Working Performance Analysis of Rolling Bearings Used in Mining Electric Excavator Crowd Reducer
NASA Astrophysics Data System (ADS)
Zhang, Y. H.; Hou, G.; Chen, G.; Liang, J. F.; Zheng, Y. M.
2017-12-01
Refer to the statistical load data of digging process, on the basis of simulation analysis of crowd reducer system dynamics, the working performance simulation analysis of rolling bearings used in crowd reducer of large mining electric excavator is completed. The contents of simulation analysis include analysis of internal load distribution, rolling elements contact stresses and rolling bearing fatigue life. The internal load characteristics of rolling elements in cylindrical roller bearings are obtained. The results of this study identified that all rolling bearings satisfy the requirements of contact strength and fatigue life. The rationality of bearings selection and arrangement is also verified.
Mechanics of load-drag-unload contact cleaning of gecko-inspired fibrillar adhesives.
Abusomwan, Uyiosa A; Sitti, Metin
2014-10-14
Contact self-cleaning of gecko-inspired synthetic adhesives with mushroom-shaped tips has been demonstrated recently using load-drag-unload cleaning procedures similar to that of the natural animal. However, the underlying mechanics of contact cleaning has yet to be fully understood. In this work, we present a detailed experiment of contact self-cleaning that shows that rolling is the dominant mechanism of cleaning for spherical microparticle contaminants, during the load-drag-unload procedure. We also study the effect of dragging rate and normal load on the particle rolling friction. A model of spherical particle rolling on an elastomer fibrillar adhesive interface is developed and agrees well with the experimental results. This study takes us closer to determining design parameters for achieving self-cleaning fibrillar adhesives.
Integral finite element analysis of turntable bearing with flexible rings
NASA Astrophysics Data System (ADS)
Deng, Biao; Liu, Yunfei; Guo, Yuan; Tang, Shengjin; Su, Wenbin; Lei, Zhufeng; Wang, Pengcheng
2018-03-01
This paper suggests a method to calculate the internal load distribution and contact stress of the thrust angular contact ball turntable bearing by FEA. The influence of the stiffness of the bearing structure and the plastic deformation of contact area on the internal load distribution and contact stress of the bearing is considered. In this method, the load-deformation relationship of the rolling elements is determined by the finite element contact analysis of a single rolling element and the raceway. Based on this, the nonlinear contact between the rolling elements and the inner and outer ring raceways is same as a nonlinear compression spring and bearing integral finite element analysis model including support structure was established. The effects of structural deformation and plastic deformation on the built-in stress distribution of slewing bearing are investigated on basis of comparing the consequences of load distribution, inner and outer ring stress, contact stress and other finite element analysis results with the traditional bearing theory, which has guiding function for improving the design of slewing bearing.
Control of rolling contact fatigue on premium rails in revenue service.
DOT National Transportation Integrated Search
2014-11-01
Effective rail maintenance strategies are : essential for controlling rolling contact fatigue : (RCF) and reducing wear of rails under heavy : axle load (HAL) operations. In an effort to : optimize rail maintenance strategies in revenue : service, Tr...
NASA Astrophysics Data System (ADS)
Lestari, W. D.; Ismail, R.; Jamari, J.; Bayuseno, A. P.
2017-05-01
Surface texture is a common method for improving wear properties of a tribo-pair of soft and hard bearing material. The reduction of wear rates on the contacting surface material is becoming important issues. In the present study, analysis of the contact pressure on the flat surface of UHMWPE (Ultra High Molecular Weight Polyethylene) under the static- and rolling motion with the surface of steel ball used the 3D finite element method (FEM) (the ABAQUS software version 6.12). Five shaped-texture models (square, circle, ellipse, triangle, and chevron) were presented on the flat surface for analysis. The normal load of 17, 30 and 50 N was deliberately set-up for static and rolling contact analysis. The contact pressure was determined to predict the wear behavior of the shaped-texture on the flat surface of UHMWPE. The results have shown that the static normal load yielded the lowest von-Mises stress distribution on the shaped-texture of the ellipse for all values applied a load, while the square shape experienced the highest stress distribution. Under rolling contact, however, the increasing load yielded the increasing von Mises stress distribution for the texture with a triangle shape. Moreover, the texture shapes for circle, ellipse, and chevron respectively, may undergo the lowest stress distribution for all load. The wear calculation provided that the circle and square shape may undergo the highest wear rates. Obviously, the surface texture of circle, ellipse, and chevron may experience the lowest wear rates and is potential for use in the surface engineering of bearing materials.
NASA Technical Reports Server (NTRS)
Ghosh, M. K.; Hamrock, B. J.; Brewe, D. E.
1986-01-01
The effect of inlet starvation on the hydrodynamic lubrication of lightly loaded rigid nonconformal contacts in combined rolling and normal motion is determined through a numerical solution of the Reynolds' equation for an isoviscous, incompressible lubricant. Starvation is effected by systematically reducing the fluid inlet level. The pressures are taken to be ambient at the inlet meniscus boundary and Reynolds' boundary condition is applied for film rupture in the exit region. Results are presented for the dynamic performance of the starved contacts in combined rolling and normal motion for both normal approach and separation. During normal approach the dynamic load ratio (i.e. ratio of dynamic to steady state load capacity) increases considerably with increase in the inlet starvation. The effect of starvation on the dynamic peak pressure ratio is relatively small. Further, it has been observed that with increasing starvation, film thickness effects become significant in the dynamic behavior of the nonconformal contacts. For significantly starved contacts the dynamic load ratio increases with increase in film thickness during normal approach and a similar reduction is observed during separation. A similar effect is noted for the dynamic peak pressure ratio.
NASA Technical Reports Server (NTRS)
Chang, L.; Hall, P. B.; Thom, R.
1996-01-01
This research reports on an experimental study of the effects of materials and surface roughness on the scuffing characteristics of rolling/sliding contacts cooled and lubricated with liquid oxygen. Experiments were carried out under heavy loading with a Hertzian pressure in the range of 2.0 GPa to 3.0 GPa and with a high rolling velocity of up to 48 m/s. For contacts between AISI 440 C stainless-steel elements, the results showed that the scuffing behavior of the system was fairly consistent under a wide range of rolling velocity. Scuffing commenced at a small slide-to-roll ratio of around 0.02, and the scuffing behavior of the contact was not sensitive to surface roughness for the test-sample RMS roughness ranging from 0.02 microns to 0.10 microns. For contacts between 440 C and Si3N4 elements, on the other hand, the scuffing behavior of the system was not very consistent and somewhat unpredictable. The results were sensitive to surface roughness particularly that of the Si3N4 test sample. With well polished test samples, consistent results were obtained; the level of traction was lower than that with a 440 C toroid and scuffing did not take place up to a slide-to-roll ratio of near 0.03. The results strongly suggest that significant hydrodynamic effect can be generated by liquid oxygen under heavy loading and high velocity conditions. The results also suggest that the hydrodynamic action is likely generated by the conventional viscous mechanism as it can be largely destroyed by a narrow circumferential surface scratch running through the central region of the contact.
NASA Technical Reports Server (NTRS)
Kennedy, Ronald; Padovan, Joe
1987-01-01
In a three-part series of papers, a generalized finite element solution strategy is developed to handle traveling load problems in rolling, moving and rotating structure. The main thrust of this section consists of the development of three-dimensional and shell type moving elements. In conjunction with this work, a compatible three-dimensional contact strategy is also developed. Based on these modeling capabilities, extensive analytical and experimental benchmarking is presented. Such testing includes traveling loads in rotating structure as well as low- and high-speed rolling contact involving standing wave-type response behavior. These point to the excellent modeling capabilities of moving element strategies.
Nonlinear dynamic modeling of rotor system supported by angular contact ball bearings
NASA Astrophysics Data System (ADS)
Wang, Hong; Han, Qinkai; Zhou, Daning
2017-02-01
In current bearing dynamic models, the displacement coordinate relations are usually utilized to approximately obtain the contact deformations between the rolling element and raceways, and then the nonlinear restoring forces of the rolling bearing could be calculated accordingly. Although the calculation efficiency is relatively higher, the accuracy is lower as the contact deformations should be solved through iterative analysis. Thus, an improved nonlinear dynamic model is presented in this paper. Considering the preload condition, surface waviness, Hertz contact and elastohydrodynamic lubrication, load distribution analysis is solved iteratively to more accurately obtain the contact deformations and angles between the rolling balls and raceways. The bearing restoring forces are then obtained through iteratively solving the load distribution equations at every time step. Dynamic tests upon a typical rotor system supported by two angular contact ball bearings are conducted to verify the model. Through comparisons, the differences between the nonlinear dynamic model and current models are also pointed out. The effects of axial preload, rotor eccentricity and inner/outer waviness amplitudes on the dynamic response are discussed in detail.
NASA Technical Reports Server (NTRS)
Nakajima, Yukio; Padovan, Joe
1987-01-01
In a three-part series of papers, a generalized finite element methodology is formulated to handle traveling load problems involving large deformation fields in structure composed of viscoelastic media. The main thrust of this paper is to develop an overall finite element methodology and associated solution algorithms to handle the transient aspects of moving problems involving contact impact type loading fields. Based on the methodology and algorithms formulated, several numerical experiments are considered. These include the rolling/sliding impact of tires with road obstructions.
A new solution method for wheel/rail rolling contact.
Yang, Jian; Song, Hua; Fu, Lihua; Wang, Meng; Li, Wei
2016-01-01
To solve the problem of wheel/rail rolling contact of nonlinear steady-state curving, a three-dimensional transient finite element (FE) model is developed by the explicit software ANSYS/LS-DYNA. To improve the solving speed and efficiency, an explicit-explicit order solution method is put forward based on analysis of the features of implicit and explicit algorithm. The solution method was first applied to calculate the pre-loading of wheel/rail rolling contact with explicit algorithm, and then the results became the initial conditions in solving the dynamic process of wheel/rail rolling contact with explicit algorithm as well. Simultaneously, the common implicit-explicit order solution method is used to solve the FE model. Results show that the explicit-explicit order solution method has faster operation speed and higher efficiency than the implicit-explicit order solution method while the solution accuracy is almost the same. Hence, the explicit-explicit order solution method is more suitable for the wheel/rail rolling contact model with large scale and high nonlinearity.
Effect of Silicon Nitride Balls and Rollers on Rolling Bearing Life
NASA Technical Reports Server (NTRS)
Zaretsky, Erwin V.; Vlcek, Brian L.; Hendricks, Robert C.
2005-01-01
Three decades have passed since the introduction of silicon nitride rollers and balls into conventional rolling-element bearings. For a given applied load, the contact (Hertz) stress in a hybrid bearing will be higher than an all-steel rolling-element bearing. The silicon nitride rolling-element life as well as the lives of the steel races were used to determine the resultant bearing life of both hybrid and all-steel bearings. Life factors were determined and reported for hybrid bearings. Under nominal operating speeds, the resultant calculated lives of the deep-groove, angular-contact, and cylindrical roller hybrid bearings with races made of post-1960 bearing steel increased by factors of 3.7, 3.2, and 5.5, respectively, from those calculated using the Lundberg-Palmgren equations. An all-steel bearing under the same load will have a longer life than the equivalent hybrid bearing under the same conditions. Under these conditions, hybrid bearings are predicted to have a lower fatigue life than all-steel bearings by 58 percent for deep-groove bearings, 41 percent for angular-contact bearings, and 28 percent for cylindrical roller bearings.
NASA Astrophysics Data System (ADS)
Faccoli, Michela; Petrogalli, Candida; Lancini, Matteo; Ghidini, Andrea; Mazzù, Angelo
2017-07-01
An experimental investigation was carried out to study and compare the response to cyclic loading of the high-performance railway wheel steels ER8 EN13262 and SUPERLOS®. Rolling contact tests were performed with the same contact pressure, rolling speed and sliding/rolling ratio, varying the lubrication regime to simulate different climatic conditions. The samples, machined out of wheel rims at two depths within the reprofiling layer, were coupled with UIC 900A rail steel samples. The wear rates, friction coefficients and hardness were correlated with the deformation beneath the contact surface. The crack morphology was studied, and the damage mechanisms were identified. The distribution of crack length and depth at the end of the dry tests was analyzed to quantify the damage. The main difference between the steels lies in the response of the external samples to dry contact: SUPERLOS® is subjected to a higher wear and lower friction coefficient than ER8, and this reduces the density of surface cracks that can propagate under wet contact conditions. The analysis of feedback data from in-service wheels confirmed the experimental results.
Valuation of coefficient of rolling friction by the inclined plane method
NASA Astrophysics Data System (ADS)
Ciornei, F. C.; Alaci, S.; Ciogole, V. I.; Ciornei, M. C.
2017-05-01
A major objective of tribological researches is characterisation of rolling friction, due to various cases encountered in classical engineering applications, like gear transmissions and cam mechanisms or more recent examples met in bioengineering and biomedical devices. A characteristic of these examples consists in reduced dimensions of the contact zones, theoretically zero, the relative motion occurring between the contact points being either sliding or rolling. A characteristic parameter for the rolling motion is the coefficient of rolling friction. The paper proposes a method for estimation of coefficient of rolling friction by studying the motion of a body of revolution on an inclined plane. Assuming the hypothesis that moment of rolling friction is proportional to the normal reaction force, the law of motion for the body on the inclined plane is found under the premise of pure rolling. It is reached the conclusion that there is an uniformly accelerated motion, and thus for a known plane slope, it is sufficient to find the time during which the body runs a certain distance, starting from motionless situation. To obtain accurate results assumes finding precisely the time of motion. The coefficient of rolling friction was estimated for several slopes of the inclined plane and it is concluded that with increased slope, the values of coefficient of rolling friction increase, fact that suggest that the proportionality between the rolling torque and normal load is valid only for domains of limited variations of normal load.
NASA Astrophysics Data System (ADS)
Raga, Rahul; Khader, Iyas; Zdeněk, Chlup; Kailer, Andreas
2017-05-01
The focus of the work was to investigate crack initiation and propagation mechanisms in silicon nitride undergoing non-conforming hybrid contact under various tribological conditions. In order to understand the prevailing modes of damage in silicon nitride, two distinct model experiments were proposed, namely, rolling contact and cyclic contact experiments. The rolling contact experiment was designed in order to mimic the contact conditions appearing in hybrid bearings at contact pressures ranging from 3 to 6 GPa. On the other hand, cyclic contact experiments with stresses ranging from 4 to 15 GPa under different media were carried out to study damage under localised stresses. In addition, the experimentally observed cracks were implemented in a finite element model to study the stress redistribution and correlate the generated stresses with the corresponding mechanisms. Crack propagation under rolling contact was attributed to two different mechanisms, namely, fatigue induced fracture and lubricant driven crack propagation. The numerical simulations shed light on the tensile stress driven surface and subsurface crack propagation mechanisms. On the other hand, the cyclic contact experiments showed delayed crack formation for lubricated cyclic contact. Ceramographic cross-sectional analysis showed crack patterns similar to Hertzian crack propagation under cyclic contact load.
Study on the deterioration origin of thermomechanical contact fatigue
NASA Astrophysics Data System (ADS)
Tudose-Sandu-Ville, O. F.
2016-08-01
Thermomechanical wear is a complex phenomenon present in a number of industrial domains, such as rolling bearings, gears, friction wheels, rolling mill rollers. In this type of surface tribological deterioration, both fundamental and some peculiar wears are combined (abrasive, adhesive, corrosive wear and contact fatigue), with mechanical ant thermal causes. The present paper takes into account the contact fatigue type of deterioration, with both causes in mechanical variable load and the thermal tide action on the contact surface. There are some theories synthetically presented regarding the location of critical stresses in rolling contact fatigue. The Jacq thermal effect is briefly presented with some considerations concerning the temperature gradient in the metallic wall. The connection between the Jacq thermal anomaly and the thermomechanical contact fatigue is considered to be a new approach. Also, the same location for both mechanical and thermal critical stresses gives a strong support for the thermomechanical contact fatigue primary deterioration, according to the results obtained during the author's PhD research.
Transient rolling friction model for discrete element simulations of sphere assemblies
NASA Astrophysics Data System (ADS)
Kuhn, Matthew R.
2014-03-01
The rolling resistance between a pair of contacting particles can be modeled with two mechanisms. The first mechanism, already widely addressed in the DEM literature, involves a contact moment between the particles. The second mechanism involves a reduction of the tangential contact force, but without a contact moment. This type of rotational resistance, termed creep-friction, is the subject of the paper. Within the creep-friction literature, the term “creep” does not mean a viscous mechanism, but rather connotes a slight slip that accompanies rolling. Two extremes of particle motions bound the range of creep-friction behaviors: a pure tangential translation is modeled as a Cattaneo-Mindlin interaction, whereas prolonged steady-state rolling corresponds to the traditional wheel-rail problem described by Carter, Poritsky, and others. DEM simulations, however, are dominated by the transient creep-friction rolling conditions that lie between these two extremes. A simplified model is proposed for the three-dimensional transient creep-friction rolling of two spheres. The model is an extension of the work of Dahlberg and Alfredsson, who studied the two-dimensional interactions of disks. The proposed model is applied to two different systems: a pair of spheres and a large dense assembly of spheres. Although creep-friction can reduce the tangential contact force that would otherwise be predicted with Cattaneo-Mindlin theory, a significant force reduction occurs only when the rate of rolling is much greater than the rate of translational sliding and only after a sustained period of rolling. When applied to the deviatoric loading of an assembly of spheres, the proposed creep-friction model has minimal effect on macroscopic strength or stiffness. At the micro-scale of individual contacts, creep-friction does have a modest influence on the incremental contact behavior, although the aggregate effect on the assembly's behavior is minimal.
Solid lubrication design methodology
NASA Technical Reports Server (NTRS)
Aggarwal, B. B.; Yonushonis, T. M.; Bovenkerk, R. L.
1984-01-01
A single element traction rig was used to measure the traction forces at the contact of a ball against a flat disc at room temperature under combined rolling and sliding. The load and speed conditions were selected to match those anticipated for bearing applications in adiabatic diesel engines. The test program showed that the magnitude of traction forces were almost the same for all the lubricants tested; a lubricant should, therefore, be selected on the basis of its ability to prevent wear of the contact surfaces. Traction vs. slide/roll ratio curves were similar to those for liquid lubricants but the traction forces were an order of magnitude higher. The test data was used to derive equations to predict traction force as a function of contact stress and rolling speed. Qualitative design guidelines for solid lubricated concentrated contacts are proposed.
Dynamic modeling of moment wheel assemblies with nonlinear rolling bearing supports
NASA Astrophysics Data System (ADS)
Wang, Hong; Han, Qinkai; Luo, Ruizhi; Qing, Tao
2017-10-01
Moment wheel assemblies (MWA) have been widely used in spacecraft attitude control and large angle slewing maneuvers over the years. Understanding and controlling vibration of MWAs is a crucial factor to achieving the desired level of payload performance. Dynamic modeling of a MWA with nonlinear rolling bearing supports is conducted. An improved load distribution analysis is proposed to more accurately obtain the contact deformations and angles between the rolling balls and raceways. Then, the bearing restoring forces are then obtained through iteratively solving the load distribution equations at every time step. The effects of preload condition, surface waviness, Hertz contact and elastohydrodynamic lubrication could all be reflected in the nonlinear bearing forces. Considering the mass imbalances of the flywheel, flexibility of supporting structures and rolling bearing nonlinearity, the dynamic model of a typical MWA is established based upon the energy theorem. Dynamic tests are conducted to verify the nonlinear dynamic model. The influences of flywheel mass eccentricity and inner/outer waviness amplitudes on the dynamic responses are discussed in detail. The obtained results would be useful for the design and vibration control of the MWA system.
Roller bearing geometry design
NASA Technical Reports Server (NTRS)
Savage, M.; Pinkston, B. H. W.
1976-01-01
A theory of kinematic stabilization of rolling cylinders is extended and applied to the design of cylindrical roller bearings. The kinematic stabilization mechanism puts a reverse skew into the rolling elements by changing the roller taper. Twelve basic bearing modification designs are identified amd modeled. Four have single transverse convex curvature in their rollers while eight have rollers which have compound transverse curvature made up of a central cylindrical band surrounded by symmetric bands with slope and transverse curvature. The bearing designs are modeled for restoring torque per unit axial displacement, contact stress capacity, and contact area including dynamic loading, misalignment sensitivity and roller proportion. Design programs are available which size the single transverse curvature roller designs for a series of roller slopes and load separations and which design the compound roller bearings for a series of slopes and transverse radii of curvature. The compound rollers are proportioned to have equal contact stresses and minimum size. Design examples are also given.
NASA Technical Reports Server (NTRS)
DellaCorte, Christopher; Noebe, Ronald D.; Stanford, Malcolm; Padula, Santo A.
2011-01-01
Mechanical components (bearings, gears, mechanisms) typically utilize hard materials to minimize wear and attain long life. In such components, heavily loaded contact points (e.g., meshing gear teeth, bearing ball-raceway contacts) experience high contact stresses. The combination of high hardness, heavy loads and high elastic modulus often leads to damaging contact stress. In addition, mechanical component materials, such as tool steel or silicon nitride exhibit limited recoverable strain (typically less than 1 percent). These material attributes can lead to Brinell damage (e.g., denting) particularly during transient overload events such as shock impacts that occur during the launching of space vehicles or the landing of aircraft. In this paper, a superelastic alloy, 60NiTi, is considered for rolling element bearing applications. A series of Rockwell and Brinell hardness, compressive strength, fatigue and tribology tests are conducted and reported. The combination of high hardness, moderate elastic modulus, large recoverable strain, low density, and intrinsic corrosion immunity provide a path to bearings largely impervious to shock load damage. It is anticipated that bearings and components made from alloys with such attributes can alleviate many problems encountered in advanced aerospace applications.
Prediction of contact path and load sharing in spiral bevel gears
NASA Technical Reports Server (NTRS)
Bibel, George D.; Tiku, Karuna; Kumar, Ashok
1994-01-01
A procedure is presented to perform a contact analysis of spiral bevel gears in order to predict the contact path and the load sharing as the gears roll through mesh. The approach utilizes recent advances in automated contact methods for nonlinear finite element analysis. A sector of the pinion and gear is modeled consisting of three pinion teeth and four gear teeth in mesh. Calculation of the contact force and stresses through the gear meshing cycle are demonstrated. Summary of the results are presented using three dimensional plots and tables. Issues relating to solution convergence and requirements for running large finite element analysis on a supercomputer are discussed.
NASA Technical Reports Server (NTRS)
Tielking, John T.
1989-01-01
Two algorithms for obtaining static contact solutions are described in this presentation. Although they were derived for contact problems involving specific structures (a tire and a solid rubber cylinder), they are sufficiently general to be applied to other shell-of-revolution and solid-body contact problems. The shell-of-revolution contact algorithm is a method of obtaining a point load influence coefficient matrix for the portion of shell surface that is expected to carry a contact load. If the shell is sufficiently linear with respect to contact loading, a single influence coefficient matrix can be used to obtain a good approximation of the contact pressure distribution. Otherwise, the matrix will be updated to reflect nonlinear load-deflection behavior. The solid-body contact algorithm utilizes a Lagrange multiplier to include the contact constraint in a potential energy functional. The solution is found by applying the principle of minimum potential energy. The Lagrange multiplier is identified as the contact load resultant for a specific deflection. At present, only frictionless contact solutions have been obtained with these algorithms. A sliding tread element has been developed to calculate friction shear force in the contact region of the rolling shell-of-revolution tire model.
Modeling of rolling element bearing mechanics. Theoretical manual
NASA Technical Reports Server (NTRS)
Merchant, David H.; Greenhill, Lyn M.
1994-01-01
This report documents the theoretical basis for the Rolling Element Bearing Analysis System (REBANS) analysis code which determines the quasistatic response to external loads or displacement of three types of high-speed rolling element bearings: angular contact ball bearings; duplex angular contact ball bearings; and cylindrical roller bearings. The model includes the effects of bearing ring and support structure flexibility. It is comprised of two main programs: the Preprocessor for Bearing Analysis (PREBAN) which creates the input files for the main analysis program; and Flexibility Enhanced Rolling Element Bearing Analysis (FEREBA), the main analysis program. A companion report addresses the input instructions for and features of the computer codes. REBANS extends the capabilities of the SHABERTH (Shaft and Bearing Thermal Analysis) code to include race and housing flexibility, including such effects as dead band and preload springs.
14 CFR 29.479 - Level landing conditions.
Code of Federal Regulations, 2011 CFR
2011-01-01
... accelerate the wheel rolling assembly up to the specified ground speed, with— (i) The ground speed for... which each wheel contacts the ground simultaneously. (2) An attitude in which the aft wheels contact the ground with the forward wheels just clear of the ground. (b) Loading conditions. The rotorcraft must be...
14 CFR 29.479 - Level landing conditions.
Code of Federal Regulations, 2013 CFR
2013-01-01
... accelerate the wheel rolling assembly up to the specified ground speed, with— (i) The ground speed for... which each wheel contacts the ground simultaneously. (2) An attitude in which the aft wheels contact the ground with the forward wheels just clear of the ground. (b) Loading conditions. The rotorcraft must be...
Modeling of rolling element bearing mechanics. Computer program user's manual
NASA Technical Reports Server (NTRS)
Greenhill, Lyn M.; Merchant, David H.
1994-01-01
This report provides the user's manual for the Rolling Element Bearing Analysis System (REBANS) analysis code which determines the quasistatic response to external loads or displacement of three types of high-speed rolling element bearings: angular contact ball bearings, duplex angular contact ball bearings, and cylindrical roller bearings. The model includes the defects of bearing ring and support structure flexibility. It is comprised of two main programs: the Preprocessor for Bearing Analysis (PREBAN) which creates the input files for the main analysis program, and Flexibility Enhanced Rolling Element Bearing Analysis (FEREBA), the main analysis program. This report addresses input instructions for and features of the computer codes. A companion report addresses the theoretical basis for the computer codes. REBANS extends the capabilities of the SHABERTH (Shaft and Bearing Thermal Analysis) code to include race and housing flexibility, including such effects as dead band and preload springs.
Piezoviscosity In Lubrication Of Nonconformal Contacts
NASA Technical Reports Server (NTRS)
Jeng, Yeau-Ren; Hamrock, Bernard J.; Brewe, David E.
1988-01-01
Developments in theory of lubrication. Analysis of piezoviscous-rigid regime of lubrication of two ellipsoidal contacts. Begins with Reynolds equation for point contact. Equation nondimensionalized using Roelands empirical formula and Dowson and Higginson formula. Equation solved numerically. Solutions obtained for full spectrum of conditions to find effects of dimensionless load, speed, parameters of lubricated and lubricating materials, and angle between direction of rolling and direction of entrainment of lubricant.
NASA Technical Reports Server (NTRS)
Dellacorte, Christopher
2014-01-01
Mechanical components (bearings, gears, mechanisms) typically utilize hardened construction materials to minimize wear and attain long life. In such components, loaded contact points (e.g., meshing gear teeth, bearing balls-raceway contacts) experience high contact stresses. The combination of high hardness and high elastic modulus often leads to damaging contact stress and denting, particularly during transient overload events such as shock impacts that occur during the launching of space vehicles or the landing of aircraft. In this webinar, Dr. DellaCorte will introduce the results of a research project that employs a superelastic alloy, Ni-Ti for rolling element bearing applications. Bearings and components made from such alloys can alleviate many problems encountered in advanced aerospace applications and may solve many terrestrial applications as well
Traction of elastohydrodynamic contacts with thermal shearing flow
NASA Technical Reports Server (NTRS)
Jakobsen, J.; Winer, W. O.
1974-01-01
The formulation and solution for the shear stress and temperature in heavily loaded sliding elastohydrodynamic contacts is presented. The solutions are presented in dimensionless design charts. Integration over the contact area will yield the traction. Accuracy is expected to be very good over the nearly flat part of the contact area where the majority of the sliding traction is generated. The procedure presented is not appropriate for thick film lubrication, for the inlet region, or for the rolling friction of elastohydrodynamic contacts.
NASA Astrophysics Data System (ADS)
Otsuka, Yudai; Koyama, Yuya; Nishiyama, Michiko; Watanabe, Kazuhiro
2016-03-01
Gait in daily activity affects human health because it may cause physical problems such as asymmetric pelvis, flat foot and bowlegs. Monitoring natural weight shift and foot rolling on plantar has been employed in order for researchers to analyze gait characteristics. Conventional gait monitoring systems have been developed using camera, acceleration sensor, gyro sensor and electrical load sensors. They have some problems such as limited measurement place, temperature dependence and electric leakage. On the other hand, a hetero-core optical fiber sensor has many advantages such as high sensitivity for macro-bending, light weight sensor element, independency on temperature fluctuations, and no electric contact. This paper describes extraction of natural weight shift and foot rolling for gait evaluation by using a sensitive shoe, in the insole of which hetero-core optical load sensors are embedded for detecting plantar pressure. Plantar pressure of three subjects who wear the sensitive shoe and walk on the treadmill was monitored. As a result, weight shift and foot rolling for three subjects were extracted using the proposed sensitive shoe in terms of centroid movement and positions. Additionally, these extracted data are compared to that of electric load sensor to ensure consistency. For these results, it was successfully demonstrated that hetero-core optical fiber load sensor performed in unconstraint gait monitoring as well as electric load sensor.
Simplified fatigue life analysis for traction drive contacts
NASA Technical Reports Server (NTRS)
Rohn, D. A.; Loewenthal, S. H.; Coy, J. J.
1980-01-01
A simplified fatigue life analysis for traction drive contacts of arbitrary geometry is presented. The analysis is based on the Lundberg-Palmgren theory used for rolling-element bearings. The effects of torque, element size, speed, contact ellipse ratio, and the influence of traction coefficient are shown. The analysis shows that within the limits of the available traction coefficient, traction contacts exhibit longest life at high speeds. Multiple, load-sharing roller arrangements have an advantageous effect on system life, torque capacity, power-to-weight ratio and size.
NASA Technical Reports Server (NTRS)
Fleming, David P.; Poplawski, J. V.
2002-01-01
Rolling-element bearing forces vary nonlinearly with bearing deflection. Thus an accurate rotordynamic transient analysis requires bearing forces to be determined at each step of the transient solution. Analyses have been carried out to show the effect of accurate bearing transient forces (accounting for non-linear speed and load dependent bearing stiffness) as compared to conventional use of average rolling-element bearing stiffness. Bearing forces were calculated by COBRA-AHS (Computer Optimized Ball and Roller Bearing Analysis - Advanced High Speed) and supplied to the rotordynamics code ARDS (Analysis of Rotor Dynamic Systems) for accurate simulation of rotor transient behavior. COBRA-AHS is a fast-running 5 degree-of-freedom computer code able to calculate high speed rolling-element bearing load-displacement data for radial and angular contact ball bearings and also for cylindrical and tapered roller beatings. Results show that use of nonlinear bearing characteristics is essential for accurate prediction of rotordynamic behavior.
Rolling, slip and traction measurements on low modulus materials
NASA Technical Reports Server (NTRS)
Tevaarwerk, J. L.
1985-01-01
Traction and wear tests were performed on six low modulus materials (LMM). Three different traction tests were performed to determine the suitability of the material for use as traction rollers. These were the rolling, slip and endurance traction tests. For each material the combination LMM on LMM and LMM on steel were evaluated. Rolling traction test were conducted to determine the load - velocity limits, the rolling traction coefficient of the materials and to establish the type of failures that would result when loading beyond the limit. It was found that in general a simple constant rolling traction coefficient was enough to describe the results of all the test. The slip traction tests revealed that the peak traction coefficients were considerably higher than for lubricated traction contacts. The endurance traction tests were performed to establish the durability of the LMM under conditions of prolonged traction. Wear measurements were performed during and after the test. Energetic wear rates were determined from the wear measurements conducted in the endurance traction tests. These values show that the roller wear is not severe when reasonable levels of traction are transmitted.
Experimental Determination of Load Carrying Capacity of Point Contacts at Zero Entrainment Velocity
NASA Technical Reports Server (NTRS)
Shogrin, Bradley A.; Jones, William R., Jr.; Kingsbury, Edward P.; Prahl, Joseph M.
1999-01-01
A capacitance technique was used to monitor the film thickness separating two steel balls of a unique tribometer while subjecting the ball-ball contact to highly stressed, zero entrainment velocity (ZEV) conditions. All tests were performed under a N2 purge (R.H. < 1.0%) and utilized 52100 steel balls (R(sub a) = 0.02 mm). Tribometer operations and capacitance-to-film-thickness accuracy were verified by comparing the film thickness approximations to established theoretical predictions for test conditions involving pure rolling. Pure rolling experiments were performed under maximum contact stresses and entrainment velocities of 1.0 GPa and 1.0 m/s to 3.0 m/s, respectively. All data from these baseline tests conformed to theory. ZEV tests were initiated after calibration of the tribometer and verification of film thickness approximation accuracy. Maximum contact stresses up to 0.57 GPa were supported at zero entrainment velocity with sliding speeds from 6.0 to 10.0 m/s for sustained amounts of time up to 28.8 minutes. The protective lubricating film separating the specimens at ZEV had a thickness between 0.10 and 0.14 mm (4 to 6 min), which corresponds to an approximate L-value of 4. The film thickness did not have a strong dependence upon variations of load or speed. Decreasing the sliding speed from 10.0 m/s to 1 m/s revealed a rapid loss in load support between 3.0 and 1.0 m/s. The formation of an immobile film formed by lubricant entrapment is discussed as an explanation of the load carrying capacity at these zero entrainment velocity conditions, relevant to the ball-ball contact application in retainerless ball bearings.
Mechanics of advancing pin-loaded contacts with friction
NASA Astrophysics Data System (ADS)
Sundaram, Narayan; Farris, T. N.
2010-11-01
This paper considers finite friction contact problems involving an elastic pin and an infinite elastic plate with a circular hole. Using a suitable class of Green's functions, the singular integral equations governing a very general class of conforming contact problems are formulated. In particular, remote plate stresses, pin loads, moments and distributed loading of the pin by conservative body forces are considered. Numerical solutions are presented for different partial slip load cases. In monotonic loading, the dependence of the tractions on the coefficient of friction is strongest when the contact is highly conforming. For less conforming contacts, the tractions are insensitive to an increase in the value of the friction coefficient above a certain threshold. The contact size and peak pressure in monotonic loading are only weakly dependent on the pin load distribution, with center loads leading to slightly higher peak pressure and lower peak shear than distributed loads. In contrast to half-plane cylinder fretting contacts, fretting behavior is quite different depending on whether or not the pin is allowed to rotate freely. If pin rotation is disallowed, the fretting tractions resemble half-plane fretting tractions in the weakly conforming regime but the contact resists sliding in the strongly conforming regime. If pin rotation is allowed, the shear traction behavior resembles planar rolling contacts in that one slip zone is dominant and the peak shear occurs at its edge. In this case, the effects of material dissimilarity in the strongly conforming regime are only secondary and the contact never goes into sliding. Fretting tractions in the forward and reversed load states show shape asymmetry, which persists with continued load cycling. Finally, the governing integro-differential equation for full sliding is derived; in the limiting case of no friction, the same equation governs contacts with center loading and uniform body force loading, resulting in identical pressures when their resultants are equal.
Suspension system for a wheel rolling on a flat track. [bearings for directional antennas
NASA Technical Reports Server (NTRS)
Mcginness, H. D. (Inventor)
1981-01-01
An improved suspension system for an uncrowned wheel rolling on a flat track is presented. It is characterized by a wheel frame assembly including a wheel frame and at least one uncrowned wheel connected in supporting relation with the frame. It is adapted to be seated in rolling engagement with a flat track, a load supporting bed, and a plurality of flexural struts interconnecting the bed in supported relation with the frame. Each of said struts is disposed in a plane passing through the center of the uncrowned wheel surface along a line substantially bisecting the line of contact established between the wheel surface and the flat surface of the truck and characterized by a modulus of elasticity sufficient for maintaining the axis of rotation for the wheel in substantial parallelism with the line of contact established between the surfaces of the wheel and track.
Huang, Ke-Jung; Huang, Chun-Kai; Lin, Pei-Chun
2014-10-07
We report on the development of a robot's dynamic locomotion based on a template which fits the robot's natural dynamics. The developed template is a low degree-of-freedom planar model for running with rolling contact, which we call rolling spring loaded inverted pendulum (R-SLIP). Originating from a reduced-order model of the RHex-style robot with compliant circular legs, the R-SLIP model also acts as the template for general dynamic running. The model has a torsional spring and a large circular arc as the distributed foot, so during locomotion it rolls on the ground with varied equivalent linear stiffness. This differs from the well-known spring loaded inverted pendulum (SLIP) model with fixed stiffness and ground contact points. Through dimensionless steps-to-fall and return map analysis, within a wide range of parameter spaces, the R-SLIP model is revealed to have self-stable gaits and a larger stability region than that of the SLIP model. The R-SLIP model is then embedded as the reduced-order 'template' in a more complex 'anchor', the RHex-style robot, via various mapping definitions between the template and the anchor. Experimental validation confirms that by merely deploying the stable running gaits of the R-SLIP model on the empirical robot with simple open-loop control strategy, the robot can easily initiate its dynamic running behaviors with a flight phase and can move with similar body state profiles to those of the model, in all five testing speeds. The robot, embedded with the SLIP model but performing walking locomotion, further confirms the importance of finding an adequate template of the robot for dynamic locomotion.
Design criteria monograph for high-load high-speed rolling-contact bearings
NASA Technical Reports Server (NTRS)
1972-01-01
Monograph was published which summarizes and systematically orders large body of successful techniques and practices developed for design of liquid rocket engine turbopump bearings. Document was written to organize and present significant experience and knowledge accumulated by NASA in development and operational programs.
Interference-Fit Life Factors for Ball Bearings
NASA Technical Reports Server (NTRS)
Oswald, Fred B.; Zaretsky, Erwin V.; Poplawski, Joseph V.
2010-01-01
The effect of hoop stresses on the rolling-element fatigue life of angular-contact and deep-groove ball bearings was determined for common inner-ring interference fits at the ABEC-5 tolerance level. The analysis was applied to over 1150 bearing configurations and load cases. Hoop stresses were superimposed on the Hertzian principal stresses created by the applied bearing load to calculate the inner-race maximum shearing stress. The resulting fatigue life of the bearing was recalculated through a series of equations. The reduction in the fatigue life is presented as life factors that are applied to the unfactored bearing life. The life factors found in this study ranged from 1.00 (no life reduction)--where there was no net interface pressure--to a worst case of 0.38 (a 62-percent life reduction). For a given interference fit, the reduction in life is different for angular-contact and deep-groove ball bearings. Interference fits also affect the maximum Hertz stress-life relation. Experimental data of Czyzewski, showing the effect of interference fit on rolling-element fatigue life, were reanalyzed to determine the shear stress-life exponent. The Czyzewski data shear stress-life exponent c equals 8.77, compared with the assumed value of 9. Results are presented as tables and charts of life factors for angular-contact and deep-groove ball bearings with light, normal, and heavy loads and interference fits ranging from extremely light to extremely heavy.
Ceramic Bearings For Gas-Turbine Engines
NASA Technical Reports Server (NTRS)
Zaretsky, Erwin V.
1989-01-01
Report reviews data from three decades of research on bearings containing rolling elements and possibly other components made of ceramics. Ceramic bearings attractive for use in gas-turbine engines because ceramics generally retain strengths and resistances to corrosion over range of temperatures greater than typical steels used in rolling-element bearings. Text begins with brief description of historical developments in field. Followed by discussion of effects of contact stress on fatigue life of rolling element. Supplemented by figures and tables giving data on fatigue lives of rolling elements made of various materials. Analyzes data on effects of temperature and speed on fatigue lives for several materials and operating conditions. Followed by discussion of related topic of generation of heat in bearings, with consideration of effects of bearing materials, lubrication, speeds, and loads.
Heat generation in aircraft tires under free rolling conditions
NASA Technical Reports Server (NTRS)
Clark, S. K.; Dodge, R. N.
1982-01-01
A method was developed for calculating the internal temperature distribution in an aircraft tire while free rolling under load. The method uses an approximate stress analysis of each point in the tire as it rolls through the contact patch, and from this stress change the mechanical work done on each volume element may be obtained and converted into a heat release rate through a knowledge of material characteristics. The tire cross-section is then considered as a body with internal heat generation, and the diffusion equation is solved numerically with appropriate boundary conditions of the wheel and runway surface. Comparison with data obtained with buried thermocouples in tires shows good agreement.
Development of a second generation rolling contact fatigue tester
NASA Astrophysics Data System (ADS)
Deshmukh, Satyam U.
Contact fatigue failure has been in research since the early twentieth century. The need for a second generation sliding-rolling contact fatigue tester was proposed by Gregory Dvorak and Dr. Marcellin Zahui. The first generation RCF tester was used for testing super finishing processes for gear surfaces. The second generation RCF tester was funded by the Advanced Engineering Materials lab of University of North Dakota. Verification of the second generation Rolling Contact Fatigue Tester will be discussed in this thesis including the design details, assembly and testing procedure and to discuss its different parameters. The tester will have the capability of testing hollow specimens using a bobbin eddy current testing probe. This tester will allow a wide range of experiments and is not built for one specific purpose. An eddy current device is used for detecting cracks. The loading force is applied using hydraulic cylinders and a hydraulic power unit. Before testing began, the machine was run for some time at full speed. A lot of minor problems were detected and fixed. Three specimens of AISI 8620 were tested in this tester. All tests gave results matching with some of the other well-known RCF testers. These tests were performed to evaluate mechanical limits of the tester and to evaluate the software performance of the tester.
NASA Technical Reports Server (NTRS)
Dellacorte, Christopher; Moore, Lewis E.
2014-01-01
Static load capacity is a critical design parameter for rolling element bearings used in space mechanisms because of the potential for Brinell (surface dent) damage due to shock and vibration loading events during rocket launch. Brinell damage to bearing raceways can lead to torque variations (noise) and reduced bearing life. The growing use of ceramic rolling elements with high stiffness in hybrid bearings exacerbates the situation. A new family of hard yet resilient materials based upon nickel-titanium is emerging to address such bearing challenges. 60NiTi is a superelastic material that simultaneously exhibits high hardness and a relatively low elastic modulus (approx. 100 GPa) and has been shown to endure higher indentation loads than conventional and high performance steel. Indentation load capacity has been reported for relatively large (12.7 mm diameter) ceramic (Si3N4) indenter balls pressed against flat plates of 60NiTi. In order to develop damage load threshold criteria applicable to a wide range of bearing designs and sizes, the effects of indenter ball radius and the accuracy of interpolation of the Hertz contact stress relations for 60NiTi must be ascertained. In this paper, results of indentation tests involving ceramic balls ranging from 6.4 to 12.7 mm in diameter and highly polished 60NiTi flat plates are presented. When the resulting dent depth data for all the indenter ball sizes are normalized using the Hertz equations, the data (dent depth versus stress) are comparable. Thus when designing bearings made from 60NiTi, the Hertz stress relations can be applied with relative confidence over a range of rolling element sizes and internal geometries.
NASA Technical Reports Server (NTRS)
Dellacorte, Christopher; Moore, Lewis E.; Clifton, Joshua S.
2014-01-01
Static load capacity is a critical design parameter for rolling element bearings used in space mechanisms because of the potential for Brinell (surface dent) damage due to shock and vibration loading events during rocket launch. Brinell damage to bearing raceways can lead to torque variations (noise) and reduced bearing life. The growing use of ceramic rolling elements with high stiffness in hybrid bearings exacerbates the situation. A new family of hard yet resilient materials based upon nickel-titanium is emerging to address such bearing challenges. 60NiTi is a superelastic material that simultaneously exhibits high hardness and a relatively low elastic modulus (100GPa) and has been shown to endure higher indentation loads than conventional and high performance steel. Indentation load capacity has been reported for relatively large (12.7mm diameter) ceramic (Si3N4) indenter balls pressed against flat plates of 60NiTi. In order to develop damage load threshold criteria applicable to a wide range of bearing designs and sizes, the effects of indenter ball radius and the accuracy of interpolation of the Hertz contact stress relations for 60NiTi must be ascertained. In this paper, results of indentation tests involving ceramic balls ranging from 6.4 to 12.7mm in diameter and highly polished 60NiTi flat plates are presented. When the resulting dent depth data for all the indenter ball sizes are normalized using the Hertz equations, the data (dent depth vs. stress) are comparable. Thus when designing bearings made from 60NiTi, the Hertz stress relations can be applied with relative confidence over a range of rolling element sizes and internal geometries.
NASA Technical Reports Server (NTRS)
DellaCorte, Christopher; Moore, Lewis E., III; Clifton, Joshua S.
2014-01-01
Static load capacity is a critical design parameter for rolling element bearings used in space mechanisms because of the potential for Brinell (surface dent) damage due to shock and vibration loading events during rocket launch. Brinell damage to bearing raceways can lead to torque variations (noise) and reduced bearing life. The growing use of ceramic rolling elements with high stiffness in hybrid bearings exacerbates the situation. A new family of hard yet resilient materials based upon nickel-titanium is emerging to address such bearing challenges. 60NiTi is a superelastic material that simultaneously exhibits high hardness and a relatively low elastic modulus (approx. 100 GigaPascals) and has been shown to endure higher indentation loads than conventional and high performance steel. Indentation load capacity has been reported for relatively large (12.7 millimeters diameter) ceramic (Si3N4) indenter balls pressed against flat plates of 60NiTi. In order to develop damage load threshold criteria applicable to a wide range of bearing designs and sizes, the effects of indenter ball radius and the accuracy of interpolation of the Hertz contact stress relations for 60NiTi must be ascertained. In this paper, results of indentation tests involving ceramic balls ranging from 6.4 to 12.7 mm in diameter and highly polished 60NiTi flat plates are presented. When the resulting dent depth data for all the indenter ball sizes are normalized using the Hertz equations, the data (dent depth versus stress) are comparable. Thus when designing bearings made from 60NiTi, the Hertz stress relations can be applied with relative confidence over a range of rolling element sizes and internal geometries.
Precision Measurement of Gear Lubricant Load-Carrying Capacity (Feasibility Study)
1981-11-01
ratio of sliding to rolling is much greater in the second group than in the first. This difference has a great influence on the characteristics which...largest angle, the direction of sliding is more parallel to the contact line than normal to it. This is the major difference in conditions of contact...flow to and over the gear teeth, are quite different matters . The ef- fects of gear dynamics and lubricant flow dynamics on lubrication re- lated
Elastomers in Combined Rolling-Sliding Contact; Wear and its Underlying Mechanisms
NASA Astrophysics Data System (ADS)
Rowe, Kyle Gene
Elastomeric materials, specifically rubbers, being both of a practical and scientific importance, have been the subjects of vast amounts of research spanning well over two centuries. There is currently a large effort by tire manufacturers to design new rubber compounds with lower rolling resistance, higher sliding friction, and reduced or predictable wear. At present, these efforts are primarily based on a few empirical rules and very costly trial and error testing; only a basic understanding of the mechanisms involved in the wear of elastomeric materials exists despite rigorous study. In general, the only well controlled experiments have been for simple loading and sliding schemes. The aim of this work is to characterize the tribological properties of a carbon black filled natural rubber sample. This work explores (1) its behavior in unidirectional sliding, (2) contact mechanics, (3) traction properties in combined rolling and sliding, (4) frictional heating response, and (5) wear. It was found that the friction coefficient of this material was dependent upon sliding velocity, contact pressure, and surface roughness. The high friction coefficients also lead to a bifurcation of the contact area into two different pressure regimes at sliding velocities greater than 10 mm/s . The traction response of this material in combined rolling and sliding exhibited similar behavior, being a function of the contact pressure, but not rolling velocity. The wear of this material was found to be linearly dependent upon the global slip condition and occurred preferentially on the sample. Investigations of the worn surface revealed that the most likely mechanism of wear is the degradation of surface material in a confined layer a few micrometers thick. A simple spring-mass model was developed to offer an explanation of localized wear. It was found that the coupling of system elements in the normal direction helped to shift the load from wearing elements to non-wearing ones. The result was a rapid and localized recession of material, driven by certain key system parameters such as wear rate, material stiffness, and friction. The system was also found to be sensitive to variability within these parameters, but to a lesser degree. This work demonstrates that laboratory scale tribological testing of elastomers can provide conclusive and repeatable results without recourse to macro-scale trials and experiments. The data and insights provided can be used as a tool for understanding the many contributions of materials and fillers on the friction and wear of elastomers, and in design and wear life predictions as well.
Rolling contact fatigue of low hardness steel for slewing ring application
NASA Astrophysics Data System (ADS)
Knuth, Jason A.
This thesis discusses the rolling contact fatigue of steel utilized in anti-friction bearings, also referred to as slewing bearings. These slewing bearings are utilized in cranes, excavators, wind turbines and other similar applications. Five materials composed of two different material types were tested. The two material types were high carbon steel and medium carbon alloy steel. The test specimens were processed from forged rolled rings. Two machines were evaluated a ZF-RCF and 3-Ball test machine. The evaluation was to determine which machine can best simulate the application in which the slewing bearing is utilized. Initially, each specimen will be pretested to determine the appropriate testing direction from within the forged rolled rings. Pretesting is needed in order to establish consistent failure modes between samples. The primary goal of the test is to understand the life differences and failure modes between high carbon steel and medium carbon alloy steel. The high carbon steel ring was cut into two sections, one of which was stress relieved and the other was quenched and tempered. The medium carbon alloy steel was cut into three sections, all of which were quenched and tempered to different hardness levels. The test program was dynamically adjusted based upon the previous sample's life and load. An S-N curve was then established from the 5 materials tested at two target loads. The samples were run until the first sign of a crack was detected by an eddy current. At the completion of the rolling contact test, select sample's microstructure was evaluated for crack initiation location. The selected samples were divided into four groups which represent different maximum shear stress levels. These samples displayed indications of material deformation in which the high carbon steel experienced an increased amount of cold work when compared to medium carbon alloy steel. The life of the high carbon steel was nearly equivalent to the expected life of the medium carbon alloy. The work hardening of the high carbon steel increased the surface hardness that exceeded the medium carbon alloy steel surface hardness.
Effect of speed and press fit on fatigue life of roller-bearing inner-race contact
NASA Technical Reports Server (NTRS)
Coe, H. H.; Zaretsky, E. V.
1985-01-01
An analysis was performed to determine the effects of inner ring speed and press fit on the rolling element fatigue life of a roller bearing inner race contact. The effects of the resultant hoop and radial stresses on the principal stresses were considered. The maximum shear stresses below the Hertzian contact were determined for different conditions of inner ring speed, load, and geometry and were applied to a conventional ring life analysis. The race contact fatigue life was reduced by more than 90 percent for some conditions when speed and press fit were considered. The depth of the maximum shear stress remained virtually unchanged.
Experimental investigation on the electrical contact behavior of rolling contact connector.
Chen, Junxing; Yang, Fei; Luo, Kaiyu; Zhu, Mingliang; Wu, Yi; Rong, Mingzhe
2015-12-01
Rolling contact connector (RCC) is a new technology utilized in high performance electric power transfer systems with one or more rotating interfaces, such as radars, satellites, wind generators, and medical computed tomography machines. Rolling contact components are used in the RCC instead of traditional sliding contacts to transfer electrical power and/or signal. Since the requirement of the power transmission is increasing in these years, the rolling electrical contact characteristics become more and more important for the long-life design of RCC. In this paper, a typical form of RCC is presented. A series of experimental work are carried out to investigate the rolling electrical contact characteristics during its lifetime. The influence of a variety of factors on the electrical contact degradation behavior of RCC is analyzed under both vacuum and air environment. Based on the surface morphology and elemental composition changes in the contact zone, which are assessed by field emission scanning electron microscope and confocal laser scanning microscope, the mechanism of rolling electrical contact degradation is discussed.
Static Indentation Load Capacity of the Superelastic 60NiTi for Rolling Element Bearings
NASA Technical Reports Server (NTRS)
DellaCorte, Christopher; Moore, Lewis E., III; Clifton, Joshua S.
2012-01-01
The nickel-rich, binary nickel-titanium alloys, such as 60NiTi (60Ni-40Ti by wt%), are emerging as viable materials for use in mechanical components like rolling element bearings and gears. 60NiTi is a superelastic material that simultaneously exhibits high hardness and a relatively low elastic modulus (approx.100 GPa). These properties result in the potential to endure extremely high indentation loads such as those encountered in bearings, gears and other mechanical components. In such applications, quantifying the load that results in permanent deformation that can affect component performance and life is important. In this paper, the static load capacity is measured by conducting indentation experiments in which 12.7 mm diameter balls made from the ceramic Si3N4 are pressed into highly polished, hardened 60NiTi flat plates. Hertz stress calculations are used to estimate contact stress. The results show that the 60NiTi surface can withstand an approximately 3400 kN load before significant denting (>0.6 microns deep) occurs. This load capacity is approximately twice that of high performance bearing steels suggesting that the potential exists to make highly resilient bearings and components from such materials.
Shear forces in the contact patch of a braked-racing tyre
NASA Astrophysics Data System (ADS)
Gruber, Patrick; Sharp, Robin S.
2012-12-01
This article identifies tyre modelling features that are fundamental to the accurate simulation of the shear forces in the contact patch of a steady-rolling, slipping and cambered racing tyre. The features investigated include contact patch shape, contact pressure distribution, carcass flexibility, rolling radius (RR) variations and friction coefficient. Using a previously described physical tyre model of modular nature, validated for static conditions, the influence of each feature on the shear forces generated is examined under different running conditions, including normal loads of 1500, 3000 and 4500 N, camber angles of 0° and-3°, and longitudinal slip ratios from 0 to-20%. Special attention is paid to heavy braking, in which context the aligning moment is of great interest in terms of its connection with the limit-handling feel. The results of the simulations reveal that true representations of the contact patch shape, carcass flexibility and lateral RR variation are essential for an accurate prediction of the distribution and the magnitude of the shear forces generated at the tread-road interface of the cambered tyre. Independent of the camber angle, the contact pressure distribution primarily influences the shear force distribution and the slip characteristics around the peak longitudinal force. At low brake-slip ratios, the friction coefficient affects the shear forces in terms of their distribution, while, at medium to high-slip ratios, the force magnitude is significantly affected. On the one hand, these findings help in the creation of efficient yet accurate tyre models. On the other hand, the research results allow improved understanding of how individual tyre components affect the generation of shear forces in the contact patch of a rolling and slipping tyre.
Effect of Roller Geometry on Roller Bearing Load-Life Relation
NASA Technical Reports Server (NTRS)
Oswald, Fred B.; Zaretsky, Erwin V.; Poplawski, Joseph V.
2015-01-01
Cylindrical roller bearings typically employ roller profile modification to equalize load distribution, minimize stress concentration at roller ends and allow for a small amount of misalignment. The 1947 Lundberg-Palmgren analysis reported an inverse fourth power relation between load and life for roller bearings with line contact. In 1952, Lundberg and Palmgren changed their load-life exponent to 10/3 for roller bearings, assuming mixed line and point contact. The effect of roller-crown profile was reanalyzed in this paper to determine the actual load-life relation for modified roller profiles. For uncrowned rollers (line contact), the load-life exponent is p = 4, in agreement with the 1947 Lundberg-Palmgren value but crowning reduces the value of the exponent, p. The lives of modern roller bearings made from vacuum-processed steels significantly exceed those predicted by the Lundberg-Palmgren theory. The Zaretsky rolling-element bearing life model of 1996 produces a load-life exponent of p = 5 for flat rollers, which is more consistent with test data. For the Zaretsky model with fully crowned rollers p = 4.3. For an aerospace profile and chamfered rollers, p = 4.6. Using the 1952 Lundberg-Palmgren value p = 10/3, the value incorporated in ANSI/ABMA and ISO bearing standards, can create significant life calculation errors for roller bearings.
Heat generation in aircraft tires
NASA Technical Reports Server (NTRS)
Clark, S. K.; Dodge, R. N.
1985-01-01
A method was developed for calculating the internal temperature distribution in an aircraft tire while free rolling under load. The method uses an approximate stress analysis of each point in the tire as it rolls through the contact patch, and from this stress change the mechanical work done on each volume element may be obtained and converted into a heat release rate through a knowledge of material characteristics. The tire cross-section is then considered as a body with internal heat generation, and the diffusion equation is solved numerically with appropriate boundary conditions of the wheel and runway surface. Comparison with data obtained with buried thermocouples in tires shows good agreement.
Heat generation in aircraft tires
NASA Technical Reports Server (NTRS)
Clark, S. K.
1983-01-01
A method was developed for calculating the internal temperature distribution in an aircraft tire while free rolling under load. The method uses an approximate stress analysis of each point in the tire as it rolls through the contact patch, and from this stress change the mechanical work done on each volume element may be obtained and converted into a heat release rate through a knowledge of material characteristics. The tire cross-section is then considered as a body with internal heat generation, and the diffusion equation is solved numerically with appropriate boundary conditions of the wheel and runway surface. Comparison with data obtained with buried thermocouples in tires shows good agreement.
Lubricant evaluation of the alpha and beta joints, phase 2
NASA Technical Reports Server (NTRS)
Kannel, J. W.; Stockwell, R. D.
1992-01-01
A research study was conducted to evaluate dry film lubrication of long life space components such as the alpha and beta joints of the Space Station. The problem addressed in the report pertains to the longevity of sputtered MoS2 or ion plated lead films in a rolling contact environment. A special technique was devised for the experiments, which incorporated a coated ball cyclically loaded against a flat plate. At fixed intervals the surface of the coating was photographed at 100X magnification. By computer scanning the photographs, the rate of coating loss was determined. Experimental variables include load and surface finish of the plate. A theory was developed to analyze the state of stress between ball and flat. The stress condition in the ball apparatus was related to the state of stress under rolling contact conditions. Based on the experiments life appeared to decrease with increasing load and increasing surface roughness. An ion plated lead film gave better life than a sputtered MoS2 film. However, by keeping the interfacial shear stress at a low level, adequate coating life was achieved for either coating. For the lead film, the critical stress was about 0.19 GPa (28 ksi). The study dealt only with mechanical wear. Before a coating is selected for a critical space application, other factors such as reaction with atomic oxygen must also be considered.
The Effect of Pre-Stressing on the Static Indentation Load Capacity of the Superelastic 60NiTi
NASA Technical Reports Server (NTRS)
DellaCorte, Christopher; Moore, Lewis E., III; Clifton, Joshua S.
2013-01-01
Superelastic nickel-titanium alloys, such as 60NiTi (60Ni-40Ti by wt.%), are under development for use in mechanical components like rolling element bearings and gears. Compared to traditional bearing steels, these intermetallic alloys, when properly heat-treated, are hard but exhibit much lower elastic modulus (approx.100 GPa) and a much broader elastic deformation range (approx.3 percent or more). These material characteristics lead to high indentation static load capacity, which is important for certain applications especially space mechanisms. To ensure the maximum degree of elastic behavior, superelastic materials must be pre-stressed, a process referred to as "training" in shape memory effect (SME) terminology, at loads and stresses beyond expected use conditions. In this paper, static indentation load capacity tests are employed to assess the effects of pre-stressing on elastic response behavior of 60NiTi. The static load capacity is measured by pressing 12.7 mm diameter ceramic Si3N4 balls into highly polished, hardened 60NiTi flat plates that have previously been exposed to varying levels of pre-stress (up to 2.7 GPa) to determine the load that results in shallow but measurable (0.6 m, 25 in. deep) permanent dents. Hertz stress calculations are used to estimate contact stress. Without exposure to pre-stress, the 60NiTi surface can withstand an approximately 3400 kN load before significant denting (>0.4 m deep) occurs. When pre-stressed to 2.7 GPa, a static load of 4900 kN is required to achieve a comparable dent, a 30 percent increase. These results suggest that stressing contact surfaces prior to use enhances the static indentation load capacity of the superelastic 60NiTi. This approach may be adaptable to the engineering and manufacture of highly resilient mechanical components such as rolling element bearings.
Design and analysis of non-pneumatic tyre
NASA Astrophysics Data System (ADS)
Mohan, Aravind; Johny, C. Ajith; Tamilarasu, A.; Pradeep Bhasker, J.; Ravi, K.
2017-11-01
Non-Pneumatic Tyre (NPT) as the name suggests is a type of tyre that doesn't use air to support the load. Even though tyres made out of solid rubber exists, they don't have enough compliance and will not provide a supple ride if used in normal vehicles. The NPT discussed here consists of mainly three parts. A rigid hub, Deformable spokes that support vertical load, Reinforced shear band and tread made out of rubber which comes into contact with the surface. The properties of NPT like contact pressure, rolling resistance and load carrying capacity can be varied by altering the dimensions or materials used to manufacture NPT. Several researches are being carried out all over the globe to make NPT an alternative to the conventional pneumatic tyre. This paper consolidates an overview of the research works that were carried out to develop and improve NPT.
Strongly Modulated Friction of a Film-Terminated Ridge-Channel Structure.
He, Zhenping; Hui, Chung-Yuen; Levrard, Benjamin; Bai, Ying; Jagota, Anand
2016-05-26
Natural contacting surfaces have remarkable surface mechanical properties, which has led to the development of bioinspired surface structures using rubbery materials with strongly enhanced adhesion and static friction. However, sliding friction of structured rubbery surfaces is almost always significantly lower than that of a flat control, often due to significant loss of contact. Here we show that a film-terminated ridge-channel structure can strongly enhance sliding friction. We show that with properly chosen materials and geometrical parameters the near surface structure undergoes mechanical instabilities along with complex folding and sliding of internal interfaces, which is responsible for the enhancement of sliding friction. Because this structure shows no enhancement of adhesion under normal indentation by a sphere, it breaks the connection between energy loss during normal and shear loading. This makes it potentially interesting in many applications, for instance in tires, where one wishes to minimize rolling resistance (normal loading) while maximizing sliding friction (shear loading).
NASA Technical Reports Server (NTRS)
Howard, S. Adam; Dellacorte, Christopher
2015-01-01
Rolling element bearings utilized in precision rotating machines require proper alignment, preload, and interference fits to ensure overall optimum performance. Hence, careful attention must be given to bearing installation and disassembly procedures to ensure the above conditions are met. Usually, machines are designed in such a way that bearings can be pressed into housings or onto shafts through the races without loading the rolling elements. However, in some instances, either due to limited size or access, a bearing must be installed or removed in such a way that the load path travels through the rolling elements. This can cause high contact stresses between the rolling elements and the races and introduces the potential for Brinell denting of the races. This paper is a companion to the Part I paper by the authors that discusses material selection and the general design philosophy for the bearing. Here, a more in-depth treatment is given to the design of a dent-resistant bearing utilizing a superelastic alloy, 60NiTi, for the races. A common bearing analysis tool based on rigid body dynamics is used in combination with finite element simulations to design the superelastic bearing. The primary design constraints are prevention of denting and avoiding the balls riding over the edge of the race groove during a blind disassembly process where the load passes through the rolling elements. Through an iterative process, the resulting bearing geometry is tailored to improve axial static load capability compared to a deep-groove ball bearing of the same size. The results suggest that careful selection of materials and bearing geometry can enable blind disassembly without damage to the raceways, which is necessary in the current application (a compressor in the International Space Station Environmental Control and Life Support System), and results in potential design flexibility for other applications, especially small machines with miniature bearings.
