Sample records for rolling friction coefficient

  1. Why Low Bounce Balls Exhibit High Rolling Resistance

    ERIC Educational Resources Information Center

    Cross, Rod

    2015-01-01

    A simple experiment is described to measure the coefficient of rolling friction for a low bounce ball rolling on a horizontal surface. As observed previously by others, the coefficient increased with rolling speed. The energy loss due to rolling friction can be explained in terms of the measured coefficient of restitution for the ball, meaning…

  2. Valuation of coefficient of rolling friction by the inclined plane method

    NASA Astrophysics Data System (ADS)

    Ciornei, F. C.; Alaci, S.; Ciogole, V. I.; Ciornei, M. C.

    2017-05-01

    A major objective of tribological researches is characterisation of rolling friction, due to various cases encountered in classical engineering applications, like gear transmissions and cam mechanisms or more recent examples met in bioengineering and biomedical devices. A characteristic of these examples consists in reduced dimensions of the contact zones, theoretically zero, the relative motion occurring between the contact points being either sliding or rolling. A characteristic parameter for the rolling motion is the coefficient of rolling friction. The paper proposes a method for estimation of coefficient of rolling friction by studying the motion of a body of revolution on an inclined plane. Assuming the hypothesis that moment of rolling friction is proportional to the normal reaction force, the law of motion for the body on the inclined plane is found under the premise of pure rolling. It is reached the conclusion that there is an uniformly accelerated motion, and thus for a known plane slope, it is sufficient to find the time during which the body runs a certain distance, starting from motionless situation. To obtain accurate results assumes finding precisely the time of motion. The coefficient of rolling friction was estimated for several slopes of the inclined plane and it is concluded that with increased slope, the values of coefficient of rolling friction increase, fact that suggest that the proportionality between the rolling torque and normal load is valid only for domains of limited variations of normal load.

  3. A method for the determination of the coefficient of rolling friction using cycloidal pendulum

    NASA Astrophysics Data System (ADS)

    Ciornei, M. C.; Alaci, S.; Ciornei, F. C.; Romanu, I. C.

    2017-08-01

    The paper presents a method for experimental finding of coefficient of rolling friction appropriate for biomedical applications based on the theory of cycloidal pendulum. When a mobile circle rolls over a fixed straight line, the points from the circle describe trajectories called normal cycloids. To materialize this model, it is sufficient that a small region from boundary surfaces of a moving rigid body is spherical. Assuming pure rolling motion, the equation of motion of the cycloidal pendulum is obtained - an ordinary nonlinear differential equation. The experimental device is composed by two interconnected balls rolling over the material to be studied. The inertial characteristics of the pendulum can be adjusted via weights placed on a rod. A laser spot oscillates together to the pendulum and provides the amplitude of oscillations. After finding the experimental parameters necessary in differential equation of motion, it can be integrated using the Runge-Kutta of fourth order method. The equation was integrated for several materials and found values of rolling friction coefficients. Two main conclusions are drawn: the coefficient of rolling friction influenced significantly the amplitude of oscillation but the effect upon the period of oscillation is practically imperceptible. A methodology is proposed for finding the rolling friction coefficient and the pure rolling condition is verified.

  4. Discrete Element Method Simulations of the Inter-Particle Contact Parameters for the Mono-Sized Iron Ore Particles.

    PubMed

    Li, Tongqing; Peng, Yuxing; Zhu, Zhencai; Zou, Shengyong; Yin, Zixin

    2017-05-11

    Aiming at predicting what happens in reality inside mills, the contact parameters of iron ore particles for discrete element method (DEM) simulations should be determined accurately. To allow the irregular shape to be accurately determined, the sphere clump method was employed in modelling the particle shape. The inter-particle contact parameters were systematically altered whilst the contact parameters between the particle and wall were arbitrarily assumed, in order to purely assess its impact on the angle of repose for the mono-sized iron ore particles. Results show that varying the restitution coefficient over the range considered does not lead to any obvious difference in the angle of repose, but the angle of repose has strong sensitivity to the rolling/static friction coefficient. The impacts of the rolling/static friction coefficient on the angle of repose are interrelated, and increasing the inter-particle rolling/static friction coefficient can evidently increase the angle of repose. However, the impact of the static friction coefficient is more profound than that of the rolling friction coefficient. Finally, a predictive equation is established and a very close agreement between the predicted and simulated angle of repose is attained. This predictive equation can enormously shorten the inter-particle contact parameters calibration time that can help in the implementation of DEM simulations.

  5. Wind-tunnel investigation at supersonic speeds of a remote-controlled canard missile with a free-rolling-tail brake torque system

    NASA Technical Reports Server (NTRS)

    Blair, A. B., Jr.

    1985-01-01

    Wind tunnel tests were conducted at Mach numbers 1.70, 2.16, and 2.86 to determine the static aerodynamic characteristics of a cruciform canard-controlled missile with fixed or free rolling tailfin afterbodies. Mechanical coupling effects of the free-rolling-tail afterbody were investigated by using an electronic electromagnetic brake system providing arbitrary tail-fin brake torques with continuous measurements of tail-to-mainframe torque and tail roll rate. Remote-controlled canards were deflected to provide pitch, yaw, and roll control. Results indicate that the induced rolling moment coefficients due to canard yaw control are reduced and linearized for the free-rolling-tail (free-tail) configuration. The canards of the latter provide conventional roll control for the entire angle-of-attack test range. For the free-tail configuration, the induced rolling moment coefficient due to canard yaw control increased and the canard roll control decreased with increases in brake torque, which simulated bearing friction torque. It appears that a compromise in regard to bearing friction, for example, low-cost bearings with some friction, may allow satisfactory free-tail aerodynamic characteristics that include reductions in adverse rolling-moment coefficients and lower tail roll rates.

  6. Discrete Element Method Simulations of the Inter-Particle Contact Parameters for the Mono-Sized Iron Ore Particles

    PubMed Central

    Li, Tongqing; Peng, Yuxing; Zhu, Zhencai; Zou, Shengyong; Yin, Zixin

    2017-01-01

    Aiming at predicting what happens in reality inside mills, the contact parameters of iron ore particles for discrete element method (DEM) simulations should be determined accurately. To allow the irregular shape to be accurately determined, the sphere clump method was employed in modelling the particle shape. The inter-particle contact parameters were systematically altered whilst the contact parameters between the particle and wall were arbitrarily assumed, in order to purely assess its impact on the angle of repose for the mono-sized iron ore particles. Results show that varying the restitution coefficient over the range considered does not lead to any obvious difference in the angle of repose, but the angle of repose has strong sensitivity to the rolling/static friction coefficient. The impacts of the rolling/static friction coefficient on the angle of repose are interrelated, and increasing the inter-particle rolling/static friction coefficient can evidently increase the angle of repose. However, the impact of the static friction coefficient is more profound than that of the rolling friction coefficient. Finally, a predictive equation is established and a very close agreement between the predicted and simulated angle of repose is attained. This predictive equation can enormously shorten the inter-particle contact parameters calibration time that can help in the implementation of DEM simulations. PMID:28772880

  7. Frontal Impact of Rolling Spheres.

    ERIC Educational Resources Information Center

    Domenech, A.; Casasus, E.

    1991-01-01

    A model of the inelastic collision between two spheres rolling along a horizontal track is presented, taking into account the effects of frictional forces at impact. This experiment makes possible direct estimates of the coefficients of restitution and friction. (Author)

  8. Kalker's algorithm Fastsim solves tangential contact problems with slip-dependent friction and friction anisotropy

    NASA Astrophysics Data System (ADS)

    Piotrowski, J.

    2010-07-01

    This paper presents two extensions of Kalker's algorithm Fastsim of the simplified theory of rolling contact. The first extension is for solving tangential contact problems with the coefficient of friction depending on slip velocity. Two friction laws have been considered: with and without recuperation of the static friction. According to the tribological hypothesis for metallic bodies shear failure, the friction law without recuperation of static friction is more suitable for wheel and rail than the other one. Sample results present local quantities inside the contact area (division to slip and adhesion, traction) as well as global ones (creep forces as functions of creepages and rolling velocity). For the coefficient of friction diminishing with slip, the creep forces decay after reaching the maximum and they depend on the rolling velocity. The second extension is for solving tangential contact problems with friction anisotropy characterised by a convex set of the permissible tangential tractions. The effect of the anisotropy has been shown on examples of rolling without spin and in the presence of pure spin for the elliptical set. The friction anisotropy influences tangential tractions and creep forces. Sample results present local and global quantities. Both extensions have been described with the same language of formulation and they may be merged into one, joint algorithm.

  9. Rolling Friction on a Wheeled Laboratory Cart

    ERIC Educational Resources Information Center

    Mungan, Carl E.

    2012-01-01

    A simple model is developed that predicts the coefficient of rolling friction for an undriven laboratory cart on a track that is approximately independent of the mass loaded onto the cart and of the angle of inclination of the track. The model includes both deformation of the wheels/track and frictional torque at the axles/bearings. The concept of…

  10. Variation of the Friction Coefficient for a Cylinder Rolling down an Inclined Board

    ERIC Educational Resources Information Center

    Yan, Zixiang; Xia, Heming; Lan, Yueheng; Xiao, Jinghua

    2018-01-01

    A cylinder rolling down an inclined board is a commonly seen and interesting object to study and it is also easy to experiment with and model. Following what has become a popular practice, we use smartphones to measure the angular acceleration of a cylinder rolling down a plane of different inclining angles. The friction force deviates from the…

  11. Effects of rolling friction on a spinning coin or disk

    NASA Astrophysics Data System (ADS)

    Cross, Rod

    2018-05-01

    Experimental and theoretical results are presented concerning the motion of a spinning disk on a horizontal surface. The disk precesses about a vertical axis while falling either quickly or slowly onto the surface depending on the coefficient of rolling friction. The rate of fall also depends on the offset distance, in the rolling direction, between the centre of mass and the line of action of the normal reaction force. Euler’s angular momentum equations are solved to obtain estimates of both the coefficient of friction and the offset distance for a 50.6 mm diameter brass disk spinning on three different surfaces. The fall times varied from about 3 s on P800 emery paper to about 30 s on glass.

  12. Friction coefficient dependence on electrostatic tribocharging

    PubMed Central

    Burgo, Thiago A. L.; Silva, Cristiane A.; Balestrin, Lia B. S.; Galembeck, Fernando

    2013-01-01

    Friction between dielectric surfaces produces patterns of fixed, stable electric charges that in turn contribute electrostatic components to surface interactions between the contacting solids. The literature presents a wealth of information on the electronic contributions to friction in metals and semiconductors but the effect of triboelectricity on friction coefficients of dielectrics is as yet poorly defined and understood. In this work, friction coefficients were measured on tribocharged polytetrafluoroethylene (PTFE), using three different techniques. As a result, friction coefficients at the macro- and nanoscales increase many-fold when PTFE surfaces are tribocharged, but this effect is eliminated by silanization of glass spheres rolling on PTFE. In conclusion, tribocharging may supersede all other contributions to macro- and nanoscale friction coefficients in PTFE and probably in other insulating polymers. PMID:23934227

  13. Calibration of discrete element model parameters: soybeans

    NASA Astrophysics Data System (ADS)

    Ghodki, Bhupendra M.; Patel, Manish; Namdeo, Rohit; Carpenter, Gopal

    2018-05-01

    Discrete element method (DEM) simulations are broadly used to get an insight of flow characteristics of granular materials in complex particulate systems. DEM input parameters for a model are the critical prerequisite for an efficient simulation. Thus, the present investigation aims to determine DEM input parameters for Hertz-Mindlin model using soybeans as a granular material. To achieve this aim, widely acceptable calibration approach was used having standard box-type apparatus. Further, qualitative and quantitative findings such as particle profile, height of kernels retaining the acrylic wall, and angle of repose of experiments and numerical simulations were compared to get the parameters. The calibrated set of DEM input parameters includes the following (a) material properties: particle geometric mean diameter (6.24 mm); spherical shape; particle density (1220 kg m^{-3} ), and (b) interaction parameters such as particle-particle: coefficient of restitution (0.17); coefficient of static friction (0.26); coefficient of rolling friction (0.08), and particle-wall: coefficient of restitution (0.35); coefficient of static friction (0.30); coefficient of rolling friction (0.08). The results may adequately be used to simulate particle scale mechanics (grain commingling, flow/motion, forces, etc) of soybeans in post-harvest machinery and devices.

  14. Estimation of coefficient of rolling friction by the evolvent pendulum method

    NASA Astrophysics Data System (ADS)

    Alaci, S.; Ciornei, F. C.; Ciogole, A.; Ciornei, M. C.

    2017-05-01

    The paper presents a method for finding the coefficient of rolling friction using an evolvent pendulum. The pendulum consists in a fixed cylindrical body and a mobile body presenting a plane surface in contact with a cylindrical surface. The mobile body is placed over the fixed one in an equilibrium state; after applying a small impulse, the mobile body oscillates. The motion of the body is video recorded and afterwards the movie is analyzed by frames and the decrease with time of angular amplitude of the pendulum is found. The equation of motion is established for oscillations of the mobile body. The equation of motion, differential nonlinear, is integrated by Runge-Kutta method. Imposing the same damping both to model’s solution and to theoretical model, the value of coefficient of rolling friction is obtained. The last part of the paper presents results for actual pairs of materials. The main advantage of the method is the fact that the dimensions of contact regions are small, of order a few millimeters, and thus is substantially reduced the possibility of variation of mechanical characteristic for the two surfaces.

  15. Investigation of the rolling motion of a hollow cylinder using a smartphone

    NASA Astrophysics Data System (ADS)

    Puttharugsa, Chokchai; Khemmani, Supitch; Utayarat, Patipan; Luangtip, Wasutep

    2016-09-01

    This paper describes the use of smartphone’s gyroscope sensor to analyse a hollow cylinder rolling down an inclined plane. The smartphone (iPhone 4s) was attached to the end of hollow cylinder and was equipped with the Sensorlog application (Sensorlog app) to record the angular speed of rolling down an inclined plane. The experimental results agree with the theoretical model that is familiar to students for the rolling motion on an inclined plane. Moreover, the coefficients of static friction and kinetic friction were determined to be 0.205 ± 0.011 and 0.178 ± 0.003 from the measurements, respectively. This experiment demonstrated an alternative way to teach the rolling motion in a physics laboratory.

  16. Granular self-organization by autotuning of friction.

    PubMed

    Kumar, Deepak; Nitsure, Nitin; Bhattacharya, S; Ghosh, Shankar

    2015-09-15

    A monolayer of granular spheres in a cylindrical vial, driven continuously by an orbital shaker and subjected to a symmetric confining centrifugal potential, self-organizes to form a distinctively asymmetric structure which occupies only the rear half-space. It is marked by a sharp leading edge at the potential minimum and a curved rear. The area of the structure obeys a power-law scaling with the number of spheres. Imaging shows that the regulation of motion of individual spheres occurs via toggling between two types of motion, namely, rolling and sliding. A low density of weakly frictional rollers congregates near the sharp leading edge whereas a denser rear comprises highly frictional sliders. Experiments further suggest that because the rolling and sliding friction coefficients differ substantially, the spheres acquire a local time-averaged coefficient of friction within a large range of intermediate values in the system. The various sets of spatial and temporal configurations of the rollers and sliders constitute the internal states of the system. Experiments demonstrate and simulations confirm that the global features of the structure are maintained robustly by autotuning of friction through these internal states, providing a previously unidentified route to self-organization of a many-body system.

  17. Molecular Insight into the Slipperiness of Ice.

    PubMed

    Weber, Bart; Nagata, Yuki; Ketzetzi, Stefania; Tang, Fujie; Smit, Wilbert J; Bakker, Huib J; Backus, Ellen H G; Bonn, Mischa; Bonn, Daniel

    2018-05-16

    Measurements of the friction coefficient of steel-on-ice over a large temperature range reveal very high friction at low temperatures (-100 °C) and a steep decrease in the friction coefficient with increasing temperature. Very low friction is only found over the limited temperature range typical for ice skating. The strong decrease in the friction coefficient with increasing temperature exhibits Arrhenius behavior with an activation energy of E a ≈ 11.5 kJ mol -1 . Remarkably, molecular dynamics simulations of the ice-air interface reveal a very similar activation energy for the mobility of surface molecules. Weakly hydrogen-bonded surface molecules diffuse over the surface in a rolling motion, their number and mobility increasing with increasing temperature. This correlation between macroscopic friction and microscopic molecular mobility indicates that slippery ice arises from the high mobility of its surface molecules, making the ice surface smooth and the shearing of the weakly bonded surface molecules easy.

  18. Experimental determination of heat transfer coefficients in roll bite and air cooling for computer simulations of 1100 MPa carbon steel rolling

    NASA Astrophysics Data System (ADS)

    Leinonen, Olli; Ilmola, Joonas; Seppälä, Oskari; Pohjonen, Aarne; Paavola, Jussi; Koskenniska, Sami; Larkiola, Jari

    2018-05-01

    In modeling of hot rolling pass schedules the heat transfer phenomena have to be known. Radiation to ambient, between rolls and a steel slab as well as heat transfer in contacts must be considered to achieve accurate temperature distribution and thereby accurate material behavior in simulations. Additional heat is generated by friction between the slab and the work roll and by plastic deformation. These phenomena must be taken into account when the effective heat transfer coefficient is determined from experimental data. In this paper we determine the effective heat transfer coefficient at the contact interface and emissivity factor of slab surface for 1100MPa strength carbon steel for hot rolling simulations. Experimental pilot rolling test were carried out and slab temperatures gathered right below the interface and at the mid thickness of the slab. Emissivity factor tests were carried out in the same manner but without rolling. Experimental data is utilized to derive contact heat transfer coefficient at the interface and emissivity factor of slab surface. Pilot rolling test is reproduced in FE-analysis to further refine the heat transfer coefficient and emissivity factor. Material mechanical properties at rolling temperatures were determined by Gleeble™ thermo-mechanical simulator and IDS thermodynamic-kinetic-empirical software.

  19. Rolling Contact Fatigue and Wear Behavior of High-Performance Railway Wheel Steels Under Various Rolling-Sliding Contact Conditions

    NASA Astrophysics Data System (ADS)

    Faccoli, Michela; Petrogalli, Candida; Lancini, Matteo; Ghidini, Andrea; Mazzù, Angelo

    2017-07-01

    An experimental investigation was carried out to study and compare the response to cyclic loading of the high-performance railway wheel steels ER8 EN13262 and SUPERLOS®. Rolling contact tests were performed with the same contact pressure, rolling speed and sliding/rolling ratio, varying the lubrication regime to simulate different climatic conditions. The samples, machined out of wheel rims at two depths within the reprofiling layer, were coupled with UIC 900A rail steel samples. The wear rates, friction coefficients and hardness were correlated with the deformation beneath the contact surface. The crack morphology was studied, and the damage mechanisms were identified. The distribution of crack length and depth at the end of the dry tests was analyzed to quantify the damage. The main difference between the steels lies in the response of the external samples to dry contact: SUPERLOS® is subjected to a higher wear and lower friction coefficient than ER8, and this reduces the density of surface cracks that can propagate under wet contact conditions. The analysis of feedback data from in-service wheels confirmed the experimental results.

  20. Influence of the track quality and of the properties of the wheel-rail rolling contact on vehicle dynamics

    NASA Astrophysics Data System (ADS)

    Suarez, Berta; Felez, Jesus; Lozano, José Antonio; Rodriguez, Pablo

    2013-02-01

    This work describes an analytical approach to determine what degree of accuracy is required in the definition of the rail vehicle models used for dynamic simulations. This way it would be possible to know in advance how the results of simulations may be altered due to the existence of errors in the creation of rolling stock models, whilst also identifying their critical parameters. This would make it possible to maximise the time available to enhance dynamic analysis and focus efforts on factors that are strictly necessary. In particular, the parameters related both to the track quality and to the rolling contact were considered in this study. With this aim, a sensitivity analysis was performed to assess their influence on the vehicle dynamic behaviour. To do this, 72 dynamic simulations were performed modifying, one at a time, the track quality, the wheel-rail friction coefficient and the equivalent conicity of both new and worn wheels. Three values were assigned to each parameter, and two wear states were considered for each type of wheel, one for new wheels and another one for reprofiled wheels. After processing the results of these simulations, it was concluded that all the parameters considered show very high influence, though the friction coefficient shows the highest influence. Therefore, it is recommended to undertake any future simulation job with measured track geometry and track irregularities, measured wheel profiles and normative values of the wheel-rail friction coefficient.

  1. Behavior of aircraft antiskid braking systems on dry and wet runway surfaces - A velocity-rate-controlled, pressure-bias-modulated system

    NASA Technical Reports Server (NTRS)

    Stubbs, S. M.; Tanner, J. A.

    1976-01-01

    During maximum braking the average ratio of drag-force friction coefficient developed by the antiskid system to maximum drag-force friction coefficient available at the tire/runway interface was higher on dry surfaces than on wet surfaces. The gross stopping power generated by the brake system on the dry surface was more than twice that obtained on the wet surfaces. With maximum braking applied, the average ratio of side-force friction coefficient developed by the tire under antiskid control to maximum side-force friction available at the tire/runway interface of a free-rolling yawed tire was shown to decrease with increasing yaw angle. Braking reduced the side-force friction coefficient on a dry surface by 75 percent as the wheel slip ratio was increased to 0.3; on a flooded surface the coefficient dropped to near zero for the same slip ratio. Locked wheel skids were observed when the tire encountered a runway surface transition from dry to flooded, due in part to the response time required for the system to sense abrupt changes in the runway friction; however, the antiskid system quickly responded by reducing brake pressure and cycling normally during the remainder of the run on the flooded surface.

  2. Precession of a Spinning Ball Rolling down an Inclined Plane

    ERIC Educational Resources Information Center

    Cross, Rod

    2015-01-01

    A routine problem in an introductory physics course considers a rectangular block at rest on a plane inclined at angle a to the horizontal. In order for the block not to slide down the incline, the coefficient of sliding friction, µ, must be at least tan a. The situation is similar for the case of a ball rolling down an inclined plane. In order…

  3. Rheological effects on friction in elastohydrodynamic lubrication

    NASA Technical Reports Server (NTRS)

    Trachman, E. G.; Cheng, H. S.

    1973-01-01

    An analytical and experimental investigation is presented of the friction in a rolling and sliding elastohydrodynamic lubricated contact. The rheological behavior of the lubricant is described in terms of two viscoelastic models. These models represent the separate effects of non-Newtonian behavior and the transient response of the fluid. A unified description of the non-Newtonian shear rate dependence of the viscosity is presented as a new hyperbolic liquid model. The transient response of viscosity, following the rapid pressure rise encountered in the contact, is described by a compressional viscoelastic model of the volume response of a liquid to an applied pressure step. The resulting momentum and energy equations are solved by an iterative numerical technique, and a friction coefficient is calculated. The experimental study was performed, with two synthetic paraffinic lubricants, to verify the friction predictions of the analysis. The values of friction coefficient from theory and experiment are in close agreement.

  4. Experimental Validation of Strategy for the Inverse Estimation of Mechanical Properties and Coefficient of Friction in Flat Rolling

    NASA Astrophysics Data System (ADS)

    Yadav, Vinod; Singh, Arbind Kumar; Dixit, Uday Shanker

    2017-08-01

    Flat rolling is one of the most widely used metal forming processes. For proper control and optimization of the process, modelling of the process is essential. Modelling of the process requires input data about material properties and friction. In batch production mode of rolling with newer materials, it may be difficult to determine the input parameters offline. In view of it, in the present work, a methodology to determine these parameters online by the measurement of exit temperature and slip is verified experimentally. It is observed that the inverse prediction of input parameters could be done with a reasonable accuracy. It was also assessed experimentally that there is a correlation between micro-hardness and flow stress of the material; however the correlation between surface roughness and reduction is not that obvious.

  5. The study on deformation characterization in micro rolling for ultra-thin strip

    NASA Astrophysics Data System (ADS)

    Xie, H. B.; Manabe, K.; Furushima, T.; Jiang, Z. Y.

    2013-12-01

    The demand for miniaturized parts and miniaturized semi-finished products is increasing. Metal forming processes cannot be simply scaled down to produce miniaturized micro parts and microforming processes have the capability of improving mass production and minimizing material waste. In this study, experimental and theoretical investigations on the micro rolling process have proven that the micro rolling deformation of thin strip is influenced by size effects from specimen sizeon flow stress and friction coefficient. The analytical and finite element (FE) models for describing the size effect related phenomena for SUS 304 stainless steel, such as the change of flow stress, friction and deformation behaviour, are proposed. The material surface constraint and the material deformation mode are critical in determination of material flow stress curve. The identified deformation and mechanics behaviours provide a basis for further exploration of the material deformation behaviour in plastic deformation of micro scale and the development of micro scale products via micro rolling.

  6. Investigation of Wear and Friction Properties Under Sliding Conditions of Some Materials Suitable for Cages of Rolling-Contact Bearings

    NASA Technical Reports Server (NTRS)

    Johnson, Robert L; Swikert, Max A; Bisson, Edmond E

    1952-01-01

    An investigation of wear and friction properties of a number of materials sliding against SAE 52100 steel was conducted. These materials included brass, bronze, beryllium copper, monel, nichrome v, 24s-t aluminum, nodular iron, and gray cast iron. The metals investigated may be useful as possible cage (separator or retainer) materials for rolling-contact bearings of high-speed turbine engines. The ability of materials to form surface films that prevent welding is a most important factor in both dry friction and boundary lubrication. On the basis of wear and resistance to welding only, the cast irons were the most promising materials investigated; they showed the least wear and the least tendency to surface failure when run dry, and when boundary lubricated they showed the highest load capacity. On the basis of mechanical properties, nodular iron is superior to gray cast iron. Bronze had the lowest friction coefficient under dry sliding conditions. The results with brass, beryllium copper, and aluminum were poor and these materials do not appear, with regard to friction and wear, to be suitable for cages.

  7. Inorganic fullerene-like nanoparticles of TiS 2

    NASA Astrophysics Data System (ADS)

    Margolin, Alexander; Popovitz-Biro, Ronit; Albu-Yaron, Ana; Rapoport, Lev; Tenne, Reshef

    2005-08-01

    Inorganic closed-cage nanoparticles of TiS 2 were synthesized using gas-phase synthesis. The reported nanoparticles are perfectly spherical with diameters centered between 60 and 80 nm, consisting from up to 80-100 concentric layers. The nucleation and growth mechanism was proposed for the formation of these nanoparticles. Tribological experiments emphasized the important role played by the spherical shape of the nanoparticles in providing rolling friction with a reduced friction coefficient and wear.

  8. Movements of a Sphere Moving Over Smooth and Rough Inclines

    NASA Astrophysics Data System (ADS)

    Jan, Chyan-Deng

    1992-01-01

    The steady movements of a sphere over a rough incline in air, and over smooth and rough inclines in a liquid were studied theoretically and experimentally. The principle of energy conservation was used to analyze the translation velocities, rolling resistances, and drag coefficients of a sphere moving over the inclines. The rolling resistance to the movement of a sphere from the rough incline was presumed to be caused by collisions and frictional slidings. A varnished wooden board was placed on the bottom of an experimental tilting flume to form a smooth incline and a layer of spheres identical to the sphere moving over them was placed on the smooth wooden board to form a rough incline. Spheres used in the experiments were glass spheres, steel spheres, and golf balls. Experiments show that a sphere moving over a rough incline with negligible fluid drag in air can reach a constant translation velocity. This constant velocity was found to be proportional to the bed inclination (between 11 ^circ and 21^circ) and the square root of the sphere's diameter, but seemingly independent of the sphere's specific gravity. Two empirical coefficients in the theoretical expression of the sphere's translation velocity were determined by experiments. The collision and friction parts of the shear stress exerted on the interface between the moving sphere and rough incline were determined. The ratio of collision to friction parts appears to increase with increase in the bed inclination. These two parts seem to be of the same order of magnitude. The rolling resistances and the relations between the drag coefficient and Reynolds number for a sphere moving over smooth and rough inclines in a liquid, such as water or salad oil, were determined by a regression analysis based on experimental data. It was found that the drag coefficient for a sphere over the rough incline is larger than that for a sphere over the smooth incline, and both of which are much larger than that for a sphere in free fall. The relative magnitudes of the shear stresses due to drag, collision, and friction were also determined in terms of the Reynolds number.

  9. Elastomers in Combined Rolling-Sliding Contact; Wear and its Underlying Mechanisms

    NASA Astrophysics Data System (ADS)

    Rowe, Kyle Gene

    Elastomeric materials, specifically rubbers, being both of a practical and scientific importance, have been the subjects of vast amounts of research spanning well over two centuries. There is currently a large effort by tire manufacturers to design new rubber compounds with lower rolling resistance, higher sliding friction, and reduced or predictable wear. At present, these efforts are primarily based on a few empirical rules and very costly trial and error testing; only a basic understanding of the mechanisms involved in the wear of elastomeric materials exists despite rigorous study. In general, the only well controlled experiments have been for simple loading and sliding schemes. The aim of this work is to characterize the tribological properties of a carbon black filled natural rubber sample. This work explores (1) its behavior in unidirectional sliding, (2) contact mechanics, (3) traction properties in combined rolling and sliding, (4) frictional heating response, and (5) wear. It was found that the friction coefficient of this material was dependent upon sliding velocity, contact pressure, and surface roughness. The high friction coefficients also lead to a bifurcation of the contact area into two different pressure regimes at sliding velocities greater than 10 mm/s . The traction response of this material in combined rolling and sliding exhibited similar behavior, being a function of the contact pressure, but not rolling velocity. The wear of this material was found to be linearly dependent upon the global slip condition and occurred preferentially on the sample. Investigations of the worn surface revealed that the most likely mechanism of wear is the degradation of surface material in a confined layer a few micrometers thick. A simple spring-mass model was developed to offer an explanation of localized wear. It was found that the coupling of system elements in the normal direction helped to shift the load from wearing elements to non-wearing ones. The result was a rapid and localized recession of material, driven by certain key system parameters such as wear rate, material stiffness, and friction. The system was also found to be sensitive to variability within these parameters, but to a lesser degree. This work demonstrates that laboratory scale tribological testing of elastomers can provide conclusive and repeatable results without recourse to macro-scale trials and experiments. The data and insights provided can be used as a tool for understanding the many contributions of materials and fillers on the friction and wear of elastomers, and in design and wear life predictions as well.

  10. The Contact Ageing Effect on Fretting Damage of an Electro-Deposited Coating against an AISI52100 Steel Ball

    PubMed Central

    Kim, Kyungmok; Ko, Joon Soo

    2016-01-01

    This article investigates the effect of contact ageing on fretting damage of an epoxy-based cathodic electro-deposited coating for use on automotive seat slide tracks (made of cold-rolled high strength steel). Static normal load was induced at the contact between the coating and an AISI52100 ball for a certain duration. It was identified that plastically deformed contact area increased logarithmically as a function of time when the contact was under static normal load. Fretting tests after various durations of static contact were conducted using a ball-on-flat plate apparatus. All fretting tests were halted when the friction coefficient reached a critical value of 0.5, indicating complete coating failure. The total number of fretting cycles to the critical friction coefficient was found to vary with the duration of static contact before fretting. It was identified that the number of cycles to the critical friction coefficient decreased with the increased duration of static contact. Meanwhile, the friction coefficient at steady-state sliding was not greatly affected by the duration of static contact before fretting. Finally, the relation between coating thickness after indentation creep and the number of cycles to the critical friction coefficient was found to be linear. Obtained results show that the duration of static contact before fretting has an influence on the fretting lifetime of an electro-deposited coating. PMID:28773873

  11. The Contact Ageing Effect on Fretting Damage of an Electro-Deposited Coating against an AISI52100 Steel Ball.

    PubMed

    Kim, Kyungmok; Ko, Joon Soo

    2016-09-03

    This article investigates the effect of contact ageing on fretting damage of an epoxy-based cathodic electro-deposited coating for use on automotive seat slide tracks (made of cold-rolled high strength steel). Static normal load was induced at the contact between the coating and an AISI52100 ball for a certain duration. It was identified that plastically deformed contact area increased logarithmically as a function of time when the contact was under static normal load. Fretting tests after various durations of static contact were conducted using a ball-on-flat plate apparatus. All fretting tests were halted when the friction coefficient reached a critical value of 0.5, indicating complete coating failure. The total number of fretting cycles to the critical friction coefficient was found to vary with the duration of static contact before fretting. It was identified that the number of cycles to the critical friction coefficient decreased with the increased duration of static contact. Meanwhile, the friction coefficient at steady-state sliding was not greatly affected by the duration of static contact before fretting. Finally, the relation between coating thickness after indentation creep and the number of cycles to the critical friction coefficient was found to be linear. Obtained results show that the duration of static contact before fretting has an influence on the fretting lifetime of an electro-deposited coating.

  12. Behavior of aircraft antiskid breaking systems on dry and wet runway surfaces: A slip-ratio-controlled system with ground speed reference from unbraked nose wheel

    NASA Technical Reports Server (NTRS)

    Tanner, J. A.; Stubbs, S. M.

    1977-01-01

    An experimental investigation was conducted at the Langley aircraft landing loads and traction facility to study the braking and cornering response of a slip ratio controlled aircraft antiskid braking system with ground speed reference derived from an unbraked nose wheel. The investigation, conducted on dry and wet runway surfaces, utilized one main gear wheel, brake, and tire assembly of a DC-9 series 10 airplane. During maximum braking, the average ratio of the drag force friction coefficient developed by the antiskid system to the maximum drag force friction coefficient available was higher on the dry surface than on damp and flooded surfaces, and was reduced with lighter vertical loads, higher yaw angles, and when new tire treads were replaced by worn treads. Similarly, the average ratio of side force friction coefficient developed by the tire under antiskid control to the maximum side force friction coefficient available to a freely rolling yawed tire decreased with increasing yaw angle, generally increased with ground speed, and decreased when tires with new treads were replaced by those with worn treads.

  13. A novel pendulum test for measuring roller chain efficiency

    NASA Astrophysics Data System (ADS)

    Wragge-Morley, R.; Yon, J.; Lock, R.; Alexander, B.; Burgess, S.

    2018-07-01

    This paper describes a novel pendulum decay test for determining the transmission efficiency of chain drives. The test involves releasing a pendulum with an initial potential energy and measuring its decaying oscillations: under controlled conditions the decay reveals the losses in the transmission to a high degree of accuracy. The main advantage over motorised rigs is that there are significantly fewer sources of friction and inertia and hence measurement error. The pendulum rigs have an accuracy around 0.6% for the measurement of the coefficient of friction, giving an accuracy of transmission efficiency measurement around 0.012%. A theoretical model of chain friction combined with the equations of motion enables the coefficient of friction to be determined from the decay rate of pendulum velocity. The pendulum rigs operate at relatively low speeds. However, they allow an accurate determination of the coefficient of friction to estimate transmission efficiency at higher speeds. The pendulum rig revealed a previously undetected rocking behaviour in the chain links at very small articulation angles. In this regime, the link interfaces were observed to roll against one another rather than slide. This observation indicates that a very high-efficiency transmission can be achieved if the articulation angle is very low.

  14. A technique for the determination of center of gravity and rolling resistance for tilt-seat wheelchairs.

    PubMed

    Lemaire, E D; Lamontagne, M; Barclay, H W; John, T; Martel, G

    1991-01-01

    A balance platform setup was defined for use in the determination of the center of gravity in the sagittal plane for a wheelchair and patient. Using the center of gravity information, measurements from the wheelchair and patient (weight, tire coefficients of friction), and various assumptions (constant speed, level-concrete surface, patient-wheelchair system is a rigid body), a method for estimating the rolling resistance for a wheelchair was outlined. The center of gravity and rolling resistance techniques were validated against criterion values (center of gravity error = 1 percent, rolling resistance root mean square error = 0.33 N, rolling resistance Pearson correlation coefficient = 0.995). Consistent results were also obtained from a test dummy and five subjects. Once the center of gravity is known, it is possible to evaluate the stability of a wheelchair (in terms of tipping over) and the interaction between the level of stability and rolling resistance. These quantitative measures are expected to be of use in the setup of wheelchairs with a variable seat angle and variable wheelbase length or when making comparisons between different wheelchairs.

  15. Experimental and Theoretical Study on Minimum Achievable Foil Thickness during Asymmetric Rolling

    PubMed Central

    Tang, Delin; Liu, Xianghua; Song, Meng; Yu, Hailiang

    2014-01-01

    Parts produced by microforming are becoming ever smaller. Similarly, the foils required in micro-machines are becoming ever thinner. The asymmetric rolling technique is capable of producing foils that are thinner than those produced by the conventional rolling technique. The difference between asymmetric rolling and conventional rolling is the ‘cross-shear’ zone. However, the influence of the cross-shear zone on the minimum achievable foil thickness during asymmetric rolling is still uncertain. In this paper, we report experiments designed to understand this critical influencing factor on the minimum achievable thickness in asymmetric rolling. Results showed that the minimum achievable thickness of rolled foils produced by asymmetric rolling with a rolling speed ratio of 1.3 can be reduced to about 30% of that possible by conventional rolling technique. Furthermore, the minimum achievable thickness during asymmetric rolling could be correlated to the cross-shear ratio, which, in turn, could be related to the rolling speed ratio. From the experimental results, a formula to calculate the minimum achievable thickness was established, considering the parameters cross-shear ratio, friction coefficient, work roll radius, etc. in asymmetric rolling. PMID:25203265

  16. Resistance to High-Temperature Oxidation and Wear of Various Ferrous Alloys Used in Rolling Mills

    NASA Astrophysics Data System (ADS)

    Delaunois, Fabienne; Stanciu, Victor Ioan; Sinnaeve, Mario

    2018-03-01

    Various materials are commonly used to manufacture work rolls for hot rolling mills, such as ICDP (Indefinite Chill Double Pour) cast irons, high-chromium white cast irons, and high speed steels (HSS). Various chemical compositions and microstructures are studied in order to optimize the in-use behavior of those grades of rolls. In this paper, six grades of ferrous alloys (an ICDP cast iron; an ICDP cast iron enriched in vanadium, niobium, and molybdenum; a HSS; a graphitic HSS; a high-chromium white cast iron (Hi-Cr); and a niobium-molybdenum-doped high-chromium white cast iron) were investigated. High-temperature oxidation tests with gravimetric means at 575 °C in water vapor atmosphere and sliding wear tests were carried out. The oxidation kinetics was followed during oxidation test. The microstructure was observed by optical and scanning electron microscopies. The oxides formed on the surface of the samples were analyzed by XRD and EDS. The thickness of the oxide scales and the mass gain were measured after oxidation test. The results showed that the behavior of all the grades differed. The oxide scale of HSS and HSS-G grades was fine and their friction coefficient was low. The weight gain after oxidation test of HSS was high. Hi-Cr and M-Hi-Cr grades presented highly porous oxide layer and an important increase of the friction coefficient during wear test. ICDP and M-ICDP had intermediate behavior.

  17. Scaling effects in direct shear tests

    USGS Publications Warehouse

    Orlando, A.D.; Hanes, D.M.; Shen, H.H.

    2009-01-01

    Laboratory experiments of the direct shear test were performed on spherical particles of different materials and diameters. Results of the bulk friction vs. non-dimensional shear displacement are presented as a function of the non-dimensional particle diameter. Simulations of the direct shear test were performed using the Discrete Element Method (DEM). The simulation results show Considerable differences with the physical experiments. Particle level material properties, such as the coefficients of static friction, restitution and rolling friction need to be known a priori in order to guarantee that the simulation results are an accurate representation of the physical phenomenon. Furthermore, laboratory results show a clear size dependency on the results, with smaller particles having a higher bulk friction than larger ones. ?? 2009 American Institute of Physics.

  18. 14 CFR 25.493 - Braked roll conditions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... used if it is substantiated that an effective drag force of 0.8 times the vertical reaction cannot be... landing weight and 1.0 at the design ramp weight. A drag reaction equal to the vertical reaction multiplied by a coefficient of friction of 0.8, must be combined with the vertical ground reaction and...

  19. 14 CFR 25.493 - Braked roll conditions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... used if it is substantiated that an effective drag force of 0.8 times the vertical reaction cannot be... landing weight and 1.0 at the design ramp weight. A drag reaction equal to the vertical reaction multiplied by a coefficient of friction of 0.8, must be combined with the vertical ground reaction and...

  20. 14 CFR 25.493 - Braked roll conditions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... used if it is substantiated that an effective drag force of 0.8 times the vertical reaction cannot be... landing weight and 1.0 at the design ramp weight. A drag reaction equal to the vertical reaction multiplied by a coefficient of friction of 0.8, must be combined with the vertical ground reaction and...

  1. 14 CFR 23.493 - Braked roll conditions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... and ground contacts must be those described in § 23.479 for level landings. (c) A drag reaction equal to the vertical reaction at the wheel multiplied by a coefficient of friction of 0.8 must be applied at the ground contact point of each wheel with brakes, except that the drag reaction need not exceed...

  2. 14 CFR 23.493 - Braked roll conditions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... and ground contacts must be those described in § 23.479 for level landings. (c) A drag reaction equal to the vertical reaction at the wheel multiplied by a coefficient of friction of 0.8 must be applied at the ground contact point of each wheel with brakes, except that the drag reaction need not exceed...

  3. Origins of Rolling Friction

    ERIC Educational Resources Information Center

    Cross, Rod

    2017-01-01

    When a hard object rolls on a soft surface, or vice versa, rolling friction arises from deformation of the soft object or the soft surface. The friction force can be described in terms of an offset in the normal reaction force or in terms of energy loss arising from the deformation. The origin of the friction force itself is not entirely clear. It…

  4. 14 CFR 25.493 - Braked roll conditions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... landing weight and 1.0 at the design ramp weight. A drag reaction equal to the vertical reaction multiplied by a coefficient of friction of 0.8, must be combined with the vertical ground reaction and... is 1.2 at the design landing weight, and 1.0 at the design ramp weight. A drag reaction equal to the...

  5. 14 CFR 25.493 - Braked roll conditions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... landing weight and 1.0 at the design ramp weight. A drag reaction equal to the vertical reaction multiplied by a coefficient of friction of 0.8, must be combined with the vertical ground reaction and... is 1.2 at the design landing weight, and 1.0 at the design ramp weight. A drag reaction equal to the...

  6. Slipping and Rolling on an Inclined Plane

    ERIC Educational Resources Information Center

    Aghamohammadi, Cina; Aghamohammadi, Amir

    2011-01-01

    In the first part of the paper, using a direct calculation two-dimensional motion of a particle sliding on an inclined plane is investigated for general values of friction coefficient ([mu]). A parametric equation for the trajectory of the particle is also obtained. In the second part of the paper, the motion of a sphere on the inclined plane is…

  7. Transient rolling friction model for discrete element simulations of sphere assemblies

    NASA Astrophysics Data System (ADS)

    Kuhn, Matthew R.

    2014-03-01

    The rolling resistance between a pair of contacting particles can be modeled with two mechanisms. The first mechanism, already widely addressed in the DEM literature, involves a contact moment between the particles. The second mechanism involves a reduction of the tangential contact force, but without a contact moment. This type of rotational resistance, termed creep-friction, is the subject of the paper. Within the creep-friction literature, the term “creep” does not mean a viscous mechanism, but rather connotes a slight slip that accompanies rolling. Two extremes of particle motions bound the range of creep-friction behaviors: a pure tangential translation is modeled as a Cattaneo-Mindlin interaction, whereas prolonged steady-state rolling corresponds to the traditional wheel-rail problem described by Carter, Poritsky, and others. DEM simulations, however, are dominated by the transient creep-friction rolling conditions that lie between these two extremes. A simplified model is proposed for the three-dimensional transient creep-friction rolling of two spheres. The model is an extension of the work of Dahlberg and Alfredsson, who studied the two-dimensional interactions of disks. The proposed model is applied to two different systems: a pair of spheres and a large dense assembly of spheres. Although creep-friction can reduce the tangential contact force that would otherwise be predicted with Cattaneo-Mindlin theory, a significant force reduction occurs only when the rate of rolling is much greater than the rate of translational sliding and only after a sustained period of rolling. When applied to the deviatoric loading of an assembly of spheres, the proposed creep-friction model has minimal effect on macroscopic strength or stiffness. At the micro-scale of individual contacts, creep-friction does have a modest influence on the incremental contact behavior, although the aggregate effect on the assembly's behavior is minimal.

  8. 49 CFR 393.122 - What are the rules for securing paper rolls?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... prevented by filling the void, blocking, bracing, tiedowns or friction mats. The paper rolls may also be... vehicle, exceeds the diameter of the paper rolls, rearward movement must be prevented by friction mats... less than 1.75 times its diameter, and it is restrained against forward movement by friction mat(s...

  9. Studies of friction and wear characteristics of various wires for wire-brush skids

    NASA Technical Reports Server (NTRS)

    Dreher, R. C.

    1977-01-01

    The friction and wear characteristics of 22 types and sizes of wires for potential use in wire-brush skids were studied. These characteristics were determined by placing brushes made from candidate wires on a belt sander whose moving belt simulated landing roll-out distance. At the same time, the drag force and wear behavior were monitored. Data were obtained over distances up to 3048 m (10,000 ft) at preselected bearing pressures of 172 to 1034 kPa (25 to 150 psi). In general, the friction coefficient developed by the candidate wires was found to be independent of bearing pressure and ranged between 0.4 and 0.6 under the test conditions of this investigation. The friction coefficient was not degraded when the surface was wetted and appears to be independent of wire diameter except perhaps when wire size is relatively large compared with the surface asperities. Generally, the high friction demonstrated by the soft materials was accompanied by high wear rates; conversely, the hard materials provided greater wear resistance but offered lower friction. For all test wires, the wear was shown to increase with increasing bearing pressure, in general, for the same bearing pressure, wear increased with increasing wire diameter and decreased when the surface was wetted.

  10. Investigation of squeal noise under positive friction characteristics condition provided by friction modifiers

    NASA Astrophysics Data System (ADS)

    Liu, Xiaogang; Meehan, Paul A.

    2016-06-01

    Field application of friction modifiers on the top of rail has been shown to effectively curb squeal and reduce lateral forces, but performance can be variable, according to other relevant research. Up to now, most investigations of friction modifiers were conducted in the field, where it is difficult to control or measure important parameters such as angle of attack, rolling speed, adhesion ratio etc. In the present investigation, the effect of different friction modifiers on the occurrence of squeal was investigated on a rolling contact two disk test rig. In particular, friction-creep curves and squeal sound pressure levels were measured under different rolling speeds and friction modifiers. The results show friction modifiers can eliminate or reduce the negative slope of friction-creep curves, but squeal noise still exists. Theoretical modelling of instantaneous creep behaviours reveals a possible reason why wheel squeal still exists after the application of friction modifiers.

  11. How energy efficient is your car?

    NASA Astrophysics Data System (ADS)

    Roura, Pere; Oliu, Daniel

    2012-07-01

    A detailed energy balance indicating how fuel energy is transferred from the engine to the wheels of a commercial car is obtained using non-specialized experiments that can be readily understood using elementary mechanics. These experiments allow us to determine the engine's thermal efficiency, its mechanical losses, and the rolling (friction) and aerodynamic (drag) coefficients. We find that approximately 28% of the fuel energy is transferred to the wheels.

  12. Adaptive methods, rolling contact, and nonclassical friction laws

    NASA Technical Reports Server (NTRS)

    Oden, J. T.

    1989-01-01

    Results and methods on three different areas of contemporary research are outlined. These include adaptive methods, the rolling contact problem for finite deformation of a hyperelastic or viscoelastic cylinder, and non-classical friction laws for modeling dynamic friction phenomena.

  13. The friction coefficient of shoulder joints remains remarkably low over 24 h of loading.

    PubMed

    Jones, Brian K; Durney, Krista M; Hung, Clark T; Ateshian, Gerard A

    2015-11-05

    The frictional response of whole human joints over durations spanning activities of daily living has not been reported previously. This study measured the friction of human glenohumeral joints during 24 h of reciprocal loading in a pendulum testing device, at moderate (0.2 mm/s, 4320 cycles) and low (0.02 mm/s, 432 cycles) sliding speeds, under a 200 N load. The effect of joint congruence was also investigated by testing human humeral heads against significantly larger mature bovine glenoids. Eight human joints and six bovine joints were tested in four combinations: human joints tested at moderate (hHCMS, n=6) and low speed (hHCLS, n=3), human humeral heads tested against bovine glenoids at moderate speed (LCMS, n=3), and bovine joints tested at moderate speed (bHCMS, n=3). In the first half hour the mean±standard deviation of the friction coefficient was hHCMS: 0.0016±0.0011, hHCLS: 0.0012±0.0002, LCMS: 0.0008±0.0002 and bHCMS: 0.0024±0.0008; in the last four hours it was hHCMS: 0.0057±0.0025, hHCLS: 0.0047±0.0017, LCMS: 0.0012±0.0003 and bHCMS: 0.0056±0.0016. The initial value was lower than the final value (p<0.0001). The value in LCMS was significantly lower than in hHCMS and bHCMS (p<0.01). No visual damage was observed in any of the specimens. These are the first results to demonstrate that the friction coefficient of natural human shoulders remains remarkably low (averaging as little as 0.0015 and no greater than 0.006) for up to 24 h of continuous loading. The sustained low friction coefficients observed in incongruent joints (~0.001) likely represent rolling rather than sliding friction. Copyright © 2015. Published by Elsevier Ltd.

