiative Forcing Model Intercomparison Project (RFMIP): Assessment and characterization of forcing to enable feedback studies An enormous amount of attention has been paid to the diversity of responses in the CMIP and other multi-model ensembles. This diversity is normally interpreted as a distribution in climate sensitivity driven by some distribution of feedback mechanisms. Identification of these feedbacks relies on precise identification of the forcing to which each model is subject, including distinguishing true error from model diversity. The Radiative Forcing Model Intercomparison Project (RFMIP) aims to disentangle the role of forcing from model sensitivity as determinants of varying climate model response by carefully characterizing the radiative forcing to which such models are subject and by coordinating experiments in which it is specified. RFMIP consists of four activities: 1) An assessment of accuracy in flux and forcing calculations for greenhouse gases under past, present, and future climates, using off-line radiative transfer calculations in specified atmospheres with climate model parameterizations and reference models 2) Characterization and assessment of model-specific historical forcing by anthropogenic aerosols, based on coordinated diagnostic output from climate models and off-line radiative transfer calculations with reference models 3) Characterization of model-specific effective radiative forcing, including contributions of model climatology and rapid adjustments, using coordinated climate model integrations and off-line radiative transfer calculations with a single fast model 4) Assessment of climate model response to precisely-characterized radiative forcing over the historical record, including efforts to infer true historical forcing from patterns of response, by direct specification of non-greenhouse-gas forcing in a series of coordinated climate model integrations This talk discusses the rationale for RFMIP, provides an overview of the four activities, and presents preliminary motivating results.
Dudal, Sherri; Staack, Roland F; Stoellner, Daniela; Fjording, Marianne Scheel; Vieser, Eva; Pascual, Marie-Hélène; Brudny-Kloeppel, Margarete; Golob, Michaela
2014-05-01
The bioanalytical scientist plays a key role in the project team for the drug development of biotherapeutics from the discovery to the marketing phase. Information from the project team members is required for assay development and sample analysis during the discovery, preclinical and clinical phases of the project and input is needed from the bioanalytical scientist to help data interpretation. The European Bioanalysis Forum target team 20 discussed many of the gaps in information and communication between the bioanalytical scientist and project team members as a base for providing a perspective on the bioanalytical scientist's role and interactions within the project team.
Integrating Economic Models with Biophysical Models in the Willamette Water 2100 Project
NASA Astrophysics Data System (ADS)
Jaeger, W. K.; Plantinga, A.
2013-12-01
This paper highlights the human system modeling components for Willamette Water 2100, a comprehensive, highly integrated study of hydrological, ecological, and human factors affecting water scarcity in the Willamette River Basin (WRB). The project is developing a spatiotemporal simulation model to predict future trajectories of water scarcity, and to evaluate mitigation policies. Economic models of land use and water use are the main human system models in WW2100. Water scarcity depends on both supply and demand for water, and varies greatly across time and space (Jaeger et al., 2013). Thus, the locations of human water use can have enormous influence on where and when water is used, and hence where water scarcity may arise. Modeling the locations of human uses of water (e.g., urban versus agricultural) as well as human values and choices, are the principal quantitative ways that social science can contribute to research of this kind. Our models are empirically-based models of human resource allocation. Each model reflects private behavior (choices by households, farms, firms), institutions (property rights, laws, markets, regulations), public infrastructure (dams, canals, highways), and also 'external drivers' that influence the local economy (migration, population growth, national markets and policies). This paper describes the main model components, emphasizing similarities between human and biophysical components of the overall project, and the model's linkages and feedbacks relevant to our predictions of changes in water scarcity between now and 2100. Results presented include new insights from individual model components as well as available results from the integrated system model. Issues include water scarcity and water quality (temperature) for out-of-stream and instream uses, the impact of urban expansion on water use and potential flood damage. Changes in timing and variability of spring discharge with climate change, as well as changes in human uses of lands in flood-prone areas, will alter the tradeoff for the optimal use of reservoir storage capacity. We emphasize three concepts: i) institutions, ii) scarcity, and iii) the role of social science in projects of this kind. Institutions represent the main instrument or tool that humans use to influence how resources are used, to reduce waste, promote efficiency, and foster predictability. Water scarcity when defined in human normative terms. The concept provides a lens through which to recognize the wide range of ways that water scarcity can arise and persist even in water-abundant settings. We conclude with observations about the role of social science in research on biophysical and human systems. Reference Jaeger, W.K., et al., 2013. Toward a formal definition of water scarcity in natural-human systems. Water Resources Research, Volume 49. Published online: 8 JUL 2013 | DOI: 10.1002/wrcr.20249
Projecting Female Labor Force Participation from Sex-Role Attitudes.
ERIC Educational Resources Information Center
Waite, Linda J.
In this paper evidence on the causal connection between employment of women and sex-role attitudes is presented and evaluated. The effects of sex-role attitudes on labor force participation are reviewed, and changes in sex-role attitudes during the next fifteen years are projected. Information on the relationship between sex-role attitudes and…
Fatichi, S; Rimkus, S; Burlando, P; Bordoy, R
2014-09-15
Projections of climate change effects in streamflow are increasingly required to plan water management strategies. These projections are however largely uncertain due to the spread among climate model realizations, internal climate variability, and difficulties in transferring climate model results at the spatial and temporal scales required by catchment hydrology. A combination of a stochastic downscaling methodology and distributed hydrological modeling was used in the ACQWA project to provide projections of future streamflow (up to year 2050) for the upper Po and Rhone basins, respectively located in northern Italy and south-western Switzerland. Results suggest that internal (stochastic) climate variability is a fundamental source of uncertainty, typically comparable or larger than the projected climate change signal. Therefore, climate change effects in streamflow mean, frequency, and seasonality can be masked by natural climatic fluctuations in large parts of the analyzed regions. An exception to the overwhelming role of stochastic variability is represented by high elevation catchments fed by glaciers where streamflow is expected to be considerably reduced due to glacier retreat, with consequences appreciable in the main downstream rivers in August and September. Simulations also identify regions (west upper Rhone and Toce, Ticino river basins) where a strong precipitation increase in the February to April period projects streamflow beyond the range of natural climate variability during the melting season. This study emphasizes the importance of including internal climate variability in climate change analyses, especially when compared to the limited uncertainty that would be accounted for by few deterministic projections. The presented results could be useful in guiding more specific impact studies, although design or management decisions should be better based on reliability and vulnerability criteria as suggested by recent literature. Copyright © 2013 Elsevier B.V. All rights reserved.
Falk, Nancy L; Phillips, Kathleen M; Hymer, Regina; Acquaviva, Kimberly D; Schumann, Mary Jean
2014-05-01
Graduate nurses are employed in clinical, research, educational, and policy roles. As leaders, they are expected to develop and sustain projects that support translating research to practice and policy. Funding to support initiatives is tight and requires innovative solutions to cover salaries, benefits, equipment purchases, and other program expenses. In an effort to teach grant writing while developing skilled leaders who are effective and competitive in securing funds, the George Washington University School of Nursing offers a graduate-level grant writing course. In the summer of 2011, a collaborative learning model was developed within the course. The joint approach was foundational to securing an Agency for Healthcare Research and Quality grant to support development and implementation of a patient engagement project by the Nursing Alliance for Quality Care. This article describes the project and offers hints for those seeking to develop a collaborative educational experience that affords new leadership skills for RNs from all backgrounds. Copyright 2014, SLACK Incorporated.
NASA Astrophysics Data System (ADS)
Latiffi, A. Ahmad; Brahim, J.; Fathi, M. S.
2017-08-01
Building Information Modelling (BIM) concept has expanded widely in many countries for more than a decade with its role of improving current practices in construction projects. However, the understanding of BIM differs among construction players, depending on how construction players utilize the concept in their projects. Therefore, this paper aims to explore the understanding of BIM concept among construction players in the Malaysian construction industry. A literature review on BIM concept and semi-structured interviews with construction players in BIM such as client, civil and structural (C&S) engineer and mechanical and electrical (M&E) engineer, quantity surveyor (QS), contractor, facilities manager and BIM consultant have been conducted in order to achieve this study’s the aim. The results show that the understanding of BIM concept among the construction players is limited to BIM as a process and technology. It is important for the construction players to improve their understanding of BIM as it can be used to enhance performance and productivity of construction projects.
A Three Cohort Study of Role-Play Instruction for Agile Project Management
ERIC Educational Resources Information Center
Schmitz, Kurt
2018-01-01
Agile Project Management methods and processes that emphasize action and feedback over planning continue to gain prominence for Information Systems projects. This topic is an ideal candidate to lead the evolution of project management instruction from teaching "about" to learning "how to." This paper describes a role-play…
ERIC Educational Resources Information Center
Voisey, Pam; Gornall, Lynne; Jones, Paul; Thomas, Brychan
2005-01-01
Business incubators play a critical role in economic regeneration through the development and support of new and sustainable enterprises. Many UK incubator projects are funded by the European Commission through the higher education sector. This study compares and contrasts six business incubation case studies and identifies significant criteria…
Disease Heterogeneity and Immune Biomarkers in Preclinical Mouse Models of Ovarian Carcinogenesis
2015-10-01
COVERED 1Aug2010 - 31Jul2015 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER W81XWH-10-1-0525 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S... Roswell Park Cancer Institute Ovarian Cancer SPORE 19 7. Name Shannon Grabosch, MD Project Role Gynecology-Oncology Fellow Nearest person month
Factors Impacting upon the Performance of Workplace Assessors: A Case Study
ERIC Educational Resources Information Center
Armstrong, Susanne
2007-01-01
This paper reports on the findings of a research project that elicits the main factors impacting on the performance of workplace assessors in the oil and gas industry. The purpose of the paper is to reveal the significance of the role of workplace assessors and the subsequent impact upon workforce engagement. One model of employee competency…
Biologist Postbaccalaureate Fellow | Center for Cancer Research
A fully funded post bac position is available to study tumor microenvironment at the National Cancer Institute on the NIH main campus in Bethesda, MD. Specifically, this opening is for an ongoing project examining the role of tissue architecture and mechanotransduction in the establishment of metastatic lesions, using zebrafish as a model system.
Biologist Postdoctoral Fellow | Center for Cancer Research
A fully funded postdoctoral position is available at the National Cancer Institute on the NIH main campus in Bethesda, MD. Specifically, this opening is for an ongoing project examining the role of tissue architecture and mechanotransduction in the establishment of metastatic lesions, using zebrafish as a model system. The NIH will provide funding and benefits, though
ERIC Educational Resources Information Center
Bontis, Nick; Richards, David; Serenko, Alexander
2011-01-01
Purpose: The purpose of this study is to propose and test a model designed to investigate the impact of job characteristics, employee satisfaction, and information sharing on two key indicators of quality service delivery, such as worker perceptions of their efficiency and customer focus. Design/methodology/approach: During the project, 9,060…
Biologist postbaccalaureate fellow | Center for Cancer Research
A fully funded post bac position is available to study tumor microenvironment at the National Cancer Institute on the NIH main campus in Bethesda, MD. Specifically, this opening is for an ongoing project examining the role of tissue architecture and mechanotransduction in the establishment of metastatic lesions, using zebrafish as a model system.
ERIC Educational Resources Information Center
Mundie, Karen; Joyce, Michelle
A project created a model for literacy councils that would allow them to form working partnerships with small businesses and provide instruction based on the needs of both the employer and the employee. Fifty employers received Greater Pittsburgh Literacy Council (GPLC) program information by mail; 20 participated in a workplace survey. Three…
Developing an Energy Performance Modeling Startup Kit
DOE Office of Scientific and Technical Information (OSTI.GOV)
none,
2012-10-01
In 2011, the NAHB Research Center began assessing the needs and motivations of residential remodelers regarding energy performance remodeling. This report outlines: the current remodeling industry and the role of energy efficiency; gaps and barriers to adding energy efficiency into remodeling; and support needs of professional remodelers to increase sales and projects involving improving home energy efficiency.
Helping Students Understand the Role of Symmetry in Chemistry Using the Particle-in-a-Box Model
ERIC Educational Resources Information Center
Manae, Meghna A.; Hazra, Anirban
2016-01-01
In a course on chemical applications of symmetry and group theory, students learn to use several useful tools (like character tables, projection operators, and correlation tables), but in the process of learning the mathematical details, they often miss the conceptual big picture about "why" and "how" symmetry leads to the…
Reflection and Double Loop Learning: The Case of HS2
ERIC Educational Resources Information Center
Synnott, Michael
2013-01-01
This paper focuses on the potential role of reflection and double loop learning in policy analysis and shared community learning. The discussion is illustrated by the case of HS2, a proposed high-speed railway project in England. It is noted that the foundation of social learning models is a rejection of traditional reliance on technologies or…
ERIC Educational Resources Information Center
Burke, Shanna L.; Bresnahan, Tammy; Li, Tan; Epnere, Katrina; Rizzo, Albert; Partin, Mary; Ahlness, Robert M.; Trimmer, Matthew
2018-01-01
Conversational virtual human (VH) agents are increasingly used to support role-play experiential learning. This project examined whether a Virtual Interactive Training Agent (ViTA) system would improve job interviewing skills in individuals with autism and developmental disabilities (N = 32). A linear mixed model was employed to evaluate adjusted…
The Role of the External Linkage Agent in College and University Action Research.
ERIC Educational Resources Information Center
Lindquist, Jack
The Strategies for Change and Knowledge Project is a concrete attempt to apply the Lindage model to eight colleges and universities. It is completing its third year of on-campus task force action to stimulate academic reform, of linking agent, survey feedback, workshop and consultant aid to those problemsolving efforts, and of external research…
Sensitivity Analysis Tailored to Constrain 21st Century Terrestrial Carbon-Uptake
NASA Astrophysics Data System (ADS)
Muller, S. J.; Gerber, S.
2013-12-01
The long-term fate of terrestrial carbon (C) in response to climate change remains a dominant source of uncertainty in Earth-system model projections. Increasing atmospheric CO2 could be mitigated by long-term net uptake of C, through processes such as increased plant productivity due to "CO2-fertilization". Conversely, atmospheric conditions could be exacerbated by long-term net release of C, through processes such as increased decomposition due to higher temperatures. This balance is an important area of study, and a major source of uncertainty in long-term (>year 2050) projections of planetary response to climate change. We present results from an innovative application of sensitivity analysis to LM3V, a dynamic global vegetation model (DGVM), intended to identify observed/observable variables that are useful for constraining long-term projections of C-uptake. We analyzed the sensitivity of cumulative C-uptake by 2100, as modeled by LM3V in response to IPCC AR4 scenario climate data (1860-2100), to perturbations in over 50 model parameters. We concurrently analyzed the sensitivity of over 100 observable model variables, during the extant record period (1970-2010), to the same parameter changes. By correlating the sensitivities of observable variables with the sensitivity of long-term C-uptake we identified model calibration variables that would also constrain long-term C-uptake projections. LM3V employs a coupled carbon-nitrogen cycle to account for N-limitation, and we find that N-related variables have an important role to play in constraining long-term C-uptake. This work has implications for prioritizing field campaigns to collect global data that can help reduce uncertainties in the long-term land-atmosphere C-balance. Though results of this study are specific to LM3V, the processes that characterize this model are not completely divorced from other DGVMs (or reality), and our approach provides valuable insights into how data can be leveraged to be better constrain projections for the land carbon sink.
The Role of Wakes in Modelling Tidal Current Turbines
NASA Astrophysics Data System (ADS)
Conley, Daniel; Roc, Thomas; Greaves, Deborah
2010-05-01
The eventual proper development of arrays of Tidal Current Turbines (TCT) will require a balance which maximizes power extraction while minimizing environmental impacts. Idealized analytical analogues and simple 2-D models are useful tools for investigating questions of a general nature but do not represent a practical tool for application to realistic cases. Some form of 3-D numerical simulations will be required for such applications and the current project is designed to develop a numerical decision-making tool for use in planning large scale TCT projects. The project is predicated on the use of an existing regional ocean modelling framework (the Regional Ocean Modelling System - ROMS) which is modified to enable the user to account for the effects of TCTs. In such a framework where mixing processes are highly parametrized, the fidelity of the quantitative results is critically dependent on the parameter values utilized. In light of the early stage of TCT development and the lack of field scale measurements, the calibration of such a model is problematic. In the absence of explicit calibration data sets, the device wake structure has been identified as an efficient feature for model calibration. This presentation will discuss efforts to design an appropriate calibration scheme which focuses on wake decay and the motivation for this approach, techniques applied, validation results from simple test cases and limitations shall be presented.
Virtual reality haptic human dissection.
Needham, Caroline; Wilkinson, Caroline; Soames, Roger
2011-01-01
This project aims to create a three-dimensional digital model of the human hand and wrist which can be virtually 'dissected' through a haptic interface. Tissue properties will be added to the various anatomical structures to replicate a realistic look and feel. The project will explore the role of the medical artist and investigate the cross-discipline collaborations required in the field of virtual anatomy. The software will be used to train anatomy students in dissection skills before experience on a real cadaver. The effectiveness of the software will be evaluated and assessed both quantitatively as well as qualitatively.
Documentation of volume 3 of the 1978 Energy Information Administration annual report to congress
NASA Astrophysics Data System (ADS)
1980-02-01
In a preliminary overview of the projection process, the relationship between energy prices, supply, and demand is addressed. Topics treated in detail include a description of energy economic interactions, assumptions regarding world oil prices, and energy modeling in the long term beyond 1995. Subsequent sections present the general approach and methodology underlying the forecasts, and define and describe the alternative projection series and their associated assumptions. Short term forecasting, midterm forecasting, long term forecasting of petroleum, coal, and gas supplies are included. The role of nuclear power as an energy source is also discussed.
How Will Climate Change Affect Explosive Cyclones in the Extratropics of the Northern Hemisphere?
NASA Astrophysics Data System (ADS)
Seiler, C.; Zwiers, F. W.
2015-12-01
Explosive cyclones are rapidly intensifying low pressure systems generating severe wind speeds and heavy precipitation primarily in coastal and marine environments, such as the March 2014 nor'easter which developed along the United States coastline, with hurricane force winds in eastern Maine and the Maritimes. This study presents the first analysis on how explosive cyclones respond to climate change in the extratropics of the Northern Hemisphere. An objective-feature tracking algorithm is used to identify and track cyclones from 23 CMIP5 climate models for the recent past (1981-1999) and future (2081-2099). Explosive cyclones are projected to shift northwards by about 2.2° latitude on average in the northern Pacific, with fewer and weaker events south of 45°N, and more frequent and stronger events north of this latitude. This shift is correlated with a poleward shift of the jet stream in the inter-model spread (R = 0.56). In the Atlantic, the total number of explosive cyclones is projected to decrease by about 17% when averaging across models, with the largest changes occurring along North America's East Coast. This reduction is correlated with a decline in the lower-tropospheric Eady growth rate (R = 0.51), and is stronger for models with smaller frequency biases (R = -0.65). The same region is also projected to experience a small intensification of explosive cyclones, with larger vorticity values for models that predict stronger increases in the speed of the jet stream (R = 0.58). This strengthening of the jet stream is correlated with an enhanced sea surface temperature gradient in the North Atlantic (R = -0.63). The inverse relationship between model bias and projection, and the role of model resolution are discussed.
Donetto, Sara; Malone, Mary; Sayer, Lynn; Robert, Glenn
2017-07-01
In response to a policy-driven workforce expansion in England new models of preparing health visitors for practice have been implemented. 'Community of Learning hubs' (COLHs) are one such model, involving different possible approaches to student support in clinical practice placements (for example, 'long arm mentoring' or 'action learning set' sessions). Such models present opportunities for studying the possible effects of spatiality on the learning experiences of students and newly qualified health visitors, and on team relationships more broadly. To explore a 'community of learning hub' model in health visitor education and reflect on the role of space and place in the learning experience and professional identity development of student health visitors. Qualitative research conducted during first year of implementation. Three 'community of learning hub' projects based in two NHS community Trusts in London during the period 2013-2015. Managers and leads (n=7), practice teachers and mentors (n=6) and newly qualified and student health visitors (n=16). Semi-structured, audio-recorded interviews analysed thematically. Participants had differing views as to what constituted a 'hub' in their projects. Two themes emerged around the spaces that shape the learning experience of student and newly qualified health visitors. Firstly, a generalised need for a 'quiet place' which allows pause for reflection but also for sharing experiences and relieving common anxieties. Secondly, the role of physical arrangements in open-plan spaces to promote access to support from more experienced practitioners. Attention to spatiality can shed light on important aspects of teaching and learning practices, and on the professional identities these practices shape and support. New configurations of time and space as part of educational initiatives can surface new insights into existing practices and learning models. Copyright © 2017. Published by Elsevier Ltd.
Utility of Social Modeling for Proliferation Assessment - Preliminary Assessment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coles, Garill A.; Gastelum, Zoe N.; Brothers, Alan J.
2009-06-01
This Preliminary Assessment draft report will present the results of a literature search and preliminary assessment of the body of research, analysis methods, models and data deemed to be relevant to the Utility of Social Modeling for Proliferation Assessment research. This report will provide: 1) a description of the problem space and the kinds of information pertinent to the problem space, 2) a discussion of key relevant or representative literature, 3) a discussion of models and modeling approaches judged to be potentially useful to the research, and 4) the next steps of this research that will be pursued based onmore » this preliminary assessment. This draft report represents a technical deliverable for the NA-22 Simulations, Algorithms, and Modeling (SAM) program. Specifically this draft report is the Task 1 deliverable for project PL09-UtilSocial-PD06, Utility of Social Modeling for Proliferation Assessment. This project investigates non-traditional use of social and cultural information to improve nuclear proliferation assessment, including nonproliferation assessment, proliferation resistance assessments, safeguards assessments and other related studies. These assessments often use and create technical information about the State’s posture towards proliferation, the vulnerability of a nuclear energy system to an undesired event, and the effectiveness of safeguards. This project will find and fuse social and technical information by explicitly considering the role of cultural, social and behavioral factors relevant to proliferation. The aim of this research is to describe and demonstrate if and how social science modeling has utility in proliferation assessment.« less
77 FR 38267 - Information Collection; Role of Communities in Stewardship Contracting Projects
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-27
...) Nature of roles played by the entities involved in developing agreement or contract plans, (c) Benefits... Collection; Role of Communities in Stewardship Contracting Projects AGENCY: Forest Service, USDA. ACTION... revision of a currently approved information collection, Role of Communities in Stewardship Contracting...
Population growth rates: issues and an application.
Godfray, H Charles J; Rees, Mark
2002-01-01
Current issues in population dynamics are discussed in the context of The Royal Society Discussion Meeting 'Population growth rate: determining factors and role in population regulation'. In particular, different views on the centrality of population growth rates to the study of population dynamics and the role of experiments and theory are explored. Major themes emerging include the role of modern statistical techniques in bringing together experimental and theoretical studies, the importance of long-term experimentation and the need for ecology to have model systems, and the value of population growth rate as a means of understanding and predicting population change. The last point is illustrated by the application of a recently introduced technique, integral projection modelling, to study the population growth rate of a monocarpic perennial plant, its elasticities to different life-history components and the evolution of an evolutionarily stable strategy size at flowering. PMID:12396521
Exploration and practice for engineering innovative talents training based on project-driven
NASA Astrophysics Data System (ADS)
Xu, Yishen; Lv, Qingsong; Ye, Yan; Wu, Maocheng; Gu, Jihua
2017-08-01
As one of the "excellent engineer education program" of the Ministry of Education and one of the characteristic majors of Jiangsu Province, the major of optoelectronic information science and engineering in Soochow University has a long history and distinctive features. In recent years, aiming to the talents training objective of "broad foundation, practiceoriented, to be creative", education and teaching reforms have been carried out, which emphasize basis of theoretical teaching, carrier of practical training, promotion of projects and discussion, and development of second class. By optimizing the teaching contents and course system of the theoretical courses, the engineering innovative talents training mode based on the project-driven has been implemented with playing a practical training carrier role and overall managing the second class teaching for cultivating students' innovative spirit and practical ability. Meanwhile, the evaluation mechanism of the students' comprehensive performance mainly based on "scores of theory test" is being gradually changed, and the activities such as scientific research, discipline competitions and social practices are playing an increasing important role in the students' comprehensive assessment. The produced achievements show that the proposed training model based on project-driven could stimulate the students' enthusiasm and initiative to participate in research activities and promote the training of students' ability of engineering practice and consciousness of innovation.
NASA Technical Reports Server (NTRS)
Manzini, E.; Karpechko, A.Yu.; Anstey, J.; Shindell, Drew Todd; Baldwin, M.P.; Black, R.X.; Cagnazzo, C.; Calvo, N.; Charlton-Perez, A.; Christiansen, B.;
2014-01-01
Future changes in the stratospheric circulation could have an important impact on northern winter tropospheric climate change, given that sea level pressure (SLP) responds not only to tropospheric circulation variations but also to vertically coherent variations in troposphere-stratosphere circulation. Here we assess northern winter stratospheric change and its potential to influence surface climate change in the Coupled Model Intercomparison Project-Phase 5 (CMIP5) multimodel ensemble. In the stratosphere at high latitudes, an easterly change in zonally averaged zonal wind is found for the majority of the CMIP5 models, under the Representative Concentration Pathway 8.5 scenario. Comparable results are also found in the 1% CO2 increase per year projections, indicating that the stratospheric easterly change is common feature in future climate projections. This stratospheric wind change, however, shows a significant spread among the models. By using linear regression, we quantify the impact of tropical upper troposphere warming, polar amplification, and the stratospheric wind change on SLP. We find that the intermodel spread in stratospheric wind change contributes substantially to the intermodel spread in Arctic SLP change. The role of the stratosphere in determining part of the spread in SLP change is supported by the fact that the SLP change lags the stratospheric zonally averaged wind change. Taken together, these findings provide further support for the importance of simulating the coupling between the stratosphere and the troposphere, to narrow the uncertainty in the future projection of tropospheric circulation changes.