Evaluation of Surface Fatigue Strength Based on Surface Temperature
NASA Astrophysics Data System (ADS)
Deng, Gang; Nakanishi, Tsutomu
Surface temperature is considered to be an integrated index that is dependent on not only the load and the dimensions at the contact point but also the sliding velocity, rolling velocity, surface roughness, and lubrication conditions. Therefore, the surface durability of rollers and gears can be evaluated more exactly and simply by the use of surface temperature rather than Hertzian stress. In this research, surface temperatures of rollers under different rolling and sliding conditions are measured using a thermocouple. The effects of load P, mean velocity Vm and sliding velocity Vs on surface temperature are clarified. An experimental formula, which expresses the linear relationship between surface temperature and the P0.86Vs1.31Vm-0.83 value, is used to determine surface temperature. By comparing calculated and measured temperature on the tooth surface of a gear, this formula is confirmed to be applicable for gear tooth surface temperature calculation.
NASA Astrophysics Data System (ADS)
Medghalchi, Setareh; Jamebozorgi, Vahid; Bala Krishnan, Arjun; Vincent, Smobin; Salomon, Steffen; Basir Parsa, Alireza; Pfetzing, Janine; Kostka, Aleksander; Li, Yujiao; Eggeler, Gunther; Li, Tong
2018-05-01
The dependence of the microstructure on the degree of deformation in near-surface regions of a 16MnCr5 gear wheel after 2.1 × 106 loading cycles has been investigated by x-ray diffraction analysis, transmission electron microscopy, and atom probe tomography. Retained austenite and large martensite plates, along with elongated lamella-like cementite, were present in a less deformed region. Comparatively, the heavily deformed region consisted of a nanocrystalline structure with carbon segregation up to 2 at.% at grain boundaries. Spheroid-shaped cementite, formed at the grain boundaries and triple junctions of the nanosized grains, was enriched with Cr and Mn but depleted with Si. Such partitioning of Cr, Mn, and Si was not observed in the elongated cementite formed in the less deformed zone. This implies that rolling contact loading induced severe plastic deformation as well as a pronounced annealing effect in the active contact region of the toothed gear during cyclic loading.
Micromechanics of Ultrafine Particle Adhesion—Contact Models
NASA Astrophysics Data System (ADS)
Tomas, Jürgen
2009-06-01
Ultrafine, dry, cohesive and compressible powders (particle diameter d<10 μm) show a wide variety of flow problems that cause insufficient apparatus and system reliability of processing plants. Thus, the understanding of the micromechanics of particle adhesion is essential to assess the product quality and to improve the process performance in particle technology. Comprehensive models are shown that describe the elastic-plastic force-displacement and frictional moment-angle behavior of adhesive contacts of isotropic smooth spheres. By the model stiff particles with soft contacts, a sphere-sphere interaction of van der Waals forces without any contact deformation describes the stiff attractive term. But, the soft micro-contact response generates a flattened contact, i.e. plate-plate interaction, and increasing adhesion. These increasing adhesion forces between particles directly depend on this frozen irreversible deformation. Thus, the adhesion force is found to be load dependent. It contributes to the tangential forces in an elastic-plastic frictional contact with partially sticking and micro-slip within the contact plane. The load dependent rolling resistance and torque of mobilized frictional contact rotation (spin around its principal axis) are also shown. This reasonable combination of particle contact micromechanics and powder continuum mechanics is used to model analytically the macroscopic friction limits of incipient powder consolidation, yield and cohesive steady-state shear flow on physical basis.
Rolling Maneuver Load Alleviation using active controls
NASA Technical Reports Server (NTRS)
Woods-Vedeler, Jessica A.; Pototzky, Anthony S.
1992-01-01
Rolling Maneuver Load Alleviation (RMLA) has been demonstrated on the Active Flexible Wing (AFW) wind tunnel model in the NASA Langley Transonic Dynamics Tunnel. The design objective was to develop a systematic approach for developing active control laws to alleviate wing incremental loads during roll maneuvers. Using linear load models for the AFW wind-tunnel model which were based on experimental measurements, two RMLA control laws were developed based on a single-degree-of-freedom roll model. The RMLA control laws utilized actuation of outboard control surface pairs to counteract incremental loads generated during rolling maneuvers and actuation of the trailing edge inboard control surface pairs to maintain roll performance. To evaluate the RMLA control laws, roll maneuvers were performed in the wind tunnel at dynamic pressures of 150, 200, and 250 psf and Mach numbers of 0.33, .38 and .44, respectively. Loads obtained during these maneuvers were compared to baseline maneuver loads. For both RMLA controllers, the incremental torsion moments were reduced by up to 60 percent at all dynamic pressures and performance times. Results for bending moment load reductions during roll maneuvers varied. In addition, in a multiple function test, RMLA and flutter suppression system control laws were operated simultaneously during roll maneuvers at dynamic pressures 11 percent above the open-loop flutter dynamic pressure.
NASA Technical Reports Server (NTRS)
Nypan, L. J.
1978-01-01
Cage to roller force measurements, cage to shaft forces, and cage to shaft speed ratios are reported for 115 and 118mm bore roller bearings operating at speeds of 4,000, 8,000, and 12,000 rpm under loads ranging from 360 to 6670 N (80 to 1500 lb).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Junxing; Yang, Fei, E-mail: yfei2007@mail.xjtu.edu.cn; Luo, Kaiyu
Rolling contact connector (RCC) is a new technology utilized in high performance electric power transfer systems with one or more rotating interfaces, such as radars, satellites, wind generators, and medical computed tomography machines. Rolling contact components are used in the RCC instead of traditional sliding contacts to transfer electrical power and/or signal. Since the requirement of the power transmission is increasing in these years, the rolling electrical contact characteristics become more and more important for the long-life design of RCC. In this paper, a typical form of RCC is presented. A series of experimental work are carried out to investigatemore » the rolling electrical contact characteristics during its lifetime. The influence of a variety of factors on the electrical contact degradation behavior of RCC is analyzed under both vacuum and air environment. Based on the surface morphology and elemental composition changes in the contact zone, which are assessed by field emission scanning electron microscope and confocal laser scanning microscope, the mechanism of rolling electrical contact degradation is discussed.« less
Resistance to Rolling in the Adhesive Contact of Two Elastic Spheres
NASA Technical Reports Server (NTRS)
Dominik, C.; Tielens, A. G. G. M.
1995-01-01
For the stability of agglomerates of micron sized particles it is of considerable importance to study the effects of tangential forces on the contact of two particles. If the particles can slide or roll easily over each other, fractal structures of these agglomerates will not be stable. We use the description of contact forces by Johnson, Kendall and Roberts, along with arguments based on the atomic structure of the surfaces in contact, in order to calculate the resistance to rolling in such a contact. It is shown that the contact reacts elastically to torque forces up to a critical bending angle. Beyond that, irreversible rolling occurs. In the elastic regime, the moment opposing the attempt to roll is proportional to the bending angle and to the pull-off force P(sub c). Young's modulus of the involved materials has hardly any influence on the results. We show that agglomerates of sub-micron sized particles will in general be quite rigid and even long chains of particles cannot be bent easily. For very small particles, the contact will rather break than allow for rolling. We further discuss dynamic properties such as the possibility of vibrations in this degree of freedom and the typical amount of rolling during a collision of two particles.
NASA Astrophysics Data System (ADS)
Belkin, A. E.; Semenov, V. K.
2016-05-01
We consider the problem of modeling the test where a solid-rubber tire runs on a chassis dynamometer for determining the tire rolling resistance characteristics.We state the problem of free steady-state rolling of the tire along the test drum with the energy scattering in the rubber in the course of cyclic deformation taken into account. The viscoelastic behavior of the rubber is described by the Bergströ m-Boyce model whose numerical parameters are experimentally determined from the results of compression tests with specimens. The finite element method is used to obtain the solution of the three-dimensional viscoelasticity problem. To estimate the adequacy of the constructed model, we compare the numerical results with the results obtained in the solid-rubber tire tests on the Hasbach stand from the values of the rolling resistance forces for various loads on the tire.
Mathematical model of rolling an elastic wheel over deformable support base
NASA Astrophysics Data System (ADS)
Volskaia, V. N.; Zhileykin, M. M.; Zakharov, A. Y.
2018-02-01
One of the main direction of economic growth in Russia remains to be a speedy development of north and northeast regions that are the constituents of the 60 percent of the country territory. The further development of these territories requires new methods and technologies for solving transport and technological problems when off-road transportation of cargoes and people is conducting. One of the fundamental methods of patency prediction is imitation modeling of wheeled vehicles movement in different operating conditions. Both deformable properties of tires and physical and mechanical properties of the ground: normal tire deflection and gauge depth; variation of contact patch area depending on the load and pressure of air in the tire; existence of hysteresis losses in the tire material which are influencing on the rolling resistance due to friction processes between tire and ground in the contact patch; existence of the tangential reaction from the ground by entire contact area influence on the tractive patency. Nowadays there are two main trends in theoretical research of interaction wheeled propulsion device with ground: analytical method involving mathematical description of explored process and finite element method based on computational modeling. Mathematical models of interaction tire with the ground are used both in processes of interaction individual wheeled propulsion device with ground and researches of mobile vehicle dynamical models operated in specific road and climate conditions. One of the most significant imperfection of these models is the description of interaction wheel with flat deformable support base whereas profile of real support base surface has essential height of unevenness which is commensurate with radius of the wheel. The description of processes taking place in the ground under influence of the wheeled propulsion device using the finite element method is relatively new but most applicable lately. The application of this method allows to provide the most accurate description of the interaction process of a wheeled propulsion devices and the ground, also this method allows to define tension in the ground, deformation of the ground and the tire and ground’s compression. However, the high laboriousness of computations is essential shortcoming of that method therefore it’s hard to use these models as part of the general motion model of multi-axis wheeled vehicles. The purpose of this research is the elaboration of mathematical model of elastic wheel rolling over deformable rough support base taking into account the contact patch deformation. The mathematical model of rectilinear rolling an elastic wheel over rough deformable support base, taking into account variation of contact patch area and variation in the direction of the radial and tangential reactions also load bearing capacity of the ground, is developed. The efficiency of developed mathematical model of rectilinear rolling an elastic wheel over rough deformable support base is proved by the simulation methods.
Hydrodynamic lubrication of rigid nonconformal contacts in combined rolling and normal motion
NASA Technical Reports Server (NTRS)
Ghosh, M. K.; Hamrock, B. J.; Brewe, D. E.
1984-01-01
A numerical solution to the problem of hydrodynamic lubrication of rigid point contacts with an isoviscous, incompressible lubricant was obtained. The hydrodynamic load-carrying capacity under unsteady (or dynamic) conditions arising from the combined effects of squeeze motion superposed upon the entraining motion was determined for both normal approach and separation. Superposed normal motion considerably increases net load-carrying capacity during normal approach and substantially reduces net load-carrying capacity during separation. Geometry was also found to have a significant influence on the dynamic load-carrying capacity. The ratio of dynamic to steady state load-carrying capacity increases with increasing geometry parameter for normal approach and decreases during separation. The cavitation (film rupture) boundary is also influenced significantly by the normal motion, moving downstream during approach and upstream during separation. For sufficiently high normal separation velocity the rupture boundary may even move upstream of the minimum-film-thickness position. Sixty-three cases were used to derive a functional relationship for the ratio of the dynamic to steady state load-carrying capacity in terms of the dimensionless normal velocity parameter (incorporating normal velocity, entraining velocity, and film thickness) and the geometry parameter.
Hydrodynamic lubrication of rigid nonconformal contacts in combined rolling and normal motion
NASA Technical Reports Server (NTRS)
Ghosh, M. K.; Hamrock, B. J.; Brewe, D.
1985-01-01
A numerical solution to the problem of hydrodynamic lubrication of rigid point contacts with an isoviscous, incompressible lubricant was obtained. The hydrodynamic load-carrying capacity under unsteady (or dynamic) conditions arising from the combined effects of squeeze motion superposed upon the entraining motion was determined for both normal approach and separation. Superposed normal motion considerably increases net load-carrying capacity during normal approach and substantially reduces net load-carrying capacity during separation. Geometry was also found to have a significant influence on the dynamic load-carrying capacity. The ratio of dynamic to steady state load-carrying capacity increases with increasing geometry parameter for normal approach and decreases during separation. The cavitation (film rupture) boundary is also influenced significantly by the normal motion, moving downstream during approach and upstream during separation. For sufficiently high normal separation velocity the rupture boundary may even move upstream of the minimum-film-thickness position. Sixty-three cases were used to derive a functional relationship for the ratio of the dynamic to steady state load-carrying capacity in terms of the dimensionless normal velocity parameter (incorporating normal velocity, entraining velocity, and film thickness) and the geometry parameter.
Kim, Kyungmok; Ko, Joon Soo
2016-01-01
This article investigates the effect of contact ageing on fretting damage of an epoxy-based cathodic electro-deposited coating for use on automotive seat slide tracks (made of cold-rolled high strength steel). Static normal load was induced at the contact between the coating and an AISI52100 ball for a certain duration. It was identified that plastically deformed contact area increased logarithmically as a function of time when the contact was under static normal load. Fretting tests after various durations of static contact were conducted using a ball-on-flat plate apparatus. All fretting tests were halted when the friction coefficient reached a critical value of 0.5, indicating complete coating failure. The total number of fretting cycles to the critical friction coefficient was found to vary with the duration of static contact before fretting. It was identified that the number of cycles to the critical friction coefficient decreased with the increased duration of static contact. Meanwhile, the friction coefficient at steady-state sliding was not greatly affected by the duration of static contact before fretting. Finally, the relation between coating thickness after indentation creep and the number of cycles to the critical friction coefficient was found to be linear. Obtained results show that the duration of static contact before fretting has an influence on the fretting lifetime of an electro-deposited coating. PMID:28773873
Kim, Kyungmok; Ko, Joon Soo
2016-09-03
This article investigates the effect of contact ageing on fretting damage of an epoxy-based cathodic electro-deposited coating for use on automotive seat slide tracks (made of cold-rolled high strength steel). Static normal load was induced at the contact between the coating and an AISI52100 ball for a certain duration. It was identified that plastically deformed contact area increased logarithmically as a function of time when the contact was under static normal load. Fretting tests after various durations of static contact were conducted using a ball-on-flat plate apparatus. All fretting tests were halted when the friction coefficient reached a critical value of 0.5, indicating complete coating failure. The total number of fretting cycles to the critical friction coefficient was found to vary with the duration of static contact before fretting. It was identified that the number of cycles to the critical friction coefficient decreased with the increased duration of static contact. Meanwhile, the friction coefficient at steady-state sliding was not greatly affected by the duration of static contact before fretting. Finally, the relation between coating thickness after indentation creep and the number of cycles to the critical friction coefficient was found to be linear. Obtained results show that the duration of static contact before fretting has an influence on the fretting lifetime of an electro-deposited coating.
NASA Technical Reports Server (NTRS)
Aggarwal, Arun K.
1993-01-01
Spherical roller bearings have typically been used in applications with speeds limited to about 5000 rpm and loads limited for operation at less than about 0.25 million DN. However, spherical roller bearings are now being designed for high load and high speed applications including aerospace applications. A computer program, SASHBEAN, was developed to provide an analytical tool to design, analyze, and predict the performance of high speed, single row, angular contact (including zero contact angle), spherical roller bearings. The material presented is the mathematical formulation and analytical methods used to develop computer program SASHBEAN. For a given set of operating conditions, the program calculates the bearings ring deflections (axial and radial), roller deflections, contact areas stresses, depth and magnitude of maximum shear stresses, axial thrust, rolling element and cage rotational speeds, lubrication parameters, fatigue lives, and rates of heat generation. Centrifugal forces and gyroscopic moments are fully considered. The program is also capable of performing steady-state and time-transient thermal analyses of the bearing system.
Experimental Study of Load Carrying Capacity of Point Contacts at Zero Entrainment Velocity
NASA Technical Reports Server (NTRS)
Shogin, B. A.; Jones, W. R., Jr.; Kingsbury, E. P.; Jansen, M. J.; Prahl, J. M.
1998-01-01
A capacitance technique was used to monitor the film thickness separating two steel balls while subjecting the ball-ball contact to highly stressed, zero entrainment velocity conditions. Tests were performed in a nitrogen atmosphere and utilized 52100 steel balls and a polyalphaolefin lubricant. Capacitance to film thickness accuracy was verified under pure rolling conditions using established EHL theory. Zero entrainment velocity tests were performed at sliding speeds from 6.0 to 10.0 m/s and for sustained amounts of time to 28.8 min. The protective lubricant film separating the specimens at zero entrainment velocity had a film thickness between 0.10 to 0.14 microns (4 to 6 micro in.), which corresponded to a k value of 4. The formation of an immobile surface film formed by lubricant entrapment is discussed as an explanation of the load carrying capacity at zero entrainment velocity conditions, relevant to the ball-ball contacts occurring in retainerless ball bearings.
Rolling contact fatigue behavior of Cu and TiN coatings on bearing steel substrates
NASA Technical Reports Server (NTRS)
Hochman, R. F.; Erdemir, A.; Dolan, F. J.; Thom, R. L.
1985-01-01
The resistance of copper and TiN coatings on various bearing substrates to high-load rolling contact fatigue (RCF) is investigated. Special attention is given to the lubricating characteristics of copper deposited by ion plating, and the wear resistant characteristics of TiN deposited by ion plating and magnetron sputtering techniques. RCF samples of 440C and AMS 5749 bearing steels were coated. Sputter deposited and ion plated films were on the RCF samples in a range of thickness from about 2000 A to 2 microns. Results showed a marked improvement of the RCF for pure copper tested on 440C, but a degradation for copper on AMS 5749. It is also found that the 2000 A TiN films behave favorably on the 440C and AMS 5749 bearing steels at RCF stress levels of 786 ksi. Scanning electron microscopy, X-ray diffraction, and electron spectroscopy for chemical analysis were used during the investigation.
Transient and steady state viscoelastic rolling contact
NASA Technical Reports Server (NTRS)
Padovan, J.; Paramadilok, O.
1985-01-01
Based on moving total Lagrangian coordinates, a so-called traveling Hughes type contact strategy is developed. Employing the modified contact scheme in conjunction with a traveling finite element strategy, an overall solution methodology is developed to handle transient and steady viscoelastic rolling contact. To verify the scheme, the results of both experimental and analytical benchmarking is presented. The experimental benchmarking includes the handling of rolling tires up to their upper bound behavior, namely the standing wave response.
NASA Technical Reports Server (NTRS)
Hamrock, B. J.; Anderson, W. J.
1983-01-01
Rolling element bearings are a precision, yet simple, machine element of great utility. A brief history of rolling element bearings is reviewed and the type of rolling element bearings, their geometry and kinematics, as well as the materials they are made from and the manufacturing processes they involve are described. Unloaded and unlubricated rolling element bearings, loaded but unlubricated rolling element bearings and loaded and lubricated rolling element bearings are considered. The recognition and understanding of elastohydrodynamic lubrication covered, represents one of the major development in rolling element bearings.
Empirical Investigation of Electricity Self-Generation in a Lubricated Sliding–Rolling Contact
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ščepanskis, Mihails; Gould, Benjamin; Greco, Aaron
The paper reports the empirical observations of voltage generation in a lubricated tribocontact with different oils altering load, sliding and temperature. The investigation is done in the context of research of the root cause of white etching cracks (WEC) failure in bearings. Tested oils of different additive packages found completely different electrical behavior. The oil, which is known to produce WECs in laboratory tests, demonstrated non-zero voltage generation
SHABERTH - ANALYSIS OF A SHAFT BEARING SYSTEM (CRAY VERSION)
NASA Technical Reports Server (NTRS)
Coe, H. H.
1994-01-01
The SHABERTH computer program was developed to predict operating characteristics of bearings in a multibearing load support system. Lubricated and non-lubricated bearings can be modeled. SHABERTH calculates the loads, torques, temperatures, and fatigue life for ball and/or roller bearings on a single shaft. The program also allows for an analysis of the system reaction to the termination of lubricant supply to the bearings and other lubricated mechanical elements. SHABERTH has proven to be a valuable tool in the design and analysis of shaft bearing systems. The SHABERTH program is structured with four nested calculation schemes. The thermal scheme performs steady state and transient temperature calculations which predict system temperatures for a given operating state. The bearing dimensional equilibrium scheme uses the bearing temperatures, predicted by the temperature mapping subprograms, and the rolling element raceway load distribution, predicted by the bearing subprogram, to calculate bearing diametral clearance for a given operating state. The shaft-bearing system load equilibrium scheme calculates bearing inner ring positions relative to the respective outer rings such that the external loading applied to the shaft is brought into equilibrium by the rolling element loads which develop at each bearing inner ring for a given operating state. The bearing rolling element and cage load equilibrium scheme calculates the rolling element and cage equilibrium positions and rotational speeds based on the relative inner-outer ring positions, inertia effects, and friction conditions. The ball bearing subprograms in the current SHABERTH program have several model enhancements over similar programs. These enhancements include an elastohydrodynamic (EHD) film thickness model that accounts for thermal heating in the contact area and lubricant film starvation; a new model for traction combined with an asperity load sharing model; a model for the hydrodynamic rolling and shear forces in the inlet zone of lubricated contacts, which accounts for the degree of lubricant film starvation; modeling normal and friction forces between a ball and a cage pocket, which account for the transition between the hydrodynamic and elastohydrodynamic regimes of lubrication; and a model of the effect on fatigue life of the ratio of the EHD plateau film thickness to the composite surface roughness. SHABERTH is intended to be as general as possible. The models in SHABERTH allow for the complete mathematical simulation of real physical systems. Systems are limited to a maximum of five bearings supporting the shaft, a maximum of thirty rolling elements per bearing, and a maximum of one hundred temperature nodes. The SHABERTH program structure is modular and has been designed to permit refinement and replacement of various component models as the need and opportunities develop. A preprocessor is included in the IBM PC version of SHABERTH to provide a user friendly means of developing SHABERTH models and executing the resulting code. The preprocessor allows the user to create and modify data files with minimal effort and a reduced chance for errors. Data is utilized as it is entered; the preprocessor then decides what additional data is required to complete the model. Only this required information is requested. The preprocessor can accommodate data input for any SHABERTH compatible shaft bearing system model. The system may include ball bearings, roller bearings, and/or tapered roller bearings. SHABERTH is written in FORTRAN 77, and two machine versions are available from COSMIC. The CRAY version (LEW-14860) has a RAM requirement of 176K of 64 bit words. The IBM PC version (MFS-28818) is written for IBM PC series and compatible computers running MS-DOS, and includes a sample MS-DOS executable. For execution, the PC version requires at least 1Mb of RAM and an 80386 or 486 processor machine with an 80x87 math co-processor. The standard distribution medium for the IBM PC version is a set of two 5.25 inch 360K MS-DOS format diskettes. The contents of the diske
Shock imprint and rolling direction influence upon the breaking tenacity for 2P armor steel
NASA Astrophysics Data System (ADS)
Zichil, V.; Coseru, A.; Schnakovszky, C.; Herghelegiu, E.; Radu, C.
2016-08-01
The state of art in present literature shows that the breaking tenacity of a material is influenced by the integrity of the structure. Since armors used in aviation and to protect military vehicles are frequently impact loaded, through the contact between armor sheet and projectiles, or other foreign bodies, the authors have proposed to study the dependence between the breaking tenacity of 2P armor steel depending on the direction of the rolling of the armor plate, of the geometry (spherical imprint, pyramidal and linear imprint) and the depth of the deformation that results after impact. Tests were conducted upon CT (ASTM E- 399) specimen type, using the critical factor of stress intensity during the state of planar strain.
Active load control during rolling maneuvers. [performed in the Langley Transonic Dynamics Tunnel
NASA Technical Reports Server (NTRS)
Woods-Vedeler, Jessica A.; Pototzky, Anthony S.; Hoadley, Sherwood T.
1994-01-01
A rolling maneuver load alleviation (RMLA) system has been demonstrated on the active flexible wing (AFW) wind tunnel model in the Langley Transonic Dynamics Tunnel (TDT). The objective was to develop a systematic approach for designing active control laws to alleviate wing loads during rolling maneuvers. Two RMLA control laws were developed that utilized outboard control-surface pairs (leading and trailing edge) to counteract the loads and that used inboard trailing-edge control-surface pairs to maintain roll performance. Rolling maneuver load tests were performed in the TDT at several dynamic pressures that included two below and one 11 percent above open-loop flutter dynamic pressure. The RMLA system was operated simultaneously with an active flutter suppression system above open-loop flutter dynamic pressure. At all dynamic pressures for which baseline results were obtained, torsion-moment loads were reduced for both RMLA control laws. Results for bending-moment load reductions were mixed; however, design equations developed in this study provided conservative estimates of load reduction in all cases.
A rolling-sliding bench test for investigating rear axle lubrication
Stump, Benjamin C.; Zhou, Yan; Viola, Michael B.; ...
2018-02-07
An automotive rear axle is composed of a set of hypoid gears, whose contact surfaces experience a complex combination of rolling contact fatigue damage and sliding wear. Full-scale rear axle dynamometer tests are used in the industry for efficiency and durability assessment. Here, this study developed a bench-scale rolling-sliding test protocol by simulating the contact pressure, oil temperature, and lubrication regime experienced in a dynamometer duty cycle test. Initial bench results have demonstrated the ability of generating both rolling contact-induced micropitting and sliding wear and the feasibility of investigating the impact of slide-to-roll ratio, surface roughness, test duration, and oilmore » temperature on the friction behavior, vibration noise, and surface damage. Finally, this bench test will allow studying candidate rear axle lubricants and materials under relevant conditions.« less
A rolling-sliding bench test for investigating rear axle lubrication
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stump, Benjamin C.; Zhou, Yan; Viola, Michael B.
An automotive rear axle is composed of a set of hypoid gears, whose contact surfaces experience a complex combination of rolling contact fatigue damage and sliding wear. Full-scale rear axle dynamometer tests are used in the industry for efficiency and durability assessment. Here, this study developed a bench-scale rolling-sliding test protocol by simulating the contact pressure, oil temperature, and lubrication regime experienced in a dynamometer duty cycle test. Initial bench results have demonstrated the ability of generating both rolling contact-induced micropitting and sliding wear and the feasibility of investigating the impact of slide-to-roll ratio, surface roughness, test duration, and oilmore » temperature on the friction behavior, vibration noise, and surface damage. Finally, this bench test will allow studying candidate rear axle lubricants and materials under relevant conditions.« less
The role of compressional viscoelasticity in the lubrication of rolling contacts.
NASA Technical Reports Server (NTRS)
Harrison, G.; Trachman, E. G.
1972-01-01
A simple model for the time-dependent volume response of a liquid to an applied pressure step is used to calculate the variation with rolling speed of the traction coefficient in a rolling contact system. Good agreement with experimental results is obtained at rolling speeds above 50 in/sec. At lower rolling speeds a very rapid change in the effective viscosity of the lubricant is predicted. This behavior, in conjunction with shear rate effects, is shown to lead to large errors when experimental data are extrapolated to zero rolling speed.
Kinematic stability of roller pairs in free rolling contact
NASA Technical Reports Server (NTRS)
Savage, M.; Loewenthal, S. H.
1976-01-01
A set of generalized stability equations was developed for roller pairs in free rolling contact. A symmetric, dual contact model was used. Four possible external contact profiles that possess continuous contacting surfaces were studied. It was found that kinematic stability would be insured if the larger radius of transverse curvature, in absolute value, and the smaller rolling radius both exist on the roller that has the apex of its conical surface outboard of its main body. The stability criteria developed are considered to be useful for assessing axial restraint requirements for a variety of roller mechanisms and in the selection of roller contact geometry for traction drive devices.
Aqueous Lubrication, Structure and Rheological Properties of Whey Protein Microgel Particles.
Sarkar, Anwesha; Kanti, Farah; Gulotta, Alessandro; Murray, Brent S; Zhang, Shuying
2017-12-26
Aqueous lubrication has emerged as an active research area in recent years due to its prevalence in nature in biotribological contacts and its enormous technological soft-matter applications. In this study, we designed aqueous dispersions of biocompatible whey-protein microgel particles (WPM) (10-80 vol %) cross-linked via disulfide bonding and focused on understanding their rheological, structural and biotribological properties (smooth polydimethylsiloxane (PDMS) contacts, R a < 50 nm, ball-on-disk set up). The WPM particles (D h = 380 nm) displayed shear-thinning behavior and good lubricating performance in the plateau boundary as well as the mixed lubrication regimes. The WPM particles facilitated lubrication between bare hydrophobic PDMS surfaces (water contact angle 108°), leading to a 10-fold reduction in boundary friction force with increased volume fraction (ϕ ≥ 65%), largely attributed to the close packing-mediated layer of particles between the asperity contacts acting as "true surface-separators", hydrophobic moieties of WPM binding to the nonpolar surfaces, and particles employing a rolling mechanism analogous to "ball bearings", the latter supported by negligible change in size and microstructure of the WPM particles after tribology. An ultralow boundary friction coefficient, μ ≤ 0.03 was achieved using WPM between O 2 plasma-treated hydrophilic PDMS contacts coated with bovine submaxillary mucin (water contact angle 47°), and electron micrographs revealed that the WPM particles spread effectively as a layer of particles even at low ϕ∼ 10%, forming a lubricating load-bearing film that prevented the two surfaces from true adhesive contact. However, above an optimum volume fraction, μ increased in HL+BSM surfaces due to the interpenetration of particles that possibly impeded effective rolling, explaining the slight increase in friction. These effects are reflected in the highly shear thinning nature of the WPM dispersions themselves plus the tendency for the apparent viscosity to fall as dispersions are forced to very high volume fractions. The present work demonstrates a novel approach for providing ultralow friction in soft polymeric surfaces using proteinaceous microgel particles that satisfy both load bearing and kinematic requirements. These findings hold great potential for designing biocompatible particles for aqueous lubrication in numerous soft matter applications.
Experimental study of tyre/road contact forces in rolling conditions for noise prediction
NASA Astrophysics Data System (ADS)
Cesbron, Julien; Anfosso-Lédée, Fabienne; Duhamel, Denis; Ping Yin, Hai; Le Houédec, Donatien
2009-02-01
This paper deals with the experimental study of dynamical tyre/road contact for noise prediction. In situ measurements of contact forces and close proximity noise levels were carried out for a slick tyre rolling on six different road surfaces between 30 and 50 km/h. Additional texture profiles of the tested surfaces were taken on the wheel track. Normal contact stresses were measured at a sampling frequency of 10752 Hz using a line of pressure sensitive cells placed both along and perpendicular to the rolling direction. The contact areas obtained during rolling were smaller than in static conditions. This is mainly explained by the dynamical properties of tyre compounds, like the viscoelastic behaviour of the rubber. Additionally the root-mean-square of the resultant contact forces at various speeds was in the same order for a given road surface, while their spectra were quite different. This is certainly due to a spectral influence of bending waves propagating in the tyre during rolling, especially when the wavelength is small in comparison with the size of the contact patch. Finally, the levels of contact forces and close proximity noise measured at 30 km/h were correlated. Additional correlations with texture levels were performed. The results show that the macro-texture generates contact forces linearly around 800 Hz and consequently noise levels between 500 and 1000 Hz via the vibrations transmitted to the tyre.
Repeatability of a dynamic rollover test system.
Seppi, Jeremy; Toczyski, Jacek; Crandall, Jeff R; Kerrigan, Jason
2016-08-17
The goal of this study was to characterize the rollover crash and to evaluate the repeatability of the Dynamic Rollover Test System (DRoTS) in terms of initial roof-to-ground contact conditions, vehicle kinematics, road reaction forces, and vehicle deformation. Four rollover crash tests were performed on 2 pairs of replicate vehicles (2 sedan tests and 2 compact multipurpose van [MPV] tests), instrumented with a custom inertial measurement unit to measure vehicle and global kinematics and string potentiometers to measure pillar deformation time histories. The road was instrumented with load cells to measure reaction loads and an optical encoder to measure road velocity. Laser scans of pre- and posttest vehicles were taken to provide detailed deformation maps. Initial conditions were found to be repeatable, with the largest difference seen in drop height of 20 mm; roll rate, roll angle, pitch angle, road velocity, drop velocity, mass, and moment of inertia were all 7% different or less. Vehicle kinematics (roll rate, road speed, roll and pitch angle, global Z' acceleration, and global Z' velocity) were similar throughout the impact; however, differences were seen in the sedan tests because of a vehicle fixation problem and differences were seen in the MPV tests due to an increase in reaction forces during leading side impact likely caused by disparities in roll angle (3° difference) and mass properties (2.2% in moment of inertia [MOI], 53.5 mm difference in center of gravity [CG] location). Despite those issues, kinetic and deformation measures showed a high degree of repeatability, which is necessary for assessing injury risk in rollover because roof strength positively correlates with injury risk (Brumbelow 2009). Improvements of the test equipment and matching mass properties will ensure highly repeatable initial conditions, vehicle kinematics, kinetics, and deformations.
Stress concentration in the vicinity of a hole defect under conditions of Hertzian contact
NASA Technical Reports Server (NTRS)
Yamamoto, T.; Eguchi, M.; Murayama, K.
1981-01-01
Two dimensional photoelastic stress analyses were conducted for epoxy resin models containing a hole defect under the conditions of Hertzian contact. Stress concentrations around the defect were determined as a function of several parameters. The effect of tangential traction on the stress concentration was also determined. Sharp stress concentrations occur in the vicinity of both the left and the right side of the hole. The stress concentration becomes more distinct the larger the hole diameter and the smaller distance between the hole and the contact surface. The stress concentration is greatest when the disk imposing a normal load is located at the contact surface directly over the hole. The magnitude and the location of stress concentration varies with the distance between the Hertzian contact area and the hole. The area involved in a process of rolling contact fatigue is confined to a shallow region at both sides of the hole. It was found that the effect of tangential traction is comparatively small on the stress concentration around the hole.
Pin and roller attachment system for ceramic blades
Shaffer, James E.
1995-01-01
In a turbine, a plurality of blades are attached to a turbine wheel by way of a plurality of joints which form a rolling contact between the blades and the turbine wheel. Each joint includes a pin and a pair of rollers to provide rolling contact between the pin and an adjacent pair of blades. Because of this rolling contact, high stress scuffing between the blades and the turbine wheel reduced, thereby inhibiting catastrophic failure of the blade joints.
NASA Technical Reports Server (NTRS)
Johnson, Robert L; Swikert, Max A; Bisson, Edmond E
1952-01-01
An investigation of wear and friction properties of a number of materials sliding against SAE 52100 steel was conducted. These materials included brass, bronze, beryllium copper, monel, nichrome v, 24s-t aluminum, nodular iron, and gray cast iron. The metals investigated may be useful as possible cage (separator or retainer) materials for rolling-contact bearings of high-speed turbine engines. The ability of materials to form surface films that prevent welding is a most important factor in both dry friction and boundary lubrication. On the basis of wear and resistance to welding only, the cast irons were the most promising materials investigated; they showed the least wear and the least tendency to surface failure when run dry, and when boundary lubricated they showed the highest load capacity. On the basis of mechanical properties, nodular iron is superior to gray cast iron. Bronze had the lowest friction coefficient under dry sliding conditions. The results with brass, beryllium copper, and aluminum were poor and these materials do not appear, with regard to friction and wear, to be suitable for cages.
Pin and roller attachment system for ceramic blades
Shaffer, J.E.
1995-07-25
In a turbine, a plurality of blades are attached to a turbine wheel by way of a plurality of joints which form a rolling contact between the blades and the turbine wheel. Each joint includes a pin and a pair of rollers to provide rolling contact between the pin and an adjacent pair of blades. Because of this rolling contact, high stress scuffing between the blades and the turbine wheel reduced, thereby inhibiting catastrophic failure of the blade joints. 3 figs.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-22
...: (202) 493-2251. For service information identified in this AD, contact Rolls-Royce plc, Corporate... received by the closing date and may amend this proposed AD based on those comments. We will post all... this AD, contact Rolls-Royce plc, Corporate Communications, P.O. Box 31, Derby, England, DE248BJ; phone...
NASA Astrophysics Data System (ADS)
Leinonen, Olli; Ilmola, Joonas; Seppälä, Oskari; Pohjonen, Aarne; Paavola, Jussi; Koskenniska, Sami; Larkiola, Jari
2018-05-01
In modeling of hot rolling pass schedules the heat transfer phenomena have to be known. Radiation to ambient, between rolls and a steel slab as well as heat transfer in contacts must be considered to achieve accurate temperature distribution and thereby accurate material behavior in simulations. Additional heat is generated by friction between the slab and the work roll and by plastic deformation. These phenomena must be taken into account when the effective heat transfer coefficient is determined from experimental data. In this paper we determine the effective heat transfer coefficient at the contact interface and emissivity factor of slab surface for 1100MPa strength carbon steel for hot rolling simulations. Experimental pilot rolling test were carried out and slab temperatures gathered right below the interface and at the mid thickness of the slab. Emissivity factor tests were carried out in the same manner but without rolling. Experimental data is utilized to derive contact heat transfer coefficient at the interface and emissivity factor of slab surface. Pilot rolling test is reproduced in FE-analysis to further refine the heat transfer coefficient and emissivity factor. Material mechanical properties at rolling temperatures were determined by Gleeble™ thermo-mechanical simulator and IDS thermodynamic-kinetic-empirical software.
Ni-Ti Next Generation Bearings for Space Applications
NASA Technical Reports Server (NTRS)
DellaCorte, Christopher
2018-01-01
NASA applications challenge traditional bearing materials. The rigors of launch often include heavy shock loads and exposure to corrosive environments (e.g., salt spray). Unfortunately, ball and roller bearings made from hardened steels are vulnerable to Brinell denting and rust which can limit performance and life. Ceramic materials can eliminate corrosion concerns but their high stiffness and extreme hardness actually makes denting problems worse. In this presentation, an emerging superelastic alloy, NiTi, is introduced for rolling element bearing applications. Through a decade of RD, NiTi alloy bearings have been put through a comprehensive series of life and performance tests. Hardness, corrosion, strength, stiffness, and rolling contact fatigue tests have been conducted and reported. Ball bearings ranging in size from 12 to 50mm bore have been successfully engineered and operated over a wide range of speeds and test conditions including being submerged in water. The combination of high hardness, moderate elastic modulus, low density, and intrinsic corrosion immunity provide new possibilities for mechanisms that operate under extreme conditions. Recent preliminary tests indicate that bearings can be made from NiTi alloys that are easily lubricated by conventional oils and greases and exhibit acceptable rolling contact fatigue resistance. This presentation introduces the NiTi materials systems and shows how NASA is using it to alleviate several specific problems encountered in advanced space applications.
Track dynamic behavior at rail welds at high speed
NASA Astrophysics Data System (ADS)
Xiao, Guangwen; Xiao, Xinbiao; Guo, Jun; Wen, Zefeng; Jin, Xuesong
2010-06-01
As a vehicle passing through a track with different weld irregularities, the dynamic performance of track components is investigated in detail by using a coupled vehicle-track model. In the model, the vehicle is modeled as a multi-body system with 35 degrees of freedom, and a Timoshenko beam is used to model the rails which are discretely supported by sleepers. In the track model, the sleepers are modeled as rigid bodies accounting for their vertical, lateral and rolling motions and assumed to move backward at a constant speed to simulate the vehicle running along the track at the same speed. In the study of the coupled vehicle and track dynamics, the Hertizian contact theory and the theory proposed by Shen-Hedrick-Elkins are, respectively, used to calculate normal and creep forces between the wheel and the rails. In the calculation of the normal forces, the coefficient of the normal contact stiffness is determined by transient contact condition of the wheel and rail surface. In the calculation of the creepages, the lateral, roll-over motions of the rail and the fact that the relative velocity between the wheel and rail in their common normal direction is equal to zero are simultaneously taken into account. The motion equations of the vehicle and track are solved by means of an explicit integration method, in which the rail weld irregularities are modeled as local track vertical deviations described by some ideal cosine functions. The effects of the train speed, the axle load, the wavelength and depth of the irregularities, and the weld center position in a sleeper span on the wheel-rail impact loading are analyzed. The numerical results obtained are greatly useful in the tolerance design of welded rail profile irregularity caused by hand-grinding after rail welding and track maintenances.
Analysis of Effect of Rolling Pull-Outs on Wing and Aileron Loads of a Fighter Airplane
NASA Technical Reports Server (NTRS)
Pearson, Henry A.; Aiken, William S.
1946-01-01
An analysis was made to determine the effect of rolling pull-out maneuvers on the wing and aileron loads of a typical fighter airplane, the P-47B. The results obtained indicate that higher loads are imposed upon wings and ailerons because of the rolling pull-out maneuver, than would be obtained by application of the loading requirements to which the airplane was designed. An increase of 102 lb or 15 percent of wing weight would be required if the wing were designed for rolling pull-out maneuver. It was also determined that the requirements by which the aileron was originally designed were inadequate.
Spin analysis of concentrated traction contacts
NASA Technical Reports Server (NTRS)
Loewenthal, S. H.
1983-01-01
Spin, the result of a mismatch in contact radii on either side of the point of rolling, has a detrimental effect on traction contact performance. It occurs in concentrated contacts having conical or contoured rolling elements, such as those in traction drives or angular contact bearings, and is responsible for an increase in contact heating and power loss. The kinematics of spin producing contact geometries and the subsequent effect on traction and power loss are investigated. The influence of lubricant traction characteristics and contact geometries that minimize spin are also addressed.
NASA Technical Reports Server (NTRS)
Parker, R. J.; Nahm, A. H.; Loewenthal, S. H.
1982-01-01
Rolling-element fatigue tests were run in standard and high-speed rolling-contact rigs at bar speeds from 5000 to 50,000 rpm to determine the effects of speed and lubricant film parameter on rolling-element fatigue life. AISI 52100 test bars were tested at a maximum Hertz stress of 4.83 GPa (700,000 psi) with three traction fluids and an automatic transmission fluid. Rolling-element fatigue life increased with speed, with the greatest increases occurring from 10,000 to 50,000 rpm. The life data tended to follow published life-versus-lubricant-film-parameter data up to a film parameter of approximately 3.
Staying sticky: contact self-cleaning of gecko-inspired adhesives.
Mengüç, Yigit; Röhrig, Michael; Abusomwan, Uyiosa; Hölscher, Hendrik; Sitti, Metin
2014-05-06
The exceptionally adhesive foot of the gecko remains clean in dirty environments by shedding contaminants with each step. Synthetic gecko-inspired adhesives have achieved similar attachment strengths to the gecko on smooth surfaces, but the process of contact self-cleaning has yet to be effectively demonstrated. Here, we present the first gecko-inspired adhesive that has matched both the attachment strength and the contact self-cleaning performance of the gecko's foot on a smooth surface. Contact self-cleaning experiments were performed with three different sizes of mushroom-shaped elastomer microfibres and five different sizes of spherical silica contaminants. Using a load-drag-unload dry contact cleaning process similar to the loads acting on the gecko foot during locomotion, our fully contaminated synthetic gecko adhesives could recover lost adhesion at a rate comparable to that of the gecko. We observed that the relative size of contaminants to the characteristic size of the microfibres in the synthetic adhesive strongly determined how and to what degree the adhesive recovered from contamination. Our approximate model and experimental results show that the dominant mechanism of contact self-cleaning is particle rolling during the drag process. Embedding of particles between adjacent fibres was observed for particles with diameter smaller than the fibre tips, and further studied as a temporary cleaning mechanism. By incorporating contact self-cleaning capabilities, real-world applications of synthetic gecko adhesives, such as reusable tapes, clothing closures and medical adhesives, would become feasible.
Kim, Ki-Young; Lee, Jung-Ju
2012-12-01
As there is a shortage of scrub nurses in many hospitals, automatic surgical tool exchanging mechanism without human labour has been studied. Minimally invasive robotic surgeries (MIRS) also require scrub nurses. A surgical tool loading mechanism without a scrub nurse's assistance for MIRS is proposed. Many researchers have developed minimally invasive surgical instruments with a wrist joint that can be movable inside the abdomen. However, implementation of a distal rolling joint on a gripper is rare. To implement surgical tool exchanging without a scrub nurse's assistance, a slave manipulator and a tool loader were developed to load and unload a surgical tool unit. A surgical tool unit with a roll-pitch-roll wrist was developed. Several experiments were performed to validate the effectiveness of the slave manipulator and the surgical tool unit. The slave manipulator and the tool loader were able to successfully unload and load the surgical tool unit without human assistance. The total duration of unloading and loading the surgical tool unit was 97 s. Motion tracking experiments of the distal rolling joint were performed. The maximum positioning error of the step input response was 2°. The advantage of the proposed slave manipulator and tool loader is that other robotic systems or human labour are not needed for surgical tool loading. The feasibility of the distal rolling joint in MIS is verified. Copyright © 2012 John Wiley & Sons, Ltd.
Generalized formulation of the interactions between soft spheres
NASA Astrophysics Data System (ADS)
Alonso-Marroquín, F.; McNamara, S.
2014-10-01
The goal of this paper is to identify the most general formulation that consistently links the different degrees of freedom in a contact between spherical soft particles. These contact laws have two parts: a set of "generalized contact velocities" that characterize the relative motion of the two particles, and a set of "generalized contact forces" that characterize the interparticle forces. One well known constraint on contact models is that the contact velocities must be objective. This requirement fixes the number of linearly independent contact velocities. We also present a previously unnoticed (in this context) constraint, namely, that the velocities and forces must be related in such a way that the stiffness matrix is symmetric. This constraint also places restrictions on the coupling between the contact forces. Within our generalized contact model, we discuss the expression for rolling velocity that need to be used in the calculation of rolling resistance, and the risk or producing perpetual mobile when other expressions of rolling velocity are using instead.
Rolling Contact Fatigue Workshop July 26-27, 2011
DOT National Transportation Integrated Search
2012-08-01
In July 2011, the Transportation Technology Center, Inc., coordinated the joint Federal Railroad Association/Association of American Railroads Workshop on Rolling Contact Fatigue (RCF). The workshop was held at the Congress Plaza Hotel in Chicago, IL...
Development of an aerostatic bearing system for roll-to-roll printed electronics
NASA Astrophysics Data System (ADS)
Chen, Shasha; Chen, Weihai; Liu, Jingmeng; Chen, Wenjie; Jin, Yan
2018-06-01
Roll-to-roll printed electronics is proved to be an effective way to fabricate electrical devices on various substrates. High precision overlay alignment plays a key role to create multi-layer electrical devices. Multiple rollers are adopted to support and transport the substrate web. In order to eliminate the negative effect of the machining error and assembling error of the roller, a whole roll-to-roll system including two aerostatic bearing devices with arrayed restrictors is proposed in this paper. Different to the conventional roller, the aerostatic bearing device can create a layer of air film between the web and the device to realize non-contact support and transport. Based on simplified Navier–Stokes equations, the theoretical model of the air film is established. Moreover, the pressure distribution of the whole flow field and single restrictor in different positions are modeled by conducting numerical simulation with computational fluid dynamics (CFD) software FLUENT. The load capacity curves and stiffness curves are generated to provide guidance for optimizing the structure of the device. A prototype of the aerostatic bearing system is set up and the experiment tests are carried out. For the proposed aerostatic bearing roller with a diameter of 100 mm and length of 200 mm, the experimental results show the aerostatic bearing method can achieve the position accuracy in a range of 1 μm in the vertical direction of the web, which is much better than that using existing methods.
Effect of residual stresses induced by prestressing on rolling element fatigue life
NASA Technical Reports Server (NTRS)
Parker, R. J.; Zaretsky, E. V.
1972-01-01
A mechanical prestress cycle suitable to induce compressive stress beneath the surface of the inner race of radially loaded 207-size bearings was determined. Compressive residual stress in excess 0.69 x 10 to the 9th power N/sq m (100,000 psi), as measured by X-ray diffraction, were induced at the depth of maximum shearing stress. The prestress cycle consisted of running the bearings for 25 hours at 2750 rpm at a radial load which produced a maximum Hertz stress of 3.3 x 10 to the 9th power N/sq m (480,000 psi) at the contact of the inner race and the heaviest loaded ball. Bearings subjected to this prestress cycle and subsequently fatigue tested gave a 10 percent fatigue life greater than twice that of a group of baseline bearings.
The contact drag of towed demersal fishing gear components
NASA Astrophysics Data System (ADS)
O'Neill, F. G.; Summerbell, K.; Ivanović, A.
2018-01-01
The contact demersal towed fishing gears make with the seabed can lead to penetration of the substrate, lateral displacement of the sediment and a pressure field transmitted through the sediment. It will also contribute to the overall drag of the fishing gear. Consequently, there can be environmental effects such as habitat alteration and benthic mortality, and impacts to the fuel efficiency of the fishing operation which will affect emissions of nitrogen oxides, sulphur oxides and greenhouse gases such as CO2. Here we present the results of experimental trials that measure the contact drag of a range of elements that represent some of the components of towed demersal gears that are in contact with the seabed. We show that the contact drag of the gear components depends on their weight, geometry, the type of sediment on which they are towed and whether they are rolling or not. As expected, the contact drag of each gear component increases as its weight increases and the drag of fixed elements is greater than that of the rolling ones. The dependence on aspect ratio is more complex and the drag (per unit area) of narrow cylinders is less than that of wider ones when they roll on the finer sediment or are fixed (not permitted to roll) on the coarser sediment. When they roll on the coarse sediment there is no dependence on aspect ratio. Our results also suggest that fixed components may penetrate the seabed to a lesser depth when they are towed at higher speeds but when they roll there is no such relationship.
Adaptive methods, rolling contact, and nonclassical friction laws
NASA Technical Reports Server (NTRS)
Oden, J. T.
1989-01-01
Results and methods on three different areas of contemporary research are outlined. These include adaptive methods, the rolling contact problem for finite deformation of a hyperelastic or viscoelastic cylinder, and non-classical friction laws for modeling dynamic friction phenomena.
Rolling contact fatigue : a comprehensive review.
DOT National Transportation Integrated Search
2011-11-01
"Rolling contact fatigue (RCF) is a pervasive and insidious problem on all types of railway systems. Although it is a dominant cause of maintenance and replacements on heavy haul rail lines, it is also a significant economic and safety challenge for ...
Explicit Nonlinear Finite Element Geometric Analysis of Parabolic Leaf Springs under Various Loads
Kong, Y. S.; Omar, M. Z.; Chua, L. B.; Abdullah, S.
2013-01-01
This study describes the effects of bounce, brake, and roll behavior of a bus toward its leaf spring suspension systems. Parabolic leaf springs are designed based on vertical deflection and stress; however, loads are practically derived from various modes especially under harsh road drives or emergency braking. Parabolic leaf springs must sustain these loads without failing to ensure bus and passenger safety. In this study, the explicit nonlinear dynamic finite element (FE) method is implemented because of the complexity of experimental testing A series of load cases; namely, vertical push, wind-up, and suspension roll are introduced for the simulations. The vertical stiffness of the parabolic leaf springs is related to the vehicle load-carrying capability, whereas the wind-up stiffness is associated with vehicle braking. The roll stiffness of the parabolic leaf springs is correlated with the vehicle roll stability. To obtain a better bus performance, two new parabolic leaf spring designs are proposed and simulated. The stress level during the loadings is observed and compared with its design limit. Results indicate that the newly designed high vertical stiffness parabolic spring provides the bus a greater roll stability and a lower stress value compared with the original design. Bus safety and stability is promoted, as well as the load carrying capability. PMID:24298209
Explicit nonlinear finite element geometric analysis of parabolic leaf springs under various loads.
Kong, Y S; Omar, M Z; Chua, L B; Abdullah, S
2013-01-01
This study describes the effects of bounce, brake, and roll behavior of a bus toward its leaf spring suspension systems. Parabolic leaf springs are designed based on vertical deflection and stress; however, loads are practically derived from various modes especially under harsh road drives or emergency braking. Parabolic leaf springs must sustain these loads without failing to ensure bus and passenger safety. In this study, the explicit nonlinear dynamic finite element (FE) method is implemented because of the complexity of experimental testing A series of load cases; namely, vertical push, wind-up, and suspension roll are introduced for the simulations. The vertical stiffness of the parabolic leaf springs is related to the vehicle load-carrying capability, whereas the wind-up stiffness is associated with vehicle braking. The roll stiffness of the parabolic leaf springs is correlated with the vehicle roll stability. To obtain a better bus performance, two new parabolic leaf spring designs are proposed and simulated. The stress level during the loadings is observed and compared with its design limit. Results indicate that the newly designed high vertical stiffness parabolic spring provides the bus a greater roll stability and a lower stress value compared with the original design. Bus safety and stability is promoted, as well as the load carrying capability.
Constitutive modelling of lubricants in concentrated contacts at high slide to roll ratios
NASA Technical Reports Server (NTRS)
Tevaarwerk, J. L.
1985-01-01
A constitutive lubricant friction model for rolling/sliding concentrated contacts such as gears and cams was developed, based upon the Johnson and Tevaarwerk fluid rheology model developed earlier. The friction model reported herein differs from the earlier rheological models in that very large slide to roll ratios can now be accommodated by modifying the thermal response of the model. Also the elastic response of the fluid has been omitted from the model, thereby making it much simpler for use in the high slide to roll contacts. The effects of this simplification are very minimal on the outcome of the predicted friction losses (less than 1%). In essence then the lubricant friction model developed for the high slide to roll ratios treats the fluid in the concentrated contact as consisting of a nonlinear viscous element that is pressure, temperature, and strain rate dependent in its shear response. The fluid rheological constants required for the prediction of the friction losses at different contact conditions are obtained by traction measurements on several of the currently used gear lubricants. An example calculation, using this model and the fluid parameters obtained from the experiments, shows that it correctly predicts trends and magnitude of gear mesh losses measured elsewhere for the same fluids tested here.
Analysis of rolling contact spall life in 440 C steel bearing rims
NASA Technical Reports Server (NTRS)
Bastias, P. C.; Bhargava, V.; Bower, A. P.; Du, J.; Gupta, V.; Hahn, G. T.; Kulkarni, S. M.; Kumar, A. M.; Leng, X.; Rubin, C. A.
1991-01-01
The results of a two year study of the mechanisms of spall failure in the HPOTP bearings are described. The objective was to build a foundation for detailed analyses of the contact life in terms of: cyclic plasticity, contact mechanics, spall nucleation, and spall growth. Since the laboratory rolling contact testing is carried out in the 3 ball/rod contact fatigue testing machine, the analysis of the contacts and contact lives produced in this machine received attention. The results from the experimentally observed growth lives are compared with calculated predictions derived from the fracture mechanics calculations.
NASA Technical Reports Server (NTRS)
Bibel, George; Lewicki, David G. (Technical Monitor)
2002-01-01
A procedure was developed to perform tooth contact analysis between a face gear meshing with a spur pinion using finite element analysis. The face gear surface points from a previous analysis were used to create a connected tooth solid model without gaps or overlaps. The face gear surface points were used to create a five tooth face gear Patran model (with rim) using Patran PCL commands. These commands were saved in a series of session files suitable for Patran input. A four tooth spur gear that meshes with the face gear was designed and constructed with Patran PCL commands. These commands were also saved in a session files suitable for Patran input. The orientation of the spur gear required for meshing with the face gear was determined. The required rotations and translations are described and built into the session file for the spur gear. The Abaqus commands for three-dimensional meshing were determined and verified for a simplified model containing one spur tooth and one face gear tooth. The boundary conditions, loads, and weak spring constraints were determined to make the simplified model work. The load steps and load increments to establish contact and obtain a realistic load was determined for the simplified two tooth model. Contact patterns give some insight into required mesh density. Building the two gears in two different local coordinate systems and rotating the local coordinate systems was verified as an easy way to roll the gearset through mesh. Due to limitation of swap space, disk space and time constraints of the summer period, the larger model was not completed.
Experimental ball bearing dynamics study. [by high speed photography
NASA Technical Reports Server (NTRS)
Signer, H. R.
1973-01-01
A photographic method was employed to record the kinematic performance of rolling elements in turbo machinery ball bearings. The 110 mm split inner ring test bearings had nominal contact angles of 26 deg and 34 deg. High speed films were taken at inner ring speeds of 4,000, 8,000 and 12,000 rpm and at thrust loads of 4,448 N and 22,240 N (1,000 and 5,000 lbs). The films were measured and this data reduced to obtain separator speed, ball speed and ball spin axis orientation.
Nano-level instrumentation for analyzing the dynamic accuracy of a rolling element bearing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Z.; Hong, J.; Zhang, J.
2013-12-15
The rotational performance of high-precision rolling bearings is fundamental to the overall accuracy of complex mechanical systems. A nano-level instrument to analyze rotational accuracy of high-precision bearings of machine tools under working conditions was developed. In this instrument, a high-precision (error motion < 0.15 μm) and high-stiffness (2600 N axial loading capacity) aerostatic spindle was applied to spin the test bearing. Operating conditions could be simulated effectively because of the large axial loading capacity. An air-cylinder, controlled by a proportional pressure regulator, was applied to drive an air-bearing subjected to non-contact and precise loaded axial forces. The measurement results onmore » axial loading and rotation constraint with five remaining degrees of freedom were completely unconstrained and uninfluenced by the instrument's structure. Dual capacity displacement sensors with 10 nm resolution were applied to measure the error motion of the spindle using a double-probe error separation method. This enabled the separation of the spindle's error motion from the measurement results of the test bearing which were measured using two orthogonal laser displacement sensors with 5 nm resolution. Finally, a Lissajous figure was used to evaluate the non-repetitive run-out (NRRO) of the bearing at different axial forces and speeds. The measurement results at various axial loadings and speeds showed the standard deviations of the measurements’ repeatability and accuracy were less than 1% and 2%. Future studies will analyze the relationship between geometrical errors and NRRO, such as the ball diameter differences of and the geometrical errors in the grooves of rings.« less
Nano-level instrumentation for analyzing the dynamic accuracy of a rolling element bearing.
Yang, Z; Hong, J; Zhang, J; Wang, M Y; Zhu, Y
2013-12-01
The rotational performance of high-precision rolling bearings is fundamental to the overall accuracy of complex mechanical systems. A nano-level instrument to analyze rotational accuracy of high-precision bearings of machine tools under working conditions was developed. In this instrument, a high-precision (error motion < 0.15 μm) and high-stiffness (2600 N axial loading capacity) aerostatic spindle was applied to spin the test bearing. Operating conditions could be simulated effectively because of the large axial loading capacity. An air-cylinder, controlled by a proportional pressure regulator, was applied to drive an air-bearing subjected to non-contact and precise loaded axial forces. The measurement results on axial loading and rotation constraint with five remaining degrees of freedom were completely unconstrained and uninfluenced by the instrument's structure. Dual capacity displacement sensors with 10 nm resolution were applied to measure the error motion of the spindle using a double-probe error separation method. This enabled the separation of the spindle's error motion from the measurement results of the test bearing which were measured using two orthogonal laser displacement sensors with 5 nm resolution. Finally, a Lissajous figure was used to evaluate the non-repetitive run-out (NRRO) of the bearing at different axial forces and speeds. The measurement results at various axial loadings and speeds showed the standard deviations of the measurements' repeatability and accuracy were less than 1% and 2%. Future studies will analyze the relationship between geometrical errors and NRRO, such as the ball diameter differences of and the geometrical errors in the grooves of rings.
A rotating electrical transfer device
NASA Technical Reports Server (NTRS)
Porter, R. S.
1985-01-01
The design, development, and performance characteristics of two roll ring configurations - a roll ring being a device used in transferring electrical energy across a continuously rotating or oscillating interface through one or more flexible rolling contacts, or flexures are described. Emphasis is placed on the design problems and solutions encountered during development in the areas of flexure fatigue, contact electroplating, electrical noise, and control of interface geometry. Also, the present status of each configuration is summarized.
Method of texturing a superconductive oxide precursor
DeMoranville, Kenneth L.; Li, Qi; Antaya, Peter D.; Christopherson, Craig J.; Riley, Jr., Gilbert N.; Seuntjens, Jeffrey M.
1999-01-01
A method of forming a textured superconductor wire includes constraining an elongated superconductor precursor between two constraining elongated members placed in contact therewith on opposite sides of the superconductor precursor, and passing the superconductor precursor with the two constraining members through flat rolls to form the textured superconductor wire. The method includes selecting desired cross-sectional shape and size constraining members to control the width of the formed superconductor wire. A textured superconductor wire formed by the method of the invention has regular-shaped, curved sides and is free of flashing. A rolling assembly for single-pass rolling of the elongated precursor superconductor includes two rolls, two constraining members, and a fixture for feeding the precursor superconductor and the constraining members between the rolls. In alternate embodiments of the invention, the rolls can have machined regions which will contact only the elongated constraining members and affect the lateral deformation and movement of those members during the rolling process.
NASA Astrophysics Data System (ADS)
Koumi, Koffi Espoir; Chaise, Thibaut; Nelias, Daniel
2015-07-01
In this paper, the frictionless rolling contact problem between a rigid sphere and a viscoelastic half-space containing one elastic inhomogeneity is solved. The problem is equivalent to the frictionless sliding of a spherical tip over a viscoelastic body. The inhomogeneity may be of spherical or ellipsoidal shape, the later being of any orientation relatively to the contact surface. The model presented here is three dimensional and based on semi-analytical methods. In order to take into account the viscoelastic aspect of the problem, contact equations are discretized in the spatial and temporal dimensions. The frictionless rolling of the sphere, assumed rigid here for the sake of simplicity, is taken into account by translating the subsurface viscoelastic fields related to the contact problem. Eshelby's formalism is applied at each step of the temporal discretization to account for the effect of the inhomogeneity on the contact pressure distribution, subsurface stresses, rolling friction and the resulting torque. A Conjugate Gradient Method and the Fast Fourier Transforms are used to reduce the computation cost. The model is validated by a finite element model of a rigid sphere rolling upon a homogeneous vciscoelastic half-space, as well as through comparison with reference solutions from the literature. A parametric analysis of the effect of elastic properties and geometrical features of the inhomogeneity is performed. Transient and steady-state solutions are obtained. Numerical results about the contact pressure distribution, the deformed surface geometry, the apparent friction coefficient as well as subsurface stresses are presented, with or without heterogeneous inclusion.
