Science.gov

Sample records for roll para lingotamento

  1. Rolling Reloaded

    ERIC Educational Resources Information Center

    Jones, Simon A.; Nieminen, John M.

    2008-01-01

    Not so long ago a new observation about rolling motion was described: for a rolling wheel, there is a set of points with instantaneous velocities directed at or away from the centre of the wheel; these points form a circle whose diameter connects the centre of the wheel to the wheel's point of contact with the ground (Sharma 1996 "Eur. J. Phys."…

  2. Rolling Ribbons

    NASA Astrophysics Data System (ADS)

    Raux, P. S.; Reis, P. M.; Bush, J. W. M.; Clanet, C.

    2010-07-01

    We present the results of a combined experimental and theoretical investigation of rolling elastic ribbons. Particular attention is given to characterizing the steady shapes that arise in static and dynamic rolling configurations. In both cases, above a critical value of the forcing (either gravitational or centrifugal), the ribbon assumes a two-lobed, peanut shape similar to that assumed by rolling droplets. Our theoretical model allows us to rationalize the observed shapes through consideration of the ribbon’s bending and stretching in response to the applied forcing.

  3. Rolling Robot

    NASA Technical Reports Server (NTRS)

    Larimer, Stanley J.; Lisec, Thomas R.; Spiessbach, Andrew J.

    1990-01-01

    Proposed rolling robot routinely traverses rough terrain, clearing rocks as high as 1 m. Climbs steps 1 m high and spans ditches 2.3 m wide. Simple but rugged semiautonomous rover has large wheels and articulated body. With combined yaw, roll, and four-wheel drive, robot crawls slowly to pass over soft or sandy terrain. Senses terrain along corridor, chooses path to avoid insurmountable obstacles, and monitors state of vehicle for unexpected hazards.

  4. Rolling Uphill

    ERIC Educational Resources Information Center

    Cross, Rod

    2017-01-01

    In a recent letter to this journal, Mungan noted that translational energy can be converted into gravitational potential energy when an object is projected vertically, but rotational energy is not usually converted in this manner. As an exception, he gave an example where "a ball initially rolling without slipping will travel higher up a…

  5. CONTROL FOR ROLLING MILL

    DOEpatents

    Shuck, A.B.; Shaw, W.C.

    1961-06-20

    A plutonium-rolling apparatus is patented that has two sets of feed rolls, shaping rolls between the feed rolls, and grippers beyond the feed rolls, which ready a workpiece for a new pass through the shaping rolls by angularly shifting the workpiece about its axis or transversely moving it on a line parallel to the axes of the shaping rolls. Actuation of each gripper for gripping or releasing the workpiece is produced by the relative positions assumed by the feed rolls adjacent to the gripper as the workpiece enters or leaves the feed rolls.

  6. Rolling Uphill

    NASA Astrophysics Data System (ADS)

    Cross, Rod

    2017-04-01

    In a recent letter to this journal, Mungan noted that translational energy can be converted into gravitational potential energy when an object is projected vertically, but rotational energy is not usually converted in this manner. As an exception, he gave an example where "a ball initially rolling without slipping will travel higher up a rough ramp than it will up a frictionless ramp." However, such a result is unlikely to be observed in practice. A better example would be a ball spinning rapidly forwards as it slides up the ramp, since the friction force on the ball then acts in a direction up the ramp.

  7. Rolling-Element Bearings

    NASA Technical Reports Server (NTRS)

    Hamrock, B. J.; Anderson, W. J.

    1983-01-01

    Rolling element bearings are a precision, yet simple, machine element of great utility. A brief history of rolling element bearings is reviewed and the type of rolling element bearings, their geometry and kinematics, as well as the materials they are made from and the manufacturing processes they involve are described. Unloaded and unlubricated rolling element bearings, loaded but unlubricated rolling element bearings and loaded and lubricated rolling element bearings are considered. The recognition and understanding of elastohydrodynamic lubrication covered, represents one of the major development in rolling element bearings.

  8. Rolling-Contact Rheostat

    NASA Technical Reports Server (NTRS)

    Ruoff, C. F.

    1985-01-01

    Contact noise in rheostats and potentiometers reduced by rolling contact design. Smooth rolling action eliminates sporadic variations in resistance caused by bouncing and stick/slip motion of conventional sliding contacts.

  9. 4. ROLL LATHE OF THE MAIN ROLL SHOP. THE LATHE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. ROLL LATHE OF THE MAIN ROLL SHOP. THE LATHE WAS CLOSED WITH TWO ROLLS IN PLACE, AND THE LOWER ROLL WAS TURNED TO MATCH THE UPPER ROLL. - U.S. Steel Homestead Works, Main Roll Shop, Along Monongahela River, Homestead, Allegheny County, PA

  10. Internal roll compression system

    DOEpatents

    Anderson, Graydon E.

    1985-01-01

    This invention is a machine for squeezing water out of peat or other material of low tensile strength; the machine including an inner roll eccentrically positioned inside a tubular outer roll, so as to form a gradually increasing pinch area at one point therebetween, so that, as the rolls rotate, the material is placed between the rolls, and gets wrung out when passing through the pinch area.

  11. Modelling pressure rolling of asymmetric rolling process

    NASA Astrophysics Data System (ADS)

    Alexa, V.; Ratiu, S. A.; Kiss, I.; Cioata, V. G.

    2017-05-01

    The paper presents a comparative analysis between experimental results and modelling in order to interpret the value of the contact pressure on the asymmetric longitudinal rolling. It is also intended action and the different behaviour of upper cylinder compared to the lower cylinder action in situations when both are driven, or only one operates. In the modelling will be presented on the basis of boundary conditions imposed rolling pressure variation in the degree of reduction and also re size arc length of contact. Determining a curve is also important to determine the locus of points which characterize symmetry conditions partial rolling process between unequal diameters cylinders.

  12. Origins of rolling friction

    NASA Astrophysics Data System (ADS)

    Cross, Rod

    2017-09-01

    When a hard object rolls on a soft surface, or vice versa, rolling friction arises from deformation of the soft object or the soft surface. The friction force can be described in terms of an offset in the normal reaction force or in terms of energy loss arising from the deformation. The origin of the friction force itself is not entirely clear. It is investigated qualitatively in this paper by rolling a steel ball on soft foam and by rolling a foam cylinder on a hard surface. The deformation of the foam was observed visually, providing simple insights into the origin of the friction force.

  13. Understanding Rolle's Theorem

    ERIC Educational Resources Information Center

    Parameswaran, Revathy

    2009-01-01

    This paper reports on an experiment studying twelfth grade students' understanding of Rolle's Theorem. In particular, we study the influence of different concept images that students employ when solving reasoning tasks related to Rolle's Theorem. We argue that students' "container schema" and "motion schema" allow for rich…

  14. Effect of Roll Material on Surface Quality of Rolled Aluminum

    NASA Astrophysics Data System (ADS)

    Zhao, Qi

    The surface defects of aluminum alloys that have undergone hot rolling were studied. The effects of different roll materials, of the number of rolling passes and of lubrication on surface defects of hot rolled aluminum alloys were investigated by laboratory hot rolling. Two different aluminum alloys, Al-Mn and Al-Mg, were each rolled against three different steel alloy rolls, AISI 52100, AISI 440C and AISI D2. The results showed that different roll materials do affect the morphology of the mating aluminum alloy surface with apparent surface defects, which included magnesium and oxygen rich dark regions on both alloys. The carbide protrusions in 440C and D2 steel rolls are confirmed to be responsible for the dark, rich magnesium and oxygen regions on both the rolled Al-Mn and Al-Mg alloy surfaces. As the number of passes increases, Mg and O deposit in the form of patches and grain boundaries near the surface area.

  15. Biomechanics of leukocyte rolling

    PubMed Central

    Sundd, Prithu; Pospieszalska, Maria K.; Cheung, Luthur Siu-Lun; Konstantopoulos, Konstantinos; Ley, Klaus

    2011-01-01

    Leukocyte rolling on endothelial cells and other P-selectin substrates is mediated by P-selectin binding to P-selectin glycoprotein ligand-1 expressed on the tips of leukocyte microvilli. Leukocyte rolling is a result of rapid, yet balanced formation and dissociation of selectin-ligand bonds in the presence of hydrodynamic shear forces. The hydrodynamic forces acting on the bonds may either increase (catch bonds) or decrease (slip-bonds) their lifetimes. The force-dependent ‘catch-slip’ bond kinetics are explained using the ‘two pathway model’ for bond dissociation. Both the ‘sliding-rebinding’ and the ‘allosteric’ mechanisms attribute ‘catch-slip’ bond behavior to the force-induced conformational changes in the lectin-EGF domain hinge of selectins. Below a threshold shear stress, selectins cannot mediate rolling. This ‘shear-threshold’ phenomenon is a consequence of shear-enhanced tethering and catch-bond enhanced rolling. Quantitative dynamic footprinting microscopy has revealed that leukocytes rolling at venular shear stresses (> 0.6 Pa) undergo cellular deformation (large footprint) and form long tethers. The hydrodynamic shear force and torque acting on the rolling cell are thought to be synergistically balanced by the forces acting on tethers and stressed microvilli, however, their relative contribution remains to be determined. Thus, improvement beyond the current understanding requires in silico models that can predict both cellular and microvillus deformation and experiments that allow measurement of forces acting on individual microvilli and tethers. PMID:21515934

  16. Spray Rolling Aluminum Strip

    SciTech Connect

    Lavernia, E.J.; Delplanque, J-P; McHugh, K.M.

    2006-05-10

    Spray forming is a competitive low-cost alternative to ingot metallurgy for manufacturing ferrous and non-ferrous alloy shapes. It produces materials with a reduced number of processing steps, while maintaining materials properties, with the possibility of near-net-shape manufacturing. However, there are several hurdles to large-scale commercial adoption of spray forming: 1) ensuring strip is consistently flat, 2) eliminating porosity, particularly at the deposit/substrate interface, and 3) improving material yield. Through this program, a new strip/sheet casting process, termed spray rolling, has been developed, which is an innovative manufacturing technique to produce aluminum net-shape products. Spray rolling combines the benefits of twin-roll casting and conventional spray forming, showing a promising potential to overcome the above hurdles associated with spray forming. Spray rolling requires less energy and generates less scrap than conventional processes and, consequently, enables the development of materials with lower environmental impacts in both processing and final products. Spray Rolling was developed as a collaborative project between the University of California-Davis, the Colorado School of Mines, the Idaho National Engineering and Environmental Laboratory, and an industry team. The following objectives of this project were achieved: (1) Demonstration of the feasibility of the spray rolling process at the bench-scale level and evaluation of the materials properties of spray rolled aluminum strip alloys; and (2) Demonstration of 2X scalability of the process and documentation of technical hurdles to further scale up and initiate technology transfer to industry for eventual commercialization of the process.

  17. Roll cooling and its relationship to roll life

    NASA Astrophysics Data System (ADS)

    Tseng, A. A.; Lin, F. H.; Gunderia, A. S.; Ni, D. S.

    1989-11-01

    Combined experimental and numerical research has been conducted to investigate the roll cooling system used in steel rolling mills and its relationship to roll life. Roll cooling has been identified as a critical factor in the problems of excessive roll wear or spalling, which cause shortened roll life. A special laboratory apparatus resembling the cooling systems used in the steel mills has been developed to evaluate the corresponding heat transfer coefficients. These coefficients have then been utilized for numerical simulation of the rolling processes. In simulation, the thermal behavior of both the roll and the strip have been considered with emphasis on roll temperature and the induced cyclic thermal stresses. An understanding of the cyclic stress can be utilized to evaluate roll wear, and leads to reduction of the roll spalling, or to extension of the roll life by minimizing the cyclic stress or the resultant fatigue stress. As indicated by the present study, in order to minimize the cyclic or fatigue stresses, the roll should be subjected to uniform cooling, as the sharper the heat transfer coefficient distribution, the higher the thermal stress induced.

  18. Wear of hot rolling mill rolls: An overview

    NASA Astrophysics Data System (ADS)

    Spuzic, S.; Strafford, K. N.; Subramanian, C.; Savage, G.

    1994-08-01

    Rolling is today one of the most important industrial processes because a greater volume of material is worked by rolling than by any other technique. Roll wear is a multiplex process where mechanical and thermal fatigue combines with impact, abrasion, adhesion and corrosion, which all depend on system interactions rather than material characteristics only. The situation is more complicated in section rolling because of the intricacy of roll geometry. Wear variables and modes are reviewed along with published methods and models used in the study and testing of roll wear. This paper reviews key aspects of roll wear control - roll material properties, roll pass design, and system factors such as temperature, loads and sliding velocity. An overview of roll materials is given including adamites, high Cr materials, high speed tool steels and compound rolls. Non-uniform wear, recognized as the most detrimental phenomenon in section rolling, can be controlled by roll pass design. This can be achieved by computer-aided graphical and statistical analyses of various pass series. Preliminary results obtained from pilot tests conducted using a two-disc hot wear rig and a scratch tester are discussed.

  19. Stochastic disks that roll.

    PubMed

    Holmes-Cerfon, Miranda

    2016-11-01

    We study a model of rolling particles subject to stochastic fluctuations, which may be relevant in systems of nano- or microscale particles where rolling is an approximation for strong static friction. We consider the simplest possible nontrivial system: a linear polymer of three disks constrained to remain in contact and immersed in an equilibrium heat bath so the internal angle of the polymer changes due to stochastic fluctuations. We compare two cases: one where the disks can slide relative to each other and the other where they are constrained to roll, like gears. Starting from the Langevin equations with arbitrary linear velocity constraints, we use formal homogenization theory to derive the overdamped equations that describe the process in configuration space only. The resulting dynamics have the formal structure of a Brownian motion on a Riemannian or sub-Riemannian manifold, depending on if the velocity constraints are holonomic or nonholonomic. We use this to compute the trimer's equilibrium distribution with and without the rolling constraints. Surprisingly, the two distributions are different. We suggest two possible interpretations of this result: either (i) dry friction (or other dissipative, nonequilibrium forces) changes basic thermodynamic quantities like the free energy of a system, a statement that could be tested experimentally, or (ii) as a lesson in modeling rolling or friction more generally as a velocity constraint when stochastic fluctuations are present. In the latter case, we speculate there could be a "roughness" entropy whose inclusion as an effective force could compensate the constraint and preserve classical Boltzmann statistics. Regardless of the interpretation, our calculation shows the word "rolling" must be used with care when stochastic fluctuations are present.

  20. Stochastic disks that roll

    NASA Astrophysics Data System (ADS)

    Holmes-Cerfon, Miranda

    2016-11-01

    We study a model of rolling particles subject to stochastic fluctuations, which may be relevant in systems of nano- or microscale particles where rolling is an approximation for strong static friction. We consider the simplest possible nontrivial system: a linear polymer of three disks constrained to remain in contact and immersed in an equilibrium heat bath so the internal angle of the polymer changes due to stochastic fluctuations. We compare two cases: one where the disks can slide relative to each other and the other where they are constrained to roll, like gears. Starting from the Langevin equations with arbitrary linear velocity constraints, we use formal homogenization theory to derive the overdamped equations that describe the process in configuration space only. The resulting dynamics have the formal structure of a Brownian motion on a Riemannian or sub-Riemannian manifold, depending on if the velocity constraints are holonomic or nonholonomic. We use this to compute the trimer's equilibrium distribution with and without the rolling constraints. Surprisingly, the two distributions are different. We suggest two possible interpretations of this result: either (i) dry friction (or other dissipative, nonequilibrium forces) changes basic thermodynamic quantities like the free energy of a system, a statement that could be tested experimentally, or (ii) as a lesson in modeling rolling or friction more generally as a velocity constraint when stochastic fluctuations are present. In the latter case, we speculate there could be a "roughness" entropy whose inclusion as an effective force could compensate the constraint and preserve classical Boltzmann statistics. Regardless of the interpretation, our calculation shows the word "rolling" must be used with care when stochastic fluctuations are present.

  1. Extended slow-roll conditions and rapid-roll conditions

    SciTech Connect

    Chiba, Takeshi; Yamaguchi, Masahide E-mail: gucci@phys.aoyama.ac.jp

    2008-10-15

    We derive slow-roll conditions for a scalar field which is non-minimally coupled with gravity in a consistent manner and express spectral indices of scalar/tensor perturbations in terms of the slow-roll parameters. The conformal invariance of the curvature perturbation is proved without linear approximations. Rapid-roll conditions are also derived, and the relation with the slow-roll conditions is discussed.

  2. Rolling through a vacuum

    NASA Astrophysics Data System (ADS)

    van der Schaar, Jan Pieter; Yang, I.-Sheng

    2013-12-01

    We clarify under what conditions slow-roll inflation can continue almost undisturbed, while briefly evolving through a (semi-classically) metastable false vacuum. Furthermore, we look at potential signatures in the primordial power spectrum that could point towards the existence of traversed metastable false vacua. Interestingly, the theoretical constraints for the existence of traversable metastable vacua imply that Planck should be able to detect the resulting features in the primordial power spectrum. In other words, if Planck does not see features this immediately implies the non-existence of metastable false vacua rolled through during the inflationary epoch.

  3. METHOD OF ROLLING URANIUM

    DOEpatents

    Smith, C.S.

    1959-08-01

    A method is described for rolling uranium metal at relatively low temperatures and under non-oxidizing conditions. The method involves the steps of heating the uranium to 200 deg C in an oil bath, withdrawing the uranium and permitting the oil to drain so that only a thin protective coating remains and rolling the oil coated uranium at a temperature of 200 deg C to give about a 15% reduction in thickness at each pass. The operation may be repeated to accomplish about a 90% reduction without edge cracking, checking or any appreciable increase in brittleness.

  4. Rolling Spot Welder

    NASA Technical Reports Server (NTRS)

    Wagner, Garret E.; Fonteyne, Steve L.

    1990-01-01

    Wheeled tool speeds tack-welding operations. Spotwelds foil to parts in preparation for brazing. Includes electrode wheel rolling across foil. Welding current in electrode pulsed as electrode moves along, making series of uniformly-spaced low-current spot welds.

  5. Rolling Spot Welder

    NASA Technical Reports Server (NTRS)

    Wagner, Garret E.; Fonteyne, Steve L.

    1990-01-01

    Wheeled tool speeds tack-welding operations. Spotwelds foil to parts in preparation for brazing. Includes electrode wheel rolling across foil. Welding current in electrode pulsed as electrode moves along, making series of uniformly-spaced low-current spot welds.

  6. Aircraft roll steering command system

    NASA Technical Reports Server (NTRS)

    Lambregts, Antonius A. (Inventor)

    1985-01-01

    Aircraft roll command signals are generated as a function of the Microwave Landing System based azimuth, groundtrack, groundspeed and azimuth rate or range distance input parameters. On initial approach, roll command signals are inhibited until a minimum roll command requirement is met. As the aircraft approaches the centerline of the runway, the system reverts to a linear track control.

  7. Roll Eccentricity Control Using Identified Eccentricity of Top/Bottom Rolls by Roll Force

    NASA Astrophysics Data System (ADS)

    Imanari, Hiroyuki; Koshinuma, Kazuyoshi

    Roll eccentricity is a periodic disturbance caused by a structure of back up rolls in rolling mills, and it affects product thickness accuracy. It cannot be measured directly by sensors, so it should be identified by measured thickness or measured roll force. When there is a large difference of diameters between top and bottom back up roll, the performance of roll eccentricity control using feedback signals of roll force or thickness has not been so good. Also it has been difficult for the control to be applied from the most head end because it is necessary to identify the roll eccentricity during rolling. A new roll eccentricity control has been developed to improve these disadvantages and to get better performance. The method identifies top and bottom roll eccentricity respectively from one signal of roll force and it can start the control from head end. In this paper the new control method is introduced and actual application results to a hot strip mill are shown.

  8. GRCop-84 Rolling Parameter Study

    NASA Technical Reports Server (NTRS)

    Loewenthal, William S.; Ellis, David L.

    2008-01-01

    This report is a section of the final report on the GRCop-84 task of the Constellation Program and incorporates the results obtained between October 2000 and September 2005, when the program ended. NASA Glenn Research Center (GRC) has developed a new copper alloy, GRCop-84 (Cu-8 at.% Cr-4 at.% Nb), for rocket engine main combustion chamber components that will improve rocket engine life and performance. This work examines the sensitivity of GRCop-84 mechanical properties to rolling parameters as a means to better define rolling parameters for commercial warm rolling. Experiment variables studied were total reduction, rolling temperature, rolling speed, and post rolling annealing heat treatment. The responses were tensile properties measured at 23 and 500 C, hardness, and creep at three stress-temperature combinations. Understanding these relationships will better define boundaries for a robust commercial warm rolling process. The four processing parameters were varied within limits consistent with typical commercial production processes. Testing revealed that the rolling-related variables selected have a minimal influence on tensile, hardness, and creep properties over the range of values tested. Annealing had the expected result of lowering room temperature hardness and strength while increasing room temperature elongations with 600 C (1112 F) having the most effect. These results indicate that the process conditions to warm roll plate and sheet for these variables can range over wide levels without negatively impacting mechanical properties. Incorporating broader process ranges in future rolling campaigns should lower commercial rolling costs through increased productivity.

  9. Walk and roll robot

    NASA Technical Reports Server (NTRS)

    Wilson, Andrew (Inventor); Punnoose, Andrew (Inventor); Strausser, Katherine (Inventor); Parikh, Neil (Inventor)

    2011-01-01

    A mobile robotic unit features a main body, a plurality of legs for supporting the main body on and moving the main body in forward and reverse directions about a base surface, and a drive assembly. According to an exemplary embodiment each leg includes a respective pivotal hip joint, a pivotal knee joint, and a wheeled foot adapted to roll along the base surface. Also according to an exemplary embodiments the drive assembly includes a motor operatively associated with the hip and knee joints and the wheeled foot for independently driving pivotal movement of the hip joint and the knee joint and rolling motion of the wheeled foot. The hip joint may include a ball-and-socket-type joint interconnecting top portion of the leg to the main body, such that the hip joint is adapted to pivot said leg in a direction transverse to a forward-and-reverse direction.

  10. Shear Roll Mill Reactivation

    DTIC Science & Technology

    2012-09-13

    pneumatically operated paste dumper and belt conveyor system, the loss in weight feeder system, the hydraulically operated shear roll mill, the pellet...out feed belt conveyor , and the pack out system comprised of the metal detector, scale, and pack out empty and full drum roller conveyors . Page | 4...feed hopper and conveyor supplying the loss in weight feeder were turned on, and it was verified that these items functioned as designed. The

  11. Investigation of thermomechanical behavior of a work roll and of roll life in hot strip rolling

    NASA Astrophysics Data System (ADS)

    Sun, C. G.; Hwang, S. M.; Yun, C. S.; Chung, J. S.

    1998-09-01

    An integrated finite element-based model is presented for the prediction of the steady-state thermomechanical behavior of the roll-strip system and of roll life in hot strip rolling. The model is comprised of basic finite-element models, which are incorporated into an iterative-solution procedure to deal with the interdependence between the thermomechanical behavior of the strip and that of the work roll, which arises from roll-strip contact, as well as with the interdependence between the thermal and mechanical behavior. Comparison is made between the predictions and the measurements to assess solution accuracy. Then, the effect of various process parameters on the detailed aspects of thermomechanical behavior of the work roll and on roll life is investigated via a series of process simulations.

  12. Roll-to-Roll production of carbon nanotubes based supercapacitors

    NASA Astrophysics Data System (ADS)

    Zhu, Jingyi; Childress, Anthony; Karakaya, Mehmet; Roberts, Mark; Arcilla-Velez, Margarita; Podila, Ramakrishna; Rao, Apparao

    2014-03-01

    Carbon nanomaterials provide an excellent platform for electrochemical double layer capacitors (EDLCs). However, current industrial methods for producing carbon nanotubes are expensive and thereby increase the costs of energy storage to more than 10 Wh/kg. In this regard, we developed a facile roll-to-roll production technology for scalable manufacturing of multi-walled carbon nanotubes (MWNTs) with variable density on run-of-the-mill kitchen Al foils. Our method produces MWNTs with diameter (heights) between 50-100 nm (10-100 μm), and a specific capacitance as high as ~ 100 F/g in non-aqueous electrolytes. In this talk, the fundamental challenges involved in EDLC-suitable MWNT growth, roll-to-roll production, and device manufacturing will be discussed along with electrochemical characteristics of roll-to-roll MWNTs. Research supported by NSF CMMI Grant1246800.

  13. Rolling cuff flexible bellows

    DOEpatents

    Lambert, Donald R.

    1985-01-01

    A flexible connector apparatus used to join two stiff non-deformable members, such as piping. The apparatus is provided with one or more flexible sections or assemblies each utilizing a bellows of a rolling cuff type connected between two ridge members, with the bellows being supported by a back-up ring, such that only the curved end sections of the bellows are unsupported. Thus, the bellows can be considered as being of a tube-shaped configuration and thus have high pressure resistance. The components of the flexible apparatus are sealed or welded one to another such that it is fluid tight.

  14. VIEW OF HANDOPERATED ROLLING MILLS ROLLING STANDS FROM LEFT TO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF HAND-OPERATED ROLLING MILLS ROLLING STANDS FROM LEFT TO RIGHT: THREE HIGH; THREE HIGH; THREE HIGH; THREE HIGH (OPERATED AS A TWO-HIGH); TWO HIGH TWO HIGH MANUFACTURED BY BLAW-KNOX THREE HIGH MANUFACTURED BY LEWIS FOUNDRY AND MACHINE CO. - Cambria Iron Company, Gautier Works, 12" Mill, Clinton Street & Little Conemaugh River, Johnstown, Cambria County, PA

  15. Video Analysis of Rolling Cylinders

    ERIC Educational Resources Information Center

    Phommarach, S.; Wattanakasiwich, P.; Johnston, I.

    2012-01-01

    In this work, we studied the rolling motion of solid and hollow cylinders down an inclined plane at different angles. The motions were captured on video at 300 frames s[superscript -1], and the videos were analyzed frame by frame using video analysis software. Data from the real motion were compared with the theory of rolling down an inclined…

  16. Video Analysis of Rolling Cylinders

    ERIC Educational Resources Information Center

    Phommarach, S.; Wattanakasiwich, P.; Johnston, I.

    2012-01-01

    In this work, we studied the rolling motion of solid and hollow cylinders down an inclined plane at different angles. The motions were captured on video at 300 frames s[superscript -1], and the videos were analyzed frame by frame using video analysis software. Data from the real motion were compared with the theory of rolling down an inclined…

  17. Lubrication of rolling element bearings

    NASA Technical Reports Server (NTRS)

    Parker, R. J.

    1980-01-01

    This paper is a broad survey of the lubrication of rolling-element bearings. Emphasis is on the critical design aspects related to speed, temperature, and ambient pressure environment. Types of lubrication including grease, jets, mist, wick, and through-the-race are discussed. The paper covers the historical development, present state of technology, and the future problems of rolling-element bearing lubrication.

  18. Critical rolling angle of microparticles

    NASA Astrophysics Data System (ADS)

    Farzi, Bahman; Vallabh, Chaitanya K. P.; Stephens, James D.; Cetinkaya, Cetin

    2016-03-01

    At the micrometer-scale and below, particle adhesion becomes particularly relevant as van der Waals force often dominates volume and surface proportional forces. The rolling resistance of microparticles and their critical rolling angles prior to the initiation of free-rolling and/or complete detachment are critical in numerous industrial processes and natural phenomenon involving particle adhesion and granular dynamics. The current work describes a non-contact measurement approach for determining the critical rolling angle of a single microparticle under the influence of a contact-point base-excitation generated by a transient displacement field of a prescribed surface acoustic wave pulse and reports the critical rolling angle data for a set of polystyrene latex microparticles.

  19. Roll mill for milling coal

    SciTech Connect

    Brundiek, H.; Werner, L.

    1984-02-21

    A roll mill, more specially for coal, has a turning pan and a number of rolls running thereon for producing a milling effect. Each roll is supported on a rocker arm, able to be turned about a horizontal axis which is roughly tangential to the pan. The rocker arm and the roll on it are forced down against the pan by a hydraulic cylinder joined with a fork which, in turn, is joined with the rocker arm for turning it about the turnpin. The fork may be unjoined from the rocker arm for upkeep work on the roll. Each rocker arm has a gas-tight cover structure which is part of the casing of the mill.

  20. Avoiding the parametric roll

    NASA Astrophysics Data System (ADS)

    Acomi, Nicoleta; Ancuţa, Cristian; Andrei, Cristian; Boştinǎ, Alina; Boştinǎ, Aurel

    2016-12-01

    Ships are mainly built to sail and transport cargo at sea. Environmental conditions and state of the sea are communicated to vessels through periodic weather forecasts. Despite officers being aware of the sea state, their sea time experience is a decisive factor when the vessel encounters severe environmental conditions. Another important factor is the loading condition of the vessel, which triggers different behaviour in similar marine environmental conditions. This paper aims to analyse the behaviour of a port container vessel in severe environmental conditions and to estimate the potential conditions of parametric roll resonance. Octopus software simulation is employed to simulate vessel motions under certain conditions of the sea, with possibility to analyse the behaviour of ships and the impact of high waves on ships due to specific wave encounter situations. The study should be regarded as a supporting tool during the decision making process.

  1. Manufacturing Demonstration Facility: Roll-to-Roll Processing

    SciTech Connect

    Datskos, Panos G; Joshi, Pooran C; List III, Frederick Alyious; Duty, Chad E; Armstrong, Beth L; Ivanov, Ilia N; Jacobs, Christopher B; Graham, David E; Moon, Ji Won

    2015-08-01

    This Manufacturing Demonstration Facility (MDF)e roll-to-roll processing effort described in this report provided an excellent opportunity to investigate a number of advanced manufacturing approaches to achieve a path for low cost devices and sensors. Critical to this effort is the ability to deposit thin films at low temperatures using nanomaterials derived from nanofermentation. The overarching goal of this project was to develop roll-to-roll manufacturing processes of thin film deposition on low-cost flexible substrates for electronics and sensor applications. This project utilized ORNL s unique Pulse Thermal Processing (PTP) technologies coupled with non-vacuum low temperature deposition techniques, ORNL s clean room facility, slot dye coating, drop casting, spin coating, screen printing and several other equipment including a Dimatix ink jet printer and a large-scale Kyocera ink jet printer. The roll-to-roll processing project had three main tasks: 1) develop and demonstrate zinc-Zn based opto-electronic sensors using low cost nanoparticulate structures manufactured in a related MDF Project using nanofermentation techniques, 2) evaluate the use of silver based conductive inks developed by project partner NovaCentrix for electronic device fabrication, and 3) demonstrate a suite of low cost printed sensors developed using non-vacuum deposition techniques which involved the integration of metal and semiconductor layers to establish a diverse sensor platform technology.

  2. Rolling Process Modeling Report: Finite-Element Prediction of Roll Separating Force and Rolling Defects

    SciTech Connect

    Soulami, Ayoub; Lavender, Curt A.; Paxton, Dean M.; Burkes, Douglas

    2014-04-23

    Pacific Northwest National Laboratory (PNNL) has been investigating manufacturing processes for the uranium-10% molybdenum (U-10Mo) alloy plate-type fuel for the U.S. high-performance research reactors. This work supports the Convert Program of the U.S. Department of Energy’s National Nuclear Security Administration (DOE/NNSA) Global Threat Reduction Initiative. This report documents modeling results of PNNL’s efforts to perform finite-element simulations to predict roll separating forces and rolling defects. Simulations were performed using a finite-element model developed using the commercial code LS-Dyna. Simulations of the hot rolling of U-10Mo coupons encapsulated in low-carbon steel have been conducted following two different schedules. Model predictions of the roll-separation force and roll-pack thicknesses at different stages of the rolling process were compared with experimental measurements. This report discusses various attributes of the rolled coupons revealed by the model (e.g., dog-boning and thickness non-uniformity).

  3. Body roll in swimming: a review.

    PubMed

    Psycharakis, Stelios G; Sanders, Ross H

    2010-02-01

    In this article, we present a critical review of the swimming literature on body roll, for the purposes of summarizing and highlighting existing knowledge, identifying the gaps and limitations, and stimulating further research. The main research findings can be summarized as follows: swimmers roll their shoulders significantly more than their hips; swimmers increase hip roll but maintain shoulder roll when fatigued; faster swimmers roll their shoulders less than slower swimmers during a 200-m swim; roll asymmetries, temporal differences in shoulder roll and hip roll, and shoulder roll side dominance exist in front crawl swimming, but there is no evidence to suggest that they affect swimming performance; and buoyancy contributes strongly to generating body roll in front crawl swimming. Based on and stimulated by current knowledge, future research should focus on the following areas: calculation of body roll for female swimmers and for backstroke swimming; differences in body roll between breathing and non-breathing cycles; causes of body roll asymmetries and their relation to motor laterality; body roll analysis across a wide range of velocities and swimming distances; exploration of the association between body roll and the magnitude and direction of propulsive/resistive forces developed during the stroke cycle; and the influence of kicking actions on the generation of body roll.

  4. Frontal Impact of Rolling Spheres.

    ERIC Educational Resources Information Center

    Domenech, A.; Casasus, E.

    1991-01-01

    A model of the inelastic collision between two spheres rolling along a horizontal track is presented, taking into account the effects of frictional forces at impact. This experiment makes possible direct estimates of the coefficients of restitution and friction. (Author)

  5. Rolling Stitch Welder For Foil

    NASA Technical Reports Server (NTRS)

    Gilbert, Jeffery L.; Morgan, Gene E.

    1992-01-01

    Hand-operated rolling spotwelder stitch-welds foil faster and more consistently than single-spotwelding gun without damaging it. Internal spring reacts against roller frame, exerting force on welding wheel when rollers contact workpiece.

  6. Development of roll-to-roll hot embossing system with induction heater for micro fabrication.

    PubMed

    Yun, Dongwon; Son, Youngsu; Kyung, Jinho; Park, Heechang; Park, Chanhun; Lee, Sunghee; Kim, Byungin

    2012-01-01

    In this paper, a hot embossing heating roll with induction heater inside the roll is proposed. The induction heating coil is installed inside a roll that is used as a heating roll of a roll-to-roll (R2R) hot embossing apparatus. Using an inside installed heating coil gives the roll-to-roll hot embossing system a more even temperature distribution on the surface of the heating roll compared to that of previous systems, which used an electric wire for heating. This internal induction heating roll can keep the working environment much cleaner because there is no oil leakage compared to the oiled heating roll. This paper describes the principles and provides an analysis of this proposed system; some evaluation has also been performed for the system. A real R2R hot embossing heating roll system was fabricated and some experiments on micro-pattering have been performed. After that, evaluation has been performed on the results.

  7. Fundamental phenomena governing heat transfer during rolling

    NASA Astrophysics Data System (ADS)

    Chen, W. C.; Samarasekera, I. V.; Hawbolt, E. B.

    1993-06-01

    To quantify the effect of roll chilling on the thermal history of a slab during hot rolling, tests were conducted at the Canada Center for Mineral and Energy Technology (CANMET) and at the University of British Columbia (UBC). In these tests, the surface and the interior temperatures of specimens were recorded during rolling using a data acquisition system. The corresponding heat-transfer coefficients in the roll bite were back-calculated by a trial-and-error method using a heat-transfer model. The heat-transfer coefficient was found to increase along the arc of contact and reach a maximum, followed by a decrease, until the exit of the roll bite. Its value was influenced by rolling parameters, such as percent reduction, rolling speed, rolling temperature, material type, etc. It was shown that the heat-transfer coefficient in the roll gap was strongly dependent on the roll pressure, and the effect of different variables on the interfacial heat-transfer coefficient can be related to their influence on pressure. At low mean roll pressure, such as in the case of rolling plain carbon steels at elevated temperature, the maximum heat-transfer coefficient in the roll bite was in the 25 to 35 kW/m2 °C range. As the roll pressure increased with lower rolling temperature and higher deformation resistance of stainless steel and microalloyed grades, the maximum heat-transfer coefficient reached a value of 620 kW/m2 °C. Obviously, the high pressure improved the contact between the roll and the slab surface, thereby reducing the resistance to heat flow. The mean roll-gap heat-transfer coefficient at the interface was shown to be linearly related to mean roll pressure. This finding is important because it permitted a determination of heat-transfer coefficients applicable to industrial rolling from pilot mill data. Thus, the thermal history of a slab during rough rolling was computed using a model in which the mean heat-transfer coefficient between the roll and the slab was

  8. 75 FR 64254 - Certain Hot-Rolled Flat-Rolled Carbon Quality Steel Products From Brazil; Final Results of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-19

    ... International Trade Administration Certain Hot-Rolled Flat-Rolled Carbon Quality Steel Products From Brazil... order on certain hot-rolled, flat-rolled carbon quality steel products (hot-rolled steel) from Brazil. See Certain Hot- Rolled Flat-Rolled Carbon Quality Steel Products From Brazil: Preliminary Results of...

  9. Hot rolling of thick uranium molybdenum alloys

    DOEpatents

    DeMint, Amy L.; Gooch, Jack G.

    2015-11-17

    Disclosed herein are processes for hot rolling billets of uranium that have been alloyed with about ten weight percent molybdenum to produce cold-rollable sheets that are about one hundred mils thick. In certain embodiments, the billets have a thickness of about 7/8 inch or greater. Disclosed processes typically involve a rolling schedule that includes a light rolling pass and at least one medium rolling pass. Processes may also include reheating the rolling stock and using one or more heavy rolling passes, and may include an annealing step.

  10. Improvement of rolling 6 mm thin plates in plate rolling mill PT. Krakatau Posco

    NASA Astrophysics Data System (ADS)

    Pujiyanto, Hamdani

    2017-01-01

    A 6-mm thin plate is difficult to produce especially if the product requires wide size and high strength. Flatness is the main quality issue in rolling 6-mm plate using a 4-high reversing mill which use ±1100-mm work roll. Thus some methods are applied to overcome such issue in order to comply to customer quality requirement. Pre-rolling, rolling, and post-rolling conditions have to be considered comprehensively. Roll unit management will be the key factor before rolling condition. The roll unit itself has a significant impact on work roll crown wearness in relation with work roll intial crown and thermal crown. Work roll crown along with the modification of hydraulic gap control (HGC) could directly alter the flatness of the plate.

  11. Roll-to-Roll Nanoimprint Lithography Simulations for Flexible Substrates

    NASA Astrophysics Data System (ADS)

    Spann, Andrew; Jain, Akhilesh; Bonnecaze, Roger

    2015-11-01

    UV roll-to-roll nanoimprint lithography enables the patterning of features onto a flexible substrate for bendable electronics in a continuous process. One of the most important design goals in this process is to make the residual layer thickness of the photoresist in unpatterned regions as thin and uniform as possible. Another important goal is to minimize the imprint time to maximize throughput. We develop a multi-scale model to simulate the spreading of photoresist drops as the template is pressed against the substrate. We include the effect of capillary pressure on the bending of the substrate and show how this distorts uniformity in the residual thickness layer. Our simulation code is parallelized and can simulate the flow and merging of thousands of drops. We investigate the effect of substrate tension and the initial arrangement of drops on the residual layer thickness and imprint time. We find that for a given volume of photoresist, distributing that volume to more drops initially decreases the imprint time. We conclude with recommendations for scale-up and optimal operations of roll-to-roll nanoimprint lithography systems. The authors acknowledge the Texas Advanced Computing Center at The University of Texas at Austin for providing high performance computing resources.

  12. Climate Ready Estuaries Rolling Easements Primer

    EPA Pesticide Factsheets

    Rolling easements enable wetlands and beaches to migrate inland and allow society to avoid the costs and hazards of protecting low lands from rising sea levels. This document provides a primer on more than a dozen rolling easement approaches.

  13. High performance rolling element bearing

    NASA Technical Reports Server (NTRS)

    Bursey, Jr., Roger W. (Inventor); Olinger, Jr., John B. (Inventor); Owen, Samuel S. (Inventor); Poole, William E. (Inventor); Haluck, David A. (Inventor)

    1993-01-01

    A high performance rolling element bearing (5) which is particularly suitable for use in a cryogenically cooled environment, comprises a composite cage (45) formed from glass fibers disposed in a solid lubricant matrix of a fluorocarbon polymer. The cage includes inserts (50) formed from a mixture of a soft metal and a solid lubricant such as a fluorocarbon polymer.

  14. Rolling Tachyon in Nonlocal Cosmology

    SciTech Connect

    Joukovskaya, L.

    2007-11-20

    Nonlocal cosmological models derived from String Field Theory are considered. A new method for constructing rolling tachyon solutions in the FRW metric in two field configuration is proposed and solutions of the Friedman equations with nonlocal operator are presented. The cosmological properties of these solutions are discussed.

  15. One-zone rolling of composite materials

    NASA Astrophysics Data System (ADS)

    Kokhan, L. S.; Morozov, Yu. A.; Slavgorodskaya, Yu. B.

    2016-12-01

    The energy-force parameters of free rolling of a strip without its tension and rolling with one backward or forward creep zone in the deformation zone are compared. The limiting backward or forward tensions are determined, and the change in the linear sizes of a composite billet during deformation in a rolling mill is considered.

  16. Prediction of Rolling Force Using AN Adaptive Neural Network Model during Cold Rolling of Thin Strip

    NASA Astrophysics Data System (ADS)

    Xie, H. B.; Jiang, Z. Y.; Tieu, A. K.; Liu, X. H.; Wang, G. D.

    Customers for cold rolled strip products expect the good flatness and surface finish, consistent metallurgical properties and accurate strip thickness. These requirements demand accurate prediction model for rolling parameters. This paper presents a set-up optimization system developed to predict the rolling force during cold strip rolling. As the rolling force has the very nonlinear and time-varying characteristics, conventional methods with simple mathematical models and a coarse learning scheme are not sufficient to achieve a good prediction for rolling force. In this work, all the factors that influence the rolling force are analyzed. A hybrid mathematical roll force model and an adaptive neural network have been improved by adjusting the adaptive learning algorithm. A good agreement between the calculated results and measured values verifies that the approach is applicable in the prediction of rolling force during cold rolling of thin strips, and the developed model is efficient and stable.

  17. The Discovery of Rolling Circle Amplification and Rolling Circle Transcription.

    PubMed

    Mohsen, Michael G; Kool, Eric T

    2016-11-15

    Nucleic acid amplification is a hugely important technology for biology and medicine. While the polymerase chain reaction (PCR) has been highly useful and effective, its reliance on heating and cooling cycles places some constraints on its utility. For example, the heating step of PCR can destroy biological molecules under investigation and heat/cool cycles are not applicable in living systems. Thus, isothermal approaches to DNA and RNA amplification are under widespread study. Perhaps the simplest of these are the rolling circle approaches, including rolling circle amplification (RCA) and rolling circle transcription (RCT). In this strategy, a very small circular oligonucleotide (e.g., 25-100 nucleotides in length) acts as a template for a DNA or an RNA polymerase, producing long repeating product strands that serve as amplified copies of the circle sequence. Here we describe the early developments and studies involving circular oligonucleotides that ultimately led to the burgeoning rolling circle technologies currently under development. This Account starts with our studies on the design of circular oligonucleotides as novel DNA- and RNA-binding motifs. We describe how we developed chemical and biochemical strategies for synthesis of well-defined circular oligonucleotides having defined sequence and open (unpaired) structure, and we outline the unusual ways in which circular DNAs can interact with other nucleic acids. We proceed next to the discovery of DNA and RNA polymerase activity on these very small cyclic DNAs. DNA polymerase "rolling circle" activities were discovered concurrently in our laboratory and that of Andrew Fire. We describe the surprising efficiency of this process even on shockingly small circular DNAs, producing repeating DNAs thousands of nucleotides in length. RNA polymerase activity on circular oligonucleotides was first documented in our group in 1995; especially surprising in this case was the finding that the process occurs efficiently

  18. A review of roll-to-roll nanoimprint lithography.

    PubMed

    Kooy, Nazrin; Mohamed, Khairudin; Pin, Lee Tze; Guan, Ooi Su

    2014-01-01

    Since its introduction in 1995, nanoimprint lithography has been demonstrated in many researches as a simple, low-cost, and high-throughput process for replicating micro- and nanoscale patterns. Due to its advantages, the nanoimprint lithography method has been rapidly developed over the years as a promising alternative to conventional nanolithography processes to fulfill the demands generated from the recent developments in the semiconductor and flexible electronics industries, which results in variations of the process. Roll-to-roll (R2R) nanoimprint lithography (NIL) is the most demanded technique due to its high-throughput fulfilling industrial-scale application. In the present work, a general literature review on the various types of nanoimprint lithography processes especially R2R NIL and the methods commonly adapted to fabricate imprint molds are presented to provide a clear view and understanding on the nanoimprint lithography technique as well as its recent developments. 81.16.Nd.

  19. A review of roll-to-roll nanoimprint lithography

    PubMed Central

    2014-01-01

    Since its introduction in 1995, nanoimprint lithography has been demonstrated in many researches as a simple, low-cost, and high-throughput process for replicating micro- and nanoscale patterns. Due to its advantages, the nanoimprint lithography method has been rapidly developed over the years as a promising alternative to conventional nanolithography processes to fulfill the demands generated from the recent developments in the semiconductor and flexible electronics industries, which results in variations of the process. Roll-to-roll (R2R) nanoimprint lithography (NIL) is the most demanded technique due to its high-throughput fulfilling industrial-scale application. In the present work, a general literature review on the various types of nanoimprint lithography processes especially R2R NIL and the methods commonly adapted to fabricate imprint molds are presented to provide a clear view and understanding on the nanoimprint lithography technique as well as its recent developments. PACS 81.16.Nd PMID:25024682

  20. A rolling 3-UPU parallel mechanism

    NASA Astrophysics Data System (ADS)

    Miao, Zhihuai; Yao, Yan'an; Kong, Xianwen

    2013-12-01

    A novel rolling mechanism is proposed based on a 3-UPU parallel mechanism in this paper. The rolling mechanism is composed of two platforms connected by three UPU (universal-prismatic-universal) serial-chain type limbs. The degree-of-freedom of the mechanism is analyzed using screw theory. Gait analysis and stability analysis are presented in detail. Four rolling modes of the mechanism are discussed and simulated. The feasibility of the rolling mechanism is verified by means of a physical prototype. Finally, its terrain adaptability is enhanced through planning the rolling gaits.

  1. Reconstruction of constant slow-roll inflation

    NASA Astrophysics Data System (ADS)

    Gao, Qing

    2017-09-01

    Using the relations between the slow-roll parameters and the power spectra for the single field slow-roll inflation, we derive the scalar spectral tilt n s and the tensor to scalar ratio r for the constant slow-roll inflation, and obtain the constraint on the slow-roll parameter η from the Planck 2015 results. The inflationary potential for the constant slow-roll inflation is then reconstructed in the framework of both general relativity and the scalar-tensor theory of gravity, and compared with the recently reconstructed E model potential. In the strong coupling limit, we show that the η attractor is reached.

  2. 75 FR 65453 - Certain Hot-Rolled Flat-Rolled Carbon Quality Steel Flat Products From Brazil: Notice of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-25

    ... International Trade Administration Certain Hot-Rolled Flat-Rolled Carbon Quality Steel Flat Products From Brazil... duty order on certain hot-rolled flat-rolled carbon quality steel flat products (hot-rolled steel) from Brazil. The review covers four producers/exporters of hot-rolled steel from Brazil, all mandatory...

  3. 76 FR 22868 - Certain Hot-Rolled Flat-Rolled Carbon-Quality Steel Products From Brazil: Final Results of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-25

    ... International Trade Administration Certain Hot-Rolled Flat-Rolled Carbon-Quality Steel Products From Brazil... certain hot-rolled flat-rolled carbon- quality steel products (HRS) from Brazil for the period January 1...: Background Since the issuance of Certain Hot-Rolled Flat-Rolled Carbon-Quality Steel Products From Brazil...

  4. Towards roll-to-roll manufacturing of polymer photonic devices

    NASA Astrophysics Data System (ADS)

    Subbaraman, Harish; Lin, Xiaohui; Ling, Tao; Guo, L. Jay; Chen, Ray T.

    2014-03-01

    Traditionally, polymer photonic devices are fabricated using clean-room processes such as photolithography, e-beam lithography, reactive ion etching (RIE) and lift-off methods etc, which leads to long fabrication time, low throughput and high cost. We have utilized a novel process for fabricating polymer photonic devices using a combination of imprinting and ink jet printing methods, which provides high throughput on a variety of rigid and flexible substrates with low cost. We discuss the manufacturing challenges that need to be overcome in order to realize true implementation of roll-to-roll manufacturing of flexible polymer photonic systems. Several metrology and instrumentation challenges involved such as availability of particulate-free high quality substrate, development and implementation of high-speed in-line and off-line inspection and diagnostic tools with adaptive control for patterned and unpatterned material films, development of reliable hardware, etc need to be addressed and overcome in order to realize a successful manufacturing process. Due to extreme resolution requirements compared to print media, the burden of software and hardware tools on the throughput also needs to be carefully determined. Moreover, the effect of web wander and variations in web speed need to accurately be determined in the design of the system hardware and software. In this paper, we show the realization of solutions for few challenges, and utilizing these solutions for developing a high-rate R2R dual stage ink-jet printer that can provide alignment accuracy of <10μm at a web speed of 5m/min. The development of a roll-to-roll manufacturing system for polymer photonic systems opens limitless possibilities for the deployment of high performance components in a variety of applications including communication, sensing, medicine, agriculture, energy, lighting etc.

  5. Rubber rolling over a sphere

    NASA Astrophysics Data System (ADS)

    Koiller, J.; Ehlers, K.

    2007-04-01

    “Rubber” coated bodies rolling over a surface satisfy a no-twist condition in addition to the no slip condition satisfied by “marble” coated bodies [1]. Rubber rolling has an interesting differential geometric appeal because the geodesic curvatures of the curves on the surfaces at corresponding points are equal. The associated distribution in the 5 dimensional configuration space has 2 3 5 growth (these distributions were first studied by Cartan; he showed that the maximal symmetries occurs for rubber rolling of spheres with 3:1 diameters ratio and materialize the exceptional group G 2). The 2 3 5 nonholonomic geometries are classified in a companion paper [2] via Cartan’s equivalence method [3]. Rubber rolling of a convex body over a sphere defines a generalized Chaplygin system [4 8] with SO(3) symmetry group, total space Q = SO(3) × S 2 and base S 2, that can be reduced to an almost Hamiltonian system in T* S 2 with a non-closed 2-form ωNH. In this paper we present some basic results on the sphere-sphere problem: a dynamically asymmetric but balanced sphere of radius b (unequal moments of inertia I j but with center of gravity at the geometric center), rubber rolling over another sphere of radius a. In this example ωNH is conformally symplectic [9]: the reduced system becomes Hamiltonian after a coordinate dependent change of time. In particular there is an invariant measure, whose density is the determinant of the reduced Legendre transform, to the power p = 1/2( b/a - 1). Using sphero-conical coordinates we verify the result by Borisov and Mamaev [10] that the system is integrable for p = -1/2 (ball over a plane). They have found another integrable case [11] corresponding to p = -3/2 (rolling ball with twice the radius of a fixed internal ball). Strikingly, a different set of sphero-conical coordinates separates the Hamiltonian in this case. No other integrable cases with different I j are known.

  6. Roll Casting of Al-25%Si

    SciTech Connect

    Haga, Toshio; Harada, Hideto; Watari, Hisaki

    2011-05-04

    Strip casting of Al-25%Si strip was tried using an unequal diameter twin roll caster. The diameter of the lower roll (large roll) was 1000 mm and the diameter of the upper roll (small roll) was 250 mm. Roll material was mild steel. The sound strip could be cast at the speeds ranging from 8 m/min to 12 m/min. The strip did not stick to the roll without the parting material. The primary Si, which existed at centre area of the thickness direction, was larger than that which existed at other area. The size of the primary Si was smaller than 0.2 mm. Eutectic Si was smaller 5 {mu}m. The as-cast strip was ranging from 2 mm to 3 mm thick and its width was 100 mm. The as-cast strip could be hot rolled down to 1 mm. The hot rolled strip was cold rolled. The primary Si became smaller and the pore occurred around the primary Si after the rolling.

  7. Tribological Testing of Anti-Adhesive coatings for Cold Rolling Mill Rolls--Application to TiN-Coated Rolls

    SciTech Connect

    Ould, Choumad; Montmitonnet, Pierre; Gachon, Yves; Badiche, Xavier

    2011-05-04

    Roll life is a major issue in cold strip rolling. Roll wear may result either in too low roll roughness, bringing friction below the minimum requested for strip entrainment; or it may degrade strip surface quality. On the contrary, adhesive wear and transfer (''roll coating'', ''pick up'') may form a thick metallic deposits on the roll which increases friction excessively and degrades strip surface again [1]. The roll surface, with the help of a materials-adapted lubricant, must therefore possess anti-wear and anti-adhesive properties. Thus, High Speed Steeel (HSS) rolls show superior properties compared with standard Cr-steel rolls due to their high carbide surface coverage. Another way to improve wear and adhesion properties of surfaces is to apply hard metallic (hard-Cr) or ceramic coatings. Chromium is renowned for its excellent anti-wear and anti-adhesive properties and may serve as a reference. Here, as a first step towards alternative, optimised coatings, a PVD TiN coating has been deposited on tool steels, as previous attempts have proved TiN to be rather successful in cold rolling experiments [2,3]. Different tribological tests are reported here, giving insight in both anti-adhesive properties and fatigue life improvement.

  8. Slow-roll thawing quintessence

    SciTech Connect

    Chiba, Takeshi

    2009-04-15

    We derive slow-roll conditions for thawing quintessence. We solve the equation of motion of {phi} for a Taylor expanded potential (up to the quadratic order) in the limit where the equation of state w is close to -1 to derive the equation of state as a function of the scale factor. We find that the evolution of {phi} and hence w are described by only two parameters. The expression for w(a), which can be applied to general thawing models, coincides precisely with that derived recently by Dutta and Scherrer for hilltop quintessence. The consistency conditions of |w+1|<<1 are derived. The slow-roll conditions for freezing quintessence are also derived.

  9. Rolling process and its influence analysis on hot continuous rolling mill vibration

    NASA Astrophysics Data System (ADS)

    Fan, Xiaobin; Zang, Yong; Jin, Ke

    2016-12-01

    Rolling mill vibration is a worldwide problem, although it has been found that the mill structure defects are the main cause of vibration, but the inhibition measures are difficult to implement. So we discussed the rolling force parameters influence on rolling mill vibration and suppression measures from rolling technology in this article. The results show that the rolling force is increased as the reduction ratio and speed increases, and decreases with the increase in temperature; reduction ratio has more obvious influence than rolling temperature and speed, so we should give priority to the reduction allocation in production. Rolled strip is thinner; the self-excited relations in mill system are stronger, namely the stability of the rolling mill is poor and mill vibration would more likely produce. The comprehensive field tests and analysis were carried out, and it shows that roll horizontal vibration and torsional vibration have less relationship and the mechanism between horizontal and vertical vibration is same.