Guillermet, Elise; Alfa, Daleb Abdoulaye; Gbodja, Romule; Jaillard, Philippe
2017-04-19
At the end of 2013, the Government of Benin and Agence de Médecine Préventive (AMP) launched a demonstration project in Comé Health Zone (HZ) to optimize the vaccine supply chain. A key part of the demonstration project was the creation of an "informed push model" of vaccine distribution supported by a new logistician position at the health zone (district) level. At the conclusion of the demonstration project in 2015, the authors conducted an anthropological study consisting of semi-structured interviews with 62 participants to assess how the new model changed the professional identities, roles, responsibilities, and practices of personnel involved in vaccine management during and just after the demonstration project end in Comé HZ. The study found that health workers considered the logistician as a key player in enabling them to perform their public health mission, notably by improving knowledge and practices in vaccine management, providing supportive supervision, and improving the availability of vaccines and other supplies so that immunization sessions could occur more reliably and professionally within the communities they served. The demonstration project was widely accepted among study participants. The study was approved by the Cotonou Ethics Committee (CER-ISBA No. 56 dated 09/04/2015). Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Monier, Erwan; Xu, Liyi; Snyder, Richard
2016-04-26
Scientific challenges exist on how to extract information from the wide range of projected impacts simulated by crop models driven by climate ensembles. A stronger focus is required to understand and identify the mechanisms and drivers of projected changes in crop yield. In this study, we investigate the robustness of future projections of five metrics relevant to agriculture stakeholders (accumulated frost days, dry days, growing season length, plant heat stress and start of field operations). We use a large ensemble of climate simulations by the MIT IGSM-CAM integrated assessment model that accounts for the uncertainty associated with different emissions scenarios,more » climate sensitivities, and representations of natural variability. By the end of the century, the US is projected to experience fewer frosts, a longer growing season, more heat stress and an earlier start of field operations-although the magnitude and even the sign of these changes vary greatly by regions. Projected changes in dry days are shown not to be robust. We highlight the important role of natural variability, in particular for changes in dry days (a precipitation-related index) and heat stress (a threshold index). The wide range of our projections compares well the CMIP5 multi-model ensemble, especially for temperature-related indices. This suggests that using a single climate model that accounts for key sources of uncertainty can provide an efficient and complementary framework to the more common approach of multi-model ensembles. We also show that greenhouse gas mitigation has the potential to significantly reduce adverse effects (heat stress, risks of pest and disease) of climate change on agriculture, while also curtailing potentially beneficial impacts (earlier planting, possibility for multiple cropping). A major benefit of climate mitigation is potentially preventing changes in several indices to emerge from the noise of natural variability, even by 2100. This has major implications considering that any significant climate change impacts on crop yield would result in nation-wide changes in the agriculture sector. Lastly, we argue that the analysis of agro-climate indices should more often complement crop model projections, as they can provide valuable information to better understand the drivers of changes in crop yield and production and thus better inform adaptation decisions.« less
NASA Astrophysics Data System (ADS)
Monier, Erwan; Xu, Liyi; Snyder, Richard
2016-05-01
Scientific challenges exist on how to extract information from the wide range of projected impacts simulated by crop models driven by climate ensembles. A stronger focus is required to understand and identify the mechanisms and drivers of projected changes in crop yield. In this study, we investigate the robustness of future projections of five metrics relevant to agriculture stakeholders (accumulated frost days, dry days, growing season length, plant heat stress and start of field operations). We use a large ensemble of climate simulations by the MIT IGSM-CAM integrated assessment model that accounts for the uncertainty associated with different emissions scenarios, climate sensitivities, and representations of natural variability. By the end of the century, the US is projected to experience fewer frosts, a longer growing season, more heat stress and an earlier start of field operations—although the magnitude and even the sign of these changes vary greatly by regions. Projected changes in dry days are shown not to be robust. We highlight the important role of natural variability, in particular for changes in dry days (a precipitation-related index) and heat stress (a threshold index). The wide range of our projections compares well the CMIP5 multi-model ensemble, especially for temperature-related indices. This suggests that using a single climate model that accounts for key sources of uncertainty can provide an efficient and complementary framework to the more common approach of multi-model ensembles. We also show that greenhouse gas mitigation has the potential to significantly reduce adverse effects (heat stress, risks of pest and disease) of climate change on agriculture, while also curtailing potentially beneficial impacts (earlier planting, possibility for multiple cropping). A major benefit of climate mitigation is potentially preventing changes in several indices to emerge from the noise of natural variability, even by 2100. This has major implications considering that any significant climate change impacts on crop yield would result in nation-wide changes in the agriculture sector. Finally, we argue that the analysis of agro-climate indices should more often complement crop model projections, as they can provide valuable information to better understand the drivers of changes in crop yield and production and thus better inform adaptation decisions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Monier, Erwan; Xu, Liyi; Snyder, Richard
Scientific challenges exist on how to extract information from the wide range of projected impacts simulated by crop models driven by climate ensembles. A stronger focus is required to understand and identify the mechanisms and drivers of projected changes in crop yield. In this study, we investigate the robustness of future projections of five metrics relevant to agriculture stakeholders (accumulated frost days, dry days, growing season length, plant heat stress and start of field operations). We use a large ensemble of climate simulations by the MIT IGSM-CAM integrated assessment model that accounts for the uncertainty associated with different emissions scenarios,more » climate sensitivities, and representations of natural variability. By the end of the century, the US is projected to experience fewer frosts, a longer growing season, more heat stress and an earlier start of field operations-although the magnitude and even the sign of these changes vary greatly by regions. Projected changes in dry days are shown not to be robust. We highlight the important role of natural variability, in particular for changes in dry days (a precipitation-related index) and heat stress (a threshold index). The wide range of our projections compares well the CMIP5 multi-model ensemble, especially for temperature-related indices. This suggests that using a single climate model that accounts for key sources of uncertainty can provide an efficient and complementary framework to the more common approach of multi-model ensembles. We also show that greenhouse gas mitigation has the potential to significantly reduce adverse effects (heat stress, risks of pest and disease) of climate change on agriculture, while also curtailing potentially beneficial impacts (earlier planting, possibility for multiple cropping). A major benefit of climate mitigation is potentially preventing changes in several indices to emerge from the noise of natural variability, even by 2100. This has major implications considering that any significant climate change impacts on crop yield would result in nation-wide changes in the agriculture sector. Lastly, we argue that the analysis of agro-climate indices should more often complement crop model projections, as they can provide valuable information to better understand the drivers of changes in crop yield and production and thus better inform adaptation decisions.« less
NASA Astrophysics Data System (ADS)
Lyu, Z.; Helene, G.; He, Y.; Zhuang, Q.; McGuire, A. D.; Bennett, A.; Breen, A. L.; Clein, J.; Euskirchen, E. S.; Johnson, K. D.; Kurkowski, T. A.; Pastick, N. J.; Rupp, S. T.; Wylie, B. K.; Zhu, Z.
2017-12-01
Wetlands are important terrestrial ecosystems in Alaska. It is important to understand and assess their role in the regional carbon dynamics in response to historical and projected environmental conditions. A coupled modeling framework that incorporates a fire disturbance model and two biogeochemical models was used to assess the relative influence of changing climate, atmospheric carbon dioxide (CO2) concentration, and fire regime on the historical and future carbon balance in wetland ecosystems of the four main Landscape Conservation Cooperatives (LCCs) of Alaska. Simulations were conducted for the historical period (1950-2009) and future projection period (2010-2099). These simulations estimate that the total carbon (C) storage in wetland ecosystems of Alaska is 5556 Tg C in 2009, with 89% of the C stored in soils. An estimated 175 Tg C was lost during the historical period, which is attributed to greater C lost from the Northwest Boreal LCC than C gained from the other three LCCs. The simulations for the projection period were conducted for six different scenarios driven by climate forcings from two different climate models for each of three CO2 emission scenarios. The mean total carbon storage increased 3.94 Tg C/yr by 2099, with variability among the simulations ranging from 2.02 Tg C/yr to 4.42 Tg C/yr. Across the four LCCs, the largest relative C storage increase occurred in the Arctic and North Pacific LCCs. These increases were primarily driven by increases in net primary production (NPP) that were greater than increases in heterotrophic respiration and fire emissions. Our analysis further indicates that NPP increase was primarily driven by CO2 fertilization ( 5% per 100 ppmv increase) as well as by increases in air temperature ( 1% per ° increase). Increases air temperature were estimated to be the primary cause for a projected 47.7% mean increase in wetlands biogenic CH4 emissions among the simulations ( 15% per ° increase). The combined effects of ecosystem CO2 sequestration and increased CH4 emissions result in a weaker global warming potential (GWP) for wetlands ecosystems in Alaska. Overall, this study estimates that wetland ecosystems of Alaska will transition into a C sink with less contribution to the global warming enhancement.
Projected increases in the annual flood pulse of the Western Amazon
NASA Astrophysics Data System (ADS)
Zulkafli, Zed; Buytaert, Wouter; Manz, Bastian; Véliz Rosas, Claudia; Willems, Patrick; Lavado-Casimiro, Waldo; Guyot, Jean-Loup; Santini, William
2016-01-01
The impact of a changing climate on the Amazon basin is a subject of intensive research because of its rich biodiversity and the significant role of rainforests in carbon cycling. Climate change has also a direct hydrological impact, and increasing efforts have focused on understanding the hydrological dynamics at continental and subregional scales, such as the Western Amazon. New projections from the Coupled Model Inter-comparison Project Phase 5 ensemble indicate consistent climatic warming and increasing seasonality of precipitation in the Peruvian Amazon basin. Here we use a distributed land surface model to quantify the potential impact of this change in the climate on the hydrological regime of the upper Amazon river. Using extreme value analysis, historical and future projections of the annual minimum, mean, and maximum river flows are produced for a range of return periods between 1 and 100 yr. We show that the RCP 4.5 and 8.5 scenarios of climate change project an increased severity of the wet season flood pulse (7.5% and 12% increases respectively for the 100 yr return floods). These findings agree with previously projected increases in high extremes under the Special Report on Emissions Scenarios climate projections, and are important to highlight due to the potential consequences on reproductive processes of in-stream species, swamp forest ecology, and socio-economy in the floodplain, amidst a growing literature that more strongly emphasises future droughts and their impact on the viability of the rainforest system over greater Amazonia.
The interplay of climate and land use change affects the distribution of EU bumblebees.
Marshall, Leon; Biesmeijer, Jacobus C; Rasmont, Pierre; Vereecken, Nicolas J; Dvorak, Libor; Fitzpatrick, Una; Francis, Frédéric; Neumayer, Johann; Ødegaard, Frode; Paukkunen, Juho P T; Pawlikowski, Tadeusz; Reemer, Menno; Roberts, Stuart P M; Straka, Jakub; Vray, Sarah; Dendoncker, Nicolas
2018-01-01
Bumblebees in Europe have been in steady decline since the 1900s. This decline is expected to continue with climate change as the main driver. However, at the local scale, land use and land cover (LULC) change strongly affects the occurrence of bumblebees. At present, LULC change is rarely included in models of future distributions of species. This study's objective is to compare the roles of dynamic LULC change and climate change on the projected distribution patterns of 48 European bumblebee species for three change scenarios until 2100 at the scales of Europe, and Belgium, Netherlands and Luxembourg (BENELUX). We compared three types of models: (1) only climate covariates, (2) climate and static LULC covariates and (3) climate and dynamic LULC covariates. The climate and LULC change scenarios used in the models include, extreme growth applied strategy (GRAS), business as might be usual and sustainable European development goals. We analysed model performance, range gain/loss and the shift in range limits for all bumblebees. Overall, model performance improved with the introduction of LULC covariates. Dynamic models projected less range loss and gain than climate-only projections, and greater range loss and gain than static models. Overall, there is considerable variation in species responses and effects were most pronounced at the BENELUX scale. The majority of species were predicted to lose considerable range, particularly under the extreme growth scenario (GRAS; overall mean: 64% ± 34). Model simulations project a number of local extinctions and considerable range loss at the BENELUX scale (overall mean: 56% ± 39). Therefore, we recommend species-specific modelling to understand how LULC and climate interact in future modelling. The efficacy of dynamic LULC change should improve with higher thematic and spatial resolution. Nevertheless, current broad scale representations of change in major land use classes impact modelled future distribution patterns. © 2017 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.
Active learning in capstone design courses.
Goldberg, Jay R
2012-01-01
There is a growing trend to encourage students to take a more active role in their own education. Many schools are moving away from the sage on the stage to the guide on the side model where the instructor is a facilitator of learning. In this model, the emphasis is more on learning and less on teaching, and it requires instructors to incorporate more active and student-centered learning methods into their courses. These methods include collaborative, cooperative, problem-based, and project-based learning.
Mode and Intermediate Waters in Earth System Models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gnanadesikan, Anand; Sarmiento, Jorge L.
This report describes work done as part of a joint Princeton-Johns Hopkins project to look at the impact of mode and intermediate waters in Earth System Models. The Johns Hopkins portion of this work focussed on the role of lateral mixing in ventilating such waters, with important implications for hypoxia, the uptake of anthropogenic carbon, the dynamics of El Nino and carbon pumps. The Johns Hopkins group also collaborated with the Princeton Group to help develop a watermass diagnostics framework.
Welborn, B Locke; Gunter, Benjamin C; Vezich, I Stephanie; Lieberman, Matthew D
2017-04-01
The false consensus effect (FCE), the tendency to project our attitudes and opinions on to others, is a pervasive bias in social reasoning with a range of ramifications for individuals and society. Research in social psychology has suggested that numerous factors (anchoring and adjustment, accessibility, motivated projection, etc.) may contribute to the FCE. In this study, we examine the neural correlates of the FCE and provide evidence that motivated projection plays a significant role. Activity in reward regions (ventromedial pFC and bilateral nucleus accumbens) during consensus estimation was positively associated with bias, whereas activity in right ventrolateral pFC (implicated in emotion regulation) was inversely associated with bias. Activity in reward and regulatory regions accounted for half of the total variation in consensus bias across participants (R 2 = .503). This research complements models of the FCE in social psychology, providing a glimpse into the neural mechanisms underlying this important phenomenon.
Projected Response of Low-Level Convergence and Associated Precipitation to Greenhouse Warming
NASA Astrophysics Data System (ADS)
Weller, Evan; Jakob, Christian; Reeder, Michael J.
2017-10-01
The parameterization of convection in climate models is a large source of uncertainty in projecting future precipitation changes. Here an objective method to identify organized low-level convergence lines has been used to better understand how atmospheric convection is organized and projected to change, as low-level convergence plays an important role in the processes leading to precipitation. The frequency and strength of convergence lines over both ocean and land in current climate simulations is too low compared to reanalysis data. Projections show a further reduction in the frequency and strength of convergence lines over the midlatitudes. In the tropics, the largest changes in frequency are generally associated with shifts in major low-latitude convergence zones, consistent with changes in the precipitation. Further, examining convergence lines when in the presence or absence of precipitation results in large spatial contrasts, providing a better understanding of regional changes in terms of thermodynamic and dynamic effects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Juenger, Thomas; Wolfrum, Ed
Our DOE funded project focused on characterizing natural variation in C4 perennial grasses including switchgrass (Panicum virgatum) and Hall’s panicgrass (Panicum hallii). The main theme of our project was to better understand traits linked with plant performance and that impact the utility of plant biomass as a biofuel feedstock. In addition, our project developed tools and resources for studying genetic variation in Panicum hallii. Our project successfully screened both Panicum virgatum and Panicum hallii diverse natural collections for a host of phenotypes, developed genetic mapping populations for both species, completed genetic mapping for biofuel related traits, and helped in themore » development of genomic resources of Panicum hallii. Together, these studies have improved our understanding of the role of genetic and environmental factors in impacting plant performance. This information, along with new tools, will help foster the improvement of perennial grasses for feedstock applications.« less
Climate Change Impacts at Department of Defense
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kotamarthi, Rao; Wang, Jiali; Zoebel, Zach
This project is aimed at providing the U.S. Department of Defense (DoD) with a comprehensive analysis of the uncertainty associated with generating climate projections at the regional scale that can be used by stakeholders and decision makers to quantify and plan for the impacts of future climate change at specific locations. The merits and limitations of commonly used downscaling models, ranging from simple to complex, are compared, and their appropriateness for application at installation scales is evaluated. Downscaled climate projections are generated at selected DoD installations using dynamic and statistical methods with an emphasis on generating probability distributions of climatemore » variables and their associated uncertainties. The sites selection and selection of variables and parameters for downscaling was based on a comprehensive understanding of the current and projected roles that weather and climate play in operating, maintaining, and planning DoD facilities and installations.« less
NASA Astrophysics Data System (ADS)
Prudhomme, C.; Haxton, T.; Crooks, S.; Jackson, C.; Barkwith, A.; Williamson, J.; Kelvin, J.; Mackay, J.; Wang, L.; Young, A.; Watts, G.
2012-12-01
The dataset Future Flows Hydrology was developed as part of the project "Future Flows and Groundwater Levels" to provide a consistent set of transient daily river flow and monthly groundwater levels projections across England, Wales and Scotland to enable the investigation of the role of climate variability on river flow and groundwater levels nationally and how this may change in the future. Future Flows Hydrology is derived from Future Flows Climate, a national ensemble projection derived from the Hadley Centre's ensemble projection HadRM3-PPE to provide a consistent set of climate change projections for the whole of Great Britain at both space and time resolutions appropriate for hydrological applications. Three hydrological models and one groundwater level model were used to derive Future Flows Hydrology, with 30 river sites simulated by two hydrological models to enable assessment of hydrological modelling uncertainty in studying the impact of climate change on the hydrology. Future Flows Hydrology contains an 11-member ensemble of transient projections from January 1951 to December 2098, each associated with a single realisation from a different variant of HadRM3 and a single hydrological model. Daily river flows are provided for 281 river catchments and monthly groundwater levels at 24 boreholes as .csv files containing all 11 ensemble members. When separate simulations are done with two hydrological models, two separate .csv files are provided. Because of potential biases in the climate-hydrology modelling chain, catchment fact sheets are associated with each ensemble. These contain information on the uncertainty associated with the hydrological modelling when driven using observed climate and Future Flows Climate for a period representative of the reference time slice 1961-1990 as described by key hydrological statistics. Graphs of projected changes for selected hydrological indicators are also provided for the 2050s time slice. Limitations associated with the dataset are provided, along with practical recommendation of use. Future Flows Hydrology is freely available for non-commercial use under certain licensing conditions. For each study site, catchment averages of daily precipitation and monthly potential evapotranspiration, used to drive the hydrological models, are made available, so that hydrological modelling uncertainty under climate change conditions can be explored further. doi:10.5285/f3723162-4fed-4d9d-92c6-dd17412fa37b.
NASA Astrophysics Data System (ADS)
Prudhomme, C.; Haxton, T.; Crooks, S.; Jackson, C.; Barkwith, A.; Williamson, J.; Kelvin, J.; Mackay, J.; Wang, L.; Young, A.; Watts, G.
2013-03-01
The dataset Future Flows Hydrology was developed as part of the project "Future Flows and Groundwater Levels'' to provide a consistent set of transient daily river flow and monthly groundwater level projections across England, Wales and Scotland to enable the investigation of the role of climate variability on river flow and groundwater levels nationally and how this may change in the future. Future Flows Hydrology is derived from Future Flows Climate, a national ensemble projection derived from the Hadley Centre's ensemble projection HadRM3-PPE to provide a consistent set of climate change projections for the whole of Great Britain at both space and time resolutions appropriate for hydrological applications. Three hydrological models and one groundwater level model were used to derive Future Flows Hydrology, with 30 river sites simulated by two hydrological models to enable assessment of hydrological modelling uncertainty in studying the impact of climate change on the hydrology. Future Flows Hydrology contains an 11-member ensemble of transient projections from January 1951 to December 2098, each associated with a single realisation from a different variant of HadRM3 and a single hydrological model. Daily river flows are provided for 281 river catchments and monthly groundwater levels at 24 boreholes as .csv files containing all 11 ensemble members. When separate simulations are done with two hydrological models, two separate .csv files are provided. Because of potential biases in the climate-hydrology modelling chain, catchment fact sheets are associated with each ensemble. These contain information on the uncertainty associated with the hydrological modelling when driven using observed climate and Future Flows Climate for a period representative of the reference time slice 1961-1990 as described by key hydrological statistics. Graphs of projected changes for selected hydrological indicators are also provided for the 2050s time slice. Limitations associated with the dataset are provided, along with practical recommendation of use. Future Flows Hydrology is freely available for non-commercial use under certain licensing conditions. For each study site, catchment averages of daily precipitation and monthly potential evapotranspiration, used to drive the hydrological models, are made available, so that hydrological modelling uncertainty under climate change conditions can be explored further. doi:10.5285/f3723162-4fed-4d9d-92c6-dd17412fa37b
The evolution of the search for novel genes in mammalian sex determination: from mice to men.
Arboleda, Valerie A; Vilain, Eric
2011-01-01
Disorders of sex determination are a genetically heterogeneous group of rare disorders, presenting with sex-specific phenotypes and variable expressivity. Prior to the advent of the Human Genome Project, the identification of novel mammalian sex determination genes was hindered by the rarity of disorders of sex determination and small family sizes that made traditional linkage approaches difficult, if not impossible. This article reviews the revolutionary role of the Human Genome Project in the history of sex determination research and highlights the important role of inbred mouse models in elucidating the role of identified sex determination genes in mammalian sex determination. Next generation sequencing technologies has made it possible to sequence complete human genomes or exomes for the purpose of providing a genetic diagnosis to more patients with unexplained disorders of sex determination and identifying novel sex determination genes. However, beyond novel gene discovery, these tools have the power to inform us on more intricate and complex regulation-taking place within the heterogeneous cells that make up the testis and ovary. Copyright © 2011 Elsevier Inc. All rights reserved.
Medical Writing Competency Model - Section 1: Functions, Tasks, and Activities.
Clemow, David B; Wagner, Bertil; Marshallsay, Christopher; Benau, Dan; L'Heureux, Darryl; Brown, David H; Dasgupta, Devjani Ghosh; Girten, Eileen; Hubbard, Frank; Gawrylewski, Helle-Mai; Ebina, Hiroko; Stoltenborg, Janet; York, J P; Green, Kim; Wood, Linda Fossati; Toth, Lisa; Mihm, Michael; Katz, Nancy R; Vasconcelos, Nina-Maria; Sakiyama, Norihisa; Whitsell, Robin; Gopalakrishnan, Shobha; Bairnsfather, Susan; Wanderer, Tatyana; Schindler, Thomas M; Mikyas, Yeshi; Aoyama, Yumiko
2018-01-01
This article provides Section 1 of the 2017 Edition 2 Medical Writing Competency Model that describes the core work functions and associated tasks and activities related to professional medical writing within the life sciences industry. The functions in the Model are scientific communication strategy; document preparation, development, and finalization; document project management; document template, standard, format, and style development and maintenance; outsourcing, alliance partner, and client management; knowledge, skill, ability, and behavior development and sharing; and process improvement. The full Model also includes Section 2, which covers the knowledge, skills, abilities, and behaviors needed for medical writers to be effective in their roles; Section 2 is presented in a companion article. Regulatory, publication, and other scientific writing as well as management of writing activities are covered. The Model was developed to aid medical writers and managers within the life sciences industry regarding medical writing hiring, training, expectation and goal setting, performance evaluation, career development, retention, and role value sharing to cross-functional partners.
Taniguchi, H
1985-11-01
Resolutions adopted by the 12th Annual Asian Parasite Control/Family Planning (APCO/FP) Conference held in Colombo, Sri Lanka urge the incorporation of quality of life issues of all dimensions in projects of all participating countries. 1 study discussed during the conference concerned health volunteers of the integrated project in Sri Lanka, which analyzes motivating factors which make community young people work on a voluntary basis. Another topic covered was the role of women in the achievement of primary health care. Video reports were presented by Bangladesh on family planning and parasite control activities, Brazil on utilization of existing organizations to improve successful integrated projects, China on making twin concerns of family planning and primary health care, Indonesia on strengthening urban FP/MCH clinics, Korea on health promotion through the integrated project, Malaysia on the NADI program, the Philippines on the Cebu model of integrated health care, and Thailand on fee charging urban programs.
NASA Astrophysics Data System (ADS)
Myers, B.; Wiggins, H. V.; Turner-Bogren, E. J.; Warburton, J.
2017-12-01
Project Managers at the Arctic Research Consortium of the U.S. (ARCUS) lead initiatives to convene, communicate with, and connect the Arctic research community across challenging disciplinary, geographic, temporal, and cultural boundaries. They regularly serve as the organizing hubs, archivists and memory-keepers for collaborative projects comprised of many loosely affiliated partners. As leading organizers of large open science meetings and other outreach events, they also monitor the interdisciplinary landscape of community needs, concerns, opportunities, and emerging research directions. However, leveraging the ARCUS Project Manager role to strategically build out the intangible infrastructure necessary to advance Arctic research requires a unique set of knowledge, skills, and experience. Drawing on a range of lessons learned from past and ongoing experiences with collaborative science, education and outreach programming, this presentation will highlight a model of ARCUS project management that we believe works best to support and sustain our community in its long-term effort to conquer the complexities of Arctic research.
Fuel properties to enable lifted-flame combustion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kurtz, Eric
The Fuel Properties to Enable Lifted-Flame Combustion project responded directly to solicitation DE-FOA-0000239 AOI 1A, Fuels and Lubricants for Advanced Combustion Regimes. This subtopic was intended to encompass clean and highly-efficient, liquid-fueled combustion engines to achieve extremely low engine-out nitrogen oxides (NOx) and particulate matter (PM) as a target and similar efficiency as state-of-the-art direct injection diesel engines. The intent of this project was to identify how fuel properties can be used to achieve controllable Leaner Lifted Flame Combustion (LLFC) with low NOx and PM emissions. Specifically, this project was expected to identify and test key fuel properties to enablemore » LLFC and their compatibility with current fuel systems and to enhance combustion models to capture the effect of fuel properties on advanced combustion. Successful demonstration of LLFC may reduce the need for after treatment devices, thereby reducing costs and improving thermal efficiency. The project team consisted of key technical personnel from Ford Motor Company (FMC), the University of Wisconsin-Madison (UW), Sandia National Laboratories (SNL) and Lawrence Livermore National Laboratories (LLNL). Each partner had key roles in achieving project objectives. FMC investigated fuel properties relating to LLFC and sooting tendency. Together, FMC and UW developed and integrated 3D combustion models to capture fuel property combustion effects. FMC used these modeling results to develop a combustion system and define fuel properties to support a single-cylinder demonstration of fuel-enabled LLFC. UW investigated modeling the flame characteristics and emissions behavior of different fuels, including those with different cetane number and oxygen content. SNL led spray combustion experiments to quantify the effect of key fuel properties on combustion characteristics critical for LLFC, as well as single cylinder optical engine experiments to improve fundamental understanding of flame lift-off, generate model validation data, and demonstrate LLFC concurrent with FMC efforts. Additionally, LLNL was added to the project during the second year to develop a detailed kinetic mechanism for a key oxygenate to support CFD modeling. Successful completion of this project allowed the team to enhance fundamental understanding of LLFC, improve the state of current combustion models and increase understanding of desired fuel properties. This knowledge also improves our knowledge of how cost effective and environmentally friendly renewable fuels can assist in helping meet future emission and greenhouse gas regulations.« less
Opening new institutional spaces for grappling with uncertainty: A constructivist perspective
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duncan, Ronlyn, E-mail: Ronlyn.Duncan@lincoln.ac.nz
In the context of an increasing reliance on predictive computer simulation models to calculate potential project impacts, it has become common practice in impact assessment (IA) to call on proponents to disclose uncertainties in assumptions and conclusions assembled in support of a development project. Understandably, it is assumed that such disclosures lead to greater scrutiny and better policy decisions. This paper questions this assumption. Drawing on constructivist theories of knowledge and an analysis of the role of narratives in managing uncertainty, I argue that the disclosure of uncertainty can obscure as much as it reveals about the impacts of amore » development project. It is proposed that the opening up of institutional spaces that can facilitate the negotiation and deliberation of foundational assumptions and parameters that feed into predictive models could engender greater legitimacy and credibility for IA outcomes. - Highlights: Black-Right-Pointing-Pointer A reliance on supposedly objective disclosure is unreliable in the predictive model context in which IA is now embedded. Black-Right-Pointing-Pointer A reliance on disclosure runs the risk of reductionism and leaves unexamined the social-interactive aspects of uncertainty. Black-Right-Pointing-Pointer Opening new institutional spaces could facilitate deliberation on foundational predictive model assumptions.« less
Numerical Simulations of Airflows and Tracer Transport in the Southwestern United States.