Signal processing for non-destructive testing of railway tracks
NASA Astrophysics Data System (ADS)
Heckel, Thomas; Casperson, Ralf; Rühe, Sven; Mook, Gerhard
2018-04-01
Increased speed, heavier loads, altered material and modern drive systems result in an increasing number of rail flaws. The appearance of these flaws also changes continually due to the rapid change in damage mechanisms of modern rolling stock. Hence, interpretation has become difficult when evaluating non-destructive rail testing results. Due to the changed interplay between detection methods and flaws, the recorded signals may result in unclassified types of rail flaws. Methods for automatic rail inspection (according to defect detection and classification) undergo continual development. Signal processing is a key technology to master the challenge of classification and maintain resolution and detection quality, independent of operation speed. The basic ideas of signal processing, based on the Glassy-Rail-Diagram for classification purposes, are presented herein. Examples for the detection of damages caused by rolling contact fatigue also are given, and synergetic effects of combined evaluation of diverse inspection methods are shown.
Floor Plans Rolling Platform, Tech Systems Platform, and Load ...
Floor Plans - Rolling Platform, Tech Systems Platform, and Load Platform Plans - Marshall Space Flight Center, F-1 Engine Static Test Stand, On Route 565 between Huntsville and Decatur, Huntsville, Madison County, AL
Dynamics of solid dispersions in oil during the lubrication of point contacts. Part 1: Graphite
NASA Technical Reports Server (NTRS)
Cusano, C.; Sliney, H. E.
1981-01-01
A Hertzian contact was lubricated with dispersed graphite in mineral oils under boundary lubrication conditions. The contact was optically observed under pure rolling, combined rolling and sliding, and pure sliding conditions. The contact was formed with a steel ball on the flat surface of a glass disk. Photomicrographs are presented which show the distribution of the graphite in and around the contact. Friction and surface damage are also shown for conditions when the base oils are used alone and when graphite is added to the base oils. Under pure rolling and combined rolling and sliding conditions, it is found that, for low speeds, a graphite film can form which will separate the contacting surfaces. Under pure sliding conditions, graphite accumulates at the inlet and sweeps around the contact, but very little of the graphite passes through the contact. The accumulated graphite appears to act as a barrier which reduces the supply of oil available to the contact for boundary lubrication. Friction data show no clear short term beneficial or detrimental effect caused by addition of graphite to the base oil. However, during pure sliding, more abrasion occurs on the polished balls lubricated with the dispersion than on those lubricated with the base oil alone. All observations were for the special case of a highly-polished ball on a glass surface and may not be applicable to other geometries and materials, or to rougher surfaces.
The effect of passenger load on unstable vehicles in fatal, untripped rollover crashes.
Whitfield, R A; Jones, I S
1995-01-01
Consumers may be unaware of the risk of rollover crashes posed by passenger loads in vehicles with poor roll stability. This analysis demonstrates that certain sports utility vehicles and small pickup trucks have designs that are so unstable that the weight of the passengers in the vehicle affects its propensity to roll over. This effect occurs even though the weight of the loaded vehicle is less than the manufacturer's gross vehicle weight rating. The risk of a fatal, "untripped" rollover crash in vehicles with low roll stability is increased as each passenger is added to the vehicle load. PMID:7661237
FASTSIM2: a second-order accurate frictional rolling contact algorithm
NASA Astrophysics Data System (ADS)
Vollebregt, E. A. H.; Wilders, P.
2011-01-01
In this paper we consider the frictional (tangential) steady rolling contact problem. We confine ourselves to the simplified theory, instead of using full elastostatic theory, in order to be able to compute results fast, as needed for on-line application in vehicle system dynamics simulation packages. The FASTSIM algorithm is the leading technology in this field and is employed in all dominant railway vehicle system dynamics packages (VSD) in the world. The main contribution of this paper is a new version "FASTSIM2" of the FASTSIM algorithm, which is second-order accurate. This is relevant for VSD, because with the new algorithm 16 times less grid points are required for sufficiently accurate computations of the contact forces. The approach is based on new insights in the characteristics of the rolling contact problem when using the simplified theory, and on taking precise care of the contact conditions in the numerical integration scheme employed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vidal, C.A.M.; Sabato, J.A.
1962-09-01
BS>Descriptions are given of: (a) the design, construction, and adjustment of a Ford plane-strain compression die, to be used in the determination of constrained yield stress curves, and (b) the design and construction of a load cell with strain gages to be used in the measurement of the rolling load during rolling. (auth)
78 FR 34550 - Airworthiness Directives; Rolls-Royce plc Turbojet Engines
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-10
... Airworthiness Directives; Rolls-Royce plc Turbojet Engines AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: We are adopting a new airworthiness directive (AD) for all Rolls-Royce plc..., contact Defence Aerospace Communications at Rolls-Royce plc, P.O. Box 3, Gypsy Patch Lane, Filton, Bristol...
Contact angle control of sessile drops on a tensioned web
NASA Astrophysics Data System (ADS)
Park, Janghoon; Kim, Dongguk; Lee, Changwoo
2018-04-01
In this study, the influence of the change of tension applied to flexible and thin web substrate on the contact angle of sessile drop in roll-to-roll system was investigated. Graphene oxide and deionized water solutions were used in the experiments. Tension was changed to 29, 49, and 69 N, and the casting distance of the micropipette and the material was set to 10, 20, and 40 mm, and the droplet volume was set to 10, 20, and 30 μL, respectively. Statistical analysis of three variables and analysis of the variance methodology showed that the casting distance was most significant for the contact angle change, and the most interesting tension variable was also affected. The change in tension caused the maximum contact angle to change by 5.5°. The tension was not uniform in the width direction. When the droplet was applied in the same direction in the width direction, it was confirmed that the tension unevenness had great influence on the contact angle up to 11°. Finally, the casting distance, which has a large effect on the contact angle, was calibrated in the width direction to reduce the width direction contact angle deviation to 1%. This study can be applied to fine patterning research using continuous inkjet printing and aerosol jet printing, which are roll-to-roll processes based on droplet handling.
Static and yawed-rolling mechanical properties of two type 7 aircraft tires
NASA Technical Reports Server (NTRS)
Tanner, J. A.; Stubbs, S. M.; Mccarty, J. L.
1981-01-01
Selected mechanical properties of 18 x 5.5 and 49 x 17 size, type 7 aircraft tires were evaluated. The tires were subjected to pure vertical loads and to combined vertical and lateral loads under both static and rolling conditions. Parameters for the static tests consisted of tire load in the vertical and lateral directions, and parameters for the rolling tests included tire vertical load, yaw angle, and ground speed. Effects of each of these parameters on the measured tire characteristics are discussed and, where possible, compared with previous work. Results indicate that dynamic tire properties under investigation were generally insensitive to speed variations and therefore tend to support the conclusion that many tire dynamic characteristics can be obtained from static and low speed rolling tests. Furthermore, many of the tire mechanical properties are in good agreement with empirical predictions based on earlier research.
Effect of friction on rolling tire-pavement interaction
DOT National Transportation Integrated Search
2010-11-01
In this research, a three-dimensional (3-D) tire-pavement interaction model is developed using FEM to analyze the tire-pavement contact stress distributions at various rolling conditions (free rolling, braking/accelerating, and cornering). In additio...
Mechanical and tribological properties of inorganic fullerene-like (IF) nanoparticles
NASA Astrophysics Data System (ADS)
Tevet, Ofer
Layered materials like graphite, tungsten disulfide (WS2) and molybdenum disulfide (MoS2) are known for their ability to reduce friction and wear either as a pure solid lubricant or as additive for liquid lubricants. The synthesis of closed-cage inorganic nanostructures, made of tungsten disulfide (WS2) was first reported in 1992 [1,2]. These inorganic nanostructures have two forms: Inorganic fullerene-like (IF) nanoparticles (NP) [3] and nanotubes (INT) [4]. The mechanical properties of individual INT-WS2 have been studied extensively [5,6,7,8]. The objective of the current research was to measure the mechanical properties of individual fullerene-like nanoparticles made of tungsten disulfide (IF-WS 2) and molybdenum disulfide (IF-MoS2). The size of those multilayered, polyhedral, hollow, nanoparticles varies from 80 to 300 nm with mean value of about 120 nm. In order to conduct the research, experimental set-up for dispersion the IF and for in-situ nanopressing of the IF in a high resolution scanning electron microscope (HRSEM), was constructed. Nanomanipulator with an atomic force microscope (AFM) cantilever probe was used for applying the load. The stress, sigma, is defined as the load applied to a specimen divided by the contact area between the AFM tip and the specimen. The contact area was estimated from the contact length between the NP and the probe as seen in the HRSEM image. The deformation of the nanoparticle under load and shear was estimated from the HRSEM images taken during the compression test. The stress and the deformation of the individual IF NP enable us to measure the (critical) fracture stress and their elastic properties. The representative value (median) of the fracture stress, sigma50, of IF-WS2 and IF-MoS2 was 1.78 GPa and 2.50 GPa, respectively. Finite element analysis (FEA) simulation of the uniaxial compression on hollow polyhedral WS2 particles gives a good approximation to the experiments. The model was designed to emphasize the effect of the faceted and layered structure of the hollow nanoparticle on the stress concentration and their fracture mechanism. The experimental set-up was unable to elucidate three main tribological mechanisms of individual IF: rolling, sliding and exfoliation-material transfer (third body). In order to elucidate the tribological mechanism of individual nanoparticles in different regimes, normal stress and subsequently shear forces were applied on the NP. It is clear that rolling of individual NP of IF-WS2 is a valid and dominant mechanism under low shear rates and normal stress of 0.96+/-0.38 GPa. Sliding occurs at higher normal stress 1.65+/-0.54 GPa, and exfoliation predominates under high normal stress 1.82+/-0.59 GPa. For IF-MoS2 rolling was not observed. Sliding was the dominant mechanism under low shear rates and normal stress of 0.5+/-0.19 GPa, and exfoliation predominates under high normal stress of 1.89+/-0.78 GPa. The lack of rolling in the case of the IF-MoS2 nanoparticles could be attributed to its highly asymmetric oval shape, which is not favorable for such motion.
77 FR 13483 - Airworthiness Directives; Rolls-Royce plc (RR) Turbofan Engines
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-07
... Directives; Rolls-Royce plc (RR) Turbofan Engines AGENCY: Federal Aviation Administration (FAA), DOT. ACTION... service information identified in this AD, contact Rolls-Royce plc, Corporate Communications, P.O. Box 31...), or, have Rolls-Royce plc revise Alert Service Bulletin (ASB) No. RB.211-72-AF964 to remove the...
76 FR 65136 - Airworthiness Directives; Rolls-Royce plc (RR) Turbofan Engines
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-20
... Airworthiness Directives; Rolls-Royce plc (RR) Turbofan Engines AGENCY: Federal Aviation Administration (FAA... information identified in this AD, contact Rolls-Royce plc, Corporate Communications, P.O. Box 31, Derby...-166679 (76 FR 24793, May 3, 2011), and adding the following new AD: Rolls-Royce plc: Docket No. FAA-2010...
Roll Casting of Aluminum Alloy Clad Strip
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakamura, R.; Tsuge, H.; Haga, T.
2011-01-17
Casting of aluminum alloy three layers of clad strip was tried using the two sets of twin roll casters, and effects of the casting parameters on the cladding conditions were investigated. One twin roll caster was mounted on the other twin roll caster. Base strip was 8079 aluminum alloy and overlay strips were 6022 aluminum alloy. Effects of roll-load of upper and lower casters and melt temperature of the lower caster were investigated. When the roll-load of the upper and lower caster was large enough, the overlay strip could be solidified and be connected. The overlay strip could be connectedmore » when the melt of the overlay strip cast by the lower caster was low enough. Sound three layers of clad strip could be cast by proper conditions.« less
Bending and buckling of rolled-up SiGe /Si microtubes using nanorobotic manipulation
NASA Astrophysics Data System (ADS)
Zhang, Li; Dong, Lixin; Nelson, Bradley J.
2008-06-01
Mechanical properties of individual rolled-up SiGe /Si microtubes are investigated experimentally using nanorobotic manipulation. By applying bending loads, individual SiGe /Si microtubes demonstrate various deformation modes with increasing bending angle. Remarkably, the tested microtubes resist fracture even when bent back onto themselves (180° bending angle). Axial compression tests of microtubes with different turns are also performed. Among those tubes, 1.6-turn rolled-up SiGe /Si microtubes show typical Euler buckling behavior when the load is larger than a critical load, which can be estimated by the Euler formula for columns.
Dynamic contact forces on leukocyte microvilli and their penetration of the endothelial glycocalyx.
Zhao, Y; Chien, S; Weinbaum, S
2001-01-01
We develop a theoretical model to examine the combined effect of gravity and microvillus length heterogeneity on tip contact force (F(m)(z)) during free rolling in vitro, including the initiation of L-, P-, and E-selectin tethers and the threshold behavior at low shear. F (m)(z) grows nonlinearly with shear. At shear stress of 1 dyn/cm(2), F(m)(z) is one to two orders of magnitude greater than the 0.1 pN force for gravitational settling without flow. At shear stresses > 0.2 dyn/cm(2) only the longest microvilli contact the substrate; hence at the shear threshold (0.4 dyn/cm(2) for L-selectin), only 5% of microvilli can initiate tethering interaction. The characteristic time for tip contact is surprisingly short, typically 0.1-1 ms. This model is then applied in vivo to explore the free-rolling interaction of leukocyte microvilli with endothelial glycocalyx and the necessary conditions for glycocalyx penetration to initiate cell rolling. The model predicts that for arteriolar capillaries even the longest microvilli cannot initiate rolling, except in regions of low shear or flow reversal. In postcapillary venules, where shear stress is approximately 2 dyn/cm(2), tethering interactions are highly likely, provided that there are some relatively long microvilli. Once tethering is initiated, rolling tends to ensue because F(m)(z) and contact duration will both increase substantially to facilitate glycocalyx penetration by the shorter microvilli. PMID:11222278
Influences of rolling method on deformation force in cold roll-beating forming process
NASA Astrophysics Data System (ADS)
Su, Yongxiang; Cui, Fengkui; Liang, Xiaoming; Li, Yan
2018-03-01
In process, the research object, the gear rack was selected to study the influence law of rolling method on the deformation force. By the mean of the cold roll forming finite element simulation, the variation regularity of radial and tangential deformation was analysed under different rolling methods. The variation of deformation force of the complete forming racks and the single roll during the steady state under different rolling modes was analyzed. The results show: when upbeating and down beating, radial single point average force is similar, the tangential single point average force gap is bigger, the gap of tangential single point average force is relatively large. Add itionally, the tangential force at the time of direct beating is large, and the dire ction is opposite with down beating. With directly beating, deformation force loading fast and uninstall slow. Correspondingly, with down beating, deformat ion force loading slow and uninstall fast.
Stress concentration in the vicinity of a hole defect under conditions of Hertzian contact
NASA Technical Reports Server (NTRS)
Yamamoto, T.; Eguchi, M.; Murayama, K.
1981-01-01
Two-dimensional photoelastic stress analyses were conducted for epoxy resin models containing a hole defect under the conditions of Hertzian contact. Stress concentrations around the defect were determined as a function of several parameters. These were hole diameter, its vertical distance from the contact surface, and the horizontal distance from the Hertzian contact area. Also determined was the effect of tangential traction (generated by a friction coefficient of 0.1) on the stress concentration. Sharp stress concentrations occur in the vicinity of both the left and the right side of the hole. The stress concentration becomes more distinct the larger the hole diameter and the smaller the distance between the hole and the contact surface. The stress concentration is greatest when the disk imposing a normal load is located at the contact surface directly over the hole. The magnitude and the location of stress concentration varies with the distance between the Hertzian contact area and the hole. Taking into account the stress amplitude, the area which can be involved in a process of rolling contact fatigue seems to be confined to a shallow region at both sides of the hole. The effect of tangential traction is comparatively small on the stress concentration around the hole.
SHABERTH - ANALYSIS OF A SHAFT BEARING SYSTEM (CRAY VERSION)
NASA Technical Reports Server (NTRS)
Coe, H. H.
1994-01-01
The SHABERTH computer program was developed to predict operating characteristics of bearings in a multibearing load support system. Lubricated and non-lubricated bearings can be modeled. SHABERTH calculates the loads, torques, temperatures, and fatigue life for ball and/or roller bearings on a single shaft. The program also allows for an analysis of the system reaction to the termination of lubricant supply to the bearings and other lubricated mechanical elements. SHABERTH has proven to be a valuable tool in the design and analysis of shaft bearing systems. The SHABERTH program is structured with four nested calculation schemes. The thermal scheme performs steady state and transient temperature calculations which predict system temperatures for a given operating state. The bearing dimensional equilibrium scheme uses the bearing temperatures, predicted by the temperature mapping subprograms, and the rolling element raceway load distribution, predicted by the bearing subprogram, to calculate bearing diametral clearance for a given operating state. The shaft-bearing system load equilibrium scheme calculates bearing inner ring positions relative to the respective outer rings such that the external loading applied to the shaft is brought into equilibrium by the rolling element loads which develop at each bearing inner ring for a given operating state. The bearing rolling element and cage load equilibrium scheme calculates the rolling element and cage equilibrium positions and rotational speeds based on the relative inner-outer ring positions, inertia effects, and friction conditions. The ball bearing subprograms in the current SHABERTH program have several model enhancements over similar programs. These enhancements include an elastohydrodynamic (EHD) film thickness model that accounts for thermal heating in the contact area and lubricant film starvation; a new model for traction combined with an asperity load sharing model; a model for the hydrodynamic rolling and shear forces in the inlet zone of lubricated contacts, which accounts for the degree of lubricant film starvation; modeling normal and friction forces between a ball and a cage pocket, which account for the transition between the hydrodynamic and elastohydrodynamic regimes of lubrication; and a model of the effect on fatigue life of the ratio of the EHD plateau film thickness to the composite surface roughness. SHABERTH is intended to be as general as possible. The models in SHABERTH allow for the complete mathematical simulation of real physical systems. Systems are limited to a maximum of five bearings supporting the shaft, a maximum of thirty rolling elements per bearing, and a maximum of one hundred temperature nodes. The SHABERTH program structure is modular and has been designed to permit refinement and replacement of various component models as the need and opportunities develop. A preprocessor is included in the IBM PC version of SHABERTH to provide a user friendly means of developing SHABERTH models and executing the resulting code. The preprocessor allows the user to create and modify data files with minimal effort and a reduced chance for errors. Data is utilized as it is entered; the preprocessor then decides what additional data is required to complete the model. Only this required information is requested. The preprocessor can accommodate data input for any SHABERTH compatible shaft bearing system model. The system may include ball bearings, roller bearings, and/or tapered roller bearings. SHABERTH is written in FORTRAN 77, and two machine versions are available from COSMIC. The CRAY version (LEW-14860) has a RAM requirement of 176K of 64 bit words. The IBM PC version (MFS-28818) is written for IBM PC series and compatible computers running MS-DOS, and includes a sample MS-DOS executable. For execution, the PC version requires at least 1Mb of RAM and an 80386 or 486 processor machine with an 80x87 math co-processor. The standard distribution medium for the IBM PC version is a set of two 5.25 inch 360K MS-DOS format diskettes. The contents of the diskettes are compressed using the PKWARE archiving tools. The utility to unarchive the files, PKUNZIP.EXE, is included. The standard distribution medium for the CRAY version is also a 5.25 inch 360K MS-DOS format diskette, but alternate distribution media and formats are available upon request. The original version of SHABERTH was developed in FORTRAN IV at Lewis Research Center for use on a UNIVAC 1100 series computer. The Cray version was released in 1988, and was updated in 1990 to incorporate fluid rheological data for Rocket Propellant 1 (RP-1), thereby allowing the analysis of bearings lubricated with RP-1. The PC version is a port of the 1990 CRAY version and was developed in 1992 by SRS Technologies under contract to NASA Marshall Space Flight Center.
Ferrographic analysis of wear debris generated in accelerated rolling element fatigue tests
NASA Technical Reports Server (NTRS)
Jones, W. R., Jr.; Parker, R. J.
1977-01-01
Ferrographic analysis was used to determine the types and quantities of wear particles generated during accelerated rolling contact fatigue tests. The NASA five-ball rolling contact fatigue tester was used. Ball specimens were made of AMS 5749, a corrosion-resistant high-temperature bearing steel. The lubricant was a super-refined naphthenic mineral oil. Conditions included a maximum Hertz stress of 5.52 billion Pa and a shaft speed of 10,000 rpm. Four types of wear particles were observed: normal rubbing wear particles, fatigue spall particles, spheres, and friction polymer.
Kapich, Davorin D.
1987-01-01
A bearing system includes backup bearings for supporting a rotating shaft upon failure of primary bearings. In the preferred embodiment, the backup bearings are rolling element bearings having their rolling elements disposed out of contact with their associated respective inner races during normal functioning of the primary bearings. Displacement detection sensors are provided for detecting displacement of the shaft upon failure of the primary bearings. Upon detection of the failure of the primary bearings, the rolling elements and inner races of the backup bearings are brought into mutual contact by axial displacement of the shaft.
Rolling contact fatigue strengths of shot-peened and crack-healed ceramics
NASA Astrophysics Data System (ADS)
Takahashi, K.; Oki, T.
2018-06-01
The effects of shot-peening (SP) and crack-healing on the rolling contact fatigue (RCF) strengths of Al2O3/SiC composite ceramics were investigated. Non-shot-peened, shot- peened, and shot-peened + crack-healed specimens were prepared. SP was performed using ZrO2 beads. The shot-peened + crack-healed specimen was crack-healed after SP. X-ray diffraction clearly showed that SP induced a compressive residual stress up to 300 MPa at the specimen surfaces. Furthermore, the shot-peened + crack-healed specimen retained a compressive residual stress of 200 MPa. The apparent surface fracture toughness of the shot- peened specimens increased owing to the positive effects of the compressive residual stress. RCF tests were performed using a thrust load-bearing test device. The RCF lives of the shot- peened specimens did not improve compared to that of the non-shot-peened specimen, because the numerous SP-introduced surface cracks could act as crack initiation sites during the RCF tests. However, the RCF life of the shot-peened + crack-healed specimen did improve compared to those of non-shot-peened and shot-peened specimens, implying that combining SP and crack-healing was an effective strategy for improving the RCF lives of Al2O3/SiC composite ceramics.
77 FR 10355 - Airworthiness Directives; Rolls-Royce plc (RR) RB211-Trent 800 Series Turbofan Engines
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-22
... Airworthiness Directives; Rolls-Royce plc (RR) RB211-Trent 800 Series Turbofan Engines AGENCY: Federal Aviation... effective March 28, 2012. ADDRESSES: For service information identified in this AD, contact Rolls-Royce plc... Rolls-Royce plc: Amendment 39-16956; Docket No. FAA-2010- 0755; Directorate Identifier 2010-NE-12-AD. (a...
NASA Astrophysics Data System (ADS)
Piotrowski, J.
2010-07-01
This paper presents two extensions of Kalker's algorithm Fastsim of the simplified theory of rolling contact. The first extension is for solving tangential contact problems with the coefficient of friction depending on slip velocity. Two friction laws have been considered: with and without recuperation of the static friction. According to the tribological hypothesis for metallic bodies shear failure, the friction law without recuperation of static friction is more suitable for wheel and rail than the other one. Sample results present local quantities inside the contact area (division to slip and adhesion, traction) as well as global ones (creep forces as functions of creepages and rolling velocity). For the coefficient of friction diminishing with slip, the creep forces decay after reaching the maximum and they depend on the rolling velocity. The second extension is for solving tangential contact problems with friction anisotropy characterised by a convex set of the permissible tangential tractions. The effect of the anisotropy has been shown on examples of rolling without spin and in the presence of pure spin for the elliptical set. The friction anisotropy influences tangential tractions and creep forces. Sample results present local and global quantities. Both extensions have been described with the same language of formulation and they may be merged into one, joint algorithm.
Li, Tongqing; Peng, Yuxing; Zhu, Zhencai; Zou, Shengyong; Yin, Zixin
2017-05-11
Aiming at predicting what happens in reality inside mills, the contact parameters of iron ore particles for discrete element method (DEM) simulations should be determined accurately. To allow the irregular shape to be accurately determined, the sphere clump method was employed in modelling the particle shape. The inter-particle contact parameters were systematically altered whilst the contact parameters between the particle and wall were arbitrarily assumed, in order to purely assess its impact on the angle of repose for the mono-sized iron ore particles. Results show that varying the restitution coefficient over the range considered does not lead to any obvious difference in the angle of repose, but the angle of repose has strong sensitivity to the rolling/static friction coefficient. The impacts of the rolling/static friction coefficient on the angle of repose are interrelated, and increasing the inter-particle rolling/static friction coefficient can evidently increase the angle of repose. However, the impact of the static friction coefficient is more profound than that of the rolling friction coefficient. Finally, a predictive equation is established and a very close agreement between the predicted and simulated angle of repose is attained. This predictive equation can enormously shorten the inter-particle contact parameters calibration time that can help in the implementation of DEM simulations.
Wettability and impact dynamics of water droplets on rice ( Oryza sativa L.) leaves
NASA Astrophysics Data System (ADS)
Kwon, Dae Hee; Huh, Hyung Kyu; Lee, Sang Joon
2014-03-01
We investigated the wettability and impact dynamics of water droplets on rice leaves at various leaf inclination angles and orientations. Contact angle, contact angle hysteresis (CAH), and roll-off angle ( α roll) of water droplets were measured quantitatively. Results showed that droplet motion exhibited less resistance along the longitudinal direction. Impact dynamic parameters, such as impact behaviors, maximum spreading factor, contact distance, and contact time were also investigated. Three different impact behaviors were categorized based on the normal component of Weber number irrespective of the inclination angle of the rice leaf. The asymmetric impact behavior induced by the tangential Weber number was also identified. Variation in the maximum spreading factor according to the normal Weber number was measured and compared with theoretical value obtained according to scaling law to show the wettability of the rice leaves. The contact distance of the impacting droplets depended on the inclination angle of the leaves. Along the longitudinal direction of rice leaves, contact distance was farther than that along the transverse direction. This result is consistent with the smaller values of CAH and α roll along the longitudinal direction.
Prediction of Contact Fatigue Life of Alloy Cast Steel Rolls Using Back-Propagation Neural Network
NASA Astrophysics Data System (ADS)
Jin, Huijin; Wu, Sujun; Peng, Yuncheng
2013-12-01
In this study, an artificial neural network (ANN) was employed to predict the contact fatigue life of alloy cast steel rolls (ACSRs) as a function of alloy composition, heat treatment parameters, and contact stress by utilizing the back-propagation algorithm. The ANN was trained and tested using experimental data and a very good performance of the neural network was achieved. The well-trained neural network was then adopted to predict the contact fatigue life of chromium alloyed cast steel rolls with different alloy compositions and heat treatment processes. The prediction results showed that the maximum value of contact fatigue life was obtained with quenching at 960 °C, tempering at 520 °C, and under the contact stress of 2355 MPa. The optimal alloy composition was C-0.54, Si-0.66, Mn-0.67, Cr-4.74, Mo-0.46, V-0.13, Ni-0.34, and Fe-balance (wt.%). Some explanations of the predicted results from the metallurgical viewpoints are given. A convenient and powerful method of optimizing alloy composition and heat treatment parameters of ACSRs has been developed.
Measurement of stress distributions in truck tyre contact patch in real rolling conditions
NASA Astrophysics Data System (ADS)
Anghelache, Gabriel; Moisescu, Raluca
2012-12-01
Stress distributions on three orthogonal directions have been measured across the contact patch of truck tyres using the complex measuring system that contains a transducer assembly with 30 sensing elements placed in the road surface. The measurements have been performed in straight line, in real rolling conditions. Software applications for calibration, data acquisition, and data processing were developed. The influence of changes in inflation pressure and rolling speed on the shapes and sizes of truck tyre contact patch has been shown. The shapes and magnitudes of normal, longitudinal, and lateral stress distributions, measured at low speed, have been presented and commented. The effect of wheel toe-in and camber on the stress distribution results was observed. The paper highlights the impact of the longitudinal tread ribs on the shear stress distributions. The ratios of stress distributions in the truck tyre contact patch have been computed and discussed.
Design and analysis of roll cage
NASA Astrophysics Data System (ADS)
Angadi, Gurusangappa; Chetan, S.
2018-04-01
Wildlife fire fighting vehicles are used to extinguish fires in forests, in this process vehicles face falling objects like rocks, tree branches and other objects. Also due to uneven conditions of the terrain like cliff edges, uneven surfaces etc. makes the vehicle to roll over and these can cause injuries to both the driver and the operator. Roll over of a vehicle is a common incident which makes fatal injuries to the operator and also stands next to the crash accidents. In order to reduce the injury level and continuous roll over of the vehicle it is necessary to equip suitable roll cage according to standards of vehicle. In this present work roll cage for pump operator in wildfire fighting vehicle is designed and analysis is carried out in computer simulated environment when seating position of operator seated outside of the cabin. According to NFPA 1906 standards wildlife fire apparatus, Design and Test procedures that are carried out in Hyperworks maintaining SAE J1194.1983 standards. G load case, roof crush analysis and pendulum impact analysis tests are carried out on roll cage to ensure the saftey of design. These load cases are considerd to satisfy the situation faced in forest terrain. In these test procedures roll cage is analysed for stresses and deformation in various load cases. After recording results these are compared with standards mentioned in SAE J1194.1983.
NASA Astrophysics Data System (ADS)
Elrod, David A.
1993-11-01
The rolling element bearings (REB's) which support many turbomachinery rotors offer high load capacity, low power requirements, and durability. Two disadvantages of REB's are: (1) rolling or sliding contact within the bearing has life-limiting consequences; and (2) REB's provide essentially no damping. The REB's in the Space Shuttle Main Engine (SSME) turbopumps must sustain high static and dynamic loads, at high speeds, with a cryogenic fluid as lubricant and coolant. The pump end ball bearings limit the life of the SSME high pressure oxygen turbopump (HPOTP). Compliant foil bearing (CFB) manufacturers have proposed replacing turbopump REB's with CFB's CFB's work well in aircraft air cycle machines, auxiliary power units, and refrigeration compressors. In a CFB, the rotor only contracts the foil support structure during start up and shut down. CFB damping is higher than REB damping. However, the load capacity of the CFB is low, compared to a REB. Furthermore, little stiffness and damping data exists for the CFB. A rotordynamic analysis for turbomachinery critical speeds and stability requires the input of bearing stiffness and damping coefficients. The two basic types of CFB are the tension-dominated bearing and the bending-dominated bearing. Many investigators have analyzed and measured characteristics of tension-dominated foil bearings, which are applied principally in magnetic tape recording. The bending-dominated CFB is used more in rotating machinery. This report describes the first phase of a structural analysis of a bending-dominated, multileaf CFB. A brief discussion of CFB literature is followed by a description and results of the present analysis.
Rolling-element fatigue life of AMS 5749 corrosion resistant, high temperature bearing steel
NASA Technical Reports Server (NTRS)
Parker, R. J.; Hodder, R. S.
1977-01-01
The rolling element fatigue lives of AMS 5749 and AISI M-50 were compared in tests run in the five ball fatigue tester and the rolling contact fatigue tester. The effects of double vacuum melting and retained austenite on the life of AMS 5749 were determined in five ball fatigue tests. The double vacuum melting process consisted of induction vacuum melting followed by vacuum arc remelting (VIM-VAR). In the five ball tests, VIM-VAR AMS 5749 gave lives at least six times that of VIM-VAR AISI M-50. Similar tests in the rolling contact fatigue tester showed no significant difference in the lives of the two materials. The rolling element fatigue life of VIM-VAR AMS 5749 was at least 14 times that of vacuum induction melted AMS 5749. A trend toward increased rolling element fatigue life with decreased retained austenite is apparent, but the confidence that all experimental differences are significant is not great.
Rolling Element Bearing Stiffness Matrix Determination (Presentation)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Y.; Parker, R.
2014-01-01
Current theoretical bearing models differ in their stiffness estimates because of different model assumptions. In this study, a finite element/contact mechanics model is developed for rolling element bearings with the focus of obtaining accurate bearing stiffness for a wide range of bearing types and parameters. A combined surface integral and finite element method is used to solve for the contact mechanics between the rolling elements and races. This model captures the time-dependent characteristics of the bearing contact due to the orbital motion of the rolling elements. A numerical method is developed to determine the full bearing stiffness matrix corresponding tomore » two radial, one axial, and two angular coordinates; the rotation about the shaft axis is free by design. This proposed stiffness determination method is validated against experiments in the literature and compared to existing analytical models and widely used advanced computational methods. The fully-populated stiffness matrix demonstrates the coupling between bearing radial, axial, and tilting bearing deflections.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-06
...-0674; Directorate Identifier 2009-NE-25-AD] RIN 2120-AA64 Airworthiness Directives; Rolls-Royce plc... airworthiness directive (AD) for Rolls-Royce plc RB211-Trent 800 series turbofan engines. That AD currently... through Friday, except Federal holidays. Fax: (202) 493-2251. Contact Rolls-Royce plc, P.O. Box 31, DERBY...
75 FR 264 - Airworthiness Directives; Rolls-Royce plc RB211-Trent 800 Series Turbofan Engines
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-05
...-1004; Directorate Identifier 2009-NE-36-AD] RIN 2120-AA64 Airworthiness Directives; Rolls-Royce plc.... Contact Rolls-Royce plc, P.O. Box 31, Derby, England; telephone: 011-44-1332-249428; fax: 011-44-1332... condition may exist on Rolls-Royce plc RB211 Trent 800 series turbofan engines. The MCAI states: During 2004...
75 FR 61114 - Airworthiness Directives; Rolls-Royce plc RB211-Trent 800 Series Turbofan Engines
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-04
... Airworthiness Directives; Rolls-Royce plc RB211-Trent 800 Series Turbofan Engines AGENCY: Federal Aviation.... Fax: (202) 493-2251. Contact Rolls-Royce plc, P.O. Box 31, Derby, England, DE248BJ; telephone: 011-44... proposed AD, for Rolls- Royce plc RB211-Trent 800 series turbofan engines. That proposed AD would have...
76 FR 72650 - Airworthiness Directives; Rolls-Royce plc (RR) RB211 Trent 800 Series Turbofan Engines
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-25
...-0959; Directorate Identifier 2011-NE-25-AD] RIN 2120-AA64 Airworthiness Directives; Rolls-Royce plc (RR... holidays. Fax: (202) 493-2251. Contact Rolls-Royce plc, P.O. Box 31, Derby, DE24 8BJ, United Kingdom; phone... airplane. Relevant Service Information Rolls-Royce plc has issued Alert Service Bulletin RB.211-72-AG456...
Rolling motion of an elastic cylinder induced by elastic strain gradients
NASA Astrophysics Data System (ADS)
Chen, Lei; Chen, Shaohua
2014-10-01
Recent experiment shows that an elastic strain gradient field can be utilized to transport spherical particles on a stretchable substrate by rolling, inspired by which a generalized plane-strain Johnson-Kendall-Roberts model is developed in this paper in order to verify possible rolling of an elastic cylinder adhering on an elastic substrate subject to a strain gradient. With the help of contact mechanics, closed form solutions of interface tractions, stress intensity factors, and corresponding energy release rates in the plane-strain contact model are obtained, based on which a possible rolling motion of an elastic cylinder induced by strain gradients is found and the criterion for the initiation of rolling is established. The theoretical prediction is consistent well with the existing experimental observation. The result should be helpful for understanding biological transport mechanisms through muscle contractions and the design of transport systems with strain gradient.
Nucleation and growth of rolling contact failure of 440C bearing steel
NASA Technical Reports Server (NTRS)
Gupta, V.; Bastias, P. C.; Hahn, G. T.; Rubin, C. A.
1992-01-01
A 'two-body' elasto-plastic finite element model of 2-dimensional rolling and rolling-plus-sliding was developed to treat the effect of surface irregularities. The model consists of a smooth cylinder in contact with a semi-infinite half-space that is either smooth or fitted with one of 0.4 microns deep or 7 microns deep groove, or a 0.4 microns high ridge-like asperity. The model incorporates elastic-linear-kinematic hardening-plastic (ELKP) and non-linear-kinematic hardening-plastic (NLKP) material constitutive relations appropriate for hardened bearing steel and the 440C grade. The calculated contact pressure distribution is Hertzian for smooth body contact, and it displays intense, stationary, pressure spikes superposed on the Hertzian pressure for contact with the grooved and ridged surface. The results obtained for the 0.4 microns deep groove compare well with those reported by Elsharkawy and Hamrock for an EHD lubricated contact. The effect of translating the counterface on the half space as opposed to indenting the half space with the counter face with no translation is studied. The stress and strain values near the surface are found to be similar for the two cases, whereas they are significantly different in the subsurface. It is seen that when tiny shoulders are introduced at the edge of the groove in the finite element model, the incremental plasticity and residual stresses are significantly higher in the vicinity of the right shoulder (rolling direction is from left to right) than at the left shoulder. This may explain the experimental observation that the spall nucleation occurs at the exit end of the artificially planted indents. Pure rolling calculations are compared with rolling + sliding calculations. For a coefficient of friction, mu = 0.1, the effect of friction is found to be small. Efforts were made to identify the material constitutive relations which best describe the deformation characteristics of the bearing steels in the initial few cycles. Elastic-linear-kinematic hardening-plastic (ELKP) material constitutive relations produce less net plastic deformation in the initial stages for a given stress, than seen in experiments. A new set of constitutive relations: non-linear-kinematic hardening-plastic (NLKP) was used. This material model produces more plasticity than the ELKP model and shows promise for treating the net distortions in the early stages. Techniques for performing experimental measurements that can be compared with the finite element calculations were devised. The measurements are being performed on 9mm-diameter, 440C steel cylindrical rolling elements in contact with 12.5 mm-diameter, 52100 steel balls in a 3-ball-rod fatigue test machine operating at 3600 RPM. Artificial, 7 microns deep, indents were inserted on the running track of the cylindrical rolling elements and profilometer measurements of these indents made, before and after the rolling. These preliminary measurements show that the indents are substantially deformed plastically in the process of rolling. The deformations of the groove calculated with the finite element model are comparable to those measured experimentally.
Adaptive wing static aeroelastic roll control
NASA Astrophysics Data System (ADS)
Ehlers, Steven M.; Weisshaar, Terrence A.
1993-09-01
Control of the static aeroelastic characteristics of a swept uniform wing in roll using an adaptive structure is examined. The wing structure is modeled as a uniform beam with bending and torsional deformation freedom. Aerodynamic loads are obtained from strip theory. The structure model includes coefficients representing torsional and bending actuation provided by embedded piezoelectric material layers. The wing is made adaptive by requiring the electric field applied to the piezoelectric material layers to be proportional to the wing root loads. The proportionality factor, or feedback gain, is used to control static aeroelastic rolling properties. Example wing configurations are used to illustrate the capabilities of the adaptive structure. The results show that rolling power, damping-in-roll and aileron effectiveness can be controlled by adjusting the feedback gain. And that dynamic pressure affects the gain required. Gain scheduling can be used to set and maintain rolling properties over a range of dynamic pressures. An adaptive wing provides a method for active aeroelastic tailoring of structural response to meet changing structural performance requirements during a roll maneuver.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-19
...-1157; Directorate Identifier 2009-NE-26-AD] RIN 2120-AA64 Airworthiness Directives; Rolls-Royce plc (RR... p.m., Monday through Friday, except Federal holidays. Fax: (202) 493-2251. Contact Rolls-Royce plc... Information Rolls-Royce plc has issued Alert Service Bulletin RB.211-72-AF336, dated October 24, 2007. The...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-05
...-0993; Directorate Identifier 2010-NE-08-AD] RIN 2120-AA64 Airworthiness Directives; Rolls-Royce plc... Federal holidays. Fax: (202) 493-2251. Contact Rolls-Royce plc, P.O. Box 31, Derby, DE24 8BJ, United... examining the MCAI in the AD docket. Relevant Service Information Rolls-Royce plc has issued Alert Service...
Li, Tongqing; Peng, Yuxing; Zhu, Zhencai; Zou, Shengyong; Yin, Zixin
2017-01-01
Aiming at predicting what happens in reality inside mills, the contact parameters of iron ore particles for discrete element method (DEM) simulations should be determined accurately. To allow the irregular shape to be accurately determined, the sphere clump method was employed in modelling the particle shape. The inter-particle contact parameters were systematically altered whilst the contact parameters between the particle and wall were arbitrarily assumed, in order to purely assess its impact on the angle of repose for the mono-sized iron ore particles. Results show that varying the restitution coefficient over the range considered does not lead to any obvious difference in the angle of repose, but the angle of repose has strong sensitivity to the rolling/static friction coefficient. The impacts of the rolling/static friction coefficient on the angle of repose are interrelated, and increasing the inter-particle rolling/static friction coefficient can evidently increase the angle of repose. However, the impact of the static friction coefficient is more profound than that of the rolling friction coefficient. Finally, a predictive equation is established and a very close agreement between the predicted and simulated angle of repose is attained. This predictive equation can enormously shorten the inter-particle contact parameters calibration time that can help in the implementation of DEM simulations. PMID:28772880
Three-dimensional stress intensity factor analysis of a surface crack in a high-speed bearing
NASA Technical Reports Server (NTRS)
Ballarini, Roberto; Hsu, Yingchun
1990-01-01
The boundary element method is applied to calculate the stress intensity factors of a surface crack in the rotating inner raceway of a high-speed roller bearing. The three-dimensional model consists of an axially stressed surface cracked plate subjected to a moving Hertzian contact loading. A multidomain formulation and singular crack-tip elements were employed to calculate the stress intensity factors accurately and efficiently for a wide range of configuration parameters. The results can provide the basis for crack growth calculations and fatigue life predictions of high-performance rolling element bearings that are used in aircraft engines.
Rules for Rolling as a Rotation about the Instantaneous Point of Contact
ERIC Educational Resources Information Center
Jensen, Jens Hoejgaard
2011-01-01
It is a widespread misunderstanding in introductory physics courses that the motion of rolling bodies in general can be calculated using the point of contact as a reference point when equating the rate of change of angular momentum to the torque. In this paper I discuss in general two correct rules to be used instead, in order to derive the…
Finishing Techniques for Silicon Nitride Bearings
1976-03-01
finishing procedures. Rolling contact fatigue lives of silicon nitride with selected smoother finishes tested at 800 ksi Hertz stress were an order...grinding. Rolling contact fatigue lives of silicon nitride with selected smoother finishes tested at 800 ksi Hertz stress were an order of magnitude...lives of silicon nitride with selected smoother finishes tested at 800 ksi Hertz stress were an order of magnitude longer than those
A methodology for analysing lateral coupled behavior of high speed railway vehicles and structures
NASA Astrophysics Data System (ADS)
Antolín, P.; Goicolea, J. M.; Astiz, M. A.; Alonso, A.
2010-06-01
Continuous increment of the speed of high speed trains entails the increment of kinetic energy of the trains. The main goal of this article is to study the coupled lateral behavior of vehicle-structure systems for high speed trains. Non linear finite element methods are used for structures whereas multibody dynamics methods are employed for vehicles. Special attention must be paid when dealing with contact rolling constraints for coupling bridge decks and train wheels. The dynamic models must include mixed variables (displacements and creepages). Additionally special attention must be paid to the contact algorithms adequate to wheel-rail contact. The coupled vehicle-structure system is studied in a implicit dynamic framework. Due to the presence of very different systems (trains and bridges), different frequencies are involved in the problem leading to stiff systems. Regarding to contact methods, a main branch is studied in normal contact between train wheels and bridge decks: penalty method. According to tangential contact FastSim algorithm solves the tangential contact at each time step solving a differential equation involving relative displacements and creepage variables. Integration for computing the total forces in the contact ellipse domain is performed for each train wheel and each solver iteration. Coupling between trains and bridges requires a special treatment according to the kinetic constraints imposed in the wheel-rail pair and the load transmission. A numerical example is performed.
NASA Technical Reports Server (NTRS)
Rossow, V. J.; Corsiglia, V. R.; Schwind, R. G.; Frick, J. K. D.; Lemmer, O. J.
1975-01-01
Measurements were made in the wake of a swept wing model to study the structure of lift generated vortex wakes shed by conventional span loadings and by several span loadings designed to reduce wake velocities. Variations in the span loading on the swept wing generator were obtained by deflecting seven flap segments on each side by amounts determined by vortex lattice theory to approximate the desired span loadings. The resulting wakes were probed with a three component, hot wire probe to measure velocity, and with a wing to measure the rolling moment that would be induced on a following aircraft. The experimental techniques are described herein, and the measured velocity and rolling moments are presented, along with some comparisons with the applicable theories.
Landing impact studies of a 0.3-scale model air cushion landing system for a Navy fighter airplane
NASA Technical Reports Server (NTRS)
Leland, T. J. W.; Thompson, W. C.
1975-01-01
An experimental study was conducted in order to determine the landing-impact behavior of a 0.3-scale, dynamically (but not physically) similar model of a high-density Navy fighter equipped with an air cushion landing system. The model was tested over a range of landing contact attitudes at high forward speeds and sink rates on a specialized test fixture at the Langley aircraft landing loads and traction facility. The investigation indicated that vertical acceleration at landing impact was highly dependent on the pitch angle at ground contact, the higher acceleration of approximately 5g occurring near zero body-pitch attitude. A limited number of low-speed taxi tests were made in order to determine model stability characteristics. The model was found to have good pitch-damping characteristics but stability in roll was marginal.
Tooth-meshing-harmonic static-transmission-error amplitudes of helical gears
NASA Astrophysics Data System (ADS)
Mark, William D.
2018-01-01
The static transmission errors of meshing gear pairs arise from deviations of loaded tooth working surfaces from equispaced perfect involute surfaces. Such deviations consist of tooth-pair elastic deformations and geometric deviations (modifications) of tooth working surfaces. To a very good approximation, the static-transmission-error tooth-meshing-harmonic amplitudes of helical gears are herein expressed by superposition of Fourier transforms of the quantities: (1) the combination of tooth-pair elastic deformations and geometric tooth-pair modifications and (2) fractional mesh-stiffness fluctuations, each quantity (1) and (2) expressed as a function of involute "roll distance." Normalization of the total roll-distance single-tooth contact span to unity allows tooth-meshing-harmonic amplitudes to be computed for different shapes of the above-described quantities (1) and (2). Tooth-meshing harmonics p = 1, 2, … are shown to occur at Fourier-transform harmonic values of Qp, p = 1, 2, …, where Q is the actual (total) contact ratio, thereby verifying its importance in minimizing transmission-error tooth-meshing-harmonic amplitudes. Two individual shapes and two series of shapes of the quantities (1) and (2) are chosen to illustrate a wide variety of shapes. In most cases representative of helical gears, tooth-meshing-harmonic values p = 1, 2, … are shown to occur in Fourier-transform harmonic regions governed by discontinuities arising from tooth-pair-contact initiation and termination, thereby showing the importance of minimizing such discontinuities. Plots and analytical expressions for all such Fourier transforms are presented, thereby illustrating the effects of various types of tooth-working-surface modifications and tooth-pair stiffnesses on transmission-error generation.
NASA Astrophysics Data System (ADS)
Korayem, M. H.; Habibi Sooha, Y.; Rastegar, Z.
2018-05-01
Manipulation of the biological particles by atomic force microscopy is used to transfer these particles inside body's cells, diagnosis and destruction of the cancer cells and drug delivery to damaged cells. According to the impossibility of simultaneous observation of this process, the importance of modeling and simulation can be realized. The contact of the tip with biological particle is important during manipulation, therefore, the first step of the modeling is choosing appropriate contact model. Most of the studies about contact between atomic force microscopy and biological particles, consider the biological particle as an elastic material. This is not an appropriate assumption because biological cells are basically soft and this assumption ignores loading history. In this paper, elastic and viscoelastic JKR theories were used in modeling and simulation of the 3D manipulation for three modes of tip-particle sliding, particle-substrate sliding and particle-substrate rolling. Results showed that critical force and time in motion modes (sliding and rolling) for two elastic and viscoelastic states are very close but these magnitudes were lower in the viscoelastic state. Then, three friction models, Coulomb, LuGre and HK, were used for tip-particle sliding mode in the first phase of manipulation to make results closer to reality. In both Coulomb and LuGre models, critical force and time are very close for elastic and viscoelastic states but in general critical force and time prediction of HK model was higher than LuGre and the LuGre model itself had higher prediction than Coulomb.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-13
... with electronic flight controls as they relate to design roll-maneuver requirements. The applicable... load condition at design maneuvering speed V A , in which the cockpit roll control is returned to... neutral position. 3. At design cruising speed V C , the cockpit roll control must be moved suddenly and...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-26
... design roll maneuver for electronic flight controls, specifically an electronic flight control system... load condition at design maneuvering speed (V A ), in which the cockpit roll control is returned to...-550 airplanes. 1. Design Roll Maneuver for Electronic Flight Controls. In lieu of compliance to 14 CFR...
Airborne Optical Systems Test Bed (AOSTB)
2016-07-01
resident laser radar platform with roll -on/ roll -off sensor capability. The new platform provides The Laboratory with an added capability of leveraging...29 Figure 11 – Finite Element Analysis of Loads on Isolators (9G Forward...This project created a resident sensor suite with roll -on/ roll -off capability, coupled to a resident platform (Twin Otter Aircraft). This facility
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-15
...-0562; Directorate Identifier 2009-NE-29-AD] RIN 2120-AA64 Airworthiness Directives; Rolls-Royce plc (RR...-2251. Contact Rolls-Royce plc, P.O. Box 31, Derby, DE24 8BJ, United Kingdom; phone: 011 44 1332 242424... by examining the MCAI in the AD docket. Relevant Service Information Rolls-Royce plc has issued Alert...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-12
... Airworthiness Directives; Rolls-Royce plc (RR) RB211-Trent 768-60 and Trent 772-60 Turbofan Engines AGENCY... holidays. For service information identified in this AD, contact Rolls-Royce plc, P.O. Box 31, Derby, DE24..., September 16, 1998), and adding the following new AD: 2011-08-10 Rolls-Royce plc: Amendment 39-16660; Docket...
Khismatullin, Damir B.; Truskey, George A.
2012-01-01
Rolling leukocytes deform and show a large area of contact with endothelium under physiological flow conditions. We studied the effect of cytoplasmic viscosity on leukocyte rolling using our three-dimensional numerical algorithm that treats leukocyte as a compound droplet in which the core phase (nucleus) and the shell phase (cytoplasm) are viscoelastic fluids. The algorithm includes the mechanical properties of the cell cortex by cortical tension and considers leukocyte microvilli that deform viscoelastically and form viscous tethers at supercritical force. Stochastic binding kinetics describes binding of adhesion molecules. The leukocyte cytoplasmic viscosity plays a critical role in leukocyte rolling on an adhesive substrate. High-viscosity cells are characterized by high mean rolling velocities, increased temporal fluctuations in the instantaneous velocity, and a high probability for detachment from the substrate. A decrease in the rolling velocity, drag, and torque with the formation of a large, flat contact area in low-viscosity cells leads to a dramatic decrease in the bond force and stable rolling. Using values of viscosity consistent with step aspiration studies of human neutrophils (5–30 Pa·s), our computational model predicts the velocities and shape changes of rolling leukocytes as observed in vitro and in vivo. PMID:22768931
NASA Astrophysics Data System (ADS)
Chiroux, Robert Charles
The objective of this research was to produce a three dimensional, non-linear, dynamic simulation of the interaction between a hyperelastic wheel rolling over compactable soil. The finite element models developed to produce the simulation utilized the ABAQUS/Explicit computer code. Within the simulation two separate bodies were modeled, the hyperelastic wheel and a compactable soil-bed. Interaction between the bodies was achieved by allowing them to come in contact but not to penetrate the contact surface. The simulation included dynamic loading of a hyperelastic, rubber tire in contact with compactable soil with an applied constant angular velocity or torque, including a tow load, applied to the wheel hub. The constraints on the wheel model produced a straight and curved path. In addition the simulation included a shear limit between the tire and soil allowing for the introduction of slip. Soil properties were simulated using the Drucker-Prager, Cap Plasticity model available within the ABAQUS/Explicit program. Numerical results obtained from the three dimensional model were compared with related experimental data and showed good correlation for similar conditions. Numerical and experimental data compared well for both stress and wheel rut formation depth under a weight of 5.8 kN and a constant angular velocity applied to the wheel hub. The simulation results provided a demonstration of the benefit of three-dimensional simulation in comparison to previous two-dimensional, plane strain simulations.
IPS guidestar selection for stellar mode (ASTRO)
NASA Technical Reports Server (NTRS)
Mullins, Larry; Wooten, Lewis
1988-01-01
This report describes how guide stars are selected for the Optical Sensor Package (OSP) for the Instrument Pointing System (IPS) when it is operating in the stellar mode on the ASTRO missions. It also describes how the objective loads are written and how the various roll angles are related; i.e., the celestial roll or position angle, the objective load roll angles, and the IPS gimbal angles. There is a brief description of how the IPS operates and its various modes of operation; i.e., IDOP, IDIN, and OSPCAL.
Rolling contact fatigue of surface modified 440C using a 'Ge-Polymet' type disc rod test rig
NASA Technical Reports Server (NTRS)
Thom, Robert L.
1989-01-01
Through hardened 440 C martensitic stainless steel test specimens were surface modified and tested for changes in rolling contact fatigue using a disc on rod test rig. The surface modifications consisted of nitrogen, boron, titanium, chromium, tantalum, carbon, or molybdenum ion implantation at various ion fluences and energies. Tests were also performed on specimens reactively sputtered with titanium nitride.
A. Palmgren Revisited: A Basis for Bearing Life Prediction
NASA Technical Reports Server (NTRS)
Zaretsky, Erwin V.
1997-01-01
Bearing technology, as well as the bearing industry, began to develop with the invention of the bicycle in the 1850's. At the same time, high-quality steel was made possible by the Bessemer process. In 1881, H. Hertz published his contact stress analysis. By 1902, R. Stribeck had published his work based on Hertz theory to calculate the maximum load of a radially loaded ball bearing. By 1920, all of the rolling bearing types used today were being manufactured. AISI 52100 bearing steel became the material of choice for these bearings. Beginning in 1918, engineers directed their attention to predicting the lives of these bearings. In 1924, A. Palmgren published a paper outlining his approach to bearing life prediction. This paper was the basis for the Lundberg-Palmgren life theory published in 1947. A critical review of the 1924 Palmgren paper is presented here together with a discussion of its effect on bearing life prediction.
Effects of alignment on the roll-over shapes of prosthetic feet.
Hansen, Andrew
2008-12-01
Recent work suggests that a prosthetic ankle-foot component's roll-over shape - the effective rocker it conforms to between initial contact and opposite initial contact (the 'roll-over' interval of walking) - is closely linked to its final alignment in the prosthesis (as determined by a skilled prosthetist using heuristic techniques). If true, this information may help to determine the appropriate alignment for a lower limb prosthesis before it is built, or a priori. Knowledge is needed for future models that will incorporate the roll-over shape including the relative effect of alignment on the roll-over shape's radius of curvature and arc length. The purpose of this study was to evaluate the hypotheses that: (i) Changes in prosthesis alignment alter the position and orientation of a foot's roll-over shape in prosthesis-based coordinates, and (ii) these changes occur without changing the radius of curvature or arc length of the roll-over shape. To examine the hypotheses, this study examined the effects of nine alignment settings on the roll-over shapes of two prosthetic feet. The idea that alignment changes move and rotate roll-over shapes of prosthetic feet in prosthesis coordinates is supported by this work, but the hypothesis that the radius of curvature and arc length do not change for different alignments is not strongly supported by the data. A revised approach is presented that explains some of the changes to the roll-over shape parameters due to changes in rotational alignment.
49 CFR 393.122 - What are the rules for securing paper rolls?
Code of Federal Regulations, 2010 CFR
2010-10-01
... be loaded on a layer of paper rolls beneath unless the lower layer extends to the front of the vehicle. (2) Paper rolls in the second and subsequent layers must be prevented from forward, rearward or lateral movement by means as allowed for the bottom layer, or by use of a blocking roll from a lower layer...
Hot forging of roll-cast high aluminum content magnesium alloys
NASA Astrophysics Data System (ADS)
Kishi, Tomohiro; Watari, Hisaki; Suzuki, Mayumi; Haga, Toshio
2017-10-01
This paper reports on hot forging of high aluminum content magnesium alloy sheets manufactured using horizontal twin-roll casting. AZ111 and AZ131 were applied for twin-roll casting, and a hot-forging test was performed to manufacture high-strength magnesium alloy components economically. For twin-roll casting, the casting conditions of a thick sheet for hot forging were investigated. It was found that twin-roll casting of a 10mm-thick magnesium alloy sheet was possible at a roll speed of 2.5m/min. The grain size of the cast strip was 50 to 70µm. In the hot-forging test, blank material was obtained from as-cast strip. A servo press machine with a servo die cushion was used to investigate appropriate forging conditions (e.g., temperature, forging load, and back pressure) for twin-roll casts (TRCs) AZ111 and AZ131. It was determined that high aluminum content magnesium alloy sheets manufactured using twin-roll casting could be forged with a forging load of 150t and a back pressure of 3t at 420 to 430°C. Applying back pressure during hot forging effectively forged a pin-shaped product.
Landing Characteristics of a Reentry Capsule with a Torus-Shaped Air Bag for Load Alleviation
NASA Technical Reports Server (NTRS)
McGehee, John R.; Hathaway, Melvin E.
1960-01-01
An experimental investigation has been made to determine the landing characteristics of a conical-shaped reentry capsule by using torus-shaped air bags for impact-load alleviation. An impact bag was attached below the large end of the capsule to absorb initial impact loads and a second bag was attached around the canister to absorb loads resulting from impact on the canister when the capsule overturned. A 1/6-scale dynamic model of the configuration was tested for nominal flight paths of 60 deg. and 90 deg. (vertical), a range of contact attitudes from -25 deg. to 30 deg., and a vertical contact velocity of 12.25 feet per second. Accelerations were measured along the X-axis (roll) and Z-axis (yaw) by accelerometers rigidly installed at the center of gravity of the model. Actual flight path, contact attitudes, and motions were determined from high-speed motion pictures. Landings were made on concrete and on water. The peak accelerations along the X-axis for landings on concrete were in the order of 3Og for a 0 deg. contact attitude. A horizontal velocity of 7 feet per second, corresponding to a flight path of 60 deg., had very little effect upon the peak accelerations obtained for landings on concrete. For contact attitudes of -25 deg. and 30 deg. the peak accelerations along the Z-axis were about +/- l5g, respectively. The peak accelerations measured for the water landings were about one-third lower than the peak accelerations measured for the landings on concrete. Assuming a rigid body, computations were made by using Newton's second law of motion and the force-stroke characteristics of the air bag to determine accelerations for a flight path of 90 deg. (vertical) and a contact attitude of 0 deg. The computed and experimental peak accelerations and strokes at peak acceleration were in good agreement for the model. The special scaling appears to be applicable for predicting full-scale time and stroke at peak acceleration for a landing on concrete from a 90 deg. flight path at a 0 deg. It appears that the full-scale approximately the same as those obtained from the model for the range of attitudes and flight paths investigated.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-03
... Airworthiness Directives; Rolls-Royce plc (RR) RB211-524 Series and RB211 Trent 500, 700, and 800 Series... adding the following new AD: 2011-09-07 Rolls-Royce plc (RR): Amendment 39-16669. Docket No. FAA- 2010... identified in this AD, contact Rolls-Royce plc, P.O. Box 31, Derby, DE24 8BJ, United Kingdom; phone: 011 44...
A study on high-speed rolling contact between a wheel and a contaminated rail
NASA Astrophysics Data System (ADS)
Zhao, Xin; Wen, Zefeng; Zhu, Minhao; Jin, Xuesong
2014-10-01
A 3-D explicit finite element model is developed to investigate the transient wheel-rail rolling contact in the presence of rail contamination or short low adhesion zones (LAZs). A transient analysis is required because the wheel passes by a short LAZ very quickly, especially at high speeds. A surface-to-surface contact algorithm (by the penalty method) is employed to solve the frictional rolling contact between the wheel and the rail meshed by solid elements. The LAZ is simulated by a varying coefficient of friction along the rail. Different traction efforts and action of the traction control system triggered by the LAZ are simulated by applying a time-dependent driving torque to the wheel axle. Structural flexibilities of the vehicle-track system are considered properly. Analysis focuses on the contact forces, creepage, contact stresses and the derived frictional work and plastic deformation. It is found that the longitudinal contact force and the maximum surface shear stress in the contact patch become obviously lower in the LAZ and much higher as the wheel re-enters the dry rail section. Consequently, a higher wear rate and larger plastic flow are expected at the location where the dry contact starts to be rebuilt. In other words, contact surface damages such as wheel flats and rail burns may come into being because of the LAZ. Length of the LAZ, the traction level, etc. are varied. The results also show that local contact surface damages may still occur as the traction control system acts.
ERIC Educational Resources Information Center
Jones, Simon A.; Nieminen, John M.
2008-01-01
Not so long ago a new observation about rolling motion was described: for a rolling wheel, there is a set of points with instantaneous velocities directed at or away from the centre of the wheel; these points form a circle whose diameter connects the centre of the wheel to the wheel's point of contact with the ground (Sharma 1996 "Eur. J. Phys."…
Effect of discrete track support by sleepers on rail corrugation at a curved track
NASA Astrophysics Data System (ADS)
Jin, X. S.; Wen, Z. F.
2008-08-01
The paper investigates into the effect of discrete track support by sleepers on the initiation and development of rail corrugation at a curved track when a railway vehicle passes through using a numerical method. The numerical method considers a combination of Kalker's rolling contact theory with non-Hertzian form, a linear frictional work model and a dynamics model of a half railway vehicle coupled with the curved track. The half-vehicle has a two-axle bogie and doubled suspension systems. It is treated as a full dynamic rigid multi-body model. In the track model, an Euler beam is used to model the rail, and the discrete track support by sleepers moving backward with respect to the vehicle running direction is considered to simulate the effect of the discrete sleeper support on the wheels/rails in rolling contact when the vehicle moves on the track. The sleeper is treated as a rigid body and the ballast bed is replaced with equivalent mass bodies. The numerical analysis exams in detail the variations of wheel/rail normal loads, the creepages, and the rail wear volume along the curved track. Their variations are much concerned with the discrete track support. The numerical results show that the discrete track support causes the fluctuating of the normal loads and creepages at a few frequencies. These frequencies comprise the passing frequency of the sleepers and the excited track resonant frequencies, which are higher than the sleeper passing frequency. Consequently, rail corrugation with several wavelengths initiates and develops. Also the results show that the contact vibrating between the curved rails and the four wheels of the same bogie has different frequencies. In this way, the different key frequencies to be excited play an important role in the initiation and development of curved rail corrugation. Therefore, the corrugations caused by the four wheels of the same bogie present different wavelengths. The paper shows and discusses the depths of the initial corrugations caused by the four wheels of the same bogie, at the entering transition curve, the circle curve and the exit transition curve of the curved track, respectively.