  10. Roll force, torque, lever arm coefficient, and strain distribution in edge rolling

    NASA Astrophysics Data System (ADS)

    Lundberg, S.-E.; Gustafsson, T.

    1993-12-01

    Due to the growing importance of width control in strip and plate mills, edge rolling is currently an im-portant process in hot rolling mills. Research in edge rolling has been carried out, and in the present ar-ticle, models for roll force, torque, and lever arm coefficient are derived using the upper bound method. A simple, kinematically admissible deformation zone and velocity field, independent of friction in the roll gap, is proposed, and the energy dissipation rate is derived. The formula for energy dissipation rate has, in practice, no limitation because all edge rolling geometries are safely in the area where the formula is valid. Roll force and torque are derived by means of two independent integrals. Thus, the lever arm coef-ficient is evaluated from the expressions for roll force and torque using conventional rolling theory. Roll-ing trials report good agreement with theory. Measured roll forces are similar to calculated forces. Furthermore, the shape of the dogbone that arises during edge rolling is in fairly good agreement with the calculated dogbone shape. Deviations are due to the deviation from ideally plastic material in the ex-periments. Also, the strain distribution over the dogbone is similar to the proposed deformation zone. Thus, a new formula has been developed to a stage that it can be implemented in width control systems for edge rolling stands in hot strip and plate mills.

  11. Slow-roll extended quintessence

    SciTech Connect

    Chiba, Takeshi; Siino, Masaru; Yamaguchi, Masahide

    2010-04-15

    We derive the slow-roll conditions for a nonminimally coupled scalar field (extended quintessence) during the radiation/matter dominated era extending our previous results for thawing quintessence. We find that the ratio {phi}e/3H{phi} becomes constant but negative, in sharp contrast to the ratio for the minimally coupled scalar field. We also find that the functional form of the equation of state of the scalar field asymptotically approaches that of the minimally coupled thawing quintessence.

  12. Rolling Mill Hill, Nashville, TN

    EPA Pesticide Factsheets

    Rolling Mill Hill was the home to Nashville General Hospital from 1890 to the 1990s and encompassed several buildings and structures. These existing buildings of historical significance were re-used in the form of apartments. The original Trolley Barns on the site are now artists’ lofts and are home to several companies and non-profit offices. Nance Place, which entails additional buildings built on-site, is a Tax Credit Workforce Housing Development and is Platinum LEED certified.

  13. Rolling-Friction Robotic Gripper

    NASA Technical Reports Server (NTRS)

    Vranish, John M.

    1992-01-01

    Robotic gripper using rolling-friction fingers closes in on object with interface designed to mate with rollers somewhat misaligned initially, aligns object with respect to itself, then holds object securely in uniquely determined position and orientation. Operation of gripper causes minimal wear and burring of gripper and object. Exerts minimal friction forces on object when grasping and releasing. Releases object easily and reliably even when side forces and torques are between itself and object.

  14. Roll formed pan solar module

    SciTech Connect

    Jester, T.L.; Bottenberg, W.R.; Gay, C.F.; Yerkes, J.W.

    1984-02-21

    A solar module comprising a solar cell string laminated between layers of pottant material and a transparent superstrate and a steel substrate. The steel substrate is roll formed to provide stiffening flanges on its edges while simultaneously forming a pan-shaped structure to hold other portions of the laminate in position during the laminating process. An improved terminal provides high voltage protection and improved mechanical strength. A conduit element provides protected raceways for external wires connected to module terminals.

  15. Nanogrid rolling circle DNA sequencing

    DOEpatents

    Church, George M.; Porreca, Gregory J.; Shendure, Jay; Rosenbaum, Abraham Meir

    2017-04-18

    The present invention relates to methods for sequencing a polynucleotide immobilized on an array having a plurality of specific regions each having a defined diameter size, including synthesizing a concatemer of a polynucleotide by rolling circle amplification, wherein the concatemer has a cross-sectional diameter greater than the diameter of a specific region, immobilizing the concatemer to the specific region to make an immobilized concatemer, and sequencing the immobilized concatemer.

  16. Mechanisms of rolling contact spalling

    NASA Technical Reports Server (NTRS)

    Kumar, A. M.; Kulkarni, S. M.; Bhargava, V.; Hahn, G. T.; Rubin, C. A.

    1987-01-01

    The results of a study aimed at analyzing the mechanical material interactions responsible for rolling contact spalling of the 440 C steel, high pressure oxygen turbopump bearings are presented. A coupled temperature displacement finite element analysis of the effects of friction heating under the contact is presented. The contact is modelled as a stationary, heat generating, 2 dimensional indent in an elastic perfectly plastic half-space with heat fluxes up to 8.6 x 10000 KW/m sq comparable to those generated in the bearing. Local temperatures in excess of 1000 C are treated. The calculations reveal high levels of residual tension after the contact is unloaded and cools. Efforts to promote Mode 2/Mode 3 fatigue crack growth under cyclic torsion in hardened 440 C steel are described. Spalls produced on 440 C steel by a 3 ball/rod rolling contact testing machine were studied with scanning microscopy. The shapes of the cyclic, stress strain hysteresis loops displayed by hardened 440 C steel in cyclic torsion at room temperature are defined for the plastic strain amplitudes encountered in rolling/sliding contact. Results of these analyses are discussed in detail.

  17. Rolling Contact Fatigue of Ceramics

    SciTech Connect

    Wereszczak, Andrew A; Wang, W.; Wang, Y.; Hadfield, M.; Kanematsu, W.; Kirkland, Timothy Philip; Jadaan, Osama M.

    2006-09-01

    High hardness, low coefficient of thermal expansion and high temperature capability are properties also suited to rolling element materials. Silicon nitride (Si{sub 3}N{sub 4}) has been found to have a good combination of properties suitable for these applications. However, much is still not known about rolling contact fatigue (RCF) behavior, which is fundamental information to assess the lifetime of the material. Additionally, there are several test techniques that are employed internationally whose measured RCF performances are often irreconcilable. Due to the lack of such information, some concern for the reliability of ceramic bearings still remains. This report surveys a variety of topics pertaining to RCF. Surface defects (cracks) in Si{sub 3}N{sub 4} and their propagation during RCF are discussed. Five methods to measure RCF are then briefly overviewed. Spalling, delamination, and rolling contact wear are discussed. Lastly, methods to destructively (e.g., C-sphere flexure strength testing) and non-destructively identify potential RCF-limiting flaws in Si{sub 3}N{sub 4} balls are described.

  18. A Semianalytic Model of Leukocyte Rolling

    PubMed Central

    Krasik, Ellen F.; Hammer, Daniel A.

    2004-01-01

    Rolling allows leukocytes to maintain adhesion to vascular endothelium and to molecularly coated surfaces in flow chambers. Using insights from adhesive dynamics, a computational method for simulating leukocyte rolling and firm adhesion, we have developed a semianalytic model for the steady-state rolling of a leukocyte. After formation in a force-free region of the contact zone, receptor-ligand bonds are transported into the trailing edge of the contact zone. Rolling velocity results from a balance of the convective flux of bonds and the rate of dissociation at the back edge of the contact zone. We compare the model's results to that of adhesive dynamics and to experimental data on the rolling of leukocytes, with good agreement. We calculate the dependence of rolling velocity on shear rate, intrinsic forward and reverse reaction rates, bond stiffness, and reactive compliance, and use the model to calculate a state diagram relating molecular parameters and the dynamic state of adhesion. A dimensionless form of the analytic model permits exploration of the parameters that control rolling. The chemical affinity of a receptor-ligand pair does not uniquely determine rolling velocity. We elucidate a fundamental relationship between off-rate, ligand density, and reactive compliance at the transition between firm and rolling adhesion. The model provides a rapid method for screening system parameters for the potential to mediate rolling. PMID:15315955

  19. How rolling forecasting facilitates dynamic, agile planning.

    PubMed

    Miller, Debra; Allen, Michael; Schnittger, Stephanie; Hackman, Theresa

    2013-11-01

    Rolling forecasting may be used to replace or supplement the annual budget process. The rolling forecast typically builds on the organization's strategic financial plan, focusing on the first three years of plan projections and comparing the strategic financial plan assumptions with the organization's expected trajectory. Leaders can then identify and respond to gaps between the rolling forecast and the strategic financial plan on an ongoing basis.

  20. Numerical investigation of the temperature distribution in a roll system

    SciTech Connect

    Eriksson, D.: Sunden, B.; Postoaca, I.

    1996-12-31

    An analysis of heat transfer in a fast rotating roll system is carried out. A hot film is transported between a steel roll and a roll of a soft material. The soft roll is supported by another steel roll at the opposite side. The inner surfaces of the rolls are water-cooled while the outer surfaces are cooled by combined convection and thermal radiation. The soft roll is also cooled by an impinging jet. The surface temperature of the soft roll is very important and the influence of various cooling parameters is assessed by numerical solutions to the problem. The importance of modelling the whole system of rolls has been proved. Rolling processes are widely used in forming of metals and polymeric materials. The adequate cooling of the rolls and the rolled products is a major concern at the design stage and during operation. Non-adequate cooling may shorten the roll life and severely affect the processed material.

  1. Fluid management in roll-to-roll nanoimprint lithography

    NASA Astrophysics Data System (ADS)

    Jain, A.; Bonnecaze, R. T.

    2013-06-01

    The key process parameters of UV roll-to-roll nanoimprint lithography are identified from an analysis of the fluid, curing, and peeling dynamics. The process includes merging of droplets of imprint material, curing of the imprint material from a viscous liquid to elastic solid resist, and pattern replication and detachment of the resist from template. The time and distances on the web or rigid substrate over which these processes occur are determined as function of the physical properties of the uncured liquid, the cured solid, and the roller configuration. The upper convected Maxwell equation is used to model the viscoelastic liquid and to calculate the force on the substrate and the torque on the roller. The available exposure time is found to be the rate limiting parameter and it is O(√Rho /uo), where R is the radius of the roller, ho is minimum gap between the roller and web, and uo is the velocity of the web. The residual layer thickness of the resist should be larger than the gap between the roller and the substrate to ensure complete feature filling and optimal pattern replication. For lower residual layer thickness, the droplets may not merge to form a continuous film for pattern transfer.

  2. METHOD OF HOT ROLLING URANIUM METAL

    DOEpatents

    Kaufmann, A.R.

    1959-03-10

    A method is given for quickly and efficiently hot rolling uranium metal in the upper part of the alpha phase temperature region to obtain sound bars and sheets possessing a good surface finish. The uranium metal billet is heated to a temperature in the range of 1000 deg F to 1220 deg F by immersion iii a molten lead bath. The heated billet is then passed through the rolls. The temperature is restored to the desired range between successive passes through the rolls, and the rolls are turned down approximately 0.050 inch between successive passes.

  3. Spray Rolling Aluminum Strip for Transportation Applications

    SciTech Connect

    Kevin M. McHugh; Y. Lin; Y. Zhou; E. J. Lavernia; J.-P. Delplanque; S. B. Johnson

    2005-02-01

    Spray rolling is a novel strip casting technology in which molten aluminum alloy is atomized and deposited into the roll gap of mill rolls to produce aluminum strip. A combined experimental/modeling approach has been followed in developing this technology with active participation from industry. The feasibility of this technology has been demonstrated at the laboratory scale and it is currently being scaled-up. This paper provides an overview of the process and compares the microstructure and properties of spray-rolled 2124 aluminum alloy with commercial ingot-processed material

  4. Interactions between stably rolling leukocytes in vivo

    NASA Astrophysics Data System (ADS)

    King, Michael R.; Ruscio, Aimee D.; Kim, Michael B.; Sarelius, Ingrid H.

    2005-03-01

    We have characterized the two-dimensional spatial dependence of the hydrodynamic interactions between two adhesively rolling leukocytes in a live venule in the mouse cremaster muscle. Two rolling leukocytes were observed to slow each other down when rolling together in close proximity due to mutual sheltering from the external blood flow in the vessel lumen. A previous study of leukocyte rolling interactions using carbohydrate-coated beads in a parallel-plate flow chamber and a detailed computer model of adhesion in a multicellular environment is in qualitative agreement with the current in vivo results.

  5. Rolling-cuff flexible bellows

    DOEpatents

    Lambert, D.R.

    1982-09-27

    A flexible connector apparatus used to join two stiff non-deformable members, such as piping, is described. The apparatus is provided with one or more flexible sections or assemblies each utilizing a bellows of a rolling cuff type connected between two ridge members, with the bellows being supported by a back-up ring, such that only the curved end sections of the bellows are unsupported. Thus, the bellows can be considered as being of a tube-shaped configuration and thus have high pressure resistance. The components of the flexible apparatus are sealed or welded one to another such that it is fluid tight.

  6. Effect of temper rolling on final shape defects in a V-section roll forming process

    NASA Astrophysics Data System (ADS)

    Abvabi, Akbar; Rolfe, Bernard; Hodgson, Peter D.; Weiss, Matthias

    2013-12-01

    Roll forming is a continuous process in which a flat strip is shaped to the desired profile by sequential bending in a series of roll stands. Because of the large variety of applications of roll forming in the industry, Finite Element Analysis (FEA) is increasingly utilized for roll forming process design. Bending is the dominant deformation mode in roll forming. Sheet materials used in this process are generally temper rolled, roller- or tension- leveled. These processes introduce residual stresses into the material, and recent studies have shown that those affect the material behavior in bending. In this study a numerical model of the temper rolling (skin passing) process was used to determine a residual stress distribution in a dual phase, DP780, steel strip. A 5-stand roll forming process for the forming of a V-section was modeled, and the effect of various thickness reduction levels in the temper rolling process on the final shape defects was analyzed. The results show that a small thickness reduction in the temper rolling process decreases the maximum bow height but the final springback angle increases. It is also shown that reasonable model accuracy can be achieved by including the residual stress information due to temper rolling as initial condition in the numerical modeling of a roll forming process.

  7. 49 CFR 393.134 - What are the rules for securing roll-on/roll-off or hook lift containers?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... or hook lift containers? 393.134 Section 393.134 Transportation Other Regulations Relating to... for securing roll-on/roll-off or hook lift containers? (a) Applicability. The rules in this section apply to the transportation of roll-on/roll-off or hook lift containers. (b) Securement of a roll-on...

  8. 75 FR 47263 - Certain Hot-Rolled Flat-Rolled Carbon-Quality Steel Products From the Russian Federation; Final...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-05

    ... International Trade Administration Certain Hot-Rolled Flat-Rolled Carbon-Quality Steel Products From the Russian... carbon- quality steel products from the Russian Federation; final results. SUMMARY: On April 1, 2010, the... antidumping duty investigation of certain hot-rolled flat- rolled carbon-quality steel products (``hot-rolled...

  9. 76 FR 62894 - Following Procedures When Going Between Rolling Equipment

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-11

    ... Federal Railroad Administration Following Procedures When Going Between Rolling Equipment AGENCY: Federal... of following procedures when going ] between rolling equipment. This safety advisory contains various... who, in the course of their work, place themselves between rolling equipment. The railroad...

  10. Model development of work roll wear in hot strip mill

    NASA Astrophysics Data System (ADS)

    Liu, Ziying; Guan, Yingping; Wang, Fengqin

    2017-06-01

    This paper, based on the analysis of the main factors(specific roll force, mean roll surface temperature, irregular edge wear and contact arc length) affecting roll wear, designed a new work roll wear model, the test data shows that the model can more accurately reflect the work roll wear, can be on-line prediction of work roll wear. The roll wear curve, including constant wear and irregular edge wear, presents a box shape, and the reasons also are showed in this paper. The top roll wear and bottom roll wear in the same mill are inconsistent, and the reasons are also analysed in this paper. Results show that the construction of the work roll mathematical model accords with the general law of work roll wear and tear; it can more accurately forecast roll wear online.

  11. Lubrication of rolling-element bearings

    NASA Technical Reports Server (NTRS)

    Parker, R. J.

    1980-01-01

    The lubrication of rolling element bearings is surveyed. Emphasis is on the critical design aspects related to speed, temperature, and ambient pressure environment. Types of lubrication including grease, jets, mist, wick, and through the race are discussed. The historical development, present state of technology, and the future problems of rolling element bearing lubrication are discussed.

  12. School Roll Forecasting Methods: A Review.

    ERIC Educational Resources Information Center

    Simpson, Stephen

    1987-01-01

    A review of the literature concerning local school roll forecasting describes the theoretical model common to most local education agency (LEA) forecasts, identifies a variety of issues relevant to this area of LEA planning, and suggests some opportunities for improvement in LEA school roll forecasting. (Author/CB)

  13. Roll splitting for field processing of biomass

    Treesearch

    Dennis T. Curtin; Donald L. Sirois; John A. Sturos

    1987-01-01

    The concept of roll splitting wood originated in 1967 when the Tennessee Valley Authority (TVA) forest products specialists developed a wood fibrator. The objective of that work was to produce raw materials for reconstituted board products. More recently, TVA focused on roll splitting as a field process to accelerate drying of small trees (3-15 cm diameter), much...

  14. Roll-forming tubes to header plates

    NASA Technical Reports Server (NTRS)

    Kramer, K.

    1976-01-01

    Technique has been developed for attaching and sealing tubes to header plates using a unique roll-forming tool. Technique is useful for attaching small tubes which are difficult to roll into conventional grooves in header plate tube holes, and for attaching when welding, brazing, or soldering is not desirable.

  15. School Roll Forecasting Methods: A Review.

    ERIC Educational Resources Information Center

    Simpson, Stephen

    1987-01-01

    A review of the literature concerning local school roll forecasting describes the theoretical model common to most local education agency (LEA) forecasts, identifies a variety of issues relevant to this area of LEA planning, and suggests some opportunities for improvement in LEA school roll forecasting. (Author/CB)

  16. Numerical analysis of Swiss roll metamaterials.

    PubMed

    Demetriadou, A; Pendry, J B

    2009-08-12

    A Swiss roll metamaterial is a resonant magnetic medium, with a negative magnetic permeability for a range of frequencies, due to its self-inductance and self-capacitance components. In this paper, we discuss the band structure, S-parameters and effective electromagnetic parameters of Swiss roll metamaterials, with both analytical and numerical results, which show an exceptional convergence.

  17. 33 CFR 159.107 - Rolling test.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Rolling test. 159.107 Section 159.107 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) POLLUTION MARINE SANITATION DEVICES Design, Construction, and Testing § 159.107 Rolling test. (a) The device,...

  18. Rolling maneuver load alleviation using active controls

    NASA Technical Reports Server (NTRS)

    Woods-Vedeler, Jessica A.; Pototzky, Anthony S.

    1992-01-01

    Rolling Maneuver Load Alleviation (RMLA) was demonstrated on the Active Flexible Wing (AFW) wind tunnel model in the LaRC Transonic Dynamics Tunnel. The design objective was to develop a systematic approach for developing active control laws to alleviate wing incremental loads during roll maneuvers. Using linear load models for the AFW wind-tunnel model which were based on experimental measurements, two RMLA control laws were developed based on a single-degree-of-freedom roll model. The RMLA control laws utilized actuation of outboard control surface pairs to counteract incremental loads generated during rolling maneuvers and roll performance. To evaluate the RMLA control laws, roll maneuvers were performed in the wind tunnel at dynamic pressures of 150, 200, and 250 psf and Mach numbers of .33, .38, and .44, respectively. Loads obtained during these maneuvers were compared to baseline maneuver loads. For both RMLA controllers, the incremental torsion moments were reduced by up to 60 percent at all dynamic pressures and performance times. Results for bending moment load reductions during roll maneuvers varied. In addition, in a multiple function test, RMLA and flutter suppression system control laws were operated simultaneously during roll maneuvers at dynamic pressures 11 percent above the open-loop flutter dynamic pressure.

  19. Power roll 2007: A five year summary

    USDA-ARS?s Scientific Manuscript database

    The powered roll gin stand (PRT – Powered Roll Technology) was first tested in a field application on seed cotton during the 2002 ginning season at Servico, Inc., Courtland Alabama. During the 2003 season, Servico installed and operated PRT stands in all three lines. In subsequent years, mechanical ...

  20. Roll-to-Roll Atomic Layer Deposition for Ultrabarriers

    NASA Astrophysics Data System (ADS)

    Yersak, Alexander

    Atomic layer deposition (ALD) is a bottom-up, gas phase, thin film deposition technique based on sequential, self-limiting binary surface reactions. The precise sub-nanometer film thickness control and conformal nature of this process have led to various commercial applications of ALD. However, ALD films are most commonly deposited in batch processes at low pressures, which raises throughput and/or cost concerns for many otherwise promising applications. This problem can be solved by spatial ALD (S-ALD) which is a version of the ALD technique where the precursors are separated in space rather than time. We have demonstrated the first atmospheric pressure roll-to-roll (R2R) ALD web coating system. A thickness uniformity of +/-2% was achieved across the web. ALD cycle times as low as 76 ms were demonstrated with a web speed of 1 m/s and a vertical gap height of 0.5 mm. Extrinsic defects in the ALD films were investigated, and a predictive cluster model was proposed, and was demonstrated with a residual (i.e. difference between the actual defect counts and those predicted by the cluster model) of <10%. A R2R ALD web coating tool with molecular layer deposition (MLD) capabilities was investigated and achieved a defect density <10 /cm2. A hyperbaric corrosion chamber with in situ monitoring of film thickness was demonstrated with the ability to characterize R2R ALD films using water dissolution as a metric. ALD SiO2 films were determined to be dissolution-predictable with a predicted dissolution rate of 3.7 nm/year at physiological temperatures. ALD TiO2 films were observed with no measurable dissolution in 150 °C water over the measurement period of 12 days.

  1. Advances in roll-to-roll imprint lithography for display applications

    NASA Astrophysics Data System (ADS)

    Jeans, Albert; Almanza-Workman, Marcia; Cobene, Robert; Elder, Richard; Garcia, Robert; Gomez-Pancorbo, Fernando; Jackson, Warren; Jam, Mehrban; Kim, Han-Jun; Kwon, Ohseung; Luo, Hao; Maltabes, John; Mei, Ping; Perlov, Craig; Smith, Mark; Taussig, Carl; Jeffrey, Frank; Braymen, Steve; Hauschildt, Jason; Junge, Kelly; Larson, Don; Stieler, Dan

    2010-03-01

    A solution to the problems of roll-to-roll lithography on flexible substrates is presented. We have developed a roll-toroll imprint lithography technique to fabricate active matrix transistor backplanes on flexible webs of polyimide that have a blanket material stack of metals, dielectrics, and semiconductors. Imprint lithography produces a multi-level 3- dimensional mask that is then successively etched to pattern the underlying layers into the desired structures. This process, Self-Aligned Imprint Lithography (SAIL), solves the layer-to-layer alignment problem because all masking levels are created with one imprint step. The processes and equipment required for complete roll-to-roll SAIL fabrication will be described. Emphasis will be placed on the advances in the roll-to-roll imprint process which have enabled us to produce working transistor arrays.

  2. Computational Analysis of Ares I Roll Control System Jet Interaction Effects on Rolling Moment

    NASA Technical Reports Server (NTRS)

    Deere, Karen A.; Pao, S. Paul; Abdol-Hamid, Khaled S.

    2011-01-01

    The computational flow solver USM3D was used to investigate the jet interaction effects from the roll control system on the rolling moment of the Ares I full protuberance configuration at wind tunnel Reynolds numbers. Solutions were computed at freestream Mach numbers from M = 0.5 to M = 5 at the angle of attack 0deg, at the angle of attack 3.5deg for a roll angle of 120deg, and at the angle of attack 7deg for roll angles of 120deg and 210deg. Results indicate that the RoCS housing provided a beneficial jet interaction effect on vehicle rolling moment for M > or = 0.9. Most of the components downstream of the roll control system housing contributed to jet interaction penalties on vehicle rolling moment.

  3. Automated Procedure for Roll Pass Design

    NASA Astrophysics Data System (ADS)

    Lambiase, F.; Langella, A.

    2009-04-01

    The aim of this work has been to develop an automatic roll pass design method, capable of minimizing the number of roll passes. The adoption of artificial intelligence technologies, particularly expert systems, and a hybrid model for the surface profile evaluation of rolled bars, has allowed us to model the search for the minimal sequence with a tree path search. This approach permitted a geometrical optimization of roll passes while allowing automation of the roll pass design process. Moreover, the heuristic nature of the inferential engine contributes a great deal toward reducing search time, thus allowing such a system to be employed for industrial purposes. Finally, this new approach was compared with other recently developed automatic systems to validate and measure possible improvements among them.

  4. Aerodynamics of a rolling airframe missile

    NASA Astrophysics Data System (ADS)

    Tisserand, L. E.

    1981-05-01

    For guidance-related reasons, there is considerable interest in rolling missiles having single-plane steering capability. To aid the aerodynamic design of these airframes, a unique investigation into the aerodynamics of a rolling, steering missile has been carried out. It represents the first known attempt to measure in a wind tunnel the aerodynamic forces and moments that act on a spinning body-canard-tail configuration that exercises canard steering in phase with body roll position. Measurements were made with the model spinning at steady-state roll rates ranging from 15 to 40 Hz over an angle-of-attack range up to about 16 deg. This short, exploratory investigation has demonstrated that a better understanding and a more complete definition of the aerodynamics of rolling, steering vehicles can be developed by way of simulative wind-tunnel testing.

  5. Roll Casting of Aluminum Alloy Clad Strip

    SciTech Connect

    Nakamura, R.; Tsuge, H.; Haga, T.; Watari, H.; Kumai, S.

    2011-01-17

    Casting of aluminum alloy three layers of clad strip was tried using the two sets of twin roll casters, and effects of the casting parameters on the cladding conditions were investigated. One twin roll caster was mounted on the other twin roll caster. Base strip was 8079 aluminum alloy and overlay strips were 6022 aluminum alloy. Effects of roll-load of upper and lower casters and melt temperature of the lower caster were investigated. When the roll-load of the upper and lower caster was large enough, the overlay strip could be solidified and be connected. The overlay strip could be connected when the melt of the overlay strip cast by the lower caster was low enough. Sound three layers of clad strip could be cast by proper conditions.

  6. Adaptation of an Asperity Ploughing Model to Measured Roll Topographies

    NASA Astrophysics Data System (ADS)

    Lalli, L. A.; Malkani, H. G.; Sheu, S.

    2004-06-01

    A previously published asperity ploughing model has been adapted in order to approximate the measured as-ground roll surface topography. The model is then integrated with classical cold rolling plastic deformation equations including coupling to the lubricant film evolution through the roll bite. The friction distribution through the roll bite is thus a function of the specific details of the roll surface topography as well as the process parameters. predictions of roll force, torque and forward slip as well as sliding distance and volume of metal swept out by the asperities are then made and compared to experimental measurements for an aluminum alloy rolled on a laboratory rolling mill.

  7. Inflationary dynamics with a smooth slow-roll to constant-roll era transition

    NASA Astrophysics Data System (ADS)

    Odintsov, S. D.; Oikonomou, V. K.

    2017-04-01

    In this paper we investigate the implications of having a varying second slow-roll index on the canonical scalar field inflationary dynamics. We shall be interested in cases that the second slow-roll can take small values and correspondingly large values, for limiting cases of the function that quantifies the variation of the second slow-roll index. As we demonstrate, this can naturally introduce a smooth transition between slow-roll and constant-roll eras. We discuss the theoretical implications of the mechanism we introduce and we use various illustrative examples in order to better understand the new features that the varying second slow-roll index introduces. In the examples we will present, the second slow-roll index has exponential dependence on the scalar field, and in one of these cases, the slow-roll era corresponds to a type of α-attractor inflation. Finally, we briefly discuss how the combination of slow-roll and constant-roll may lead to non-Gaussianities in the primordial perturbations.

  8. Rolling into spatial disorientation: simulator demonstration of the post-roll (Gillingham) illusion.

    PubMed

    Nooij, Suzanne A E; Groen, Eric L

    2011-05-01

    Spatial disorientation (SD) is still a contributing factor in many aviation accidents, stressing the need for adequate SD training scenarios. In this article we focused on the post-roll effect (the sensation of rolling back after a roll maneuver, such as an entry of a coordinated turn) and investigated the effect of roll stimuli on the pilot's ability to stabilize their roll attitude. This resulted in a ground-based demonstration scenario for pilots. The experiments took place in the advanced 6-DOF Desdemona motion simulator, with the subject in a supine position. Roll motions were either fully automated with the subjects blindfolded (BLIND), automated with the subject viewing the cockpit interior (COCKPIT), or self-controlled (LEAD). After the roll stimulus subjects had to cancel all perceived simulator motion without any visual feedback. Both the roll velocity and duration were varied. In 68% of all trials subjects corrected for the perceived motion of rolling back by initiating a roll motion in the same direction as the preceeding roll. The effect was dependent on both rate and duration, in a manner consistent with semicircular canal dynamics. The effect was smallest in the BLIND scenario, but differences between simulation scenarios were non-significant. The results show that the effects of the post-roll illusion on aircraft control can be demonstrated adequately in a flight simulator using an attitude control task. The effect is present even after short roll movements, occurring frequently in flight. Therefore this demonstration is relevant for spatial disorientation training programs for pilots.

  9. 'Slings' enable neutrophil rolling at high shear.

    PubMed

    Sundd, Prithu; Gutierrez, Edgar; Koltsova, Ekaterina K; Kuwano, Yoshihiro; Fukuda, Satoru; Pospieszalska, Maria K; Groisman, Alex; Ley, Klaus

    2012-08-16

    Most leukocytes can roll along the walls of venules at low shear stress (1 dyn cm−2), but neutrophils have the ability to roll at tenfold higher shear stress in microvessels in vivo. The mechanisms involved in this shear-resistant rolling are known to involve cell flattening and pulling of long membrane tethers at the rear. Here we show that these long tethers do not retract as postulated, but instead persist and appear as 'slings' at the front of rolling cells. We demonstrate slings in a model of acute inflammation in vivo and on P-selectin in vitro, where P-selectin-glycoprotein-ligand-1 (PSGL-1) is found in discrete sticky patches whereas LFA-1 is expressed over the entire length on slings. As neutrophils roll forward, slings wrap around the rolling cells and undergo a step-wise peeling from the P-selectin substrate enabled by the failure of PSGL-1 patches under hydrodynamic forces. The 'step-wise peeling of slings' is distinct from the 'pulling of tethers' reported previously. Each sling effectively lays out a cell-autonomous adhesive substrate in front of neutrophils rolling at high shear stress during inflammation.

  10. Inflation with a constant rate of roll

    SciTech Connect

    Motohashi, Hayato; Starobinsky, Alexei A.; Yokoyama, Jun'ichi E-mail: alstar@landau.ac.ru

    2015-09-01

    We consider an inflationary scenario where the rate of inflaton roll defined by {sup ··}φ/H φ-dot remains constant. The rate of roll is small for slow-roll inflation, while a generic rate of roll leads to the interesting case of 'constant-roll' inflation. We find a general exact solution for the inflaton potential required for such inflaton behaviour. In this model, due to non-slow evolution of background, the would-be decaying mode of linear scalar (curvature) perturbations may not be neglected. It can even grow for some values of the model parameter, while the other mode always remains constant. However, this always occurs for unstable solutions which are not attractors for the given potential. The most interesting particular cases of constant-roll inflation remaining viable with the most recent observational data are quadratic hilltop inflation (with cutoff) and natural inflation (with an additional negative cosmological constant). In these cases even-order slow-roll parameters approach non-negligible constants while the odd ones are asymptotically vanishing in the quasi-de Sitter regime.

  11. Inflation with a constant rate of roll

    NASA Astrophysics Data System (ADS)

    Motohashi, Hayato; Starobinsky, Alexei A.; Yokoyama, Jun'ichi

    2015-09-01

    We consider an inflationary scenario where the rate of inflaton roll defined by ̈phi/H dot phi remains constant. The rate of roll is small for slow-roll inflation, while a generic rate of roll leads to the interesting case of 'constant-roll' inflation. We find a general exact solution for the inflaton potential required for such inflaton behaviour. In this model, due to non-slow evolution of background, the would-be decaying mode of linear scalar (curvature) perturbations may not be neglected. It can even grow for some values of the model parameter, while the other mode always remains constant. However, this always occurs for unstable solutions which are not attractors for the given potential. The most interesting particular cases of constant-roll inflation remaining viable with the most recent observational data are quadratic hilltop inflation (with cutoff) and natural inflation (with an additional negative cosmological constant). In these cases even-order slow-roll parameters approach non-negligible constants while the odd ones are asymptotically vanishing in the quasi-de Sitter regime.

  12. Signal and power roll ring testing update

    NASA Technical Reports Server (NTRS)

    Smith, Dennis W.

    1989-01-01

    The development of the roll ring as a long-life, low-torque alternative to the slip ring is discussed. A roll ring consists of one or more circular flexures captured by their own spring force in the annular space between two concentric conductors or contact rings. The advantages of roll rings over other types of electrical transfer devices are: extremely low drag torque, high transfer efficiencies in high-power configurations, extremely low wear debris generation, long life, and low weight for high-power applications.

  13. f( R) constant-roll inflation

    NASA Astrophysics Data System (ADS)

    Motohashi, Hayato; Starobinsky, Alexei A.

    2017-08-01

    The previously introduced class of two-parametric phenomenological inflationary models in general relativity in which the slow-roll assumption is replaced by the more general, constant-roll condition is generalized to the case of f( R) gravity. A simple constant-roll condition is defined in the original Jordan frame, and exact expressions for a scalaron potential in the Einstein frame, for a function f( R) (in the parametric form) and for inflationary dynamics are obtained. The region of the model parameters permitted by the latest observational constraints on the scalar spectral index and the tensor-to-scalar ratio of primordial metric perturbations generated during inflation is determined.

  14. Roll paper pilot. [mathematical model for predicting pilot rating of aircraft in roll task

    NASA Technical Reports Server (NTRS)

    Naylor, F. R.; Dillow, J. D.; Hannen, R. A.

    1973-01-01

    A mathematical model for predicting the pilot rating of an aircraft in a roll task is described. The model includes: (1) the lateral-directional aircraft equations of motion; (2) a stochastic gust model; (3) a pilot model with two free parameters; and (4) a pilot rating expression that is a function of rms roll angle and the pilot lead time constant. The pilot gain and lead time constant are selected to minimize the pilot rating expression. The pilot parameters are then adjusted to provide a 20% stability margin and the adjusted pilot parameters are used to compute a roll paper pilot rating of the aircraft/gust configuration. The roll paper pilot rating was computed for 25 aircraft/gust configurations. A range of actual ratings from 2 to 9 were encountered and the roll paper pilot ratings agree quite well with the actual ratings. In addition there is good correlation between predicted and measured rms roll angle.

  15. Why Low Bounce Balls Exhibit High Rolling Resistance

    ERIC Educational Resources Information Center

    Cross, Rod

    2015-01-01

    A simple experiment is described to measure the coefficient of rolling friction for a low bounce ball rolling on a horizontal surface. As observed previously by others, the coefficient increased with rolling speed. The energy loss due to rolling friction can be explained in terms of the measured coefficient of restitution for the ball, meaning…

  16. Why Low Bounce Balls Exhibit High Rolling Resistance

    ERIC Educational Resources Information Center

    Cross, Rod

    2015-01-01

    A simple experiment is described to measure the coefficient of rolling friction for a low bounce ball rolling on a horizontal surface. As observed previously by others, the coefficient increased with rolling speed. The energy loss due to rolling friction can be explained in terms of the measured coefficient of restitution for the ball, meaning…

  17. Roll Damping Characterisation Program: User Guide

    DTIC Science & Technology

    2014-06-01

    sallying test. The Defence Science and Technology Organisation (DSTO) have developed a software-based tool called the Roll Damping Characterisation...Murray Riding Maritime Division Murray obtained a Bachelor of Science (Honours) Degree from the

  18. Rover Rehearses Roll-Off at JPL

    NASA Image and Video Library

    2004-01-15

    Footage from the JPL In-Situ Instruments Laboratory, or testbed, shows engineers rehearsing a crucial maneuver called egress in which NASA Mars Exploration Rover Spirit rolls off its lander platform and touches martian soil.

  19. Next-Generation Space Ambitions Keep Rolling

    NASA Image and Video Library

    As space shuttle Atlantis rolled to its new home at the Kennedy Space Center Visitor Complex earlier this month, NASA and its commercial crew partners reflected on the Space Shuttle Program's treme...

  20. Roll Dynamics in a Free Flying Dragonfly

    NASA Astrophysics Data System (ADS)

    Melfi, James; Leonardo, Anthony; Wang, Z. Jane

    2014-11-01

    Dragonflies are capable of executing fast turning maneuvers. A typical free-flight maneuver includes rotations in all three degrees of freedom; yaw, pitch, and roll. This makes it difficult to identify the key changes to wing kinematics responsible for controlling each degree of freedom. Therefore we focus on a single motion; roll about the body longitudinal axis in a combined experimental and computational study. To induce rolling, a dragonfly is released from a magnetic tether while inverted. Both wing and body kinematics are recorded using multiple high speed cameras. The kinematics are replayed in a computer simulation of the flight, with forces and torques based on quasi-steady aerodynamics. By examining the effect of each kinematic change individually, we determine the key changes a dragonfly uses to both instigate, maintain, and end a rolling motion.

  1. Moesin regulates neutrophil rolling velocity in vivo.

    PubMed

    Matsumoto, Masanori; Hirata, Takako

    2016-01-01

    During inflammation, the selectin-induced slow rolling of neutrophils on venules cooperates with chemokine signaling to mediate neutrophil recruitment into tissues. Previous studies identified P-selectin glycoprotein ligand-1 (PSGL-1) and CD44 as E-selectin ligands that activate integrins to induce slow rolling. We show here that in TNF-α-treated cremaster muscle venules, slow leukocyte rolling was impaired in mice deficient in moesin, a member of the ezrin-radixin-moesin (ERM) family. Accordingly, neutrophil recruitment in a peritonitis model was decreased in moesin-deficient mice when chemokine signaling was blocked with pertussis toxin. These results suggest that moesin contributes to the slow rolling and subsequent recruitment of neutrophils during inflammation.

  2. Mathematical modeling of deformation during hot rolling

    SciTech Connect

    Jin, D.; Stachowiak, R.G.; Samarasekera, I.V.; Brimacombe, J.K.

    1994-12-31

    The deformation that occurs in the roll bite during the hot rolling of steel, particularly the strain-rate and strain distribution, has been mathematically modeled using finite-element analysis. In this paper three different finite-element models are compared with one another and with industrial measurements. The first model is an Eulerian analysis based on the flow formulation method, while the second utilizes an Updated Lagrangian approach. The third model is based on a commercially available program DEFORM which also utilizes a Lagrangian reference frame. Model predictions of strain and strain-rate distribution, particularly near the surface of the slab, are strongly influenced by the treatment of friction at the boundary and the magnitude of the friction coefficient or shear factor. Roll forces predicted by the model have been compared with industrial rolling loads from a seven-stand hot-strip mill.

  3. Plasmid Rolling-Circle Replication.

    PubMed

    Ruiz-Masó, J A; MachóN, C; Bordanaba-Ruiseco, L; Espinosa, M; Coll, M; Del Solar, G

    2015-02-01

    Plasmids are DNA entities that undergo controlled replication independent of the chromosomal DNA, a crucial step that guarantees the prevalence of the plasmid in its host. DNA replication has to cope with the incapacity of the DNA polymerases to start de novo DNA synthesis, and different replication mechanisms offer diverse solutions to this problem. Rolling-circle replication (RCR) is a mechanism adopted by certain plasmids, among other genetic elements, that represents one of the simplest initiation strategies, that is, the nicking by a replication initiator protein on one parental strand to generate the primer for leading-strand initiation and a single priming site for lagging-strand synthesis. All RCR plasmid genomes consist of a number of basic elements: leading strand initiation and control, lagging strand origin, phenotypic determinants, and mobilization, generally in that order of frequency. RCR has been mainly characterized in Gram-positive bacterial plasmids, although it has also been described in Gram-negative bacterial or archaeal plasmids. Here we aim to provide an overview of the RCR plasmids' lifestyle, with emphasis on their characteristic traits, promiscuity, stability, utility as vectors, etc. While RCR is one of the best-characterized plasmid replication mechanisms, there are still many questions left unanswered, which will be pointed out along the way in this review.

  4. Rolling Friction on a Wheeled Laboratory Cart

    DTIC Science & Technology

    2012-01-01

    by gravity, and a vehicle (such as a car or bicycle ) accelerating along a level road is driven by a motor or by pedalling. In such cases, static...of dirt or other obstacles). This slowing will arise even in the absence of air drag , as one can verify by rolling the object inside an evacuated...air drag is negligible compared to rolling friction at the speeds of motion of typical lab carts by substituting appropriate values into the formula

  5. Strip edge cracking simulation in cold rolling

    SciTech Connect

    Hubert, C.; Dubar, L.; Dubar, M.; Dubois, A.

    2011-01-17

    This research work focuses on a specific defect which occurs during cold rolling of steel strips: edge-serration. Investigations on the industrial processes have led to the conclusion that this defect is the result of the edge-trimming and cold rolling sequences. The aim of this research work is to analyze the effect of the cutting process and the cold rolling on cracks occurrence, especially on strip edges.This study is performed using an experimental testing stand called Upsetting Rolling Test (URT). It allows to reproduce cold rolling contact parameters such as forward slip, reduction ratio and friction coefficients. Specimens sampled near trimmed industrial strip edges are deformed using the URT stand. Two sets of specimens with different stress states, obtained by annealing, are submitted to two reduction passes with extreme forward slips.Scanning electron microscopy observations added to 3D optical surface profiler topographies show that on one hand, forward slip has a major effect on cracks opening. On the other hand, cracks opening decreases according to high roll strip speed gradient. Concerning the heat-treated specimens, no crack appeared after all reduction passes, showing a large influence of the cutting process and consequently of the local stress state in the vicinity of the burnish and fracture regions.

  6. Strip edge cracking simulation in cold rolling

    NASA Astrophysics Data System (ADS)

    Hubert, C.; Dubar, L.; Dubar, M.; Dubois, A.

    2011-01-01

    This research work focuses on a specific defect which occurs during cold rolling of steel strips: edge-serration. Investigations on the industrial processes have led to the conclusion that this defect is the result of the edge-trimming and cold rolling sequences. The aim of this research work is to analyze the effect of the cutting process and the cold rolling on cracks occurrence, especially on strip edges. This study is performed using an experimental testing stand called Upsetting Rolling Test (URT). It allows to reproduce cold rolling contact parameters such as forward slip, reduction ratio and friction coefficients. Specimens sampled near trimmed industrial strip edges are deformed using the URT stand. Two sets of specimens with different stress states, obtained by annealing, are submitted to two reduction passes with extreme forward slips. Scanning electron microscopy observations added to 3D optical surface profiler topographies show that on one hand, forward slip has a major effect on cracks opening. On the other hand, cracks opening decreases according to high roll strip speed gradient. Concerning the heat-treated specimens, no crack appeared after all reduction passes, showing a large influence of the cutting process and consequently of the local stress state in the vicinity of the burnish and fracture regions.

  7. Ultra slow-roll G inflation

    NASA Astrophysics Data System (ADS)

    Hirano, Shin'ichi; Kobayashi, Tsutomu; Yokoyama, Shuichiro

    2016-11-01

    The conventional slow-roll approximation is broken in the so-called "ultra slow-roll" models of inflation, for which the inflaton potential is exactly (or extremely) flat. The interesting nature of (canonical) ultra slow-roll inflation is that the curvature perturbation grows on superhorizon scales, but has a scale-invariant power spectrum. We study the ultra slow-roll inflationary dynamics in the presence of noncanonical kinetic terms of the scalar field, namely ultra slow-roll G inflation. We compute the evolution of the curvature perturbation and show that the primordial power spectrum follows a broken power law with an oscillation feature. It is demonstrated that this could explain the lack of large-scale power in the cosmic microwave background temperature anisotropies. We also point out that the violation of the null energy condition is prohibited in ultra slow-roll G inflation, and hence a blue tensor tilt is impossible as long as inflation is driven by the potential. This statement is, however, not true if the energy density is dominated by the kinetic energy of the scalar field.

  8. 75 FR 62566 - Hot-Rolled Flat-Rolled Carbon-Quality Steel Products From Brazil, Japan, and Russia

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-12

    ... COMMISSION Hot-Rolled Flat-Rolled Carbon-Quality Steel Products From Brazil, Japan, and Russia AGENCY: United... Brazil, the antidumping duty orders on hot-rolled steel from Brazil and Japan, and the suspended... steel from Brazil, the antidumping duty orders on hot-rolled steel from Brazil and Japan, and/ or the...

  9. 75 FR 42782 - Hot-Rolled Flat-Rolled Carbon-Quality Steel Products From Brazil, Japan, and Russia

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-22

    ... COMMISSION Hot-Rolled Flat-Rolled Carbon-Quality Steel Products From Brazil, Japan, and Russia AGENCY: United... Brazil and Japan, and the suspended investigation on hot-rolled steel from Russia. SUMMARY: The... Japan, and the suspended investigation on hot-rolled steel from Russia would be likely to lead to...

  10. 76 FR 34101 - Hot-Rolled Flat-Rolled Carbon-Quality Steel Products From Brazil, Japan, and Russia

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-10

    ... COMMISSION Hot-Rolled Flat-Rolled Carbon-Quality Steel Products From Brazil, Japan, and Russia Determinations... steel products from Brazil and Japan would not be likely to lead to continuation or recurrence of...-rolled flat-rolled carbon-quality steel products from Brazil and Japan. Background The Commission...

  11. 75 FR 16504 - Hot-Rolled Flat-Rolled Carbon-Quality Steel Products From Brazil, Japan, and Russia

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-01

    ... COMMISSION Hot-Rolled Flat-Rolled Carbon-Quality Steel Products From Brazil, Japan, and Russia AGENCY: United...'') from Brazil, the antidumping duty orders on hot-rolled steel from Brazil and Japan, and the suspended... antidumping duty orders on hot-rolled steel from Brazil and Japan, and the suspended investigation on hot...

  12. 76 FR 35400 - Continuation of Suspended Antidumping Duty Investigation on Certain Hot-Rolled Flat-Rolled Carbon...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-17

    ...-Rolled Flat-Rolled Carbon-Quality Steel Products From the Russian Federation AGENCY: Import... carbon quality steel products (``hot- rolled steel'') from the Russian Federation (``Russia'') would... instituted, a sunset review of the suspended antidumping duty investigation on hot- rolled steel from Russia...

  13. Evaluation of roll designs on a roll-crusher/ crusher/splitter biomass harvester: test bench results

    Treesearch

    Colin Ashmore; Donald L. Sirois; Bryce J. Stokes

    1987-01-01

    Four different roll designs were evaluated on a test bench roll crusher/splitter to determine feeding and crushing efficiencies. For each design, different gap settings for the primary and secondary rolls were tested at two hydraulic cylinder pressures on the primary crush roll to determine their ability to crush and/or feed tree bolts. Seven different diameter classes...

  14. 49 CFR 393.134 - What are the rules for securing roll-on/roll-off or hook lift containers?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 5 2013-10-01 2013-10-01 false What are the rules for securing roll-on/roll-off... Shifting and Falling Cargo Specific Securement Requirements by Commodity Type § 393.134 What are the rules for securing roll-on/roll-off or hook lift containers? (a) Applicability. The rules in this...

  15. Roll compaction/dry granulation: comparison between roll mill and oscillating granulator in dry granulation.

    PubMed

    Sakwanichol, Jarunee; Puttipipatkhachorn, Satit; Ingenerf, Gernot; Kleinebudde, Peter

    2012-01-01

    Different experimental factorial designs were employed to evaluate granule properties obtained from oscillating granulator and roll mill. Four oscillating-granulator parameters were varied, i.e. rotor speed, oscillating angle, aperture of mesh screen and rotor type. Six roll-mill parameters that were throughput, speed ratio in both first and second stages, gap between roll pair in both stages and roll-surface texture were also investigated. Afterwards, the granule properties obtained from two milling types with similar median particle size were compared. All milling parameters in both milling types affected significantly the median particle size, size distribution and amount of fine particles (P < 0.05), except the rotor types of oscillating granulator on fines. Only three milling parameters influenced significantly the flowability (P < 0.05). These were the throughput and the gap size in the first stage of roll mill and the sieve size of oscillating granulator. In comparison between milling types, the differences of granule properties were not practically relevant. However, the roll mill had much higher capacity than the oscillating granulator about seven times, resulting in improving energy savings per unit of product. Consequently, the roll mill can be applied instead of oscillating granulator for roll compaction/dry granulation technique.

  16. Practice of Improving Roll Deformation Theory in Strip Rolling Process Based on Boundary Integral Equation Method

    NASA Astrophysics Data System (ADS)

    Yuan, Zhengwen; Xiao, Hong; Xie, Hongbiao

    2014-02-01

    Precise strip-shape control theory is significant to improve rolled strip quality, and roll flattening theory is a primary part of the strip-shape theory. To improve the accuracy of roll flattening calculation based on semi-infinite body model, a new and more accurate roll flattening model is proposed in this paper, which is derived based on boundary integral equation method. The displacement fields of the finite length semi-infinite body on left and right sides are simulated by using finite element method (FEM) and displacement decay functions on left and right sides are established. Based on the new roll flattening model, a new 4Hi mill deformation model is established and verified by FEM. The new model is compared with Foppl formula and semi-infinite body model in different strip width, roll shifting value and bending force. The results show that the pressure and flattening between rolls calculated by the new model are more precise than other two models, especially near the two roll barrel edges.

  17. Quantifying texture evolution during hot rolling of AZ31 Twin Roll Cast strip

    NASA Astrophysics Data System (ADS)

    Gorelova, S.; Schaeben, H.

    2015-04-01

    Multi-pass rolling experiments with an AZ31 Twin Roll Cast (TRC) alloy were performed on an industrial scaled four-high rolling mill. Within the rolling with an intermediate annealing the evolution of texture was investigated. To quantify the extent of preferred crystallographic orientation experimental X-ray pole figures were measured after different process steps and analyzed using the free and open Matlab® toolbox MTEX for texture analysis. The development of the fiber texture was observed and analyzed in dependence on rolling conditions. In the initial state the specimen exhibits a texture composed of a weak basal texture and a cast texture with {0001}-planes oriented across the rolling direction. During the following rolling process a fiber texture was developed. The expected strength increment of the fiber texture was quantitatively confirmed in terms of volume portions of the orientation density function around the fiber and in terms of the canonical parameters of fitted pseudo Bingham distributions. On the results of this work a model for prediction of the texture evolution during the strip rolling of magnesium in the examined parameter range was developed.

  18. Comparing Acute Bouts of Sagittal Plane Progression Foam Rolling vs. Frontal Plane Progression Foam Rolling.

    PubMed

    Peacock, Corey A; Krein, Darren D; Antonio, Jose; Sanders, Gabriel J; Silver, Tobin A; Colas, Megan

    2015-08-01

    Many strength and conditioning professionals have included the use of foam rolling devices within a warm-up routine prior to both training and competition. Multiple studies have investigated foam rolling in regards to performance, flexibility, and rehabilitation; however, additional research is necessary in supporting the topic. Furthermore, as multiple foam rolling progressions exist, researching differences that may result from each is required. To investigate differences in foam rolling progressions, 16 athletically trained males underwent a 2-condition within-subjects protocol comparing the differences of 2 common foam rolling progressions in regards to performance testing. The 2 conditions included a foam rolling progression targeting the mediolateral axis of the body (FRml) and foam rolling progression targeting the anteroposterior axis (FRap). Each was administered in adjunct with a full-body dynamic warm-up. After each rolling progression, subjects performed National Football League combine drills, flexibility, and subjective scaling measures. The data demonstrated that FRml was effective at improving flexibility (p ≤ 0.05) when compared with FRap. No other differences existed between progressions.

  19. Experience in TMT with the use of cold lengthwise rolling in dead rolls

    NASA Astrophysics Data System (ADS)

    Agas'yants, G. A.; Semibratov, G. G.; Kodjaspirov, G. E.

    2007-01-01

    Experience in the thermomechanical treatment of long stepped preforms for shafts (including torsion ones), studs, forcing bolts, and other articles from high-strength and maraging steels with the use of cold lengthwise rolling in dead rolls is described. The used variants of TMT make it possible to obtain hardened highly loaded machine parts with high quality and performance parameters.

  20. Optimization of cold rolling process parameters in order to increasing rolling speed limited by chatter vibrations

    PubMed Central

    Heidari, Ali; Forouzan, Mohammad R.

    2012-01-01

    Chatter has been recognized as major restriction for the increase in productivity of cold rolling processes, limiting the rolling speed for thin steel strips. It is shown that chatter has close relation with rolling conditions. So the main aim of this paper is to attain the optimum set points of rolling to achieve maximum rolling speed, preventing chatter to occur. Two combination methods were used for optimization. First method is done in four steps: providing a simulation program for chatter analysis, preparing data from simulation program based on central composite design of experiment, developing a statistical model to relate system tendency to chatter and rolling parameters by response surface methodology, and finally optimizing the process by genetic algorithm. Second method has analogous stages. But central composite design of experiment is replaced by Taguchi method and response surface methodology is replaced by neural network method. Also a study on the influence of the rolling parameters on system stability has been carried out. By using these combination methods, new set points were determined and significant improvement achieved in rolling speed. PMID:25685398

  1. Influence of Carbon Content and Rolling Temperature on Rolling Texture in 3 Pct Si Steel

    NASA Astrophysics Data System (ADS)

    Shingaki, Y.; Takashima, M.; Hayakawa, Y.

    2017-01-01

    Effects of carbon and rolling temperature up to 453 K (180 °C) on rolling texture of 3 pct Si steel at a reduction of 66 pct were investigated using a single crystal with an initial orientation of {110}<001>. With residual-level carbon, uniform slip deformation was observed in the specimen cold rolled at room temperature and most of initial orientation {110}<001> rotated to {111}<112> during the rolling. With carbon addition, the formation of the deformation twins and the shear bands were promoted in the specimen cold rolled at room temperature. Regions with {110}<001> were observed inside the shear bands. Warm-rolled specimen with residual-level carbon had microbands containing tiny {110}<001> regions. Warm-rolled specimen with carbon addition had both the shear bands and the microbands but no deformation twin. Additionally, there were unique band structures with rotated crystal orientation around the rolling direction from initial orientation {110}<001>. These experimental results suggest that the carbon addition inhibits dislocation migration by the increase of the critical resolved shear stress (CRSS) and that the high deformation temperature activates multiple slip systems by the reduction of CRSS and further that the carbon addition and high deformation temperature superimposed bring about the activation of symmetrical {110} slip systems additionally.

  2. Development of a Rolling Process Design Tool for Use in Improving Hot Roll Slab Recovery

    SciTech Connect

    2001-10-01

    The project goal is to develop a numerical modeling capability to optimize the hot rolling process used to produce aluminum plate. This tool will be used in the forming process so that loss of product will be minimized. Product lost in the rolling process requires the energy-intensive steps of remelting and reforming into an ingot.