  14. Friction on a single MoS2 nanotube

    PubMed Central

    2012-01-01

    Friction was measured on a single molybdenum disulfide (MoS2) nanotube and on a single MoS2 nano-onion for the first time. We used atomic force microscopy (AFM) operating in ultra-high vacuum at room temperature. The average coefficient of friction between the AFM tip and MoS2 nanotubes was found considerably below the corresponding values obtained from an air-cleaved MoS2 single crystal or graphite. We revealed a nontrivial dependency of friction on interaction strength between the nanotube and the underlying substrate. Friction on detached or weakly supported nanotubes by the substrate was several times smaller (0.023 ± 0.005) than that on well-supported nanotubes (0.08 ± 0.02). We propose an explanation of a quarter of a century old phenomena of higher friction found for intracrystalline (0.06) than for intercrystalline slip (0.025) in MoS2. Friction test on a single MoS2 nano-onion revealed a combined gliding-rolling process. PACS, 62.20, 61.46.Fg, 68.37 Ps PMID:22490562

  15. Solid lubrication design methodology, phase 2

    NASA Technical Reports Server (NTRS)

    Pallini, R. A.; Wedeven, L. D.; Ragen, M. A.; Aggarwal, B. B.

    1986-01-01

    The high temperature performance of solid lubricated rolling elements was conducted with a specially designed traction (friction) test apparatus. Graphite lubricants containing three additives (silver, phosphate glass, and zinc orthophosphate) were evaluated from room temperature to 540 C. Two hard coats were also evaluated. The evaluation of these lubricants, using a burnishing method of application, shows a reasonable transfer of lubricant and wear protection for short duration testing except in the 200 C temperature range. The graphite lubricants containing silver and zinc orthophosphate additives were more effective than the phosphate glass material over the test conditions examined. Traction coefficients ranged from a low of 0.07 to a high of 0.6. By curve fitting the traction data, empirical equations for slope and maximum traction coefficient as a function of contact pressure (P), rolling speed (U), and temperature (T) can be developed for each lubricant. A solid lubricant traction model was incorporated into an advanced bearing analysis code (SHABERTH). For comparison purposes, preliminary heat generation calculations were made for both oil and solid lubricated bearing operation. A preliminary analysis indicated a significantly higher heat generation for a solid lubricated ball bearing in a deep groove configuration. An analysis of a cylindrical roller bearing configuration showed a potential for a low friction solid lubricated bearing.

  16. Rolling friction—models and experiment. An undergraduate student project

    NASA Astrophysics Data System (ADS)

    Vozdecký, L.; Bartoš, J.; Musilová, J.

    2014-09-01

    In this paper the rolling friction (rolling resistance) model is studied theoretically and experimentally in undergraduate level fundamental general physics courses. Rolling motions of a cylinder along horizontal or inclined planes are studied by simple experiments, measuring deformations of the underlay or of the rolling body. The rolling of a hard cylinder on a soft underlay as well as of a soft cylinder on a hard underlay is studied. The experimental data are treated by the open source software Tracker, appropriate for use at the undergraduate level of physics. Interpretation of results is based on elementary considerations comprehensible to university students—beginners. It appears that the commonly accepted model of rolling resistance based on the idea of a warp (little bulge) on the underlay in front of the rolling body does not correspond with experimental results even for the soft underlay and hard rolling body. The alternative model of the rolling resistance is suggested in agreement with experiment and the corresponding concept of the rolling resistance coefficient is presented. In addition to the obtained results we can conclude that the project can be used as a task for students in practical exercises of fundamental general physics undergraduate courses. Projects of similar type effectively contribute to the development of the physical thinking of students.

  17. A Sensor Fusion Method Based on an Integrated Neural Network and Kalman Filter for Vehicle Roll Angle Estimation.

    PubMed

    Vargas-Meléndez, Leandro; Boada, Beatriz L; Boada, María Jesús L; Gauchía, Antonio; Díaz, Vicente

    2016-08-31

    This article presents a novel estimator based on sensor fusion, which combines the Neural Network (NN) with a Kalman filter in order to estimate the vehicle roll angle. The NN estimates a "pseudo-roll angle" through variables that are easily measured from Inertial Measurement Unit (IMU) sensors. An IMU is a device that is commonly used for vehicle motion detection, and its cost has decreased during recent years. The pseudo-roll angle is introduced in the Kalman filter in order to filter noise and minimize the variance of the norm and maximum errors' estimation. The NN has been trained for J-turn maneuvers, double lane change maneuvers and lane change maneuvers at different speeds and road friction coefficients. The proposed method takes into account the vehicle non-linearities, thus yielding good roll angle estimation. Finally, the proposed estimator has been compared with one that uses the suspension deflections to obtain the pseudo-roll angle. Experimental results show the effectiveness of the proposed NN and Kalman filter-based estimator.

  18. A Sensor Fusion Method Based on an Integrated Neural Network and Kalman Filter for Vehicle Roll Angle Estimation

    PubMed Central

    Vargas-Meléndez, Leandro; Boada, Beatriz L.; Boada, María Jesús L.; Gauchía, Antonio; Díaz, Vicente

    2016-01-01

    This article presents a novel estimator based on sensor fusion, which combines the Neural Network (NN) with a Kalman filter in order to estimate the vehicle roll angle. The NN estimates a “pseudo-roll angle” through variables that are easily measured from Inertial Measurement Unit (IMU) sensors. An IMU is a device that is commonly used for vehicle motion detection, and its cost has decreased during recent years. The pseudo-roll angle is introduced in the Kalman filter in order to filter noise and minimize the variance of the norm and maximum errors’ estimation. The NN has been trained for J-turn maneuvers, double lane change maneuvers and lane change maneuvers at different speeds and road friction coefficients. The proposed method takes into account the vehicle non-linearities, thus yielding good roll angle estimation. Finally, the proposed estimator has been compared with one that uses the suspension deflections to obtain the pseudo-roll angle. Experimental results show the effectiveness of the proposed NN and Kalman filter-based estimator. PMID:27589763

  19. Spiral Orbit Tribometry. 2; Evaluation of Three Liquid Lubricants in Vacuum

    NASA Technical Reports Server (NTRS)

    Pepper, Stephen V.; Kingsbury, Edward P.; Kiraly, Louis J. (Technical Monitor)

    2002-01-01

    The coefficients of friction and relative degradation rates of three lubricants run in the boundary regime in vacuum are evaluated in a Spiral Orbit Tribometer. This tribometer subjected the lubricants to rolling contact conditions similar to those found in angular contact ball bearings. A multiply alkylated cyclopentane (MAC) hydrocarbon lubricant suffered degradation at a rate almost two orders of magnitude less than the degradation rate of two perfluoropolyalkylether (PFPE) lubricants.

  20. Tests of two new polyurethane foam wheelchair tires.

    PubMed

    Gordon, J; Kauzlarich, J J; Thacker, J G

    1989-01-01

    The performance characteristics of four 24-inch wheelchair tires are considered; one pneumatic and three airless. Specifically, two new airless polyurethane foam tires (circular and tapered cross-section) were compared to both a molded polyisoprene tire and a rubber pneumatic tire. Rolling resistance, coefficient of static friction, spring rate, tire roll-off, impact absorption, wear resistance, and resistance to compression set were the characteristics considered for the basis of comparison. Although the pneumatic tire is preferred by many wheelchair users, the two new polyurethane foam tires were found to offer a performance similar to the high-pressure pneumatic tire. In addition, the foam tires are less expensive and lighter in weight than the other tires tested.

  1. Estimation of real-time runway surface contamination using flight data recorder parameters

    NASA Astrophysics Data System (ADS)

    Curry, Donovan

    Within this research effort, the development of an analytic process for friction coefficient estimation is presented. Under static equilibrium, the sum of forces and moments acting on the aircraft, in the aircraft body coordinate system, while on the ground at any instant is equal to zero. Under this premise the longitudinal, lateral and normal forces due to landing are calculated along with the individual deceleration components existent when an aircraft comes to a rest during ground roll. In order to validate this hypothesis a six degree of freedom aircraft model had to be created and landing tests had to be simulated on different surfaces. The simulated aircraft model includes a high fidelity aerodynamic model, thrust model, landing gear model, friction model and antiskid model. Three main surfaces were defined in the friction model; dry, wet and snow/ice. Only the parameters recorded by an FDR are used directly from the aircraft model all others are estimated or known a priori. The estimation of unknown parameters is also presented in the research effort. With all needed parameters a comparison and validation with simulated and estimated data, under different runway conditions, is performed. Finally, this report presents results of a sensitivity analysis in order to provide a measure of reliability of the analytic estimation process. Linear and non-linear sensitivity analysis has been performed in order to quantify the level of uncertainty implicit in modeling estimated parameters and how they can affect the calculation of the instantaneous coefficient of friction. Using the approach of force and moment equilibrium about the CG at landing to reconstruct the instantaneous coefficient of friction appears to be a reasonably accurate estimate when compared to the simulated friction coefficient. This is also true when the FDR and estimated parameters are introduced to white noise and when crosswind is introduced to the simulation. After the linear analysis the results show the minimum frequency at which the algorithm still provides moderately accurate data is at 2Hz. In addition, the linear analysis shows that with estimated parameters increased and decreased up to 25% at random, high priority parameters have to be accurate to within at least +/-5% to have an effect of less than 1% change in the average coefficient of friction. Non-linear analysis results show that the algorithm can be considered reasonably accurate for all simulated cases when inaccuracies in the estimated parameters vary randomly and simultaneously up to +/-27%. At worst-case the maximum percentage change in average coefficient of friction is less than 10% for all surfaces.

  2. Rolling contact of a rigid sphere/sliding of a spherical indenter upon a viscoelastic half-space containing an ellipsoidal inhomogeneity

    NASA Astrophysics Data System (ADS)

    Koumi, Koffi Espoir; Chaise, Thibaut; Nelias, Daniel

    2015-07-01

    In this paper, the frictionless rolling contact problem between a rigid sphere and a viscoelastic half-space containing one elastic inhomogeneity is solved. The problem is equivalent to the frictionless sliding of a spherical tip over a viscoelastic body. The inhomogeneity may be of spherical or ellipsoidal shape, the later being of any orientation relatively to the contact surface. The model presented here is three dimensional and based on semi-analytical methods. In order to take into account the viscoelastic aspect of the problem, contact equations are discretized in the spatial and temporal dimensions. The frictionless rolling of the sphere, assumed rigid here for the sake of simplicity, is taken into account by translating the subsurface viscoelastic fields related to the contact problem. Eshelby's formalism is applied at each step of the temporal discretization to account for the effect of the inhomogeneity on the contact pressure distribution, subsurface stresses, rolling friction and the resulting torque. A Conjugate Gradient Method and the Fast Fourier Transforms are used to reduce the computation cost. The model is validated by a finite element model of a rigid sphere rolling upon a homogeneous vciscoelastic half-space, as well as through comparison with reference solutions from the literature. A parametric analysis of the effect of elastic properties and geometrical features of the inhomogeneity is performed. Transient and steady-state solutions are obtained. Numerical results about the contact pressure distribution, the deformed surface geometry, the apparent friction coefficient as well as subsurface stresses are presented, with or without heterogeneous inclusion.

  3. Measurement of rolling friction by a damped oscillator

    NASA Technical Reports Server (NTRS)

    Dayan, M.; Buckley, D. H.

    1983-01-01

    An experimental method for measuring rolling friction is proposed. The method is mechanically simple. It is based on an oscillator in a uniform magnetic field and does not involve any mechanical forces except for the measured friction. The measured pickup voltage is Fourier analyzed and yields the friction spectral response. The proposed experiment is not tailored for a particular case. Instead, various modes of operation, suitable to different experimental conditions, are discussed.

  4. A study on high-speed rolling contact between a wheel and a contaminated rail

    NASA Astrophysics Data System (ADS)

    Zhao, Xin; Wen, Zefeng; Zhu, Minhao; Jin, Xuesong

    2014-10-01

    A 3-D explicit finite element model is developed to investigate the transient wheel-rail rolling contact in the presence of rail contamination or short low adhesion zones (LAZs). A transient analysis is required because the wheel passes by a short LAZ very quickly, especially at high speeds. A surface-to-surface contact algorithm (by the penalty method) is employed to solve the frictional rolling contact between the wheel and the rail meshed by solid elements. The LAZ is simulated by a varying coefficient of friction along the rail. Different traction efforts and action of the traction control system triggered by the LAZ are simulated by applying a time-dependent driving torque to the wheel axle. Structural flexibilities of the vehicle-track system are considered properly. Analysis focuses on the contact forces, creepage, contact stresses and the derived frictional work and plastic deformation. It is found that the longitudinal contact force and the maximum surface shear stress in the contact patch become obviously lower in the LAZ and much higher as the wheel re-enters the dry rail section. Consequently, a higher wear rate and larger plastic flow are expected at the location where the dry contact starts to be rebuilt. In other words, contact surface damages such as wheel flats and rail burns may come into being because of the LAZ. Length of the LAZ, the traction level, etc. are varied. The results also show that local contact surface damages may still occur as the traction control system acts.

  5. Investigation of the rolling motion of a hollow cylinder using a smartphone’s digital compass

    NASA Astrophysics Data System (ADS)

    Wattanayotin, Phattara; Puttharugsa, Chokchai; Khemmani, Supitch

    2017-07-01

    This study used a smartphone’s digital compass to observe the rolling motion of a hollow cylinder on an inclined plane. The smartphone (an iPhone 4s) was attached to the end of one side of a hollow cylinder to record the experimental data using the SensorLog application. In the experiment, the change of angular position was measured by the smartphone’s digital compass. The obtained results were then analyzed and calculated to determine various parameters of the motion, such as the angular velocity, angular acceleration, critical angle, and coefficient of static friction. The experimental results obtained from using the digital compass were compared with those obtained from using a gyroscope sensor. Moreover, the results obtained from both sensors were consistent with the calculations for the rolling motion. We expect that this experiment will be valuable for use in physics laboratories.

  6. Shear forces in the contact patch of a braked-racing tyre

    NASA Astrophysics Data System (ADS)

    Gruber, Patrick; Sharp, Robin S.

    2012-12-01

    This article identifies tyre modelling features that are fundamental to the accurate simulation of the shear forces in the contact patch of a steady-rolling, slipping and cambered racing tyre. The features investigated include contact patch shape, contact pressure distribution, carcass flexibility, rolling radius (RR) variations and friction coefficient. Using a previously described physical tyre model of modular nature, validated for static conditions, the influence of each feature on the shear forces generated is examined under different running conditions, including normal loads of 1500, 3000 and 4500 N, camber angles of 0° and-3°, and longitudinal slip ratios from 0 to-20%. Special attention is paid to heavy braking, in which context the aligning moment is of great interest in terms of its connection with the limit-handling feel. The results of the simulations reveal that true representations of the contact patch shape, carcass flexibility and lateral RR variation are essential for an accurate prediction of the distribution and the magnitude of the shear forces generated at the tread-road interface of the cambered tyre. Independent of the camber angle, the contact pressure distribution primarily influences the shear force distribution and the slip characteristics around the peak longitudinal force. At low brake-slip ratios, the friction coefficient affects the shear forces in terms of their distribution, while, at medium to high-slip ratios, the force magnitude is significantly affected. On the one hand, these findings help in the creation of efficient yet accurate tyre models. On the other hand, the research results allow improved understanding of how individual tyre components affect the generation of shear forces in the contact patch of a rolling and slipping tyre.

  7. Constitutive modelling of lubricants in concentrated contacts at high slide to roll ratios

    NASA Technical Reports Server (NTRS)

    Tevaarwerk, J. L.

    1985-01-01

    A constitutive lubricant friction model for rolling/sliding concentrated contacts such as gears and cams was developed, based upon the Johnson and Tevaarwerk fluid rheology model developed earlier. The friction model reported herein differs from the earlier rheological models in that very large slide to roll ratios can now be accommodated by modifying the thermal response of the model. Also the elastic response of the fluid has been omitted from the model, thereby making it much simpler for use in the high slide to roll contacts. The effects of this simplification are very minimal on the outcome of the predicted friction losses (less than 1%). In essence then the lubricant friction model developed for the high slide to roll ratios treats the fluid in the concentrated contact as consisting of a nonlinear viscous element that is pressure, temperature, and strain rate dependent in its shear response. The fluid rheological constants required for the prediction of the friction losses at different contact conditions are obtained by traction measurements on several of the currently used gear lubricants. An example calculation, using this model and the fluid parameters obtained from the experiments, shows that it correctly predicts trends and magnitude of gear mesh losses measured elsewhere for the same fluids tested here.

  8. Rolling Motion of a Ball Spinning about a Near-Vertical Axis

    ERIC Educational Resources Information Center

    Cross, Rod

    2012-01-01

    A ball that is projected forward without spin on a horizontal surface will slide for a short distance before it starts rolling. Sliding friction acts to decrease the translation speed v and it acts to increase the rotation speed [omega]. When v = R[omega], where R is the ball radius, the ball will start rolling and the friction force drops almost…

  9. Evaluation of Wear on Macro-Surface Textures Generated by ns Fiber Laser

    NASA Astrophysics Data System (ADS)

    Harish, V.; Soundarapandian, S.; Vijayaraghavan, L.; Bharatish, A.

    2018-03-01

    The demand for improved performance and long term reliability of mechanical systems dictate the use of advanced materials and surface engineering techniques. A small change in the surface topography can lead to substantial improvements in the tribological behaviour of the contact surfaces. One way of altering the surface topography is by surface texturing by introducing dimples or channels on the surfaces. Surface texturing is already a successful technique which finds a wide area of applications ranging from heavy industries to small scale devices. This paper reports the effect of macro texture shapes generated using a nanosecond fiber laser on wear of high carbon chromium steel used in large size bearings having rolling contacts. Circular and square shaped dimples were generated on the surface to assess the effect of sliding velocities on friction coefficient. Graphite was used as solid lubricant to minimise the effect of wear on textured surfaces. The laser parameters such as power, scan speed and passes were optimised to obtain macro circular and square dimples which was characterised using a laser confocal microscope. The friction coefficients of the circular and square dimples were observed to lie in the same range due to minimum wear on the surface. On the contrary, at medium and higher sliding velocities, square dimples exhibited lower friction coefficient values compared to circular dimples. The morphology of textured specimen was characterised using Scanning Electron Microscope.

  10. On the nature of low temperature internal friction peaks in metallic glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khonik, V.A.; Spivak, L.V.

    Low temperature (30 < T < 300 K) internal friction in a metallic glass Ni{sub 60}Nb{sub 40} subjected to preliminary inhomogeneous deformation by cold rolling, homogeneous tensile deformation or electrolytic charging with hydrogen is investigated. Cold rolling or hydrogenation result in appearance of similar internal friction peaks and hysteresis damping. Homogeneous deformation has no influence on low temperature internal friction. The phenomenon of microplastic deformation during hydrogenation of weakly stressed samples is revealed. It is argued that microplastic deformation of metallic glasses during hydrogenation without external stress takes place too. Plastic flow both on cold rolling and hydrogenation occurs viamore » formation and motion of dislocation-like defects which are the reason of the observed anelastic anomalies. It is concluded that low temperature internal friction peaks described in the literature for as-cast, cold deformed and hydrogenated samples have common dislocation-like origin.« less

  11. A Rolling Element Tribometer for the Study of Liquid Lubricants in Vacuum

    NASA Technical Reports Server (NTRS)

    Pepper, Stephen V.; Ebihara, Ben T.; Kingsbury, Edward

    1996-01-01

    A tribometer for the evaluation of liquid lubricants in vacuum is described. This tribometer is essentially a thrust bearing with three balls and flat races having contact stresses and ball motions similar to those in an angular contact ball bearing operating in the boundary lubrication regime. The friction coefficient, lubrication lifetime, and species evolved from the liquid lubricant by tribodegradation can be determined. A complete analysis of the contact stresses and energy dissipation together with experimental evidence supporting the analysis are presented.

  12. The surprising rolling spool: librational motion and failure of the pure rolling condition

    NASA Astrophysics Data System (ADS)

    Onorato, P.; Malgieri, M.; Mascheretti, P.; De Ambrosis, A.

    2015-05-01

    In a previous work (Onorato P, Malgieri M, Mascheretti P and De Ambrosis A 2014 The surprising rolling spool: experiments and theory from mechanics to phase transitions Eur. J. Phys. 35 055011) an asymmetric rolling spool (ARS) was investigated as a simple model for a second-order phase transition. Here, we deepen the study of this system to address critical aspects related both to the characteristic of the oscillatory anharmonic motion and to the role of friction forces in determining it. The experimental data show that for largely asymmetric bodies the rolling condition is not reliably fulfilled because the intensity of the friction force goes below the needed value to ensure rolling without slipping.

  13. Friction law and hysteresis in granular materials

    PubMed Central

    Wyart, M.

    2017-01-01

    The macroscopic friction of particulate materials often weakens as the flow rate is increased, leading to potentially disastrous intermittent phenomena including earthquakes and landslides. We theoretically and numerically study this phenomenon in simple granular materials. We show that velocity weakening, corresponding to a nonmonotonic behavior in the friction law, μ(I), is present even if the dynamic and static microscopic friction coefficients are identical, but disappears for softer particles. We argue that this instability is induced by endogenous acoustic noise, which tends to make contacts slide, leading to faster flow and increased noise. We show that soft spots, or excitable regions in the materials, correspond to rolling contacts that are about to slide, whose density is described by a nontrivial exponent θs. We build a microscopic theory for the nonmonotonicity of μ(I), which also predicts the scaling behavior of acoustic noise, the fraction of sliding contacts χ, and the sliding velocity, in terms of θs. Surprisingly, these quantities have no limit when particles become infinitely hard, as confirmed numerically. Our analysis rationalizes previously unexplained observations and makes experimentally testable predictions. PMID:28811373

  14. Friction law and hysteresis in granular materials

    NASA Astrophysics Data System (ADS)

    DeGiuli, E.; Wyart, M.

    2017-08-01

    The macroscopic friction of particulate materials often weakens as the flow rate is increased, leading to potentially disastrous intermittent phenomena including earthquakes and landslides. We theoretically and numerically study this phenomenon in simple granular materials. We show that velocity weakening, corresponding to a nonmonotonic behavior in the friction law, μ(I), is present even if the dynamic and static microscopic friction coefficients are identical, but disappears for softer particles. We argue that this instability is induced by endogenous acoustic noise, which tends to make contacts slide, leading to faster flow and increased noise. We show that soft spots, or excitable regions in the materials, correspond to rolling contacts that are about to slide, whose density is described by a nontrivial exponent θs. We build a microscopic theory for the nonmonotonicity of μ(I), which also predicts the scaling behavior of acoustic noise, the fraction of sliding contacts χ, and the sliding velocity, in terms of θs. Surprisingly, these quantities have no limit when particles become infinitely hard, as confirmed numerically. Our analysis rationalizes previously unexplained observations and makes experimentally testable predictions.

  15. Superlubricity and tribochemistry of polyhydric alcohols

    NASA Astrophysics Data System (ADS)

    Matta, C.; Joly-Pottuz, L.; de Barros Bouchet, M. I.; Martin, J. M.; Kano, M.; Zhang, Qing; Goddard, W. A., III

    2008-08-01

    The anomalous low friction of diamondlike carbon coated surfaces lubricated by pure glycerol was observed at 80°C . Steel surfaces were coated with an ultrahard 1 µm thick hydrogen-free tetrahedral coordinated carbon (ta-C) layer produced by physical vapor deposition. In the presence of glycerol, the friction coefficient is below 0.01 at steady state, corresponding to the so-called superlubricity regime (when sliding is then approaching pure rolling). This new mechanism of superlow friction is attributed to easy glide on triboformed OH-terminated surfaces. In addition to the formation of OH-terminated surfaces but at a lower temperature, we show here some evidence, by coupling experimental and computer simulations, that superlow friction of polyhydric alcohols could also be associated with triboinduced degradation of glycerol, producing a nanometer-thick film containing organic acids and water. Second, we show outstanding superlubricity of steel surfaces directly lubricated by a solution of myo-inositol (also called vitamin Bh) in glycerol at ambient temperature (25°C) . For the first time, under boundary lubrication at high contact pressure, friction of steel is below 0.01 in the absence of any long chain polar molecules. The mechanism is still unknown but could be associated with friction-induced dissociation of glycerol and interaction of waterlike species with steel surface.

  16. Dynamics of a homogeneous ball on a horizontal plane with sliding, spinning, and rolling friction taken into account

    NASA Astrophysics Data System (ADS)

    Ishkhanyan, M. V.; Karapetyan, A. V.

    2010-04-01

    We analyze the dynamics of a homogeneous ball on a horizontal plane with friction of all kinds, namely, sliding, spinning, and rolling friction, taken into account. The qualitative-analytic study of the ball dynamics is supplemented with numerical experiments. The problem on the motion of a homogeneous ball on a horizontal plane with friction was apparently first studied in 1758 by I. Euler (Leonard Euler's son) with sliding friction taken into account in the framework of the Coulomb model. I. Euler showed that the ball sliding ceases in finite time, after which the ball uniformly rolls along a fixed straight line and uniformly spins about the vertical. This result has long become classical and is described in many textbooks on theoretical mechanics. In 1998, V. F. Zhuravlev considered the problem of motion of a homogeneous ball on a horizontal plane with sliding and spinning friction taken into account in the framework of the Contensou-Zhuravlev model [1, 2] and showed that the ball sliding and spinning cease simultaneously, after which the ball uniformly rolls along a fixed straight line. The Contensou-Zhuravlev theory was further developed in [3-7]. In the present paper, we consider themotion of a homogeneous ball on a horizontal plane with friction of all kinds taken into account in the framework of the model proposed in [8]. We show that, in one and the same time, both the sliding velocity and the angular velocity of the ball become zero. Our studies are based on the results obtained in [2], the properties of the friction model proposed in [8], and the method for qualitative analysis of dynamics of dissipative systems [9, 10]. The qualitative-analytic study is supplemented with numerical experiments.

  17. Some Landing Studies Pertinent to Glider-Reentry Vehicles

    NASA Technical Reports Server (NTRS)

    Houbolt, John C.; Batterson, Sidney A.

    1960-01-01

    Results are presented of some landing studies that may serve as guidelines in the consideration of landing problems of glider-reentry configurations. The effect of the initial conditions of sinking velocity, angle of attack, and pitch rate on impact severity and the effect of locating the rear gear in various positions are discussed. Some information is included regarding the influence of landing-gear location on effective masses. Preliminary experimental results on the slideout phase of landing include sliding and rolling friction coefficients that have been determined from tests of various skids and all-metal wheels.

  18. Nanolubricant: magnetic nanoparticle based

    NASA Astrophysics Data System (ADS)

    Trivedi, Kinjal; Parekh, Kinnari; Upadhyay, Ramesh V.

    2017-11-01

    In the present study magnetic nanoparticles of Fe3O4 having average particle diameter, 11.7 nm were synthesized using chemical coprecipitation technique and dispersed in alpha olefin hydrocarbon synthetic lubricating oil. The solid weight fraction of magnetic nanoparticles in the lubricating oil was varied from 0 wt% to 10 wt%. The tribological properties were studied using four-ball tester. The results demonstrate that the coefficient of friction and wear scar diameter reduces by 45% and 30%, respectively at an optimal value, i.e. 4 wt% of magnetic nanoparticles concentration. The surface characterization of worn surface was carried out using a scanning electron microscope, and energy dispersive spectroscopy. These results implied that rolling mechanism is responsible to reduce coefficient of friction while magnetic nanoparticles act as the spacer between the asperities and reduces the wear scar diameter. The surface roughness of the worn surface studied using an atomic force microscope shows a reduction in surface roughness by a factor of four when magnetic nanoparticles are used as an additive. The positive response of magnetic nanoparticles in a lubricating oil, shows the potential replacement of conventional lubricating oil.

  19. The MillSOT-A Spiral Orbit Tribometer on a Milling Machine

    NASA Technical Reports Server (NTRS)

    Pepper, Stephen V.

    2014-01-01

    A spiral orbit tribometer (SOT) intended to characterize friction and wear phenomena has been constructed on a milling machine. The instrument, essentially a retainerless thrust bearing with one ball and flat races, is exceedingly simple and inexpensive to construct. The capabilities of the tribometer to measure both the coefficient of friction and contact electrical resistance are demonstrated with clean specimens as well as with well known lubricants such as molybdenum disulphide and Krytox oil. Operation in a purged environment of inert gas is also demonstrated. The results with these lubricants are quite close to what is obtained by other methods. Suggestions for extending the capabilities of the tribometer are given. This arrangement may find use in university mechanical engineering laboratories to introduce and study rolling contact motion as well as for research in contact mechanics and tribology.

  20. Influence of the pressure dependent coefficient of friction on deep drawing springback predictions

    NASA Astrophysics Data System (ADS)

    Gil, Imanol; Galdos, Lander; Mendiguren, Joseba; Mugarra, Endika; Sáenz de Argandoña, Eneko

    2016-10-01

    This research studies the effect of considering an advanced variable friction coefficient on the springback prediction of stamping processes. Traditional constant coefficient of friction considerations are being replaced by more advanced friction coefficient definitions. The aim of this work is to show the influence of defining a pressure dependent friction coefficient on numerical springback predictions of a DX54D mild steel, a HSLA380 and a DP780 high strength steel. The pressure dependent friction model of each material was fitted to the experimental data obtained by Strip Drawing tests. Then, these friction models were implemented in a numerical simulation of a drawing process of an industrial automotive part. The results showed important differences between defining a pressure dependent friction coefficient or a constant friction coefficient.

  1. Effect of friction on rolling tire-pavement interaction

    DOT National Transportation Integrated Search

    2010-11-01

    In this research, a three-dimensional (3-D) tire-pavement interaction model is developed using FEM to analyze the tire-pavement contact stress distributions at various rolling conditions (free rolling, braking/accelerating, and cornering). In additio...

  2. Spiral Orbit Tribometer

    NASA Technical Reports Server (NTRS)

    Pepper, Stephen V.; Jones, William R., Jr.; Kingsbury, Edward; Jansen, Mark J.

    2007-01-01

    The spiral orbit tribometer (SOT) bridges the gap between full-scale life testing and typically unrealistic accelerated life testing of ball-bearing lubricants in conjunction with bearing ball and race materials. The SOT operates under realistic conditions and quickly produces results, thereby providing information that can guide the selection of lubricant, ball, and race materials early in a design process. The SOT is based upon a simplified, retainerless thrust bearing comprising one ball between flat races (see figure). The SOT measures lubricant consumption and degradation rates and friction coefficients in boundary lubricated rolling and pivoting contacts. The ball is pressed between the lower and upper races with a controlled force and the lower plate is rotated. The combination of load and rotation causes the ball to move in a nearly circular orbit that is, more precisely, an opening spiral. The spiral s pitch is directly related to the friction coefficient. At the end of the orbit, the ball contacts the guide plate, restoring the orbit to its original radius. The orbit is repeatable throughout the entire test. A force transducer, mounted in-line with the guide plate, measures the force between the ball and the guide plate, which directly relates to the friction coefficient. The SOT, shown in the figure, can operate in under ultra-high vacuum (10(exp -9) Torr) or in a variety of gases at atmospheric pressure. The load force can be adjusted between 45 and 450 N. By varying the load force and ball diameter, mean Hertzian stresses between 0.5 and 5.0 GPa can be obtained. The ball s orbital speed range is between 1 and 100 rpm.

  3. Spiral Orbit Tribometry I: Description of the Tribometer

    NASA Technical Reports Server (NTRS)

    Pepper, Stephen V.; Kingsbury, Edward P.; Kiraly, Louis J. (Technical Monitor)

    2002-01-01

    A new rolling contact tribometer based on a planar thrust bearing geometry is described. The bearing 'races' are flat plates that drive a ball into a near-circular, spiral path. The spiraling ball is returned to its initial radius each revolution around the race by a 'guide plate' backed by a force transducer. The motions of the ball are analyzed and the force exerted by the ball on the guide plate is related to the friction coefficient of the system. The experimental characteristics of the system are presented and the system is shown to exhibit the behavior expected for a tribometer.

  4. Rolling friction and energy dissipation in a spinning disc

    PubMed Central

    Ma, Daolin; Liu, Caishan; Zhao, Zhen; Zhang, Hongjian

    2014-01-01

    This paper presents the results of both experimental and theoretical investigations for the dynamics of a steel disc spinning on a horizontal rough surface. With a pair of high-speed cameras, a stereoscopic vision method is adopted to perform omnidirectional measurements for the temporal evolution of the disc's motion. The experiment data allow us to detail the dynamics of the disc, and consequently to quantify its energy. From our experimental observations, it is confirmed that rolling friction is a primary factor responsible for the dissipation of the energy. Furthermore, a mathematical model, in which the rolling friction is characterized by a resistance torque proportional to the square of precession rate, is also proposed. By employing the model, we perform qualitative analysis and numerical simulations. Both of them provide results that precisely agree with our experimental findings. PMID:25197246

  5. Reaction wheel low-speed compensation using a dither signal

    NASA Astrophysics Data System (ADS)

    Stetson, John B., Jr.

    1993-08-01

    A method for improving low-speed reaction wheel performance on a three-axis controlled spacecraft is presented. The method combines a constant amplitude offset with an unbiased, oscillating dither to harmonically linearize rolling solid friction dynamics. The complete, nonlinear rolling solid friction dynamics using an analytic modification to the experimentally verified Dahl solid friction model were analyzed using the dual-input describing function method to assess the benefits of dither compensation. The modified analytic solid friction model was experimentally verified with a small dc servomotor actuated reaction wheel assembly. Using dither compensation abrupt static friction disturbances are eliminated and near linear behavior through zero rate can be achieved. Simulated vehicle response to a wheel rate reversal shows that when the dither and offset compensation is used, elastic modes are not significantly excited, and the uncompensated attitude error reduces by 34:1.

  6. Development of a takeoff performance monitoring system. Ph.D. Thesis. Contractor Report, Jan. 1984 - Jun. 1985

    NASA Technical Reports Server (NTRS)

    Srivatsan, Raghavachari; Downing, David R.

    1987-01-01

    Discussed are the development and testing of a real-time takeoff performance monitoring algorithm. The algorithm is made up of two segments: a pretakeoff segment and a real-time segment. One-time imputs of ambient conditions and airplane configuration information are used in the pretakeoff segment to generate scheduled performance data for that takeoff. The real-time segment uses the scheduled performance data generated in the pretakeoff segment, runway length data, and measured parameters to monitor the performance of the airplane throughout the takeoff roll. Airplane and engine performance deficiencies are detected and annunciated. An important feature of this algorithm is the one-time estimation of the runway rolling friction coefficient. The algorithm was tested using a six-degree-of-freedom airplane model in a computer simulation. Results from a series of sensitivity analyses are also included.

  7. Prediction of Sliding Friction Coefficient Based on a Novel Hybrid Molecular-Mechanical Model.

    PubMed

    Zhang, Xiaogang; Zhang, Yali; Wang, Jianmei; Sheng, Chenxing; Li, Zhixiong

    2018-08-01

    Sliding friction is a complex phenomenon which arises from the mechanical and molecular interactions of asperities when examined in a microscale. To reveal and further understand the effects of micro scaled mechanical and molecular components of friction coefficient on overall frictional behavior, a hybrid molecular-mechanical model is developed to investigate the effects of main factors, including different loads and surface roughness values, on the sliding friction coefficient in a boundary lubrication condition. Numerical modelling was conducted using a deterministic contact model and based on the molecular-mechanical theory of friction. In the contact model, with given external loads and surface topographies, the pressure distribution, real contact area, and elastic/plastic deformation of each single asperity contact were calculated. Then asperity friction coefficient was predicted by the sum of mechanical and molecular components of friction coefficient. The mechanical component was mainly determined by the contact width and elastic/plastic deformation, and the molecular component was estimated as a function of the contact area and interfacial shear stress. Numerical results were compared with experimental results and a good agreement was obtained. The model was then used to predict friction coefficients in different operating and surface conditions. Numerical results explain why applied load has a minimum effect on the friction coefficients. They also provide insight into the effect of surface roughness on the mechanical and molecular components of friction coefficients. It is revealed that the mechanical component dominates the friction coefficient when the surface roughness is large (Rq > 0.2 μm), while the friction coefficient is mainly determined by the molecular component when the surface is relatively smooth (Rq < 0.2 μm). Furthermore, optimal roughness values for minimizing the friction coefficient are recommended.

  8. Micro- and macroscale coefficients of friction of cementitious materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lomboy, Gilson; Sundararajan, Sriram, E-mail: srirams@iastate.edu; Wang, Kejin

    2013-12-15

    Millions of metric tons of cementitious materials are produced, transported and used in construction each year. The ease or difficulty of handling cementitious materials is greatly influenced by the material friction properties. In the present study, the coefficients of friction of cementitious materials were measured at the microscale and macroscale. The materials tested were commercially-available Portland cement, Class C fly ash, and ground granulated blast furnace slag. At the microscale, the coefficient of friction was determined from the interaction forces between cementitious particles using an Atomic Force Microscope. At the macroscale, the coefficient of friction was determined from stresses onmore » bulk cementitious materials under direct shear. The study indicated that the microscale coefficient of friction ranged from 0.020 to 0.059, and the macroscale coefficient of friction ranged from 0.56 to 0.75. The fly ash studied had the highest microscale coefficient of friction and the lowest macroscale coefficient of friction. -- Highlights: •Microscale (interparticle) coefficient of friction (COF) was determined with AFM. •Macroscale (bulk) COF was measured under direct shear. •Fly ash had the highest microscale COF and the lowest macroscale COF. •Portland cement against GGBFS had the lowest microscale COF. •Portland cement against Portland cement had the highest macroscale COF.« less

  9. Phase diagram for inertial granular flows.

    PubMed

    DeGiuli, E; McElwaine, J N; Wyart, M

    2016-07-01

    Flows of hard granular materials depend strongly on the interparticle friction coefficient μ_{p} and on the inertial number I, which characterizes proximity to the jamming transition where flow stops. Guided by numerical simulations, we derive the phase diagram of dense inertial flow of spherical particles, finding three regimes for 10^{-4}≲I≲10^{-1}: frictionless, frictional sliding, and rolling. These are distinguished by the dominant means of energy dissipation, changing from collisional to sliding friction, and back to collisional, as μ_{p} increases from zero at constant I. The three regimes differ in their kinetics and rheology; in particular, the velocity fluctuations and the stress ratio both display nonmonotonic behavior with μ_{p}, corresponding to transitions between the three regimes of flow. We rationalize the phase boundaries between these regimes, show that energy balance yields scaling relations between microscopic properties in each of them, and derive the strain scale at which particles lose memory of their velocity. For the frictional sliding regime most relevant experimentally, we find for I≥10^{-2.5} that the growth of the macroscopic friction μ(I) with I is induced by an increase of collisional dissipation. This implies in that range that μ(I)-μ(0)∼I^{1-2b}, where b≈0.2 is an exponent that characterizes both the dimensionless velocity fluctuations L∼I^{-b} and the density of sliding contacts χ∼I^{b}.

  10. Reciprocal Sliding Friction Model for an Electro-Deposited Coating and Its Parameter Estimation Using Markov Chain Monte Carlo Method

    PubMed Central

    Kim, Kyungmok; Lee, Jaewook

    2016-01-01

    This paper describes a sliding friction model for an electro-deposited coating. Reciprocating sliding tests using ball-on-flat plate test apparatus are performed to determine an evolution of the kinetic friction coefficient. The evolution of the friction coefficient is classified into the initial running-in period, steady-state sliding, and transition to higher friction. The friction coefficient during the initial running-in period and steady-state sliding is expressed as a simple linear function. The friction coefficient in the transition to higher friction is described with a mathematical model derived from Kachanov-type damage law. The model parameters are then estimated using the Markov Chain Monte Carlo (MCMC) approach. It is identified that estimated friction coefficients obtained by MCMC approach are in good agreement with measured ones. PMID:28773359

  11. An advanced dissymmetric rolling model for online regulation

    NASA Astrophysics Data System (ADS)

    Cao, Trong-Son

    2017-10-01

    Roll-bite model is employed to predict the rolling force, torque as well as to estimate the forward slip for preset or online regulation at industrial rolling mills. The rolling process is often dissymmetric in terms of work-rolls rotation speeds and diameters as well as the friction conditions at upper and lower contact surfaces between work-rolls and the strip. The roll-bite model thus must be able to account for these dissymmetries and in the same time has to be accurate and fast enough for online applications. In the present study, a new method, namely Adapted Discretization Slab Method (ADSM) is proposed to obtain a robust roll-bite model, which can take into account the aforementioned dissymmetries and has a very short response time, lower than one millisecond. This model is based on the slab method, with an adaptive discretization and a global Newton-Raphson procedure to improve the convergence speed. The model was validated by comparing with other dissymmetric models proposed in the literature, as well as Finite Element simulations and industrial pilot trials. Furthermore, back-calculation tool was also constructed for friction management for both offline and online applications. With very short CPU time, the ADSM-based model is thus attractive for all online applications, both for cold and hot rolling.

  12. An eight-legged tactile sensor to estimate coefficient of static friction.

    PubMed

    Wei Chen; Rodpongpun, Sura; Luo, William; Isaacson, Nathan; Kark, Lauren; Khamis, Heba; Redmond, Stephen J

    2015-08-01

    It is well known that a tangential force larger than the maximum static friction force is required to initiate the sliding motion between two objects, which is governed by a material constant called the coefficient of static friction. Therefore, knowing the coefficient of static friction is of great importance for robot grippers which wish to maintain a stable and precise grip on an object during various manipulation tasks. Importantly, it is most useful if grippers can estimate the coefficient of static friction without having to explicitly explore the object first, such as lifting the object and reducing the grip force until it slips. A novel eight-legged sensor, based on simplified theoretical principles of friction is presented here to estimate the coefficient of static friction between a planar surface and the prototype sensor. Each of the sensor's eight legs are straight and rigid, and oriented at a specified angle with respect to the vertical, allowing it to estimate one of five ranges (5 = 8/2 + 1) that the coefficient of static friction can occupy. The coefficient of friction can be estimated by determining whether the legs have slipped or not when pressed against a surface. The coefficients of static friction between the sensor and five different materials were estimated and compared to a measurement from traditional methods. A least-squares linear fit of the sensor estimated coefficient showed good correlation with the reference coefficient with a gradient close to one and an r(2) value greater than 0.9.

  13. Solvent friction effects propagate over the entire protein molecule through low-frequency collective modes.

    PubMed

    Moritsugu, Kei; Kidera, Akinori; Smith, Jeremy C

    2014-07-24

    Protein solvation dynamics has been investigated using atom-dependent Langevin friction coefficients derived directly from molecular dynamics (MD) simulations. To determine the effect of solvation on the atomic friction coefficients, solution and vacuum MD simulations were performed for lysozyme and staphylococcal nuclease and analyzed by Langevin mode analysis. The coefficients thus derived are roughly correlated with the atomic solvent-accessible surface area (ASA), as expected from the fact that friction occurs as the result of collisions with solvent molecules. However, a considerable number of atoms with higher friction coefficients are found inside the core region. Hence, the influence of solvent friction propagates into the protein core. The internal coefficients have large contributions from the low-frequency modes, yielding a simple picture of the surface-to-core long-range damping via solvation governed by collective low-frequency modes. To make use of these findings in implicit-solvent modeling, we compare the all-atom friction results with those obtained using Langevin dynamics (LD) with two empirical representations: the constant-friction and the ASA-dependent (Pastor-Karplus) friction models. The constant-friction model overestimates the core and underestimates the surface damping whereas the ASA-dependent friction model, which damps protein atoms only on the solvent-accessible surface, reproduces well the friction coefficients for both the surface and core regions observed in the explicit-solvent MD simulations. Therefore, in LD simulation, the solvent friction coefficients should be imposed only on the protein surface.

  14. Solvent friction effects propagate over the entire protein molecule through low-frequency collective modes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moritsugu, Kei; Kidera, Akinori; Smith, Jeremy C.

    2014-06-25

    Protein solvation dynamics has been investigated using atom-dependent Langevin friction coefficients derived directly from molecular dynamics (MD) simulations. To determine the effect of solvation on the atomic friction coefficients, solution and vacuum MD simulations were performed for lysozyme and staphylococcal nuclease and analyzed by Langevin mode analysis. The coefficients thus derived are roughly correlated with the atomic solvent-accessible surface area (ASA), as expected from the fact that friction occurs as the result of collisions with solvent molecules. However, a considerable number of atoms with higher friction coefficients are found inside the core region. Hence, the influence of solvent friction propagatesmore » into the protein core. The internal coefficients have large contributions from the low-frequency modes, yielding a simple picture of the surface-to-core long-range damping via solvation governed by collective low-frequency modes. To make use of these findings in implicit-solvent modeling, we compare the all-atom friction results with those obtained using Langevin dynamics (LD) with two empirical representations: the constant-friction and the ASA-dependent (Pastor Karplus) friction models. The constant-friction model overestimates the core and underestimates the surface damping whereas the ASA-dependent friction model, which damps protein atoms only on the solvent-accessible surface, reproduces well the friction coefficients for both the surface and core regions observed in the explicit-solvent MD simulations. Furthermore, in LD simulation, the solvent friction coefficients should be imposed only on the protein surface.« less

  15. Fluid-structure interaction of a rolling restrained body of revolution at high angles of attack

    NASA Astrophysics Data System (ADS)

    Degani, D.; Ishay, M.; Gottlieb, O.

    2017-03-01

    The current work investigates numerically rolling instabilities of a free-to-roll slender rigid-body of revolution placed in a wind tunnel at a high angle of attack. The resistance to the roll moment is represented by a linear torsion spring and equivalent linear damping representing friction in the bearings of a simulated wind tunnel model. The body is subjected to a three-dimensional, compressible, laminar flow. The full Navier-Stokes equations are solved using the second-order implicit finite difference Beam-Warming scheme, adapted to a curvilinear coordinate system, whereas the coupled structural second order equation of motion for roll is solved by a fourth-order Runge-Kutta method. The body consists of a 3.5-diameter tangent ogive forebody with a 7.0-diameter long cylindrical afterbody extending aft of the nose-body junction to x/D = 10.5. We describe in detail the investigation of three angles of attack 20°, 40°, and 65°, at a Reynolds number of 30 000 (based on body diameter) and a Mach number of 0.2. Three distinct configurations are investigated as follows: a fixed body, a free-to-roll body with a weak torsion spring, and a free-to-roll body with a strong torsion spring. For each angle of attack the free-to-roll configuration portrays a distinct and different behavior pattern, including bi-stable limit-cycle oscillations. The bifurcation structure incorporates both large and small amplitude periodic roll oscillations where the latter lose their periodicity with increasing stiffness of the restraining spring culminating with distinct quasiperiodic oscillations. We note that removal of an applied upstream disturbance for a restrained body does not change the magnitude or complexity of the oscillations or of the flow patterns along the body. Depending on structure characteristics and flow conditions even a small rolling moment coefficient at the relatively low angle of attack of 20° may lead to large amplitude resonant roll oscillations.

  16. A portable wheel tester for tyre-road friction and rolling resistance determination

    NASA Astrophysics Data System (ADS)

    Pytka, J.; Budzyński, P.; Tarkowski, P.; Piaskowski, M.

    2016-09-01

    The paper describes theory of operation, design and construction as well as results from primarily experiments with a portable wheel tester that has been developed by the authors as a device for on-site determination of tyre-road braking/driving friction and rolling resistance. The paper includes schematics, drawings, descriptions as well as graphical results form early tests with the presented device. It is expected that the tester can be useful in road accident reconstruction applications as well as in vehicle dynamics research.

  17. Mechanics of advancing pin-loaded contacts with friction

    NASA Astrophysics Data System (ADS)

    Sundaram, Narayan; Farris, T. N.

    2010-11-01

    This paper considers finite friction contact problems involving an elastic pin and an infinite elastic plate with a circular hole. Using a suitable class of Green's functions, the singular integral equations governing a very general class of conforming contact problems are formulated. In particular, remote plate stresses, pin loads, moments and distributed loading of the pin by conservative body forces are considered. Numerical solutions are presented for different partial slip load cases. In monotonic loading, the dependence of the tractions on the coefficient of friction is strongest when the contact is highly conforming. For less conforming contacts, the tractions are insensitive to an increase in the value of the friction coefficient above a certain threshold. The contact size and peak pressure in monotonic loading are only weakly dependent on the pin load distribution, with center loads leading to slightly higher peak pressure and lower peak shear than distributed loads. In contrast to half-plane cylinder fretting contacts, fretting behavior is quite different depending on whether or not the pin is allowed to rotate freely. If pin rotation is disallowed, the fretting tractions resemble half-plane fretting tractions in the weakly conforming regime but the contact resists sliding in the strongly conforming regime. If pin rotation is allowed, the shear traction behavior resembles planar rolling contacts in that one slip zone is dominant and the peak shear occurs at its edge. In this case, the effects of material dissimilarity in the strongly conforming regime are only secondary and the contact never goes into sliding. Fretting tractions in the forward and reversed load states show shape asymmetry, which persists with continued load cycling. Finally, the governing integro-differential equation for full sliding is derived; in the limiting case of no friction, the same equation governs contacts with center loading and uniform body force loading, resulting in identical pressures when their resultants are equal.

  18. Dry friction aspects of Ni-based self-fluxing flame sprayed coatings

    NASA Astrophysics Data System (ADS)

    Paulin, C.; Chicet, D.; Paleu, V.; Benchea, M.; Lupescu, Ş.; Munteanu, C.