NASA Astrophysics Data System (ADS)
Yamada, Tetsuji
2000-03-01
Project MOHAVE (Measurement of Haze and Visual Effects) produced a unique set of tracer data over the southwestern United States. During the summer of 1992, a perfluorocarbon tracer gas was released from the Mohave Power Project (MPP), a large coal-fired facility in southern Nevada. Three-dimensional atmospheric models, the Higher-Order Turbulence Model for Atmospheric Circulation-Random Puff Transport and Diffusion (HOTMAC-RAPTAD), were used to simulate the concentrations of tracer gas that were observed during a portion of the summer intensive period of Project MOHAVE. The study area extended from northwestern Arizona to southern Nevada and included Lake Mead, the Colorado River Valley, the Grand Canyon National Park, and MPP. The computational domain was 368 km in the east-west direction by 252 km in the north-south direction. Rawinsonde and radar wind profiler data were used to provide initial and boundary conditions to HOTMAC simulations. HOTMAC with a horizontal grid spacing of 4 km was able to simulate the diurnal variations of drainage and upslope flows along the Grand Canyon and Colorado River Valley. HOTMAC also captured the diurnal variations of turbulence, which played important roles for the transport and diffusion simulations by RAPTAD. The modeled tracer gas concentrations were compared with observations. The model's performance was evaluated statistically.
Variability and Predictability of Land-Atmosphere Interactions: Observational and Modeling Studies
NASA Technical Reports Server (NTRS)
Roads, John; Oglesby, Robert; Marshall, Susan; Robertson, Franklin R.
2002-01-01
The overall goal of this project is to increase our understanding of seasonal to interannual variability and predictability of atmosphere-land interactions. The project objectives are to: 1. Document the low frequency variability in land surface features and associated water and energy cycles from general circulation models (GCMs), observations and reanalysis products. 2. Determine what relatively wet and dry years have in common on a region-by-region basis and then examine the physical mechanisms that may account for a significant portion of the variability. 3. Develop GCM experiments to examine the hypothesis that better knowledge of the land surface enhances long range predictability. This investigation is aimed at evaluating and predicting seasonal to interannual variability for selected regions emphasizing the role of land-atmosphere interactions. Of particular interest are the relationships between large, regional and local scales and how they interact to account for seasonal and interannual variability, including extreme events such as droughts and floods. North and South America, including the Global Energy and Water Cycle Experiment Continental International Project (GEWEX GCIP), MacKenzie, and LBA basins, are currently being emphasized. We plan to ultimately generalize and synthesize to other land regions across the globe, especially those pertinent to other GEWEX projects.
Systems-Oriented Workplace Learning Experiences for Early Learners: Three Models.
O'Brien, Bridget C; Bachhuber, Melissa R; Teherani, Arianne; Iker, Theresa M; Batt, Joanne; O'Sullivan, Patricia S
2017-05-01
Early workplace learning experiences may be effective for learning systems-based practice. This study explores systems-oriented workplace learning experiences (SOWLEs) for early learners to suggest a framework for their development. The authors used a two-phase qualitative case study design. In Phase 1 (spring 2014), they prepared case write-ups based on transcribed interviews from 10 SOWLE leaders at the authors' institution and, through comparative analysis of cases, identified three SOWLE models. In Phase 2 (summer 2014), studying seven 8-week SOWLE pilots, the authors used interview and observational data collected from the seven participating medical students, two pharmacy students, and site leaders to construct case write-ups of each pilot and to verify and elaborate the models. In Model 1, students performed specific patient care activities that addressed a system gap. Some site leaders helped students connect the activities to larger systems problems and potential improvements. In Model 2, students participated in predetermined systems improvement (SI) projects, gaining experience in the improvement process. Site leaders had experience in SI and often had significant roles in the projects. In Model 3, students worked with key stakeholders to develop a project and conduct a small test of change. They experienced most elements of an improvement cycle. Site leaders often had experience with SI and knew how to guide and support students' learning. Each model could offer systems-oriented learning opportunities provided that key elements are in place including site leaders facile in SI concepts and able to guide students in SOWLE activities.
Kurtz, Steven M; Ong, Kevin L; Lau, Edmund; Bozic, Kevin J
2014-04-16
Few studies have explored the role of the National Health Expenditure and macroeconomics on the utilization of total joint replacement. The economic downturn has raised questions about the sustainability of growth for total joint replacement in the future. Previous projections of total joint replacement demand in the United States were based on data up to 2003 using a statistical methodology that neglected macroeconomic factors, such as the National Health Expenditure. Data from the Nationwide Inpatient Sample (1993 to 2010) were used with United States Census and National Health Expenditure data to quantify historical trends in total joint replacement rates, including the two economic downturns in the 2000s. Primary and revision hip and knee arthroplasty were identified using codes from the International Classification of Diseases, Ninth Revision, Clinical Modification. Projections in total joint replacement were estimated using a regression model incorporating the growth in population and rate of arthroplasties from 1993 to 2010 as a function of age, sex, race, and census region using the National Health Expenditure as the independent variable. The regression model was used in conjunction with government projections of National Health Expenditure from 2011 to 2021 to estimate future arthroplasty rates in subpopulations of the United States and to derive national estimates. The growth trend for the incidence of joint arthroplasty, for the overall United States population as well as for the United States workforce, was insensitive to economic downturns. From 2009 to 2010, the total number of procedures increased by 6.0% for primary total hip arthroplasty, 6.1% for primary total knee arthroplasty, 10.8% for revision total hip arthroplasty, and 13.5% for revision total knee arthroplasty. The National Health Expenditure model projections for primary hip replacement in 2020 were higher than a previously projected model, whereas the current model estimates for total knee arthroplasty were lower. Economic downturns in the 2000s did not substantially influence the national growth trends for hip and knee arthroplasty in the United States. These latest updated projections provide a basis for surgeons, hospitals, payers, and policy makers to plan for the future demand for total joint replacement surgery.
Williams, Hefin Wyn; Cross, Dónall Eoin; Crump, Heather Louise; Drost, Cornelis Jan; Thomas, Christopher James
2015-08-28
There is increasing evidence that the geographic distribution of tick species is changing. Whilst correlative Species Distribution Models (SDMs) have been used to predict areas that are potentially suitable for ticks, models have often been assessed without due consideration for spatial patterns in the data that may inflate the influence of predictor variables on species distributions. This study used null models to rigorously evaluate the role of climate and the potential for climate change to affect future climate suitability for eight European tick species, including several important disease vectors. We undertook a comparative assessment of the performance of Maxent and Mahalanobis Distance SDMs based on observed data against those of null models based on null species distributions or null climate data. This enabled the identification of species whose distributions demonstrate a significant association with climate variables. Latest generation (AR5) climate projections were subsequently used to project future climate suitability under four Representative Concentration Pathways (RCPs). Seven out of eight tick species exhibited strong climatic signals within their observed distributions. Future projections intimate varying degrees of northward shift in climate suitability for these tick species, with the greatest shifts forecasted under the most extreme RCPs. Despite the high performance measure obtained for the observed model of Hyalomma lusitanicum, it did not perform significantly better than null models; this may result from the effects of non-climatic factors on its distribution. By comparing observed SDMs with null models, our results allow confidence that we have identified climate signals in tick distributions that are not simply a consequence of spatial patterns in the data. Observed climate-driven SDMs for seven out of eight species performed significantly better than null models, demonstrating the vulnerability of these tick species to the effects of climate change in the future.
'I felt that I was benefiting someone': youth as agents of change in a refugee community project.
Makhoul, Jihad; Alameddine, Maysam; Afifi, Rema A
2012-10-01
Youth can be 'powerful catalysts' in their own and their community's development. The paper describes the experience of youth based on their participation as decision makers in and implementers of a community-based research project in a Palestinian refugee camp of Beirut, Lebanon. In-depth interviews were conducted with 18 youth and 10 of their family members or friends. The participants were asked to describe the reasons they joined the project, why they stayed on, what they liked most/least about the project, how the project influenced their lives and what they would change about the project. Thematic analysis identified recurrent themes. Youth joined the program because of its benefit to children and their community. They stayed with the program because of the solidarity they found with the team and because of their relationship with the children. They perceived that they had an important role to play in the project's success. Youth acknowledged all the skills they gained from the project. Focus groups with others corroborated their statements. This project confirmed that youth can be powerful change agents in their own development and that of their communities. An Enabling Attributes Model is proposed for projects that aim to actively engage youth as community catalysts.
CAUSES: Clouds Above the United States and Errors at the Surface
NASA Astrophysics Data System (ADS)
Ma, H. Y.; Klein, S. A.; Xie, S.; Morcrette, C. J.; Van Weverberg, K.; Zhang, Y.; Lo, M. H.
2015-12-01
The Clouds Above the United States and Errors at the Surface (CAUSES) is a new joint Global Atmospheric System Studies/Regional and Global Climate model/Atmospheric System Research (GASS/RGCM/ASR) intercomparison project to evaluate the central U.S. summertime surface warm biases seen in many weather and climate models. The main focus is to identify the role of cloud, radiation, and precipitation processes in contributing to surface air temperature biases. In this project, we use short-term hindcast approach and examine the growth of the error as a function of hindcast lead time. The study period covers from April 1 to August 31, 2011, which also covers the entire Midlatitude Continental Convective Clouds Experiment (MC3E) campaign. Preliminary results from several models will be presented. (http://portal.nersc.gov/project/capt/CAUSES/) (This study is funded by the RGCM and ASR programs of the U.S. Department of Energy as part of the Cloud-Associated Parameterizations Testbed. This work is performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-658017)
CAUSES: Clouds Above the United States and Errors at the Surface
NASA Astrophysics Data System (ADS)
Ma, H. Y.; Klein, S. A.; Xie, S.; Zhang, Y.; Morcrette, C. J.; Van Weverberg, K.; Petch, J.; Lo, M. H.
2014-12-01
The Clouds Above the United States and Errors at the Surface (CAUSES) is a new joint Global Atmospheric System Studies/Regional and Global Climate model/Atmospheric System Research (GASS/RGCM/ASR) intercomparison project to evaluate the central U.S. summertime surface warm biases seen in many weather and climate models. The main focus is to identify the role of cloud, radiation, and precipitation processes in contributing to surface air temperature biases. In this project, we use short-term hindcast approach and examine the growth of the error as a function of hindcast lead time. The study period covers from April 1 to August 31, 2011, which also covers the entire Midlatitude Continental Convective Clouds Experiment (MC3E) campaign. Preliminary results from several models will be presented. (http://portal.nersc.gov/project/capt/CAUSES/) (This study is funded by the RGCM and ASR programs of the U.S. Department of Energy as part of the Cloud-Associated Parameterizations Testbed. This work is performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-658017)
Role of resolution in regional climate change projections over China
NASA Astrophysics Data System (ADS)
Shi, Ying; Wang, Guiling; Gao, Xuejie
2017-11-01
This paper investigates the sensitivity of projected future climate changes over China to the horizontal resolution of a regional climate model RegCM4.4 (RegCM), using RCP8.5 as an example. Model validation shows that RegCM performs better in reproducing the spatial distribution and magnitude of present-day temperature, precipitation and climate extremes than the driving global climate model HadGEM2-ES (HadGEM, at 1.875° × 1.25° degree resolution), but little difference is found between the simulations at 50 and 25 km resolutions. Comparison with observational data at different resolutions confirmed the added value of the RCM and finer model resolutions in better capturing the probability distribution of precipitation. However, HadGEM and RegCM at both resolutions project a similar pattern of significant future warming during both winter and summer, and a similar pattern of winter precipitation changes including dominant increase in most areas of northern China and little change or decrease in the southern part. Projected precipitation changes in summer diverge among the three models, especially over eastern China, with a general increase in HadGEM, little change in RegCM at 50 km, and a mix of increase and decrease in RegCM at 25 km resolution. Changes of temperature-related extremes (annual total number of daily maximum temperature > 25 °C, the maximum value of daily maximum temperature, the minimum value of daily minimum temperature in the three simulations especially in the two RegCM simulations are very similar to each other; so are the precipitation-related extremes (maximum consecutive dry days, maximum consecutive 5-day precipitation and extremely wet days' total amount). Overall, results from this study indicate a very low sensitivity of projected changes in this region to model resolution. While fine resolution is critical for capturing the spatial variability of the control climate, it may not be as important for capturing the climate response to homogeneous forcing (in this case greenhouse gas concentration changes).
Heart Pump Design for Cleveland Clinic Foundation
NASA Technical Reports Server (NTRS)
2005-01-01
Through a Lewis CommTech Program project with the Cleveland Clinic Foundation, the NASA Lewis Research Center is playing a key role in the design and development of a permanently implantable, artificial heart pump assist device. Known as the Innovative Ventricular Assist System (IVAS), this device will take on the pumping role of the damaged left ventricle of the heart. The key part of the IVAS is a nonpulsatile (continuous flow) artificial heart pump with centrifugal impeller blades, driven by an electric motor. Lewis is part of an industry and academia team, led by the Ohio Aerospace Institute (OAI), that is working with the Cleveland Clinic Foundation to make IVAS a reality. This device has the potential to save tens of thousands of lives each year, since 80 percent of heart attack victims suffer irreversible damage to the left ventricle, the part of the heart that does most of the pumping. Impeller blade design codes and flow-modeling analytical codes will be used in the project. These codes were developed at Lewis for the aerospace industry but will be applicable to the IVAS design project. The analytical codes, which currently simulate the flow through the compressor and pump systems, will be used to simulate the flow within the blood pump in the artificial heart assist device. The Interdisciplinary Technology Office heads up Lewis' efforts in the IVAS project. With the aid of numerical modeling, the blood pump will address many design issues, including some fluid-dynamic design considerations that are unique to the properties of blood. Some of the issues that will be addressed in the design process include hemolysis, deposition, recirculation, pump efficiency, rotor thrust balance, and bearing lubrication. Optimum pumping system performance will be achieved by modeling all the interactions between the pump components. The interactions can be multidisciplinary and, therefore, are influenced not only by the fluid dynamics of adjacent components but also by thermal and structural effects. Lewis-developed flow-modeling codes to be used in the pump simulations will include a one-dimensional code and an incompressible three-dimensional Navier-Stokes flow code. These codes will analyze the prototype pump designed by the Cleveland Clinic Foundation. With an improved understanding of the flow phenomena within the prototype pump, design changes to improve the performance of the pump system can be verified by computer prior to fabrication in order to reduce risks. The use of Lewis flow modeling codes during the design and development process will improve pump system performance and reduce the number of prototypes built in the development phase. The first phase of the IVAS project is to fully develop the prototype in a laboratory environment that uses a water/glycerin mixture as the surrogate fluid to simulate blood. A later phase of the project will include testing in animals for final validation. Lewis will be involved in the IVAS project for 3 to 5 years.
Project nurse manager: an intrapreneurial role.
Risner, P B; Anderson, M L
1994-01-01
Nurse intrapreneurs are the key to innovation and cost-effective health care in the 1990s. A project nurse manager, acting as a liaison between service departments, can provide the vision and insight for the successful outcome of such projects as product evaluation, unit renovation, and the development of a new facility. The role, benefits, and outcomes of one project nurse manager are described.
Scientist-Practitioner Engagement to Inform Regional Hydroclimate Model Evaluation
NASA Astrophysics Data System (ADS)
Jones, A. D.; Jagannathan, K. A.; Ullrich, P. A.
2017-12-01
Water mangers face significant challenges in planning for the coming decades as previously stationary aspects of the regional hydroclimate shift in response to global climate change. Providing scientific insights that enable appropriate use of regional hydroclimate projections for planning is a non-trivial problem. The system of data, models, and methods used to produce regional hydroclimate projections is subject to multiple interacting uncertainties and biases, including uncertainties that arise from general circulation models, re-analysis data products, regional climate models, hydrologic models, and statistical downscaling methods. Moreover, many components of this system were not designed with the information needs of water managers in mind. To address this problem and provide actionable insights into the sources of uncertainty present in regional hydroclimate data products, Project Hyperion has undertaken a stakeholder engagement process in four case study water basins across the US. Teams of water managers and scientists are interacting in a structured manner to identify decision-relevant metrics of model performance. These metrics are in turn being used to drive scientific investigations to uncover the sources of uncertainty in these quantities. Thus far, we have found that identification of climate phenomena of interest to stakeholders is relatively easy, but translating these into specific quantifiable metrics and prioritizing metrics is more challenging. Iterative feedback among scientists and stakeholders has proven critical in resolving these challenges, as has the roles played by boundary spanners who understand and can speak to the perspectives of multiple professional communities. Here we describe the structured format of our engagement process and the lessons learned so far, as we aim to improve the decision-relevance of hydroclimate projections through a collaborative process.
Role of Renewable Energy Certificates in Developing New Renewable Energy Projects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holt, E.; Sumner, J.; Bird, L.
2011-06-01
For more than a decade, renewable energy certificates (RECs) have grown in use, becoming a common way to track ownership of the renewable and environmental attributes of renewable electricity generation. In recent years, however, questions have risen about the role RECs play in the decision to build new renewable energy projects. Information from a variety of market participants suggests that the importance of RECs in building new projects varies depending on a number of factors, including electricity market prices, the cost-competitiveness of the project, the presence or absence of public policies supportive of new projects, contract duration, and the perspectivemore » of different market participants. While there is no single answer to the role that RECs play, there are situations in which REC revenues are essential to project economics, as well as some where REC revenues may have little impact. To strengthen the role RECs play in both compliance and voluntary markets, there are a number of options that could be considered. In compliance markets, lawmakers or regulators would have to adopt measures that strengthen the role of RECs in the development of new projects, while in voluntary markets, it would be up to program leaders and market participants themselves to implement measures.« less
Composite Study Of Aerosol Long-Range Transport Events From East Asia And North America
NASA Astrophysics Data System (ADS)
Jiang, X.; Waliser, D. E.; Guan, B.; Xavier, P.; Petch, J.; Klingaman, N. P.; Woolnough, S.
2011-12-01
While the Madden-Julian Oscillation (MJO) exerts pronounced influences on global climate and weather systems, current general circulation models (GCMs) exhibit rather limited capability in representing this prominent tropical variability mode. Meanwhile, the fundamental physics of the MJO are still elusive. Given the central role of the diabatic heating for prevailing MJO theories and demands for reducing the model deficiencies in simulating the MJO, a global model inter-comparison project on diabatic processes and vertical heating structure associated with the MJO has been coordinated through a joint effort by the WCRP-WWRP/THORPEX YOTC MJO Task Force and GEWEX GASS Program. In this presentation, progress of this model inter-comparison project will be reported, with main focus on climate simulations from about 27 atmosphere-only and coupled GCMs. Vertical structures of heating and diabatic processes associated with the MJO based on multi-model simulations will be presented along with their reanalysis and satellite estimate counterparts. Key processes possibly responsible for a realistic simulation of the MJO, including moisture-convection interaction, gross moist stability, ocean coupling, and surface heat flux, will be discussed.
Santini, Luca; Cornulier, Thomas; Bullock, James M; Palmer, Stephen C F; White, Steven M; Hodgson, Jenny A; Bocedi, Greta; Travis, Justin M J
2016-07-01
Estimating population spread rates across multiple species is vital for projecting biodiversity responses to climate change. A major challenge is to parameterise spread models for many species. We introduce an approach that addresses this challenge, coupling a trait-based analysis with spatial population modelling to project spread rates for 15 000 virtual mammals with life histories that reflect those seen in the real world. Covariances among life-history traits are estimated from an extensive terrestrial mammal data set using Bayesian inference. We elucidate the relative roles of different life-history traits in driving modelled spread rates, demonstrating that any one alone will be a poor predictor. We also estimate that around 30% of mammal species have potential spread rates slower than the global mean velocity of climate change. This novel trait-space-demographic modelling approach has broad applicability for tackling many key ecological questions for which we have the models but are hindered by data availability. © 2016 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Tang, Tian
The following dissertation explains how technological change of wind power, in terms of cost reduction and performance improvement, is achieved in China and the US through energy policies, technological learning, and collaboration. The objective of this dissertation is to understand how energy policies affect key actors in the power sector to promote renewable energy and achieve cost reductions for climate change mitigation in different institutional arrangements. The dissertation consists of three essays. The first essay examines the learning processes and technological change of wind power in China. I integrate collaboration and technological learning theories to model how wind technologies are acquired and diffused among various wind project participants in China through the Clean Development Mechanism (CDM)--an international carbon trade program, and empirically test whether different learning channels lead to cost reduction of wind power. Using pooled cross-sectional data of Chinese CDM wind projects and spatial econometric models, I find that a wind project developer's previous experience (learning-by-doing) and industrywide wind project experience (spillover effect) significantly reduce the costs of wind power. The spillover effect provides justification for subsidizing users of wind technologies so as to offset wind farm investors' incentive to free-ride on knowledge spillovers from other wind energy investors. The CDM has played such a role in China. Most importantly, this essay provides the first empirical evidence of "learning-by-interacting": CDM also drives wind power cost reduction and performance improvement by facilitating technology transfer through collaboration between foreign turbine manufacturers and local wind farm developers. The second essay extends this learning framework to the US wind power sector, where I examine how state energy policies, restructuring of the electricity market, and learning among actors in wind industry lead to performance improvement of wind farms. Unlike China, the restructuring of the US electricity market created heterogeneity in transmission network governance across regions. Thus, I add transmission network governance to my learning framework to test the impacts of different transmission network governance models. Using panel data of existing utility-scale wind farms in US during 2001-2012 and spatial models, I find that the performance of a wind project is improved through more collaboration among project participants (learning-by-interacting), and this improvement is even greater if the wind project is interconnected to a regional transmission network coordinated by an independent system operator or a regional transmission organization (ISO/RTO). In the third essay, I further explore how different transmission network governance models affect wind power integration through a comparative case study. I compare two regional transmission networks, which represent two major transmission network governance models in the US: the ISO/RTO-governance model and the non-RTO model. Using archival data and interviews with key network participants, I find that a centralized transmission network coordinated through an ISO/RTO is more effective in integrating wind power because it allows resource pooling and optimal allocating of the resources by the central network administrative agency (NAO). The case study also suggests an alternative path to improved network effectiveness for a less cohesive network, which is through more frequent resource exchange among subgroups within a large network. On top of that, this essay contributes to the network governance literature by providing empirical evidence on the coexistence of hierarchy, market, and collaboration in complex service delivery networks. These coordinating mechanisms complement each other to provide system flexibility and stability, particularly when the network operates in a turbulent environment with changes and uncertainties.
Huntington, Justin L.; Niswonger, Richard G.
2012-01-01
Previous studies indicate predominantly increasing trends in precipitation across the Western United States, while at the same time, historical streamflow records indicate decreasing summertime streamflow and 25th percentile annual flows. These opposing trends could be viewed as paradoxical, given that several studies suggest that increased annual precipitation will equate to increased annual groundwater recharge, and therefore increased summertime flow. To gain insight on mechanisms behind these potential changes, we rely on a calibrated, integrated surface and groundwater model to simulate climate impacts on surface water/groundwater interactions using 12 general circulation model projections of temperature and precipitation from 2010 to 2100, and evaluate the interplay between snowmelt timing and other hydrologic variables, including streamflow, groundwater recharge, storage, groundwater discharge, and evapotranspiration. Hydrologic simulations show that the timing of peak groundwater discharge to the stream is inversely correlated to snowmelt runoff and groundwater recharge due to the bank storage effect and reversal of hydraulic gradients between the stream and underlying groundwater. That is, groundwater flow to streams peaks following the decrease in stream depth caused by snowmelt recession, and the shift in snowmelt causes a corresponding shift in groundwater discharge to streams. Our results show that groundwater discharge to streams is depleted during the summer due to earlier drainage of shallow aquifers adjacent to streams even if projected annual precipitation and groundwater recharge increases. These projected changes in surface water/groundwater interactions result in more than a 30% decrease in the projected ensemble summertime streamflow. Our findings clarify causality of observed decreasing summertime flow, highlight important aspects of potential climate change impacts on groundwater resources, and underscore the need for integrated hydrologic models in climate change studies.
Saarman, Emily T.; Owens, Brian; Murray, Steven N.; Weisberg, Stephen B.; Field, John C.; Nielsen, Karina J.