  3. Analytical study on web deformation by tension in roll-to-roll printing process

    NASA Astrophysics Data System (ADS)

    Kang, Y. S.; Hong, M. S.; Lee, S. H.; Jeon, Y. H.; Kang, D.; Lee, N. K.; Lee, M. G.

    2017-08-01

    Recently, flexible devices have gained high intentions for flexible display, Radio Frequency Identification (RFID), bio-sensor and so on. For manufacturing of the flexible devices, roll-to-roll process is a good candidate because of its low production cost and high productivity. Flexible substrate has a non-uniform deformation distribution by tension. Because the roll-to-roll process carries out a number of overlay printing processes, the deformation affect overlay printing precision and printable areas. In this study, the deformation of flexible substrate was analyzed by using finite element analysis and it was verified through experiments. More deformation occurred in the middle region in the direction parallel to rolling of the flexible substrate. It is confirmed through experiments and analysis that deformation occurs less at the both ends than in the middle region. Based on these results, a hourglass roll is proposed as a mechanical design of the roll to compensate the non-uniform deformation of the flexible substrate. In the hourglass roll, high stiffness material is used in the core and low stiffness material such as an elastic material is wrapped. The diameter of the core roll was designed to be the minimum at the middle and the maximum at both ends. We tried to compensate the non-uniform deformation distribution of the flexible substrate by using the variation of the contact stiffness between the roll and the flexible substrate. Deformation distribution of flexible substrates was confirmed by finite element analysis by applying hourglass roll shape. In the analysis when using the hourglass roll, it is confirmed that the stress distribution is compensated by about 70% and the strain distribution is compensated by about 67% compared to the case using the hourglass roll. To verify the compensation of the non-uniform deformation distribution due to the tension, deformation measurement experiment when using the proposed hourglass roll was carried out

  4. 75 FR 75455 - Certain Hot-Rolled Flat-Rolled Carbon-Quality Steel Products From Brazil: Final Results of Full...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-03

    ... International Trade Administration Certain Hot-Rolled Flat-Rolled Carbon-Quality Steel Products From Brazil... certain hot-rolled flat-rolled carbon-quality steel products (hot-rolled steel) from Brazil, pursuant to.../COSIPA) \\2\\ and Companhia Siderurgica Nacional (CSN), producers of hot-rolled steel, and the Government...

  5. 75 FR 77828 - Certain Hot-Rolled Flat-Rolled Carbon-Quality Steel Products From Brazil: Extension of Time Limit...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-14

    ... International Trade Administration Certain Hot-Rolled Flat-Rolled Carbon-Quality Steel Products From Brazil...-rolled flat-rolled carbon- quality steel products from Brazil for the period January 1, 2008, through December 31, 2008. See Certain Hot-Rolled Flat-Rolled Carbon Quality Steel Products From Brazil...

  6. 75 FR 32160 - Certain Hot-Rolled Flat-Rolled Carbon-Quality Steel Products from Brazil: Extension of Time Limit...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-07

    ... International Trade Administration Certain Hot-Rolled Flat-Rolled Carbon-Quality Steel Products from Brazil... certain hot-rolled flat- rolled carbon-quality steel products from Brazil. See Agreement Suspending the... review of the countervailing duty order on certain hot-rolled flat-rolled carbon-quality steel products...

  7. Sensitivity analysis of roll load, torque and material properties in the roll forming process

    NASA Astrophysics Data System (ADS)

    Abeyrathna, Buddhika; Rolfe, Bernard; Hodgson, Peter; Weiss, Matthias

    2013-12-01

    Advanced High Strength Steel (AHSS) and Ultra High Strength Steel (UHSS) are increasingly used in the current automotive industry because of their high strength and weight saving potential. As a sheet forming process, roll forming is capable of forming such materials with precise dimensions, however a small change in processing may results in significant change in the material properties such as yield strength and hardening exponent from coil to coil or within the same coil. This paper presents the effect of yield strength and the hardening exponent on roll load, torque of the roll forming process and the longitudinal bow. The roll forming process is numerically simulated, and then the regression analysis and Analysis of Variance (ANOVA) techniques are employed to establish the relationships among the aforementioned parameters and to determine the percentage influence of material properties on longitudinal bow, roll load and torque.

  8. Research on the rolling moment in the symmetrical and asymmetrical rolling process

    NASA Astrophysics Data System (ADS)

    Alexa, V.; Raţiu, S. A.; Kiss, I.; Cioată, C. G.

    2017-01-01

    Research distribution the rolling moments symmetrical and asymmetrical report presents great importance both in theory and to introduce clarifications to the calculation of rolling resistance line assemblies. Clarifying individuals of metallic material deformation between the rolls single cylinder diameters act of any difference of work and analysis of advance and delay phenomena. Torque drive value for each of the rolling cylinders was done by reducing the thickness of the laminate samples, an experimental facility located in the laboratory of plastic deformation of the Faculty of Engineering Hunedoara. The analysis of research results show that in terms of power consumption for deformation and safety equipment in operation is rational for mills which require such a difference between the work rolls to execute about one cylinder operated.

  9. Improvement of vehicle roll stability by varying suspension properties

    NASA Astrophysics Data System (ADS)

    Shim, Taehyun; Velusamy, Pradheep C.

    2011-02-01

    Vehicle roll dynamics are strongly influenced by suspension properties such as roll centre height, roll steer, and roll camber. In this paper, the effects of suspension properties on vehicle roll response have been investigated using a multi-body vehicle dynamics programme. Roll dynamics of a vehicle model with MacPherson (front) and multilink (rear) suspensions were evaluated for the fishhook manoeuvre and variations of its roll response due to changes in the suspension properties were assessed by quantitatively analysing the vehicle response through simulation. Critical suspension design parameters for vehicle roll dynamics were identified and adjusted to improve roll stability of the vehicle model with passive suspension. Design of experiments has been used for identifying critical hardpoints affecting the suspension parameters, and optimisation techniques were employed for parameter optimisation. This approach provides a viable alternative to costlier active control systems for economy-class vehicles.

  10. Magnon inflation: slow roll with steep potentials

    SciTech Connect

    Adshead, Peter; Blas, Diego; Burgess, C.P.; Hayman, Peter; Patil, Subodh P.

    2016-11-04

    We find multi-scalar effective field theories (EFTs) that can achieve a slow inflationary roll despite having a scalar potential that does not satisfy G{sup ab}∂{sub a}V∂{sub b}V≪V{sup 2}/M{sub p}{sup 2} (where G{sub ab} is the target-space metric). They evade the usual slow-roll conditions on V because their kinetic energies are dominated by single-derivative terms rather than the usual two-derivative terms. Single derivatives dominate during slow roll and so do not require a breakdown of the usual derivative expansion that underpins calculational control in much of cosmology. The presence of such terms requires some sort of UV Lorentz-symmetry breaking during inflation (besides the usual cosmological breaking). Chromo-natural inflation provides one particular example of a UV theory that can generate the multi-field single-derivative terms we consider, and we argue that the EFT we find indeed captures the slow-roll conditions for its background evolution. We also show that our EFT can be understood as a multi-field generalization of the single-field Cuscuton models. The multi-field case introduces a new feature, however: the scalar kinetic terms define a target-space 2-form, F{sub ab}, whose antisymmetry gives new ways for slow roll to be achieved.

  11. Applying contextual interference to the Pawlata roll.

    PubMed

    Smith, P J; Davies, M

    1995-12-01

    Contextual interference is manipulated by changing the practice order of a number of similar motor tasks, so that the learning context of each interferes with that of the other. The effect has been found to generalize to baseball batting, badminton serving and volleyball skills. The present study examined whether this practice technique could be applied to a Pawlata roll in a kayak. The study was further motivated by the fact that many instructors in Britain currently advocate learning the Pawlata roll in one direction only to a criterion of accuracy, thereafter transferring to the opposite direction. Contextual interference literature predicts that skill retention would be better served by practising on alternate sides. Accordingly, 16 undergraduate students with no kayaking experience were randomly allocated to either a low contextual interference group, which followed U'ren's (1993) recommendations, or a high contextual interference group, which practised the skill on alternate sides. The high contextual interference group took less time to acquire the skill, and were also quicker to achieve successful performance in retention (full roll) and transfer (half roll) tests, regardless of the direction of the roll, 1 week later. The time savings in practice were not expected, as acquisition under high contextual interference was improved rather than impaired. This finding suggests that bilateral transfer was increased by randomizing practice. These results are worthy of further investigation, in that they suggest that the recommended training methods may not be optimal.

  12. Magnon inflation: slow roll with steep potentials

    NASA Astrophysics Data System (ADS)

    Adshead, Peter; Blas, Diego; Burgess, C. P.; Hayman, Peter; Patil, Subodh P.

    2016-11-01

    We find multi-scalar effective field theories (EFTs) that can achieve a slow inflationary roll despite having a scalar potential that does not satisfy Script Gab ∂a V ∂b V ll V2/Mp2 (where Script Gab is the target-space metric). They evade the usual slow-roll conditions on V because their kinetic energies are dominated by single-derivative terms rather than the usual two-derivative terms. Single derivatives dominate during slow roll and so do not require a breakdown of the usual derivative expansion that underpins calculational control in much of cosmology. The presence of such terms requires some sort of UV Lorentz-symmetry breaking during inflation (besides the usual cosmological breaking). Chromo-natural inflation provides one particular example of a UV theory that can generate the multi-field single-derivative terms we consider, and we argue that the EFT we find indeed captures the slow-roll conditions for its background evolution. We also show that our EFT can be understood as a multi-field generalization of the single-field Cuscuton models. The multi-field case introduces a new feature, however: the scalar kinetic terms define a target-space 2-form, ℱab, whose antisymmetry gives new ways for slow roll to be achieved.

  13. Controlling roll perturbations in fruit flies

    PubMed Central

    Beatus, Tsevi; Guckenheimer, John M.; Cohen, Itai

    2015-01-01

    Owing to aerodynamic instabilities, stable flapping flight requires ever-present fast corrective actions. Here, we investigate how flies control perturbations along their body roll angle, which is unstable and their most sensitive degree of freedom. We glue a magnet to each fly and apply a short magnetic pulse that rolls it in mid-air. Fast video shows flies correct perturbations up to 100° within 30 ± 7 ms by applying a stroke-amplitude asymmetry that is well described by a linear proportional–integral controller. For more aggressive perturbations, we show evidence for nonlinear and hierarchical control mechanisms. Flies respond to roll perturbations within 5 ms, making this correction reflex one of the fastest in the animal kingdom. PMID:25762650

  14. Rolling Element Bearing Stiffness Matrix Determination (Presentation)

    SciTech Connect

    Guo, Y.; Parker, R.

    2014-01-01

    Current theoretical bearing models differ in their stiffness estimates because of different model assumptions. In this study, a finite element/contact mechanics model is developed for rolling element bearings with the focus of obtaining accurate bearing stiffness for a wide range of bearing types and parameters. A combined surface integral and finite element method is used to solve for the contact mechanics between the rolling elements and races. This model captures the time-dependent characteristics of the bearing contact due to the orbital motion of the rolling elements. A numerical method is developed to determine the full bearing stiffness matrix corresponding to two radial, one axial, and two angular coordinates; the rotation about the shaft axis is free by design. This proposed stiffness determination method is validated against experiments in the literature and compared to existing analytical models and widely used advanced computational methods. The fully-populated stiffness matrix demonstrates the coupling between bearing radial, axial, and tilting bearing deflections.

  15. Damage mitigation in roll-to-roll transfer of CVD-graphene to flexible substrates

    NASA Astrophysics Data System (ADS)

    Jang, Bongkyun; Kim, Chang-Hyun; Choi, Seung Tae; Kim, Kyung-Shik; Kim, Kwang-Seop; Lee, Hak-Joo; Cho, Seungmin; Ahn, Jong-Hyun; Kim, Jae-Hyun

    2017-06-01

    Roll-to-roll (R2R) transfer of a chemical vapor deposition (CVD) graphene is an inevitable step for large scale and high throughput manufacturing of graphene transparent electrodes on flexible substrates. The damages on graphene induced by high contact pressure of nip rolls during the roll transfer degrade the electrical properties of the transferred graphene on flexible substrates. In this study, we developed a damage mitigation method for the roll transfer of graphene. By analyzing scanning electron microscope (SEM) images of the damages on the transferred graphene, three types of failure modes were classified, and the corresponding failure mechanisms were revealed using the surface morphology and the finite element analyses. Based on the understanding of the failure mechanisms, the graphene transfer with a width of 400 mm was realized at a speed of 1000 mm min-1 using an R2R transfer machine with the capability of nip force control. The high electrical conductivity and uniformity of the roll-transferred graphene demonstrates the scalability and the productivity of the developed roll transfer technology.

  16. Computer-aided roll pass design in rolling of airfoil shapes

    NASA Technical Reports Server (NTRS)

    Akgerman, N.; Lahoti, G. D.; Altan, T.

    1980-01-01

    This paper describes two computer-aided design (CAD) programs developed for modeling the shape rolling process for airfoil sections. The first program, SHPROL, uses a modular upper-bound method of analysis and predicts the lateral spread, elongation, and roll torque. The second program, ROLPAS, predicts the stresses, roll separating force, the roll torque and the details of metal flow by simulating the rolling process, using the slab method of analysis. ROLPAS is an interactive program; it offers graphic display capabilities and allows the user to interact with the computer via a keyboard, CRT, and a light pen. The accuracy of the computerized models was evaluated by (a) rolling a selected airfoil shape at room temperature from 1018 steel and isothermally at high temperature from Ti-6Al-4V, and (b) comparing the experimental results with computer predictions. The comparisons indicated that the CAD systems, described here, are useful for practical engineering purposes and can be utilized in roll pass design and analysis for airfoil and similar shapes.

  17. Inflation with a smooth constant-roll to constant-roll era transition

    NASA Astrophysics Data System (ADS)

    Odintsov, S. D.; Oikonomou, V. K.

    2017-07-01

    In this paper, we study canonical scalar field models, with a varying second slow-roll parameter, that allow transitions between constant-roll eras. In the models with two constant-roll eras, it is possible to avoid fine-tunings in the initial conditions of the scalar field. We mainly focus on the stability of the resulting solutions, and we also investigate if these solutions are attractors of the cosmological system. We shall calculate the resulting scalar potential and, by using a numerical approach, we examine the stability and attractor properties of the solutions. As we show, the first constant-roll era is dynamically unstable towards linear perturbations, and the cosmological system is driven by the attractor solution to the final constant-roll era. As we demonstrate, it is possible to have a nearly scale-invariant power spectrum of primordial curvature perturbations in some cases; however, this is strongly model dependent and depends on the rate of the final constant-roll era. Finally, we present, in brief, the essential features of a model that allows oscillations between constant-roll eras.

  18. Routh symmetry in the Chaplygin's rolling ball

    NASA Astrophysics Data System (ADS)

    Kim, Byungsoo

    2011-12-01

    The Routh integral in the symmetric Chaplygin's rolling ball has been regarded as a mysterious conservation law due to its interesting form of sqrt {I_1 I_3 + m< {I_s ,s} rangle } Ω _3 . In this paper, a new form of the Routh integral is proposed as a Noether's pairing form of a conservation law. An explicit symmetry vector for the Routh integral is proved to associate the conserved quantity with the invariance of the Lagrangian function under the rollingly constrained nonholonomic variation. Then, the form of the Routh symmetry vector is discussed for its origin as the linear combination of the configurational vectors.

  19. Stress evaluations under rolling/sliding contacts

    NASA Technical Reports Server (NTRS)

    Kannel, J. W.; Tevaarwerk, J. L.

    1981-01-01

    The state of stress beneath traction drive type of contacts were analyzed. Computing stresses and stress reversals on various planes for points beneath the surface were examined. The effect of tangential and axial friction under gross slip conditions is evaluated with the models. Evaluations were performed on an RC (rolling contact) tester configuration and it is indicated that the classical fatigue stresses are not altered by friction forces typical of lubricated contact. Higher values of friction can result in surface shear reversal that exceeds the stresses at the depth of maximum shear reversal under rolling contact.

  20. Roll ring assemblies for the Space Station

    NASA Technical Reports Server (NTRS)

    Batista, J.; Vise, J.; Young, K.

    1994-01-01

    Space Station Freedom requires the transmission of high power and signals through three different rotational interfaces. Roll ring technology was baselined by NASA for rotary joints to transfer up to 65.5 kW of power for 30 years at greater than 99 percent efficiency. Signal transfer requirements included MIL-STD-1553 data transmission and 4.5 MHz RS250A base and color video. A unique design for each rotary joint was developed and tested to accomplish power and signal transfer. An overview of roll ring technology is presented, followed by design requirements, hardware configuration, and test results.

  1. Horizontal Roll Vortices and Crown Fires.

    NASA Astrophysics Data System (ADS)

    Haines, Donald A.

    1982-06-01

    Observational evidence from nine crown fires suggests that horizontal roll vortices are a major mechanism in crown-fire spread. Post-burn aerial photography indicates that unburned tree-crown streets are common with crown fire. Investigation of the understory of these crown streets after two fires showed uncharred tree trunks along a center line. This evidence supports a hypothesis of vortex action causing strong downward motion of air along the streets. Additionally, photographs of two ongoing crown fires show apparent horizontal roll vortices. Discussion also includes laboratory and numerical studies in fluid dynamics that may apply to crown fires.

  2. Rolling friction on a granular medium

    NASA Astrophysics Data System (ADS)

    de Blasio, Fabio Vittorio; Saeter, May-Britt

    2009-02-01

    We present experimental results for the rolling of spheres on a granular bed. We use two sets of glass and steel spheres with varying diameters and a high-speed camera to follow the motion of the spheres. Despite the complex phenomena occurring during the rolling, the results show a friction coefficient nearly independent of the velocity (0.45-0.5 for glass and 0.6-0.65 for steel). It is found that for a given sphere density, the large spheres reach a longer distance, a result that may also help explain the rock sorting along natural stone accumulations at the foot of mountain slopes.

  3. Integrated aeroservoelastic synthesis for roll control

    NASA Technical Reports Server (NTRS)

    Nam, Chang-Ho; Weisshaar, Terrence A.

    1990-01-01

    The objective of this study is to illustrate an integrated, parallel design procedure for optimal structural, aerodynamic, and aileron synthesis of an aircraft wing. The effects of combining weight minimization with structural tailoring (ply orientation and thickness) of a lifting surface, together with the wing geometry (sweep angle and taper ratio), and the aileron geometry (spanwise location and chordwise size) upon the lateral control effectiveness are discussed. Several optimization studies for the minimization of aileron hinge moment and wing weight, subject to a specified constant aircraft roll rate at a design airspeed (roll effectiveness), are performed.

  4. Integrated aeroservoelastic synthesis for roll control

    NASA Technical Reports Server (NTRS)

    Nam, Chang-Ho; Weisshaar, Terrence A.

    1990-01-01

    The objective of this study is to illustrate an integrated, parallel design procedure for optimal structural, aerodynamic, and aileron synthesis of an aircraft wing. The effects of combining weight minimization with structural tailoring (ply orientation and thickness) of a lifting surface, together with the wing geometry (sweep angle and taper ratio), and the aileron geometry (spanwise location and chordwise size) upon the lateral control effectiveness are discussed. Several optimization studies for the minimization of aileron hinge moment and wing weight, subject to a specified constant aircraft roll rate at a design airspeed (roll effectiveness), are performed.

  5. Fluidic emergency roll control system. [for emergency aircraft control following failure of primary roll control system

    NASA Technical Reports Server (NTRS)

    Haefner, K. B.; Honda, T. S.

    1973-01-01

    A fluidic emergency roll control system for aircraft stabilization in the event of primary flight control failure was evaluated. The fluidic roll control units were designed to provide roll torque proportional to an electrical command as operated by two diametrically opposed thrust nozzles located in the wing tips. The control package consists of a solid propellant gas generator, two diametrically opposed vortex valve modulated thrust nozzles, and an electromagnetic torque motor. The procedures for the design, development, and performance testing of the system are described.

  6. Detail from roadbed showing sprocket teeth in rolling segment and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail from roadbed showing sprocket teeth in rolling segment and typical lateral bracing. View south - New York, New Haven & Hartford Railroad, Fort Point Channel Rolling Lift Bridge, Spanning Fort Point Channel, Boston, Suffolk County, MA

  7. LAD-1 Peridontitis: Rolling on...and on

    MedlinePlus

    ... I Periodontitis: Rolling On . . . and On LAD-I Periodontitis: Rolling On . . . and On Main Content August 2014 ... to an extremely aggressive, early-onset form of periodontitis that has puzzled patients, parents, and practitioners. The ...

  8. T Strip Properties Fabricated by Powder Rolling Method

    NASA Astrophysics Data System (ADS)

    Hong, Jae-Keun; Lee, Chae-Hun; Kim, Jeoung-Han; Yeom, Jong-Taek; Park, Nho-Kwang

    In the present study, the characteristics of the Ti powders fabricated by Hydride-Dehydride (HDH) were analyzed in terms of particle shape, size and size distribution. Ti powders were subjected to roll compaction and their microstructure and green densities were evaluated in terms of particle size, powder morphology, roll gap and rolling speed. Effects of blending elements having different powder sizes on densification properties were analyzed. The strip thickness was proportional to the roll gap up to 0.9 mm and the density of titanium strip was decreased with the increase in roll gap. As the roll speed increased, the strip density and thickness were decreased by using -200 mesh Ti powder. However, the effect of rolling speed for -400 mesh Ti powder was not greater than that of -200 mesh powder. The highest density by 93% was achieved by using -400 mesh Ti powder at 0.1 mm roll gap, however edge cracks and alligator cracks were occurred.

  9. 14 CFR 23.157 - Rate of roll.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... paragraph (a) of this section must be met when rolling the airplane in each direction with— (1) Flaps in the... must be met when rolling the airplane in each direction in the following conditions— (1) Flaps in the...

  10. Cross-directional interlocking of rolls in an air press of a papermaking machine

    DOEpatents

    Beck, David A.; Gorshe, Thomas

    2003-05-13

    An air press for pressing a paper web is composed of a plurality of rolls including at least a first roll and a second roll. The first roll and the second roll are positioned adjacent one another and form a first nip therebetween. Further, the first roll and the second roll each have a roll end, the roll end of the first roll adjoining the roll end of the second roll. A bevel plate is attached to the roll end of the first roll, the bevel plate having at least a first angled plate face. A seal ring is positioned adjacent the roll end of the second roll, the seal ring being juxtaposed to the bevel plate. The seal ring has at least a first angled ring face, and the first angled ring face mates with the first angled plate face.

  11. 40 CFR 467.20 - Applicability; description of the rolling with emulsions subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... rolling with emulsions subcategory. 467.20 Section 467.20 Protection of Environment ENVIRONMENTAL... Rolling With Emulsions Subcategory § 467.20 Applicability; description of the rolling with emulsions... the rolling with emulsions subcategory. ...

  12. 40 CFR 467.20 - Applicability; description of the rolling with emulsions subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... rolling with emulsions subcategory. 467.20 Section 467.20 Protection of Environment ENVIRONMENTAL... Rolling With Emulsions Subcategory § 467.20 Applicability; description of the rolling with emulsions... the rolling with emulsions subcategory. ...

  13. Hot Rolling of Gamma Titanium Aluminide Foil (PREPRINT)

    DTIC Science & Technology

    2010-04-01

    the processing sequence usually comprises hot rolling of thick (or thin) slab, hot sheet rolling, and final cold rolling with various intermediate...surface conditioning stages. Cold rolling is frequently done with multi-stand, four-high mills (for sheet) or Sendzimir reversing mills (for foil...both of which impart a high degree of thickness control. Alloys which exhibit high work-hardening rates or limited cold ductility (e.g., stainless

  14. Large Scale Evaluation fo Nickel Aluminide Rolls

    SciTech Connect

    2005-09-01

    This completed project was a joint effort between Oak Ridge National Laboratory and Bethlehem Steel (now Mittal Steel) to demonstrate the effectiveness of using nickel aluminide intermetallic alloy rolls as part of an updated, energy-efficient, commercial annealing furnace system.

  15. Youth, Rock 'n' Roll, and Electronic Media.

    ERIC Educational Resources Information Center

    Snow, Robert P.

    1987-01-01

    Rock 'n' Roll as a form of electronic communication is central to youth culture. There are procedural rules similar to grammatical structures which allow meaningful interpretation of this musical experience. As new forms of communication appear both youth culture and the meaning of music are altered to encompass the changes. (VM)

  16. Tool For Robotic Resistive Roll Welding

    NASA Technical Reports Server (NTRS)

    Gilber, Jeffrey L.

    1991-01-01

    Roll-welding attachment for robot simple, inexpensive device incorporating modified commercial resistance-welding gun. Modified welding gun easily attaches to end effector of robot. Robot applies welding force and moves electrode wheel along prescribed path. Resistance-welding current starts and stops automatically according to force exerted against workpiece. Used to apply brazing foil to workpiece.

  17. 14 CFR 23.349 - Rolling conditions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Rolling conditions. The wing and wing bracing must be designed for the following loading conditions: (a) Unsymmetrical wing loads appropriate to the category. Unless the following values result in unrealistic loads... semispan wing airload acts on one side of the plane of symmetry and 60 percent of this load acts on...

  18. 14 CFR 23.349 - Rolling conditions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Rolling conditions. The wing and wing bracing must be designed for the following loading conditions: (a) Unsymmetrical wing loads appropriate to the category. Unless the following values result in unrealistic loads... semispan wing airload acts on one side of the plane of symmetry and 60 percent of this load acts on...

  19. 14 CFR 23.349 - Rolling conditions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Rolling conditions. The wing and wing bracing must be designed for the following loading conditions: (a) Unsymmetrical wing loads appropriate to the category. Unless the following values result in unrealistic loads... semispan wing airload acts on one side of the plane of symmetry and 60 percent of this load acts on...

  20. 14 CFR 23.349 - Rolling conditions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Rolling conditions. The wing and wing bracing must be designed for the following loading conditions: (a) Unsymmetrical wing loads appropriate to the category. Unless the following values result in unrealistic loads... semispan wing airload acts on one side of the plane of symmetry and 60 percent of this load acts on...

  1. 14 CFR 23.349 - Rolling conditions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Rolling conditions. The wing and wing bracing must be designed for the following loading conditions: (a) Unsymmetrical wing loads appropriate to the category. Unless the following values result in unrealistic loads... semispan wing airload acts on one side of the plane of symmetry and 60 percent of this load acts on...

  2. Rolling Friction on a Wheeled Laboratory Cart

    ERIC Educational Resources Information Center

    Mungan, Carl E.

    2012-01-01

    A simple model is developed that predicts the coefficient of rolling friction for an undriven laboratory cart on a track that is approximately independent of the mass loaded onto the cart and of the angle of inclination of the track. The model includes both deformation of the wheels/track and frictional torque at the axles/bearings. The concept of…

  3. Engineers Test Roll-Off at JPL

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This image taken at JPL shows engineers testing the route by which the Mars Exploration Rover Opportunity will roll off its lander. Opportunity touched down at Meridiani Planum, Mars on Jan. 24, 9:05 p.m. PST, 2004, Earth-received time.

  4. Malaria. Can WHO roll back malaria?

    PubMed

    Balter, M

    2000-10-20

    In October 1998, World Health Organization Director-General Gro Harlem Brundtland announced Roll Back Malaria, a multiagency crusade that aims to cut malaria mortality in half over the next 10 years. Brundtland might just be the one to pull it off, say numerous public health experts, although some researchers question whether the goal is realistic.

  5. Roll diffusion bonding of titanium alloy panels

    NASA Technical Reports Server (NTRS)

    Bennett, J.; De Witt, T. E.; Jones, A. G.; Koeller, F.; Muser, C.

    1968-01-01

    Roll diffusion bonding technique is used for fabricating T-stiffened panel assemblies from titanium alloy. The single unit fabrication exhibits excellent strength characteristics under tensile and compressive loads. This program is applied to structures in which weight/strength ratio and integral construction are important considerations.

  6. Predicting Roll Angle Of A Spinning Spacecraft

    NASA Technical Reports Server (NTRS)

    Smith, M. A.; Dyer, J. W.

    1988-01-01

    Data for corrections of attitude derived on Earth from secondary measurements. Paper describes how attitude of Pioneer 10 spacecraft controlled since spacecraft lost signal from Sun-sensor signal. Roll calculations in paper yields insight into environment of solar system at great distances.

  7. Discrete particle modelling of granular roll waves

    NASA Astrophysics Data System (ADS)

    Tsang, Jonathan; Dalziel, Stuart; Vriend, Nathalie

    2016-11-01

    A granular current flowing down an inclined chute or plane can undergo an instability that leads to the formation of surface waves, known as roll waves. Examples of roll waves are found in avalanches and debris flows in landslides, and in many industrial processes. Although related to the Kapitza instability of viscous fluid films, granular roll waves are not yet as well understood. Laboratory experiments typically measure the surface height and velocity of a current as functions of position and time, but they do not give insight into the processes below the surface: in particular, the possible formation of a boundary layer at the free surface as well as the base. To overcome this, we are running discrete particle model (DPM) simulations. Simulations are validated against our laboratory experiments, but they also allow us to examine a much larger range of parameters, such as material properties, chute geometry and particle size dispersity, than that which is possible in the lab. We shall present results from simulations in which we vary particle size and dispersity, and examine the implications on roll wave formation and propagation. Future work will include simulations in which the shape of the chute is varied, both cross-sectionally and in the downstream direction. EPSRC studentship (Tsang) and Royal Society Research Fellowship (Vriend).

  8. Rolling Friction on a Wheeled Laboratory Cart

    ERIC Educational Resources Information Center

    Mungan, Carl E.

    2012-01-01

    A simple model is developed that predicts the coefficient of rolling friction for an undriven laboratory cart on a track that is approximately independent of the mass loaded onto the cart and of the angle of inclination of the track. The model includes both deformation of the wheels/track and frictional torque at the axles/bearings. The concept of…

  9. Antares Rolls Out to Wallops Launch Pad

    NASA Image and Video Library

    Orbital Sciences Corporation’s Antares rocket rolls out to the launch pad at NASA’s Wallops Flight Facility on the morning of Oct. 1, 2012. Over the next several months, Orbital plans a hot-fir...

  10. 9 CFR 381.159 - Poultry rolls.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 2 2012-01-01 2012-01-01 false Poultry rolls. 381.159 Section 381.159... ORGANIZATION AND TERMINOLOGY; MANDATORY MEAT AND POULTRY PRODUCTS INSPECTION AND VOLUNTARY INSPECTION AND CERTIFICATION POULTRY PRODUCTS INSPECTION REGULATIONS Definitions and Standards of Identity or Composition § 381...

  11. 9 CFR 381.159 - Poultry rolls.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 2 2011-01-01 2011-01-01 false Poultry rolls. 381.159 Section 381.159... ORGANIZATION AND TERMINOLOGY; MANDATORY MEAT AND POULTRY PRODUCTS INSPECTION AND VOLUNTARY INSPECTION AND CERTIFICATION POULTRY PRODUCTS INSPECTION REGULATIONS Definitions and Standards of Identity or Composition § 381...

  12. 9 CFR 381.159 - Poultry rolls.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 2 2014-01-01 2014-01-01 false Poultry rolls. 381.159 Section 381.159... ORGANIZATION AND TERMINOLOGY; MANDATORY MEAT AND POULTRY PRODUCTS INSPECTION AND VOLUNTARY INSPECTION AND CERTIFICATION POULTRY PRODUCTS INSPECTION REGULATIONS Definitions and Standards of Identity or Composition § 381...

  13. 9 CFR 381.159 - Poultry rolls.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Poultry rolls. 381.159 Section 381.159... ORGANIZATION AND TERMINOLOGY; MANDATORY MEAT AND POULTRY PRODUCTS INSPECTION AND VOLUNTARY INSPECTION AND CERTIFICATION POULTRY PRODUCTS INSPECTION REGULATIONS Definitions and Standards of Identity or Composition § 381...

  14. 9 CFR 381.159 - Poultry rolls.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 2 2013-01-01 2013-01-01 false Poultry rolls. 381.159 Section 381.159... ORGANIZATION AND TERMINOLOGY; MANDATORY MEAT AND POULTRY PRODUCTS INSPECTION AND VOLUNTARY INSPECTION AND CERTIFICATION POULTRY PRODUCTS INSPECTION REGULATIONS Definitions and Standards of Identity or Composition § 381...

  15. Low mass rolling element for bearings

    NASA Technical Reports Server (NTRS)

    Parker, R. J. (Inventor)

    1973-01-01

    Low mass rolling elements for bearings having a high fatigue strength and high resistance to flexure fatigue are reported. The elements have a lightweight core with a hollow center or is made of a low density material. The core is plated to provide a hard surface.

  16. Land rolling increases broadleaf weed emergence

    USDA-ARS?s Scientific Manuscript database

    In the northern Great Plains, annual forage and pulse crops typically are land rolled after planting to push rocks back into the soil to prevent damage to harvest equipment. Packer wheels commonly are used at planting to improve soil-seed contact for more uniform crop emergence and subsequent matur...

  17. Oscillations and Rolling for Duffing's Equation

    NASA Astrophysics Data System (ADS)

    Aref'eva, I. Ya.; Piskovskiy, E. V.; Volovich, I. V.

    2013-01-01

    The Duffing equation has been used to model nonlinear dynamics not only in mechanics and electronics but also in biology and in neurology for the brain process modeling. Van der Pol's method is often used in nonlinear dynamics to improve perturbation theory results when describing small oscillations. However, in some other problems of nonlinear dynamics particularly in case of Duffing-Higgs equation in field theory, for the Einsten-Friedmann equations in cosmology and for relaxation processes in neurology not only small oscillations regime is of interest but also the regime of slow rolling. In the present work a method for approximate solution to nonlinear dynamics equations in the rolling regime is developed. It is shown that in order to improve perturbation theory in the rolling regime it turns out to be effective to use an expansion in hyperbolic functions instead of trigonometric functions as it is done in van der Pol's method in case of small oscillations. In particular the Duffing equation in the rolling regime is investigated using solution expressed in terms of elliptic functions. Accuracy of obtained approximation is estimated. The Duffing equation with dissipation is also considered.

  18. Rapid Prototyping of Slot Die Devices for Roll to Roll Production of EL Fibers

    PubMed Central

    Bellingham, Alyssa; Bromhead, Nicholas; Fontecchio, Adam

    2017-01-01

    There is a growing interest in fibers supporting optoelectrical properties for textile and wearable display applications. Solution-processed electroluminescent (EL) material systems can be continuously deposited onto fiber or yarn substrates in a roll-to-roll process, making it easy to scale manufacturing. It is important to have precise control over layer deposition to achieve uniform and reliable light emission from these EL fibers. Slot-die coating offers this control and increases the rate of EL fiber production. Here, we report a highly adaptable, cost-effective 3D printing model for developing slot dies used in automatic coating systems. The resulting slot-die coating system enables rapid, reliable production of alternating current powder-based EL (ACPEL) fibers and can be adapted for many material systems. The benefits of this system over dip-coating for roll-to-roll production of EL fibers are demonstrated in this work. PMID:28772954

  19. Rapid Prototyping of Slot Die Devices for Roll to Roll Production of EL Fibers.

    PubMed

    Bellingham, Alyssa; Bromhead, Nicholas; Fontecchio, Adam

    2017-05-29

    There is a growing interest in fibers supporting optoelectrical properties for textile and wearable display applications. Solution-processed electroluminescent (EL) material systems can be continuously deposited onto fiber or yarn substrates in a roll-to-roll process, making it easy to scale manufacturing. It is important to have precise control over layer deposition to achieve uniform and reliable light emission from these EL fibers. Slot-die coating offers this control and increases the rate of EL fiber production. Here, we report a highly adaptable, cost-effective 3D printing model for developing slot dies used in automatic coating systems. The resulting slot-die coating system enables rapid, reliable production of alternating current powder-based EL (ACPEL) fibers and can be adapted for many material systems. The benefits of this system over dip-coating for roll-to-roll production of EL fibers are demonstrated in this work.

  20. Development of a Rolling Process Design Tool for Use in Improving Hot Roll Slab Recovery

    SciTech Connect

    Couch, R; Becker, R; Rhee, M; Li, M

    2004-09-24

    Lawrence Livermore National Laboratory participated in a U. S. Department of Energy/Office of Industrial Technology sponsored research project 'Development of a Rolling Process Design Tool for Use in Improving Hot Roll Slab Recovery', as a Cooperative Agreement TC-02028 with the Alcoa Technical Center (ATC). The objective of the joint project with Alcoa is to develop a numerical modeling capability to optimize the hot rolling process used to produce aluminum plate. Product lost in the rolling process and subsequent recycling, wastes resources consumed in the energy-intensive steps of remelting and reprocessing the ingot. The modeling capability developed by project partners will be used to produce plate more efficiently and with reduced product loss.

  1. 21 CFR 136.130 - Milk bread, rolls, and buns.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Milk bread, rolls, and buns. 136.130 Section 136....130 Milk bread, rolls, and buns. (a) Each of the foods milk bread, milk rolls, and milk buns conforms... permitted in the preparation of the dough is milk or, as an alternative, a combination of dairy products in...

  2. Effect of Asymmetrical Stand Stiffness on Hot Rolled Strip Shape

    NASA Astrophysics Data System (ADS)

    Gong, Dianyao; Xu, Jianzhong; Jiang, Zhengyi; Zhang, Xiaoming; Liu, Xianghua; Wang, Guodong

    The difference of elastic springs between the operating side (OS) and driving side (DS) of rolling mill has a significant influence on the strip shape not just the strip thickness. Based on the slit beam and roll deformation theories, the roll force distribution was analysed considering the asymmetric stiffness of the OS and DS of rolling mill, and the work roll and backup roll deformation equations were deduced respectively, and the thickness distribution in lateral direction of the hot rolled strip at exit was discussed. Using the roll elastic deformation analysis software which was developed previously based on the influence coefficient method, the roll flattening distribution, roll pressure distribution and the rolling force distribution caused by the asymmetric stand stiffness were calculated and analysed, and the exit strip profile of the rolling mill was also presented. The relationship between the mill stiffness difference and the strip wedge shape or single wave was obtained. Effect of the upstream asymmetric mill on strip crown and flatness of the downstream stands was discussed.

  3. 46 CFR 28.575 - Severe wind and roll.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Severe wind and roll. 28.575 Section 28.575 Shipping... INDUSTRY VESSELS Stability § 28.575 Severe wind and roll. (a) Each vessel must meet paragraphs (f) and (g) of this section when subjected to the gust wind heeling arm and the angle of roll to windward as...

  4. 46 CFR 28.575 - Severe wind and roll.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Severe wind and roll. 28.575 Section 28.575 Shipping... INDUSTRY VESSELS Stability § 28.575 Severe wind and roll. (a) Each vessel must meet paragraphs (f) and (g) of this section when subjected to the gust wind heeling arm and the angle of roll to windward as...

  5. 25 CFR 75.15 - Current membership roll.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 25 Indians 1 2011-04-01 2011-04-01 false Current membership roll. 75.15 Section 75.15 Indians... THE EASTERN BAND OF CHEROKEE INDIANS, NORTH CAROLINA § 75.15 Current membership roll. The membership roll of the Eastern Band of Cherokee Indians shall be kept current by striking therefrom the names of...

  6. 25 CFR 75.15 - Current membership roll.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Current membership roll. 75.15 Section 75.15 Indians... THE EASTERN BAND OF CHEROKEE INDIANS, NORTH CAROLINA § 75.15 Current membership roll. The membership roll of the Eastern Band of Cherokee Indians shall be kept current by striking therefrom the names of...

  7. 15. VIEW OF ROLLING OPERATION. INGOTS AND BAR STOCK WERE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. VIEW OF ROLLING OPERATION. INGOTS AND BAR STOCK WERE ROLLED TO A SPECIFIED THICKNESS IN PREPARATION FOR FURTHER PROCESSING. (11/82) - Rocky Flats Plant, Uranium Rolling & Forming Operations, Southeast section of plant, southeast quadrant of intersection of Central Avenue & Eighth Street, Golden, Jefferson County, CO

  8. 25 CFR 75.4 - Basic membership roll.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Basic membership roll. 75.4 Section 75.4 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR TRIBAL GOVERNMENT REVISION OF THE MEMBERSHIP ROLL OF THE EASTERN BAND OF CHEROKEE INDIANS, NORTH CAROLINA § 75.4 Basic membership roll. All persons...

  9. 25 CFR 75.4 - Basic membership roll.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 25 Indians 1 2012-04-01 2011-04-01 true Basic membership roll. 75.4 Section 75.4 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR TRIBAL GOVERNMENT REVISION OF THE MEMBERSHIP ROLL OF THE EASTERN BAND OF CHEROKEE INDIANS, NORTH CAROLINA § 75.4 Basic membership roll. All persons whose...

  10. 25 CFR 75.4 - Basic membership roll.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 25 Indians 1 2011-04-01 2011-04-01 false Basic membership roll. 75.4 Section 75.4 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR TRIBAL GOVERNMENT REVISION OF THE MEMBERSHIP ROLL OF THE EASTERN BAND OF CHEROKEE INDIANS, NORTH CAROLINA § 75.4 Basic membership roll. All persons...

  11. 25 CFR 75.4 - Basic membership roll.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 25 Indians 1 2013-04-01 2013-04-01 false Basic membership roll. 75.4 Section 75.4 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR TRIBAL GOVERNMENT REVISION OF THE MEMBERSHIP ROLL OF THE EASTERN BAND OF CHEROKEE INDIANS, NORTH CAROLINA § 75.4 Basic membership roll. All persons...

  12. Conceptualizing Rolling Motion Through an Extreme Case Reasoning Approach

    NASA Astrophysics Data System (ADS)

    Hasović, Elvedin; Mešić, Vanes; Erceg, Nataša

    2017-03-01

    In this paper we are going to show how learning about some counterintuitive aspects of rolling motion can be facilitated by combining the use of analogies with extreme case reasoning. Specifically, the intuitively comprehensible examples of "rolling" polygonal prisms are used as an analogical anchor that is supposed to help the students develop conceptual understanding about counterintuitive aspects of rolling motion.

  13. 14. VIEW OF METAL ROLLING OPERATION. THE METALS ARE BEING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. VIEW OF METAL ROLLING OPERATION. THE METALS ARE BEING PREPARED TO BE ROLLED INTO SHEETS OF SPECIFIC THICKNESS. COMPONENT PARTS WERE FABRICATED FROM THE METAL SHEETS. (11/82) - Rocky Flats Plant, Uranium Rolling & Forming Operations, Southeast section of plant, southeast quadrant of intersection of Central Avenue & Eighth Street, Golden, Jefferson County, CO

  14. 46 CFR 56.30-15 - Expanded or rolled joints.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Expanded or rolled joints. 56.30-15 Section 56.30-15... APPURTENANCES Selection and Limitations of Piping Joints § 56.30-15 Expanded or rolled joints. (a) Expanded or rolled joints may be used where experience or test has demonstrated that the joint is suitable for the...

  15. 46 CFR 56.30-15 - Expanded or rolled joints.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Expanded or rolled joints. 56.30-15 Section 56.30-15... APPURTENANCES Selection and Limitations of Piping Joints § 56.30-15 Expanded or rolled joints. (a) Expanded or rolled joints may be used where experience or test has demonstrated that the joint is suitable for the...

  16. 46 CFR 56.30-15 - Expanded or rolled joints.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Expanded or rolled joints. 56.30-15 Section 56.30-15... APPURTENANCES Selection and Limitations of Piping Joints § 56.30-15 Expanded or rolled joints. (a) Expanded or rolled joints may be used where experience or test has demonstrated that the joint is suitable for the...

  17. 25 CFR 75.15 - Current membership roll.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 25 Indians 1 2014-04-01 2014-04-01 false Current membership roll. 75.15 Section 75.15 Indians... THE EASTERN BAND OF CHEROKEE INDIANS, NORTH CAROLINA § 75.15 Current membership roll. The membership roll of the Eastern Band of Cherokee Indians shall be kept current by striking therefrom the names of...

  18. 25 CFR 75.15 - Current membership roll.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 25 Indians 1 2012-04-01 2011-04-01 true Current membership roll. 75.15 Section 75.15 Indians... THE EASTERN BAND OF CHEROKEE INDIANS, NORTH CAROLINA § 75.15 Current membership roll. The membership roll of the Eastern Band of Cherokee Indians shall be kept current by striking therefrom the names of...

  19. 25 CFR 75.15 - Current membership roll.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 25 Indians 1 2013-04-01 2013-04-01 false Current membership roll. 75.15 Section 75.15 Indians... THE EASTERN BAND OF CHEROKEE INDIANS, NORTH CAROLINA § 75.15 Current membership roll. The membership roll of the Eastern Band of Cherokee Indians shall be kept current by striking therefrom the names of...

  20. 21 CFR 136.130 - Milk bread, rolls, and buns.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ..., buttermilk product, cheese whey, cheese whey product, or milk protein is used. (b) The name of the food is... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Milk bread, rolls, and buns. 136.130 Section 136....130 Milk bread, rolls, and buns. (a) Each of the foods milk bread, milk rolls, and milk buns...

  1. 21 CFR 136.130 - Milk bread, rolls, and buns.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ..., buttermilk product, cheese whey, cheese whey product, or milk protein is used. (b) The name of the food is... 21 Food and Drugs 2 2013-04-01 2013-04-01 false Milk bread, rolls, and buns. 136.130 Section 136....130 Milk bread, rolls, and buns. (a) Each of the foods milk bread, milk rolls, and milk buns...

  2. 21 CFR 136.130 - Milk bread, rolls, and buns.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ..., buttermilk product, cheese whey, cheese whey product, or milk protein is used. (b) The name of the food is... 21 Food and Drugs 2 2012-04-01 2012-04-01 false Milk bread, rolls, and buns. 136.130 Section 136....130 Milk bread, rolls, and buns. (a) Each of the foods milk bread, milk rolls, and milk buns...

  3. 21 CFR 136.130 - Milk bread, rolls, and buns.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ..., buttermilk product, cheese whey, cheese whey product, or milk protein is used. (b) The name of the food is... 21 Food and Drugs 2 2014-04-01 2014-04-01 false Milk bread, rolls, and buns. 136.130 Section 136....130 Milk bread, rolls, and buns. (a) Each of the foods milk bread, milk rolls, and milk buns...

  4. Conical Euler analysis and active roll suppression for unsteady vortical flows about rolling delta wings

    NASA Technical Reports Server (NTRS)

    Lee-Rausch, Elizabeth M.; Batina, John T.

    1993-01-01

    A conical Euler code was developed to study unsteady vortex-dominated flows about rolling, highly swept delta wings undergoing either forced motions or free-to-roll motions that include active roll suppression. The flow solver of the code involves a multistage, Runge-Kutta time-stepping scheme that uses a cell-centered, finite-volume, spatial discretization of the Euler equations on an unstructured grid of triangles. The code allows for the additional analysis of the free to-roll case by simultaneously integrating in time the rigid-body equation of motion with the governing flow equations. Results are presented for a delta wing with a 75 deg swept, sharp leading edge at a free-stream Mach number of 1.2 and at 10 deg, 20 deg, and 30 deg angle of attack alpha. At the lower angles of attack (10 and 20 deg), forced-harmonic analyses indicate that the rolling-moment coefficients provide a positive damping, which is verified by free-to-roll calculations. In contrast, at the higher angle of attack (30 deg), a forced-harmonic analysis indicates that the rolling-moment coefficient provides negative damping at the small roll amplitudes. A free-to-roll calculation for this case produces an initially divergent response, but as the amplitude of motion grows with time, the response transitions to a wing-rock type of limit cycle oscillation, which is characteristic of highly swept delta wings. This limit cycle oscillation may be actively suppressed through the use of a rate-feedback control law and antisymmetrically deflected leading-edge flaps. Descriptions of the conical Euler flow solver and the free-to roll analysis are included in this report. Results are presented that demonstrate how the systematic analysis of the forced response of the delta wing can be used to predict the stable, neutrally stable, and unstable free response of the delta wing. These results also give insight into the flow physics associated with unsteady vortical flows about delta wings undergoing forced

  5. High-rate, roll-to-roll nanomanufacturing of flexible systems

    NASA Astrophysics Data System (ADS)

    Cooper, Khershed P.; Wachter, Ralph F.

    2012-10-01

    Since the National Nanotechnology Initiative was first announced in 2000, nanotechnology has developed an impressive catalog of nano-scale structures with building-blocks such as nanoparticles, nanotubes, nanorods, nanopillars, and quantum dots. Similarly, there are accompanying materials processes such as, atomic layer deposition, pulsed layer deposition, nanoprinting, nanoimprinting, transfer printing, nanolithography and nanopatterning. One of the challenges of nanomanufacturing is scaling up these processes reliably and affordably. Roll-to-roll manufacturing is a means for scaling up, for increasing throughput. It is high-speed production using a continuous, moving platform such as a web or a flexible substrate. The adoption of roll-to-roll to nanomanufacturing is novel. The goal is to build structures and devices with nano-scale features and specific functionality. The substrate could be a polymer, metal foil, silk, cloth or paper. The materials to build the structures and multi-level devices could be organic, inorganic or biological. Processing could be solution-based, e.g., ink-jet printing, or vacuum-based, e.g., chemical vapor deposition. Products could be electronics, optoelectronics, membranes, catalysts, microfluidics, lab-on-film, filters, etc. By this means, processing of large and conformal areas is achievable. High-throughput translates into low cost, which is the attraction of roll-to-roll nanomanufacturing. There are technical challenges requiring fundamental scientific advances in materials and process development and in manufacturing and system-integration where achieving nano-scale feature size, resolution and accuracy at high speeds can be major hurdles. We will give an overview of roll-to-roll nanomanufacturing with emphasis on the need to understand the material, process and system complexities, the need for instrumentation, measurement, and process control and describe the concept of cyber-enabled nanomanufacturing for reliable and

  6. Laser direct write system for fabricating seamless roll-to-roll lithography tools

    NASA Astrophysics Data System (ADS)

    Petrzelka, Joseph E.; Hardt, David E.

    2013-03-01

    Implementations of roll to roll contact lithography require new approaches towards manufacturing tooling, including stamps for roll to roll nanoimprint lithography (NIL) and soft lithography. Suitable roll based tools must have seamless micro- or nano-scale patterns and must be scalable to roll widths of one meter. The authors have developed a new centrifugal stamp casting process that can produce uniform cylindrical polymer stamps in a scalable manner. The pattern on the resulting polymer tool is replicated against a corresponding master pattern on the inner diameter of a centrifuge drum. This master pattern is created in photoresist using a UV laser direct write system. This paper discusses the design and implementation of a laser direct write system targeting the internal diameter of a rotating drum. The design uses flying optics to focus a laser beam along the axis of the centrifuge drum and to redirect the beam towards the drum surface. Experimental patterning results show uniform coatings of negative photoresist in the centrifuge drum that are effectively patterned with a 405 nm laser diode. Seamless patterns are shown to be replicated in a 50 mm diameter, 60 mm long cylindrical stamp made from polydimethylsiloxane (PDMS). Direct write results show gratings with line widths of 10 microns in negative photoresist. Using an FPGA, the laser can be accurately timed against the centrifuge encoder to create complex patterns.

  7. Roll-to-Roll Nanomanufacturing of Hybrid Nanostructures for Energy Storage Device Design.

    PubMed

    Oakes, Landon; Hanken, Trevor; Carter, Rachel; Yates, William; Pint, Cary L

    2015-07-08

    A key limitation to the practical incorporation of nanostructured materials into emerging applications is the challenge of achieving low-cost, high throughput, and highly replicable scalable nanomanufacturing techniques to produce functional materials. Here, we report a benchtop roll-to-roll technique that builds upon the use of binary solutions of nanomaterials and liquid electrophoretic assembly to rapidly construct hybrid materials for battery design applications. We demonstrate surfactant-free hybrid mixtures of carbon nanotubes, silicon nanoparticles, MoS2 nanosheets, carbon nanohorns, and graphene nanoplatelets. Roll-to-roll electrophoretic assembly from these solutions enables the controlled fabrication of homogeneous coatings of these nanostructures that maintain chemical and physical properties defined by the synergistic combination of nanomaterials utilized without adverse effects of surfactants or impurities that typically limit liquid nanomanufacturing routes. To demonstrate the utility of this nanomanufacturing approach, we employed roll-to-roll electrophoretic processing to fabricate both positive and negative electrodes for lithium ion batteries in less than 30 s. The optimized full-cell battery, containing active materials of prelithiated silicon nanoparticles and MoS2 nanosheets, was assessed to exhibit energy densities of 167 Wh/kgcell(-1) and power densities of 9.6 kW/kgcell(-1).

  8. Towards roll-to-roll fabrication of electronics, optics, and optoelectronics for smart and intelligent packaging

    NASA Astrophysics Data System (ADS)

    Kololuoma, Terho K.; Tuomikoski, Markus; Makela, Tapio; Heilmann, Jali; Haring, Tomi; Kallioinen, Jani; Hagberg, Juha; Kettunen, Ilkka; Kopola, Harri K.

    2004-06-01

    Embedding of optoelectrical, optical, and electrical functionalities into low-cost products like packages and printed matter can be used to increase their information content. These functionalities make also possible the realization of new type of entertaining, impressive or guiding effects on the product packages and printed matter. For these purposes, components like displays, photodetectors, light sources, solar cells, battery elements, diffractive optical elements, lightguides, electrical conductors, resistors, transistors, switching elements etc. and their integration to functional modules are required. Additionally, the price of the components for low-end products has to be in cent scale or preferably below that. Therefore, new, cost-effective, and volume scale capable manufacturing techniques are required. Recent developments of liquid-phase processable electrical and optical polymeric, inorganic, and hybrid materials - inks - have made it possible to fabricate functional electrical, optical and optoelectrical components by conventional roll-to-roll techniques such as gravure printing, embossing, digital printing, offset, and screen printing on flexible paper and plastic like substrates. In this paper, we show our current achievements in the field of roll-to-roll fabricated, optics, electronics and optoelectronics. With few examples, we also demonstrate the printing and hot-embossing capabilities of table scale printing machines and VTT Electronic's 'PICO' roll-to-roll pilot production facility.

  9. Roll-to-roll embossing of optical linear Fresnel lens polymer film for solar concentration.

    PubMed

    Zhang, XinQuan; Liu, Kui; Shan, Xuechuan; Liu, Yuchan

    2014-12-15

    Roll-to-roll manufacturing has been proven to be a high-throughput and low-cost technology for continuous fabrication of functional optical polymer films. In this paper, we have firstly studied a complete manufacturing cycle of linear Fresnel lens polymer film for solar concentration in the aspects of ultra-precision diamond machining of metal roller mold, roll-to-roll embossing, and measurement on film profile and functionality. A metal roller mold patterned with linear Fresnel lenses is obtained using single point diamond turning technique. The roller mold is installed onto a self-developed roll-to-roll UV embossing system to realize continuous manufacturing of linear Fresnel lens film. Profile measurement of the machined roller mold and the embossed polymer film, which is conducted using a stylus profilometer, shows good agreement between measured facet angles with designed ones. Functionality test is conducted on a solar simulation system with a reference solar cell, and results show that strong light concentration is realized.