    2017-08-01

    In this paper we present the results tribological obtained in the course of dry wear tests on samples coated with three types of coatings produced from self-fluxing Ni-based powders. In this purpose were used three commercial NiCrBSi powders produced by various manufacturers, which have been sprayed against a low alloyed steel substrate using the flame spray thermal deposition method followed by flame remelting, resulting three different samples, denoted as: A, M and P. The first test was conducted on an Amsler type machine, with rolling motion between tribological contacts of third class. The analysed coating was deposited on the generator of the low alloy steel disc and the shoe was realized from a grindstone. The test was conducted for two situations: (a) constant load of 10 kg and 6 kg applied for 5 hours; (b) progressive load starting from 2 to 10 kg for two different speeds of rotation of the disc. The second test was the one of sliding wear and it was conducted on the UMTR 2M-CTR tribometer. The analysed layers were deposited on the flat surface of a low alloy steel lamella, and the friction was achieved with a conical grinding stone. The working parameters were as follows: 20N constant load, constant speed of 10 mm / s, sliding linear length of 30mm, the test duration being 45 minutes. After conducting the tests and after analysing the results, the following conclusions are drawn: a) during the first test has been obtained a global friction coefficient between 0.3 and 0.4 - typical for dry friction, highlighting some lower values in the case of sample A, in which case there were recorded smaller mass losses; b) at the second test was recorded an approximately linear behaviour of the three samples, with a gradual increase of the friction coefficient and a superficial wear mark revealed both by SEM microscopy and by profilometry.

  19. Prediction of Very High Reynolds Number Compressible Skin Friction

    NASA Technical Reports Server (NTRS)

    Carlson, John R.

    1998-01-01

    Flat plate skin friction calculations over a range of Mach numbers from 0.4 to 3.5 at Reynolds numbers from 16 million to 492 million using a Navier Stokes method with advanced turbulence modeling are compared with incompressible skin friction coefficient correlations. The semi-empirical correlation theories of van Driest; Cope; Winkler and Cha; and Sommer and Short T' are used to transform the predicted skin friction coefficients of solutions using two algebraic Reynolds stress turbulence models in the Navier-Stokes method PAB3D. In general, the predicted skin friction coefficients scaled well with each reference temperature theory though, overall the theory by Sommer and Short appeared to best collapse the predicted coefficients. At the lower Reynolds number 3 to 30 million, both the Girimaji and Shih, Zhu and Lumley turbulence models predicted skin-friction coefficients within 2% of the semi-empirical correlation skin friction coefficients. At the higher Reynolds numbers of 100 to 500 million, the turbulence models by Shih, Zhu and Lumley and Girimaji predicted coefficients that were 6% less and 10% greater, respectively, than the semi-empirical coefficients.

  20. Development of a New Method to Investigate the Dynamic Friction Behavior of Interfaces Using a Kolsky Tension Bar

    DOE PAGES

    Sanborn, B.; Song, B.; Nishida, E.

    2017-11-02

    In order to understand interfacial interaction of a bi-material during an impact loading event, the dynamic friction coefficient is one of the key parameters that must be characterized and quantified. In this study, a new experimental method to determine the dynamic friction coefficient between two metals was developed by using a Kolsky tension bar and a custom-designed friction fixture. Polyvinylidene fluoride (PVDF) force sensors were used to measure the normal force applied to the friction tribo pairs and the friction force was measured with conventional Kolsky tension bar method. To evaluate the technique, the dynamic friction coefficient between 4340 steelmore » and 7075-T6 aluminum was investigated at an impact speed of approximately 8 m/s. Additionally, the dynamic friction coefficient of the tribo pairs with varied surface roughness was also investigated. The data suggest that higher surface roughness leads to higher friction coefficients at the same speed of 8 m/s.« less

  1. Characterization of Skin Friction Coefficient, and Relationship to Stratum Corneum Hydration in a Normal Chinese Population

    PubMed Central

    Zhu, Y.H.; Song, S.P.; Luo, W.; Elias, P.M.; Man, M.Q.

    2011-01-01

    Background and Objectives Studies have demonstrated that some cutaneous biophysical properties vary with age, gender and body sites. However, the characteristics of the skin friction coefficient in different genders and age groups have not yet been well established. In the present study, we assess the skin friction coefficient in a larger Chinese population. Methods A total of 633 subjects (300 males and 333 females) aged 0.15–79 years were enrolled. A Frictiometer® FR 770 and Corneometer® CM 825 (C&K MPA 5) were used to measure the skin friction coefficient and stratum corneum hydration, respectively, on the dorsal surface of the hand, the forehead and the canthus. Results In the females, the maximum skin friction coefficients on both the canthus and the dorsal hand skin were observed around the age of 40 years. In the males, the skin friction coefficient on the dorsal hand skin gradually increased from 0 to 40 years of age, and changed little afterward. Skin friction coefficients on some body sites were higher in females than in age-matched males in some age groups. On the canthus and the dorsal hand skin of females, a positive correlation was found between skin friction coefficient and stratum corneum hydration (p < 0.001 and p < 0.0001, respectively). In contrast, in males, the skin friction coefficient was positively correlated with stratum corneum hydration on the forehead and the dorsal hand skin (p < 0.05 and p < 0.0001, respectively). Conclusion The skin friction coefficient varies with age, gender and body site, and positively correlates with stratum corneum hydration on some body sites. PMID:21088455

  2. Characterization of skin friction coefficient, and relationship to stratum corneum hydration in a normal Chinese population.

    PubMed

    Zhu, Y H; Song, S P; Luo, W; Elias, P M; Man, M Q

    2011-01-01

    Studies have demonstrated that some cutaneous biophysical properties vary with age, gender and body sites. However, the characteristics of the skin friction coefficient in different genders and age groups have not yet been well established. In the present study, we assess the skin friction coefficient in a larger Chinese population. A total of 633 subjects (300 males and 333 females) aged 0.15-79 years were enrolled. A Frictiometer FR 770 and Corneometer CM 825 (C&K MPA 5) were used to measure the skin friction coefficient and stratum corneum hydration, respectively, on the dorsal surface of the hand, the forehead and the canthus. In the females, the maximum skin friction coefficients on both the canthus and the dorsal hand skin were observed around the age of 40 years. In the males, the skin friction coefficient on the dorsal hand skin gradually increased from 0 to 40 years of age, and changed little afterward. Skin friction coefficients on some body sites were higher in females than in age-matched males in some age groups. On the canthus and the dorsal hand skin of females, a positive correlation was found between skin friction coefficient and stratum corneum hydration (p < 0.001 and p < 0.0001, respectively). In contrast, in males, the skin friction coefficient was positively correlated with stratum corneum hydration on the forehead and the dorsal hand skin (p < 0.05 and p < 0.0001, respectively). The skin friction coefficient varies with age, gender and body site, and positively correlates with stratum corneum hydration on some body sites. Copyright © 2010 S. Karger AG, Basel.

  3. Estimation of Road Friction Coefficient in Different Road Conditions Based on Vehicle Braking Dynamics

    NASA Astrophysics Data System (ADS)

    Zhao, You-Qun; Li, Hai-Qing; Lin, Fen; Wang, Jian; Ji, Xue-Wu

    2017-07-01

    The accurate estimation of road friction coefficient in the active safety control system has become increasingly prominent. Most previous studies on road friction estimation have only used vehicle longitudinal or lateral dynamics and often ignored the load transfer, which tends to cause inaccurate of the actual road friction coefficient. A novel method considering load transfer of front and rear axles is proposed to estimate road friction coefficient based on braking dynamic model of two-wheeled vehicle. Sliding mode control technique is used to build the ideal braking torque controller, which control target is to control the actual wheel slip ratio of front and rear wheels tracking the ideal wheel slip ratio. In order to eliminate the chattering problem of the sliding mode controller, integral switching surface is used to design the sliding mode surface. A second order linear extended state observer is designed to observe road friction coefficient based on wheel speed and braking torque of front and rear wheels. The proposed road friction coefficient estimation schemes are evaluated by simulation in ADAMS/Car. The results show that the estimated values can well agree with the actual values in different road conditions. The observer can estimate road friction coefficient exactly in real-time and resist external disturbance. The proposed research provides a novel method to estimate road friction coefficient with strong robustness and more accurate.

  4. The Effect of a Variable Disc Pad Friction Coefficient for the Mechanical Brake System of a Railway Vehicle

    PubMed Central

    Lee, Nam-Jin; Kang, Chul-Goo

    2015-01-01

    A brake hardware-in-the-loop simulation (HILS) system for a railway vehicle is widely applied to estimate and validate braking performance in research studies and field tests. When we develop a simulation model for a full vehicle system, the characteristics of all components are generally properly simplified based on the understanding of each component’s purpose and interaction with other components. The friction coefficient between the brake disc and the pad used in simulations has been conventionally considered constant, and the effect of a variable friction coefficient is ignored with the assumption that the variability affects the performance of the vehicle braking very little. However, the friction coefficient of a disc pad changes significantly within a range due to environmental conditions, and thus, the friction coefficient can affect the performance of the brakes considerably, especially on the wheel slide. In this paper, we apply a variable friction coefficient and analyzed the effects of the variable friction coefficient on a mechanical brake system of a railway vehicle. We introduce a mathematical formula for the variable friction coefficient in which the variable friction is represented by two variables and five parameters. The proposed formula is applied to real-time simulations using a brake HILS system, and the effectiveness of the formula is verified experimentally by testing the mechanical braking performance of the brake HILS system. PMID:26267883

  5. The Effect of a Variable Disc Pad Friction Coefficient for the Mechanical Brake System of a Railway Vehicle.

    PubMed

    Lee, Nam-Jin; Kang, Chul-Goo

    2015-01-01

    A brake hardware-in-the-loop simulation (HILS) system for a railway vehicle is widely applied to estimate and validate braking performance in research studies and field tests. When we develop a simulation model for a full vehicle system, the characteristics of all components are generally properly simplified based on the understanding of each component's purpose and interaction with other components. The friction coefficient between the brake disc and the pad used in simulations has been conventionally considered constant, and the effect of a variable friction coefficient is ignored with the assumption that the variability affects the performance of the vehicle braking very little. However, the friction coefficient of a disc pad changes significantly within a range due to environmental conditions, and thus, the friction coefficient can affect the performance of the brakes considerably, especially on the wheel slide. In this paper, we apply a variable friction coefficient and analyzed the effects of the variable friction coefficient on a mechanical brake system of a railway vehicle. We introduce a mathematical formula for the variable friction coefficient in which the variable friction is represented by two variables and five parameters. The proposed formula is applied to real-time simulations using a brake HILS system, and the effectiveness of the formula is verified experimentally by testing the mechanical braking performance of the brake HILS system.

  6. Static coefficient of friction between stainless steel and PMMA used in cemented hip and knee implants.

    PubMed

    Nuño, N; Groppetti, R; Senin, N

    2006-11-01

    Design of cemented hip and knee implants, oriented to improve the longevity of artificial joints, is largely based on numerical models. The static coefficient of friction between the implant and the bone cement is necessary to characterize the interface conditions in these models and must be accurately provided. The measurement of this coefficient using a repeatable and reproducible methodology for materials used in total hip arthroplasty is missing from the literature. A micro-topographic surface analysis characterized the surfaces of the specimens used in the experiments. The coefficient of friction between stainless steel and bone cement in dry and wet conditions using bovine serum was determined using a prototype computerized sliding friction tester. The effects of surface roughness (polished versus matt) and of contact pressure on the coefficient of friction have also been investigated. The serum influences little the coefficient of friction for the matt steel surface, where the mechanical interactions due to higher roughness are still the most relevant factor. However, for polished steel surfaces, the restraining effect of proteins plays a very relevant role in increasing the coefficient of friction. When the coefficient of friction is used in finite element analysis, it is used for the debonded stem-cement situation. It can thus be assumed that serum will propagate between the stem and the cement mantle. The authors believe that the use of a static coefficient of friction of 0.3-0.4, measured in the present study, is appropriate in finite element models.

  7. The effect of chalk on the finger-hold friction coefficient in rock climbing.

    PubMed

    Amca, Arif Mithat; Vigouroux, Laurent; Aritan, Serdar; Berton, Eric

    2012-11-01

    The main purpose of this study was to examine the effect of chalk on the friction coefficient between climber's fingers and two different rock types (sandstone and limestone). The secondary purpose was to investigate the effects of humidity and temperature on the friction coefficient and on the influence of chalk. Eleven experienced climbers took part in this study and 42 test sessions were performed. Participants hung from holds which were fixed on a specially designed hang board. The inclination of the hang board was progressively increased until the climber's hand slipped from the holds. The angle of the hang board was simultaneously recorded by using a gyroscopic sensor and the friction coefficient was calculated at the moment of slip. The results showed that there was a significant positive effect of chalk on the coefficient of friction (+18.7% on limestone and +21.6% on sandstone). Moreover sandstone had a higher coefficient of friction than limestone (+15.6% without chalk, +18.4% with chalk). These results confirmed climbers' belief that chalk enhances friction. However, no correlation with humidity/temperature and friction coefficient was noted which suggested that additional parameters should be considered in order to understand the effects of climate on finger friction in rock climbing.

  8. Real-time observation of slipping and rolling events in DLC wear nanoparticles.

    PubMed

    Sato, Takaaki; Nabeya, Shinsuke; Menon, Vivek; Ishida, Tadashi; Kometani, Reo; Fujita, Hiroyuki

    2018-08-10

    Real-time observation of the actual contact area between surface interfaces at the nanoscale enables more precise examination of what happens during friction. We have combined micro electro mechanical system actuators and transmission electron microscopy (TEM) observation, to both apply and measure forces across nanoscale junctions and contacts. This custom-designed experimental system can measure the true surface area of a contact site from a lateral viewpoint, while simultaneously measuring the friction force. We scratched surfaces coated with diamond like carbon, a classical solid lubricant, and observed the formation of wear particles that slipped and rolled between the interface. TEM images showed that the shape of the surface at the nanoscale underwent permanent deformation when acted upon with forces as low as several tens of nano newtons. The results demonstrated the limitations of friction analyses relying on friction force measurements without real-time surface profiling.

  9. Investigating the role of sliding friction in rolling motion: a teaching sequence based on experiments and simulations

    NASA Astrophysics Data System (ADS)

    De Ambrosis, Anna; Malgieri, Massimiliano; Mascheretti, Paolo; Onorato, Pasquale

    2015-05-01

    We designed a teaching-learning sequence on rolling motion, rooted in previous research about student conceptions, and proposing an educational reconstruction strongly centred on the role of friction in different cases of rolling. A series of experiments based on video analysis is used to highlight selected key concepts and to motivate students in their exploration of the topic; and interactive simulations, which can be modified on the fly by students to model different physical situations, are used to stimulate autonomous investigation in enquiry activities. The activity sequence was designed for students on introductory physics courses and was tested with a group of student teachers. Comparisons between pre- and post-tests, and between our results and those reported in the literature, indicate that students’ understanding of rolling motion improved markedly and some typical difficulties were overcome.

  10. Bearing tester data compilation, analysis, and reporting and bearing math modeling

    NASA Technical Reports Server (NTRS)

    1986-01-01

    A test condition data base was developed for the Bearing and Seal Materials Tester (BSMT) program which permits rapid retrieval of test data for trend analysis and evaluation. A model was developed for the Space shuttle Main Engine (SSME) Liquid Oxygen (LOX) turbopump shaft/bearing system. The model was used to perform parametric analyses to determine the sensitivity of bearing operating characteristics and temperatures to variations in: axial preload, contact friction, coolant flow and subcooling, heat transfer coefficients, outer race misalignments, and outer race to isolator clearances. The bearing program ADORE (Advanced Dynamics of Rolling Elements) was installed on the UNIVAC 1100/80 computer system and is operational. ADORE is an advanced FORTRAN computer program for the real time simulation of the dynamic performance of rolling bearings. A model of the 57 mm turbine-end bearing is currently being checked out. Analyses were conducted to estimate flow work energy for several flow diverter configurations and coolant flow rates for the LOX BSMT.

  11. Fundamental investigation of the tribological and mechanical responses of materials and nanostructures

    NASA Astrophysics Data System (ADS)

    Bucholz, Eric W.

    In the field of tribology, the ability to predict, and ultimately control, frictional performance is of critical importance for the optimization of tribological systems. As such, understanding the specific mechanisms involved in the lubrication processes for different materials is a fundamental step in tribological system design. In this work, a combination of computational and experimental methods that include classical molecular dynamics (MD) simulations, atomic force microscopy (AFM) experiments, and multivariate statistical analyses provides fundamental insight into the tribological and mechanical properties of carbon-based and inorganic nanostructures, lamellar materials, and inorganic ceramic compounds. One class of materials of modern interest for tribological applications is nanoparticles, which can be employed either as solid lubricating films or as lubricant additives. In experimental systems, however, it is often challenging to attain the in situ observation of tribological interfaces necessary to identify the atomic-level mechanisms involved during lubrication and response to mechanical deformation. Here, classical MD simulations establish the mechanisms occurring during the friction and compression of several types of nanoparticles including carbon nano-onions, amorphous carbon nanoparticles, and inorganic fullerene-like MoS2 nanoparticles. Specifically, the effect of a nanoparticle's structural properties on the lubrication mechanisms of rolling, sliding, and lamellar exfoliation is indicated; the findings quantify the relative impact of each mechanism on the tribological and mechanical properties of these nanoparticles. Beyond identifying the lubrication mechanisms of known lubricating materials, the continual advancement of modern technology necessitates the identification of new candidate materials for use in tribological applications. To this effect, atomic-scale AFM friction experiments on the aluminosilicate mineral pyrophyllite demonstrate that pyrophyllite provides a low friction coefficient and low shear stresses as well as a high threshold to interfacial wear; this suggests the potential for use of pyrophyllite as a lubricious material under specific conditions. Also, a robust and accurate model for estimating the friction coefficients of inorganic ceramic materials that is based on the fundamental relationships between material properties is presented, which was developed using multivariate data mining algorithms. These findings provide the tribological community with a new means of quickly identifying candidate materials that may provide specific frictional properties for desired applications.

  12. Evaluation and Description of Friction between an Electro-Deposited Coating and a Ceramic Ball under Fretting Condition

    PubMed Central

    Kim, Kyungmok

    2015-01-01

    This article describes fretting behavior of zirconia and silicon nitride balls on an electro-deposited coating. Fretting tests are performed using a ball-on-flat configuration. The evolution of the kinetic friction coefficient is determined, along with slip ratio. Experimental results show that the steady-state friction coefficient between ceramic balls (Si3N4 and ZrO2) and an electro-deposited coating is about 0.06, lower than the value between AISI 52100 ball and the coating. After a steady-state sliding, the transition of the friction coefficient is varied with a ball. The friction coefficient for ZrO2 balls became a critical value after higher fretting cycles than those for Si3N4 and AISI 52100 balls. In addition, it is identified that two parameters can describe the transition of the friction coefficient. Finally, the evolution of the friction coefficient is expressed as an exponential or a power-law form. PMID:28793471

  13. Tribometer for Lubrication Studies in Vacuum

    NASA Technical Reports Server (NTRS)

    Pepper, Stephen V.

    1998-01-01

    The NASA Lewis Research Center has developed a new way to evaluate the liquid lubricants used in ball bearings in space mechanisms. For this evaluation, a liquid lubricant is exercised in the rolling contact vacuum tribometer shown in the photo. This tribometer, which is essentially a thrust bearing with three balls and flat races, has contact stresses similar to those in a typical preloaded, angular contact ball bearing. The rotating top plate drives the balls in an outward-winding spiral orbit instead of a circular path. Upon contact with the "guide plate," the balls are forced back to their initial smaller orbit radius; they then repeat this spiral orbit thousands of times. The orbit rate of the balls is low enough, 2 to 5 rpm, to allow the system to operate in the boundary lubrication regime that is most stressful to the liquid lubricant. This system can determine the friction coefficient, lubricant lifetime, and species evolved from the liquid lubricant by tribodegradation. The lifetime of the lubricant charge is only few micrograms, which is "used up" by degradation during rolling. The friction increases when the lubricant is exhausted. The species evolved by the degrading lubricant are determined by a quadrupole residual gas analyzer that directly views the rotating elements. The flat races (plates) and 0.5-in.-diameter balls are of a configuration and size that permit easy post-test examination by optical and electron microscopy and the full suite of modern surface and thin-film chemical analytical techniques, including infrared and Raman microspectroscopy and x-ray photoelectron spectroscopy. In addition, the simple sphere-on-a-flat-plate geometry allows an easy analysis of the contact stresses at all parts of the ball orbit and an understanding of the frictional energy losses to the lubricant. The analysis showed that when the ball contacts the guide plate, gross sliding occurs between the ball and rotating upper plate as the ball forced back to a smaller orbit radius. The friction force due to gross sliding is sensed by the piezoelectric force transducer behind the guide plate and furnishes the coefficient of friction for the system. This tribometer has been used to determine the relative lifetimes of Fomblin Z-25, a lubricant often used in space mechanisms, as a function of the material of the plates against which it was run. The balls were 440C steel in all cases; the plate materials were aluminum, chromium (Cr), 440C steel (17 wt % Cr), and 4150 steel (1 wt % Cr). As shown in the bar graph, the lifetime is greatest for the plate material with least chromium, thus implicating chromium as a tribochemically active element attacking Fomblin Z-25.

  14. Friction and wear of single-crystal manganese-zinc ferrite

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1979-01-01

    Sliding friction experiments were conducted with single crystal manganese-zinc ferrite in contact with itself and with transition metals. Results indicate mating highest atomic density directions (110) on matched crystallographic planes exhibit the lowest coefficient of friction, indicating that direction is important in the friction behavior of ferrite. Matched parallel high atomic density planes and crystallographic directions at the interface exhibit low coefficients of friction. The coefficients of friction for ferrite in contact with various metals are related to the relative chemical activity of these metals. The more active the metal, the higher the coefficient of friction. Cracking and the formation of hexagon- and rectangular-shaped platelet wear debris due to cleavages of (110) planes are observed on the ferrite surfaces as a result of sliding.

  15. State, Parameter, and Unknown Input Estimation Problems in Active Automotive Safety Applications

    NASA Astrophysics Data System (ADS)

    Phanomchoeng, Gridsada

    A variety of driver assistance systems such as traction control, electronic stability control (ESC), rollover prevention and lane departure avoidance systems are being developed by automotive manufacturers to reduce driver burden, partially automate normal driving operations, and reduce accidents. The effectiveness of these driver assistance systems can be significant enhanced if the real-time values of several vehicle parameters and state variables, namely tire-road friction coefficient, slip angle, roll angle, and rollover index, can be known. Since there are no inexpensive sensors available to measure these variables, it is necessary to estimate them. However, due to the significant nonlinear dynamics in a vehicle, due to unknown and changing plant parameters, and due to the presence of unknown input disturbances, the design of estimation algorithms for this application is challenging. This dissertation develops a new approach to observer design for nonlinear systems in which the nonlinearity has a globally (or locally) bounded Jacobian. The developed approach utilizes a modified version of the mean value theorem to express the nonlinearity in the estimation error dynamics as a convex combination of known matrices with time varying coefficients. The observer gains are then obtained by solving linear matrix inequalities (LMIs). A number of illustrative examples are presented to show that the developed approach is less conservative and more useful than the standard Lipschitz assumption based nonlinear observer. The developed nonlinear observer is utilized for estimation of slip angle, longitudinal vehicle velocity, and vehicle roll angle. In order to predict and prevent vehicle rollovers in tripped situations, it is necessary to estimate the vertical tire forces in the presence of unknown road disturbance inputs. An approach to estimate unknown disturbance inputs in nonlinear systems using dynamic model inversion and a modified version of the mean value theorem is presented. The developed theory is used to estimate vertical tire forces and predict tripped rollovers in situations involving road bumps, potholes, and lateral unknown force inputs. To estimate the tire-road friction coefficients at each individual tire of the vehicle, algorithms to estimate longitudinal forces and slip ratios at each tire are proposed. Subsequently, tire-road friction coefficients are obtained using recursive least squares parameter estimators that exploit the relationship between longitudinal force and slip ratio at each tire. The developed approaches are evaluated through simulations with industry standard software, CARSIM, with experimental tests on a Volvo XC90 sport utility vehicle and with experimental tests on a 1/8th scaled vehicle. The simulation and experimental results show that the developed approaches can reliably estimate the vehicle parameters and state variables needed for effective ESC and rollover prevention applications.

  16. Experimental rig to estimate the coefficient of friction between tire and surface in airplane touchdown simulations.

    PubMed

    Li, Chengwei; Zhan, Liwei

    2015-08-01

    To estimate the coefficient of friction between tire and runway surface during airplane touchdowns, we designed an experimental rig to simulate such events and to record the impact and friction forces being executed. Because of noise in the measured signals, we developed a filtering method that is based on the ensemble empirical mode decomposition and the bandwidth of probability density function of each intrinsic mode function to extract friction and impact force signals. We can quantify the coefficient of friction by calculating the maximum values of the filtered force signals. Signal measurements are recorded for different drop heights and tire rotational speeds, and the corresponding coefficient of friction is calculated. The result shows that the values of the coefficient of friction change only slightly. The random noise and experimental artifact are the major reason of the change.

  17. Experimental research on friction coefficient between grain bulk and bamboo clappers

    NASA Astrophysics Data System (ADS)

    Tang, Gan; Sun, Ping; Zhao, Yanqi; Yin, Lingfeng; Zhuang, Hong

    2017-12-01

    A silo is an important piece of storage equipment, especially in the grain industry. The internal friction angle and the friction coefficient between the grain and the silo wall are the main parameters needed for calculating the lateral pressure of the silo wall. Bamboo is used in silo walls, but there are no provisions about the friction coefficient between bulk grain and bamboo clappers in existing codes. In this paper, the material of the silo wall is bamboo. The internal friction of five types of grain and the friction coefficient between the grain and the bamboo clappers were measured with an equal-strain direct shear apparatus. By comparing the experimental result values with the code values, the friction coefficient between the grain bulk and bamboo clappers is lower than that between grain and steel wall and that between grain and concrete wall. The differences in value are 0.21 and 0.09, respectively.

  18. A multivariable model for predicting the frictional behaviour and hydration of the human skin.

    PubMed

    Veijgen, N K; van der Heide, E; Masen, M A

    2013-08-01

    The frictional characteristics of skin-object interactions are important when handling objects, in the assessment of perception and comfort of products and materials and in the origins and prevention of skin injuries. In this study, based on statistical methods, a quantitative model is developed that describes the friction behaviour of human skin as a function of the subject characteristics, contact conditions, the properties of the counter material as well as environmental conditions. Although the frictional behaviour of human skin is a multivariable problem, in literature the variables that are associated with skin friction have been studied using univariable methods. In this work, multivariable models for the static and dynamic coefficients of friction as well as for the hydration of the skin are presented. A total of 634 skin-friction measurements were performed using a recently developed tribometer. Using a statistical analysis, previously defined potential influential variables were linked to the static and dynamic coefficient of friction and to the hydration of the skin, resulting in three predictive quantitative models that descibe the friction behaviour and the hydration of human skin respectively. Increased dynamic coefficients of friction were obtained from older subjects, on the index finger, with materials with a higher surface energy at higher room temperatures, whereas lower dynamic coefficients of friction were obtained at lower skin temperatures, on the temple with rougher contact materials. The static coefficient of friction increased with higher skin hydration, increasing age, on the index finger, with materials with a higher surface energy and at higher ambient temperatures. The hydration of the skin was associated with the skin temperature, anatomical location, presence of hair on the skin and the relative air humidity. Predictive models have been derived for the static and dynamic coefficient of friction using a multivariable approach. These two coefficients of friction show a strong correlation. Consequently the two multivariable models resemble, with the static coefficient of friction being on average 18% lower than the dynamic coefficient of friction. The multivariable models in this study can be used to describe the data set that was the basis for this study. Care should be taken when generalising these results. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Cyclic loading increases friction and changes cartilage surface integrity in lubricin-mutant mouse knees

    PubMed Central

    Drewniak, Elizabeth I; Jay, Gregory D; Fleming, Braden C; Zhang, Ling; Warman, Matthew L; Crisco, Joseph J

    2012-01-01

    Objective To investigate the effects of lubricin gene dosage and cyclic loading on whole joint coefficient of friction and articular cartilage surface integrity in mouse knee joints. Methods Joints from mice with 2 (Prg4+/+), 1 (Prg4+/−), or no (Prg4−/−) functioning lubricin alleles were subjected to 26 hours of cyclic loading using a custom-built pendulum. Coefficient of friction values were measured at multiple time points. Contralateral control joints were left unloaded. Following testing, joints were examined for histologic evidence of damage and cell viability. Results At baseline, the coefficient of friction values in Prg4−/− mice were significantly higher than those in Prg4+/+ and Prg4+/− mice (P < 0.001). Cyclic loading continuously increased the coefficient of friction in Prg4−/− mouse joints. In contrast, Prg4+/− and Prg4+/+ mouse joints had no coefficient of friction increases during the first 4 hours of loading. After 26 hours of loading, joints from all genotypes had increased coefficient of friction values compared to baseline and unloaded controls. Significantly greater increases occurred in Prg4−/− and Prg4+/− mouse joints compared to Prg4+/+ mouse joints. The coefficient of friction values were not significantly associated with histologic evidence of damage or loss of cell viability. Conclusion Our findings indicate that mice lacking lubricin have increased baseline coefficient of friction values and are not protected against further increases caused by loading. Prg4+/− mice are indistinguishable from Prg4+/+ mice at baseline, but have significantly greater coefficient of friction values following 26 hours of loading. Lubricin dosage affects joint properties during loading, and may have clinical implications in patients for whom injury or illness alters lubricin abundance. PMID:21905020

  20. Nonlinear friction model for servo press simulation

    NASA Astrophysics Data System (ADS)

    Ma, Ninshu; Sugitomo, Nobuhiko; Kyuno, Takunori; Tamura, Shintaro; Naka, Tetsuo

    2013-12-01

    The friction coefficient was measured under an idealized condition for a pulse servo motion. The measured friction coefficient and its changing with both sliding distance and a pulse motion showed that the friction resistance can be reduced due to the re-lubrication during unloading process of the pulse servo motion. Based on the measured friction coefficient and its changes with sliding distance and re-lubrication of oil, a nonlinear friction model was developed. Using the newly developed the nonlinear friction model, a deep draw simulation was performed and the formability was evaluated. The results were compared with experimental ones and the effectiveness was verified.

  1. Prediction of friction coefficients for gases

    NASA Technical Reports Server (NTRS)

    Taylor, M. F.

    1969-01-01

    Empirical relations are used for correlating laminar and turbulent friction coefficients for gases, with large variations in the physical properties, flowing through smooth tubes. These relations have been used to correlate friction coefficients for hydrogen, helium, nitrogen, carbon dioxide and air.

  2. A technique for measuring dynamic friction coefficient under impact loading

    NASA Astrophysics Data System (ADS)

    Lin, Y. L.; Qin, J. G.; Chen, R.; Zhao, P. D.; Lu, F. Y.

    2014-09-01

    We develop a novel setup based on the split Hopkinson pressure bar technique to test the dynamic friction coefficient under impact loading. In the setup, the major improvement is that the end of the incident bar near the specimen is wedge-shaped, which results in a combined compressive and shear loading applied to the specimen. In fact, the shear loading is caused by the interfacial friction between specimen and bars. Therefore, when the two loading force histories are measured, the friction coefficient histories can be calculated without any assumptions and theoretical derivations. The geometry of the friction pairs is simple, and can be either cuboid or cylindrical. Regarding the measurements, two quartz transducers are used to directly record the force histories, and an optical apparatus is designed to test the interfacial slip movement. By using the setup, the dynamic friction coefficient of PTFE/aluminum 7075 friction pairs was tested. The time resolved dynamic friction coefficient and slip movement histories were achieved. The results show that the friction coefficient changes during the loading process, the average data of the relatively stable flat plateau section of the friction coefficient curves is 0.137, the maximum normal pressure is 52 MPa, the maximum relative slip velocity is 1.5 m/s, and the acceleration is 8400 m2/s. Furthermore, the friction test was simulated using an explicit FEM code LS-DYNA. The simulation results showed that the constant pressure and slip velocity can both be obtained with a wide flat plateau incident pulse. For some special friction pairs, normal pressure up to a few hundred MPa, interfacial slip velocities up to 10 m/s, and slip movement up to centimeter-level can be expected.

  3. A technique for measuring dynamic friction coefficient under impact loading.

    PubMed

    Lin, Y L; Qin, J G; Chen, R; Zhao, P D; Lu, F Y

    2014-09-01

    We develop a novel setup based on the split Hopkinson pressure bar technique to test the dynamic friction coefficient under impact loading. In the setup, the major improvement is that the end of the incident bar near the specimen is wedge-shaped, which results in a combined compressive and shear loading applied to the specimen. In fact, the shear loading is caused by the interfacial friction between specimen and bars. Therefore, when the two loading force histories are measured, the friction coefficient histories can be calculated without any assumptions and theoretical derivations. The geometry of the friction pairs is simple, and can be either cuboid or cylindrical. Regarding the measurements, two quartz transducers are used to directly record the force histories, and an optical apparatus is designed to test the interfacial slip movement. By using the setup, the dynamic friction coefficient of PTFE/aluminum 7075 friction pairs was tested. The time resolved dynamic friction coefficient and slip movement histories were achieved. The results show that the friction coefficient changes during the loading process, the average data of the relatively stable flat plateau section of the friction coefficient curves is 0.137, the maximum normal pressure is 52 MPa, the maximum relative slip velocity is 1.5 m/s, and the acceleration is 8400 m(2)/s. Furthermore, the friction test was simulated using an explicit FEM code LS-DYNA. The simulation results showed that the constant pressure and slip velocity can both be obtained with a wide flat plateau incident pulse. For some special friction pairs, normal pressure up to a few hundred MPa, interfacial slip velocities up to 10 m/s, and slip movement up to centimeter-level can be expected.

  4. Determination of the Frictional Behavior at Compaction of Powder Materials Consisting of Spray-Dried Granules

    NASA Astrophysics Data System (ADS)

    Staf, Hjalmar; Olsson, Erik; Lindskog, Per; Larsson, Per-Lennart

    2018-03-01

    The frictional behavior during powder compaction and ejection is studied using an instrumented die with eight radial sensors. The average friction over the total powder pillar is used to determine a local friction coefficient at each sensor. By comparing forces at compaction with forces at ejection, it can be shown that the Coulomb's friction coefficient can be described as a function of normal pressure. Also stick phenomena has been investigated in order to assess its influence on the determination of the local friction coefficient.

  5. Thermal Microstructural Stability of AZ31 Magnesium after Severe Plastic Deformation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, John P.; Askari, Hesam A.; Hovanski, Yuri

    2015-03-01

    Both equal channel angular pressing and friction stir processing have the ability to refine the grain size of twin roll cast AZ31 magnesium and potentially improve its superplastic properties. This work used isochronal and isothermal heat treatments to investigate the microstructural stability of twin roll cast, equal channel angular pressed and friction stir processed AZ31 magnesium. For both heat treatment conditions, it was found that the twin roll casted and equal channel angular pressed materials were more stable than the friction stir processed material. Calculations of the grain growth kinetics showed that severe plastic deformation processing decreased the activation energymore » for grain boundary motion with the equal channel angular pressed material having the greatest Q value of the severely plastically deformed materials and that increasing the tool travel speed of the friction stir processed material improved microstructural stability. The Hollomon-Jaffe parameter was found to be an accurate means of identifying the annealing conditions that will result in substantial grain growth and loss of potential superplastic properties in the severely plastically deformed materials. In addition, Humphreys’s model of cellular microstructural stability accurately predicted the relative microstructural stability of the severely plastically deformed materials and with some modification, closely predicted the maximum grain size ratio achieved by the severely plastically deformed materials.« less

  6. Calculation of equivalent friction coefficient for castor seed by single screw press

    NASA Astrophysics Data System (ADS)

    Liu, R.; Xiao, Z.; Li, C.; Zhang, L.; Li, P.; Li, H.; Zhang, A.; Tang, S.; Sun, F.

    2017-08-01

    Based on the traction angle and transportation rate equation, castor beans were pressed by application of single screw under different cake diameter and different screw speed. The results showed that the greater the cake diameter and screw rotation speed, the greater the actual transmission rate was. The equivalent friction coefficient was defined and calculated as 0.4136, and the friction coefficients between press material and screw, bar cage were less than the equivalent friction coefficient value.

  7. Tire-to-Surface Friction-Coefficient Measurements with a C-123B Airplane on Various Runway Surfaces

    NASA Technical Reports Server (NTRS)

    Sawyer, Richard H.; Kolnick, Joseph J.

    1959-01-01

    An investigation was conducted to obtain information on the tire-to-surface friction coefficients available in aircraft braking during the landing run. The tests were made with a C-123B airplane on both wet and dry concrete and bituminous pavements and on snow-covered and ice surfaces at speeds from 12 to 115 knots. Measurements were made of the maximum (incipient skidding) friction coefficient, the full-skidding (locked wheel) friction coefficient, and the wheel slip ratio during braking.

  8. Coefficient of friction: tribological studies in man - an overview.

    PubMed

    Sivamani, Raja K; Goodman, Jack; Gitis, Norm V; Maibach, Howard I

    2003-08-01

    Compared to other studies of skin, relatively few studies have focused on the friction of skin. This work reviews existing skin friction, emphasizing test apparatuses and parameters that have added to information regarding the friction coefficient. This review also outlines what factors are important to consider in future friction studies. Past studies have utilized numerous designs for a test apparatus, including probe geometry and material, as well as various probe motions (rotational vs. linear). Most tests were performed in vivo; a few were performed in vitro and on porcine skin. Differences in probe material, geometry and smoothness affect friction coefficient measurements. An increase in skin hydration, either through water or through moisturizer application, increases its friction coefficient; a decrease in skin hydration, either through clinical dermatitis or through alcohol addition, decreases the coefficient. Differences are present between anatomical sites. Conflicting results are found regarding age and no differences are apparent as a result of gender or race. Skin friction appears to be dependent on several factors - such as age, anatomical site and skin hydration. The choice of the probe and the test apparatus also influence the measurement.

  9. Determination of the frictional coefficient of the implant-antler interface: experimental approach.

    PubMed

    Hasan, Istabrak; Keilig, Ludger; Staat, Manfred; Wahl, Gerhard; Bourauel, Christoph

    2012-10-01

    The similar bone structure of reindeer antler to human bone permits studying the osseointegration of dental implants in the jawbone. As the friction is one of the major factors that have a significant influence on the initial stability of immediately loaded dental implants, it is essential to define the frictional coefficient of the implant-antler interface. In this study, the kinetic frictional forces at the implant-antler interface were measured experimentally using an optomechanical setup and a stepping motor controller under different axial loads and sliding velocities. The corresponding mean values of the static and kinetic frictional coefficients were within the range of 0.5-0.7 and 0.3-0.5, respectively. An increase in the frictional forces with increasing applied axial loads was registered. The measurements showed an evidence of a decrease in the magnitude of the frictional coefficient with increasing sliding velocity. The results of this study provide a considerable assessment to clarify the suitable frictional coefficient to be used in the finite element contact analysis of antler specimens.

  10. Study on the property of low friction complex graphite-like coating containing tantalum

    NASA Astrophysics Data System (ADS)

    Wang, Zuoping; Feng, Lajun; Shen, Wenning

    2018-03-01

    In order to enhance equipment lifetime under low oil or even dry conditions, tantalum was introduced into the graphite-like coating (GLC) by sputtering mosaic targets. The results showed that the introduction of Ta obviously reduced the friction coefficient and hardness of the GLC, while improved the wearability. When the atomic percentage of Ta was larger than 3%, the steady friction coefficient was lower than 0.01, suggesting the coating exhibited super lubricity. When the content of Ta was about 5.0%, the average friction coefficient was 0.02 by a sliding friction test under load of 20 N in unlubricated condition. Its average friction coefficient reduced by 75%, compared with that of control GLC (0.0825).

  11. Temporal variation in fault friction and its effects on the slip evolution of a thrust fault over several earthquake cycles

    NASA Astrophysics Data System (ADS)

    Hampel, Andrea; Hetzel, Ralf

    2013-04-01

    The friction coefficient is a key parameter for the slip evolution of faults, but how temporal changes in friction affect fault slip is still poorly known. By using three-dimensional numerical models with a thrust fault that is alternately locked and released, we show that variations in the friction coefficient affect both coseismic and long-term fault slip (Hampel and Hetzel, 2012). Decreasing the friction coefficient by 5% while keeping the duration of the interseismic phase constant leads to a four-fold increase in coseismic slip, whereas a 5% increase nearly suppresses slip. A gradual decrease or increase of friction over several earthquake cycles (1-5% per earthquake) considerably alters the cumulative fault slip. In nature, the slip deficit (surplus) resulting from variations in the friction coefficient would presumably be compensated by a longer (shorter) interseismic phase, but the magnitude of the changes required for compensation render variations of the friction coefficient of >5% unlikely. Reference Hampel, A., R. Hetzel (2012) Temporal variation in fault friction and its effects on the slip evolution of a thrust fault over several earthquake cycles. Terra Nova, 24, 357-362, doi: 10.1111/j.1365-3121.2012.01073.x.

  12. A Tactile Sensor Using Piezoresistive Beams for Detection of the Coefficient of Static Friction

    PubMed Central

    Okatani, Taiyu; Takahashi, Hidetoshi; Noda, Kentaro; Takahata, Tomoyuki; Matsumoto, Kiyoshi; Shimoyama, Isao

    2016-01-01

    This paper reports on a tactile sensor using piezoresistive beams for detection of the coefficient of static friction merely by pressing the sensor against an object. The sensor chip is composed of three pairs of piezoresistive beams arranged in parallel and embedded in an elastomer; this sensor is able to measure the vertical and lateral strains of the elastomer. The coefficient of static friction is estimated from the ratio of the fractional resistance changes corresponding to the sensing elements of vertical and lateral strains when the sensor is in contact with an object surface. We applied a normal force on the sensor surface through objects with coefficients of static friction ranging from 0.2 to 1.1. The fractional resistance changes corresponding to vertical and lateral strains were proportional to the applied force. Furthermore, the relationship between these responses changed according to the coefficients of static friction. The experimental result indicated the proposed sensor could determine the coefficient of static friction before a global slip occurs. PMID:27213374

  13. Research on the Mechanism of In-Plane Vibration on Friction Reduction

    PubMed Central

    Wang, Peng; Ni, Hongjian; Wang, Ruihe; Liu, Weili; Lu, Shuangfang

    2017-01-01

    A modified model for predicting the friction force between drill-string and borehole wall under in-plane vibrations was developed. It was found that the frictional coefficient in sliding direction decreased significantly after applying in-plane vibration on the bottom specimen. The friction reduction is due to the direction change of friction force, elastic deformation of surface asperities and the change of frictional coefficient. Normal load, surface topography, vibration direction, velocity ratio and interfacial shear factor are the main influence factors of friction force in sliding direction. Lower driving force can be realized for a pair of determinate rubbing surfaces under constant normal load by setting the driving direction along the minimum arithmetic average attack angle direction, and applying intense longitudinal vibration on the rubbing pair. The modified model can significantly improve the accuracy in predicting frictional coefficient under vibrating conditions, especially under the condition of lower velocity ratio. The results provide a theoretical gist for friction reduction technology by vibrating drill-string, and provide a reference for determination of frictional coefficient during petroleum drilling process, which has great significance for realizing digitized and intelligent drilling. PMID:28862679

  14. The development of the friction coefficient inspection equipment for skin using a load cell.

    PubMed

    Song, Han Wook; Park, Yon Kyu; Lee, Sung Jun; Woo, Sam Yong; Kim, Sun Hyung; Kim, Dal Rae

    2008-01-01

    The skin is an indispensible organ for human because it contributes to the metabolism using its own biochemical functions as well as it protects the human body from the exterior stimuli. Recently, the friction coefficient have been used as the decision index of the progress for the bacterial aliments in the field of the skin physiology and the importance of friction coefficient have been increased in the skin care market because of the needs of the well being times. In addition, the usage of friction coefficient is known to have the big discrimination ability in classification of human constitutions, which is utilized in the alternative medicine. In this study, we designed a system which used the multi axes load cell and hemi-circular probe and tried to measure the friction coefficient of hand skins repeatedly. Using this system, the relative repeatability error for the measurement of the friction coefficient was below 4 %. The coefficient is not concerned in curvatures of tips. Using this system, we will try to establish the standard for classification of constitutions.

  15. Friction coefficient and effective interference at the implant-bone interface.

    PubMed

    Damm, Niklas B; Morlock, Michael M; Bishop, Nicholas E

    2015-09-18

    Although the contact pressure increases during implantation of a wedge-shaped implant, friction coefficients tend to be measured under constant contact pressure, as endorsed in standard procedures. Abrasion and plastic deformation of the bone during implantation are rarely reported, although they define the effective interference, by reducing the nominal interference between implant and bone cavity. In this study radial forces were analysed during simulated implantation and explantation of angled porous and polished implant surfaces against trabecular bone specimens, to determine the corresponding friction coefficients. Permanent deformation was also analysed to determine the effective interference after implantation. For the most porous surface tested, the friction coefficient initially increased with increasing normal contact stress during implantation and then decreased at higher contact stresses. For a less porous surface, the friction coefficient increased continually with normal contact stress during implantation but did not reach the peak magnitude measured for the rougher surface. Friction coefficients for the polished surface were independent of normal contact stress and much lower than for the porous surfaces. Friction coefficients were slightly lower for pull-out than for push-in for the porous surfaces but not for the polished surface. The effective interference was as little as 30% of the nominal interference for the porous surfaces. The determined variation in friction coefficient with radial contact force, as well as the loss of interference during implantation will enable a more accurate representation of implant press-fitting for simulations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. A method to achieve comparable thermal states of car brakes during braking on the road and on a high-speed roll-stand

    NASA Astrophysics Data System (ADS)

    Wolff, Andrzej

    2010-01-01

    The temperature of a brake friction surface influences significantly the braking effectiveness. The paper describes a heat transfer process in car brakes. Using a developed program of finite element method, the temperature distributions in brake rotors (disc and drum brake) of a light truck have been calculated. As a preliminary consistency criterion of the brake thermal state in road and roll-stand braking conditions, a balance of the energy cumulated in the brake rotor has been taken into account. As the most reliable consistency criterion an equality of average temperatures of the friction surface has been assumed. The presented method allows to achieve on a roll-stand the analogical thermal states of automotive brakes, which are observed during braking in road conditions. Basing on this method, it is possible to calculate the braking time and force for a high-speed roll-stand. In contrast to the previous papers of the author, new calculation results have been presented.

  17. Retrograde motion of a rolling disk

    NASA Astrophysics Data System (ADS)

    Borisov, A. V.; Kilin, A. A.; Karavaev, Yu L.

    2017-12-01

    This paper presents results of theoretical and experimental research explaining the retrograde final-stage rolling of a disk under certain relations between its mass and geometric parameters. Modifying the no-slip model of a rolling disk by including viscous rolling friction provides a qualitative explanation for the disk’s retrograde motion. At the same time, the simple experiments described in the paper completely reject the aerodynamical drag torque as a key reason for the retro-grade motion of a disk considered, thus disproving some recent hypotheses.

  18. Friction and Surface Damage of Several Corrosion-resistant Materials

    NASA Technical Reports Server (NTRS)

    Peterson, Marshall B; Johnson, Robert L

    1952-01-01

    Friction and surface damage of several materials that are resistant to corrosion due to liquid metals was studied in air. The values of kinetic friction coefficient at low sliding velocities and photomicrographs of surface damage were obtained. Appreciable surface damage was evident for all materials tested. The friction coefficients for the combinations of steel, stainless steel, and monel sliding against steel, stainless steel, nickel, Iconel, and Nichrome ranged from 0.55 for the monel-Inconel combination to 0.97 for the stainless-steel-nickel combination; for steel, stainless steel, monel, and tungsten carbide against zirconium, the friction coefficient was approximately 0.47. Lower coefficients of friction (0.20 to 0.60) and negligible surface failure at light loads were obtained with tungsten carbide when used in combination with various plate materials.

  19. In-situ-measurement of the friction coefficient in the deep drawing process

    NASA Astrophysics Data System (ADS)

    Recklin, V.; Dietrich, F.; Groche, P.

    2017-09-01

    The surface texture plays an important role in the tribological behaviour of deep drawn components. It influences both the process of sheet metal forming as well as the properties for post processing, such as paint appearance, bonding, or corrosion tendency. During the forming process, the texture of the sheet metal and therefore its friction coefficient, changes due to process related strains. This contribution focuses on the development and validation of a tool to investigate the friction coefficient of the flange region of deep drawn components. The influence of biaxial strain on the friction coefficient will be quantified through a comparison of the experimental results with a conventional friction test (stand). The presented method will be applied on a cup drawing test, using a segmented and sensor-monitored blankholder. This setup allows the measurement of the friction coefficient in-situ without simplification of the real process. The experiments were carried out using DX 56D+Z as sheet metal and PL61 as lubricant. The results show a characteristic change in the friction coefficient over the displacement of the punch, which is assumed to be caused by strain induced change of the surface texture.

  20. Characterization of friction and moisture of porcine lingual tissue in vitro in response to artificial saliva and mouthwash solutions.