2018-01-01
There are numerous reasons to conduct scientific research within protected areas, but research activities may also negatively impact organisms and habitats, and thus conflict with a protected area’s conservation goals. We developed a quantitative ecological decision-support framework that estimates these potential impacts so managers can weigh costs and benefits of proposed research projects and make informed permitting decisions. The framework generates quantitative estimates of the ecological impacts of the project and the cumulative impacts of the proposed project and all other projects in the protected area, and then compares the estimated cumulative impacts of all projects with policy-based acceptable impact thresholds. We use a series of simplified equations (models) to assess the impacts of proposed research to: a) the population of any targeted species, b) the major ecological assemblages that make up the community, and c) the physical habitat that supports protected area biota. These models consider both targeted and incidental impacts to the ecosystem and include consideration of the vulnerability of targeted species, assemblages, and habitats, based on their recovery time and ecological role. We parameterized the models for a wide variety of potential research activities that regularly occur in the study area using a combination of literature review and expert judgment with a precautionary approach to uncertainty. We also conducted sensitivity analyses to examine the relationships between model input parameters and estimated impacts to understand the dominant drivers of the ecological impact estimates. Although the decision-support framework was designed for and adopted by the California Department of Fish and Wildlife for permitting scientific studies in the state-wide network of marine protected areas (MPAs), the framework can readily be adapted for terrestrial and freshwater protected areas. PMID:29920527
ERIC Educational Resources Information Center
Wells, Anita G.; Christenberry, Nola
This paper proposes that schools can participate with communities to partially alleviate the concerns about a steady blood supply. A review of the literature reveals the effective use of social learning models to encourage high school students to participate in blood drives. Combining an educational approach with a psychological approach to obtain…
More than Just Hot Air: How Hairdryers and Role Models Inspire Girls in Engineering
ERIC Educational Resources Information Center
Kekelis, Linda; Larkin, Molly; Gomes, Lyn
2014-01-01
This article describes a reverse-engineering project where female students take a part a hair dryer--giving them an opportunity to see the many different kinds of engineering disciplines involved in making a hairdryer and that they work together. Mechanical Engineer, Lyn Gome, describes her experience leading a group of middle school girls through…
ERIC Educational Resources Information Center
Bigozzi, Lucia; Tarchi, Christian; Pezzica, Sara; Pinto, Giuliana
2016-01-01
The strong differences in manifestation, prevalence, and incidence in dyslexia across languages invite studies in specific writing systems. In particular, the question of the role played by emergent literacy in opaque and transparent writing systems remains a fraught one. This research project tested, through a 4-year prospective cohort study, an…
1983-06-01
constrained at each step. Use of dis- crete simulation can be a powerful tool in this process if its role is carefully planned. The gross behavior of the...by projecting: - the arrival of units of work at SPLICE processing facilities (workload analysis) . - the amount of processing resources comsumed in
Report from Middle-Earth: Fan Fiction Tasks in the EFL Classroom
ERIC Educational Resources Information Center
Sauro, Shannon; Sundmark, Björn
2016-01-01
This study builds upon work in task-based language teaching and literary studies to explore the use of fan fiction as a pedagogical tool in a technology-enhanced university foreign language class. A task-based fan fiction project, The Blogging Hobbit, modelled on blog-based role-play storytelling found in online media fandoms, was carried out in a…
A central aim of EPA’s ToxCast project is to use in vitro high-throughput screening (HTS) profiles to build predictive models of in vivo toxicity. Where assays lack metabolic capability, such efforts may need to anticipate the role of metabolic activation (or deactivation). A wo...
ERIC Educational Resources Information Center
Whiting, Anita
1970-01-01
Summarized are several theoretical positions on identification, together with one application in a case study. An autographed picture of their hero was presented to each of six uncerachieving and disruptive boys in an effort to provide an interested" adult role model for them. The school staff reinforced this identification with projects in which…
Reinforcing Resistance to Drug and Alcohol Use through Teen Role Models. NERCRD Project Report.
ERIC Educational Resources Information Center
Kims, Amanda
In the Life Skills Training program, teen leaders teach social skills to rural fifth- and sixth-grade children to help them resist drugs and alcohol in high school. Based on a Boys & Girls Clubs of America program, the 9-week after-school program provides youth with accurate information; teaches youth how to handle a range of problem…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rastogi, Deeksha; Kao, Shih-Chieh; Ashfaq, Moetasim
Probable maximum precipitation (PMP), defined as the largest rainfall depth that could physically occur under a series of adverse atmospheric conditions, has been an important design criterion for critical infrastructures such as dams and nuclear power plants. To understand how PMP may respond to projected future climate forcings, we used a physics-based numerical weather simulation model to estimate PMP across various durations and areas over the Alabama-Coosa-Tallapoosa (ACT) river basin in the southeastern United States. Six sets of Weather Research and Forecasting (WRF) model experiments driven by both reanalysis and global climate model projections, with a total of 120 storms,more » were conducted. The depth-area-duration relationship was derived for each set of WRF simulations and compared with the conventional PMP estimates. Here, our results showed that PMP driven by projected future climate forcings is higher than 1981-2010 baseline values by around 20% in the 2021-2050 near-future and 44% in the 2071-2100 far-future periods. The additional sensitivity simulations of background air temperature warming also showed an enhancement of PMP, suggesting that atmospheric warming could be one important factor controlling the increase in PMP. In light of the projected increase in precipitation extremes under a warming environment, the reasonableness and role of PMP deserves more in-depth examination.« less
NASA Astrophysics Data System (ADS)
Rastogi, Deeksha; Kao, Shih-Chieh; Ashfaq, Moetasim; Mei, Rui; Kabela, Erik D.; Gangrade, Sudershan; Naz, Bibi S.; Preston, Benjamin L.; Singh, Nagendra; Anantharaj, Valentine G.
2017-05-01
Probable maximum precipitation (PMP), defined as the largest rainfall depth that could physically occur under a series of adverse atmospheric conditions, has been an important design criterion for critical infrastructures such as dams and nuclear power plants. To understand how PMP may respond to projected future climate forcings, we used a physics-based numerical weather simulation model to estimate PMP across various durations and areas over the Alabama-Coosa-Tallapoosa (ACT) River Basin in the southeastern United States. Six sets of Weather Research and Forecasting (WRF) model experiments driven by both reanalysis and global climate model projections, with a total of 120 storms, were conducted. The depth-area-duration relationship was derived for each set of WRF simulations and compared with the conventional PMP estimates. Our results showed that PMP driven by projected future climate forcings is higher than 1981-2010 baseline values by around 20% in the 2021-2050 near-future and 44% in the 2071-2100 far-future periods. The additional sensitivity simulations of background air temperature warming also showed an enhancement of PMP, suggesting that atmospheric warming could be one important factor controlling the increase in PMP. In light of the projected increase in precipitation extremes under a warming environment, the reasonableness and role of PMP deserve more in-depth examination.
Rastogi, Deeksha; Kao, Shih-Chieh; Ashfaq, Moetasim; ...
2017-04-13
Probable maximum precipitation (PMP), defined as the largest rainfall depth that could physically occur under a series of adverse atmospheric conditions, has been an important design criterion for critical infrastructures such as dams and nuclear power plants. To understand how PMP may respond to projected future climate forcings, we used a physics-based numerical weather simulation model to estimate PMP across various durations and areas over the Alabama-Coosa-Tallapoosa (ACT) river basin in the southeastern United States. Six sets of Weather Research and Forecasting (WRF) model experiments driven by both reanalysis and global climate model projections, with a total of 120 storms,more » were conducted. The depth-area-duration relationship was derived for each set of WRF simulations and compared with the conventional PMP estimates. Here, our results showed that PMP driven by projected future climate forcings is higher than 1981-2010 baseline values by around 20% in the 2021-2050 near-future and 44% in the 2071-2100 far-future periods. The additional sensitivity simulations of background air temperature warming also showed an enhancement of PMP, suggesting that atmospheric warming could be one important factor controlling the increase in PMP. In light of the projected increase in precipitation extremes under a warming environment, the reasonableness and role of PMP deserves more in-depth examination.« less
NASA Astrophysics Data System (ADS)
Preradović, D. M.; Mićić, Lj S.; Barz, C.
2017-05-01
Production conditions in today’s world require software support at every stage of production and development of new products, for quality assurance and compliance with ISO standards. In addition to ISO standards such as usual metrics of quality, companies today are focused on other optional standards, such as CMMI (Capability Maturity Model Integrated) or prescribing they own standards. However, while there is intensive progress being made in the PM (project management), there is still a significant number of projects, at the global level, that are failures. These have failed to achieve their goals, within budget or timeframe. This paper focuses on checking the role of software tools through the rate of success in projects implemented in the case of internationally manufactured electrical equipment. The results of this research show the level of contribution of the project management software used to manage and develop new products to improve PM processes and PM functions, and how selection of the software tools affects the quality of PM processes and successfully completed projects.
Saura, Rosa Maria; Moreno, Pilar; Vallejo, Paula; Oliva, Glòria; Alava, Fernando; Esquerra, Miquel; Davins, Josep; Vallès, Roser; Bañeres, Joaquim
2014-07-01
Since its inception in 2006, the Alliance for Patient Safety in Catalonia has played a major role in promoting and shaping a series of projects related to the strategy of the Ministry of Health, Social Services and Equality, for improving patient safety. One such project was the creation of functional units or committees of safety in hospitals in order to facilitate the management of patient safety. The strategy has been implemented in hospitals in Catalonia which were selected based on criteria of representativeness. The intervention was based on two lines of action, one to develop the model framework and the other for its development. Firstly the strategy for safety management based on EFQM (European Foundation for Quality Management) was defined with the development of standards, targets and indicators to implement security while the second part involved the introduction of tools, methodologies and knowledge to the management support of patient safety and risk prevention. The project was developed in four hospital areas considered higher risk, each assuming six goals for safety management. Some of these targets such as the security control panel or system of adverse event reporting were shared. 23 hospitals joined the project in Catalonia. Despite the different situations in each centre, high compliance was achieved in the development of the objectives. In each of the participating areas the security control panel was developed. Stable structures for safety management were established or strengthened. Training in patient safety played and important role, 1415 professionals participated. Through these kind of projects not only have been introduced programs of proven effectiveness in reducing risks, but they also provide to the facilities a work system that allows autonomy in diagnosis and analysis of the different risk situations or centre specific safety issues. Copyright © 2014. Published by Elsevier Espana.
Balcazar, Hector; Perez-Lizaur, Ana Bertha; Izeta, Ericka Escalante; Villanueva, Maria Angeles
2016-01-01
This article takes a historical perspective combining 3 illustrative examples of the origins of the community health worker (CHW) model in Mexico, as a community-based participatory strategy. Three examples were identified from the sparse literature about CHWs in Mexico emphasizing their key roles and functions in various community settings. The CHW models illustrate what is known of training-development and planning, implementation, and evaluation of the CHWs model in different settings addressing cardiovascular disease and risk factors. The potential exists for integrating CHW projects to expand the health promotion model with new emphasis on municipality and regional participation.
Resource utilization during software development
NASA Technical Reports Server (NTRS)
Zelkowitz, Marvin V.
1988-01-01
This paper discusses resource utilization over the life cycle of software development and discusses the role that the current 'waterfall' model plays in the actual software life cycle. Software production in the NASA environment was analyzed to measure these differences. The data from 13 different projects were collected by the Software Engineering Laboratory at NASA Goddard Space Flight Center and analyzed for similarities and differences. The results indicate that the waterfall model is not very realistic in practice, and that as technology introduces further perturbations to this model with concepts like executable specifications, rapid prototyping, and wide-spectrum languages, we need to modify our model of this process.
Some directions in ecological theory.
Kendall, Bruce E
2015-12-01
The role of theory within ecology has changed dramatically in recent decades. Once primarily a source of qualitative conceptual framing, ecological theories and models are now often used to develop quantitative explanations of empirical patterns and to project future dynamics of specific ecological systems. In this essay, I recount my own experience of this transformation, in which accelerating computing power and the widespread incorporation of stochastic processes into ecological theory combined to create some novel integration of mathematical and statistical models. This stronger integration drives theory towards incorporating more biological realism, and I explore ways in which we can grapple with that realism to generate new general theoretical insights. This enhanced realism, in turn, may lead to frameworks for projecting ecological responses to anthropogenic change, which is, arguably, the central challenge for 21st-century ecology. In an era of big data and synthesis, ecologists are increasingly seeking to infer causality from observational data; but conventional biometry provides few tools for this project. This is a realm where theorists can and should play an important role, and I close by pointing towards some analytical and philosophical approaches developed in our sister discipline of economics that address this very problem. While I make no grand prognostications about the likely discoveries of ecological theory over the coming century, you will find in this essay a scattering of more or less far-fetched ideas that I, at least, think are interesting and (possibly) fruitful directions for our field.
Post-2020 climate agreements in the major economies assessed in the light of global models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tavoni, Massimo; Kriegler, Elmar; Riahi, Keywan
2014-12-15
Integrated assessment models can help in quantifying the implications of international climate agreements and regional climate action. This paper reviews scenario results from model intercomparison projects to explore different possible outcomes of post-2020 climate negotiations, recently announced pledges and their relation to the 2°C target. We provide key information for all the major economies, such as the year of emission peaking, regional carbon budgets and emissions allowances. We highlight the distributional consequences of climate policies, and discuss the role of carbon markets for financing clean energy investments, and achieving efficiency and equity.
High-Performance Computing for the Electromagnetic Modeling and Simulation of Interconnects
NASA Technical Reports Server (NTRS)
Schutt-Aine, Jose E.
1996-01-01
The electromagnetic modeling of packages and interconnects plays a very important role in the design of high-speed digital circuits, and is most efficiently performed by using computer-aided design algorithms. In recent years, packaging has become a critical area in the design of high-speed communication systems and fast computers, and the importance of the software support for their development has increased accordingly. Throughout this project, our efforts have focused on the development of modeling and simulation techniques and algorithms that permit the fast computation of the electrical parameters of interconnects and the efficient simulation of their electrical performance.
NASA Astrophysics Data System (ADS)
Hayden-Lesmeister, A.; Remo, J. W.; Piazza, B.
2017-12-01
The Atchafalaya River (AR) in Louisiana is the principal distributary of the Mississippi River. Reach to system scale modifications on the AR and throughout its basin for regional flood mitigation, navigation, and hydrocarbon extraction have substantially altered the hydrologic connectivity between the river and its floodplain wetlands, threatening the ecological integrity of this globally-important ecosystem. Stakeholder groups agree that restoring flow connectivity is essential to maintaining the basin's water quality, and recent management efforts have focused on the 174 km2 Flat Lake Water Management Unit (WMU). Several flow-connectivity enhancement projects have been proposed by the Atchafalaya Basin Program's Technical Advisory Group, but none have been constructed. We collaborated with The Nature Conservancy and other agencies to obtain existing datasets and develop a 1D2D hydraulic model to examine whether proposed restoration projects improved lateral surface-water connectivity in the Flat Lake WMU. To do this, we employed a range of physical parameters (inundation extent, water depths, and rates of WSEL reduction) as potential indicators of improved connectivity with restoration. We ran simulations to examine two scenarios - a baseline scenario (S1) to examine current conditions (no restoration projects), and a full-implementation scenario (S2), where all restoration projects that could be examined at the model resolution were implemented. Potential indicators of improved lateral connectivity indicated that proposed projects may play an important role in improving water quality in the Flat Lake WMU. At the end of the constant-discharge portion of the run, average depths between S1 and S2 remained unchanged; however, depths and water levels were consistently lower for S2 during a drawdown. Volumetrically, up to 4.4 million m3 less water was in the Flat Lake system when projects were implemented. The results indicate that projects introduce nutrient-rich river water and improve flushing flows through backswamp areas. Our modeling approach may provide a cost-effective framework for examining the performance of proposed restoration projects along other highly-altered, low-gradient river systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laufkotter, Charlotte; Vogt, Meike; Gruber, Nicolas
Here, accurate projections of marine particle export production (EP) are crucial for predicting the response of the marine carbon cycle to climate change, yet models show a wide range in both global EP and their responses to climate change. This is, in part, due to EP being the net result of a series of processes, starting with net primary production (NPP) in the sunlit upper ocean, followed by the formation of particulate organic matter and the subsequent sinking and remineralisation of these particles, with each of these processes responding differently to changes in environmental conditions. Here, we compare future projectionsmore » in EP over the 21st century, generated by four marine ecosystem models under the high emission scenario Representative Concentration Pathways (RCP) 8.5 of the Intergovernmental Panel on Climate Change (IPCC), and determine the processes driving these changes. The models simulate small to modest decreases in global EP between -1 and -12%. Models differ greatly with regard to the drivers causing these changes. Among them, the formation of particles is the most uncertain process with models not agreeing on either magnitude or the direction of change. The removal of the sinking particles by remineralisation is simulated to increase in the low and intermediate latitudes in three models, driven by either warming-induced increases in remineralisation or slower particle sinking, and show insignificant changes in the remaining model. Changes in ecosystem structure, particularly the relative role of diatoms matters as well, as diatoms produce larger and denser particles that sink faster and are partly protected from remineralisation. Also this controlling factor is afflicted with high uncertainties, particularly since the models differ already substantially with regard to both the initial (present-day) distribution of diatoms (between 11–94% in the Southern Ocean) and the diatom contribution to particle formation (0.6–3.8 times higher than their contribution to biomass). As a consequence, changes in diatom concentration are a strong driver for EP changes in some models but of low significance in others. Observational and experimental constraints on ecosystem structure and how the fixed carbon is routed through the ecosystem to produce export production are urgently needed in order to improve current generation ecosystem models and their ability to project future changes.« less
Laufkotter, Charlotte; Vogt, Meike; Gruber, Nicolas; ...
2016-07-14
Here, accurate projections of marine particle export production (EP) are crucial for predicting the response of the marine carbon cycle to climate change, yet models show a wide range in both global EP and their responses to climate change. This is, in part, due to EP being the net result of a series of processes, starting with net primary production (NPP) in the sunlit upper ocean, followed by the formation of particulate organic matter and the subsequent sinking and remineralisation of these particles, with each of these processes responding differently to changes in environmental conditions. Here, we compare future projectionsmore » in EP over the 21st century, generated by four marine ecosystem models under the high emission scenario Representative Concentration Pathways (RCP) 8.5 of the Intergovernmental Panel on Climate Change (IPCC), and determine the processes driving these changes. The models simulate small to modest decreases in global EP between -1 and -12%. Models differ greatly with regard to the drivers causing these changes. Among them, the formation of particles is the most uncertain process with models not agreeing on either magnitude or the direction of change. The removal of the sinking particles by remineralisation is simulated to increase in the low and intermediate latitudes in three models, driven by either warming-induced increases in remineralisation or slower particle sinking, and show insignificant changes in the remaining model. Changes in ecosystem structure, particularly the relative role of diatoms matters as well, as diatoms produce larger and denser particles that sink faster and are partly protected from remineralisation. Also this controlling factor is afflicted with high uncertainties, particularly since the models differ already substantially with regard to both the initial (present-day) distribution of diatoms (between 11–94% in the Southern Ocean) and the diatom contribution to particle formation (0.6–3.8 times higher than their contribution to biomass). As a consequence, changes in diatom concentration are a strong driver for EP changes in some models but of low significance in others. Observational and experimental constraints on ecosystem structure and how the fixed carbon is routed through the ecosystem to produce export production are urgently needed in order to improve current generation ecosystem models and their ability to project future changes.« less
The prisoner as model organism: malaria research at Stateville Penitentiary
Comfort, Nathaniel
2009-01-01
In a military-sponsored research project begun during the Second World War, inmates of the Stateville Penitentiary in Illinois were infected with malaria and treated with experimental drugs that sometimes had vicious side effects. They were made into reservoirs for the disease and they provided a food supply for the mosquito cultures. They acted as secretaries and technicians, recording data on one another, administering malarious mosquito bites and experimental drugs to one another, and helping decide who was admitted to the project and who became eligible for early parole as a result of his participation. Thus, the prisoners were not simply research subjects; they were deeply constitutive of the research project. Because a prisoner’s time on the project was counted as part of his sentence, and because serving on the project could shorten one’s sentence, the project must be seen as simultaneously serving the functions of research and punishment. Michel Foucault wrote about such ‘mixed mechanisms’ in his Discipline and punish. His shining example of such a ‘transparent’ and subtle style of punishment was the panopticon, Jeremy Bentham’s architectural invention of prison cellblocks arrayed around a central guard tower. Stateville prison was designed on Bentham’s model; Foucault featured it in his own discussion. This paper, then, explores the power relations in this highly idiosyncratic experimental system, in which the various roles of model organism, reagent, and technician are all occupied by sentient beings who move among them fluidly. This, I argue, created an environment in the Stateville hospital wing more panoptic than that in the cellblocks. Research and punishment were completely interpenetrating, and mutually reinforcing. PMID:19720327
A Model for Teaching a Climate Change Elective Science Course at the Community College Level
NASA Astrophysics Data System (ADS)
Mandia, S. A.
2012-12-01
The impact of global climate change is far-reaching, both for humanity and for the environment. It is essential that our students be provided a strong scientific background for the role of natural and human caused climate change so that they are better prepared to become involved in the discussion. Here the author reveals a successful model designed for use with a diverse student body at the community college level. Teaching strategies beyond the traditional lecture and exam style include: web-based resources such as static websites along with dynamic blogging tools, post-lecture cooperative learning review sessions, weekly current event research projects, use of rubrics to assist students in their own project evaluation before submission, and a research paper utilizing the Skeptical Science website to examine the validity of the most common climate change myths.
NASA Astrophysics Data System (ADS)
le page, Y.; Morton, D. C.; Hurtt, G. C.
2013-12-01
Fires play a major role in terrestrial ecosystems dynamics and the carbon cycle. Potential changes in fire regimes due to climate change, land use change, or human management could have substantial ecological, climatic and socio-economic impacts, and have recently been emphasized as a source of uncertainty for policy-makers and climate mitigation cost estimates. Anticipating these interactions thus entails interdisciplinary models. Here we describe the development of a new fire modeling framework, which features the essential integration of climatic, vegetation and anthropogenic drivers. The model is an attempt to realistically account for ignition, spread and termination processes, on a 12-hour time step and at 1 degree spatial resolution globally. Because the quantitative influence of fire drivers on these processes are often poorly constrained, the framework includes an optimization procedure whereby key parameters (e.g. influence of moisture on fire spread, probability of cloud-to-ground lightning flashes to actually ignite a fire, human ignition frequency as a function of land use density) are determined to maximize the agreement between modeled and observed burned area over the past decade. The model performs surprisingly well across all biomes, and shows good agreement on non-optimized features, such as seasonality and fire size, which suggests some potential for robust projections. We couple the model to an integrated assessment model and explore the consequences of mitigation policies, land use decisions and climate change on future fire regimes with a focus on the Amazon basin. The coupled model future projections show that business-as-usual land use expansion would increase the frequency of escaped fires in the remaining forest, especially when combined with models projecting a drier climate. Inversely, climate mitigation policies as projected in the IPCC RCP4.5 scenario achieve synergistic benefits, with increased forest extent, less fire ignitions, and higher moisture levels.
NASA Astrophysics Data System (ADS)
Zecchetto, Stefano; Vignudelli, Stefano; Donlon, Craig; De Biasio, Francesco; Della Valle, Antonio; Umgiesser, Georg; Bajo, Marco
The Data User Element (DUE) program of the European Space Agency (ESA) is funding two projects (eSurge and eSurge-Venice) aimed to demonstrate the improvement of the storm surge forecasting through the use of Earth Observation (EO) data. eSurge-Venice (http://www.esurge-venice.eu/), is specifically focused on the Gulf of Venice, northern Adriatic Sea. The project objectives are: a) Select a number of Storm Surge Events occurred in the Venice lagoon since 1999; b) Provide the available satellite EO data related to the Storm Surge Events, mainly satellite winds and altimeter data, as well as all the available in-situ data and model forecasts; c) Provide a demonstration Near Real Time service (eSurge-Venice live) of EO data products and services in support of operational and experimental forecasting and warning services; d) Run a number of re-analysis cases, both for historical and contemporary storm surge events, to demonstrate the usefulness of EO data. Present storm surge models use atmospheric model wind fields as forcing. These are know to underestimate the wind in small basins like the Adriatic Sea (~1000 km by 300 km), where the orography plays an important role in shaping the winds. Therefore there is the need to verify and tune the atmospheric model wind fields used in the storm surge modeling, an activity which can easily done using satellite scatterometer winds. The project is now in the middle of his life, and promising preliminary results have been achieved using satellite scatterometer wind data to forge the atmospheric model wind fields forcing the storm surge model. This contribution will present the methodology adopted to tune the model wind fields according to the bias with scatterometer winds and the improvements induced in the storm surge model hindcast.
Neural dynamics of feedforward and feedback processing in figure-ground segregation
Layton, Oliver W.; Mingolla, Ennio; Yazdanbakhsh, Arash
2014-01-01
Determining whether a region belongs to the interior or exterior of a shape (figure-ground segregation) is a core competency of the primate brain, yet the underlying mechanisms are not well understood. Many models assume that figure-ground segregation occurs by assembling progressively more complex representations through feedforward connections, with feedback playing only a modulatory role. We present a dynamical model of figure-ground segregation in the primate ventral stream wherein feedback plays a crucial role in disambiguating a figure's interior and exterior. We introduce a processing strategy whereby jitter in RF center locations and variation in RF sizes is exploited to enhance and suppress neural activity inside and outside of figures, respectively. Feedforward projections emanate from units that model cells in V4 known to respond to the curvature of boundary contours (curved contour cells), and feedback projections from units predicted to exist in IT that strategically group neurons with different RF sizes and RF center locations (teardrop cells). Neurons (convex cells) that preferentially respond when centered on a figure dynamically balance feedforward (bottom-up) information and feedback from higher visual areas. The activation is enhanced when an interior portion of a figure is in the RF via feedback from units that detect closure in the boundary contours of a figure. Our model produces maximal activity along the medial axis of well-known figures with and without concavities, and inside algorithmically generated shapes. Our results suggest that the dynamic balancing of feedforward signals with the specific feedback mechanisms proposed by the model is crucial for figure-ground segregation. PMID:25346703
Neural dynamics of feedforward and feedback processing in figure-ground segregation.
Layton, Oliver W; Mingolla, Ennio; Yazdanbakhsh, Arash
2014-01-01
Determining whether a region belongs to the interior or exterior of a shape (figure-ground segregation) is a core competency of the primate brain, yet the underlying mechanisms are not well understood. Many models assume that figure-ground segregation occurs by assembling progressively more complex representations through feedforward connections, with feedback playing only a modulatory role. We present a dynamical model of figure-ground segregation in the primate ventral stream wherein feedback plays a crucial role in disambiguating a figure's interior and exterior. We introduce a processing strategy whereby jitter in RF center locations and variation in RF sizes is exploited to enhance and suppress neural activity inside and outside of figures, respectively. Feedforward projections emanate from units that model cells in V4 known to respond to the curvature of boundary contours (curved contour cells), and feedback projections from units predicted to exist in IT that strategically group neurons with different RF sizes and RF center locations (teardrop cells). Neurons (convex cells) that preferentially respond when centered on a figure dynamically balance feedforward (bottom-up) information and feedback from higher visual areas. The activation is enhanced when an interior portion of a figure is in the RF via feedback from units that detect closure in the boundary contours of a figure. Our model produces maximal activity along the medial axis of well-known figures with and without concavities, and inside algorithmically generated shapes. Our results suggest that the dynamic balancing of feedforward signals with the specific feedback mechanisms proposed by the model is crucial for figure-ground segregation.