Statistical analysis of landing contact conditions for three lifting body research vehicles
NASA Technical Reports Server (NTRS)
Larson, R. R.
1972-01-01
The landing contact conditions for the HL-10, M2-F2/F3, and the X-24A lifting body vehicles are analyzed statistically for 81 landings. The landing contact parameters analyzed are true airspeed, peak normal acceleration at the center of gravity, roll angle, and roll velocity. Ground measurement parameters analyzed are lateral and longitudinal distance from intended touchdown, lateral distance from touchdown to full stop, and rollout distance. The results are presented in the form of histograms for frequency distributions and cumulative frequency distribution probability curves with a Pearson Type 3 curve fit for extrapolation purposes.
NASA Technical Reports Server (NTRS)
Girala, A. S. (Inventor)
1981-01-01
A self clamping cutting tool which includes a handle attached to a C-shaped housing is described. Rotatably mounted within the housing is a C-shaped tool body carrying a set of clamping rolls, two support rolls, and an edged cutting roll (64). The support rolls are disposed to one side of the axis of a pipe and the cutting roll is disposed to the other side of a pipe axis so that these rolls contact a pipe at three circumferential points. Cutter advancing apparatus advance the cutting roll toward the support rollers. The support rolls and cutting roll are rotatable independently of the C-shaped housing. A one way ratchet mechanism disposed between the C-shaped housing and the C-shaped tool body permits operation by movement in one rotational direction about the pipe axis.
Effect of friction on rolling tire-pavement interaction.
DOT National Transportation Integrated Search
2010-11-01
Accurate modeling of tirepavement contact behavior (i.e., distribution of contact tractions at the : interface) plays an important role in the analysis of pavement performance and vehicle driving safety. : The tirepavement contact is essentiall...
Lubricant Rheology in Concentrated Contacts
NASA Technical Reports Server (NTRS)
Jacobson, B. O.
1984-01-01
Lubricant behavior in highly stressed situtations shows that a Newtonian model for lubricant rheology is insufficient for explanation of traction behavior. The oil film build up is predicted by using a Newtonian lubricant model except at high slide to roll ratios and at very high loads, where the nonNewtonian behavior starts to be important already outside the Hertzian contact area. Static and dynamic experiments are reported. In static experiments the pressure is applied to the lubricant more than a million times longer than in an EHD contact. Depending on the pressure-temperature history of the experiment the lubricant will become a crystallized or amorphous solid at high pressures. In dynamic experiments, the oil is in an amorphous solid state. Depending on the viscosity, time scale, elasticity of the oil and the bearing surfaces, the oil film pressure, shear strain rate and the type of lubricant, different properties of the oil are important for prediction of shear stresses in the oil. The different proposed models for the lubricant, which describe it to a Newtonian liquid, an elastic liquid, a plastic liquid and an elastic-plastic solid.
NASA Technical Reports Server (NTRS)
Oswald, Fred B.; Zaretsky, Erwin V.; Poplawski, Joseph V.
2012-01-01
The effect of internal clearance on radially loaded deepgroove ball and cylindrical roller bearing load distribution and fatigue life was determined for four clearance groups defined in the bearing standards. The analysis was extended to negative clearance (interference) conditions to produce a curve of life factor versus internal clearance. Rolling-element loads can be optimized and bearing life maximized for a small negative operating clearance. Life declines gradually with positive clearance and rapidly with increasing negative clearance. Relationships were found between bearing life and internal clearance as a function of ball or roller diameter, adjusted for load. Results are presented as life factors for radially loaded bearings independent of bearing size or applied load. In addition, a modified Stribeck Equation is presented that relates the maximum rolling-element load to internal bearing clearance.
Analysis of vibrational load influence upon passengers in trains with a compulsory body tilt
NASA Astrophysics Data System (ADS)
Antipin, D. Ya; Kobishchanov, V. V.; Lapshin, V. F.; Mitrakov, A. S.; Shorokhov, S. G.
2017-02-01
The procedure for forecasting the vibrational load influence upon passengers of trains of rolling stocks equipped with a system of a compulsory body tilt on railroad curves is offered. The procedure is based on the use of computer simulation methods and application of solid-state models of anthropometrical mannequins. As a result of the carried out investigations, there are substantiated criteria of the comfort level estimate for passengers in the rolling-stock under consideration. The procedure is approved by the example of the promising domestic rolling stock with a compulsory body tilt on railroad curves.
Meshing of a Spiral Bevel Gearset with 3D Finite Element Analysis
NASA Technical Reports Server (NTRS)
Bibel, George D.; Handschuh, Robert
1996-01-01
Recent advances in spiral bevel gear geometry and finite element technology make it practical to conduct a structural analysis and analytically roll the gearset through mesh. With the advent of user specific programming linked to 3D solid modelers and mesh generators, model generation has become greatly automated. Contact algorithms available in general purpose finite element codes eliminate the need for the use and alignment of gap elements. Once the gearset is placed in mesh, user subroutines attached to the FE code easily roll the gearset through mesh. The method is described in detail. Preliminary results for a gearset segment showing the progression of the contact lineload is given as the gears roll through mesh.
Critical flaw size in silicon nitride ball bearings
NASA Astrophysics Data System (ADS)
Levesque, George Arthur
Aircraft engine and bearing manufacturers have been aggressively pursuing advanced materials technology systems solutions to meet main shaft-bearing needs of advanced military aircraft engines. Ceramic silicon nitride hybrid bearings are being developed for such high performance applications. Though silicon nitride exhibits many favorable properties such as high compressive strength, high hardness, a third of the density of steel, low coefficient of thermal expansion, and high corrosion and temperature resistance, they also have low fracture toughness and are susceptible to failure from fatigue spalls emanating from pre-existing surface flaws that can grow under rolling contact fatigue (RCF). Rolling elements and raceways are among the most demanding components in aircraft engines due to a combination of high cyclic contact stresses, long expected component lifetimes, corrosive environment, and the high consequence of fatigue failure. The cost of these rolling elements increases exponentially with the decrease in allowable flaw size for service applications. Hence the range of 3D non-planar surface flaw geometries subject to RCF is simulated to determine the critical flaw size (CFS) or the largest allowable flaw that does not grow under service conditions. This dissertation is a numerical and experimental investigation of surface flaws in ceramic balls subjected to RCF and has resulted in the following analyses: Crack Shape Determination: the nucleation of surface flaws from ball impact that occurs during the manufacturing process is simulated. By examining the subsurface Hertzian stresses between contacting spheres, their applicability to predicting and characterizing crack size and shape is established. It is demonstrated that a wide range of cone and partial cone cracks, observed in practice, can be generated using the proposed approaches. RCF Simulation: the procedure and concerns in modeling nonplanar 3D cracks subject to RCF using FEA for stress intensity factor (SIF) trends observed from parametrically varying different physical effects are plotted and discussed. Included are developments in contact algorithms for 3D nonplanar cracks, meshing of nonplanar cracks for SIFs, parametric studies via MATLAB and other subroutines in python and FORTRAN. Establishing Fracture Parameters: the fracture toughness, K c, is determined by using numerical techniques on experimental tests namely the Brazilian disc test and a novel compression test on an indented ball. The fatigue threshold for mixed-mode loading, Keff, is determined by using a combination of numerical modeling and results from the V-ring single ball RCF test. CFS Determination: the range of 3D non-planar surface flaw geometries subject to RCF are simulated to calculate mixed mode SIFs to determine the critical flaw size, or the largest allowable flaw that does not grow under service conditions. The CFS results are presented as a function of Hertzian contact stress, traction magnitude, and crack size. Empirical Equations: accurate empirical equations (response functions) for the KI, KII, and K III SIFs for semi-elliptical surface cracks subjected to RCF as a function of the contact patch diameter, angle of crack to the surface, max pressure, position along the crack front, and aspect ratio of the crack are developed via parametric 3D FEA. Statistical Probability of Failure: since the variability in mechanical properties for brittle materials is high a probabilistic investigation of variations in flaw size, flaw orientation, fracture toughness, and Hertzian load on failure probability is conducted to statistically determine the probability of ball failure for an existing flaw subjected to the service conditions. (Full text of this dissertation may be available via the University of Florida Libraries web site. Please check http://www.uflib.ufl.edu/etd.html)
76 FR 14797 - Airworthiness Directives; Rolls-Royce plc (RR) RB211-Trent 900 Series Turbofan Engines
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-18
.... Relevant Service Information Rolls-Royce plc has issued Trent 900 Series Propulsion Systems Alert Service... incorporating software 10.6 can be found in Rolls-Royce plc Trent 900 Series Propulsion Systems Alert Service... Propulsion Systems Alert SB No. RB.211-73-AG639, dated December 3, 2010, for related information. (i) Contact...
Tyre-road contact using a particle-envelope surface model
NASA Astrophysics Data System (ADS)
Pinnington, Roger J.
2013-12-01
Determination of the contact forces is the central problem in all aspects of road-tyre interaction: i.e. noise, energy loss and friction. A procedure to find the contact forces under a rolling tyre is presented in four stages. First, the contact stiffness of a uniform peak array from indentations in the rubber tread, and also tyre carcass deflection, is described by some new simplified expressions. Second, a routine divides a single surface profile into equal search intervals, in which the highest peaks are identified. These are used to obtain the parameters for the interval, i.e. the mean envelope and the mean interval. The process is repeated at geometrically decreasing search intervals until the level of the data resolution, thereby describing the profile by a set of envelopes. The ‘strip profile’ ultimately used to describe the surface, is obtained by selecting the highest points across the profiles of one stone's width. The third stage is to combine the strip profile envelopes with the contact stiffness expressions, yielding the nonlinear stiffness-displacement, and force-displacement relationships for the chosen road-tyre combination. Finally the contact pressure distribution from a steady-state rolling tyre model is applied to the strip profile, via the force-displacement relationship, giving the local tyre displacements on the road texture. This displacement pattern is shown to be proportional to the time and space varying contact pressure, which then is incorporated into a wave equation for rolling contact.
An Impulse-Momentum Method for Calculating Landing-Gear Contact Conditions in Eccentric Landings
NASA Technical Reports Server (NTRS)
Yntema, Robert T; Milwitzky, Benjamin
1952-01-01
An impulse-momentum method for determining impact conditions for landing gears in eccentric landings is presented. The analysis is primarily concerned with the determination of contact velocities for impacts subsequent to initial touchdown in eccentric landings and with the determination of the effective mass acting on each landing gear. These parameters determine the energy-absorption requirements for the landing gear and, in conjunction with the particular characteristics of the landing gear, govern the magnitude of the ground loads. Changes in airplane angular and linear velocities and the magnitude of landing-gear vertical, drag, and side impulses resulting from a landing impact are determined by means of impulse-momentum relationships without the necessity for considering detailed force-time variations. The effective mass acting on each gear is also determined from the calculated landing-gear impulses. General equations applicable to any type of eccentric landing are written and solutions are obtained for the particular cases of an impact on one gear, a simultaneous impact on any two gears, and a symmetrical impact. In addition a solution is presented for a simplified two-degree-of-freedom system which allows rapid qualitative evaluation of the effects of certain principal parameters. The general analysis permits evaluation of the importance of such initial conditions at ground contact as vertical, horizontal, and side drift velocities, wing lift, roll and pitch angles, and rolling and pitching velocities, as well as the effects of such factors as landing gear location, airplane inertia, landing-gear length, energy-absorption efficiency, and wheel angular inertia on the severity of landing impacts. -A brief supplementary study which permits a limited evaluation of variable aerodynamic effects neglected in the analysis is presented in the appendix. Application of the analysis indicates that landing-gear impacts in eccentric landings can be appreciably more severe than impacts in symmetrical landings with the same sinking speed. The results also indicate the effects of landing-gear location, airplane inertia, initial wing lift, side drift velocity, attitude, and initial rolling velocity on the severity of both initial and subsequent landing-gear impacts. A comparison of the severity of impacts on auxiliary gears for tricycle and quadricycle configurations is also presented.
Rolling Contact Fatigue Testing of Thermomechanically Processed M-50 Steel.
1984-12-01
as I floundered through the early stages of th- s research with question after question. And I would be remiss not to cite Mr. Tom Kellogg , who--as all...INSTRUCTIONS _ _ _ __-_BEFORE COMPLETING FORM 1. REPORT NUMBER A o GOVA ACCESSION NO, 2jECIPIENT’S CATALOG NUMBER 4. TITLE (and Subtitle) S TYPE OF...REPORT & PERIOD COVERED Rolling Contact Fatigue Testing of Master’s Thesis Thermomechanically Processed M-50 Steel December_1984 S . PERFORMING ORG
Sylos-Labini, F.; Magnani, S.; Cappellini, G.; La Scaleia, V.; Fabiano, A.; Picone, S.; Paolillo, P.; Di Paolo, A.; Lacquaniti, F.; Ivanenko, Y.
2017-01-01
Stepping on ground can be evoked in human neonates, though it is rather irregular and stereotyped heel-to-toe roll-over pattern is lacking. Such investigations can provide insights into the role of contact- or load-related proprioceptive feedback during early development of locomotion. However, the detailed characteristics of foot placements and their association with motor patterns are still incompletely documented. We elicited stepping in 33 neonates supported on a table. Unilateral limb kinematics, bilateral plantar pressure distribution and EMG activity from up to 11 ipsilateral leg muscles were recorded. Foot placement characteristics in neonates showed a wide variation. In ~25% of steps, the swinging foot stepped onto the contralateral foot due to generally small step width. In the remaining steps with separate foot placements, the stance phase could start with forefoot (28%), midfoot (47%), or heel (25%) touchdowns. Despite forefoot or heel initial contacts, the kinematic and loading patterns markedly differed relatively to toe-walking or adult-like two-peaked vertical force profile. Furthermore, while the general stepping parameters (cycle duration, step length, range of motion of proximal joints) were similar, the initial foot contact was consistently associated with specific center-of-pressure excursion, range of motion in the ankle joint, and the center-of-activity of extensor muscles (being shifted by ~5% of cycle toward the end of stance in the “heel” relative to “forefoot” condition). In sum, we found a variety of footfall patterns in conjunction with associated changes in motor patterns. These findings suggest the potential contribution of load-related proprioceptive feedback and/or the expression of variations in the locomotor program already during early manifestations of stepping on ground in human babies. PMID:29066982
Rolling Moments Due to Rolling and Yaw for Four Wing Models in Rotation
NASA Technical Reports Server (NTRS)
Knight, Montgomery; Wenzinger, Carl J
1932-01-01
This report presents the results of a series of autorotation and torque tests on four different rotating wing systems at various rates of roll and at several angles of yaw. The investigation covered an angle of attack range up to 90 degrees and angles of yaw of 0 degree, 5 degrees, 10 degrees, and 20 degrees. The tests were made in a 5-foot, closed-throat atmospheric wind tunnel. The object of the tests was primarily to determine the effects of various angles of yaw on the rolling moments of the rotating wings up to large angles of attack. It was found that at angles of attack above that of maximum lift the rolling moments on the wings due to yaw (or side slip) from 5 degrees to 20 degrees were roughly of the same magnitude as those due to rolling. There was a wide variation in magnitude of the rolling moment due to yaw angle. The rates and ranges of stable autorotation for the monoplane models were considerably increased by yaw, whereas for an unstaggered biplane they were little affected. The immediate cause of the rolling moment due to yaw is apparently the building up of large loads on the forward wing tip and the reduction of loads on the rearward wing tip.
Method of forming magnesium alloy sheets
Mualidharan, Govindarajan; Muth, Thomas R.; Harper, David C.
2015-12-22
A machine for asymmetric rolling of a work-piece includes pair of rollers disposed in an arrangement to apply opposing, asymmetric rolling forces to roll a work-piece therebetween, wherein a surface of the work-piece is rolled faster than an opposite surface of the work-piece; and an exit constraint die rigidly disposed adjacent an exit side of the pair of rollers so that, as the work-piece exits the pair of rollers, the work-piece contacts the exit constraint die to constrain curling of the work-piece.
Signal and power roll ring testing update
NASA Technical Reports Server (NTRS)
Smith, Dennis W.
1989-01-01
The development of the roll ring as a long-life, low-torque alternative to the slip ring is discussed. A roll ring consists of one or more circular flexures captured by their own spring force in the annular space between two concentric conductors or contact rings. The advantages of roll rings over other types of electrical transfer devices are: extremely low drag torque, high transfer efficiencies in high-power configurations, extremely low wear debris generation, long life, and low weight for high-power applications.
Effect of Roller Profile on Cylindrical Roller Bearing Life Prediction
NASA Technical Reports Server (NTRS)
Poplawski, Joseph V.; Zaretsky, Erwin V.; Peters, Steven M.
2000-01-01
Four roller profiles used in cylindrical roller bearing design and manufacture were analyzed using both a closed form solution and finite element analysis (FEA) for stress and life. The roller profiles analyzed were flat, tapered end, aerospace, and fully crowned loaded against a flat raceway. Four rolling-element bearing life models were chosen for this analysis and compared. These were those of Weibull, Lundberg and Palmgren, Ioannides and Harris, and Zaretsky. The flat roller profile without edge loading has the longest predicted life. However, edge loading can reduce life by as much as 98 percent. The end tapered profile produced the highest lives but not significantly different than the aerospace profile. The fully crowned profile produces the lowest lives. The resultant predicted life at each stress condition not only depends on the life equation used but also on the Weibull slope assumed. For Weibull slopes of 1.5 and 2, both Lundberg-Palmgren and Iaonnides-Harris equations predict lower lives than the ANSI/ABMAJISO standards. Based upon the Hertz stresses for line contact, the accepted load-life exponent of 10/3 results in a maximum Hertz stress-life exponent equal to 6.6. This value is inconsistent with that experienced in the field.
14 CFR 25.491 - Taxi, takeoff and landing roll.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Taxi, takeoff and landing roll. 25.491..., takeoff and landing roll. Within the range of appropriate ground speeds and approved weights, the airplane structure and landing gear are assumed to be subjected to loads not less than those obtained when the...
14 CFR 25.491 - Taxi, takeoff and landing roll.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Taxi, takeoff and landing roll. 25.491..., takeoff and landing roll. Within the range of appropriate ground speeds and approved weights, the airplane structure and landing gear are assumed to be subjected to loads not less than those obtained when the...
Failure mechanism of coated biomaterials under high impact-sliding contact stresses
NASA Astrophysics Data System (ADS)
Chen, Ying
This study uses a newly developed testing method--- inclined cyclic impact-sliding test to investigate the failure behaviors of different types of biomaterials, (SS316L, Ti6Al4V and CoCr) coated by different coatings (TiN, DLC and PEO), under extremely high dynamic contact stress conditions. This test method can simulate the combined impact and sliding/rolling loading conditions, which is very practical in many aspects of commercial usages. During the tests, fatigue cracking, chipping, peeling and material transferring were observed in damaged area. This research is mainly focused on the failure behaviors of load-bearing materials which cyclic impacting and sliding are always involved. This purpose was accomplished in the three stages: First, impact-sliding test was carried out on TiN coated unhardened M2. It was found that soft substrate can cause early failure of coating due to the considerable plastic deformation in the substrate. In this case, stronger substrate is required to support coating better when tested under high contact stresses. Second, PEO coated Ti-6Al-4V was tested under pure sliding and impact-sliding wear conditions. PEO coating was found not strong enough to afford the high contact pressure under cyclic impact-sliding wear test due to its porous surface structure. However, the wear performance of PEO coating was enhanced due to the sub-stoichiometric oxide. To sum up, for load-bearing biomedical implants involved in high impacting movement, PEO coating may not be a promising surface protection. Third, the dense, smooth PVD/CVD bio-inert coatings were reconsidered. DLC and TiN coatings, combined by different substrates together with different interface materials were tested under the cyclic impact-sliding test using a set of proper loading. The results show that to choose a proper combination of coating, interface and substrate based on their mechanical properties is of great importance under the test condition. Hard substrates provide support to coating better and a ductile and adhesive interface layer can delay the cracked coating from peeled-off.
Ball bearing lubrication: The elastohydrodynamics of elliptical contacts
NASA Technical Reports Server (NTRS)
Hamrock, B. J.; Dowson, D.
1981-01-01
The history of ball bearings is examined, taking into account rollers and the wheel in the early civilizations, the development of early forms of rolling-element bearings in the classical civilizations, the Middle Ages, the Industrial Revolution, the emergence of the precision ball bearing, scientific studies of contact mechanics and rolling friction, and the past fifty years. An introduction to ball bearings is presented, and aspects of ball bearing mechanics are explored. Basic characteristics of lubrication are considered along with lubrication equations, the lubrication of rigid ellipsoidal solids, and elastohydrodynamic lubrication theory. Attention is given to the theoretical results for fully flooded elliptical hydrodynamic contacts, the theoretical results for starved elliptical contacts, experimental investigations, the elastohydrodynamics of elliptical contacts for materials of low elastic modulus, the film thickness for different regimes of fluid-film lubrication, and applications.
... bristles along the gumline at a 45-degree angle. Bristles should contact both the tooth surface and the gumline. Gently ... A rolling motion is when the brush makes contact with the gumline and ... a 45-degree angle with bristles contacting the tooth surface and gumline. ...
Demonstration of the Feasibility of High Temperature Bearing Lubrication From Carbonaceous Gases
NASA Technical Reports Server (NTRS)
Blanchet, Thierry A.; Sawyer, W. Gregory
1996-01-01
Research has been conducted on silicon nitride pin-on-disk sliding contacts at temperatures of up to 520 C, and four-ball rolling contacts with silicon nitride balls and 52100 steel or silicon nitride races at 590 C. These tests were conducted in a variety of gaseous environments in order to determine the effects of simulated engine exhaust gas on the carbonaceous gas decomposition lubrication scheme. In rolling tests with steel races and exhaust gas the wear track depth was roughly half that of tests run in nitrogen gas alone. The deposition of lubricous microcrystalline graphitic carbon on the rolling surfaces, generated from the carbon monoxide within the exhaust gas mixture, was verified by microfocused Raman spectroscopy. Ten-fold reductions in rolling wear could be achieved by the exhaust gas atmosphere in cases where water vapor was removed or not present. The exhaust gas mixture alone was not found to provide any lubricating effect on silicon nitride sliding contacts, where the rate of wear greatly exceeds the rate of carbon deposition. Directed admixture of acetylene (as low as 5% of the exhaust gas flow rates), has provided reductions in both wear volume and coefficient of friction by factors of 60X and 20X respectively for sliding contacts during the initial 80 m of sliding distance. Exhaust gas atmosphere with the acetylene admixture provided 65OX reductions in steady state wear rate compared to that measured for sliding contacts in dry N2. Such acetylene admixture also augments the ability of the exhaust gas atmosphere to lubricate high-temperature rolling contacts, with up to 25-fold reductions in wear track depth compared to those measured in the presence of N2 alone. In addition to providing some lubricating benefit itself, an important potential role of the exhaust gas from rich mixtures would be to shield bearings from 02. Such shielding enables surface deposition of lubricous pyrolytic carbon from the acetylene admixture, instead of combustion, rendering feasible the continuously replenished solid lubrication of high-temperature bearing surfaces.
NASA Technical Reports Server (NTRS)
Oden, J. T.; Becker, E. B.; Lin, T. L.; Hsieh, K. T.
1984-01-01
The formulation and numerical analysis of several problems related to the behavior of pneumatic tires are considered. These problems include the general rolling contact problem of a rubber-like viscoelastic cylinder undergoing finite deformations and the finite deformation of cord-reinforced rubber composites. New finite element models are developed for these problems. Numerical results obtained for several representative cases are presented.
Incorporating general race and housing flexibility and deadband in rolling element bearing analysis
NASA Technical Reports Server (NTRS)
Davis, R. R.; Vallance, C. S.
1989-01-01
Methods for including the effects of general race and housing compliance and outer race-to-housing deadband (clearance) in rolling element bearing mechanics analysis is presented. It is shown that these effects can cause significant changes in bearing stiffness characteristics, which are of major importance in rotordynamic response of turbomachinery and other rotating systems. Preloading analysis is demonstrated with the finite element/contact mechanics hybrid method applied to a 45 mm angular contact ball bearing.
NASA Technical Reports Server (NTRS)
Anderson, W. J.
1980-01-01
The considered investigations deal with some of the more important present day and future bearing requirements, and design methodologies available for coping with them. Solutions to many forthcoming bearing problems lie in the utilization of the most advanced materials, design methods, and lubrication techniques. Attention is given to materials for rolling element bearings, numerical analysis techniques and design methodology for rolling element bearing load support systems, lubrication of rolling element bearings, journal bearing design for high speed turbomachinery, design and energy losses in the case of turbulent flow bearings, and fluid film bearing response to dynamic loading.
Characterization of wear debris generated in accelerated rolling-element fatigue tests
NASA Technical Reports Server (NTRS)
Jones, W. R., Jr.; Parker, R. J.
1978-01-01
A ferrographic analysis was used to determine the types and quantities of wear debris generated during accelerated rolling contact fatigue tests. The five-ball rolling contact fatigue tester was used. Ball specimens were made of a corrosion resistant, high-temperature bearing steel. The lubricant was a superrefined naphthenic mineral oil. Conditions included a maximum Hertz stress of 5.52 10 to the 9th power Pa and a shaft speed of 10,000 rpm. Four types of wear debris were observed: (1) normal rubbing wear particles, (2) fatigue microspall particles, (3) spheres, and (4) friction polymer deposits. The characterization of wear debris as a function of time was of limited use in predicting fatigue failures in these accelerated tests.
Analysis of Space Station Centrifuge Rotor Bearing Systems: A Case Study
NASA Technical Reports Server (NTRS)
Poplawski, Joseph V.; Loewenthal, Stuart H.; Oswald, Fred B.; Zaretsky, Erwin V.; Morales, Wilfredo; Street, Kenneth W., Jr.
2014-01-01
A team of NASA bearing and lubrication experts was assembled to assess the risk for the rolling-element bearings used in the International Space Station (ISS) centrifuge rotor (CR) to seize or otherwise fail to survive for the required 10-year life. The CR was designed by the Japan Aerospace Exploration Agency and their subcontractor, NEC Toshiba Space Systems, Ltd. (NTSpace). The NASA team performed a design audit for the most critical rolling-element bearing systems and reviewed the lubricant selected. There is uncertainty regarding the ability of the Braycote 601 grease (Castrol Limited) to reliably provide the 10-year continuous life required without relubrication of the system. The fatigue life of the Rotor Shaft Assembly (RSA) spring loaded face-to-face mount at a 99-percent probability of survival (L1 life) for the ball bearing set was estimated at 700 million hours and the single ball bearing (Row 3) at 58 million hours. These lives satisfy the mission requirements for fatigue. Rolling-element seizure tests on the RSA and fluid slip joint bearings were found unlikely to stop the centrifuge, which can cause damage to the ISS structure. The spin motor encoder duplex angular-contact ball bearings have a hard preload and a large number of small balls have the highest risk of failure. These bearings were not tested for seizure even though they are less tolerant to debris or internal clearance reductions.
Geared Electromechanical Rotary Joint
NASA Technical Reports Server (NTRS)
Vranish, John M.
1994-01-01
Geared rotary joint provides low-noise ac or dc electrical contact between electrical subsystems rotating relative to each other. Designed to overcome some disadvantages of older electromechanical interfaces, especially intermittency of sliding-contact and rolling-contact electromechanical joints. Hollow, springy planetary gears provide continuous, redundant, low-noise electrical contact between inner and outer gears.
Chen, Szu-Ying; Kaufman, Yair; Schrader, Alex M; Seo, Dongjin; Lee, Dong Woog; Page, Steven H; Koenig, Peter H; Isaacs, Sandra; Gizaw, Yonas; Israelachvili, Jacob N
2017-09-26
Measuring truly equilibrium adhesion energies or contact angles to obtain the thermodynamic values is experimentally difficult because it requires loading/unloading or advancing/receding boundaries to be measured at rates that can be slower than 1 nm/s. We have measured advancing-receding contact angles and loading-unloading adhesion energies for various systems and geometries involving molecularly smooth and chemically homogeneous surfaces moving at different but steady velocities in both directions, ±V, focusing on the thermodynamic limit of ±V → 0. We have used the Bell Theory (1978) to derive expressions for the dynamic (velocity-dependent) adhesion energies and contact angles suitable for both (i) dynamic adhesion measurements using the classic Johnson-Kendall-Roberts (JKR, 1971) theory of "contact mechanics" and (ii) dynamic contact angle hysteresis measurements of both rolling droplets and syringe-controlled (sessile) droplets on various surfaces. We present our results for systems that exhibited both steady and varying velocities from V ≈ 10 mm/s to 1 nm/s, where in all cases but one, the advancing (V > 0) and receding (V < 0) adhesion energies and/or contact angles converged toward the same theoretical (thermodynamic) values as V → 0. Our equations for the dynamic contact angles are similar to the classic equations of Blake & Haynes (1969) and fitted the experimental adhesion data equally well over the range of velocities studied, although with somewhat different fitting parameters for the characteristic molecular length/dimension or area and characteristic bond formation/rupture lifetime or velocity. Our theoretical and experimental methods and results unify previous kinetic theories of adhesion and contact angle hysteresis and offer new experimental methods for testing kinetic models in the thermodynamic, quasi-static, limit. Our analyses are limited to kinetic effects only, and we conclude that hydrodynamic, i.e., viscous, and inertial effects do not play a role at the interfacial velocities of our experiments, i.e., V < (1-10) mm/s (for water and hexadecane, but for viscous polymers it may be different), consistent with previously reported studies.
NASA Astrophysics Data System (ADS)
Tajitsu, Yoshiro; Adachi, Yu; Nakatsuji, Takahiro; Tamura, Masataka; Sakamoto, Kousei; Tone, Takaaki; Imoto, Kenji; Kato, Atsuko; Yoshida, Testuo
2017-10-01
A new super-multilayer alternating laminated film in the shape of a rectangle with round corners has been developed. The super-multilayer film, which comprised piezoelectric poly(l-lactic acid) (PLLA) and poly(d-lactic acid) (PDLA) films, was wound with the number of turns on the order of from 100 to 1000 to form piezoelectric rolls. These piezoelectric rolls could generate an induced voltage of more than 95% of the initial voltage for over 10 s when a constant load was applied. The desired duration and magnitude of the piezoelectric response voltage were realized by adjusting the number of turns of the piezoelectric rolls. Similarly to many other conventional piezoelectrics, the piezoelectric rolls enable instantaneous load-dependent voltage generation and attenuation. The piezoelectric rolls are also lighter than conventional piezoelectric ceramics and can be used as a novel pressure sensor.
Staying sticky: contact self-cleaning of gecko-inspired adhesives
Mengüç, Yiğit; Röhrig, Michael; Abusomwan, Uyiosa; Hölscher, Hendrik; Sitti, Metin
2014-01-01
The exceptionally adhesive foot of the gecko remains clean in dirty environments by shedding contaminants with each step. Synthetic gecko-inspired adhesives have achieved similar attachment strengths to the gecko on smooth surfaces, but the process of contact self-cleaning has yet to be effectively demonstrated. Here, we present the first gecko-inspired adhesive that has matched both the attachment strength and the contact self-cleaning performance of the gecko's foot on a smooth surface. Contact self-cleaning experiments were performed with three different sizes of mushroom-shaped elastomer microfibres and five different sizes of spherical silica contaminants. Using a load–drag–unload dry contact cleaning process similar to the loads acting on the gecko foot during locomotion, our fully contaminated synthetic gecko adhesives could recover lost adhesion at a rate comparable to that of the gecko. We observed that the relative size of contaminants to the characteristic size of the microfibres in the synthetic adhesive strongly determined how and to what degree the adhesive recovered from contamination. Our approximate model and experimental results show that the dominant mechanism of contact self-cleaning is particle rolling during the drag process. Embedding of particles between adjacent fibres was observed for particles with diameter smaller than the fibre tips, and further studied as a temporary cleaning mechanism. By incorporating contact self-cleaning capabilities, real-world applications of synthetic gecko adhesives, such as reusable tapes, clothing closures and medical adhesives, would become feasible. PMID:24554579
NASA Astrophysics Data System (ADS)
Tsotras, Achillefs; Mavros, George
2010-08-01
The analysis of the in-plane deformation of the tyre in relation to the frictional contact between the road and the tread is a crucial first step in the understanding of its contribution to the longitudinal dynamics of a vehicle. In this work, the physical mechanism of the generation of the two-dimensional contact pressure distribution for a non-rolling tyre is studied. Towards this aim, a physical tyre model is constructed, consisting of an analytical ring under pretension, a non-linear sidewall foundation, and a discretised foundation of viscoelastic elements representing the tread. Tread behaviour is examined first, with focus on the development of shear micro-slip. The tread simulation is enhanced with the combination of radial and tangential tread elements and the benefits of such an approach are identified. Subsequently, the contact of the complete model is examined by implementing an algorithm for transient simulations in the time domain. The effects of the imposed vertical load and sidewall non-linearity on the contact stress and strain fields are identified. The modelling approach is validated by comparison with published experimental results. The physical mechanism that couples the torsional and horizontal/vertical deformations of the carcass with the frictional forces at the tread is identified and discussed in detail. The proposed modelling approach is found appropriate for the description of the development of the two-dimensional contact pressure field as a function of the frictional potential of the contact.
... dog or cat Rolling and playing in contaminated soil Licking its body after contact with a contaminated ... coming into contact with infected feces (poop) or soil. Clean household surfaces regularly. Clean and disinfect areas ...
Fatigue resistant carbon coatings for rolling/sliding contacts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Harpal; Ramirez, Giovanni; Eryilmaz, Osman
2016-06-01
The growing demands for renewable energy production have recently resulted in a significant increase in wind plant installation. Field data from these plants show that wind turbines suffer from costly repair, maintenance and high failure rates. Often times the reliability issues are linked with tribological components used in wind turbine drivetrains. The primary failure modes in bearings and gears are associated with micropitting, wear, brinelling, scuffing, smearing and macropitting all of which occur at or near the surface. Accordingly, a variety of surface engineering approaches are currently being considered to alter the near surface properties of such bearings and gearsmore » to prevent these tribological failures. In the present work, we have evaluated the tribological performance of compliant highly hydrogenated diamond like carbon coating developed at Argonne National Laboratory, under mixed rolling/sliding contact conditions for wind turbine drivetrain components. The coating was deposited on AISI 52100 steel specimens using a magnetron sputter deposition system. The experiments were performed on a PCS Micro-Pitting-Rig (MPR) with four material pairs at 1.79 GPa contact stress, 40% slide to roll ratio and in polyalphaolefin (PAO4) basestock oil (to ensure extreme boundary conditions). The post-test analysis was performed using optical microscopy, surface profilometry, and Raman spectroscopy. The results obtained show a potential for these coatings in sliding/rolling contact applications as no failures were observed with coated specimens even after 100 million cycles compared to uncoated pair in which they failed after 32 million cycles, under the given test conditions.« less
Rocking and rolling: A can that appears to rock might actually roll
NASA Astrophysics Data System (ADS)
Srinivasan, Manoj; Ruina, Andy
2008-12-01
A beer bottle or soda can on a table, when slightly tipped and released, falls to an upright position and then rocks up to a somewhat opposite tilt. Superficially this rocking motion involves a collision when the flat circular base of the container slaps the table before rocking up to the opposite tilt. A keen eye notices that the after-slap rising tilt is not generally just diametrically opposite the initial tilt but is veered to one side or the other. Cushman and Duistermaat [Regular Chaotic Dyn. 11, 31 (2006)] recently noticed such veering when a flat disk with rolling boundary conditions is dropped nearly flat. Here, we generalize these rolling disk results to arbitrary axi-symmetric bodies and to frictionless sliding. More specifically, we study motions that almost but do not quite involve a face-down collision of the round container’s bottom with the tabletop. These motions involve a sudden rapid motion of the contact point around the circular base. Surprisingly, similar to the rolling disk, the net angle of motion of this contact point is nearly independent of initial conditions. This angle of turn depends simply on the geometry and mass distribution but not on the moment of inertia about the symmetry axis. We derive simple asymptotic formulas for this “angle of turn” of the contact point and check the result with numerics and with simple experiments. For tall containers (height much bigger than radius) the angle of turn is just over π and the sudden rolling motion superficially appears as a nearly symmetric collision leading to leaning on an almost diametrically opposite point on the bottom rim.
Park, Se-Chul; Biswas, Shantonu; Fang, Jun; Mozafari, Mahsa; Stauden, Thomas; Jacobs, Heiko O
2015-06-24
A millimeter thin rubber-like solid-state lighting module is reported. The fabrication of the lighting module incorporates assembly and electrical connection of light-emitting diodes (LEDs). The assembly is achieved using a roll-to-roll fluidic self-assembly. The LEDs are sandwiched in-between a stretchable top and bottom electrode to relieve the mechanical stress. The top contact is realized using a lamination technique that eliminates wire-bonding. © 2015 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Effect of contact time and force on monocyte adhesion to vascular endothelium.
Rinker, K D; Prabhakar, V; Truskey, G A
2001-01-01
In this study we examined whether monocytic cell attachment to vascular endothelium was affected by elevating shear stress at a constant shear rate. Contact time, which is inversely related to the shear rate, was fixed and viscosity elevated with dextran to increase the shear stress (and hence the net force on the cell) independently of shear rate. At a fixed contact time, tethering frequencies increased, rolling velocities decreased, and median arrest durations increased with increasing shear stress. Rolling and short arrests (< 0.2 s) were well fit by a single exponential consistent with adhesion via the formation of a single additional bond. The cell dissociation constant, k(off), increased when the shear stress was elevated at constant shear rate. Firmly adherent cells arresting for at least 0.2 s were well fit by a stochastic model involving dissociation from multiple bonds. Therefore, at a fixed contact time and increasing shear stress, bonds formed more frequently for rolling cells resulting in more short arrests, and more bonds formed for firmly arresting cells resulting in longer arrest durations. Possible mechanisms for this increased adhesion include greater monocyte deformation and/or more frequent penetration of microvilli through steric and charge barriers. PMID:11259286
Twinning behaviors of a rolled AZ31 magnesium alloy under multidirectional loading
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hou, Dewen
The microstructure and texture evolution of an AZ31 magnesium rolled sheet during quasi-static compression at strain rates of 10{sup −3} s{sup −1} has been investigated by in situ electron backscattered diffraction. The influence of the initial and pre-deformed texture on the predominant deformation mechanisms during compression has been examined. It has been found that extensive grain reorientation due to (10 − 12) tensile twinning appeared when compressed along transverse direction. Tensile twin variants were observed under this loading condition, and different variants will cause an effect to the following deformation. Several twinning modes occurred with continuative loading along rolling direction.more » - Highlights: •Twinning behaviors were investigated through in situ multidirectional compressive tests. •Deformation behavior was affected by the twin variants. •Four types of twinning behaviors were observed during deformation process.« less
Shock load analysis of rotor for rolling element bearings and gas foil bearings: A comparative study
NASA Astrophysics Data System (ADS)
Bhore, Skylab Paulas
2018-04-01
In this paper, a comparative study on the shock load analysis of rotor supported by rolling element bearings and gas foil journal bearings is presented. The rotor bearing system is modeled using finite element method. Timoshenko beam element with 4 degree of freedom at each node is used. The shock load is represented by half sine pulse and applied to the base of the rotor bearing system. The stiffness and damping coefficient of the bearings are incorporated in the model. The generalized equation of motion of rotor bearing system is solved by Newmark beta method and responses of rotor at bearing position are predicted. It is observed that the responses are sensitive to the direction of applied excitation and its magnitude and pulse duration. The amplitude of responses of rotor supported on gas foil bearings are significantly less than that of rolling element bearings.
Modeling of rolling element bearing mechanics
NASA Technical Reports Server (NTRS)
Greenhill, L. M.
1991-01-01
Roller element bearings provide the primary mechanical interface between rotating and nonrotating components in the high performance turbomachinery of the Space Shuttle Main Engine (SSME). Knowledge of bearing behavior under various loading and environmental conditions is essential to predicting and understanding the overall behavior of turbopumps, including rotordynamic stability, critical speeds and bearing life. The objective is to develop mathematical models and computer programs to describe the mechanical behavior of ball and cylinder roller bearings under the loading and environmental conditions encountered in the SSME and future high performance rocket engines. This includes characteristics such as nonlinear load/motion relationships, stiffness and damping, rolling element loads for life prediction, and roller and cage stability.
NASA Astrophysics Data System (ADS)
Pålsson, Björn A.; Nielsen, Jens C. O.
2015-06-01
A model for simulation of dynamic interaction between a railway vehicle and a turnout (switch and crossing, S&C) is validated versus field measurements. In particular, the implementation and accuracy of viscously damped track models with different complexities are assessed. The validation data come from full-scale field measurements of dynamic track stiffness and wheel-rail contact forces in a demonstrator turnout that was installed as part of the INNOTRACK project with funding from the European Union Sixth Framework Programme. Vertical track stiffness at nominal wheel loads, in the frequency range up to 20 Hz, was measured using a rolling stiffness measurement vehicle (RSMV). Vertical and lateral wheel-rail contact forces were measured by an instrumented wheel set mounted in a freight car featuring Y25 bogies. The measurements were performed for traffic in both the through and diverging routes, and in the facing and trailing moves. The full set of test runs was repeated with different types of rail pad to investigate the influence of rail pad stiffness on track stiffness and contact forces. It is concluded that impact loads on the crossing can be reduced by using more resilient rail pads. To allow for vehicle dynamics simulations at low computational cost, the track models are discretised space-variant mass-spring-damper models that are moving with each wheel set of the vehicle model. Acceptable agreement between simulated and measured vertical contact forces at the crossing can be obtained when the standard GENSYS track model is extended with one ballast/subgrade mass under each rail. This model can be tuned to capture the large phase delay in dynamic track stiffness at low frequencies, as measured by the RSMV, while remaining sufficiently resilient at higher frequencies.
NASA Astrophysics Data System (ADS)
Shakiba, Maryam; Ozer, Hasan; Ziyadi, Mojtaba; Al-Qadi, Imad L.
2016-11-01
The structure-induced rolling resistance of pavements, and its impact on vehicle fuel consumption, is investigated in this study. The structural response of pavement causes additional rolling resistance and fuel consumption of vehicles through deformation of pavement and various dissipation mechanisms associated with inelastic material properties and damping. Accurate and computationally efficient models are required to capture these mechanisms and obtain realistic estimates of changes in vehicle fuel consumption. Two mechanistic-based approaches are currently used to calculate vehicle fuel consumption as related to structural rolling resistance: dissipation-induced and deflection-induced methods. The deflection-induced approach is adopted in this study, and realistic representation of pavement-vehicle interactions (PVIs) is incorporated. In addition to considering viscoelastic behavior of asphalt concrete layers, the realistic representation of PVIs in this study includes non-uniform three-dimensional tire contact stresses and dynamic analysis in pavement simulations. The effects of analysis type, tire contact stresses, pavement viscoelastic properties, pavement damping coefficients, vehicle speed, and pavement temperature are then investigated.
Texture evolution and mechanical anisotropy of biomedical hot-rolled Co-Cr-Mo alloy.
Mori, Manami; Yamanaka, Kenta; Sato, Shigeo; Chiba, Akihiko
2015-11-01
Crystallographic textures and their effect on the mechanical anisotropy of a hot-rolled biomedical Co-Cr-Mo alloy were investigated. The hot-rolled Co-28Cr-6Mo-0.13N (mass%) alloy examined here exhibited a monotonic strength increment following hot-rolling reduction, eventually reaching a 0.2% proof stress of 1400 MPa while maintaining acceptable ductility (>10%). The dominant hot-rolling texture was a brass-type component, which is characterized by the alloy's peculiarly low stacking fault energy (SFE) even at hot rolling temperatures, although the minor peaks of the near copper component were also identified. However, because of the onset of dynamic recrystallization (DRX) during the hot rolling process, the texture intensity was relatively weak even after 90% hot rolling, although the grain refinement originating from the DRX was not significant (the "less active DRX" condition increased the strain accumulation during the process, resulting in high-strength samples). The weakened texture development resulted in negligible in-plane anisotropy for the hot-rolled specimen strength, when the specimens were tensile strained in the rolling direction (RD) and transverse direction (TD). The elongation-to-failure, however, exhibited a difference with respect to the tensile loading axis. It is suggested that the ductility anisotropy is closely related to a strain-induced γ (fcc) → ε (hcp) martensitic transformation during tensile loading, resulting in a difference in the proportion of quasi-cleavage fracture surfaces. The obtained results will be helpful in the development of high-strength Co-Cr-Mo alloy plates and sheets, and have implications regarding plastic deformation and texture evolution during the hot rolling of non-conventional metallic materials with low SFE at elevated temperatures, where planar dislocation slips of Shockley partial dislocations and thermally activated process interplay. Copyright © 2015 Elsevier Ltd. All rights reserved.
The Influence of Wheel/Rail Contact Conditions on the Microstructure and Hardness of Railway Wheels
Davis, Claire
2014-01-01
The susceptibility of railway wheels to wear and rolling contact fatigue damage is influenced by the properties of the wheel material. These are influenced by the steel composition, wheel manufacturing process, and thermal and mechanical loading during operation. The in-service properties therefore vary with depth below the surface and with position across the wheel tread. This paper discusses the stress history at the wheel/rail contact (derived from dynamic simulations) and observed variations in hardness and microstructure. It is shown that the hardness of an “in-service” wheel rim varies significantly, with three distinct effects. The underlying hardness trend with depth can be related to microstructural changes during manufacturing (proeutectoid ferrite fraction and pearlite lamellae spacing). The near-surface layer exhibits plastic flow and microstructural shear, especially in regions which experience high tangential forces when curving, with consequentially higher hardness values. Between 1 mm and 7 mm depth, the wheel/rail contacts cause stresses exceeding the material yield stress, leading to work hardening, without a macroscopic change in microstructure. These changes in material properties through the depth of the wheel rim would tend to increase the likelihood of crack initiation on wheels toward the end of their life. This correlates with observations from several train fleets. PMID:24526883
NASA Astrophysics Data System (ADS)
Zellner, Michael; McNeil, Wendy; Gray, George, III; Huerta, David; King, Nicholas; Neal, George; Payton, Jeremy; Rubin, Jim; Stevens, Gerald; Turley, William; Buttler, William
2008-03-01
This effort investigates surface-preparation methods to enhance dynamic surface-property measurements of shocked metal surfaces. To assess the ability of making reliable and consistent dynamic surface-property measurements, the amount of material ejected from the free-surface upon shock release to vacuum (ejecta) was monitored for shocked Al-1100 and Sn targets. Four surface preparation methods were considered: fly-cut machined finish, diamond-turned machine finish, polished finish, and ball-rolled. The samples were shock loaded by in-contact detonation of HE PBX-9501 on the front-side of the metal coupons. Ejecta production at the back-side or free-side of the metal coupons was monitored using piezoelectric pins, optical shadowgraphy, and x-ray attenuation radiography.
NASA Astrophysics Data System (ADS)
Zellner, M. B.; Vogan McNeil, W.; Gray, G. T.; Huerta, D. C.; King, N. S. P.; Neal, G. E.; Valentine, S. J.; Payton, J. R.; Rubin, J.; Stevens, G. D.; Turley, W. D.; Buttler, W. T.
2008-04-01
This effort investigates surface-preparation methods to enhance dynamic surface-property measurements of shocked metal surfaces. To assess the ability of making reliable and consistent dynamic surface-property measurements, the amount of material ejected from the free surface upon shock release to vacuum (ejecta) was monitored for shocked Al-1100 and Sn targets. Four surface-preparation methods were considered: Fly-cut machine finish, diamond-turned machine finish, polished finish, and ball rolled. The samples were shock loaded by in-contact detonation of HE PBX-9501 on the front side of the metal coupons. Ejecta production at the back side or free side of the metal coupons was monitored using piezoelectric pins, optical shadowgraphy, and x-ray attenuation radiography.
Manning, William A; Ghosh, Kanishka; Blain, Alasdair; Longstaff, Lee; Deehan, David John
2017-06-01
Accurate soft tissue balance must be achieved to improve functional outcome after total knee arthroplasty (TKA). Sensor-integrated tibial trials have been introduced that allow real-time measurement of tibiofemoral kinematics during TKA. This study examined the interplay between tibiofemoral force and laxity, under defined intraoperative conditions, so as to quantify the kinematic behaviour of the CR femoral single-radius knee. TKA was undertaken in eight loaded cadaveric specimens. Computer navigation in combination with sensor data defined laxity and tibiofemoral contact force, respectively, during manual laxity testing. Fixed-effect linear modelling allowed quantification of the effect for flexion angle, direction of movement and TKA implantation upon the knee. An inverse relationship between laxity and contact force was demonstrated. With flexion, laxity increased as contact force decreased under manual stress. Change in laxity was significant beyond 30° for coronal plane laxity and beyond 60° for rotatory laxity (p < 0.01). Rotational stress in mid-flexion demonstrated the greatest mismatch in inter-compartmental forces. Contact point position over the tibial sensor demonstrated paradoxical roll-forward with knee flexion. Traditional balancing techniques may not reliably equate to uniform laxity or contact forces across the tibiofemoral joint through a range of flexion and argue for the role of per-operative sensor use to aid final balancing of the knee.
Vortex wake alleviation studies with a variable twist wing
NASA Technical Reports Server (NTRS)
Holbrook, G. T.; Dunham, D. M.; Greene, G. C.
1985-01-01
Vortex wake alleviation studies were conducted in a wind tunnel and a water towing tank using a multisegmented wing model which provided controlled and measured variations in span load. Fourteen model configurations are tested at a Reynolds number of one million and a lift coefficient of 0.6 in the Langley 4- by 7-Meter Tunnel and the Hydronautics Ship Model Basin water tank at Hydronautics, Inc., Laurel, Md. Detailed measurements of span load and wake velocities at one semispan downstream correlate well with each other, with inviscid predictions of span load and wake roll up, and with peak trailing-wing rolling moments measured in the far wake. Average trailing-wing rolling moments are found to be an unreliable indicator of vortex wake intensity because vortex meander does not scale between test facilities and free-air conditions. A tapered-span-load configuration, which exhibits little or no drag penalty, is shown to offer significant downstream wake alleviation to a small trailing wing. The greater downstream wake alleviation achieved with the addition of spoilers to a flapped-wing configuration is shown to result directly from the high incremental drag and turbulence associated with the spoilers and not from the span load alteration they cause.
Rolling moments in a trailing vortex flow field
NASA Technical Reports Server (NTRS)
Mcmillan, O. J.; Schwind, R. G.; Nielsen, J. N.; Dillenius, M. F. E.
1977-01-01
Pressure distributions are presented which were measured on a wing in close proximity to a tip vortex of known structure generated by a larger, upstream semispan wing. Overall loads calculated by integration of these pressures are checked by independent measurements made with an identical model mounted on a force balance. Several conventional methods of wing analysis are used to predict the loads on the following wing. Strip theory is shown to give uniformly poor results for loading distribution, although predictions of overall lift and rolling moment are sometimes acceptable. Good results are obtained for overall coefficients and loading distribution by using linearized pressures in vortex-lattice theory in conjunction with a rectilinear vortex. The equivalent relation from reverse-flow theory that can be used to give economic predictions for overall loads is presented.
Stress-life relation of the rolling-contact fatigue spin rig
NASA Technical Reports Server (NTRS)
Butler, Robert H; Carter, Thomas L
1957-01-01
The rolling-contact fatigue spin rig was used to test groups of SAE 52100 9.16-inch-diameter balls lubricated with a mineral oil at 600,000-, 675,000-, and 750,000-psi maximum Hertz stress. Cylinders of AISI M-1 vacuum and commercial melts and MV-1 (AISI M-50) were used as race specimens. Stress-life exponents produced agree closely with values accepted in industry. The type of failure obtained in the spin rig was similar to the subsurface fatigue spells found in bearings.
Guo, Yuanhao; Chen, Yuwei; Wang, Enmin; Cakmak, Miko
2017-01-11
A roll-to-roll continuous process was developed to manufacture large-scale multifunctional poly(dimethylsiloxane) (PDMS) films embedded with thickness direction ("Z" direction) aligned graphite nanoparticles by application of electric field. The kinetics of particle "Z" alignment and chain formation was studied by tracking the real-time change of optical light transmission through film thickness direction. Benefiting from the anisotropic structure of aligned particle chains, the electrical and thermal properties of the nanocomposites were dramatically enhanced through the thickness direction as compared to those of the nanocomposites containing the same particle loading without electrical field alignment. With 5 vol % graphite loading, 250 times higher electrical conductivity, 43 times higher dielectric permittivity, and 1.5 times higher thermal conductivity was achieved in the film thickness direction after the particles were aligned under electrical field. Moreover, the aligned nanocomposites with merely 2 vol % graphite particles exhibit even higher electric conductivity and dielectric permittivity than those of the nonaligned nanocomposites at random percolation threshold (10 vol % particles), as the "electric-field-directed" percolation threshold concentration is substantially decreased using this process. As the graphite loading increases to 20 vol %, the aligned nanocomposites exhibit thermal conductivity as high as 6.05 W/m·K, which is 35 times the thermal conductivity of pure matrix. This roll-to-roll electric field continuous process provides a simple, low-cost, and commercially viable method to manufacture multifunctional nanocomposites for applications as embedded capacitor, electromagnetic (EM) shielding, and thermal interface materials.
Rolling Resistance of Light Truck Tires
DOT National Transportation Integrated Search
1981-01-01
The supplement contains carpet plots of 44 light truck tires giving rolling resistance versus load and reciprocal of inflation pressure. The plots represent measured data. To avoid the expense of taking measurements at all points on the plots, an equ...
14 CFR 29.519 - Hull type rotorcraft: Water-based and amphibian.
Code of Federal Regulations, 2010 CFR
2010-01-01
... at zero forward speed in likely pitch and roll attitudes which result in critical design loadings... forward velocities from zero up to 30 knots in likely pitch, roll, and yaw attitudes and with a vertical...
Determination of rolling resistance coefficient based on normal tyre stiffness
NASA Astrophysics Data System (ADS)
Rykov, S. P.; Tarasuyk, V. N.; Koval, V. S.; Ovchinnikova, N. I.; Fedotov, A. I.; Fedotov, K. V.
2018-03-01
The purpose of the article is to develop analytical dependence of wheel rolling resistance coefficient based on the mathematical description of normal tyre stiffness. The article uses the methods of non-holonomic mechanics and plane section methods. The article shows that the abscissa of gravity center of tyre stiffness expansion by the length of the contact area is the shift of normal road response. It can be used for determining rolling resistance coefficient. When determining rolling resistance coefficient using ellipsis and power function equations, one can reduce labor costs for testing and increase assessment accuracy.
Raul, P R; Dwivedula, R V; Pagilla, P R
2016-07-01
The problem of controlling the load speed of a mechanical transmission system consisting of a belt-pulley and gear-pair is considered. The system is modeled as two inertia (motor and load) connected by a compliant transmission. If the transmission is assumed to be rigid, then using either the motor or load speed feedback provides the same result. However, with transmission compliance, due to belts or long shafts, the stability characteristics and performance of the closed-loop system are quite different when either motor or load speed feedback is employed. We investigate motor and load speed feedback schemes by utilizing the singular perturbation method. We propose and discuss a control scheme that utilizes both motor and load speed feedback, and design an adaptive feedforward action to reject load torque disturbances. The control algorithms are implemented on an experimental platform that is typically used in roll-to-roll manufacturing and results are shown and discussed. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Finite Element Creep-Fatigue Analysis of a Welded Furnace Roll for Identifying Failure Root Cause
NASA Astrophysics Data System (ADS)
Yang, Y. P.; Mohr, W. C.
2015-11-01
Creep-fatigue induced failures are often observed in engineering components operating under high temperature and cyclic loading. Understanding the creep-fatigue damage process and identifying failure root cause are very important for preventing such failures and improving the lifetime of engineering components. Finite element analyses including a heat transfer analysis and a creep-fatigue analysis were conducted to model the cyclic thermal and mechanical process of a furnace roll in a continuous hot-dip coating line. Typically, the roll has a short life, <1 year, which has been a problem for a long time. The failure occurred in the weld joining an end bell to a roll shell and resulted in the complete 360° separation of the end bell from the roll shell. The heat transfer analysis was conducted to predict the temperature history of the roll by modeling heat convection from hot air inside the furnace. The creep-fatigue analysis was performed by inputting the predicted temperature history and applying mechanical loads. The analysis results showed that the failure was resulted from a creep-fatigue mechanism rather than a creep mechanism. The difference of material properties between the filler metal and the base metal is the root cause for the roll failure, which induces higher creep strain and stress in the interface between the weld and the HAZ.
Rolling-element fatigue life of silicon nitride balls: Preliminary test results
NASA Technical Reports Server (NTRS)
Parker, R. J.; Zaretsky, E. V.
1972-01-01
Hot pressed silicon nitride was evaluated as a rolling element bearing material. The five-ball fatigue tester was used to test 12.7 mm (0.500 in.) diameter balls at a maximum Hertz stress of 800,000 psi at a race temperature of 130 F. The fatigue spalls in the silicon nitride resembled those in typical bearing steels. The ten-percent fatigue life of the silicon nitride balls was approximately one-eighth to one-fifth that of typical bearing steels (52100 and M-50). The load capacity of the silicon nitride was approximately one-third that of typical bearing steels. The load capacity of the silicon nitride was significantly higher than previously tested ceramic materials for rolling element bearings.
Noble Logic for Preventing Scratch on Roll-to-Roll Printed Layers in Noncontacting Transportation
NASA Astrophysics Data System (ADS)
Lee, Changwoo; Kang, Hyunkyoo; Kim, Hojoon; Shin, Keehyun
2010-05-01
The use of roll-to-roll (R2R) printed electronics is a relatively new method of mass producing flexible electronic devices while keeping production costs down. The geometrical qualities of a printed pattern, such as surface roughness and uniformity, could deteriorate. Moreover, the geometric qualities of a printed layer affect the functional qualities of a printed electronic device directly. Therefore, the functional qualities (conductivity and mobility) of a multilayer electronic device could deteriorate in the presence of a scratch defect on the printed layer. In general, a scratch on a printed pattern on a flexible substrate is induced by contact between the rolls and printed pattern in R2R printing systems. To prevent such contact, one of the best solutions is to use an air flotation unit. However, a scratch defect could be induced even though an air flotation process is used to minimize contact, because the flotation height of a moving web is affected by web tension. In this paper, we discuss an analytical model of an air-floated moving substrate. For the noncontacting transfer of a moving web without a scratch defect, a mathematical tension model has been developed by considering an induced strain due to aerodynamic forces and verified by numerical and experimental studies. Additionally, the correlation between the flotation height of an air-floated moving web and speed compensation used to control the tension are investigated. The analysis shows that tension fluctuations can cause the substrate to touch the air-flotation subsystem, which is installed to prevent contact, resulting in defects such as scratches on the printed layer. On the basis of the proposed model, a logic is developed to minimize scratch defects on R2R printed layers in noncontacting transportation. Through a guideline based on this logic, the scratched area density on R2R printed layers can be reduced by approximately 70%.
Multigrid Methods for EHL Problems
NASA Technical Reports Server (NTRS)
Nurgat, Elyas; Berzins, Martin
1996-01-01
In many bearings and contacts, forces are transmitted through thin continuous fluid films which separate two contacting elements. Objects in contact are normally subjected to friction and wear which can be reduced effectively by using lubricants. If the lubricant film is sufficiently thin to prevent the opposing solids from coming into contact and carries the entire load, then we have hydrodynamic lubrication, where the lubricant film is determined by the motion and geometry of the solids. However, for loaded contacts of low geometrical conformity, such as gears, rolling contact bearings and cams, this is not the case due to high pressures and this is referred to as Elasto-Hydrodynamic Lubrication (EHL) In EHL, elastic deformation of the contacting elements and the increase in fluid viscosity with pressure are very significant and cannot be ignored. Since the deformation results in changing the geometry of the lubricating film, which in turn determines the pressure distribution, an EHL mathematical model must simultaneously satisfy the complex elasticity (integral) and the Reynolds lubrication (differential) equations. The nonlinear and coupled nature of the two equations makes numerical calculations computationally intensive. This is especially true for highly loaded problems found in practice. One novel feature of these problems is that the solution may exhibit sharp pressure spikes in the outlet region. To this date both finite element and finite difference methods have been used to solve EHL problems with perhaps greater emphasis on the use of the finite difference approach. In both cases, a major computational difficulty is ensuring convergence of the nonlinear equations solver to a steady state solution. Two successful methods for achieving this are direct iteration and multigrid methods. Direct iteration methods (e.g Gauss Seidel) have long been used in conjunction with finite difference discretizations on regular meshes. Perhaps one of the best examples of the application of such methods is the recent Effective Influence Method of Dowson and Wang. Multigrid methods have also been used with great success by Venner and Venner and Lubrecht with a good summary being given by Venner. As both these finite difference discretization based approaches appear to provide an efficient way of solving EHL problems, it is important to understand their relative merits. This paper is a first attempt at providing such an understanding in the context of EHL point contact problem, (contact of two spheres), in which the contact zone is a point and an ellipse or circle for unloaded and loaded dry contacts respectively. Since the film thickness and the contact width are generally small compared to the local radius of curvature of the two surfaces, the reduced geometry of the surfaces in the contact area can be accurately approximated to the contact between a paraboloid and a flat surface. The layout of the remainder of this paper is as follows. In section 2 we introduce the form of the equations to be solved. The Effective Influence Newton Method is described in Section 3 while Section 4 describes the Multigrid method to be used. Sections 5 and 6 describe the test problems to be used in the comparison between the two methods and compare the performance of the two methods. Section 7 concludes the paper with an argument of the two methods and suggests some future research directions.
Hand pressures during arboreal locomotion in captive bonobos (Pan paniscus).