    PubMed

    Zundel, J; Ansari, S A; Trivedi, H M; Masters, J G; Mascaro, S

    2018-05-07

    The purpose of this research is to characterize the effects of mouthwash solutions on oral friction and moisture using a quantitative in vitro approach. The frictional coefficient of in vitro porcine tongue samples was measured using a magnetic levitation haptic device equipped with a custom tactor designed to mimic human skin. A commercially available moisture meter was used to measure moisture content of the samples. Tongue samples were first tested before treatment, then after application of saliva (either human or artificial), and again after application of 1 of 11 different mouthwash solutions. The data indicate that the samples treated with artificial saliva vs real saliva have comparable friction coefficient and moisture content. Furthermore, the moisture and friction coefficient remain relatively constant for up to 60 minutes after exposure to ambient conditions. Samples treated with artificial saliva have an average friction coefficient in the range of 0.70-0.80. Application of mouthwash solutions produced an average friction coefficient of 0.39-0.49 but retained the high moisture content of the artificial salivary layer. Several mouthwash solutions resulted in statistically significant differences in the friction coefficient relative to each other. The results of this study demonstrate that a magnetic levitation device can be an effective tool for in vitro oral tribology and that artificial saliva is an effective substitute for real saliva in extended in vitro experiments. The application of mouthwash generally reduces the coefficient of friction of the tongue samples while preserving a relatively high moisture level, and some mouthwashes reduce friction significantly more than others. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Airplane takeoff and landing performance monitoring system

    NASA Technical Reports Server (NTRS)

    Middleton, David B. (Inventor); Srivatsan, Raghavachari (Inventor); Person, Jr., Lee H. (Inventor)

    1991-01-01

    The invention is a real-time takeoff and landing performance monitoring system for an aircraft which provides a pilot with graphic and metric information to assist in decisions related to achieving rotation speed (V.sub.R) within the safe zone of a runway, or stopping the aircraft on the runway after landing or take-off abort. The system processes information in two segments: a pretakeoff segment and a real-time segment. One-time inputs of ambient conditions and airplane configuration information are used in the pretakeoff segment to generate scheduled performance data. The real-time segment uses the scheduled performance data, runway length data and transducer measured parameters to monitor the performance of the airplane throughout the takeoff roll. Airplane and engine performance deficiencies are detected and annunciated. A novel and important feature of this segment is that it updates the estimated runway rolling friction coefficient. Airplane performance predictions also reflect changes in head wind occurring as the takeoff roll progresses. The system provides a head-down display and a head-up display. The head-up display is projected onto a partially reflective transparent surface through which the pilot views the runway. By comparing the present performance of the airplane with a predicted nominal performance based upon given conditions, performance deficiencies are detected by the system.

  2. Influence of Ultrasonic Surface Rolling on Microstructure and Wear Behavior of Selective Laser Melted Ti-6Al-4V Alloy

    PubMed Central

    Wang, Zhen; Xiao, Zhiyu; Huang, Chuanshou; Wen, Liping; Zhang, Weiwen

    2017-01-01

    The present article studied the effect of ultrasonic surface rolling process (USRP) on the microstructure and wear behavior of a selective laser melted Ti-6Al-4V alloy. Surface characteristics were investigated using optical microscope, nano-indentation, scanning electron microscope, transmission electron microscope and laser scanning confocal microscope. Results indicated that the thickness of pore-free surfaces increased to 100~200 μm with the increasing ultrasonic surface rolling numbers. Severe work hardening occurred in the densified layer, resulting in the formation of refined grains, dislocation walls and deformation twins. After 1000 N 6 passes, about 15.5% and 14.1% increment in surficial Nano-hardness and Vickers-hardness was obtained, respectively. The hardness decreased gradually from the top surface to the substrate. Wear tests revealed that the friction coefficient declined from 0.74 (polished surface) to 0.64 (USRP treated surface) and the wear volume reduced from 0.205 mm−3 to 0.195 mm−3. The difference in wear volume between USRP treated and polished samples increased with sliding time. The enhanced wear resistance was concluded to be associated with the improvement of hardness and shear resistance and also the inhibition of delamination initiation. PMID:29048344

  3. Measurement of Gear Tooth Dynamic Friction

    NASA Technical Reports Server (NTRS)

    Rebbechi, Brian; Oswald, Fred B.; Townsend, Dennis P.

    1996-01-01

    Measurements of dynamic friction forces at the gear tooth contact were undertaken using strain gages at the root fillets of two successive teeth. Results are presented from two gear sets over a range of speeds and loads. The results demonstrate that the friction coefficient does not appear to be significantly influenced by the sliding reversal at the pitch point, and that the friction coefficient values found are in accord with those in general use. The friction coefficient was found to increase at low sliding speeds. This agrees with the results of disc machine testing.

  4. Coefficient of friction and wear rate effects of different composite nanolubricant concentrations on Aluminium 2024 plate

    NASA Astrophysics Data System (ADS)

    Zawawi, N. N. M.; Azmi, W. H.; Redhwan, A. A. M.; Sharif, M. Z.

    2017-10-01

    Wear of sliding parts and operational machine consistency enhancement can be avoided with good lubrication. Lubrication reduce wear between two contacting and sliding surfaces and decrease the frictional power losses in compressor. The coefficient of friction and wear rate effects study were carried out to measure the friction and anti-wear abilities of Al2O3-SiO2 composite nanolubricants a new type of compressor lubricant to enhanced the compressor performances. The tribology test rig employing reciprocating test conditions to replicate a piston ring contact in the compressor was used to measure the coefficient of friction and wear rate. Coefficient of friction and wear rate effects of different Al2O3-SiO2/PAG composite nanolubricants of Aluminium 2024 plate for 10-kg load at different speed were investigated. Al2O3 and SiO2 nanoparticles were dispersed in the Polyalkylene Glycol (PAG 46) lubricant using two-steps method of preparation. The result shows that the coefficient friction and wear rate of composite nanolubricants decreased compared to pure lubricant. The maximum reduction achievement for friction of coefficient and wear rate by Al2O3-SiO2 composite nanolubricants by 4.78% and 12.96% with 0.06% volume concentration. Therefore, 0.06% volume concentration is selected as the most enhanced composite nanolubricants with effective coefficient of friction and wear rate reduction compared to other volume concentrations. Thus, it is recommended to be used as the compressor lubrication to enhanced compressor performances.

  5. Aqueous Lubrication, Structure and Rheological Properties of Whey Protein Microgel Particles.

    PubMed

    Sarkar, Anwesha; Kanti, Farah; Gulotta, Alessandro; Murray, Brent S; Zhang, Shuying

    2017-12-26

    Aqueous lubrication has emerged as an active research area in recent years due to its prevalence in nature in biotribological contacts and its enormous technological soft-matter applications. In this study, we designed aqueous dispersions of biocompatible whey-protein microgel particles (WPM) (10-80 vol %) cross-linked via disulfide bonding and focused on understanding their rheological, structural and biotribological properties (smooth polydimethylsiloxane (PDMS) contacts, R a < 50 nm, ball-on-disk set up). The WPM particles (D h = 380 nm) displayed shear-thinning behavior and good lubricating performance in the plateau boundary as well as the mixed lubrication regimes. The WPM particles facilitated lubrication between bare hydrophobic PDMS surfaces (water contact angle 108°), leading to a 10-fold reduction in boundary friction force with increased volume fraction (ϕ ≥ 65%), largely attributed to the close packing-mediated layer of particles between the asperity contacts acting as "true surface-separators", hydrophobic moieties of WPM binding to the nonpolar surfaces, and particles employing a rolling mechanism analogous to "ball bearings", the latter supported by negligible change in size and microstructure of the WPM particles after tribology. An ultralow boundary friction coefficient, μ ≤ 0.03 was achieved using WPM between O 2 plasma-treated hydrophilic PDMS contacts coated with bovine submaxillary mucin (water contact angle 47°), and electron micrographs revealed that the WPM particles spread effectively as a layer of particles even at low ϕ∼ 10%, forming a lubricating load-bearing film that prevented the two surfaces from true adhesive contact. However, above an optimum volume fraction, μ increased in HL+BSM surfaces due to the interpenetration of particles that possibly impeded effective rolling, explaining the slight increase in friction. These effects are reflected in the highly shear thinning nature of the WPM dispersions themselves plus the tendency for the apparent viscosity to fall as dispersions are forced to very high volume fractions. The present work demonstrates a novel approach for providing ultralow friction in soft polymeric surfaces using proteinaceous microgel particles that satisfy both load bearing and kinematic requirements. These findings hold great potential for designing biocompatible particles for aqueous lubrication in numerous soft matter applications.

  6. Heterogeneity in friction strength of an active fault by incorporation of fragments of the surrounding host rock

    NASA Astrophysics Data System (ADS)

    Kato, Naoki; Hirono, Tetsuro

    2016-07-01

    To understand the correlation between the mesoscale structure and the frictional strength of an active fault, we performed a field investigation of the Atera fault at Tase, central Japan, and made laboratory-based determinations of its mineral assemblages and friction coefficients. The fault zone contains a light gray fault gouge, a brown fault gouge, and a black fault breccia. Samples of the two gouges contained large amounts of clay minerals such as smectite and had low friction coefficients of approximately 0.2-0.4 under the condition of 0.01 m s-1 slip velocity and 0.5-2.5 MP confining pressure, whereas the breccia contained large amounts of angular quartz and feldspar and had a friction coefficient of 0.7 under the same condition. Because the fault breccia closely resembles the granitic rock of the hangingwall in composition, texture, and friction coefficient, we interpret the breccia as having originated from this protolith. If the mechanical incorporation of wall rocks of high friction coefficient into fault zones is widespread at the mesoscale, it causes the heterogeneity in friction strength of fault zones and might contribute to the evolution of fault-zone architectures.

  7. Construction of a Precursor Model for the Concept of Rolling Friction in the Thought of Preschool Age Children: A Socio-cognitive Teaching Intervention

    NASA Astrophysics Data System (ADS)

    Ravanis, Konstantinos; Koliopoulos, Dimitris; Boilevin, Jean-Marie

    2008-08-01

    The aim of this study was to explore the extent to which the characteristics of two teaching interventions can bring about cognitive progress in preschoolers with regard to the factors rolling friction depends on, when it is applied to an object that is freely rolling on a horizontal surface. The study was conducted in three phases: pre-test, teaching intervention, and post-test. Two teaching strategies were compared: one inspired by Piaget’s theory (Piagetian approach) and one inspired by post-Piagetian and Vygotkian assumptions (socio-cognitive approach). A statistically significant difference was found between the pre-test and post-test, providing evidence that the socio-cognitive approach allows for the creation of a more appropriate teaching framework compared to the Piagetian one.

  8. Friction in Total Hip Joint Prosthesis Measured In Vivo during Walking

    PubMed Central

    Damm, Philipp; Dymke, Joern; Ackermann, Robert; Bender, Alwina; Graichen, Friedmar; Halder, Andreas; Beier, Alexander; Bergmann, Georg

    2013-01-01

    Friction-induced moments and subsequent cup loosening can be the reason for total hip joint replacement failure. The aim of this study was to measure the in vivo contact forces and friction moments during walking. Instrumented hip implants with Al2O3 ceramic head and an XPE inlay were used. In vivo measurements were taken 3 months post operatively in 8 subjects. The coefficient of friction was calculated in 3D throughout the whole gait cycle, and average values of the friction-induced power dissipation in the joint were determined. On average, peak contact forces of 248% of the bodyweight and peak friction moments of 0.26% bodyweight times meter were determined. However, contact forces and friction moments varied greatly between individuals. The friction moment increased during the extension phase of the joint. The average coefficient of friction also increased during this period, from 0.04 (0.03 to 0.06) at contralateral toe off to 0.06 (0.04 to 0.08) at contralateral heel strike. During the flexion phase, the coefficient of friction increased further to 0.14 (0.09 to 0.23) at toe off. The average friction-induced power throughout the whole gait cycle was 2.3 W (1.4 W to 3.8 W). Although more parameters than only the synovia determine the friction, the wide ranges of friction coefficients and power dissipation indicate that the lubricating properties of synovia are individually very different. However, such differences may also exist in natural joints and may influence the progression of arthrosis. Furthermore, subjects with very high power dissipation may be at risk of thermally induced implant loosening. The large increase of the friction coefficient during each step could be caused by the synovia being squeezed out under load. PMID:24260114

  9. Friction in total hip joint prosthesis measured in vivo during walking.

    PubMed

    Damm, Philipp; Dymke, Joern; Ackermann, Robert; Bender, Alwina; Graichen, Friedmar; Halder, Andreas; Beier, Alexander; Bergmann, Georg

    2013-01-01

    Friction-induced moments and subsequent cup loosening can be the reason for total hip joint replacement failure. The aim of this study was to measure the in vivo contact forces and friction moments during walking. Instrumented hip implants with Al2O3 ceramic head and an XPE inlay were used. In vivo measurements were taken 3 months post operatively in 8 subjects. The coefficient of friction was calculated in 3D throughout the whole gait cycle, and average values of the friction-induced power dissipation in the joint were determined. On average, peak contact forces of 248% of the bodyweight and peak friction moments of 0.26% bodyweight times meter were determined. However, contact forces and friction moments varied greatly between individuals. The friction moment increased during the extension phase of the joint. The average coefficient of friction also increased during this period, from 0.04 (0.03 to 0.06) at contralateral toe off to 0.06 (0.04 to 0.08) at contralateral heel strike. During the flexion phase, the coefficient of friction increased further to 0.14 (0.09 to 0.23) at toe off. The average friction-induced power throughout the whole gait cycle was 2.3 W (1.4 W to 3.8 W). Although more parameters than only the synovia determine the friction, the wide ranges of friction coefficients and power dissipation indicate that the lubricating properties of synovia are individually very different. However, such differences may also exist in natural joints and may influence the progression of arthrosis. Furthermore, subjects with very high power dissipation may be at risk of thermally induced implant loosening. The large increase of the friction coefficient during each step could be caused by the synovia being squeezed out under load.

  10. Measuring the Coefficient of Friction of a Small Floating Liquid Marble

    PubMed Central

    Ooi, Chin Hong; Nguyen, Anh Van; Evans, Geoffrey M.; Dao, Dzung Viet; Nguyen, Nam-Trung

    2016-01-01

    This paper investigates the friction coefficient of a moving liquid marble, a small liquid droplet coated with hydrophobic powder and floating on another liquid surface. A floating marble can easily move across water surface due to the low friction, allowing for the transport of aqueous solutions with minimal energy input. However, the motion of a floating marble has yet to be systematically characterised due to the lack of insight into key parameters such as the coefficient of friction between the floating marble and the carrier liquid. We measured the coefficient of friction of a small floating marble using a novel experimental setup that exploits the non-wetting properties of a liquid marble. A floating liquid marble pair containing a minute amount magnetite particles were immobilised and then released in a controlled manner using permanent magnets. The capillarity-driven motion was analysed to determine the coefficient of friction of the liquid marbles. The “capillary charge” model was used to fit the experimental results. We varied the marble content and carrier liquid to establish a relationship between the friction correction factor and the meniscus angle. PMID:27910916

  11. An Experimental Study on Normal Stress and Shear Rate Dependency of Basic Friction Coefficient in Dry and Wet Limestone Joints

    NASA Astrophysics Data System (ADS)

    Mehrishal, Seyedahmad; Sharifzadeh, Mostafa; Shahriar, Korosh; Song, Jae-Jon

    2016-12-01

    Among all parameters that affect the friction of rocks, variable normal stress and slip rate are the most important second-order parameters. The shear-rate- and normal-stress-dependent friction behavior of rock discontinuities may significantly influence the dynamic responses of rock mass. In this research, two limestone rock types, which were travertine and onyx marble with slickenside and grinded #80 surfaces, were prepared and CNL direct shear tests were performed on the joints under various shear conditions. The shearing rate varied from 0.1 to 50 mm/min under different normal stresses (from 2 to 30 % of UCS) in both dry and wet conditions. Experiments showed that the friction coefficient of slickensided and ground #80 surfaces of limestone increased with the increasing shear velocity and decreased with the increasing normal stress. Micro-asperity interlocking between ground #80 surfaces showed higher wear and an increase in friction coefficient ( µ) compared to slickensided surfaces. Slickensided samples with moist surfaces showed an increase in the coefficient of friction compared to dry surfaces; however, on ground #80 surfaces, the moisture decreased the coefficient of friction to a smaller value. Slickenside of limestone typically slides stably in a dry condition and by stick-slip on moist surfaces. The observed shear-rate- and normal-stress-dependent friction behavior can be explained by a similar framework to that of the adhesion theory of friction and a friction mechanism that involves the competition between microscopic dilatant slip and surface asperity deformation. The results have important implications for understanding the behavior of basic and residual friction coefficients of limestone rock surfaces.

  12. The effect of friction in coulombian damper

    NASA Astrophysics Data System (ADS)

    Wahad, H. S.; Tudor, A.; Vlase, M.; Cerbu, N.; Subhi, K. A.

    2017-02-01

    The study aimed to analyze the damping phenomenon in a system with variable friction, Stribeck type. Shock absorbers with limit and dry friction, is called coulombian shock-absorbers. The physical damping vibration phenomenon, in equipment, is based on friction between the cushioning gasket and the output regulator of the shock-absorber. Friction between them can be dry, limit, mixture or fluid. The friction is depending on the contact pressure and lubricant presence. It is defined dimensionless form for the Striebeck curve (µ friction coefficient - sliding speed v). The friction may damp a vibratory movement or can maintain it (self-vibration), depending on the µ with v (it can increase / decrease or it can be relative constant). The solutions of differential equation of movement are obtained for some work condition of one damper for automatic washing machine. The friction force can transfer partial or total energy or generates excitation energy in damper. The damping efficiency is defined and is determined analytical for the constant friction coefficient and for the parabolic friction coefficient.

  13. Effect of the coefficient of friction and tightening speed on the preload induced at the dental implant complex with the finite element method.

    PubMed

    Bulaqi, Haddad Arabi; Mousavi Mashhadi, Mahmoud; Geramipanah, Farideh; Safari, Hamed; Paknejad, Mojgan

    2015-05-01

    To prevent screw loosening, a clear understanding of the factors influencing secure preload is necessary. The purpose of this study was to investigate the effect of coefficient of friction and tightening speed on screw tightening based on energy distribution method with exact geometric modeling and finite element analysis. To simulate the proper boundary conditions of the screw tightening process, the supporting bone of an implant was considered. The exact geometry of the implant complex, including the Straumann dental implant, direct crown attachment, and abutment screw were modeled with Solidworks software. Abutment screw/implant and implant/bone interfaces were designed as spiral thread helixes. The screw-tightening process was simulated with Abaqus software, and to achieve the target torque, an angular displacement was applied to the abutment screw head at different coefficients of friction and tightening speeds. The values of torque, preload, energy distribution, elastic energy, and efficiency were obtained at the target torque of 35 Ncm. Additionally, the torque distribution ratio and preload simulated values were compared to theoretically predicted values. Upon reducing the coefficient of friction and enhancing the tightening speed, the angle of turn increased at the target torque. As the angle of turn increased, the elastic energy and preload also increased. Additionally, by increasing the coefficient of friction, the frictional dissipation energy increased but the efficiency decreased, whereas the increase in tightening speed insignificantly affected efficiency. The results of this study indicate that the coefficient of friction is the most influential factor on efficiency. Increasing the tightening speed lowered the response rate to the frictional resistance, thus diminishing the coefficient of friction and slightly increasing the preload. Increasing the tightening speed has the same result as reducing the coefficient of friction. Copyright © 2015 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  14. Steady sliding frictional contact problem for a 2d elastic half-space with a discontinuous friction coefficient and related stress singularities

    NASA Astrophysics Data System (ADS)

    Ballard, Patrick

    2016-12-01

    The steady sliding frictional contact problem between a moving rigid indentor of arbitrary shape and an isotropic homogeneous elastic half-space in plane strain is extensively analysed. The case where the friction coefficient is a step function (with respect to the space variable), that is, where there are jumps in the friction coefficient, is considered. The problem is put under the form of a variational inequality which is proved to always have a solution which, in addition, is unique in some cases. The solutions exhibit different kinds of universal singularities that are explicitly given. In particular, it is shown that the nature of the universal stress singularity at a jump of the friction coefficient is different depending on the sign of the jump.

  15. Remote control canard missile with a free-rolling tail brake torque system

    NASA Technical Reports Server (NTRS)

    Blair, A. B., Jr.

    1981-01-01

    An experimental wind-tunnel investigation has been conducted at supersonic Mach numbers to determine the static aerodynamic characteristics of a cruciform canard-controlled missile with fixed and free-rolling tail-fin afterbodies. Mechanical coupling effects of the free-rolling tail afterbody were investigated using an electronic/electromagnetic brake system that provides arbitrary tail-fin brake torques with continuous measurements of tail-to-mainframe torque and tail-roll rate. Results are summarized to show the effects of fixed and free-rolling tail-fin afterbodies that include simulated measured bearing friction torques on the longitudinal and lateral-directional aerodynamic characteristics.

  16. Friction between a surrogate skin (Lorica Soft) and nonwoven fabrics used in hygiene products

    NASA Astrophysics Data System (ADS)

    Falloon, Sabrina S.; Cottenden, Alan

    2016-09-01

    Incontinence pad wearers often suffer from sore skin, and a better understanding of friction between pads and skin is needed to inform the development of less damaging materials. This work investigated friction between a skin surrogate (Lorica Soft) and 13 nonwoven fabrics representing those currently used against the skin in commercial pads. All fabrics were found to behave consistently with Amontons’ law: coefficients of friction did not differ systematically when measured under two different loads. Although the 13 fabrics varied considerably in composition and structure, their coefficients of friction (static and dynamic) against Lorica Soft were remarkably similar, especially for the ten fabrics comprising just polypropylene (PP) fibres. The coefficients of friction for one PP fabric never differed by more than 15.7% from those of any other, suggesting that the ranges of fibre decitex (2.0-6.5), fabric area density (13-30 g m-2) and bonding area (11%-25%) they exhibited had only limited impact on their friction properties. It is likely that differences were largely attributable to variability in properties between multiple samples of a given fabric. Of the remaining fabrics, the one comprising polyester fibres had significantly higher coefficients of friction than the highest friction PP fabric (p < 0.005), while the one comprising PP fibres with a polyethylene sheath had significantly lower coefficients of friction than the lowest friction PP fabric (p < 10-8). However, fabrics differed in too many other ways to confidently attribute these differences in friction properties just to the choice of base polymer.

  17. Determination of rolling resistance coefficient based on normal tyre stiffness

    NASA Astrophysics Data System (ADS)

    Rykov, S. P.; Tarasuyk, V. N.; Koval, V. S.; Ovchinnikova, N. I.; Fedotov, A. I.; Fedotov, K. V.

    2018-03-01

    The purpose of the article is to develop analytical dependence of wheel rolling resistance coefficient based on the mathematical description of normal tyre stiffness. The article uses the methods of non-holonomic mechanics and plane section methods. The article shows that the abscissa of gravity center of tyre stiffness expansion by the length of the contact area is the shift of normal road response. It can be used for determining rolling resistance coefficient. When determining rolling resistance coefficient using ellipsis and power function equations, one can reduce labor costs for testing and increase assessment accuracy.

  18. Experimental Measurement of the Static Coefficient of Friction at the Ti-Ti Taper Connection in Total Hip Arthroplasty.

    PubMed

    Bitter, T; Khan, I; Marriott, T; Schreurs, B W; Verdonschot, N; Janssen, D

    2016-03-01

    The modular taper junction in total hip replacements has been implicated as a possible source of wear. The finite-element (FE) method can be used to study the wear potential at the taper junction. For such simulations it is important to implement representative contact parameters, in order to achieve accurate results. One of the main parameters in FE simulations is the coefficient of friction. However, in current literature, there is quite a wide spread in coefficient of friction values (0.15 - 0.8), which has a significant effect on the outcome of the FE simulations. Therefore, to obtain more accurate results, one should use a coefficient of friction that is determined for the specific material couple being analyzed. In this study, the static coefficient of friction was determined for two types of titanium-on-titanium stem-adaptor couples, using actual cut-outs of the final implants, to ensure that the coefficient of friction was determined consistently for the actual implant material and surface finish characteristics. Two types of tapers were examined, Biomet type-1 and 12/14, where type-1 has a polished surface finish and the 12/14 is a microgrooved system. We found static coefficients of friction of 0.19 and 0.29 for the 12/14 and type-1 stem-adaptor couples, respectively.

  19. Friction and wear life properties of polyimide thin films

    NASA Technical Reports Server (NTRS)

    Fusaro, R. L.

    1972-01-01

    A transition in the friction coefficient and wear life properties of Pyralin polyimide (PI) thin films was found to exist at a temperature between 25 deg and 100 deg C. Above this transition, PI thin films gave long wear lives and low friction coefficients. The presence of H2O in air improved the friction and wear life properties at 25 deg C; but at 100 deg C, H2O had a detrimental effect. At 100 deg C and above, a dry argon atmosphere gave lower friction coefficients and longer wear lives than did a dry air atmosphere.

  20. X-ray photoelectron spectroscopy and friction studies of nickel-zinc and manganese-zinc ferrites in contact with metals

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1983-01-01

    X-ray photoelectron spectroscopy analysis and sliding friction experiments were conducted with hot-pressed, polycrystalline Ni-Zn and Mn-Zn ferrites in sliding contact with various transition metals at room temperature in a vacuum of 30 nPa. The results indicate that the coefficients of friction for Ni-Zn and Mn-Zn ferrites in contact with metals are related to the relative chemical activity in these metals: the more active the metal, the higher is the coefficient of friction. The coefficients of friction for the ferrites correlate with the free energy of formation of the lowest metal oxide. The interfacial bond can be regarded as a chemical bond between the metal atoms and the oxygen anions in the ferrite surfaces. The adsorption of oxygen on clean metal and ferrite surfaces increases the coefficients of friction for the Ni-Zn and Mn-Zn ferrite-metal interfaces.

  1. Tyre-road friction coefficient estimation based on tyre sensors and lateral tyre deflection: modelling, simulations and experiments

    NASA Astrophysics Data System (ADS)

    Hong, Sanghyun; Erdogan, Gurkan; Hedrick, Karl; Borrelli, Francesco

    2013-05-01

    The estimation of the tyre-road friction coefficient is fundamental for vehicle control systems. Tyre sensors enable the friction coefficient estimation based on signals extracted directly from tyres. This paper presents a tyre-road friction coefficient estimation algorithm based on tyre lateral deflection obtained from lateral acceleration. The lateral acceleration is measured by wireless three-dimensional accelerometers embedded inside the tyres. The proposed algorithm first determines the contact patch using a radial acceleration profile. Then, the portion of the lateral acceleration profile, only inside the tyre-road contact patch, is used to estimate the friction coefficient through a tyre brush model and a simple tyre model. The proposed strategy accounts for orientation-variation of accelerometer body frame during tyre rotation. The effectiveness and performance of the algorithm are demonstrated through finite element model simulations and experimental tests with small tyre slip angles on different road surface conditions.

  2. Rolling Friction on a Wheeled Laboratory Cart

    DTIC Science & Technology

    2012-01-01

    by gravity, and a vehicle (such as a car or bicycle) accelerating along a level road is driven by a motor or by pedalling. In such cases, static...is slowing down, its acceleration a points downhill). The normal force N, frictional force f and axle torque four wheels. θ υ N a θ ω τ ƒ mg...friction force pointed backward (to translationally decelerate the object), then it would simultaneously rotationally accelerate the cylinder about its

  3. Friction coefficient of skin in real-time.

    PubMed

    Sivamani, Raja K; Goodman, Jack; Gitis, Norm V; Maibach, Howard I

    2003-08-01

    Friction studies are useful in quantitatively investigating the skin surface. Previous studies utilized different apparatuses and materials for these investigations but there was no real-time test parameter control or monitoring. Our studies incorporated the commercially available UMT Series Micro-Tribometer, a tribology instrument that permits real-time monitoring and calculation of the important parameters in friction studies, increasing the accuracy over previous tribology and friction measurement devices used on skin. Our friction tests were performed on four healthy volunteers and on abdominal skin samples. A stainless steel ball was pressed on to the skin with at a pre-set load and then moved across the skin at a constant velocity of 5 mm/min. The UMT continuously monitored the friction force of the skin and the normal force of the ball to calculate the friction coefficient in real-time. Tests investigated the applicability of Amonton's law, the impact of increased and decreased hydration, and the effect of the application of moisturizers. The friction coefficient depends on the normal load applied, and Amonton's law does not provide an accurate description for the skin surface. Application of water to the skin increased the friction coefficient and application of isopropyl alcohol decreased it. Fast acting moisturizers immediately increased the friction coefficient, but did not have the prolonged effect of the slow, long lasting moisturizers. The UMT is capable of making real-time measurements on the skin and can be used as an effective tool to study friction properties. Results from the UMT measurements agree closely with theory regarding the skin surface.

  4. Computer-aided analysis and design of the shape rolling process for producing turbine engine airfoils

    NASA Technical Reports Server (NTRS)

    Lahoti, G. D.; Akgerman, N.; Altan, T.

    1978-01-01

    Mild steel (AISI 1018) was selected as model cold rolling material and Ti-6A1-4V and Inconel 718 were selected as typical hot rolling and cold rolling alloys, respectively. The flow stress and workability of these alloys were characterized and friction factor at the roll/workpiece interface was determined at their respective working conditions by conducting ring tests. Computer-aided mathematical models for predicting metal flow and stresses, and for simulating the shape rolling process were developed. These models utilized the upper bound and the slab methods of analysis, and were capable of predicting the lateral spread, roll separating force, roll torque, and local stresses, strains and strain rates. This computer-aided design system was also capable of simulating the actual rolling process, and thereby designing the roll pass schedule in rolling of an airfoil or a similar shape.

  5. Friction losses in a lubricated thrust-loaded cageless angular-contract bearing

    NASA Technical Reports Server (NTRS)

    Townsend, D. P.; Allen, C. W.; Zaretsky, E. V.

    1973-01-01

    The NASA spinning torque apparatus was modified to measure the spinning torque on a cageless ball thrust bearing. Friction torque was measured for thrust loads varying from 44.5 to 403 newtons (10 to 90 lb) at speeds of 1000, 2000, and 3000 rpm. Tests were conducted with di-2-ethylhexyl sebacate and a synthetic paraffinic oil. These tests were run with either oil jet lubrication or with a thin surface film of lubricant only. An analytical model which included rolling resistance was developed and extended from previous models for spinning torque and lubricant rheology. The model was extended by the inclusion of rolling resistance. The computed values were in fair agreement with the experimental results and confirmed previous hypotheses that a thin lubricant film gives minimum bearing torque and an oil jet flow of a viscous lubricant will result in considerable rolling torque in addition to the torque due to ball spin.

  6. FASTSIM2: a second-order accurate frictional rolling contact algorithm

    NASA Astrophysics Data System (ADS)

    Vollebregt, E. A. H.; Wilders, P.

    2011-01-01

    In this paper we consider the frictional (tangential) steady rolling contact problem. We confine ourselves to the simplified theory, instead of using full elastostatic theory, in order to be able to compute results fast, as needed for on-line application in vehicle system dynamics simulation packages. The FASTSIM algorithm is the leading technology in this field and is employed in all dominant railway vehicle system dynamics packages (VSD) in the world. The main contribution of this paper is a new version "FASTSIM2" of the FASTSIM algorithm, which is second-order accurate. This is relevant for VSD, because with the new algorithm 16 times less grid points are required for sufficiently accurate computations of the contact forces. The approach is based on new insights in the characteristics of the rolling contact problem when using the simplified theory, and on taking precise care of the contact conditions in the numerical integration scheme employed.

  7. Nucleation and growth of rolling contact failure of 440C bearing steel

    NASA Technical Reports Server (NTRS)

    Gupta, V.; Bastias, P. C.; Hahn, G. T.; Rubin, C. A.

    1992-01-01

    A 'two-body' elasto-plastic finite element model of 2-dimensional rolling and rolling-plus-sliding was developed to treat the effect of surface irregularities. The model consists of a smooth cylinder in contact with a semi-infinite half-space that is either smooth or fitted with one of 0.4 microns deep or 7 microns deep groove, or a 0.4 microns high ridge-like asperity. The model incorporates elastic-linear-kinematic hardening-plastic (ELKP) and non-linear-kinematic hardening-plastic (NLKP) material constitutive relations appropriate for hardened bearing steel and the 440C grade. The calculated contact pressure distribution is Hertzian for smooth body contact, and it displays intense, stationary, pressure spikes superposed on the Hertzian pressure for contact with the grooved and ridged surface. The results obtained for the 0.4 microns deep groove compare well with those reported by Elsharkawy and Hamrock for an EHD lubricated contact. The effect of translating the counterface on the half space as opposed to indenting the half space with the counter face with no translation is studied. The stress and strain values near the surface are found to be similar for the two cases, whereas they are significantly different in the subsurface. It is seen that when tiny shoulders are introduced at the edge of the groove in the finite element model, the incremental plasticity and residual stresses are significantly higher in the vicinity of the right shoulder (rolling direction is from left to right) than at the left shoulder. This may explain the experimental observation that the spall nucleation occurs at the exit end of the artificially planted indents. Pure rolling calculations are compared with rolling + sliding calculations. For a coefficient of friction, mu = 0.1, the effect of friction is found to be small. Efforts were made to identify the material constitutive relations which best describe the deformation characteristics of the bearing steels in the initial few cycles. Elastic-linear-kinematic hardening-plastic (ELKP) material constitutive relations produce less net plastic deformation in the initial stages for a given stress, than seen in experiments. A new set of constitutive relations: non-linear-kinematic hardening-plastic (NLKP) was used. This material model produces more plasticity than the ELKP model and shows promise for treating the net distortions in the early stages. Techniques for performing experimental measurements that can be compared with the finite element calculations were devised. The measurements are being performed on 9mm-diameter, 440C steel cylindrical rolling elements in contact with 12.5 mm-diameter, 52100 steel balls in a 3-ball-rod fatigue test machine operating at 3600 RPM. Artificial, 7 microns deep, indents were inserted on the running track of the cylindrical rolling elements and profilometer measurements of these indents made, before and after the rolling. These preliminary measurements show that the indents are substantially deformed plastically in the process of rolling. The deformations of the groove calculated with the finite element model are comparable to those measured experimentally.

  8. Numerical study of centrifugal compressor stage vaneless diffusers

    NASA Astrophysics Data System (ADS)

    Galerkin, Y.; Soldatova, K.; Solovieva, O.

    2015-08-01

    The authors analyzed CFD calculations of flow in vaneless diffusers with relative width in range from 0.014 to 0.100 at inlet flow angles in range from 100 to 450 with different inlet velocity coefficients, Reynolds numbers and surface roughness. The aim is to simulate calculated performances by simple algebraic equations. The friction coefficient that represents head losses as friction losses is proposed for simulation. The friction coefficient and loss coefficient are directly connected by simple equation. The advantage is that friction coefficient changes comparatively little in range of studied parameters. Simple equations for this coefficient are proposed by the authors. The simulation accuracy is sufficient for practical calculations. To create the complete algebraic model of the vaneless diffuser the authors plan to widen this method of modeling to diffusers with different relative length and for wider range of Reynolds numbers.

  9. Electromechanical imitator of antilock braking modes of wheels with pneumatic tire and its application for the runways friction coefficient measurement

    NASA Astrophysics Data System (ADS)

    Putov, A. V.; Kopichev, M. M.; Ignatiev, K. V.; Putov, V. V.; Stotckaia, A. D.

    2017-01-01

    In this paper it is considered a discussion of the technique that realizes a brand new method of runway friction coefficient measurement based upon the proposed principle of measuring wheel braking control for the imitation of antilock braking modes that are close to the real braking modes of the aircraft chassis while landing that are realized by the aircraft anti-skid systems. Also here is the description of the model of towed measuring device that realizes a new technique of runway friction coefficient measuring, based upon the measuring wheel braking control principle. For increasing the repeatability accuracy of electromechanical braking imitation system the sideslip (brake) adaptive control system is proposed. Based upon the Burkhard model and additive random processes several mathematical models were created that describes the friction coefficient arrangement along the airstrip with different qualitative adjectives. Computer models of friction coefficient measuring were designed and first in the world the research of correlation between the friction coefficient measuring results and shape variations, intensity and cycle frequency of the measuring wheel antilock braking modes. The sketch engineering documentation was designed and prototype of the latest generation measuring device is ready to use. The measuring device was tested on the autonomous electromechanical examination laboratory treadmill bench. The experiments approved effectiveness of method of imitation the antilock braking modes for solving the problem of correlation of the runway friction coefficient measuring.

  10. Friction and oxidative wear of 440C ball bearing steels under high load and extreme bulk temperatures

    NASA Technical Reports Server (NTRS)

    Chaudhuri, Dilip K.; Slifka, Andrew J.; Siegwarth, James D.

    1993-01-01

    Unlubricated sliding friction and wear of 440C steels in an oxygen environment have been studied under a variety of load, speed, and temperature ranging from approximately -185 to 675 deg C. A specially designed test apparatus with a ball-on-flat geometry has been used for this purpose. The observed dependencies of the initial coefficient of friction, the average dynamic coefficient of friction, and the wear rate on load, speed, and test temperatures have been examined from the standpoint of existing theories of friction and wear. High contact temperatures are generated during the sliding friction, causing rapid oxidation and localized surface melting. A combination of fatigue, delamination, and loss of hardness due to tempering of the martensitic structure is responsible for the high wear rate observed and the coefficient of friction.

  11. Development and assessment of atomistic models for predicting static friction coefficients

    NASA Astrophysics Data System (ADS)

    Jahangiri, Soran; Heverly-Coulson, Gavin S.; Mosey, Nicholas J.

    2016-08-01

    The friction coefficient relates friction forces to normal loads and plays a key role in fundamental and applied areas of science and technology. Despite its importance, the relationship between the friction coefficient and the properties of the materials forming a sliding contact is poorly understood. We illustrate how simple relationships regarding the changes in energy that occur during slip can be used to develop a quantitative model relating the friction coefficient to atomic-level features of the contact. The slip event is considered as an activated process and the load dependence of the slip energy barrier is approximated with a Taylor series expansion of the corresponding energies with respect to load. The resulting expression for the load-dependent slip energy barrier is incorporated in the Prandtl-Tomlinson (PT) model and a shear-based model to obtain expressions for friction coefficient. The results indicate that the shear-based model reproduces the static friction coefficients μs obtained from first-principles molecular dynamics simulations more accurately than the PT model. The ability of the model to provide atomistic explanations for differences in μs amongst different contacts is also illustrated. As a whole, the model is able to account for fundamental atomic-level features of μs, explain the differences in μs for different materials based on their properties, and might be also used in guiding the development of contacts with desired values of μs.

  12. A hierarchical estimator development for estimation of tire-road friction coefficient

    PubMed Central

    Zhang, Xudong; Göhlich, Dietmar

    2017-01-01

    The effect of vehicle active safety systems is subject to the friction force arising from the contact of tires and the road surface. Therefore, an adequate knowledge of the tire-road friction coefficient is of great importance to achieve a good performance of these control systems. This paper presents a tire-road friction coefficient estimation method for an advanced vehicle configuration, four-motorized-wheel electric vehicles, in which the longitudinal tire force is easily obtained. A hierarchical structure is adopted for the proposed estimation design. An upper estimator is developed based on unscented Kalman filter to estimate vehicle state information, while a hybrid estimation method is applied as the lower estimator to identify the tire-road friction coefficient using general regression neural network (GRNN) and Bayes' theorem. GRNN aims at detecting road friction coefficient under small excitations, which are the most common situations in daily driving. GRNN is able to accurately create a mapping from input parameters to the friction coefficient, avoiding storing an entire complex tire model. As for large excitations, the estimation algorithm is based on Bayes' theorem and a simplified “magic formula” tire model. The integrated estimation method is established by the combination of the above-mentioned estimators. Finally, the simulations based on a high-fidelity CarSim vehicle model are carried out on different road surfaces and driving maneuvers to verify the effectiveness of the proposed estimation method. PMID:28178332

  13. A hierarchical estimator development for estimation of tire-road friction coefficient.

    PubMed

    Zhang, Xudong; Göhlich, Dietmar

    2017-01-01

    The effect of vehicle active safety systems is subject to the friction force arising from the contact of tires and the road surface. Therefore, an adequate knowledge of the tire-road friction coefficient is of great importance to achieve a good performance of these control systems. This paper presents a tire-road friction coefficient estimation method for an advanced vehicle configuration, four-motorized-wheel electric vehicles, in which the longitudinal tire force is easily obtained. A hierarchical structure is adopted for the proposed estimation design. An upper estimator is developed based on unscented Kalman filter to estimate vehicle state information, while a hybrid estimation method is applied as the lower estimator to identify the tire-road friction coefficient using general regression neural network (GRNN) and Bayes' theorem. GRNN aims at detecting road friction coefficient under small excitations, which are the most common situations in daily driving. GRNN is able to accurately create a mapping from input parameters to the friction coefficient, avoiding storing an entire complex tire model. As for large excitations, the estimation algorithm is based on Bayes' theorem and a simplified "magic formula" tire model. The integrated estimation method is established by the combination of the above-mentioned estimators. Finally, the simulations based on a high-fidelity CarSim vehicle model are carried out on different road surfaces and driving maneuvers to verify the effectiveness of the proposed estimation method.

  14. Description of new dry granular materials of variable cohesion and friction coefficient: Implications for laboratory modeling of the brittle crust

    NASA Astrophysics Data System (ADS)

    Abdelmalak, M. M.; Bulois, C.; Mourgues, R.; Galland, O.; Legland, J.-B.; Gruber, C.

    2016-08-01

    Cohesion and friction coefficient are fundamental parameters for scaling brittle deformation in laboratory models of geological processes. However, they are commonly not experimental variable, whereas (1) rocks range from cohesion-less to strongly cohesive and from low friction to high friction and (2) strata exhibit substantial cohesion and friction contrasts. This brittle paradox implies that the effects of brittle properties on processes involving brittle deformation cannot be tested in laboratory models. Solving this paradox requires the use of dry granular materials of tunable and controllable brittle properties. In this paper, we describe dry mixtures of fine-grained cohesive, high friction silica powder (SP) and low-cohesion, low friction glass microspheres (GM) that fulfill this requirement. We systematically estimated the cohesions and friction coefficients of mixtures of variable proportions using two independent methods: (1) a classic Hubbert-type shear box to determine the extrapolated cohesion (C) and friction coefficient (μ), and (2) direct measurements of the tensile strength (T0) and the height (H) of open fractures to calculate the true cohesion (C0). The measured values of cohesion increase from 100 Pa for pure GM to 600 Pa for pure SP, with a sub-linear trend of the cohesion with the mixture GM content. The two independent cohesion measurement methods, from shear tests and tension/extensional tests, yield very similar results of extrapolated cohesion (C) and show that both are robust and can be used independently. The measured values of friction coefficients increase from 0.5 for pure GM to 1.05 for pure SP. The use of these granular material mixtures now allows testing (1) the effects of cohesion and friction coefficient in homogeneous laboratory models and (2) testing the effect of brittle layering on brittle deformation, as demonstrated by preliminary experiments. Therefore, the brittle properties become, at last, experimental variables.

  15. Monte Carlo calibration of avalanches described as Coulomb fluid flows.

    PubMed

    Ancey, Christophe

    2005-07-15

    The idea that snow avalanches might behave as granular flows, and thus be described as Coulomb fluid flows, came up very early in the scientific study of avalanches, but it is not until recently that field evidence has been provided that demonstrates the reliability of this idea. This paper aims to specify the bulk frictional behaviour of snow avalanches by seeking a universal friction law. Since the bulk friction coefficient cannot be measured directly in the field, the friction coefficient must be calibrated by adjusting the model outputs to closely match the recorded data. Field data are readily available but are of poor quality and accuracy. We used Bayesian inference techniques to specify the model uncertainty relative to data uncertainty and to robustly and efficiently solve the inverse problem. A sample of 173 events taken from seven paths in the French Alps was used. The first analysis showed that the friction coefficient behaved as a random variable with a smooth and bell-shaped empirical distribution function. Evidence was provided that the friction coefficient varied with the avalanche volume, but any attempt to adjust a one-to-one relationship relating friction to volume produced residual errors that could be as large as three times the maximum uncertainty of field data. A tentative universal friction law is proposed: the friction coefficient is a random variable, the distribution of which can be approximated by a normal distribution with a volume-dependent mean.

  16. A comparison of roughness parameters and friction coefficients of aesthetic archwires.

    PubMed

    Rudge, Philippa; Sherriff, Martyn; Bister, Dirk

    2015-02-01

    Compare surface roughness of 'aesthetic' nickel-titanium (NiTi) archwires with their dynamic frictional properties. Archwires investigated were: four fully coated tooth coloured [Forestadent: Biocosmetic (FB) and Titanol Cosmetic (FT); TOC Tooth Tone (TT); and Hawley Russell Coated Superelastic NiTi (HRC)]; two partially coated tooth coloured [DB Euroline Microcoated (DB) and TP Aesthetic NiTi (TP)]; two rhodium coated [TOC Sentalloy (TS) and Hawley Russell Rhodium Coated Superelastic NiTi (HRR)]; and two controls: stainless steel [Forestadent Steel (FS)] and NiTi archwire [Forestadent Titanol Superelastic (FN)]. Surface roughness [profilometry (Rugosurf)] was compared with frictional coefficients for archwire/bracket/ligature combinations (n = 10). Analysis of variance, Sidak's multiple comparison of means, and Spearman's correlation coefficient were used for analysis. Roughness coefficients were from low to high: FB; FN; TT; FS; TS; HRR; FT; DB; TP; HRC. Friction coefficients were from low to high: TP; FS; FN; HRR; FT; DB; FB; HRC; TS; TT. Coated archwires generally exhibited higher friction than uncoated controls. TP had the lowest friction but this was not statistically significant (P < 0.05). Friction of tooth coloured coated archwires were significantly different for some wires. Spearman's correlation did not demonstrate consistency between surface roughness (R a) and dynamic friction. Aesthetic archwires investigated had either low surface roughness or low frictional resistance but not both properties simultaneously. Causes for friction are likely to be multifactorial and do not appear to be solely determined by surface roughness (measured by profilometry). For selecting the most appropriate aligning archwire, both surface roughness and frictional resistance need to be considered. © The Author 2014. Published by Oxford University Press on behalf of the European Orthodontic Society. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  17. The Influence of The Temperature on Dry Friction of AISI 3315 Steel Sliding Against AISI 3150 Steel

    NASA Astrophysics Data System (ADS)

    Odabas, D.

    2018-01-01

    In this paper, the effects the influence of frictional heating on the wear of AISI 3315 Steel were investigated experimentally using a pin-on-ring geometry. All the tests were carried out in air without any lubricant. In order to understand the variation in frictional coefficient and temperature with load and speed, the friction tests were carried out at a speed of 1 m/s and loads in the range 115-250 N, and at a speed range 1-4 m/s, a load of 115 N. The sliding distance was 1500 m. The bulk temperature of the specimen was measured from the interface surface at a distance of 1 mm from the contact surface by using type K thermocouples (Ni-Cr-Ni). The coefficient of friction was determined as a function of test load and speed. The steady state coefficient of friction of the test material decreases with increasing load and speed due to the oxide formation. But the unsteady state coefficient of friction increases with an increase in load and speed.

  18. Investigation at low speeds of the effect of aspect ratio and sweep on rolling stability derivatives of untapered wings

    NASA Technical Reports Server (NTRS)

    Goodman, Alex; Fisher, Lewis R.

    1949-01-01

    A low scale wind tunnel investigation was conducted in rolling flow to determine the effects of aspect ratio and sweep (when varied independently) on the rolling stability derivatives for a series of untapered wings. Test results indicate that when the aspect ratio was held constant, an increase in the sweepback angle caused a significant reduction in the damping in roll at low lift coefficients for only the higher aspect ratios that were tested. This result was in agreement with available swept wing theory which indicated no effect of sweep for aspect ratios near zero. The result of the linear theory that the damping in roll is independent of lift coefficient and that the yawing moment and lateral force due to rolling are directly proportional to the lift coefficient was found to be valid for only a very limited lift coefficient range when the wings were highly swept. For such wings, the damping was found to increase in magnitude and the yawing moment due to rolling, to change from negative to positive at moderate lift coefficients. The effect of wing tip suction, not acounted for by present theory, was found to be very important with regard to the yawing moment due to rolling, particularly for low aspect ratio swept wings. An empirical means of correcting present theory for the effect of tip suction is suggested.

  19. Ice friction of flared ice hockey skate blades.

    PubMed

    Federolf, Peter A; Mills, Robert; Nigg, Benno

    2008-09-01

    In ice hockey, skating performance depends on the skill and physical conditioning of the players and on the characteristics of their equipment. CT Edge have recently designed a new skate blade that angles outward near the bottom of the blade. The objective of this study was to compare the frictional characteristics of three CT Edge blades (with blade angles of 4 degrees, 60, and 8 degrees, respectively) with the frictional characteristics of a standard skate blade. The friction coefficients of the blades were determined by measuring the deceleration of an aluminium test sled equipped with three test blades. The measurements were conducted with an initial sled speed of 1.8 m s(-1) and with a load of 53 kg on each blade. The friction coefficient of the standard blades was 0.0071 (s = 0.0005). For the CT Edge blades with blade angles of 4 degrees, 6 degrees, and 8 degrees, friction coefficients were lower by about 13%, 21%, and 22%, respectively. Furthermore, the friction coefficients decreased with increasing load. The results of this study show that widely accepted paradigms such as "thinner blades cause less friction" need to be revisited. New blade designs might also be able to reduce friction in speed skating, figure skating, bobsledding, and luge.

  20. Dynamics and locomotion of flexible foils in a frictional environment

    NASA Astrophysics Data System (ADS)

    Wang, Xiaolin; Alben, Silas

    2018-01-01

    Over the past few decades, oscillating flexible foils have been used to study the physics of organismal propulsion in different fluid environments. Here, we extend this work to a study of flexible foils in a frictional environment. When the foil is oscillated by heaving at one end but is not free to locomote, the dynamics change from periodic to non-periodic and chaotic as the heaving amplitude increases or the bending rigidity decreases. For friction coefficients lying in a certain range, the transition passes through a sequence of N-periodic and asymmetric states before reaching chaotic dynamics. Resonant peaks are damped and shifted by friction and large heaving amplitudes, leading to bistable states. When the foil is free to locomote, the horizontal motion smoothes the resonant behaviours. For moderate frictional coefficients, steady but slow locomotion is obtained. For large transverse friction and small tangential friction corresponding to wheeled snake robots, faster locomotion is obtained. Travelling wave motions arise spontaneously, and move with horizontal speeds that scale as transverse friction coefficient to the power 1/4 and input power that scales as the transverse friction coefficient to the power 5/12. These scalings are consistent with a boundary layer form of the solutions near the foil's leading edge.