  10. Plasmonic color metasurfaces fabricated by a high speed roll-to-roll method.

    PubMed

    Murthy, Swathi; Pranov, Henrik; Feidenhans'l, Nikolaj A; Madsen, Jonas S; Hansen, Poul Erik; Pedersen, Henrik C; Taboryski, Rafael

    2017-09-15

    Lab-scale plasmonic color printing using nano-structured and subsequently metallized surfaces have been demonstrated to provide vivid colors. However, upscaling these structures for large area manufacturing is extremely challenging due to the requirement of nanometer precision of metal thickness. In this study, we have investigated a plasmonic color meta-surface design that can be easily upscaled. We have demonstrated the feasibility of fabrication of these plasmonic color surfaces by a high-speed roll-to-roll method, comprising roll-to-roll extrusion coating at 10 m min(-1) creating a polymer foil having 100 nm deep pits of varying sub-wavelength diameter and pitch length. Subsequently this polymer foil was metallized and coated also by high-speed roll-to-roll methods. The perceived colors have high tolerance towards the thickness of the metal layer, when this thickness exceeds the depths of the pits, which enables the robust high-speed fabrication. This finding can pave the way for plasmonic meta-surfaces to be implemented in a broader range of applications such as printing, memory, surface enhanced Raman scattering (SERS), biosensors, flexible displays, photovoltaics, security, and product branding.

  11. Roll rotation cues influence roll tilt perception assayed using a somatosensory technique.

    PubMed

    Park, Sukyung; Gianna-Poulin, Claire; Black, F Owen; Wood, Scott; Merfeld, Daniel M

    2006-07-01

    We investigated how the nervous system processes ambiguous cues from the otolith organs by measuring roll tilt perception elicited by two motion paradigms. In one paradigm (tilt), eight subjects were sinusoidally tilted in roll with the axis of rotation near ear level. Stimulus frequencies ranged from 0.005 to 0.7 Hz, and the peak amplitude of tilt was 20 degrees . During this paradigm, subjects experienced a sinusoidal variation of interaural gravitational force with a peak of 0.34 g. The second motion paradigm (translation) was designed to yield the same sinusoidal variation in interaural force but did not include a roll canal cue. This was achieved by sinusoidally translating the subjects along their interaural axis. For the 0.7-Hz translation trial, the subjects were simply translated from side to side. A centrifuge was used for the 0.005- to 0.5-Hz translation trials; the subjects were rotated in yaw at 250 degrees /s for 5 min before initiating sinusoidal translations yielding an interaural otolith stimulus composed of both centrifugal and radial acceleration. Using a somatosensory task to measure roll tilt perception, we found substantial differences in tilt perception during the two motion paradigms. Because the primary difference between the two motion paradigms was the presence of roll canal cues during roll tilt trials, these perceptual differences suggest that canal cues influence tilt perception. Specifically, rotational cues provided by the semicircular canals help the CNS resolve ambiguous otolith cues during head tilt, yielding more accurate tilt perception.

  12. High resolution patterning for flexible electronics via roll-to-roll nanoimprint lithography

    NASA Astrophysics Data System (ADS)

    Sabik, Sami; de Riet, Joris; Yakimets, Iryna; Smits, Edsger

    2014-03-01

    Flexible electronics is a growing field and is currently maturing in applications such as displays, smart packaging, organic light-emitting diodes and organic photovoltaic cells. In order to process on flexible substrates at high throughput and large areas, novel patterning techniques will be essential. Conventional optical lithography is limited in throughput as well as resolution, and requires several alignment steps to generate multi-layered patterns, required for applications such as thin-film transistors. It therefore remains a complex and expensive process. Nanoimprint lithography is an emerging alternative to optical lithography, demonstrating patterning capabilities over a wide range of resolutions, from several microns down to a few nanometres. For display applications, nanoimprint lithography can be used to pattern various layers. Micron sized thin-film transistors for backplane can be fabricated where a self-aligned geometry is used to decrease the number of alignment steps, and increase the overlay accuracy. In addition, nano-structures can be used for optical applications such as anti-reflective surfaces and nano patterned transparent electrodes. Imprint lithography is a fully roll-to-roll compatible process and enables large area and high throughput fabrication for flexible electronics. In this paper we discuss the possibilities and the challenges of large area patterning by roll-to-roll nanoimprint lithography, reviewing micron and nano sized structures realized on our roll-to-roll equipment. Nano patterned transparent electrodes, moth-eye antireflective coatings, and multilevel structures will be covered.

  13. Static measurements of slender delta wing rolling moment hysteresis

    NASA Technical Reports Server (NTRS)

    Katz, Joseph; Levin, Daniel

    1991-01-01

    Slender delta wing planforms are susceptible to self-induced roll oscillations due to aerodynamic hysteresis during the limit cycle roll oscillation. Test results are presented which clearly establish that the static rolling moment hysteresis has a damping character; hysteresis tends to be greater when, due to either wing roll or side slip, the vortex burst moves back and forth over the wing trailing edge. These data are an indirect indication of the damping role of the vortex burst during limit cycle roll oscillations.

  14. Isothermal Roll Forging of T55 Compressor Blades

    DTIC Science & Technology

    1977-12-01

    VI LIST OF FIGURES Figure Page 1 Some Stages in Cold Roll-Forging of Compressor Blade 4 in 17 - 4PH Steel 2 Single Pass Isothermal Rolling of 0.375...operations in blade manufacture by this method are shown in Figure 1 for a cold-rolled compressor blade in 17 - 4PH steel used in a Solar turbine. In the...34’■ ’y^ at ̂ ^PP Figure 1, Some Stages in Cold Steel (#76-2679) Roll-Forging of Compressor Blade in 17 - 4PH 2.2 THE ISOTHERMAL ROLL

  15. Toward large-area roll-to-roll printed nanophotonic sensors

    NASA Astrophysics Data System (ADS)

    Karioja, Pentti; Hiltunen, Jussi; Aikio, Sanna M.; Alajoki, Teemu; Tuominen, Jarkko; Hiltunen, Marianne; Siitonen, Samuli; Kontturi, Ville; Böhlen, Karl; Hauser, Rene; Charlton, Martin; Boersma, Arjen; Lieberzeit, Peter; Felder, Thorsten; Eustace, David; Haskal, Eliav

    2014-05-01

    Polymers have become an important material group in fabricating discrete photonic components and integrated optical devices. This is due to their good properties: high optical transmittance, versatile processability at relative low temperatures and potential for low-cost production. Recently, nanoimprinting or nanoimprint lithography (NIL) has obtained a plenty of research interest. In NIL, a mould is pressed against a substrate coated with a moldable material. After deformation of the material, the mold is separated and a replica of the mold is formed. Compared with conventional lithographic methods, imprinting is simple to carry out, requires less-complicated equipment and can provide high-resolution with high throughput. Nanoimprint lithography has shown potential to become a method for low-cost and high-throughput fabrication of nanostructures. We show the development process of nano-structured, large-area multi-parameter sensors using Photonic Crystal (PC) and Surface Enhanced Raman Scattering (SERS) methodologies for environmental and pharmaceutical applications. We address these challenges by developing roll-to-roll (R2R) UV-nanoimprint fabrication methods. Our development steps are the following: Firstly, the proof of concept structures are fabricated by the use of wafer-level processes in Si-based materials. Secondly, the master molds of successful designs are fabricated, and they are used to transfer the nanophotonic structures into polymer materials using sheet-level UV-nanoimprinting. Thirdly, the sheet-level nanoimprinting processes are transferred to roll-to-roll fabrication. In order to enhance roll-to-roll manufacturing capabilities, silicone-based polymer material development was carried out. In the different development phases, Photonic Crystal and SERS sensor structures with increasing complexities were fabricated using polymer materials in order to enhance sheet-level and roll-to-roll manufacturing processes. In addition, chemical and molecular

  16. Finite-element model to predict roll-separation force and defects during rolling of U-10Mo alloys

    NASA Astrophysics Data System (ADS)

    Soulami, Ayoub; Burkes, Douglas E.; Joshi, Vineet V.; Lavender, Curt A.; Paxton, Dean

    2017-10-01

    A major goal of the Convert Program of the U.S. Department of Energy's National Nuclear Security Administration (DOE/NNSA) is to enable high-performance research reactors to operate with low-enriched uranium rather than the high-enriched uranium currently used. To this end, uranium alloyed with 10 wt% molybdenum (U-10Mo) represents an ideal candidate because of its stable gamma phase, low neutron caption cross section, acceptable swelling response, and predictable irradiation behavior. However, because of the complexities of the fuel design and the need for rolled monolithic U-10Mo foils, new developments in processing and fabrication are necessary. This study used a finite-element code, LS-DYNA, as a predictive tool to optimize the rolling process. Simulations of the hot rolling of U-10Mo coupons encapsulated in low-carbon steel were conducted following two different schedules. Model predictions of the roll-separation force and roll pack thicknesses at different stages of the rolling process were compared with experimental measurements. The study reported here discussed various attributes of the rolled coupons revealed by the model (e.g., waviness and thickness non-uniformity like dog-boning). To investigate the influence of the cladding material on these rolling defects, other cases were simulated: hot rolling with alternative can materials, namely, 304 stainless steel and Zircaloy-2, and bare-rolling. Simulation results demonstrated that reducing the mismatch in strength between the coupon and can material improves the quality of the rolled sheet. Bare-rolling simulation results showed a defect-free rolled coupon. The finite-element model developed and presented in this study can be used to conduct parametric studies of several process parameters (e.g., rolling speed, roll diameter, can material, and reduction).

  17. Rolled fingerprint construction using MRF-based nonrigid image registration.

    PubMed

    Kwon, Dongjin; Yun, Il Dong; Lee, Sang Uk

    2010-12-01

    This paper proposes a new rolled fingerprint construction approach incorporating a state-of-the-art nonrigid image registration method based upon a Markov random field (MRF) energy model. The proposed method finds dense correspondences between images from a rolled fingerprint sequence and warps the entire fingerprint area to synthesize a rolled fingerprint. This method can generate conceptually more accurate rolled fingerprints by preserving the geometric properties of the finger surface as opposed to ink-based rolled impressions and other existing rolled fingerprint construction methods. To verify the accuracy of the proposed method, various comparative experiments were designed to reveal differences among the rolled construction methods. The results show that the proposed method is significantly superior in various aspects compared to previous approaches.

  18. Roll casting of Al-SiCp strip

    NASA Astrophysics Data System (ADS)

    Haga, Toshio

    2016-10-01

    A steel roll with a devised cooling water channel for a vertical type high speed twin roll caster was devised, and was used for strip casting of Al-30vol%SiCp. In the proposed roll caster, the thickness of the wall from the water cooling channel to the roll surface was 4 mm to obtain good cooling conditions. The water cooling channel was machined in the roll core in the lateral direction to prevent convex deformation of the roll. The concave thickness distribution of the strip was improved by the proposed roll. The Al-30vol%SiCp strip had a uniform thickness distribution and could be cast at a speed of 60 m/min. The SiC particles were found to be uniformly distributed, with no obvious agglomeration. The eutectic Si particles were globular and smaller than 3 µm due to the rapid solidification.

  19. Large slow roll parameters in single field inflation

    SciTech Connect

    Cook, Jessica L.; Krauss, Lawrence M. E-mail: krauss@asu.edu

    2016-03-01

    We initially consider two simple situations where inflationary slow roll parameters are large and modes no longer freeze out shortly after exiting the horizon, treating both cases analytically. By modes, we refer to the comoving curvature perturbation R. We then consider applications to transient phases where the slow roll parameters can become large, especially in the context of the common 'fast-roll' inflation frequently used as a mechanism to explain the anomalously low scalar power at low l in the CMB. These transient cases we treat numerically. We find when ε, the first slow roll parameter, and only ε is large, modes decay outside the horizon, and when δ, the second slow roll parameter, is large, modes grow outside the horizon. When multiple slow roll parameters are large the behavior in general is more complicated, but we nevertheless show in the 'fast-roll' inflation case, modes grow outside the horizon.

  20. Innovations in Rolling Process of Helical Gears

    NASA Astrophysics Data System (ADS)

    Neugebauer, R.; Hellfritzsch, U.; Lahl, M.; Schiller, S.; Milbrandt, M.

    2011-01-01

    By recent studies at Fraunhofer IWU Chemnitz basic information about the material flow in the rolling process of high gearings have been obtained, which provide the necessary data basis for a systematic adjustment of variable geometry and technology parameters. To use these data as efficiently as possible for subsequent studies a hybrid approach to this problem was chosen. In that case the combination of visioplasticity and FEM simulation. Such a method already used in many fields of manufacturing technologies has advantages in the field of visioplastic evaluated grid determined deformations and strain parameters according to available plastic theories of Huber, Hencky, Levy or v. Mises, which can be directly applied as boundary conditions for subsequent FEM analysis of the marginal zone of the work piece (gear contour). Results of the first qualitative investigations of this material flow analysis represent the basis for future optimized simulation modeling of gear rolling processes.

  1. Rolling-circle transposons in eukaryotes.

    PubMed

    Kapitonov, V V; Jurka, J

    2001-07-17

    All eukaryotic DNA transposons reported so far belong to a single category of elements transposed by the so-called "cut-and-paste" mechanism. Here, we report a previously unknown category of eukaryotic DNA transposons, Helitron, which transpose by rolling-circle replication. Autonomous Helitrons encode a 5'-to-3' DNA helicase and nuclease/ligase similar to those encoded by known rolling-circle replicons. Helitron-like transposons have conservative 5'-TC and CTRR-3' termini and do not have terminal inverted repeats. They contain 16- to 20-bp hairpins separated by 10--12 nucleotides from the 3'-end and transpose precisely between the 5'-A and T-3', with no modifications of the AT target sites. Together with their multiple diverged nonautonomous descendants, Helitrons constitute approximately 2% of both the Arabidopsis thaliana and Caenorhabditis elegans genomes and also colonize the Oriza sativa genome. Sequence conservation suggests that Helitrons continue to be transposed.

  2. Dynamics and Stability of Rolling Viscoelastic Tires

    SciTech Connect

    Potter, Trevor

    2013-04-30

    Current steady state rolling tire calculations often do not include treads because treads destroy the rotational symmetry of the tire. We describe two methodologies to compute time periodic solutions of a two-dimensional viscoelastic tire with treads: solving a minimization problem and solving a system of equations. We also expand on work by Oden and Lin on free spinning rolling elastic tires in which they disovered a hierachy of N-peak steady state standing wave solutions. In addition to discovering a two-dimensional hierarchy of standing wave solutions that includes their N-peak hiearchy, we consider the eects of viscoelasticity on the standing wave solutions. Finally, a commonplace model of viscoelasticity used in our numerical experiments led to non-physical elastic energy growth for large tire speeds. We show that a viscoelastic model of Govindjee and Reese remedies the problem.

  3. Energy dissipation in a rolling aircraft tire

    NASA Technical Reports Server (NTRS)

    Tielking, John T.

    1988-01-01

    The project is extending an existing finite element tire model to calculate the energy dissipation in a free-rolling aircraft tire and temperature buildup in the tire carcass. The model will provide a means of calculating the influence of tire design on the distribution of tire temperature. Current focus is on energy loss measurements of aircraft tire material. The feasibility of taking test specimens directly from the tire carcass for measurements of viscoelastic properties was demonstrated. The interaction of temperature and frequency effects on material loss properties was studied. The tire model was extended to calculate the cyclic energy change in a tire during rolling under load. Input data representing the 40 by 14 aircraft tire whose material loss properties were measured are being used.

  4. Time-optimal control of rolling bodies

    NASA Astrophysics Data System (ADS)

    Perantoni, Giacomo; Limebeer, David J. N.

    2013-11-01

    The brachistochrone problem is usually solved in classical mechanics courses using the calculus of variations, although it is quintessentially an optimal control problem. In this paper, we address the classical brachistochrone problem and two vehicle-relevant generalisations from an optimal control perspective. We use optimal control arguments to derive closed-form solutions for both the optimal trajectory and the minimum achievable transit time for these generalisations. We then study optimal control problems involving a steerable disc rolling between prescribed points on the interior surface of a hemisphere. The effects of boundary and control constraints are examined. For three-dimensional problems of this type, which involve rolling bodies and nonholonomic constraints, numerical solutions are used.

  5. Rolling Bearing Life Prediction, Theory, and Application

    NASA Technical Reports Server (NTRS)

    Zaretsky, Erwin V.

    2013-01-01

    A tutorial is presented outlining the evolution, theory, and application of rolling-element bearing life prediction from that of A. Palmgren, 1924; W. Weibull, 1939; G. Lundberg and A. Palmgren, 1947 and 1952; E. Ioannides and T. Harris, 1985; and E. Zaretsky, 1987. Comparisons are made between these life models. The Ioannides-Harris model without a fatigue limit is identical to the Lundberg-Palmgren model. The Weibull model is similar to that of Zaretsky if the exponents are chosen to be identical. Both the load-life and Hertz stress-life relations of Weibull, Lundberg and Palmgren, and Ioannides and Harris reflect a strong dependence on the Weibull slope. The Zaretsky model decouples the dependence of the critical shear stress-life relation from the Weibull slope. This results in a nominal variation of the Hertz stress-life exponent. For 9th- and 8th-power Hertz stress-life exponents for ball and roller bearings, respectively, the Lundberg- Palmgren model best predicts life. However, for 12th- and 10th-power relations reflected by modern bearing steels, the Zaretsky model based on the Weibull equation is superior. Under the range of stresses examined, the use of a fatigue limit would suggest that (for most operating conditions under which a rolling-element bearing will operate) the bearing will not fail from classical rolling-element fatigue. Realistically, this is not the case. The use of a fatigue limit will significantly overpredict life over a range of normal operating Hertz stresses. Since the predicted lives of rolling-element bearings are high, the problem can become one of undersizing a bearing for a particular application.

  6. [WHO's malaria program Roll Back Malaria].

    PubMed

    Myrvang, B; Godal, T

    2000-05-30

    Malaria is one of the main health problems in the world with 300-500 millions cases yearly and about one million deaths, mainly children in Sub-Saharan Africa. In the 1990s the malaria problem in Africa has increased, although we have methods to control the disease. In 1998 the new secretary general of WHO, Gro Harlem Brundtland, established the Roll Back Malaria programme, with the aim to markedly reduce malaria morbidity and mortality. Governments in malaria-affected countries have to take the lead in Roll Back Malaria. Their health systems must be improved and malaria control integrated into the general health system, and the methods available for prevention and treatment have to be intensified and improved. At the same time, Roll Back Malaria will encourage and promote malaria research which hopefully will result in new medicines, vaccines and other tools which will improve the chances of reducing malaria-related deaths and suffering. Roll Back Malaria is a cabinet project within the WHO, and the organisation has a key role as manager, co-ordinator and monitor of the project. However, it depends for resources on international support and commitment from other UN bodies, the World Bank, governments in the western world, pharmaceutical industry, philanthropists and other sources. At present an optimistic view prevails, and the preliminary aim, to halve the malaria mortality by the year 2010, seems realistic even with the control methods of today. However, if research efforts result in new and better tools to combat the disease, the task will definitely be easier.

  7. Extreme chirality in Swiss roll metamaterials.

    PubMed

    Demetriadou, A; Pendry, J B

    2009-09-16

    The chiral Swiss roll metamaterial is a resonant, magnetic medium that exhibits a negative refractive band for one-wave polarization. Its unique structure facilitates huge chiral effects: a plane polarized wave propagating through this system can change its polarization by 90° in less than a wavelength. Such chirality is at least 100 times greater than previous structures have achieved. In this paper, we discuss this extreme chiral behaviour with both numerical and analytical results.

  8. Modeling recrystallization kinetics during strip rolling

    SciTech Connect

    Sun, W.P.; Hawbolt, E.B.; Meadowcroft, T.R.

    1995-01-01

    In order to simulate the microstructural evolution during hot strip rolling, double-hit compression tests have been carried out on plain carbon steels. Using the softening data obtained by these tests, mathematical models were developed to predict the overall kinetics of static recrystallization under roughing and finishing mill conditions. These models include the effects of deformation temperature, applied strain, strain rate and initial austenite grain size. Predictions based on these models are in reasonable agreement with the present experimental results.

  9. Rolling circle amplification of metazoan mitochondrialgenomes

    SciTech Connect

    Simison, W. Brian; Lindberg, D.R.; Boore, J.L.

    2005-07-31

    Here we report the successful use of rolling circle amplification (RCA) for the amplification of complete metazoan mt genomes to make a product that is amenable to high-throughput genome sequencing techniques. The benefits of RCA over PCR are many and with further development and refinement of RCA, the sequencing of organellar genomics will require far less time and effort than current long PCR approaches.

  10. Airbag roll marks & displaced rocks and soil

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Looking southwest from the lander, soil disturbances indicating the spacecraft rolled through the landing site are visible. Arriving from the east, the lander, still encased in its protective airbags, rolled up a slight rise and then rolled back down to its final position. The inset at left shows displaced rocks near the rock 'Flat Top.' Dark patches of disturbed soil indicate where the rocks had originally rested Both insets show rocks that were pushed into the soil from the weight of the lander, visible from the areas of raised rims of dark, disturbed soil around several rocks. The south summit of Twin Peaks is in the background, while a lander petal, deflated airbag, and rear rover deployment ramp are in the foreground.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator. JPL is an operating division of the California Institute of Technology (Caltech).

  11. Grease selection for sealed roll neck bearings

    SciTech Connect

    Schrama, R.C.; Vickerman, R.T.; Bender, C.P.

    1995-09-01

    During the 1990`s, a revolution took place in the steel industry with respect to lubricant usage, maintenance costs and the environment. The 4-row taper roller bearings that are used in rolling mills on the work roll necks have been historically lubricated with grease from a centralized grease system, pre-packed with grease at each roll change, or fed with oil from mist or air-oil system. Steel mills are being forced to reduce lubricant consumption to reduce maintenance costs, decrease the costs for the disposal of sludges created from the spent greases and reduce the amount of sludge that was created. The sealed bearing became an avenue for accomplishing these objectives. The open 4-row taper roller bearing was redesigned to accommodate seals. The bearing was pre-packed with grease and put into service without any grease replenishment for up to 22 months operation time. The selection of the grease to provide optimum operating characteristics for the lubricant and the bearing is one of the critical elements to the success of the bearing design. This paper reviews the critical properties that are necessary in the grease for the lubricant to provide the correct tribological functions in the bearing. This includes wear of the rollers and raceways, seal lip and surface wear, heat generation during rotation and under load, corrosion resistance, resistance to shearing during the working life of the grease and resistance to water contamination.

  12. Airbag roll marks & displaced rocks and soil

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Looking southwest from the lander, soil disturbances indicating the spacecraft rolled through the landing site are visible. Arriving from the east, the lander, still encased in its protective airbags, rolled up a slight rise and then rolled back down to its final position. The inset at left shows displaced rocks near the rock 'Flat Top.' Dark patches of disturbed soil indicate where the rocks had originally rested Both insets show rocks that were pushed into the soil from the weight of the lander, visible from the areas of raised rims of dark, disturbed soil around several rocks. The south summit of Twin Peaks is in the background, while a lander petal, deflated airbag, and rear rover deployment ramp are in the foreground.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator. JPL is an operating division of the California Institute of Technology (Caltech).

  13. Rolling element fatigue testing of gear materials

    NASA Technical Reports Server (NTRS)

    Nahm, A. H.

    1978-01-01

    Rolling element fatigue lives of nine alloys were evaluated in Rolling Contact (RC) rigs. Test conditions included a Hertzian stress at 4,826 MPa (700 ksi), a rolling speed of 6.23 m/sec (245 in/sec.). Tests were run with a Type I oil (MIL-L-7808G) at room temperature. B-10 lives (10% failure rate) of alloys were compared versus reference alloys, VIM-VAR AISI M-50 and VAR AISI 9310. Six case carburizing alloys (AISI 9310, CBS600, CBS1000M, EX00014, Vasco X-2 and EX00053) and three through-hardening alloys (AISI M-50, VascoMax 350 and Vasco Matrix 2 evaluated, showed RCF performance inferior or equivalent to that of AISI 9310 and AISI M-50. It was also found that the effects of vacuum melting processes, different tempering temperatures, freezing cycle during heat treating, shot peening, gold plating and chrome plating employed in the present investigation did not significantly affect RCF life.

  14. Roll-to-roll light directed electrophoretic deposition system and method

    DOEpatents

    Pascall, Andrew J.; Kuntz, Joshua

    2017-06-06

    A roll-to-roll light directed electrophoretic deposition system and method advances a roll of a flexible electrode web substrate along a roll-to-roll process path, where a material source is positioned to provide on the flexible electrode web substrate a thin film colloidal dispersion of electrically charged colloidal material dispersed in a fluid. A counter electrode is also positioned to come in contact with the thin film colloidal dispersion opposite the flexible electrode web substrate, where one of the counter electrode and the flexible electrode web substrate is a photoconductive electrode. A voltage source is connected to produce an electric potential between the counter electrode and the flexible electrode web substrate to induce electrophoretic deposition on the flexible electrode web substrate when the photoconductive electrode is rendered conductive, and a patterned light source is arranged to illuminate the photoconductive electrode with a light pattern and render conductive illuminated areas of the photoconductive electrode so that a patterned deposit of the electrically charged colloidal material is formed on the flexible electrode web substrate.

  15. Texture Evolution of a Non-oriented Electrical Steel Cold Rolled at Directions Different from the Hot Rolling Direction

    NASA Astrophysics Data System (ADS)

    He, Youliang; Hilinski, Erik; Li, Jian

    2015-11-01

    With the objective of optimizing the crystallographic texture of non-oriented electrical steel, i.e., reducing the <111>//ND and <110>//RD fibers and promoting the <001>//ND texture, a new rolling scheme was proposed and tested, in which the cold rolling direction (CRD) was intentionally inclined at an angle to the hot rolling direction (HRD) in order to change the orientation flow paths during cold rolling and alter the final texture of the annealed sheets. A non-oriented electrical steel containing 0.88 wt pct Si was hot rolled using conventional routes and annealed, and a number of rectangular plates were cut from the hot band with the longitudinal directions inclined at various angles, i.e., 0, 15, 30, 45, 60, 75, and 90 deg, to the HRD. These plates were then cold rolled along the longitudinal directions with a thickness reduction of 72 pct. The cold-rolled samples were annealed, temper rolled and annealed again (final annealing). The texture evolution during hot rolling, hot band annealing, cold rolling, and final annealing was characterized by electron backscatter diffraction and X-ray diffraction techniques. By changing the CRD with respect to the HRD, the initial texture and the orientation flow paths were altered, which resulted in apparent differences in the textures as compared to conventional cold rolling. After temper rolling and final annealing, the recrystallization textures consisted of mainly a <001>//ND fiber and there was almost no <111>//ND fiber. The sample cold rolled at an angle of 60 deg to the HRD had the strongest texture (intensity almost 2× of conventional rolling) with a maximum at the cube {001}<100> orientation—a magnetically favorable orientation for non-oriented electrical steels.

  16. Kinematics and aerodynamics of the velocity vector roll

    NASA Technical Reports Server (NTRS)

    Durham, Wayne C.; Lutze, Frederick H.; Mason, W.

    1993-01-01

    The velocity vector roll is an angular rotation of an aircraft about its instantaneous velocity vector, constrained to be performed at constant angle-of-attack (AOA), no sideslip, and constant velocity. Consideration of the aerodynamic force equations leads to requirements for body-axis yawing and pitching rotations that satisfy these constraints. Here, the body axis rotations, and the constraints, are used in the moment equations to determine the aerodynamic moments required to perform the velocity vector roll. For representative tactical aircraft, the conditions for maximum pitching moment are a function of orientation, occurring at about 90 deg of bank in a level trajectory. Maximum required pitching moment occurs at peak roll rate, and is achieved at AOA above 45 deg. The conditions for maximum rolling moment depend on the value of the roll mode time constant. For a small time constant (fast response) the maximum rolling moment occurs at maximum roll acceleration and zero AOA, largely independent of aircraft orientation; for a large time constant, maximum required rolling moment occurs at maximum roll rate, at maximum AOA, and at 180 deg of bank in level flight. Maximum yawing moment occurs at maximum roll acceleration, maximum AOA, and is largely independent of airplane orientation.

  17. Multi-stage FE simulation of hot ring rolling

    NASA Astrophysics Data System (ADS)

    Wang, C.; Geijselaers, H. J. M.; van den Boogaard, A. H.

    2013-05-01

    As a unique and important member of the metal forming family, ring rolling provides a cost effective process route to manufacture seamless rings. Applications of ring rolling cover a wide range of products in aerospace, automotive and civil engineering industries [1]. Above the recrystallization temperature of the material, hot ring rolling begins with the upsetting of the billet cut from raw stock. Next a punch pierces the hot upset billet to form a hole through the billet. This billet, referred to as preform, is then rolled by the ring rolling mill. For an accurate simulation of hot ring rolling, it is crucial to include the deformations, stresses and strains from the upsetting and piercing process as initial conditions for the rolling stage. In this work, multi-stage FE simulations of hot ring rolling process were performed by mapping the local deformation state of the workpiece from one step to the next one. The simulations of upsetting and piercing stages were carried out by 2D axisymmetric models using adaptive remeshing and element erosion. The workpiece for the ring rolling stage was subsequently obtained after performing a 2D to 3D mapping. The commercial FE package LS-DYNA was used for the study and user defined subroutines were implemented to complete the control algorithm. The simulation results were analyzed and also compared with those from the single-stage FE model of hot ring rolling.

  18. Rolling friction—models and experiment. An undergraduate student project

    NASA Astrophysics Data System (ADS)

    Vozdecký, L.; Bartoš, J.; Musilová, J.

    2014-09-01

    In this paper the rolling friction (rolling resistance) model is studied theoretically and experimentally in undergraduate level fundamental general physics courses. Rolling motions of a cylinder along horizontal or inclined planes are studied by simple experiments, measuring deformations of the underlay or of the rolling body. The rolling of a hard cylinder on a soft underlay as well as of a soft cylinder on a hard underlay is studied. The experimental data are treated by the open source software Tracker, appropriate for use at the undergraduate level of physics. Interpretation of results is based on elementary considerations comprehensible to university students—beginners. It appears that the commonly accepted model of rolling resistance based on the idea of a warp (little bulge) on the underlay in front of the rolling body does not correspond with experimental results even for the soft underlay and hard rolling body. The alternative model of the rolling resistance is suggested in agreement with experiment and the corresponding concept of the rolling resistance coefficient is presented. In addition to the obtained results we can conclude that the project can be used as a task for students in practical exercises of fundamental general physics undergraduate courses. Projects of similar type effectively contribute to the development of the physical thinking of students.

  19. SASS Applied to Optimum Work Roll Profile Selection in the Hot Rolling of Wide Steel

    NASA Astrophysics Data System (ADS)

    Nolle, Lars

    The quality of steel strip produced in a wide strip rolling mill depends heavily on the careful selection of initial ground work roll profiles for each of the mill stands in the finishing train. In the past, these profiles were determined by human experts, based on their knowledge and experience. In previous work, the profiles were successfully optimised using a self-organising migration algorithm (SOMA). In this research, SASS, a novel heuristic optimisation algorithm that has only one control parameter, has been used to find the optimum profiles for a simulated rolling mill. The resulting strip quality produced using the profiles found by SASS is compared with results from previous work and the quality produced using the original profile specifications. The best set of profiles found by SASS clearly outperformed the original set and performed equally well as SOMA without the need of finding a suitable set of control parameters.

  20. Transparent Conductive AGZO/Ag/AGZO Multilayers on PET Substrate by Roll-to-Roll Sputtering.

    PubMed

    Kim, Taehoon; Park, Kwangwon; Kim, Jongsu

    2016-02-01

    Indium-free Al and Ga-codoped ZnO (AGZO) multilayer films with nanoscale Ag interlayer were deposited by dual target roll-to-roll RF for AGZO and DC sputtering systems for Ag at room temperature for a large scale. The thicknesses of AGZO/Ag/AGZO multilayer were optimized by changing the roll speed: 0.15/1.1/0.15 m/min for AGZO/Ag/AGZO multilayers, respectively. The optimum thicknesses of AGZO/Ag/AGZO multilayer are 9.21, 8.32 and 8.04 nm, respectively. Optimized AGZO/Ag/AGZO multilayer films showed an excellent transparency (84% at 550 nm) and a low sheet resistance (9.2 omega/sq.) on PET substrates for opto-electronic applications. The effects of nanoscale Ag interlayer on optical and electrical properties of AGZO/Ag/AGZO multilayer films were discussed.

  1. Roll-to-roll gravure with nanomaterials for printing smart packaging.

    PubMed

    Jung, Minhun; Kim, Junseok; Koo, Hyunmo; Lee, Wookyu; Subramanian, Vivek; Cho, Gyoujin

    2014-02-01

    Roll-to-roll (R2R) gravure is considered one of the highest throughput tools for manufacturing inexpensive and flexible ubiquitous IT devices called "smart packaging" in which NFC (near-field communication) transponder, sensors, ADC (analog-to-digital converter), simple processor and signage are all integrated on paper or plastic foils. In this review, we show R2R gravure can be employed to print smart packaging, starting from printing simple electrodes, dielectrics, capacitors, diodes and thin film transistors with appropriate nanomaterial-based inks on plastic foils.

  2. Production Of Tandem Amorphous Silicon Alloy Solar Cells In A Continuous Roll-To-Roll Process

    NASA Astrophysics Data System (ADS)

    Izu, Masat; Ovshinsky, Stanford R.

    1983-09-01

    A roll-to-roll plasma deposition machine for depositing multi-layered amorphous alloys has been developed. The plasma deposition machine (approximately 35 ft. long) has multiple deposition areas and processes 16-inch wide stainless steel substrate continuously. Amorphous photovoltaic thin films (less than 1pm) having a six layered structure (PINPIN) are deposited on a roll of 16-inch wide 1000 ft. long stainless steel substrate, continu-ously, in a single pass. Mass production of low-cost tandem amorphous solar cells utilizing roll-to-roll processes is now possible. A commercial plant utilizing this plasma deposition machine for manufacturing tandem amorphous silicon alloy solar cells is now in operation. At Energy Conversion Devices, Inc. (ECD), one of the major tasks of the photovoltaic group has been the scale-up of the plasma deposition process for the production of amorphous silicon alloy solar cells. Our object has been to develop the most cost effective way of producing amorphous silicon alloy solar cells having the highest efficiency. The amorphous silicon alloy solar cell which we produce has the following layer structure: 1. Thin steel substrate. 2. Multi-layered photovoltaic amorphous silicon alloy layers (approximately 1pm thick; tandem cells have six layers). 3. ITO. 4. Grid pattern. 5. Encapsulant. The deposition of the amorphous layer is technologically the key process. It was clear to us from the beginning of this scale-up program that amorphous silicon alloy solar cells produced in wide width, continuous roll-to-roll production process would be ultimate lowest cost solar cells according to the following reasons. First of all, the material cost of our solar cells is low because: (1) the total thickness of active material is less than 1pm, and the material usage is very small; (2) silicon, fluorine, hydrogen, and other materials used in the device are abundant and low cost; (3) thin, low-cost substrate is used; and (4) product yield is high. In

  3. Tribological Testing of Anti-Adhesive coatings for Cold Rolling Mill Rolls—Application to TiN-Coated Rolls

    NASA Astrophysics Data System (ADS)

    Ould, Choumad; Gachon, Yves; Montmitonnet, Pierre; Badiche, Xavier

    2011-05-01

    Roll life is a major issue in cold strip rolling. Roll wear may result either in too low roll roughness, bringing friction below the minimum requested for strip entrainment; or it may degrade strip surface quality. On the contrary, adhesive wear and transfer ("roll coating", "pick up") may form a thick metallic deposits on the roll which increases friction excessively and degrades strip surface again [1]. The roll surface, with the help of a materials-adapted lubricant, must therefore possess anti-wear and anti-adhesive properties. Thus, High Speed Steeel (HSS) rolls show superior properties compared with standard Cr-steel rolls due to their high carbide surface coverage. Another way to improve wear and adhesion properties of surfaces is to apply hard metallic (hard-Cr) or ceramic coatings. Chromium is renowned for its excellent anti-wear and anti-adhesive properties and may serve as a reference. Here, as a first step towards alternative, optimised coatings, a PVD TiN coating has been deposited on tool steels, as previous attempts have proved TiN to be rather successful in cold rolling experiments [2,3]. Different tribological tests are reported here, giving insight in both anti-adhesive properties and fatigue life improvement.

  4. Strip casting with fluxing agent applied to casting roll

    SciTech Connect

    Williams, Robert S.; O'Malley, Ronald J.; Sussman, Richard C.

    1997-01-01

    A strip caster (10) for producing a continuous strip (24) includes a tundish (12) for containing a melt (14), a pair of horizontally disposed water cooled casting rolls (22) and devices (29) for electrostatically coating the outer peripheral chill surfaces (44) of the casting rolls with a powder flux material (56). The casting rolls are juxtaposed relative to one another for forming a pouting basin (18) for receiving the melt through a teeming tube (16) thereby establishing a meniscus (20) between the rolls for forming the strip. The melt is protected from the outside air by a non-oxidizing gas passed through a supply line (28) to a sealing chamber (26). A preferred flux is boron oxide having a melting point of about 550.degree. C. The flux coating enhances wetting of the steel melt to the casting roll and dissolves any metal oxide formed on the roll.

  5. Strip casting with fluxing agent applied to casting roll

    DOEpatents

    Williams, R.S.; O`Malley, R.J.; Sussman, R.C.

    1997-07-29

    A strip caster for producing a continuous strip includes a tundish for containing a melt, a pair of horizontally disposed water cooled casting rolls and devices for electrostatically coating the outer peripheral chill surfaces of the casting rolls with a powder flux material. The casting rolls are juxtaposed relative to one another for forming a pouting basin for receiving the melt through a teeming tube thereby establishing a meniscus between the rolls for forming the strip. The melt is protected from the outside air by a non-oxidizing gas passed through a supply line to a sealing chamber. A preferred flux is boron oxide having a melting point of about 550 C. The flux coating enhances wetting of the steel melt to the casting roll and dissolves any metal oxide formed on the roll. 3 figs.

  6. Evolution of fuel plate parameters during deformation in rolling

    NASA Astrophysics Data System (ADS)

    Durazzo, M.; Vieira, E.; Urano de Carvalho, E. F.; Riella, H. G.

    2017-07-01

    The Nuclear and Energy Research Institute - IPEN/CNEN-SP routinely produces the nuclear fuel necessary for operating its research reactor, IEA-R1. This fuel consists of fuel plates containing U3Si2-Al composites as the meat, which are fabricated by rolling. The rolling process currently deployed was developed based on information obtained from literature, which was used as a premise for defining the current manufacturing procedures, according to a methodology with an essentially empirical character. Despite the current rolling process being perfectly stable and highly reproducible, it is not well characterized and is therefore not fully known. The objective of this work is to characterize the rolling process for producing dispersion fuel plates. Results regarding the evolution of the main parameters of technological interest, after each rolling pass, are presented. Some defects that originated along the fuel plate deformation during the rolling process were characterized and discussed. The fabrication procedures for manufacturing the fuel plates are also presented.

  7. Mechanics of Thin Strip Steering in Hot Rolling

    NASA Astrophysics Data System (ADS)

    Jiang, Zhengyi; Tieu, Kiet A.

    2004-06-01

    The hot rolling of thin strip can result in several problems in hot rolling, for instance, the control of strip steering, strip shape and flatness and surface roughness etc. Therefore, the hot rolling of thin strip brings out a requirement of innovative technologies such as the extended control of shape and flatness, steering control and reduction of load by roll gap lubrication. In this paper, the authors focus on the analysis of thin strip snaking movement, as well as solve the related problems such as the shape and flatness due to a larger reduction applied when the strip is thinner. A finite element method was used to simulate this nonsymmetricity rolling considering the non-uniform reduction along the strip width. The calculated spread is compared with the measured values obtained from the rolling mill in laboratory and the friction effect is also discussed.

  8. Multilayer roll bonded aluminium foil: processing, microstructure and flow stress

    SciTech Connect

    Barlow, C.Y.; Nielsen, P.; Hansen, N

    2004-08-02

    Bulk aluminium has been produced by warm-rolling followed by cold-rolling of commercial purity (99% purity) aluminium foil. The bonding appeared perfect from observation with the naked eye, light and transmission electron microscopy. By comparison with bulk aluminium of similar purity (AA1200) rolled to a similar strain (90%RA), the roll-bonded metal showed a much higher density of high-angle grain boundaries, similar strength and improved thermal stability. This study has implications for a number of applications in relation to the processing of aluminium. Roll bonding is of interest as a method for grain size refinement; oxide-containing materials have increased strength, enhanced work-hardening behaviour, and exhibit alterations in recrystallisation behaviour. The behaviour of the hard oxide film is of interest in aluminium processing, and has been investigated by characterising the size and distribution of oxide particles in the roll-bonded samples.

  9. Rolling resistance of articular cartilage due to interstitial fluid flow.

    PubMed

    Ateshian, G A; Wang, H

    1997-01-01

    A mechanism which may contribute to the frictional coefficient of diarthrodial joints is the rolling resistance due to hysteretic energy loss of viscoelastic cartilage resulting from interstitial fluid flow. The hypothesis of this study is that rolling resistance contributes significantly to the measured friction coefficient of articular cartilage. Due to the difficulty of testing this hypothesis experimentally, theoretical predictions of the rolling resistance are obtained using the solution for rolling contact of biphasic cylindrical cartilage layers [Ateshian and Wang]. Over a range of rolling velocities, tissue properties and dimensions, it is found that the coefficient of rolling resistance microR varies in magnitude from 10(-6) to 10(-2); thus, it is generally negligible in comparison with experimental measurements of the cartilage friction coefficient (10(-3)-10(-1)) except, possibly, when the tissue is arthritic. Hence, the hypothesis of this study is rejected on the basis of these results.

  10. Slow-roll approximation in loop quantum cosmology

    NASA Astrophysics Data System (ADS)

    Luc, Joanna; Mielczarek, Jakub

    2017-01-01

    The slow-roll approximation is an analytical approach to study dynamical properties of the inflationary universe. In this article, systematic construction of the slow-roll expansion for effective loop quantum cosmology is presented. The analysis is performed up to the fourth order in both slow-roll parameters and the parameter controlling the strength of deviation from the classical case. The expansion is performed for three types of the slow-roll parameters: Hubble slow-roll parameters, Hubble flow parameters and potential slow-roll parameters. An accuracy of the approximation is verified by comparison with the numerical phase space trajectories for the case with a massive potential term. The results obtained in this article may be helpful in the search for the subtle quantum gravitational effects with use of the cosmological data.

  11. Vestibular influences on human postural control in combinations of pitch and roll planes reveal differences in spatiotemporal processing.

    PubMed

    Carpenter, M G; Allum, J H; Honegger, F

    2001-09-01

    The present study examined the influence of bilateral peripheral vestibular loss (BVL) in humans on postural responses to multidirectional surface rotations in the pitch and roll planes. Specifically, we examined the effects of vestibular loss on the directional sensitivity, timing, and amplitude of early stretch, balance correcting, and stabilizing reactions in postural leg and trunk muscles as well as changes in ankle torque and trunk angular velocity following multidirectional rotational perturbations of the support surface. Fourteen normal healthy adults and five BVL patients stood on a dual axis rotating platform which rotated 7.5 degrees at 50 degrees/s through eight different directions of pitch and roll combinations separated by 45 degrees. Directions were randomized within a series of 44 perturbation trials which were presented first with eyes open, followed by a second series of trials with eyes closed. Vestibular loss did not influence the range of activation or direction of maximum sensitivity for balance correcting responses (120-220 ms). Response onsets at approximately 120 ms were normal in tibialis anterior (TA), soleus (SOL), paraspinals (PARAS), or quadriceps muscles. Only SOL muscle activity demonstrated a 38- to 45-ms delay for combinations of forward (toe-down) and roll perturbations in BVL patients. The amplitude of balance correcting responses in leg muscles between 120 and 220 ms was, with one exception, severely reduced in BVL patients for eyes open and eyes closed conditions. SOL responses were decreased bilaterally for toe-up and toe-down perturbations, but more significantly reduced in the downhill (load-bearing) leg for combined roll and pitch perturbations. TA was significantly reduced bilaterally for toe-up perturbations, and in the downhill leg for backward roll perturbations. Forward perturbations, however, elicited significantly larger TA activity in BVL between 120 and 220 ms compared to normals, which would act to further

  12. Adaptive attenuation of aliased ground roll using the shearlet transform

    NASA Astrophysics Data System (ADS)

    Hosseini, Seyed Abolfazl; Javaherian, Abdolrahim; Hassani, Hossien; Torabi, Siyavash; Sadri, Maryam

    2015-01-01

    Attenuation of ground roll is an essential step in seismic data processing. Spatial aliasing of the ground roll may cause the overlap of the ground roll with reflections in the f-k domain. The shearlet transform is a directional and multidimensional transform that separates the events with different dips and generates subimages in different scales and directions. In this study, the shearlet transform was used adaptively to attenuate aliased and non-aliased ground roll. After defining a filtering zone, an input shot record is divided into segments. Each segment overlaps adjacent segments. To apply the shearlet transform on each segment, the subimages containing aliased and non-aliased ground roll, the locations of these events on each subimage are selected adaptively. Based on these locations, mute is applied on the selected subimages. The filtered segments are merged together, using the Hanning function, after applying the inverse shearlet transform. This adaptive process of ground roll attenuation was tested on synthetic data, and field shot records from west of Iran. Analysis of the results using the f-k spectra revealed that the non-aliased and most of the aliased ground roll were attenuated using the proposed adaptive attenuation procedure. Also, we applied this method on shot records of a 2D land survey, and the data sets before and after ground roll attenuation were stacked and compared. The stacked section after ground roll attenuation contained less linear ground roll noise and more continuous reflections in comparison with the stacked section before the ground roll attenuation. The proposed method has some drawbacks such as more run time in comparison with traditional methods such as f-k filtering and reduced performance when the dip and frequency content of aliased ground roll are the same as those of the reflections.

  13. Hardening Roll Surface by Plasma Nitriding with Subsequent Hardfacing

    NASA Astrophysics Data System (ADS)

    Pesin, A.; Pustovoytov, D.; Vafin, R.; Yagafarov, I.; Vardanyan, E.

    2017-05-01

    The wear of the surface layer of rolls after ion nitriding in glow discharge, followed by a coating of TiN -TiAlN plasma arc are studied and simulated. stress-strain state of the material rolls under asymmetric rolling with ultra-high shear deformations is simulated. The effect of thermal fields, formed upon contact of the tool and a deformable sheet, the structure of aluminum alloys, are considered.

  14. Three Dimensional FEM Simulation of Wedge — Rolls Process

    NASA Astrophysics Data System (ADS)

    Pater, Zbigniew

    2004-06-01

    In this work the new method of cross — wedge rolling is shown. It is based on the rolling of the axisymmetrical products using one flat wedge and two rolls ( profile or smooth). In this article, the results of the numerical simulation of the described method are also provided. On the basis of the calculations, the possibility of producing stepped shafts with cylindrical, spherical and conical surfaces was assumed.

  15. Influences Of Size Effects On The Rolling Of Micro Strip

    NASA Astrophysics Data System (ADS)

    van Putten, Koos; Kopp, Reiner; Hirt, Gerhard

    2007-04-01

    Comparison between down-scaled flat rolling experiments of thin round wire and numerical simulation of those experiments have shown that the production process of manufacturing micro strip out of thin round wire is influenced by size effects. From plane strain compression tests, used as a physical simulation of the rolling process it is concluded that second order size effects of mechanical strength cause decreasing resistance to forming with decreasing wire diameters for rolling experiments with 25% and 50% reduction.

  16. Influences Of Size Effects On The Rolling Of Micro Strip

    SciTech Connect

    Putten, Koos van; Kopp, Reiner; Hirt, Gerhard

    2007-04-07

    Comparison between down-scaled flat rolling experiments of thin round wire and numerical simulation of those experiments have shown that the production process of manufacturing micro strip out of thin round wire is influenced by size effects. From plane strain compression tests, used as a physical simulation of the rolling process it is concluded that second order size effects of mechanical strength cause decreasing resistance to forming with decreasing wire diameters for rolling experiments with 25% and 50% reduction.

  17. The Effects of Forming Parameters on Conical Ring Rolling Process

    PubMed Central

    Meng, Wen; Zhao, Guoqun; Guan, Yanjin

    2014-01-01

    The plastic penetration condition and biting-in condition of a radial conical ring rolling process with a closed die structure on the top and bottom of driven roll, simplified as RCRRCDS, were established. The reasonable value range of mandrel feed rate in rolling process was deduced. A coupled thermomechanical 3D FE model of RCRRCDS process was established. The changing laws of equivalent plastic strain (PEEQ) and temperature distributions with rolling time were investigated. The effects of ring's outer radius growth rate and rolls sizes on the uniformities of PEEQ and temperature distributions, average rolling force, and average rolling moment were studied. The results indicate that the PEEQ at the inner layer and outer layer of rolled ring are larger than that at the middle layer of ring; the temperatures at the “obtuse angle zone” of ring's cross-section are higher than those at “acute angle zone”; the temperature at the central part of ring is higher than that at the middle part of ring's outer surfaces. As the ring's outer radius growth rate increases at its reasonable value ranges, the uniformities of PEEQ and temperature distributions increase. Finally, the optimal values of the ring's outer radius growth rate and rolls sizes were obtained. PMID:25202716

  18. Rolling contact deformation of 1100 aluminum disks

    NASA Astrophysics Data System (ADS)

    Hahn, G. T.; Huang, Q.

    1986-09-01

    The plastic deformation produced by pure, two dimensional, rolling contacts has been studied by subjecting 1100 aluminum disks to repeated contacts with well-defined relative peak contact pressures in the range 2 ≤ P 0/ k c ≤ 6.8. Two microstructural conditions are examined: as-received (warm worked) and annealed, displaying cyclic softening and cyclic hardening, respectively. Measurements of the distortion of wire markers imbedded in the rims, microhardness values of the plastically deformed layer, and changes in disk radius and width are reported. These are used to evaluate the plastic circumferential, radial, and axial displacements of the rim surface and the depth of the plastically deformed layer. These features are compared with the classical, elastic-quasi plastic analysis of rolling, and with recent elastic-plastic finite element calculations. The results show that the rim deformation state approaches plane strain when the disk width-to-Hertzian half contact width-ratio B/w ≥ 200. The presence of a solid lubricant has no detectable influence on the character of the plane strain deformation. The measurements of the per cycle forward (circumferential) displacements for the two conditions are self-consistent and agree with the finite element calculations when the resistance to plastic deformation is attributed to the instantaneous cyclic yield stress, but not when the resistance is identified with the initial monotonie yield stress. At the same time, the extent of the plastic zone is 5× greater than predicted by the analyses. These and other results can be rationalized by drawing on the special features of the resistance to cyclic deformation. They support the view that the deformation produced by the N th rolling contact is governed by the shape of the stress-strain hysteresis loop after the corresponding number of stress-strain cycles which depends on the cycle strain amplitude, degree of reversibility, and the strain path imposed by the contact

  19. Rolling Spheres on Bioinspired Microstructured Surfaces.

    PubMed

    Ryu, Brian K; Dhong, Charles; Fréchette, Joëlle

    2017-01-10

    Microstructured surfaces, such as those inspired by nature, mediate surface interactions and are actively sought after to control wetting, adhesion, and friction. In particular, the rolling motion of spheres on microstructured surfaces in fluid environments is important for the transport of particles in microfluidic devices or in tribology. Here, we characterize the motion of smooth silicon nitride spheres (diameters 3-5 mm) as they roll down inclined planes decorated with hexagonal arrays of microwells and micropillars. For both types of patterned surfaces, we vary the area fraction of the micropatterned features from 0.04 to 0.96. We measure directly and independently the rotational and translational velocities of the spheres as they roll down planes with inclination angles that vary between 5 and 30°. For a given area fraction, we find that spheres have a higher translational and rotational velocity on surfaces with microwells than on micropillars. We rely on the model of Smart and Leighton [Phys. Fluids A 5, 13 (1993)] to obtain an effective gap width and coefficient of friction for all microstructured surfaces investigated. We find that the coefficient of friction is significantly higher for a surface with micropillars than that for one with microwells, likely due to the presence of interconnected drainage channels that provide additional paths for the fluid flow and favor solid-solid contact on the surface with micropillars. We find that while the effective gap width at a very low solid fraction is equal to the height of the patterned features, the effective separation decreases exponentially as the surface coverage of microstructures increases, with little measured differences between the two geometries. Superposition of resistance functions is used to relate the rapid decrease in the effective gap height with increase in the surface coverage observed in experiments.

  20. 49 CFR 393.122 - What are the rules for securing paper rolls?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... transported with eyes vertical in a sided vehicle. (1) Paper rolls must be placed tightly against the walls of... paper rolls transported with eyes vertical in a sided vehicle. (1) If a paper roll in a split load is... stacked loads of paper rolls transported with eyes vertical in a sided vehicle. (1) Paper rolls must...

  1. 49 CFR 393.122 - What are the rules for securing paper rolls?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... transported with eyes vertical in a sided vehicle. (1) Paper rolls must be placed tightly against the walls of... paper rolls transported with eyes vertical in a sided vehicle. (1) If a paper roll in a split load is... stacked loads of paper rolls transported with eyes vertical in a sided vehicle. (1) Paper rolls must...

  2. 21 CFR 136.180 - Whole wheat bread, rolls, and buns.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 2 2012-04-01 2012-04-01 false Whole wheat bread, rolls, and buns. 136.180... § 136.180 Whole wheat bread, rolls, and buns. (a) Each of the foods whole wheat bread, graham bread, entire wheat bread, whole wheat rolls, graham rolls, entire wheat rolls, whole wheat buns, graham buns...

  3. 21 CFR 136.180 - Whole wheat bread, rolls, and buns.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 2 2014-04-01 2014-04-01 false Whole wheat bread, rolls, and buns. 136.180... § 136.180 Whole wheat bread, rolls, and buns. (a) Each of the foods whole wheat bread, graham bread, entire wheat bread, whole wheat rolls, graham rolls, entire wheat rolls, whole wheat buns, graham buns...

  4. 21 CFR 136.180 - Whole wheat bread, rolls, and buns.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Whole wheat bread, rolls, and buns. 136.180... § 136.180 Whole wheat bread, rolls, and buns. (a) Each of the foods whole wheat bread, graham bread, entire wheat bread, whole wheat rolls, graham rolls, entire wheat rolls, whole wheat buns, graham buns...