Samuel, Diana S; Nauwelaerts, Sandra; Stevens, Jeroen M G; Kivell, Tracy L
2018-04-19
Evolution of the human hand has undergone a transition from use during locomotion to use primarily for manipulation. Previous comparative morphological and biomechanical studies have focused on potential changes in manipulative abilities during human hand evolution, but few have focused on functional signals for arboreal locomotion. Here, we provide this comparative context though the first analysis of hand loading in captive bonobos during arboreal locomotion. We quantify pressure experienced by the fingers, palm and thumb in bonobos during vertical locomotion, suspension and arboreal knuckle-walking. The results show that pressure experienced by the fingers is significantly higher during knuckle-walking compared with similar pressures experienced by the fingers and palm during suspensory and vertical locomotion. Peak pressure is most often experienced at or around the third digit in all locomotor modes. Pressure quantified for the thumb is either very low or absent, despite the thumb making contact with the substrate during all suspensory and vertical locomotor trials. Unlike chimpanzees, bonobos do not show a rolling pattern of digit contact with the substrate during arboreal knuckle-walking - instead, we found that digits 3 and 4 typically touch down first and digit 5 almost always made contact with the substrate. These results have implications for interpreting extant and fossilized hand morphology; we expect bonobo (and chimpanzee) bony morphology to primarily reflect the biomechanical loading of knuckle-walking, while functional signals for arboreal locomotion in fossil hominins are most likely to appear in the fingers, particularly digit 3, and least likely to appear in the morphology of the thumb. © 2018. Published by The Company of Biologists Ltd.
Mimicking the Interfacial Dynamics of Flowing White Blood Cells
NASA Astrophysics Data System (ADS)
Santore, Maria
2015-03-01
The rolling of particles on surfaces, facilitated by hydrodynamic forces combined with localized surface interactions of the appropriate strengths, spatial arrangements, and ranges, is a technologically useful means of transporting and manipulating particles. One's intuition for the rolling of a marble or a car tire cannot be extrapolated down to microparticle length scales because the microparticle interactions are dominated by electrostatic, van der Waals, and hydrogen bonding interactions rather than a friction that depends on an imposed normal force. Indeed, our microparticle rolling systems are inspired by the rolling of white blood cells on the inner walls of venules as part of the innate immune response: Selectin molecules engage with their counterparts on the opposing surfaces to slow cell motion relative to that for freely flowing cells. In the resulting rolling signature, ligand-receptor binding and crack closing on the front of the cell are balanced with molecular dis-bonding and crack opening at the rear. The contact region is relatively static, allowing other interactions (for instance signaling) to occur for a finite duration. Thus, achieving particle rolling in synthetic systems is important because it facilitates particle-surface interactions in a continuous nonfouling fashion where the contact surface is continually renewed. In developing a synthetic model for this system, we employ polymers to modify flowing particles and /or planar collectors, producing heterogeneous interfaces which can support rolling or produce other motion signatures such as skipping, arrest, or free flow. We identify, in the synthetic system, combinations of variables that produce rolling and demonstrate how the distinction between rolling and arrest is not a simple matter of the adhesion strength between the particles and the collector. Rolling is a cooperative process and the coordination of binding in one location with dis-bonding in another requires appropriate length scales in the design of the interface and in the processing parameters as well.
Head position affects the direction of occlusal force during tapping movement.
Nakamura, K; Minami, I; Wada, J; Ikawa, Y; Wakabayashi, N
2018-05-01
Despite numerous reports describing the relationship between head position and mandibular movement in human subjects, the direction and magnitude of force at the occlusal contacts have not been investigated in relation to head position. The objective was to investigate the effect of head position on the direction of occlusal force while subjects performed a tapping movement. Twenty-three healthy adult subjects were asked to sit on a chair with their back upright and to perform 15 tapping movements in five different head positions: natural head position (control); forward; backward; and right and left rolled. The direction and magnitude of force were measured using a small triaxial force sensor. The Wilcoxon signed-rank test and Bonferroni test were used to compare head positions in each angle of the anteroposterior axis direction and the lateral axis direction with respect to the superior axis. The force element in the anteroposterior axis shifted to the forward direction in the head position pitched backward, compared with control, pitched forward and rolled left positions (P = .02, <.01 and <.01, respectively). The force direction in the lateral axis with the head position rolled to the right or left shifted to the left and right directions, respectively, compared with those in the other positions (P < .05). Results of this study suggest that the head should be maintained in a position in which a stable tapping movement can be performed in a relaxed position without anteroposterior and lateral loading. © 2018 John Wiley & Sons Ltd.
Stair-climbing capabilities of USU's T3 ODV mobile robot
NASA Astrophysics Data System (ADS)
Robinson, D. Reed; Wood, Carl G.
2001-09-01
A six-wheeled autonomous omni-directional vehicle (ODV) called T3 has been developed at Utah State University's (USU) Center for Self-Organizing and Intelligent Systems (CSOIS). This paper focuses on T3's ability to climb stairs using its unique configuration of 6 independently driven and steered wheels and active suspension height control. The ability of T3, or any similar vehicle, to climb stairs is greatly dependent on the chassis orientation relative to the stairs. Stability criteria is developed for any vehicle dimensions and orientation, on any staircase. All possible yaw and pitch angles on various staircases are evaluated to find vehicle orientations that will allow T3 to climb with the largest margin of stability. Different controller types are investigated for controlling vertical wheel movement with the objective of keeping all wheels in contact with the stairs, providing smooth load transfer between loaded and unloaded wheels, and maintaining optimum chassis pitch and roll angles. A controller is presented that uses feedback from wheel loading, vertical wheel position, and chassis orientation sensors. The implementation of the controller is described, and T3's stair climbing performance is presented and evaluated.
1978-04-26
Geometry 11-13 13-12 Shipboard Heavw Weather Tiedown 11-14 11-13 Nose & ’Main Gear Load Deflection Curves 11-15 11-14 Main Wheel Tire Span vs Aircraft...sustained taxi roll under conditions of 40-knot headwind and for wheel roll over 1-1/2 inch cable immediately after initial forward motion? 9. Planform...rolling/roll-oG vertical takeoff versus VTO. Discuss various methods of approach (e. g., stern, offset, cross axial). A Define minimum wheel -to-deck
Assessing the accuracy of different simplified frictional rolling contact algorithms
NASA Astrophysics Data System (ADS)
Vollebregt, E. A. H.; Iwnicki, S. D.; Xie, G.; Shackleton, P.
2012-01-01
This paper presents an approach for assessing the accuracy of different frictional rolling contact theories. The main characteristic of the approach is that it takes a statistically oriented view. This yields a better insight into the behaviour of the methods in diverse circumstances (varying contact patch ellipticities, mixed longitudinal, lateral and spin creepages) than is obtained when only a small number of (basic) circumstances are used in the comparison. The range of contact parameters that occur for realistic vehicles and tracks are assessed using simulations with the Vampire vehicle system dynamics (VSD) package. This shows that larger values for the spin creepage occur rather frequently. Based on this, our approach is applied to typical cases for which railway VSD packages are used. The results show that particularly the USETAB approach but also FASTSIM give considerably better results than the linear theory, Vermeulen-Johnson, Shen-Hedrick-Elkins and Polach methods, when compared with the 'complete theory' of the CONTACT program.
DOT National Transportation Integrated Search
1976-03-01
Rolling loss tests were performed on 31 different passenger and 4 light truck tires under transient and equilibrium conditions. The tests were designed to determine the effects of load, speed, inflation pressure, tire temperature, slip angle, torque,...
NASA Technical Reports Server (NTRS)
Pepper, Stephen V.; Jones, William R., Jr.; Kingsbury, Edward; Jansen, Mark J.
2007-01-01
The spiral orbit tribometer (SOT) bridges the gap between full-scale life testing and typically unrealistic accelerated life testing of ball-bearing lubricants in conjunction with bearing ball and race materials. The SOT operates under realistic conditions and quickly produces results, thereby providing information that can guide the selection of lubricant, ball, and race materials early in a design process. The SOT is based upon a simplified, retainerless thrust bearing comprising one ball between flat races (see figure). The SOT measures lubricant consumption and degradation rates and friction coefficients in boundary lubricated rolling and pivoting contacts. The ball is pressed between the lower and upper races with a controlled force and the lower plate is rotated. The combination of load and rotation causes the ball to move in a nearly circular orbit that is, more precisely, an opening spiral. The spiral s pitch is directly related to the friction coefficient. At the end of the orbit, the ball contacts the guide plate, restoring the orbit to its original radius. The orbit is repeatable throughout the entire test. A force transducer, mounted in-line with the guide plate, measures the force between the ball and the guide plate, which directly relates to the friction coefficient. The SOT, shown in the figure, can operate in under ultra-high vacuum (10(exp -9) Torr) or in a variety of gases at atmospheric pressure. The load force can be adjusted between 45 and 450 N. By varying the load force and ball diameter, mean Hertzian stresses between 0.5 and 5.0 GPa can be obtained. The ball s orbital speed range is between 1 and 100 rpm.
Effect of Fiber Orientation on Ball Failures Under Rolling-contact Conditions
NASA Technical Reports Server (NTRS)
Butler, Robert H; Bear, H Robert; Carter, Thomas L
1957-01-01
The rolling-contact fatigue spin rig was used to test bails of a bearing steel at maximum Hertz stresses of 600,000 to 750,000 psi. The effect of fiber orientation was observed with the ball track restricted to passing directly over the poles, coincident with the equator, or randomly around the ball. The polar areas were found to be weaker in fatigue than the nonpolar areas. This resulted in a much greater portion of the failures occurring in the polar areas than would be expected from a homogeneous material. The early failures are discussed.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-09
... DEPARTMENT OF COMMERCE International Trade Administration [C-533-821] Certain Hot-Rolled Carbon Steel Flat Products from India: Extension of Time Limit for Final Results of Countervailing Duty Administrative Review AGENCY: Import Administration, International Trade Administration, Department of Commerce. FOR FURTHER INFORMATION CONTACT: Gayle...
High Cycle Fatigue (HCF) Science and Technology Program, 2001 Annual Report
2002-05-01
Engines , Pratt & Whitney, Rolls Royce Allison, Honeywell Engines and Systems , Southwest Research Institute, Purdue University, North...Pratt & Whitney, Rolls Royce Allison, Honeywell Engines and Systems , Southwest Research Institute, Purdue University, University of Illinois, North...Participating Organizations: Pratt & Whitney, Honeywell Engines and Systems , Arnold Engineering Development Center (AEDC) Points of Contact:
Quantifying oil filtration effects on bearing life
NASA Technical Reports Server (NTRS)
Needelman, William M.; Zaretsky, Erwin V.
1991-01-01
Rolling-element bearing life is influenced by the number, size, and material properties of particles entering the Hertzian contact of the rolling element and raceway. In general, rolling-element bearing life increases with increasing level of oil filtration. Based upon test results, two equations are presented which allow for the adjustment of bearing L(sub 10) or catalog life based upon oil filter rating. It is recommended that where no oil filtration is used catalog life be reduced by 50 percent.
Optimal Cluster Mill Pass Scheduling With an Accurate and Rapid New Strip Crown Model
NASA Astrophysics Data System (ADS)
Malik, Arif S.; Grandhi, Ramana V.; Zipf, Mark E.
2007-05-01
Besides the requirement to roll coiled sheet at high levels of productivity, the optimal pass scheduling of cluster-type reversing cold mills presents the added challenge of assigning mill parameters that facilitate the best possible strip flatness. The pressures of intense global competition, and the requirements for increasingly thinner, higher quality specialty sheet products that are more difficult to roll, continue to force metal producers to commission innovative flatness-control technologies. This means that during the on-line computerized set-up of rolling mills, the mathematical model should not only determine the minimum total number of passes and maximum rolling speed, it should simultaneously optimize the pass-schedule so that desired flatness is assured, either by manual or automated means. In many cases today, however, on-line prediction of strip crown and corresponding flatness for the complex cluster-type rolling mills is typically addressed either by trial and error, by approximate deflection models for equivalent vertical roll-stacks, or by non-physical pattern recognition style models. The abundance of the aforementioned methods is largely due to the complexity of cluster-type mill configurations and the lack of deflection models with sufficient accuracy and speed for on-line use. Without adequate assignment of the pass-schedule set-up parameters, it may be difficult or impossible to achieve the required strip flatness. In this paper, we demonstrate optimization of cluster mill pass-schedules using a new accurate and rapid strip crown model. This pass-schedule optimization includes computations of the predicted strip thickness profile to validate mathematical constraints. In contrast to many of the existing methods for on-line prediction of strip crown and flatness on cluster mills, the demonstrated method requires minimal prior tuning and no extensive training with collected mill data. To rapidly and accurately solve the multi-contact problem and predict the strip crown, a new customized semi-analytical modeling technique that couples the Finite Element Method (FEM) with classical solid mechanics was developed to model the deflection of the rolls and strip while under load. The technique employed offers several important advantages over traditional methods to calculate strip crown, including continuity of elastic foundations, non-iterative solution when using predetermined foundation moduli, continuous third-order displacement fields, simple stress-field determination, and a comparatively faster solution time.
40 CFR 1066.210 - Dynamometers.
Code of Federal Regulations, 2012 CFR
2012-07-01
... chassis dynamometer typically uses electrically generated load forces combined with its rotational inertia... (known as “road load”). Load forces are calculated using vehicle-specific coefficients and response characteristics. The load forces are applied to the vehicle tires by rolls connected to intermediate motor...
40 CFR 1066.210 - Dynamometers.
Code of Federal Regulations, 2013 CFR
2013-07-01
... chassis dynamometer typically uses electrically generated load forces combined with its rotational inertia... (known as “road load”). Load forces are calculated using vehicle-specific coefficients and response characteristics. The load forces are applied to the vehicle tires by rolls connected to intermediate motor...
NASA Astrophysics Data System (ADS)
Cao, M.; Xiao, J.
2008-02-01
Bearing excitation is one of the most important mechanical sources for vibration and noise generation in machine systems of a broad range of industries. Although extensively investigated, accurately predicting the vibration/acoustic behavior of bearings remains a challenging task because of its complicated nonlinear behaviors. While some ground work has been laid out on single-row deep-grooved ball (DGB) bearing, comprehensive modeling effort on spherical roller bearing (SRB) has yet to be carried out. This is mainly due to the facts that SRB system carries one more extra degree of freedom (DOF) on the moving race (could be either inner or outer race) and in general has more rolling elements compared with DGB. In this study, a comprehensive SRB excitation source model is developed. In addition to the vertical and horizontal displacements considered in previous investigations, the impacts of axial displacement/load are addressed by introducing the DOF in the axial shaft direction. Hence, instead of being treated as pre-assumed constants, the roller-inner/outer race contact angles are formulated as functions of the axial displacement of the moving race to reflect their dependence on the axial movement. The approach presented in this paper accounts for the point contacts between rollers and inner/outer races, as well as line contacts when the loads on individual rollers exceed the limit for point contact. A detailed contact-damping model reflecting the influences of the surface profiles and the speeds of the both contacting elements is developed and applied in the SRB model. Waviness of all the contact surfaces (including inner race, outer race, and rollers) is included and compared in this analysis. Extensive case studies are carried out to reveal the impacts of surface waviness, radial clearance, surface defects, and loading conditions on the force and displacement responses of the SRB system. System design guidelines are recommended based on the simulation results. This model is also applicable for bearing health monitoring, as demonstrated by the numerical case studies showing the frequency response of the system with moderate-to-large point defects on both inner and outer races, as well as the rollers. Comparisons between the simulation results and some conclusions reflecting common sense available in open literature serves as first hand partial validation of the developed model. Future validation efforts and further improvement directions are also provided. The comprehensive model developed in this investigation is a useful tool for machine system design, optimization, and performance evaluation.
NASA Astrophysics Data System (ADS)
Jing, Lin; Han, Liangliang
2017-12-01
A comprehensive dynamic finite-element simulation method was proposed to study the wheel-rail impact response induced by a single wheel flat based on a 3-D rolling contact model, where the influences of the structural inertia, strain rate effect of wheel-rail materials and thermal stress due to the wheel-rail sliding friction were considered. Four different initial conditions (i.e. pure mechanical loading plus rate-independent, pure mechanical loading plus rate-dependent, thermo-mechanical loading plus rate-independent, and thermo-mechanical loading plus rate-dependent) were involved into explore the corresponding impact responses in term of the vertical impact force, von-Mises equivalent stress, equivalent plastic strain and shear stress. Influences of train speed, flat length and axle load on the flat-induced wheel-rail impact response were discussed, respectively. The results indicate that the maximum thermal stresses are occurred on the tread of the wheel and on the top surface of the middle rail; the strain rate hardening effect contributes to elevate the von-Mises equivalent stress and restrain the plastic deformation; and the initial thermal stress due to the sliding friction will aggravate the plastic deformation of wheel and rail. Besides, the wheel-rail impact responses (i.e. impact force, von-Mises equivalent stress, equivalent plastic strain, and XY shear stress) induced by a flat are sensitive to the train speed, flat length and axle load.
Nonlinear dynamic modeling of surface defects in rolling element bearing systems
NASA Astrophysics Data System (ADS)
Rafsanjani, Ahmad; Abbasion, Saeed; Farshidianfar, Anoushiravan; Moeenfard, Hamid
2009-01-01
In this paper an analytical model is proposed to study the nonlinear dynamic behavior of rolling element bearing systems including surface defects. Various surface defects due to local imperfections on raceways and rolling elements are introduced to the proposed model. The contact force of each rolling element described according to nonlinear Hertzian contact deformation and the effect of internal radial clearance has been taken into account. Mathematical expressions were derived for inner race, outer race and rolling element local defects. To overcome the strong nonlinearity of the governing equations of motion, a modified Newmark time integration technique was used to solve the equations of motion numerically. The results were obtained in the form of time series, frequency responses and phase trajectories. The validity of the proposed model verified by comparison of frequency components of the system response with those obtained from experiments. The classical Floquet theory has been applied to the proposed model to investigate the linear stability of the defective bearing rotor systems as the parameters of the system changes. The peak-to-peak frequency response of the system for each case is obtained and the basic routes to periodic, quasi-periodic and chaotic motions for different internal radial clearances are determined. The current study provides a powerful tool for design and health monitoring of machine systems.
Roll diffusion bonding of titanium alloy panels
NASA Technical Reports Server (NTRS)
Bennett, J.; De Witt, T. E.; Jones, A. G.; Koeller, F.; Muser, C.
1968-01-01
Roll diffusion bonding technique is used for fabricating T-stiffened panel assemblies from titanium alloy. The single unit fabrication exhibits excellent strength characteristics under tensile and compressive loads. This program is applied to structures in which weight/strength ratio and integral construction are important considerations.
Automated inspection and precision grinding of spiral bevel gears
NASA Technical Reports Server (NTRS)
Frint, Harold
1987-01-01
The results are presented of a four phase MM&T program to define, develop, and evaluate an improved inspection system for spiral bevel gears. The improved method utilizes a multi-axis coordinate measuring machine which maps the working flank of the tooth and compares it to nominal reference values stored in the machine's computer. A unique feature of the system is that corrective grinding machine settings can be automatically calculated and printed out when necessary to correct an errant tooth profile. This new method eliminates most of the subjective decision making involved in the present method, which compares contact patterns obtained when the gear set is run under light load in a rolling test machine. It produces a higher quality gear with significant inspection time and cost savings.
NASA Technical Reports Server (NTRS)
Sarkar, Nilanjan; Yun, Xiaoping; Kumar, Vijay
1994-01-01
There are many examples of mechanical systems that require rolling contacts between two or more rigid bodies. Rolling contacts engender nonholonomic constraints in an otherwise holonomic system. In this article, we develop a unified approach to the control of mechanical systems subject to both holonomic and nonholonomic constraints. We first present a state space realization of a constrained system. We then discuss the input-output linearization and zero dynamics of the system. This approach is applied to the dynamic control of mobile robots. Two types of control algorithms for mobile robots are investigated: trajectory tracking and path following. In each case, a smooth nonlinear feedback is obtained to achieve asymptotic input-output stability and Lagrange stability of the overall system. Simulation results are presented to demonstrate the effectiveness of the control algorithms and to compare the performane of trajectory-tracking and path-following algorithms.
Validation of Vortex-Lattice Method for Loads on Wings in Lift-Generated Wakes
NASA Technical Reports Server (NTRS)
Rossow, Vernon J.
1995-01-01
A study is described that evaluates the accuracy of vortex-lattice methods when they are used to compute the loads induced on aircraft as they encounter lift-generated wakes. The evaluation is accomplished by the use of measurements made in the 80 by 120 ft Wind Tunnel of the lift, rolling moment, and downwash in the wake of three configurations of a model of a subsonic transport aircraft. The downwash measurements are used as input for a vortex-lattice code in order to compute the lift and rolling moment induced on wings that have a span of 0.186, 0.510, or 1.022 times the span of the wake-generating model. Comparison of the computed results with the measured lift and rolling-moment distributions the vortex-lattice method is very reliable as long as the span of the encountering or following wing is less than about 0.2 of the generator span. As the span of the following wing increases above 0.2, the vortex-lattice method continues to correctly predict the trends and nature of the induced loads, but it overpredicts the magnitude of the loads by increasing amounts.
NASA Technical Reports Server (NTRS)
Stickle, Joseph W.; Silsby, Norman S.
1960-01-01
An investigation has been made by the NASA to obtain statistical measurements of landing-contact conditions for a large turbojet transport in commercial airline operations. The investigation was conducted at the Los Angeles International Airport in Los Angeles, California. Measurements were taken photographically during routine daylight operations. The quantities determined were vertical velocity, horizontal velocity, rolling velocity, bank angle, and distance from runway threshold, just prior to ground contact. The results indicated that the mean vertical velocity for the turbojet-transport landings was 1.62 feet per second and that 1 landing out of 100 would be expected to equal or exceed about 4.0 feet per second. The mean airspeed at contact was 132.0 knots, with 1 landing in 100 likely to equal or exceed about 153.0 knots. The mean rolling velocity was about 1.6 deg per second. One lending in 100 would probably equal or exceed a rolling velocity of about 4.0 deg. per second in the direction of the first wheel to touch. The mean bank angle for the turbojet transports was 1.04 deg, and right and left angles of bank were about evenly divided. One lending in 100 would be likely to equal or exceed a bank angle of about 3.5 deg. The mean value of distance to touchdown from the runway threshold was 1,560 feet. One lending in 100 would be expected to touchdown at or beyond about 2,700 feet from the runway threshold. The mean values for vertical velocity, airspeed, and distance t o touch-down for the turbojet transports were somewhat higher than those found previously for piston-engine transports. No significant differences were found for values of rolling velocity and bank angle.
Characterisation of prosthetic feet used in low-income countries.
Sam, M; Hansen, A H; Childress, D S
2004-08-01
Eleven kinds of prosthetic feet that were designed for use in low-income countries were mechanically characterised in this study. Masses of the different kinds of prosthetic feet varied substantially. Dynamic properties, including damping ratios and resonant frequencies, were obtained from step unloading tests of the feet while interacting with masses comparable to the human body. Data showed that for walking, the feet can be appropriately modeled using their quasistatic properties since natural frequencies were high compared to walking frequencies and since damping ratios were small. Roll-over shapes, the effective rocker (cam) geometries that the feet deform to under walking loads, were determined using a quasistatic loading technique and a spatial transformation of the ground reaction force's centre of pressure. The roll-over shapes for most of the prosthetic feet studied were similar to the roll-over shape of the SACH (solid-ankle cushioned heel) prosthetic foot. All roll-over shapes showed a lack of forefoot support, which may cause a "drop-off" experience at the end of single limb stance and shorter step lengths of the contralateral limb. The roll-over shapes of prosthetic feet appear useful in characterization of foot function.
NASA Technical Reports Server (NTRS)
Hoadley, Sherwood T.; Mcgraw, Sandra M.
1992-01-01
A real time multiple-function digital controller system was developed for the Active Flexible Wing (AFW) Program. The digital controller system (DCS) allowed simultaneous execution of two control laws: flutter suppression and either roll trim or a rolling maneuver load control. The DCS operated within, but independently of, a slower host operating system environment, at regulated speeds up to 200 Hz. It also coordinated the acquisition, storage, and transfer of data for near real time controller performance evaluation and both open- and closed-loop plant estimation. It synchronized the operation of four different processing units, allowing flexibility in the number, form, functionality, and order of control laws, and variability in the selection of the sensors and actuators employed. Most importantly, the DCS allowed for the successful demonstration of active flutter suppression to conditions approximately 26 percent (in dynamic pressure) above the open-loop boundary in cases when the model was fixed in roll and up to 23 percent when it was free to roll. Aggressive roll maneuvers with load control were achieved above the flutter boundary. The purpose here is to present the development, validation, and wind tunnel testing of this multiple-function digital controller system.
NASA Astrophysics Data System (ADS)
Moisescu, Alexandra-Raluca; Anghelache, Gabriel
2017-10-01
In the modern context of automobile integration with the emerging technologies of the interconnected society, the interaction between tyre and road is an element of major importance for automobile safety systems such as the intelligent tyres, as well as for passenger comfort, fuel economy, environmental protection, infrastructure and vehicle durability. The tyre-road contact generates the distribution of forces exerted on each unit area in the contact patch, therefore the distribution of contact stresses on three orthogonal directions. The numerical investigation of stresses distribution in the contact patch requires the development of finite element models capable of accurately describing the interaction between tyre and rolling surface. The complex finite element model developed for the 11R22.5 truck tyre has been used for investigating the influence of vertical force on the distributions of contact stresses. In addition to these contributions, the paper presents aspects related to the simulation of truck tyre radial stiffness. The influence of tyre rolling has not been taken into consideration, as the purpose of the current research is the investigation of tyre-road contact in stationary conditions.
Studies on Automobile Clutch Release Bearing Characteristics with Acoustic Emission
NASA Astrophysics Data System (ADS)
Chen, Guoliang; Chen, Xiaoyang
Automobile clutch release bearings are important automotive driveline components. For the clutch release bearing, early fatigue failure diagnosis is significant, but the early fatigue failure response signal is not obvious, because failure signals are susceptible to noise on the transmission path and to working environment factors such as interference. With an improvement in vehicle design, clutch release bearing fatigue life indicators have increasingly become an important requirement. Contact fatigue is the main failure mode of release rolling bearing components. Acoustic emission techniques in contact fatigue failure detection have unique advantages, which include highly sensitive nondestructive testing methods. In the acoustic emission technique to detect a bearing, signals are collected from multiple sensors. Each signal contains partial fault information, and there is overlap between the signals' fault information. Therefore, the sensor signals receive simultaneous source information integration is complete fragment rolling bearing fault acoustic emission signal, which is the key issue of accurate fault diagnosis. Release bearing comprises the following components: the outer ring, inner ring, rolling ball, cage. When a failure occurs (such as cracking, pitting), the other components will impact damaged point to produce acoustic emission signal. Release bearings mainly emit an acoustic emission waveform with a Rayleigh wave propagation. Elastic waves emitted from the sound source, and it is through the part surface bearing scattering. Dynamic simulation of rolling bearing failure will contribute to a more in-depth understanding of the characteristics of rolling bearing failure, because monitoring and fault diagnosis of rolling bearings provide a theoretical basis and foundation.
Spur-Gear-System Efficiency at Part and Full Load
NASA Technical Reports Server (NTRS)
Anderson, N. E.; Loewenthal, S. H.
1980-01-01
A simple method for predicting the part- and full-load power loss of a steel spur gearset of arbitrary geometry supported by ball bearings is described. The analysis algebraically accounts for losses due to gear sliding, rolling traction, and windage in addition to support-ball-bearing losses. The analysis compares favorably with test data. A theoretical comparison of the component losses indicates that losses due to gear rolling traction, windage, and support bearings are significant and should be included along with gear sliding loss in a calculation of gear-system power loss.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Y.J., E-mail: y.li@mpie.de
Atom probe tomography was employed to characterize the microstructure and C distribution in the white etching area (WEA) of a martensitic 100Cr6 bearing steel subjected to rolling contact fatigue. Different from its surrounding matrix where a plate-like martensitic structure prevails, the WEA exhibits equiaxed grains with a uniform grain size of about 10 nm. Significant C grain boundary enrichment (>7.5at.%) and an overall higher C concentration than the nominal value are observed in the WEA. These results suggest that the formation of WEA results from severe local plastic deformation that causes dissolution of carbides and the redistribution of C. -more » Highlights: •APT has been applied to characterize the microstructure of white etching area (WEA). •Quantitative analyses of C distribution indicate that carbides are dissolved on the WEA. •WEA contains equiaxed grains with a uniform grain size of 10 nm. •C segregation at grain boundaries stabilizes the nanosized grain structure. •Formation of WEA is explained by severe local plastic deformation introduced by cyclic contact loading.« less
Preliminary metallographic studies of ball fatigue under rolling-contact conditions
NASA Technical Reports Server (NTRS)
Bear, H Robert; Butler, Robert H
1957-01-01
The metallurgical results produced on balls tested in the rolling-contact fatigue spin rig were studied by metallographic examination. Origin and progression of fatigue failures were observed. These evaluations were made on SAE 52100 and AISI M-1 balls fatigue tested at room temperature (80 F) and 200 to 250 F. Most failures originated subsurface in shear; inclusions, structure changes, and directionalism adversely affected ball fatigue life. Structures in the maximum-shear-stress region of the balls of both materials were stable at room temperature and unstable at 200 to 250 F. Failures were of the same type as those found in full-scale bearings.
Geometrical specifications accuracy influence on the quality of electromechanical devices
NASA Astrophysics Data System (ADS)
Glukhov, V. I.; Lakeenko, M. N.; Dolzhikov, S. N.
2017-06-01
To improve the quality of electromechanical products is possible due to the geometrical specifications optimization of values and tolerances. Electromechanical products longevity designates the rolling-contact bearings of the armature shaft. Longevity of the rolling-contact bearings is less than designed one, since assembly and fitting alter gaps, sizes and geometric tolerances for the working parts of the basic rolling bearing details. Geometrical models of the rolling-contact bearing details for the armature shaft and the end shield are developed on the basis of an electric locomotive traction motor in the present work. The basic elements of the details conjugating with the adjacent details and materializing the generalized and auxiliary coordinate systems are determined. Function, informativeness and the number of geometrical specifications for the elements location are specified. The recommendations on amending the design documentation due to geometrical models to improve the accuracy and the quality of the products are developed: the replacement of the common axis of the shaft’s technological datums by the common axis of the basic design datums; coaxiality tolerances for these design datums with respect to their common axis; the modifiers for these auxiliary datums and these datums location tolerances according to the principles of datums uniformity, inversion and the shortest dimension chains. The investigation demonstrated that the problem of enhancing the durability, longevity, and efficiency coefficient for electromechanical products can be solved with the systematic normalizations of geometrical specifications accuracy on the basis of the coordinate systems introduced in the standards on geometrical product specifications (GPS).
Surface temperatures and glassy state investigations in tribology, part 1
NASA Technical Reports Server (NTRS)
Winer, W. O.; Sanborn, D. M.
1978-01-01
The research in this report is divided into two categories: (1) lubricant rheological behavior, and (2) thermal behavior of a simulated elastohydrodynamic contact. The studies of the lubricant rheological behavior consists of high pressure, low shear rate viscosity measurements, viscoelastic transition measurements, by volume dilatometry, dielectric transitions at atmospheric pressure and light scattering transitions. Lubricant shear stress-strain behavior in the amorphous glassy state was measured on several fluids. It appears clear from these investigations that many lubricants undergo viscoplastic transitions in typical EHD contacts and that the lubricant has a limiting maximum shear stress it can support which in turn will determine the traction in the contact except in cases of very low slide-roll ratio. Surface temperature measurements were made for a naphthenic mineral oil and a polyphenyl ether. The maximum surface temperature in these experiments was approximately symmetrical about the zero slide-roll ration except for absolute values of slide-roll ratio greater than about 0.9. Additional surface temperature measurements were made in contacts with rough surfaces where the composite surface roughness was approximately equal to the EHD film thickness. A regression analysis was done to obtain a predictive equation for surface temperatures as a function of pressure, sliding speed, and surface roughness. A correction factor for surface roughness effects to the typical flash temperature analysis was found.
NASA Technical Reports Server (NTRS)
Hovland, H. J.; Mitchell, J. K.
1971-01-01
The soil deformation mode under the action of a rolling sphere (boulder) was determined, and a theory based on actual soil failure mechanism was developed which provides a remote reconnaissance technique for study of soil conditions using boulder track observations. The failure mechanism was investigated by using models and by testing an instrumented spherical wheel. The wheel was specifically designed to measure contact pressure, but it also provided information on the failure mechanism. Further tests included rolling some 200 spheres down sand slopes. Films were taken of the rolling spheres, and the tracks were measured. Implications of the results and reevaluation of the lunar boulder tracks are discussed.
NASA Astrophysics Data System (ADS)
Primeaux, Philip A.; Zhang, Bin; Zhang, Xiaoman; Miller, Jacob; Meng, W. J.; KC, Pratik; Moore, Arden L.
2017-02-01
Microscale fin array structures were replicated onto surfaces of aluminum 1100 and aluminum 6061 alloy (Al1100/Al6061) sheet metals through room-temperature instrumented roll molding. Aluminum-based micro fin arrays were replicated at room temperature, and the fabrication process is one with high throughput and low cost. One-dimensional (1D) micro fin arrays were made through one-pass rolling, while two-dimensional (2D) micro fin arrays were made by sequential 90° cross rolling with the same roller sleeve. For roll molding of 1D micro fins, fin heights greater than 600 µm were achieved and were shown to be proportional to the normal load force per feature width. At a given normal load force, the fin height was further shown to scale inversely with the hardness of the sheet metal. For sequential 90° cross rolling, morphologies of roll molded 2D micro fin arrays were examined, which provided clues to understand how plastic deformation occurred under cross rolling conditions. A series of pool boiling experiments on low profile Al micro fin array structures were performed within Novec 7100, a widely used commercial dielectric coolant. Results for both horizontal and vertical surface orientations show that roll molded Al micro fin arrays can increase heat flux at fixed surface temperature as compared to un-patterned Al sheet. The present results further suggest that many factors beyond just increased surface area can influence heat transfer performance, including surface finish and the important multiphase transport mechanisms in and around the fin geometry. These factors must also be considered when designing and optimizing micro fin array structures for heat transfer applications.
Tibiofemoral wear in standard and non-standard squat: implication for total knee arthroplasty.
Fekete, Gusztáv; Sun, Dong; Gu, Yaodong; Neis, Patric Daniel; Ferreira, Ney Francisco; Innocenti, Bernardo; Csizmadia, Béla M
2017-01-01
Due to the more resilient biomaterials, problems related to wear in total knee replacements (TKRs) have decreased but not disappeared. In the design-related factors, wear is still the second most important mechanical factor that limits the lifetime of TKRs and it is also highly influenced by the local kinematics of the knee. During wear experiments, constant load and slide-roll ratio is frequently applied in tribo-tests beside other important parameters. Nevertheless, numerous studies demonstrated that constant slide-roll ratio is not accurate approach if TKR wear is modelled, while instead of a constant load, a flexion-angle dependent tibiofemoral force should be involved into the wear model to obtain realistic results. A new analytical wear model, based upon Archard's law, is introduced, which can determine the effect of the tibiofemoral force and the varying slide-roll on wear between the tibiofemoral connection under standard and non-standard squat movement. The calculated total wear with constant slide-roll during standard squat was 5.5 times higher compared to the reference value, while if total wear includes varying slide-roll during standard squat, the calculated wear was approximately 6.25 times higher. With regard to non-standard squat, total wear with constant slide-roll during standard squat was 4.16 times higher than the reference value. If total wear included varying slide-roll, the calculated wear was approximately 4.75 times higher. It was demonstrated that the augmented force parameter solely caused 65% higher wear volume while the slide-roll ratio itself increased wear volume by 15% higher compared to the reference value. These results state that the force component has the major effect on wear propagation while non-standard squat should be proposed for TKR patients as rehabilitation exercise.
Tibiofemoral wear in standard and non-standard squat: implication for total knee arthroplasty
Sun, Dong; Gu, Yaodong; Neis, Patric Daniel; Ferreira, Ney Francisco; Innocenti, Bernardo; Csizmadia, Béla M.
2017-01-01
Summary Introduction Due to the more resilient biomaterials, problems related to wear in total knee replacements (TKRs) have decreased but not disappeared. In the design-related factors, wear is still the second most important mechanical factor that limits the lifetime of TKRs and it is also highly influenced by the local kinematics of the knee. During wear experiments, constant load and slide-roll ratio is frequently applied in tribo-tests beside other important parameters. Nevertheless, numerous studies demonstrated that constant slide-roll ratio is not accurate approach if TKR wear is modelled, while instead of a constant load, a flexion-angle dependent tibiofemoral force should be involved into the wear model to obtain realistic results. Methods A new analytical wear model, based upon Archard’s law, is introduced, which can determine the effect of the tibiofemoral force and the varying slide-roll on wear between the tibiofemoral connection under standard and non-standard squat movement. Results The calculated total wear with constant slide-roll during standard squat was 5.5 times higher compared to the reference value, while if total wear includes varying slide-roll during standard squat, the calculated wear was approximately 6.25 times higher. With regard to non-standard squat, total wear with constant slide-roll during standard squat was 4.16 times higher than the reference value. If total wear included varying slide-roll, the calculated wear was approximately 4.75 times higher. Conclusions It was demonstrated that the augmented force parameter solely caused 65% higher wear volume while the slide-roll ratio itself increased wear volume by 15% higher compared to the reference value. These results state that the force component has the major effect on wear propagation while non-standard squat should be proposed for TKR patients as rehabilitation exercise. PMID:29721453
The geometry of high angle of attack maneuvers and the implications for Gy-induced neck injuries.
Newman, David G; Ostler, David
2011-08-01
Modern super agile fighter aircraft have significantly expanded maneuverability envelopes, often involving very high angles of attack (AOA) in the post-stall region. One such maneuver is the high AOA velocity vector roll. The geometry of this flight maneuver is such that during the roll there is a significant lateral C load imposed on the unrestrained head-neck complex of the pilot. A mathematical analysis of the geometric relationship determining the magnitude of +/- Gy acceleration during high AOA maneuvering was conducted. This preliminary mathematical model is able to predict the Gy load imposed on the head-neck complex of the pilot for a given set of flight maneuver parameters. The analysis predicts that at an AOA of 700 and with a roll rate of 100 degrees x s(-1), the lateral G developed will be approximately 3.5 Gy. Increasing the roll rate increases the lateral G component: at 200 degrees x s(-1) the Gy, load is more than 6 Gy. There are serious potential implications of super agile maneuvers on the neck of the pilot. The G environment experienced by the pilot of super agile aircraft is increasingly multiaxial, involving +/- Gx, +/- Gy, and +/- Gz. The level of lateral G developed during these dynamic flight maneuvers should not be underestimated, as such G loads can potentially lead to neck injuries. While aircraft become ever more capable, a full understanding of the biodynamic effects on the pilot while exploiting the agility of the aircraft still needs to be developed.
NASA Astrophysics Data System (ADS)
Singh, Harpal
This dissertation is divided into two categories based upon lubrication functionality and its application. The categories are: Dry film lubrication and Fluid film lubrication with thin film coatings. Thin film coatings examined in this work were deposited using closed field unbalanced magnetron sputtering and RF-DC coupled magnetron sputtering systems. In Dry/Solid film lubrication, the mechanical, structural and tribological properties of two Molybdenum disulphide (MoS2) based coatings are examined and evaluated. Among the two coatings, one coating is doped with Ti (Ti-MoS2) and the other is a combination of metal, lubricant and oxide (Sb2O3/Au - MoS2). These coatings are known to provide low friction in vacuum environments. The goal of this work was to evaluate friction and wear performance of MoS2 doped coatings in unidirectional and reciprocating sliding contact under different environmental conditions. Sliding contact results showed friction and wear dependence on temperature and humidity. The formation and removal of transfer films and the recrystallization and reorientation of basal layers on the steel counterface was observed as the mechanism for low friction. Structural analysis revealed a relationship between the microstructural properties and tribological performance. It was also observed that the addition of dopants (Ti, Au, Sb 2O3) improved the mechanical properties as compared to pure MoS2 coatings. Further, the rolling contact performance of the coatings was measured on a five ball on rod tribometer and a Thrust bearing tribometer under vacuum and air environments. The rolling contact experiments indicated that life of the rolling components depend on the amount of material present between the contacts. Fluid film lubrication with thin film coatings investigates the possibilities to improve the performance and durability of tribological components when oils and thin films are synergistically coupled. In this work, the ability of a Diamond Like Carbon coating to increase the durability of contacting surfaces under boundary lubrication were studied. The performance of highly hydrogenated Diamond Like Carbon (DLC) was evaluated in a mixed sliding and rolling contact. Experimental results show significant improvement in fatigue life of steel specimens after coating with a highly hydrogenated Diamond Like Carbon coating. The improved fatigue life is attributed to the coating microstructure and the mechanical properties.
Pneumatic tyres interacting with deformable terrains
NASA Astrophysics Data System (ADS)
Bekakos, C. A.; Papazafeiropoulos, G.; O'Boy, D. J.; Prins, J.
2016-09-01
In this study, a numerical model of a deformable tyre interacting with a deformable road has been developed with the use of the finite element code ABAQUS (v. 6.13). Two tyre models with different widths, not necessarily identical to any real industry tyres, have been created purely for research use. The behaviour of these tyres under various vertical loads and different inflation pressures is studied, initially in contact with a rigid surface and then with a deformable terrain. After ensuring that the tyre model gives realistic results in terms of the interaction with a rigid surface, the rolling process of the tyre on a deformable road was studied. The effects of friction coefficient, inflation pressure, rebar orientation and vertical load on the overall performance are reported. Regarding the modelling procedure, a sequence of models were analysed, using the coupling implicit - explicit method. The numerical results reveal that not only there is significant dependence of the final tyre response on the various initial driving parameters, but also special conditions emerge, where the desired response of the tyre results from specific optimum combination of these parameters.
NASA Astrophysics Data System (ADS)
Hoever, Carsten; Kropp, Wolfgang
2015-09-01
The reduction of rolling resistance is essential for a more environmentally friendly road transportation sector. Both tyre and road design can be utilised to reduce rolling resistance. In both cases a reliable simulation tool is needed which is able to quantify the influence of design parameters on the rolling resistance of a tyre rolling on a specific road surface. In this work a previously developed tyre/road interaction model is extended to account for different tread patterns and for losses due to small-scale tread deformation. Calculated contact forces and tyre vibrations for tyre/road interaction under steady-state rolling are used to predict rolling losses in the tyre. Rolling resistance is calculated for a series of different tyre/road combinations. Results are compared with rolling resistance measurements. The agreement between simulations and measurements is generally very good. It is found that both the tyre structure and small-scale tread deformations contribute to the rolling losses. The small-scale contribution depends mainly on the road roughness profile. The mean profile depth of the road surface is identified to correlate very well with the rolling resistance. Additional calculations are performed for non-traditional rubberised road surfaces, however, with mixed results. This possibly indicates the existence of additional loss mechanisms for these surfaces.
Assessment of the Applicability of Hertzian Contact Theory to Edge-Loaded Prosthetic Hip Bearings
Sanders, Anthony P.; Brannon, Rebecca M.
2011-01-01
The components of prosthetic hip bearings may experience in-vivo subluxation and edge loading on the acetabular socket as a result of joint laxity, causing abnormally high, damaging contact stresses. In this research, edge-loaded contact of prosthetic hips is examined analytically and experimentally in the most commonly used categories of material pairs. In edge-loaded ceramic-on-ceramic hips, Hertzian contact theory yields accurate (conservatively, <10% error) predictions of the contact dimensions. Moreover, Hertzian theory successfully captures slope and curvature trends in the dependence of contact patch geometry on the applied load. In an edge-loaded ceramic-on-metal pair, a similar degree of accuracy is observed in the contact patch length; however, the contact width is less accurately predicted due to the onset of subsurface plasticity, which is predicted for loads >400 N. Hertzian contact theory is shown to be ill-suited to edge-loaded ceramic-on-polyethylene pairs due to polyethylene’s nonlinear material behavior. This work elucidates the methods and the accuracy of applying classical contact theory to edge-loaded hip bearings. The results help to define the applicability of Hertzian theory to the design of new components and materials to better resist severe edge loading contact stresses. PMID:21962465
Analytical method for establishing indentation rolling resistance
NASA Astrophysics Data System (ADS)
Gładysiewicz, Lech; Konieczna, Martyna
2018-01-01
Belt conveyors are highly reliable machines able to work in special operating conditions. Harsh environment, long distance of transporting and great mass of transported martials are cause of high energy usage. That is why research in the field of belt conveyor transportation nowadays focuses on reducing the power consumption without lowering their efficiency. In this paper, previous methods for testing rolling resistance are described, and new method designed by authors was presented. New method of testing rolling resistance is quite simple and inexpensive. Moreover it allows to conduct the experimental tests of the impact of different parameters on the value of indentation rolling resistance such as core design, cover thickness, ambient temperature, idler travel frequency, or load value as well. Finally results of tests of relationship between rolling resistance and idler travel frequency and between rolling resistance and idler travel speed was presented.
Depreciation of bearing blocks of rollers of roller conveyers of rolling mills
NASA Astrophysics Data System (ADS)
Artiukh, Viktor; Belyaev, Michael; Ignatovich, Igor; Miloradova, Nadezda
2017-10-01
Essential increase in functional durability of a node of a roller of the roller conveyer of the rolling mill by the rational choice of parameters of the small-size shock-absorber (buffer adapter) is shown. At the same time dimensions of a node don’t change, costs of reconstruction are small. The possibility of management of loadings in a bearing node without change of technology parameters of the process which is carried out by the rolling mill is confirmed.
NASA Astrophysics Data System (ADS)
Fernandez-del-Rincon, A.; Garcia, P.; Diez-Ibarbia, A.; de-Juan, A.; Iglesias, M.; Viadero, F.
2017-02-01
Gear transmissions remain as one of the most complex mechanical systems from the point of view of noise and vibration behavior. Research on gear modeling leading to the obtaining of models capable of accurately reproduce the dynamic behavior of real gear transmissions has spread out the last decades. Most of these models, although useful for design stages, often include simplifications that impede their application for condition monitoring purposes. Trying to filling this gap, the model presented in this paper allows us to simulate gear transmission dynamics including most of these features usually neglected by the state of the art models. This work presents a model capable of considering simultaneously the internal excitations due to the variable meshing stiffness (including the coupling among successive tooth pairs in contact, the non-linearity linked with the contacts between surfaces and the dissipative effects), and those excitations consequence of the bearing variable compliance (including clearances or pre-loads). The model can also simulate gear dynamics in a realistic torque dependent scenario. The proposed model combines a hybrid formulation for calculation of meshing forces with a non-linear variable compliance approach for bearings. Meshing forces are obtained by means of a double approach which combines numerical and analytical aspects. The methodology used provides a detailed description of the meshing forces, allowing their calculation even when gear center distance is modified due to shaft and bearing flexibilities, which are unavoidable in real transmissions. On the other hand, forces at bearing level were obtained considering a variable number of supporting rolling elements, depending on the applied load and clearances. Both formulations have been developed and applied to the simulation of the vibration of a sample transmission, focusing the attention on the transmitted load, friction meshing forces and bearing preloads.
Digitalization in roll forming manufacturing
NASA Astrophysics Data System (ADS)
Sedlmaier, A.; Dietl, T.; Ferreira, P.
2017-09-01
Roll formed profiles are used in automotive chassis production as building blocks for the body-in-white. The ability to produce profiles with discontinuous cross sections, both in width and in depth, allows weight savings in the final automotive chassis through the use of load optimized cross sections. This has been the target of the 3D Roll Forming process. A machine concept is presented where a new forming concept for roll formed parts in combination with advanced robotics allowing freely positioned roll forming tooling in 3D space enables the production of complex shapes by roll forming. This is a step forward into the digitalization of roll forming manufacturing by making the process flexible and capable of rapid prototyping and production of small series of parts. Moreover, data collection in a large scale through the control system and integrated sensors lead to an increased understanding of the process and provide the basis to develop self-optimizing roll forming machines, increasing the productivity, quality and predictability of the roll-forming process. The first parts successfully manufactured with this new forming concept are presented.
2015-12-15
during shipment, protect the threads of the valve stem, and shield the folded tube against abrasion by the threads . A metal valve cap contains a...Test types include force and moment, rolling resistance , steer frequency response, load-deflection curves, characteristics, endurance, and...several on-vehicle tests. 15. SUBJECT TERMS tire test rig force and moment rolling resistance steer frequency response
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-23
... airplane will have a novel or unusual design feature associated with an electronic flight control system... load condition at design maneuvering speed (V A ), in which the cockpit roll control is returned to... positive maneuvering factor used in design. In determining the resulting control surface deflections, the...
NASA Astrophysics Data System (ADS)
Nikitin, I.; Juijerm, P.
2018-02-01
The effects of loading frequency on the fatigue behavior of non-deep-rolled (NDR) and deep-rolled (DR) austenitic stainless steel AISI 304 were systematically clarified at elevated temperatures, especially at temperatures exhibiting the dynamic strain aging (DSA) phenomena. Tension-compression fatigue tests were performed isothermally at temperatures of 573 K and 773 K (300 °C and 500 °C) with different loading frequencies of 5, 0.5, 0.05, and 0.005 Hz. For the DR condition, the residual stresses and work-hardening states will be presented. It was found that DSA would be detected at appropriate temperatures and deformation rates. The cyclic deformation curves and the fatigue lives of the investigated austenitic stainless steel AISI 304 are considerably affected by the DSA, especially on the DR condition having high dislocation densities at the surface and in near-surface regions. In the temperature range of the DSA, residual stresses and work-hardening states of the DR condition seem to be stabilized. The microstructural alterations were investigated by transmission electron microscopy (TEM). At an appropriate temperature with low loading frequency, the plastic deformation mechanism shifted from a wavy slip manner to a planar slip manner in the DSA regimes, whereas the dislocation movements were obstructed.
Modeling Aircraft Wing Loads from Flight Data Using Neural Networks
NASA Technical Reports Server (NTRS)
Allen, Michael J.; Dibley, Ryan P.
2003-01-01
Neural networks were used to model wing bending-moment loads, torsion loads, and control surface hinge-moments of the Active Aeroelastic Wing (AAW) aircraft. Accurate loads models are required for the development of control laws designed to increase roll performance through wing twist while not exceeding load limits. Inputs to the model include aircraft rates, accelerations, and control surface positions. Neural networks were chosen to model aircraft loads because they can account for uncharacterized nonlinear effects while retaining the capability to generalize. The accuracy of the neural network models was improved by first developing linear loads models to use as starting points for network training. Neural networks were then trained with flight data for rolls, loaded reversals, wind-up-turns, and individual control surface doublets for load excitation. Generalization was improved by using gain weighting and early stopping. Results are presented for neural network loads models of four wing loads and four control surface hinge moments at Mach 0.90 and an altitude of 15,000 ft. An average model prediction error reduction of 18.6 percent was calculated for the neural network models when compared to the linear models. This paper documents the input data conditioning, input parameter selection, structure, training, and validation of the neural network models.
S-190 exposure verification flight test. [photographic emulsions and film
NASA Technical Reports Server (NTRS)
Perry, L.
1973-01-01
A flight test was conducted to determine the optimum exposures for the Skylab S-190A experiment. An aircraft multispectral photographic system (AMPS) which is installed in the NASA Earth Resources aircraft NP3A was used to simulate the S-190A system. The same film emulsions to be used for S-190A were used in the flight test. These rolls were on factory-loaded spools for use in the AMPS camera system. It was found that some variation is to be expected between these rolls and the S-190A flight loads.
Theoretical antisymmetric span loading for wings of arbitrary plan form at subsonic speeds
NASA Technical Reports Server (NTRS)
Deyoung, John
1951-01-01
A simplified lifting-surface theory that includes effects of compressibility and spanwise variation of section lift-curve slope is used to provide charts with which antisymmetric loading due to arbitrary antisymmetric angle of attack can be found for wings having symmetric plan forms with a constant spanwise sweep angle of the quarter-chord line. Consideration is given to the flexible wing in roll. Aerodynamic characteristics due to rolling, deflected ailerons, and sideslip of wings with dihedral are considered. Solutions are presented for straight-tapered wings for a range of swept plan forms.
An advanced dissymmetric rolling model for online regulation
NASA Astrophysics Data System (ADS)
Cao, Trong-Son
2017-10-01
Roll-bite model is employed to predict the rolling force, torque as well as to estimate the forward slip for preset or online regulation at industrial rolling mills. The rolling process is often dissymmetric in terms of work-rolls rotation speeds and diameters as well as the friction conditions at upper and lower contact surfaces between work-rolls and the strip. The roll-bite model thus must be able to account for these dissymmetries and in the same time has to be accurate and fast enough for online applications. In the present study, a new method, namely Adapted Discretization Slab Method (ADSM) is proposed to obtain a robust roll-bite model, which can take into account the aforementioned dissymmetries and has a very short response time, lower than one millisecond. This model is based on the slab method, with an adaptive discretization and a global Newton-Raphson procedure to improve the convergence speed. The model was validated by comparing with other dissymmetric models proposed in the literature, as well as Finite Element simulations and industrial pilot trials. Furthermore, back-calculation tool was also constructed for friction management for both offline and online applications. With very short CPU time, the ADSM-based model is thus attractive for all online applications, both for cold and hot rolling.
NASA Astrophysics Data System (ADS)
Kerst, Stijn; Shyrokau, Barys; Holweg, Edward
2018-05-01
This paper proposes a novel semi-analytical bearing model addressing flexibility of the bearing outer race structure. It furthermore presents the application of this model in a bearing load condition monitoring approach. The bearing model is developed as current computational low cost bearing models fail to provide an accurate description of the more and more common flexible size and weight optimized bearing designs due to their assumptions of rigidity. In the proposed bearing model raceway flexibility is described by the use of static deformation shapes. The excitation of the deformation shapes is calculated based on the modelled rolling element loads and a Fourier series based compliance approximation. The resulting model is computational low cost and provides an accurate description of the rolling element loads for flexible outer raceway structures. The latter is validated by a simulation-based comparison study with a well-established bearing simulation software tool. An experimental study finally shows the potential of the proposed model in a bearing load monitoring approach.
1989-03-01
comparison between the two. Tyre self-excited vibration can be caused by lack of uniforuity and/or out-of-balance. The authors suggest that driving ... safety is best described by the ’Dynamic Load Factor’ which relates the ainimum rolling dynamic load to the static tyre load. Dynamic Load Factors are
Rolling contact fatigue life of chromium ion plated 440C bearing steel
NASA Technical Reports Server (NTRS)
Bhat, B. N.; Davis, J. H.
1985-01-01
Rolling contact fatigue (RCF) test specimens of heat treated 440C bearing steel were chromium ion plated in thicknesses from 0.1 to 8.0 micron and tested in RCF tester using 700 ksi maximum Hertzian stress. Heavy coatings, greater than about 5 micron in thickness, peeled off or spalled readily, whereas thin coatings, less than 3 micron thick, were tenacious and did not come off. Furthermore, significant improvement in RCF life was obtained with thin chromium ion plated test specimens. The average increase in B10 life was 75% compared with unplated 440C. These preliminary results indicate that ion plating is a promising way to improve bearing life.
Hansen, Andrew H; Meier, Margrit R; Sessoms, Pinata H; Childress, Dudley S
2006-12-01
The Shape&Roll prosthetic foot was used to examine the effect of roll-over shape arc length on the gait of 14 unilateral trans-tibial prosthesis users. Simple modifications to the prosthetic foot were used to alter the effective forefoot rocker length, leaving factors such as alignment, limb length, and heel and mid-foot characteristics unchanged. Shortening the roll-over shape arc length caused a significant reduction in the maximum external dorsiflexion moment on the prosthetic side at all walking speeds (p < 0.001 for main effect of arc length), due to a reduction in forefoot leverage (moment arm) about the ankle. Roll-over shape arc length significantly affected the initial loading on the sound limb at normal and fast speeds (p = 0.001 for the main effect of arc length), with participants experiencing larger first peaks of vertical ground reaction forces on their sound limbs when using the foot with the shortest effective forefoot rocker arc length. Additionally, the difference between step lengths on the sound and prosthetic limbs was larger with the shortest arc length condition, although this difference was not statistically significant (p = 0.06 for main effect). It appears that prosthesis users may experience a drop-off effect at the end of single limb stance on prosthetic feet with short roll-over shape arc lengths, leading to increased loading and/or a shortened step on the contralateral limb.
Phenomena of Foamed Concrete under Rolling of Aircraft Wheels
NASA Astrophysics Data System (ADS)
Jiang, Chun-shui; Yao, Hong-yu; Xiao, Xian-bo; Kong, Xiang-jun; Shi, Ya-jie
2014-04-01
Engineered Material Arresting System (EMAS) is an effective technique to reduce hazards associated with aircraft overrunning runway. In order to ascertain phenomena of the foamed concrete used for EMAS under rolling of aircraft wheel, a specially designed experimental setup was built which employed Boeing 737 aircraft wheels bearing actual vertical loads to roll through the foamed concrete. A number of experiments were conducted upon this setup. It is discovered that the wheel rolls the concrete in a pure rolling manner and crushes the concrete downwards, instead of crushing it forward, as long as the concrete is not higher than the wheel axle. The concrete is compressed into powder in-situ by the wheel and then is brought to bottom of the wheel. The powder under the wheel is loose and thus is not able to sustain wheel braking. It is also found that after being rolled by the wheel the concrete exhibits either of two states, i.e. either 'crushed through' whole thickness of the concrete or 'crushed halfway', depending on combination of strength of the concrete, thickness of the concrete, vertical load the wheel carries, tire dimension and tire pressure. A new EMAS design concept is developed that if an EMAS design results in the 'crushed through' state for the main gears while the 'crushed halfway' state for the nose gear, the arresting bed would be optimal to accommodate the large difference in strength between the nose gear and the main gear of an aircraft.
NASA Astrophysics Data System (ADS)
Mishra, C.; Samantaray, A. K.; Chakraborty, G.
2016-05-01
Rolling element bearings are widely used in rotating machines and their faults can lead to excessive vibration levels and/or complete seizure of the machine. Under special operating conditions such as non-uniform or low speed shaft rotation, the available fault diagnosis methods cannot be applied for bearing fault diagnosis with full confidence. Fault symptoms in such operating conditions cannot be easily extracted through usual measurement and signal processing techniques. A typical example is a bearing in heavy rolling mill with variable load and disturbance from other sources. In extremely slow speed operation, variation in speed due to speed controller transients or external disturbances (e.g., varying load) can be relatively high. To account for speed variation, instantaneous angular position instead of time is used as the base variable of signals for signal processing purposes. Even with time synchronous averaging (TSA) and well-established methods like envelope order analysis, rolling element faults in rolling element bearings cannot be easily identified during such operating conditions. In this article we propose to use order tracking on the envelope of the wavelet de-noised estimate of the short-duration angle synchronous averaged signal to diagnose faults in rolling element bearing operating under the stated special conditions. The proposed four-stage sequential signal processing method eliminates uncorrelated content, avoids signal smearing and exposes only the fault frequencies and its harmonics in the spectrum. We use experimental data1
Fatigue Behavior of Ultrafine-Grained 5052 Al Alloy Processed Through Different Rolling Methods
NASA Astrophysics Data System (ADS)
Yogesha, K. K.; Joshi, Amit; Jayaganthan, R.
2017-05-01
In the present study, 5052 Al alloy was processed through different rolling methods to obtain ultrafine grains and its high-cycle fatigue behavior were investigated. The solution-treated Al-Mg alloys (AA 5052) were deformed through different methods such as cryorolling (CR), cryo groove rolling (CGR) and cryo groove rolling followed by warm rolling (CGW), up to 75% thickness reduction. The deformed samples were subjected to mechanical testing such as hardness, tensile and high-cycle fatigue (HCF) test at stress control mode. The CGW samples exhibit better HCF strength when compared to other conditions. The microstructure of the tested samples was characterized by optical microscopy, SEM fractography and TEM to understand the deformation behavior of deformed Al alloy. The improvement in fatigue life of CR and CGR samples is due to effective grain refinement, subgrain formations, and high dislocation density observed in the heavily deformed samples at cryogenic condition as observed from SEM and TEM analysis. However, in case of CGW samples, formation of nanoshear bands accommodates the applied strain during cyclic loading, thereby facilitating dislocation accumulation along with subgrain formations, leading to the high fatigue life. The deformed or broken impurity phase particles found in the deformed samples along with the precipitates that were formed during warm rolling also play a prominent role in enhancing the fatigue strength. These tiny particles hindered the dislocation movement by effectively pinning it at grain boundaries, thereby improving the resistance of crack propagation under cyclic load.
Friction losses in a lubricated thrust-loaded cageless angular-contract bearing
NASA Technical Reports Server (NTRS)
Townsend, D. P.; Allen, C. W.; Zaretsky, E. V.
1973-01-01
The NASA spinning torque apparatus was modified to measure the spinning torque on a cageless ball thrust bearing. Friction torque was measured for thrust loads varying from 44.5 to 403 newtons (10 to 90 lb) at speeds of 1000, 2000, and 3000 rpm. Tests were conducted with di-2-ethylhexyl sebacate and a synthetic paraffinic oil. These tests were run with either oil jet lubrication or with a thin surface film of lubricant only. An analytical model which included rolling resistance was developed and extended from previous models for spinning torque and lubricant rheology. The model was extended by the inclusion of rolling resistance. The computed values were in fair agreement with the experimental results and confirmed previous hypotheses that a thin lubricant film gives minimum bearing torque and an oil jet flow of a viscous lubricant will result in considerable rolling torque in addition to the torque due to ball spin.
40 CFR 471.34 - Pretreatment standards for existing sources (PSES).
Code of Federal Regulations, 2011 CFR
2011-07-01
... emulsions Chromium 0.063 0.026 Nickel 0.094 0.063 Fluoride 10.1 4.49 (c) Rolling contact cooling water... (pounds per million off-pounds) of nickel-cobalt rolled with water Chromium 0.028 0.011 Nickel 0.042 0.028... drawn with emulsions Chromium 0.036 0.014 Nickel 0.053 0.036 Fluoride 5.68 2.52 (g) Extrusion spent...
NASA five-ball fatigue tester: Over 20 years of research
NASA Technical Reports Server (NTRS)
Zaretsky, E. V.; Parker, R. J.; Anderson, W. J.
1981-01-01
Studies were conducted to determine the effect on rolling-element fatigue life of contact angle, material hardness, chemistry, heat treatment and processing, lubricant type and chemistry, elastohydrodynamic film thickness, deformation and wear, vacuum, and temperature as well as Hertzian and residual stresses. Correlation was established between the results obtained using the five-ball tester and those obtained with full scale rolling-element bearings.