  1. Dynamics and locomotion of flexible foils in a frictional environment.

    PubMed

    Wang, Xiaolin; Alben, Silas

    2018-01-01

    Over the past few decades, oscillating flexible foils have been used to study the physics of organismal propulsion in different fluid environments. Here, we extend this work to a study of flexible foils in a frictional environment. When the foil is oscillated by heaving at one end but is not free to locomote, the dynamics change from periodic to non-periodic and chaotic as the heaving amplitude increases or the bending rigidity decreases. For friction coefficients lying in a certain range, the transition passes through a sequence of N -periodic and asymmetric states before reaching chaotic dynamics. Resonant peaks are damped and shifted by friction and large heaving amplitudes, leading to bistable states. When the foil is free to locomote, the horizontal motion smoothes the resonant behaviours. For moderate frictional coefficients, steady but slow locomotion is obtained. For large transverse friction and small tangential friction corresponding to wheeled snake robots, faster locomotion is obtained. Travelling wave motions arise spontaneously, and move with horizontal speeds that scale as transverse friction coefficient to the power 1/4 and input power that scales as the transverse friction coefficient to the power 5/12. These scalings are consistent with a boundary layer form of the solutions near the foil's leading edge.

  2. Friction and wear of hydrogenated and hydrogen-free diamond-like carbon films: Relative humidity dependent character

    NASA Astrophysics Data System (ADS)

    Shi, Jing; Gong, Zhenbin; Wang, Yongfu; Gao, Kaixiong; Zhang, Junyan

    2017-11-01

    In this study, tribological properties of hydrogenated and hydrogen free diamond-like carbon films at various relative humidity (RH) were investigated to understand the friction mechanism in the presence of water molecules. At normal load of 2N, DLC-H film's friction coefficient was 0.06 at RH14% while DLC film's friction coefficient was 0.19 at RH17%. With the increase of RH, their friction coefficient converged to about 0.15. This character remained unaltered when the normal load was 5N. Results show that low friction of DLC-H film at low RH was attributed to the low shear force aroused by graphitic tribofilm at wear care center. However, the high friction of DLC film was mainly endowed by the high adhesive force aroused by σ dangling bonds. At high RH, solid-to-solid contact was isolated by water molecules confined between the counterfaces, where capillary was a dominant factor for friction. In addition to the capillary force, the absence of tribofilm was also accountable. These two factors lead to the level off of friction coefficient for DLC-H and DLC films. Moreover, for both DLC-H and DLC films, tribo-oxidization was proved to be closely related to wear rate with the assist of H2O molecules during sliding.

  3. Rockfall hazard and risk assessment in the Yosemite Valley, California, USA

    USGS Publications Warehouse

    Guzzetti, F.; Reichenbach, P.; Wieczorek, G.F.

    2003-01-01

    Rock slides and rock falls are the most frequent types of slope movements in Yosemite National Park, California. In historical time (1857-2002) 392 rock falls and rock slides have been documented in the valley, and some of them have been mapped in detail. We present the results of an attempt to assess rock fall hazards in the Yosemite Valley. Spatial and temporal aspects of rock falls hazard are considered. A detailed inventory of slope movements covering the 145-year period from 1857 to 2002 is used to determine the frequency-volume statistics of rock falls and to estimate the annual frequency of rock falls, providing the temporal component of rock fall hazard. The extent of the areas potentially subject to rock fall hazards in the Yosemite Valley were obtained using STONE, a physically-based rock fall simulation computer program. The software computes 3-dimensional rock fall trajectories starting from a digital elevation model (DEM), the location of rock fall release points, and maps of the dynamic rolling friction coefficient and of the coefficients of normal and tangential energy restitution. For each DEM cell the software calculates the number of rock falls passing through the cell, the maximum rock fall velocity and the maximum flying height. For the Yosemite Valley, a DEM with a ground resolution of 10 ?? 10 m was prepared using topographic contour lines from the U.S. Geological Survey 1:24 000-scale maps. Rock fall release points were identified as DEM cells having a slope steeper than 60??, an assumption based on the location of historical rock falls. Maps of the normal and tangential energy restitution coefficients and of the rolling friction coefficient were produced from a surficial geologic map. The availability of historical rock falls mapped in detail allowed us to check the computer program performance and to calibrate the model parameters. Visual and statistical comparison of the model results with the mapped rock falls confirmed the accuracy of the model. The model results are compared with a previous map of rockfall talus and with a geomorphic assessment of rock fall hazard based on potential energy referred to as a shadow angle approach, recently completed for the Yosemite Valley. The model results are then used to identify the roads and trails more subject to rock fall hazard. Of the 166.5 km of roads and trails in the Yosemite Valley 31.2% were found to be potentially subject to rock fall hazard, of which 14% are subject to very high hazard. ?? European Geosciences Union 2003.

  4. Friction coefficient of spruce pine on steel -- a note on lubricants

    Treesearch

    Charles W. McMillin; Truett J. Lemoine; Floyd G. Manwiller

    1970-01-01

    Generally, the introduction of water and ethanol increased the friction coefficient for ovendry samples but decreased the coeffecient when the samples were saturated. Octanoic acid decreased the coefficient when samples were wet. In the entire experiment, coefficients ranged from 0.14 to 0.78.

  5. Friction in a Moving Car

    ERIC Educational Resources Information Center

    Goldberg, Fred M.

    1975-01-01

    Describes an out-of-doors, partially unstructured experiment to determine the coefficient of friction for a moving car. Presents the equation which relates the coefficient of friction to initial velocity, distance, and time and gives sample computed values as a function of initial speed and tire pressure. (GS)

  6. Frictional velocity-weakening in landslides on Earth and on other planetary bodies.

    PubMed

    Lucas, Antoine; Mangeney, Anne; Ampuero, Jean Paul

    2014-03-04

    One of the ultimate goals in landslide hazard assessment is to predict maximum landslide extension and velocity. Despite much work, the physical processes governing energy dissipation during these natural granular flows remain uncertain. Field observations show that large landslides travel over unexpectedly long distances, suggesting low dissipation. Numerical simulations of landslides require a small friction coefficient to reproduce the extension of their deposits. Here, based on analytical and numerical solutions for granular flows constrained by remote-sensing observations, we develop a consistent method to estimate the effective friction coefficient of landslides. This method uses a constant basal friction coefficient that reproduces the first-order landslide properties. We show that friction decreases with increasing volume or, more fundamentally, with increasing sliding velocity. Inspired by frictional weakening mechanisms thought to operate during earthquakes, we propose an empirical velocity-weakening friction law under a unifying phenomenological framework applicable to small and large landslides observed on Earth and beyond.

  7. Effects of water-vapor on friction and deformation of polymeric magnetic media in contact with a ceramic oxide

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1984-01-01

    The effects of humidity (water-vapor) in nitrogen on the friction and deformation behavior of magnetic tape in contact with a Ni-Zn ferrite spherical pin were studied. The coefficient of friction is markedly dependent on the ambient relative humidity. In elastic contacts the coefficient of friction increased linearly with increasing humidity; it decreased linearly when humidity was lowered. This effect is the result of changes in the chemistry and interaction of tape materials such as degradation of the lubricant. In plastic contacts there was no effect of humidity on friction below 40 percent relative humidity. There is no effect on friction associated with the breakthrough of the adsorbed water-vapor film at the interface of the tape and Ni-Zn ferrite. The coefficient of friction, however, increased rapidly with increasing relative humidity above 40 percent in plastic contacts.

  8. A hybrid PSO-SVM-based method for predicting the friction coefficient between aircraft tire and coating

    NASA Astrophysics Data System (ADS)

    Zhan, Liwei; Li, Chengwei

    2017-02-01

    A hybrid PSO-SVM-based model is proposed to predict the friction coefficient between aircraft tire and coating. The presented hybrid model combines a support vector machine (SVM) with particle swarm optimization (PSO) technique. SVM has been adopted to solve regression problems successfully. Its regression accuracy is greatly related to optimizing parameters such as the regularization constant C , the parameter gamma γ corresponding to RBF kernel and the epsilon parameter \\varepsilon in the SVM training procedure. However, the friction coefficient which is predicted based on SVM has yet to be explored between aircraft tire and coating. The experiment reveals that drop height and tire rotational speed are the factors affecting friction coefficient. Bearing in mind, the friction coefficient can been predicted using the hybrid PSO-SVM-based model by the measured friction coefficient between aircraft tire and coating. To compare regression accuracy, a grid search (GS) method and a genetic algorithm (GA) are used to optimize the relevant parameters (C , γ and \\varepsilon ), respectively. The regression accuracy could be reflected by the coefficient of determination ({{R}2} ). The result shows that the hybrid PSO-RBF-SVM-based model has better accuracy compared with the GS-RBF-SVM- and GA-RBF-SVM-based models. The agreement of this model (PSO-RBF-SVM) with experiment data confirms its good performance.

  9. Process optimization of rolling for zincked sheet technology using response surface methodology and genetic algorithm

    NASA Astrophysics Data System (ADS)

    Ji, Liang-Bo; Chen, Fang

    2017-07-01

    Numerical simulation and intelligent optimization technology were adopted for rolling and extrusion of zincked sheet. By response surface methodology (RSM), genetic algorithm (GA) and data processing technology, an efficient optimization of process parameters for rolling of zincked sheet was investigated. The influence trend of roller gap, rolling speed and friction factor effects on reduction rate and plate shortening rate were analyzed firstly. Then a predictive response surface model for comprehensive quality index of part was created using RSM. Simulated and predicted values were compared. Through genetic algorithm method, the optimal process parameters for the forming of rolling were solved. They were verified and the optimum process parameters of rolling were obtained. It is feasible and effective.

  10. High-velocity frictional properties of Alpine Fault rocks: Mechanical data, microstructural analysis, and implications for rupture propagation

    NASA Astrophysics Data System (ADS)

    Boulton, Carolyn; Yao, Lu; Faulkner, Daniel R.; Townend, John; Toy, Virginia G.; Sutherland, Rupert; Ma, Shengli; Shimamoto, Toshihiko

    2017-04-01

    The Alpine Fault in New Zealand is a major plate-bounding structure that typically slips in ∼M8 earthquakes every c. 330 years. To investigate the near-surface, high-velocity frictional behavior of surface- and borehole-derived Alpine Fault gouges and cataclasites, twenty-one rotary shear experiments were conducted at 1 MPa normal stress and 1 m/s equivalent slip velocity under both room-dry and water-saturated (wet) conditions. In the room-dry experiments, the peak friction coefficient (μp = τp/σn) of Alpine Fault cataclasites and fault gouges was consistently high (mean μp = 0.67 ± 0.07). In the wet experiments, the fault gouge peak friction coefficients were lower (mean μp = 0.20 ± 0.12) than the cataclasite peak friction coefficients (mean μp = 0.64 ± 0.04). All fault rocks exhibited very low steady-state friction coefficients (μss) (room-dry experiments mean μss = 0.16 ± 0.05; wet experiments mean μss = 0.09 ± 0.04). Of all the experiments performed, six experiments conducted on wet smectite-bearing principal slip zone (PSZ) fault gouges yielded the lowest peak friction coefficients (μp = 0.10-0.20), the lowest steady-state friction coefficients (μss = 0.03-0.09), and, commonly, the lowest specific fracture energy values (EG = 0.01-0.69 MJ/m2). Microstructures produced during room-dry and wet experiments on a smectite-bearing PSZ fault gouge were compared with microstructures in the same material recovered from the Deep Fault Drilling Project (DFDP-1) drill cores. The near-absence of localized shear bands with a strong crystallographic preferred orientation in the natural samples most resembles microstructures formed during wet experiments. Mechanical data and microstructural observations suggest that Alpine Fault ruptures propagate preferentially through water-saturated smectite-bearing fault gouges that exhibit low peak and steady-state friction coefficients.

  11. Multiphysical FE-analysis of a front-end bending phenomenon in a hot strip mill

    NASA Astrophysics Data System (ADS)

    Ilmola, Joonas; Seppälä, Oskari; Leinonen, Olli; Pohjonen, Aarne; Larkiola, Jari; Jokisaari, Juha; Putaansuu, Eero

    2018-05-01

    In hot steel rolling processes, a slab is generally rolled to a transfer bar in a roughing process and to a strip in a hot strip rolling process. Over several rolling passes the front-end may bend upward or downward due to asymmetrical rolling conditions causing entry problems in the next rolling pass. Many different factors may affect the front-end bending phenomenon and are very challenging to measure. Thus, a customized finite element model is designed and built to simulate the front-end bending phenomenon in a hot strip rolling process. To simulate the functioning of the hot strip mill precisely, automated controlling logic of the mill must be considered. In this paper we studied the effect of roll bite friction conditions and amount of reduction on the front-end bending phenomenon in a hot strip rolling process.

  12. Airplane takeoff and landing performance monitoring system

    NASA Technical Reports Server (NTRS)

    Middleton, David B. (Inventor); Srivatsan, Raghavachari (Inventor); Person, Lee H., Jr. (Inventor)

    1994-01-01

    The invention is a real-time takeoff and landing performance monitoring system for an aircraft which provides a pilot with graphic and metric information to assist in decisions related to achieving rotation speed (VR) within the safe zone of a runway, or stopping the aircraft on the runway after landing or take-off abort. The system processes information in two segments: a pretakeoff segment and a real-time segment. One-time inputs of ambient conditions and airplane configuration information are used in the pretakeoff segment to generate scheduled performance data. The real-time segment uses the scheduled performance data, runway length data and transducer measured parameters to monitor the performance of the airplane throughout the takeoff roll. Airplane acceleration and engine-performance anomalies are detected and annunciated. A novel and important feature of this segment is that it updates the estimated runway rolling friction coefficient. Airplane performance predictions also reflect changes in head wind occurring as the takeoff roll progresses. The system provides a head-down display and a head-up display. The head-up display is projected onto a partially reflective transparent surface through which the pilot views the runway. By comparing the present performance of the airplane with a continually predicted nominal performance based upon given conditions, performance deficiencies are detected by the system and conveyed to pilot in form of both elemental information and integrated information.

  13. Airplane takeoff and landing performance monitoring system

    NASA Technical Reports Server (NTRS)

    Middleton, David B. (Inventor); Srivatsan, Raghavachari (Inventor); Person, Jr., Lee H. (Inventor)

    1996-01-01

    The invention is a real-time takeoff and landing performance monitoring system for an aircraft which provides a pilot with graphic and metric information to assist in decisions related to achieving rotation speed (V.sub.R) within the safe zone of a runway, or stopping the aircraft on the runway after landing or take-off abort. The system processes information in two segments: a pretakeoff segment and a real-time segment. One-time inputs of ambient conditions and airplane configuration information are used in the pretakeoff segment to generate scheduled performance data. The real-time segment uses the scheduled performance data, runway length data and transducer measured parameters to monitor the performance of the airplane throughout the takeoff roll. Airplane acceleration and engine-performance anomalies are detected and annunciated. A novel and important feature of this segment is that it updates the estimated runway rolling friction coefficient. Airplane performance predictions also reflect changes in head wind occurring as the takeoff roll progresses. The system provides a head-down display and a head-up display. The head-up display is projected onto a partially reflective transparent surface through which the pilot views the runway. By comparing the present performance of the airplane with a continually predicted nominal performance based upon given conditions, performance deficiencies are detected by the system and conveyed to pilot in form of both elemental information and integrated information.

  14. Effect of friction on vibrotactile sensation of normal and dehydrated skin.

    PubMed

    Chen, S; Ge, S; Tang, W; Zhang, J

    2016-02-01

    Vibrotactile sensation mediated is highly dependent on surface mechanical and frictional properties. Dehydration of skin could change these properties. To investigate the relationship between friction and vibrotactile sensation of normal and dehydrated skin. Vibrations were firstly measured during surface exploration using a biomimetic sensor. Piglet skin was used as human skin model to study frictional properties for both normal and dehydrated skin using an atomic force microscope on nanoscale and a pin-on-disk tribometer on macroscale. Effect of vibrational frequency on friction and vibrotactile perception was also observed on nano and macro scale for normal and dehydrated skin. The result indicated that dehydrated skin was less sensitive than normal skin. The coefficient of friction of dehydrated skin is smaller than that of normal skin on both nano and macro scale. The coefficient of friction increases as increasing scanning frequencies. There is a positive correlation between coefficient of friction and vibrotactile sensation on nanoscale and macroscale. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Influence of Laser Shock Texturing on W9 Steel Surface Friction Property

    NASA Astrophysics Data System (ADS)

    Fan, Yujie; Cui, Pengfei; Zhou, Jianzhong; Dai, Yibin; Guo, Erbin; Tang, Deye

    2017-09-01

    To improve surface friction property of high speed steel, micro-dent arrays on W9Mo3Cr4V surface were produced by laser shock processing. Friction test was conducted on smooth surface and texturing surface and effect of surface texturing density on friction property was studied. The results show that, under the same condition, friction coefficient of textured surface is lower than smooth surface with dent area density less than 6%, wear mass loss, width and depth of wear scar are smaller; Wear resistance of the surface is the best and the friction coefficient is the smallest when dent area density is 2.2%; Friction coefficient, wear mass loss, width and depth of wear scar increase correspondingly as density of dent area increases when dent area density is more than 2.2%. Abrasive wear and adhesive wear, oxidative wear appear in the wear process. Reasonable control of geometric parameters of surface texturing induced by laser shock processing is helpful to improve friction performance.

  16. A Simple Measurement of the Sliding Friction Coefficient

    ERIC Educational Resources Information Center

    Gratton, Luigi M.; Defrancesco, Silvia

    2006-01-01

    We present a simple computer-aided experiment for investigating Coulomb's law of sliding friction in a classroom. It provides a way of testing the possible dependence of the friction coefficient on various parameters, such as types of materials, normal force, apparent area of contact and sliding velocity.

  17. Estimation of sediment friction coefficient from heating upon APC penetration during the IODP NanTroSEIZE

    NASA Astrophysics Data System (ADS)

    Kinoshita, M.; Kawamura, K.; Lin, W.

    2015-12-01

    During the Nankai Trough Seismogenic Zone Experiments (NanTroSEIZE) of the Integrated Ocean Drilling Program (IODP), the advanced piston corer temperature (APC-T) tool was used to determine in situ formation temperatures while piston coring down to ~200 m below sea floor. When the corer is fired into the formation, temperature around the shoe abruptly increases due to the frictional heating. The temperature rise due to the frictional heat at the time of penetration is 10 K or larger. We found that the frictional temperature rise (=maximum temperature) increases with increasing depth, and that its intersection at the seafloor seems non-zero. Frictional heat energy is proportional to the maximum temperature rise, which is confirmed by a FEM numerical simulation of 2D cylindrical system. Here we use the result of numerical simulation to convert the observed temperature rise into the frictional heat energy. The frictional heat energy is represented as the product of the shooting length D and the shear stress (τ) between the pipe and the sediment. Assuming a coulomb slip regime, the shear stress is shows as: τ= τ0 + μ*(Sv-Pp), where τ0 is the cohesive stress, μ the dynamic frictional coefficient between the pipe and the sediment, Sv the normal stress at the pipe, and Pp the pore pressure. This can explain the non-zero intersection as well as depth-dependent increase for the frictional heating observed in the APC-T data. Assuming a hydrostatic state and by using the downhole bulk density data, we estimated the friction coefficient for each APC-T measurement. For comparison, we used the vane-shear strength measured on core samples to estimate the friction coefficients. The frictional coefficients μ were estimated as ranging 0.01 - 0.06, anomalously lower than expected for shallow marine sediments. They were lower than those estimated from vane-shear data, which range 0.05 to 0.2. Still, both estimates exhibit a significant increase in the friction coefficient at Site C0012, which dominates in the hemipelagic sediment in the Shikoku Basin. The anomalously low values suggest either fluid injection between the pipe and the sediment during the measurement, or some other uncertainties in converting the observed temperature rise to the frictional heat generation.

  18. The utilization of satellite data and dynamics in understanding and predicting global weather phenomena

    NASA Technical Reports Server (NTRS)

    Shirer, H. N. (Editor); Dutton, J. A. (Editor)

    1985-01-01

    A two layer spectral quasi-geostrophic model is used to simulate the effects of topography on the equilibria, the stability, and the long term evaluation of incipient unstable waves. The flow is forced by latitudinally dependent radiational heating. The nature of the form drag instability of high index equilibria is investigated. The proximity of the equilibrium shear to a resonant value is essential for the instability, provided the equilibrium occurs at a slightly stronger shear than resonance. The properties of the steady Hadley and Rossby required for a thermally forced rotating fluid on a sphere are further explained. An objective parameterization technique is developed for general nonlinear hydrodynamical systems. The typical structure is one in which the rates of change of the dependent variables depend on homogeneous quadratic and linear forms, as well as on inhomogeneous forcing terms. Also documented is a steady, axisymmetric model of the general circulation developed as a basis for climate stability studies. The model includes the effects of heating, rotation, and internal friction, but neglects topography. Included is further research on cloud street phenomena. Orientation angles and horizontal wavelengths of boundary layer rolls and cloud streets are determined from an analysis of a truncated spectral model of three dimensional shallow moist Boussinesq convection in a shearing environment is further explained. Relatively broadly spaced roll clouds have orientations for which the Fourier component of the roll perpendicular shear is nearly zero, but the second corresponds to narrowly spaced rolls having orientations for which the Fourier coefficients of both the perpendicular and the parallel components of the shear are nearly equal.

  19. Assembling of carbon nanotubes film responding to significant reduction wear and friction on steel surface

    NASA Astrophysics Data System (ADS)

    Zhang, Bin; Xue, Yong; Qiang, Li; Gao, Kaixong; Liu, Qiao; Yang, Baoping; Liang, Aiming; Zhang, Junyan

    2017-11-01

    Friction properties of carbon nanotubes have been widely studied and reported, however, the friction properties of carbon nanotubes related on state of itself. It is showing superlubricity under nanoscale, but indicates high shear adhesion as aligned carbon nanotube film. However, friction properties under high load (which is commonly in industry) of carbon nanotube films are seldom reported. In this paper, carbon nanotube films, via mechanical rubbing method, were obtained and its tribology properties were investigated at high load of 5 to 15 N. Though different couple pairs were employed, the friction coefficients of carbon nanotube films are nearly the same. Compared with bare stainless steel, friction coefficients and wear rates under carbon nanotube films lubrication reduced to, at least, 1/5 and 1/(4.3-14.5), respectively. Friction test as well as structure study were carried out to reveal the mechanism of the significant reduction wear and friction on steel surface. One can conclude that sliding and densifying of carbon nanotubes at sliding interface contribute to the sufficient decrease of friction coefficients and wear rates.

  20. Contact line friction of electrowetting actuated viscous droplets

    NASA Astrophysics Data System (ADS)

    Vo, Quoc; Tran, Tuan

    2018-06-01

    We examine the contact line friction coefficient of viscous droplets spreading and retracting on solid surfaces immersed in ambient oil. By using the electrowetting effect, we generate a surface tension imbalance to drive the spreading and the retracting motion of the three-phase contact line (TCL). We show that neither the driving force intensity nor TCL direction significantly influences the friction coefficient. Instead, the friction coefficient depends equivalently on the viscosity of liquid droplets and the surrounding oil. We derive and experimentally verify a transient timescale that can be used to characterize both the spreading and retracting dynamics.

  1. Effect of T6 treatment on the coefficient of friction of Al25Mg2Si2Cu4Fe alloy

    NASA Astrophysics Data System (ADS)

    Sondur, D. G.; Mallapur, D. G.; Udupa, K. Rajendra

    2018-04-01

    Effect of T6 treatment on the coefficient of friction of Al25Mg2Si2Cu4Fe alloy was evaluated by conducting wear test on pin on disc wear testing machine. Wear test parameters such as the load and the speed were varied by keeping one constant and varying the other respectively. It was observed that the coefficient of friction is high for as cast condition due to the brittle microstructure. After T6 heat treatment the precipitates formed such as the Chinese scripts and the Mg2Si blocks got modified that lead to improvement in the hardness and the wear resistance. This reduces the coefficient of friction.

  2. Friction and wear of plasma-deposited diamond films

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa; Wu, Richard L. C.; Garscadden, Alan; Barnes, Paul N.; Jackson, Howard E.

    1993-01-01

    Reciprocating sliding friction experiments in humid air and in dry nitrogen and unidirectional sliding friction experiments in ultrahigh vacuum were conducted with a natural diamond pin in contact with microwave-plasma-deposited diamond films. Diamond films with a surface roughness (R rms) ranging from 15 to 160 nm were produced by microwave-plasma-assisted chemical vapor deposition. In humid air and in dry nitrogen, abrasion occurred when the diamond pin made grooves in the surfaces of diamond films, and thus the initial coefficients of friction increased with increasing initial surface roughness. The equilibrium coefficients of friction were independent of the initial surface roughness of the diamond films. In vacuum the friction for diamond films contacting a diamond pin arose primarily from adhesion between the sliding surfaces. In these cases, the initial and equilibrium coefficients of friction were independent of the initial surface roughness of the diamond films. The equilibrium coefficients of friction were 0.02 to 0.04 in humid air and in dry nitrogen, but 1.5 to 1.8 in vacuum. The wear factor of the diamond films depended on the initial surface roughness, regardless of environment; it increased with increasing initial surface roughness. The wear factors were considerably higher in vacuum than in humid air and in dry nitrogen.

  3. Nonlinear shear wave interaction at a frictional interface: energy dissipation and generation of harmonics.

    PubMed

    Meziane, A; Norris, A N; Shuvalov, A L

    2011-10-01

    Analytical and numerical modeling of the nonlinear interaction of shear wave with a frictional interface is presented. The system studied is composed of two homogeneous and isotropic elastic solids, brought into frictional contact by remote normal compression. A shear wave, either time harmonic or a narrow band pulse, is incident normal to the interface and propagates through the contact. Two friction laws are considered and the influence on interface behavior is investigated: Coulomb's law with a constant friction coefficient and a slip-weakening friction law which involves static and dynamic friction coefficients. The relationship between the nonlinear harmonics and the dissipated energy, and the dependence on the contact dynamics (friction law, sliding, and tangential stress) and on the normal contact stress are examined in detail. The analytical and numerical results indicate universal type laws for the amplitude of the higher harmonics and for the dissipated energy, properly non-dimensionalized in terms of the pre-stress, the friction coefficient and the incident amplitude. The results suggest that measurements of higher harmonics can be used to quantify friction and dissipation effects of a sliding interface. © 2011 Acoustical Society of America

  4. Adhesion and friction in gecko toe attachment and detachment

    PubMed Central

    Tian, Yu; Pesika, Noshir; Zeng, Hongbo; Rosenberg, Kenny; Zhao, Boxin; McGuiggan, Patricia; Autumn, Kellar; Israelachvili, Jacob

    2006-01-01

    Geckos can run rapidly on walls and ceilings, requiring high friction forces (on walls) and adhesion forces (on ceilings), with typical step intervals of ≈20 ms. The rapid switching between gecko foot attachment and detachment is analyzed theoretically based on a tape model that incorporates the adhesion and friction forces originating from the van der Waals forces between the submicron-sized spatulae and the substrate, which are controlled by the (macroscopic) actions of the gecko toes. The pulling force of a spatula along its shaft with an angle θ between 0 and 90° to the substrate, has a “normal adhesion force” contribution, produced at the spatula-substrate bifurcation zone, and a “lateral friction force” contribution from the part of spatula still in contact with the substrate. High net friction and adhesion forces on the whole gecko are obtained by rolling down and gripping the toes inward to realize small pulling angles θ between the large number of spatulae in contact with the substrate. To detach, the high adhesion/friction is rapidly reduced to a very low value by rolling the toes upward and backward, which, mediated by the lever function of the setal shaft, peels the spatulae off perpendicularly from the substrates. By these mechanisms, both the adhesion and friction forces of geckos can be changed over three orders of magnitude, allowing for the swift attachment and detachment during gecko motion. The results have obvious implications for the fabrication of dry adhesives and robotic systems inspired by the gecko's locomotion mechanism. PMID:17148600

  5. Surface Design and Engineering Toward Wear-Resistant, Self-Lubricating Diamond Films and Coatings

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa

    1999-01-01

    The tribological properties of chemical-vapor-deposited (CVD) diamond films vary with the environment, possessing a Jekyll-and-Hyde character. CVD diamond has low coefficient of friction and high wear resistance in air but high coefficient of friction and low wear resistance in vacuum. Improving the tribological functionality of materials (such as achieving low friction and good wear resistance) was an aim of this investigation. Three studies on the surface design, surface engineering, and tribology of CVD diamond have shown that its friction and wear are significantly reduced in ultrahigh vacuum. The main criteria for judging whether diamond films are an effective wear-resistant, self-lubricating material were coefficient of friction and wear rate, which must be less than 0.1 and on the order of 10(exp 6) cu mm/N(dot)m, respectively. In the first study the presence of a thin film (less than 1 micron thick) of amorphous, nondiamond carbon (hydrogenated carbon, also called diamondlike carbon or DLC) on CVD diamond greatly decreased the coefficient of friction and the wear rate. Therefore, a thin DLC film on CVD diamond can be an effective wear-resistant, lubricating coating in ultrahigh vacuum. In the second study the presence of an amorphous, nondiamond carbon surface layer formed on CVD diamond by ion implantation significantly reduced the coefficient of friction and the wear rate in ultrahigh vacuum. Therefore, such surface layers are acceptable for effective self-lubricating, wear-resistant applications of CVD diamond. In the third study CVD diamond in contact with cubic boron nitride exhibited low coefficient of friction in ultra high vacuum. Therefore, this materials combination can provide an effective self-lubricating, wear-resistant couple in ultrahigh vacuum.

  6. Tribological properties of hydrophilic polymer brushes under wet conditions.

    PubMed

    Kobayashi, Motoyasu; Takahara, Atsushi

    2010-08-01

    This article demonstrates a water-lubrication system using high-density hydrophilic polymer brushes consisting of 2,3-dehydroxypropyl methacrylate (DHMA), vinyl alcohol, oligo(ethylene glycol)methyl ether methacrylate, 2-(methacryloyloxy)ethyltrimethylammonium chloride (MTAC), 3-sulfopropyl methacrylate potassium salt (SPMK), and 2-methacryloyloxyethyl phosphorylcholine (MPC) prepared by surface-initiated controlled radical polymerization. Macroscopic frictional properties of brush surfaces were characterized by sliding a glass ball probe in water using a ball-on-plate type tribotester under the load of 0.1-0.49 N at the sliding velocity of 10(-5)-10(-1) m s(-1) at 298 K. A poly(DHMA) brush showed a relatively larger friction coefficient in water, whereas the polyelectrolyte brushes, such as poly(SPMK) and poly(MPC), revealed significantly low friction coefficients below 0.02 in water and in humid air conditions. A drastic reduction in the friction coefficient of polyelectrolyte brushes in aqueous solution was observed at around 10(-3)-10(-2) m s(-1) owing to the hydrodynamic lubrication effect, however, an increase in salt concentration in the aqueous solution led to the increase in the friction coefficients of poly(MTAC) and poly(SPMK) brushes. The poly(SPMK) brush showed a stable and low friction coefficient in water even after sliding over 450 friction cycles, indicating a good wear resistance of the brush film. Copyright 2010 The Japan Chemical Journal Forum and Wiley Periodicals, Inc.

  7. Double Fourier Harmonic Balance Method for Nonlinear Oscillators by Means of Bessel Series

    DTIC Science & Technology

    2014-10-16

    at the same angle to the horizontal, so that the two ramps form a V-shape. In the absence of rolling friction or air drag , the ball rolls a distance...Marichev, Integrals and Series Volume 2: Special Functions, translated by N.M. Queen (Gordon & Breach, New York, 1986). [9] V. Méndez, C. Sans, D

  8. Indentation versus Rolling: Dependence of Adhesion on Contact Geometry for Biomimetic Structures.

    PubMed

    Moyle, Nichole; He, Zhenping; Wu, Haibin; Hui, Chung-Yuen; Jagota, Anand

    2018-04-03

    Numerous biomimetic structures made from elastomeric materials have been developed to produce enhancement in properties such as adhesion, static friction, and sliding friction. As a property, one expects adhesion to be represented by an energy per unit area that is usually sensitive to the combination of shear and normal stresses at the crack front but is otherwise dependent only on the two elastic materials that meet at the interface. More specifically, one would expect that adhesion measured by indentation (a popular and convenient technique) could be used to predict adhesion hysteresis in the more practically important rolling geometry. Previously, a structure with a film-terminated fibrillar geometry exhibited dramatic enhancement of adhesion by a crack-trapping mechanism during indentation with a rigid sphere. Roughly isotropic structures such as the fibrillar geometry show a strong correlation between adhesion enhancement in indentation versus adhesion hysteresis in rolling. However, anisotropic structures, such as a film-terminated ridge-channel geometry, surprisingly show a dramatic divergence between adhesion measured by indentation versus rolling. We study this experimentally and theoretically, first comparing the adhesion of the anisotropic ridge-channel structure to the roughly isotropic fibrillar structure during indentation with a rigid sphere, where only the isotropic structure shows adhesion enhancement. Second, we examine in more detail the anomalous anisotropic film-terminated ridge-channel structure during indentation with a rigid sphere versus rolling to show why these structures show a dramatic adhesion enhancement for the rolling case and no adhesion enhancement for indentation.

  9. Determination of the coefficient of dynamic friction between coatings of alumina and metallic materials

    NASA Astrophysics Data System (ADS)

    Santos, A.; Córdoba, E.; Ramírez, Z.; Sierra, C.; Ortega, Y.

    2017-12-01

    This project aims to determine the coefficient of dynamic friction between micrometric size coatings of alumina and metallic materials (Steel and aluminium); the methodology used to achieve the proposed objective consisted of 4 phases, in the first one was developed a procedure that allowed, from a Pin on Disk machine built based on the specifications given by the ASTM G99-05 standard (Standard test method for wear tests with a Pin on Disk machine), to determine the coefficient of dynamic friction between two materials in contact; subsequently the methodology was verified through tests between steel-steel and steel-aluminium, due to these values are widely reported in the literature; as a third step, deposits of alumina particles of micrometric size were made on a steel substrate through thermal spraying by flame; finally, the tests were carried out between pins of steel of aluminium and alumina coating to determine the coefficients of dynamic friction between these two surfaces. The results of the project allowed to verify that the developed methodology is valid to obtain coefficients of dynamic friction between surfaces in contact since the percentages of error were of 3.5% and 2.1% for steel-steel and aluminium-steel, respectively; additionally, it was found that the coefficient of friction between steel-alumina coatings is 0.36 and aluminium-alumina coating is 0.25.

  10. Friction Coefficient Determination by Electrical Resistance Measurements

    ERIC Educational Resources Information Center

    Tunyagi, A.; Kandrai, K.; Fülöp, Z.; Kapusi, Z.; Simon, A.

    2018-01-01

    A simple and low-cost, DIY-type, Arduino-driven experiment is presented for the study of friction and measurement of the friction coefficient, using a conductive rubber cord as a force sensor. It is proposed for high-school or college/university-level students. We strongly believe that it is worthwhile planning, designing and performing Arduino…

  11. An Application of Calculus: Optimum Parabolic Path Problem

    ERIC Educational Resources Information Center

    Atasever, Merve; Pakdemirli, Mehmet; Yurtsever, Hasan Ali

    2009-01-01

    A practical and technological application of calculus problem is posed to motivate freshman students or junior high school students. A variable coefficient of friction is used in modelling air friction. The case in which the coefficient of friction is a decreasing function of altitude is considered. The optimum parabolic path for a flying object…

  12. Computer-aided analysis and design of the shape rolling process for producing turbine engine airfoils

    NASA Technical Reports Server (NTRS)

    Lahoti, G. D.; Akgerman, N.; Altan, T.

    1978-01-01

    Mild steel (AISI 1018) was selected as model cold-rolling material and Ti-6Al-4V and INCONEL 718 were selected as typical hot-rolling and cold-rolling alloys, respectively. The flow stress and workability of these alloys were characterized and friction factor at the roll/workpiece interface was determined at their respective working conditions by conducting ring tests. Computer-aided mathematical models for predicting metal flow and stresses, and for simulating the shape-rolling process were developed. These models utilize the upper-bound and the slab methods of analysis, and are capable of predicting the lateral spread, roll-separating force, roll torque and local stresses, strains and strain rates. This computer-aided design (CAD) system is also capable of simulating the actual rolling process and thereby designing roll-pass schedule in rolling of an airfoil or similar shape. The predictions from the CAD system were verified with respect to cold rolling of mild steel plates. The system is being applied to cold and hot isothermal rolling of an airfoil shape, and will be verified with respect to laboratory experiments under controlled conditions.

  13. A km-scale "triaxial experiment" reveals the extreme mechanical weakness and anisotropy of mica-schists (Grandes Rousses Massif, France)

    NASA Astrophysics Data System (ADS)

    Bolognesi, Francesca; Bistacchi, Andrea

    2018-02-01

    The development of Andersonian faults is predicted, according to theory and experiments, for brittle/frictional deformation occurring in a homogeneous medium. In contrast, in an anisotropic medium it is possible to observe fault nucleation and propagation that is non-Andersonian in geometry and kinematics. Here, we consider post-metamorphic brittle/frictional deformation in the mechanically anisotropic mylonitic mica-schists of the Grandes Rousse Massif (France). The role of the mylonitic foliation (and of any other source of mechanical anisotropy) in brittle/frictional deformation is a function of orientation and friction angle. According to the relative orientation of principal stress axes and foliation, a foliation characterized by a certain coefficient of friction will be utilized or not for the nucleation and propagation of brittle/frictional fractures and faults. If the foliation is not utilized, the rock behaves as if it was isotropic, and Andersonian geometry and kinematics can be observed. If the foliation is utilized, the deviatoric stress magnitude is buffered and Andersonian faults/fractures cannot develop. In a narrow transition regime, both Andersonian and non-Andersonian structures can be observed. We apply stress inversion and slip tendency analysis to determine the critical angle for failure of the metamorphic foliation of the Grandes Rousses schists, defined as the limit angle between the foliation and principal stress axes for which the foliation was brittlely reactivated. This approach allows defining the ratio of the coefficient of internal friction for failure along the mylonitic foliation to the isotropic coefficient of friction. Thus, the study area can be seen as a km-scale triaxial experiment that allows measuring the degree of mechanical anisotropy of the mylonitic mica-schists. In this way, we infer a coefficient of friction μweak = 0.14 for brittle-frictional failure of the foliation, or 20 % of the isotropic coefficient of internal friction.

  14. Role of friction in vertically oscillated granular materials

    NASA Astrophysics Data System (ADS)

    Moon, Sung Joon; Swift, J. B.; Swinney, Harry L.

    2002-11-01

    We use a previously validated molecular dynamics simulation of vertically oscillated granular layers to study how the contact friction affects standing wave patterns. Our collision model follows Walton(O. R. Walton, in Particulate Two-Phase Flow), edited by M. C. Roco (Butterworth-Heinemann, Boston, 1993), p. 884.: Dissipation in the normal component of colliding velocity is characterized by the normal coefficient of restitution e (0<= e < 1), and interaction in the tangential component by the tangential coefficient of restitution β = β(μ,e,Φ), where -1<= β <= β_0, μ is the static coefficient of friction on the surface of grains, Φ is the collision angle, and β0 corresponds to the crossover between static and sliding friction. We varied the above parameters independently for the grain-grain collisions and for the grain-wall collisions. The grain-grain friction changes the phase diagram of patterns significantly, and the patterns become fuzzy as the friction is decreased. The grain-wall friction is necessary to stabilize the patterns.

  15. The Friction of Piston Rings

    NASA Technical Reports Server (NTRS)

    Tischbein, Hans W

    1945-01-01

    The coefficient of friction between piston ring and cylinder liner was measured in relation to gliding acceleration, pressure, temperature, quantity of oil and quality of oil. Comparing former lubrication-technical tests, conclusions were drawn as to the state of friction. The coefficients of friction as figured out according to the hydrodynamic theory were compared with those measured by tests. Special tests were made on "oiliness." The highest permissible pressure was measured and the ratio of pressure discussed.

  16. Structure and Mechanical Properties of Friction Stir Weld Joints of Magnesium Alloy AZ31

    NASA Astrophysics Data System (ADS)

    Nagasawa, T.; Otsuka, M.; Yokota, T.; Ueki, T.

    The applicability of friction stir welding to hot rolled sheet of commercial magnesium alloy AZ31 plates has been investigated. Friction stir weld joint showed mechanical strength comparable to that of base material, though the ductility remained at one half of that of the latter. The results are consistent with the microstructure which is characterized by a fine grained bond layer bounded by-intermediate grained base metals. It is found that both anodizing treatment and insertion of aluminum foil between batting faces do not degrade the joint properties at all. The results suggest that friction stir welding can be potentially applied to magnesium alloy.

  17. Kinetic theory for identical, frictional, nearly elastic disks

    NASA Astrophysics Data System (ADS)

    Yoon, David K.; Jenkins, James T.

    2005-08-01

    We develop kinetic theory for slightly frictional and nearly elastic disks. The tangential interaction is modeled by two parameters: a Coulomb friction coefficient and a tangential restitution coefficient. Assuming Maxwellian velocity distribution functions for both translational and rotational velocities, we derive exact expressions for the rates of dissipation of translational and rotational fluctuation energies per unit area. Setting the rotational dissipation rate to zero, as in a steady, homogeneous shearing flow, we find the ratio of the rotational temperature to the translational. In the case of small friction, this is used to determine an effective coefficient of normal restitution. In this way, the effects of small friction can be incorporated into the theory, thereby dispensing with the need to separately consider the complete balances for the momentum and the energy of the rotational motion.

  18. Friction and wear of single-crystal and polycrystalline maganese-zinc ferrite in contact with various metals

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1977-01-01

    Sliding friction experiments were conducted with single-crystal (SCF) and hot-pressed polycrystalline (HPF) manganese-zinc ferrite in contact with various metals. Results indicate that the coefficients of friction for SCF and HPF are related to the relative chemical activity of those metals in high vacuum. The more active the metal, the higher the coefficient of friction. The coefficients of friction for both SCF and HPF were the same and much higher in vacuum than in argon at atmospheric pressure. All the metals tested transferred to the surface of both SCF and HPF in sliding. Both SCF and HPF exhibited cracking and fracture with sliding. Cracking in SCF is dependent on crystallographic characteristics. In HPF, cracking depends on the orientation of the individual crystallites.

  19. Determination of the static friction coefficient from circular motion

    NASA Astrophysics Data System (ADS)

    Molina-Bolívar, J. A.; Cabrerizo-Vílchez, M. A.

    2014-07-01

    This paper describes a physics laboratory exercise for determining the coefficient of static friction between two surfaces. The circular motion of a coin placed on the surface of a rotating turntable has been studied. For this purpose, the motion is recorded with a high-speed digital video camera recording at 240 frames s-1, and the videos are analyzed using Tracker video-analysis software, allowing the students to dynamically model the motion of the coin. The students have to obtain the static friction coefficient by comparing the centripetal and maximum static friction forces. The experiment only requires simple and inexpensive materials. The dynamics of circular motion and static friction forces are difficult for many students to understand. The proposed laboratory exercise addresses these topics, which are relevant to the physics curriculum.

  20. Frictional properties of single crystals HMX, RDX and PETN explosives.

    PubMed

    Wu, Y Q; Huang, F L

    2010-11-15

    The frictional properties of single crystals of cyclotetramethylene tetranitramine (HMX), cyclotrimethylene trinitramine (RDX) and pentaerythritol tetranitrate (PETN) secondary explosives are examined using a sensitive friction machine. The explosive crystals used for the measurements are at least 3.5 mm wide. The friction coefficients between crystals of the same explosive (i.e., HMX on HMX, etc.), crystals of different explosives (i.e., HMX on RDX, etc.), and each explosive and a well-polished gauge steel surface are determined. The frictional surfaces are also studied under an environmental scanning electron microscope (ESEM) to analyze surface microstructural changes under increasing loading forces. The friction coefficients vary considerably with increasing normal loading forces and are particularly sensitive to slider shapes, crystal roughness and the mechanical properties of both the slider and the sample. With increasing loading forces, most friction experiments show surface damage, consisting of grooves, debris, and nano-particles, on both the slider and sample. In some cases, a strong evidence of a localized molten state is found in the central region of the friction track. Possible mechanisms that affect the friction coefficient are discussed based on microscopic observations. Copyright © 2010 Elsevier B.V. All rights reserved.

  1. Steady and transient sliding under rate-and-state friction

    NASA Astrophysics Data System (ADS)

    Putelat, Thibaut; Dawes, Jonathan H. P.

    2015-05-01

    The physics of dry friction is often modelled by assuming that static and kinetic frictional forces can be represented by a pair of coefficients usually referred to as μs and μk, respectively. In this paper we re-examine this discontinuous dichotomy and relate it quantitatively to the more general, and smooth, framework of rate-and-state friction. This is important because it enables us to link the ideas behind the widely used static and dynamic coefficients to the more complex concepts that lie behind the rate-and-state framework. Further, we introduce a generic framework for rate-and-state friction that unifies different approaches found in the literature. We consider specific dynamical models for the motion of a rigid block sliding on an inclined surface. In the Coulomb model with constant dynamic friction coefficient, sliding at constant velocity is not possible. In the rate-and-state formalism steady sliding states exist, and analysing their existence and stability enables us to show that the static friction coefficient μs should be interpreted as the local maximum at very small slip rates of the steady state rate-and-state friction law. Next, we revisit the often-cited experiments of Rabinowicz (J. Appl. Phys., 22:1373-1379, 1951). Rabinowicz further developed the idea of static and kinetic friction by proposing that the friction coefficient maintains its higher and static value μs over a persistence length before dropping to the value μk. We show that there is a natural identification of the persistence length with the distance that the block slips as measured along the stable manifold of the saddle point equilibrium in the phase space of the rate-and-state dynamics. This enables us explicitly to define μs in terms of the rate-and-state variables and hence link Rabinowicz's ideas to rate-and-state friction laws. This stable manifold naturally separates two basins of attraction in the phase space: initial conditions in the first one lead to the block eventually stopping, while in the second basin of attraction the sliding motion continues indefinitely. We show that a second definition of μs is possible, compatible with the first one, as the weighted average of the rate-and-state friction coefficient over the time the block is in motion.

  2. Friction torque in thrust ball bearings grease lubricated

    NASA Astrophysics Data System (ADS)

    Ianuş, G.; Dumitraşcu, A. C.; Cârlescu, V.; Olaru, D. N.

    2016-08-01

    The authors investigated experimentally and theoretically the friction torque in a modified thrust ball bearing having only 3 balls operating at low axial load and lubricated with NGLI-00 and NGLI-2 greases. The experiments were made by using spin-down methodology and the results were compared with the theoretical values based on Biboulet&Houpert's rolling friction equations. Also, the results were compared with the theoretical values obtained with SKF friction model adapted for 3 balls. A very good correlation between experiments and Biboulet_&_Houpert's predicted results was obtained for the two greases. Also was observed that the theoretical values for the friction torque calculated with SKF model adapted for a thrust ball bearing having only 3 balls are smaller that the experimental values.

  3. Effects of high-temperature hydrogenation treatment on sliding friction and wear behavior of carbide-derived carbon films.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erdemir, A.; Kovalchenko, A.; McNallan, M. J.

    2004-01-01

    In this study, we investigated the effects of a high-temperature hydrogenation treatment on the sliding friction and wear behavior of nanostructured carbide-derived carbon (CDC) films in dry nitrogen and humid air environments. These films are produced on the surfaces of silicon carbide substrates by reacting the carbide phase with chlorine or chlorine-hydrogen gas mixtures at 1000 to 1100 C in a sealed tube furnace. The typical friction coefficients of CDC films in open air are in the range of 0.2 to 0.25, but in dry nitrogen, the friction coefficients are 0.15. In an effort to achieve lower friction on CDCmore » films, we developed and used a special hydrogenation process that was proven to be very effective in lowering friction of CDC films produced on SiC substrates. Specifically, the films that were post-hydrogen-treated exhibited friction coefficients as low as 0.03 in dry nitrogen, while the friction coefficients in humid air were 0.2. The wear of Si{sub 3}N{sub 4} counterface balls was hard to measure after the tests, while shallow wear tracks had formed on CDC films on SiC disks. Detailed mechanical and structural characterizations of the CDC films and sliding contact surfaces were done using a series of analytical techniques and these findings were correlated with the friction and wear behaviors of as-produced and hydrogen-treated CDC films.« less

  4. Ferrographic analysis of wear debris generated in accelerated rolling element fatigue tests

    NASA Technical Reports Server (NTRS)

    Jones, W. R., Jr.; Parker, R. J.

    1977-01-01

    Ferrographic analysis was used to determine the types and quantities of wear particles generated during accelerated rolling contact fatigue tests. The NASA five-ball rolling contact fatigue tester was used. Ball specimens were made of AMS 5749, a corrosion-resistant high-temperature bearing steel. The lubricant was a super-refined naphthenic mineral oil. Conditions included a maximum Hertz stress of 5.52 billion Pa and a shaft speed of 10,000 rpm. Four types of wear particles were observed: normal rubbing wear particles, fatigue spall particles, spheres, and friction polymer.