  5. 21 CFR 136.180 - Whole wheat bread, rolls, and buns.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 2 2013-04-01 2013-04-01 false Whole wheat bread, rolls, and buns. 136.180... § 136.180 Whole wheat bread, rolls, and buns. (a) Each of the foods whole wheat bread, graham bread, entire wheat bread, whole wheat rolls, graham rolls, entire wheat rolls, whole wheat buns, graham buns...

  6. Overlay accuracy on a flexible web with a roll printing process based on a roll-to-roll system.

    PubMed

    Chang, Jaehyuk; Lee, Sunggun; Lee, Ki Beom; Lee, Seungjun; Cho, Young Tae; Seo, Jungwoo; Lee, Sukwon; Jo, Gugrae; Lee, Ki-yong; Kong, Hyang-Shik; Kwon, Sin

    2015-05-01

    For high-quality flexible devices from printing processes based on Roll-to-Roll (R2R) systems, overlay alignment during the patterning of each functional layer poses a major challenge. The reason is because flexible substrates have a relatively low stiffness compared with rigid substrates, and they are easily deformed during web handling in the R2R system. To achieve a high overlay accuracy for a flexible substrate, it is important not only to develop web handling modules (such as web guiding, tension control, winding, and unwinding) and a precise printing tool but also to control the synchronization of each unit in the total system. A R2R web handling system and reverse offset printing process were developed in this work, and an overlay between the 1st and 2nd layers of ±5μm on a 500 mm-wide film was achieved at a σ level of 2.4 and 2.8 (x and y directions, respectively) in a continuous R2R printing process. This paper presents the components and mechanisms used in reverse offset printing based on a R2R system and the printing results including positioning accuracy and overlay alignment accuracy.

  7. Overlay accuracy on a flexible web with a roll printing process based on a roll-to-roll system

    NASA Astrophysics Data System (ADS)

    Chang, Jaehyuk; Lee, Sunggun; Lee, Ki Beom; Lee, Seungjun; Cho, Young Tae; Seo, Jungwoo; Lee, Sukwon; Jo, Gugrae; Lee, Ki-yong; Kong, Hyang-Shik; Kwon, Sin

    2015-05-01

    For high-quality flexible devices from printing processes based on Roll-to-Roll (R2R) systems, overlay alignment during the patterning of each functional layer poses a major challenge. The reason is because flexible substrates have a relatively low stiffness compared with rigid substrates, and they are easily deformed during web handling in the R2R system. To achieve a high overlay accuracy for a flexible substrate, it is important not only to develop web handling modules (such as web guiding, tension control, winding, and unwinding) and a precise printing tool but also to control the synchronization of each unit in the total system. A R2R web handling system and reverse offset printing process were developed in this work, and an overlay between the 1st and 2nd layers of ±5μm on a 500 mm-wide film was achieved at a σ level of 2.4 and 2.8 (x and y directions, respectively) in a continuous R2R printing process. This paper presents the components and mechanisms used in reverse offset printing based on a R2R system and the printing results including positioning accuracy and overlay alignment accuracy.

  8. An FE Based On-line Model for the Prediction of Work Roll Thermal Profile in Hot Strip Rolling

    NASA Astrophysics Data System (ADS)

    Choi, Ji Won; Lee, Jung Hyeung; Sun, Cheng Gang; Hwang, Sang Moo

    2010-06-01

    Prediction and control of the thermal deformation of the work roll is vital for enhancing product quality in hot strip and plate rolling. In this paper, we present an on-line model for the prediction of the work roll thermal profile. The model is developed on the basis of an integrated finite element model for the coupled analysis of heat transfer and deformation occurring at the bite zone, to rigorously take into account the effect of various rolling parameters on the thermal behavior of the work roll. The validity of the model is demonstrated through comparison with measurements made in an industrial hot strip mill. Also, an emphasis is given to the examination the effect of some selected rolling parameters in an actual production environment.

  9. Uranium ore rolls in the United States

    USGS Publications Warehouse

    Harshman, E.N.

    1970-01-01

    About 40% of the uranium ore reserves in the United States, minable at $8 per pound of contained U3O8, are in roll-type deposits in the State of Wyoming. The host rocks are arkosic sandstones, deposited in intermontane basins under fluvial conditions, and derived from the granitic cores of mountain ranges that flank the basins. The host rocks are Eocene and possibly Paleocene in age and are, or were, overlain by a sequence of continental tuffaceous siltstones, sandstones and conglomerates 400 - 700 m thick.

  10. Rolls-Royce implementing new production system

    NASA Astrophysics Data System (ADS)

    1982-05-01

    An advanced, integrated manufacturing systems system is being implemented in Rolls-Royce production facilities in order to cut unit production costs by reducing lead times, manning levels and inventories. The topics discussed include the program outline, planned subcontracting, the machining operation that includes isothermal forming of wide-chord hollow blades, carbon fiber production of subsystems including thrust reversers, continuous dress creep feed grinding, the directionally solidified casting facility that can produce single-crystal blades without modification to the casting furnaces, and a robot machining line.

  11. Atlantis begins rolling back to the VAB

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Space Shuttle Atlantis joins blue skies and palm trees on the Florida landscape. Atlantis is rolling back from Launch Pad 39A to the Vehicle Assembly Building so that workers can conduct inspections, make continuity checks and conduct X-ray analysis on the 36 SRB cables located inside each booster's system tunnel. An extensive evaluation of NASA's SRB cable inventory revealed conductor damage in four (of about 200) cables on the shelf. Shuttle managers decided to prove the integrity of the system tunnel cables already on Atlantis before launching Jan. 19. The launch has been rescheduled no earlier than Feb. 6.

  12. Atlantis begins rolling back to the VAB

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Space Shuttle Atlantis joins blue skies and palm trees on the Florida landscape. Atlantis is rolling back from Launch Pad 39A to the Vehicle Assembly Building so that workers can conduct inspections, make continuity checks and conduct X-ray analysis on the 36 SRB cables located inside each booster's system tunnel. An extensive evaluation of NASA's SRB cable inventory revealed conductor damage in four (of about 200) cables on the shelf. Shuttle managers decided to prove the integrity of the system tunnel cables already on Atlantis before launching Jan. 19. The launch has been rescheduled no earlier than Feb. 6.

  13. High-speed roll-to-roll manufacturing of graphene using a concentric tube CVD reactor

    PubMed Central

    Polsen, Erik S.; McNerny, Daniel Q.; Viswanath, B.; Pattinson, Sebastian W.; John Hart, A.

    2015-01-01

    We present the design of a concentric tube (CT) reactor for roll-to-roll chemical vapor deposition (CVD) on flexible substrates, and its application to continuous production of graphene on copper foil. In the CTCVD reactor, the thin foil substrate is helically wrapped around the inner tube, and translates through the gap between the concentric tubes. We use a bench-scale prototype machine to synthesize graphene on copper substrates at translation speeds varying from 25 mm/min to 500 mm/min, and investigate the influence of process parameters on the uniformity and coverage of graphene on a continuously moving foil. At lower speeds, high-quality monolayer graphene is formed; at higher speeds, rapid nucleation of small graphene domains is observed, yet coalescence is prevented by the limited residence time in the CTCVD system. We show that a smooth isothermal transition between the reducing and carbon-containing atmospheres, enabled by injection of the carbon feedstock via radial holes in the inner tube, is essential to high-quality roll-to-roll graphene CVD. We discuss how the foil quality and microstructure limit the uniformity of graphene over macroscopic dimensions. We conclude by discussing means of scaling and reconfiguring the CTCVD design based on general requirements for 2-D materials manufacturing. PMID:25997124

  14. Mathematical-Artificial Neural Network Hybrid Model to Predict Roll Force during Hot Rolling of Steel

    NASA Astrophysics Data System (ADS)

    Rath, S.; Sengupta, P. P.; Singh, A. P.; Marik, A. K.; Talukdar, P.

    2013-07-01

    Accurate prediction of roll force during hot strip rolling is essential for model based operation of hot strip mills. Traditionally, mathematical models based on theory of plastic deformation have been used for prediction of roll force. In the last decade, data driven models like artificial neural network have been tried for prediction of roll force. Pure mathematical models have accuracy limitations whereas data driven models have difficulty in convergence when applied to industrial conditions. Hybrid models by integrating the traditional mathematical formulations and data driven methods are being developed in different parts of world. This paper discusses the methodology of development of an innovative hybrid mathematical-artificial neural network model. In mathematical model, the most important factor influencing accuracy is flow stress of steel. Coefficients of standard flow stress equation, calculated by parameter estimation technique, have been used in the model. The hybrid model has been trained and validated with input and output data collected from finishing stands of Hot Strip Mill, Bokaro Steel Plant, India. It has been found that the model accuracy has been improved with use of hybrid model, over the traditional mathematical model.

  15. In-situ Roll-to-Roll Printing of Highly Efficient Organic Solar Cells

    SciTech Connect

    Bao, Zhenan; Toney, Michael; Clancy, Paulette

    2016-05-30

    This project focuses on developing a roll-to-roll printing setup for organic solar cells with the capability to follow the film formation in situ with small and wide angle X-ray scattering, and to improve the performance of printed organic solar cells. We demonstrated the use of the printing setup to capture important aspects of existing industrial printing methods, which ensures that the solar cell performance achieved in our printing experiments would be largely retained in an industrial fabrication process. We employed both known and newly synthesized polymers as the donor and acceptor materials, and we studied the morphological changes in real time during the printing process by X-ray scattering. Our experimental efforts are also accompanied by theoretical modeling of both the fluid dynamic aspects of the printing process and the nucleation and crystallization kinetics during the film formation. The combined insight into the printing process gained from the research provides a detailed understanding of the factors governing the printed solar cell’s performance. Finally using the knowledge we gained, we demonstrated large area ( > 10 cm2) printed organic solar cells with more than 5 percent power conversion efficiency, which is best achieved performance for roll-to-roll printed organic solar cells.

  16. Fabrication of ultra-thin nanostructured bimetallic foils by Accumulative Roll Bonding and Asymmetric Rolling

    PubMed Central

    Yu, Hailiang; Lu, Cheng; Tieu, A. Kiet; Godbole, Ajit; Su, Lihong; Sun, Yong; Liu, Mao; Tang, Delin; Kong, Charlie

    2013-01-01

    This paper reports a new technique that combines the features of Accumulative Roll Bonding (ARB) and Asymmetric Rolling (AR). This technique has been developed to enable production of ultra-thin bimetallic foils. Initially, 1.5 mm thick AA1050 and AA6061 foils were roll-bonded using ARB at 200°C, with 50% reduction. The resulting 1.5 mm bimetallic foil was subsequently thinned to 0.04 mm through four AR passes at room temperature. The speed ratio between the upper and lower AR rolls was 1:1.3. The tensile strength of the bimetallic foil was seen to increase with reduction in thickness. The ductility of the foil was seen to reduce upon decreasing the foil thickness from 1.5 mm to 0.14 mm, but increase upon further reduction in thickness from 0.14 mm to 0.04 mm. The grain size was about 140 nm for the AA6061 layer and 235 nm for the AA1050 layer, after the third AR pass. PMID:23918002

  17. Register Control of Roll-to-Roll Printing System Based on Statistical Approach

    NASA Astrophysics Data System (ADS)

    Kim, Chung Hwan; You, Ha-Il; Jo, Jeongdai

    2013-05-01

    One of the most important requirements when using roll-to-roll printing equipment for multilayer printing is register control. Because multilayer printing requires a printing accuracy of several microns to several tens of microns, depending on the devices and their sizes, precise register control is required. In general, the register errors vary with time, even for one revolution of the plate cylinder. Therefore, more information about the register errors in one revolution of the plate cylinder is required for more precise register control, which is achieved by using multiple register marks in a single revolution of the plate cylinder. By using a larger number of register marks, we can define the value of the register error as a statistical value rather than a single one. The register errors measured from an actual roll-to-roll printing system consist of a linearly varying term, a static offset term, and small fluctuations. The register errors resulting from the linearly varying term and the offset term are compensated for by the velocity and phase control of the plate cylinders, based on the calculated slope and offset of the register errors, which are obtained by the curve-fitting of the data set of register errors. We show that even with the slope and offset compensation of the register errors, a register control performance of within 20 µm can be achieved.

  18. Continuous roll-to-roll serpentine deposition for high throughput a-Si PV manufacturing

    SciTech Connect

    Izu, M.; Ovshinsky, H.C.; Deng, X.; Krisko, A.J.; Narasimhan, K.L.; Crucet, R.; Laarman, T.; Myatt, A.; Ovshinsky, S.R.

    1994-12-31

    In order to further improve the economies of scale which are inherent in ECD`s continuous roll-to-roll amorphous silicon alloy solar cell manufacturing process, the authors have developed a concept for a serpentine web plasma CVD deposition process to maximize throughput while keeping the size of the deposition chambers small. When this technique is incorporated into a continuous roll-to-roll PV manufacturing process, it will maximize the throughput for a high volume production plant, reduce the machine cost, improve gas utilization, reduce power consumption, and improve the solar cell stability. To demonstrate the serpentine web deposition concept, the authors have constructed a single loop serpentine deposition chamber to deposit a-Si for n-i-p structure solar cells. During the initial process of optimization, they have produced single-junction a-Si solar cells with 8.6% efficiency, and triple-junction a-Si solar cells with a 9.5% initial efficiency, where the top cell intrinsic layer was deposited in the serpentine deposition chamber.

  19. Upscaling of polymer solar cell fabrication using full roll-to-roll processing.

    PubMed

    Krebs, Frederik C; Tromholt, Thomas; Jørgensen, Mikkel

    2010-06-01

    Upscaling of the manufacture of polymer solar cells is detailed with emphasis on cost analysis and practical approach. The device modules were prepared using both slot-die coating and screen printing the active layers in the form of stripes that were serially connected. The stripe width was varied and the resultant performance analysed. Wider stripes give access to higher geometric fill factors and lower aperture loss while they also present larger sheet resistive losses. An optimum was found through preparation of serially connected stripes having widths of 9, 13 and 18 mm with nominal geometric fill factors (excluding bus bars) of 50, 67 and 75% respectively. In addition modules with lengths of 6, 10, 20, 22.5 and 25 cm were explored. The devices were prepared by full roll-to-roll solution processing in a web width of 305 mm and roll lengths of up to 200 m. The devices were encapsulated with a barrier material in a full roll-to-roll process using standard adhesives giving the devices excellent stability during storage and operation. The total area of processed polymer solar cell was around 60 m2 per run. The solar cells were characterised using a roll-to-roll system comprising a solar simulator and an IV-curve tracer. After characterisation the solar cell modules were cut into sheets using a sheeting machine and contacted using button contacts applied by crimping. Based on this a detailed cost analysis was made showing that it is possible to prepare complete and contacted polymer solar cell modules on this scale at an area cost of 89 euro m(-2) and an electricity cost of 8.1 euro Wp(-1). The cost analysis was separated into the manufacturing cost, materials cost and also the capital investment required for setting up a complete production plant on this scale. Even though the cost in euro Wp(-1) is comparable to the cost for electricity using existing technologies the levelized cost of electricity (LCOE) is expected to be significantly higher than the existing

  20. Upscaling of polymer solar cell fabrication using full roll-to-roll processing

    NASA Astrophysics Data System (ADS)

    Krebs, Frederik C.; Tromholt, Thomas; Jørgensen, Mikkel

    2010-06-01

    Upscaling of the manufacture of polymer solar cells is detailed with emphasis on cost analysis and practical approach. The device modules were prepared using both slot-die coating and screen printing the active layers in the form of stripes that were serially connected. The stripe width was varied and the resultant performance analysed. Wider stripes give access to higher geometric fill factors and lower aperture loss while they also present larger sheet resistive losses. An optimum was found through preparation of serially connected stripes having widths of 9, 13 and 18 mm with nominal geometric fill factors (excluding bus bars) of 50, 67 and 75% respectively. In addition modules with lengths of 6, 10, 20, 22.5 and 25 cm were explored. The devices were prepared by full roll-to-roll solution processing in a web width of 305 mm and roll lengths of up to 200 m. The devices were encapsulated with a barrier material in a full roll-to-roll process using standard adhesives giving the devices excellent stability during storage and operation. The total area of processed polymer solar cell was around 60 m2 per run. The solar cells were characterised using a roll-to-roll system comprising a solar simulator and an IV-curve tracer. After characterisation the solar cell modules were cut into sheets using a sheeting machine and contacted using button contacts applied by crimping. Based on this a detailed cost analysis was made showing that it is possible to prepare complete and contacted polymer solar cell modules on this scale at an area cost of 89 € m-2 and an electricity cost of 8.1 € Wp-1. The cost analysis was separated into the manufacturing cost, materials cost and also the capital investment required for setting up a complete production plant on this scale. Even though the cost in € Wp-1 is comparable to the cost for electricity using existing technologies the levelized cost of electricity (LCOE) is expected to be significantly higher than the existing technologies

  1. Terminal retrograde turn of rolling rings

    NASA Astrophysics Data System (ADS)

    Jalali, Mir Abbas; Sarebangholi, Milad S.; Alam, Mohammad-Reza

    2015-09-01

    We report an unexpected reverse spiral turn in the final stage of the motion of rolling rings. It is well known that spinning disks rotate in the same direction of their initial spin until they stop. While a spinning ring starts its motion with a kinematics similar to disks, i.e., moving along a cycloidal path prograde with the direction of its rigid body rotation, the mean trajectory of its center of mass later develops an inflection point so that the ring makes a spiral turn and revolves in a retrograde direction around a new center. Using high speed imaging and numerical simulations of models featuring a rolling rigid body, we show that the hollow geometry of a ring tunes the rotational air drag resistance so that the frictional force at the contact point with the ground changes its direction at the inflection point and puts the ring on a retrograde spiral trajectory. Our findings have potential applications in designing topologically new surface-effect flying objects capable of performing complex reorientation and translational maneuvers.

  2. Progress in cold roll bonding of metals

    PubMed Central

    Li, Long; Nagai, Kotobu; Yin, Fuxing

    2008-01-01

    Layered composite materials have become an increasingly interesting topic in industrial development. Cold roll bonding (CRB), as a solid phase method of bonding same or different metals by rolling at room temperature, has been widely used in manufacturing large layered composite sheets and foils. In this paper, we provide a brief overview of a technology using layered composite materials produced by CRB and discuss the suitability of this technology in the fabrication of layered composite materials. The effects of process parameters on bonding, mainly including process and surface preparation conditions, have been analyzed. Bonding between two sheets can be realized when deformation reduction reaches a threshold value. However, it is essential to remove surface contamination layers to produce a satisfactory bond in CRB. It has been suggested that the degreasing and then scratch brushing of surfaces create a strong bonding between the layers. Bonding mechanisms, in which the film theory is expressed as the major mechanism in CRB, as well as bonding theoretical models, have also been reviewed. It has also been showed that it is easy for bcc structure metals to bond compared with fcc and hcp structure metals. In addition, hardness on bonding same metals plays an important part in CRB. Applications of composites produced by CRB in industrial fields are briefly reviewed and possible developments of CRB in the future are also described. PMID:27877949

  3. Multi-hundred kilowatt roll ring assembly

    NASA Technical Reports Server (NTRS)

    Jacobson, Peter E.

    1985-01-01

    A program was completed to develop an evaluation unit of a high power rotary transfer device for potential application in a space environment. This device was configured around a Roll Ring concept which performs the same function as a slip ring/brush assembly with a rolling instead of sliding interface. An eight circuit Evaluation Unit (EU) and a portable Test Fixture (TF) were designed and fabricated. The EU was designed to transfer currents to 200 amperes at a potential of as high as 500 volts for an ultimate 100 kW/circuit transfer capability. The EU was evaluated in vacuum at dc transfer currents of 50 to 200 amperes at voltages to 10 volts and at 500 volts at 2 amperes. Power transfer to levels of 2 kW through each of the eight circuits was completed. Power transfer in vacuum at levels and efficiencies not previously achieved was demonstrated. The terminal-to-terminal resistance was measured to be greater than 0.42 milliohms which translates to an efficiency at 100 kW of 99.98 percent. The EU and TF have been delivered to the Lewis Research Center and are being prepared tor testing at increased power levels and for life testing, which will include both dc and ac power.

  4. Precision instrumentation for rolling element bearing characterization

    SciTech Connect

    Marsh, Eric R.; Vigliano, Vincent C.; Weiss, Jeffrey R.; Moerlein, Alex W.; Vallance, R. Ryan

    2007-03-15

    This article describes an instrument to measure the error motion of rolling element bearings. This challenge is met by simultaneously satisfying four requirements. First, an axial preload must be applied to seat the rolling elements in the bearing races. Second, one of the races must spin under the influence of an applied torque. Third, rotation of the remaining race must be prevented in a way that leaves the radial, axial/face, and tilt displacements free to move. Finally, the bearing must be fixtured and measured without introducing off-axis loading or other distorting influences. In the design presented here, an air bearing reference spindle with error motion of less than 10 nm rotates the inner race of the bearing under test. Noninfluencing couplings are used to prevent rotation of the bearing outer race and apply an axial preload without distorting the bearing or influencing the measurement. Capacitive displacement sensors with 2 nm resolution target the nonrotating outer race. The error motion measurement repeatability is shown to be less than 25 nm. The article closes with a discussion of how the instrument may be used to gather data with sufficient resolution to accurately estimate the contact angle of deep groove ball bearings.

  5. Helicopter roll control effectiveness criteria program summary

    NASA Technical Reports Server (NTRS)

    Heffley, Robert K.; Bourne, Simon M.; Mnich, Marc A.

    1988-01-01

    A study of helicopter roll control effectiveness is summarized for the purpose of defining military helicopter handling qualities requirements. The study is based on an analysis of pilot-in-the-loop task performance of several basic maneuvers. This is extended by a series of piloted simulations using the NASA Ames Vertical Motion Simulator and selected flight data. The main results cover roll control power and short-term response characteristics. In general the handling qualities requirements recommended are set in conjunction with desired levels of flight task and maneuver response which can be directly observed in actual flight. An important aspect of this, however, is that vehicle handling qualities need to be set with regard to some quantitative aspect of mission performance. Specific examples of how this can be accomplished include a lateral unmask/remask maneuver in the presence of a threat and an air tracking maneuver which recognizes the kill probability enhancement connected with decreasing the range to the target. Conclusions and recommendations address not only the handling qualities recommendations, but also the general use of flight simulators and the dependence of mission performance on handling qualities.

  6. Rail roughness and rolling noise in tramways

    NASA Astrophysics Data System (ADS)

    Chiacchiari, L.; Thompson, DJ; Squicciarini, G.; Ntotsios, E.; Loprencipe, G.

    2016-09-01

    Companies which manage railway networks have to cope continually with the problem of operating safety and maintenance intervention issues related to rail surface irregularities. A lot of experience has been gained in recent years in railway applications but the case of tramways is quite different; in this field there are no specific criteria to define any intervention on rail surface restoration. This paper shows measurements carried out on some stretches of a tram network with the CAT equipment (Corrugation Analysis Trolley) for the principal purpose of detecting different states of degradation of the rails and identifying a level of deterioration to be associated with the need for maintenance through rail grinding. The measured roughness is used as an input parameter into prediction models for both rolling noise and ground vibration to show the potential effect that high levels of roughness can have in urban environment. Rolling noise predictions are also compared with noise measurements to illustrate the applicability of the modelling approach. Particular attention is given to the way the contact filter needs to be modelled in the specific case of trams that generally operate at low speed. Finally an empirical approach to assess vibration levels in buildings is presented.

  7. Progress in cold roll bonding of metals.

    PubMed

    Li, Long; Nagai, Kotobu; Yin, Fuxing

    2008-04-01

    Layered composite materials have become an increasingly interesting topic in industrial development. Cold roll bonding (CRB), as a solid phase method of bonding same or different metals by rolling at room temperature, has been widely used in manufacturing large layered composite sheets and foils. In this paper, we provide a brief overview of a technology using layered composite materials produced by CRB and discuss the suitability of this technology in the fabrication of layered composite materials. The effects of process parameters on bonding, mainly including process and surface preparation conditions, have been analyzed. Bonding between two sheets can be realized when deformation reduction reaches a threshold value. However, it is essential to remove surface contamination layers to produce a satisfactory bond in CRB. It has been suggested that the degreasing and then scratch brushing of surfaces create a strong bonding between the layers. Bonding mechanisms, in which the film theory is expressed as the major mechanism in CRB, as well as bonding theoretical models, have also been reviewed. It has also been showed that it is easy for bcc structure metals to bond compared with fcc and hcp structure metals. In addition, hardness on bonding same metals plays an important part in CRB. Applications of composites produced by CRB in industrial fields are briefly reviewed and possible developments of CRB in the future are also described.

  8. Precision instrumentation for rolling element bearing characterization.

    PubMed

    Marsh, Eric R; Vigliano, Vincent C; Weiss, Jeffrey R; Moerlein, Alex W; Vallance, R Ryan

    2007-03-01

    This article describes an instrument to measure the error motion of rolling element bearings. This challenge is met by simultaneously satisfying four requirements. First, an axial preload must be applied to seat the rolling elements in the bearing races. Second, one of the races must spin under the influence of an applied torque. Third, rotation of the remaining race must be prevented in a way that leaves the radial, axial/face, and tilt displacements free to move. Finally, the bearing must be fixtured and measured without introducing off-axis loading or other distorting influences. In the design presented here, an air bearing reference spindle with error motion of less than 10 nm rotates the inner race of the bearing under test. Noninfluencing couplings are used to prevent rotation of the bearing outer race and apply an axial preload without distorting the bearing or influencing the measurement. Capacitive displacement sensors with 2 nm resolution target the nonrotating outer race. The error motion measurement repeatability is shown to be less than 25 nm. The article closes with a discussion of how the instrument may be used to gather data with sufficient resolution to accurately estimate the contact angle of deep groove ball bearings.

  9. Terminal retrograde turn of rolling rings.

    PubMed

    Jalali, Mir Abbas; Sarebangholi, Milad S; Alam, Mohammad-Reza

    2015-09-01

    We report an unexpected reverse spiral turn in the final stage of the motion of rolling rings. It is well known that spinning disks rotate in the same direction of their initial spin until they stop. While a spinning ring starts its motion with a kinematics similar to disks, i.e., moving along a cycloidal path prograde with the direction of its rigid body rotation, the mean trajectory of its center of mass later develops an inflection point so that the ring makes a spiral turn and revolves in a retrograde direction around a new center. Using high speed imaging and numerical simulations of models featuring a rolling rigid body, we show that the hollow geometry of a ring tunes the rotational air drag resistance so that the frictional force at the contact point with the ground changes its direction at the inflection point and puts the ring on a retrograde spiral trajectory. Our findings have potential applications in designing topologically new surface-effect flying objects capable of performing complex reorientation and translational maneuvers.

  10. 40 CFR 426.30 - Applicability; description of the rolled glass manufacturing subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... rolled glass manufacturing subcategory. 426.30 Section 426.30 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS GLASS MANUFACTURING POINT SOURCE CATEGORY Rolled Glass Manufacturing Subcategory § 426.30 Applicability; description of the rolled...

  11. 40 CFR 426.30 - Applicability; description of the rolled glass manufacturing subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... rolled glass manufacturing subcategory. 426.30 Section 426.30 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS GLASS MANUFACTURING POINT SOURCE CATEGORY Rolled Glass Manufacturing Subcategory § 426.30 Applicability; description of the rolled...

  12. Study of Titanium Alloy Sheet During H-sectioned Rolling Forming Using the Taguchi Method

    SciTech Connect

    Chen, D.-C.; Gu, W.-S.; Hwang, Y.-M.

    2007-05-17

    This study employs commercial DEFORM three-dimensional finite element code to investigate the plastic deformation behavior of Ti-6Al-4V titanium alloy sheet during the H-sectioned rolling process. The simulations are based on a rigid-plastic model and assume that the upper and lower rolls are rigid bodies and that the temperature rise induced during rolling is sufficiently small that it can be ignored. The effects of the roll profile, the friction factor between the rolls and the titanium alloy, the rolling temperature and the roll radii on the rolling force, the roll torque and the effective strain induced in the rolled product are examined. The Taguchi method is employed to optimize the H-sectioned rolling process parameters. The results confirm the effectiveness of this robust design methodology in optimizing the H-sectioned rolling process parameters for the current Ti-6Al-4V titanium alloy.

  13. Simulation of rolling friction in the working stands of wide-strip mills

    NASA Astrophysics Data System (ADS)

    Garber, E. A.; Samarin, S. N.; Traino, A. I.; Ermilov, V. V.

    2007-04-01

    The energy consumed for rolling friction in the interroll contact area in the working stands of cold-rolling and pinch-pass mils intended for the production of wide steel strips has been analyzed. The coefficients and power of rolling friction are obtained for the first time using the databases of the process control systems of operating mills and simulating these quantities. A statistically reliable regression relation is obtained between the coefficient of rolling friction and the significant parameters of rolling and skin rolling (i.e., the interroll force, the roll speed, and the roll body roughness). The power fraction consumed for rolling friction is found to reach 60 80% of the total power of the main drive of working stands for skin rolling and 30 50% for cold rolling. Therefore, it is necessary to take into account these power losses in designing mills and developing technological cold-rolling conditions.

  14. An experimental study for determining human discomfort response to roll vibration

    NASA Technical Reports Server (NTRS)

    Leatherwood, J. D.; Dempsey, T. K.; Clevenson, S. A.

    1976-01-01

    An experimental study using a passenger ride quality apparatus (PRQA) was conducted to determine the subjective reactions of passengers to roll vibrations. The data obtained illustrate the effect upon human comfort of several roll-vibration parameters: namely, roll acceleration level, roll frequency, and seat location (i.e., distance from axis of rotation). Results of an analysis of variance indicated that seat location had no effect on discomfort ratings of roll vibrations. The effect of roll acceleration level was significant, and discomfort ratings increased markedly with increasing roll acceleration level at all roll frequencies investigated. Of particular interest, is the fact that the relationship between discomfort ratings and roll acceleration level was linear in nature. The effect of roll frequency also was significant as was the interaction between roll acceleration level and roll frequency.

  15. Development of Rolling Schedules for AZ31 Magnesium Alloy Sheets

    DTIC Science & Technology

    2015-06-01

    received AZ31B, a magnesium (Mg) alloy that contains approximately 3% aluminum and 1% zinc . In particular, we investigated the ability to roll AZ31B to...approximately 3% Al and 1% zinc . In particular, this effort will first investigate the ability to roll AZ31B to thicknesses of about 1.5 mm using

  16. 10. VIEW OF THE INSTALLATION OF PLUTONIUM FABRICATION ROLLING MILL. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. VIEW OF THE INSTALLATION OF PLUTONIUM FABRICATION ROLLING MILL. THE MILL ROLLED INGOTS INTO SHEETS THAT WERE THEN CUT INTO CIRCLE BLANKS TO BE PASSED THROUGH THE CENTER LINE FOR PRESSING. (2/19/63) - Rocky Flats Plant, Plutonium Fabrication, Central section of Plant, Golden, Jefferson County, CO

  17. 5. VIEW OF BERYLLIUM PROCESSING AREA, ROLLING MILL. BERYLLIUM FORMING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. VIEW OF BERYLLIUM PROCESSING AREA, ROLLING MILL. BERYLLIUM FORMING BEGAN IN SIDE A OF THE BUILDING IN 1962. (11/5/73) - Rocky Flats Plant, Uranium Rolling & Forming Operations, Southeast section of plant, southeast quadrant of intersection of Central Avenue & Eighth Street, Golden, Jefferson County, CO

  18. Silicon nitride used as a rolling-element bearing material

    NASA Technical Reports Server (NTRS)

    Parker, R. J.; Zaretsky, E. V.

    1975-01-01

    Rolling-element fatigue tests were conducted with hot-pressed silicon nitride to determine its ability to withstand concentrated contacts in rolling-element bearings. If hot-pressed silicon nitride is used for both balls and races, attention must be paid to fitting both shaft and bearing housing.

  19. Conceptualizing Rolling Motion through an Extreme Case Reasoning Approach

    ERIC Educational Resources Information Center

    Hasovic, Elvedin; Mešic, Vanes; Erceg, Nataša

    2017-01-01

    In this paper we are going to show how learning about some counterintuitive aspects of rolling motion can be facilitated by combining the use of analogies with extreme case reasoning. Specifically, the intuitively comprehensible examples of "rolling" polygonal prisms are used as an analogical anchor that is supposed to help the students…

  20. Politics Revisited: Metatextual Implications of Rock and Roll Criticism.

    ERIC Educational Resources Information Center

    McDonald, James R.

    1988-01-01

    By viewing rock lyrics as a vehicle that demands a sociopolitical response, rock and roll critics place in the hands of rock artists a responsibility that is not warranted. Particularly with regard to political messages, rock and roll should be viewed from a more individualized perspective. (BJV)

  1. Skimming the Surface: Teaching Kayak Support Strokes and Rolls.

    ERIC Educational Resources Information Center

    Higgins, Peter; Morgan, Alastair

    1997-01-01

    Teaching novice kayakers only the biomechanics of a roll and other "closed" (nonadaptable) skills does not create opportunities for flexible skill development. A wider approach teaches support strokes and rolls by focusing on "open" skills that can be transferred or adapted to any situation, including emergency decision making,…

  2. Effect of Flaw Removal on Billets in Rolling

    NASA Astrophysics Data System (ADS)

    Yoshida, Kazunari; Shinohara, Tetsuo

    2007-05-01

    High-quality wires, which are used for components such as valve springs of automobiles, are fabricated by rolling and drawing. Even a minute flaw on the surface of the wire leads to a significant decrease in fatigue strength. It is possible to decrease the number of surface flaws during some of the rolling processes; however in most cases, it is difficult to remove flaws. Under such circumstances, high-quality wires are fabricated, at many wire manufacturing factories, by rolling and drawing after removing surface flaws on the raw material. However, the flaw removal process is carried out relying on the experience of onsite workers; many of the mechanisms underlying flaw removal have not been clarified. In this study, billet and wire that have traces formed during flaw removal were subjected to rolling to investigate the behavior of deformation and the recovery of the flaw-removal traces. When flaw-removal traces exist on a billet surface that comes into contact with the roll used in rolling, the traces are removed without difficulty. However, when the flaw-removal traces exist on a surface that does not come into contact with the roll, the traces tend to become wrinkles due to compression from the upper and lower directions. Therefore, when removing the surface flaw on billet before rolling, it is important to remove flaw part thinly.

  3. Skimming the Surface: Teaching Kayak Support Strokes and Rolls.

    ERIC Educational Resources Information Center

    Higgins, Peter; Morgan, Alastair

    1997-01-01

    Teaching novice kayakers only the biomechanics of a roll and other "closed" (nonadaptable) skills does not create opportunities for flexible skill development. A wider approach teaches support strokes and rolls by focusing on "open" skills that can be transferred or adapted to any situation, including emergency decision making,…

  4. Simulation and optimization of the cold roll-forming process

    NASA Astrophysics Data System (ADS)

    Sheu, Jinn-Jong

    2004-06-01

    In this paper, the cold roll-forming process of steel was simulated. The FEM model of rollers was built in the LS-DYNA software. There are six stands used in the cold-roll-forming process simulation. The frictions of the tools were determined by the comparison of the cold-roll-forming results and the simulation deformation. Many friction conditions were tested to approach the experimental results of the forming experiments. The blanks were pushed through the rollers in the roll-forming machine. While in the simulation, the rollers were running over the fixed-end blank instead of moving the materials. The resulted motion is the same but the boundary conditions were easier to specify and control. The rolling speeds in the simulation were higher to save the calculation time but still confirm to the experiment results. The simulation results shown the axial and the shear strains were induced during the bending process of sheet metal. The thickness of the sheet metal was varied very slightly during the roll-forming process. The dimension and shape of the cold roll-formed specimens were in good agreement with the experiment results. The Taguchi method was adopted to design an optimum roll flower.

  5. Isothermal austenitization of cold-rolled steel type 08

    NASA Astrophysics Data System (ADS)

    Yatsenko, A. I.; Repina, N. I.; Ginevskaya, L. A.

    1981-12-01

    Features of isothermal austenitization for cold-rolled and annealed 08 type structural steels are not the same. Deformation during cold rolling causes a reduction in the temperature for the start of austenite formation and the transformation range is extended, but it does not have a marked effect on the temperature for the end of the process.

  6. Student Understanding of Rotational and Rolling Motion Concepts

    ERIC Educational Resources Information Center

    Rimoldini, Lorenzo G.; Singh, Chandralekha

    2005-01-01

    We investigated the common difficulties that students have with concepts related to rotational and rolling motion covered in the introductory physics courses. We compared the performance of calculus- and algebra-based introductory physics students with physics juniors who had learned rotational and rolling motion concepts in an intermediate level…

  7. High-strength rolled sections with structural anisotropy

    NASA Astrophysics Data System (ADS)

    Odesskii, P. D.; Chernenko, V. T.

    1992-08-01

    The article investigates the properties of high-strength sections .for building structures. It examines theinfluence of structural anisotropy on the operational properties of profiles of steel St3ps strengthened fromthe rolling heat on a high-speed mill. It is shown that the use of such rolled sections in industo, is promising.

  8. 16. VIEW OF A ROLLING MILL THAT WAS USED TO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. VIEW OF A ROLLING MILL THAT WAS USED TO CREATE A METAL SHEET (SHOWN). (4/16/57) - Rocky Flats Plant, Uranium Rolling & Forming Operations, Southeast section of plant, southeast quadrant of intersection of Central Avenue & Eighth Street, Golden, Jefferson County, CO

  9. Post-roll effects on attitude perception: "the Gillingham Illusion".

    PubMed

    Ercoline, W R; Devilbiss, C A; Yauch, D W; Brown, D L

    2000-05-01

    Several aircraft each year are lost because of an unexplained collision with the ground. The attitude of most of these aircraft prior to impact was nose-low and with excessive bank, i.e., greater than 90 degrees . Prior to these accidents, each aircraft was noted as either changing heading or making an abrupt roll. Could there be some underlying tendency for the pilot to make unnoticed stick inputs after completing a roll from one bank angle to another? Since ground-based flight simulators cannot create the true sensation of rolling an aircraft from one side to the other, the instrumented CALSPAN NT-33 aircraft was used for this study. Six pilots were given a series of three roll rates and two head positions while the aircraft automatically changed bank from 45 degrees of bank in one direction to 45 degrees of bank in the opposite direction. The subject's view of the external visual scene was restricted with a blue-amber vision restricting transparency combination. All attitude-indicating instruments were blanked, requiring the subjects to make stick inputs based on their vestibular (somatosensory) feedback. Subjects experienced a consistent tendency to increase bank angle after given control of the aircraft immediately following the roll maneuver, while thinking they were maintaining a constant bank angle. In some cases, the pilots rolled the aircraft completely inverted. When pilots rely on their perception of bank, following a roll, they will inadvertently increase their bank in the direction of the previous roll.

  10. New detection method for rolling element and bearing defects

    NASA Technical Reports Server (NTRS)

    Burchill, R. F.; Frarey, J. L.

    1972-01-01

    Instrument for detecting defects in rolling elements of bearings is described. Detection depends on rate at which rolling elements impact defect and establishes envelope amplitude of ball resonant frequency. Block diagram of instrument is provided and results obtained in conducting tests are reported.

  11. Large transient fault current test of an electrical roll ring

    NASA Technical Reports Server (NTRS)

    Yenni, Edward J.; Birchenough, Arthur G.

    1992-01-01

    The space station uses precision rotary gimbals to provide for sun tracking of its photoelectric arrays. Electrical power, command signals and data are transferred across the gimbals by roll rings. Roll rings have been shown to be capable of highly efficient electrical transmission and long life, through tests conducted at the NASA Lewis Research Center and Honeywell's Satellite and Space Systems Division in Phoenix, AZ. Large potential fault currents inherent to the power system's DC distribution architecture, have brought about the need to evaluate the effects of large transient fault currents on roll rings. A test recently conducted at Lewis subjected a roll ring to a simulated worst case space station electrical fault. The system model used to obtain the fault profile is described, along with details of the reduced order circuit that was used to simulate the fault. Test results comparing roll ring performance before and after the fault are also presented.

  12. Rolling-contact deformation of MgO single crystals

    NASA Technical Reports Server (NTRS)

    Dufrane, K. F.; Glaeser, W. A.

    1976-01-01

    Magnesium oxide single crystals were used as a model bearing material and deformed by rolling contact with a steel ball 0.64 cm in diameter. A dependence of depth of slip on rolling velocity which persisted with increasing numbers of rolling-contact cycles was discovered. The track width, track hardness and dislocation interactions as observed by transmission electron microscopy all increased in a consistent manner with increasing cycles. The rolling-contact state of stress produces a high density of dislocations in a localized zone. Dislocation interaction in this zone produces cleavage-type cracks after a large number of rolling-contact cycles. The orientation of the crystal influences the character of dislocation accumulation.

  13. Exceptional transport property in a rolled-up germanium tube

    NASA Astrophysics Data System (ADS)

    Guo, Qinglei; Wang, Gang; Chen, Da; Li, Gongjin; Huang, Gaoshan; Zhang, Miao; Wang, Xi; Mei, Yongfeng; Di, Zengfeng

    2017-03-01

    Tubular germanium (Ge) resistors are demonstrated by rolling-up thin Ge nanomembranes (NMs, 50 nm in thickness) with electrical contacts. The strain distribution of rolled-up Ge microtubes along the radial direction is investigated and predicted by utilizing micro-Raman scattering spectroscopy with two different excitation lasers. Electrical properties are characterized for both unreleased GeNMs and released/rolled-up Ge microtubes. The conductivities of GeNMs significantly decrease after rolling-up into tubular structures, which can be attributed to surface charging states on the conductance, band bending, and piezo-resistance effect. When illuminated with a light source, facilitated by the suppressed dark current of rolled-up Ge tubes, the corresponding signal-to-noise ratio can be dramatically enhanced compared with that of planar GeNMs.

  14. Calendering and Rolling of Viscoplastic Materials: Theory and Experiments

    NASA Astrophysics Data System (ADS)

    Mitsoulis, E.; Sofou, S.; Muliawan, E. B.; Hatzikiriakos, S. G.

    2007-04-01

    The calendering and rolling processes are used in a wide variety of industries for the production of rolled sheets or films of specific thickness and final appearance. The acquired final sheet thickness depends mainly on the rheological properties of the material. Materials which have been used in the present study are foodstuff (such as mozzarella cheese and flour-water dough) used in food processing. These materials are rheologically viscoplastic, obeying the Herschel-Bulkley model. The results give the final sheet thickness and the torque as a function of the roll speed. Theoretical analysis based on the Lubrication Approximation Theory (LAT) shows that LAT is a good predictive tool for calendering, where the sheet thickness is very small compared with the roll size. However, in rolling where this is not true, LAT does not hold, and a 2-D analysis is necessary.

  15. Molecular cytogenetic characterization of a new leaf rolling triticale.

    PubMed

    Yang, E N; Yang, Z J; Zhang, J F; Zou, Y C; Ren, Z L

    2011-11-29

    Leaf rolling occurs in some cereal genotypes in response to drought. We identified and made a phenotypic, cytological and physiological analysis of a leaf-rolling genotype (CMH83) of hexaploid triticale (X Triticosecale Wittmack) that exhibited reduced plant height, rolled and narrow leaves. Gliadin electrophoresis of seed protein showed that CMH83 was genetically stable. Sequential Giemsa-C-banding and genomic in situ hybridization showed that CMH83 contains 12 rye chromosomes; two pairs of these chromosomes have reduced telomeric heterochromatin bands. Tests of relative water content and water loss rate of leaves of CMH83 compared with those of wheat cultivars indicated that rapid water loss after drought stress in CMH83 is associated with the leaf rolling phenotypes. Leaf rolling in CMH83 was a dominant trait in our inheritance studies. Triticale line CMH83 could be used to study drought resistance mechanisms in triticale.

  16. Ground roll attenuation using non-stationary matching filtering

    NASA Astrophysics Data System (ADS)

    Jiao, Shebao; Chen, Yangkang; Bai, Min; Yang, Wencheng; Wang, Erying; Gan, Shuwei

    2015-12-01

    Conventional approaches based on adaptive subtraction for ground roll attenuation first predict an initial model for ground rolls and then adaptively subtract it from the original data using a stationary matching filter (MF). Because of the non-stationary property of seismic data and ground rolls, the application of a traditional stationary MF is not physically plausible. Thus, in the case of highly non-stationary seismic reflections and ground rolls, a stationary MF cannot obtain satisfactory results. In this paper, we apply a non-stationary matching filter (NMF) to adaptively subtract the ground rolls. The NMF can be obtained by solving a highly under-determined inversion problem using non-stationary autoregression. We apply the proposed approach to one synthetic example and two field data examples, and demonstrate a much improved performance compared with the traditional MF approach.

  17. Researching on Rolling Technology of Q460E Plate

    NASA Astrophysics Data System (ADS)

    Meng, Yanjun; Wang, Bing; Liu, Yanxia; Chen, Ming; Dong, Zhongqi

    2017-06-01

    The production process of 3 kinds of Q460E medium and heavy plate produced was studied by controlled cooling rolling process. Results show: that were used in two stage preheating and two stage controlled rolling. The first stage is rolling in the austenite recrystallization zone, and the temperature of the billet is 1050 to 1100 °C, and the reduction rate is more than 10%; The second stage is rolling in austenite non recrystallization, the rolling temperature is less than or equal to 950 °C, the finishing temperature is 860 to 790 °C, until the temperature after the cumulative reduction ratio is more than 50%, more than 12% times the rate of deformation; The laminar cooling is used, so that the steel has good toughness

  18. Truck Roll Stability Data Collection and Analysis

    SciTech Connect

    Stevens, SS

    2001-07-02

    The principal objective of this project was to collect and analyze vehicle and highway data that are relevant to the problem of truck rollover crashes, and in particular to the subset of rollover crashes that are caused by the driver error of entering a curve at a speed too great to allow safe completion of the turn. The data are of two sorts--vehicle dynamic performance data, and highway geometry data as revealed by vehicle behavior in normal driving. Vehicle dynamic performance data are relevant because the roll stability of a tractor trailer depends both on inherent physical characteristics of the vehicle and on the weight and distribution of the particular cargo that is being carried. Highway geometric data are relevant because the set of crashes of primary interest to this study are caused by lateral acceleration demand in a curve that exceeds the instantaneous roll stability of the vehicle. An analysis of data quality requires an evaluation of the equipment used to collect the data because the reliability and accuracy of both the equipment and the data could profoundly affect the safety of the driver and other highway users. Therefore, a concomitant objective was an evaluation of the performance of the set of data-collection equipment on the truck and trailer. The objective concerning evaluation of the equipment was accomplished, but the results were not entirely positive. Significant engineering apparently remains to be done before a reliable system can be fielded. Problems were identified with the trailer to tractor fiber optic connector used for this test. In an over-the-road environment, the communication between the trailer instrumentation and the tractor must be dependable. In addition, the computer in the truck must be able to withstand the rigors of the road. The major objective--data collection and analysis--was also accomplished. Using data collected by instruments on the truck, a ''bad-curve'' database can be generated. Using this database

  19. Effective parameters in ground roll attenuation using FO CRS stacking

    NASA Astrophysics Data System (ADS)

    Rastegar, Seyyed Ali Fa'al; Javaherian, Abdolrahim; Farajkhah, Naser Keshavarz; Monfared, Mehrdad Soleimani; Zarei, Abbas

    2016-12-01

    Ground roll is a coherent noise in land seismic data that has high energy, high amplitude, low frequency and low velocity. It has to be attenuated in the seismic data processing as it may mask reflections in the zone of ground roll. In this study, we employed common reflection surface for finite offset (FO CRS) to attenuate the ground roll. The FO CRS stacking operator is a hyperbola; therefore, it fits the hyperbolic reflections in the prestack data. Conversely, the ground roll is linear in the common-midpoint (CMP) and common-shot (CS) gathers and can be distinguished and attenuated by the FO CRS operator. Thus, we search for the dip and curvature of the reflections in the CMP section and CS gather prior to the finite-offset section. When the algorithm is specified, the ground roll and reflections have low and high coherency values, respectively. So, any event with non-hyperbolic traveltime, like the linear traveltime ground roll can be removed. We applied the proposed method on a synthetic and an oilfield data from the west of Iran. Results showed that the FO CRS stacking method properly attenuated the ground roll. Further investigations were the effects of spatial aliasing, frequency content, random noise, ground roll dip, the range of dip and curvature scans and reflection amplitudes on ground roll attenuation by the FO CRS stacking. From mentioned parameters, spatial aliasing, frequency content, and random noise had no significant effects. On the contrary, the proposed method turned out to be strongly dependent upon ground roll dip, the range of dip and curvature scans and reflection amplitudes.

  20. Effect of Rolling Massage on the Vortex Flow in Blood Vessels with Lattice Boltzmann Simulation

    NASA Astrophysics Data System (ADS)

    Yi, Hou Hui

    The rolling massage manipulation is a classic Chinese Medical Massage, which is a nature therapy in eliminating many diseases. Here, the effect of the rolling massage on the cavity flows in blood vessel under the rolling manipulation is studied by the lattice Boltzmann simulation. The simulation results show that the vortex flows are fully disturbed by the rolling massage. The flow behavior depends on the rolling velocity and the rolling depth. Rolling massage has a better effect on the flows in the cavity than that of the flows in a planar blood vessel. The result is helpful to understand the mechanism of the massage and develop the rolling techniques.

  1. Compressibility of tungsten and molybdenum bars during rotary swaging and rolling

    NASA Astrophysics Data System (ADS)

    Barkov, L. A.; Mymrin, S. A.; Samodurova, M. N.; Dzhigun, N. S.; Latfulina, Yu. S.

    2015-05-01

    The compressibility of bars and hydraulically forged workpieces made of tungsten and molybdenum is studied during rotary swaging and rolling in mills with two-, three-, and four-roll passes. The compressibility of molybdenum MCh bars and hydraulically forged molybdenum M-MP workpieces is investigated during rotary swaging and rolling in three- and four-roll passes. The compressibility of tungsten VA and VL bars and hydraulically forged tungsten V-MP workpieces is investigated during rotary swaging and rolling in three- and four-roll passes. The compressibility of the hydraulically forged tungsten V-MP workpieces is analyzed under two- and four-roll pass rolling conditions.

  2. The thermal and metallurgical state of steel strip during hot rolling: Part II. Factors influencing rolling loads

    NASA Astrophysics Data System (ADS)

    Devadas, C.; Baragar, D.; Ruddle, G.; Samarasekera, I. V.; Hawbolt, E. B.

    1991-02-01

    Traditional models for computing roll forces during hot rolling generally ignore the steep thermal gradients set up in the through-thickness direction due to roll chilling and deformation heat. In this paper, Alexander’s model has been modified to account for the effect of thermal gradients on roll forces. Flow stress data have been obtained by conducting tests on a cam plastometer and a Gleeble 1500 for a 0.05 pct carbon, a 0.34 pct carbon, and a 0.07 pct carbon with 0.024 pct niobium steel for temperatures and strain rates attained in each of the stands on Stelco’s Lake Erie Works (LEW) hot-strip mill. The hyperbolic sine equation has been shown to fit the data and is capable of predicting flow stress over a range of temperatures and strain rates. Simulations of the industrial operation have been conducted on the pilot mill at CANMET, and it has been shown by comparing predicted and measured roll forces that the friction coefficient is reduced from 0.3 to ˜R 0.35 to 0.25 in the presence of a lubricant. It has also been shown that incorporating the steep thermal gradients in the roll-bite zone increases predicted roll forces by 6 to ˜R 10 pct over the values computed based on centerline temperatures. The model has been validated also by comparing predictions with roll forces measured on the industrial mill.

  3. Planarization coating for polyimide substrates used in roll-to-roll fabrication of active matrix backplanes for flexible displays

    NASA Astrophysics Data System (ADS)

    Almanza-Workman, A. Marcia; Jeans, Albert; Braymen, Steve; Elder, Richard E.; Garcia, Robert A.; de la Fuente Vornbrock, Alejandro; Hauschildt, Jason; Holland, Edward; Jackson, Warren; Jam, Mehrban; Jeffrey, Frank; Junge, Kelly; Kim, Han-Jun; Kwon, Ohseung; Larson, Don; Luo, Hao; Maltabes, John; Mei, Ping; Perlov, Craig; Smith, Mark; Stieler, Dan; Taussig, Carl P.; Trovinger, Steve; Zhao, Lihua

    2012-03-01

    Good surface quality of plastic substrates is essential to reduce pixel defects during roll-to-roll fabrication of flexible display active matrix backplanes. Standard polyimide substrates have a high density of "bumps" from fillers and belt marks and other defects from dust and surface scratching. Some of these defects could be the source of shunts in dielectrics. The gate dielectric must prevent shorts between the source/drain and the gate in the transistors, resist shorts in the hold capacitor and stop shorts in the data/gate line crossovers in active matrix backplanes fabricated by self-aligned imprint lithography (SAIL) roll-to-roll processes. Otherwise data and gate lines will become shorted creating line or pixel defects. In this paper, we discuss the development of a proprietary UV curable planarization material that can be coated by roll-to-roll processes. This material was engineered to have low shrinkage, excellent adhesion to polyimide, high dry etch resistance, and great chemical and thermal stability. Results from PECVD deposition of an amorphous silicon stack on the planarized polyimide and compatibility with roll-to-roll processes to fabricate active matrix backplanes are also discussed. The effect of the planarization on defects in the stack, shunts in the dielectric and curvature of finished arrays will also be described.

  4. 77 FR 32513 - Hot-Rolled Flat-Rolled Carbon-Quality Steel Products From the Russian Federation; Preliminary...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-01

    ... International Trade Administration Hot-Rolled Flat-Rolled Carbon-Quality Steel Products From the Russian... Steel Products from the Russian Federation. SUMMARY: In response to a request from Nucor Corporation... Carbon-Quality Steel Products from the Russian Federation (``the Agreement'') for the period July 1, 2010...

  5. Flexure-based Roll-to-roll Platform: A Practical Solution for Realizing Large-area Microcontact Printing

    PubMed Central

    Zhou, Xi; Xu, Huihua; Cheng, Jiyi; Zhao, Ni; Chen, Shih-Chi

    2015-01-01

    A continuous roll-to-roll microcontact printing (MCP) platform promises large-area nanoscale patterning with significantly improved throughput and a great variety of applications, e.g. precision patterning of metals, bio-molecules, colloidal nanocrystals, etc. Compared with nanoimprint lithography, MCP does not require a thermal imprinting step (which limits the speed and material choices), but instead, extreme precision with multi-axis positioning and misalignment correction capabilities for large area adaptation. In this work, we exploit a flexure-based mechanism that enables continuous MCP with 500 nm precision and 0.05 N force control. The fully automated roll-to-roll platform is coupled with a new backfilling MCP chemistry optimized for high-speed patterning of gold and silver. Gratings of 300, 400, 600 nm line-width at various locations on a 4-inch plastic substrate are fabricated at a speed of 60 cm/min. Our work represents the first example of roll-to-roll MCP with high reproducibility, wafer scale production capability at nanometer resolution. The precision roll-to-roll platform can be readily applied to other material systems. PMID:26037147

  6. Noncontact conductivity and dielectric measurement for high throughput roll-to-roll nanomanufacturing

    NASA Astrophysics Data System (ADS)

    Orloff, Nathan D.; Long, Christian J.; Obrzut, Jan; Maillaud, Laurent; Mirri, Francesca; Kole, Thomas P.; McMichael, Robert D.; Pasquali, Matteo; Stranick, Stephan J.; Alexander Liddle, J.