NASA Astrophysics Data System (ADS)
Zhu, Jian Jun; Ahmed, A. K. W.; Rakheja, Subhash; Khajepour, Amir
2010-12-01
In practice, it is not very uncommon to find railway track systems with unsupported sleepers due to the uneven settlement of a ballasted track system. These unsupported sleepers are among the major vibration excitations for a train and track system when a train moves forwards on a track. The vibration induced by unsupported sleepers can cause a large dynamic contact force between wheels and rails. For heavily loaded high-speed trains, the deteriorated sleeper support may lead to accelerated degradation of the railway track and vehicle components, and may thus impose safety risk to the operation. This paper presents analyses of a coupled vehicle-track assembly consisting of a roll plane vehicle model, a continuous track system model and an adaptive wheel-rail contact model. In order to improve the simulation efficiency, a numerical approach based on the central finite difference method is proposed in this investigation. The developed model assembly and proposed simulation method are utilised to simulate the vehicle-track dynamic interaction in the presence of unsupported sleepers. The dynamic response in terms of the dynamic wheel-rail interaction force due to one or multiple unsupported sleepers is studied. Important factors influencing the dynamic wheel-rail interaction force in the presence of sleeper voids are also investigated. The results show that the vehicle speed, the gap size and the number of unsupported sleepers primarily dictate the magnitude of impact load which can be significant.
Real-time observation of slipping and rolling events in DLC wear nanoparticles.
Sato, Takaaki; Nabeya, Shinsuke; Menon, Vivek; Ishida, Tadashi; Kometani, Reo; Fujita, Hiroyuki
2018-08-10
Real-time observation of the actual contact area between surface interfaces at the nanoscale enables more precise examination of what happens during friction. We have combined micro electro mechanical system actuators and transmission electron microscopy (TEM) observation, to both apply and measure forces across nanoscale junctions and contacts. This custom-designed experimental system can measure the true surface area of a contact site from a lateral viewpoint, while simultaneously measuring the friction force. We scratched surfaces coated with diamond like carbon, a classical solid lubricant, and observed the formation of wear particles that slipped and rolled between the interface. TEM images showed that the shape of the surface at the nanoscale underwent permanent deformation when acted upon with forces as low as several tens of nano newtons. The results demonstrated the limitations of friction analyses relying on friction force measurements without real-time surface profiling.
A Baseline Load Schedule for the Manual Calibration of a Force Balance
NASA Technical Reports Server (NTRS)
Ulbrich, N.; Gisler, R.
2013-01-01
A baseline load schedule for the manual calibration of a force balance was developed that takes current capabilities at the NASA Ames Balance Calibration Laboratory into account. The load schedule consists of 18 load series with a total of 194 data points. It was designed to satisfy six requirements: (i) positive and negative loadings should be applied for each load component; (ii) at least three loadings should be applied between 0 % and 100 % load capacity; (iii) normal and side force loadings should be applied at the forward gage location, the aft gage location, and the balance moment center; (iv) the balance should be used in UP and DOWN orientation to get axial force loadings; (v) the constant normal and side force approaches should be used to get the rolling moment loadings; (vi) rolling moment loadings should be obtained for 0, 90, 180, and 270 degrees balance orientation. Three different approaches are also reviewed that may be used to independently estimate the natural zeros of the balance. These three approaches provide gage output differences that may be used to estimate the weight of both the metric and non-metric part of the balance. Manual calibration data of NASA s MK29A balance and machine calibration data of NASA s MC60D balance are used to illustrate and evaluate different aspects of the proposed baseline load schedule design.
NASA Technical Reports Server (NTRS)
Dietrich, M. W.; Zaretsky, E. V.
1975-01-01
Rolling-element fatigue tests were conducted with 12.7-mm-(1/2-in.-) diameter AISI 52100 steel balls in the NASA five-ball fatigue tester, with a maximum hertz stress of 5500 mN/m2 (800 000 psi), a shaft speed of 4750 rpm, lubricant temperature of 200 K (360 R), a contact angle of 20 deg, using four fluorinated ether lubricants of varying viscosities. No statistically significant differences in rolling-element fatigue life occurred using the four viscosity levels. Elastohydrodynamic calculations indicate that values of the lubricant film parameter were approximately 2 or greater.
Bearing, gearing, and lubrication technology
NASA Technical Reports Server (NTRS)
Anderson, W. J.
1978-01-01
Results of selected NASA research programs on rolling-element and fluid-film bearings, gears, and elastohydrodynamic lubrication are reported. Advances in rolling-element bearing material technology, which have resulted in a significant improvement in fatigue life, and which make possible new applications for rolling bearings, are discussed. Research on whirl-resistant, fluid-film bearings, suitable for very high-speed applications, is discussed. An improved method for predicting gear pitting life is reported. An improved formula for calculating the thickness of elastohydrodynamic films (the existence of which help to define the operating regime of concentrated contact mechanisms such as bearings, gears, and cams) is described.
NASA Astrophysics Data System (ADS)
Overhagen, Christian; Mauk, Paul Josef
2018-05-01
For flat rolled products, the thickness profile in the transversal direction is one of the most important product properties. For further processing, a defined crown of the product is necessary. In the rolling process, several mechanical and thermal influences interact with each other to form the strip shape at the roll gap exit. In the present analysis, a process model for rolling of strip and sheet is presented. The core feature of the process model is a two-dimensional stress distribution model based on von Karman's differential equation. Sub models for the mechanical influences of work roll flattening as well as work and backup roll deflection and the thermal influence of work roll expansion have been developed or extended. The two-dimensional stress distribution serves as an input parameter for the roll deformation models. For work roll flattening, a three-dimensional model based on the Boussinesq problem is adopted, while the work and backup roll deflection, including contact flattening is calculated by means of finite beam elements. The thermal work roll crown is calculated with help of an axisymmetric numerical solution of the heat equation for the work roll, considering azimuthal averaging for the boundary conditions at the work roll surface. Results are presented for hot rolling of a strip in a seven-stand finishing train of a hot strip mill, showing the calculated evolution of the strip profile. A variation of the strip profile from the first to the 20th rolled strip is shown. This variation is addressed to the progressive increase of work roll temperature during the first 20 strips. It is shown that a CVC® system can lead to improvements in strip profile and therefore flatness.
NASA Technical Reports Server (NTRS)
Lee, Chinwai; Lin, Hsiang Hsi; Oswald, Fred B.; Townsend, Dennis P.
1990-01-01
A computer simulation for the dynamic response of high-contact-ratio spur gear transmissions is presented. High contact ratio gears have the potential to produce lower dynamic tooth loads and minimum root stress but they can be sensitive to tooth profile errors. The analysis presented examines various profile modifications under realistic loading conditions. The effect of these modifications on the dynamic load (force) between mating gear teeth and the dynamic root stress is presented. Since the contact stress is dependent on the dynamic load, minimizing dynamic loads will also minimize contact stresses. It is shown that the combination of profile modification and the applied load (torque) carried by a gear system has a significant influence on gear dynamics. The ideal modification at one value of applied load will not be the best solution for a different load. High-contact-ratio gears were found to require less modification than standard low-contact-ratio gears. High-contact-ratio gears are more adversely affected by excess modification than by under modification. In addition, the optimal profile modification required to minimize the dynamic load (hence the contact stress) on a gear tooth differs from the optimal modification required to minimize the dynamic root (bending) stress. Computer simulation can help find the design tradeoffs to determine the best profile modification to satisfy the conflicting constraints of minimizing both the load and root stress in gears which must operate over a range of applied loads.
NASA Technical Reports Server (NTRS)
Lichtenstein, J. H.
1978-01-01
An analytical method of computing the averaging effect of wing-span size on the loading of a wing induced by random turbulence was adapted for use on a digital electronic computer. The turbulence input was assumed to have a Dryden power spectral density. The computations were made for lift, rolling moment, and bending moment for two span load distributions, rectangular and elliptic. Data are presented to show the wing-span averaging effect for wing-span ratios encompassing current airplane sizes. The rectangular wing-span loading showed a slightly greater averaging effect than did the elliptic loading. In the frequency range most bothersome to airplane passengers, the wing-span averaging effect can reduce the normal lift load, and thus the acceleration, by about 7 percent for a typical medium-sized transport. Some calculations were made to evaluate the effect of using a Von Karman turbulence representation. These results showed that using the Von Karman representation generally resulted in a span averaging effect about 3 percent larger.
Determination Of Slitting Criterion Parameter During The Multi Slit Rolling Process
NASA Astrophysics Data System (ADS)
Stefanik, Andrzej; Mróz, Sebastian; Szota, Piotr; Dyja, Henryk
2007-05-01
The rolling of rods with slitting of the strip calls for the use of special mathematical models that would allow for the separating of metal. A theoretical analysis of the effect of the gap of slitting rollers on the process of band slitting during the rolling of 20 mm and 16 mm-diameter ribbed rods rolled according to the two-strand technology was carried out within this study. For the numerical modeling of strip slitting the Forge3® computer program was applied. The strip slitting in the simulation is implemented by the algorithm of removing elements in which the critical value of the normalized Cockroft - Latham criterion has been exceeded. To determine the value of the criterion the inverse method was applied. Distance between a point, where crack begins, and point of contact metal with the slitting rollers was the parameter for analysis. Power and rolling torque during slit rolling were presented. Distribution and change of the stress in strand while slitting were presented.
Roll-to-roll light directed electrophoretic deposition system and method
Pascall, Andrew J.; Kuntz, Joshua
2017-06-06
A roll-to-roll light directed electrophoretic deposition system and method advances a roll of a flexible electrode web substrate along a roll-to-roll process path, where a material source is positioned to provide on the flexible electrode web substrate a thin film colloidal dispersion of electrically charged colloidal material dispersed in a fluid. A counter electrode is also positioned to come in contact with the thin film colloidal dispersion opposite the flexible electrode web substrate, where one of the counter electrode and the flexible electrode web substrate is a photoconductive electrode. A voltage source is connected to produce an electric potential between the counter electrode and the flexible electrode web substrate to induce electrophoretic deposition on the flexible electrode web substrate when the photoconductive electrode is rendered conductive, and a patterned light source is arranged to illuminate the photoconductive electrode with a light pattern and render conductive illuminated areas of the photoconductive electrode so that a patterned deposit of the electrically charged colloidal material is formed on the flexible electrode web substrate.
Rolling Friction on a Wheeled Laboratory Cart
ERIC Educational Resources Information Center
Mungan, Carl E.
2012-01-01
A simple model is developed that predicts the coefficient of rolling friction for an undriven laboratory cart on a track that is approximately independent of the mass loaded onto the cart and of the angle of inclination of the track. The model includes both deformation of the wheels/track and frictional torque at the axles/bearings. The concept of…
NASA Technical Reports Server (NTRS)
Youngquist, Robert; Mata, Carlos; Cox, Robert
2005-01-01
An electronic instrument has been developed as a prototype of a portable crane-load contact sensor. Such a sensor could be helpful in an application in which the load rests on a base in a horizontal position determined by vertical alignment pins (see Figure 1). If the crane is not positioned to lift the load precisely vertically, then the load can be expected to swing once it has been lifted clear of the pins. If the load is especially heavy, large, and/or fragile, it could hurt workers and/or damage itself and nearby objects. By indicating whether the load remains in contact with the pins when it has been lifted a fraction of the length of the pins, the crane-load contact sensor helps the crane operator determine whether it is safe to lift the load clear of the pins: If there is contact, then the load is resting against the sides of the pins and, hence, it may not be safe to lift; if contact is occasionally broken, then the load is probably not resting against the pins, so it should be safe to lift. It is assumed that the load and base, or at least the pins and the surfaces of the alignment holes in the load, are electrically conductive, so the instrument can use electrical contact to indicate mechanical contact. However, DC resistance cannot be used as an indicator of contact for the following reasons: The load and the base are both electrically grounded through cables (the load is grounded through the lifting cable of the crane) to prevent discharge of static electricity. In other words, the DC resistance between the load and the pins is always low, as though they were always in direct contact. Therefore, instead of DC resistance, the instrument utilizes the AC electrical impedance between the pins and the load. The signal frequency used in the measurement is high enough (.1 MHz) that the impedance contributed by the cables and the electrical ground network of the building in which the crane and the base are situated is significantly greater than the contact impedance between the pins and the load. The instrument includes a signal generator and voltage-measuring circuitry, and is connected to the load and the base as shown in Figure 2. The output of the signal generator (typically having amplitude of the order of a volt) is applied to the load via a 50-resistor, and the voltage between the load and the pins is measured. When the load and the pins are not in contact, the impedance between them is relatively high, causing the measured voltage to exceed a threshold value. When the load and the pins are in contact, the impedance between them falls to a much lower value, causing the voltage to fall below the threshold value. The voltage-measuring circuitry turns on a red light-emitting diode (LED) to indicate the lower-voltage/ contact condition. Whenever the contact has been broken and the non-contact/higher-voltage condition has lasted for more than 2 ms, the voltage-measuring circuitry indicates this condition by blinking a green LED.
NASA Astrophysics Data System (ADS)
Tanaka, Y.; Endo, M.; Moriyama, S.
2017-05-01
Delamination failure is one of the most important engineering problems. This failure can frequently be detrimental to rolling contact machine elements such as bearings, gear wheels, etc. This phenomenon, called rolling contact fatigue, has a close relationship not only with opening-mode but also with shear-mode fatigue crack growth. The crack face interference is known to significantly affect the shear-mode fatigue crack propagation and its threshold behavior. Quantitative investigation on friction and wear at fatigue crack faces in the material is essentially impossible. Previously, thus, a novel ring-on-ring test by making use of fatigue testing machine was proposed to simulate a cyclic reciprocating sliding contact of crack surfaces. However, this test procedure had some problems. For instance, in order to achieve the uniform contact at the start of test, the rubbing of specimens must be conducted in advance. By this treatment, the specimen surfaces were already damaged before the test. In this study, an improvement of experimental method was made to perform the test using the damage-free specimens. The friction and wear properties for heat-treated high carbon-chromium bearing steel were investigated with this new method and the results were compared to the results obtained by using the initially damaged specimens.
Further studies on liquid sloshing
NASA Astrophysics Data System (ADS)
Lou, Y. K.; Wu, M. C.; Lee, C. K.
1985-03-01
Sloshing is especially of concern for LNG Carriers and large oil tankers because of their tank size and geometrical configurations and the likelihood of near resonant excitation of the contained liquid. When a tank is under multidegree of freedom excitations the phase relationships among the excitations might have a significant effect on sloshing loads. An analytical solution is obtained for liquid sloshing under combined excitations with phase difference. A series of physical model tests has also been conducted to investigate the effects of the phase angle on liquid sloshing loads for tanks under combined roll and sway and roll and heave excitations. The experimental results are in general agreement with the analytical findings.
Loads Model Development and Analysis for the F/A-18 Active Aeroelastic Wing Airplane
NASA Technical Reports Server (NTRS)
Allen, Michael J.; Lizotte, Andrew M.; Dibley, Ryan P.; Clarke, Robert
2005-01-01
The Active Aeroelastic Wing airplane was successfully flight-tested in March 2005. During phase 1 of the two-phase program, an onboard excitation system provided independent control surface movements that were used to develop a loads model for the wing structure and wing control surfaces. The resulting loads model, which was used to develop the control laws for phase 2, is described. The loads model was developed from flight data through the use of a multiple linear regression technique. The loads model input consisted of aircraft states and control surface positions, in addition to nonlinear inputs that were calculated from flight-measured parameters. The loads model output for each wing consisted of wing-root bending moment and torque, wing-fold bending moment and torque, inboard and outboard leading-edge flap hinge moment, trailing-edge flap hinge moment, and aileron hinge moment. The development of the Active Aeroelastic Wing loads model is described, and the ability of the model to predict loads during phase 2 research maneuvers is demonstrated. Results show a good match to phase 2 flight data for all loads except inboard and outboard leading-edge flap hinge moments at certain flight conditions. The average load prediction errors for all loads at all flight conditions are 9.1 percent for maximum stick-deflection rolls, 4.4 percent for 5-g windup turns, and 7.7 percent for 4-g rolling pullouts.
Effect of contact ratio on spur gear dynamic load
NASA Technical Reports Server (NTRS)
Liou, Chuen-Huei; Lin, Hsiang Hsi; Oswald, Fred B.; Townsend, Dennis P.
1992-01-01
A computer simulation is presented which shows how the gear contact ratio affects the dynamic load on a spur gear transmission. The contact ratio can be affected by the tooth addendum, the pressure angle, the tooth size (diametral pitch), and the center distance. The analysis presented was performed using the NASA gear dynamics code, DANST. In the analysis, the contact ratio was varied over the range 1.20 to 2.40 by changing the length of the tooth addendum. In order to simplify the analysis, other parameters related to contact ratio were held constant. The contact ratio was found to have a significant influence on gear dynamics. Over a wide range of operating speeds, a contact ratio close to 2.0 minimized dynamic load. For low contact ratio gears (contact ratio less than 2.0), increasing the contact ratio reduced the gear dynamic load. For high contact ratio gears (contact ratio = or greater than 2.0), the selection of contact ratio should take into consideration the intended operating speeds. In general, high contact ratio gears minimized dynamic load better than low contact ratio gears.
14 CFR 23.493 - Braked roll conditions.
Code of Federal Regulations, 2010 CFR
2010-01-01
... and ground contacts must be those described in § 23.479 for level landings. (c) A drag reaction equal to the vertical reaction at the wheel multiplied by a coefficient of friction of 0.8 must be applied at the ground contact point of each wheel with brakes, except that the drag reaction need not exceed...
14 CFR 23.493 - Braked roll conditions.
Code of Federal Regulations, 2011 CFR
2011-01-01
... and ground contacts must be those described in § 23.479 for level landings. (c) A drag reaction equal to the vertical reaction at the wheel multiplied by a coefficient of friction of 0.8 must be applied at the ground contact point of each wheel with brakes, except that the drag reaction need not exceed...
Ocular Drug Delivery through pHEMA-Hydrogel Contact Lenses Co-Loaded with Lipophilic Vitamins
NASA Astrophysics Data System (ADS)
Lee, Dasom; Cho, Seungkwon; Park, Hwa Sung; Kwon, Inchan
2016-09-01
Ocular drug delivery through hydrogel contact lenses has great potential for the treatment of ocular diseases. Previous studies showed that the loading of lipophilic vitamin E to silicone-hydrogel contact lenses was beneficial in ocular drug delivery. We hypothesized that vitamin E loading to another type of popular hydrogel contact lenses, pHEMA-hydrogel contact lenses, improves ocular drug delivery by increasing the drug loading or the duration of drug release. Loading of vitamin E to pHEMA-hydrogel contact lenses significantly increased the loading of a hydrophilic drug surrogate (Alexa Fluor 488 dye) and two hydrophilic glaucoma drugs (timolol and brimonidine) to the lenses by 37.5%, 19.1%, and 18.7%, respectively. However, the release duration time was not significantly altered. Next, we hypothesized that the lipophilic nature of vitamin E attributes to the enhanced drug loading. Therefore, we investigated the effects of co-loading of another lipophilic vitamin, vitamin A, on drug surrogate delivery. We found out that vitamin A loading also increased the loading of the drug surrogate to pHEMA-hydrogel contact lenses by 30.3%. Similar to vitamin E loading, vitamin A loading did not significantly alter the release duration time of the drug or drug surrogate.
A Baseline Load Schedule for the Manual Calibration of a Force Balance
NASA Technical Reports Server (NTRS)
Ulbrich, N.; Gisler, R.
2013-01-01
A baseline load schedule for the manual calibration of a force balance is defined that takes current capabilities at the NASA Ames Balance Calibration Laboratory into account. The chosen load schedule consists of 18 load series with a total of 194 data points. It was designed to satisfy six requirements: (i) positive and negative loadings should be applied for each load component; (ii) at least three loadings should be applied between 0 % and 100 % load capacity; (iii) normal and side force loadings should be applied at the forward gage location, aft gage location, and the balance moment center; (iv) the balance should be used in "up" and "down" orientation to get positive and negative axial force loadings; (v) the constant normal and side force approaches should be used to get the rolling moment loadings; (vi) rolling moment loadings should be obtained for 0, 90, 180, and 270 degrees balance orientation. In addition, three different approaches are discussed in the paper that may be used to independently estimate the natural zeros, i.e., the gage outputs of the absolute load datum of the balance. These three approaches provide gage output differences that can be used to estimate the weight of both the metric and non-metric part of the balance. Data from the calibration of a six-component force balance will be used in the final manuscript of the paper to illustrate characteristics of the proposed baseline load schedule.
A fiber-optic technique for the measurement of contact angle in a clearance-fit pin-loaded hole
NASA Technical Reports Server (NTRS)
Prabhakaran, R.; Naik, R. A.
1987-01-01
A fiber-optic technique for measuring contact angle during pin loading of a specimen is proposed. The experimental design and procedures for loading a 49.8-mm-diameter instrumented pin into an quasi-isotropic graphite-epoxy specimen are described. The optical fiber was located just above the surface of the pin outer diameter in order to obtain accurate pin-hole contact-angle measurements at increasing load levels. The movement of the optical fiber through the no-contact, contact, and no-contact regions is discussed; the photodiode output decreased monotonically as the fiber moved from the no-contact to the contact region and then decreased monotonically as the fiber moved from the contact region to the no-contact region. Variations in the contact angle measurements are examined as function of applied load level. The measurements are compared to contact angle values obtained using a finite element analysis and an electrical technique; it is determined that the data correlate well.
High aspect ratio catalytic reactor and catalyst inserts therefor
Lin, Jiefeng; Kelly, Sean M.
2018-04-10
The present invention relates to high efficient tubular catalytic steam reforming reactor configured from about 0.2 inch to about 2 inch inside diameter high temperature metal alloy tube or pipe and loaded with a plurality of rolled catalyst inserts comprising metallic monoliths. The catalyst insert substrate is formed from a single metal foil without a central supporting structure in the form of a spiral monolith. The single metal foil is treated to have 3-dimensional surface features that provide mechanical support and establish open gas channels between each of the rolled layers. This unique geometry accelerates gas mixing and heat transfer and provides a high catalytic active surface area. The small diameter, high aspect ratio tubular catalytic steam reforming reactors loaded with rolled catalyst inserts can be arranged in a multi-pass non-vertical parallel configuration thermally coupled with a heat source to carry out steam reforming of hydrocarbon-containing feeds. The rolled catalyst inserts are self-supported on the reactor wall and enable efficient heat transfer from the reactor wall to the reactor interior, and lower pressure drop than known particulate catalysts. The heat source can be oxygen transport membrane reactors.
The effect of track load correlation on ground-borne vibration from railways
NASA Astrophysics Data System (ADS)
Ntotsios, Evangelos; Thompson, David; Hussein, Mohammed
2017-08-01
In predictions of ground-borne vibration from railways, it is generally assumed that the unevenness profile of the wheel and rail is fully correlated between the two rails and the two wheels of an axle. This leads to identical contact forces at the two rails and can allow further simplifications of the vehicle model, the track model and the track/ground interface conditions. In the present paper, the level of correlation of the track loading at the wheel/rail interface due to rail unevenness and its influence on predictions of ground vibration is investigated. The extent to which the unevenness of the two rails is correlated has been estimated from measurements of track geometry obtained with track recording vehicles for four different tracks. It was found that for wavelengths longer than about 3 m the unevenness of the two rails can be considered to be strongly correlated and in phase. To investigate the effect of this on ground vibration, an existing model expressed in the wavenumber-frequency domain is extended to include separate inputs on the two rails. The track is modelled as an infinite invariant linear structure resting on an elastic stratified half-space. This is excited by the gravitational loading of a passing train and the irregularity of the contact surfaces between the wheels and the rails. The railway model is developed in this work to be versatile so that it can account or discard the effect of load correlations on the two rails beside the effects of variation of the tractions across the width of the track-ground interface and the vehicle sprung mass, as well as the roll motion of the sleepers and the axle. A comparative analysis is carried out on the influence of these factors on the response predictions using numerical simulations. It is shown that, when determining the vibration in the free field, it is important to include in the model the traction variation across the track-ground interface and the non-symmetrical loading at the two rails that occurs for unevenness wavelengths shorter than about 3 m.
Field Testing and Load Rating Report, Bridge S-1090
2008-05-01
alignment to the road- way. The steel beams are rolled sections with cover plates welded to the bottom flange. Shear stud connectors were specified...live-load and superimposed dead-loads. In this case, there was no wearing surface on the bridge, and all dead-loads were applied to the...and live-load at Section G_Standard MCap 1021.9 kN-m Superimposed dead-load applied to composite model— wearing surface and railing DW 0.0 kN-m
Department home page Immunizations Search: Search Toggle navigation Medical Services Disease Control Facebook Contacts CoverageRates Diseases Immunization Homepage Immunization Honor Roll HPV NDIIS Medical Providers
Flex-gear electrical power transmission
NASA Technical Reports Server (NTRS)
Vranish, John; Peritt, Jonathan
1993-01-01
This study was conducted to develop an alternative way of transferring electricity across a continuously rotating joint, with little wear and the potential for low electrical noise. The problems with wires, slip rings, electromagnetic couplings, and recently invented roll-rings are discussed. Flex-gears, an improvement of roll-rings, are described. An entire class of flexgear devices is developed. Finally, the preferred flex-gear device is optimized for maximum electrical contact and analyzed for average mechanical power loss and maximum stress. For a device diameter of six inches, the preferred device is predicted to have a total electrical contact area of 0.066 square inches. In the preferred device, a small amount of internal sliding produces a 0.003 inch-pound torque that resists the motion of the device.
Superhydrophobic coatings on wood substrate for self-cleaning and EMI shielding
NASA Astrophysics Data System (ADS)
Xing, Yingjie; Xue, Yaping; Song, Jinlong; Sun, Yankui; Huang, Liu; Liu, Xin; Sun, Jing
2018-04-01
A layer of superhydrophobic coating having good electromagnetic shielding and self-cleaning performance was fabricated on a wood surface through an electroless copper plated process. The superhydrophobic property of the wood surface was measured by contact angle (CA) and roll-off angle (RA) measurements. The microstructure and chemical composition of the superhydrophobic coating were analyzed by scanning electron microscopy (SEM), energy dispersive spectrometer (EDS) and X-ray diffraction (XRD). The analysis revealed that the microscale particles were uniformly distributed on the wood surface and the main component of the coating is metallic copper. The as-prepared Cu coatings on wood substrate exhibit a good superhydrophobicity with water contact angle about 160° and rolling angle less than 5°.
Measurement of contact angle in a clearance-fit pin-loaded hole
NASA Technical Reports Server (NTRS)
Prabhakaran, R.; Naik, R. A.
1986-01-01
A technique which measures load-contact variation in a clearance-fit, pin-loaded hole is presented in detail. A steel instrumented pin, which activates a make-or-break electrical circuit in the pin-hole contact region, was inserted into one aluminum and one polycarbonate specimen. The resulting load-contact variations are indicated schematically. The ability to accurately determine the arc of contact at any load was crucial to this measurement. It is noted that this simple experimental technique is applicable to both conducting and nonconducting materials.
NASA Astrophysics Data System (ADS)
Ignatenko, Yaroslav; Bocharov, Oleg; May, Roland
2017-10-01
Solids transport is a major issue in high angle wells. Bed-load forms by sediment while transport and accompanied by intermittent contact with stream-bed by rolling, sliding and bouncing. The study presents the results of a numerical simulation of a laminar steady-state flow around a particle at rest and in free motion in a shear flow of Herschel-Bulkley fluid. The simulation was performed using the OpenFOAM open-source CFD package. A criterion for particle incipient motion and entrainment into suspension from cuttings bed (Shields criteria) based on forces and torques balance is discussed. Deflection of the fluid parameters from the ones of Newtonian fluid leads to decreasing of the drag and lift forces and the hydrodynamic moment. Thus, the critical shear stress (Shields parameter) for the considered non-Newtonian fluid must be greater than the one for a Newtonian fluid.
SCC of 2304 Duplex Stainless Steel—Microstructure, Residual Stress and Surface Grinding Effects
Zhou, Nian; Peng, Ru Lin; Schönning, Mikael; Pettersson, Rachel
2017-01-01
The influence of surface grinding and microstructure on chloride induced stress corrosion cracking (SCC) behavior of 2304 duplex stainless steel has been investigated. Grinding operations were performed both parallel and perpendicular to the rolling direction of the material. SCC tests were conducted in boiling magnesium chloride according to ASTM G36; specimens were exposed both without external loading and with varied levels of four-point bend loading. Residual stresses were measured on selected specimens before and after exposure using the X-ray diffraction technique. In addition, in-situ surface stress measurements subjected to four-point bend loading were performed to evaluate the deviation between the actual applied loading and the calculated values according to ASTM G39. Micro-cracks, initiated by grinding induced surface tensile residual stresses, were observed for all the ground specimens but not on the as-delivered surfaces. Loading transverse to the rolling direction of the material increased the susceptibility to chloride induced SCC. Grinding induced tensile residual stresses and micro-notches in the as-ground surface topography were also detrimental. PMID:28772582
SCC of 2304 Duplex Stainless Steel-Microstructure, Residual Stress and Surface Grinding Effects.
Zhou, Nian; Peng, Ru Lin; Schönning, Mikael; Pettersson, Rachel
2017-02-23
The influence of surface grinding and microstructure on chloride induced stress corrosion cracking (SCC) behavior of 2304 duplex stainless steel has been investigated. Grinding operations were performed both parallel and perpendicular to the rolling direction of the material. SCC tests were conducted in boiling magnesium chloride according to ASTM G36; specimens were exposed both without external loading and with varied levels of four-point bend loading. Residual stresses were measured on selected specimens before and after exposure using the X-ray diffraction technique. In addition, in-situ surface stress measurements subjected to four-point bend loading were performed to evaluate the deviation between the actual applied loading and the calculated values according to ASTM G39. Micro-cracks, initiated by grinding induced surface tensile residual stresses, were observed for all the ground specimens but not on the as-delivered surfaces. Loading transverse to the rolling direction of the material increased the susceptibility to chloride induced SCC. Grinding induced tensile residual stresses and micro-notches in the as-ground surface topography were also detrimental.
NASA Astrophysics Data System (ADS)
Shatokhin, V. F.
2014-07-01
The possibility to stabilize the developing asynchronous rolling of the rotor over the stator under the conditions of power unit protections coming in action with different response times is considered. Asynchronous rolling of the rotor over the stator may develop when the rotating rotor comes in contact with the stator at high amplitudes of vibration caused by an abrupt loss of rotor balancing, by forced or self-excited vibration of the rotor, and by other factors. The danger of asynchronous rolling is connected with almost instantaneous development of self-excited vibration of the rotor when it comes in contact with the stator and with the rotor vibration amplitudes and forces of interaction between the rotor and stator dangerous for the turbine unit integrity. It is assumed that the turbine unit protection systems come in action after the arrival of signal of exceeding the permissible vibration level and produce commands to disconnect the generator from the grid, and to stop the supply of working fluid into the flow path, due to which an accelerating torque ceases to act on the turbine unit shaft. The protection system response speed is determined by a certain time t = ABtime that is taken for its components to come in action from the commencement of the event (application of the signal) to closure of the stop valves. The time curves of the main rolling parameters as functions of the ABtime value are presented. It is shown that the response time of existing protection systems is not sufficient for efficiently damping the rolling phenomenon, although the use of an electrical protection system (with the response time equal to 0.40-0.45 s) may have a positive effect on stabilizing the vibration amplitudes to a certain extent during the rolling and on smoothing its dangerous consequences. The consequences of rotor rolling over the stator can be efficiently mitigated by increasing the energy losses in the rotor-stator system (especially in the stator) and by fulfilling the recommendations of the machinery unit catastrophe prevention system.
14 CFR 27.493 - Braked roll conditions.
Code of Federal Regulations, 2010 CFR
2010-01-01
... vertical load must be based on a load factor of at least— (1) 1.33, for the attitude specified in § 27.479(a)(1); and (2) 1.0 for the attitude specified in § 27.479(a)(2); and (b) The structure must be...
14 CFR 29.493 - Braked roll conditions.
Code of Federal Regulations, 2010 CFR
2010-01-01
... vertical load must be based on a load factor of at least— (1) 1.33, for the attitude specified in § 29.479(a)(1); and (2) 1.0, for the attitude specified in § 29.479(a)(2); and (b) The structure must be...
Roll type conducting polymer legs for rigid-flexible thermoelectric generator
NASA Astrophysics Data System (ADS)
Park, Teahoon; Lim, Hanwhuy; Hwang, Jong Un; Na, Jongbeom; Lee, Hyunki; Kim, Eunkyoung
2017-07-01
A roll-type conducting polymer film was explored as a flexible organic p-type thermoelectric leg using poly(3,4-ethylenedioxythiophene) (PEDOT) doped with tosylate. The PEDOT films were prepared through solution casting polymerization and rolled up for a roll-type leg. Due to the high flexibility, the roll-type PEDOT leg enabled easy contact to both top and bottom electrodes. Simulation on the dynamic heat transfer and convective cooling for a vertically roosted rod- and roll-type PEDOT leg showed that the temperature difference (ΔT) between the hot and cold sides of the leg was much higher in the roll than that of the rod. The PEDOT legs were integrated with n-type Bi2Te3 blocks, to give a 36-couple rigid-flexible thermoelectric generator (RF-TEG). The maximum output voltage from the 36-couple RF-TEG under a ΔT of 7.9 K was determined as 36.7 mV along with a high output power of 115 nW. A wearable RF-TEG was prepared upon the combination of the 36-couple RF-TEG with an arm warmer, to afford an output voltage of 10.6 mV, which was generated constantly and steadily from human wrist heat.
Mapping cell surface adhesion by rotation tracking and adhesion footprinting
NASA Astrophysics Data System (ADS)
Li, Isaac T. S.; Ha, Taekjip; Chemla, Yann R.
2017-03-01
Rolling adhesion, in which cells passively roll along surfaces under shear flow, is a critical process involved in inflammatory responses and cancer metastasis. Surface adhesion properties regulated by adhesion receptors and membrane tethers are critical in understanding cell rolling behavior. Locally, adhesion molecules are distributed at the tips of membrane tethers. However, how functional adhesion properties are globally distributed on the individual cell’s surface is unknown. Here, we developed a label-free technique to determine the spatial distribution of adhesive properties on rolling cell surfaces. Using dark-field imaging and particle tracking, we extract the rotational motion of individual rolling cells. The rotational information allows us to construct an adhesion map along the contact circumference of a single cell. To complement this approach, we also developed a fluorescent adhesion footprint assay to record the molecular adhesion events from cell rolling. Applying the combination of the two methods on human promyelocytic leukemia cells, our results surprisingly reveal that adhesion is non-uniformly distributed in patches on the cell surfaces. Our label-free adhesion mapping methods are applicable to the variety of cell types that undergo rolling adhesion and provide a quantitative picture of cell surface adhesion at the functional and molecular level.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joshi, Vineet V.; Paxton, Dean M.; Lavender, Curt A.
Over the past several years Pacific Northwest National Laboratory (PNNL) has been actively involved in supporting the U.S. Department of Energy National Nuclear Security Administration Office of Material Management and Minimization (formerly Global Threat Reduction Initiative). The U.S. High- Power Research Reactor (USHPRR) project is developing alternatives to existing highly enriched uranium alloy fuel to reduce the proliferation threat. One option for a high-density metal fuel is uranium alloyed with 10 wt% molybdenum (U-10Mo). Forming the U-10Mo fuel plates/foils via rolling is an effective technique and is actively being pursued as part of the baseline manufacturing process. The processing ofmore » these fuel plates requires systematic investigation/understanding of the pre- and post-rolling microstructure, end-state mechanical properties, residual stresses, and defects, their effect on the mill during processing, and eventually, their in-reactor performance. In the work documented herein, studies were conducted to determine the effect of cold and hot rolling the as-cast and homogenized U-10Mo on its microstructure and hardness. The samples were homogenized at 900°C for 48 h, then later annealed for several durations and temperatures to investigate the effect on the material’s microstructure and hardness. The rolling of the as-cast plate, both hot and cold, was observed to form a molybdenum-rich and -lean banded structure. The cold rolling was ineffective, and in some cases exacerbated the as-cast defects. The grains elongated along the rolling direction and formed a pancake shape, while the carbides fractured perpendicularly to the rolling direction and left porosity between fractured particles of UC. The subsequent annealing of these samples at sub-eutectoid temperatures led to rapid precipitation of the ' lamellar phase, mainly in the molybdenum-lean regions. Annealing the samples above the eutectoid temperature did not refine the grain size or the banded microstructure. However, annealing the samples led to quick recovery in hardness as evidenced by a drop in Vickers hardness of 20%. Hot rolling was performed at 650 and 800°C. The hot-rolling mill loads (load separation force) were approximately 40 to 50% less than the cold-rolling for the same reduction and thickness. It was observed that hot rolling the samples with 50% or more reduction in thickness were responsible for dynamic recrystallization in the hot-rolled samples and led to grain refinement. Unlike the cold-rolled samples, the hot-rolled samples did not fracture the carbides and appeared to heal the casting defects. The recovery phenomenon was similar to the cold-rolled samples above the eutectoid temperatures, but owing to the refined grain size, the precipitation of the lamellar phase was far more rapid in these samples and the hardness increased more rapidly than in the cold rolled sample when heated below the eutectoid temperature. The data generated from these rolling efforts has been used to make the process modeling efforts more robust and applicable to all USHPRR partner rolling mills. The flow stress for cold rolling the samples was determined to be between 170-190 ksi, with frictional forces between 0.2 and 0.4 for the PNNL mill. The measured roll separation forces and those simulated using finite element methods for hot and cold rolling for the PNNL rolling mill were in good agreement.« less
Leukotriene B4-loaded microspheres: a new therapeutic strategy to modulate cell activation
Nicolete, Roberto; Rius, Cristina; Piqueras, Laura; Jose, Peter J; Sorgi, Carlos A; Soares, Edson G; Sanz, Maria J; Faccioli, Lúcia H
2008-01-01
Background Leukotriene B4 (LTB4) is a potent inflammatory mediator that also stimulates the immune response. In addition, it promotes polymorphonuclear leukocyte phagocytosis, chemotaxis, chemokinesis and modulates cytokines release. Regarding chemical instability of the leukotriene molecule, in the present study we assessed the immunomodulatory activities conferred by LTB4 released from microspheres (MS). A previous oil-in-water emulsion solvent extraction-evaporation method was chosen to prepare LTB4-loaded MS. Results In the mice cremasteric microcirculation, intraescrotal injection of 0.1 ml of LTB4-loaded MS provoked significant increases in leukocyte rolling flux, adhesion and emigration besides significant decreases in the leukocyte rolling velocity. LTB4-loaded MS also increase peroxisome proliferator-activated receptor-α (PPARα) expression by murine peritoneal macrophages and stimulate them to generate nitrite levels. Monocyte chemoattractant protein-1 (MCP-1) and nitric oxide (NO) productions were also increased when human umbilical vein and artery endothelial cells (HUVECs and HUAECs, respectively) were stimulated with LTB4-loaded MS. Conclusion LTB4-loaded MS preserve the biological activity of the encapsulated mediator indicating their use as a new strategy to modulate cell activation, especially in the innate immune response. PMID:18627613
Ryu, J J; Letchuman, S; Shrotriya, P
2012-10-01
Surface damage of metallic implant surface at taper lock and clamped interfaces may take place through synergistic interactions between repeated contact loading and corrosion. In the present research, we investigated the influence of surface roughness and contact loading on the mechanical and chemical damage phenomena. Cobalt-chromium (CoCrMo) specimens with two different roughness configurations created by milling and grinding process were subjected to normal and inclined contact loading. During repeated contact loading, amplitude of surface roughness reached a steady value after decreasing during the first few cycles. During the second phase, the alternating experiment of rough surface contact and micro-etching was conducted to characterize surface evolution behavior. As a result, surface roughness amplitude continuously evolved-decreasing during contact loading due to plastic deformation of contacting asperities and increasing on exposure to corrosive environment by the preferential corrosion attack on stressed area. Two different instabilities could be identified in the surface roughness evolution during etching of contact loaded surfaces: increase in the amplitude of dominant wavenumber and increase in amplitude of a small group of roughness modes. A damage mechanism that incorporates contact-induced residual stress development and stress-assisted dissolution is proposed to elucidate the measured instabilities in surface roughness evolution. Copyright © 2012 Elsevier Ltd. All rights reserved.
Estimation of coefficient of rolling friction by the evolvent pendulum method
NASA Astrophysics Data System (ADS)
Alaci, S.; Ciornei, F. C.; Ciogole, A.; Ciornei, M. C.
2017-05-01
The paper presents a method for finding the coefficient of rolling friction using an evolvent pendulum. The pendulum consists in a fixed cylindrical body and a mobile body presenting a plane surface in contact with a cylindrical surface. The mobile body is placed over the fixed one in an equilibrium state; after applying a small impulse, the mobile body oscillates. The motion of the body is video recorded and afterwards the movie is analyzed by frames and the decrease with time of angular amplitude of the pendulum is found. The equation of motion is established for oscillations of the mobile body. The equation of motion, differential nonlinear, is integrated by Runge-Kutta method. Imposing the same damping both to model’s solution and to theoretical model, the value of coefficient of rolling friction is obtained. The last part of the paper presents results for actual pairs of materials. The main advantage of the method is the fact that the dimensions of contact regions are small, of order a few millimeters, and thus is substantially reduced the possibility of variation of mechanical characteristic for the two surfaces.
NASA Astrophysics Data System (ADS)
Shen, Lin; Huang, Da; Wu, Genxing
2018-05-01
In this paper, an aircraft model was tested in the wind tunnel with different degrees of yaw-roll coupling at different angles of attack. The dynamic increments of yawing and rolling moments are compared to study the coupling effects on damping characteristics. The characteristic time constants are calculated to study the changes of flow field structure related to coupling ratios. The damping characteristics and time lag effects of aerodynamic loads calculated by dynamic derivative method are also compared with experimental results to estimate the applicability of linear superposition principle at large angles of attack.
Code of Federal Regulations, 2014 CFR
2014-07-01
..., Ro-Ro operations, and § 1918.25). 9 [Reserved] (a) Traffic control system. An organized system of vehicular and pedestrian traffic control shall be established and maintained at each entrance/exit ramp and on ramps within the vessel as traffic flow warrants. (b) Ramp load limit. Each ramp shall be plainly...
Code of Federal Regulations, 2012 CFR
2012-07-01
..., Ro-Ro operations, and § 1918.25). 9 [Reserved] (a) Traffic control system. An organized system of vehicular and pedestrian traffic control shall be established and maintained at each entrance/exit ramp and on ramps within the vessel as traffic flow warrants. (b) Ramp load limit. Each ramp shall be plainly...
Code of Federal Regulations, 2013 CFR
2013-07-01
..., Ro-Ro operations, and § 1918.25). 9 [Reserved] (a) Traffic control system. An organized system of vehicular and pedestrian traffic control shall be established and maintained at each entrance/exit ramp and on ramps within the vessel as traffic flow warrants. (b) Ramp load limit. Each ramp shall be plainly...
Application of Thioether for Vapor Phase Lubrication
NASA Technical Reports Server (NTRS)
Graham, E. Earl
1997-01-01
The objective of these studies was to identify the optimal conditions for vapor phase lubrication using Thioether for both sliding and rolling wear. The important variable include; (1) The component materials including M50 steel, monel and silicon nitride. (2) The vapor concentration and flow rate. (3) The temperature in the range of 600 F to 1500 F. (4) The loads and rolling and/or sliding speeds.
49 CFR 393.136 - What are the rules for securing large boulders?
Code of Federal Regulations, 2010 CFR
2010-10-01
...-separated points of contact that prevent its tendency to roll in any direction. (5) If a boulder is tapered...) Only chain may be used as tiedowns to secure large boulders. (2) Tiedowns which are in direct contact... boulder. Whenever practicable, the angle of the chains must not exceed 45 degrees from the horizontal. ...
CRACK GROWTH RESPONSE OF ALLOY 690 IN SIMULATED PWR PRIMARY WATER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Toloczko, Mychailo B.; Bruemmer, Stephen M.
2009-12-01
The stress corrosion crack growth response of three extruded alloy 690 CRDM tube heats was investigated in several thermomechanical conditions. Extremely low propagation rates (< 1 x 10{sup -9} mm/s) were observed under constant stress intensity factor (K) loading at 325-350 C in the as-received, thermally treated (TT) materials despite using a variety of transitioning techniques. Post-test observation of the crack-growth surfaces revealed only isolated intergranular (IG) cracking. One-dimensional cold rolling to 17% reduction and testing in the S-L orientation did not promote enhanced stress corrosion rates. However, somewhat higher propagation rates were observed in a 30% cold-rolled alloy 690TTmore » specimen tested in the T-L orientation. Cracking of the cold-rolled material was promoted on grain boundaries oriented parallel to the rolling plane with the % IG increasing with the amount of cold rolling.« less
Load application for the contact mechanics analysis and wear prediction of total knee replacement.
Zhang, Jing; Chen, Zhenxian; Wang, Ling; Li, Dichen; Jin, Zhongmin
2017-05-01
Tibiofemoral contact forces in total knee replacement have been measured at the medial and lateral sites respectively using an instrumented prosthesis, and predicted from musculoskeletal multibody dynamics models with a reasonable accuracy. However, it is uncommon that the medial and lateral forces are applied separately to replace a total axial load according to the ISO standard in the majority of current finite element analyses. In this study, we quantified the different effects of applying the medial and lateral loads separately versus the traditional total axial load application on contact mechanics and wear prediction of a patient-specific knee prosthesis. The load application position played an important role under the medial-lateral load application. The loading set which produced the closest load distribution to the multibody dynamics model was used to predict the contact mechanics and wear for the prosthesis and compared with the total axial load application. The medial-lateral load distribution using the present method was found to be closer to the multibody dynamics prediction than the traditional total axial load application, and the maximum contact pressure and contact area were consistent with the corresponding load variation. The predicted total volumetric wear rate and area were similar between the two load applications. However, the split of the predicted wear volumes on the medial and the lateral sides was different. The lateral volumetric wear rate was 31.46% smaller than the medial from the traditional load application prediction, while from the medial-lateral load application, the lateral side was only 11.8% smaller than the medial. The medial-lateral load application could provide a new and more accurate method of load application for patient-specific preclinical contact mechanics and wear prediction of knee implants.
Demonstration of a Wire Suspension for Virtual Flight Testing in a Wind Tunnel
2009-02-01
They were connected by the roll shaft, which rotates in a pair of bearings. These bearings supported both radial and axial loads . Loads were...an axial load , and a radial ball bearing to support the radial loads . To determine whether the anticipated bearing friction is acceptable, we modeled... axial load due to cable pre-tension. Analysis showed that the best choice of pitch bearings is a combin- ation of a ball thrust bearing, which will carry
ROSA Transfer (for SpaceX CRS-11)
2017-04-12
At the loading dock outside the Space Station Processing Facility high bay at NASA's Kennedy Space Center in Florida, a technician uses a Hyster forklift to load the Roll-Out Solar Array, or ROSA, into a truck. ROSA will be delivered to the International Space Station aboard the SpaceX Dragon cargo carrier on the company’s 11th commercial resupply services mission to the space station. ROSA is a new type of solar panel that rolls open in space and is more compact than current rigid panel designs. The ROSA investigation will test deployment and retraction, shape changes when the Earth blocks the sun, and other physical challenges to determine the array's strength and durability.
A systematic experimental investigation of significant parameters affecting model tire hydroplaning
NASA Technical Reports Server (NTRS)
Wray, G. A.; Ehrlich, I. R.
1973-01-01
The results of a comprehensive parametric study of model and small pneumatic tires operating on a wet surface are presented. Hydroplaning inception (spin down) and rolling restoration (spin up) are discussed. Conclusions indicate that hydroplaning inception occurs at a speed significantly higher than the rolling restoration speed. Hydroplaning speed increases considerably with tread depth, surface roughness and tire inflation pressure of footprint pressure, and only moderately with increased load. Water film thickness affects spin down speed only slightly. Spin down speed varies inversely as approximately the one-sixth power of film thickness. Empirical equations relating tire inflation pressure, normal load, tire diameter and water film thickness have been generated for various tire tread and surface configurations.
Heat generation in Aircraft tires under yawed rolling conditions
NASA Technical Reports Server (NTRS)
Dodge, Richard N.; Clark, Samuel K.
1987-01-01
An analytical model was developed for approximating the internal temperature distribution in an aircraft tire operating under conditions of yawed rolling. The model employs an assembly of elements to represent the tire cross section and treats the heat generated within the tire as a function of the change in strain energy associated with predicted tire flexure. Special contact scrubbing terms are superimposed on the symmetrical free rolling model to account for the slip during yawed rolling. An extensive experimental program was conducted to verify temperatures predicted from the analytical model. Data from this program were compared with calculation over a range of operating conditions, namely, vertical deflection, inflation pressure, yaw angle, and direction of yaw. Generally the analytical model predicted overall trends well and correlated reasonably well with individual measurements at locations throughout the cross section.
Finite-Element Analysis of Melt Flow in Horizontal Twin-Roll Casting of Magnesium Alloy AZ31
NASA Astrophysics Data System (ADS)
Park, Jong-Jin
Twin-roll casting has been useful in production of thin strips of metals. Especially, the process of horizontal twin-roll casting is often used for magnesium and aluminum alloys, which are lighter in weight and smaller in specific heat as well as latent heat in comparison to steel. In the present investigation, where magnesium alloy AZ31 was targeted, asymmetric behavior of the melt flow due to the gravity was examined in terms of contact length and pressure, and the nozzle for melt ejection was modified for its shape and location. Variations of the melt flow including vortexes were investigated in consideration of heterogeneous nucleation and uniform microstructure. The melt flow was further examined in the perspective of possible randomness of the grain orientation through thickness under differential speeds of rolls.
Voight, Michael L.; Cook, Gray; Gill, Lance
2009-01-01
Rolling is a movement pattern seldom used by physical therapists for assessment and intervention with adult clientele with normal neurologic function. Rolling, as an adult motor skill, combines the use of the upper extremities, core, and lower extremities in a coordinated manner to move from one posture to another. Rolling is accomplished from prone to supine and supine to prone, although the method by which it is performed varies among adults. Assessment of rolling for both the ability to complete the task and bilateral symmetry may be beneficial for use with athletes who perform rotationally-biased sports such as golf, throwing, tennis, and twisting sports such as dance, gymnastics, and figure skating. Additionally, when used as intervention techniques, the rolling patterns have the ability to affect dysfunction of the upper quarter, core, and lower quarter. By applying proprioceptive neuromuscular facilitation (PNF) principles, the therapist may assist patients and clients who are unable to complete a rolling pattern. Examples given in the article include distraction/elongation, compression, and manual contacts to facilitate proper rolling. The combined experience of the four authors is used to describe techniques for testing, assessment, and treatment of dysfunction, using case examples that incorporate rolling. The authors assert that therapeutic use of the developmental pattern of rolling with techniques derived from PNF is a hallmark in rehabilitation of patients with neurologic dysfunction, but can be creatively and effectively utilized in musculoskeletal rehabilitation. PMID:21509112
Linear Quadratic Tracking Design for a Generic Transport Aircraft with Structural Load Constraints
NASA Technical Reports Server (NTRS)
Burken, John J.; Frost, Susan A.; Taylor, Brian R.
2011-01-01
When designing control laws for systems with constraints added to the tracking performance, control allocation methods can be utilized. Control allocations methods are used when there are more command inputs than controlled variables. Constraints that require allocators are such task as; surface saturation limits, structural load limits, drag reduction constraints or actuator failures. Most transport aircraft have many actuated surfaces compared to the three controlled variables (such as angle of attack, roll rate & angle of side slip). To distribute the control effort among the redundant set of actuators a fixed mixer approach can be utilized or online control allocation techniques. The benefit of an online allocator is that constraints can be considered in the design whereas the fixed mixer cannot. However, an online control allocator mixer has a disadvantage of not guaranteeing a surface schedule, which can then produce ill defined loads on the aircraft. The load uncertainty and complexity has prevented some controller designs from using advanced allocation techniques. This paper considers actuator redundancy management for a class of over actuated systems with real-time structural load limits using linear quadratic tracking applied to the generic transport model. A roll maneuver example of an artificial load limit constraint is shown and compared to the same no load limitation maneuver.
Labonte, David; Williams, John A.; Federle, Walter
2014-01-01
Many stick insects and mantophasmids possess tarsal ‘heel pads’ (euplantulae) covered by arrays of conical, micrometre-sized hairs (acanthae). These pads are used mainly under compression; they respond to load with increasing shear resistance, and show negligible adhesion. Reflected-light microscopy in stick insects (Carausius morosus) revealed that the contact area of ‘heel pads’ changes with normal load on three hierarchical levels. First, loading brought larger areas of the convex pads into contact. Second, loading increased the density of acanthae in contact. Third, higher loads changed the shape of individual hair contacts gradually from circular (tip contact) to elongated (side contact). The resulting increase in real contact area can explain the load dependence of friction, indicating a constant shear stress between acanthae and substrate. As the euplantula contact area is negligible for small loads (similar to hard materials), but increases sharply with load (resembling soft materials), these pads show high friction coefficients despite little adhesion. This property appears essential for the pads’ use in locomotion. Several morphological characteristics of hairy friction pads are in apparent contrast to hairy pads used for adhesion, highlighting key adaptations for both pad types. Our results are relevant for the design of fibrillar structures with high friction coefficients but small adhesion. PMID:24554580
Experimental study of the effect on span loading on aircraft wakes
NASA Technical Reports Server (NTRS)
Corsiglia, V. R.; Rossow, V. J.; Ciffone, D. L.
1975-01-01
Measurements were made in the NASA-Ames 40- by 80-foot wind tunnel of the rolling moment induced on a following model in the wake 13.6 spans behind a subsonic transport model for a variety of trailing edge flap settings of the generator. It was found that the rolling moment on the following model was reduced substantially, compared to the conventional landing configuration, by reshaping the span loading on the generating model to approximate a span loading, found in earlier studies, which resulted in reduced wake velocities. This was accomplished by retracting the outboard trailing edge flaps. It was concluded, based on flow visualization conducted in the wind tunnel as well as in a water tow facility, that this flap arrangement redistributes the vorticity shed by the wing along the span to form three vortex pairs that interact to disperse the wake.
NASA Technical Reports Server (NTRS)
Silsby, Norman S
1955-01-01
Statistical measurements of contact conditions have been obtained, by means of a special photographic technique, of 478 landings of present-day transport airplanes made during routine daylight operations in clear air at the Washington National Airport. From the measurements, sinking speeds, rolling velocities, bank angles, and horizontal speeds at the instant before contact have been evaluated and a limited statistical analysis of the results has been made and is reported in this report.
Reducing Wear of Steel Rolling Against Ti6Al4V Operating in Vacuum
NASA Technical Reports Server (NTRS)
Krantz, Timothy L.
2014-01-01
This work was motivated by a qualification test of a mechanism for a space telescope. During the test undesired wear debris was formed. In this project alterative materials and coatings were tested with intent to reduce wear and debris when steel has a misaligned rolling contact against Ti6Al4V. Testing was done using a vacuum roller rig mimicking the mechanism's contact conditions. Ten configurations were tested. Most configurations resulted in significant debris. A sputtered 1-micrometer-thick nan-ocomposite molybdenum disulfide (MoS2) film provided the best wear protection. The best configuration made use of the MoS2 coating on both materials, and in preparing for sputtering the anodized Ti6Al4V working surface was smoothed using an ultrasonic process.
NASA Astrophysics Data System (ADS)
Cui, Huawei; Cui, Xiufang; Wang, Haidou; Xing, Zhiguo; Jin, Guo
2015-01-01
The service condition determines the Rolling Contact Fatigue(RCF) failure mechanism and lifetime under ascertain material structure integrity parameter of thermal spray coating. The available literature on the RCF testing of thermal spray coatings under various condition services is considerable; it is generally difficult to synthesize all of the result to obtain a comprehensive understanding of the parameters which has a great effect on a thermal spray coating's resistance of RCF. The effects of service conditions(lubrication states, contact stresses, revolve speed, and slip ratio) on the changing of thermal spray coatings' contact fatigue lifetime is introduced systematically. The effects of different service condition on RCF failure mechanism of thermal spray coating from the change of material structure integrity are also summarized. Moreover, In order to enhance the RCF performance, the parameter optimal design formula of service condition and material structure integrity is proposed based on the effect of service condition on thermal spray coatings' contact fatigue lifetime and RCF failure mechanism. The shortage of available literature and the forecast focus in future researches are discussed based on available research. The explicit result of RCF lifetime law and parameter optimal design formula in term of lubrication states, contact stresses, revolve speed, and slip ratio, is significant to improve the RCF performance on the engineering application.
2014-04-01
improve the damping of the load pendulum motions, but the load feedback generally had the effect of making the load feel heavier to the pilot [28...0.25 2 1000lbs 16,000lbs 0.06 Another important parameter is the slung load pendulum frequency. Using a simple pendulum model, this natural...the expected yaw and heave modes. The presence of the load adds oscillatory pendulum modes in the pitch and roll axes, as expected. Table 2-3
2016-08-01
Edited b-roll video of NASA's Michoud Assembly Facility, which is managed by the Marshall Space Flight Center in Huntsville, Alabama. This B-roll shows various projects including manufacturing of the Space Launch System core stage and the Orion spacecraft pressure vessel. It includes interior and exterior views of the facility. For more information and more detailed footage, please contact the center's Public & Employee Communications Office. PAO Name:Tracy McMahan Phone Number:256-544-0034 Email Address: tracy.mcmahan@nasa.gov
Reduced Blood Coagulation on Roll-to-Roll, Shrink-Induced Superhydrophobic Plastics.
Nokes, Jolie M; Liedert, Ralph; Kim, Monica Y; Siddiqui, Ali; Chu, Michael; Lee, Eugene K; Khine, Michelle
2016-03-09
The unique antiwetting properties of superhydrophobic (SH) surfaces prevent the adhesion of water and bodily fluids, including blood, urine, and saliva. While typical manufacturable approaches to create SH surfaces rely on chemical and structural modifications, such approaches are expensive, require postprocessing, and are often not biocompatible. By contrast, it is demonstrated that purely structural SH features are easily formed using high throughput roll-to-roll (R2R) manufacturing by shrinking a prestressed thermoplastic with a thin, stiff layer of silver and calcium. These features are subsequently embossed into any commercially available and Food and Drug Administration (FDA)-approved plastic. The R2R SH surfaces have contact angles >150° and contact angle hysteresis <10°. Importantly, the surfaces minimize blood adhesion, leading to reduced blood coagulation without the need for anticoagulants. SH surfaces have >4200× reduction of blood residue area compared to the nonstructured controls of the same material. In addition, blood clotting is reduced >5× using whole blood directly from the patient. Furthermore, these surfaces can be easily configured into 3D shapes, as demonstrated with SH tubes. With the simple scale-up production and the eliminated need for anticoagulants to prevent clotting, the proposed conformable SH surfaces can be impactful for a wide range of medical tools, including catheters and microfluidic channels. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Sasaki, Masashi; Tanimoto, Koshi; Kohno, Kazukiyo; Takahashi, Sadamu; Kometani, Hideo; Hashimoto, Hiromu
High-speed winding of paper web sometimes leads the winding system into unstable states, interlayer slippage of wound roll, paper breakage and so on, due to the excessive air-entrainment at the roll-inlet of nip contact region. These phenomena are more frequently observed on coated paper or plastic film comparing with newspaper, because the former allows little permeation of air and their surface roughness is small. Therefore, it is of vital importance to clarify the in-roll stress of wound roll considering the effect of air-entrainment. Generally, it is known that the amount of air-entrainment is affected by grooving shape of nip roll surface. In this paper, we focused on the grooving shape and investigated the relationship with the air-entrainment into two rolls being pressed each other and the grooving shape in order to achieve stable winding at high speed. We conducted experiments using small sized test machine. Entrained air-film thickness was evaluated applying the solution of the elasto-hydrodynamic lubrication for foil bearing with the consideration of nip profile at the grooved area. Air film thickness was measured to ensure the applicability of the above theory. Consequently, we found that the air film thickness can be estimated considering the effect of grooves on the nip roll surface, and that the validity of the above estimations was ensured from experimental investigations. Furthermore, it became to be able to propose the optimal shape of grooves on nip roll surface to maintain the stable winding at high speed and at large-diameter in reel.
NASA Astrophysics Data System (ADS)
Sinha, Subhasis; Gurao, N. P.
2017-12-01
Tensile and cyclic deformation behavior of three samples oriented at 0, 45, and 90 deg to the rolling direction in the rolling direction-transverse direction (RD-TD) plane of cold-rolled and annealed plate of commercially pure titanium is studied in the present investigation. The sample along the RD (R0) shows the highest strength but lowest ductility in monotonic tension. Although ultimate tensile strength (UTS) and elongation of samples along 45 and 90 deg to the RD (R45 and R90, respectively) are similar, the former has significantly higher yield strength than the latter, indicating different strain-hardening behavior. It is found that the R90 sample exhibits the highest monotonic ductility as well as fatigue life. This is attributed to a higher propensity for twinning in this sample with the presence of multiple variants and twin intersections. Cyclic life is also influenced by the high tendency for detwinning of contraction twins in this orientation. Elastoplastic self-consistent (EPSC) simulations of one-cycle tension-compression load reversal indicate that the activity of pyramidal 〈 c + a〉 slip and extension twinning oscillates during cyclic loading that builds up damage in a cumulative manner, leading to failure in fatigue.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-07
...) Protection, Limit Engine Torque Loads for Sudden Engine Stoppage, and Design Roll Maneuver Requirement AGENCY... design features when compared to the state of technology envisioned in the airworthiness standards for transport category airplanes. These design features include limit engine torque loads for sudden engine...
Double and multiple contacts of similar elastic materials
NASA Astrophysics Data System (ADS)
Sundaram, Narayan K.