  5. The Influence of Friction Between Football Helmet and Jersey Materials on Force: A Consideration for Sport Safety.

    PubMed

    Rossi, Anthony M; Claiborne, Tina L; Thompson, Gregory B; Todaro, Stacey

    2016-09-01

    The pocketing effect of helmet padding helps to dissipate forces experienced by the head, but if the player's helmet remains stationary in an opponent's shoulder pads, the compressive force on the cervical spine may increase. To (1) measure the coefficient of static friction between different football helmet finishes and football jersey fabrics and (2) calculate the potential amount of force on a player's helmet due to the amount of friction present. Cross-sectional study. Laboratory. Helmets with different finishes and different football jersey fabrics. The coefficient of friction was determined for 2 helmet samples (glossy and matte), 3 football jerseys (collegiate, high school, and youth), and 3 types of jersey numbers (silkscreened, sublimated, and stitched on) using the TAPPI T 815 standard method. These measurements determined which helmet-to-helmet, helmet-to-jersey number, and helmet-to-jersey material combination resulted in the least amount of static friction. The glossy helmet versus glossy helmet combination produced a greater amount of static friction than the other 2 helmet combinations (P = .013). The glossy helmet versus collegiate jersey combination produced a greater amount of static friction than the other helmet-to-jersey material combinations (P < .01). The glossy helmet versus silkscreened numbers combination produced a greater amount of static friction than the other helmet-to-jersey number combinations (P < .01). The force of static friction experienced during collisions can be clinically relevant. Conditions with higher coefficients of static friction result in greater forces. In this study, the highest coefficient of friction (glossy helmet versus silkscreened number) could increase the forces on the player's helmet by 3553.88 N when compared with other helmet-to-jersey combinations. Our results indicate that the makeup of helmet and uniform materials may affect sport safety.

  6. Nonlinear Friction Compensation of Ball Screw Driven Stage Based on Variable Natural Length Spring Model and Disturbance Observer

    NASA Astrophysics Data System (ADS)

    Asaumi, Hiroyoshi; Fujimoto, Hiroshi

    Ball screw driven stages are used for industrial equipments such as machine tools and semiconductor equipments. Fast and precise positioning is necessary to enhance productivity and microfabrication technology of the system. The rolling friction of the ball screw driven stage deteriorate the positioning performance. Therefore, the control system based on the friction model is necessary. In this paper, we propose variable natural length spring model (VNLS model) as the friction model. VNLS model is simple and easy to implement as friction controller. Next, we propose multi variable natural length spring model (MVNLS model) as the friction model. MVNLS model can represent friction characteristic of the stage precisely. Moreover, the control system based on MVNLS model and disturbance observer is proposed. Finally, the simulation results and experimental results show the advantages of the proposed method.

  7. Measurements of Heat-Transfer and Friction Coefficients for Helium Flowing in a Tube at Surface Temperatures up to 5900 Deg R

    NASA Technical Reports Server (NTRS)

    Taylor, Maynard F.; Kirchgessner, Thomas A.

    1959-01-01

    Measurements of average heat transfer and friction coefficients and local heat transfer coefficients were made with helium flowing through electrically heated smooth tubes with length-diameter ratios of 60 and 92 for the following range of conditions: Average surface temperature from 1457 to 4533 R, Reynolds numbe r from 3230 to 60,000, heat flux up to 583,200 Btu per hr per ft2 of heat transfer area, and exit Mach numbe r up to 1.0. The results indicate that, in the turbulent range of Reynolds number, good correlation of the local heat transfer coefficients is obtained when the physical properties and density of helium are evaluated at the surface temperature. The average heat transfer coefficients are best correlated on the basis that the coefficient varies with [1 + (L/D))(sup -0,7)] and that the physical properties and density are evaluated at the surface temperature. The average friction coefficients for the tests with no heat addition are in complete agreement with the Karman-Nikuradse line. The average friction coefficients for heat addition are in poor agreement with the accepted line.

  8. A finite element study on rail corrugation based on saturated creep force-induced self-excited vibration of a wheelset-track system

    NASA Astrophysics Data System (ADS)

    Chen, G. X.; Zhou, Z. R.; Ouyang, H.; Jin, X. S.; Zhu, M. H.; Liu, Q. Y.

    2010-10-01

    The present work proposes friction coupling at the wheel-rail interface as the mechanism for formation of rail corrugation. Stability of a wheelset-track system is studied using the finite element complex eigenvalue method. Two models for a wheelset-track system on a tight curved track and on a straight track are established. In these two models, motion of the wheelset is coupled with that of the rail by friction. Creep force at the interface is assumed to become saturated and approximately equal to friction force, which is equal to the normal contact force multiplied by dynamic coefficient of friction. The rail is supported by vertical and lateral springs and dampers at the positions of sleepers. Numerical results show that there is a strong propensity of self-excited vibration of the wheelset-track system when the friction coefficient is larger than 0.21. Some unstable frequencies fall in the range 60-1200 Hz, which correspond to frequencies of rail corrugation. Parameter sensitivity analysis shows that the dynamic coefficient of friction, spring stiffness and damping of the sleeper supports all have important influences on the rail corrugation formation. Bringing the friction coefficient below a certain level can suppress or eliminate rail corrugation.

  9. Friction behavior of 304 stainless steel of varying hardness lubricated with benzene and some benzyl structures

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.

    1974-01-01

    The lubricating properties of some benzyl and benzene structures were determined by using 304 stainless steel surfaces strained to various hardness. Friction coefficients and wear track widths were measured with a Bowden-Leben type friction apparatus by using a pin-on-disk specimen configuration. Results obtained indicate that benzyl monosulfide, dibenzyl disulfide, and benzyl alcohol resulted in the lowest friction coefficients for 304 stainless steel, while benzyl ether provided the least surface protection and gave the highest friction. Strainhardening of the 304 stainless steel prior to sliding resulted in reduced friction in dry sliding. With benzyl monosulfide, dibenzyl disulfide, and benzyl alcohol changes in 304 stainless steel hardness had no effect upon friction behavior.

  10. Evaluation of Wear Resistance of Friction Materials Prepared by Granulation.

    PubMed

    Ma, Yunhai; Liu, Yucheng; Menon, Carlo; Tong, Jin

    2015-10-21

    The tribological properties of friction materials prepared by hot-pressing pellets of different sizes were experimentally investigated. Friction and wear tests of the specimens were performed and morphological analysis was carried out by investigating images acquired with both scanning electron and confocal laser microscopes. The highest friction coefficient of friction materials was obtained with pellets having 1-5 mm size. The lowest wear rate was obtained with pellets having 8-10 mm size. Specimens processed by mixing pellets of different sizes had the highest density and the lowest roughness and were the least expensive to fabricate. The results show that granulation generally enabled increasing the friction coefficient, decreasing the wear rate, and reducing the number of defects on the surface of friction materials.

  11. The influence of bed friction variability due to land cover on storm-driven barrier island morphodynamics

    USGS Publications Warehouse

    Passeri, Davina L.; Long, Joseph W.; Plant, Nathaniel G.; Bilskie, Matthew V.; Hagen, Scott C.

    2018-01-01

    Variations in bed friction due to land cover type have the potential to influence morphologic change during storm events; the importance of these variations can be studied through numerical simulation and experimentation at locations with sufficient observational data to initialize realistic scenarios, evaluate model accuracy and guide interpretations. Two-dimensional in the horizontal plane (2DH) morphodynamic (XBeach) simulations were conducted to assess morphodynamic sensitivity to spatially varying bed friction at Dauphin Island, AL using hurricanes Ivan (2004) and Katrina (2005) as experimental test cases. For each storm, three bed friction scenarios were simulated: (1) a constant Chezy coefficient across land and water, (2) a constant Chezy coefficient across land and depth-dependent Chezy coefficients across water, and (3) spatially varying Chezy coefficients across land based on land use/land cover (LULC) data and depth-dependent Chezy coefficients across water. Modeled post-storm bed elevations were compared qualitatively and quantitatively with post-storm lidar data. Results showed that implementing spatially varying bed friction influenced the ability of XBeach to accurately simulate morphologic change during both storms. Accounting for frictional effects due to large-scale variations in vegetation and development reduced cross-barrier sediment transport and captured overwash and breaching more accurately. Model output from the spatially varying friction scenarios was used to examine the need for an existing sediment transport limiter, the influence of pre-storm topography and the effects of water level gradients on storm-driven morphodynamics.

  12. Snowball gouge-aggregates formed in experimental fault gouges at seismic slip rates

    NASA Astrophysics Data System (ADS)

    Kim, J. H.; Ree, J. H.; Hirose, T.; Yang, K.; Kim, J. W.

    2015-12-01

    Clay-clast aggregates (CCA) have commonly been reported from experimental and natural fault gouges, but their formation process and mechanical meaning are not so clear. We call CCA snowball gouge aggregate (SGA) since its formation process is similar to that of snowball (see below) and CCA-like structure has been reported also from pure quartz and pure calcite gouges. Here, we discuss the formation process of SGA and its implication for faulting from experimental results of simulated gouges. We conducted high-velocity rotary shear experiments on Ca-bentonite gouges at a normal stress of 1 MPa, slip rate of 1.31 m/s, room temperature and room humidity conditions. Ca-bentonite gouge consists of montmorillonite (>95%) and other minor minerals including quartz and plagioclase. Upon displacement, the friction abruptly increases to the 1st peak (friction coefficient μ≈ 0.7) followed by slip weakening to reach a steady state (μ≈ 0.25~0.3). The simulated fault zone can be divided into slip-localization zone (SLZ) and low-slip-rate zone (LSZ) based on grain size. Spherical SGAs with their size ranging from 1 to 100 μm occur only in LSZ, and their proportion is more than 90%. Two types of SGA occur; SGA with and without a central clast. Both types of SGA show a concentric layering defined by the alternation of pore-rich (1-1.5 μm thick) and pore-poor layers (1.5-2 μm thick). Clay minerals locally exhibit a preferred orientation with their basal plane parallel to the layer boundary. We interpret that the pore-poor layers are clay-accumulated layers formed by rolling of SGA nuclei, and pore-rich layers correspond to the boundary between accumulated clay layers. Water produced from dehydration of clays due to frictional heating presumably acts as an adhesion agent of clay minerals during rolling of SGA. Since the number of layers within each SGA represents the number of rolling, the minimum displacement estimated from the number of layers and layer thickness of the largest SGA (with a diameter of 100 μm) is about 2.7 mm (slip rate≈ 170 μm/s) which is much less than the total displacement of 20 m, suggesting that most of the displacement occurred along the SLZ. Our results imply that SGA can be formed only in subseismic slip-rate zones and that minimum displacement and slip rate can be estimated from SGA.

  13. Tribological behaviour and statistical experimental design of sintered iron-copper based composites

    NASA Astrophysics Data System (ADS)

    Popescu, Ileana Nicoleta; Ghiţă, Constantin; Bratu, Vasile; Palacios Navarro, Guillermo

    2013-11-01

    The sintered iron-copper based composites for automotive brake pads have a complex composite composition and should have good physical, mechanical and tribological characteristics. In this paper, we obtained frictional composites by Powder Metallurgy (P/M) technique and we have characterized them by microstructural and tribological point of view. The morphology of raw powders was determined by SEM and the surfaces of obtained sintered friction materials were analyzed by ESEM, EDS elemental and compo-images analyses. One lot of samples were tested on a "pin-on-disc" type wear machine under dry sliding conditions, at applied load between 3.5 and 11.5 × 10-1 MPa and 12.5 and 16.9 m/s relative speed in braking point at constant temperature. The other lot of samples were tested on an inertial test stand according to a methodology simulating the real conditions of dry friction, at a contact pressure of 2.5-3 MPa, at 300-1200 rpm. The most important characteristics required for sintered friction materials are high and stable friction coefficient during breaking and also, for high durability in service, must have: low wear, high corrosion resistance, high thermal conductivity, mechanical resistance and thermal stability at elevated temperature. Because of the tribological characteristics importance (wear rate and friction coefficient) of sintered iron-copper based composites, we predicted the tribological behaviour through statistical analysis. For the first lot of samples, the response variables Yi (represented by the wear rate and friction coefficient) have been correlated with x1 and x2 (the code value of applied load and relative speed in braking points, respectively) using a linear factorial design approach. We obtained brake friction materials with improved wear resistance characteristics and high and stable friction coefficients. It has been shown, through experimental data and obtained linear regression equations, that the sintered composites wear rate increases with increasing applied load and relative speed, but in the same conditions, the frictional coefficients slowly decrease.

  14. Local control of noise and vibration with KELTRACK™ friction modifier and Protector ® trackside application: an integrated solution

    NASA Astrophysics Data System (ADS)

    Eadie, D. T.; Santoro, M.; Powell, W.

    2003-10-01

    Wheel squeal is a source of continuing concern for many railroads and transits, as well as for their neighbours. The underlying mechanism for squeal noise has been well understood in the literature for some time. However an integrated abatement method addressing the underlying cause of the problem has not previously been reported. This paper describes practical experience using a water-based liquid Friction Modifier (KELTRACK™) applied using a top of rail trackside applicator (Portec Protector ®). The Friction Modifier and delivery equipment have been co-developed to provide an optimized product/delivery system that gives significant reduction of wheel squeal in curves. Wheels experiencing lateral creep in curves are subject to roll-slip oscillations as a result of the frictional characteristics of the interface layer between the wheel and rail. These roll-slip oscillations are amplified in the wheel web leading to the familiar squeal. Providing a thin film of material between the wheel and rail with positive friction characteristics can both in theory and practice greatly reduce the magnitude of these oscillations. The controlled intermediate friction characteristics of KELTRACK™ allow the material to be delivered to the top of both rails without compromising traction or braking. The positive friction aspects of the friction modifier are illustrated by published laboratory studies. Delivery of KELTRACK™ to the contact patch is achieved with a proprietary top of rail electric trackside applicator, the Portec Protector ®. The material is delivered to the top of both rails for optimum friction control. The integrated product/equipment technology is now successfully controlling noise at more than twenty transit sites. Typical sound level reduction is 10-15 dB, in some cases as high as 20 dB, depending on the initial sound level. Two case studies are presented illustrating the technology.

  15. Fluid mechanics and heat transfer spirally fluted tubing

    NASA Astrophysics Data System (ADS)

    Larue, J. C.; Libby, P. A.; Yampolsky, J. S.

    1981-08-01

    The objective of this program is to develop both a qualitative and a quantitative understanding of the fluid mechanics and heat transfer mechanisms that underlie the measured performance of the spirally fluted tubes under development at General Atomic. The reason for the interest in the spirally fluted tubes is that results to date have indicated three advantages to this tubing concept: The fabrication technique of rolling flutes on strip and subsequently spiralling and simultaneously welding the strip to form tubing results in low fabrication costs, approximately equal to those of commercially welded tubing. The heat transfer coefficient is increased without a concomitant increase of the friction coefficient on the inside of the tube. In single-phase axial flow of water, the helical flutes continuously induce rotation of the flow both within and without the tube as a result of the effect of curvature. An increase in condensation heat transfer on the outside of the tube is achieved. In a vertical orientation with fluid condensing on the outside of the helically fluted tube, the flutes provide a channel for draining the condensed fluid.

  16. Bottom friction models for shallow water equations: Manning’s roughness coefficient and small-scale bottom heterogeneity

    NASA Astrophysics Data System (ADS)

    Dyakonova, Tatyana; Khoperskov, Alexander

    2018-03-01

    The correct description of the surface water dynamics in the model of shallow water requires accounting for friction. To simulate a channel flow in the Chezy model the constant Manning roughness coefficient is frequently used. The Manning coefficient nM is an integral parameter which accounts for a large number of physical factors determining the flow braking. We used computational simulations in a shallow water model to determine the relationship between the Manning coefficient and the parameters of small-scale perturbations of a bottom in a long channel. Comparing the transverse water velocity profiles in the channel obtained in the models with a perturbed bottom without bottom friction and with bottom friction on a smooth bottom, we constructed the dependence of nM on the amplitude and spatial scale of perturbation of the bottom relief.

  17. Micro-mechanisms of Surface Defects Induced on Aluminum Alloys during Plastic Deformation at Elevated Temperatures

    NASA Astrophysics Data System (ADS)

    Gali, Olufisayo A.

    Near-surface deformed layers developed on aluminum alloys significantly influence the corrosion and tribological behavior as well as reduce the surface quality of the rolled aluminum. The evolution of the near-surface microstructures induced on magnesium containing aluminum alloys during thermomechanical processing has been investigated with the aim generating an understanding of the influence of individual forming parameters on its evolution and examine the microstructure of the roll coating induced on the mating steel roll through material transfer during rolling. The micro-mechanisms related to the various features of near-surface microstructure developed during tribological conditions of the simulated hot rolling process were identified. Thermomechanical processing experiments were performed with the aid of hot rolling (operating temperature: 550 to 460 °C, 4, 10 and 20 rolling pass schedules) and hot forming (operating temperature: 350 to 545 °C, strain rate: 4 x 10-2 s-1) tribo-simulators. The surface, near-surface features and material transfer induced during the elevated temperature plastic deformation were examined and characterized employing optical interferometry, SEM/EDS, FIB and TEM. Near-surface features characterized on the rolled aluminum alloys included; cracks, fractured intermetallic particles, aluminum nano-particles, oxide decorated grain boundaries, rolled-in oxides, shingles and blisters. These features were related to various individual rolling parameters which included, the work roll roughness, which induced the formation of shingles, rolling marks and were responsible for the redistribution of surface oxide and the enhancements of the depth of the near-surface damage. The enhanced stresses and strains experienced during rolling were related to the formation and propagation of cracks, the nanocrystalline structure of the near-surface layers and aluminum nano-particles. The mechanism of the evolution of the near-surface microstructure were determined to include grain boundary sliding which induced the cracks at the surface and subsurface of the alloy, magnesium diffusion to free surfaces, crack propagation from shear stresses and the shear strains inducing the nanocrystalline grain structure, the formation of shingles by the shear deformation of micro-wedges induced by the work roll grooves, and the deformation of this oxide covered micro-wedges inducing the rolled-in oxides. Magnesium diffusion to free surfaces was identified as inducing crack healing due to the formation of MgO within cracks and was responsible for the oxide decorated grain boundaries. An examination of the roll coating revealed a complex layered microstructure that was induced through tribo-chemical and mechanical entrapment mechanisms. The microstructure of the roll coating suggested that the work roll material and the rolled aluminum alloy were essential in determining its composition and structure. Subsequent hot forming processes revealed the rich oxide-layer of the near-surface microstructure was beneficial for reducing the coefficient of friction during tribological contact with the steel die. Damage to the microstructure include cracks induced from grain boundary sliding of near-surface grains and the formation of oxide fibres within cracks of the near-surface deformed layers.

  18. Adhesion, friction, and wear of a copper bicrystal with (111) and (210) grains

    NASA Technical Reports Server (NTRS)

    Brainard, W. A.; Buckley, D. H.

    1973-01-01

    Sliding friction experiments were conducted in air with polycrystalline copper and ruby riders sliding against a copper bicrystal. Friction coefficient was measured across the bicrystal surface, and the initiation of adhesive wear was examined with scanning electron microscopy. Results indicate a marked increase in friction coefficient as the copper rider crossed the grain boundary from the (111) plane to the (210) plane of the bicrystal. Adhesion, friction, and initiation of adhesive wear was notably different in the adjacent grains of differing orientation. A slip-band adhesion-generated fracture mechanism for wear particle formation is proposed.

  19. Consideration of Wear Rates at High Velocities

    DTIC Science & Technology

    2010-03-01

    Strain vs. Three-dimensional Model . . . . . . . . . . . . 57 3.11 Example Single Asperity Wear Rate Integral . . . . . . . . . . 58 4.1 Third Stage...Slipper Accumulated Frictional Heating . . . . . . 67 4.2 Surface Temperature Third Stage Slipper, ave=0.5 . . . . . . . 67 4.3 Melt Depth Example...64 A3S Coefficient for Frictional Heat Curve Fit, Third Stage Slipper 66 B3S Coefficient for Frictional Heat Curve Fit, Third

  20. Study on the friction of κ-carrageenan hydrogels in air and aqueous environments.

    PubMed

    Kozbial, Andrew; Li, Lei

    2014-03-01

    Understanding the friction mechanism of polysaccharide hydrogels, which is the key component of human cartilage that has very low friction coefficient, is critical to develop next generation artificial joint replacement materials. In this study, the friction of the polysaccharide κ-carrageenan hydrogel was investigated to elucidate the effect of external load, cross-linking density, velocity, and environment on friction. Our experimental results show that (1) coefficient of friction (COF) decreases with normal load in air and remains constant in water, (2) increasing cross-linking density concurrently increases friction and is proportional to Young's modulus, (3) COF increases with testing velocity in both air and water, and (4) friction is reduced in aqueous environment due to the lubricating effect of water. The underlying frictional mechanism is discussed on the basis of water transport from bulk to surface and a previously proposed "repulsion-adsorption" model. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Inertial frictional ratchets and their load bearing efficiencies

    NASA Astrophysics Data System (ADS)

    Kharkongor, D.; Reenbohn, W. L.; Mahato, Mangal C.

    2018-03-01

    We investigate the performance of an inertial frictional ratchet in a sinusoidal potential driven by a sinusoidal external field. The dependence of the performance on the parameters of the sinusoidally varying friction, such as the mean friction coefficient and its phase difference with the potential, is studied in detail. Interestingly, under certain circumstances, the thermodynamic efficiency of the ratchet against an applied load shows a non-monotonic behaviour as a function of the mean friction coefficient. Also, in the large friction ranges, the efficiency is shown to increase with increasing applied load even though the corresponding ratchet current decreases as the applied load increases. These counterintuitive numerical results are explained in the text.

  2. Dry friction of microstructured polymer surfaces inspired by snake skin.

    PubMed

    Baum, Martina J; Heepe, Lars; Fadeeva, Elena; Gorb, Stanislav N

    2014-01-01

    The microstructure investigated in this study was inspired by the anisotropic microornamentation of scales from the ventral body side of the California King Snake (Lampropeltis getula californiae). Frictional properties of snake-inspired microstructured polymer surface (SIMPS) made of epoxy resin were characterised in contact with a smooth glass ball by a microtribometer in two perpendicular directions. The SIMPS exhibited a considerable frictional anisotropy: Frictional coefficients measured along the microstructure were about 33% lower than those measured in the opposite direction. Frictional coefficients were compared to those obtained on other types of surface microstructure: (i) smooth ones, (ii) rough ones, and (iii) ones with periodic groove-like microstructures of different dimensions. The results demonstrate the existence of a common pattern of interaction between two general effects that influence friction: (1) molecular interaction depending on real contact area and (2) the mechanical interlocking of both contacting surfaces. The strongest reduction of the frictional coefficient, compared to the smooth reference surface, was observed at a medium range of surface structure dimensions suggesting a trade-off between these two effects.

  3. Research on torsional friction behavior and fluid load support of PVA/HA composite hydrogel.

    PubMed

    Chen, Kai; Zhang, Dekun; Yang, Xuehui; Cui, Xiaotong; Zhang, Xin; Wang, Qingliang

    2016-09-01

    Hydrogels have been extensively studied for use as synthetic articular cartilage. This study aimed to investigate (1) the torsional friction contact state and the transformation mechanism of PVA/HA composite hydrogel against CoCrMo femoral head and (2) effects of load and torsional angle on torsional friction behavior. The finite element method was used to study fluid load support of PVA/HA composite hydrogel. Results show fluid loss increases gradually of PVA/HA composite hydrogel with torsional friction time, leading to fluid load support decreases. The contact state changes from full slip state to stick-slip mixed state. As the load increases, friction coefficient and adhesion zone increase gradually. As the torsional angle increases, friction coefficient and slip trend of the contact interface increase, resulting in the increase of the slip zone and the reduction of the adhesion zone. Fluid loss increases of PVA/HA composite hydrogel as the load and the torsional angle increase, which causes the decrease of fluid load support and the increase of friction coefficient. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Airplane takeoff and landing performance monitoring system

    NASA Technical Reports Server (NTRS)

    Middleton, David B. (Inventor); Srivatsan, Raghavachari (Inventor); Person, Lee H. (Inventor)

    1989-01-01

    The invention is a real-time takeoff and landing performance monitoring system which provides the pilot with graphic and metric information to assist in decisions related to achieving rotation speed (V sub R) within the safe zone of the runway or stopping the aircraft on the runway after landing or take off abort. The system processes information in two segments: a pretakeoff segment and a real-time segment. One-time inputs of ambient conditions and airplane configuration information are used in the pretakeoff segment to generate scheduled performance data. The real-time segment uses the scheduled performance data, runway length data and transducer measured parameters to monitor the performance of the airplane throughout the takeoff roll. An important feature of this segment is that it updates the estimated runway rolling friction coefficient. Airplane performance predictions also reflect changes in headwind occurring as the takeoff roll progresses. The system displays the position of the airplane on the runway, indicating runway used and runway available, summarizes the critical information into a situation advisory flag, flags engine failures and off-nominal acceleration performance, and indicates where on the runway particular events such as decision speed (V sub 1), rotation speed (V sub R) and expected stop points will occur based on actual or predicted performance. The display also indicates airspeed, wind vector, engine pressure ratios, second segment climb speed, and balanced field length (BFL). The system detects performance deficiencies by comparing the airplane's present performance with a predicted nominal performance based upon the given conditions.

  5. Tribological behaviour of orthodontic archwires under dry and wet sliding conditions in-vitro. I--Frictional behaviour.

    PubMed

    Berradja, Abdenacer; Willems, Guy; Celis, Jean-Pierre

    2006-05-01

    To evaluate the frictional behaviour of orthodontic archwires in dry and wet conditions in-vitro. Two types of archwire materials were investigated: stainless steel and NiTi. A fretting wear tribometer fitted with an alumina ball was operated at 23 degrees C in three different environments: ambient air with 50 per cent relative humidity, 0.9 wt. per cent sodium chloride solution, and deionised water. NiTi archwires sliding against alumina exhibited high coefficients of friction (about 0.6) in the three environments. Stainless steel archwires sliding against alumina had relatively low coefficients of friction (0.3) in the solutions, but high coefficients (0.8) in air. The low frictional forces of the stainless steel wires sliding against alumina in the solutions were due to a lubricating effect of the solutions and corrosion-wear debris. The high frictional forces between the NiTi wires and alumina are attributed to an abrasive interfacial transfer film between the wires and alumina.

  6. Breakdown of Amontons' Law of Friction in Sheared-Elastomer with Local Amontons' Friction

    NASA Astrophysics Data System (ADS)

    Matsukawa, Hiroshi; Otsuki, Michio

    2012-02-01

    It is well known that Amontons' law of friction i.e. the frictional force against the sliding motion of solid object is proportional to the loading force and not dependent on the contact area, holds well for various systems. Here we show, however, the breakdown of the Amontons' law for the elastic object which have local friction obeying Amontons' law and is under uniform pressure by FEM calculation The external shearing force applied to the trailing edge of the sample induces local slip. The range of the slip increases with the increasing external force adiabatically at first. When the range reaches the critical magnitude, the slips moves rapidly and reaches the leading edge of the sample then the whole system slides. These behaviors are consistent with the experiment by Rubinstein et.al. (Phys. Rev. Lett. 98, 226103). The static frictional coefficient, the ratio between the static frictional force for the whole system and the loading force, decreases with the increasing pressure. This means the breakdown of Amontons' law. The pressure dependence of the frictional coefficient is caused by the change of the critical length of the local slip. The behaviors of the local slip and the frictional coefficient are well explained by the 1 dimensional model analytically.

  7. Spread prediction model of continuous steel tube based on BP neural network

    NASA Astrophysics Data System (ADS)

    Zhai, Jian-wei; Yu, Hui; Zou, Hai-bei; Wang, San-zhong; Liu, Li-gang

    2017-07-01

    According to the geometric pass of roll and technological parameters of three-roller continuous mandrel rolling mill in a factory, a finite element model is established to simulate the continuous rolling process of seamless steel tube, and the reliability of finite element model is verified by comparing with the simulation results and actual results of rolling force, wall thickness and outer diameter of the tube. The effect of roller reduction, roller rotation speed and blooming temperature on the spread rule is studied. Based on BP(Back Propagation) neural network technology, a spread prediction model of continuous rolling tube is established for training wall thickness coefficient and spread coefficient of the continuous rolling tube, and the rapid and accurate prediction of continuous rolling tube size is realized.

  8. Static-dynamic friction transition of FRP esthetic orthodontic wires on various brackets by suspension-type friction test.

    PubMed

    Suwa, N; Watari, F; Yamagata, S; Iida, J; Kobayashi, M

    2003-11-15

    A new testing apparatus for the measurement of frictional properties was designed and the frictional coefficients were obtained and compared with each other in various combinations of brackets and orthodontic wires, including esthetic fiber-reinforced plastic (FRP) wire that was especially designed and manufactured. Three kinds of wires (stainless steel, nickel-titanium, and FRP) and four brackets (single-crystal alumina, polycrystalline alumina, polycarbonate, and stainless steel) were used. The testing was done under dry and wet conditions. The friction testing equipment was designed to attach the bracket to a C-shaped bar suspended with a variable mass, and sliding along a fixed wire. The transition between static and dynamic friction was measured as a breakaway force, with the use of a universal test machine. In addition to material properties, this testing fixture eliminates geometrical factors, such as the rotational moment at the edge of the bracket slot, deflection of the orthodontic wire, and tension of the ligature wire. Nearly ideal frictional properties between materials are obtained. The frictional properties of FRP wire were similar to those of metal wires on all brackets, except the polycrystalline alumina bracket. The frictional coefficient between the polycrystalline ceramic bracket and FRP wire was larger than that of other combinations. There was little difference in frictional coefficients between dry and wet conditions. Copyright 2003 Wiley Periodicals, Inc.

  9. Estimation of Dynamic Friction Process of the Akatani Landslide Based on the Waveform Inversion and Numerical Simulation

    NASA Astrophysics Data System (ADS)

    Yamada, M.; Mangeney, A.; Moretti, L.; Matsushi, Y.

    2014-12-01

    Understanding physical parameters, such as frictional coefficients, velocity change, and dynamic history, is important issue for assessing and managing the risks posed by deep-seated catastrophic landslides. Previously, landslide motion has been inferred qualitatively from topographic changes caused by the event, and occasionally from eyewitness reports. However, these conventional approaches are unable to evaluate source processes and dynamic parameters. In this study, we use broadband seismic recordings to trace the dynamic process of the deep-seated Akatani landslide that occurred on the Kii Peninsula, Japan, which is one of the best recorded large slope failures. Based on the previous results of waveform inversions and precise topographic surveys done before and after the event, we applied numerical simulations using the SHALTOP numerical model (Mangeney et al., 2007). This model describes homogeneous continuous granular flows on a 3D topography based on a depth averaged thin layer approximation. We assume a Coulomb's friction law with a constant friction coefficient, i. e. the friction is independent of the sliding velocity. We varied the friction coefficients in the simulation so that the resulting force acting on the surface agrees with the single force estimated from the seismic waveform inversion. Figure shows the force history of the east-west components after the band-pass filtering between 10-100 seconds. The force history of the simulation with frictional coefficient 0.27 (thin red line) the best agrees with the result of seismic waveform inversion (thick gray line). Although the amplitude is slightly different, phases are coherent for the main three pulses. This is an evidence that the point-source approximation works reasonably well for this particular event. The friction coefficient during the sliding was estimated to be 0.38 based on the seismic waveform inversion performed by the previous study and on the sliding block model (Yamada et al., 2013), whereas the frictional coefficient estimated from the numerical simulation was about 0.27. This discrepancy may be due to the digital elevation model, to the other forces such as pressure gradients and centrifugal acceleration included in the model. However, quantitative interpretation of this difference requires further investigation.

  10. The coefficient of friction, particularly of ice

    NASA Astrophysics Data System (ADS)

    Mills, Allan

    2008-07-01

    The static and dynamic coefficients of friction are defined, and values from 0.3 to 0.6 are quoted for common materials. These drop to about 0.15 when oil is added as a lubricant. Water ice at temperatures not far below 0 °C is remarkable for low coefficients of around 0.05 for static friction and 0.04-0.02 for dynamic friction, but these figures increase as the temperature diminishes. Reasons for the slipperiness of ice are summarized, but they are still not entirely clear. One hypothesis suggests that it is related to the transient formation of a lubricating film of liquid water produced by frictional heating. If this is the case, some composition melting a little above ambient temperatures might provide a skating rink that did not require expensive refrigeration. Various compositions have been tested, but an entirely satisfactory material has yet to be found.

  11. Friction and hardness of gold films deposited by ion plating and evaporation

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Spalvins, T.; Buckley, D. H.

    1983-01-01

    Sliding friction experiments were conducted with ion-plated and vapor-deposited gold films on various substrates in contact with a 0.025-mm-radius spherical silicon carbide rider in mineral oil. Hardness measurements were also made to examine the hardness depth profile of the coated gold on the substrate. The results indicate that the hardness is influenced by the depth of the gold coating from the surface. The hardness increases with an increase in the depth. The hardness is also related to the composition gradient in the graded interface between the gold coating and the substrate. The graded interface exhibited the highest hardness resulting from an alloy hardening effect. The coefficient of friction is inversely related to the hardness, namely, the load carrying capacity of the surface. The greater the hardness that the metal surface possesses, the lower is the coefficient of friction. The graded interface exhibited the lowest coefficient of friction.

  12. Intermonolayer Friction and Surface Shear Viscosity of Lipid Bilayer Membranes

    PubMed Central

    den Otter, W. K.; Shkulipa, S. A.

    2007-01-01

    The flow behavior of lipid bilayer membranes is characterized by a surface viscosity for in-plane shear deformations, and an intermonolayer friction coefficient for slip between the two leaflets of the bilayer. Both properties have been studied for a variety of coarse-grained double-tailed model lipids, using equilibrium and nonequilibrium molecular dynamics simulations. For lipids with two identical tails, the surface shear viscosity rises rapidly with tail length, while the intermonolayer friction coefficient is less sensitive to the tail length. Interdigitation of lipid tails across the bilayer midsurface, as observed for lipids with two distinct tails, strongly enhances the intermonolayer friction coefficient, but hardly affects the surface shear viscosity. The simulation results are compared against the available experimental data. PMID:17468168

  13. Effect of time derivative of contact area on dynamic friction

    NASA Astrophysics Data System (ADS)

    Arakawa, Kazuo

    2014-06-01

    This study investigated dynamic friction during oblique impact of a golf ball by evaluating the ball's angular velocity, contact force, and the contact area between the ball and target. The effect of the contact area on the angular velocities was evaluated, and the results indicated that the contact area plays an important role in dynamic friction. In this study, the dynamic friction force F was given by F = μN + μη dA/dt, where μ is the coefficient of friction, N is the contact force, dA/dt is the time derivative of the contact area A, and η is a coefficient associated with the contact area.

  14. Preload, Coefficient of Friction, and Thread Friction in an Implant-Abutment-Screw Complex.

    PubMed

    Wentaschek, Stefan; Tomalla, Sven; Schmidtmann, Irene; Lehmann, Karl Martin

    To examine the screw preload, coefficient of friction (COF), and tightening torque needed to overcome the thread friction of an implant-abutment-screw complex. In a customized load frame, 25 new implant-abutment-screw complexes including uncoated titanium alloy screws were torqued and untorqued 10 times each, applying 25 Ncm. Mean preload values decreased significantly from 209.8 N to 129.5 N according to the number of repetitions. The overall COF increased correspondingly. There was no comparable trend for the thread friction component. These results suggest that the application of a used implant-abutment-screw complex may be unfavorable for obtaining optimal screw preload.

  15. Properties data for opening the Galileo's partially unfurled main antenna

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa; Pepper, Stephen V.

    1992-01-01

    An investigation was conducted into the friction and wear behavior of both unlubricated and dry-film-lubricated (Tiolube 460) titanium alloy (Ti-6Al-4V) in contact with an uncoated high-nickel-content superalloy (Inconel 718) both in vacuum and in air. The acquisition of friction and wear data for this sliding couple was motivated by the need for input data for the 'antenna stuck ribs model' effort to free Galileo's High Gain Antenna. The results of the investigation indicate that galling occurred in the unlubricated system in vacuum and that the coefficient of friction increased to 1.2. The abnormally high friction (1.45) was observed when relatively large wear debris clogged at the sliding interface. The coefficient of friction for the dry-film-lubricated system in vacuum is 0.04, while the value in air is 0.13. The endurance life of the dry-film lubricant is about three orders of magnitude greater in vacuum than in air. The worn surfaces of the dry-film-lubricated Ti-6Al-4V pin and Inconel 718 disk first run in humid air and then rerun in vacuum was completely different from that of the pin and disk run only in vacuum. When galling occurred in the humid-air and vacuum contact, coefficient of friction rose to 0.32 when sliding in humid air and to 1.4 when sliding in vacuum. The galling was accompanied by severe surface damage and extensive transfer of the Ti-6Al-4V to the Inconel 718, or vice versa. When spalling occurred in the dry-film-lubricated Ti-6Al-4V pin run only in vacuum, the coefficient of friction rose to 0.36 or greater. The wear damage caused by spalling can self-heal when rerun in vacuum - the coefficient of friction decreased to 0.05. The friction and wear data obtained can be used for the 'antenna stuck ribs model' effort to free Galileo's high gain antenna.

  16. Poroelasticity-driven lubrication in hydrogel interfaces.

    PubMed

    Reale, Erik R; Dunn, Alison C

    2017-01-04

    It is widely accepted that hydrogel surfaces are slippery, and have low friction, but dynamic applied stresses alter the hydrogel composition at the interface as water is displaced. The induced osmotic imbalance of compressed hydrogel which cannot swell to equilibrium should drive the resistance to slip against it. This paper demonstrates the driving role of poroelasticity in the friction of hydrogel-glass interfaces, specifically how poroelastic relaxation of hydrogels increases adhesion. We translate the work of adhesion into an effective surface energy density that increases with the duration of applied pressure from 10 to 50 mJ m -2 , as measured by micro-indentation. A model of static friction coefficient is derived from an area-based rules of mixture for the surface energies, and predicts the friction coefficient changes upon initiation of slip. For kinetic friction, the competition between duration of contact and relaxation time is quantified by a contacting Péclet number, Pe C . A single length parameter on the scale of micrometers fits these two models to experimental micro-friction data. These models predict how short durations of applied pressure and faster sliding speeds, do not disrupt interfacial hydration; this prevailing water maintains low friction. At low speeds where interface drainage dominates, the osmotic suction works against slip for higher friction. The prediction of friction coefficients after adhesion characterization by micro-indentation makes use of the interplay between poroelasticity, adhesion, and friction. This approach provides a starting point for prediction of, and design for, hydrogel interfacial friction.

  17. Effect of pendent chains on the interfacial properties of thin polydimethylsiloxane (PDMS) networks.

    PubMed

    Landherr, Lucas J T; Cohen, Claude; Archer, Lynden A

    2011-05-17

    The interfacial properties of end-linked polydimethylsiloxane (PDMS) films on silicon are examined. Thin cross-linked PDMS films (∼10 μm thick) were synthesized over a self-assembled monolayer supported on a silicon wafer. By systematically varying the concentration of monofunctional PDMS in a mixture with telechelic precursor molecules, structures ranging from near-ideal elastic networks to poorly cross-linked networks composed of a preponderance of dangling/pendent chains were synthesized. Lateral force microscopy (LFM) employing bead probes was used to quantify the effect of network structure on the interfacial friction coefficient and residual force. Indentation measurements employing an AFM in force mode were used to characterize the elastic modulus and the pull-off force for the films as a function of pendent chain content. These measurements were complemented with conventional mechanical rheometry measurements on similar thick network films to determine their bulk rheological properties. All networks studied manifested interfacial friction coefficients substantially lower than that of bare silicon. PDMS networks with the lowest pendent chain content displayed friction coefficients close to 1 order of magnitude lower than that of bare silicon, whereas networks with the highest pendent chain content manifested friction coefficients about 3 times lower than that of bare silicon. At intermediate sliding velocities, a crossover in the interfacial friction coefficient was observed, wherein cross-linked PDMS films with the least amount of pendent chains exhibit the highest friction coefficient. These observations are discussed in terms of the structure of the films and relaxation dynamics of elastic strands and dangling chains in tethered network films.

  18. Sedimentation Coefficient, Frictional Coefficient, and Molecular Weight: A Preparative Ultracentrifuge Experiment for the Advanced Undergraduate Laboratory.

    ERIC Educational Resources Information Center

    Halsall, H. B.; Wermeling, J. R.

    1982-01-01

    Describes an experiment using a high-speed preparative centrifuge and calculator to demonstrate effects of the frictional coefficient of a macromolecule on its rate of transport in a force field and to estimate molecular weight of the macromolecule using an empirical relationship. Background information, procedures, and discussion of results are…

  19. Water-vapor effects on friction of magnetic tape in contact with nickel-zinc ferrite

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1984-01-01

    The effects of humidity of moist nitrogen on the friction and deformation behavior of magnetic tape in contact with a nickel-zinc ferrite spherical pin were studied. The results indicate that the coefficient of friction is markedly dependent on the ambient relative humidity. Although the coefficient of friction remains low below 40-percent relative humidity, it increases rapidly with increasing relative humidity above 40 percent. The general ambient environment of the tape does not have any effect on the friction behavior if the area where the tape is in sliding contact with the ferrite pin is flooded with controlled nitrogen. The response time for the friction of the tape to humidity changes is about 10 sec. The effect of friction as a function of relative humidity on dehumidifying is very similar to that on humidifying. A surface softening of the tape due to water vapor increases the friction of the tape.

  20. Reduction of friction stress of ethylene glycol by attached hydrogen ions

    PubMed Central

    Li, Jinjin; Zhang, Chenhui; Deng, Mingming; Luo, Jianbin

    2014-01-01

    In the present work, it is shown that the friction stress of ethylene glycol can decrease by an order of magnitude to achieve superlubricity if there are hydrogen ions attached on the friction surfaces. An ultra-low friction coefficient (μ = 0.004) of ethylene glycol between Si3N4 and SiO2 can be obtained with the effect of hydrogen ions. Experimental result indicates that the hydrogen ions adsorbed on the friction surfaces forming a hydration layer and the ethylene glycol in the contact region forming an elastohydrodynamic film are the two indispensable factors for the reduction of friction stress. The mechanism of superlubricity is attributed to the extremely low shear strength of formation of elastohydrodynamic film on the hydration layer. This finding may introduce a new approach to reduce friction coefficient of liquid by attaching hydrogen ions on friction surfaces. PMID:25428584

  1. The influence of suspension components friction on race car vertical dynamics

    NASA Astrophysics Data System (ADS)

    Benini, Claudio; Gadola, Marco; Chindamo, Daniel; Uberti, Stefano; Marchesin, Felipe P.; Barbosa, Roberto S.

    2017-03-01

    This work analyses the effect of friction in suspension components on a race car vertical dynamics. It is a matter of fact that race cars aim at maximising their performance, focusing the attention mostly on aerodynamics and suspension tuning: suspension vertical and rolling stiffness and damping are parameters to be taken into account for an optimal setup. Furthermore, friction in suspension components must not be ignored. After a test session carried out with a F4 on a Four Poster rig, friction was detected on the front suspension. The real data gathered allow the validation of an analytical model with friction, confirming that its influence is relevant for low frequency values closed to the car pitch natural frequency. Finally, some setup proposals are presented to describe what should be done on actual race cars in order to correct vehicle behaviour when friction occurs.

  2. Strongly Modulated Friction of a Film-Terminated Ridge-Channel Structure.

    PubMed

    He, Zhenping; Hui, Chung-Yuen; Levrard, Benjamin; Bai, Ying; Jagota, Anand

    2016-05-26

    Natural contacting surfaces have remarkable surface mechanical properties, which has led to the development of bioinspired surface structures using rubbery materials with strongly enhanced adhesion and static friction. However, sliding friction of structured rubbery surfaces is almost always significantly lower than that of a flat control, often due to significant loss of contact. Here we show that a film-terminated ridge-channel structure can strongly enhance sliding friction. We show that with properly chosen materials and geometrical parameters the near surface structure undergoes mechanical instabilities along with complex folding and sliding of internal interfaces, which is responsible for the enhancement of sliding friction. Because this structure shows no enhancement of adhesion under normal indentation by a sphere, it breaks the connection between energy loss during normal and shear loading. This makes it potentially interesting in many applications, for instance in tires, where one wishes to minimize rolling resistance (normal loading) while maximizing sliding friction (shear loading).

  3. Skin-Friction Measurements in Incompressible Flow

    NASA Technical Reports Server (NTRS)

    Smith, Donald W.; Walker, John H.

    1959-01-01

    Experiments have been conducted to measure the local surface-shear stress and the average skin-friction coefficient in Incompressible flow for a turbulent boundary layer on a smooth flat plate having zero pressure gradient. Data were obtained for a range of Reynolds numbers from 1 million to 45 million. The local surface-shear stress was measured by a floating-element skin-friction balance and also by a calibrated total head tube located on the surface of the test wall. The average skin-friction coefficient was obtained from boundary-layer velocity profiles.

  4. The Effect of Humidity and Particle Characteristics on Friction and Stick-slip Instability in Granular Fault Gouge

    NASA Astrophysics Data System (ADS)

    Anthony, J. L.; Marone, C. J.

    2003-12-01

    Previous studies have shown that particle characteristics such as shape, dimension, and roughness affect friction in granular shear zones. Other work shows that humidity plays a key role in frictional healing and rate/state dependence within granular gouge. In order to improve our understanding of grain-scale deformation mechanisms within fault gouge, we performed laboratory experiments using a double-direct-shear testing apparatus. This assembly includes three rigid forcing blocks with two gouge layers sandwiched between rough or smooth surfaces. Roughened surfaces were triangular grooves 0.8 mm deep and 1 mm wavelength. These promote distributed shear throughout the layer undergoing cataclastic deformation. Smooth surfaces were mirror-finished hardened steel and were used to promote and isolate grain boundary sliding. The center block is forced at controlled displacement rate between the two side blocks to create frictional shear. We studied gouge layers 3-7 mm thick, consisting of either quartz rods sheared in 1-D and 2-D configurations and smooth glass beads mixed with varying amounts of rough sand particles. We report on particle diameters that range from 0.050-0.210 mm, and quartz rods 1 mm in diameter and 100 mm long. The experiments are run at room temperature, controlled relative humidity ranging from 5 to 100%, and shear displacement rates from 0.1 to 300 microns per second. Experiments are carried out under a normal stress of 5 MPa, a non-fracture loading regime where sliding friction for smooth spherical particles is measurably lower than for rough angular particles. We compare results from shear between smooth boundaries, where we hypothesize that grain boundary sliding is the mechanism influencing granular friction, to rough sample experiments where shear undergoes a transition from distributed, pervasive shear to progressively localized as a function of increasing strain. For shear within rough surfaces, stick-slip instability occurs in gouge that consists of less than 30% angular grains and begins once the coefficient of friction (shear stress divided by normal stress) reaches a value of 0.35-0.40. Peak friction during stick-slip cycles is 0.40-0.45. Each stick-slip event involves a small amount of quasi-static displacement prior to failure, which we refer to as pre-seismic slip. For unstable sliding regimes, we measure the amount of pre-seismic slip and the magnitude of dynamic stress drop. These parameters vary systematically with sliding velocity, particle characteristics, and bounding roughness. For shear within smooth surfaces, friction is very low (0.15-0.16 for spherical particles) and sliding is stable, without stick-slip instability. As more angular grains are mixed with spherical beads the coefficient of friction increases. This holds true for both the rough and smooth sample experiments. We expand on previous work done by Frye and Marone 2002 (JGR) to study the effect of humidity on 1-D, 2-D, and 3-D gouge layer configurations. Our data show that humidity has a significant effect on frictional strength and stability and that this effect is observed for both smooth surfaces, where grain boundary sliding is the dominant deformation mechanisms, and for shear within rough surfaces where gouge deformation occurs by rolling, dilation, compaction, and grain boundary sliding.

  5. The Influence of Friction Between Football Helmet and Jersey Materials on Force: A Consideration for Sport Safety

    PubMed Central

    Rossi, Anthony M.; Claiborne, Tina L.; Thompson, Gregory B.; Todaro, Stacey

    2016-01-01

    Context: The pocketing effect of helmet padding helps to dissipate forces experienced by the head, but if the player's helmet remains stationary in an opponent's shoulder pads, the compressive force on the cervical spine may increase. Objective: To (1) measure the coefficient of static friction between different football helmet finishes and football jersey fabrics and (2) calculate the potential amount of force on a player's helmet due to the amount of friction present. Design: Cross-sectional study. Setting: Laboratory. Patients or Other Participants: Helmets with different finishes and different football jersey fabrics. Main Outcome Measure(s): The coefficient of friction was determined for 2 helmet samples (glossy and matte), 3 football jerseys (collegiate, high school, and youth), and 3 types of jersey numbers (silkscreened, sublimated, and stitched on) using the TAPPI T 815 standard method. These measurements determined which helmet-to-helmet, helmet-to-jersey number, and helmet-to-jersey material combination resulted in the least amount of static friction. Results: The glossy helmet versus glossy helmet combination produced a greater amount of static friction than the other 2 helmet combinations (P = .013). The glossy helmet versus collegiate jersey combination produced a greater amount of static friction than the other helmet-to-jersey material combinations (P < .01). The glossy helmet versus silkscreened numbers combination produced a greater amount of static friction than the other helmet-to-jersey number combinations (P < .01). Conclusions: The force of static friction experienced during collisions can be clinically relevant. Conditions with higher coefficients of static friction result in greater forces. In this study, the highest coefficient of friction (glossy helmet versus silkscreened number) could increase the forces on the player's helmet by 3553.88 N when compared with other helmet-to-jersey combinations. Our results indicate that the makeup of helmet and uniform materials may affect sport safety. PMID:27824251

  6. Environmental influences on the friction behavior of glasses

    NASA Astrophysics Data System (ADS)

    Rolf, Jacqueline C.