    2015-11-01

    Advances in roll-to-roll processing of graphene and carbon nanotubes have at last led to the continuous production of high-quality coatings and filaments, ushering in a wave of applications for flexible and wearable electronics, woven fabrics, and wires. These applications often require specific electrical properties, and hence precise control over material micro- and nanostructure. While such control can be achieved, in principle, by closed-loop processing methods, there are relatively few noncontact and nondestructive options for quantifying the electrical properties of materials on a moving web at the speed required in modern nanomanufacturing. Here, we demonstrate a noncontact microwave method for measuring the dielectric constant and conductivity (or geometry for samples of known dielectric properties) of materials in a millisecond. Such measurement times are compatible with current and future industrial needs, enabling real-time materials characterization and in-line control of processing variables without disrupting production.

  7. Noncontact conductivity and dielectric measurement for high throughput roll-to-roll nanomanufacturing.

    PubMed

    Orloff, Nathan D; Long, Christian J; Obrzut, Jan; Maillaud, Laurent; Mirri, Francesca; Kole, Thomas P; McMichael, Robert D; Pasquali, Matteo; Stranick, Stephan J; Liddle, J Alexander

    2015-11-23

    Advances in roll-to-roll processing of graphene and carbon nanotubes have at last led to the continuous production of high-quality coatings and filaments, ushering in a wave of applications for flexible and wearable electronics, woven fabrics, and wires. These applications often require specific electrical properties, and hence precise control over material micro- and nanostructure. While such control can be achieved, in principle, by closed-loop processing methods, there are relatively few noncontact and nondestructive options for quantifying the electrical properties of materials on a moving web at the speed required in modern nanomanufacturing. Here, we demonstrate a noncontact microwave method for measuring the dielectric constant and conductivity (or geometry for samples of known dielectric properties) of materials in a millisecond. Such measurement times are compatible with current and future industrial needs, enabling real-time materials characterization and in-line control of processing variables without disrupting production.

  8. Roll-to-roll fabrication and metastability in metal oxide transistors

    NASA Astrophysics Data System (ADS)

    Jackson, Warren B.; Kim, Han-Jun; Kwon, Ohseung; Yeh, Bao; Hoffman, Randy; Mourey, Devin; Koch, Tim; Taussig, Carl; Elder, Richard; Jeans, Albert

    2011-03-01

    A roll-to-roll process is used to fabricate amorphous silicon and amorphous multicomponent oxide (MCO) transistors on flexible substrates using self aligned imprint lithography (SAIL). SAIL solves the layer to layer alignment problem. The imprint lithography patterned MCO transistors had a mobility of 15 cm2V-1 sec-1 and an on-off ratio of 107. Full display arrays with data, gate, hold capacitors and cross-overs were patterned using SAIL technology. Studies of stability of the MCO transistors indicate the importance of controlling O vacancies in the material particularly the back channel. Devices subjected to -10V gate bias stress at 60C under illumination exhibited behavior consistent with state creation in the upper and lower half of the gap near the back channel interface possibly associated with O vacancy formation.

  9. Cotton-textile-enabled flexible self-sustaining power packs via roll-to-roll fabrication

    PubMed Central

    Gao, Zan; Bumgardner, Clifton; Song, Ningning; Zhang, Yunya; Li, Jingjing; Li, Xiaodong

    2016-01-01

    With rising energy concerns, efficient energy conversion and storage devices are required to provide a sustainable, green energy supply. Solar cells hold promise as energy conversion devices due to their utilization of readily accessible solar energy; however, the output of solar cells can be non-continuous and unstable. Therefore, it is necessary to combine solar cells with compatible energy storage devices to realize a stable power supply. To this end, supercapacitors, highly efficient energy storage devices, can be integrated with solar cells to mitigate the power fluctuations. Here, we report on the development of a solar cell-supercapacitor hybrid device as a solution to this energy requirement. A high-performance, cotton-textile-enabled asymmetric supercapacitor is integrated with a flexible solar cell via a scalable roll-to-roll manufacturing approach to fabricate a self-sustaining power pack, demonstrating its potential to continuously power future electronic devices. PMID:27189776

  10. Thermoresistive strain sensor and positioning method for roll-to-roll processes.

    PubMed

    Liao, Kuan-Hsun; Lo, Cheng-Yao

    2014-05-05

    This study uses the Joule heating effect-generated temperature difference to monitor in real-time and localize both compressive and tensile strains for the polymer substrates used in the roll-to-roll process. A serpentine gold (Au) line was patterned on a polyethylenenaphthalate (PEN) substrate to form the strain sensor based on thermoresistive behavior. This strain sensor was then subjected to either current or voltage to induce the Joule heating effect on the Au resistor. An infrared (IR) detector was used to monitor the strain-induced temperature difference on the Au and PEN surfaces and the minimal detectable bending radius was 0.9 mm with a gauge factor (GF) of 1.46. The proposed design eliminates the judgment ambiguity from conventional resistive strain sensors where resistance is the only physical quantity monitored. This study precisely and successfully indicated the local strain quantitatively and qualitatively with complete simulations and measurements.

  11. Cotton-textile-enabled flexible self-sustaining power packs via roll-to-roll fabrication

    NASA Astrophysics Data System (ADS)

    Gao, Zan; Bumgardner, Clifton; Song, Ningning; Zhang, Yunya; Li, Jingjing; Li, Xiaodong

    2016-05-01

    With rising energy concerns, efficient energy conversion and storage devices are required to provide a sustainable, green energy supply. Solar cells hold promise as energy conversion devices due to their utilization of readily accessible solar energy; however, the output of solar cells can be non-continuous and unstable. Therefore, it is necessary to combine solar cells with compatible energy storage devices to realize a stable power supply. To this end, supercapacitors, highly efficient energy storage devices, can be integrated with solar cells to mitigate the power fluctuations. Here, we report on the development of a solar cell-supercapacitor hybrid device as a solution to this energy requirement. A high-performance, cotton-textile-enabled asymmetric supercapacitor is integrated with a flexible solar cell via a scalable roll-to-roll manufacturing approach to fabricate a self-sustaining power pack, demonstrating its potential to continuously power future electronic devices.

  12. Noncontact conductivity and dielectric measurement for high throughput roll-to-roll nanomanufacturing

    PubMed Central

    Orloff, Nathan D.; Long, Christian J.; Obrzut, Jan; Maillaud, Laurent; Mirri, Francesca; Kole, Thomas P.; McMichael, Robert D.; Pasquali, Matteo; Stranick, Stephan J.; Alexander Liddle, J.

    2015-01-01

    Advances in roll-to-roll processing of graphene and carbon nanotubes have at last led to the continuous production of high-quality coatings and filaments, ushering in a wave of applications for flexible and wearable electronics, woven fabrics, and wires. These applications often require specific electrical properties, and hence precise control over material micro- and nanostructure. While such control can be achieved, in principle, by closed-loop processing methods, there are relatively few noncontact and nondestructive options for quantifying the electrical properties of materials on a moving web at the speed required in modern nanomanufacturing. Here, we demonstrate a noncontact microwave method for measuring the dielectric constant and conductivity (or geometry for samples of known dielectric properties) of materials in a millisecond. Such measurement times are compatible with current and future industrial needs, enabling real-time materials characterization and in-line control of processing variables without disrupting production. PMID:26592441

  13. Roll-to-Roll Production of Spray Coated N-doped Carbon Nanotube Electrodes for Supercapacitors

    NASA Astrophysics Data System (ADS)

    Karakaya, Mehmet; Zhu, Jingyi; Raghavendra, Achyut; Podila, Ramakrishna; Parler, Samuel; Kaplan, James; Rao, Apparao; Cornell Dubilier Electronics, Inc. Collaboration

    2015-03-01

    Although nanocarbons are being increasingly used in energy storage, there has been a lack of inexpensive, continuous and scalable synthesis methods. Here we present a scalable roll-to-roll spray coating process for synthesizing supercapacitors from randomly oriented multi-walled carbon nanotubes electrodes on Al foils, which yield high power and energy densities (~ 700 mW/cm3 and 1 mWh/cm3) and cycle stability (>10000 cycles) on par with Li-ion thin film batteries. Our cost analysis shows that the R2R spray coating process can produce supercapacitors with 10 times the energy density of conventional activated carbon devices at ~ 17% lower cost. NSF CMMI SNM Award #1246800.

  14. Cotton-textile-enabled flexible self-sustaining power packs via roll-to-roll fabrication.

    PubMed

    Gao, Zan; Bumgardner, Clifton; Song, Ningning; Zhang, Yunya; Li, Jingjing; Li, Xiaodong

    2016-05-18

    With rising energy concerns, efficient energy conversion and storage devices are required to provide a sustainable, green energy supply. Solar cells hold promise as energy conversion devices due to their utilization of readily accessible solar energy; however, the output of solar cells can be non-continuous and unstable. Therefore, it is necessary to combine solar cells with compatible energy storage devices to realize a stable power supply. To this end, supercapacitors, highly efficient energy storage devices, can be integrated with solar cells to mitigate the power fluctuations. Here, we report on the development of a solar cell-supercapacitor hybrid device as a solution to this energy requirement. A high-performance, cotton-textile-enabled asymmetric supercapacitor is integrated with a flexible solar cell via a scalable roll-to-roll manufacturing approach to fabricate a self-sustaining power pack, demonstrating its potential to continuously power future electronic devices.

  15. Roll-to-roll anodization and etching of aluminum foils for high-throughput surface nanotexturing.

    PubMed

    Lee, Min Hyung; Lim, Namsoo; Ruebusch, Daniel J; Jamshidi, Arash; Kapadia, Rehan; Lee, Rebecca; Seok, Tae Joon; Takei, Kuniharu; Cho, Kee Young; Fan, Zhiyoung; Jang, Hwanung; Wu, Ming; Cho, Gyoujin; Javey, Ali

    2011-08-10

    A high-throughput process for nanotexturing of hard and soft surfaces based on the roll-to-roll anodization and etching of low-cost aluminum foils is presented. The process enables the precise control of surface topography, feature size, and shape over large areas thereby presenting a highly versatile platform for fabricating substrates with user-defined, functional performance. Specifically, the optical and surface wetting properties of the foil substrates were systematically characterized and tuned through the modulation of the surface texture. In addition, textured aluminum foils with pore and bowl surface features were used as zeptoliter reaction vessels for the well-controlled synthesis of inorganic, organic, and plasmonic nanomaterials, demonstrating yet another powerful potential use of the presented approach.

  16. Growth of continuous graphene by open roll-to-roll chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Zhong, Guofang; Wu, Xingyi; D'Arsie, Lorenzo; Teo, Kenneth B. K.; Rupesinghe, Nalin L.; Jouvray, Alex; Robertson, John

    2016-11-01

    We demonstrate the growth of high-quality, continuous monolayer graphene on Cu foils using an open roll-to-roll (R2R) chemical vapor deposition (CVD) reactor with both static and moving foil growth conditions. N2 instead of Ar was used as carrier gas to reduce process cost, and the concentrations of H2 and CH4 reactants were kept below the lower explosive limit to ensure process safety for reactor ends open to ambient. The carrier mobility of graphene deposited at a Cu foil winding speed of 5 mm/min was 5270-6040 cm2 V-1 s-1 at room temperature (on 50 μm × 50 μm Hall devices). These results will enable the inline integration of graphene CVD for industrial R2R production.

  17. Thermoresistive Strain Sensor and Positioning Method for Roll-to-Roll Processes

    PubMed Central

    Liao, Kuan-Hsun; Lo, Cheng-Yao

    2014-01-01

    This study uses the Joule heating effect-generated temperature difference to monitor in real-time and localize both compressive and tensile strains for the polymer substrates used in the roll-to-roll process. A serpentine gold (Au) line was patterned on a polyethylenenaphthalate (PEN) substrate to form the strain sensor based on thermoresistive behavior. This strain sensor was then subjected to either current or voltage to induce the Joule heating effect on the Au resistor. An infrared (IR) detector was used to monitor the strain-induced temperature difference on the Au and PEN surfaces and the minimal detectable bending radius was 0.9 mm with a gauge factor (GF) of 1.46. The proposed design eliminates the judgment ambiguity from conventional resistive strain sensors where resistance is the only physical quantity monitored. This study precisely and successfully indicated the local strain quantitatively and qualitatively with complete simulations and measurements. PMID:24803196

  18. Investigation of pattern transfer to piezoelectric jetted polymer using roll-to-roll nanoimprint lithography

    NASA Astrophysics Data System (ADS)

    Menezes, Shannon John

    Nanoimprint Lithography (NIL) has existed since the mid 1990s as a proven concept of creating micro- and nanostructures using direct mechanical pattern transfer. Initially seen as a viable option to replace conventional lithography methods, the lack of technology to support large-scale manufacturing using NIL has motivated researchers to explore the application of NIL to create a better, more cost-efficient process with the ability to integrate NIL into a mass manufacturing system. One such method is the roll-to-roll process, similar to that used in printing presses of newspapers and plastics. This thesis is an investigation to characterize polymer deposition using a piezoelectric jetting head and attempt to create micro- and nanostructures on the polymer using R2RNIL technique.

  19. Adaptive Prognostics for Rolling Element Bearing Condition

    NASA Astrophysics Data System (ADS)

    Li, Y.; Billington, S.; Zhang, C.; Kurfess, T.; Danyluk, S.; Liang, S.

    1999-01-01

    Rolling element bearing failure is one of the foremost causes of breakdown in rotating machinery. This paper proposes a remaining life adaptation methodology based on mechanistic modeling and parameter tuning. Vibration measurement is used to estimate defect severity by monitoring the signals generated from rotating bearings. Through a defect propagation model and defect diagnostic model, an adaptive algorithm is developed to fine tune the parameters involved in the propagation model by comparing predicted and measured defect sizes. In this manner, the instantaneous rate of defect propagation can be captured despite defect growth behavior variation. Therefore, a precise estimation of the remaining life can be determined. Simulations and experimental results are presented to illustrate the implementation principles and to verify the applicability of the adaptive prognostic methodology.

  20. Roll up nanowire battery from silicon chips

    PubMed Central

    Vlad, Alexandru; Reddy, Arava Leela Mohana; Ajayan, Anakha; Singh, Neelam; Gohy, Jean-François; Melinte, Sorin; Ajayan, Pulickel M.

    2012-01-01

    Here we report an approach to roll out Li-ion battery components from silicon chips by a continuous and repeatable etch-infiltrate-peel cycle. Vertically aligned silicon nanowires etched from recycled silicon wafers are captured in a polymer matrix that operates as Li+ gel-electrolyte and electrode separator and peeled off to make multiple battery devices out of a single wafer. Porous, electrically interconnected copper nanoshells are conformally deposited around the silicon nanowires to stabilize the electrodes over extended cycles and provide efficient current collection. Using the above developed process we demonstrate an operational full cell 3.4 V lithium-polymer silicon nanowire (LIPOSIL) battery which is mechanically flexible and scalable to large dimensions. PMID:22949696

  1. Controlled Microwave Heating Accelerates Rolling Circle Amplification.

    PubMed

    Yoshimura, Takeo; Suzuki, Takamasa; Mineki, Shigeru; Ohuchi, Shokichi

    2015-01-01

    Rolling circle amplification (RCA) generates single-stranded DNAs or RNA, and the diverse applications of this isothermal technique range from the sensitive detection of nucleic acids to analysis of single nucleotide polymorphisms. Microwave chemistry is widely applied to increase reaction rate as well as product yield and purity. The objectives of the present research were to apply microwave heating to RCA and indicate factors that contribute to the microwave selective heating effect. The microwave reaction temperature was strictly controlled using a microwave applicator optimized for enzymatic-scale reactions. Here, we showed that microwave-assisted RCA reactions catalyzed by either of the four thermostable DNA polymerases were accelerated over 4-folds compared with conventional RCA. Furthermore, the temperatures of the individual buffer components were specifically influenced by microwave heating. We concluded that microwave heating accelerated isothermal RCA of DNA because of the differential heating mechanisms of microwaves on the temperatures of reaction components, although the overall reaction temperatures were the same.

  2. Modeling of rolling element bearing mechanics

    NASA Technical Reports Server (NTRS)

    Greenhill, L. M.

    1991-01-01

    Roller element bearings provide the primary mechanical interface between rotating and nonrotating components in the high performance turbomachinery of the Space Shuttle Main Engine (SSME). Knowledge of bearing behavior under various loading and environmental conditions is essential to predicting and understanding the overall behavior of turbopumps, including rotordynamic stability, critical speeds and bearing life. The objective is to develop mathematical models and computer programs to describe the mechanical behavior of ball and cylinder roller bearings under the loading and environmental conditions encountered in the SSME and future high performance rocket engines. This includes characteristics such as nonlinear load/motion relationships, stiffness and damping, rolling element loads for life prediction, and roller and cage stability.

  3. Roll up nanowire battery from silicon chips.

    PubMed

    Vlad, Alexandru; Reddy, Arava Leela Mohana; Ajayan, Anakha; Singh, Neelam; Gohy, Jean-François; Melinte, Sorin; Ajayan, Pulickel M

    2012-09-18

    Here we report an approach to roll out Li-ion battery components from silicon chips by a continuous and repeatable etch-infiltrate-peel cycle. Vertically aligned silicon nanowires etched from recycled silicon wafers are captured in a polymer matrix that operates as Li(+) gel-electrolyte and electrode separator and peeled off to make multiple battery devices out of a single wafer. Porous, electrically interconnected copper nanoshells are conformally deposited around the silicon nanowires to stabilize the electrodes over extended cycles and provide efficient current collection. Using the above developed process we demonstrate an operational full cell 3.4 V lithium-polymer silicon nanowire (LIPOSIL) battery which is mechanically flexible and scalable to large dimensions.

  4. Gigantic Rolling Wave Captured on the Sun

    NASA Image and Video Library

    2017-09-27

    A coronal mass ejection (CME) erupted from just around the edge of the sun on May 1, 2013, in a gigantic rolling wave. CMEs can shoot over a billion tons of particles into space at over a million miles per hour. This CME occurred on the sun’s limb and is not headed toward Earth. The video (seen here: bit.ly/103whUl), taken in extreme ultraviolet light by NASA’s Solar Dynamics Observatory (SDO), covers about two and a half hours. Credit: NASA/Goddard/SDO NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  5. Fatigue and material response in rolling contact

    SciTech Connect

    Voskamp, A.P.

    1998-12-31

    Metal softening, induced during the so-called third stage of material response to rolling contact loading, increases the probability of spalling fatigue failure. Metal softening in the most heavily loaded subsurface region leads to micro-plastic deformation noticeable from the occurrence of microstructural change. The probability of crack initiation increases with the growth of the plastically deformed subsurface region. Subsequent crack growth in that region is stimulated by the induced residual stress and texture. Fatigue failure in modern clean bearing steel develops only when the material has reached the third stage. The threshold to the third stage can be determined, and thus fatigue life can be assessed from observations of microstructural change. Examples are discussed of observed reduction of the ferrite (211) diffraction-line width in relation to observed endurance.

  6. Rolling element fatigue testing of gear materials

    NASA Technical Reports Server (NTRS)

    Nahm, A. H.

    1978-01-01

    Rolling element fatigue lives of eleven alloys were evaluated. The eleven alloys studied were three nitriding alloys (Super Nitralloy, Nitralloy 135, and Nitralloy N), four case carburizing alloys (AISI 9310, CBS 600, CBS 1000M and Vasco X-2), and four throughhardening alloys (Vasco Matrix II,AISI W-1, AISI S-2 and AISI O-2). Several different heat treatments and/or melting processes were studied on the three carburizing alloy steels. Metallurgical analyses were made before and after the RC rig tests. Test data were statistically analyzed using the Weibull distribution function. B-10 lives were compared versus VIM-VAR AISI M-50 and carburized VAR AISI 9310, as reference alloys.

  7. Mars aerocapture using continuous roll techniques

    NASA Astrophysics Data System (ADS)

    Willcockson, W. H.

    1992-08-01

    Capture of a Mars vehicle into a closed orbit can benefit greatly from the use of aerodynamic deceleration (Aerocapture). Because of the unknowns associated with the Mars environment, the use of adaptive control techniques is critical to the successful outcome. This paper will describe work done over several years at assessing the performance of a continuous roll control technique coupled with a closed loop predictor corrector guidance system. The implementation of this system is called CLAAS (Closed Loop AeroAssist Simulation). This system has been tested against a variety of dispersions including a variety of atmospheric models, atmospheric shear waves, vehicle variations, and navigation errors. Results will be shown for a two mission applications, a representative manned Mars vehicle and an unmanned Mars Rover Sample Return (MRSR) system. Finally, a few observations on technical challenges for aerobraking a Mars vehicle are included in the conclusions.

  8. STS-98 Atlantis rolls to the VAB

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- Space Shuttle Atlantis moves past palm trees on its way back to the Vehicle Assembly Building from Launch Pad 39A. Atlantis is rolling back to the VAB from Launch Pad 39A. In the VAB workers will conduct inspections, make continuity checks and conduct X-ray analysis on the 36 solid rocket booster cables located inside each booster'''s external system tunnel. An extensive evaluation of NASA'''s SRB cable inventory revealed conductor damage in four (of about 200) cables on the shelf. Shuttle managers decided to prove the integrity of the system tunnel cables already on Atlantis before launching. The launch has been rescheduled no earlier than Feb. 6.

  9. Sintered cadmium telluride nanocrystal photovoltaics: Improving chemistry to facilitate roll-to-roll fabrication

    NASA Astrophysics Data System (ADS)

    Kurley, James Matthew, III

    Recent interest in clean, renewable energy has increased importance on cost-effective and materials efficient deposition methods. Solution-processed solar cells utilizing cadmium telluride nanocrystal inks offer a viable method for reducing cost, increasing materials effectiveness, and decreasing the need for fossil fuels in the near future. Initial work focused on developing a useful platform for testing new chemistries for solubilizing and depositing nanocrystal inks. Layer-by-layer deposition using a combination of spincoating, cadmium chloride treatment, and annealing created a photovoltaic-grade CdTe absorber layer. In conjunction with layer-by-layer deposition, a device architecture of ITO/CdTe/ZnO/Al was utilized to create power conversion efficiencies of over 12% with the help of current/light soaking. Detailed exploration of device geometry, capacitance measurements, and intensity- and temperature-dependent testing determined the ITO/CdTe interface required additional scrutiny. This initial investigation sparked three new. avenues of research: create an Ohmic contact to CdTe, remove the cadmium chloride bath treatment, and create a roll-to-roll friendly process. Improved contact between ITO and CdTe was achieved by using a variety of materials already proven to create Ohmic contact to CdTe. While most of these materials were previously employed using standard approaches, solution-processed analogs were explored. The cadmium chloride bath treatment proved inconsistent, wasteful, and difficult to utilize quickly. It was removed by using trichlorocadmate-capped nanocrystals to combine the semiconductor with the required grain growth agent. To establish roll-to-roll friendly process, the deposition method was improved, heating source changed, and cadmium chloride bath step was removed. Spraycoating or doctor-blading the trichlorocadmate-capped nanocrystals followed by annealing with an IR lamp established a process that can deposit CdTe in a high throughput

  10. Rocking and rolling: a can that appears to rock might actually roll.

    PubMed

    Srinivasan, Manoj; Ruina, Andy

    2008-12-01

    A beer bottle or soda can on a table, when slightly tipped and released, falls to an upright position and then rocks up to a somewhat opposite tilt. Superficially this rocking motion involves a collision when the flat circular base of the container slaps the table before rocking up to the opposite tilt. A keen eye notices that the after-slap rising tilt is not generally just diametrically opposite the initial tilt but is veered to one side or the other. Cushman and Duistermaat [Regular Chaotic Dyn. 11, 31 (2006)] recently noticed such veering when a flat disk with rolling boundary conditions is dropped nearly flat. Here, we generalize these rolling disk results to arbitrary axi-symmetric bodies and to frictionless sliding. More specifically, we study motions that almost but do not quite involve a face-down collision of the round container's bottom with the tabletop. These motions involve a sudden rapid motion of the contact point around the circular base. Surprisingly, similar to the rolling disk, the net angle of motion of this contact point is nearly independent of initial conditions. This angle of turn depends simply on the geometry and mass distribution but not on the moment of inertia about the symmetry axis. We derive simple asymptotic formulas for this "angle of turn" of the contact point and check the result with numerics and with simple experiments. For tall containers (height much bigger than radius) the angle of turn is just over pi and the sudden rolling motion superficially appears as a nearly symmetric collision leading to leaning on an almost diametrically opposite point on the bottom rim.

  11. Nanoscale precipitation in hot rolled sheet steel

    NASA Astrophysics Data System (ADS)

    Sun, Jun

    Some newer hot rolled high strength low alloy (HSLA) steels with a single phase ferrite matrix have obtained substantial strengthening from nanoscale precipitation. These HSLA are reported to have a good combination of strength, ductility and hole-expansion ability. In the current work, Gleeble ® 3500 torsion testing was employed to simulate the hot rolling process with varying run-out table cooling rates and coiling temperatures on five microalloyed steels with additions of Ti, Nb, Mo, Cr and V, to investigate the effects of microalloy additions and processing conditions on microstructures as well as mechanical properties. Subsized tensile specimens obtained from as-twisted torsion samples were used to evaluate mechanical properties. The precipitation states of the five steels with different processing conditions were characterized using extraction replica TEM. Comparison of microstructures and mechanical properties was discussed. Characterization of the microstructure via light optical microscopy showed the matrix microstructure was mainly influenced by coiling temperature, which indicates that the transformation from austenite to ferrite occurred during the coiling period. A higher Ti content was shown to reduce the second constituent fractions. Investigation of carbon extraction replica specimens via TEM revealed the presence of nanoscale precipitation. Extensive nanoscale precipitation was observed in most of the specimens having a polygonal ferrite matrix, while in the granular bainite/ferrite microstructure at lower temperatures, fewer microalloy carbides were present. The specimens with polygonal ferrite had similar or higher yield strength than the specimens with granular bainite microstructure, which suggests the effectiveness of precipitation strengthening from extensive nanoscale precipitates. In the Nb-Mo steel, more significant strengthening due to grain refinement was evident. Yield strength values were less than reported for JFE's "NANOHITEN

  12. Antireflective surface patterned by rolling mask lithography

    NASA Astrophysics Data System (ADS)

    Seitz, Oliver; Geddes, Joseph B.; Aryal, Mukti; Perez, Joseph; Wassei, Jonathan; McMackin, Ian; Kobrin, Boris

    2014-03-01

    A growing number of commercial products such as displays, solar panels, light emitting diodes (LEDs and OLEDs), automotive and architectural glass are driving demand for glass with high performance surfaces that offer anti-reflective, self-cleaning, and other advanced functions. State-of-the-art coatings do not meet the desired performance characteristics or cannot be applied over large areas in a cost-effective manner. "Rolling Mask Lithography" (RML™) enables highresolution lithographic nano-patterning over large-areas at low-cost and high-throughput. RML is a photolithographic process performed using ultraviolet (UV) illumination transmitted through a soft cylindrical mask as it rolls across a substrate. Subsequent transfer of photoresist patterns into the substrate is achieved using an etching process, which creates a nanostructured surface. The current generation exposure tool is capable of patterning one-meter long substrates with a width of 300 mm. High-throughput and low-cost are achieved using continuous exposure of the resist by the cylindrical photomask. Here, we report on significant improvements in the application of RML™ to fabricate anti-reflective surfaces. Briefly, an optical surface can be made antireflective by "texturing" it with a nano-scale pattern to reduce the discontinuity in the index of refraction between the air and the bulk optical material. An array of cones, similar to the structure of a moth's eye, performs this way. Substrates are patterned using RML™ and etched to produce an array of cones with an aspect ratio of 3:1, which decreases the reflectivity below 0.1%.

  13. Semi-Rolled Leaf2 modulates rice leaf rolling by regulating abaxial side cell differentiation.

    PubMed

    Liu, Xiaofei; Li, Ming; Liu, Kai; Tang, Ding; Sun, Mingfa; Li, Yafei; Shen, Yi; Du, Guijie; Cheng, Zhukuan

    2016-04-01

    Moderate leaf rolling maintains the erectness of leaves and minimizes the shadowing between leaves which is helpful to establish ideal plant architecture. Here, we describe asrl2(semi-rolled leaf2) rice mutant, which has incurved leaves due to the presence of defective sclerenchymatous cells on the abaxial side of the leaf and displays narrow leaves and reduced plant height. Map-based cloning revealed that SRL2 encodes a novel plant-specific protein of unknown biochemical function.SRL2 was mainly expressed in the vascular bundles of leaf blades, leaf sheaths, and roots, especially in their sclerenchymatous cells. The transcriptional activities of several leaf development-related YABBY genes were significantly altered in the srl2 mutant. Double mutant analysis suggested that SRL2 and SHALLOT-LIKE1(SLL1)/ROLLED LEAF9(RL9) function in distinct pathways that regulate abaxial-side leaf development. Hence, SRL2 plays an important role in regulating leaf development, particularly during sclerenchymatous cell differentiation.

  14. Semi-Rolled Leaf2 modulates rice leaf rolling by regulating abaxial side cell differentiation

    PubMed Central

    Liu, Xiaofei; Li, Ming; Liu, Kai; Tang, Ding; Sun, Mingfa; Li, Yafei; Shen, Yi; Du, Guijie; Cheng, Zhukuan

    2016-01-01

    Moderate leaf rolling maintains the erectness of leaves and minimizes the shadowing between leaves which is helpful to establish ideal plant architecture. Here, we describe a srl2 (semi-rolled leaf2) rice mutant, which has incurved leaves due to the presence of defective sclerenchymatous cells on the abaxial side of the leaf and displays narrow leaves and reduced plant height. Map-based cloning revealed that SRL2 encodes a novel plant-specific protein of unknown biochemical function. SRL2 was mainly expressed in the vascular bundles of leaf blades, leaf sheaths, and roots, especially in their sclerenchymatous cells. The transcriptional activities of several leaf development-related YABBY genes were significantly altered in the srl2 mutant. Double mutant analysis suggested that SRL2 and SHALLOT-LIKE1 (SLL1)/ROLLED LEAF9 (RL9) function in distinct pathways that regulate abaxial-side leaf development. Hence, SRL2 plays an important role in regulating leaf development, particularly during sclerenchymatous cell differentiation. PMID:26873975

  15. Rolling behavior of a micro-cylinder in adhesional contact

    PubMed Central

    Saito, Shigeki; Ochiai, Toshihiro; Yoshizawa, Fumikazu; Dao, Ming

    2016-01-01

    Understanding the rolling behavior of a micro-object is essential to establish the techniques of micro-manipulation and micro-assembly by mechanical means. Using a combined theoretical/computational approach, we studied the critical conditions of rolling resistance of an elastic cylindrical micro-object in adhesional contact with a rigid surface. Closed-form dimensionless expressions for the critical rolling moment, the initial rolling contact area, and the initial rolling angle were extracted after a systematic parametric study using finite element method (FEM) simulations. The total energy of this system is defined as the sum of three terms: the elastic energy stored in the deformed micro-cylinder, the interfacial energy within the contact area, and the mechanical potential energy that depends on the external moment applied to the cylindrical micro-object. A careful examination of the energy balance of the system surprisingly revealed that the rolling resistance per unit cylindrical length can be simply expressed by “work of adhesion times cylindrical radius” independent of the Young’s modulus. In addition, extending a linear elastic fracture mechanics based approach in the literature, we obtained the exact closed-form asymptotic solutions for the critical conditions for initial rolling; these asymptotic solutions were found in excellent agreement with the full-field FEM results. PMID:27677706

  16. Rolling behavior of a micro-cylinder in adhesional contact

    NASA Astrophysics Data System (ADS)

    Saito, Shigeki; Ochiai, Toshihiro; Yoshizawa, Fumikazu; Dao, Ming

    2016-09-01

    Understanding the rolling behavior of a micro-object is essential to establish the techniques of micro-manipulation and micro-assembly by mechanical means. Using a combined theoretical/computational approach, we studied the critical conditions of rolling resistance of an elastic cylindrical micro-object in adhesional contact with a rigid surface. Closed-form dimensionless expressions for the critical rolling moment, the initial rolling contact area, and the initial rolling angle were extracted after a systematic parametric study using finite element method (FEM) simulations. The total energy of this system is defined as the sum of three terms: the elastic energy stored in the deformed micro-cylinder, the interfacial energy within the contact area, and the mechanical potential energy that depends on the external moment applied to the cylindrical micro-object. A careful examination of the energy balance of the system surprisingly revealed that the rolling resistance per unit cylindrical length can be simply expressed by “work of adhesion times cylindrical radius” independent of the Young’s modulus. In addition, extending a linear elastic fracture mechanics based approach in the literature, we obtained the exact closed-form asymptotic solutions for the critical conditions for initial rolling; these asymptotic solutions were found in excellent agreement with the full-field FEM results.

  17. Investigation of limb-sidestick dynamic interaction with roll control

    NASA Technical Reports Server (NTRS)

    Johnston, D. E.; Mcruer, D. T.

    1986-01-01

    A fixed-base simulation was performed to identify and quantify interactions between the pilot's hand/arm neuromuscular subsystem and such features of typical modern fighter aircraft roll rate command control system mechanization as: (1) force sensing side-stick type manipulator; (2) vehicle effective roll time constant; and (3) flight control system effective time delay. The simulation results provide insight to high frequency pilot induced oscillations (PIO) (roll ratchet), low frequency PIO, and roll-to-right control and handling problems previously observed in experimental and production fly-by-wire control systems. The simulation configurations encompass and/or duplicate several actual flight situations, reproduce control problems observed in flight, and validate the concept that the high frequency nuisance mode known as roll ratchet derives primarily from the pilot's neuromuscular subsystem. The simulations show that force-sensing side-stick manipulator force/displacement/command gradients, command prefilters, and flight control system time delays need to be carefully adjusted to minimize neuromuscular mode amplitude peaking (roll ratchet tendency) without restricting roll control bandwidth (with resulting sluggish or PIO prone control).

  18. Characteristics of electrohydrodynamic roll structures in laminar planar Couette flow

    NASA Astrophysics Data System (ADS)

    Kourmatzis, Agisilaos; Shrimpton, John S.

    2016-02-01

    The behaviour of an incompressible dielectric liquid subjected to a laminar planar Couette flow with unipolar charge injection is investigated numerically in two dimensions. The computations show new morphological characteristics of roll structures that arise in this forced electro-convection problem. The charge and velocity magnitude distributions between the two parallel electrodes are discussed as a function of the top wall velocity and the EHD Rayleigh number, T for the case of strong charge injection. A wide enough parametric space is investigated such that the observed EHD roll structures progress through three regimes. These regimes are defined by the presence of a single or double-roll free convective structure as observed elsewhere (Vazquez et al 2008 J. Phys. D 41 175303), a sheared or stretched roll structure, and finally by a regime where the perpendicular velocity gradient is sufficient to prevent the generation of a roll. These three regimes have been delineated as a function of the wall to ionic drift velocity {{U}\\text{W}}/κ E , and the T number. In the stretched regime, an increase in {{U}\\text{W}}/κ E can reduce charge and momentum fluctuations whilst in parallel de-stratify charge in the region between the two electrodes. The stretched roll regime is also characterised by a substantial influence of {{U}\\text{W}}/κ E on the steady development time, however in the traditional non-stretched roll structure regime, no influence of {{U}\\text{W}}/κ E on the development time is noted.

  19. Optimization of Resilient Wheels for Rolling Noise Control

    NASA Astrophysics Data System (ADS)

    BOUVET, PASCAL; VINCENT, NICOLAS; COBLENTZ, ARNAUD; DEMILLY, FRANÇOIS

    2000-03-01

    Resilient wheels are currently used on light rail systems such as tramways to prevent squealing noise and to reduce impact noise. On the other hand, they are rarely found on main lines (passenger rolling stock and freight rolling stock). Although manufacturers often claim that resilient wheels are favourable for rolling noise control, no extensive theoretical investigation confirming this statement has been published to date. In this paper, it is shown how resilient wheels can be effectively optimised in order to reduce rolling noise emission, compared to a conventional monobloc wheel. A preliminary analysis of the physical phenomena accounting for rolling noise generation emphasizes the key design parameters affecting both wheel and radiation. These parameters are the radial dynamic stiffness and damping loss factor of the rubber layer. The tread mass is also relevant. The influence of these design parameters is then qualified by a parametric study performed with the TWINS software. An optimum radial dynamic stiffness of the resilient layer is found which depends on operating conditions. Reductions in overall rolling noise up to 3 dB(A) are calculated for the configurations investigated. However, poor selection of the design parameters can lead to a noise increase compared to a standard monobloc wheel. It is also shown that a proper design for rolling noise control will not affect wheel efficiency with regard to squeal noise.

  20. Rolling behavior of a micro-cylinder in adhesional contact.

    PubMed

    Saito, Shigeki; Ochiai, Toshihiro; Yoshizawa, Fumikazu; Dao, Ming

    2016-09-28

    Understanding the rolling behavior of a micro-object is essential to establish the techniques of micro-manipulation and micro-assembly by mechanical means. Using a combined theoretical/computational approach, we studied the critical conditions of rolling resistance of an elastic cylindrical micro-object in adhesional contact with a rigid surface. Closed-form dimensionless expressions for the critical rolling moment, the initial rolling contact area, and the initial rolling angle were extracted after a systematic parametric study using finite element method (FEM) simulations. The total energy of this system is defined as the sum of three terms: the elastic energy stored in the deformed micro-cylinder, the interfacial energy within the contact area, and the mechanical potential energy that depends on the external moment applied to the cylindrical micro-object. A careful examination of the energy balance of the system surprisingly revealed that the rolling resistance per unit cylindrical length can be simply expressed by "work of adhesion times cylindrical radius" independent of the Young's modulus. In addition, extending a linear elastic fracture mechanics based approach in the literature, we obtained the exact closed-form asymptotic solutions for the critical conditions for initial rolling; these asymptotic solutions were found in excellent agreement with the full-field FEM results.

  1. Engineering nanoscale surface features to sustain microparticle rolling in flow.

    PubMed

    Kalasin, Surachate; Santore, Maria M

    2015-05-26

    Nanoscopic features of channel walls are often engineered to facilitate microfluidic transport, for instance when surface charge enables electro-osmosis or when grooves drive mixing. The dynamic or rolling adhesion of flowing microparticles on a channel wall holds potential to accomplish particle sorting or to selectively transfer reactive species or signals between the wall and flowing particles. Inspired by cell rolling under the direction of adhesion molecules called selectins, we present an engineered platform in which the rolling of flowing microparticles is sustained through the incorporation of entirely synthetic, discrete, nanoscale, attractive features into the nonadhesive (electrostatically repulsive) surface of a flow channel. Focusing on one example or type of nanoscale feature and probing the impact of broad systematic variations in surface feature loading and processing parameters, this study demonstrates how relatively flat, weakly adhesive nanoscale features, positioned with average spacings on the order of tens of nanometers, can produce sustained microparticle rolling. We further demonstrate how the rolling velocity and travel distance depend on flow and surface design. We identify classes of related surfaces that fail to support rolling and present a state space that identifies combinations of surface and processing variables corresponding to transitions between rolling, free particle motion, and arrest. Finally we identify combinations of parameters (surface length scales, particle size, flow rates) where particles can be manipulated with size-selectivity.

  2. Visually guided adjustments of body posture in the roll plane.

    PubMed

    Tarnutzer, A A; Bockisch, C J; Straumann, D

    2013-05-01

    Body position relative to gravity is continuously updated to prevent falls. Therefore, the brain integrates input from the otoliths, truncal graviceptors, proprioception and vision. Without visual cues estimated direction of gravity mainly depends on otolith input and becomes more variable with increasing roll-tilt. Contrary, the discrimination threshold for object orientation shows little modulation with varying roll orientation of the visual stimulus. Providing earth-stationary visual cues, this retinal input may be sufficient to perform self-adjustment tasks successfully, with resulting variability being independent of whole-body roll orientation. We compared conditions with informative (earth-fixed) and non-informative (body-fixed) visual cues. If the brain uses exclusively retinal input (if earth-stationary) to solve the task, trial-to-trial variability will be independent from the subject's roll orientation. Alternatively, central integration of both retinal (earth-fixed) and extra-retinal inputs will lead to increasing variability when roll-tilted. Subjects, seated on a motorized chair, were instructed to (1) align themselves parallel to an earth-fixed line oriented earth-vertical or roll-tilted 75° clockwise; (2) move a body-fixed line (aligned with the body-longitudinal axis or roll-tilted 75° counter-clockwise to it) by adjusting their body position until the line was perceived earth-vertical. At 75° right-ear-down position, variability increased significantly (p < 0.05) compared to upright in both paradigms, suggesting that, despite the earth-stationary retinal cues, extra-retinal input is integrated. Self-adjustments in the roll-tilted position were significantly (p < 0.01) more precise for earth-fixed cues than for body-fixed cues, underlining the importance of earth-stable visual cues when estimates of gravity become more variable with increasing whole-body roll.

  3. Microstructural evolution in warm-rolled and cold-rolled strip cast 6.5 wt% Si steel thin sheets and its influence on magnetic properties

    NASA Astrophysics Data System (ADS)

    Wang, Xianglong; Liu, Zhenyu; Li, Haoze; Wang, Guodong

    2017-07-01

    6.5 wt% Si steel thin sheets were usually fabricated by warm rolling. In our previous work, 6.5 wt% Si steel thin sheets with good magnetic properties had been successfully fabricated by cold rolling based on strip casting. In the present work, the main purposes were to find out the influences of warm rolling and cold rolling on microstructures and magnetic properties of the thin sheets with the thickness of 0.2 mm, and to confirm which rolling method was more suitable for fabricating 6.5 wt% Si steel thin sheets. The results showed that the cold rolled sheet could obtain good surface quality and flatness, while the warm rolled sheet could not. The intensity of γ-fiber rolling texture (<1 1 1>//ND) of cold rolled specimen was weaker than that of the warm rolled specimen, especially for the {1 1 1}<1 1 2> component at surface layer and {1 1 1}<1 1 0> component at center layer. After the same annealing treatment, the cold rolled specimen, which had higher stored energy and weaker intensity of γ-fiber rolling texture, could obtain smaller recrystallization grain size, weaker intensity of γ-fiber recrystallization texture and stronger intensity of λ-fiber recrystallization texture. Therefore, due to the good surface quality, smaller recrystallization grain size and optimum recrystallization texture, the cold rolled specimen possessed improved magnetic properties, and cold rolling should be more suitable for fabricating 6.5 wt% Si steel thin sheets.

  4. Modulation of high quality factors in rolled-up microcavities

    NASA Astrophysics Data System (ADS)

    Fang, Yangfu; Li, Shilong; Mei, Yongfeng

    2016-09-01

    We systematically investigate the evolution of resonant modes in a rolled-up microcavity as the overlap length between structural notches increases, which presents a modulation behavior for high Q factors. The resonant modes in the rolled-up microcavity display a deterministic mode chirality, which is well correlated to the Q factor. We derive a two-mode non-Hermitian Hamiltonian to clarify these unusual findings. It reveals that strong resonant interactions of scattered waves between the structural notches are responsible for the high mode chirality (thus high Q factor) and its modulation behavior in rolled-up microcavities.

  5. Recent developments in semiprocessed cold rolled magnetic lamination steel

    NASA Astrophysics Data System (ADS)

    Hilinski, E. J.

    2006-09-01

    Over the past 10 years the magnetic property performance of semi-processed cold rolled magnetic lamination steels in North America have approached those of nonoriented, semi-processed silicon steel. This improvement was accomplished via higher alloy levels in conjunction with hot band annealing. New temper rolling strategies can produce weakly oriented steels tailored to specific applications, such as small transformers used in fluorescent lighting ballasts. Recently, production trials for 0.0138 in product cold rolled on tin mills has been undertaken. Efforts to further improve properties through a better understanding of texture control and via implementation of new production processes, such as thin slab or strip casting, continue.

  6. Roll seat belt induced injury of the duodenum.

    PubMed

    Bergqvist, D; Hedelin, H

    1976-05-01

    A case of duodenal rupture with a roll three-point seatbelt is described. It is apparently the seventh reported case of duodenal rupture in safety belt users. A female driver fell asleep, and her car went off the road, rolling forward in a ditch, slowing slightly, and then came to a sudden stop. The rupture was unusual: on the first part of duodenum, intraperitoneal, and longitudinal. The rupture mechanism is discussed, and the deficiencies of the roll seatbelt pointed out in accidents like the one described.

  7. [Rolling friction: a desing of artificial knee joint].

    PubMed

    He, Yujue; Yu, Zhongjia; Chen, Ming; Wang, Chengtao

    2005-08-01

    Resorption and osteolysis of periimplant bones resulting from the wear debris of artificial joint will cause long-term loosening. A new type of rolling knee artificial joint without UHMWPE based on the mechanics of rolling friction is designed for alleviating this problem. Because of low friction force, the resistance of extension and flexion is reduced strikingly and the stress on the interface between prosthesis and bone is reduced evidently. In addition, the bio-toxicity caused by the wear debris of UHMWPE will not occur absolutely. In consequence, the rolling artificial joint can prevent the trend of long-term loosening of the prosthesis efficiently.

  8. Roll-Tilt Perception Using a Somatosensory Bar Task

    NASA Technical Reports Server (NTRS)

    Black, F. O.; Wade, S. W.; Arshi, A.

    1999-01-01

    Visual estimates of roll-tilt perception during static roll-tilt are confounded by an offset due to the ocular counterroll that simultaneously occurs. An alternative, non-visual ('somatosensory') measure of roll-tilt perception was developed which is not contaminated by this offset. The aims of this study were to determine: 1) inter-subject variability of somatosensory settings across test session in normal subjects and patients with unilateral or bilateral vestibular loss and 2) intra-subject variability of settings across test session in normal subjects.

  9. Access to the Commonwealth electoral roll for medical research.

    PubMed

    Loff, Bebe; Campbell, Elissa A; Glass, Deborah C; Kelsall, Helen L; Slegers, Claudia; Zion, Deborah R; Brown, Ngaire J; Fritschi, Lin

    2013-07-22

    In the 2010-11 financial 2013, there was a dramatic reduction in the approvals granted by the Australian Electoral Commission for access to samples of the adult population derived from the electoral roll for the purposes of public health research. Much time and effort has been expended in making applications without success. Researchers refused access to electoral roll samples must rely on sampling methods that are not as robust and that may produce less reliable data. We outline a set of recommendations that, if adopted, will result in a fairer system for obtaining access to the electoral roll for public health research.

  10. Exceptional points in rolled-up tubular microcavities

    NASA Astrophysics Data System (ADS)

    Fang, Yangfu; Li, Shilong; Kiravittaya, Suwit; Mei, Yongfeng

    2017-09-01

    We observe the crossing and anti-crossing behaviors of nearly degenerate mode pairs in a rolled-up tubular microcavity, which can be explained by weak and strong couplings between the modes. Exceptional points (EPs) are thus obtained in the tubular microcavity since they are the critical point where a transition from strong to weak coupling occurs. Rolled-up tubular microcavities with a given resonant mode approaching an EP in parameter space expanded by two continuous variables are also realized without using near-field probes. Microcavities with EPs prepared in a rolled-up way could be mechanically stable and would be used for optofluidic detection.

  11. Correcting Quadrupole Roll in Magnetic Lenses with Skew Quadrupoles

    SciTech Connect

    Walstrom, Peter Lowell

    2014-11-10

    Quadrupole rolls (i.e. rotation around the magnet axis) are known to be a significant source of image blurring in magnetic quadrupole lenses. These rolls may be caused by errors in mechanical mounting of quadrupoles, by uneven radiation-induced demagnetization of permanent-magnet quadrupoles, etc. Here a four-quadrupole ×10 lens with so-called ”Russian” or A -B B-A symmetry is used as a model problem. Existing SLAC 1/2 in. bore high-gradient quadrupoles are used in the design. The dominant quadrupole roll effect is changes in the first-order part of the transfer map (the R matrix) from the object to the image plane (Note effects on the R matrix can be of first order in rotation angle for some R-matrix elements and second order in rotation angle for other elements, as shown below). It is possible to correct roll-induced image blur by mechanically adjusting the roll angle of one or more of the quadrupoles. Usually, rotation of one quadrupole is sufficient to correct most of the combined effect of rolls in all four quadrupoles. There are drawbacks to this approach, however, since mechanical roll correction requires multiple entries into experimental area to make the adjustments, which are made according to their effect on images. An alternative is to use a single electromagnetic skew quadrupole corrector placed either between two of the quadrupoles or after the fourth quadrupole (so-called “non-local” correction). The basic feasibility of skew quadrupole correction of quadrupole roll effects is demonstrated here. Rolls of the third lens quadrupole of up to about 1 milliradian can be corrected with a 15 cm long skew quadrupole with a gradient of up to 1 T/m. Since the effect of rolls of the remaining three lens quadrupoles are lower, a weaker skew quadrupole can be used to correct them. Non-local correction of quadrupole roll effects by skew quadrupoles is shown to be about one-half as effective as local correction (i.e. rotating individual quadrupoles to zero

  12. Development of closed loop roll control for magnetic balance systems

    NASA Technical Reports Server (NTRS)

    Covert, E. E.; Haldeman, C. W.; Ramohalli, G.; Way, P.

    1982-01-01

    This research was undertaken with the goal of demonstrating closed loop control of the roll degree of freedom on the NASA prototype magnetic suspension and balance system at the MIT Aerophysics Laboratory, thus, showing feasibility for a roll control system for any large magnetic balance system which might be built in the future. During the research under this grant, study was directed toward the several areas of torque generation, position sensing, model construction and control system design. These effects were then integrated to produce successful closed loop operation of the analogue roll control system. This experience indicated the desirability of microprocessor control for the angular degrees of freedom.

  13. Multilength Scale Patterning of Functional Layers by Roll-to-Roll Ultraviolet-Light-Assisted Nanoimprint Lithography.

    PubMed

    Leitgeb, Markus; Nees, Dieter; Ruttloff, Stephan; Palfinger, Ursula; Götz, Johannes; Liska, Robert; Belegratis, Maria R; Stadlober, Barbara

    2016-05-24

    Top-down fabrication of nanostructures with high throughput is still a challenge. We demonstrate the fast (>10 m/min) and continuous fabrication of multilength scale structures by roll-to-roll UV-nanoimprint lithography on a 250 mm wide web. The large-area nanopatterning is enabled by a multicomponent UV-curable resist system (JRcure) with viscous, mechanical, and surface properties that are tunable over a wide range to either allow for usage as polymer stamp material or as imprint resist. The adjustable elasticity and surface chemistry of the resist system enable multistep self-replication of structured resist layers. Decisive for defect-free UV-nanoimprinting in roll-to-roll is the minimization of the surface energies of stamp and resist, and the stepwise reduction of the stiffness from one layer to the next is essential for optimizing the reproduction fidelity especially for nanoscale features. Accordingly, we demonstrate the continuous replication of 3D nanostructures and the high-throughput fabrication of multilength scale resist structures resulting in flexible polyethylenetherephtalate film rolls with superhydrophobic properties. Moreover, a water-soluble UV-imprint resist (JRlift) is introduced that enables residue-free nanoimprinting in roll-to-roll. Thereby we could demonstrate high-throughput fabrication of metallic patterns with only 200 nm line width.

  14. Effect of biomimetic coupling units' morphologies on rolling contact fatigue wear resistance of steel from machine tool rolling tracks

    NASA Astrophysics Data System (ADS)

    Yang, Wanshi; Zhou, Hong; Sun, Liang; Wang, Chuanwei; Chen, Zhikai

    2014-04-01

    The rolling contact fatigue wear resistance plays an important role on ensuring machining precision of machine tool using rolling tracks. Bio-inspired wearable surfaces with the alternated hardness were prepared on the specimen of steel material from machine tool rolling tracks by biomimetic coupling laser remelting method to imitate biological coupling principle. The microstructures and micromorphologies of bionic units in different sizes were characterized by optical microscope. The specimens with bionic units in different sizes and distributions were tested for rolling contact fatigue wear resistance. Combining the finite element analysis and the results of wear tests, a discussion on rolling contact fatigue wear was had. The specimens with bionic units had better rolling contact fatigue wear resistance than the untreated one, while the specimens with bionic units in the alternative depth's distributions present a better rolling contact fatigue wear resistance than the ones with bionic units in the single depth's distribution. It attributed to the alternative distribution made further improvement on the dispersion of depth of stress concentration.

  15. Determination of residual stresses and natural frequencies of roll-tensioned disc by a dynamic simulation of the rolling process

    NASA Astrophysics Data System (ADS)

    Skordaris, G.; Bouzakis, K.-D.; Tasoulas, D.

    2017-02-01

    Roll tensioning is a common method for increasing locally the superficial strength of thin circular saws and in this way their dynamic stability. Through roll tensioning, residual stresses are induced into the disc material leading to a significant enhancement of its dynamic stiffness. In this paper, a FEM-methodology is proposed for determining the developed residual stresses in the discs after rolling and for investigating their effects on the circular saw natural frequencies. More specifically, a 3D-FEM model was developed for the dynamic simulation of the rolling process on circular saws, using the LS-DYNA software. This model enables the explicit determination of the developed residual stresses in the roll-tensioned discs. Furthermore, the natural frequencies of the pre-stressed circular saws were calculated by the ANSYS software. In these calculations, the already determined residual stresses were taken into consideration. Different distances of the roll-tensioned zone from the disc centre were taken into account for estimating their effect on the disc’s natural frequencies. By the proposed methodology, optimum roll-tensioning conditions can be predicted for improving the dynamic behaviour of thin circular saws during cutting.