Ongoing fretting fatigue research has focussed on developing robust contact mechanics solutions for complicated load histories involving normal, shear, moment and bulk loads. For certain indenter profiles and applied loads, the contact patch separates into two disconnected regions. Existing Singular Integral Equation (SIE) techniques do not address these situations. A fast numerical tool is developed to solve such problems for similar elastic materials for a wide range of profiles and load paths including applied moments and remote bulk-stress effects. This tool is then used to investigate two problems in double contacts. The first, to determine the shear configuration space for a biquadratic punch for the generalized Cattaneo-Mindlin problem. The second, to obtain quantitative estimates of the interaction between neighboring cylindrical contacts for both the applied normal load and partial slip problems up to the limits of validity of the halfspace assumption. In double contact problems without symmetry, obtaining a unique solution requires the satisfaction of a condition relating the contact ends, rigid-body rotation and profile function. This condition has the interpretation that a rigid-rod connecting the inner contact ends of an equivalent frictionless double contact of a rigid indenter and halfspace may only undergo rigid body motions. It is also found that the ends of stick-zones, local slips and remote-applied strains in double contact problems are related by an equation expressing tangential surface-displacement continuity. This equation is essential to solve partial-slip problems without contact equivalents. Even when neighboring cylindrical contacts may be treated as non-interacting for the purpose of determining the pressure tractions, this is not generally true if a shear load is applied. The mutual influence of neighboring contacts in partial slip problems is largest at small shear load fractions. For both the pressure and partial slip problems, the interactions are stronger with increasing strength of loading and contact proximity. A new contact algorithm is developed and the SIE method extended to tackle contact problems with an arbitrary number of contact patches with no approximations made about contact interactions. In the case of multiple contact problems determining the correct contact configuration is significantly more complicated than in double contacts, necessitating a new approach. Both the normal contact and partial slip problems are solved. The tool is then used to study contacts of regular rough cylinders, a flat with rounded punch with superimposed sinusoidal roughness and is also applied to analyze the contact of an experimental rough surface with a halfspace. The partial slip results for multiple-contacts are generally consistent with Cattaneo-Mindlin continuum scale results, in that the outermost contacts tend to be in full sliding. Lastly, the influence of plasticity on frictionless multiple contact problems is studied using FEM for two common steel and aluminum alloys. The key findings are that the plasticity decreases the peak pressure and increases both real and apparent contact areas, thus 'blunting' the sharp pressures caused by the contact asperities in pure elasticity. Further, it is found that contact plasticity effects and load for onset of first yield are strongly dependent on roughness amplitude, with higher plasticity effects and lower yield-onset load at higher roughness amplitudes.
Sliding contact fracture of dental ceramics: Principles and validation
Ren, Linlin; Zhang, Yu
2014-01-01
Ceramic prostheses are subject to sliding contact under normal and tangential loads. Accurate prediction of the onset of fracture at two contacting surfaces holds the key to greater long-term performance of these prostheses. In this study, building on stress analysis of Hertzian contact and considering fracture criteria for linear elastic materials, a constitutive fracture mechanics relation was developed to incorporate the critical fracture load with the contact geometry, coefficient of friction and material fracture toughness. Critical loads necessary to cause fracture under a sliding indenter were calculated from the constitutive equation, and compared with the loads predicted from elastic stress analysis in conjunction with measured critical load for frictionless normal contact—a semi-empirical approach. The major predictions of the models were calibrated with experimentally determined critical loads of current and future dental ceramics after contact with a rigid spherical slider. Experimental results conform with the trends predicted by the models. PMID:24632538
Lorenzetti, Silvio; Ammann, Fabian; Windmüller, Sabrina; Häberle, Ramona; Müller, Sören; Gross, Micah; Plüss, Michael; Plüss, Stefan; Schödler, Berni; Hübner, Klaus
2017-11-22
As hill jumps are very time-consuming, ski jumping athletes often perform various imitation jumps during training. The performed jumps should be similar to hill jumps, but a direct comparison of the kinetic and kinematic parameters has not been performed yet. Therefore, this study aimed to correlate 11 common parameters during hill jumps (Oberstdorf Germany), squat jumps (wearing indoor shoes), and various imitation jumps (rolling 4°, rolling flat, static; jumping equipment or indoor shoes) on a custom-built instrumented vehicle with a catch by the coach. During the performed jumps, force and video data of the take-off of 10 athletes were measured. The imitation and squat jumps were then ranked. The main difference between the hill jumps and the imitation and squat jumps is the higher maximal force loading rate during the hill jumps. Imitation jumps performed on a rolling platform, on flat ground were the most similar to hill jumps in terms of the force-time, and leg joint kinematic properties. Thus, non-hill jumps with a technical focus should be performed from a rolling platform with a flat inrun with normal indoor shoes or jumping equipment, and high normal force loading rates should be the main focus of imitation training.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Asgari, H., E-mail: hamed.asgari@usask.ca; Odeshi, A.G.; Szpunar, J.A.
2015-08-15
The effects of grain size on the dynamic deformation behavior of rolled AZ31B alloy at high strain rates were investigated. Rolled AZ31B alloy samples with grain sizes of 6, 18 and 37 μm, were subjected to shock loading tests using Split Hopkinson Pressure Bar at room temperature and at a strain rate of 1100 s{sup −} {sup 1}. It was found that a double-peak basal texture formed in the shock loaded samples. The strength and ductility of the alloy under the high strain-rate compressive loading increased with decreasing grain size. However, twinning fraction and strain hardening rate were found tomore » decrease with decreasing grain size. In addition, orientation imaging microscopy showed a higher contribution of double and contraction twins in the deformation process of the coarse-grained samples. Using transmission electron microscopy, pyramidal dislocations were detected in the shock loaded sample, proving the activation of pyramidal slip system under dynamic impact loading. - Highlights: • A double-peak basal texture developed in all shock loaded samples. • Both strength and ductility increased with decreasing grain size. • Twinning fraction and strain hardening rate decreased with decreasing grain size. • ‘g.b’ analysis confirmed the presence of dislocations in shock loaded alloy.« less
Non-intrusive measurements of frictional forces between micro-spheres and flat surfaces
NASA Astrophysics Data System (ADS)
Lin, Wei-Hsun; Daraio, Chiara; Daraio's Group Team
2014-03-01
We report a novel, optical pump-probe experimental setup to study micro-friction phenomena between micro-particles and a flat surface. We present a case study of stainless steel microspheres, of diameter near 250 μm, in contact with different surfaces of variable roughness. In these experiments, the contact area between the particles and the substrates is only a few nanometers wide. To excite the particles, we deliver an impulse using a pulsed, high-power laser. The reaction force resulting from the surface ablation induced by the laser imparts a controlled initial velocity to the target particle. This initial velocity can be varied between 10-5 to 1 m/s. We investigate the vibrating and rolling motions of the micro-particles by detecting their velocity and displacement with a laser vibrometer and a high-speed microscope camera. We calculate the effective Hamaker constant from the vibrating motion of a particle, and study its relation to the substrate's surface roughness. We analyze the relation between rolling friction and the minimum momentum required to break surface bonding forces. This non-contact and non-intrusive technique could be employed to study a variety of contact and tribology problems at the microscale.
NASA Astrophysics Data System (ADS)
Savrai, R. A.; Makarov, A. V.; Osintseva, A. L.; Malygina, I. Yu.
2018-02-01
Mechanical testing of the AISI 321 corrosion resistant austenitic steel for contact gigacycle fatigue has been conducted with the application of a new method of contact fatigue testing with ultrasonic frequency of loading according to a pulsing impact "plane-to-plane" contact scheme. It has been found that the contact endurance (the ability to resist the fatigue spalling) of the AISI 321 steel under contact gigacycle fatigue loading is determined by its plasticity margin and the possibility of additional hardening under contact loading. It is demonstrated that the appearance of localized deep and long areas of spalling on a material surface can serve as a qualitative characteristic for the loss of the fatigue strength of the AISI 321 steel under impact contact fatigue loading. The value of surface microhardness measured within contact spots and the maximum depth of contact damages in the peripheral zone of contact spots can serve as quantitative criteria for that purpose.
Effect of extended tooth contact on the modeling of spur gear transmissions
NASA Technical Reports Server (NTRS)
Oswald, Fred B.; Coy, John J.; Lin, Hsiang Hsi; Wang, Jifeng
1993-01-01
In some gear dynamic models, the effect of tooth flexibility is ignored when the model determines which pairs of teeth are in contact. Deflection of loaded teeth is not introduced until the equations of motion are solved. This means the zone of tooth contact and average tooth meshing stiffness are underestimated and the individual tooth load is overstated, especially for heavily-loaded gears. The static transmission error and dynamic load of heavily-loaded, low-contact-ratio spur gears is compared with this effect both neglected and included. Neglecting the effect yields an underestimate of resonance speeds and an overestimate of the dynamic load.
Recognition of platinum-DNA adducts by HMGB1a.
Ramachandran, Srinivas; Temple, Brenda; Alexandrova, Anastassia N; Chaney, Stephen G; Dokholyan, Nikolay V
2012-09-25
Cisplatin (CP) and oxaliplatin (OX), platinum-based drugs used widely in chemotherapy, form adducts on intrastrand guanines (5'GG) in genomic DNA. DNA damage recognition proteins, transcription factors, mismatch repair proteins, and DNA polymerases discriminate between CP- and OX-GG DNA adducts, which could partly account for differences in the efficacy, toxicity, and mutagenicity of CP and OX. In addition, differential recognition of CP- and OX-GG adducts is highly dependent on the sequence context of the Pt-GG adduct. In particular, DNA binding protein domain HMGB1a binds to CP-GG DNA adducts with up to 53-fold greater affinity than to OX-GG adducts in the TGGA sequence context but shows much smaller differences in binding in the AGGC or TGGT sequence contexts. Here, simulations of the HMGB1a-Pt-DNA complex in the three sequence contexts revealed a higher number of interface contacts for the CP-DNA complex in the TGGA sequence context than in the OX-DNA complex. However, the number of interface contacts was similar in the TGGT and AGGC sequence contexts. The higher number of interface contacts in the CP-TGGA sequence context corresponded to a larger roll of the Pt-GG base pair step. Furthermore, geometric analysis of stacking of phenylalanine 37 in HMGB1a (Phe37) with the platinated guanines revealed more favorable stacking modes correlated with a larger roll of the Pt-GG base pair step in the TGGA sequence context. These data are consistent with our previous molecular dynamics simulations showing that the CP-TGGA complex was able to sample larger roll angles than the OX-TGGA complex or either CP- or OX-DNA complexes in the AGGC or TGGT sequences. We infer that the high binding affinity of HMGB1a for CP-TGGA is due to the greater flexibility of CP-TGGA compared to OX-TGGA and other Pt-DNA adducts. This increased flexibility is reflected in the ability of CP-TGGA to sample larger roll angles, which allows for a higher number of interface contacts between the Pt-DNA adduct and HMGB1a.
Zhao, Binwu
2017-01-01
The β roll molecules with sequence (GAGAGAGQ)10 stack via hydrogen bonding to form fibrils which have been themselves been used to make viral capsids of DNA strands, supramolecular nanotapes and pH-responsive gels. Accelerated molecular dynamics (aMD) simulations are used to investigate the unfolding of a stack of two β roll molecules, (GAGAGAGQ)10, to shed light on the folding mechanism by which silk-inspired polypeptides form fibrils and to identify the dominant forces that keep the silk-inspired polypeptide in a β roll configuration. Our study shows that a molecule in a stack of two β roll molecules unfolds in a step-wise fashion mainly from the C terminal. The bottom template is found to play an important role in stabilizing the β roll structure of the molecule on top by strengthening the hydrogen bonds in the layer that it contacts. Vertical hydrogen bonds within the β roll structure are considerably weaker than lateral hydrogen bonds, signifying the importance of lateral hydrogen bonds in stabilizing the β roll structure. Finally, an intermediate structure was found containing a β hairpin and an anti-parallel β sheet consisting of strands from the top and bottom molecules, revealing the self-healing ability of the β roll stack. PMID:28329017
Roll-to-Roll Nanoforming of Metals Using Laser-Induced Superplasticity.
Goswami, Debkalpa; Munera, Juan C; Pal, Aniket; Sadri, Behnam; Scarpetti, Caio Lui P G; Martinez, Ramses V
2018-05-24
This Letter describes a low-cost, scalable nanomanufacturing process that enables the continuous forming of thin metallic layers with nanoscale accuracy using roll-to-roll, laser-induced superplasticity (R2RLIS). R2RLIS uses a laser shock to induce the ultrahigh-strain-rate deformation of metallic films at room temperature into low-cost polymeric nanomolds, independently of the original grain size of the metal. This simple and inexpensive nanoforming method does not require access to cleanrooms and associated facilities, and can be easily implemented on conventional CO 2 lasers, enabling laser systems commonly used for rapid prototyping or industrial cutting and engraving to fabricate uniform and three-dimensional crystalline metallic nanostructures over large areas. Tuning the laser power during the R2RLIS process enables the control of the aspect ratio and the mechanical and optical properties of the fabricated nanostructures. This roll-to-roll technique successfully fabricates mechanically strengthened gold plasmonic nanostructures with aspect ratios as high as 5 that exhibit high oxidation resistance and strong optical field enhancements. The CO 2 laser used in R2RLIS can also integrate the fabricated nanostructures on transparent flexible substrates with robust interfacial contact. The ability to fabricate ultrasmooth metallic nanostructures using roll-to-roll manufacturing enables the large scale production, at a relatively low-cost, of flexible plasmonic devices toward emerging applications.
A Rolling Element Tribometer for the Study of Liquid Lubricants in Vacuum
NASA Technical Reports Server (NTRS)
Pepper, Stephen V.; Ebihara, Ben T.; Kingsbury, Edward
1996-01-01
A tribometer for the evaluation of liquid lubricants in vacuum is described. This tribometer is essentially a thrust bearing with three balls and flat races having contact stresses and ball motions similar to those in an angular contact ball bearing operating in the boundary lubrication regime. The friction coefficient, lubrication lifetime, and species evolved from the liquid lubricant by tribodegradation can be determined. A complete analysis of the contact stresses and energy dissipation together with experimental evidence supporting the analysis are presented.
Roll-to-Roll Manufacturing of Robust Superhydrophobic Coating on Metallic Engineering Materials.
Dong, Shuliang; Wang, Zhenlong; Wang, Yukui; Bai, Xuelin; Fu, Yong Qing; Guo, Bin; Tan, Chaoliang; Zhang, Jia; Hu, PingAn
2018-01-17
Creating a robust superhydrophobic surface on the conventional engineering materials at mass production is of great importance for a self-cleaning, anti-icing, nonwetting surface and low flow resistance in industrial applications. Herein, we report a roll-to-roll strategy to create durable and robust superhydrophobic surfaces with designed micro-/nanoscale hierarchical structures on many conventional engineering materials by combining electrical discharge machining and coating of carbon nanoparticles, followed by oil penetration and drying. The treated surface shows good superhydrophobic properties with a static water contact angle of 170 ± 2° and slide angle of 3 ± 1°. The treated surface also exhibits good resilience and maintains the performance after being tested in various harsh conditions, including water flushing for several days, sand abrasion, scratching with sandpapers, and corrosive solution. Significantly, the superhydrophobic surfaces also show a high efficiency of self-cleaning properties even after oil contamination during applications.
Traction and film thickness measurements under starved elastohydrodynamic conditions
NASA Technical Reports Server (NTRS)
Wedeven, L. D.
1974-01-01
Traction measurements under starved elastohydrodynamic conditions were obtained for a point contact geometry. Simultaneous measurements of the film thickness and the locations of the inlet lubricant boundary were made optically. The thickness of a starved film for combination rolling and sliding conditions varies with the location of the inlet boundary in the same way found previously for pure rolling. A starved film was observed to possess greater traction than a flooded film for the same slide roll ratio. For a given slide roll ratio a starved film simply increases the shear rate in the Hertz region. The maximum shear rate depends on the degree of starvation and has no theoretical limit. Traction measurements under starved conditions were compared with flooded conditions under equivalent shear rates in the Hertz region. When the shear rates in the Hertz region were low and the film severely starved, the measured tractions were found to be much lower than expected.
NASA Technical Reports Server (NTRS)
Padovan, Joe
1986-01-01
In a three part series of papers, a generalized finite element analysis scheme is developed to handle the steady and transient response of moving/rolling nonlinear viscoelastic structure. This paper considers the development of the moving/rolling element strategy, including the effects of large deformation kinematics and viscoelasticity modelled by fractional integro-differential operators. To improve the solution strategy, a special hierarchical constraint procedure is developed for the case of steady rolling/translating as well as a transient scheme involving the use of a Grunwaldian representation of the fractional operator. In the second and third parts of the paper, 3-D extensions are developed along with transient contact strategies enabling the handling of impacts with obstructions. Overall, the various developments are benchmarked via comprehensive 2- and 3-D simulations. These are correlated with experimental data to define modelling capabilities.
Single electrode triboelectric generator
Wang, Zhong Lin; Yang, Ya; Zhang, Hulin; Zhu, Guang
2017-11-07
A triboelectric generator includes a first contact charging member, a second contact charging member and an electrical load. The first contact charging member has a contact side and an opposite back side. The first contact charging member includes a material that has a first rating on a triboelectric series and also has a conductive aspect. The second contact charging member has a second rating on the triboelectric series, different from the first rating, and is configured to come into contact with the first contact layer and go out of contact with the first contact layer. The electrical load electrically is coupled to the first contact charging member and to a common voltage so that current will flow through the load after the second contact charging member comes into contact with the first contact charging member and then goes out of contact with the first contact charging member.
Ferrographic analysis of wear debris generated in accelerated rolling element fatigue tests
NASA Technical Reports Server (NTRS)
Jones, W. R., Jr.; Parker, R. J.
1977-01-01
The types and quantities of wear particles generated during accelerated ball rolling contact fatigue tests were determined. Ball specimens were made of AMS 5749, a corrosion resistant, high-temperature bearing steel. The lubricant was a super-refined naphthenic mineral oil. Conditions included a maximum Hertz stress of 5.215 times 10 to the 9th power Pa and a shaft speed of 10,000 rpm. Four types of wear particles were observed; normal rubbing wear particles, fatigue spall particles, spheres, and friction polymer.
Recent developments and directions in printed nanomaterials
NASA Astrophysics Data System (ADS)
Choi, Hyung Woo; Zhou, Tianlei; Singh, Madhusudan; Jabbour, Ghassan E.
2015-02-01
In this review, we survey several recent developments in printing of nanomaterials for contacts, transistors, sensors of various kinds, light-emitting diodes, solar cells, memory devices, and bone and organ implants. The commonly used nanomaterials are classified according to whether they are conductive, semiconducting/insulating or biological in nature. While many printing processes are covered, special attention is paid to inkjet printing and roll-to-roll printing in light of their complexity and popularity. In conclusion, we present our view of the future development of this field.
Optical interferometry study of film formation in lubrication of sliding and/or rolling contacts
NASA Technical Reports Server (NTRS)
Stejskal, E. O.; Cameron, A.
1972-01-01
Seventeen fluids of widely varying physical properties and molecular structure were chosen for study. Film thickness and traction were measured simultaneously in point contacts by interferometry, from which a new theory of traction was proposed. Film thickness was measured in line contacts by interferometry and electrical capacitance to establish correlation between these two methods. An interferometric method for the absolute determination of refractive index in the contact zone was developed and applied to point contact fluid entrapments. Electrical capacitance was used to study the thickness and properties of the soft surface film which sometimes forms near a metal-fluid interface.
29 CFR 1910.176 - Handling materials-general.
Code of Federal Regulations, 2010 CFR
2010-07-01
.... (b) Secure storage. Storage of material shall not create a hazard. Bags, containers, bundles, etc... on spur railroad tracks where a rolling car could contact other cars being worked, enter a building...
29 CFR 1910.176 - Handling materials-general.
Code of Federal Regulations, 2011 CFR
2011-07-01
.... (b) Secure storage. Storage of material shall not create a hazard. Bags, containers, bundles, etc... on spur railroad tracks where a rolling car could contact other cars being worked, enter a building...
29 CFR 1910.176 - Handling materials-general.
Code of Federal Regulations, 2012 CFR
2012-07-01
.... (b) Secure storage. Storage of material shall not create a hazard. Bags, containers, bundles, etc... on spur railroad tracks where a rolling car could contact other cars being worked, enter a building...
29 CFR 1910.176 - Handling materials-general.
Code of Federal Regulations, 2013 CFR
2013-07-01
.... (b) Secure storage. Storage of material shall not create a hazard. Bags, containers, bundles, etc... on spur railroad tracks where a rolling car could contact other cars being worked, enter a building...
29 CFR 1910.176 - Handling materials-general.
Code of Federal Regulations, 2014 CFR
2014-07-01
.... (b) Secure storage. Storage of material shall not create a hazard. Bags, containers, bundles, etc... on spur railroad tracks where a rolling car could contact other cars being worked, enter a building...
Gonik, Bernard; Zhang, Ning; Grimm, Michele J
2003-04-01
A computer model was modified to study the impact of maternal endogenous and clinician-applied exogenous delivery loads on the contact force between the anterior fetal shoulder and the maternal symphysis pubis. Varying endogenous and exogenous loads were applied, and the contact force was determined. Experiments also examined the effect of pelvic orientation and the direction of load application on contact force behind the symphysis pubis. Exogenous loading forces (50-100 N) resulted in anterior shoulder contact forces of 107 to 127 N, with delivery accomplished at 100 N of applied load. Higher contact forces (147-272 N) were noted for endogenously applied loads (100-400 N), with delivery occurring at 400 N of maternal force. Pelvic rotation from lithotomy to McRoberts' positioning resulted in reduced contact forces. Downward lateral flexion of the fetal head led to little difference in contact force but required 30% more exogenous load to achieve delivery. Compared with clinician-applied exogenous force, larger maternally derived endogenous forces are needed to clear the impacted anterior fetal shoulder. This is associated with >2 times more contact force by the obstructing symphysis pubis. McRoberts' positioning reduces shoulder-symphysis pubis contact force. Lateral flexion of the fetal head results in the larger forces that are needed for delivery but has little effect on contact force. Model refinements are needed to examine delivery forces and brachial plexus stretching more specifically.
Avila-Sanchez, Sergio; Pindado, Santiago; Lopez-Garcia, Oscar; Sanz-Andres, Angel
2014-01-01
Wind-flow pattern over embankments involves an overexposure of the rolling stock travelling on them to wind loads. Windbreaks are a common solution for changing the flow characteristic in order to decrease unwanted effects induced by the presence of cross-wind. The shelter effectiveness of a set of windbreaks placed over a railway twin-track embankment is experimentally analysed. A set of two-dimensional wind tunnel tests are undertaken and results corresponding to pressure tap measurements over a section of a typical high-speed train are herein presented. The results indicate that even small-height windbreaks provide sheltering effects to the vehicles. Also, eaves located at the windbreak tips seem to improve their sheltering effect.
Avila-Sanchez, Sergio; Lopez-Garcia, Oscar; Sanz-Andres, Angel
2014-01-01
Wind-flow pattern over embankments involves an overexposure of the rolling stock travelling on them to wind loads. Windbreaks are a common solution for changing the flow characteristic in order to decrease unwanted effects induced by the presence of cross-wind. The shelter effectiveness of a set of windbreaks placed over a railway twin-track embankment is experimentally analysed. A set of two-dimensional wind tunnel tests are undertaken and results corresponding to pressure tap measurements over a section of a typical high-speed train are herein presented. The results indicate that even small-height windbreaks provide sheltering effects to the vehicles. Also, eaves located at the windbreak tips seem to improve their sheltering effect. PMID:25544954
Mechanically fastened composite laminates subjected to combined bearing-bypass and shear loading
NASA Technical Reports Server (NTRS)
Madenci, Erdogan
1993-01-01
Bolts and rivets provide a means of load transfer in the construction of aircraft. However, they give rise to stress concentrations and are often the source and location of static and fatigue failures. Furthermore, fastener holes are prone to cracks during take-off and landing. These cracks present the most common origin of structural failures in aircraft. Therefore, accurate determination of the contact stresses associated with such loaded holes in mechanically fastened joints is essential to reliable strength evaluation and failure prediction. As the laminate is subjected to loading, the contact region, whose extent is not known, develops between the fastener and the hole boundary through this contact region, which consists of slip and no-slip zones due to friction. The presence of the unknown contact stress distribution over the contact region between the pin and the composite laminate, material anisotropy, friction between the pin and the laminate, pin-hole clearance, combined bearing-bypass and shear loading, and finite geometry of the laminate result in a complex non-linear problem. In the case of bearing-bypass loading in compression, this non-linear problem is further complicated by the presence of dual contact regions. Previous research concerning the analysis of mechanical joints subjected to combined bearing-bypass and shear loading is non-existent. In the case of bearing-bypass loading only, except for the study conducted by Naik and Crews (1991), others employed the concept of superposition which is not valid for this non-linear problem. Naik and Crews applied a linear finite element analysis with conditions along the pin-hole contact region specified as displacement constraint equations. The major shortcoming of this method is that the variation of the contract region as a function of the applied load should be known a priori. Also, their analysis is limited to symmetric geometry and material systems, and frictionless boundary conditions. Since the contact stress distribution and the contact region are not known a priori, they did not directly impose the boundary conditions appropriate for modelling the contact and on-contact regions between the fastener and the hole. Furthermore, finite element analysis is not suitable for iterative design calculations for optimizing laminate construction in the presence of fasteners under complex loading conditions. In this study, the solution method developed by Madenci and Ileri (1992a,b) has been extended to determine the contact stresses in mechanical joints under combined bearing-bypass and shear loading, and bearing-bypass loading in compression resulting in dual contact regions.
Plantar pressure changes after long-distance walking.
Stolwijk, Niki M; Duysens, Jacques; Louwerens, Jan Willem K; Keijsers, Noël L W
2010-12-01
The popularity of long-distance walking (LDW) has increased in the last decades. However, the effects of LDW on plantar pressure distribution and foot complaints, in particular, after several days of walking, have not been studied. We obtained the plantar pressure data of 62 subjects who had no history of foot complaints and who walked a total distance of 199.8 km for men (n = 30) and 161.5 km for women (n = 32) during four consecutive days. Plantar pressure was measured each day after the finish (posttests I–IV) and compared with the baseline plantar pressure data, which was obtained 1 or 2 d before the march (pretest). Mean, peak, and pressure–time integral per pixel as well as the center of pressure (COP) trajectory of each foot per measurement day were calculated using the normalization method of Keijsers et al. A paired t-test with an adjusted P value was used to detect significant differences between pretest and posttest. Short-term adjustment to LDW resulted in a significant decreased loading on the toes accompanied with an increased loading on the metatarsal head III–V (P < 0.001). At all stages, particularly at later stages, there was significantly more heel loading (P < 0.001). Furthermore, the COP significantly displaced in the posterior direction but not in the mediolateral direction after marching. Contact time increased slightly from 638.5 +/- 24.2 to 675.4 +/- 22.5 ms (P < 0.001). The increased heel loading and decreased function of the toes found after marching indicate a change of walking pattern with less roll-off. It is argued that these changes reflect the effect of fatigue of the lower leg muscles and to avoid loading of the most vulnerable parts of the foot.
Patterns of the Rotor-over-Stator Rolling under Change in the Damping Components
NASA Astrophysics Data System (ADS)
Shatokhin, V. F.
2018-03-01
As experimental studies show, the rubbing of the rotor against the structure usually excites harmonics of different frequencies. In high-frequency regions, the power of the vibration signal appears to be considerable. The rotor—supports—stator system is in an unstable equilibrium state during the contact interaction between the rotor and the stator. The forces exerted on the rotor facilitate the excitation of the asynchronous rolling and its damping. The forces have been determined that facilitate the excitation of the progressive and retrograde rotor precession. The consideration of these forces in the algorithm for modeling the rotor-over-stator rolling development allows investigation of the impact of the components of the above forces on the behavior of the rotor system. The initial excitation—disturbance of the normal operation—of the rotor and subsequent unsteady oscillations of it result from sudden imbalance in the second span. The results of numerical modeling of the rubbing in the second span and the rotor-over-stator rolling upon change in the damping components of secondary (gyroscopic) components b ij ( i ≠ j) of the damping matrix are presented for the rotor on three bearing-supports considering the synergetic effect of the forces of various types exerted on the rotor. It is shown that change in one of the parameters of the excitation forces leads to ambiguity of the pattern (manifestation form) of the asynchronous rotor-over-stator rolling and proves the existence of more than one states towards which the rotor—supports—stator system tends. In addition to the rolling with a constant rotor—stator contact, oscillations of the rotor develop in the direction perpendicular to the common trajectory of the precession motion of the rotor's center with transition to the vibro-impact motion mode. The oscillations of the rotor tend towards the symmetry center of the system (the stator bore center). The reason is the components of the stiffness and damping forces that act in the direction transverse to the rotor's motion trajectory. Recommendations are given for eliminating dangerous consequences of the development of the asynchronous rolling fraught with great financial losses.
Rotor Rolling over a Water-Lubricated Bearing
NASA Astrophysics Data System (ADS)
Shatokhin, V. F.
2018-02-01
The article presents the results of studying the effect of forces associated with secondary damping coefficients (gyroscopic forces) on the development of asynchronous rolling of the rotor over a water-lubricated bearing. The damping forces act against the background of other exciting forces in the rotor-supports system, in particular, the exciting forces of contact interaction between the rotor and bearing. The article considers a rotor resting on supports rubbing against the bearing and the occurrence of self-excited vibration in the form of asynchronous roll-over. The rotor supports are made in the form of plain-type water-lubricated bearings. The plain-type bearing's lubrication stiffness and damping forces are determined using the wellknown algorithms taking into account the physical properties of water serving as lubrication of the bearing. The bearing sliding pair is composed of refractory materials. The lubrication layer in such bearings is thinner than that used in oil-lubricated bearings with white metal lining, and there is no white metal layer in waterlubricated bearings. In case of possible deviations from normal operation of the installation, the rotating rotor comes into direct contact with the liner's rigid body. Unsteady vibrations are modeled using a specially developed software package for calculating the vibration of rotors that rub against the turbine (pump) stator elements. The stiffness of the bearing liner with the stator support structure is specified by a dependence in the force-deformation coordinate axes. In modeling the effect of damping forces, the time moment corresponding to the onset of asynchronous rolling-over with growing vibration amplitudes is used as the assessment criterion. With a longer period of time taken for the rolling-over to develop, it becomes possible to take the necessary measures in response to actuation of the equipment set safety system, which require certain time for implementing them. It is shown that the gyroscopic damping components facilitate the developing rolling of the rotor over the bearing. If measures taken to decrease these components in the damping devices and bearings are met with success, the onset of asynchronous rolling-over with the growing amplitudes occurs after a longer period of time.
Crack Growth in Mercury Embrittled Aluminum Alloys under Cyclic and Static Loading Conditions
1983-03-01
STATEMENT (ol the abalract entered In Block 20, It dlHerent from Report) 18. SUPPLEMENTARY NOTES This was a thesis in partial fulfillment of...argued that the strengthening that occurs from cold rolling suppresses crack nucleation at the surface under monotonlc loading. Under cyclic loading...precracking. Copper was chosen because It can be easily electrodeposited on aluminum, easily wet with mercury, and remains wet almost indefinitely
NASA Astrophysics Data System (ADS)
Yuan, Y.; Greuner, H.; Böswirth, B.; Krieger, K.; Luo, G.-N.; Xu, H. Y.; Fu, B. Q.; Li, M.; Liu, W.
2013-02-01
Short pulse heat loads expected for vertical displacement events (VDEs) in ITER were applied in the high heat flux (HHF) test facility GLADIS at IPP-Garching onto samples of rolled W. Pulsed neutral beams with the central heat flux of 23 MW/m2 were applied for 0.5, 1.0 and 1.5 s, respectively. Rapid recrystallization of the adiabatically loaded 3 mm thick samples was observed when the pulse duration was up to 1.0 s. Grains grew markedly following recrystallization with increasing pulse length. The recrystallization temperature and temperature dependence of the recrystallized grain size were also investigated. The results showed that the recrystallization temperature of the W grade was around 2480 °C under the applied heat loading condition, which was nearly 1150 °C higher than the conventional recrystallization temperature, and the grains were much finer. A linear relationship between the logarithm of average grain size (ln d) and the inverse of maximum surface temperature (1/Tmax) was found and accordingly the activation energy for grain growth in temperature evolution up to Tmax in 1.5 s of the short pulse HHF load was deduced to be 4.1 eV. This provided an effective clue to predict the structure evolution under short pulse HHF loads.
Li, Kai; Chen, Wenyuan; Zhang, Weiping
2011-01-01
Beam’s multiple-contact mode, characterized by multiple and discrete contact regions, non-uniform stoppers’ heights, irregular contact sequence, seesaw-like effect, indirect interaction between different stoppers, and complex coupling relationship between loads and deformation is studied. A novel analysis method and a novel high speed calculation model are developed for multiple-contact mode under mechanical load and electrostatic load, without limitations on stopper height and distribution, providing the beam has stepped or curved shape. Accurate values of deflection, contact load, contact region and so on are obtained directly, with a subsequent validation by CoventorWare. A new concept design of high-g threshold microaccelerometer based on multiple-contact mode is presented, featuring multiple acceleration thresholds of one sensitive component and consequently small sensor size. PMID:22163897
Shin, Choongsoo S; Souza, Richard B; Kumar, Deepak; Link, Thomas M; Wyman, Bradley T; Majumdar, Sharmila
2011-12-01
To investigate the effect of acute loading on in vivo tibiofemoral contact area changes in both compartments, and to determine whether in vivo tibiofemoral contact area differs between subjects with medial knee osteoarthritis (OA) and healthy controls. Ten subjects with medial knee OA (KL3) and 11 control subjects (KL0) were tested. Coronal three-dimensional spoiled gradient-recalled (3D-SPGR) and T(2) -weighted fast spin-echo FSE magnetic resonance imaging (MRI) of the knee were acquired under both unloaded and loaded conditions. Tibiofemoral cartilage contact areas were measured using image-based 3D models. Tibiofemoral contact areas in both compartments significantly increased under loading (P < 0.001) and the increased contact area in the medial compartment was significantly larger than in the lateral compartment (P < 0.05). Medial compartment contact area was significantly larger in KL3 subjects than KL0 subjects, both at unloaded and loaded conditions (P < 0.05). Contact areas measured from 3D-SPGR and T(2) -weighted FSE images were strongly correlated (r = 0.904). Females with medial OA increased tibiofemoral contact area in the medial compartment compared to healthy subjects under both unloaded and loaded conditions. The contact area data presented in this study may provide a quantitative reference for further cartilage contact biomechanics such as contact stress analysis and cartilage biomechanical function difference between osteoarthritic and healthy knees. Copyright © 2011 Wiley Periodicals, Inc.
An investigation of rolling-sliding contact fatigue damage of carburized gear steels
NASA Astrophysics Data System (ADS)
Kramer, Patrick C.
The goal of this study was to evaluate the differences in RSCF performance between vacuum and gas carburized steels as well as to investigate the evolution of damage (wear and microstructure changes) leading to pitting. Vacuum and gas carburizing was performed on two gear steels (4120 and 4320) at 1010°C. The carburized specimens were tested in the as-carburized condition using a RSCF machine designed and built at the Colorado School of Mines. The tests were conducted at 3.2 GPa nominal Hertzian contact stress, based on pure rolling, 100°C, and using a negative twenty percent slide ratio. Tests were conducted to pitting failure for each condition for a comparison of the average fatigue lives. Pure rolling tests were also conducted, and were suspended at the same number of cycles as the average RSCF life for a comparison of fatigue damage developed by RCF and RSCF. Incremental tests were suspended at 1,000, 10,000, 100,000, and 200,000 cycles for the vacuum carburized steels to evaluate the wear and damage developed during the initial cycles of RSCF testing and to relate the wear and damage to pitting resistance. Incremental damage was not investigated for gas carburizing due to the limited number of available specimens. The vacuum carburized samples showed a decreased pitting fatigue resistance over the gas carburized samples, possibly due to the presence of bainite in the vacuum carburized cases. Pitting was observed to initiate from surface micropitting and microcracking. A microstructural change induced by contact fatigue, butterflies, was shown to contribute to micropitting and microcracking. Incremental testing revealed that the formation of a microcrack preceded and was necessary for the formation of the butterfly features, and that the butterfly features developed between 10,000 and 100,000 cycles. The orientation and depth of butterfly formation was shown to be dependent upon the application of traction stresses from sliding. RSCF butterflies formed nearly parallel to the rolling direction at a large range of depths. RCF butterflies formed at about 45° to the rolling direction in a more narrow range of depths. The surface roughness and surface profile were observed to change quickly in the first several thousand cycles of RSCF testing leading to a reduction in contact stress and increase in lambda ratio (ratio of lubricant fluid film thickness to composite surface roughness). The ability of a carburized sample wear track to reach and maintain a steady state morphology (run-in condition) during testing is postulated to translate to increased RSCF resistance.
Heat treated twin wire arc spray AISI 420 coatings under dry and wet abrasive wear
NASA Astrophysics Data System (ADS)
Rodriguez, E.; González, M. A.; Monjardín, H. R.; Jimenez, O.; Flores, M.; Ibarra, J.
2017-11-01
The influence of applying two different heat treatments such as: deep cryogenic and tempering on dry/wet abrasive wear resistance of twin wire arc spray martensitic AISI 420 coatings was evaluated by using a modified rubber wheel type test apparatus. A load dependency was observed on the abrasive wear rate behavior of both; dry and wet tests. Three body (rolling) and two body (sliding) wear mechanisms were identified in dry conditions, prevailing rolling at lower and higher loads. However, at higher loads, more presence of grooving and pits formation was observed. Coatings tempered at 205 °C/1 h displayed better wear resistance than cryogenic treated ones. A change in wear mechanism between dry and wet conditions was observed; two body wear mechanism predominated respect to three body. In both; dry and wet conditions the microstructure (several inter-splat oxides) as well as strain and residual stress promotes brittle material removal which was more evident in cryogenic and as-sprayed samples during dry test and at higher loads in wet conditions.
Container System Hardware Status Report
1986-01-01
includes the proureentofeight SL-7 class high - speed containerships and their Subsequent conversion to a cargo configuration specifically designed for...wide, 53.5-in high , 242-in long, and Weighs 4,000 lbs. The MILVAN chassis were competitively procured from incustry utilizing a performance military...accept load transfer from a cargo ship and equipped with a ramp for Roll On/Roll Off (RO/RO) discharge systems. The LAMP-H will :1replace the LARC-LX
Combat Fitness a Concept Vital to National Defense
2010-06-18
Physical fitness testing has traditionally been focused on a 1.5- to 3-mile run, push-ups, sit-ups, and, in some Services pull -ups, flexibility, and...Performance 6 Shoot Physical Requirements Employ hand grenades Run under load, jump, bound, high/low crawl, climb, push, pull , squat, lunge, roll...jump, bound, high/low crawl, climb, push, pull , squat, lunge, roll, stop, start, change direction and get up/down. Navigate from one point to
Hybrid Airships in Joint Logistics Over the Shore (JLOTS)
2013-06-13
invaluable. Additionally, special thanks are extended to my small group and instructors Mr. Thomas Meara, Mr. Leo Verhaeg, Mr. Kenneth Szmed, and Dr...LHS Load Handling System LMSR Large, Medium Speed Roll-on/Roll-Off Ship LOC Lines of Communication LSV Logistics Support Vessel MEB Marine...that connected operations to a source of supply became known as Lines-of- Communication ( LOC ). Increasing the length of a LOC makes an army more
Donaldson, Finn E; Nyman, Edward; Coburn, James C
2015-07-16
Manufacturers and investigators of Total Hip Replacement (THR) bearings require tools to predict the contact mechanics resulting from diverse design and loading parameters. This study provides contact mechanics solutions for metal-on-metal (MoM) bearings that encompass the current design space and could aid pre-clinical design optimization and evaluation. Stochastic finite element (FE) simulation was used to calculate the head-on-cup contact mechanics for five thousand combinations of design and loading parameters. FE results were used to train a Random Forest (RF) surrogate model to rapidly predict the contact patch dimensions, contact area, pressures and plastic deformations for arbitrary designs and loading. In addition to widely observed polar and edge contact, FE results included ring-polar, asymmetric-polar, and transitional categories which have previously received limited attention. Combinations of design and load parameters associated with each contact category were identified. Polar contact pressures were predicted in the range of 0-200 MPa with no permanent deformation. Edge loading (with subluxation) was associated with pressures greater than 500 MPa and induced permanent deformation in 83% of cases. Transitional-edge contact (with little subluxation) was associated with intermediate pressures and permanent deformation in most cases, indicating that, even with ideal anatomical alignment, bearings may face extreme wear challenges. Surrogate models were able to accurately predict contact mechanics 18,000 times faster than FE analyses. The developed surrogate models enable rapid prediction of MoM bearing contact mechanics across the most comprehensive range of loading and designs to date, and may be useful to those performing bearing design optimization or evaluation. Published by Elsevier Ltd.
41 CFR 50-204.3 - Material handling and storage.
Code of Federal Regulations, 2012 CFR
2012-07-01
.... Bags, containers, bundles, etc. stored in tiers shall be stacked, blocked, interlocked and limited in... provided on spur railroad tracks where a rolling car could contact other cars being worked, enter a...
41 CFR 50-204.3 - Material handling and storage.
Code of Federal Regulations, 2014 CFR
2014-07-01
.... Bags, containers, bundles, etc. stored in tiers shall be stacked, blocked, interlocked and limited in... provided on spur railroad tracks where a rolling car could contact other cars being worked, enter a...
41 CFR 50-204.3 - Material handling and storage.
Code of Federal Regulations, 2010 CFR
2010-07-01
.... Bags, containers, bundles, etc. stored in tiers shall be stacked, blocked, interlocked and limited in... provided on spur railroad tracks where a rolling car could contact other cars being worked, enter a...
41 CFR 50-204.3 - Material handling and storage.
Code of Federal Regulations, 2013 CFR
2013-07-01
.... Bags, containers, bundles, etc. stored in tiers shall be stacked, blocked, interlocked and limited in... provided on spur railroad tracks where a rolling car could contact other cars being worked, enter a...
41 CFR 50-204.3 - Material handling and storage.
Code of Federal Regulations, 2011 CFR
2011-07-01
.... Bags, containers, bundles, etc. stored in tiers shall be stacked, blocked, interlocked and limited in... provided on spur railroad tracks where a rolling car could contact other cars being worked, enter a...
Integration of mechanism and control for large-angle slew maneuvers of flexible structures
NASA Technical Reports Server (NTRS)
Chew, Meng-Sang
1991-01-01
A rolling contact noncircular gear system is applied to assist a desired controller in the slewing of a flexible space structure. The varying gear ratio in cooperation with the controller results in lower feedback gains at the controller, as well as considerably reducing flexural vibrations of the space structure. The noncircular gears consist of a pair of convex noncircular cylinders with specially designed profiles that are synthesized in conjunction with the optimal controller gains for minimizing the flexural vibrations of flexible structure during a slew maneuver. Convexity of the cylindrical profiles for this noncircular gear device must be ensured to maintain rolling contact between the two cylinders. Simulations of slewing control tasks for two kinds of flexible space structures, such as a planar flexible beam and the planar articulated flexible beams, are presented.
Elastohydrodynamic lubrication theory
NASA Technical Reports Server (NTRS)
Hamrock, B. J.; Dowson, D.
1982-01-01
The isothermal elastohydrodynamic lubrication (EHL) of a point contact was analyzed numerically by simultaneously solving the elasticity and Reynolds equations. In the elasticity analysis the contact zone was divided into equal rectangular areas, and it was assumed that a uniform pressure was applied over each area. In the numerical analysis of the Reynolds equation, a phi analysis (where phi is equal to the pressure times the film thickness to the 3/2 power) was used to help the relaxation process. The EHL point contact analysis is applicable for the entire range of elliptical parameters and is valid for any combination of rolling and sliding within the contact.
Apparatus and process for ultrasonic seam welding stainless steel foils
Leigh, Richard W.
1992-01-01
An ultrasonic seam welding apparatus having a head which is rotated to form contact, preferably rolling contact, between a metallurgically inert coated surface of the head and an outside foil of a plurality of layered foils or work materials. The head is vibrated at an ultrasonic frequency, preferably along a longitudinal axis of the head. The head is constructed to transmit vibration through a contacting surface of the head into each of the layered foils. The contacting surface of the head is preferably coated with aluminum oxide to prevent the head from becoming welded to layered stainless steel foils.
Stress analysis method for clearance-fit joints with bearing-bypass loads
NASA Technical Reports Server (NTRS)
Naik, R. A.; Crews, J. H., Jr.
1989-01-01
Within a multi-fastener joint, fastener holes may be subjected to the combined effects of bearing loads and loads that bypass the hole to be reacted elsewhere in the joint. The analysis of a joint subjected to search combined bearing and bypass loads is complicated by the usual clearance between the hole and the fastener. A simple analysis method for such clearance-fit joints subjected to bearing-bypass loading has been developed in the present study. It uses an inverse formulation with a linear elastic finite-element analysis. Conditions along the bolt-hole contact arc are specified by displacement constraint equations. The present method is simple to apply and can be implemented with most general purpose finite-element programs since it does not use complicated iterative-incremental procedures. The method was used to study the effects of bearing-bypass loading on bolt-hole contact angles and local stresses. In this study, a rigid, frictionless bolt was used with a plate having the properties of a quasi-isotropic graphite/epoxy laminate. Results showed that the contact angle as well as the peak stresses around the hole and their locations were strongly influenced by the ratio of bearing and bypass loads. For single contact, tension and compression bearing-bypass loading had opposite effects on the contact angle. For some compressive bearing-bypass loads, the hole tended to close on the fastener leading to dual contact. It was shown that dual contact reduces the stress concentration at the fastener and would, therefore, increase joint strength in compression. The results illustrate the general importance of accounting for bolt-hole clearance and contact to accurately compute local bolt-hole stresses for combined bearings and bypass loading.
Ceramic Rail-Race Ball Bearings
NASA Technical Reports Server (NTRS)
Balzer, Mark A.; Mungas, Greg S.; Peters, Gregory H.
2010-01-01
Non-lubricated ball bearings featuring rail races have been proposed for use in mechanisms that are required to function in the presence of mineral dust particles in very low-pressure, dry environments with extended life. Like a conventional ball bearing, the proposed bearing would include an inner and an outer ring separated by balls in rolling contact with the races. However, unlike a conventional ball bearing, the balls would not roll in semi-circular or gothic arch race grooves in the rings: instead, the races would be shaped to form two or more rails (see figure). During operation, the motion of the balls would push dust particles into the spaces between the rails where the particles could not generate rolling resistance for the balls
A Study of the Use of Contact Loading to Simulate Low Velocity Impact
NASA Technical Reports Server (NTRS)
Highsmith, Alton L.
1997-01-01
Although numerous studies on the impact response of laminated composites have been conducted, there is as yet no agreement within the composites community on what parameter or parameters are adequate for quantifying the severity of an impact event. One of the more interesting approaches that has been proposed uses the maximum contact force during impact to "quantify" the severity of the impact event, provided that the impact velocity is sufficiently low. A significant advantage of this approach, should it prove to be reliable, is that quasi-static contact loading could be used to simulate low velocity impact. In principle, a single specimen, loaded quasi-statically to successively increasing contact loads could be used to map the entire spectrum of damage as a function of maximum contact force. The present study had as its objective assessing whether or not the maximum contact force during impact is a suitable parameter for characterizing an impact. The response of [+/-60/0(sub 4)/+/-60/0(sub 2)](sub s) laminates fabricated from Fiberite T300/934 graphite epoxy and subjected to quasi-static contact loading and to low velocity impact was studied. Three quasi-static contact load levels - 525 lb., 600 lb., and 675 lb. - were selected. Three impact energy levels - 1.14 ft.-lb., 2.0 ft.-lb., and 2.60 ft.-lb. - were chosen in an effort to produce impact events in which the maximum contact forces during the impact events were 525 lb., 600 lb., and 625 lb., respectively. Damage development was documented using dye-penetrant enhanced x-ray radiography. A digital image processing technique was used to obtain quantitative information about the damage zone. Although it was intended that the impact load levels produce maximum contact forces equal to those used in the quasi-static contact experiments, larger contact forces were developed during impact loading. In spite of this, the damage zones developed in impacted specimens were smaller than the damage zones developed in specimens subjected to the corresponding quasi-static contact loading. The impacted specimens may have a greater tendency to develop fiber fracture, but, at present, a quantitative assessment of fiber fracture is not available. In addressing whether or not contact force is an adequate metric for describing the severity of an impact event, the results of this study suggest that it is not. In cases where the quasi-static load level and the maximum contact force during impact were comparable, the quasi-statically loaded specimens consistently developed larger damage zones. It should be noted, however, that using quasi-static damage data to forecast the behavior of impacted material may give conservative estimates of the residual strength of impacted composites.
NASA Astrophysics Data System (ADS)
Zhao, Xin; Li, Zili; Dollevoet, Rolf
2013-12-01
The squat, a kind of rolling contact fatigue occurring on the rail top, can excite the high-frequency vehicle-track interaction effectively due to its geometric deviations with a typical wavelength of 20-40 mm, leading to the accelerated deterioration of a track. In this work, a validated 3D transient finite element model is employed to calculate in the time domain the vertical and the longitudinal dynamic contact forces between the wheel and the rail caused by squats. The vehicle-track structure and the wheel-rail continua are both considered in order to include all the important eigencharacteristics of the system related to squats. By introducing the rotational and translational movements of the wheel, the transient wheel-rail rolling contact is solved in detail by a 3D frictional contact model integrated. The contact filter effect is considered automatically in the simulations by the finite size of the contact patch. The present work focuses on the influences of the length, width and depth of a light squat on the resulted dynamic contact forces, for which idealised defect models are used. The growth of a squat is also modelled to a certain extent by a series of defects with different dimensions. The results show that the system is mainly excited at two frequencies separately in the vertical and the longitudinal dynamics. Their superposition explains the typical appearance of mature squats. As a squat grows up, the magnitude of the excited vibration at the lower frequency increases faster than the one at the higher frequency.
Surface fatigue life of M50NiL and AISI 9310 spur gears and R C bars
NASA Technical Reports Server (NTRS)
Townsend, Dennis P.; Bamberger, Eric N.
1991-01-01
Spur gear endurance tests and rolling element surface fatigue tests were conducted to study vacuum induction melted, vacuum arc remelted (VIM-VAR) M50NiL steel for use as a gear steel in advanced aircraft applications, to determine its endurance characteristics, and to compare the results with those for standard VAR and VIM-VAR AISI 9310 gear material. Tests were conducted with spur gears and rolling contact bars manufactured from VIM-VAR M50NiL and VAR and VIM-VAR AISI 9310. The gear pitch diameter was 8.9 cm. Gear test conditions were an inlet oil temperature of 320 K, and outlet oil temperature of 350 K, a maximum Hertz stress of 1.71 GPa, and a speed of 10000 rpm. Bench rolling element fatigue tests were conducted at ambient temperatures with a bar speed of 12,500 rpm and a maximum Hertz stress of 4.83 GPa. The VIM-VAR M50NiL gears had a surface fatigue life that was 4.5 and 11.5 times that for VIM-VAR and VAR AISI 9310 gears, respectively. The surface fatigue life of the VIM-VAR M50NiL rolling contact bars was 13.2 and 21.6 times that for the VIM-VAR and VAR AISI 9310, respectively. The VIM-VAR M50NiL material was shown to have good resistance to fracture through a fatigue spall and superior fatigue life to both other gears.
Analytical study on web deformation by tension in roll-to-roll printing process
NASA Astrophysics Data System (ADS)
Kang, Y. S.; Hong, M. S.; Lee, S. H.; Jeon, Y. H.; Kang, D.; Lee, N. K.; Lee, M. G.
2017-08-01
Recently, flexible devices have gained high intentions for flexible display, Radio Frequency Identification (RFID), bio-sensor and so on. For manufacturing of the flexible devices, roll-to-roll process is a good candidate because of its low production cost and high productivity. Flexible substrate has a non-uniform deformation distribution by tension. Because the roll-to-roll process carries out a number of overlay printing processes, the deformation affect overlay printing precision and printable areas. In this study, the deformation of flexible substrate was analyzed by using finite element analysis and it was verified through experiments. More deformation occurred in the middle region in the direction parallel to rolling of the flexible substrate. It is confirmed through experiments and analysis that deformation occurs less at the both ends than in the middle region. Based on these results, a hourglass roll is proposed as a mechanical design of the roll to compensate the non-uniform deformation of the flexible substrate. In the hourglass roll, high stiffness material is used in the core and low stiffness material such as an elastic material is wrapped. The diameter of the core roll was designed to be the minimum at the middle and the maximum at both ends. We tried to compensate the non-uniform deformation distribution of the flexible substrate by using the variation of the contact stiffness between the roll and the flexible substrate. Deformation distribution of flexible substrates was confirmed by finite element analysis by applying hourglass roll shape. In the analysis when using the hourglass roll, it is confirmed that the stress distribution is compensated by about 70% and the strain distribution is compensated by about 67% compared to the case using the hourglass roll. To verify the compensation of the non-uniform deformation distribution due to the tension, deformation measurement experiment when using the proposed hourglass roll was carried out. Experiments have shown that the distribution of deformation is compensated by about 34%. From the results, we verified the performance of the proposed.
Predicted effect of dynamic load on pitting fatigue life for low-contact-ratio spur gears
NASA Technical Reports Server (NTRS)
Lewicki, David G.
1986-01-01
How dynamic load affects the surface pitting fatigue life of external spur gears was predicted by using the NASA computer program TELSGE. Parametric studies were performed over a range of various gear parameters modeling low-contact-ratio involute spur gears. In general, gear life predictions based on dynamic loads differed significantly from those based on static loads, with the predictions being strongly influenced by the maximum dynamic load during contact. Gear mesh operating speed strongly affected predicted dynamic load and life. Meshes operating at a resonant speed or one-half the resonant speed had significantly shorter lives. Dynamic life factors for gear surface pitting fatigue were developed on the basis of the parametric studies. In general, meshes with higher contact ratios had higher dynamic life factors than meshes with lower contact ratios. A design chart was developed for hand calculations of dynamic life factors.
Substructure method in high-speed monorail dynamic problems
NASA Astrophysics Data System (ADS)
Ivanchenko, I. I.
2008-12-01
The study of actions of high-speed moving loads on bridges and elevated tracks remains a topical problem for transport. In the present study, we propose a new method for moving load analysis of elevated tracks (monorail structures or bridges), which permits studying the interaction between two strained objects consisting of rod systems and rigid bodies with viscoelastic links; one of these objects is the moving load (monorail rolling stock), and the other is the carrying structure (monorail elevated track or bridge). The methods for moving load analysis of structures were developed in numerous papers [1-15]. At the first stage, when solving the problem about a beam under the action of the simplest moving load such as a moving weight, two fundamental methods can be used; the same methods are realized for other structures and loads. The first method is based on the use of a generalized coordinate in the expansion of the deflection in the natural shapes of the beam, and the problem is reduced to solving a system of ordinary differential equations with variable coefficients [1-3]. In the second method, after the "beam-weight" system is decomposed, just as in the problem with the weight impact on the beam [4], solving the problem is reduced to solving an integral equation for the dynamic weight reaction [6, 7]. In [1-3], an increase in the number of retained forms leads to an increase in the order of the system of equations; in [6, 7], difficulties arise when solving the integral equations related to the conditional stability of the step procedures. The method proposed in [9, 14] for beams and rod systems combines the above approaches and eliminates their drawbacks, because it permits retaining any necessary number of shapes in the deflection expansion and has a resolving system of equations with an unconditionally stable integration scheme and with a minimum number of unknowns, just as in the method of integral equations [6, 7]. This method is further developed for combined schemes modeling a strained elastic compound moving structure and a monorail elevated track. The problems of development of methods for dynamic analysis of monorails are very topical, especially because of increasing speeds of the rolling stock motion. These structures are studied in [16-18]. In the present paper, the above problem is solved by using the method for the moving load analysis and a step procedure of integration with respect to time, which were proposed in [9, 19], respectively. Further, these components are used to enlarge the possibilities of the substructure method in problems of dynamics. In the approach proposed for moving load analysis of structures, for a substructure (having the shape of a boundary element or a superelement) we choose an object moving at a constant speed (a monorail rolling stock); in this case, we use rod boundary elements of large length, which are gathered in a system modeling these objects. In particular, sets of such elements form a model of a monorail rolling stock, namely, carriage hulls, wheeled carts, elements of the wheel spring suspension, models of continuous beams of monorail ways and piers with foundations admitting emergency subsidence and unilateral links. These specialized rigid finite elements with linear and nonlinear links, included into the set of earlier proposed finite elements [14, 19], permit studying unsteady vibrations in the "monorail train-elevated track" (MTET) system taking into account various irregularities on the beam-rail, the pier emergency subsidence, and their elastic support by the basement. In this case, a high degree of the structure spatial digitization is obtained by using rods with distributed parameters in the analysis. The displacements are approximated by linear functions and trigonometric Fourier series, which, as was already noted, permits increasing the number of degrees of freedom of the system under study simultaneously preserving the order of the resolving system of equations. This approach permits studying the stress-strain state in the MTET system and determining accelerations at the desired points of the rolling stock. The proposed numerical procedure permits uniquely solving linear and nonlinear differential equations describing the operation of the model, which replaces the system by a monorail rolling stock consisting of several specialized mutually connected cars and a system of continuous beams on elastic inertial supports. This approach (based on the use of a moving substructure, which is also modeled by a system of boundary rod elements) permits maximally reducing the number of unknowns in the resolving system of equations at each step of its solution [11]. The authors of the preceding investigations of this problem, when studying the simultaneous vibrations of bridges and moving loads, considered only the case in which the rolling stock was represented by sufficiently complicated systems of rigid bodies connected by viscoelastic links [3-18] and the rolling stock motion was described by systems of ordinary differential equations. A specific characteristic of the proposed method is that it is convenient to derive the equations of motion of both the rolling stock and the bridge structure. The method [9, 14] permits obtaining the equations of interaction between the structures as two separate finite-element structures. Hence the researcher need not traditionally write out the system of equations of motion, for example, for the rolling stock (of cars) with finitely many degrees of freedom [3-18].We note several papers where simultaneous vibrations of an elastic moving load and an elastic carrying structure are considered in a rather narrow region and have a specific character. For example, the motion of an elastic rod along an elastic infinite rod on an elastic foundation is studied in [20], and the body of a car moving along a beam is considered as a rod with ten concentrated masses in [21].
Rolling Contact Fatigue Performances of Carburized and High-C Nanostructured Bainitic Steels.
Wang, Yanhui; Zhang, Fucheng; Yang, Zhinan; Lv, Bo; Zheng, Chunlei
2016-11-25
In the present work, the nanostructured bainitic microstructures were obtained at the surfaces of a carburized steel and a high-C steel. The rolling contact fatigue (RCF) performances of the two alloy steels with the same volume fraction of undissolved carbide were studied under lubrication. Results show that the RCF life of the carburized nanostructured bainitic steel is superior to that of the high-C nanostructured bainitic steel in spite of the chemical composition, phase constituent, plate thickness of bainitic ferrite, hardness, and residual compressive stress value of the contact surfaces of the two steels under roughly similar conditions. The excellent RCF performance of the carburized nanostructured bainitic steel is mainly attributed to the following reasons: finer carbide dispersion distribution in the top surface, the higher residual compressive stress values in the carburized layer, the deeper residual compressive stress layer, the higher work hardening ability, the larger amount of retained austenite transforming into martensite at the surface and the more stable untransformed retained austenite left in the top surface of the steel.
Nanowire CdS-CdTe solar cells with molybdenum oxide as contact
Dang, Hongmei; Singh, Vijay P.
2015-10-06
Using a 10 nm thick molybdenum oxide (MoO 3-x) layer as a transparent and low barrier contact to p-CdTe, we demonstrate nanowire CdS-CdTe solar cells with a power conversion efficiency of 11% under front side illumination. Annealing the as-deposited MoO 3 film in N2 resulted in a reduction of the cell’s series resistance, from 9.97 Ω/cm 2 to 7.69 Ω/cm 2, and increase in efficiency from 9.9% to 11%. Under illumination from the back, the MoO 3-x/Au side, the nanowire solar cells yielded Jsc of 21 mA/cm 2 and efficiency of 8.67%. Our results demonstrate use of a thin layermore » transition metal oxide as a potential way for a transparent back contact to nanowire CdS-CdTe solar cells. As a result, this work has implications toward enabling a novel superstrate structure nanowire CdS-CdTe solar cell on Al foil substrate by a low cost roll-to roll fabrication process.« less
Acquiring a 2D rolled equivalent fingerprint image from a non-contact 3D finger scan
NASA Astrophysics Data System (ADS)
Fatehpuria, Abhishika; Lau, Daniel L.; Hassebrook, Laurence G.
2006-04-01
The use of fingerprints as a biometric is both the oldest mode of computer aided personal identification and the most relied-upon technology in use today. But current fingerprint scanning systems have some challenging and peculiar difficulties. Often skin conditions and imperfect acquisition circumstances cause the captured fingerprint image to be far from ideal. Also some of the acquisition techniques can be slow and cumbersome to use and may not provide the complete information required for reliable feature extraction and fingerprint matching. Most of the difficulties arise due to the contact of the fingerprint surface with the sensor platen. To attain a fast-capture, non-contact, fingerprint scanning technology, we are developing a scanning system that employs structured light illumination as a means for acquiring a 3-D scan of the finger with sufficiently high resolution to record ridge-level details. In this paper, we describe the postprocessing steps used for converting the acquired 3-D scan of the subject's finger into a 2-D rolled equivalent image.
Rolling Contact Fatigue Performances of Carburized and High-C Nanostructured Bainitic Steels
Wang, Yanhui; Zhang, Fucheng; Yang, Zhinan; Lv, Bo; Zheng, Chunlei
2016-01-01
In the present work, the nanostructured bainitic microstructures were obtained at the surfaces of a carburized steel and a high-C steel. The rolling contact fatigue (RCF) performances of the two alloy steels with the same volume fraction of undissolved carbide were studied under lubrication. Results show that the RCF life of the carburized nanostructured bainitic steel is superior to that of the high-C nanostructured bainitic steel in spite of the chemical composition, phase constituent, plate thickness of bainitic ferrite, hardness, and residual compressive stress value of the contact surfaces of the two steels under roughly similar conditions. The excellent RCF performance of the carburized nanostructured bainitic steel is mainly attributed to the following reasons: finer carbide dispersion distribution in the top surface, the higher residual compressive stress values in the carburized layer, the deeper residual compressive stress layer, the higher work hardening ability, the larger amount of retained austenite transforming into martensite at the surface and the more stable untransformed retained austenite left in the top surface of the steel. PMID:28774081
NASA Astrophysics Data System (ADS)
Nishino, Takayuki
The face hobbing process has been widely applied in automotive industry. But so far few analytical tools have been developed. This makes it difficult for us to optimize gear design. To settle this situation, this study aims at developing a computerized tool to predict the running performances such as loaded tooth contact pattern, static transmission error and so on. First, based upon kinematical analysis of a cutting machine, a mathematical description of tooth surface generation is given. Second, based upon the theory of gearing and differential geometry, conjugate tooth surfaces are studied. Then contact lines are generated. Third, load distribution along contact lines is formulated. Last, the numerical model is validated by measuring loaded transmission error and loaded tooth contact pattern.