SOAP based web services and their future role in VO projects
NASA Astrophysics Data System (ADS)
Topf, F.; Jacquey, C.; Génot, V.; Cecconi, B.; André, N.; Zhang, T. L.; Kallio, E.; Lammer, H.; Facsko, G.; Stöckler, R.; Khodachenko, M.
2011-10-01
Modern state-of-the-art web services are from crucial importance for the interoperability of different VO tools existing in the planetary community. SOAP based web services assure the interconnectability between different data sources and tools by providing a common protocol for communication. This paper will point out a best practice approach with the Automated Multi-Dataset Analysis Tool (AMDA) developed by CDPP, Toulouse and the provision of VEX/MAG data from a remote database located at IWF, Graz. Furthermore a new FP7 project IMPEx will be introduced with a potential usage example of AMDA web services in conjunction with simulation models.
NASA Technical Reports Server (NTRS)
Colwell, R. N.
1976-01-01
The Forestry Applications Project has been directed towards solving the problem of meeting informational needs of the resource managers utilizing remote sensing data sources including satellite data, conventional aerial photography, and direct measurement on the ground in such combinations as needed to best achieve these goals. It is recognized that sampling plays an important role in generating relevant information for managing large geographic populations. The central problem, therefore, is to define the kind and amount of sampling and the place of remote sensing data sources in that sampling system to do the best possible job of meeting the manager's informational needs.
Burau, Viola; Overgaard, Charlotte
2015-05-27
The large obstetric units typical of industrialised countries have come under criticism for fragmented and depersonalised care and heavy bureaucracy. Interest in midwife-led continuity models of care is growing, but knowledge about the accompanying processes of organisational change is scarce. This study focuses on midwives' role in introducing and developing caseload midwifery. Sociological studies of midwifery and organisational studies of professional groups were used to capture the strong interests of midwives in caseload midwifery and their key role together with management in negotiating organisational change. We studied three hospitals in Denmark as arenas for negotiating the introduction and development of caseload midwifery and the processes, interests and resources involved. A qualitative multi-case design was used and the selection of hospitals aimed at maximising variance. Ten individual and 14 group interviews were conducted in spring 2013. Staff were represented by caseload midwives, ward midwives, obstetricians and health visitors, management by chief midwives and their deputies. Participants were recruited to maximise the diversity of experience. The data analysis adopted a thematic approach, using within- and across-case analysis. The analysis revealed a highly interdependent interplay between organisational and professional projects in the change processes involved in the introduction and development of caseload midwifery. This was reflected in three ways: first, in the key role of negotiations in all phases; second, in midwives' and management's engagement in both types of projects (as evident from their interests and resources); and third in a high capacity for resolving tensions between the two projects. The ward midwives' role as a third party in organisational change further complicated the process. For managers tasked with the introduction and development of caseload midwifery, our study underscores the importance of understanding the complexity of the underlying change processes and of activating midwives' and managers' interests and resources in addressing the challenges. Further studies of female-dominated professions such as midwifery should offer good opportunities for detailed analysis of the deep-seated interdependence of professional and organisational projects and for identifying the key dimensions of this interdependence.
Nursing faculty roles in international service-learning projects.
Kohlbry, Pamela; Daugherty, JoAnn
2013-01-01
The purpose of this article is to describe faculty roles related to the design and implementation of an international nursing service-learning project. The impetus for this project was the 2008 American Association of Colleges of Nursing (AACN) recommendations for using service-learning and immersion of students in diverse communities to improve nursing education in the area of cultural competency (American Association of Colleges of Nursing, 2008a). We define service-learning as a learning experience engaging students in meeting community needs in an international setting so as to offer a different perspective into community health practices and to promote cultural competency. Based on our experience with service-learning, we identified four faculty roles in developing these types of projects. We define these roles as initiator, collaborator, facilitator, and advocate. This article will discuss the application of these faculty roles in developing service-learning opportunities with students. Copyright © 2013 Elsevier Inc. All rights reserved.
Representing life in the Earth system with soil microbial functional traits in the MIMICS model
NASA Astrophysics Data System (ADS)
Wieder, W. R.; Grandy, A. S.; Kallenbach, C. M.; Taylor, P. G.; Bonan, G. B.
2015-02-01
Projecting biogeochemical responses to global environmental change requires multi-scaled perspectives that consider organismal diversity, ecosystem processes and global fluxes. However, microbes, the drivers of soil organic matter decomposition and stabilization, remain notably absent from models used to project carbon cycle-climate feedbacks. We used a microbial trait-based soil carbon (C) model, with two physiologically distinct microbial communities to improve current estimates of soil C storage and their likely response to perturbations. Drawing from the application of functional traits used to model other ecosystems, we incorporate copiotrophic and oligotrophic microbial functional groups in the MIcrobial-MIneral Carbon Stabilization (MIMICS) model, which incorporates oligotrophic and copiotrophic functional groups, akin to "gleaner" vs. "opportunist" plankton in the ocean, or r vs. K strategists in plant and animals communities. Here we compare MIMICS to a conventional soil C model, DAYCENT, in cross-site comparisons of nitrogen (N) enrichment effects on soil C dynamics. MIMICS more accurately simulates C responses to N enrichment; moreover, it raises important hypotheses involving the roles of substrate availability, community-level enzyme induction, and microbial physiological responses in explaining various soil biogeochemical responses to N enrichment. In global-scale analyses, we show that current projections from Earth system models likely overestimate the strength of the land C sink in response to increasing C inputs with elevated carbon dioxide (CO2). Our findings illustrate that tradeoffs between theory and utility can be overcome to develop soil biogeochemistry models that evaluate and advance our theoretical understanding of microbial dynamics and soil biogeochemical responses to environmental change.
Oncology Advanced Practitioners Bring Advanced Community Oncology Care.
Vogel, Wendy H
2016-01-01
Oncology care is becoming increasingly complex. The interprofessional team concept of care is necessary to meet projected oncology professional shortages, as well as to provide superior oncology care. The oncology advanced practitioner (AP) is a licensed health care professional who has completed advanced training in nursing or pharmacy or has completed training as a physician assistant. Oncology APs increase practice productivity and efficiency. Proven to be cost effective, APs may perform varied roles in an oncology practice. Integrating an AP into an oncology practice requires forethought given to the type of collaborative model desired, role expectations, scheduling, training, and mentoring.
Management Guidelines for Database Developers' Teams in Software Development Projects
NASA Astrophysics Data System (ADS)
Rusu, Lazar; Lin, Yifeng; Hodosi, Georg
Worldwide job market for database developers (DBDs) is continually increasing in last several years. In some companies, DBDs are organized as a special team (DBDs team) to support other projects and roles. As a new role, the DBDs team is facing a major problem that there are not any management guidelines for them. The team manager does not know which kinds of tasks should be assigned to this team and what practices should be used during DBDs work. Therefore in this paper we have developed a set of management guidelines, which includes 8 fundamental tasks and 17 practices from software development process, by using two methodologies Capability Maturity Model (CMM) and agile software development in particular Scrum in order to improve the DBDs team work. Moreover the management guidelines developed here has been complemented with practices from authors' experience in this area and has been evaluated in the case of a software company. The management guidelines for DBD teams presented in this paper could be very usefully for other companies too that are using a DBDs team and could contribute towards an increase of the efficiency of these teams in their work on software development projects.
Reflections on science and the governance of alcohol policy.
Anderson, Peter; Gual, Antoni
2011-03-01
To consider, briefly, science's role in informing alcohol policy, and how science could help reframe the present governance of alcohol policy. Expression of the two project coordinators' reflections based on discussions during project meetings of the Alcohol Measures for Public Health Research Alliance (AMPHORA) project. Three endeavours are considered important for science's role in informing alcohol policy: modelling studies that help predict the outcomes of differing policy approaches; studying the impact of live policy changes as a powerful set of natural experiments; and, improved study of the impact of integrated, coordinated and joined up alcohol policies, as opposed to the impact of individual alcohol policy measures. Three areas where science can contribute to strengthened alcohol policy governance include: analysis of different governance architectures that might promote joined-up actions between different sectors; the design of better metrics that measure the impact of public and private sector actions on health; and, by identifying incentives that help consumers make choices on the use of alcohol that improve health. The impact of science on better alcohol policy governance can only happen if there is more and better dialogue between scientists and those who design alcohol policy. © 2011 The Authors, Addiction © 2011 Society for the Study of Addiction.
McCoy, Sophie J; Allesina, Stefano; Pfister, Catherine A
2016-03-16
Historical ecological datasets from a coastal marine community of crustose coralline algae (CCA) enabled the documentation of ecological changes in this community over 30 years in the Northeast Pacific. Data on competitive interactions obtained from field surveys showed concordance between the 1980s and 2013, yet also revealed a reduction in how strongly species interact. Here, we extend these empirical findings with a cellular automaton model to forecast ecological dynamics. Our model suggests the emergence of a new dominant competitor in a global change scenario, with a reduced role of herbivory pressure, or trophic control, in regulating competition among CCA. Ocean acidification, due to its energetic demands, may now instead play this role in mediating competitive interactions and thereby promote species diversity within this guild. © 2016 The Author(s).
Mapping Biomass for REDD in the Largest Forest of Central Africa: the Democratic Republic of Congo
NASA Astrophysics Data System (ADS)
Shapiro, Aurelie; Saatchi, Sassan
2014-05-01
With the support of the International Climate Initiative (ICI) of the Federal Ministry of the Environment, Conservation, and Nuclear Security, the implementation of the German Development Bank KfW, the World Wide Fund for Nature (WWF) Germany, the University of California Los Angeles (UCLA) and local DRC partners will produce a national scale biomass map for the entire forest coverage of the Democratic Republic of Congo (DRC) along with feasibility assessments of different forest protection measures within a framework of a REDD+ model project. The « Carbon Map and Model (CO2M&M) » project will produce a national forest biomass map for the DRC, which will enable quantitative assessments of carbon stocks and emissions in the largest forest of the Congo Basin. This effort will support the national REDD (Reducing Emissions from Deforestation and Degradation) program in DRC, which plays a major role in sustainable development and poverty alleviation. This map will be developed from field data, complemented by airborne LiDAR (Light Detection and Ranging) and aerial photos, systematically sampled throughout the forests of the DRC and up-scaled to satellite images to accurately estimate carbon content in all forested areas. The second component of the project is to develop specific approaches for model REDD projects in key landscapes. This project represents the largest LiDAR-derived mapping effort in Africa, under unprecedented logistical constraints, which will provide one of the poorest nations in the world with the richest airborne and satellites derived datasets for analyzing forest structure, biomass and biodiversity.
Eaton, Lisa A.; Kalichman, Seth C.; Kenny, David A.; Harel, Ofer
2013-01-01
Background Project EXPLORE -- a large-scale, behavioral intervention tested among men who have sex with men (MSM) at-risk for HIV infection --was generally deemed as ineffective in reducing HIV incidence. Using novel and more precise data analytic techniques we reanalyzed Project EXPLORE by including both direct and indirect paths of intervention effects. Methods Data from 4,296 HIV negative MSM who participated in Project EXPLORE, which included ten sessions of behavioral risk reduction counseling completed from 1999-2005, were included in the analysis. We reanalyzed the data to include parameters that estimate the overtime effects of the intervention on unprotected anal sex and the over-time effects of the intervention on HIV status mediated by unprotected anal sex simultaneously in a single model. Results We found the indirect effect of intervention on HIV infection through unprotected anal sex to be statistically significant up through 12 months post-intervention, OR=.83, 95% CI=.72-.95. Furthermore, the intervention significantly reduced unprotected anal sex up through 18 months post-intervention, OR=.79, 95% CI=.63-.99. Discussion Our results reveal effects not tested in the original model that offer new insight into the effectiveness of a behavioral intervention for reducing HIV incidence. Project EXPLORE demonstrated that when tested against an evidence-based, effective control condition can result in reductions in rates of HIV acquisition at one year follow-up. Findings highlight the critical role of addressing behavioral risk reduction counseling in HIV prevention. PMID:23245226
Nursing domain of CI governance: recommendations for health IT adoption and optimization.
Collins, Sarah A; Alexander, Dana; Moss, Jacqueline
2015-05-01
There is a lack of recommended models for clinical informatics (CI) governance that can facilitate successful health information technology implementation. To understand existing CI governance structures and provide a model with recommended roles, partnerships, and councils based on perspectives of nursing informatics leaders. We conducted a cross-sectional study through administering a survey via telephone to facilitate semistructured interviews from June 2012 through November 2012. We interviewed 12 nursing informatics leaders, across the United States, currently serving in executive- or director-level CI roles at integrated health care systems that have pioneered electronic health records implementation projects. We found the following 4 themes emerge: (1) Interprofessional partnerships are essential. (2) Critical role-based levels of practice and competencies need to be defined. (3) Integration into existing clinical infrastructure facilitates success. (4) CI governance is an evolving process. We described specific lessons learned and a model of CI governance with recommended roles, partnerships, and councils from the perspective of nursing informatics leaders. Applied CI work is highly interprofessional with patient safety implications that heighten the need for best practice models for governance structures, adequate resource allocation, and role-based competencies. Overall, there is a notable lack of a centralized CI group comprised of formally trained informaticians to provide expertise and promote adherence to informatics principles within EHR implementation governance structures. Our model of the nursing domain of CI governance with recommended roles, partnerships, and councils provides a starting point that should be further explored and validated. Not only can the model be used to understand, shape, and standardize roles, competencies, and structures within CI practice for nursing, it can be used within other clinical domains and by other informaticians. © The Author 2015. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
On the role of ozone feedback in the ENSO amplitude response under global warming.
Nowack, Peer J; Braesicke, Peter; Luke Abraham, N; Pyle, John A
2017-04-28
The El Niño-Southern Oscillation (ENSO) in the tropical Pacific Ocean is of key importance to global climate and weather. However, state-of-the-art climate models still disagree on the ENSO's response under climate change. The potential role of atmospheric ozone changes in this context has not been explored before. Here we show that differences between typical model representations of ozone can have a first-order impact on ENSO amplitude projections in climate sensitivity simulations. The vertical temperature gradient of the tropical middle-to-upper troposphere adjusts to ozone changes in the upper troposphere and lower stratosphere, modifying the Walker circulation and consequently tropical Pacific surface temperature gradients. We show that neglecting ozone changes thus results in a significant increase in the number of extreme ENSO events in our model. Climate modeling studies of the ENSO often neglect changes in ozone. We therefore highlight the need to understand better the coupling between ozone, the tropospheric circulation, and climate variability.
Pallidostriatal Projections Promote β Oscillations in a Dopamine-Depleted Biophysical Network Model
Corbit, Victoria L.; Whalen, Timothy C.; Zitelli, Kevin T.; Crilly, Stephanie Y.; Rubin, Jonathan E.
2016-01-01
In the basal ganglia, focused rhythmicity is an important feature of network activity at certain stages of motor processing. In disease, however, the basal ganglia develop amplified rhythmicity. Here, we demonstrate how the cellular architecture and network dynamics of an inhibitory loop in the basal ganglia yield exaggerated synchrony and locking to β oscillations, specifically in the dopamine-depleted state. A key component of this loop is the pallidostriatal pathway, a well-characterized anatomical projection whose function has long remained obscure. We present a synaptic characterization of this pathway in mice and incorporate these data into a computational model that we use to investigate its influence over striatal activity under simulated healthy and dopamine-depleted conditions. Our model predicts that the pallidostriatal pathway influences striatal output preferentially during periods of synchronized activity within GPe. We show that, under dopamine-depleted conditions, this effect becomes a key component of a positive feedback loop between the GPe and striatum that promotes synchronization and rhythmicity. Our results generate novel predictions about the role of the pallidostriatal pathway in shaping basal ganglia activity in health and disease. SIGNIFICANCE STATEMENT This work demonstrates that functional connections from the globus pallidus externa (GPe) to striatum are substantially stronger onto fast-spiking interneurons (FSIs) than onto medium spiny neurons. Our circuit model suggests that when GPe spikes are synchronous, this pallidostriatal pathway causes synchronous FSI activity pauses, which allow a transient window of disinhibition for medium spiny neurons. In simulated dopamine-depletion, this GPe-FSI activity is necessary for the emergence of strong synchronization and the amplification and propagation of β oscillations, which are a hallmark of parkinsonian circuit dysfunction. These results suggest that GPe may play a central role in propagating abnormal circuit activity to striatum, which in turn projects to downstream basal ganglia structures. These findings warrant further exploration of GPe as a target for interventions for Parkinson's disease. PMID:27194335
NASA Astrophysics Data System (ADS)
Carrasco, Ana; Semedo, Alvaro; Behrens, Arno; Weisse, Ralf; Breivik, Øyvind; Saetra, Øyvind; Håkon Christensen, Kai
2016-04-01
The global wave-induced current (the Stokes Drift - SD) is an important feature of the ocean surface, with mean values close to 10 cm/s along the extra-tropical storm tracks in both hemispheres. Besides the horizontal displacement of large volumes of water the SD also plays an important role in the ocean mix-layer turbulence structure, particularly in stormy or high wind speed areas. The role of the wave-induced currents in the ocean mix-layer and in the sea surface temperature (SST) is currently a hot topic of air-sea interaction research, from forecast to climate ranges. The SD is mostly driven by wind sea waves and highly sensitive to changes in the overlaying wind speed and direction. The impact of climate change in the global wave-induced current climate will be presented. The wave model WAM has been forced by the global climate model (GCM) ECHAM5 wind speed (at 10 m height) and ice, for present-day and potential future climate conditions towards the end of the end of the twenty-first century, represented by the Intergovernmental Panel for Climate Change (IPCC) CMIP3 (Coupled Model Inter-comparison Project phase 3) A1B greenhouse gas emission scenario (usually referred to as a ''medium-high emissions'' scenario). Several wave parameters were stored as output in the WAM model simulations, including the wave spectra. The 6 hourly and 0.5°×0.5°, temporal and space resolution, wave spectra were used to compute the SD global climate of two 32-yr periods, representative of the end of the twentieth (1959-1990) and twenty-first (1969-2100) centuries. Comparisons of the present climate run with the ECMWF (European Centre for Medium-Range Weather Forecasts) ERA-40 reanalysis are used to assess the capability of the WAM-ECHAM5 runs to produce realistic SD results. This study is part of the WRCP-JCOMM COWCLIP (Coordinated Ocean Wave Climate Project) effort.
Treating Radiation Induced Skin Injury and Fibrosis Using Small Molecule Thiol Modifying Agents
2016-10-01
experimental groups were designed as follows: i) Radiation/RTA408 (6 mg/kg) administered on days 1,2,3,4,5 post-radiation; ii) Radiation/DMSO...Collaborating Organizations: Name: Adam Luginbuhl Project role: PI Contribution to Project Design , experimental support, analysis Funding Support...Clinical and DOD grant Name: Ulrich Rodeck Project role: Co-PI Contribution to Project Design , experimental support, analysis Funding Support DOD
Projected increases in the annual flood pulse of the western Amazon
NASA Astrophysics Data System (ADS)
Zulkafli, Zed; Buytaert, Wouter; Manz, Bastian; Veliz Rosas, Claudia; Willems, Patrick; Lavado-Casimiro, Waldo; Guyot, Jean-Loup; Santini, William
2016-04-01
The impact of a changing climate on the Amazon basin is a subject of intensive research due to its rich biodiversity and the significant role of rain forest in carbon cycling. Climate change has also direct hydrological impact, and there have been increasing efforts to understand such dynamics at continental and subregional scales such as the scale of the western Amazon. New projections from the Coupled Model Inter- comparison Project Phase 5 (CMIP5) ensemble indicate consistent climatic warming and increasing seasonality of precipitation in the Peruvian Amazon basin. Here we use a distributed land surface model to quantify the potential impact of this change in the climate on the hydrological regime of the river. Using extremes value analysis, historical and future projections of the annual minimum, mean, and maximum river flows are produced for a range of return periods between 1 and 100 years. We show that the RCP 4.5 and 8.5 scenarios of climate change project an increased severity of the wet season flood pulse (7.5% and 12% increases respectively for the 100- year return floods). These findings are in agreement with previously projected increases in high extremes under the Special Report on Emissions Scenarios (SRES) climate projections, and are important to highlight due to the potential consequences on reproductive processes of in-stream species, swamp forest ecology, and socio-economy in the floodplain, amid a growing literature that more strongly emphasises future droughts and their impact on the viability of the rain forest system over the greater Amazonia.
Modelling impacts and recovery in benthic communities exposed to localised high CO2.
Lessin, Gennadi; Artioli, Yuri; Queirós, Ana M; Widdicombe, Stephen; Blackford, Jerry C
2016-08-15
Regulations pertaining to carbon dioxide capture with offshore storage (CCS) require an understanding of the potential localised environmental impacts and demonstrably suitable monitoring practices. This study uses a marine ecosystem model to examine a comprehensive range of hypothetical CO2 leakage scenarios, quantifying both impact and recovery time within the benthic system. Whilst significant mortalities and long recovery times were projected for the larger and longer term scenarios, shorter-term or low level exposures lead to reduced projected impacts. This suggests that efficient monitoring and leak mitigation strategies, coupled with appropriate selection of storage sites can effectively limit concerns regarding localised environmental impacts from CCS. The feedbacks and interactions between physiological and ecological responses simulated reveal that benthic responses to CO2 leakage could be complex. This type of modelling investigation can aid the understanding of impact potential, the role of benthic community recovery and inform the design of baseline and monitoring surveys. Copyright © 2016 Elsevier Ltd. All rights reserved.
Powell, Adam
2017-01-01
Durham University’s ‘Hearing the Voice’ project involves a multi-disciplinary exploration of hallucinatory-type phenomena in an attempt to revaluate and reframe discussions of these experiences. As part of this project, contemporaneous religious experiences (supernatural voices and visions) in the United States from the first half of the nineteenth century have been analysed, shedding light on the value and applicability of contemporary bio-cultural models of religious experience for such historical cases. In particular, this essay outlines four historical cases, seeking to utilise and to refine four theoretical models, including anthropologist Tanya Luhrmann’s ‘absorption hypothesis’, by returning to something like William James’ concern with ‘discordant personalities’. Ultimately, the paper argues that emphasis on the role of identity dissonance must not be omitted from the analytical tools applied to these nineteenth-century examples, and perhaps should be retained for any study of religious experience generally. PMID:28989797
Cirrus cloud spectra and layers observed during the FIRE and GASP projects
NASA Technical Reports Server (NTRS)
Flatau, Piotr J.; Gultepe, I.; Nastrom, G.; Cotton, William R.; Heymsfield, A. J.
1990-01-01
A general characterization is developed for cirrus clouds in terms of their spectra, shapes, optical thicknesses, and radiative properties for use in numerical models. Data sets from the Global Atmospheric Sampling Project (GASP) of the upper troposphere and the First ISCCP Regional Experiment (FIRE) are combined and analyzed to study general traits of cirrus clouds. A definition is given for 2D turbulence, and the GASP and FIRE data sets are examined with respect to cirrus layers and entrainment and to dominant turbulent scales. The approach employs conditional sampling in cloudy and clear air, power-spectral analysis, and mixing-line-type diagrams. Evidence is given for a well mixed cloud deck and for the tendency of cirrus to be formed in multilayer structures. The results are of use in mesoscale and global circulation models which predict cirrus, in small-scale cirrus modeling, and in studying the role of gravity waves in the horizontal structure of upper tropospheric clouds.
2017 GTO Project review Laboratory Evaluation of EGS Shear Stimulation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bauer, Stephen J.
The objectives and purpose of this research has been to produce laboratory-based experimental and numerical analyses to provide a physics-based understanding of shear stimulation phenomena (hydroshearing) and its evolution during stimulation. Water was flowed along fractures in hot and stressed fractured rock, to promote slip. The controlled laboratory experiments provide a high resolution/high quality data resource for evaluation of analysis methods developed by DOE to assess EGS “behavior” during this stimulation process. Segments of the experimental program will provide data sets for model input parameters, i.e., material properties, and other segments of the experimental program will represent small scale physicalmore » models of an EGS system, which may be modeled. The coupled lab/analysis project has been a study of the response of a fracture in hot, water-saturated fractured rock to shear stress experiencing fluid flow. Under this condition, the fracture experiences a combination of potential pore pressure changes and fracture surface cooling, resulting in slip along the fracture. The laboratory work provides a means to assess the role of “hydroshearing” on permeability enhancement in reservoir stimulation. Using the laboratory experiments and results to define boundary and input/output conditions of pore pressure, thermal stress, fracture shear deformation and fluid flow, and models were developed and simulations completed by the University of Oklahoma team. The analysis methods are ones used on field scale problems. The sophisticated numerical models developed contain parameters present in the field. The analysis results provide insight into the role of fracture slip on permeability enhancement-“hydroshear” is to be obtained. The work will provide valuable input data to evaluate stimulation models, thus helping design effective EGS.« less
Roche, Daniel Barry; Brackenridge, Danielle Allison; McGuffin, Liam James
2015-12-15
Elucidating the biological and biochemical roles of proteins, and subsequently determining their interacting partners, can be difficult and time consuming using in vitro and/or in vivo methods, and consequently the majority of newly sequenced proteins will have unknown structures and functions. However, in silico methods for predicting protein-ligand binding sites and protein biochemical functions offer an alternative practical solution. The characterisation of protein-ligand binding sites is essential for investigating new functional roles, which can impact the major biological research spheres of health, food, and energy security. In this review we discuss the role in silico methods play in 3D modelling of protein-ligand binding sites, along with their role in predicting biochemical functionality. In addition, we describe in detail some of the key alternative in silico prediction approaches that are available, as well as discussing the Critical Assessment of Techniques for Protein Structure Prediction (CASP) and the Continuous Automated Model EvaluatiOn (CAMEO) projects, and their impact on developments in the field. Furthermore, we discuss the importance of protein function prediction methods for tackling 21st century problems.
ERIC Educational Resources Information Center
Hussein, Bassam A.