  16. Rolling Process Modeling Report. Finite-Element Model Validation and Parametric Study on various Rolling Process parameters

    SciTech Connect

    Soulami, Ayoub; Lavender, Curt A.; Paxton, Dean M.; Burkes, Douglas

    2015-06-15

    Pacific Northwest National Laboratory (PNNL) has been investigating manufacturing processes for the uranium-10% molybdenum alloy plate-type fuel for high-performance research reactors in the United States. This work supports the U.S. Department of Energy National Nuclear Security Administration’s Office of Material Management and Minimization Reactor Conversion Program. This report documents modeling results of PNNL’s efforts to perform finite-element simulations to predict roll-separating forces for various rolling mill geometries for PNNL, Babcock & Wilcox Co., Y-12 National Security Complex, Los Alamos National Laboratory, and Idaho National Laboratory. The model developed and presented in a previous report has been subjected to further validation study using new sets of experimental data generated from a rolling mill at PNNL. Simulation results of both hot rolling and cold rolling of uranium-10% molybdenum coupons have been compared with experimental results. The model was used to predict roll-separating forces at different temperatures and reductions for five rolling mills within the National Nuclear Security Administration Fuel Fabrication Capability project. This report also presents initial results of a finite-element model microstructure-based approach to study the surface roughness at the interface between zirconium and uranium-10% molybdenum.

  17. Rolling element bearing diagnostics—A tutorial

    NASA Astrophysics Data System (ADS)

    Randall, Robert B.; Antoni, Jérôme

    2011-02-01

    This tutorial is intended to guide the reader in the diagnostic analysis of acceleration signals from rolling element bearings, in particular in the presence of strong masking signals from other machine components such as gears. Rather than being a review of all the current literature on bearing diagnostics, its purpose is to explain the background for a very powerful procedure which is successful in the majority of cases. The latter contention is illustrated by the application to a number of very different case histories, from very low speed to very high speed machines. The specific characteristics of rolling element bearing signals are explained in great detail, in particular the fact that they are not periodic, but stochastic, a fact which allows them to be separated from deterministic signals such as from gears. They can be modelled as cyclostationary for some purposes, but are in fact not strictly cyclostationary (at least for localised defects) so the term pseudo-cyclostationary has been coined. An appendix on cyclostationarity is included. A number of techniques are described for the separation, of which the discrete/random separation (DRS) method is usually most efficient. This sometimes requires the effects of small speed fluctuations to be removed in advance, which can be achieved by order tracking, and so this topic is also amplified in an appendix. Signals from localised faults in bearings are impulsive, at least at the source, so techniques are described to identify the frequency bands in which this impulsivity is most marked, using spectral kurtosis. For very high speed bearings, the impulse responses elicited by the sharp impacts in the bearings may have a comparable length to their separation, and the minimum entropy deconvolution technique may be found useful to remove the smearing effects of the (unknown) transmission path. The final diagnosis is based on "envelope analysis" of the optimally filtered signal, but despite the fact that this

  18. Flows in forward deformable roll coating gaps: Comparison between spring and plane-strain models of roll cover

    SciTech Connect

    Carvalho, M.S.; Scriven, L.E.

    1997-12-01

    In this report the flow between rigid and a deformable rotating rolls fully submerged in a liquid pool is studied. The deformation of compliant roll cover is described by two different models (1) independent, radially oriented springs that deform in response to the traction force applied at the extremity of each or one-dimensional model, and (2) a plane-strain deformation of an incompressible Mooney-Rivlin material or non-linear elastic model. Based on the flow rate predictions of both models, an empirical relation between the spring constant of the one dimensional model and the roll cover thickness and elastic modulus is proposed.

  19. 76 FR 15299 - Certain Hot-Rolled Carbon Steel Flat Products From India: Preliminary Rescission of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-21

    ... International Trade Administration Certain Hot-Rolled Carbon Steel Flat Products From India: Preliminary... countervailing duty (CVD) order on certain hot-rolled carbon steel flat products from India. See Antidumping or... The products covered under this order are certain hot-rolled flat- rolled carbon steel flat products...

  20. Development of satellite mill and trial rolling of profiled metal strip

    NASA Astrophysics Data System (ADS)

    Saito, Y.; Watanabe, T.; Utsunomiya, H.

    1992-12-01

    A new type of compact continuous mill called the “Satellite mill” has been developed to produce profiled metal strip from flat strip. This mill consists of one large-diameter driven roll (central roll) and five smaller rolls (satellite rolls) arranged along the periphery of the central roll. A strip is continuously rolled at five gaps between the central roll and the satellite rolls. All rolls are driven at an equal roll peripheral speed to promote transverse metal flow or lateral spread. Guide shoes are provided between the adjacent satellite rolls and are supported with two adjacent satellite rolls. They prevent a strip from bulging or buckling. A test mill was constructed, and rolling experiments have been performed on the production of T-shaped or U-shaped profiled aluminum strip. The deformation- load characteristics were investigated and compared with those of conventional rolling. As a result, in the satellite mill rolling operation, elongation was suppressed. Lateral spread was enhanced, and the profile of the product cross section was significantly improved. Consequently, the new rolling process was found to be forming of profiled metal strip.

  1. 40 CFR 1066.225 - Roll runout and diameter verification procedure.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) Measure roll diameter using a Pi Tape®. Orient the Pi Tape® to the marker line at the desired measurement location with the Pi Tape® hook pointed outward. Temporarily secure the Pi Tape® to the roll near the hook end with adhesive tape. Slowly turn the roll, wrapping the Pi Tape® around the roll surface....

  2. Effects of microalloying on hot-rolled and cold-rolled Q&P steels

    NASA Astrophysics Data System (ADS)

    Azevedo de Araujo, Ana Luiza

    Third generation advanced high strength steels (AHSS) have been a major focus in steel development over the last decade. The premise of these types of steel is based on the potential to obtain excellent combinations of strength and ductility with low-alloy compositions by forming mixed microstructures containing retained austenite (RA). The development of heat treatments able to achieve the desired structures and properties, such as quenching and partitioning (Q&P) steels, is driven by new requirements to increase vehicle fuel economy by reducing overall weight while maintaining safety and crashworthiness. Microalloying additions of niobium (Nb) and vanadium (V) in sheet products are known to provide strengthening via grain refinement and precipitation hardening and may influence RA volume fraction and transformation behavior. Additions of microalloying elements in Q&P steels have not been extensively studied to date, however. The objective of the present study was to begin to understand the potential roles of Nb and V in hot-rolled and cold-rolled Q&P steel. For that, a common Q&P steel composition was selected as a Base alloy with 0.2C-1.5Si-2.0Mn (wt. %). Two alloys with an addition of Nb (0.02 and 0.04 wt. %) and one with an addition of V (0.06 wt. %) to the Base alloy were investigated. Both hot-rolled and cold-rolled/annealed Q&P simulations were conducted. In the hot-rolled Q&P study, thermomechanical processing was simulated via hot torsion testing in a GleebleRTM 3500, and four coiling temperatures (CT) were chosen. Microstructural evaluation (including RA measurements via electron backscattered diffraction - EBSD) and hardness measurements were performed for all alloys and coiling conditions. The analysis showed that Nb additions led to overall refinement of the prior microstructure. Maximum RA fractions were measured at the 375 °C CT, and microalloying was associated with increased RA in this condition when compared to the Base alloy. A change in

  3. 11. DETAIL SHOWING ROLLING ENGINE DECK AND NORTHEAST TRUSS OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. DETAIL SHOWING ROLLING ENGINE DECK AND NORTHEAST TRUSS OF SUPERSTRUCTURE. Looking northeast. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-A, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA

  4. Facility No. 175, interior detail showing rolling doors, trusses, and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Facility No. 175, interior detail showing rolling doors, trusses, and angled monitor roof - U.S. Naval Base, Pearl Harbor, Landplane Hangar Type, Wasp Boulevard and Gambier Bay Street, Pearl City, Honolulu County, HI

  5. Correlating microstructure and texture in cold-rolled Ta ingot

    SciTech Connect

    Feng, C. ); Kumar, P. )

    1989-10-01

    An analysis of tantalum ingot cold-rolled and annealed under different conditions reveals several correlations between the microstructure, developed textures and thermomechanical processing parameters. For example, the hardness of rolled sheet is not significantly affected by the amount of reduction prior to the final anneal, while the final grain size decreases with an increasing number of intermediate annealing steps. Four classes of texture are found in the cold-rolled tantalum, but the finger-grained classes can only be produced via a 70 percent reduction in thickness prior to the final anneal. Although ample dislocation debris is produced by the rolling operation, clearly defined line dislocations and dislocations networks are absent, indicating that full recrystallization is not achieved in the finished sheets. A large concentration of ledge dislocations at the grain boundary regions is considered an important contributor to the good formability of tantalum.

  6. Floor Plans Rolling Platform, Tech Systems Platform, and Load ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Floor Plans - Rolling Platform, Tech Systems Platform, and Load Platform Plans - Marshall Space Flight Center, F-1 Engine Static Test Stand, On Route 565 between Huntsville and Decatur, Huntsville, Madison County, AL

  7. 46 CFR 56.30-15 - Expanded or rolled joints.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... rolled joints may be used where experience or test has demonstrated that the joint is suitable for the design conditions and where adequate provisions are made to prevent separation of the joint. Specific...

  8. 46 CFR 56.30-15 - Expanded or rolled joints.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... rolled joints may be used where experience or test has demonstrated that the joint is suitable for the design conditions and where adequate provisions are made to prevent separation of the joint. Specific...

  9. MAIN DRIVE MOTOR FOR BLISS #43 HOT ROLL. THIS WESTINGHOUSE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    MAIN DRIVE MOTOR FOR BLISS #43 HOT ROLL. THIS WESTINGHOUSE UNIT HAS SINCE BEEN REPLACED BY A 5000 HP TOSHIBA MOTOR. REHEAT FURNACES ARE SHOWN BEHIND MILL MOTOR. - American Brass Foundry, 70 Sayre Street, Buffalo, Erie County, NY

  10. A contact-type tensionmeter for hot rolling mills

    NASA Astrophysics Data System (ADS)

    Zhao, Xiaoyan; Zhang, Zhaohui; Sun, Yikang; Wang, Jun; Que, Cheng

    2008-12-01

    To improve the hot rolled strip quality and operational stability, a novel tensionmeter based on lever principle is developed which inspects latent waves and provides real references for flatness control in hot rolling process. The contact-type tensionmeter including two segmented rolls can get the transverse tension distribution along the strip width. Tension profile is deduced by different ratio of four force values from the embedded force sensors in tensionmeter system. The compact mechanical structure ensures the tensionmeter's robust stability in hot rolling process, standard hardware and software for data acquisition make the system easy to operate and maintain. The trails have proven tensionmeter successful in improving both strip flatness and mill performance.

  11. 6. INTERIOR VIEW, HIGH CARBON HOT ROLLED SHEET STEEL FOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. INTERIOR VIEW, HIGH CARBON HOT ROLLED SHEET STEEL FOR NAIL PLATE BEING LOADED ON THE CRADLE USED DURING THE PICKLING PROCESS - LaBelle Iron Works, Thirtieth & Wood Streets, Wheeling, Ohio County, WV

  12. 5. INTERIOR VIEW, HIGH CARBON HOT ROLLED SHEET STEEL FOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. INTERIOR VIEW, HIGH CARBON HOT ROLLED SHEET STEEL FOR NAIL PLATE BEING REMOVED FROM THE CRADLE USED DURING THE PICKLING PROCESS - LaBelle Iron Works, Thirtieth & Wood Streets, Wheeling, Ohio County, WV

  13. Hydrodynamic properties of fin whale flippers predict maximum rolling performance.

    PubMed

    Segre, Paolo S; Cade, David E; Fish, Frank E; Potvin, Jean; Allen, Ann N; Calambokidis, John; Friedlaender, Ari S; Goldbogen, Jeremy A

    2016-11-01

    Maneuverability is one of the most important and least understood aspects of animal locomotion. The hydrofoil-like flippers of cetaceans are thought to function as control surfaces that effect maneuvers, but quantitative tests of this hypothesis have been lacking. Here, we constructed a simple hydrodynamic model to predict the longitudinal-axis roll performance of fin whales, and we tested its predictions against kinematic data recorded by on-board movement sensors from 27 free-swimming fin whales. We found that for a given swimming speed and roll excursion, the roll velocity of fin whales calculated from our field data agrees well with that predicted by our hydrodynamic model. Although fluke and body torsion may further influence performance, our results indicate that lift generated by the flippers is sufficient to drive most of the longitudinal-axis rolls used by fin whales for feeding and maneuvering.

  14. SMALL DIAMETER STENCILING, ROLLING OVER STAMP. United States Pipe ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    SMALL DIAMETER STENCILING, ROLLING OVER STAMP. - United States Pipe & Foundry Company Plant, Coating, Painting, Lining & Packaging Building, 2023 St. Louis Avenue at I-20/59, Bessemer, Jefferson County, AL

  15. 2. BARN. VIEW LOOKING NORTHWEST. THE ROLLING DOOR PROBABLY REPLACES ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. BARN. VIEW LOOKING NORTHWEST. THE ROLLING DOOR PROBABLY REPLACES AN ORIGINAL 4/4 DOUBLE-HUNG WINDOW. - Tonto Ranger Station, Barn, Forest Service Road 65 at Tonto Wash, Skull Valley, Yavapai County, AZ

  16. 18. DETAIL OF ROLLING DOORS AND CANOPY AT SOUTH SIDE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. DETAIL OF ROLLING DOORS AND CANOPY AT SOUTH SIDE ENTRANCE, ALSO SEEN FROM A DISTANCE IN VIEW NO. CA-295-A-15. - United Engineering Company Shipyard, Inspection & Repair Shops, 2900 Main Street, Alameda, Alameda County, CA

  17. Numerical simulations supporting the process design of ring rolling processes

    NASA Astrophysics Data System (ADS)

    Jenkouk, V.; Hirt, G.; Seitz, J.

    2013-05-01

    In conventional Finite Element Analysis (FEA) of radial-axial ring rolling (RAR) the motions of all tools are usually defined prior to simulation in the preprocessing step. However, the real process holds up to 8 degrees of freedom (DOF) that are controlled by industrial control systems according to actual sensor values and preselected control strategies. Since the histories of the motions are unknown before the experiment and are dependent on sensor data, the conventional FEA cannot represent the process before experiment. In order to enable the usage of FEA in the process design stage, this approach integrates the industrially applied control algorithms of the real process including all relevant sensors and actuators into the FE model of ring rolling. Additionally, the process design of a novel process 'the axial profiling', in which a profiled roll is used for rolling axially profiled rings, is supported by FEA. Using this approach suitable control strategies can be tested in virtual environment before processing.

  18. 10. SCALEBREAKER FOR THE 160' PLATE MILL. DELIVERY ROLL TABLE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. SCALEBREAKER FOR THE 160' PLATE MILL. DELIVERY ROLL TABLE (ON THE RIGHT) WAS PAINTED BRIGHT YELLOW JUST BEFORE PHOTOGRAPH WAS TAKEN. - U.S. Steel Homestead Works, 160" Plate Mill, Along Monongahela River, Homestead, Allegheny County, PA

  19. Dynamic Effect of Rolling Massage on Blood Flow

    NASA Astrophysics Data System (ADS)

    Chen, Yan-Yan; Yi, Hou-Hui; Li, Hua-Bing; Fang, Hai-Ping

    2009-02-01

    The Chinese traditional medical massage has been used as a natural therapy to eliminate some diseases. Here, the effect of the rolling massage frequency to the blood flow in the blood vessels under the rolling massage manipulation is studied by the lattice Boltzmann simulation. The simulation results show that when the frequency is smaller than or comparable to the pulsatile frequency of the blood flow, the effect on the blood flux by the rolling massage is small. On the contrast, if the frequency is twice or more times of the pulsatile frequency of the blood flow, the blood flux is greatly enhanced and increases linearly with respect to the frequency. Similar behavior has also been observed on the shear stress on the blood vessel walls. The result is helpful for understanding that the rolling massage has the function of promoting the blood circulation and removing the blood stasis.

  20. Worm drive detail, roller hoist mechanism, rolling crest roller gate ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Worm drive detail, roller hoist mechanism, rolling crest roller gate - plan and sections - Grand Valley Diversion Dam, Half a mile north of intersection of I-70 & Colorado State Route 65, Cameo, Mesa County, CO

  1. 9. DETAIL VIEW OF ROLLING EXPANSION JOINT, NORTHEAST BASE OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. DETAIL VIEW OF ROLLING EXPANSION JOINT, NORTHEAST BASE OF SECOND CLOSED SPANDREL ARCH AT JUNCTION OF OPEN SPANDREL ARCH, LOOKING EAST - Virgin River Bridge, Spanning Virgin River on State Highway 9, Hurricane, Washington County, UT

  2. Properties of doped boiler steel after controlled rolling

    SciTech Connect

    Bobylev, M.V.; Kireev, V.B.; Koreshkova, A.M.

    1992-03-01

    The article shows that the structural strength of carbon boiler steel type 20K can be enhanced by doping with vanadium or niobium and by controlled rolling and controlled cooling. 8 refs., 6 figs., 1 tab.

  3. The Variation of Yawing Moment Due to Rolling

    NASA Technical Reports Server (NTRS)

    Wilson, Edwin Bidwell

    1918-01-01

    The aerodynamical constants of an airplane necessary for the discussion of stability are partly observed and partly calculated. Among the calculated coefficients is n(p), which is the variation of yawing moment due to rolling. (author)

  4. Adaptive methods, rolling contact, and nonclassical friction laws

    NASA Technical Reports Server (NTRS)

    Oden, J. T.

    1989-01-01

    Results and methods on three different areas of contemporary research are outlined. These include adaptive methods, the rolling contact problem for finite deformation of a hyperelastic or viscoelastic cylinder, and non-classical friction laws for modeling dynamic friction phenomena.

  5. Pathfinder on lakebed rolling out for test flight

    NASA Image and Video Library

    1995-12-10

    The Pathfinder research aircraft's wing structure is clearly defined in this photo as personnel from AeroVironment rolled it out onto the lakebed at NASA's Dryden Flight Research Center, Edwards, California, for another test flight.

  6. Orbital Rolls to Launch Pad at Wallops for Station Flight

    NASA Image and Video Library

    An Orbital Sciences Corporation Antares rolled out to launch Pad-0A at NASA's Wallops Flight Facility, Sunday, January 5, 2014, in advance of a planned Wednesday, Jan. 8th, 1:32 p.m. EST launch. Th...

  7. Rolling bearing fault diagnosis using an optimization deep belief network

    NASA Astrophysics Data System (ADS)

    Shao, Haidong; Jiang, Hongkai; Zhang, Xun; Niu, Maogui

    2015-11-01

    The vibration signals measured from a rolling bearing are usually affected by the variable operating conditions and background noise which lead to the diversity and complexity of the vibration signal characteristics, and it is a challenge to effectively identify the rolling bearing faults from such vibration signals with no further fault information. In this paper, a novel optimization deep belief network (DBN) is proposed for rolling bearing fault diagnosis. Stochastic gradient descent is used to efficiently fine-tune all the connection weights after the pre-training of restricted Boltzmann machines (RBMs) based on the energy functions, and the classification accuracy of the DBN is improved. Particle swarm is further used to decide the optimal structure of the trained DBN, and the optimization DBN is designed. The proposed method is applied to analyze the simulation signal and experimental signal of a rolling bearing. The results confirm that the proposed method is more accurate and robust than other intelligent methods.

  8. Roll Forming of AHSS: Numerical Simulation and Investigation of Effects of Main Process Parameters on Quality

    NASA Astrophysics Data System (ADS)

    Salonitis, Konstantinos; Paralikas, John; Chryssolouris, George

    The roll forming process is one of the main processes of producing straight profiles in many industrial sectors. The introduction of Advanced High Strength Steels (AHSS), such as the DP and TRIP-series, into the production of roll-formed profiles has emerged new challenges. The combination of a higher yield strength with a lower total elongation of AHSS, brings new challenges to the roll forming process. In the current study, the numerical simulation of a V-section profile has been implemented. The effect of the main process parameters, such as the roll forming line velocity, rolls inter-distance, roll gap and rolls diameter on quality characteristics is investigated.

  9. Stability of a rolling fluid filled cylinder

    NASA Astrophysics Data System (ADS)

    Supekar, Rohit; Panchagnula, Mahesh

    2014-11-01

    We present an analytical solution to the problem of a fluid filled hollow cylindrical shell rolling on an inclined plane and then investigate the temporal stability of the system using linear stability analysis. We study the motion in two dimensions by analyzing the interaction between the fluid and the hollow cylinder. We show that the terminal state is associated with a constant acceleration, similar to a rigid body motion. Surprisingly, it is independent of the liquid viscosity and only depends on the ratio of the mass of the shell to the mass of the fluid contained (say, πm) . We analyze this base flow for its stability behavior using the frozen-time approximation. In this approach, we treat time as a parameter, the evolution of which causes the flow to transition from a stable to an unstable state. The point of neutral stability is noted and the spatial modes that show the maximum growth rate are analyzed. It was observed that instability sets in due to long wavelength axial waves, which are transverse to the flow direction. We find a critical Reynolds number based on the time to instability, above which the flow becomes unstable. Again, this Reynolds number appears to be only a function of πm.

  10. Controlled Microwave Heating Accelerates Rolling Circle Amplification

    PubMed Central

    Yoshimura, Takeo; Suzuki, Takamasa; Mineki, Shigeru; Ohuchi, Shokichi

    2015-01-01

    Rolling circle amplification (RCA) generates single-stranded DNAs or RNA, and the diverse applications of this isothermal technique range from the sensitive detection of nucleic acids to analysis of single nucleotide polymorphisms. Microwave chemistry is widely applied to increase reaction rate as well as product yield and purity. The objectives of the present research were to apply microwave heating to RCA and indicate factors that contribute to the microwave selective heating effect. The microwave reaction temperature was strictly controlled using a microwave applicator optimized for enzymatic-scale reactions. Here, we showed that microwave-assisted RCA reactions catalyzed by either of the four thermostable DNA polymerases were accelerated over 4-folds compared with conventional RCA. Furthermore, the temperatures of the individual buffer components were specifically influenced by microwave heating. We concluded that microwave heating accelerated isothermal RCA of DNA because of the differential heating mechanisms of microwaves on the temperatures of reaction components, although the overall reaction temperatures were the same. PMID:26348227

  11. Rolling-circle replication of bacterial plasmids.

    PubMed Central

    Khan, S A

    1997-01-01

    Many bacterial plasmids replicate by a rolling-circle (RC) mechanism. Their replication properties have many similarities to as well as significant differences from those of single-stranded DNA (ssDNA) coliphages, which also replicate by an RC mechanism. Studies on a large number of RC plasmids have revealed that they fall into several families based on homology in their initiator proteins and leading-strand origins. The leading-strand origins contain distinct sequences that are required for binding and nicking by the Rep proteins. Leading-strand origins also contain domains that are required for the initiation and termination of replication. RC plasmids generate ssDNA intermediates during replication, since their lagging-strand synthesis does not usually initiate until the leading strand has been almost fully synthesized. The leading- and lagging-strand origins are distinct, and the displaced leading-strand DNA is converted to the double-stranded form by using solely the host proteins. The Rep proteins encoded by RC plasmids contain specific domains that are involved in their origin binding and nicking activities. The replication and copy number of RC plasmids, in general, are regulated at the level of synthesis of their Rep proteins, which are usually rate limiting for replication. Some RC Rep proteins are known to be inactivated after supporting one round of replication. A number of in vitro replication systems have been developed for RC plasmids and have provided insight into the mechanism of plasmid RC replication. PMID:9409148

  12. Communication using eye roll reflective signalling

    USGS Publications Warehouse

    Flamarique, I.N.; Mueller, G.A.; Cheng, C.L.; Figiel, C.R.

    2007-01-01

    Body reflections in the ultraviolet (UV) are a common occurrence in nature. Despite the abundance of such signals and the presence of UV cones in the retinas of many vertebrates, the function of UV cones in the majority of taxa remains unclear. Here, we report on an unusual communication system in the razorback sucker, Xyrauchen texanus, that involves flash signals produced by quick eye rolls. Behavioural experiments and field observations indicate that this form of communication is used to signal territorial presence between males. The flash signal shows highest contrast in the UV region of fhe visual spectrum (??max???380 nm), corresponding to the maximum wavelength of absorption of the UV cone mechanism in suckers. Furthermore, these cones are restricted to the dorsal retina of the animal and the upwelling light background is such that their relative sensitivity would be enhanced by chromatic adaptation of the other cone mechanisms. Thus, the UV cones in the sucker have optimal characteristics (both in terms of absorbance and retinal topography) to constitute the main detectors of the flash signal. Our findings provide the first ecological evidence for restricted distribution of UV cones in the retina of a vertebrate. ?? 2007 The Royal Society.

  13. Stochastic Prognostics for Rolling Element Bearings

    NASA Astrophysics Data System (ADS)

    Li, Y.; Kurfess, T. R.; Liang, S. Y.

    2000-09-01

    The capability to accurately predict the remaining life of a rolling element bearing is prerequisite to the optimal maintenance of rotating machinery performance in terms of cost and productivity. Due to the probabilistic nature of bearing integrity and operation condition, reliable estimation of a bearing's remaining life presents a challenging aspect in the area of maintenance optimisation and catastrophic failure avoidance. Previous study has developed an adaptive prognostic methodology to estimate the rate of bearing defect growth based on a deterministic defect-propagation model. However, deterministic models are inadequate in addressing the stochastic nature of defect-propagation. In this paper, a stochastic defect-propagation model is established by instituting a lognormal random variable in a deterministic defect-propagation rate model. The resulting stochastic model is calibrated on-line by a recursive least-squares (RLS) approach without the requirement of a priori knowledge on bearing characteristics. An augmented stochastic differential equation vector is developed with the consideration of model uncertainties, parameter estimation errors, and diagnostic model inaccuracies. It involves two ordinary differential equations for the first and second moments of its random variables. Solving the two equations gives the mean path of defect propagation and its dispersion at any instance. This approach is suitable for on-line monitoring, remaining life prediction, and decision making for optimal maintenance scheduling. The methodology has been verified by numerical simulations and the experimental testing of bearing fatigue life.

  14. Slow-roll k-essence

    SciTech Connect

    Chiba, Takeshi; Dutta, Sourish; Scherrer, Robert J.

    2009-08-15

    We derive slow-roll conditions for thawing k-essence with a separable Lagrangian p(X,{phi})=F(X)V({phi}). We examine the evolution of the equation of state parameter, w, as a function of the scale factor a, for the case where w is close to -1. We find two distinct cases, corresponding to X{approx_equal}0 and F{sub X}{approx_equal}0, respectively. For the case where X{approx_equal}0 the evolution of {phi} and hence w is described by only two parameters, and w(a) is model independent and coincides with similar behavior seen in thawing quintessence models. This result also extends to nonseparable Lagrangians where X{approx_equal}0. For the case F{sub X}{approx_equal}0, an expression is derived for w(a), but this expression depends on the potential V({phi}), so there is no model-independent limiting behavior. For the X{approx_equal}0 case, we derive observational constraints on the two parameters of the model, w{sub 0} (the present-day value of w), and the K, which parametrizes the curvature of the potential. We find that the observations sharply constrain w{sub 0} to be close to -1, but provide very poor constraints on K.

  15. Mesomorphic Lamella Rolling of Au in Vacuum

    PubMed Central

    2009-01-01

    Lamellar nanocondensates in partial epitaxy with larger-sized multiply twinned particles (MTPs) or alternatively in the form of multiple-walled tubes (MWTs) having nothing to do with MTP were produced by the very energetic pulse laser ablation of Au target in vacuum under specified power density and pulses. Transmission electron microscopic observations revealed (111)-motif diffraction and low-angle scattering. They correspond to layer interspacing (0.241–0.192 nm) and the nearest neighbor distance (ca. 0.74–0.55 nm) of atom clusters within the layer, respectively, for the lamella, which shows interspacing contraction with decreasing particle size under the influence of surface stress and rolls up upon electron irradiation. The uncapped MWT has nearly concentric amorphous layers interspaced by 0.458–0.335 nm depending on dislocation distribution and becomes spherical onions for surface-area reduction upon electron dosage. Analogous to graphene-derived tubular materials, the lamella-derived MWT of Au could have pentagon–hexagon pair at its zig-zag junction and useful optoelectronic properties worthy of exploration. PMID:20628452

  16. Mesomorphic Lamella Rolling of Au in Vacuum

    NASA Astrophysics Data System (ADS)

    Huang, Chang-Ning; Chen, Shuei-Yuan; Shen, Pouyan

    2009-07-01

    Lamellar nanocondensates in partial epitaxy with larger-sized multiply twinned particles (MTPs) or alternatively in the form of multiple-walled tubes (MWTs) having nothing to do with MTP were produced by the very energetic pulse laser ablation of Au target in vacuum under specified power density and pulses. Transmission electron microscopic observations revealed (111)-motif diffraction and low-angle scattering. They correspond to layer interspacing (0.241-0.192 nm) and the nearest neighbor distance (ca. 0.74-0.55 nm) of atom clusters within the layer, respectively, for the lamella, which shows interspacing contraction with decreasing particle size under the influence of surface stress and rolls up upon electron irradiation. The uncapped MWT has nearly concentric amorphous layers interspaced by 0.458-0.335 nm depending on dislocation distribution and becomes spherical onions for surface-area reduction upon electron dosage. Analogous to graphene-derived tubular materials, the lamella-derived MWT of Au could have pentagon-hexagon pair at its zig-zag junction and useful optoelectronic properties worthy of exploration.

  17. An improved rolled strip pulse forming line.

    PubMed

    Li, Song; Qian, Bao-Liang; Yang, Han-Wu; Gao, Jing-Ming; Liu, Zhao-Xi

    2013-06-01

    The rolled strip pulse forming line (RSPFL) has advantages of compactness, portability, and long pulse achievability which could well meet the requirements of industrial application of the pulse power technology. In this paper, an improved RSPFL with an additional insulator between the grounded conductors is investigated numerically and experimentally. Results demonstrate that the jitter on the flat-top of the output voltage waveform is reduced to 3.8% due to the improved structure. Theoretical analysis shows that the electromagnetic coupling between the conductors of the RSPFL strongly influences the output voltage waveform. Therefore, the new structure was designed to minimize the detrimental effect of the electromagnetic coupling. Simulation results show that the electromagnetic coupling can be efficiently reduced in the improved RSPFL. Experimental results illustrate that the improved RSPFL, with dimensions and weight of Φ 290 × 250 mm and 16 kg, when used as a simple pulse forming line, could generate a well shaped quasi-square pulse with output power of hundreds of MW and pulse duration of 250 ns. Importantly, the improved RSPFL was successfully used as a Blumlein pulse forming line, and a 10.8 kV, 260 ns quasi-square pulse was obtained on a 2 Ω dummy load. Experiments show reasonable agreement with numerical analysis.

  18. Communication using eye roll reflective signalling.

    PubMed

    Novales Flamarique, I; Mueller, G A; Cheng, C L; Figiel, C R

    2007-03-22

    Body reflections in the ultraviolet (UV) are a common occurrence in nature. Despite the abundance of such signals and the presence of UV cones in the retinas of many vertebrates, the function of UV cones in the majority of taxa remains unclear. Here, we report on an unusual communication system in the razorback sucker, Xyrauchen texanus, that involves flash signals produced by quick eye rolls. Behavioural experiments and field observations indicate that this form of communication is used to signal territorial presence between males. The flash signal shows highest contrast in the UV region of the visual spectrum (lambdamax approximately 380 nm), corresponding to the maximum wavelength of absorption of the UV cone mechanism in suckers. Furthermore, these cones are restricted to the dorsal retina of the animal and the upwelling light background is such that their relative sensitivity would be enhanced by chromatic adaptation of the other cone mechanisms. Thus, the UV cones in the sucker have optimal characteristics (both in terms of absorbance and retinal topography) to constitute the main detectors of the flash signal. Our findings provide the first ecological evidence for restricted distribution of UV cones in the retina of a vertebrate.

  19. TDRS-L Roll to Pad 41

    NASA Image and Video Library

    2014-01-22

    CAPE CANAVERAL, Fla. – At Cape Canaveral Air Force Station's Launch Complex 41, a United Launch Alliance Atlas V with NASA's Tracking and Data Relay Satellite, or TDRS-L, spacecraft atop, rolls out to the launch pad. The TDRS-L spacecraft is the second of three new satellites designed to ensure vital operational continuity for NASA by expanding the lifespan of the Tracking and Data Relay Satellite System TDRSS fleet, which consists of eight satellites in geosynchronous orbit. The spacecraft provide tracking, telemetry, command and high bandwidth data return services for numerous science and human exploration missions orbiting Earth. These include NASA's Hubble Space Telescope and the International Space Station. TDRS-L has a high-performance solar panel designed for more spacecraft power to meet the growing S-band communications requirements. TDRSS is one of NASA Space Communication and Navigation’s SCaN three networks providing space communications to NASA’s missions. For more information more about TDRS-L, visit: http://www.nasa.gov/tdrs To learn more about SCaN, visit: www.nasa.gov/scan Photo credit: NASA/Daniel Casper

  20. Roll aftereffects: influence of tilt and inter-stimulus interval.

    PubMed

    Crane, Benjamin T

    2012-11-01

    A theme in sensory perception is that exposure to a stimulus causes perception of subsequent stimuli to be shifted in the opposite direction. Such phenomenon is known as aftereffect and has been extensively described in the visual system as well as recently described for the vestibular system during translation. It is known from aviation studies that after a maneuver in roll, pilots can experience a false perception of roll in the opposite direction. The magnitude and duration of this effect as well as the potential influence of the gravity vector have not previously been defined. In the current paper this roll aftereffect (RAE) is examined in response to whole-body roll about an earth-horizontal axis in eight healthy human subjects. The peak velocity of a 0.5-s-duration roll was varied based on previous responses to find the point where subjects perceived no motion. Without a preceding stimulus, the starting position (upright, 9° left, or 9° right) did not influence roll perception. The RAE was measured in a completely dark room using an adapting (first interval) stimulus consisting of 9° of roll over 1.5 s (peak velocity, 12°/s), delivered 0.5, 3, or 6 s prior to test (second interval) stimulus. A significant RAE was seen in all subjects. Half a second after the adapting stimulus, a test stimulus had to be on average 1.5 ± 0.4°/s in the opposite direction to be perceived as stationary. When the subject remained upright after the adapting stimulus, the RAE diminished with time, although it remained significantly larger at 3 and 6 s when the subject remained tilted after the adapting stimulus. These data demonstrate that roll perception can be influenced by small preceding stimuli and tilt causes a persistence of the RAE.

  1. Wheel rolling constraints and slip in mobile robots

    SciTech Connect

    Shekhar, S.

    1997-03-01

    It is widely accepted that dead reckoning based on the rolling with no slip condition on wheels is not a reliable method to ascertain the position and orientation of a mobile robot for any reasonable distance. We establish that wheel slip is inevitable under the dynamic model of motion using classical results on the accessibility and controllability in nonlinear control theory and an analytical model of rolling of two linearly elastic bodies.

  2. Wheel rolling constraints and slip in mobile robots

    SciTech Connect

    Shekhar, S.

    1996-06-01

    It is widely accepted that dead-reckoning based on the rolling with no-slip condition on the wheels is not a reliable method to ascertain the position and orientation of a mobile robot for any reasonable distance. The authors establish that wheel slip is inevitable under the dynamic model of motion using classical results on the accessibility and controllability in nonlinear control theory and an analytical model of rolling of two linearly elastic bodies.

  3. Wheel rolling constraints and slip in mobile robots

    SciTech Connect

    Shekhar, S.

    1997-03-01

    It is widely accepted that dead reckoning based on the rolling with no slip condition on wheels is not a reliable method to ascertain the position and orientation of a mobile robot for any reasonable distance. The author establishes that wheel slip is inevitable under the dynamic model of motion using classical results on the accessibility and controllability in nonlinear control theory and an analytical model of rolling of two linearly elastic bodies.

  4. Roll Aftereffects: Influence of tilt and inter-stimulus interval

    PubMed Central

    Crane, Benjamin T.

    2012-01-01

    A theme in sensory perception it that exposure to a stimulus causes perception of subsequent stimuli to be shifted in the opposite direction. Such phenomenon are known as aftereffects and have been extensively described in the visual system as well as recently described for the vestibular system during translation. It is known from aviation studies that after a maneuver in roll pilots can experience a false perception of roll in the opposite direction. The magnitude and duration of this effect as well as the potential influence of the gravity vector have not previously been defined. In the current paper this roll aftereffect (RAE) is examined in response to whole body roll about an earth-horizontal axis in eight healthy human subjects. The peak velocity of a 0.5 s duration roll was varied based on previous responses to find the point where subjects perceived no motion. Without an preceding stimulus the starting position (upright, 9° left, or 9° right) did not influence roll perception. The RAE was measured in a completely dark room using an adapting (firstinterval) stimulus consisting of 9° of roll over 1.5 s (peak velocity 12°/s), delivered 0.5, 3, or 6s prior to test (second-interval) stimulus. A significant RAE was seen in all subjects. Half a second after the adapting stimulus a test stimulus had to be on average 1.5 ± 0.4°/s in the opposite direction to be perceived as stationary. When the subject remained upright after the adapting stimulus the RAE diminished with time, although it remained significantly larger at 3s and 6s when the subject remained tilted after the adapting stimulus. These data demonstrate that roll perception can be influenced by small preceding stimuli and tilt causes a persistence of the RAE. PMID:22945611

  5. Heat storage capability of a rolling cylinder using Glauber's salt

    NASA Technical Reports Server (NTRS)

    Herrick, C. S.; Zarnoch, K. P.

    1980-01-01

    The rolling cylinder phase change heat storage concept was developed to the point where a prototype design is completed and a cost analysis is prepared. A series of experimental and analytical tasks are defined to establish the thermal, mechanical, and materials behavior of rolling cylinder devices. These tasks include: analyses of internal and external heat transfer; performance and lifetime testing of the phase change materials; corrosion evaluation; development of a mathematical model; and design of a prototype and associated test equipment.

  6. Bioinspired superhydrophobic surfaces, fabricated through simple and scalable roll-to-roll processing

    NASA Astrophysics Data System (ADS)

    Park, Sung-Hoon; Lee, Sangeui; Moreira, David; Bandaru, Prabhakar R.; Han, Intaek; Yun, Dong-Jin

    2015-10-01

    A simple, scalable, non-lithographic, technique for fabricating durable superhydrophobic (SH) surfaces, based on the fingering instabilities associated with non-Newtonian flow and shear tearing, has been developed. The high viscosity of the nanotube/elastomer paste has been exploited for the fabrication. The fabricated SH surfaces had the appearance of bristled shark skin and were robust with respect to mechanical forces. While flow instability is regarded as adverse to roll-coating processes for fabricating uniform films, we especially use the effect to create the SH surface. Along with their durability and self-cleaning capabilities, we have demonstrated drag reduction effects of the fabricated films through dynamic flow measurements.

  7. Formation of the Goss orientation near the surface of 3 pct silicon steel during hot rolling

    NASA Astrophysics Data System (ADS)

    Shimizu, Y.; Ito, Y.; Iida, Y.

    1986-08-01

    The influence of hot rolling conditions such as reduction rate, rolling temperature, rolling speed, lubrication, and initial orientation on the formation of the Goss orientation near the surface of hot rolled 3 Pct silicon steel was studied. A (110) [001] orientation was stably formed at the reduction rate of over 85 Pct in any initial orientation used, even from (100) [001] and (100) [011] single crystals. A strong (110) [001] orientation was obtained in the specimen hot rolled by multi-pass rolling (low reduction rate per pass) and by slower speed rolling in the range of 6 to 50 m/min. It was found that the Goss orientation was formed not by recrystallization during and after hot rolling but by slip rotation near the surface due to constrained deformation. The high friction between the roll and sheet characteristic to hot rolling was important for this texture formation.

  8. Computer-aided analysis and design of the shape rolling process for producing turbine engine airfoils

    NASA Technical Reports Server (NTRS)

    Lahoti, G. D.; Akgerman, N.; Altan, T.

    1978-01-01

    Mild steel (AISI 1018) was selected as model cold rolling material and Ti-6A1-4V and Inconel 718 were selected as typical hot rolling and cold rolling alloys, respectively. The flow stress and workability of these alloys were characterized and friction factor at the roll/workpiece interface was determined at their respective working conditions by conducting ring tests. Computer-aided mathematical models for predicting metal flow and stresses, and for simulating the shape rolling process were developed. These models utilized the upper bound and the slab methods of analysis, and were capable of predicting the lateral spread, roll separating force, roll torque, and local stresses, strains and strain rates. This computer-aided design system was also capable of simulating the actual rolling process, and thereby designing the roll pass schedule in rolling of an airfoil or a similar shape.

  9. ANALYSIS OF ROLLING GROUP THERAPY DATA USING CONDITIONALLY AUTOREGRESSIVE PRIORS.

    PubMed

    Paddock, Susan M; Hunter, Sarah B; Watkins, Katherine E; McCaffrey, Daniel F

    2011-06-01

    Group therapy is a central treatment modality for behavioral health disorders such as alcohol and other drug use (AOD) and depression. Group therapy is often delivered under a rolling (or open) admissions policy, where new clients are continuously enrolled into a group as space permits. Rolling admissions policies result in a complex correlation structure among client outcomes. Despite the ubiquity of rolling admissions in practice, little guidance on the analysis of such data is available. We discuss the limitations of previously proposed approaches in the context of a study that delivered group cognitive behavioral therapy for depression to clients in residential substance abuse treatment. We improve upon previous rolling group analytic approaches by fully modeling the interrelatedness of client depressive symptom scores using a hierarchical Bayesian model that assumes a conditionally autoregressive prior for session-level random effects. We demonstrate improved performance using our method for estimating the variance of model parameters and the enhanced ability to learn about the complex correlation structure among participants in rolling therapy groups. Our approach broadly applies to any group therapy setting where groups have changing client composition. It will lead to more efficient analyses of client-level data and improve the group therapy research community's ability to understand how the dynamics of rolling groups lead to client outcomes.

  10. Observations and Modelling of Convective Rolls Over Low Hills

    NASA Astrophysics Data System (ADS)

    Tian, W.; Parker, D. J.; Kilburn, C. A. D.

    Radar and satellite images provide observations of convective rolls and other struc- tures in the convective boundary layer (CBL), but numerical modelling is a neces- sary complement to the observations, to investigate the temporal and spatial evolu- tion of convective rolls. Numerical simulations have been performed to investigate observed convective rolls over the south of England, using BLASIUS, a relatively simple boundary layer code for flow over topography. The principal features of the convective structures can be successfully reproduced by the model, notably the roll orientation and spacing and the basic features of the cloud field. These features are in good agreement for two case studies, one with distinct rolls and the other with more dispersed convective structures and a time-dependent basic state. The presence of low topography (with maximum height of order 30% of the CBL depth) does not significantly change the orientation and spacing, nor the time of initial occurrence of modelled rolls, but local flow anomalies can be related to the hills. These anomalies are related to coherent patterns in the diagnosed cloud fields, with a tendency for more cloud cover upstream and over hills, and cloud clearing in the lee as a result of descent suppressing convective eddies. This kind of control of the shallow convection by the topography is evident in the satellite imagery.

  11. Multiparticle adhesive dynamics. Interactions between stably rolling cells.

    PubMed Central

    King, M R; Hammer, D A

    2001-01-01

    A novel numerical simulation of adhesive particles (cells) reversibly interacting with an adhesive surface under flow is presented. Particle--particle and particle--wall hydrodynamic interactions in low Reynolds number Couette flow are calculated using a boundary element method that solves an integral representation of the Stokes equation. Molecular bonds between surfaces are modeled as linear springs and stochastically formed and broken according to postulated descriptions of force-dependent kinetics. The resulting simulation, Multiparticle Adhesive Dynamics, is applied to the problem of selectin-mediated rolling of hard spheres coated with leukocyte adhesion molecules (cell-free system). Simulation results are compared to flow chamber experiments performed with carbohydrate-coated spherical beads rolling on P-selectin. Good agreement is found between theory and experiment, with the main observation being a decrease in rolling velocity with increasing concentration of rolling cells or increasing proximity between rolling cells. Pause times are found to increase and deviation motion is found to decrease as pairs of rolling cells become closer together or align with the flow. PMID:11463626

  12. Fault feature extraction of rolling element bearings using sparse representation

    NASA Astrophysics Data System (ADS)

    He, Guolin; Ding, Kang; Lin, Huibin

    2016-03-01

    Influenced by factors such as speed fluctuation, rolling element sliding and periodical variation of load distribution and impact force on the measuring direction of sensor, the impulse response signals caused by defective rolling bearing are non-stationary, and the amplitudes of the impulse may even drop to zero when the fault is out of load zone. The non-stationary characteristic and impulse missing phenomenon reduce the effectiveness of the commonly used demodulation method on rolling element bearing fault diagnosis. Based on sparse representation theories, a new approach for fault diagnosis of rolling element bearing is proposed. The over-complete dictionary is constructed by the unit impulse response function of damped second-order system, whose natural frequencies and relative damping ratios are directly identified from the fault signal by correlation filtering method. It leads to a high similarity between atoms and defect induced impulse, and also a sharply reduction of the redundancy of the dictionary. To improve the matching accuracy and calculation speed of sparse coefficient solving, the fault signal is divided into segments and the matching pursuit algorithm is carried out by segments. After splicing together all the reconstructed signals, the fault feature is extracted successfully. The simulation and experimental results show that the proposed method is effective for the fault diagnosis of rolling element bearing in large rolling element sliding and low signal to noise ratio circumstances.

  13. Twisting, Rolling Motions, and Helicity in Prominence Eruptions

    NASA Astrophysics Data System (ADS)

    McKillop, Sean; Miralles, Mari Paz; Murphy, Nicholas A.; McCauley, Patrick; Su, Yingna

    2015-04-01

    Panasenco et al. [1] report observations of several CMEs that display a rolling motion about the axis of the erupting prominence. Murphy et al. [2] present simulations of line-tied asymmetric magnetic reconnection that make a falsifiable prediction regarding the handedness of rolling motions of flux ropes during solar eruptions. Mass motions in prominence eruptions tend to be complicated and characterizing these motions is a challenge. We use the AIA filament eruption catalog [3] as a source for finding events. If rolling motions are detected then we will investigate the handedness prediction. We use magnetograms from HMI to determine the strength and asymmetric properties of the photospheric magnetic field in the regions of interest and will use AIA observations to determine the handedness of the rolling motions. We then compare the photospheric magnetic information with the handedness to determine if there is a relationship between the two. We also determine the chirality of the prominences to see if there is any interesting relationship to the twist, rolling motion and/or handedness of the roll.[1] O. Panasenco, S. Martin, A. D. Joshi, & N. Srivastava, J. Atmos. Sol.-Terr. Phys., 73, 1129 (2011)[2] N. A. Murphy, M. P. Miralles, C. L. Pope, J. C. Raymond, H. D. Winter, K. K. Reeves, D. B. Seaton, A. A. van Ballegooijen, & J. Lin, ApJ, 751, 56 (2012)[3] http://aia.cfa.harvard.edu/filament/

  14. Rolling-Element Fatigue Testing and Data Analysis - A Tutorial

    NASA Technical Reports Server (NTRS)

    Vlcek, Brian L.; Zaretsky, Erwin V.

    2011-01-01

    In order to rank bearing materials, lubricants and other design variables using rolling-element bench type fatigue testing of bearing components and full-scale rolling-element bearing tests, the investigator needs to be cognizant of the variables that affect rolling-element fatigue life and be able to maintain and control them within an acceptable experimental tolerance. Once these variables are controlled, the number of tests and the test conditions must be specified to assure reasonable statistical certainty of the final results. There is a reasonable correlation between the results from elemental test rigs with those results obtained with full-scale bearings. Using the statistical methods of W. Weibull and L. Johnson, the minimum number of tests required can be determined. This paper brings together and discusses the technical aspects of rolling-element fatigue testing and data analysis as well as making recommendations to assure quality and reliable testing of rolling-element specimens and full-scale rolling-element bearings.

  15. Computation of Viscous Free-Surface Hydrodynamics for Ships during Free-Roll, Wave-Excited Roll and Prescribed Motions

    NASA Astrophysics Data System (ADS)

    Smith, Kevin; Paterson, Eric

    2008-11-01

    Prediction of ship motions in waves and the role of viscous effects remains an important problem in naval hydrodynamics. A computational fluid dynamics (CFD) solver has been developed which can simulate the unsteady turbulent boundary layer, wave field, and 6DOF dynamics of a floating body in waves. The solver is based upon the Reynolds-averaged Navier-Stokes equations, and volume-of-fluid (VOF) and dynamic-meshing algorithms. It is used to study free-roll, wave-excited roll, and forced heave and sway motions. Solution validation is achieved by comparing roll-amplitude decay, natural frequency, and response amplitude operator (RAO) for a 2D box barge in regular waves to experimental data. As a practical example, a ship hullform, with and without bilge keels, is studied when undergoing prescribed roll, sway, and heave motions. Details of the fluid dynamics and forces and moments will be correlated to motion amplitudes and frequencies.

  16. Powder lubrication of faults by powder rolls in gouge zones

    NASA Astrophysics Data System (ADS)

    Chen, X.; Madden, A. S.; Reches, Z.

    2013-12-01

    Powder-lubrication by fault gouge can be an effective mechanism of dynamic weakening of faults (Reches & Lockner, 2010); however, the physical mechanisms of this lubrication are poorly understood. While the flow of coarse-grained (> 100 μm) materials, e.g. glass beads or quartz sand, was extensively studied, the flow of fine-grained (< 1 μm) powders, e.g., fault-gouge and nano-powders, have remained enigmatic. We report here experimental results of a new efficient mechanism for powder lubrication. We conducted friction tests on high-velocity rotary shear apparatus (Reches & Lockner, 2010). Two types of experimental faults were tested: (1) faults made of solid, igneous rocks (granite, tonalite and diorite); and (2) fault-zones made of 2-3 mm thick layer of granular materials (oolites, calcite or gypsum) sheared in a confined cell. We performed 21 runs with total slip of 0.14-13 m, normal stress of 1.2-14.5 MPa, slip velocity of 0.012-0.97 m/s. The ultra-microscopic (SEM and AFM) analysis of the experimental slip surfaces revealed two outstanding features in 17 out of the 21 experiments: (1) localized fault-slip along Principal Slip Zones (PSZs) that are composed of a dense, shiny, cohesive crust, 0.5-1 micron thick, that overlaid a porous substrate, and (2) elongated rolls composed of gouge-powder into three-dimensional structures of closely-packed powder grains, (20-50 nm in size). The rolls are cylindrical, 0.75-1.4 micron wide, and 1.7-30 micron long, with smooth outer surface, and laminated, concentric layers of compacted grains. The rolls were exclusively found on the PSZs. Many rolls were destroyed fracturing and smearing on the PSZ, suggesting that the rolls underwent a life cycle of formation and destruction. Significant macroscopic friction reduction was measured in experiments with observed rolls, and no (or minor) friction reduction in the four experiments without rolls. The final, reduced friction coefficients have a general reciprocal relation to the

  17. Roll-to-Roll Green Transfer of CVD Graphene onto Plastic for a Transparent and Flexible Triboelectric Nanogenerator.

    PubMed

    Chandrashekar, Bananakere Nanjegowda; Deng, Bing; Smitha, Ankanahalli Shankaregowda; Chen, Yubin; Tan, Congwei; Zhang, Haixia; Peng, Hailin; Liu, Zhongfan

    2015-09-16

    A novel roll-to-roll, etching-free, clean transfer of CVD-grown graphene from copper to plastic using surface-energy-assisted delamination in hot deionized water is reported. The delamination process is realized by water penetration between the hydrophobic graphene and a hydrophilic native oxide layer on a copper foil.The transferred graphene on plastic is used as a high-output flexible and transparent triboelectric nanogenerator.

  18. A Facile Reduction Method for Roll-to-Roll Production of High Performance Graphene-Based Transparent Conductive Films.

    PubMed

    Ning, Jing; Hao, Long; Jin, Meihua; Qiu, Xiongying; Shen, Yudi; Liang, Jiaxu; Zhang, Xinghao; Wang, Bin; Li, Xianglong; Zhi, Linjie

    2017-03-01

    A facile roll-to-roll method is developed for fabricating reduced graphene oxide (rGO)-based flexible transparent conductive films. A Sn(2+) /ethanol reduction system and a rationally designed fast coating-drying-washing technique are proven to be highly efficient for low-cost continuous production of large-area rGO films and patterned rGO films, extremely beneficial toward the manufacture of flexible photoelectronic devices.

  19. Evolution of magnetism by rolling up hexagonal boron nitride nanosheets tailored with superparamagnetic nanoparticles.

    PubMed

    Hwang, Da Young; Choi, Kyoung Hwan; Park, Jeong Eon; Suh, Dong Hack

    2017-02-01

    Controlling tunable properties by rolling up two dimensional nanomaterials is an exciting avenue for tailoring the electronic and magnetic properties of materials at the nanoscale. We demonstrate the tailoring of a magnetic nanocomposite through hybridization with magnetic nanomaterials using hexagonal boron nitride (h-BN) templates as an effective way to evolve magnetism for the first time. Boron nitride nanosheets exhibited their typical diamagnetism, but rolled-up boron nitride sheets (called nanoscrolls) clearly have para-magnetism in the case of magnetic susceptibility. Additionally, the Fe3O4 NP sample shows a maximum ZFC curve at about 103 K, which indicates well dispersed superparamagnetic nanoparticles. The ZFC curve for the h-BN-Fe3O4 NP scrolls exhibited an apparent rounded maximum blocking temperature at 192 K compared to the Fe3O4 NPs, leading to a dramatic increase in TB. These magnetic nanoscroll derivatives are remarkable materials and should be suitable for high-performance composites and nano-, medical- and electromechanical-devices.

  20. Multivariable passive RFID vapor sensors: roll-to-roll fabrication on a flexible substrate.

    PubMed

    Potyrailo, Radislav A; Burns, Andrew; Surman, Cheryl; Lee, D J; McGinniss, Edward

    2012-06-21

    We demonstrate roll-to-roll (R2R) fabrication of highly selective, battery-free radio frequency identification (RFID) sensors on a flexible polyethylene terephthalate (PET) polymeric substrate. Selectivity of our developed RFID sensors is provided by measurements of their resonance impedance spectra, followed by the multivariate analysis of spectral features, and correlation of these spectral features to the concentrations of vapors of interest. The multivariate analysis of spectral features also provides the ability for the rejection of ambient interferences. As a demonstration of our R2R fabrication process, we employed polyetherurethane (PEUT) as a "classic" sensing material, extruded this sensing material as 25, 75, and 125-μm thick films, and thermally laminated the films onto RFID inlays, rapidly producing approximately 5000 vapor sensors. We further tested these RFID vapor sensors for their response selectivity toward several model vapors such as toluene, acetone, and ethanol as well as water vapor as an abundant interferent. Our RFID sensing concept features 16-bit resolution provided by the sensor reader, granting a highly desired independence from costly proprietary RFID memory chips with a low-resolution analog input. Future steps are being planned for field-testing of these sensors in numerous conditions.