Contribution of tibiofemoral joint contact to net loads at the knee in gait.
Walter, Jonathan P; Korkmaz, Nuray; Fregly, Benjamin J; Pandy, Marcus G
2015-07-01
Inverse dynamics analysis is commonly used to estimate the net loads at a joint during human motion. Most lower-limb models of movement represent the knee as a simple hinge joint when calculating muscle forces. This approach is limited because it neglects the contributions from tibiofemoral joint contact forces and may therefore lead to errors in estimated muscle forces. The aim of this study was to quantify the contributions of tibiofemoral joint contact loads to the net knee loads calculated from inverse dynamics for multiple subjects and multiple gait patterns. Tibiofemoral joint contact loads were measured in four subjects with instrumented implants as each subject walked at their preferred speed (normal gait) and performed prescribed gait modifications designed to treat medial knee osteoarthritis. Tibiofemoral contact loads contributed substantially to the net knee extension and knee adduction moments in normal gait with mean values of 16% and 54%, respectively. These findings suggest that knee-contact kinematics and loads should be included in lower-limb models of movement for more accurate determination of muscle forces. The results of this study may be used to guide the development of more realistic lower-limb models that account for the effects of tibiofemoral joint contact at the knee. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
NASA Technical Reports Server (NTRS)
Tanner, John A.
1996-01-01
A computational procedure is presented for the solution of frictional contact problems for aircraft tires. A Space Shuttle nose-gear tire is modeled using a two-dimensional laminated anisotropic shell theory which includes the effects of variations in material and geometric parameters, transverse-shear deformation, and geometric nonlinearities. Contact conditions are incorporated into the formulation by using a perturbed Lagrangian approach with the fundamental unknowns consisting of the stress resultants, the generalized displacements, and the Lagrange multipliers associated with both contact and friction conditions. The contact-friction algorithm is based on a modified Coulomb friction law. A modified two-field, mixed-variational principle is used to obtain elemental arrays. This modification consists of augmenting the functional of that principle by two terms: the Lagrange multiplier vector associated with normal and tangential node contact-load intensities and a regularization term that is quadratic in the Lagrange multiplier vector. These capabilities and computational features are incorporated into an in-house computer code. Experimental measurements were taken to define the response of the Space Shuttle nose-gear tire to inflation-pressure loads and to inflation-pressure loads combined with normal static loads against a rigid flat plate. These experimental results describe the meridional growth of the tire cross section caused by inflation loading, the static load-deflection characteristics of the tire, the geometry of the tire footprint under static loading conditions, and the normal and tangential load-intensity distributions in the tire footprint for the various static vertical loading conditions. Numerical results were obtained for the Space Shuttle nose-gear tire subjected to inflation pressure loads and combined inflation pressure and contact loads against a rigid flat plate. The experimental measurements and the numerical results are compared.
NASA Technical Reports Server (NTRS)
Tanner, John A.
1996-01-01
A computational procedure is presented for the solution of frictional contact problems for aircraft tires. A Space Shuttle nose-gear tire is modeled using a two-dimensional laminated anisotropic shell theory which includes the effects of variations in material and geometric parameters, transverse-shear deformation, and geometric nonlinearities. Contact conditions are incorporated into the formulation by using a perturbed Lagrangian approach with the fundamental unknowns consisting of the stress resultants, the generalized displacements, and the Lagrange multipliers associated with both contact and friction conditions. The contact-friction algorithm is based on a modified Coulomb friction law. A modified two-field, mixed-variational principle is used to obtain elemental arrays. This modification consists of augmenting the functional of that principle by two terms: the Lagrange multiplier vector associated with normal and tangential node contact-load intensities and a regularization term that is quadratic in the Lagrange multiplier vector. These capabilities and computational features are incorporated into an in-house computer code. Experimental measurements were taken to define the response of the Space Shuttle nose-gear tire to inflation-pressure loads and to inflation-pressure loads combined with normal static loads against a rigid flat plate. These experimental results describe the meridional growth of the tire cross section caused by inflation loading, the static load-deflection characteristics of the tire, the geometry of the tire footprint under static loading conditions, and the normal and tangential load-intensity distributions in the tire footprint for the various static vertical-loading conditions. Numerical results were obtained for the Space Shuttle nose-gear tire subjected to inflation pressure loads and combined inflation pressure and contact loads against a rigid flat plate. The experimental measurements and the numerical results are compared.
Ring rotational speed trend analysis by FEM approach in a Ring Rolling process
NASA Astrophysics Data System (ADS)
Allegri, G.; Giorleo, L.; Ceretti, E.
2018-05-01
Ring Rolling is an advanced local incremental forming technology to fabricate directly precise seamless ring-shape parts with various dimensions and materials. In this process two different deformations occur in order to reduce the width and the height of a preform hollow ring; as results a diameter expansion is obtained. In order to guarantee a uniform deformation, the preform is forced toward the Driver Roll whose aim is to transmit the rotation to the ring. The ring rotational speed selection is fundamental because the higher is the speed the higher will be the axial symmetry of the deformation process. However, it is important to underline that the rotational speed will affect not only the final ring geometry but also the loads and energy needed to produce it. Despite this importance in industrial environment, usually, a constant value for the Driver Roll angular velocity is set so to result in a decreasing trend law for the ring rotational speed. The main risk due to this approach is not fulfilling the axial symmetric constrain (due to the diameter expansion) and to generate a high localized ring section deformation. In order to improve the knowledge about this topic in the present paper three different ring rotational speed trends (constant, linearly increasing and linearly decreasing) were investigated by FEM approach. Results were compared in terms of geometrical and dimensional analysis, loads and energies required.
High-Temperature, High-Load-Capacity Radial Magnetic Bearing
NASA Technical Reports Server (NTRS)
Provenza, Andrew; Montague, Gerald; Kascak, Albert; Palazzolo, Alan; Jansen, Ralph; Jansen, Mark; Ebihara, Ben
2005-01-01
A radial heteropolar magnetic bearing capable of operating at a temperature as high as 1,000 F (=540 C) has been developed. This is a prototype of bearings for use in gas turbine engines operating at temperatures and speeds much higher than can be withstood by lubricated rolling-element bearings. It is possible to increase the maximum allowable operating temperatures and speeds of rolling-element bearings by use of cooling-air systems, sophisticated lubrication systems, and rotor-vibration- damping systems that are subsystems of the lubrication systems, but such systems and subsystems are troublesome. In contrast, a properly designed radial magnetic bearing can suspend a rotor without contact, and, hence, without need for lubrication or for cooling. Moreover, a magnetic bearing eliminates the need for a separate damping system, inasmuch as a damping function is typically an integral part of the design of the control system of a magnetic bearing. The present high-temperature radial heteropolar magnetic bearing has a unique combination of four features that contribute to its suitability for the intended application: 1. The wires in its electromagnet coils are covered with an insulating material that does not undergo dielectric breakdown at high temperature and is pliable enough to enable the winding of the wires to small radii. 2. The processes used in winding and potting of the coils yields a packing factor close to 0.7 . a relatively high value that helps in maximizing the magnetic fields generated by the coils for a given supplied current. These processes also make the coils structurally robust. 3. The electromagnets are of a modular C-core design that enables replacement of components and semiautomated winding of coils. 4. The stator is mounted in such a manner as to provide stable support under radial and axial thermal expansion and under a load as large as 1,000 lb (.4.4 kN).
The influence of rail surface irregularities on contact forces and local stresses
NASA Astrophysics Data System (ADS)
Andersson, Robin; Torstensson, Peter T.; Kabo, Elena; Larsson, Fredrik
2015-01-01
The effect of initial rail surface irregularities on promoting further surface degradation is investigated. The study concerns rolling contact fatigue formation, in particular in the form of the so-called squats. The impact of surface irregularities in the form of dimples is quantified by peak magnitudes of dynamic contact stresses and contact forces. To this end simulations of two-dimensional (later extended to three-dimensional) vertical dynamic vehicle-track interaction are employed. The most influencing parameters are identified. It is shown that even very shallow dimples might have a large impact on local contact stresses. Peak magnitudes of contact forces and stresses due to the influence of rail dimples are shown to exceed those due to rail corrugation.
The SLS Stages Intertank Structural Test Assembly (STA) arrives at MSFC
2018-03-06
The SLS Stages Intertank Structural Test Assembly (STA) is rolling off the NASA Pegasus Barge at the MSFC Dock enroute to the MSFC 4619 Load Test Annex test facility for qualification testing. Members of MSFC Logistics Office and Move Team members gather for last minute instructions and safety briefing before off-loading STA hardware.
Meyer, Andrew J; D'Lima, Darryl D; Besier, Thor F; Lloyd, David G; Colwell, Clifford W; Fregly, Benjamin J
2013-06-01
Mechanical loading is believed to be a critical factor in the development and treatment of knee osteoarthritis. However, the contact forces to which the knee articular surfaces are subjected during daily activities cannot be measured clinically. Thus, the ability to predict internal knee contact forces accurately using external measures (i.e., external knee loads and muscle electromyographic [EMG] signals) would be clinically valuable. We quantified how well external knee load and EMG measures predict internal knee contact forces during gait. A single subject with a force-measuring tibial prosthesis and post-operative valgus alignment performed four gait patterns (normal, medial thrust, walking pole, and trunk sway) to induce a wide range of external and internal knee joint loads. Linear regression analyses were performed to assess how much of the variability in internal contact forces was accounted for by variability in the external measures. Though the different gait patterns successfully induced significant changes in the external and internal quantities, changes in external measures were generally weak indicators of changes in total, medial, and lateral contact force. Our results suggest that when total contact force may be changing, caution should be exercised when inferring changes in knee contact forces based on observed changes in external knee load and EMG measures. Advances in musculoskeletal modeling methods may be needed for accurate estimation of in vivo knee contact forces. Copyright © 2012 Orthopaedic Research Society.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dietderich, D.R.; Scanlan, R.M.; Walsh, R.P.
For high energy physics applications superconducting cables are subjected to large stresses and high magnetic fields during service. It is essential to know how these cables perform in these operating conditions. A loading fixture capable of applying loads of up to 700 kN has been developed by NHMFL for LBNL. This fixture permits uniform loading of straight cables over a 122 mm length in a split-pair solenoid in fields up to 12 T at 4.2 K. The first results from this system for Rutherford cables of internal-tin and modified jelly roll strand of Nb{sub 3}Sn produced by IGC and TWCmore » showed that little permanent degradation occurs up to 210 MPa. However, the cable made from internal-tin strand showed a 40% reduction in K{sub c} at 11T and 210 MPa while a dable made from modified jelly roll material showed only a 15% reduction in I{sub c} at 11T and 185 MPa.« less
Engineering nanoscale surface features to sustain microparticle rolling in flow.
Kalasin, Surachate; Santore, Maria M
2015-05-26
Nanoscopic features of channel walls are often engineered to facilitate microfluidic transport, for instance when surface charge enables electro-osmosis or when grooves drive mixing. The dynamic or rolling adhesion of flowing microparticles on a channel wall holds potential to accomplish particle sorting or to selectively transfer reactive species or signals between the wall and flowing particles. Inspired by cell rolling under the direction of adhesion molecules called selectins, we present an engineered platform in which the rolling of flowing microparticles is sustained through the incorporation of entirely synthetic, discrete, nanoscale, attractive features into the nonadhesive (electrostatically repulsive) surface of a flow channel. Focusing on one example or type of nanoscale feature and probing the impact of broad systematic variations in surface feature loading and processing parameters, this study demonstrates how relatively flat, weakly adhesive nanoscale features, positioned with average spacings on the order of tens of nanometers, can produce sustained microparticle rolling. We further demonstrate how the rolling velocity and travel distance depend on flow and surface design. We identify classes of related surfaces that fail to support rolling and present a state space that identifies combinations of surface and processing variables corresponding to transitions between rolling, free particle motion, and arrest. Finally we identify combinations of parameters (surface length scales, particle size, flow rates) where particles can be manipulated with size-selectivity.
Xu, Jinku; Li, Xinsong; Sun, Fuqian
2011-02-01
The purpose of this work was to evaluate the usefulness of silicone hydrogel contact lenses loaded with ketotifen fumarate for ocular drug delivery. First, silicone contact lenses were prepared by photopolymerization of bitelechelic methacrylated polydimethylsiloxanes macromonomer, 3-methacryloxypropyltris(trimethylsiloxy)silane, and N,N-dimethylacrylamide using ethylene glycol dimethacrylate as a cross-linker and Darocur 1173 as an initiator followed by surface plasma treatment. Then, the silicone hydrogel matrices of the contact lenses were characterized by equilibrium swelling ratio (ESR), tensile tests, ion permeability, and surface contact angle. Finally, the contact lenses were loaded with ketotifen fumarate by pre-soaking in drug solution to evaluate drug loading capacity, in vitro and in vivo release behavior of the silicone contact lenses. The results showed that ESR and ion permeability increase, and the surface contact angle and tensile strength decreased with the increase of DMA component in the silicone hydrogel. The drug loading and in vitro releases were dependent on the hydrogel composition of hydrophilic/hydrophobic phase of the contact lenses. In rabbit eyes, the pre-soaked contact lenses sustained ketotifen fumarate release for more than 24 h, which leads to a more stable drug concentration and a longer mean retention time in tear fluid than that of eye drops of 0.05%.
Influence of immediate loading on provisional restoration in dental implant stability
NASA Astrophysics Data System (ADS)
Ikbal, M.; Odang, R. W.; Indrasari, M.; Dewi, R. S.
2017-08-01
The success of dental implant treatment is determined by the primary stability at placement. One factor that could influence this stability is occlusal loading through provisional restoration. Two types of loading protocols are usually used: immediate and delayed loading. However, some controversies remain about the influence of occlusal loading on implant stability. Therefore, the influence of immediate loading on implant stability must be studied. An animal study was conducted by placing nine dental implants in the mandibular jaw of three Macaca fascicularis. Provisional restorations with various occlusal contacts (no, light, and normal contact) were placed on the implant. The implant stability was measured using the Ostell ISQ three times: immediately (baseline) and at the first and second months after implant placement. The implant stability between implants with no and normal occlusal contact as well as light and normal occlusal contact showed significant differences (p < 0.05) at the first and second months after implant placement. However, no significant increase (p > 0.05) in implant stability was seen at the baseline and the first and second months after implant placement for all occlusal contact groups. Immediate loading influenced the implant stability, and provisional restoration of implant without occlusal contact showed the highest implant stability.
Injury risk-workload associations in NCAA American college football.
Sampson, J A; Murray, A; Williams, S; Halseth, T; Hanisch, J; Golden, G; Fullagar, H H K
2018-05-22
To determine injury risk-workload associations in collegiate American Football. Retrospective analysis. Workload and injury data was recorded from 52 players during a full NCAA football season. Acute, chronic, and a range of acute:chronic workload ratios (ACWR: 7:14, 7:21 and 7:28 day) calculated using rolling and exponentially weighted moving averages (EWMA) were plotted against non-contact injuries (regardless of time lost or not) sustained within 3- and 7-days. Injury risks were also determined relative to position and experience. 105 non-contact injuries (18 game- and 87 training-related) were observed with almost 40% sustained during the pre-season. 7-21 day EWMA ACWR's with a 3-day injury lag were most closely associated with injury (R 2 =0.54). Relative injury risks were >3× greater with high compared to moderate and low ratios and magnified when combined with low 21-day chronic workloads (injury probability=92.1%). Injury risks were similar across positions. 'Juniors' presented likely and possibly increased overall injury risk compared to 'Freshman' (RR: 1.94, CI 1.07-3.52) and 'Seniors' (RR: 1.7, CI 0.92-3.14), yet no specific ACWR - experience or - position interactions were identified. High injury rates during college football pre-season training may be associated with high acute loads. In-season injury risks were greatest with high ACWR and evident even when including (more common and less serious) non-time loss injuries. Substantially increased injury risks when low 21-day chronic workloads and concurrently high EWMA ACWR highlights the importance of load management for individuals with chronic game- (non-involved on game day) and or training (following injury) absences. Copyright © 2018 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
Bolted Double-Lap Composite Joints Under Mechanical and Thermal Loading
NASA Technical Reports Server (NTRS)
Kradinov, V.; Barut, A.; Madenci, E.; Walker, Sandra P. (Technical Monitor)
2000-01-01
This study concerns the determination of the contact stresses and contact region around bolt holes and the bolt load distribution in single- and double-lap joints of composite laminates with arbitrarily located bolts under general mechanical loading conditions and uniform temperature change. The unknown contact stress distribution and contact region between the bolt and laminates and the interaction among the bolts require the bolt load distribution, as well as the contact stresses, to be as part of the solution. The present method is based on the complex potential theory and the variational formulation in order to account for bolt stiffness, bolt-hole clearance, and finite geometry of the composite laminates.
Review of the damage mechanism in wind turbine gearbox bearings under rolling contact fatigue
NASA Astrophysics Data System (ADS)
Su, Yun-Shuai; Yu, Shu-Rong; Li, Shu-Xin; He, Yan-Ni
2017-12-01
Wind turbine gearbox bearings fail with the service life is much shorter than the designed life. Gearbox bearings are subjected to rolling contact fatigue (RCF) and they are observed to fail due to axial cracking, surface flaking, and the formation of white etching areas (WEAs). The current study reviewed these three typical failure modes. The underlying dominant mechanisms were discussed with emphasis on the formation mechanism of WEAs. Although numerous studies have been carried out, the formation of WEAs remains unclear. The prevailing mechanism of the rubbing of crack faces that generates WEAs was questioned by the authors. WEAs were compared with adiabatic shear bands (ASBs) generated in the high strain rate deformation in terms of microstructural compositions, grain refinement, and formation mechanism. Results indicate that a number of similarities exist between them. However, substantial evidence is required to verify whether or not WEAs and ASBs are the same matters.
NASA Astrophysics Data System (ADS)
Yadoiwa, Ariyasu; Mizobe, Koshiro; Kida, Katsuyuki
2018-03-01
13Cr % martensitic stainless steels were used in various industry, because they have excellent corrosion resistance and high hardness among other stainless steels. They are also expected as a bearing material, however, the research on rolling contact fatigue (RCF) is not enough. In this study, 13Cr-2Ni-2Mo stainless steels were quenched by induction heating and their RCF lives were evaluated. A Si3N4-ball was used in order to apply higher stress (Pmax = 5.6 GPa) than our previous tests (Pmax=5.3 GPa), in a single-ball RCF testing machine. It was found that the basic life (L10) was 2.20×106 cycles and Median life (L50) was 6.04×106 cycles. In addition, Weibull modulus became higher than the previous tests.
NASA Astrophysics Data System (ADS)
Das, A.; Viehrig, H. W.; Bergner, F.; Heintze, C.; Altstadt, E.; Hoffmann, J.
2017-08-01
ODS steels have been known to exhibit anisotropic fracture behaviour and form secondary cracks. In this work, the factors responsible for the anisotropic fracture behaviour have been investigated using scanning electron microscopy and electron backscatter microscopy. Fracture toughness of hot rolled 13Cr ODS steel was determined using unloading compliance method for L-T and T-L orientations at various temperatures. L-T orientation had higher fracture toughness than T-L orientation and also contained more pronounced secondary cracking. Secondary cracks appeared at lower loads than primary cracks in both orientations. Primary crack propagation was found to be preferentially through fine grains in a bimodal microstructure. Grains were aligned and elongated the most towards rolling direction followed by T and S directions resulting in fracture anisotropy. Crystallographic texture and preferential alignment of Ti enriched particles parallel to rolling direction also contributed towards fracture anisotropy.
Finite element based contact analysis of radio frequency MEMs switch membrane surfaces
NASA Astrophysics Data System (ADS)
Liu, Jin-Ya; Chalivendra, Vijaya; Huang, Wenzhen
2017-10-01
Finite element simulations were performed to determine the contact behavior of radio frequency (RF) micro-electro-mechanical (MEM) switch contact surfaces under monotonic and cyclic loading conditions. Atomic force microscopy (AFM) was used to capture the topography of RF-MEM switch membranes and later they were analyzed for multi-scale regular as well as fractal structures. Frictionless, non-adhesive contact 3D finite element analysis was carried out at different length scales to investigate the contact behavior of the regular-fractal surface using an elasto-plastic material model. Dominant micro-scale regular patterns were found to significantly change the contact behavior. Contact areas mainly cluster around the regular pattern. The contribution from the fractal structure is not significant. Under cyclic loading conditions, plastic deformation in the 1st loading/unloading cycle smooth the surface. The subsequent repetitive loading/unloading cycles undergo elastic contact without changing the morphology of the contacting surfaces. The work is expected to shed light on the quality of the switch surface contact as well as the optimum design of RF MEM switch surfaces.
Contact area of rough spheres: Large scale simulations and simple scaling laws
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pastewka, Lars, E-mail: lars.pastewka@kit.edu; Department of Physics and Astronomy, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218; Robbins, Mark O., E-mail: mr@pha.jhu.edu
2016-05-30
We use molecular simulations to study the nonadhesive and adhesive atomic-scale contact of rough spheres with radii ranging from nanometers to micrometers over more than ten orders of magnitude in applied normal load. At the lowest loads, the interfacial mechanics is governed by the contact mechanics of the first asperity that touches. The dependence of contact area on normal force becomes linear at intermediate loads and crosses over to Hertzian at the largest loads. By combining theories for the limiting cases of nominally flat rough surfaces and smooth spheres, we provide parameter-free analytical expressions for contact area over the wholemore » range of loads. Our results establish a range of validity for common approximations that neglect curvature or roughness in modeling objects on scales from atomic force microscope tips to ball bearings.« less
Wheel life prediction model - an alternative to the FASTSIM algorithm for RCF
NASA Astrophysics Data System (ADS)
Hossein-Nia, Saeed; Sichani, Matin Sh.; Stichel, Sebastian; Casanueva, Carlos
2018-07-01
In this article, a wheel life prediction model considering wear and rolling contact fatigue (RCF) is developed and applied to a heavy-haul locomotive. For wear calculations, a methodology based on Archard's wear calculation theory is used. The simulated wear depth is compared with profile measurements within 100,000 km. For RCF, a shakedown-based theory is applied locally, using the FaStrip algorithm to estimate the tangential stresses instead of FASTSIM. The differences between the two algorithms on damage prediction models are studied. The running distance between the two reprofiling due to RCF is estimated based on a Wöhler-like relationship developed from laboratory test results from the literature and the Palmgren-Miner rule. The simulated crack locations and their angles are compared with a five-year field study. Calculations to study the effects of electro-dynamic braking, track gauge, harder wheel material and the increase of axle load on the wheel life are also carried out.
Ag-graphene hybrid conductive ink for writing electronics.
Xu, L Y; Yang, G Y; Jing, H Y; Wei, J; Han, Y D
2014-02-07
With the aim of preparing a method for the writing of electronics on paper by the use of common commercial rollerball pens loaded with conductive ink, hybrid conductive ink composed of Ag nanoparticles (15 wt%) and graphene-Ag composite nanosheets (0.15 wt%) formed by depositing Ag nanoparticles (∼10 nm) onto graphene sheets was prepared for the first time. Owing to the electrical pathway effect of graphene and the decreased contact resistance of graphene junctions by depositing Ag nanoparticles (NPs) onto graphene sheets, the concentration of Ag NPs was significantly reduced while maintaining high conductivity at a curing temperature of 100 ° C. A typical resistivity value measured was 1.9 × 10(-7) Ω m, which is 12 times the value for bulk silver. Even over thousands of bending cycles or rolling, the resistance values of writing tracks only increase slightly. The stability and flexibility of the writing circuits are good, demonstrating the promising future of this hybrid ink and direct writing method.
The effect of load in a contact with boundary lubrication. [reduction of coefficient of friction
NASA Technical Reports Server (NTRS)
Georges, J. M.; Lamy, B.; Daronnat, M.; Moro, S.
1978-01-01
The effect of the transition load on the wear in a contact with boundary lubrication was investigated. An experimental method was developed for this purpose, and parameters affecting the boundary lubrication under industrial operating conditions were identified. These parameters are the adsorbed boundary film, the contact microgeometry (surface roughness), macrogeometry, and hardness of materials used. It was found that the curve of the tops of the surface protrustion affect the transition load, and thus the boundary lubrication. The transition load also depends on the chemical nature of the contact and its geometrical and mechanical aspects.
Richter, Berna I; Ostermeier, Sven; Turger, Anke; Denkena, Berend; Hurschler, Christof
2010-06-15
Material wear testing is an important technique in the development and evaluation of materials for use in implant for total knee arthroplasty. Since a knee joint induces a complex rolling-gliding movement, standardised material wear testing devices such as Pin-on-Disc or Ring-on-Disc testers are suitable to only a limited extent because they generate pure gliding motion only. A rolling-gliding wear simulator was thus designed, constructed and implemented, which simulates and reproduces the rolling-gliding movement and loading of the knee joint on specimens of simplified geometry. The technical concept was to run a base-plate, representing the tibia plateau, against a pivoted cylindrical counter-body, representing one femur condyle under an axial load. A rolling movement occurs as a result of the friction and pure gliding is induced by limiting the rotation of the cylindrical counter-body. The set up also enables simplified specimens handling and removal for gravimetrical wear measurements. Long-term wear tests and gravimetrical wear measurements were carried out on the well known material pairings: cobalt chrome-polyethylene, ceramic-polyethylene and ceramic-ceramic, over three million motion cycles to allow material comparisons to be made. The observed differences in wear rates between cobalt-chrome on polyethylene and ceramic on polyethylene pairings were similar to the differences of published data for existing material-pairings. Test results on ceramic-ceramic pairings of different frontal-plane geometry and surface roughness displayed low wear rates and no fracture failures. The presented set up is able to simulate the rolling-gliding movement of the knee joint, is easy to use, and requires a minimum of user intervention or monitoring. It is suitable for long-term testing, and therefore a useful tool for the investigation of new and promising materials which are of interest for application in knee joint replacement implants.
2010-01-01
Background Material wear testing is an important technique in the development and evaluation of materials for use in implant for total knee arthroplasty. Since a knee joint induces a complex rolling-gliding movement, standardised material wear testing devices such as Pin-on-Disc or Ring-on-Disc testers are suitable to only a limited extent because they generate pure gliding motion only. Methods A rolling-gliding wear simulator was thus designed, constructed and implemented, which simulates and reproduces the rolling-gliding movement and loading of the knee joint on specimens of simplified geometry. The technical concept was to run a base-plate, representing the tibia plateau, against a pivoted cylindrical counter-body, representing one femur condyle under an axial load. A rolling movement occurs as a result of the friction and pure gliding is induced by limiting the rotation of the cylindrical counter-body. The set up also enables simplified specimens handling and removal for gravimetrical wear measurements. Long-term wear tests and gravimetrical wear measurements were carried out on the well known material pairings: cobalt chrome-polyethylene, ceramic-polyethylene and ceramic-ceramic, over three million motion cycles to allow material comparisons to be made. Results The observed differences in wear rates between cobalt-chrome on polyethylene and ceramic on polyethylene pairings were similar to the differences of published data for existing material-pairings. Test results on ceramic-ceramic pairings of different frontal-plane geometry and surface roughness displayed low wear rates and no fracture failures. Conclusions The presented set up is able to simulate the rolling-gliding movement of the knee joint, is easy to use, and requires a minimum of user intervention or monitoring. It is suitable for long-term testing, and therefore a useful tool for the investigation of new and promising materials which are of interest for application in knee joint replacement implants. PMID:20550669
Guo, Yi; Keller, Jonathan
2017-11-10
Many wind turbine gearboxes require repair or replacement well before reaching the end of their design life. The most common failure is bearing axial cracks, commonly called white etching cracks (WECs), which typically occur in the inner raceways of the high-speed parallel-stage rolling element bearings. Although the root causes of WECs are debated, one theory is that they are related to routine dynamic operating conditions and occasional transient events prevalent in wind turbines that can result in high bearing stress and sliding of the rolling elements. Here, this paper examined wind turbine gearbox high-speed shaft bearing loads and stresses throughmore » modeling and full-scale dynamometer testing. Bearing outer race loads were directly measured and predicted using a variety of modeling tools in normal operations, misaligned conditions, and transient events particularly prone to bearing sliding. Test data and models of bearing loads were well correlated. Neither operational misalignment due to rotor moments nor static generator misalignment affected the bearing loads when compared with pure-torque conditions. Thus, it is not likely that generator misalignment is a causal factor of WECs. In contrast, during transient events, the bearings experienced alternating periods of high stress, torque reversals, and loads under the minimum requisite at high rotating speeds while showing indications of sliding, all of which could be related to the formation of WECs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Yi; Keller, Jonathan
Many wind turbine gearboxes require repair or replacement well before reaching the end of their design life. The most common failure is bearing axial cracks, commonly called white etching cracks (WECs), which typically occur in the inner raceways of the high-speed parallel-stage rolling element bearings. Although the root causes of WECs are debated, one theory is that they are related to routine dynamic operating conditions and occasional transient events prevalent in wind turbines that can result in high bearing stress and sliding of the rolling elements. Here, this paper examined wind turbine gearbox high-speed shaft bearing loads and stresses throughmore » modeling and full-scale dynamometer testing. Bearing outer race loads were directly measured and predicted using a variety of modeling tools in normal operations, misaligned conditions, and transient events particularly prone to bearing sliding. Test data and models of bearing loads were well correlated. Neither operational misalignment due to rotor moments nor static generator misalignment affected the bearing loads when compared with pure-torque conditions. Thus, it is not likely that generator misalignment is a causal factor of WECs. In contrast, during transient events, the bearings experienced alternating periods of high stress, torque reversals, and loads under the minimum requisite at high rotating speeds while showing indications of sliding, all of which could be related to the formation of WECs.« less
NASA Technical Reports Server (NTRS)
Parker, R. J.; Zaretsky, E. V.
1974-01-01
The five-ball fatigue tester was used to evaluate silicon nitride as a rolling-element bearing material. Results indicate that hot-pressed silicon nitride running against steel may be expected to yield fatigue lives comparable to or greater than those of bearing quality steel running against steel at stress levels typical rolling-element bearing application. The fatigue life of hot-pressed silicon nitride is considerably greater than that of any ceramic or cermet tested. Computer analysis indicates that there is no improvement in the lives of 120-mm-bore angular--contact ball bearings of the same geometry operating at DN values from 2 to 4 million where hot-pressed silicon nitride balls are used in place of steel balls.
Structural Engineering. Loads. Design Manual 2.2.
1981-11-01
cast, rolled 534 Locust 46 Bronze, 7.9 to 14% Sn 509 Maple, hard 43 Bronze, aluminum 481 Maple, white 33 Copper , cast, rolled 556 Oak, chestnut 54... Copper ore, pyrites 262 Oak, live 59 Gold, cast, hammered 1205 Oak, red, black 41 Gold, bars, stacked 1133 Oak, white 46 Gold, coin in bags 1084 Pine...Phosphate rock, apatite 200 Glass, crystal 184 Porphyry 172 Hay and straw - bales 20 Pumice, natural 40 Leather 59 Quartz, flint 165 Paper 58 Sandstone
Rolling element fatigue testing of gear materials
NASA Technical Reports Server (NTRS)
Nahm, A. H.
1978-01-01
Rolling element fatigue lives of nine alloys were evaluated in Rolling Contact (RC) rigs. Test conditions included a Hertzian stress at 4,826 MPa (700 ksi), a rolling speed of 6.23 m/sec (245 in/sec.). Tests were run with a Type I oil (MIL-L-7808G) at room temperature. B-10 lives (10% failure rate) of alloys were compared versus reference alloys, VIM-VAR AISI M-50 and VAR AISI 9310. Six case carburizing alloys (AISI 9310, CBS600, CBS1000M, EX00014, Vasco X-2 and EX00053) and three through-hardening alloys (AISI M-50, VascoMax 350 and Vasco Matrix 2 evaluated, showed RCF performance inferior or equivalent to that of AISI 9310 and AISI M-50. It was also found that the effects of vacuum melting processes, different tempering temperatures, freezing cycle during heat treating, shot peening, gold plating and chrome plating employed in the present investigation did not significantly affect RCF life.
Code of Federal Regulations, 2011 CFR
2011-07-01
..., designed to furnish the power to pull, carry, propel, or drive implements that are designed for agriculture... point of the hood does not exceed 60 inches, and (4) The tractor is designed so that the operator.... The seat mounting shall be capable of withstanding this load plus a load equal to four times the...
Code of Federal Regulations, 2012 CFR
2012-07-01
..., designed to furnish the power to pull, carry, propel, or drive implements that are designed for agriculture... point of the hood does not exceed 60 inches, and (4) The tractor is designed so that the operator.... The seat mounting shall be capable of withstanding this load plus a load equal to four times the...
Code of Federal Regulations, 2010 CFR
2010-07-01
..., designed to furnish the power to pull, carry, propel, or drive implements that are designed for agriculture... point of the hood does not exceed 60 inches, and (4) The tractor is designed so that the operator.... The seat mounting shall be capable of withstanding this load plus a load equal to four times the...
Code of Federal Regulations, 2013 CFR
2013-07-01
..., designed to furnish the power to pull, carry, propel, or drive implements that are designed for agriculture... point of the hood does not exceed 60 inches, and (4) The tractor is designed so that the operator.... The seat mounting shall be capable of withstanding this load plus a load equal to four times the...
Advanced Software for Analysis of High-Speed Rolling-Element Bearings
NASA Technical Reports Server (NTRS)
Poplawski, J. V.; Rumbarger, J. H.; Peters, S. M.; Galatis, H.; Flower, R.
2003-01-01
COBRA-AHS is a package of advanced software for analysis of rigid or flexible shaft systems supported by rolling-element bearings operating at high speeds under complex mechanical and thermal loads. These loads can include centrifugal and thermal loads generated by motions of bearing components. COBRA-AHS offers several improvements over prior commercial bearing-analysis programs: It includes innovative probabilistic fatigue-life-estimating software that provides for computation of three-dimensional stress fields and incorporates stress-based (in contradistinction to prior load-based) mathematical models of fatigue life. It interacts automatically with the ANSYS finite-element code to generate finite-element models for estimating distributions of temperature and temperature-induced changes in dimensions in iterative thermal/dimensional analyses: thus, for example, it can be used to predict changes in clearances and thermal lockup. COBRA-AHS provides an improved graphical user interface that facilitates the iterative cycle of analysis and design by providing analysis results quickly in graphical form, enabling the user to control interactive runs without leaving the program environment, and facilitating transfer of plots and printed results for inclusion in design reports. Additional features include roller-edge stress prediction and influence of shaft and housing distortion on bearing performance.
Spiral Orbit Tribometry. 2; Evaluation of Three Liquid Lubricants in Vacuum
NASA Technical Reports Server (NTRS)
Pepper, Stephen V.; Kingsbury, Edward P.; Kiraly, Louis J. (Technical Monitor)
2002-01-01
The coefficients of friction and relative degradation rates of three lubricants run in the boundary regime in vacuum are evaluated in a Spiral Orbit Tribometer. This tribometer subjected the lubricants to rolling contact conditions similar to those found in angular contact ball bearings. A multiply alkylated cyclopentane (MAC) hydrocarbon lubricant suffered degradation at a rate almost two orders of magnitude less than the degradation rate of two perfluoropolyalkylether (PFPE) lubricants.
NASA Astrophysics Data System (ADS)
Boada, Beatriz L.; Boada, Maria Jesus L.; Vargas-Melendez, Leandro; Diaz, Vicente
2018-01-01
Nowadays, one of the main objectives in road transport is to decrease the number of accident victims. Rollover accidents caused nearly 33% of all deaths from passenger vehicle crashes. Roll Stability Control (RSC) systems prevent vehicles from untripped rollover accidents. The lateral load transfer is the main parameter which is taken into account in the RSC systems. This parameter is related to the roll angle, which can be directly measured from a dual-antenna GPS. Nevertheless, this is a costly technique. For this reason, roll angle has to be estimated. In this paper, a novel observer based on H∞ filtering in combination with a neural network (NN) for the vehicle roll angle estimation is proposed. The design of this observer is based on four main criteria: to use a simplified vehicle model, to use signals of sensors which are installed onboard in current vehicles, to consider the inaccuracy in the system model and to attenuate the effect of the external disturbances. Experimental results show the effectiveness of the proposed observer.
Spray-coating of superhydrophobic aluminum alloys with enhanced mechanical robustness.
Zhang, Youfa; Ge, Dengteng; Yang, Shu
2014-06-01
A superhydrophobic aluminum alloy was prepared by one-step spray coating of an alcohol solution consisting of hydrophobic silica nanoparticles (15-40 nm) and methyl silicate precursor on etched aluminum alloy with pitted morphology. The as-sprayed metal surface showed a water contact angle of 155° and a roll-off angle of 4°. The coating was subjected to repeated mechanical tests, including high-pressure water jetting, sand particles impacting, and sandpaper shear abrasion. It remained superhydrophobic with a roll-off angle <10° up to three cycles of water jetting (25 kPa for 10 min) and sand particle impinging. After five cycles, the roll-off angle increased, but no more than 19° while the water contact angle remained greater than 150°. The superhydrophobic state was also maintained after three cycles of sandpaper abrasion. It was found that the micro-protrusion structures on the etched aluminum alloy played an important role to enhance the coating mechanical robustness, where the nanoparticles could grab on the rough surface, specifically in the groove structures, in comparison with the smooth glass substrates spray coated with the same materials. Further, we showed that the superhydrophobicity could be restored by spray a new cycle of the nanocomposite solution on the damaged surface. Copyright © 2014 Elsevier Inc. All rights reserved.
Energy dissipation in a rolling aircraft tire
NASA Technical Reports Server (NTRS)
Tielking, John T.
1988-01-01
The project is extending an existing finite element tire model to calculate the energy dissipation in a free-rolling aircraft tire and temperature buildup in the tire carcass. The model will provide a means of calculating the influence of tire design on the distribution of tire temperature. Current focus is on energy loss measurements of aircraft tire material. The feasibility of taking test specimens directly from the tire carcass for measurements of viscoelastic properties was demonstrated. The interaction of temperature and frequency effects on material loss properties was studied. The tire model was extended to calculate the cyclic energy change in a tire during rolling under load. Input data representing the 40 by 14 aircraft tire whose material loss properties were measured are being used.
Preliminary study of a large span-distributed-load flying-wing cargo airplane concept
NASA Technical Reports Server (NTRS)
Jernell, L. S.
1978-01-01
An aircraft capable of transporting containerized cargo over intercontinental distances is analyzed. The specifications for payload weight, density, and dimensions in essence configure the wing and establish unusually low values of wing loading and aspect ratio. The structural weight comprises only about 18 percent of the design maximum gross weight. Although the geometric aspect ratio is 4.53, the winglet effect of the wing-tip-mounted vertical tails, increase the effective aspect ratio to approximately 7.9. Sufficient control power to handle the large rolling moment of inertia dictates a relatively high minimum approach velocity of 315 km/hr (170 knots). The airplane has acceptable spiral, Dutch roll, and roll-damping modes. A hardened stability augmentation system is required. The most significant noise source is that of the airframe. However, for both take-off and approach, the levels are below the FAR-36 limit of 108 db. The design mission fuel efficiency is approximately 50 percent greater than that of the most advanced, currently operational, large freighter aircraft. The direct operating cost is significantly lower than that of current freighters, the advantage increasing as fuel price increases.
Preliminary study of a large span-distributed-load flying-wing cargo airplane concept
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jernell, L.S.
1978-05-01
An aircraft capable of transporting containerized cargo over intercontinental distances is analyzed. The specifications for payload weight, density, and dimensions in essence configure the wing and establish unusually low values of wing loading and aspect ratio. The structural weight comprises only about 18 percent of the design maximum gross weight. Although the geometric aspect ratio is 4.53, the winglet effect of the wing-tip-mounted vertical tails, increase the effective aspect ratio to approximately 7.9. Sufficient control power to handle the large rolling moment of inertia dictates a relatively high minimum approach velocity of 315 km/hr (170 knots). The airplane has acceptablemore » spiral, Dutch roll, and roll-damping modes. A hardened stability augmentation system is required. The most significant noise source is that of the airframe. However, for both take-off and approach, the levels are below the FAR-36 limit of 108 db. The design mission fuel efficiency is approximately 50 percent greater than that of the most advanced, currently operational, large freighter aircraft. The direct operating cost is significantly lower than that of current freighters, the advantage increasing as fuel price increases.« less
40 CFR 1066.410 - Dynamometer test procedure.
Code of Federal Regulations, 2012 CFR
2012-07-01
... configuration that allows for proper simulation of vehicle cooling during in-use operation, subject to our... simulation of the actual normal forces that the tire and dynamometer roll interface would see if a loaded...
40 CFR 1066.410 - Dynamometer test procedure.
Code of Federal Regulations, 2013 CFR
2013-07-01
... configuration that allows for proper simulation of vehicle cooling during in-use operation, subject to our... simulation of the actual normal forces that the tire and dynamometer roll interface would see if a loaded...
Impact Capacity Reduction in Railway Prestressed Concrete Sleepers with Surface Abrasions
NASA Astrophysics Data System (ADS)
Ngamkhanong, Chayut; Li, Dan; Kaewunruen, Sakdirat
2017-10-01
Railway sleepers (also called ‘railroad tie’ in North America) embedded in ballasted railway tracks are a main part of railway track structures. Its important role is to transfer the loads evenly from the rails to a wider area of ballast bed and to secure rail gauge and enable safe passages of rolling stocks. By nature, railway infrastructure is nonlinear, evidenced by its behaviours, geometry and alignment, wheel-rail contact and operational parameters such as tractive efforts. Based on our critical review, the dynamic behaviour of railway sleepers has not been fully investigated, especially when the sleepers are deteriorated by excessive wears. In fact, the ballast angularity causes differential abrasions on the soffit or bottom surface of sleepers (especially at railseat zone). Furthermore, in sharp curves and rapid gradient change, longitudinal and lateral dynamics of rails increase the likelihood of railseat abrasions in concrete sleepers due to the unbalanced loading conditions. This paper presents a structural capacity of concrete sleepers under dynamic transient loading. The modified compression field theory for ultimate strength design of concrete sleepers under impact loading will be highlighted in this study. The influences of surface abrasions, including surface abrasion and soffit abrasion, on the dynamic behaviour of prestressed concrete sleepers, are firstly highlighted. The outcome of this study will improve the rail maintenance and inspection criteria in order to establish appropriate and sensible remote track condition monitoring network in practice. Moreover, this study will also improve the understanding of the fundamental dynamic behaviour of prestressed concrete sleepers with surface abrasions. The insight into these behaviours will not only improve safety and reliability of railway infrastructure but will enhance the structural safety of other concrete structures.
Calibration Variable Selection and Natural Zero Determination for Semispan and Canard Balances
NASA Technical Reports Server (NTRS)
Ulbrich, Norbert M.
2013-01-01
Independent calibration variables for the characterization of semispan and canard wind tunnel balances are discussed. It is shown that the variable selection for a semispan balance is determined by the location of the resultant normal and axial forces that act on the balance. These two forces are the first and second calibration variable. The pitching moment becomes the third calibration variable after the normal and axial forces are shifted to the pitch axis of the balance. Two geometric distances, i.e., the rolling and yawing moment arms, are the fourth and fifth calibration variable. They are traditionally substituted by corresponding moments to simplify the use of calibration data during a wind tunnel test. A canard balance is related to a semispan balance. It also only measures loads on one half of a lifting surface. However, the axial force and yawing moment are of no interest to users of a canard balance. Therefore, its calibration variable set is reduced to the normal force, pitching moment, and rolling moment. The combined load diagrams of the rolling and yawing moment for a semispan balance are discussed. They may be used to illustrate connections between the wind tunnel model geometry, the test section size, and the calibration load schedule. Then, methods are reviewed that may be used to obtain the natural zeros of a semispan or canard balance. In addition, characteristics of three semispan balance calibration rigs are discussed. Finally, basic requirements for a full characterization of a semispan balance are reviewed.
Reverse engineering of machine-tool settings with modified roll for spiral bevel pinions
NASA Astrophysics Data System (ADS)
Liu, Guanglei; Chang, Kai; Liu, Zeliang
2013-05-01
Although a great deal of research has been dedicated to the synthesis of spiral bevel gears, little related to reverse engineering can be found. An approach is proposed to reverse the machine-tool settings of the pinion of a spiral bevel gear drive on the basis of the blank and tooth surface data obtained by a coordinate measuring machine(CMM). Real tooth contact analysis(RTCA) is performed to preliminary ascertain the contact pattern, the motion curve, as well as the position of the mean contact point. And then the tangent to the contact path and the motion curve are interpolated in the sense of the least square method to extract the initial values of the bias angle and the higher order coefficients(HOC) in modified roll motion. A trial tooth surface is generated by machine-tool settings derived from the local synthesis relating to the initial meshing performances and modified roll motion. An optimization objective is formed which equals the tooth surface deviation between the real tooth surface and the trial tooth surface. The design variables are the parameters describing the meshing performances at the mean contact point in addition to the HOC. When the objective is optimized within an arbitrarily given convergence tolerance, the machine-tool settings together with the HOC are obtained. The proposed approach is verified by a spiral bevel pinion used in the accessory gear box of an aviation engine. The trial tooth surfaces approach to the real tooth surface on the whole in the example. The results show that the convergent tooth surface deviation for the concave side on the average is less than 0.5 μm, and is less than 1.3 μm for the convex side. The biggest tooth surface deviation is 6.7 μm which is located at the corner of the grid on the convex side. Those nodes with relative bigger tooth surface deviations are all located at the boundary of the grid. An approach is proposed to figure out the machine-tool settings of a spiral bevel pinion by way of reverse engineering without having known the theoretical tooth surfaces and the corresponding machine-tool settings.
Simulation of the hot rolling of steel with direct iteration
NASA Astrophysics Data System (ADS)
Hanoglu, Umut; Šarler, Božidar
2017-10-01
In this study a simulation system based on the meshless Local Radial Basis Function Collocation Method (LRBFCM) is applied for the hot rolling of steel. Rolling is a complex, 3D, thermo-mechanical problem; however, 2D cross-sectional slices are used as computational domains that are aligned with the rolling direction and no heat flow or strain is considered in the direction that is orthogonal to the slices. For each predefined position with respect to the rolling direction, the solution procedure is repeated until the slice reaches the final rolling position. Collocation nodes are initially distributed over the domain and boundaries of the initial slice. A local solution is achieved by considering the overlapping influence domains with either 5 or 7 nodes. Radial Basis Functions (RBFs) are used for the temperature discretization in the thermal model and displacement discretization in the mechanical model. The meshless solution procedure does not require a mesh-generation algorithm in the classic sense. Strong-form mechanical and thermal models are run for each slice regarding the contact with the roll's surface. Ideal plastic material behavior is considered for the mechanical results, where the nonlinear stress-strain relation is solved with a direct iteration. The majority of the Finite Element Model (FEM) simulations, including commercial software, use a conventional Newton-Raphson algorithm. However, direct iteration is chosen here due to its better compatibility with meshless methods. In order to overcome any unforeseen stability issues, the redistribution of the nodes by Elliptic Node Generation (ENG) is applied to one or more slices throughout the simulation. The rolling simulation presented here helps the user to design, test and optimize different rolling schedules. The results can be seen minutes after the simulation's start in terms of temperature, displacement, stress and strain fields as well as important technological parameters, like the roll-separating forces, roll toque, etc. An example of a rolling simulation, in which an initial size of 110x110 mm steel is rolled to a round bar with 80 mm diameter, is shown in Fig. 3. A user-friendly computer application for industrial use is created by using the C# and .NET frameworks.
Effect of Dynamic Rolling Oscillations on Twin Tail Buffet Response
NASA Technical Reports Server (NTRS)
Sheta, Essam F.; Kandil, Osama A.
1999-01-01
The effect of dynamic rolling oscillations of delta-wing/twin-tail configuration on twin-tail buffet response is investigated. The computational model consists of a sharp-edged delta wing of aspect ratio one and swept-back flexible twin tail with taper ratio of 0.23. The configuration model is statically pitched at 30 deg. angle of attack and then forced to oscillate in roll around the symmetry axis at a constant amplitude of 4 deg. and reduced frequency of pi and 2(pi). The freestream Mach number and Reynolds number are 0.3 and 1.25 million, respectively. This multidisciplinary problem is solved using three sets of equations on a dynamic multi-block grid structure. The first set is the unsteady, full Navier-Stokes equations, the second set is the aeroelastic equations for coupled bending and torsion vibrations of the tails, and the third set is the grid-displacement equations. The configuration is investigated for inboard position of the twin tails which corresponds to a separation distance between the twin tails of 33% wing span. The computed results are compared with the results of stationary configuration, which previously have been validated using experimental data. The results conclusively showed that the rolling oscillations of the configuration have led to higher loads, higher deflections, and higher excitation peaks than those of the stationary configuration. Moreover, increasing the reduced frequency has led to higher loads and excitation peaks and lower bending and torsion deflections and acceleration.
NASA Astrophysics Data System (ADS)
Dimkovski, Z.; Lööf, P.-J.; Rosén, B.-G.; Nilsson, P. H.
2018-06-01
The reliability and lifetime of machine elements such as gears and rolling bearings depend on their wear and fatigue resistance. In order to screen the wear and surface damage, three finishing processes: (i) brushing, (ii) manganese phosphating and (iii) shot peening were applied on three disc pairs and long-term tested on a twin-disc tribometer. In this paper, the elastic contact of the disc surfaces (measured after only few revolutions) was simulated and a number of functional and roughness parameters were correlated. The functional parameters consisted of subsurface stresses at different depths and a new parameter called ‘pressure spikes’ factor’. The new parameter is derived from the pressure distribution and takes into account the proximity and magnitude of the pressure spikes. Strong correlations were found among the pressure spikes’ factor and surface peak/height parameters. The orthogonal shear stresses and Von Mises stresses at the shallowest depths under the surface have shown the highest correlations but no good correlations were found when the statistics of the whole stress fields was analyzed. The use of the new parameter offers a fast way to screen the durability of the contacting surfaces operating at similar conditions.
An experimental analysis of the real contact area between an electrical contact and a glass plane
NASA Astrophysics Data System (ADS)
Down, Michael; Jiang, Liudi; McBride, John W.
2013-06-01
The exact contact between two rough surfaces is usually estimated using statistical mathematics and surface analysis before and after contact has occurred. To date the majority of real contact and loaded surfaces has been theoretical or by numerical analyses. A method of analysing real contact area under various loads, by utilizing a con-contact laser surface profiler, allows direct measurement of contact area and deformation in terms of contact force and plane displacement between two surfaces. A laser performs a scan through a transparent flat side supported in a fixed position above the base. A test contact, mounted atop a spring and force sensor, and a screw support which moves into contact with the transparent surface. This paper presents the analysis of real contact area of various surfaces under various loads. The surfaces analysed are a pair of Au coated hemispherical contacts, one is a used Au to Au coated multi-walled carbon nanotubes surface, from a MEMS relay application, the other a new contact surface of the same configuration.
McGloughlin, T M; Murphy, D M; Kavanagh, A G
2004-01-01
Degradation of tibial inserts in vivo has been found to be multifactorial in nature, resulting in a complex interaction of many variables. A range of kinematic conditions occurs at the tibio-femoral interface, giving rise to various degrees of rolling and sliding at this interface. The movement of the tibio-femoral contact point may be an influential factor in the overall wear of ultra-high molecular weight polyethylene (UHMWPE) tibial components. As part of this study a three-station wear-test machine was designed and built to investigate the influence of rolling and sliding on the wear behaviour of specific design aspects of contemporary knee prostheses. Using the machine, it is possible to monitor the effect of various slide roll ratios on the performance of contemporary bearing designs from a geometrical and materials perspective.
Measuring Tyre Rolling Noise at the Contact Patch
NASA Astrophysics Data System (ADS)
Kozak, P.; Matuszkova, R.; Radimsky, M.; Kudrna, J.
2017-06-01
This paper deals with noise generated by road traffic. A focus is concentrated solely on one of its sources related to tyre/road interaction referred as rolling noise. The paper states brief overview of various approaches and methods used to measure this particular source of road traffic noise. On the basis of literature reviews, a unique device has been designed. Development of the measuring device and possibilities of its usage are described in detail in this paper. Obtained results of noise measurements can then be used to design measures that increase safety and a lead to better comfort on the road.
Evaluation of a load cell model for dynamic calibration of the rotor systems research aircraft
NASA Technical Reports Server (NTRS)
Duval, R. W.; Bahrami, H.; Wellman, B.
1985-01-01
The Rotor Systems Research Aircraft uses load cells to isolate the rotor/transmission system from the fuselage. An analytical model of the relationship between applied rotor loads and the resulting load cell measurements is derived by applying a force-and-moment balance to the isolated rotor/transmission system. The model is then used to estimate the applied loads from measured load cell data, as obtained from a ground-based shake test. Using nominal design values for the parameters, the estimation errors, for the case of lateral forcing, were shown to be on the order of the sensor measurement noise in all but the roll axis. An unmodeled external load appears to be the source of the error in this axis.
Van Rossom, Sam; Smith, Colin Robert; Zevenbergen, Lianne; Thelen, Darryl Gerard; Vanwanseele, Benedicte; Van Assche, Dieter; Jonkers, Ilse
2017-01-01
Cartilage is responsive to the loading imposed during cyclic routine activities. However, the local relation between cartilage in terms of thickness distribution and biochemical composition and the local contact pressure during walking has not been established. The objective of this study was to evaluate the relation between cartilage thickness, proteoglycan and collagen concentration in the knee joint and knee loading in terms of contact forces and pressure during walking. 3D gait analysis and MRI (3D-FSE, T1ρ relaxation time and T2 relaxation time sequence) of fifteen healthy subjects were acquired. Experimental gait data was processed using musculoskeletal modeling to calculate the contact forces, impulses and pressure distribution in the tibiofemoral joint. Correlates to local cartilage thickness and mean T1ρ and T2 relaxation times of the weight-bearing area of the femoral condyles were examined. Local thickness was significantly correlated with local pressure: medial thickness was correlated with medial condyle contact pressure and contact force, and lateral condyle thickness was correlated with lateral condyle contact pressure and contact force during stance. Furthermore, average T1ρ and T2 relaxation time correlated significantly with the peak contact forces and impulses. Increased T1ρ relaxation time correlated with increased shear loading, decreased T1ρ and T2 relaxation time correlated with increased compressive forces and pressures. Thicker cartilage was correlated with higher condylar loading during walking, suggesting that cartilage thickness is increased in those areas experiencing higher loading during a cyclic activity such as gait. Furthermore, the proteoglycan and collagen concentration and orientation derived from T1ρ and T2 relaxation measures were related to loading. PMID:28076431
Kinematic properties of the helicopter in coordinated turns
NASA Technical Reports Server (NTRS)
Chen, R. T. N.; Jeske, J. A.
1981-01-01
A study on the kinematic relationship of the variables of helicopter motion in steady, coordinated turns involving inherent sideslip is described. A set of exact kinematic equations which govern a steady coordinated helical turn about an Earth referenced vertical axis is developed. A precise definition for the load factor parameter that best characterizes a coordinated turn is proposed. Formulas are developed which relate the aircraft angular rates and pitch and roll attitudes to the turn parameters, angle of attack, and inherent sideslip. A steep, coordinated helical turn at extreme angles of attack with inherent sideslip is of primary interest. The bank angle of the aircraft can differ markedly from the tilt angle of the normal load factor. The normal load factor can also differ substantially from the accelerometer reading along the vertical body axis of the aircraft. Sideslip has a strong influence on the pitch attitude and roll rate of the helicopter. Pitch rate is independent of angle of attack in a coordinated turn and in the absence of sideslip, angular rates about the stability axes are independent of the aerodynamic characteristics of the aircraft.
76 FR 45303 - ING Asia Pacific High Dividend Equity Income Fund, et al.; Notice of Application
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-28
... 20006. FOR FURTHER INFORMATION CONTACT: Laura L. Solomon, Senior Counsel, at (202) 551-6915, or Daniele... meeting or within four months of the last day of such 12-week rolling period, the Board, including a...
A survey of wheel-rail contact models for rail vehicles
NASA Astrophysics Data System (ADS)
Meymand, Sajjad Z.; Keylin, Alexander; Ahmadian, Mehdi
2016-03-01
Accurate and efficient contact models for wheel-rail interaction are essential for the study of the dynamic behaviour of a railway vehicle. Assessment of the contact forces and moments, as well as contact geometry provide a fundamental foundation for such tasks as design of braking and traction control systems, prediction of wheel and rail wear, and evaluation of ride safety and comfort. This paper discusses the evolution and the current state of the theories for solving the wheel-rail contact problem for rolling stock. The well-known theories for modelling both normal contact (Hertzian and non-Hertzian) and tangential contact (Kalker's linear theory, FASTSIM, CONTACT, Polach's theory, etc.) are reviewed. The paper discusses the simplifying assumptions for developing these models and compares their functionality. The experimental studies for evaluation of contact models are also reviewed. This paper concludes with discussing open areas in contact mechanics that require further research for developing better models to represent the wheel-rail interaction.
Computer-aided design of high-contact-ratio gears for minimum dynamic load and stress
NASA Technical Reports Server (NTRS)
Lin, Hsiang Hsi; Lee, Chinwai; Oswald, Fred B.; Townsend, Dennis P.
1990-01-01
A computer aided design procedure is presented for minimizing dynamic effects on high contact ratio gears by modification of the tooth profile. Both linear and parabolic tooth profile modifications of high contact ratio gears under various loading conditions are examined and compared. The effects of the total amount of modification and the length of the modification zone were systematically studied at various loads and speeds to find the optimum profile design for minimizing the dynamic load and the tooth bending stress. Parabolic profile modification is preferred over linear profile modification for high contact ratio gears because of its lower sensitivity to manufacturing errors. For parabolic modification, a greater amount of modification at the tooth tip and a longer modification zone are required. Design charts are presented for high contact ratio gears with various profile modifications operating under a range of loads. A procedure is illustrated for using the charts to find the optimum profile design.
Ball to separator contact forces in angular contact ball bearings under thrust and radial loads
NASA Technical Reports Server (NTRS)
Nypan, L. J.
1977-01-01
Experimental data is reported on ball to cage contact forces in a 110 mm bore ball bearing operating at speeds to 12000 rpm under radial and thrust loads. Information is also reported on cage to inner race land contact force, cage to inner race land clearance, and cage to shaft speed ratios.
Simultaneous Soft Sensing of Tissue Contact Angle and Force for Millimeter-scale Medical Robots
Arabagi, Veaceslav; Gosline, Andrew; Wood, Robert J.; Dupont, Pierre E.
2013-01-01
A novel robotic sensor is proposed to measure both the contact angle and the force acting between the tip of a surgical robot and soft tissue. The sensor is manufactured using a planar lithography process that generates microchannels that are subsequently filled with a conductive liquid. The planar geometry is then molded onto a hemispherical plastic scaffolding in a geometric configuration enabling estimation of the contact angle (angle between robot tip tangent and tissue surface normal) by the rotation of the sensor around its roll axis. Contact force can also be estimated by monitoring the changes in resistance in each microchannel. Bench top experimental results indicate that, on average, the sensor can estimate the angle of contact to within ±2° and the contact force to within ±5.3 g. PMID:24241496
1990-04-01
Np - Yaw to Roll Derivative (Yaw/Roll Coupling) Hr - Yaw to Yaw Rate Derivative (Yaw Damping) M - Pitch to Incidence Derivative (Incidence Stability) F...system is installed in the same configuration as used on the land based vehicle, simply by bolting-on to the limited number of available hard points...helicopters not originally designed to take external loads. The limited number of hard points on the fuselage structure leads to define supports of complex
Mountcastle, Andrew M.; Combes, Stacey A.
2015-01-01
Bumblebee foragers spend a significant portion of their lives transporting nectar and pollen, often carrying loads equivalent to more than half their body mass. Whereas nectar is stored in the abdomen near the bee’s center of mass, pollen is carried on the hind legs, farther from the center of mass. We examine how load position changes the rotational moment of inertia in bumblebees and whether this affects their flight maneuverability and/or stability. We applied simulated pollen or nectar loads of equal mass to Bombus impatiens bumblebees and examined flight performance in a wind tunnel under three conditions: flight in unsteady flow, tracking an oscillating flower in smooth flow, and flower tracking in unsteady flow. Using an inertial model, we estimated that carrying a load on the legs rather than in the abdomen increases a bee’s moment of inertia about the roll and yaw axes but not the pitch axis. Consistent with these predictions, we found that bees carrying a load on their legs displayed slower rotations about their roll and yaw axes, regardless of whether these rotations were driven by external perturbations or self-initiated steering maneuvers. This allowed pollen-loaded bees to maintain a more stable body orientation and higher median flight speed in unsteady flow but reduced their performance when tracking a moving flower, supporting the concept of a tradeoff between stability and maneuverability. These results demonstrate that the types of resources collected by bees affect their flight performance and energetics and suggest that wind conditions may influence resource selection. PMID:26240364
De Coninck, Tineke; Elsner, Jonathan J; Linder-Ganz, Eran; Cromheecke, Michiel; Shemesh, Maoz; Huysse, Wouter; Verdonk, René; Verstraete, Koenraad; Verdonk, Peter
2014-09-01
In this pilot study we wanted to evaluate the kinematics of a knee implanted with an artificial polycarbonate-urethane meniscus device, designed for medial meniscus replacement. The static kinematic behavior of the implant was compared to the natural medial meniscus of the non-operated knee. A second goal was to evaluate the motion pattern, the radial displacement and the deformation of the meniscal implant. Three patients with a polycarbonate-urethane implant were included in this prospective study. An open-MRI was used to track the location of the implant during static weight-bearing conditions, within a range of motion of 0° to 120° knee flexion. Knee kinematics were evaluated by measuring the tibiofemoral contact points and femoral roll-back. Meniscus measurements (both natural and artificial) included anterior-posterior meniscal movement, radial displacement, and meniscal height. No difference (P>0.05) was demonstrated in femoral roll-back and tibiofemoral contact points during knee flexion between the implanted and the non-operated knees. Meniscal measurements showed no significant difference in radial displacement and meniscal height (P>0.05) at all flexion angles, in both the implanted and non-operated knees. A significant difference (P ≤ 0.05) in anterior-posterior movement during flexion was observed between the two groups. In this pilot study, the artificial polycarbonate-urethane implant, indicated for medial meniscus replacement, had no influence on femoral roll-back and tibiofemoral contact points, thus suggesting that the joint maintains its static kinematic properties after implantation. Radial displacement and meniscal height were not different, but anterior-posterior movement was slightly different between the implant and the normal meniscus. Copyright © 2014 Elsevier Ltd. All rights reserved.