2015-01-01
The paper demonstrates and evaluates the effectiveness of a blended learning approach to create a meaningful learning environment. We use the term blended learning approach in this paper to refer to the use of multiple or hybrid instructional methods that emphasize the role of learners as contributors to the learning process rather than recipients…
ERIC Educational Resources Information Center
Lorenzo-Blanco, Elma I.; Unger, Jennifer B.; Baezconde-Garbanati, Lourdes; Ritt-Olson, Anamara; Soto, Daniel
2012-01-01
The risk for depression increases as Hispanic youth acculturate to U.S. society. This association is stronger for Hispanic girls than boys. To better understand the influence of culture and family on depressive symptoms, we tested a process-oriented model of acculturation, cultural values, and family functioning. The data came from Project RED,…
The Role of Standards in Cloud-Computing Interoperability
2012-10-01
services are not shared outside the organization. CloudStack, Eucalyptus, HP, Microsoft, OpenStack , Ubuntu, and VMWare provide tools for building...center requirements • Developing usage models for cloud ven- dors • Independent IT consortium OpenStack http://www.openstack.org • Open-source...software for running private clouds • Currently consists of three core software projects: OpenStack Compute (Nova), OpenStack Object Storage (Swift
Biologist postdoctoral fellow | Center for Cancer Research
A fully funded postdoctoral position is available at the National Cancer Institute on the NIH main campus in Bethesda, MD. Specifically, this opening is for an ongoing project examining the role of tissue architecture and mechanotransduction in the establishment of metastatic lesions, using zebrafish as a model system. The NIH will provide funding and benefits, though extramural fellowship applications will be strongly encouraged and supported.
ERIC Educational Resources Information Center
Jackson, Frances
A project designed and demonstrated a career guidance model for academically gifted female students to overcome problems associated with non-traditional career choices and sex-role stereotyping. Academically gifted females were identified in grades 6 and 10-12. Parent involvement was actively solicited to facilitate non-traditional career…
ERIC Educational Resources Information Center
Ang, Swee Chong; Penney, Dawn
2013-01-01
Competition is an integral aspect of many physical education lessons, and one of the central characteristics of units and lessons adopting the Sport Education model. Pedagogy has a key, yet under-researched, role to play in supporting students to develop social and emotional skills that will enable them to cope with situations in which they…
Biologically Inspired, Anisoptropic Flexible Wing for Optimal Flapping Flight
2013-01-31
Anisotropic Flexible Wing for Optimal Flapping Flight FA9550-07-1-0547 Sb. GRANT NUMBER Sc. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Sd. PROJECT NUMBER...anisotropic structural flexibility ; c) Conducted coordinated experimental and computational modeling to determine the roles of aerodynamic loading, wing inertia...and structural flexibility and elasticity; and d) Developed surrogate tools for flapping wing MA V design and optimization. Detailed research
ERIC Educational Resources Information Center
Mississippi Univ., University. Center for the Study of Contemporary Rural Women.
Goals of a project to design a career awareness workshop for vocational-technical students included identifying and defining sex stereotypes and discrimination, increasing student awareness of stereotyping, increasing knowledge of career options, exposing students to non-traditional role models, and providing inservice training. A literature and…
ERIC Educational Resources Information Center
Kirk, Chris Michael; Lewis, Rhonda K.; Brown, Kyrah; Karibo, Brittany; Scott, Angela; Park, Elle
2017-01-01
In an education system marred by inequity, urban schools in the United States are faced with the challenge of helping students from marginalized groups succeed. While many strategies have been tried, most are built on deficit-based models that blame students and teachers for a lack of achievement and ignore the role of power within the school…
ERIC Educational Resources Information Center
Epskamp, Kees P.
This book investigates the educative role of theater in processes of social change and development, and considers how to evaluate the use of theater as a small-scale medium in realizing development projects based on a participatory or interventionist model. The book is in three major parts. Following an introduction and an introductory chapter,…
Prediction of Chemical Function: Model Development and ...
The United States Environmental Protection Agency’s Exposure Forecaster (ExpoCast) project is developing both statistical and mechanism-based computational models for predicting exposures to thousands of chemicals, including those in consumer products. The high-throughput (HT) screening-level exposures developed under ExpoCast can be combined with HT screening (HTS) bioactivity data for the risk-based prioritization of chemicals for further evaluation. The functional role (e.g. solvent, plasticizer, fragrance) that a chemical performs can drive both the types of products in which it is found and the concentration in which it is present and therefore impacting exposure potential. However, critical chemical use information (including functional role) is lacking for the majority of commercial chemicals for which exposure estimates are needed. A suite of machine-learning based models for classifying chemicals in terms of their likely functional roles in products based on structure were developed. This effort required collection, curation, and harmonization of publically-available data sources of chemical functional use information from government and industry bodies. Physicochemical and structure descriptor data were generated for chemicals with function data. Machine-learning classifier models for function were then built in a cross-validated manner from the descriptor/function data using the method of random forests. The models were applied to: 1) predict chemi
Biogeochemical Protocols and Diagnostics for the CMIP6 Ocean Model Intercomparison Project (OMIP)
NASA Technical Reports Server (NTRS)
Orr, James C.; Najjar, Raymond G.; Aumont, Olivier; Bopp, Laurent; Bullister, John L.; Danabasoglu, Gokhan; Doney, Scott C.; Dunne, John P.; Dutay, Jean-Claude; Graven, Heather;
2017-01-01
The Ocean Model Intercomparison Project (OMIP) focuses on the physics and biogeochemistry of the ocean component of Earth system models participating in the sixth phase of the Coupled Model Intercomparison Project (CMIP6). OMIP aims to provide standard protocols and diagnostics for ocean models, while offering a forum to promote their common assessment and improvement. It also offers to compare solutions of the same ocean models when forced with reanalysis data (OMIP simulations) vs. when integrated within fully coupled Earth system models (CMIP6). Here we detail simulation protocols and diagnostics for OMIP's biogeochemical and inert chemical tracers. These passive-tracer simulations will be coupled to ocean circulation models, initialized with observational data or output from a model spin-up, and forced by repeating the 1948-2009 surface fluxes of heat, fresh water, and momentum. These so-called OMIP-BGC simulations include three inert chemical tracers (CFC-11, CFC-12, SF [subscript] 6) and biogeochemical tracers (e.g., dissolved inorganic carbon, carbon isotopes, alkalinity, nutrients, and oxygen). Modelers will use their preferred prognostic BGC model but should follow common guidelines for gas exchange and carbonate chemistry. Simulations include both natural and total carbon tracers. The required forced simulation (omip1) will be initialized with gridded observational climatologies. An optional forced simulation (omip1-spunup) will be initialized instead with BGC fields from a long model spin-up, preferably for 2000 years or more, and forced by repeating the same 62-year meteorological forcing. That optional run will also include abiotic tracers of total dissolved inorganic carbon and radiocarbon, CTabio and 14CTabio, to assess deep-ocean ventilation and distinguish the role of physics vs. biology. These simulations will be forced by observed atmospheric histories of the three inert gases and CO2 as well as carbon isotope ratios of CO2. OMIP-BGC simulation protocols are founded on those from previous phases of the Ocean Carbon-Cycle Model Intercomparison Project. They have been merged and updated to reflect improvements concerning gas exchange, carbonate chemistry, and new data for initial conditions and atmospheric gas histories. Code is provided to facilitate their implementation.
Biogeochemical protocols and diagnostics for the CMIP6 Ocean Model Intercomparison Project (OMIP)
NASA Astrophysics Data System (ADS)
Orr, James C.; Najjar, Raymond G.; Aumont, Olivier; Bopp, Laurent; Bullister, John L.; Danabasoglu, Gokhan; Doney, Scott C.; Dunne, John P.; Dutay, Jean-Claude; Graven, Heather; Griffies, Stephen M.; John, Jasmin G.; Joos, Fortunat; Levin, Ingeborg; Lindsay, Keith; Matear, Richard J.; McKinley, Galen A.; Mouchet, Anne; Oschlies, Andreas; Romanou, Anastasia; Schlitzer, Reiner; Tagliabue, Alessandro; Tanhua, Toste; Yool, Andrew
2017-06-01
The Ocean Model Intercomparison Project (OMIP) focuses on the physics and biogeochemistry of the ocean component of Earth system models participating in the sixth phase of the Coupled Model Intercomparison Project (CMIP6). OMIP aims to provide standard protocols and diagnostics for ocean models, while offering a forum to promote their common assessment and improvement. It also offers to compare solutions of the same ocean models when forced with reanalysis data (OMIP simulations) vs. when integrated within fully coupled Earth system models (CMIP6). Here we detail simulation protocols and diagnostics for OMIP's biogeochemical and inert chemical tracers. These passive-tracer simulations will be coupled to ocean circulation models, initialized with observational data or output from a model spin-up, and forced by repeating the 1948-2009 surface fluxes of heat, fresh water, and momentum. These so-called OMIP-BGC simulations include three inert chemical tracers (CFC-11, CFC-12, SF6) and biogeochemical tracers (e.g., dissolved inorganic carbon, carbon isotopes, alkalinity, nutrients, and oxygen). Modelers will use their preferred prognostic BGC model but should follow common guidelines for gas exchange and carbonate chemistry. Simulations include both natural and total carbon tracers. The required forced simulation (omip1) will be initialized with gridded observational climatologies. An optional forced simulation (omip1-spunup) will be initialized instead with BGC fields from a long model spin-up, preferably for 2000 years or more, and forced by repeating the same 62-year meteorological forcing. That optional run will also include abiotic tracers of total dissolved inorganic carbon and radiocarbon, CTabio and 14CTabio, to assess deep-ocean ventilation and distinguish the role of physics vs. biology. These simulations will be forced by observed atmospheric histories of the three inert gases and CO2 as well as carbon isotope ratios of CO2. OMIP-BGC simulation protocols are founded on those from previous phases of the Ocean Carbon-Cycle Model Intercomparison Project. They have been merged and updated to reflect improvements concerning gas exchange, carbonate chemistry, and new data for initial conditions and atmospheric gas histories. Code is provided to facilitate their implementation.
The Program Evaluator's Role in Cross-Project Pollination.
ERIC Educational Resources Information Center
Yasgur, Bruce J.
An expanded duties role of the multiple-program evaluator as an integral part of the ongoing decision-making process in all projects served is defended. Assumptions discussed included that need for projects with related objectives to pool resources and avoid duplication of effort and the evaluator's unique ability to provide an objective…
A characterization of linearly repetitive cut and project sets
NASA Astrophysics Data System (ADS)
Haynes, Alan; Koivusalo, Henna; Walton, James
2018-02-01
For the development of a mathematical theory which can be used to rigorously investigate physical properties of quasicrystals, it is necessary to understand regularity of patterns in special classes of aperiodic point sets in Euclidean space. In one dimension, prototypical mathematical models for quasicrystals are provided by Sturmian sequences and by point sets generated by substitution rules. Regularity properties of such sets are well understood, thanks mostly to well known results by Morse and Hedlund, and physicists have used this understanding to study one dimensional random Schrödinger operators and lattice gas models. A key fact which plays an important role in these problems is the existence of a subadditive ergodic theorem, which is guaranteed when the corresponding point set is linearly repetitive. In this paper we extend the one-dimensional model to cut and project sets, which generalize Sturmian sequences in higher dimensions, and which are frequently used in mathematical and physical literature as models for higher dimensional quasicrystals. By using a combination of algebraic, geometric, and dynamical techniques, together with input from higher dimensional Diophantine approximation, we give a complete characterization of all linearly repetitive cut and project sets with cubical windows. We also prove that these are precisely the collection of such sets which satisfy subadditive ergodic theorems. The results are explicit enough to allow us to apply them to known classical models, and to construct linearly repetitive cut and project sets in all pairs of dimensions and codimensions in which they exist. Research supported by EPSRC grants EP/L001462, EP/J00149X, EP/M023540. HK also gratefully acknowledges the support of the Osk. Huttunen foundation.
Narrowing the range of water availability projections in China using the Budyko framework
NASA Astrophysics Data System (ADS)
Osborne, Joe; Lambert, Hugo
2017-04-01
There is a growing demand for reliable 21st-century projections of water availability at the regional scale. Used alone, global climate models (GCMs) are unsuitable for generating such projections at catchment scales in the presence of simulated aridity biases. This is because the Budyko framework dictates that the partitioning of precipitation into runoff and evapotranspiration scales as a non-linear function of aridity. Therefore, GCMs are typically used in tandem with global hydrological models (GHMs), but this process is computationally expensive. Here, considering a Chinese case study, we utilise the Budyko framework to make use of plentiful GCM output, without the need for GHMs. We first apply the framework to 20th-century observations to show that the significant declines in Yellow river discharge between 1951 and 2000 cannot be accounted for by modelled climate change alone, with human activities playing a larger but poorly quantified role. We further show that the Budyko framework can be used to narrow the range of water availability projections in the Yangtze and Yellow river catchments by 33% an 72%, respectively, in the 21st-century RCP8.5 business-as-usual emission scenario. In the Yellow catchment the best-guess end-of-21st-century change in runoff decreases from an increase of 0.09 mm/d in raw multi-model mean output to an increase of 0.04 mm/d in Budyko corrected multi-model mean output. While this is a valuable finding, we stress that these changes could be dwarfed by changes due to human activity in the 21st century, unless strict water management policies are implemented.
Cheng, Rebecca Wing-yi; Lam, Shui-fong; Chan, Joanne Chung-yan
2008-06-01
There has been an ongoing debate about the inconsistent effects of heterogeneous ability grouping on students in small group work such as project-based learning. The present research investigated the roles of group heterogeneity and processes in project-based learning. At the student level, we examined the interaction effect between students' within-group achievement and group processes on their self- and collective efficacy. At the group level, we examined how group heterogeneity was associated with the average self- and collective efficacy reported by the groups. The participants were 1,921 Hong Kong secondary students in 367 project-based learning groups. Student achievement was determined by school examination marks. Group processes, self-efficacy and collective efficacy were measured by a student-report questionnaire. Hierarchical linear modelling was used to analyse the nested data. When individual students in each group were taken as the unit of analysis, results indicated an interaction effect of group processes and students' within-group achievement on the discrepancy between collective- and self-efficacy. When compared with low achievers, high achievers reported lower collective efficacy than self-efficacy when group processes were of low quality. However, both low and high achievers reported higher collective efficacy than self-efficacy when group processes were of high quality. With 367 groups taken as the unit of analysis, the results showed that group heterogeneity, group gender composition and group size were not related to the discrepancy between collective- and self-efficacy reported by the students. Group heterogeneity was not a determinant factor in students' learning efficacy. Instead, the quality of group processes played a pivotal role because both high and low achievers were able to benefit when group processes were of high quality.
Transforming Roles: Canadian Academic Librarians Embedded in Faculty Research Projects
ERIC Educational Resources Information Center
Bedi, Shailoo; Waldie, Christine
2017-01-01
Academic librarians have always played an important role in providing research services and research-skills development to faculty in higher education. But that role is evolving to include the academic librarian as a unique and necessary research partner, practitioner, and participant in collaborative, grant-funded research projects. This article…
Riordan, Erin Coulter; Rundel, Philip W.
2014-01-01
Given the rapidly growing human population in mediterranean-climate systems, land use may pose a more immediate threat to biodiversity than climate change this century, yet few studies address the relative future impacts of both drivers. We assess spatial and temporal patterns of projected 21st century land use and climate change on California sage scrub (CSS), a plant association of considerable diversity and threatened status in the mediterranean-climate California Floristic Province. Using a species distribution modeling approach combined with spatially-explicit land use projections, we model habitat loss for 20 dominant shrub species under unlimited and no dispersal scenarios at two time intervals (early and late century) in two ecoregions in California (Central Coast and South Coast). Overall, projected climate change impacts were highly variable across CSS species and heavily dependent on dispersal assumptions. Projected anthropogenic land use drove greater relative habitat losses compared to projected climate change in many species. This pattern was only significant under assumptions of unlimited dispersal, however, where considerable climate-driven habitat gains offset some concurrent climate-driven habitat losses. Additionally, some of the habitat gained with projected climate change overlapped with projected land use. Most species showed potential northern habitat expansion and southern habitat contraction due to projected climate change, resulting in sharply contrasting patterns of impact between Central and South Coast Ecoregions. In the Central Coast, dispersal could play an important role moderating losses from both climate change and land use. In contrast, high geographic overlap in habitat losses driven by projected climate change and projected land use in the South Coast underscores the potential for compounding negative impacts of both drivers. Limiting habitat conversion may be a broadly beneficial strategy under climate change. We emphasize the importance of addressing both drivers in conservation and resource management planning. PMID:24466116
Roadmapping Future E-Government Research
NASA Astrophysics Data System (ADS)
Bicking, Melanie
Global electronic markets, virtual organisations, virtual identities, virtual products and services, and Internet-related crime are growing in prominence and importance. In a world that is increasingly non-physical and borderless, what are government's roles, responsibilities and limitations? The Internet plays a central role within the transformation process from traditional governments towards modern and innovative government that the requirements of an Information Society. Based on the findings of the eGovRTD2020 project, that aims at identifying key research challenges and at implementing a model for a holistic government with horizon 2020, this paper explains the necessity to investigate and understand the Internet and in particular government's role and responsibilities in it. Furthermore, the paper provides a research roadmap that details how to address certain issue related research questions.
Extended atmospheres of outer planet satellites and comets
NASA Technical Reports Server (NTRS)
Smyth, William H.; Combi, Michael R.
1988-01-01
In the third year of this 3-year project, research accomplishments are discussed and related to the overall objective. In the area of the distribution of hydrogen in the Saturn system, new Voyager UVS data have been discovered and are discussed. The data suggest that both Titan's hydrogen torus and Saturn's hydrogen corona play a major role in the circumplanetary gas source. Modeling analysis of this new data establishes a strong basis for continuing studies to be undertaken in a new NASA-sponsored project. In the area of the cometary atmospheres, observational data for H, O, C, and OH acquired with the Pioneer Venus Orbiter are evaluated and preliminary modeling analysis for some of the hydrogen Lyman-alpha data is presented. In addition, the importance of collisional thermalization in spatial properties and structure of the inner and extended comae of comets has been demonstrated using the recently developed particle trajectory model. The successful simulation by this model of the hydrogen Lyman-alpha image for Comet Kohoutec near perihelion, an extreme case for collisional thermalization, is particularly noteworthy.
Towards a More Accurate Solar Power Forecast By Improving NWP Model Physics
NASA Astrophysics Data System (ADS)
Köhler, C.; Lee, D.; Steiner, A.; Ritter, B.
2014-12-01
The growing importance and successive expansion of renewable energies raise new challenges for decision makers, transmission system operators, scientists and many more. In this interdisciplinary field, the role of Numerical Weather Prediction (NWP) is to reduce the uncertainties associated with the large share of weather-dependent power sources. Precise power forecast, well-timed energy trading on the stock market, and electrical grid stability can be maintained. The research project EWeLiNE is a collaboration of the German Weather Service (DWD), the Fraunhofer Institute (IWES) and three German transmission system operators (TSOs). Together, wind and photovoltaic (PV) power forecasts shall be improved by combining optimized NWP and enhanced power forecast models. The conducted work focuses on the identification of critical weather situations and the associated errors in the German regional NWP model COSMO-DE. Not only the representation of the model cloud characteristics, but also special events like Sahara dust over Germany and the solar eclipse in 2015 are treated and their effect on solar power accounted for. An overview of the EWeLiNE project and results of the ongoing research will be presented.
Collaborative modeling: the missing piece of distributed simulation
NASA Astrophysics Data System (ADS)
Sarjoughian, Hessam S.; Zeigler, Bernard P.
1999-06-01
The Department of Defense overarching goal of performing distributed simulation by overcoming geographic and time constraints has brought the problem of distributed modeling to the forefront. The High Level Architecture standard is primarily intended for simulation interoperability. However, as indicated, the existence of a distributed modeling infrastructure plays a fundamental and central role in supporting the development of distributed simulations. In this paper, we describe some fundamental distributed modeling concepts and their implications for constructing successful distributed simulations. In addition, we discuss the Collaborative DEVS Modeling environment that has been devised to enable graphically dispersed modelers to collaborate and synthesize modular and hierarchical models. We provide an actual example of the use of Collaborative DEVS Modeler in application to a project involving corporate partners developing an HLA-compliant distributed simulation exercise.
NASA Astrophysics Data System (ADS)
Souleymane, S.
2015-12-01
West Africa has been highlighted as a hot spot of land surface-atmosphere interactions. This study analyses the outputs of the project Land-Use and Climate, IDentification of Robust Impacts (LUCID) over West Africa. LUCID used seven atmosphere-land models with a common experimental design to explore the impacts of Land Use induced Land Cover Change (LULCC) that are robust and consistent across the climate models. Focusing the analysis on Sahel and Guinea, this study shows that, even though the seven climate models use the same atmospheric and land cover forcing, there are significant differences of West African Monsoon variability across the climate models. The magnitude of that variability differs significantly from model to model resulting two major "features": (1) atmosphere dynamics models; (2) how the land-surface functioning is parameterized in the Land surface Model, in particular regarding the evapotranspiration partitioning within the different land-cover types, as well as the role of leaf area index (LAI) in the flux calculations and how strongly the surface is coupled to the atmosphere. The major role that the models'sensitivity to land-cover perturbations plays in the resulting climate impacts of LULCC has been analysed in this study. The climate models show, however, significant differences in the magnitude and the seasonal partitioning of the temperature change. The LULCC induced cooling is directed by decreases in net shortwave radiation that reduced the available energy (QA) (related to changes in land-cover properties other than albedo, such as LAI and surface roughness), which decreases during most part of the year. The biophysical impacts of LULCC were compared to the impact of elevated greenhouse gases resulting changes in sea surface temperatures and sea ice extent (CO2SST). The results show that the surface cooling (related a decrease in QA) induced by the biophysical effects of LULCC are insignificant compared to surface warming (related an increase in QA), which is induced by the regional significance effect of CO2SST due to a small LULCC imposed. In contrast, the decrease of surface water balance resulting from LULCC effect is a similar sign to those resulting from CO2SST but the signal resulting of the biophysical effects of LULCC is stronger than the regional CO2SST impact.
NASA Astrophysics Data System (ADS)
Rupf, Isabel
2013-04-01
To meet the EU's ambitious targets for carbon emission reduction, renewable energy production has to be strongly upgraded and made more efficient for grid energy storage. Alpine Foreland Basins feature a unique geological inventory which can contribute substantially to tackle these challenges. They offer a geothermal potential and storage capacity for compressed air, as well as space for underground storage of CO2. Exploiting these natural subsurface resources will strongly compete with existing oil and gas claims and groundwater issues. The project GeoMol will provide consistent 3-dimensional subsurface information about the Alpine Foreland Basins based on a holistic and transnational approach. Core of the project GeoMol is a geological framework model for the entire Northern Molasse Basin, complemented by five detailed models in pilot areas, also in the Po Basin, which are dedicated to specific questions of subsurface use. The models will consist of up to 13 litho-stratigraphic horizons ranging from the Cenozoic basin fill down to Mesozoic and late Paleozoic sedimentary rocks and the crystalline basement. More than 5000 wells and 28 000 km seismic lines serve as input data sets for the geological subsurface model. The data have multiple sources and various acquisition dates, and their interpretations have gone through several paradigm changes. Therefore, it is necessary to standardize the data with regards to technical parameters and content prior to further analysis (cf. Capar et al. 2013, EGU2013-5349). Each partner will build its own geological subsurface model with different software solutions for seismic interpretation and 3d-modelling. Therefore, 3d-modelling follows different software- and partner-specific workflows. One of the main challenges of the project is to ensure a seamlessly fitting framework model. It is necessary to define several milestones for cross border checks during the whole modelling process. Hence, the main input data set of the framework model are interpreted seismic lines, 3d-models can be generated either in time or in depth domain. Some partners will build their 3d-model in time domain and convert it after finishing to depth. Other participants will transform seismic information first and will model directly in depth domain. To ensure comparability between the different parts transnational velocity models for time-depth conversion are required at an early stage of the project. The exchange of model geometries, topology, and geo-scientific content will be achieved applying an appropriate cyberinfrastructure called GST. It provides functionalities to ensure semantic and technical interoperability. Within the project GeoMol a web server for the dissemination of 3d geological models will be implemented including an administrative interface for the role-based access, real-time transformation of country-specific coordinate systems and a web visualisation features. The project GeoMol is co-funded by the Alpine Space Program as part of the European Territorial Cooperation 2007-2013. The project integrates partners from Austria, France, Germany, Italy, Slovenia and Switzerland and runs from September 2012 to June 2015. Further information on www.geomol.eu. The GeoMol 3D-modelling team: Roland Baumberger (swisstopo), Magdalena Bottig (GBA), Alessandro Cagnoni (RLB), Laure Capar (BRGM), Renaud Couëffé (BRGM), Chiara D'Ambrogi (ISPRA), Chrystel Dezayes (BRGM), Gerold Diepolder (LfU BY), Charlotte Fehn (LGRB), Sunseare Gabalda (BRGM), Gregor Götzl (GBA), Andrej Lapanje (GeoZS), Fabio Carlo Molinari (RER-SGSS), Edgar Nitsch (LGRB), Robert Pamer (LfU BY), Sebastian Pfleiderer (GBA), Marco Pantaloni (ISPRA), Uta Schulz (LfU BY), Günter Sokol (LGRB), Gunther Wirsing (LGRB), Heiko Zumsprekel (LGRB)
Sigala, Rodrigo; Haufe, Sebastian; Roy, Dipanjan; Dinse, Hubert R.; Ritter, Petra
2014-01-01
During the past two decades growing evidence indicates that brain oscillations in the alpha band (~10 Hz) not only reflect an “idle” state of cortical activity, but also take a more active role in the generation of complex cognitive functions. A recent study shows that more than 60% of the observed inter-subject variability in perceptual learning can be ascribed to ongoing alpha activity. This evidence indicates a significant role of alpha oscillations for perceptual learning and hence motivates to explore the potential underlying mechanisms. Hence, it is the purpose of this review to highlight existent evidence that ascribes intrinsic alpha oscillations a role in shaping our ability to learn. In the review, we disentangle the alpha rhythm into different neural signatures that control information processing within individual functional building blocks of perceptual learning. We further highlight computational studies that shed light on potential mechanisms regarding how alpha oscillations may modulate information transfer and connectivity changes relevant for learning. To enable testing of those model based hypotheses, we emphasize the need for multidisciplinary approaches combining assessment of behavior and multi-scale neuronal activity, active modulation of ongoing brain states and computational modeling to reveal the mathematical principles of the complex neuronal interactions. In particular we highlight the relevance of multi-scale modeling frameworks such as the one currently being developed by “The Virtual Brain” project. PMID:24772077
Dheilly, Nolwenn M; Bolnick, Daniel; Bordenstein, Seth; Brindley, Paul J; Figuères, Cédric; Holmes, Edward C; Martínez Martínez, Joaquín; Phillips, Anna J; Poulin, Robert; Rosario, Karyna
2017-01-01
Understanding how microbiomes affect host resistance, parasite virulence, and parasite-associated diseases requires a collaborative effort between parasitologists, microbial ecologists, virologists, and immunologists. We hereby propose the Parasite Microbiome Project to bring together researchers with complementary expertise and to study the role of microbes in host-parasite interactions. Data from the Parasite Microbiome Project will help identify the mechanisms driving microbiome variation in parasites and infected hosts and how that variation is associated with the ecology and evolution of parasites and their disease outcomes. This is a call to arms to prevent fragmented research endeavors, encourage best practices in experimental approaches, and allow reliable comparative analyses across model systems. It is also an invitation to foundations and national funding agencies to propel the field of parasitology into the microbiome/metagenomic era.