    Two aspects of the friction behavior of glasses were the main focus of this investigation. First, the influence of aqueous inorganic salt solutions on friction and damage on soda-lime-silica, vitreous silica, and an aluminosilicate glass high in alumina content were studied. It was found that the pH of a solution has a higher influence on the friction behavior than the concentration of electrolyte and the size of ions in the solution. A minimum at the i.e.p. (iso-electric point) of the network former of the glass was found, i.e., soda-lime-silica and vitreous silica showed a small minimum in friction at a pH of about 1.8, which corresponds to the i.e.p. of silica. Two small minima were observed for the aluminosilicate in the vicinities of the i.e.p.'s of silica and alumina respectively. The damage created by the frictional contact showed variations with environment. Microindentation experiments on the same glasses were performed in the same environments to compare the responses to the findings of the friction test. For soda-lime-silica and vitreous silica, a maximum in hardness was found at the i.e.p. of the glasses, and for the aluminosilicate, two maxima were found in the vicinity of the i.e.p.'s of silica and alumina respectively, confirming the findings of the friction tests. A data-fitting analysis showed that the major contribution to the observed trends originates from the elastic properties of the surface. A model describing the influence of surface charging on the mechanical properties of the glass surface is suggested. The second major aspect of the study was the influence of temperature on the friction coefficients and resulting surface damage of commercial glasses. Four float glasses were selected, and vitreous silica was tested for comparison. As expected, the coefficients of friction were found to increase, with increasing temperature. Very small differences in composition had an effect on the temperature dependence of the coefficients of friction. Tin and air sides exhibited differences in friction behavior, which were ascribed to chemical differences between the two sides. The float bath seems to have a large effect on friction also, since the air sides showed larger variations in coefficients of friction than the tin sides. A technique for quantitative analysis of surface damage was developed, and coefficients of friction and surface damage were found to correlate very well. Infrared reflection and emission spectroscopy were used to analyze the surface structural changes as a function of temperature. Float B, a glass which exhibited good damage resistance, displayed a very different spectrum than the other float glasses. Contact angle measurements confirmed the results of the IR-spectroscopy work and the friction tests.

  7. Lithology-dependent minimum horizontal stress and in-situ stress estimate

    NASA Astrophysics Data System (ADS)

    Zhang, Yushuai; Zhang, Jincai

    2017-04-01

    Based on the generalized Hooke's law with coupling stresses and pore pressure, the minimum horizontal stress is solved with assumption that the vertical, minimum and maximum horizontal stresses are in equilibrium in the subsurface formations. From this derivation, we find that the uniaxial strain method is the minimum value or lower bound of the minimum stress. Using Anderson's faulting theory and this lower bound of the minimum horizontal stress, the coefficient of friction of the fault is derived. It shows that the coefficient of friction may have a much smaller value than what it is commonly assumed (e.g., μf = 0.6-0.7) for in-situ stress estimate. Using the derived coefficient of friction, an improved stress polygon is drawn, which can reduce the uncertainty of in-situ stress calculation by narrowing the area of the conventional stress polygon. It also shows that the coefficient of friction of the fault is dependent on lithology. For example, if the formation in the fault is composed of weak shales, then the coefficient of friction of the fault may be small (as low as μf = 0.2). This implies that this fault is weaker and more likely to have shear failures than the fault composed of sandstones. To avoid the weak fault from shear sliding, it needs to have a higher minimum stress and a lower shear stress. That is, the critically stressed weak fault maintains a higher minimum stress, which explains why a low shear stress appears in the frictionally weak fault.

  8. Friction on a granular-continuum interface: Effects of granular media

    NASA Astrophysics Data System (ADS)

    Ecke, Robert; Geller, Drew

    We consider the frictional interactions of two soft plates with interposed granular material subject to normal and shear forces. The plates are soft photo-elastic material, have length 50 cm, and are separated by a gap of variable width from 0 to 20 granular particle diameters. The granular materials are two-dimensional rods that are bi-dispersed in size to prevent crystallization. Different rod materials with frictional coefficients between 0 . 04 < μ < 0 . 5 are used to explore the effects of inter-granular friction on the effective friction of a granular medium. The gap is varied to test the dependence of the friction coefficient on the thickness of the granular layer. Because the soft plates absorb most of the displacement associated with the compressional normal force, the granular packing fractions are close to a jamming threshold, probably a shear jamming criterion. The overall shear and normal forces are measured using force sensors and the local strain tensor over a central portion of the gap is obtained using relative displacements of fiducial markers on the soft elastic material. These measurements provide a good characterization of the global and local forces giving rise to an effective friction coefficient. Funded by US DOE LDRD Program.

  9. Comprehensive tire-road friction coefficient estimation based on signal fusion method under complex maneuvering operations

    NASA Astrophysics Data System (ADS)

    Li, L.; Yang, K.; Jia, G.; Ran, X.; Song, J.; Han, Z.-Q.

    2015-05-01

    The accurate estimation of the tire-road friction coefficient plays a significant role in the vehicle dynamics control. The estimation method should be timely and reliable for the controlling requirements, which means the contact friction characteristics between the tire and the road should be recognized before the interference to ensure the safety of the driver and passengers from drifting and losing control. In addition, the estimation method should be stable and feasible for complex maneuvering operations to guarantee the control performance as well. A signal fusion method combining the available signals to estimate the road friction is suggested in this paper on the basis of the estimated ones of braking, driving and steering conditions individually. Through the input characteristics and the states of the vehicle and tires from sensors the maneuvering condition may be recognized, by which the certainty factors of the friction of the three conditions mentioned above may be obtained correspondingly, and then the comprehensive road friction may be calculated. Experimental vehicle tests validate the effectiveness of the proposed method through complex maneuvering operations; the estimated road friction coefficient based on the signal fusion method is relatively timely and accurate to satisfy the control demands.

  10. Apollo couch energy absorbers

    NASA Technical Reports Server (NTRS)

    Wesselski, C. J.; Drexel, R. E.

    1972-01-01

    Load attenuators for the Apollo spacecraft crew couch and its potential applications are described. Energy absorption is achieved through friction and cyclic deformation of material. In one concept, energy absorption is accomplished by rolling a compressed ring of metal between two surfaces. In another concept, energy is absorbed by forcing a plastically deformed washer along a rod. Among the design problems that had to be solved were material selection, fatigue life, ring slippage, lubrication, and friction loading.

  11. Estimation of internal friction angle of subduction zone in northeast of Japan by using seismic focal mechanisms

    NASA Astrophysics Data System (ADS)

    Miyakawa, A.; Sato, K.; Otsubo, M.

    2017-12-01

    Physical properties, such as friction angle of the material, is important to understand the interplate earthquake of a subduction zone. Coulomb wedge model (Davis et al., 1983, JGR) is successfully revealed the relationship between a geometry of an accretionary wedge in a subduction zone and the physical properties of the material composing the accretionary wedge (e.g. Dahlen, 1984, JGR). An internal friction angle of the wedge and the frictional strength of the plate boundary fault control the wedge angle according to the Coulomb wedge model. However, the internal friction angle of the wedge and the frictional strength of the plate boundary fault are hard to estimate. Many previous works assumed the internal friction angle of the wedge on the basis of the laboratory experiments. Then, the frictional strength of the plate boundary fault, which is usually most interested, were evaluated from the observed wedge angle and the assumed internal friction angle of the wedge. Consequently, we should be careful of the selection of the internal friction angle of the wedge, otherwise, the uncertain an inappropriate internal friction angle may mislead the frictional strength of the plate boundary fault. In this study, we employed the newly developed technique to evaluate the internal friction angle of the wedge from the earthquake focal mechanisms occurred in the wedge along Japan Trench, northeast Japan. We used 650 earthquake mechanisms determined by NIED, Japan for the stress and friction coefficient inversion. The stress and friction coefficient inversion method is modified to handle the earthquake focal mechanisms from a computerized method to estimate the friction coefficient from the orientation distribution of faults (Sato, 2016, JSG). Finally, we obtained 25 degrees of internal friction angle of the wedge from the inversion. This value of friction angle is lower than usually assumed internal friction angle (30 degrees) (Byerlee, 1978, PAGEOPH). This lower internal friction angle leads to lower frictional strength of plate boundary fault ( 0.35) according to the Coulomb wedge model. These constrained physical parameters can contribute to understanding the interplate earthquake at each subduction zones.

  12. The friction coefficient evolution of a MoS2/WC multi-layer coating system during sliding wear

    NASA Astrophysics Data System (ADS)

    Chan, T. Y.; Hu, Y.; Gharbi, Mohammad M.; Politis, D. J.; Wang, L.

    2016-08-01

    This paper discusses the evolution of friction coefficient for the multi-layered Molybdenum Disulphide (MoS2) and WC coated substrate during sliding against Aluminium AA 6082 material. A soft MoS2 coating was prepared over a hard WC coated G3500 cast iron tool substrate and underwent friction test using a pin-on-disc tribometer. The lifetime of the coating was reduced with increasing load while the Aluminium debris accumulated on the WC hard coating surfaces, accelerated the breakdown of the coatings. The lifetime of the coating was represented by the friction coefficient and the sliding distance before MoS2 coating breakdown and was found to be affected by the load applied and the wear mechanism.

  13. A rolling-sliding bench test for investigating rear axle lubrication

    DOE PAGES

    Stump, Benjamin C.; Zhou, Yan; Viola, Michael B.; ...

    2018-02-07

    An automotive rear axle is composed of a set of hypoid gears, whose contact surfaces experience a complex combination of rolling contact fatigue damage and sliding wear. Full-scale rear axle dynamometer tests are used in the industry for efficiency and durability assessment. Here, this study developed a bench-scale rolling-sliding test protocol by simulating the contact pressure, oil temperature, and lubrication regime experienced in a dynamometer duty cycle test. Initial bench results have demonstrated the ability of generating both rolling contact-induced micropitting and sliding wear and the feasibility of investigating the impact of slide-to-roll ratio, surface roughness, test duration, and oilmore » temperature on the friction behavior, vibration noise, and surface damage. Finally, this bench test will allow studying candidate rear axle lubricants and materials under relevant conditions.« less

  14. A rolling-sliding bench test for investigating rear axle lubrication

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stump, Benjamin C.; Zhou, Yan; Viola, Michael B.

    An automotive rear axle is composed of a set of hypoid gears, whose contact surfaces experience a complex combination of rolling contact fatigue damage and sliding wear. Full-scale rear axle dynamometer tests are used in the industry for efficiency and durability assessment. Here, this study developed a bench-scale rolling-sliding test protocol by simulating the contact pressure, oil temperature, and lubrication regime experienced in a dynamometer duty cycle test. Initial bench results have demonstrated the ability of generating both rolling contact-induced micropitting and sliding wear and the feasibility of investigating the impact of slide-to-roll ratio, surface roughness, test duration, and oilmore » temperature on the friction behavior, vibration noise, and surface damage. Finally, this bench test will allow studying candidate rear axle lubricants and materials under relevant conditions.« less

  15. Friction behaviour of aluminium composites mixed with carbon fibers with different orientations

    NASA Astrophysics Data System (ADS)

    Caliman, R.

    2016-08-01

    The primary goal of this study work it was to distinguish a mixture of materials with enhanced friction and wearing behaviour. The composite materials may be differentiated from alloys; which can contain two more components but are formed naturally through different processes such as casting. The load applied on the specimen during the tests, is playing a very important role regarding friction coefficient and also the wearing speed. Sintered composites are gaining importance because the reinforcement serves to reduce the coefficient of thermal expansion and increase the strength and modulus. The friction tests are carried out, at the room temperature in dry condition, on a pin-on-disc machine. The exponentially decreasing areas form graphs, represented to the curves coefficient of friction, are attributed to the formation of lubricant transfer film and initial polishing surface samples. The influence of the orientation of the carbon fibers on the friction properties in the sintered polymer composites may be studied by the use of both mechanical wear tests by microscopy and through the use of phenomenological models.

  16. Excellent vacuum tribological properties of Pb/PbS film deposited by RF magnetron sputtering and ion sulfurizing.

    PubMed

    Guozheng, Ma; Binshi, Xu; Haidou, Wang; Shuying, Chen; Zhiguo, Xing

    2014-01-08

    Soft metal Pb film of 3 μm in thickness was deposited on AISI 440C steel by RF magnetron sputtering, and then some of the Pb film samples were treated by low-temperature ion sulfurizing (LTIS) and formed Pb/PbS composite film. Tribological properties of the Pb and Pb/PbS films were tested contrastively in vacuum and air condition using a self-developed tribometer (model of MSTS-1). Scanning electron microscopy (SEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) were adopted to analyze the microstructure and chemical construction of the films and their worn surfaces. The results show that a mass of Pb was changed to PbS during the process of LTIS. In air condition, owing to the severe oxidation effect, pure Pb film showed relatively high friction coefficients (0.6), and Pb/PbS composite film also lost its friction-reduction property after sliding for a short time. In a vacuum, the average friction coefficients of Pb film were about 0.1, but the friction coefficient curve fluctuated obviously. And the Pb/PbS composite film exhibited excellent tribological properties in vacuum condition. Its friction coefficients keep stable at a low value of about 0.07 for a long time. If takes the value of friction coefficients exceeding 0.2 continuously as a criterion of lubrication failure, the sliding friction life of Pb/PbS film was as long as 3.2 × 10(5) r, which is 8 times of that of the Pb film. It can be concluded that the Pb/PbS film has excellent vacuum tribological properties and important foreground for applying in space solid lubrication related fields.

  17. Adhesion and friction of iron-base binary alloys in contact with silicon carbide in vacuum

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1980-01-01

    Single pass sliding friction experiments were conducted with various iron base binary alloys (alloying elements were Ti, Cr, Mn, Ni, Rh, and W) in contact with a single crystal silicon carbide /0001/ surface in vacuum. Results indicate that atomic size and concentration of alloying elements play an important role in controlling adhesion and friction properties of iron base binary alloys. The coefficient of friction generally increases with an increase in solute concentration. The coefficient of friction increases linearly as the solute to iron atomic radius ratio increases or decreases from unity. The chemical activity of the alloying elements was also an important parameter in controlling adhesion and friction of alloys, as these latter properties are highly dependent upon the d bond character of the elements.

  18. Tactile friction of topical formulations.

    PubMed

    Skedung, L; Buraczewska-Norin, I; Dawood, N; Rutland, M W; Ringstad, L

    2016-02-01

    The tactile perception is essential for all types of topical formulations (cosmetic, pharmaceutical, medical device) and the possibility to predict the sensorial response by using instrumental methods instead of sensory testing would save time and cost at an early stage product development. Here, we report on an instrumental evaluation method using tactile friction measurements to estimate perceptual attributes of topical formulations. Friction was measured between an index finger and an artificial skin substrate after application of formulations using a force sensor. Both model formulations of liquid crystalline phase structures with significantly different tactile properties, as well as commercial pharmaceutical moisturizing creams being more tactile-similar, were investigated. Friction coefficients were calculated as the ratio of the friction force to the applied load. The structures of the model formulations and phase transitions as a result of water evaporation were identified using optical microscopy. The friction device could distinguish friction coefficients between the phase structures, as well as the commercial creams after spreading and absorption into the substrate. In addition, phase transitions resulting in alterations in the feel of the formulations could be detected. A correlation was established between skin hydration and friction coefficient, where hydrated skin gave rise to higher friction. Also a link between skin smoothening and finger friction was established for the commercial moisturizing creams, although further investigations are needed to analyse this and correlations with other sensorial attributes in more detail. The present investigation shows that tactile friction measurements have potential as an alternative or complement in the evaluation of perception of topical formulations. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Enhanced surface friction coefficient and hydrophobicity of TPE substrates using an APPJ system

    NASA Astrophysics Data System (ADS)

    Sainz-García, Elisa; Alba-Elías, Fernando; Múgica-Vidal, Rodolfo; González-Marcos, Ana

    2015-02-01

    An APPJ system was used to deposit a coating that combines a low friction coefficient with a high water contact angle (WCA) on a thermoplastic elastomer substrate (TPE) that is used in automotive profiling. The main drawback of this research is that groups that improve the hydrophobicity of the surface worsen its tribological properties. To overcome this, this study explored the use of various mixtures of differing proportions of two precursors. They were a siloxane, aminopropyltriethoxysilane (APTES) that was used to reduce the friction coefficient by its content of SiOx and a fluorinated compound, (heptadecafluoro-1,1,2,2-tetrahydrodecyl)trimethoxysilane (FLUSI) that was used to improve the water-repellency characteristics, due to the presence of CF2 long chains. The coatings were characterized by Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM), Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy (ATR-FTIR), X-ray Photoelectron Spectroscopy (XPS), dynamic Water Contact Angle (WCA), stability tests and tribological tests. It was found that an increase of the absorbance area under the SiOSi peak and inorganic groups is related to lower friction coefficients. On the other hand, the higher the CF2 percentage is, the higher the WCA is. The sample that was coated with 25% of FLUSI and 75% of APTES combined the improvements of both functional properties, the friction coefficient and the WCA. It has an average friction coefficient that is (0.530 ± 0.050) 51.5% lower and a WCA that is (θadv = 119.8° ± 4.75) 4.4% higher than the uncoated TPE sample. A satisfactory stability in humid ambient for twelve months showed a slight decrease of WCA (4.4%) for this sample. The results of this study permit one to realize the effectiveness of using fluorinated precursors to avoid a significant decrease in the WCA when applying a precursor to anti-friction improvement.

  20. Lubricating Properties of Ceramic-Bonded Calcium Fluoride Coatings on Nickel-Base Alloys from 75 to 1900 deg F

    NASA Technical Reports Server (NTRS)

    Sliney, Harold E.

    1962-01-01

    The endurance life and the friction coefficient of ceramic-bonded calcium fluoride (CaF2) coatings on nickel-base alloys were determined at temperatures from 75 F to 1900 F. The specimen configuration consisted of a hemispherical rider (3/16-in. rad.) sliding against the flat surface of a rotating disk. Increasing the ambient temperature (up to 1500 F) or the sliding velocity generally reduced the friction coefficient and improved coating life. Base-metal selection was critical above 1500 F. For instance, cast Inconel sliding against coated Inconel X was lubricated effectively to 1500 F, but at 1600 F severe blistering of the coatings occurred. However, good lubrication and adherence were obtained for Rene 41 sliding against coated Rene 41 at temperatures up to 1900 F; no blisters developed, coating wear life was fairly good, and the rider wear rate was significantly lower than for the unlubricated metals. Friction coefficients were 0.12 at 1500 F, 0.15 at 1700 F, and 0.17 at 1800 F and 1900 F. Because of its ready availability, Inconel X appears to be the preferred substrate alloy for applications in which the temperature does not exceed 1500 F. Rene 41 would have to be used in applications involving higher temperatures. Improved coating life was derived by either preoxidizing the substrate metals prior to the coating application or by applying a very thin (less than 0.0002 in.) burnished and sintered overlay to the surface of the coating. Preoxidation did not affect the friction coefficient. The overlay generally resulted in a higher friction coefficient than that obtained without the overlay. The combination of both modifications resulted in longer coating life and in friction coefficients intermediate between those obtained with either modification alone.

  1. Lubricating Properties of Some Bonded Fluoride and Oxide Coatings for Temperature to 1500 F

    NASA Technical Reports Server (NTRS)

    Sliney, Harold E.

    1960-01-01

    The lubricating properties of some experimental ceramic coatings, diffusion-bonded fluoride coatings, and ceramic-bonded fluoride coatings were determined. The experiments were conducted in an air atmosphere at a sliding velocity of 430 feet per minute and at temperatures from 75 to 1500 F. Several ceramic coatings provided substantial reductions in friction coefficient and rider wear (compared with the unlubricated metals). For example, a cobaltous oxide (CoO) base coating gave friction coefficients of 0.24 to 0.36 within the temperature range of 75 to 1400 F; serious galling and welding of the metal surfaces were prevented. The friction coefficients were higher than the arbitrary maximum (0.2) usually considered for effective boundary lubrication. However, when a moderately high friction coefficient can be tolerated, this type of coating may be a useful antiwear composition. Diffusion-bonded calcium fluoride (CaF2) on Haynes Stellite 21 and on Inconel X gave friction coefficients of 0.1 to 0.2 at 1500 F. Endurance life was dependent on the thermal history of the coating; life improved with increased exposure time at elevated temperatures prior to running. Promising results were obtained with ceramic-bonded CaF2 on Inconel X. Effective lubrication and good adherence were obtained with a 3 to 1 ratio of CaF2 to ceramic. A very thin sintered and burnished film of CaF2 applied to the surface of this coating further improved lubrication, particularly above 1350 F. The friction coefficient was 0.2 at 500 F and decreased with increasing temperature to 0.06-at 1500 F. It was 0.25 at 75 F and 0.22 at 250 F.

  2. Wear Potential of Dental Ceramics and its Relationship with Microhardness and Coefficient of Friction.

    PubMed

    Freddo, Rafael Augusto; Kapczinski, Myriam Pereira; Kinast, Eder Julio; de Souza Junior, Oswaldo Baptista; Rivaldo, Elken Gomes; da Fontoura Frasca, Luis Carlos

    2016-10-01

    To evaluate, by means of pin-on-disk testing, the wear potential of different dental ceramic systems as it relates to friction parameters, surface finish, and microhardness. Three groups of different ceramic systems (Noritake EX3, Eris, Empress II) with 20 disks each (10 glazed, 10 polished) were used. Vickers microhardness (Hv) was determined with a 200-g load for 30 seconds. Friction coefficients (μ) were determined by pin-on-disk testing (5 N load, 600 seconds, and 120 rpm). Wear patterns were assessed by scanning electron microscopy (SEM). The results were analyzed using one-way ANOVA and Tukey's test, with the significance level set at α = 0.05. The coefficients of friction were as follows: Noritake EX3 0.28 ± 0.12 (polished), 0.33 ± 0.08 (glazed); Empress II 0.38 ± 0.08 (polished), 0.45 ± 0.05 (glazed); Eris 0.49 ± 0.05 (polished), 0.49 ± 0.06 (glazed). Microhardness measurements were as follows: Noritake EX3 530.7 ± 8.7 (polished), 525.9 ± 6.2 (glazed); Empress II 534.1 ± 8 (polished), 534.7 ± 4.5 (glazed); Eris, 511.7 ± 6.5 (polished), 519.5 ± 4.1 (glazed). The polished and glazed Noritake EX3 and polished and glazed Eris specimens showed statistically different friction coefficients. SEM image analysis revealed more surface changes, such as small cracks and grains peeling off, in glazed ceramics. Wear potential may be related to the coefficient of friction in Noritake ceramics, which had a lower coefficient than Eris ceramics. Within-group analysis showed no differences in polished or glazed specimens. The differences observed were not associated with microhardness. © 2015 by the American College of Prosthodontists.

  3. Quantifying the Frictional Forces between Skin and Nonwoven Fabrics

    PubMed Central

    Jayawardana, Kavinda; Ovenden, Nicholas C.; Cottenden, Alan

    2017-01-01

    When a compliant sheet of material is dragged over a curved surface of a body, the frictional forces generated can be many times greater than they would be for a planar interface. This phenomenon is known to contribute to the abrasion damage to skin often suffered by wearers of incontinence pads and bed/chairbound people susceptible to pressure sores. Experiments that attempt to quantify these forces often use a simple capstan-type equation to obtain a characteristic coefficient of friction. In general, the capstan approach assumes the ratio of applied tensions depends only on the arc of contact and the coefficient of friction, and ignores other geometric and physical considerations; this approach makes it straightforward to obtain explicitly a coefficient of friction from the tensions measured. In this paper, two mathematical models are presented that compute the material displacements and surface forces generated by, firstly, a membrane under tension in moving contact with a rigid obstacle and, secondly, a shell-membrane under tension in contact with a deformable substrate. The results show that, while the use of a capstan equation remains fairly robust in some cases, effects such as the curvature and flaccidness of the underlying body, and the mass density of the fabric can lead to significant variations in stresses generated in the contact region. Thus, the coefficient of friction determined by a capstan model may not be an accurate reflection of the true frictional behavior of the contact region. PMID:28321192

  4. Polyelectrolyte brushes: a novel stable lubrication system in aqueous conditions.

    PubMed

    Kobayashi, Motoyasu; Terada, Masami; Takahara, Atsushi

    2012-01-01

    Surface-initiated controlled radical copolymerizations of 2-dimethylaminoethyl methacrylate (DMAEMA), 2-(methacryloyloxy)ethyl phosphorylcholine (MPC), 2-(methacryloyloxy)ethyltrimethylammonium chloride) (MTAC), and 3-sulfopropyl methacrylate potassium salt (SPMK) were carried out on a silicon wafer and glass ball to prepare polyelectrolyte brushes with excellent water wettability. The frictional coefficient of the polymer brushes was recorded on a ball-on-plate type tribometer by linear reciprocating motion of the brush specimen at a selected velocity of 1.5 x 10(-3) m s-1 under a normal load of 0.49 N applied to the stationary glass ball (d = 10 mm) at 298 K. The poly(DMAEMA-co-MPC) brush partially cross-linked by bis(2-iodoethoxy)ethane maintained a relatively low friction coefficient around 0.13 under humid air (RH > 75%) even after 200 friction cycles. The poly(SPMK) brush revealed an extremely low friction coefficient around 0.01 even after 450 friction cycles. We supposed that the abrasion of the brush was prevented owing to the good affinity of the poly(SPMK) brush for water forming a water lubrication layer, and electrostatic repulsive interactions among the brushes bearing sulfonic acid groups. Furthermore, the poly(SPMK-co-MTAC) brush with a chemically cross-linked structure showed a stable low friction coefficient in water even after 1400 friction cycles under a normal load of 139 MPa, indicating that the cross-linking structure improved the wear resistance of the brush layer.

  5. Showing Area Matters: A Work of Friction

    ERIC Educational Resources Information Center

    Van Domelen, David

    2010-01-01

    Typically, we teach the simplified friction equation of the form F[subscript s] = [mu][subscript s]N for static friction, where F[subscript s] is the maximum static friction, [mu][subscript s] is the coefficient of static friction, and "N" is the normal force pressing the surfaces together. However, this is a bit too simplified, and…

  6. Friction behavior of a microstructured polymer surface inspired by snake skin.

    PubMed

    Baum, Martina J; Heepe, Lars; Gorb, Stanislav N

    2014-01-01

    The aim of this study was to understand the influence of microstructures found on ventral scales of the biological model, Lampropeltis getula californiae, the California King Snake, on the friction behavior. For this purpose, we compared snake-inspired anisotropic microstructured surfaces to other microstructured surfaces with isotropic and anisotropic geometry. To exclude that the friction measurements were influenced by physico-chemical variations, all friction measurements were performed on the same epoxy polymer. For frictional measurements a microtribometer was used. Original data were processed by fast Fourier transformation (FFT) with a zero frequency related to the average friction and other peaks resulting from periodic stick-slip behavior. The data showed that the specific ventral surface ornamentation of snakes does not only reduce the frictional coefficient and generate anisotropic frictional properties, but also reduces stick-slip vibrations during sliding, which might be an adaptation to reduce wear. Based on this extensive comparative study of different microstructured polymer samples, it was experimentally demonstrated that the friction-induced stick-slip behavior does not solely depend on the frictional coefficient of the contact pair.

  7. Effects of Stone-Wales and vacancy defects in atomic-scale friction on defective graphite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Xiao-Yu; Key Laboratory of Hubei Province for Water Jet Theory and New Technology, Wuhan University, Wuhan 430072; Wu, RunNi

    2014-05-05

    Graphite is an excellent solid lubricant for surface coating, but its performance is significantly weakened by the vacancy or Stone-Wales (SW) defect. This study uses molecular dynamics simulations to explore the frictional behavior of a diamond tip sliding over a graphite which contains a single defect or stacked defects. Our results suggest that the friction on defective graphite shows a strong dependence on defect location and type. The 5-7-7-5 structure of SW defect results in an effectively negative slope of friction. For defective graphite containing a defect in the surface, adding a single vacancy in the interior layer will decreasemore » the friction coefficients, while setting a SW defect in the interior layer may increase the friction coefficients. Our obtained results may provide useful information for understanding the atomic-scale friction properties of defective graphite.« less

  8. Friction between footwear and floor covered with solid particles under dry and wet conditions.

    PubMed

    Li, Kai Way; Meng, Fanxing; Zhang, Wei

    2014-01-01

    Solid particles on the floor, both dry and wet, are common but their effects on the friction on the floor were seldom discussed in the literature. In this study, friction measurements were conducted to test the effects of particle size of solid contaminants on the friction coefficient on the floor under footwear, floor, and surface conditions. The results supported the hypothesis that particle size of solids affected the friction coefficient and the effects depended on footwear, floor, and surface conditions. On dry surfaces, solid particles resulted in friction loss when the Neolite footwear pad was used. On the other hand, solid particles provided additional friction when measured with the ethylene vinyl acetate (EVA) footwear pad. On wet surfaces, introducing solid particles made the floors more slip-resistant and such effects depended on particle size. This study provides information for better understanding of the mechanism of slipping when solid contaminants are present.

  9. Friction Anisotropy with Respect to Topographic Orientation

    PubMed Central

    Yu, Chengjiao; Wang, Q. Jane

    2012-01-01

    Friction characteristics with respect to surface topographic orientation were investigated using surfaces of different materials and fabricated with grooves of different scales. Scratching friction tests were conducted using a nano-indentation-scratching system with the tip motion parallel or perpendicular to the groove orientation. Similar friction anisotropy trends were observed for all the surfaces studied, which are (1) under a light load and for surfaces with narrow grooves, the tip motion parallel to the grooves offers higher friction coefficients than does that perpendicular to them, (2) otherwise, equal or lower friction coefficients are found under this motion. The influences of groove size relative to the diameter of the mating tip (as a representative asperity), surface contact stiffness, contact area, and the characteristic stiction length are discussed. The appearance of this friction anisotropy is independent of material; however, the boundary and the point of trend transition depend on material properties. PMID:23248751

  10. Systematic Breakdown of Amontons' Law of Friction for an Elastic Object Locally Obeying Amontons' Law

    PubMed Central

    Otsuki, Michio; Matsukawa, Hiroshi

    2013-01-01

    In many sliding systems consisting of solid object on a solid substrate under dry condition, the friction force does not depend on the apparent contact area and is proportional to the loading force. This behaviour is called Amontons' law and indicates that the friction coefficient, or the ratio of the friction force to the loading force, is constant. Here, however, using numerical and analytical methods, we show that Amontons' law breaks down systematically under certain conditions for an elastic object experiencing a friction force that locally obeys Amontons' law. The macroscopic static friction coefficient, which corresponds to the onset of bulk sliding of the object, decreases as pressure or system length increases. This decrease results from precursor slips before the onset of bulk sliding, and is consistent with the results of certain previous experiments. The mechanisms for these behaviours are clarified. These results will provide new insight into controlling friction. PMID:23545778

  11. Microstructure and wear resistance of laser cladded Ni-Cr-Co-Ti-V high-entropy alloy coating after laser remelting processing

    NASA Astrophysics Data System (ADS)

    Cai, Zhaobing; Cui, Xiufang; Liu, Zhe; Li, Yang; Dong, Meiling; Jin, Guo

    2018-02-01

    An attempt, combined with the technologies of laser cladding and laser remelting, has been made to develop a Ni-Cr-Co-Ti-V high entropy alloy coating. The phase composition, microstructure, micro-hardness and wear resistance (rolling friction) were studied in detail. The results show that after laser remelting, the phase composition remains unchanged, that is, as-cladded coating and as-remelted coatings are all composed of (Ni, Co)Ti2 intermetallic compound, Ti-rich phase and BCC solid solution phase. However, after laser remelting, the volume fraction of Ti-rich phase increases significantly. Moreover, the micro-hardness is increased, up to ∼900 HV at the laser remelting parameters: laser power of 1 kW, laser spot diameter of 3 mm, and laser speed of 10 mm/s. Compared to the as-cladded high-entropy alloy coating, the as-remelted high-entropy alloy coatings have high friction coefficient and low wear mass loss, indicating that the wear resistance of as-remelted coatings is improved and suggesting practical applications, like coatings on brake pads for wear protection. The worn surface morphologies show that the worn mechanism of as-cladded and as-remelted high-entropy alloy coatings are adhesive wear.

  12. Orthogonal Simulation Experiment for Flow Characteristics of Ore in Ore Drawing and Influencing Factors in a Single Funnel Under a Flexible Isolation Layer

    NASA Astrophysics Data System (ADS)

    Chen, Qingfa; Zhao, Fuyu; Chen, Qinglin; Wang, Yuding; Zhong, Yu; Niu, Wenjing

    2017-12-01

    A study on the flow characteristics of ore and factors that influence these characteristics is important to master ore flow laws. An orthogonal ore-drawing numerical model was established and the flow characteristics were explored. A weight matrix was obtained and the effect of the factors was determined. It was found that (1) the entire isolation-layer interface presents a Gaussian curve morphology and marked particles in each layer show a funnel morphology; (2) the drawing amount, Q, and the isolation layer half-width, W, are correlated positively with the fall depth, H, of the isolation layer; (3) factors that affect the characteristics sequentially include the particle friction coefficient, the interface friction coefficient, the isolation layer thickness, and the particle radius, and (4) the optimal combination is an isolation layer thickness of 0.005 m, an interface friction coefficient of 0.8, a particle friction coefficient of 0.2, and a particle radius of 0.007 m.

  13. Experimental and numerical study of the effect of rolling parameters on shaft deformation during the longitudinal rolling process

    NASA Astrophysics Data System (ADS)

    Kowalik, Marek; Trzepiecinski, Tomasz

    2018-05-01

    This paper presents the characteristics of the process of longitudinal rolling of shafts and the geometry of the working section of forming rollers with a secant profile. In addition, the analytical formulae defining the geometry of a roller profile were determined. The experiments were carried out on shafts made of S235JR and C45 structural steels and the MSC.Marc + Mentat program was used for the numerical analysis of the rolling process based on the finite element method. The paper analyses the effect of roller geometry on the changes in value of the widening coefficient and the diameter reduction coefficient for the first forming passage. It was found that the mechanical properties of the shaft material have a slight influence on the widening coefficient. The value of the widening coefficient of the shaft increases with increase in the initial diameter of the shaft. Increasing shaft diameter causes an increase of strain gradient on the cross-section of the shaft.

  14. Effect of friction on rolling tire-pavement interaction.

    DOT National Transportation Integrated Search

    2010-11-01

    Accurate modeling of tirepavement contact behavior (i.e., distribution of contact tractions at the : interface) plays an important role in the analysis of pavement performance and vehicle driving safety. : The tirepavement contact is essentiall...

  15. Friction behavior of network-structured CNT coating on pure titanium plate

    NASA Astrophysics Data System (ADS)

    Umeda, Junko; Fugetsu, Bunshi; Nishida, Erika; Miyaji, Hirofumi; Kondoh, Katsuyoshi

    2015-12-01

    Friction behavior of the network-structured CNTs coated pure Ti plate was evaluated by ball-on-disk wear test using SUS304 ball specimen under dry condition. The friction coefficient was significantly low and stable compared to the as-received Ti plate with no coating film. CNTs coating film had two important roles; self-lubrication and bearing effects to reduce the friction coefficient and carbon solid-solution hardening to improve the abrasive wear property of Ti plate. The annealing treatment at higher temperature (1123 K) was more effective to reduce the friction coefficient than that at lower temperature (973 K) because the Ti plate surface was uniformly covered with CNTs film even after sliding wear test. This is due to TiC interlayer formation via a reaction between Ti plate and carbon elements originated from CNTs during annealing. As a result, a strong interface bonding between CNTs film and Ti plate surface was obtained by higher temperature annealing treatment, and obstructed the detachment of CNTs film during wear test.

  16. Multiscale physics of rubber-ice friction

    NASA Astrophysics Data System (ADS)

    Tuononen, Ari J.; Kriston, András; Persson, Bo

    2016-09-01

    Ice friction plays an important role in many engineering applications, e.g., tires on icy roads, ice breaker ship motion, or winter sports equipment. Although numerous experiments have already been performed to understand the effect of various conditions on ice friction, to reveal the fundamental frictional mechanisms is still a challenging task. This study uses in situ white light interferometry to analyze ice surface topography during linear friction testing with a rubber slider. The method helps to provide an understanding of the link between changes in the surface topography and the friction coefficient through direct visualization and quantitative measurement of the morphologies of the ice surface at different length scales. Besides surface polishing and scratching, it was found that ice melts locally even after one sweep showing the refrozen droplets. A multi-scale rubber friction theory was also applied to study the contribution of viscoelasticity to the total friction coefficient, which showed a significant level with respect to the smoothness of the ice; furthermore, the theory also confirmed the possibility of local ice melting.

  17. Friction and wear behaviour of ion beam modified ceramics

    NASA Technical Reports Server (NTRS)

    Lankford, J.; Wei, W.; Kossowsky, R.

    1987-01-01

    In the present study, the sliding friction coefficients and wear rates of carbide, oxide, and nitride materials for potential use as sliding seals (ring/liner) were measured under temperature, environmental, velocity, and loading conditions representative of a diesel engine. In addition, silicon nitride and partially stabilized zirconia discs were modified by ion mixing with TiNi, nickel, cobalt and chromium, and subsequently run against carbide pins, with the objective of producing reduced friction via solid lubrication at elevated temperature. Unmodified ceramic sliding couples were characterized at all temperatures by friction coefficients of 0.24 and above. However, the coefficient at 800 C in an oxidizing environment was reduced to below 0.1, for certain material combinations, by the ion implantation of TiNi or cobalt. This beneficial effect was found to derive from lubricious titanium, nickel, and cobalt oxides.

  18. Friction coefficient determination by electrical resistance measurements

    NASA Astrophysics Data System (ADS)

    Tunyagi, A.; Kandrai, K.; Fülöp, Z.; Kapusi, Z.; Simon, A.

    2018-05-01

    A simple and low-cost, DIY-type, Arduino-driven experiment is presented for the study of friction and measurement of the friction coefficient, using a conductive rubber cord as a force sensor. It is proposed for high-school or college/university-level students. We strongly believe that it is worthwhile planning, designing and performing Arduino and compatible sensor-based experiments in physics class in order to ensure a better understanding of phenomena, develop theoretical knowledge and multiple experimental skills.

  19. Comments on Static vs Kinetic Friction

    NASA Astrophysics Data System (ADS)

    Kessler, Gabriel

    2009-09-01

    I'm writing to comment on the article published in the March edition of The Physics Teacher titled "Choose Wisely: Static or Kinetic Friction—The Power of Dimensionless Plots." As I was reading the article, something caught my eye that I couldn't reconcile with. It was the phrase on page 160 in the first column near the bottom. The statement was that the experimental value for the coefficient of kinetic friction was "unexpectedly greater than the coefficient of static friction!"

  20. Apparatus and method for inspecting a bearing ball

    NASA Technical Reports Server (NTRS)

    Bankston, B. F. (Inventor)

    1985-01-01

    A method and apparatus for inspecting the surface of a ball bearing is disclosed which includes a base having a high friction non-abrasive base scanning surface. A holding device includes a cone-shaped cup recess in which a ball element is received. Air is introduced through a passage to relieve friction between the wall of the recess and the ball element and facilitate rolling of the ball over the high friction base surface. The holding device is moved over the base scanning surface in a predetermined pattern such that the entire surface of the ball element is inspected byan eddy current probe which detects any surface defects.

  1. A rolling locomotion method for untethered magnetic microrobots

    NASA Astrophysics Data System (ADS)

    Hou, Max T.; Shen, Hui-Mei; Jiang, Guan-Lin; Lu, Chiang-Ni; Hsu, I.-Jen; Yeh, J. Andrew

    2010-01-01

    It is a challenge to achieve free and efficient motion of microrobots on arbitrary surfaces. We report a rolling locomotion method for a magnetic microrobot with a rectangular body (300×200×50 μm3); this method is based on an external rotating magnetic field. The magnetic force, accompanied by normal and friction forces, enables the successive rotations of the microrobot. A magnetic field with a rotational speed of 2 rps rolls the microrobot, giving it a translation speed of 1.4 mm/s. With this locomotion ability, microrobots can move along a line or curve and can climb slopes or stairs.

  2. Surface deformation and friction characteristic of nano scratch at ductile-removal regime for optical glass BK7.

    PubMed

    Li, Chen; Zhang, Feihu; Ding, Ye; Liu, Lifei

    2016-08-20

    Nano scratch for optical glass BK7 based on the ductile-removal regime was carried out, and the influence rule of scratch parameters on surface deformation and friction characteristic was analyzed. Experimental results showed that, with increase of normal force, the deformation of burrs in the edge of the scratch was more obvious, and with increase of the scratch velocity, the deformation of micro-fracture and burrs in the edge of the scratch was more obvious similarly. The residual depth of the scratch was measured by atomic force microscope. The experimental results also showed that, with increase of normal force, the residual depth of the scratch increased linearly while the elastic recovery rate decreased. Furthermore, with increase of scratch velocity, the residual depth of the scratch decreased while the elastic recovery rate increased. The scratch process of the Berkovich indenter was divided into the cutting process of many large negative rake faces based on the improved cutting model, and the friction characteristic of the Berkovich indenter and the workpiece was analyzed. The analysis showed that the coefficient of friction increased and then tended to be stable with the increase of normal force. Meanwhile, the coefficient of friction decreased with the increase of scratch velocity, and the coefficients, k ln(v) and μ0, were introduced to improve the original formula of friction coefficient.

  3. Frictional weakening of Landslides in the Solar System

    NASA Astrophysics Data System (ADS)

    Lucas, Antoine; Mangeney, Anne; Ampuero, Jean-Paul

    2014-05-01

    Landslides are an important phenomenon that shapes the surface morphology of solid planetary bodies, including planets and small bodies. In addition, landslide science aims to predict the maximum distance travelled and the maximum velocity reached by a potential landslide in order to quantify the damage it may cause. On the one hand, observations show that the so-called Heim's ratio (i.e. the ratio between the difference of the height of the initial mass and that of the deposit, and the traveling distance) decreases with increasing volume for landslides observed on Earth [1] and other planets like Mars and icy moons like Iapetus [2], but whether this quantity is a good representation of the effective friction during the flow is still a controversial issue. On the other hand, numerical simulations (either continuous or discrete) of real landslides commonly require the assumption of very small friction coefficient to reproduce the extension of deposits [2-5]. We investigate if a common origin can explain the characteristics of landslides in such variety of planetary environments. Based on analytical and numerical solutions for granular flows constrained by remote-sensing observations [3, 7], we developed a consistent method to estimate the effective friction coefficient of landslides, i.e., the constant basal friction coefficient that reproduces their first-order properties. We show that: i) the Heim's ratio is not equivalent to the effective friction coefficient; ii) the friction coefficient decreases with increasing volume or, more fundamentally, with increasing sliding velocity. Inspired by frictional weakening mechanisms thought to operate during earthquakes [8], we propose an empirical velocity-weakening friction law under an unifying phenomenological framework applicable to small to large landslides observed on Earth and beyond (including icy moons of giant planets) whatever the environment and material involved. References: [1] Legros, Eng. Geol. 2002; [2] Lucas, Nat. Geosc. News & Views, 2012. [3] Lucas & Mangeney, GRL, 2007. [4] Pudasaini & Hutter, Springer, 2007. [5] Campbell et al., JGR, 1995. [6] Smart et al., AGU Fall Meeting, 2010. [7] Lucas et al., JGR, 2011. [8] Rice, JGR, 2006. N.B. This work is subject to press embargo.

  4. Molecular dynamics simulations of metallic friction and of its dependence on electric currents - development and first results

    NASA Astrophysics Data System (ADS)

    Meintanis, Evangelos Anastasios

    We have extended the HOLA molecular dynamics (MD) code to run slider-on-block friction experiments for Al and Cu. Both objects are allowed to evolve freely and show marked deformation despite the hardness difference. We recover realistic coefficients of friction and verify the importance of cold-welding and plastic deformations in dry sliding friction. Our first data also show a mechanism for decoupling between load and friction at high velocities. Such a mechanism can explain an increase in the coefficient of friction of metals with velocity. The study of the effects of currents on our system required the development of a suitable electrodynamic (ED) solver, as the disparity of MD and ED time scales threatened the efficiency of our code. Our first simulations combining ED and MD are presented.

  5. Structural and environmental dependence of superlow friction in ion vapour-deposited a-C : H : Si films for solid lubrication application

    NASA Astrophysics Data System (ADS)

    Chen, Xinchun; Kato, Takahisa; Kawaguchi, Masahiro; Nosaka, Masataka; Choi, Junho

    2013-06-01

    Understanding the tribochemical interaction of water molecules in humid environment with carbonaceous film surfaces, especially hydrophilic surface, is fundamental for applications in tribology and solid lubrication. This paper highlights some experimental evidence to elucidate the structural and environmental dependence of ultralow or even superlow friction in ion vapour-deposited a-C : H : Si films. The results indicate that both surface density of silicon hydroxyl group (Si-OH) and humidity level (RH) determine the frictional performance of a-C : H : Si films. Ultralow friction coefficient μ (˜0.01-0.055) is feasible in a wide range of RH. The dissociative formation of hydrophilic Si-OH surface and the following nanostructure of interfacial water molecules under contact pressure are the origin of ultralow friction for a-C : H : Si films in humid environment. The correlation between contact pressure and friction coefficient derived from Hertzian contact model is not valid in the present case. Under this nanoscale boundary lubrication, the friction coefficient tends to increase as the contact pressure increases. There even exists a contact pressure threshold for the transition from ultralow to superlow friction (μ ˜ 0.007). In comparison, when tribotested in dry N2, the observed superlow friction (μ ˜ 0.004) in the absence of water is correlated with the formation of a low shear strength tribolayer by wear-induced phase transformation.

  6. The Mohr-Coulomb criterion for intact rock strength and friction - a re-evaluation and consideration of failure under polyaxial stresses

    NASA Astrophysics Data System (ADS)

    Hackston, Abigail; Rutter, Ernest

    2016-04-01

    Darley Dale and Pennant sandstones were tested under conditions of both axisymmetric shortening and extension normal to bedding. These are the two extremes of loading under polyaxial stress conditions. Failure under generalized stress conditions can be predicted from the Mohr-Coulomb failure criterion under axisymmetric shortening conditions, provided the best form of polyaxial failure criterion is known. The sandstone data are best reconciled using the Mogi (1967) empirical criterion. Fault plane orientations produced vary greatly with respect to the maximum compressive stress direction in the two loading configurations. The normals to the Mohr-Coulomb failure envelopes do not predict the orientations of the fault planes eventually produced. Frictional sliding on variously inclined saw cuts and failure surfaces produced in intact rock samples was also investigated. Friction coefficient is not affected by fault plane orientation in a given loading configuration, but friction coefficients in extension were systematically lower than in compression for both rock types. Friction data for these and other porous sandstones accord well with the Byerlee (1978) generalization about rock friction being largely independent of rock type. For engineering and geodynamic modelling purposes, the stress-state-dependent friction coefficient should be used for sandstones, but it is not known to what extent this might apply to other rock types.

  7. Methods to Measure, Predict and Relate Friction, Wear and Fuel Economy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gravante, Steve; Fenske, George; Demas, Nicholas

    High-fidelity measurements of the coefficient of friction and the parasitic friction power of the power cylinder components have been made for the Isuzu 5.2L 4H on-highway engine. In particular, measurements of the asperity friction coefficient were made with test coupons using Argonne National Lab’s (ANL) reciprocating test rig for the ring-on-liner and skirt-on-liner component pairs. These measurements correlated well with independent measurements made by Electro-Mechanical Associates (EMA). In addition, surface roughness measurements of the Isuzu components were made using white light interferometer (WLI). The asperity friction and surface characterization are key inputs to advanced CAE simulation tools such as RINGPAKmore » and PISDYN which are used to predict the friction power and wear rates of power cylinder components. Finally, motored friction tests were successfully performed to quantify the friction mean effective pressure (FMEP) of the power cylinder components for various oils (High viscosity 15W40, low viscosity 5W20 with friction modifier (FM) and specially blended oil containing consisting of PAO/ZDDP/MoDTC) at 25, 50, and 110°C.« less

  8. Friction and Wear Modifiers Using Solvent Partitioning of Hydrophilic Surface-interactive Chemicals Contained in Boundary Layer-targeted Emulsions

    NASA Technical Reports Server (NTRS)

    Richmond, Robert Chafee (Inventor); Schramm, Jr., Harry F. (Inventor); Defalco, Francis G. (Inventor)

    2013-01-01

    A wear and/or friction reducing additive for a lubricating fluid in which the additive is a combination of a moderately hydrophilic single-phase compound and an anti-wear and/or anti-friction aqueous salt solution. The aqueous salt solution produces a coating on boundary layer surfaces. The lubricating fluid can be an emulsion-free hydrophobic oil, hydraulic fluid, antifreeze, or water. Preferably, the moderately hydrophilic single-phase compound is sulfonated castor oil and the aqueous salt solution additionally contains boric acid and zinc oxide. The emulsions produced by the aqueous salt solutions, the moderately hydrophilic single-phase compounds, or the combination thereof provide targeted boundary layer organizers that significantly enhance the anti-wear and/or anti-friction properties of the base lubricant by decreasing wear and/or friction of sliding and/or rolling surfaces at boundary layers.

  9. Friction behavior of a multi-interface system and improved performance by AlMgB 14–TiB 2–C and diamond-like-carbon coatings

    DOE PAGES

    Qu, Jun; Blau, Peter J.; Higdon, Clifton; ...