  1. Roll-to-Roll Solution-Processible Small-Molecule OLEDs

    SciTech Connect

    Liu, Jie Jerry

    2012-07-31

    The objective of this program is to develop key knowledge and make critical connections between technologies needed to enable low-cost manufacturing of OLED lighting products. In particular, the program was intended to demonstrate the feasibility of making high performance Small-Molecule OLEDs (SM-OLED) using a roll-to-roll (R2R) wet-coating technique by addressing the following technical risks (1) Whether the wet-coating technique can provide high performance OLEDs, (2) Whether SM-OLED can be made in a R2R manner, (3) What are the requirements for coating equipment, and (4) Whether R2R OLEDs can have the same performance as the lab controls. The program has been managed and executed according to the Program Management Plan (PMP) that was first developed at the beginning of the program and further revised accordingly as the program progressed. Significant progress and risk reductions have been accomplished by the end of the program. Specific achievements include: (1) Demonstrated that wet-coating can provide OLEDs with high LPW and long lifetime; (2) Demonstrated R2R OLEDs can be as efficient as batch controls (Figure 1) (3) Developed & validated basic designs for key equipment necessary for R2R SM-OLEDs; (4) Developed know-hows & specifications on materials & ink formulations critical to wetcoating; (5) Developed key R2R processes for each OLED layer (6) Identified key materials and components such as flexible barrier substrates necessary for R2R OLEDs.

  2. Roll to roll fabrication of thin film silicon solar cells on nano-textured substrates.

    PubMed

    Soppe, W J; Borg, H; Van Aken, B B; Devilee, C; Dörenkämper, M; Goris, M; Heijna, M C R; Löffler, J; Peeters, P

    2011-12-01

    ECN is developing a novel fabrication process for thin film silicon solar cells on steel foil. Key features in this process are: (1) application of an insulating barrier layer which enables monolithic interconnection and texturization of the rear contact with submicron structures for light trapping; (2) Si deposition with remote, linear PECVD; (3) series interconnection by laser scribing and printing after deposition of all layers, which reduces the total number of process steps. The barrier layer is essential for the monolithic series interconnection of cells, but we show that it also enables optimum light trapping in the solar cells. We can fabricate any arbitrary sub-micron surface profile by hot embossing the barrier layer. For deposition of doped and intrinsic silicon layers we use novel remote, linear plasma sources, which are excellently suited for continuous roll-to-roll processing. We have been able to fabricate device-quality amorphous and microcrystalline silicon layers with these sources. The first nip a-Si cells were made on steel substrates with flat barrier layer and had initial efficiencies of 6.3%, showing the potential of the concept.

  3. Roll-to-roll embedded conductive structures integrated into organic photovoltaic devices.

    PubMed

    van de Wiel, H J; Galagan, Y; van Lammeren, T J; de Riet, J F J; Gilot, J; Nagelkerke, M G M; Lelieveld, R H C A T; Shanmugam, S; Pagudala, A; Hui, D; Groen, W A

    2013-12-06

    Highly conductive screen printed metallic (silver) structures (current collecting grids) combined with poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) are a viable replacement for indium tin oxide (ITO) and inkjet printed silver as transparent electrode materials. To provide successful integration into organic photovoltaic (OPV) devices, screen printed silver current collecting grids should be embedded into a substrate to avoid topology issues. In this study micron-thick conductive structures are embedded and integrated into OPV devices. The embedded structures are produced roll-to-roll with optimized process settings and materials. Topology measurements show that the embedded grids are well suited for integration into OPV devices since the surface is almost without spikes and has low surface roughness. JV measurements of OPV devices with embedded structures on a polyethylene terephthalate/silicon nitride (PET/SiN) substrate show an efficiency of 2.15%, which is significantly higher than identical flexible devices with ITO (1.02%) and inkjet printed silver (1.48%). The use of embedded screen printed silver instead of ITO and inkjet printed silver in OPV devices will allow for higher efficiency devices which can be produced with larger design and process freedom.

  4. Reduced Blood Coagulation on Roll-to-Roll, Shrink-Induced Superhydrophobic Plastics.

    PubMed

    Nokes, Jolie M; Liedert, Ralph; Kim, Monica Y; Siddiqui, Ali; Chu, Michael; Lee, Eugene K; Khine, Michelle

    2016-03-09

    The unique antiwetting properties of superhydrophobic (SH) surfaces prevent the adhesion of water and bodily fluids, including blood, urine, and saliva. While typical manufacturable approaches to create SH surfaces rely on chemical and structural modifications, such approaches are expensive, require postprocessing, and are often not biocompatible. By contrast, it is demonstrated that purely structural SH features are easily formed using high throughput roll-to-roll (R2R) manufacturing by shrinking a prestressed thermoplastic with a thin, stiff layer of silver and calcium. These features are subsequently embossed into any commercially available and Food and Drug Administration (FDA)-approved plastic. The R2R SH surfaces have contact angles >150° and contact angle hysteresis <10°. Importantly, the surfaces minimize blood adhesion, leading to reduced blood coagulation without the need for anticoagulants. SH surfaces have >4200× reduction of blood residue area compared to the nonstructured controls of the same material. In addition, blood clotting is reduced >5× using whole blood directly from the patient. Furthermore, these surfaces can be easily configured into 3D shapes, as demonstrated with SH tubes. With the simple scale-up production and the eliminated need for anticoagulants to prevent clotting, the proposed conformable SH surfaces can be impactful for a wide range of medical tools, including catheters and microfluidic channels. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Patterned Immobilization of Antibodies within Roll-to-Roll Hot Embossed Polymeric Microfluidic Channels

    PubMed Central

    Feyssa, Belachew; Liedert, Christina; Kivimaki, Liisa; Johansson, Leena-Sisko; Jantunen, Heli; Hakalahti, Leena

    2013-01-01

    This paper describes a method for the patterned immobilization of capture antibodies into a microfluidic platform fabricated by roll-to-roll (R2R) hot embossing on poly (methyl methacrylate) (PMMA). Covalent attachment of antibodies was achieved by two sequential inkjet printing steps. First, a polyethyleneimine (PEI) layer was deposited onto oxygen plasma activated PMMA foil and further cross-linked with glutaraldehyde (GA) to provide an amine-reactive aldehyde surface (PEI-GA). This step was followed by a second deposition of antibody by overprinting on the PEI-GA patterned PMMA foil. The PEI polymer ink was first formulated to ensure stable drop formation in inkjet printing and the printed films were characterized using atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). Anti-CRP antibody was patterned on PMMA foil by the developed method and bonded permanently with R2R hot embossed PMMA microchannels by solvent bonding lamination. The functionality of the immobilized antibody inside the microfluidic channel was evaluated by fluorescence-based sandwich immunoassay for detection of C-reactive protein (CRP). The antibody-antigen assay exhibited a good level of linearity over the range of 10 ng/ml to 500 ng/ml (R2 = 0.991) with a calculated detection limit of 5.2 ng/ml. The developed patterning method is straightforward, rapid and provides a versatile approach for creating multiple protein patterns in a single microfluidic channel for multiplexed immunoassays. PMID:23874811

  6. Adaptation of roll-to-roll imprint lithography: from flexible electronics to structural templates

    NASA Astrophysics Data System (ADS)

    Holland, Edward R.; Jeans, Albert; Mei, Ping; Taussig, Carl P.; Elder, Richard E.; Bell, Cynthia; Howard, Emmett; Stowell, John

    2011-04-01

    HP has previously demonstrated the roll-to-roll (R2R) fabrication of active-matrix display backplanes using the Self-Aligned Imprint Lithography (SAIL) process. This approach permits a single imprint step to create a multi level mask comprising all patterns required for subsequent etching steps, obviating the need for multiple alignment steps. In this paper the imprint lithography technique and aspects of SAIL are reviewed. New work using imprint processing to generate structural templates, with aspect ratios approaching 6:1, for fluid containment will be presented. Arrays of transparent well structures, formed on a flexible transparent substrate provide the basis for a color display filter matrix that is filled by inkjet deposition of pigmented resins. A primary benefit of this approach is precise color pattern definition. A separation between primary color fields of 4 microns is realized without risk of color mixing or overlap. Components patterned with high absolute precision by imprint lithography were readily integrated with parts from other sources to yield flexible color reflective display demonstrator panels. This work highlights the flexibility of imprint processing and its suitability for use with a wide variety of materials and in differing applications.

  7. Continuous roll-to-roll a-Si photovoltaic manufacturing technology

    SciTech Connect

    Izu, M. )

    1993-04-01

    This report describes work performed by ECD to advance its roll-to-roll, triple-junction photovoltaic manufacturing technologies; to reduce the module production costs; to increase the stabilized module performance; and to expand the commercial capacity utilizing ECD technology. The 3-year goal is to develop advanced large-scale manufacturing technology incorporating ECD's earlier research advances with the capability of producing modules with stable 11% efficiency at a cost of approximately $1/W[sub p]. Major efforts during Phase I are (1) the optimization of the high-performance back-reflector system, (2) the optimization of a-Si-Ge narrow band-gap solar cell, and (3) the optimization of the stable efficiency of the module. The goal is to achieve a stable 8% efficient 0.3-m [times] 1.2-m (1-ft [times] 4-ft) module. Also, the efforts include work on a proprietary, high-deposition-rate, microwave plasma, CVD manufacturing technology; and on the investigation of material cost reduction.

  8. Roll-to-roll embedded conductive structures integrated into organic photovoltaic devices

    NASA Astrophysics Data System (ADS)

    van de Wiel, H. J.; Galagan, Y.; van Lammeren, T. J.; de Riet, J. F. J.; Gilot, J.; Nagelkerke, M. G. M.; Lelieveld, R. H. C. A. T.; Shanmugam, S.; Pagudala, A.; Hui, D.; Groen, W. A.

    2013-12-01

    Highly conductive screen printed metallic (silver) structures (current collecting grids) combined with poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) are a viable replacement for indium tin oxide (ITO) and inkjet printed silver as transparent electrode materials. To provide successful integration into organic photovoltaic (OPV) devices, screen printed silver current collecting grids should be embedded into a substrate to avoid topology issues. In this study micron-thick conductive structures are embedded and integrated into OPV devices. The embedded structures are produced roll-to-roll with optimized process settings and materials. Topology measurements show that the embedded grids are well suited for integration into OPV devices since the surface is almost without spikes and has low surface roughness. JV measurements of OPV devices with embedded structures on a polyethylene terephthalate/silicon nitride (PET/SiN) substrate show an efficiency of 2.15%, which is significantly higher than identical flexible devices with ITO (1.02%) and inkjet printed silver (1.48%). The use of embedded screen printed silver instead of ITO and inkjet printed silver in OPV devices will allow for higher efficiency devices which can be produced with larger design and process freedom.

  9. Design of an airframe agnostic roll-on/roll-off (AA-RORO) sensor platform

    NASA Astrophysics Data System (ADS)

    Sparks, Bruce; Wowczuk, Zenovy S.; Harrison, A. Jay

    2009-05-01

    The US military has recently taken tactical steps to increase its ISR capabilities to support military operations. Due to the dynamic capabilities of the terrorist threat, there is a need for a payload- and airframe-agnostic, rapid-deployment sensor system that can be used on multiple airframes for in-theater missions and for the test and evaluation of sensors prior to fielding. This "plug-and-play" system, based upon the Oculus Sensor Deployment System technology, uses a system-of-systems approach to modularize the base platform, thereby allowing the system to conform to aircraft such as the C-130, C-27, V-22, CH-47, CH-53 and CASA-235 without any modification to the airframe itself. This type of system can be used as (1) a versatile, cost-effective test and evaluation platform for current and developmental sensors as well as (2) an in-theater ISR asset that can be used on readily available airframes at a particular location. This paper illustrates the CONUS and OCONUS mission potential of this multi-airframe system and outlines the novel design characteristics that the Airframe Agnostic Roll-on/Roll-off (AA-RORO) sensor platform incorporates to make it the most versatile, rapid-deployment sensor platform available to support near-term U.S. military operations. The system concept was developed with the support of and input from multiple military agencies and the respective branches they represent.

  10. Roll-to-roll production of 30-inch graphene films for transparent electrodes

    NASA Astrophysics Data System (ADS)

    Hong, Byung Hee

    2011-03-01

    The outstanding electrical1, mechanical and chemical properties of graphene make it attractive for applications in flexible electronics. However, efforts to make transparent conducting films from graphene have been hampered by the lack of efficient methods for the synthesis, transfer and doping of graphene at the scale and quality required for applications. Here, we report the roll-to-roll production and wet-chemical doping of predominantly monolayer 30-inch graphene films grown by chemical vapour deposition onto flexible copper substrates. The films have sheet resistances as low as ~ 125 Ohm/sq with 97.4% optical transmittance, and exhibit the half-integer quantum Hall effect, indicating their high quality. We further use layer-by-layer stacking to fabricate a doped four-layer film and measure its sheet resistance at values as low as ~ 30 Ohm/sq at ~ 90 % transparency, which is superior to commercial transparent electrodes such as indium tin oxides. Graphene electrodes were incorporated into a fully functional touch-screen panel device capable of withstanding high strain. Work done in collaboration with Sukang Bae, Hyeongkeun Kim, Youngbin Lee, and Jong-Hyun Ahn, Sungkyunkwan University.

  11. Roll-to-Roll Screen Printed Radio Frequency Identification Transponder Antennas for Vehicle Tracking Systems

    NASA Astrophysics Data System (ADS)

    Zichner, Ralf; Baumann, Reinhard R.

    2013-05-01

    Vehicle tracking systems based on ultra high frequency (UHF) radio frequency identification (RFID) technology are already introduced to control the access to car parks and corporate premises. For this field of application so-called Windshield RFID transponder labels are used, which are applied to the inside of the windshield. State of the art for manufacturing these transponder antennas is the traditional lithography/etching approach. Furthermore the performance of these transponders is limited to a reading distance of approximately 5 m which results in car speed limit of 5 km/h for identification. However, to achieve improved performance compared to existing all-purpose transponders and a dramatic cost reduction, an optimized antenna design is needed which takes into account the special dielectric and in particular metallic car environment of the tag and an roll-to-roll (R2R) printing manufacturing process. In this paper we focus on the development of a customized UHF RFID transponder antenna design, which is adopted for vehicle geometry as well as R2R screen printing manufacturing processes.

  12. Roll-to-roll production of 30-inch graphene films for transparent electrodes

    NASA Astrophysics Data System (ADS)

    Bae, Sukang; Kim, Hyeongkeun; Lee, Youngbin; Xu, Xiangfan; Park, Jae-Sung; Zheng, Yi; Balakrishnan, Jayakumar; Lei, Tian; Ri Kim, Hye; Song, Young Il; Kim, Young-Jin; Kim, Kwang S.; Özyilmaz, Barbaros; Ahn, Jong-Hyun; Hong, Byung Hee; Iijima, Sumio

    2010-08-01

    The outstanding electrical, mechanical and chemical properties of graphene make it attractive for applications in flexible electronics. However, efforts to make transparent conducting films from graphene have been hampered by the lack of efficient methods for the synthesis, transfer and doping of graphene at the scale and quality required for applications. Here, we report the roll-to-roll production and wet-chemical doping of predominantly monolayer 30-inch graphene films grown by chemical vapour deposition onto flexible copper substrates. The films have sheet resistances as low as ~125 Ω □-1 with 97.4% optical transmittance, and exhibit the half-integer quantum Hall effect, indicating their high quality. We further use layer-by-layer stacking to fabricate a doped four-layer film and measure its sheet resistance at values as low as ~30 Ω □-1 at ~90% transparency, which is superior to commercial transparent electrodes such as indium tin oxides. Graphene electrodes were incorporated into a fully functional touch-screen panel device capable of withstanding high strain.

  13. Roll-to-roll production of 30-inch graphene films for transparent electrodes.

    PubMed

    Bae, Sukang; Kim, Hyeongkeun; Lee, Youngbin; Xu, Xiangfan; Park, Jae-Sung; Zheng, Yi; Balakrishnan, Jayakumar; Lei, Tian; Kim, Hye Ri; Song, Young Il; Kim, Young-Jin; Kim, Kwang S; Ozyilmaz, Barbaros; Ahn, Jong-Hyun; Hong, Byung Hee; Iijima, Sumio

    2010-08-01

    The outstanding electrical, mechanical and chemical properties of graphene make it attractive for applications in flexible electronics. However, efforts to make transparent conducting films from graphene have been hampered by the lack of efficient methods for the synthesis, transfer and doping of graphene at the scale and quality required for applications. Here, we report the roll-to-roll production and wet-chemical doping of predominantly monolayer 30-inch graphene films grown by chemical vapour deposition onto flexible copper substrates. The films have sheet resistances as low as approximately 125 ohms square(-1) with 97.4% optical transmittance, and exhibit the half-integer quantum Hall effect, indicating their high quality. We further use layer-by-layer stacking to fabricate a doped four-layer film and measure its sheet resistance at values as low as approximately 30 ohms square(-1) at approximately 90% transparency, which is superior to commercial transparent electrodes such as indium tin oxides. Graphene electrodes were incorporated into a fully functional touch-screen panel device capable of withstanding high strain.

  14. In-line roll-to-roll metrology for flexible electronics

    NASA Astrophysics Data System (ADS)

    Kimbrough, Brad

    2015-09-01

    The flexible electronics market continues to grow at a rapid pace. Increasing numbers of applications employ the flexible components including displays, biomedical devices, smart apparel, and advanced sensors. To maintain performance and lifetime, many characteristics of the substrate and deposited layers must be monitored. This includes defects, surface roughness, and feature alignment. Ideally, in-situ metrology can be employed in roll-to-roll (R2R) equipment to allow for real-time process control. This presents the necessary three-dimensional metrology system with several challenging requirements: high vertical and transverse resolution, large field-of-view, extremely fast measurement times, and robust vibration immunity. This paper will discuss the design and performance of a compact, low-cost, large-field interferometric probe for in-situ measurement of R2R substrates. Samples with a variety of known and unknown features and roughnesses will be measured to characterize the performance of the system. Static and moving substrates will be measured to examine effects on results. Optimization of processing to allow for on-board analysis will be examined. Lastly, the paper will discuss how such probes may be arrayed to provide a high degree of areal coverage of the flexible substrate under test.

  15. Direct laser interference patterning of metallic sleeves for roll-to-roll hot embossing

    NASA Astrophysics Data System (ADS)

    Lang, Valentin; Rank, Andreas; Lasagni, Andrés. F.

    2017-03-01

    Surfaces equipped with periodic patterns with feature sizes in the micrometer, submicrometer and nanometer range present outstanding surface properties. Many of these surfaces can be found on different plants and animals. However, there are few methods capable to produce such patterns in a one-step process on relevant technological materials. Direct laser interference patterning (DLIP) provides both high resolution as well as high throughput. Recently, fabrication rates up to 1 m2·min-1 could be achieved. However, resolution was limited to a few micrometers due to typical thermal effects that arise when nanosecond pulsed laser systems are used. Therefore, this study introduces an alternative to ns-DLIP for the fabrication of multi-scaled micrometer and submicrometer structures on nickel surfaces using picosecond pulses (10 ps at a wavelength of 1064 nm). Due to the nature of the interaction process of the metallic surfaces with the ultrashort laser pulses, it was not only possible to directly transfer the shape of the interference pattern intensity distribution to the material (with spatial periods ranging from 1.5 μm to 5.7 μm), but also to selectively obtain laser induce periodic surface structures with feature sizes in the submicrometer and nanometer range. Finally, the structured nickel sleeves are utilized in a roll-to-roll hot embossing unit for structuring of polymer foils. Processing speeds up to 25 m·min-1 are reported.

  16. Development of a roll-to-roll thermal imprinting system with seamless belt-type template

    NASA Astrophysics Data System (ADS)

    Shan, X. C.; Chen, S. H.; Mohahidin, M. Bin; Wei, J.

    2017-08-01

    Compared to conventional thermal imprinting using a flat mold, roll-to-roll (R2R) thermal imprinting using a roller mold is a high-speed, high through-put process. In an R2R thermal imprinting process, however, the contact duration between a mold and a thermoplastic substrate is extremely short. This results in insufficient heating and pressing, leading to low fidelity of the imprinted microstructures. We have developed an R2R thermal imprinting system, which allows us to extend the contact duration between the mold and substrate. This system consists of two continuous, seamless belts that are made of metal foil. Each belt is driven by an individual hot roller; at least one belt is used as an imprinting mold, another as a carrier belt. A thermoplastic film to be imprinted is sandwiched between the two belts that provide preheating, heating and pressing, holding, and cooling for demolding during imprinting, leading to extended mold-substrate contact duration and enhanced heat transfer from the belt mold to the polymer film. R2R thermal imprinting has been performed successfully and promising results have been demonstrated.

  17. Continuous roll-to-roll amorphous silicon photovoltaic manufacturing technology. Semiannual subcontract report, 1 April 1993--30 September 1993

    SciTech Connect

    Izu, M

    1994-06-01

    This report describes work for this reporting period under a 3-year program to advance Energy Conversion Device`s (ECD) roll-to-roll, triple-junction photovoltaic (PV) manufacturing technologies, to reduce the module production costs, to increase the stabilized module performance, and to expand commercial production capacity utilizing ECD technology. The specific 3-year goal is to develop advanced large-scale manufacturing technology incorporating ECD`s earlier research advances with the capability of producing modules with stable 11% efficiency at a cost of approximately $1.00 per peak watt. Major accomplishments during this reporting period include (1) the design, construction. amd testomg of a continuous roll-to-roll multipurpose amorphous silicon alloy solar cell deposition machine that incorporates improvements necessary to obtain higher efficiency solar cells; (2) development of a photothermal deflection spectroscopy (PDS) technique for evaluating back-reflector systems; (3) the development of an improved textured Ag/ZnO back-reflector system demonstrating 25% gain in J{sub sc} over previous textured Al back-reflector systems; and (4) the design of a serpentine web continuous roll-to-roll deposition chamber.

  18. Effects of the microstructure of twin roll cast and hot rolled plates on the surface quality of presensitized plates

    NASA Astrophysics Data System (ADS)

    Zhu, Yuan-Zhi; Zhang, Ya-Feng; Zhao, Chao-Qi; Zhou, Feng

    2014-09-01

    The effect of the microstructure of plates fabricated both in the traditional process, involving casting, hot rolling and cold rolling (HR), and in the novel twin roll casting + cold rolling (TRC) process on the surface quality of presensitized (PS) plates was analyzed by optical microscopy (OM), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDXS). The formation of pores on the surface of the electrolyzed HR plate could be attributed to the presence of approximately 1-μm-sized large Al-Fe precipitates in the HR plate compared to the smaller precipitates in the TRC plate. Moreover, residual graphite lubricants used during the TRC process were entrapped on the surface of the TRC plate during the subsequent rolling process. The entrapped pollutants tended to further deteriorate the formation of pores on the surface of the TRC plate, and no residual carbon was detected on the surface of the HR plate. Furthermore, the surface quality of the TRC plate can be improved by surface cleaning before the cold rolling process, which could dramatically lower the residual graphite on the surface.

  19. Development of a continuous roll-to-roll processing system for mass production of plastic optical film

    NASA Astrophysics Data System (ADS)

    Chang, Chih-Yuan; Tsai, Meng-Hsun

    2015-12-01

    This paper reports a highly effective method for the mass production of large-area plastic optical films with a microlens array pattern based on a continuous roll-to-roll film extrusion and roller embossing process. In this study, a thin steel mold with a micro-circular hole array pattern is fabricated by photolithography and a wet chemical etching process. The thin steel mold was then wrapped onto a metal cylinder to form an embossing roller mold. During the roll-to-roll process operation, a thermoplastic raw material (polycarbonate grains) was put into the barrel of the plastic extruder with a flat T-die. Then, the molten polymer film was extruded and immediately pressed against the surface of the embossing roller mold. Under the proper processing conditions, the molten polymer will just partially fill the micro-circular holes of the mold and due to surface tension form a convex lens surface. A continuous plastic optical film with a microlens array pattern was obtained. Experiments are carried out to investigate the effect of plastic microlens formation on the roll-to-roll process. Finally, the geometrical and optical properties of the fabricated plastic optical film were measured and proved satisfactory. This technique shows great potential for the mass production of large-area plastic optical films with a microlens array pattern.

  20. Transforming Roving-Rolling Explorer (TRREx) for Planetary Exploration

    NASA Astrophysics Data System (ADS)

    Edwin, Lionel Ernest

    All planetary surface exploration missions thus far have employed traditional rovers with a rocker-bogie suspension. These rovers can navigate moderately rough and flat terrain, but are not designed to traverse rugged terrain with steep slopes. The fact is, however, that many scientifically interesting missions require exploration platforms with capabilities for navigating such types of chaotic terrain. This issue motivates the development of new kinds of rovers that take advantage of the latest advances in robotic technologies to traverse rugged terrain efficiently. This dissertation proposes and analyses one such rover concept called the Transforming Roving-Rolling Explorer (TRREx) that is principally aimed at addressing the above issue. Biologically inspired by the way the armadillo curls up into a ball when threatened, and the way the golden wheel spider uses the dynamic advantages of a sphere to roll down hills when escaping danger, the novel TRREx rover can traverse like a traditional 6-wheeled rover over conventional terrain, but can also transform itself into a sphere, when necessary, to travel down steep inclines, or navigate rough terrain. This work presents the proposed design architecture and capabilities followed by the development of mathematical models and experiments that facilitate the mobility analysis of the TRREx in the rolling mode. The ability of the rover to self-propel in the rolling mode in the absence of a negative gradient increases its versatility and concept value. Therefore, a dynamic model of a planar version of the problem is first used to investigate the feasibility and value of such self-propelled locomotion - 'actuated rolling'. Construction and testing of a prototype Planar/Cylindrical TRREx that is capable of demonstrating actuated rolling is presented, and the results from the planar dynamic model are experimentally validated. This planar model is then built upon to develop a mathematical model of the spherical TRREx in the

  1. Experiments on spray from a rolling tire

    NASA Astrophysics Data System (ADS)

    Radovich, Charles Anthony

    A novel laboratory apparatus has been built to understand the key mechanisms behind spray emerging from a rolling tire. Several researchers have assessed the performance of spray suppression devices; however, there are no known efforts that address the question "what needs to be suppressed?" This investigation into how water in a tire groove evolves into a droplet field will ultimately contribute to driver safety. Using high-speed imaging, water passing through a single circumferential groove was observed to leave the tire patch in the form of a thin liquid sheet, connecting the roadway and the tire. The sheet disintegrates into a droplet field and the breakup modes associated with this decay were identified with respect to Weber number. Weber numbers based on the properties of water, tire speed and tire groove width were tested at 2700, 10900 and 24400. Measurements for the breakup length of the liquid sheet showed a dependence on Weber number proportional to We-1/6. The lateral displacement of the water exiting the tire patch was also measured. These tests showed the overall size of the spray field grows with We; however, the maximum water volume for all We's was delivered to the same distance from the road. Downstream from the tire patch, a determination of the droplet field was performed. From this study, the distribution of droplet sizes was determined as a function of Weber number. At We = 2,700, droplet sizes between 80 and 9000 microm were detected, with a mean diameter near 800 microm. Both the range of droplet sizes and the mean diameter were found to decrease with Weber number by approximately We-1/2. Based on these size distributions, Correlation Image Velocimetry (CIV) was used to estimate the distribution of droplet velocities as function of their size. These results reveal a strong correlation between droplet diameter and velocity which is comparable to that predicted for a simple sphere.

  2. Broadband operation of rolled-up hyperlenses

    NASA Astrophysics Data System (ADS)

    Schwaiger, Stephan; Rottler, Andreas; Bröll, Markus; Ehlermann, Jens; Stemmann, Andrea; Stickler, Daniel; Heyn, Christian; Heitmann, Detlef; Mendach, Stefan

    2012-06-01

    This work is related to an earlier publication [Schwaiger , Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.102.163903 102, 163903 (2009)], where we demonstrated by means of fiber-based transmission measurements that rolled-up Ag-(In)GaAs multilayers represent three-dimensional metamaterials with a plasma edge which is tunable over the visible and near-infrared regime by changing the thickness ratio of Ag and (In)GaAs, and predicted by means of finite-difference time-domain simulations that hyperlensing occurs at this frequency-tunable plasma edge. In the present work we develop a method to measure reflection curves on these structures and find that they correspond to the same tunable plasma edge. We find that retrieving the effective parameters from transmission and reflection data fails, because our realized metamaterials exceed the single-layer thicknesses of 5nm, which we analyze to be the layer thickness limit for the applicability of effective parameter retrieval. We show that our realized structures nevertheless have the functionality of an effective metamaterial by supplying a detailed finite-difference time-domain study which compares light propagation through our realized structure (17-nm-thick Ag layers and 34-nm-thick GaAs layers) and light propagation through an idealized structure of the same total thickness but with very thin layers [2-nm-thick Ag layers and 4-nm-thick (In)GaAs layers]. In particular, our simulations predict broadband hyperlensing covering a large part of the visible spectrum for both the idealized and our realized structures.

  3. Optimum Thread Rolling Process That Improves SCC Resistance

    SciTech Connect

    A.R. Kephart

    2001-10-29

    Accelerated testing in environments aggressive for the specific material have shown that fastener threads that are rolled after strengthening heat treatments have improved resistance to SCC initiation. For example, intergranular SCC was produced in one day when machined (cut) threads of high strength steel (ASTM A193 B-7 and A354 Grade 8) were exposed to an aggressive aqueous environment containing 8 weight % boiling ammonium nitrate and stressed to about 40% of the steel's yield strength (120 ksi, 827 MPa). In similar testing conditions, fasteners that had threads rolled before heat-treatment (quench and temper) had similar susceptibility to SCC. However, threads rolled after strengthening, exhibited no SCC after a week of exposure, even when stressed to 100% of the B-7 alloy yield strength. Similarly, intergranular SCC was produced in less than one day when machined (cut) threads of nickel-base alloys (X-750 and aged 625) were exposed to an aggressive 750 F doped steam environment (containing 100 ppm of chloride, fluoride, sulfate, nitrate and a controlled hydrogen overpressure) and stressed to about 80% of the alloy yield strength (117 ksi, 807 MPa). In similar testing conditions, threads rolled after strengthening exhibited no SCC after 50 days of exposure. This beneficial effect of the optimum thread rolling process (i.e., threads rolled after strengthening) is due to the retention of large residual compressive stresses in the thread roots (notches) which mitigate the applied notch tensile stresses resulting from joint design pre-loads. use of these material specific aggressive environments can provide an accelerated test to verify that threads were produced by the optimum thread rolling process. These tests could support fastener acceptance criteria or failure analysis of fasteners with unknown or uncertain manufacturing processes. The optimum process effects may not always be detected by more conventional methods (e.g., metallography or hardness testing).

  4. Dimethylsulfoxide exposure modulates HL-60 cell rolling interactions.

    PubMed

    Gee, David J; Wright, L Kate; Zimmermann, Jonathan; Cole, Kayla; Soule, Karen; Ubowski, Michelle

    2012-08-01

    Human leukaemic HL-60 cells are widely used for studying interactions involving adhesion molecules [e.g. P-selectin and PSGL-1 (P-selectin glycoprotein ligand-1)] since their rolling behaviour has been shown to mimic the dynamics of leucocyte rolling in vitro. HL-60 cells are neutrophilic promyelocytes that can undergo granulocytic differentiation upon exposure to compounds such as DMSO (dimethylsulfoxide). Using a parallel plate flow chamber functionalized with recombinant P-selectin-Fc chimaera, undifferentiated and DMSO-induced (48, 72 and 96 h) HL-60 cells were assayed for rolling behaviour. We found that depending on P-selectin incubation concentration, undifferentiated cells incurred up to a 6-fold increase in rolling velocity while subjected to an approximately 10-fold increase in biologically relevant shear stress. HL-60 cells exposed to DMSO for up to 72 h incurred up to a 3-fold increase in rolling velocity over the same shear stress range. Significantly, cells exposed for up to 96 h incurred up to a 9-fold decrease in rolling velocity, compared with undifferentiated HL-60 cells. Although cell surface and nuclear morphological changes were evident upon exposure to DMSO, flow cytometric analysis revealed that PSGL-1 expression was unchanged, irrespective of treatment duration. The results suggest that DMSO-treated HL-60 cells may be problematic as a substitute for neutrophils for trafficking studies during advanced stages of the LAC (leucocyte adhesion cascade). We suggest that remodelling of the cell surface during differentiation may affect rolling behaviour and that DMSO-treated HL-60 cells would behave differently from the normal leucocytes during inflammatory response in vivo.

  5. Rolling bearing life models and steel internal cleanliness

    SciTech Connect

    Beswick, J.; Gabelli, A.; Ioannides, S.; Tripp, J.H.; Voskamp, A.P.

    1999-07-01

    The most widely used steel grade for rolling bearings is based on a steel composition first used almost a hundred years ago, the so-called 1C-1.5Cr steel. This steel is used either in a selective surface induction hardened conditions or in a through hardened heat treated condition, both yielding exceptional structural and contact fatigue properties. The Lundberg and Palmgren rolling bearing life prediction model, published in 1947, was the first analytical approach to bearing performance prediction, subsequently becoming a widely accepted basis for rolling bearing life calculations. At that time the fatigue life of rolling bearings was dominated by the classical sub-surface initiated failure mode. This mode results from the accumulation of micro-plastic strain at the depth of maximum Hertzian stress and is accelerated by the stress concentrations occurring at the micro internal defects. In common with all fatigue processes, rolling bearing failure is a statistical process: the failures of bearings with high inclusion content tested at high stress levels belong to the well-known family of Weibull distributions. Steady improvements in bearing steel cleanliness due, amongst other things, to the introduction of secondary metallurgy steel making techniques, have resulted in a significantly increased rolling bearing life and load carrying capacity. In recognition of this, in 1985 Ioannides and Harris introduced a new fatigue life model for rolling bearings, comprising a more widely applicable approach to the modeling of bearing life based on the relevant failure mode. Subsequently this has been extended to include effects of hardness and of micro-inclusion distributions in state-of-the-art clean bearing steel.

  6. The Foam Roll as a Tool to Improve Hamstring Flexibility.

    PubMed

    Junker, Daniel H; Stöggl, Thomas L

    2015-12-01

    Although foam rolling is a common myofascial therapy used to increase range of motion (ROM), research is limited on the effectiveness of foam rolling on soft tissue extensibility. The aim of this study was to determine the effect of a 4-week training period of the foam roll method on hamstring flexibility. Furthermore, the study was designed to compare the effectiveness of the foam roll myofascial release with a conventional contract-relax proprioceptive neuromuscular facilitation (PNF) stretching method and a control group. Forty healthy males (age: 17-47 years) were randomly assigned to a foam roll group (FOAM, n = 13), a contract-relax PNF stretching group (CRPNF, n = 14), or a control group (CG, n = 13). The FOAM group massaged their hamstring muscles with the foam roll 3 times per week for 4 weeks (12 training sessions). The CRPNF group was assigned to 12 sessions of contract-relax PNF stretching. The CG underwent no intervention. Hamstring flexibility (ROM) was measured by a stand-and-reach test before and after the intervention period. Two-way repeated-measures analysis of variance showed a significant global time effect (p < 0.001) and an interaction effect for time × treatment (p = 0.004), demonstrating greater improvements in the FOAM and CRPNF compared with the CG, but no difference between the former. Delta changes from baseline to postintervention in ROM were not related to baseline ROM. The foam roll can be seen as an effective tool to increase hamstring flexibility within 4 weeks. The effects are comparable with the scientifically proven contract-relax PNF stretching method.

  7. Dimethylsulfoxide exposure modulates HL-60 cell rolling interactions

    PubMed Central

    Gee, David J.; Wright, L. Kate; Zimmermann, Jonathan; Cole, Kayla; Soule, Karen; Ubowski, Michelle

    2012-01-01

    Human leukaemic HL-60 cells are widely used for studying interactions involving adhesion molecules [e.g. P-selectin and PSGL-1 (P-selectin glycoprotein ligand-1)] since their rolling behaviour has been shown to mimic the dynamics of leucocyte rolling in vitro. HL-60 cells are neutrophilic promyelocytes that can undergo granulocytic differentiation upon exposure to compounds such as DMSO (dimethylsulfoxide). Using a parallel plate flow chamber functionalized with recombinant P-selectin–Fc chimaera, undifferentiated and DMSO-induced (48, 72 and 96 h) HL-60 cells were assayed for rolling behaviour. We found that depending on P-selectin incubation concentration, undifferentiated cells incurred up to a 6-fold increase in rolling velocity while subjected to an approximately 10-fold increase in biologically relevant shear stress. HL-60 cells exposed to DMSO for up to 72 h incurred up to a 3-fold increase in rolling velocity over the same shear stress range. Significantly, cells exposed for up to 96 h incurred up to a 9-fold decrease in rolling velocity, compared with undifferentiated HL-60 cells. Although cell surface and nuclear morphological changes were evident upon exposure to DMSO, flow cytometric analysis revealed that PSGL-1 expression was unchanged, irrespective of treatment duration. The results suggest that DMSO-treated HL-60 cells may be problematic as a substitute for neutrophils for trafficking studies during advanced stages of the LAC (leucocyte adhesion cascade). We suggest that remodelling of the cell surface during differentiation may affect rolling behaviour and that DMSO-treated HL-60 cells would behave differently from the normal leucocytes during inflammatory response in vivo. PMID:22494057

  8. Photogrammetric Accuracy and Modeling of Rolling Shutter Cameras

    NASA Astrophysics Data System (ADS)

    Vautherin, Jonas; Rutishauser, Simon; Schneider-Zapp, Klaus; Choi, Hon Fai; Chovancova, Venera; Glass, Alexis; Strecha, Christoph

    2016-06-01

    Unmanned aerial vehicles (UAVs) are becoming increasingly popular in professional mapping for stockpile analysis, construction site monitoring, and many other applications. Due to their robustness and competitive pricing, consumer UAVs are used more and more for these applications, but they are usually equipped with rolling shutter cameras. This is a significant obstacle when it comes to extracting high accuracy measurements using available photogrammetry software packages. In this paper, we evaluate the impact of the rolling shutter cameras of typical consumer UAVs on the accuracy of a 3D reconstruction. Hereto, we use a beta-version of the Pix4Dmapper 2.1 software to compare traditional (non rolling shutter) camera models against a newly implemented rolling shutter model with respect to both the accuracy of geo-referenced validation points and to the quality of the motion estimation. Multiple datasets have been acquired using popular quadrocopters (DJI Phantom 2 Vision+, DJI Inspire 1 and 3DR Solo) following a grid flight plan. For comparison, we acquired a dataset using a professional mapping drone (senseFly eBee) equipped with a global shutter camera. The bundle block adjustment of each dataset shows a significant accuracy improvement on validation ground control points when applying the new rolling shutter camera model for flights at higher speed (8m=s). Competitive accuracies can be obtained by using the rolling shutter model, although global shutter cameras are still superior. Furthermore, we are able to show that the speed of the drone (and its direction) can be solely estimated from the rolling shutter effect of the camera.

  9. The Stiffness Characteristics Study on an Interconnected Anti-Rolling Suspension System

    NASA Astrophysics Data System (ADS)

    Hou, Youshan; Song, Huixin; Ma, Ming; Xiao, Jie; Zhao, Ning

    The heavy-duty special vehicles easily roll during steering, anti-rolling technology becomes a critical technology to the heavy-duty vehicles. Aiming at the rolling problem of a full load heavy vehicle in the process of steering, an interconnected anti-rolling suspension system with adjustable damping was designed, the nonlinear stiffness mathematical model of interconnected anti-rolling suspension system was established. The stiffness characteristic was studied through digital simulation method, discussing the system parameter changes' affection on the stiffness performance of interconnected anti-rolling suspension system. The study results indicate that the interconnected anti-rolling suspension system betterly improves vehicles rolling resistance in contrast to the oil-gas mixed independent suspension, the study results provide theoretical basis for the anti-rolling's design of heavy-duty vehicles.

  10. Experimental and Theoretical Study on Minimum Achievable Foil Thickness during Asymmetric Rolling

    PubMed Central

    Tang, Delin; Liu, Xianghua; Song, Meng; Yu, Hailiang

    2014-01-01

    Parts produced by microforming are becoming ever smaller. Similarly, the foils required in micro-machines are becoming ever thinner. The asymmetric rolling technique is capable of producing foils that are thinner than those produced by the conventional rolling technique. The difference between asymmetric rolling and conventional rolling is the ‘cross-shear’ zone. However, the influence of the cross-shear zone on the minimum achievable foil thickness during asymmetric rolling is still uncertain. In this paper, we report experiments designed to understand this critical influencing factor on the minimum achievable thickness in asymmetric rolling. Results showed that the minimum achievable thickness of rolled foils produced by asymmetric rolling with a rolling speed ratio of 1.3 can be reduced to about 30% of that possible by conventional rolling technique. Furthermore, the minimum achievable thickness during asymmetric rolling could be correlated to the cross-shear ratio, which, in turn, could be related to the rolling speed ratio. From the experimental results, a formula to calculate the minimum achievable thickness was established, considering the parameters cross-shear ratio, friction coefficient, work roll radius, etc. in asymmetric rolling. PMID:25203265

  11. Experimental and theoretical study on minimum achievable foil thickness during asymmetric rolling.

    PubMed

    Tang, Delin; Liu, Xianghua; Song, Meng; Yu, Hailiang

    2014-01-01

    Parts produced by microforming are becoming ever smaller. Similarly, the foils required in micro-machines are becoming ever thinner. The asymmetric rolling technique is capable of producing foils that are thinner than those produced by the conventional rolling technique. The difference between asymmetric rolling and conventional rolling is the 'cross-shear' zone. However, the influence of the cross-shear zone on the minimum achievable foil thickness during asymmetric rolling is still uncertain. In this paper, we report experiments designed to understand this critical influencing factor on the minimum achievable thickness in asymmetric rolling. Results showed that the minimum achievable thickness of rolled foils produced by asymmetric rolling with a rolling speed ratio of 1.3 can be reduced to about 30% of that possible by conventional rolling technique. Furthermore, the minimum achievable thickness during asymmetric rolling could be correlated to the cross-shear ratio, which, in turn, could be related to the rolling speed ratio. From the experimental results, a formula to calculate the minimum achievable thickness was established, considering the parameters cross-shear ratio, friction coefficient, work roll radius, etc. in asymmetric rolling.

  12. Finite-element modeling of soft tissue rolling indentation.

    PubMed

    Sangpradit, Kiattisak; Liu, Hongbin; Dasgupta, Prokar; Althoefer, Kaspar; Seneviratne, Lakmal D

    2011-12-01

    We describe a finite-element (FE) model for simulating wheel-rolling tissue deformations using a rolling FE model (RFEM). A wheeled probe performing rolling tissue indentation has proven to be a promising approach for compensating for the loss of haptic and tactile feedback experienced during robotic-assisted minimally invasive surgery (H. Liu, D. P. Noonan, B. J. Challacombe, P. Dasgupta, L. D. Seneviratne, and K. Althoefer, "Rolling mechanical imaging for tissue abnormality localization during minimally invasive surgery, " IEEE Trans. Biomed. Eng., vol. 57, no. 2, pp. 404-414, Feb. 2010; K. Sangpradit, H. Liu, L. Seneviratne, and K. Althoefer, "Tissue identification using inverse finite element analysis of rolling indentation," in Proc. IEEE Int. Conf. Robot. Autom. , Kobe, Japan, 2009, pp. 1250-1255; H. Liu, D. Noonan, K. Althoefer, and L. Seneviratne, "The rolling approach for soft tissue modeling and mechanical imaging during robot-assisted minimally invasive surgery," in Proc. IEEE Int. Conf. Robot. Autom., May 2008, pp. 845-850; H. Liu, P. Puangmali, D. Zbyszewski, O. Elhage, P. Dasgupta, J. S. Dai, L. Seneviratne, and K. Althoefer, "An indentation depth-force sensing wheeled probe for abnormality identification during minimally invasive surgery," Proc. Inst. Mech. Eng., H, vol. 224, no. 6, pp. 751-63, 2010; D. Noonan, H. Liu, Y. Zweiri, K. Althoefer, and L. Seneviratne, "A dual-function wheeled probe for tissue viscoelastic property identification during minimally invasive surgery," in Proc. IEEE Int. Conf. Robot. Autom. , 2008, pp. 2629-2634; H. Liu, J. Li, Q. I. Poon, L. D. Seneviratne, and K. Althoefer, "Miniaturized force indentation-depth sensor for tissue abnormality identification," IEEE Int. Conf. Robot. Autom., May 2010, pp. 3654-3659). A sound understanding of wheel-tissue rolling interaction dynamics will facilitate the evaluation of signals from rolling indentation. In this paper, we model the dynamic interactions between a wheeled probe and a

  13. CMB quadrupole suppression. II. The early fast roll stage

    NASA Astrophysics Data System (ADS)

    Boyanovsky, D.; de Vega, H. J.; Sanchez, N. G.

    2006-12-01

    Within the effective field theory of inflation, an initialization of the classical dynamics of the inflaton with approximate equipartition between the kinetic and potential energy of the inflaton leads to a brief fast roll stage that precedes the slow roll regime. The fast roll stage leads to an attractive potential in the wave equations for the mode functions of curvature and tensor perturbations. The evolution of the inflationary perturbations is equivalent to the scattering by this potential and a useful dictionary between the scattering data and observables is established. Implementing methods from scattering theory we prove that this attractive potential leads to a suppression of the quadrupole moment for CMB and B-mode angular power spectra. The scale of the potential is determined by the Hubble parameter during slow roll. Within the effective field theory of inflation at the grand unification (GUT) energy scale we find that if inflation lasts a total number of e-folds Ntot˜59, there is a 10% 20% suppression of the CMB quadrupole and about 2% 4% suppression of the tensor quadrupole. The suppression of higher multipoles is smaller, falling off as 1/l2. The suppression is much smaller for Ntot>59, therefore if the observable suppression originates in the fast roll stage, there is the upper bound Ntot˜59.

  14. CMB quadrupole suppression. II. The early fast roll stage

    SciTech Connect

    Boyanovsky, D.; Vega, H. J. de; Sanchez, N. G.

    2006-12-15

    Within the effective field theory of inflation, an initialization of the classical dynamics of the inflaton with approximate equipartition between the kinetic and potential energy of the inflaton leads to a brief fast roll stage that precedes the slow roll regime. The fast roll stage leads to an attractive potential in the wave equations for the mode functions of curvature and tensor perturbations. The evolution of the inflationary perturbations is equivalent to the scattering by this potential and a useful dictionary between the scattering data and observables is established. Implementing methods from scattering theory we prove that this attractive potential leads to a suppression of the quadrupole moment for CMB and B-mode angular power spectra. The scale of the potential is determined by the Hubble parameter during slow roll. Within the effective field theory of inflation at the grand unification (GUT) energy scale we find that if inflation lasts a total number of e-folds N{sub tot}{approx}59, there is a 10%-20% suppression of the CMB quadrupole and about 2%-4% suppression of the tensor quadrupole. The suppression of higher multipoles is smaller, falling off as 1/l{sup 2}. The suppression is much smaller for N{sub tot}>59, therefore if the observable suppression originates in the fast roll stage, there is the upper bound N{sub tot}{approx}59.

  15. Phenomena of Foamed Concrete under Rolling of Aircraft Wheels

    NASA Astrophysics Data System (ADS)

    Jiang, Chun-shui; Yao, Hong-yu; Xiao, Xian-bo; Kong, Xiang-jun; Shi, Ya-jie

    2014-04-01

    Engineered Material Arresting System (EMAS) is an effective technique to reduce hazards associated with aircraft overrunning runway. In order to ascertain phenomena of the foamed concrete used for EMAS under rolling of aircraft wheel, a specially designed experimental setup was built which employed Boeing 737 aircraft wheels bearing actual vertical loads to roll through the foamed concrete. A number of experiments were conducted upon this setup. It is discovered that the wheel rolls the concrete in a pure rolling manner and crushes the concrete downwards, instead of crushing it forward, as long as the concrete is not higher than the wheel axle. The concrete is compressed into powder in-situ by the wheel and then is brought to bottom of the wheel. The powder under the wheel is loose and thus is not able to sustain wheel braking. It is also found that after being rolled by the wheel the concrete exhibits either of two states, i.e. either 'crushed through' whole thickness of the concrete or 'crushed halfway', depending on combination of strength of the concrete, thickness of the concrete, vertical load the wheel carries, tire dimension and tire pressure. A new EMAS design concept is developed that if an EMAS design results in the 'crushed through' state for the main gears while the 'crushed halfway' state for the nose gear, the arresting bed would be optimal to accommodate the large difference in strength between the nose gear and the main gear of an aircraft.

  16. Twisting/Rolling Motions and Chirality in Filament Eruptions

    NASA Astrophysics Data System (ADS)

    McKillop, S.; Murphy, N. A.; Miralles, M. P.; McCauley, P.; Su, Y.

    2015-12-01

    Panasenco et al. [1] report observations of several CMEs that display a rolling motion about the axis of the erupting prominence. Murphy et al. [2] present simulations of line-tied asymmetric magnetic reconnection that make a falsifiable prediction regarding the handedness of rolling motions of flux ropes during solar eruptions. Mass motions in prominence eruptions tend to be complicated, and characterizing these motions is a challenge. We use the AIA filament eruption catalog [3] as a source for finding events. If rolling motions are detected then we will investigate the handedness prediction. We use magnetograms from HMI to determine the strength and asymmetric properties of the photospheric magnetic field in the regions of interest and will use AIA observations to determine the handedness of the rolling motions. We then compare the photospheric magnetic information with the handedness to determine if there is a relationship between the two. The AIA filament eruption catalog is a great source for finding events, but it lacks a chirality determination. We aim to add these determinations and then compare the chirality with the directionality of the twisting/rolling motions. [1] O. Panasenco, S. Martin, A. D. Joshi, & N. Srivastava, J. Atmos. Sol.-Terr. Phys., 73, 1129 (2011) [2] N. A. Murphy, M. P. Miralles, C. L. Pope, J. C. Raymond, H. D. Winter, K. K. Reeves, D. B. Seaton, A. A. van Ballegooijen, & J. Lin, ApJ, 751, 56 (2012) [3] http://aia.cfa.harvard.edu/filament/

  17. Geometrical accuracy improvement in flexible roll forming lines

    NASA Astrophysics Data System (ADS)

    Larrañaga, J.; Berner, S.; Galdos, L.; Groche, P.

    2011-01-01

    The general interest to produce profiles with variable cross section in a cost-effective way has increased in the last few years. The flexible roll forming process allows producing profiles with variable cross section lengthwise in a continuous way. Until now, only a few flexible roll forming lines were developed and built up. Apart from the flange wrinkling along the transition zone of u-profiles with variable cross section, the process limits have not been investigated and solutions for shape deviations are unknown. During the PROFOM project a flexible roll forming machine has been developed with the objective of producing high technological components for automotive body structures. In order to investigate the limits of the process, different profile geometries and steel grades including high strength steels have been applied. During the first experimental tests, several errors have been identified, as a result of the complex stress states generated during the forming process. In order to improve the accuracy of the target profiles and to meet the tolerance demands of the automotive industry, a thermo-mechanical solution has been proposed. Additional mechanical devices, supporting flexible the roll forming process, have been implemented in the roll forming line together with local heating techniques. The combination of both methods shows a significant increase of the accuracy. In the present investigation, the experimental results of the validation process are presented.

  18. Modelling of drawing and rolling of high carbon flat wires

    NASA Astrophysics Data System (ADS)

    Bobadilla, C.; Persem, N.; Foissey, S.

    2007-04-01

    In order to meet customer requirements, it is necessary to develop new flat wires with a high tensile strength and a high width/thickness ratio. These products are manufactured from wire rod. The first step is to draw the wire until we have the required mechanical properties and required surface area of the section. After this, the wire is rolled from a round to a rectangular section. During the flat rolling process it can be reduced by more than 50%. Then the wire is exposed to a high level of stress during this process. Modelling allows us to predetermine this stress level, taking into account the final dimensions and the mechanical properties, thus optimising both rolling and drawing process. Forge2005 was used in order to simulate these processes. The aim of this study is to determine the value of residual stresses after drawing and so to optimise rolling. Indeed, the highest stress values are reached at this step of the process by changing the section of the wire from a round to a rectangular one. In order to evaluate the stress value accuracy for high strain levels, a behaviour law has been identified. This is a result of tensile tests carried out at each step of the drawing process. Finally, a multi-axial damage criterion was implemented using Forge2005. The optimisation of the rolling is directly linked to the minimisation of this criterion.

  19. Modelling of drawing and rolling of high carbon flat wires

    SciTech Connect

    Bobadilla, C.; Persem, N.; Foissey, S.

    2007-04-07

    In order to meet customer requirements, it is necessary to develop new flat wires with a high tensile strength and a high width/thickness ratio. These products are manufactured from wire rod. The first step is to draw the wire until we have the required mechanical properties and required surface area of the section. After this, the wire is rolled from a round to a rectangular section. During the flat rolling process it can be reduced by more than 50%. Then the wire is exposed to a high level of stress during this process. Modelling allows us to predetermine this stress level, taking into account the final dimensions and the mechanical properties, thus optimising both rolling and drawing process. Forge2005 was used in order to simulate these processes. The aim of this study is to determine the value of residual stresses after drawing and so to optimise rolling. Indeed, the highest stress values are reached at this step of the process by changing the section of the wire from a round to a rectangular one. In order to evaluate the stress value accuracy for high strain levels, a behaviour law has been identified. This is a result of tensile tests carried out at each step of the drawing process. Finally, a multi-axial damage criterion was implemented using Forge2005. The optimisation of the rolling is directly linked to the minimisation of this criterion.

  20. Rolling Motions During Solar Prominence Eruptions in Asymmetric Magnetic Environments

    NASA Astrophysics Data System (ADS)

    McKillop, Sean; Miralles, Mari Paz; Murphy, Nicholas Arnold; McCauley, Patrick

    2014-06-01

    Panasenco et al. [1] report observations of several CMEs that display a rolling motion about the axis of the erupting prominence. Murphy et al. [2] present simulations of line-tied asymmetric magnetic reconnection that make a falsifiable prediction regarding the handedness of rolling motions of flux ropes during solar eruptions. We will present initial results of our work to investigate this prediction. To determine the strength and any asymmetric properties of the magnetic field in the regions of interest in the photosphere, we use magnetograms from HMI. We use AIA observations to determine if there is any rolling motion and, if so, what handedness the rolling motions have. We then compare the photospheric magnetic information with the handedness information to determine if there is any relationship between the two. Finally, we will discuss prospects for diagnosing rolling motions of erupting prominence using off-limb IRIS observations.[1] O. Panasenco, S. Martin, A. D. Joshi, & N. Srivastava, J. Atmos. Sol.-Terr. Phys., 73, 1129 (2011)[2] N. A. Murphy, M. P. Miralles, C. L. Pope, J. C. Raymond, H. D. Winter, K. K. Reeves, D. B. Seaton, A. A. van Ballegooijen, & J. Lin, ApJ, 751, 56 (2012)