Collaborative decision-making on wind power projects based on AHP method
NASA Astrophysics Data System (ADS)
Badea, A.; Proştean, G.; Tămăşilă, M.; Vârtosu, A.
2017-01-01
The complexity of projects implementation in Renewable Energy Sources (RES) requires finding collaborative alliances between suppliers and project developers in RES. Links activities in supply chain in RES, respectively, transportation of heavy components, processing orders to purchase quality raw materials, storage and materials handling, packaging, and other complex activities requiring a logistics system collaboratively to be permanently dimensioned properly selected and monitored. Requirements imposed by stringency of wind power energy projects implementation inevitably involves constraints in infrastructure, implementation and logistics. Thus, following an extensive research in RES project, to eliminate these constraints were identified alternative collaboration to provide feasible solutions on different levels of performance. The paper presents a critical analysis of different collaboration alternatives in supply chain for RES projects, selecting the ones most suitable for particular situations by using decision-making method Analytic Hierarchy Process (AHP). The role of AHP method was to formulate a decision model by which can be establish the collaboration alternative choice through mathematical calculation to reduce the impact created by constraints encountered. The solution provided through AHP provides a framework for detecting optimal alternative collaboration between suppliers and project developers in RES and avoids some breaks in the chain by resizing safety buffers for leveling orders in RES projects.
NASA Astrophysics Data System (ADS)
Jixia, Huang; Qibin, Zhang; Jing, Tan; Depeng, Yue; Quansheng, Ge
2018-04-01
Forestry ecological engineering projects in Western China include the Three-North Shelter Forest Project (TNSFP), the Natural Forest Protection Project (NFPP), the Grain for Green Project (GGP) and the Beijing-Tianjin Sandstorm Source Project (BTSSP). Such projects play an important role in the control of dust weather in Western China. In this research, data on the frequency of sandstorms, sand-blowing and dust-floating weather, the area of four forestry ecological engineering projects, wind, rainfall and vegetation coverage from 2000 to 2010 were collected based on the unit of prefecture-level cities in Inner Mongolia. The panel-data model was used to analyze the quantitative association between forestry ecological engineering and dust weather. The results indicate that wind has a strong promotional effect on dust weather, while forestry ecological engineering and rainfall have a containment effect. In addition, the impacts of the four studied forestry ecological engineering projects on dust weather differ. For every increase of 1000 km2 in the Three-North Shelter Forest Project, the annual number of days of sandstorm weather decreased by 4 days. Similarly, for every increase of 1000 km2 in the Beijing-Tianjin Sandstorm Source Project, the sand-blowing weather decreased by 4.4 days annually. In addition, NFPP and GGP have a more obvious inhibitory effect on the dust-floating weather.
Barefield, Amanda C.; Meyer, John D.
2013-01-01
The proliferation of online education programs creates a myriad of challenges for those charged with implementation and delivery of these programs. Although creating and sustaining quality education is a shared responsibility of faculty, staff, and academic leaders, this article focuses on the pivotal role of leadership in securing the necessary resources, developing the organizational structures, and influencing organizational culture. The vital foundation for a successful outcome when implementing online education programs is the role of leadership in providing adequate and appropriate support. Abundant literature extols the roles of leadership in project management; however, there is a dearth of models or systematic methods for leaders to follow regarding how to implement and sustain online programs. Research conducted by the authors culminated in the development of an Administrative Support Matrix, thus addressing the current gap in the literature. PMID:23346030
Computational Modeling of Fluctuations in Energy and Metabolic Pathways of Methanogenic Archaea
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luthey-Schulten, Zaida
The methanogenic archaea, anaerobic microbes that convert CO2 and H2 and/or other small organic fermentation products into methane, play an unusually large role in the global carbon cycle. As they perform the final step in the anaerobic breakdown of biomass, methanogens are a biogenic source of an estimated one billion tons methane each year. Depending on the location, produced methane can be considered as either a greenhouse gas (agricultural byproduct), sequestered carbon storage (methane hydrate deposits), or a potential energy source (organic wastewater treatment). These microbes therefore represent an important target for biotechnology applications. Computational models of methanogens with predictivemore » power are useful aids in the adaptation of methanogenic systems, but need to connect processes of wide-ranging time and length scales. In this project, we developed several computational methodologies for modeling the dynamic behavior of entire cells that connects stochastic reaction-diffusion dynamics of individual biochemical pathways with genome-scale modeling of metabolic networks. While each of these techniques were in the realm of well-defined computational methods, here we integrated them to develop several entirely new approaches to systems biology. The first scientific aim of the project was to model how noise in a biochemical pathway propagates into cellular phenotypes. Genetic circuits have been optimized by evolution to regulate molecular processes despite stochastic noise, but the effect of such noise on a cellular biochemical networks is currently unknown. An integrated stochastic/systems model of Escherichia coli species was created to analyze how noise in protein expression gives—and therefore noise in metabolic fluxes—gives rise to multiple cellular phenotype in isogenic population. After the initial work developing and validating methods that allow characterization of the heterogeneity in the model organism E. coli, the project shifted toward investigations of the methanogen Methanosarcina acetivorans. By integrating an unprecedented transcriptomics dataset for growth of the methanogen on many substrates with an in silico model, heterogeneity in metabolic pathway usage and methane production were examined. This lent insight into the physiological requirements of the organism under different environmental conditions and uncovered the unique regulatory role that mRNA half-life has in shaping metabolic flux distributions in this organism.« less
Biospheric feedback effects in a synchronously coupled model of human and Earth systems
NASA Astrophysics Data System (ADS)
Thornton, P. E.; Calvin, K. V.; Jones, A. D.; Di Vittorio, A. V.; Bond-Lamberty, B. P.; Chini, L. P.; Shi, X.; Mao, J.; Collins, W. D.; Edmonds, J.; Hurtt, G. C.
2017-12-01
Fossil fuel combustion and land-use change are the two largest contributors to industrial-era increases in atmospheric CO2 concentration. Projections of these are thus fundamental inputs for coupled Earth system models (ESMs) used to estimate the physical and biological consequences of future climate system forcing. While historical datasets are available to inform past and current climate analyses, assessments of future climate change have relied on projections of energy and land use from energy economic models, constrained by assumptions about future policy, land-use patterns, and socio-economic development trajectories. In this work we show that the climatic impacts on land ecosystems drives significant feedbacks in energy, agriculture, land-use, and carbon cycle projections for the 21st century. We find that exposure of human appropriated land ecosystem productivity to biospheric change results in reductions of land area used for crops; increases in managed forest area and carbon stocks; decreases in global crop prices; and reduction in fossil fuel emissions for a low-mid range forcing scenario. Land ecosystem response to increased carbon dioxide concentration, increased anthropogenic nitrogen deposition, and changes in temperature and precipitation all play a role. The feedbacks between climate-induced biospheric change and human system forcings to the climate system demonstrated in this work are handled inconsistently, or excluded altogether, in the one-way asynchronous coupling of energy economic models to ESMs used to date.
Impacts of half a degree additional warming on the Asian summer monsoon rainfall characteristics
NASA Astrophysics Data System (ADS)
Lee, Donghyun; Min, Seung-Ki; Fischer, Erich; Shiogama, Hideo; Bethke, Ingo; Lierhammer, Ludwig; Scinocca, John F.
2018-04-01
This study investigates the impacts of global warming of 1.5 °C and 2.0 °C above pre-industrial conditions (Paris Agreement target temperatures) on the South Asian and East Asian monsoon rainfall using five atmospheric global climate models participating in the ‘Half a degree Additional warming, Prognosis and Projected Impacts’ (HAPPI) project. Mean and extreme precipitation is projected to increase under warming over the two monsoon regions, more strongly in the 2.0 °C warmer world. Moisture budget analysis shows that increases in evaporation and atmospheric moisture lead to the additional increases in mean precipitation with good inter-model agreement. Analysis of daily precipitation characteristics reveals that more-extreme precipitation will have larger increase in intensity and frequency responding to the half a degree additional warming, which is more clearly seen over the South Asian monsoon region, indicating non-linear scaling of precipitation extremes with temperature. Strong inter-model relationship between temperature and precipitation intensity further demonstrates that the increased moisture with warming (Clausius-Clapeyron relation) plays a critical role in the stronger intensification of more-extreme rainfall with warming. Results from CMIP5 coupled global climate models under a transient warming scenario confirm that half a degree additional warming would bring more frequent and stronger heavy precipitation events, exerting devastating impacts on the human and natural system over the Asian monsoon region.
Top-Down Beta Rhythms Support Selective Attention via Interlaminar Interaction: A Model
Lee, Jung H.; Whittington, Miles A.; Kopell, Nancy J.
2013-01-01
Cortical rhythms have been thought to play crucial roles in our cognitive abilities. Rhythmic activity in the beta frequency band, around 20 Hz, has been reported in recent studies that focused on neural correlates of attention, indicating that top-down beta rhythms, generated in higher cognitive areas and delivered to earlier sensory areas, can support attentional gain modulation. To elucidate functional roles of beta rhythms and underlying mechanisms, we built a computational model of sensory cortical areas. Our simulation results show that top-down beta rhythms can activate ascending synaptic projections from L5 to L4 and L2/3, responsible for biased competition in superficial layers. In the simulation, slow-inhibitory interneurons are shown to resonate to the 20 Hz input and modulate the activity in superficial layers in an attention-related manner. The predicted critical roles of these cells in attentional gain provide a potential mechanism by which cholinergic drive can support selective attention. PMID:23950699
Representing life in the Earth system with soil microbial functional traits in the MIMICS model
NASA Astrophysics Data System (ADS)
Wieder, W. R.; Grandy, A. S.; Kallenbach, C. M.; Taylor, P. G.; Bonan, G. B.
2015-06-01
Projecting biogeochemical responses to global environmental change requires multi-scaled perspectives that consider organismal diversity, ecosystem processes, and global fluxes. However, microbes, the drivers of soil organic matter decomposition and stabilization, remain notably absent from models used to project carbon (C) cycle-climate feedbacks. We used a microbial trait-based soil C model with two physiologically distinct microbial communities, and evaluate how this model represents soil C storage and response to perturbations. Drawing from the application of functional traits used to model other ecosystems, we incorporate copiotrophic and oligotrophic microbial functional groups in the MIcrobial-MIneral Carbon Stabilization (MIMICS) model; these functional groups are akin to "gleaner" vs. "opportunist" plankton in the ocean, or r- vs. K-strategists in plant and animal communities. Here we compare MIMICS to a conventional soil C model, DAYCENT (the daily time-step version of the CENTURY model), in cross-site comparisons of nitrogen (N) enrichment effects on soil C dynamics. MIMICS more accurately simulates C responses to N enrichment; moreover, it raises important hypotheses involving the roles of substrate availability, community-level enzyme induction, and microbial physiological responses in explaining various soil biogeochemical responses to N enrichment. In global-scale analyses, we show that MIMICS projects much slower rates of soil C accumulation than a conventional soil biogeochemistry in response to increasing C inputs with elevated carbon dioxide (CO2) - a finding that would reduce the size of the land C sink estimated by the Earth system. Our findings illustrate that tradeoffs between theory and utility can be overcome to develop soil biogeochemistry models that evaluate and advance our theoretical understanding of microbial dynamics and soil biogeochemical responses to environmental change.
High Resolution Model Intercomparison Project (HighResMIP v1.0) for CMIP6
NASA Astrophysics Data System (ADS)
Haarsma, Reindert J.; Roberts, Malcolm J.; Vidale, Pier Luigi; Senior, Catherine A.; Bellucci, Alessio; Bao, Qing; Chang, Ping; Corti, Susanna; Fučkar, Neven S.; Guemas, Virginie; von Hardenberg, Jost; Hazeleger, Wilco; Kodama, Chihiro; Koenigk, Torben; Leung, L. Ruby; Lu, Jian; Luo, Jing-Jia; Mao, Jiafu; Mizielinski, Matthew S.; Mizuta, Ryo; Nobre, Paulo; Satoh, Masaki; Scoccimarro, Enrico; Semmler, Tido; Small, Justin; von Storch, Jin-Song
2016-11-01
Robust projections and predictions of climate variability and change, particularly at regional scales, rely on the driving processes being represented with fidelity in model simulations. The role of enhanced horizontal resolution in improved process representation in all components of the climate system is of growing interest, particularly as some recent simulations suggest both the possibility of significant changes in large-scale aspects of circulation as well as improvements in small-scale processes and extremes. However, such high-resolution global simulations at climate timescales, with resolutions of at least 50 km in the atmosphere and 0.25° in the ocean, have been performed at relatively few research centres and generally without overall coordination, primarily due to their computational cost. Assessing the robustness of the response of simulated climate to model resolution requires a large multi-model ensemble using a coordinated set of experiments. The Coupled Model Intercomparison Project 6 (CMIP6) is the ideal framework within which to conduct such a study, due to the strong link to models being developed for the CMIP DECK experiments and other model intercomparison projects (MIPs). Increases in high-performance computing (HPC) resources, as well as the revised experimental design for CMIP6, now enable a detailed investigation of the impact of increased resolution up to synoptic weather scales on the simulated mean climate and its variability. The High Resolution Model Intercomparison Project (HighResMIP) presented in this paper applies, for the first time, a multi-model approach to the systematic investigation of the impact of horizontal resolution. A coordinated set of experiments has been designed to assess both a standard and an enhanced horizontal-resolution simulation in the atmosphere and ocean. The set of HighResMIP experiments is divided into three tiers consisting of atmosphere-only and coupled runs and spanning the period 1950-2050, with the possibility of extending to 2100, together with some additional targeted experiments. This paper describes the experimental set-up of HighResMIP, the analysis plan, the connection with the other CMIP6 endorsed MIPs, as well as the DECK and CMIP6 historical simulations. HighResMIP thereby focuses on one of the CMIP6 broad questions, "what are the origins and consequences of systematic model biases?", but we also discuss how it addresses the World Climate Research Program (WCRP) grand challenges.
Atmospheric studies related to aerospace activities and remote sensing technology
NASA Technical Reports Server (NTRS)
Sze, N. D.; Isaacs, R. G.; Ko, M.; Mcelroy, M. B.
1981-01-01
Parallel investigations were conducted relating to: the sensitivity of 1-D photochemical model simulated column ozone perturbations due to a projected fleet of 1000 aircraft cruising 7 hours per day at altitudes of 15-16 and 18-19 km to uncertainties in kinetic rate constant data determining modeled OH concentrations and eddy diffusivity profile parameterization and a comparison of the inherent strengths and weaknesses of Eulerian and Langrangian averaging processes in the development of multidimensional models and investigation of approaches to applying the Generalized Lagrangian Mean (GLM) formalism to zonal-mean models. The role of multiple scattering and Earth curvature in the evaluation of diurnally dependent photodissociation rates and trace species variations was examined.
ERIC Educational Resources Information Center
Schermer, Markus; Kirchengast, Christoph; Petit, Sandrine; Magnani, Natalia; Mieville-Ott, Valerie
2010-01-01
The paper explores the difficulties and challenges in mobilizing and managing social capital in concrete local and territorial directed rural development project activities. The main focus is put on the roles of local facilitators working with farmers and other local stakeholders during project implementation. The EU 5th framework project IMALP…
NASA Astrophysics Data System (ADS)
Ray, A. J.; Ojima, D. S.; Morisette, J. T.
2012-12-01
The DOI North Central Climate Science Center (NC CSC) and the NOAA/NCAR National Climate Predictions and Projections (NCPP) Platform and have initiated a joint pilot study to collaboratively explore the "best available climate information" to support key land management questions and how to provide this information. NCPP's mission is to support state of the art approaches to develop and deliver comprehensive regional climate information and facilitate its use in decision making and adaptation planning. This presentation will describe the evolving joint pilot as a tangible, real-world demonstration of linkages between climate science, ecosystem science and resource management. Our joint pilot is developing a deliberate, ongoing interaction to prototype how NCPP will work with CSCs to develop and deliver needed climate information products, including translational information to support climate data understanding and use. This pilot also will build capacity in the North Central CSC by working with NCPP to use climate information used as input to ecological modeling. We will discuss lessons to date on developing and delivering needed climate information products based on this strategic partnership. Four projects have been funded to collaborate to incorporate climate information as part of an ecological modeling project, which in turn will address key DOI stakeholder priorities in the region: Riparian Corridors: Projecting climate change effects on cottonwood and willow seed dispersal phenology, flood timing, and seedling recruitment in western riparian forests. Sage Grouse & Habitats: Integrating climate and biological data into land management decision models to assess species and habitat vulnerability Grasslands & Forests: Projecting future effects of land management, natural disturbance, and CO2 on woody encroachment in the Northern Great Plains The value of climate information: Supporting management decisions in the Plains and Prairie Potholes LCC. NCCSC's role in these projects is to provide the connections between climate data and running ecological models, and prototype these for future work. NCPP will develop capacities to provide enhanced climate information at relevant spatial and temporal scales, both for historical climate and projections of future climate, and will work to link expert guidance and understanding of modeling processes and evaluation of modeling with the use of numerical climate data. Translational information thus is a suite of information that aids in translation of numerical climate information into usable knowledge for applications, e.g. ecological response models, hydrologic risk studies. This information includes technical and scientific aspects including, but not limited to: 1) results of objective, quantitative evaluation of climate models & downscaling techniques, 2) guidance on appropriate uses and interpretation, i.e., understanding the advantages and limitations of various downscaling techniques for specific user applications, 3) characterizing and interpreting uncertainty, 4) Descriptions meaningful to applications, e.g. narratives. NCPP believes that translational information is best co-developed between climate scientists and applications scientists, such as the NC-CSC pilot.
Optimal advanced credit releases in ecosystem service markets.
BenDor, Todd K; Guo, Tianshu; Yates, Andrew J
2014-03-01
Ecosystem service markets are popular policy tools for ecosystem protection. Advanced credit releases are an important factor affecting the supply side of ecosystem markets. Under an advanced credit release policy, regulators give ecosystem suppliers a fraction of the total ecosystem credits generated by a restoration project before it is verified that the project actually achieves the required ecological thresholds. In spite of their prominent role in ecosystem markets, there is virtually no regulatory or research literature on the proper design of advanced credit release policies. Using U.S. aquatic ecosystem markets as an example, we develop a principal-agent model of the behavior of regulators and wetland/stream mitigation bankers to determine and explore the optimal degree of advance credit release. The model highlights the tension between regulators' desire to induce market participation, while at the same time ensuring that bankers successfully complete ecological restoration. Our findings suggest several simple guidelines for strengthening advanced credit release policy.
Optimal Advanced Credit Releases in Ecosystem Service Markets
NASA Astrophysics Data System (ADS)
BenDor, Todd K.; Guo, Tianshu; Yates, Andrew J.
2014-03-01
Ecosystem service markets are popular policy tools for ecosystem protection. Advanced credit releases are an important factor affecting the supply side of ecosystem markets. Under an advanced credit release policy, regulators give ecosystem suppliers a fraction of the total ecosystem credits generated by a restoration project before it is verified that the project actually achieves the required ecological thresholds. In spite of their prominent role in ecosystem markets, there is virtually no regulatory or research literature on the proper design of advanced credit release policies. Using U.S. aquatic ecosystem markets as an example, we develop a principal-agent model of the behavior of regulators and wetland/stream mitigation bankers to determine and explore the optimal degree of advance credit release. The model highlights the tension between regulators' desire to induce market participation, while at the same time ensuring that bankers successfully complete ecological restoration. Our findings suggest several simple guidelines for strengthening advanced credit release policy.
ATMOSPHERIC AEROSOL SOURCE-RECEPTOR RELATIONSHIPS: THE ROLE OF COAL-FIRED POWER PLANTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allen L. Robinson; Spyros N. Pandis; Cliff I. Davidson
2004-12-01
This report describes the technical progress made on the Pittsburgh Air Quality Study (PAQS) during the period of March 2004 through August 2004. Significant progress was made this project period on the analysis of ambient data, source apportionment, and deterministic modeling activities. Results highlighted in this report include evaluation of the performance of PMCAMx+ for an air pollution episode in the Eastern US, an emission profile for a coke production facility, ultrafine particle composition during a nucleation event, and a new hybrid approach for source apportionment. An agreement was reached with a utility to characterize fine particle and mercury emissionsmore » from a commercial coal fired power. Research in the next project period will include source testing of a coal fired power plant, source apportionment analysis, emission scenario modeling with PMCAMx+, and writing up results for submission as journal articles.« less
Cytokines and macrophage function in humans - role of stress
NASA Technical Reports Server (NTRS)
Sonnenfeld, Gerald (Principal Investigator)
1996-01-01
We have begun this study to commence the determination of the role of mild chronic stress in the effects of space flight on macrophage/monocyte function, a component of the immune response. Medical students undergoing regular periods of stress and relaxation have been shown to be an excellent model for determining the effects of stress on immune responses. We have begun using this model using the macrophage/monocyte as model leukocyte. The monocyte/macrophage plays a central role in immunoregulation. The studies to be included in this three year project are the effects of stress on: (1) interactions of monocytes with microbes, (2) monocyte production of cytokines, (3) monocyte phagocytosis and activity, and (4) monocyte expression of cell surface antigens important in immune responses. Stress hormone levels will also be carried out to determine if there is a correlation between stress effects on immune responses and hormonal levels. Psychological testing to insure subjects are actually stressed or relaxed at the time of testing will also be carried out. The results obtained from the proposed studies should be comparable with space flight studies with whole animals and isolated cell cultures. When complete this study should allow the commencement of the establishment of the role of stress as one compartment of the induction of immune alterations by space flight.
Disadvantaged persons' participation in health promotion projects: some structural dimensions.
Boyce, W F
2001-05-01
A structural perspective was used in studying community participation of disadvantaged groups (poor women, street youth, and disabled persons) in health promotion projects. Five community projects in the Canadian Health Promotion Contribution Program were examined in a comparative case study utilizing in-depth interviews, documents, and secondary sources. Analysis revealed relatively low numbers and restricted range of participants, difficulties in recruiting and maintaining participants, declining rates of active participation over time, and limited target group influence and power. This paper reports on the relationship between various dimensions of structure (social-cultural, organizational, political-legal-economic) and the community participation process. Participation was influenced by structural factors such as bureaucratic rules and regulators, perceived minority group rights and relations, agency reputations and responsibilities, available resources, and organizational roles. Control of projects by target group members, rather than by service agencies, was an important overall organizational structural factor which allowed community members to achieve influence in projects. The study concludes that a conceptual model based on structural factors is useful in explaining how key factors from federal and local levels can restrict or facilitate the community participation process.
System identification of the Large-Angle Magnetic Suspension Test Facility (LAMSTF)
NASA Technical Reports Server (NTRS)
Huang, Jen-Kuang
1993-01-01
The Large-Angle Magnetic Suspension Test Facility (LAMSTF), a laboratory-scale research project to demonstrate the magnetic suspension of objects over wide ranges of attitudes, has been developed. This system represents a scaled model of a planned Large-Gap Magnetic Suspension System (LGMSS). The LAMSTF system consists of a planar array of five copper electromagnets which actively suspend a small cylindrical permanent magnet. The cylinder is a rigid body and can be controlled to move in five independent degrees of freedom. Five position variables are sensed indirectly by using infra-red light-emitting diodes and light-receiving phototransistors. The motion of the suspended cylinder is in general nonlinear and hence only the linear, time-invariant perturbed motion about an equilibrium state is considered. One of the main challenges in this project is the control of the suspended element over a wide range of orientations. An accurate dynamic model plans an essential role in controller design. The analytical model of the LAMSTF system includes highly unstable real poles (about 10 Hz) and low-frequency flexible modes (about 0.16 Hz). Projection filters are proposed to identify the state space model from closed-loop test data in time domain. A canonical transformation matrix is also derived to transform the identified state space model into the physical coordinate. The LAMSTF system is stabilized by using a linear quadratic regulator (LQR) feedback controller. The rate information is obtained by calculating the back difference of the sensed position signals. The reference inputs contain five uncorrelated random signals. This control input and the system reponse are recorded as input/output data to identify the system directly from the projection filters. The sampling time is 4 ms and the model is fairly accurate in predicting the step responses for different controllers while the analytical model has a deficiency in the pitch axis.
Wagener, T.; Hogue, T.; Schaake, J.; Duan, Q.; Gupta, H.; Andreassian, V.; Hall, A.; Leavesley, G.
2006-01-01
The Model Parameter Estimation Experiment (MOPEX) is an international project aimed at developing enhanced techniques for the a priori estimation of parameters in hydrological models and in land surface parameterization schemes connected to atmospheric models. The MOPEX science strategy involves: database creation, a priori parameter estimation methodology development, parameter refinement or calibration, and the demonstration of parameter transferability. A comprehensive MOPEX database has been developed that contains historical hydrometeorological data and land surface characteristics data for many hydrological basins in the United States (US) and in other countries. This database is being continuously expanded to include basins from various hydroclimatic regimes throughout the world. MOPEX research has largely been driven by a series of international workshops that have brought interested hydrologists and land surface modellers together to exchange knowledge and experience in developing and applying parameter estimation techniques. With its focus on parameter estimation, MOPEX plays an important role in the international context of other initiatives such as GEWEX, HEPEX, PUB and PILPS. This paper outlines the MOPEX initiative, discusses its role in the scientific community, and briefly states future directions.
NASA Astrophysics Data System (ADS)
Russell, J. L.
2014-12-01
The exchange of heat and carbon dioxide between the atmosphere and ocean are major controls on Earth's climate under conditions of anthropogenic forcing. The Southern Ocean south of 30°S, occupying just over ¼ of the surface ocean area, accounts for a disproportionate share of the vertical exchange of properties between the deep and surface waters of the ocean and between the surface ocean and the atmosphere; thus this region can be disproportionately influential on the climate system. Despite the crucial role of the Southern Ocean in the climate system, understanding of the particular mechanisms involved remains inadequate, and the model studies underlying many of these results are highly controversial. As part of the overall goal of working toward reducing uncertainties in climate projections, we present an analysis using new data/model metrics based on a unified framework of theory, quantitative datasets, and numerical modeling. These new metrics quantify the mechanisms, processes, and tendencies relevant to the role of the Southern Ocean in climate.
Global Analysis, Interpretation and Modelling: An Earth Systems Modelling Program
NASA Technical Reports Server (NTRS)
Moore, Berrien, III; Sahagian, Dork
1997-01-01
The Goal of the GAIM is: To advance the study of the coupled dynamics of the Earth system using as tools both data and models; to develop a strategy for the rapid development, evaluation, and application of comprehensive prognostic models of the Global Biogeochemical Subsystem which could eventually be linked with models of the Physical-Climate Subsystem; to propose, promote, and facilitate experiments with existing models or by linking subcomponent models, especially those associated with IGBP Core Projects and with WCRP efforts. Such experiments would be focused upon resolving interface issues and questions associated with developing an understanding of the prognostic behavior of key processes; to clarify key scientific issues facing the development of Global Biogeochemical Models and the coupling of these models to General Circulation Models; to assist the Intergovernmental Panel on Climate Change (IPCC) process by conducting timely studies that focus upon elucidating important unresolved scientific issues associated with the changing biogeochemical cycles of the planet and upon the role of the biosphere in the physical-climate subsystem, particularly its role in the global hydrological cycle; and to advise the SC-IGBP on progress in developing comprehensive Global Biogeochemical Models and to maintain scientific liaison with the WCRP Steering Group on Global Climate Modelling.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saravanan, Ramalingam
During the course of this project, we have accomplished the following: 1) Explored the parameter space of component models to minimize regional model bias 2) Assessed the impact of air-sea interaction on hurricanes, focusing in particular on the role of the oceanic barrier layer 3) Contributed to the activities of the U.S. CLIVAR Hurricane Working Group 4) Assessed the impact of lateral and lower boundary conditions on extreme flooding events in the U.S. Midwest in regional model simulations 5) Analyzed the concurrent impact of El Niño-Southern Oscillation and Atlantic Meridional Mode on Atlantic Hurricane activity using observations and regional modelmore » simulations« less
NASA Astrophysics Data System (ADS)
Gilbert, Jane; Calvert, Sarah
2003-07-01
This article reports on a research project designed to explore a group of women scientists' understandings of themselves and science. The project uses an unconventional methodology: - a mixture of conventional qualitative research methods and techniques developed for use in psychotherapy. Its preliminary results appear to contradict some of the assumptions on which much of past work on girls and science education is based. For example, we found that, for the women involved in this project, factors such as the presence in their lives of strong female role models and/or the use of 'girl-friendly' curriculum materials were not important in their decision to continue the study of science to university level. Other factors - some of which were quite unexpected - had a much greater effect. The article outlines the methodology of this project and some of its findings, and explores the implications of these findings for future work on the gender and science education question.
Western Wind Strategy: Addressing Critical Issues for Wind Deployment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Douglas Larson; Thomas Carr
2012-03-30
The goal of the Western Wind Strategy project was to help remove critical barriers to wind development in the Western Interconnection. The four stated objectives of this project were to: (1) identify the barriers, particularly barriers to the operational integration of renewables and barriers identified by load-serving entities (LSEs) that will be buying wind generation, (2) communicate the barriers to state officials, (3) create a collaborative process to address those barriers with the Western states, utilities and the renewable industry, and (4) provide a role model for other regions. The project has been on the forefront of identifying and informingmore » state policy makers and utility regulators of critical issues related to wind energy and the integration of variable generation. The project has been a critical component in the efforts of states to push forward important reforms and innovations that will enable states to meet their renewable energy goals and lower the cost to consumers of integrating variable generation.« less
Child welfare caseworkers as service brokers for youth in foster care: findings from project focus.
Dorsey, Shannon; Kerns, Suzanne E U; Trupin, Eric W; Conover, Kate L; Berliner, Lucy
2012-02-01
Youth in the foster care system have substantially higher rates of mental health needs compared to the general population, yet they rarely receive targeted, evidence-based practices (EBPs). Increasingly emerging in the literature on mental health services is the importance of "brokers" or "gateway providers" of services. For youth in foster care, child welfare caseworkers often play this role. This study examines caseworker-level outcomes of Project Focus, a caseworker training and consultation model designed to improve emotional and behavioral outcomes for youth in foster care through increased linkages with EBPs. Project Focus was tested through a small, randomized trial involving four child welfare offices. Caseworkers in the Project Focus intervention group demonstrated an increased awareness of EBPs and a trend toward increased ability to identify appropriate EBP referrals for particular mental health problems but did not have significantly different rates of actual referral to EBPs. Dose of consultation was associated with general awareness of EBPs. Implications for practice and outcomes for youth are discussed.
Exploring the Media Mix during IT-Offshore Project
NASA Astrophysics Data System (ADS)
Wende, Erik; Schwabe, Gerhard; Philip, Tom
Offshore outsourced IT projects continue to gain relevance in the globalized world scenario. The temporal, geographical and cultural distances involved during the development of software between distributed team members result in communication challenges. As software development involves the coding of knowledge, the management of knowledge and its transfer remain critical for the success of the project. For effective knowledge transfer between geographically dispersed teams the ongoing selection of communication medium or the media channel mix becomes highly significant. Although there is an abundance of theory dealing with knowledge transfer and media channel selection during offshore outsourcing projects, the specific role of cultural differences in the media mix is often overlooked. As a first step to rectify this, this paper presents an explorative outsourcing case study with emphasis on the chosen media channels and the problems that arose from differences in culture. The case study is analyzed in light of several theoretical models. Finally the paper presents the idea of extending the Media Synchonicity theory with cultural factors.
NASA Astrophysics Data System (ADS)
Trierweiler, A.; Xu, X.; Gei, M. G.; Powers, J. S.; Medvigy, D.
2016-12-01
Tropical dry forests (TDFs) have immense functional diversity and face multiple resource constraints (both water and nutrients). Legumes are abundant and exhibit a wide diversity of N2-fixing strategies in TDFs. The abundance and diversity of legumes and their interaction with N2-fixing bacteria may strongly control the coupled carbon-nitrogen cycle in the biome and influence whether TDFs will be particularly vulnerable or uniquely adapted to projected global change. However, the importance of N2-fixation in TDFs and the carbon cost of acquiring N through symbiotic relationships are not fully understood. Here, we use models along with field measurements to examine the role of legumes, nitrogen fixation, and plant-symbiont nutrient exchanges in TDFs. We use a new version of the Ecosystem Demography (ED2) model that has been recently parameterized for TDFs. The new version incorporates plant-mycorrhizae interactions and multiple resource constraints (carbon, nitrogen, phosphorus, and water). We represent legumes and other functional groups found in TDFs with a range of resource acquisition strategies. In the model, plants then can dynamically adjust their carbon allocation and nutrient acquisition strategies (e.g. N2-fixing bacteria and mycorrhizal fungi) according to the nutrient limitation status. We test (i) the model's performance against a nutrient gradient of field sites in Costa Rica and (ii) the model's sensitivity to the carbon cost to acquire N through fixation and mycorrhizal relationships. We also report on simulated tree community responses to ongoing field nutrient fertilization experiments. We found that the inclusion of the N2-fixation legume plant functional traits were critical to reproducing community dynamics of Costa Rican field TDF sites and have a large impact on forest biomass. Simulated ecosystem fixation rates matched the magnitude and temporal patterns of field measured fixation. Our results show that symbiotic nitrogen fixation plays an important role in tropical dry forests and biomass accumulation. Also, we suggest that fixation's tight link to the rainy season could result in potential nutrient cycling vulnerabilities with projected rainfall changes.
Estimating the Ocean Flow Field from Combined Sea Surface Temperature and Sea Surface Height Data
NASA Technical Reports Server (NTRS)
Stammer, Detlef; Lindstrom, Eric (Technical Monitor)
2002-01-01
This project was part of a previous grant at MIT that was moved over to the Scripps Institution of Oceanography (SIO) together with the principal investigator. The final report provided here is concerned only with the work performed at SIO since January 2000. The primary focus of this project was the study of the three-dimensional, absolute and time-evolving general circulation of the global ocean from a combined analysis of remotely sensed fields of sea surface temperature (SST) and sea surface height (SSH). The synthesis of those two fields was performed with other relevant physical data, and appropriate dynamical ocean models with emphasis on constraining ocean general circulation models by a combination of both SST and SSH data. The central goal of the project was to improve our understanding and modeling of the relationship between the SST and its variability to internal ocean dynamics, and the overlying atmosphere, and to explore the relative roles of air-sea fluxes and internal ocean dynamics in establishing anomalies in SST on annual and longer time scales. An understanding of those problems will feed into the general discussion on how SST anomalies vary with time and the extend to which they interact with the atmosphere.
Mobile Tech and the Librarian: The iTest iPad Project
Hamasu, Claire; Bramble, John
2015-01-01
A 2012 project provided forty-eight health sciences librarians from primarily hospital and academic health sciences libraries with an Apple iPad2 along with training and support on its use. Project objectives were to determine how participants would adopt the iPad into their daily operations and what form of leadership role they would play while participating in the project. By project's end eighty-nine percent indicated they would continue using the iPad primarily as a productivity tool and to provide point of need services. Project data indicated that librarians assumed a leadership role promoting the use of mobile technology and the applications available. PMID:26997921
Mobile Tech and the Librarian: The iTest iPad Project.
Hamasu, Claire; Bramble, John
A 2012 project provided forty-eight health sciences librarians from primarily hospital and academic health sciences libraries with an Apple iPad2 along with training and support on its use. Project objectives were to determine how participants would adopt the iPad into their daily operations and what form of leadership role they would play while participating in the project. By project's end eighty-nine percent indicated they would continue using the iPad primarily as a productivity tool and to provide point of need services. Project data indicated that librarians assumed a leadership role promoting the use of mobile technology and the applications available.
Electron tomographic analysis of gap junctions in lateral giant fibers of crayfish.
Ohta, Yasumi; Nishikawa, Kouki; Hiroaki, Yoko; Fujiyoshi, Yoshinori
2011-07-01
Innexin-gap junctions in crayfish lateral giant fibers (LGFs) have an important role in escape behavior as a key component of rapid signal transduction. Knowledge of the structure and function of characteristic vesicles on the both sides of the gap junction, however, is limited. We used electron tomography to analyze the three-dimensional structure of crayfish gap junctions and gap junctional vesicles (GJVs). Tomographic analyses showed that some vesicles were anchored to innexons and almost all vesicles were connected by thin filaments. High densities inside the GJVs and projecting densities on the GJV membranes were observed in fixed and stained samples. Because the densities inside synaptic vesicles were dependent on the fixative conditions, different fixative conditions were used to elucidate the molecules included in the GJVs. The projecting densities on the GJVs were studied by immunoelectron microscopy with anti-vesicular monoamine transporter (anti-VMAT) and anti-vesicular nucleotide transporter (anti-VNUT) antibodies. Some of the projecting densities were labeled by anti-VNUT, but not anti-VMAT. Three-dimensional analyses of GJVs and excitatory chemical synaptic vesicles (CSVs) revealed clear differences in their sizes and central densities. Furthermore, the imaging data obtained under different fixative conditions and the immunolabeling results, in which GJVs were positively labeled for anti-VNUT but excitatory CSVs were not, support our model that GJVs contain nucleotides and excitatory CSVs do not. We propose a model in which characteristic GJVs containing nucleotides play an important role in the signal processing in gap junctions of crayfish LGFs. Copyright © 2011 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Trigunasih, N. M.; Lanya, I.; Subadiyasa, N. N.; Hutauruk, J.
2018-02-01
Increasing number and activity of the population to meet the needs of their lives greatly affect the utilization of land resources. Land needs for activities of the population continue to grow, while the availability of land is limited. Therefore, there will be changes in land use. As a result, the problems faced by land degradation and conversion of agricultural land become non-agricultural. The objectives of this research are: (1) to determine parameter of spatial numerical classification of sustainable food agriculture in Badung Regency and Denpasar City (2) to know the projection of food balance in Badung Regency and Denpasar City in 2020, 2030, 2040, and 2050 (3) to specify of function of spatial numerical classification in the making of zonation model of sustainable agricultural land area in Badung regency and Denpasar city (4) to determine the appropriate model of the area to protect sustainable agricultural land in spatial and time scale in Badung and Denpasar regencies. The method used in this research was quantitative method include: survey, soil analysis, spatial data development, geoprocessing analysis (spatial analysis of overlay and proximity analysis), interpolation of raster digital elevation model data, and visualization (cartography). Qualitative methods consisted of literature studies, and interviews. The parameters observed for a total of 11 parameters Badung regency and Denpasar as much as 9 parameters. Numerical classification parameter analysis results used the standard deviation and the mean of the population data and projections relationship rice field in the food balance sheet by modelling. The result of the research showed that, the number of different numerical classification parameters in rural areas (Badung) and urban areas (Denpasar), in urban areas the number of parameters is less than the rural areas. The based on numerical classification weighting and scores generate population distribution parameter analysis results of a standard deviation and average value. Numerical classification produced 5 models, which was divided into three zones are sustainable neighbourhood, buffer and converted in Denpasar and Badung. The results of Population curve parameter analysis in Denpasar showed normal curve, in contrast to the Badung regency showed abnormal curve, therefore Denpasar modeling carried out throughout the region, while in the Badung regency modeling done in each district. Relationship modelling and projections lands role in food balance in Badung views of sustainable land area whereas in Denpasar seen from any connection to the green open spaces in the spatial plan Denpasar 2011-2031. Modelling in Badung (rural) is different in Denpasar (urban), as well as population curve parameter analysis results in Badung showed abnormal curve while in Denpasar showed normal curve. Relationship modelling and projections lands role in food balance in the Badung regency sustainable in terms of land area, while in Denpasar in terms of linkages with urban green space in Denpasar City’s regional landuse plan of 2011-2031.
Stahl, Olivier; Duvergey, Hugo; Guille, Arnaud; Blondin, Fanny; Vecchio, Alexandre Del; Finetti, Pascal; Granjeaud, Samuel; Vigy, Oana; Bidaut, Ghislain
2013-06-06
With the advance of post-genomic technologies, the need for tools to manage large scale data in biology becomes more pressing. This involves annotating and storing data securely, as well as granting permissions flexibly with several technologies (all array types, flow cytometry, proteomics) for collaborative work and data sharing. This task is not easily achieved with most systems available today. We developed Djeen (Database for Joomla!'s Extensible Engine), a new Research Information Management System (RIMS) for collaborative projects. Djeen is a user-friendly application, designed to streamline data storage and annotation collaboratively. Its database model, kept simple, is compliant with most technologies and allows storing and managing of heterogeneous data with the same system. Advanced permissions are managed through different roles. Templates allow Minimum Information (MI) compliance. Djeen allows managing project associated with heterogeneous data types while enforcing annotation integrity and minimum information. Projects are managed within a hierarchy and user permissions are finely-grained for each project, user and group.Djeen Component source code (version 1.5.1) and installation documentation are available under CeCILL license from http://sourceforge.net/projects/djeen/files and supplementary material.
2013-01-01
Background With the advance of post-genomic technologies, the need for tools to manage large scale data in biology becomes more pressing. This involves annotating and storing data securely, as well as granting permissions flexibly with several technologies (all array types, flow cytometry, proteomics) for collaborative work and data sharing. This task is not easily achieved with most systems available today. Findings We developed Djeen (Database for Joomla!’s Extensible Engine), a new Research Information Management System (RIMS) for collaborative projects. Djeen is a user-friendly application, designed to streamline data storage and annotation collaboratively. Its database model, kept simple, is compliant with most technologies and allows storing and managing of heterogeneous data with the same system. Advanced permissions are managed through different roles. Templates allow Minimum Information (MI) compliance. Conclusion Djeen allows managing project associated with heterogeneous data types while enforcing annotation integrity and minimum information. Projects are managed within a hierarchy and user permissions are finely-grained for each project, user and group. Djeen Component source code (version 1.5.1) and installation documentation are available under CeCILL license from http://sourceforge.net/projects/djeen/files and supplementary material. PMID:23742665
High school peer tutors teach MedlinePlus: a model for Hispanic outreach*
Warner, Debra G.; Olney, Cynthia A.; Wood, Fred B.; Hansen, Lucille; Bowden, Virginia M.
2005-01-01
Objectives: The objective was to introduce the MedlinePlus Website to the predominantly Hispanic residents of the Lower Rio Grande Valley region of Texas by partnering with a health professions magnet high school (known as Med High). Methods: Community assessment was used in the planning stages and included pre-project focus groups with students and teachers. Outreach methods included peer tutor selection, train-the-trainer sessions, school and community outreach, and pre- and posttests of MedlinePlus training sessions. Evaluation methods included Web statistics; end-of-project interviews; focus groups with students, faculty, and librarians; and end-of-project surveys of students and faculty. Results: Four peer tutors reached more than 2,000 people during the project year. Students and faculty found MedlinePlus to be a useful resource. Faculty and librarians developed new or revised teaching methods incorporating MedlinePlus. The project enhanced the role of school librarians as agents of change at Med High. The project continues on a self-sustaining basis. Conclusions: Using peer tutors is an effective way to educate high school students about health information resources and, through the students, to reach families and community members. PMID:15858628
Erfolgsfaktoren von Lehrstellenmarketing in der dualen berufsbildung: das beispiel Schweiz
NASA Astrophysics Data System (ADS)
Sager, Fritz
2006-09-01
SUCCESS FACTORS OF APPRENTICESHIP MARKETING IN A SYSTEM OF DUAL VOCATIONAL TRAINING: THE CASE OF SWITZERLAND - The dual system of vocational training, utilizing both company training and vocational school, is generally acknowledged to be a successful model, but a decreasing number of trainee posts in Switzerland poses a crisis for the approach. One strategy for overcoming the problem involves offering incentives for companies to create new trainee posts. The present study explores the necessary conditions for successfully influencing the number of trainee posts through apprenticeship marketing. A comparision of qualitative case studies of six marketing projects demonstrates that while context, in the sense of basic structural conditions and political sensibility for the problematic, plays a role in the success of a project, what is central is above all the form of the trainee-post marketing project itself. This has to do with the behaviour of the actors involved as well as the choice of the mode of governance and project organization. The latter has to do with making available requisite technical and personal resources, coordination on the part of the project direction, and giving those responsible the necessary room to act in implementing the project.
NASA Astrophysics Data System (ADS)
Ma, H. Y.; Klein, S. A.; Xie, S.; Zhang, C.; Morcrette, C. J.; Van Weverberg, K.; Petch, J.
2016-12-01
The CAUSES (Clouds Above the United States and Errors at the Surface) is a joint GASS/RGCM/ASR model intercomparison project with an observational focus (data from the U.S. DOE ARM SGP site and other observations). The goal of this project is to evaluate the role of clouds, radiation and precipitation processes in contributing to the surface air temperature bias in the region of the central U.S., which is seen in several weather and climate models. In this project, we use a short-term hindcast approach and examine the error growth due to cloud-associated processes while the large-scale state remains close to observations. The study period is from April 1 to August 31, 2011, which also covers the entire Midlatitude Continental Convective Clouds Experiment (MC3E) campaign that provides very frequent radiosondes (8 per day) and many extensive cloud and precipitation radar observations. Our preliminary analysis indicates that the warm surface air temperature bias in the mean diurnal cycle of the whole study period is very robust across all the participating models over the ARM SGP site. During the spring season (April-May), the daytime warm bias in most models is mostly due to excessive net surface shortwave flux resulting from insufficient deep convective cloud fraction or too optically thin clouds. The nighttime warm bias is likely due to the excessive downwelling longwave flux warming resulting from the persisting deep clouds. During the summer season (June-August), bias contribution from precipitation bias becomes important. The insufficient seasonal accumulated precipitation from the propagating convective systems originated from the Rockies contributes to lower soil moisture. Such condition drives the land surface to a dry state whereby radiative input can only be balanced by sensible heat loss through an increased surface air temperature. More information about the CAUSES project can be found through the following project webpage (http://portal.nersc.gov/project/capt/CAUSES/). (This study is funded by the RGCM and ASR programs of the U.S. Department of Energy as part of the Cloud-Associated Parameterizations Testbed. This work is performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-688818)
1988-08-30
Ai _.. ;:: -- I. OVERALL OBJECTIVE AND STATEMENT OF WORK The overall objective of the proposed project is to investigate the scientific basis...development and inter-species correlations with toxicity. A second series of tissue disposition experiments will be conducted to determine what ...elimination of halocarbons is hepatic metabolism. If metabolism plays a significant role in the disposition and subsequent neurobehavioral effects of
Hormonal Regulation of Extinction: Implications for Gender Differences in the Mechanisms of PTSD
2010-03-01
Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT This project investigates the role of gonadal hormones in the regulation of Pavlovian fear conditioning ...and its extinction. Pavlovian fear conditioning and its extinction serve as an animal model for the development of pathological fear in humans that...gonadal hormones in the regulation of Pavlovian fear conditioning and its extinction. Pavlovian fear conditioning and its extinction serve as an animal
ERIC Educational Resources Information Center
Cowie, Peter, Ed.
This publication resulted from a project of the British Film Institute (bfi). The aim was to emphasize that cinema takes a number of different forms, fulfills a variety of roles within different societies, and has different models of its social function. Toward this end, film-makers from all over the world were invited to write a diary about the…
Malaria vectors in South America: current and future scenarios.
Laporta, Gabriel Zorello; Linton, Yvonne-Marie; Wilkerson, Richard C; Bergo, Eduardo Sterlino; Nagaki, Sandra Sayuri; Sant'Ana, Denise Cristina; Sallum, Maria Anice Mureb
2015-08-19
Malaria remains a significant public health issue in South America. Future climate change may influence the distribution of the disease, which is dependent on the distribution of those Anopheles mosquitoes competent to transmit Plasmodium falciparum. Herein, predictive niche models of the habitat suitability for P. falciparum, the current primary vector Anopheles darlingi and nine other known and/or potential vector species of the Neotropical Albitarsis Complex, were used to document the current situation and project future scenarios under climate changes in South America in 2070. To build each ecological niche model, we employed topography, climate and biome, and the currently defined distribution of P. falciparum, An. darlingi and nine species comprising the Albitarsis Complex in South America. Current and future (i.e., 2070) distributions were forecast by projecting the fitted ecological niche model onto the current environmental situation and two scenarios of simulated climate change. Statistical analyses were performed between the parasite and each vector in both the present and future scenarios to address potential vector roles in the dynamics of malaria transmission. Current distributions of malaria vector species were associated with that of P. falciparum, confirming their role in transmission, especially An. darlingi, An. marajoara and An. deaneorum. Projected climate changes included higher temperatures, lower water availability and biome modifications. Regardless of future scenarios considered, the geographic distribution of P. falciparum was exacerbated in 2070 South America, with the distribution of the pathogen covering 35-46% of the continent. As the current primary vector An. darlingi showed low tolerance for drier environments, the projected climate change would significantly reduce suitable habitat, impacting both its distribution and abundance. Conversely, climate generalist members of the Albitarsis Complex showed significant spatial and temporal expansion potential in 2070, and we conclude these species will become more important in the dynamics of malaria transmission in South America. Our data suggest that climate and landscape effects will elevate the importance of members of the Albitarsis Complex in malaria transmission in South America in 2070, highlighting the need for further studies addressing the bionomics, ecology and behaviours of the species comprising the Albitarsis Complex.
Evaluation of the multifunctional worker role: a stakeholder analysis.
Jones, K R; Redman, R W; VandenBosch, T M; Holdwick, C; Wolgin, F
1999-01-01
Health care organizations are rethinking how care is delivered because of incentives generated by managed care and a competitive marketplace. An evaluation of a work redesign project that involved the creation of redesigned unlicensed caregiver roles is described. The effect of model implementation on patients, multiple categories of caregivers, and physicians was measured using several different approaches to data collection. In this evaluation, caregivers perceived the institutional culture to be both market-driven and hierarchical. The work redesign, along with significant changes in unit configuration and leadership over the same period, significantly reduced job security and satisfaction with supervision. Quality indicators suggested short-term declines in quality during model implementation with higher levels of quality after implementation issues were resolved. Objective measurement of the outcomes of work redesign initiatives is imperative to assure appropriate adjustments and responses to caregiver concerns.
Carbon dioxide (CO2) sequestration in deep saline aquifers and formations: Chapter 3
Rosenbauer, Robert J.; Thomas, Burt
2010-01-01
Carbon dioxide (CO2) capture and sequestration in geologic media is one among many emerging strategies to reduce atmospheric emissions of anthropogenic CO2. This chapter looks at the potential of deep saline aquifers – based on their capacity and close proximity to large point sources of CO2 – as repositories for the geologic sequestration of CO2. The petrochemical characteristics which impact on the suitability of saline aquifers for CO2 sequestration and the role of coupled geochemical transport models and numerical tools in evaluating site feasibility are also examined. The full-scale commercial CO2 sequestration project at Sleipner is described together with ongoing pilot and demonstration projects.
Digital Multimodal Texts and Their Role in Project Work: Opportunities and Dilemmas
ERIC Educational Resources Information Center
Wikan, Gerd; Molster, Terje; Faugli, Bjorn; Hope, Rafael
2010-01-01
This paper explores how and to what extent digital multimodal text production can play a role in project work. The focus is upon describing and understanding how teachers and learners view multimodal text production as part of a learning process. Group-based project work has been used extensively in Norwegian schools since the 1970s. One criticism…
ERIC Educational Resources Information Center
Tachioka, Hiroshi; Campbell, Joel R.
2006-01-01
Public Private Partnerships (PPPs) play a very important role in the development of social, health, welfare and education worldwide. Most PPP projects have been in the social, welfare and health fields. However, in recent years, PPP projects also play more active role in education. PPP projects in education have evolved from the mere sponsoring of…