    2016-03-29

    We investigated friction behavior of a bearing system with two interfaces involved: a roller component experiencing rolling–sliding interaction against twin cylinders under point contacts while simultaneously undergoing pure sliding interaction against a socket under a conformal contact. Lubrication modeling predicted a strong correlation between the roller's rolling condition and the system's friction behavior. Experimental observations first validated the analytical predictions using steel and iron components. Diamond-like-carbon (DLC) coating and AlMgB 14–TiB 2 coating with a carbon topcoat (BAMC) were then applied to the roller and twin cylinders, respectively. In conclusion, testing and analysis results suggest that the coatings effectively decreasedmore » the slip ratio for the roller–cylinder contact and the sliding friction at both bearing interfaces and, as a result, significantly reduced the system frictional torque.« less

  10. Friction and Wear Modifiers Using Solvent Partitioning of Hydrophilic Surface-Interactive Chemicals Contained in Boundary Layer-Targeted Emulsions

    NASA Technical Reports Server (NTRS)

    Defalco, Francis G. (Inventor); Richmond, Robert Chaffee (Inventor); Schramm, Jr., Harry F. (Inventor)

    2017-01-01

    A wear and/or friction reducing additive for a lubricating fluid in which the additive is a combination of a moderately hydrophilic single-phase compound and an anti-wear and/or anti-friction aqueous salt solution. The aqueous salt solution produces a coating on boundary layer surfaces. The lubricating fluid can be an emulsion-free hydrophobic oil, hydraulic fluid, antifreeze, water, or a water-based lubricant. Preferably, the moderately hydrophilic single-phase compound is sulfonated castor oil and the aqueous salt solution additionally contains boric acid and zinc oxide. The emulsions produced by the aqueous salt solutions, the moderately hydrophilic single-phase compounds, or the combination thereof provide targeted boundary layer organizers that significantly enhance the anti-wear and/or anti-friction properties of the base lubricant by decreasing wear and/or friction of sliding and/or rolling surfaces at boundary layers.

  11. Friction and Wear Modifiers Using Solvent Partitioning of Hydrophilic Surface-Interactive Chemicals Contained in Boundary Layer-Targeted Emulsions

    NASA Technical Reports Server (NTRS)

    Defalco, Francis G. (Inventor); Richmond, Robert Chaffee (Inventor); Schramm, Harry F., Jr. (Inventor)

    2016-01-01

    A wear and/or friction reducing additive for a lubricating fluid in which the additive is a combination of a moderately hydrophilic single-phase compound and an anti-wear and/or anti-friction aqueous salt solution. The aqueous salt solution produces a coating on boundary layer surfaces. The lubricating fluid can be an emulsion-free hydrophobic oil, hydraulic fluid, antifreeze, or water. Preferably, the moderately hydrophilic single-phase compound is sulfonated castor oil and the aqueous salt solution additionally contains boric acid and zinc oxide. The emulsions produced by the aqueous salt solutions, the moderately hydrophilic single-phase compounds, or the combination thereof provide targeted boundary layer organizers that significantly enhance the anti-wear and/or anti-friction properties of the base lubricant by decreasing wear and/or friction of sliding and/or rolling surfaces at boundary layers.

  12. Examining longitudinal train dynamics in ore car tipplers

    NASA Astrophysics Data System (ADS)

    Cole, Colin; Spiryagin, Maksym; Bosomworth, Chris

    2017-04-01

    Train simulation has been adapted in this paper to model the behaviour of indexing operations in ore car tippler operations. An important consideration in simulations at these low speeds (less than 4 km/h) is the increased rolling resistance transitioning from stationary conditions to motion. Most formulations of rolling resistance equations do not include this range although there are empirical values in some railway standards. The indexer control utilised here has a target trapezoidal velocity profile. The indexer to train connection was modelled as a stiff linear spring, a damper and a gap element. A sensitivity analysis was completed considering variations in wagon connections including wedge static friction, preload, coupling slack and tippler slack. Track topography including downhill grades of 0.1% and 0.2% and a valley profile were also investigated. Results showed high sensitivity to draft gear parameters of static friction and preload, but minimal benefit from downhill grades and changes in coupling slack.

  13. Research on the impact of surface properties of particle on damping effect in gear transmission under high speed and heavy load

    NASA Astrophysics Data System (ADS)

    Xiao, Wangqiang; Chen, Zhiwei; Pan, Tianlong; Li, Jiani

    2018-01-01

    The vibration and noise from gear transmission have great damage on the mechanical equipment and operators. Through inelastic collisions and friction between particles, the energy can be dissipated in gear transmission. A dynamic model of particle dampers in gear transmission was put forward in this paper. The performance of particle dampers in centrifugal fields under different rotational speeds and load was investigated. The surface properties such as the impact of coefficient of restitution and friction coefficient of the particle on the damping effect were analyzed and the total energy loss was obtained by discrete element method (DEM). The vibration from time-varying mesh stiffness was effectively reduced by particle dampers and the optimum coefficient of restitution was discovered under different rotational speeds and load. Then, a test bench for gear transmission was constructed, and the vibration of driven gear and driving gear were measured through a three-directional wireless acceleration sensor. The research results agree well with the simulation results. While at relatively high speed, smaller coefficient of restitution achieves better damping effect. As to friction coefficient, at relatively high speed, the energy dissipation climbs up and then declines with the increase of the friction coefficient. The results can provide guidelines for the application of particle damper in gear transmission.

  14. Contact solution algorithms

    NASA Technical Reports Server (NTRS)

    Tielking, John T.

    1989-01-01

    Two algorithms for obtaining static contact solutions are described in this presentation. Although they were derived for contact problems involving specific structures (a tire and a solid rubber cylinder), they are sufficiently general to be applied to other shell-of-revolution and solid-body contact problems. The shell-of-revolution contact algorithm is a method of obtaining a point load influence coefficient matrix for the portion of shell surface that is expected to carry a contact load. If the shell is sufficiently linear with respect to contact loading, a single influence coefficient matrix can be used to obtain a good approximation of the contact pressure distribution. Otherwise, the matrix will be updated to reflect nonlinear load-deflection behavior. The solid-body contact algorithm utilizes a Lagrange multiplier to include the contact constraint in a potential energy functional. The solution is found by applying the principle of minimum potential energy. The Lagrange multiplier is identified as the contact load resultant for a specific deflection. At present, only frictionless contact solutions have been obtained with these algorithms. A sliding tread element has been developed to calculate friction shear force in the contact region of the rolling shell-of-revolution tire model.

  15. Non-intrusive measurements of frictional forces between micro-spheres and flat surfaces

    NASA Astrophysics Data System (ADS)

    Lin, Wei-Hsun; Daraio, Chiara; Daraio's Group Team

    2014-03-01

    We report a novel, optical pump-probe experimental setup to study micro-friction phenomena between micro-particles and a flat surface. We present a case study of stainless steel microspheres, of diameter near 250 μm, in contact with different surfaces of variable roughness. In these experiments, the contact area between the particles and the substrates is only a few nanometers wide. To excite the particles, we deliver an impulse using a pulsed, high-power laser. The reaction force resulting from the surface ablation induced by the laser imparts a controlled initial velocity to the target particle. This initial velocity can be varied between 10-5 to 1 m/s. We investigate the vibrating and rolling motions of the micro-particles by detecting their velocity and displacement with a laser vibrometer and a high-speed microscope camera. We calculate the effective Hamaker constant from the vibrating motion of a particle, and study its relation to the substrate's surface roughness. We analyze the relation between rolling friction and the minimum momentum required to break surface bonding forces. This non-contact and non-intrusive technique could be employed to study a variety of contact and tribology problems at the microscale.

  16. History of ball bearings

    NASA Technical Reports Server (NTRS)

    Dowson, D.; Hamrock, B. J.

    1981-01-01

    The familiar precision rolling-element bearings of the twentieth century are products of exacting technology and sophisticated science. Their very effectiveness and basic simplicity of form may discourage further interest in their history and development. Yet the full story covers a large portion of recorded history and surprising evidence of an early recognition of the advantages of rolling motion over sliding action and progress toward the development of rolling-element bearings. The development of rolling-element bearings is followed from the earliest civilizations to the end of the eighteenth century. The influence of general technological developments, particularly those concerned with the movement of large building blocks, road transportation, instruments, water-raising equipment, and windmills are discussed, together with the emergence of studies of the nature of rolling friction and the impact of economic factors. By 1800 the essential features of ball and rolling-element bearings had emerged and it only remained for precision manufacture and mass production to confirm the value of these fascinating machine elements.

  17. Ultra low friction carbon/carbon composites for extreme temperature applications

    DOEpatents

    Erdemir, Ali; Busch, Donald E.; Fenske, George R.; Lee, Sam; Shepherd, Gary; Pruett, Gary J.

    2001-01-01

    A carbon/carbon composite in which a carbon matrix containing a controlled amount of boron or a boron compound is reinforced with carbon fiber exhibits a low coefficient of friction, i.e., on the order of 0.04 to 0.1 at temperatures up to 600.degree. C., which is one of the lowest frictional coefficients for any type of carbonaceous material, including graphite, glassy carbon, diamond, diamond-like carbon and other forms of carbon material. The high degree of slipperiness of the carbon composite renders it particularly adapted for limiting friction and wear at elevated temperatures such as in seals, bearings, shafts, and flexible joints

  18. Large Electric Field-Enhanced-Hardness Effect in a SiO2 Film

    NASA Astrophysics Data System (ADS)

    Revilla, Reynier I.; Li, Xiao-Jun; Yang, Yan-Lian; Wang, Chen

    2014-03-01

    Silicon dioxide films are extensively used in nano and micro-electromechanical systems. Here we studied the influence of an external electric field on the mechanical properties of a SiO2 film by using nanoindentation technique of atomic force microscopy (AFM) and friction force microscopy (FFM). A giant augmentation of the relative elastic modulus was observed by increasing the localized electric field. A slight decrease in friction coefficients was also clearly observed by using FFM with the increase of applied tip voltage. The reduction of the friction coefficients is consistent with the great enhancement of sample hardness by considering the indentation-induced deformation during the friction measurements.

  19. Predicting a contact's sensitivity to initial conditions using metrics of frictional coupling

    DOE PAGES

    Flicek, Robert C.; Hills, David A.; Brake, Matthew Robert W.

    2016-09-29

    This paper presents a method for predicting how sensitive a frictional contact’s steady-state behavior is to its initial conditions. Previous research has proven that if a contact is uncoupled, i.e. if slip displacements do not influence the contact pressure distribution, then its steady-state response is independent of initial conditions, but if the contact is coupled, the steady-state response depends on initial conditions. In this paper, two metrics for quantifying coupling in discrete frictional systems are examined. These metrics suggest that coupling is dominated by material dissimilarity due to Dundurs’ composite material parameter β when β ≥ 0.2, but geometric mismatchmore » becomes the dominant source of coupling for smaller values of β. Based on a large set of numerical simulations with different contact geometries, material combinations, and friction coefficients, a contact’s sensitivity to initial conditions is found to be correlated with the product of the coupling metric and the friction coefficient. For cyclic shear loading, this correlation is maintained for simulations with different contact geometries, material combinations, and friction coefficients. Furthermore, for cyclic bulk loading, the correlation is only maintained when the contact edge angle is held constant.« less

  20. Predicting a contact's sensitivity to initial conditions using metrics of frictional coupling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flicek, Robert C.; Hills, David A.; Brake, Matthew Robert W.

    This paper presents a method for predicting how sensitive a frictional contact’s steady-state behavior is to its initial conditions. Previous research has proven that if a contact is uncoupled, i.e. if slip displacements do not influence the contact pressure distribution, then its steady-state response is independent of initial conditions, but if the contact is coupled, the steady-state response depends on initial conditions. In this paper, two metrics for quantifying coupling in discrete frictional systems are examined. These metrics suggest that coupling is dominated by material dissimilarity due to Dundurs’ composite material parameter β when β ≥ 0.2, but geometric mismatchmore » becomes the dominant source of coupling for smaller values of β. Based on a large set of numerical simulations with different contact geometries, material combinations, and friction coefficients, a contact’s sensitivity to initial conditions is found to be correlated with the product of the coupling metric and the friction coefficient. For cyclic shear loading, this correlation is maintained for simulations with different contact geometries, material combinations, and friction coefficients. Furthermore, for cyclic bulk loading, the correlation is only maintained when the contact edge angle is held constant.« less

  1. Friction Properties of Polished Cvd Diamond Films Sliding against Different Metals

    NASA Astrophysics Data System (ADS)

    Lin, Zichao; Sun, Fanghong; Shen, Bin

    2016-11-01

    Owing to their excellent mechanical and tribological properties, like the well-known extreme hardness, low coefficient of friction and high chemical inertness, chemical vapor deposition (CVD) diamond films have found applications as a hard coating for drawing dies. The surface roughness of the diamond films is one of the most important attributes to the drawing dies. In this paper, the effects of different surface roughnesses on the friction properties of diamond films have been experimentally studied. Diamond films were fabricated using hot filament CVD. The WC-Co (Co 6wt.%) drawing dies were used as substrates. A gas mixture of acetone and hydrogen gas was used as the feedstock gas. The CVD diamond films were polished using mechanical polishing. Polished diamond films with three different surface roughnesses, as well as the unpolished diamond film, were fabricated in order to study the tribological performance between the CVD diamond films and different metals with oil lubrication. The unpolished and polished CVD diamond films are characterized with scanning electron microscope (SEM), atomic force microscope (AFM), surface profilometer, Raman spectrum and X-ray diffraction (XRD). The friction examinations were carried out by using a ball-on-plate type reciprocating friction tester. Low carbide steel, stainless steel, copper and aluminum materials were used as counterpart balls. Based on this study, the results presented the friction coefficients between the polished CVD films and different metals. The friction tests demonstrate that the smooth surface finish of CVD diamond films is beneficial for reducing their friction coefficients. The diamond films exhibit low friction coefficients when slid against the stainless steel balls and low carbide steel ball, lower than that slid against copper ball and aluminum ball, attributed to the higher ductility of copper and aluminum causing larger amount of wear debris adhering to the sliding interface and higher adhesive strength between the contacting surfaces.

  2. Tribological behaviors of UHMWPE composites with different counter surface morphologies

    NASA Astrophysics Data System (ADS)

    Wang, Yanzhen; Yin, Zhongwei; Li, Hulin; Gao, Gengyuan

    2017-12-01

    The influence of counter surface morphologies on hybrid glass fiber (GF) and carbon fiber (CF) filled ultrahigh molecular weight polyethylene (UHMWPE) were studied under various contact pressure and sliding speed against GCr15 steel in dry condition. The goals were to investigate the tribological behavior of GF/CF/UHMWPE composite as a kind of water lubricated journal bearing material. The friction and wear behavior of composites were examined using a pin-on-disc tribometer. The morphologies of the worn surface were examined by scanning electron microscopy (SEM) and laser 3D micro-imaging and profile measurement. Generally, the wear rate and friction coefficient of composites increase as the increment of counter surface roughness. The friction coefficient increases firstly and then decrease with an increase in sliding speed and contact pressure for counterface with Ra=0.2 and 3.5 μm, while the friction coefficient decreased for counterface with Ra=0.6 μm.

  3. Ferrographic analysis of wear debris generated in accelerated rolling element fatigue tests

    NASA Technical Reports Server (NTRS)

    Jones, W. R., Jr.; Parker, R. J.

    1977-01-01

    The types and quantities of wear particles generated during accelerated ball rolling contact fatigue tests were determined. Ball specimens were made of AMS 5749, a corrosion resistant, high-temperature bearing steel. The lubricant was a super-refined naphthenic mineral oil. Conditions included a maximum Hertz stress of 5.215 times 10 to the 9th power Pa and a shaft speed of 10,000 rpm. Four types of wear particles were observed; normal rubbing wear particles, fatigue spall particles, spheres, and friction polymer.

  4. Growth and tribological properties of diamond films on silicon and tungsten carbide substrates

    NASA Astrophysics Data System (ADS)

    Radhika, R.; Ramachandra Rao, M. S.

    2016-11-01

    Hot filament chemical vapor deposition technique was used to deposit microcrystalline diamond (MCD) and nanocrystalline diamond (NCD) films on silicon (Si) and tungsten carbide (WC-6Co) substrates. Friction coefficient of larger diamond grains deposited on WC-6Co substrate shows less value approximately 0.2 while this differs marginally on films grown on Si substrate. The study claims that for a less friction coefficient, the grain size is not necessarily smaller. However, the less friction coefficient (less than 0.1 saturated value) in MCD and NCD deposited on Si is explained by the formation of graphitized tribolayer. This layer easily forms when diamond phase is thermodynamically unstable.

  5. Friction and wear behaviour of Mo-W doped carbon-based coating during boundary lubricated sliding

    NASA Astrophysics Data System (ADS)

    Hovsepian, Papken Eh.; Mandal, Paranjayee; Ehiasarian, Arutiun P.; Sáfrán, G.; Tietema, R.; Doerwald, D.

    2016-03-01

    A molybdenum and tungsten doped carbon-based coating (Mo-W-C) was developed in order to provide low friction in boundary lubricated sliding condition at ambient and at high temperature. The Mo-W-C coating showed the lowest friction coefficient among a number of commercially available state-of-the-art DLC coatings at ambient temperature. At elevated temperature (200 °C), Mo-W-C coating showed a significant reduction in friction coefficient with sliding distance in contrast to DLC coatings. Raman spectroscopy revealed the importance of combined Mo and W doping for achieving low friction at both ambient and high temperature. The significant decrease in friction and wear rate was attributed to the presence of graphitic carbon debris (from coating) and 'in situ' formed metal sulphides (WS2 and MoS2, where metals were supplied from coating and sulphur from engine oil) in the transfer layer.

  6. Adhesion, friction, and wear of binary alloys in contact with single-crystal silicon carbide

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1980-01-01

    Sliding friction experiments, conducted with various iron base alloys (alloying elements are Ti, Cr, Mn, Ni, Rh and W) in contact with a single crystal silicon carbide /0001/ surface in vacuum are discussed. Results indicate atomic size misfit and concentration of alloying elements play a dominant role in controlling adhesion, friction, and wear properties of iron-base binary alloys. The controlling mechanism of the alloy properties is as an intrinsic effect involving the resistance to shear fracture of cohesive bonding in the alloy. The coefficient of friction generally increases with an increase in solute concentration. The coefficient of friction increases as the solute-to-iron atomic radius ratio increases or decreases from unity. Alloys having higher solute concentration produce more transfer to silicon carbide than do alloys having low solute concentrations. The chemical activity of the alloying element is also an important parameter in controlling adhesion and friction of alloys.

  7. Anisotropic frictional heating and defect generation in cyclotrimethylene-trinitramine molecular crystals

    NASA Astrophysics Data System (ADS)

    Rajak, Pankaj; Mishra, Ankit; Sheng, Chunyang; Tiwari, Subodh; Kalia, Rajiv K.; Nakano, Aiichiro; Vashishta, Priya

    2018-05-01

    Anisotropic frictional response and corresponding heating in cyclotrimethylene-trinitramine molecular crystals are studied using molecular dynamics simulations. The nature of damage and temperature rise due to frictional forces is monitored along different sliding directions on the primary slip plane, (010), and on non-slip planes, (100) and (001). Correlations between the friction coefficient, deformation, and frictional heating are established. We find that the friction coefficients on slip planes are smaller than those on non-slip planes. In response to sliding on a slip plane, the crystal deforms easily via dislocation generation and shows less heating. On non-slip planes, due to the inability of the crystal to deform via dislocation generation, a large damage zone is formed just below the contact area, accompanied by the change in the molecular ring conformation from chair to boat/half-boat. This in turn leads to a large temperature rise below the contact area.

  8. Psychophysical evaluation of a variable friction tactile interface

    NASA Astrophysics Data System (ADS)

    Samur, Evren; Colgate, J. Edward; Peshkin, Michael A.

    2009-02-01

    This study explores the haptic rendering capabilities of a variable friction tactile interface through psychophysical experiments. In order to obtain a deeper understanding of the sensory resolution associated with the Tactile Pattern Display (TPaD), friction discrimination experiments are conducted. During the experiments, subjects are asked to explore the glass surface of the TPaD using their bare index fingers, to feel the friction on the surface, and to compare the slipperiness of two stimuli, displayed in sequential order. The fingertip position data is collected by an infrared frame and normal and translational forces applied by the finger are measured by force sensors attached to the TPaD. The recorded data is used to calculate the coefficient of friction between the fingertip and the TPaD. The experiments determine the just noticeable difference (JND) of friction coefficient for humans interacting with the TPaD.

  9. Atomic scale friction of molecular adsorbates during diffusion.

    PubMed

    Lechner, B A J; de Wijn, A S; Hedgeland, H; Jardine, A P; Hinch, B J; Allison, W; Ellis, J

    2013-05-21

    Experimental observations suggest that molecular adsorbates exhibit a larger friction coefficient than atomic species of comparable mass, yet the origin of this increased friction is not well understood. We present a study of the microscopic origins of friction experienced by molecular adsorbates during surface diffusion. Helium spin-echo measurements of a range of five-membered aromatic molecules, cyclopentadienyl, pyrrole, and thiophene, on a copper(111) surface are compared with molecular dynamics simulations of the respective systems. The adsorbates have different chemical interactions with the surface and differ in bonding geometry, yet the measurements show that the friction is greater than 2 ps(-1) for all these molecules. We demonstrate that the internal and external degrees of freedom of these adsorbate species are a key factor in the underlying microscopic processes and identify the rotation modes as the ones contributing most to the total measured friction coefficient.

  10. Surface chemistry, microstructure and friction properties of some ferrous-base metallic glasses at temperatures to 750 C

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1982-01-01

    X-ray photoelectron spectroscopy analysis, transmission electron microscopy, diffraction studies, and sliding friction experiments were conducted with ferrous-base metallic glasses in sliding contact with aluminum oxide at temperatures from room to 750 C in a vacuum of 30 nPa. The results indicate that there is a significant temperature influence on the friction properties, surface chemistry, and microstructure of metallic glasses. The relative concentrations of the various constituents at the surface of the sputtered specimens were very different from the normal bulk compositions. Contaminants can come from the bulk of the material to the surface upon heating and impart boric oxide and silicon oxide at 350 C and boron nitride above 500 C. The coefficient of friction increased with increasing temperature to 350 C. Above 500 C the coefficient of friction decreased rapidly. The segregation of contaminants may be responsible for the friction behavior.

  11. Friction and wear behavior of single-crystal silicon carbide in contact with titanium

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1977-01-01

    Sliding friction experiments were conducted with single crystal silicon carbide in sliding contact with titanium. Results indicate that the friction coefficient is greater in vacuum than in argon and that this is due to the greater adhesion or adhesive transfer in vacuum. Thin films of silicon carbide transferred to titanium also adhered to silicon carbide both in argon at atmospheric pressure and in high vacuum. Cohesive bonds fractured on both the silicon carbide and titanium surfaces. The wear debris of silicon carbide created by fracture plowed the silicon carbide surface in a plastic manner. The friction characteristics of titanium in contact with silicon carbide were sensitive to the surface roughness of silicon carbide, and the friction coefficients were higher for a rough surface of silicon carbide than for a smooth one. The difference in friction results was due to plastic deformation (plowing of titanium).

  12. An investigation of material properties and tribological performance of magnetron sputtered thin film coatings

    NASA Astrophysics Data System (ADS)

    Singh, Harpal

    This dissertation is divided into two categories based upon lubrication functionality and its application. The categories are: Dry film lubrication and Fluid film lubrication with thin film coatings. Thin film coatings examined in this work were deposited using closed field unbalanced magnetron sputtering and RF-DC coupled magnetron sputtering systems. In Dry/Solid film lubrication, the mechanical, structural and tribological properties of two Molybdenum disulphide (MoS2) based coatings are examined and evaluated. Among the two coatings, one coating is doped with Ti (Ti-MoS2) and the other is a combination of metal, lubricant and oxide (Sb2O3/Au - MoS2). These coatings are known to provide low friction in vacuum environments. The goal of this work was to evaluate friction and wear performance of MoS2 doped coatings in unidirectional and reciprocating sliding contact under different environmental conditions. Sliding contact results showed friction and wear dependence on temperature and humidity. The formation and removal of transfer films and the recrystallization and reorientation of basal layers on the steel counterface was observed as the mechanism for low friction. Structural analysis revealed a relationship between the microstructural properties and tribological performance. It was also observed that the addition of dopants (Ti, Au, Sb 2O3) improved the mechanical properties as compared to pure MoS2 coatings. Further, the rolling contact performance of the coatings was measured on a five ball on rod tribometer and a Thrust bearing tribometer under vacuum and air environments. The rolling contact experiments indicated that life of the rolling components depend on the amount of material present between the contacts. Fluid film lubrication with thin film coatings investigates the possibilities to improve the performance and durability of tribological components when oils and thin films are synergistically coupled. In this work, the ability of a Diamond Like Carbon coating to increase the durability of contacting surfaces under boundary lubrication were studied. The performance of highly hydrogenated Diamond Like Carbon (DLC) was evaluated in a mixed sliding and rolling contact. Experimental results show significant improvement in fatigue life of steel specimens after coating with a highly hydrogenated Diamond Like Carbon coating. The improved fatigue life is attributed to the coating microstructure and the mechanical properties.

  13. Spectroscopic Analysis of Perfluoropolyether Lubricant Degradation During Boundary Lubrication

    NASA Technical Reports Server (NTRS)

    Herrera-Fierro, Pilar; Shogrin, Bradley A.; Jones, William R., Jr.

    1996-01-01

    The degradation of a branched perfluoropolyether (PFPE) under boundary lubrication conditions was studied using mu-FTIR and mu-Raman spectroscopies. Stainless steel (440C) discs coated with thin (600A), uniform films of the PFPE were tested in a ball-on-disc apparatus until various levels of friction coefficient were attained. Discs were then examined using the above techniques. When the friction coefficient surpassed the value obtained with an un-lubricated control, the lubricant film had either been physically displaced or partially transformed in to a 'friction polymer'. Infrared analysis of this 'friction polymer' indicated the presence of a polymeric fluorinated acid species (R(sub f)COOH). Raman spectroscopy indicated the presence of amorphous carbon in the wear track and in the friction polymer. Some reaction mechanisms are suggested to explain the results.

  14. A study of the 1963 Vajont landslide zonation by means of Lagrangian block modelling

    NASA Astrophysics Data System (ADS)

    Zaniboni, Filippo; Ausilia Paparo, Maria; Tinti, Stefano

    2017-04-01

    The 1963 landslide detaching from Mt. Toc (North-East Italy), that crashing on the underlying Vajont reservoir caused a huge wave that killed over 2000 people, is a well-known event that has been extensively and deeply investigated. Recently, studies appeared in the literature suggesting that the landslide dynamics can be explained in terms of a zonation of the moving mass. In this work, an additional support to the zonation hypothesis is given by focusing on the friction coefficient of the sliding surface, which is one of the chief parameters influencing the slide motion. Numerical simulations of the Vajont slide found in the literature assumed a homogenous value of the friction coefficient. We have systematically investigated a set of heterogeneous configurations. More specifically, we have divided the sliding surface into a number N of zones, and let the corresponding friction coefficient vary in the range 0-0.5. For each configuration we have run the numerical simulation via the Lagrangian block-based code UBO-BLOCK2 and have evaluated the configuration goodness by computing the misfit between the observed and the simulated deposits. The number of simulations required by this approach increases exponentially with the number N of zones. The main finding of this research is that a 4-sector zonation provides the best results in terms of deposit misfit. The zones can be roughly described as west-downhill (WD), west uphill (WU), east downhill (ED) and east uphill (EU). It is found that motion is mainly determined by friction in zones WD and EU, that friction coefficients in zone WD is remarkably smaller than in zone EU and that misfit is rather insensitive to the values of the friction coefficients in zones WU and ED.

  15. A Real-Time Method for Estimating Viscous Forebody Drag Coefficients

    NASA Technical Reports Server (NTRS)

    Whitmore, Stephen A.; Hurtado, Marco; Rivera, Jose; Naughton, Jonathan W.

    2000-01-01

    This paper develops a real-time method based on the law of the wake for estimating forebody skin-friction coefficients. The incompressible law-of-the-wake equations are numerically integrated across the boundary layer depth to develop an engineering model that relates longitudinally averaged skin-friction coefficients to local boundary layer thickness. Solutions applicable to smooth surfaces with pressure gradients and rough surfaces with negligible pressure gradients are presented. Model accuracy is evaluated by comparing model predictions with previously measured flight data. This integral law procedure is beneficial in that skin-friction coefficients can be indirectly evaluated in real-time using a single boundary layer height measurement. In this concept a reference pitot probe is inserted into the flow, well above the anticipated maximum thickness of the local boundary layer. Another probe is servomechanism-driven and floats within the boundary layer. A controller regulates the position of the floating probe. The measured servomechanism position of this second probe provides an indirect measurement of both local and longitudinally averaged skin friction. Simulation results showing the performance of the control law for a noisy boundary layer are then presented.

  16. Study on Material Parameters Identification of Brain Tissue Considering Uncertainty of Friction Coefficient

    NASA Astrophysics Data System (ADS)

    Guan, Fengjiao; Zhang, Guanjun; Liu, Jie; Wang, Shujing; Luo, Xu; Zhu, Feng

    2017-10-01

    Accurate material parameters are critical to construct the high biofidelity finite element (FE) models. However, it is hard to obtain the brain tissue parameters accurately because of the effects of irregular geometry and uncertain boundary conditions. Considering the complexity of material test and the uncertainty of friction coefficient, a computational inverse method for viscoelastic material parameters identification of brain tissue is presented based on the interval analysis method. Firstly, the intervals are used to quantify the friction coefficient in the boundary condition. And then the inverse problem of material parameters identification under uncertain friction coefficient is transformed into two types of deterministic inverse problem. Finally the intelligent optimization algorithm is used to solve the two types of deterministic inverse problems quickly and accurately, and the range of material parameters can be easily acquired with no need of a variety of samples. The efficiency and convergence of this method are demonstrated by the material parameters identification of thalamus. The proposed method provides a potential effective tool for building high biofidelity human finite element model in the study of traffic accident injury.

  17. Influence of moisture content on physical properties of minor millets.

    PubMed

    Balasubramanian, S; Viswanathan, R

    2010-06-01

    Physical properties including 1000 kernel weight, bulk density, true density, porosity, angle of repose, coefficient of static friction, coefficient of internal friction and grain hardness were determined for foxtail millet, little millet, kodo millet, common millet, barnyard millet and finger millet in the moisture content range of 11.1 to 25% db. Thousand kernel weight increased from 2.3 to 6.1 g and angle of repose increased from 25.0 to 38.2°. Bulk density decreased from 868.1 to 477.1 kg/m(3) and true density from 1988.7 to 884.4 kg/m(3) for all minor millets when observed in the moisture range of 11.1 to 25%. Porosity decreased from 63.7 to 32.5%. Coefficient of static friction of minor millets against mild steel surface increased from 0.253 to 0.728 and coefficient of internal friction was in the range of 1.217 and 1.964 in the moisture range studied. Grain hardness decreased from 30.7 to 12.4 for all minor millets when moisture content was increased from 11.1 to 25% db.

  18. Determination of oral mucosal Poisson's ratio and coefficient of friction from in-vivo contact pressure measurements.

    PubMed

    Chen, Junning; Suenaga, Hanako; Hogg, Michael; Li, Wei; Swain, Michael; Li, Qing

    2016-01-01

    Despite their considerable importance to biomechanics, there are no existing methods available to directly measure apparent Poisson's ratio and friction coefficient of oral mucosa. This study aimed to develop an inverse procedure to determine these two biomechanical parameters by utilizing in vivo experiment of contact pressure between partial denture and beneath mucosa through nonlinear finite element (FE) analysis and surrogate response surface (RS) modelling technique. First, the in vivo denture-mucosa contact pressure was measured by a tactile electronic sensing sheet. Second, a 3D FE model was constructed based on the patient CT images. Third, a range of apparent Poisson's ratios and the coefficients of friction from literature was considered as the design variables in a series of FE runs for constructing a RS surrogate model. Finally, the discrepancy between computed in silico and measured in vivo results was minimized to identify the best matching Poisson's ratio and coefficient of friction. The established non-invasive methodology was demonstrated effective to identify such biomechanical parameters of oral mucosa and can be potentially used for determining the biomaterial properties of other soft biological tissues.

  19. Dependence of frictional strength on compositional variations of Hayward fault rock gouges

    USGS Publications Warehouse

    Morrow, Carolyn A.; Moore, Diane E.; Lockner, David A.

    2010-01-01

    The northern termination of the locked portion of the Hayward Fault near Berkeley, California, is found to coincide with the transition from strong Franciscan metagraywacke to melange on the western side of the fault. Both of these units are juxtaposed with various serpentinite, gabbro and graywacke units to the east, suggesting that the gouges formed within the Hayward Fault zone may vary widely due to the mixing of adjacent rock units and that the mechanical behavior of the fault would be best modeled by determining the frictional properties of mixtures of the principal rock types. To this end, room temperature, water-saturated, triaxial shearing tests were conducted on binary and ternary mixtures of fine-grained gouges prepared from serpentinite and gabbro from the Coast Range Ophiolite, a Great Valley Sequence graywacke, and three different Franciscan Complex metasedimentary rocks. Friction coefficients ranged from 0.36 for the serpentinite to 0.84 for the gabbro, with four of the rock types having coefficients of friction ranging from 0.67-0.84. The friction coefficients of the mixtures can be predicted reliably by a simple weighted average of the end-member dry-weight percentages and strengths for all samples except those containing serpentinite. For the serpentinite mixtures, a linear trend between end-member values slightly overestimates the coefficients of friction in the midcomposition ranges. The range in strength for these rock admixtures suggests that both theoretical and numerical modeling of the fault should attempt to account for variations in rock and gouge properties.

  20. Fragility and hysteretic creep in frictional granular jamming.

    PubMed

    Bandi, M M; Rivera, M K; Krzakala, F; Ecke, R E

    2013-04-01

    The granular jamming transition is experimentally investigated in a two-dimensional system of frictional, bidispersed disks subject to quasistatic, uniaxial compression without vibrational disturbances (zero granular temperature). Three primary results are presented in this experimental study. First, using disks with different static friction coefficients (μ), we experimentally verify numerical results that predict jamming onset at progressively lower packing fractions with increasing friction. Second, we show that the first compression cycle measurably differs from subsequent cycles. The first cycle is fragile-a metastable configuration with simultaneous jammed and unjammed clusters-over a small packing fraction interval (φ(1)<φ<φ(2)) and exhibits simultaneous exponential rise in pressure and exponential decrease in disk displacements over the same packing fraction interval. This fragile behavior is explained through a percolation mechanism of stressed contacts where cluster growth exhibits spatial correlation with disk displacements and contributes to recent results emphasizing fragility in frictional jamming. Control experiments show that the fragile state results from the experimental incompatibility between the requirements for zero friction and zero granular temperature. Measurements with several disk materials of varying elastic moduli E and friction coefficients μ show that friction directly controls the start of the fragile state but indirectly controls the exponential pressure rise. Finally, under repetitive loading (compression) and unloading (decompression), we find the system exhibits pressure hysteresis, and the critical packing fraction φ(c) increases slowly with repetition number. This friction-induced hysteretic creep is interpreted as the granular pack's evolution from a metastable to an eventual structurally stable configuration. It is shown to depend on the quasistatic step size Δφ, which provides the only perturbative mechanism in the experimental protocol, and the friction coefficient μ, which acts to stabilize the pack.

  1. Postoperative changes in in vivo measured friction in total hip joint prosthesis during walking.

    PubMed

    Damm, Philipp; Bender, Alwina; Bergmann, Georg

    2015-01-01

    Loosening of the artificial cup and inlay is the most common reasons for total hip replacement failures. Polyethylene wear and aseptic loosening are frequent reasons. Furthermore, over the past few decades, the population of patients receiving total hip replacements has become younger and more active. Hence, a higher level of activity may include an increased risk of implant loosening as a result of friction-induced wear. In this study, an instrumented hip implant was used to measure the contact forces and friction moments in vivo during walking. Subsequently, the three-dimensional coefficient of friction in vivo was calculated over the whole gait cycle. Measurements were collected from ten subjects at several time points between three and twelve months postoperative. No significant change in the average resultant contact force was observed between three and twelve months postoperative. In contrast, a significant decrease of up to 47% was observed in the friction moment. The coefficient of friction also decreased over postoperative time on average. These changes may be caused by 'running-in' effects of the gliding components or by the improved lubricating properties of the synovia. Because the walking velocity and contact forces were found to be nearly constant during the observed period, the decrease in friction moment suggests an increase in fluid viscosity. The peak values of the contact force individually varied by 32%-44%. The friction moment individually differed much more, by 110%-129% at three and up to 451% at twelve months postoperative. The maximum coefficient of friction showed the highest individual variability, about 100% at three and up to 914% at twelve months after surgery. These individual variations in the friction parameters were most likely due to different 'running-in' effects that were influenced by the individual activity levels and synovia properties.

  2. Influences of thickness, scanning velocity and relative humidity on the frictional properties of WS2 nanosheets

    NASA Astrophysics Data System (ADS)

    Feng, Dongdong; Peng, Jinfeng; Liu, Sisi; Zheng, Xuejun; Yan, Xinyang; He, Wenyuan

    2018-01-01

    Distinguishing with the traditional cantilever mechanics method, we propose the extended cantilever mechanics method to calibrate the lateral calibration factor by using the normal spring constant obtained from atomic force microscopy (AFM) but not the Young’s modulus and the width of the cantilever, before the influences of thickness, scanning velocity and humidity on the frictional properties are investigated via friction measurement performed by the lateral force mode (LFM) of AFM. Tungsten disulfide (WS2) nanosheets were prepared through hydrothermal intercalation and exfoliation route, and AFM and Raman microscope were used to investigate the frictional properties, thickness and crystalline structure. The friction force and coefficient decrease monotonically with the increase of the nanosheet’s thickness, and the friction coefficient minimum value is close to 0.012 when the thickness larger than 5 nm. The friction property variation on the nanosheet’s thickness can be explained by the puckering effect of tip-sheet adhesion according thickness dependence of bending stiffness in the frame of continuum mechanics. The friction force is a constant value 1.7 nN when the scanning speed larger than the critical value 3.10 μm s-1, while it logarithmically increases for the scanning speed less than the critical value. It is easy to understand through the energy dissipation model and the thermally activated effect. The friction force and friction coefficient increase with the relative humidity at the range of 30%-60%, and the latter is at the range of 0.010-0.013. Influence of relative humidity is discussed via the increasing area of the water monolayer during the water adsorption process. The research can not only enrich nanotribology theory, but also prompt two dimensions materials for nanomechanical applications.

  3. Three Three-Axis IEPE Accelerometers on the Inner Liner of a Tire for Finding the Tire-Road Friction Potential Indicators.

    PubMed

    Niskanen, Arto; Tuononen, Ari J

    2015-08-05

    Direct tire-road contact friction estimation is essential for future autonomous cars and active safety systems. Friction estimation methods have been proposed earlier for driving conditions in the presence of a slip angle or slip ratio. However, the estimation of the friction from a freely-rolling tire is still an unsolved topic. Knowing the existing friction potential would be beneficial since vehicle control systems could be adjusted before any remarkable tire force has been produced. Since accelerometers are well-known and robust, and thus a promising sensor type for intelligent tires, this study uses three three-axis IEPE accelerometers on the inner liner of a tire to detect friction potential indicators on two equally smooth surfaces with different friction levels. The equal roughness was chosen for both surfaces in order to study the friction phenomena by neglecting the effect of surface texture on vibrations. The acceleration data before the contact is used to differentiate the two friction levels between the tire and the road. In addition, the contact lengths from the three accelerometers are used to validate the acceleration data. A method to differentiate the friction levels on the basis of the acceleration signal is also introduced.

  4. Three Three-Axis IEPE Accelerometers on the Inner Liner of a Tire for Finding the Tire-Road Friction Potential Indicators †

    PubMed Central

    Niskanen, Arto; Tuononen, Ari J.

    2015-01-01

    Direct tire-road contact friction estimation is essential for future autonomous cars and active safety systems. Friction estimation methods have been proposed earlier for driving conditions in the presence of a slip angle or slip ratio. However, the estimation of the friction from a freely-rolling tire is still an unsolved topic. Knowing the existing friction potential would be beneficial since vehicle control systems could be adjusted before any remarkable tire force has been produced. Since accelerometers are well-known and robust, and thus a promising sensor type for intelligent tires, this study uses three three-axis IEPE accelerometers on the inner liner of a tire to detect friction potential indicators on two equally smooth surfaces with different friction levels. The equal roughness was chosen for both surfaces in order to study the friction phenomena by neglecting the effect of surface texture on vibrations. The acceleration data before the contact is used to differentiate the two friction levels between the tire and the road. In addition, the contact lengths from the three accelerometers are used to validate the acceleration data. A method to differentiate the friction levels on the basis of the acceleration signal is also introduced. PMID:26251914

  5. Friction Durability of Extremely Thin Diamond-Like Carbon Films at High Temperature

    PubMed Central

    Miyake, Shojiro; Suzuki, Shota; Miyake, Masatoshi

    2017-01-01

    To clarify the friction durability, both during and after the high-temperature heating of nanometer-thick diamond-like carbon (DLC) films, deposited using filtered cathodic vacuum arc (FCVA) and plasma chemical vapor deposition (P-CVD) methods, the dependence of the friction coefficient on the load and sliding cycles of the DLC films, were evaluated. Cluster-I consisted of a low friction area in which the DLC film was effective, while cluster-II consisted of a high friction area in which the lubricating effect of the DLC film was lost. The friction durability of the films was evaluated by statistical cluster analysis. Extremely thin FCVA-DLC films exhibited an excellent wear resistance at room temperature, but their friction durability was decreased at high temperatures. In contrast, the durability of the P-CVD-DLC films was increased at high temperatures when compared with that observed at room temperature. This inverse dependence on temperature corresponded to the nano-friction results obtained by atomic force microscopy. The decrease in the friction durability of the FCVA-DLC films at high temperatures, was caused by a complex effect of temperature and friction. The tribochemical reaction produced by the P-CVD-DLC films reduced their friction coefficient, increasing their durability at high temperatures. PMID:28772520

  6. Friction Durability of Extremely Thin Diamond-Like Carbon Films at High Temperature.

    PubMed

    Miyake, Shojiro; Suzuki, Shota; Miyake, Masatoshi

    2017-02-10

    To clarify the friction durability, both during and after the high-temperature heating of nanometer-thick diamond-like carbon (DLC) films, deposited using filtered cathodic vacuum arc (FCVA) and plasma chemical vapor deposition (P-CVD) methods, the dependence of the friction coefficient on the load and sliding cycles of the DLC films, were evaluated. Cluster-I consisted of a low friction area in which the DLC film was effective, while cluster-II consisted of a high friction area in which the lubricating effect of the DLC film was lost. The friction durability of the films was evaluated by statistical cluster analysis. Extremely thin FCVA-DLC films exhibited an excellent wear resistance at room temperature, but their friction durability was decreased at high temperatures. In contrast, the durability of the P-CVD-DLC films was increased at high temperatures when compared with that observed at room temperature. This inverse dependence on temperature corresponded to the nano-friction results obtained by atomic force microscopy. The decrease in the friction durability of the FCVA-DLC films at high temperatures, was caused by a complex effect of temperature and friction. The tribochemical reaction produced by the P-CVD-DLC films reduced their friction coefficient, increasing their durability at high temperatures.

  7. Friction and wear study of NR/SBR blends with Si3N4Filler

    NASA Astrophysics Data System (ADS)

    GaneshKumar, A.; Balaganesan, G.; Sivakumar, M. S.

    2018-04-01

    The aim of this paper is to investigate mechanical and frictional properties of natural rubber/styrene butadiene rubber (NR/SBR) blends with and without silicon nitride (Si3N4) filler. The rubber is surface modified by silane coupling agent (Si-69) for enhancing hydrophobic property. The Si3N4of percentage 0 1, 3, 5 and 7, is incorporated into NR/SBR rubber compounds with 20% precipitated silica. The specimens with and without fillers are prepared as per standard for tensile and friction testing. Fourier transform infrared (FTIR) spectroscopy test is conducted and it is inferred that the coupling agent is covalently bonded on the surface of Si3N4 particles and an organic coating layer is formed. The co-efficient of friction and specific wear rate of NR/SBR blends are examined using an in-house built friction tester in a disc-on-plate (DOP) configuration. The specimens are tested to find coefficient of friction (COF) against steel grip antiskid plate under dry, mud, wet and oil environmental conditions. It is found that the increase in tensile strength and modulus at low percentage of Si3N4 dispersion. It is also observed that increase in sliding friction co-efficient and decrease in wear rate for 1% of Si3N4 dispersion in NR/SBR blends. The friction tested surfaces are inspected using Scanning Electron Microscope (SEM) and 3D non contact surface profiler.

  8. Effect of Applied Load and Sliding Speed on Tribological Behavior of TiAl-Based Self-Lubricating Composites

    NASA Astrophysics Data System (ADS)

    Liu, Xiyao; Shen, Qiao; Shi, Xiaoliang; Zou, Jialiang; Huang, Yuchun; Zhang, Ao; Yan, Zhao; Deng, Xiaobin; Yang, Kang

    2018-01-01

    This article was dedicated to explore the combined lubrication of silver, MoS2 and carbon nanotubes (CNTs) based on the changes in applied loads and sliding speeds. The results showed that the formed lubricating films played the major role in undertaking the equivalent stress, as well as effectively reduced friction resistance and material loss. It led to small friction coefficient and less wear rate at 1.2 m/s. At 1.2 m/s-16 N, an integrated lubricating film containing Ag, CNTs and MoS2 was continuously formed, which well provided the excellent lubricating property, resulting in lower friction coefficient (0.19) and less wear rate (1.56 × 10-5 mm3/N m). The formation of Ag and CNTs enriched islands acted as the bearing areas and played the major role in resisting friction resistance. Meanwhile, solid lubricant MoS2 was enriched in the lubricating film and effectively protected lubricating film from being destroyed, resulting in small friction coefficient and less wear rate at 1.2 m/s-16 N.

  9. Analysis of friction between articular cartilage and polyvinyl alcohol hydrogel artificial cartilage.

    PubMed

    Li, Feng; Wang, Anmin; Wang, Chengtao

    2016-05-01

    Many biomaterials are being used to repair damaged articular cartilage. In particular, poly vinyl alcohol hydrogel has similar mechanical properties to natural cartilage under compressive and shearing loading. Here, three-factor and two-level friction experiments and long-term tests were conducted to better evaluate its tribological properties. The friction coefficient between articular cartilage and the poly vinyl alcohol hydrogel depended primarily on the three factors of load, speed, and lubrication. When the speed increased from 10 to 20 mm/s under a load of 10 N, the friction coefficient increased from 0.12 to 0.147. When the lubricant was changed from Ringer's solution to a hyaluronic acid solution, the friction coefficient decreased to 0.084 with loads as high as 22 N. The poly vinyl alcohol hydrogel was severely damaged and lost its top surface layers, which were transferred to the articular cartilage surface. Wear was observed in the surface morphologies, which indicated the occurrence of surface adhesion of bovine cartilage. Surface fatigue and adhesive wear was the dominant wear mechanism.

  10. Observation instrument of dynamic frictional interface of gel engineering materials with polarized optical microscopic

    NASA Astrophysics Data System (ADS)

    Yamada, Naoya; Wada, Masato; Kabir, M. Hasnat; Gong, Jin; Furukawa, Hidemitsu

    2013-03-01

    Gels are soft and wet materials that differ from hard and dry materials like metals, plastics and ceramics. These have some unique characteristic such as low frictional properties, high water content and materials permeability. A decade earlier, DN gels having a mechanical strength of 30MPa of the maximum breaking stress in compression was developed and it is a prospective material as the biomaterial of the human body. Indeed it frictional coefficient and mechanical strength are comparable to our cartilages. In this study, we focus on the dynamic frictional interface of hydrogels and aim to develop a new apparatus with a polarization microscope for observation. The dynamical interface is observed by the friction of gel and glass with hudroxypropylcellulose (HPC) polymer solution sandwiching. At the beginning, we rubbed hydrogel and glass with HPC solution sandwiching on stage of polarization microscope. Second step, we designed a new system which combined microscope with friction measuring machine. The comparison between direct observation with this instrument and measurement of friction coefficient will become a foothold to elucidate distinctive frictional phenomena that can be seen in soft and wet materials.

  11. Anisotropic frictional heat dissipation in cyclotrimethylene trinitramine

    NASA Astrophysics Data System (ADS)

    Rajak, Pankaj; Kalia, Rajiv; Nakano, Aiichiro; Vashishta, Priya

    Anisotropic frictional response and corresponding heat dissipation from different crystallographic planes of RDX crystal is studied using molecular dynamics simulations. The effect of frictional force on the nature of damage and system temperature is monitored along different directions on primary slip plane, (010), of RDX and on non-slip planes, (100) and (001). The correlation between the friction coefficient, deformation and the frictional heating in these system is determined. It is observed that friction coefficients on slip planes are smaller than those of non-slip planes. In response to friction on slip plane, RDX crystal deforms via dislocation formation and shows less heating. On non-slip planes due to the inability of the system to deform by dislocation formation, large temperature rise is observed in the system just below the contact area of two surfaces. Frictional sliding on non-slip planes also lead to the formation of damage zone just below the contact area of two surfaces due to the change in RDX ring conformation from chair to boat/half-boat. This research is supported by the AFOSR Grant: FA9550-16- 1-0042.

  12. Rolling, slip and traction measurements on low modulus materials

    NASA Technical Reports Server (NTRS)

    Tevaarwerk, J. L.

    1985-01-01

    Traction and wear tests were performed on six low modulus materials (LMM). Three different traction tests were performed to determine the suitability of the material for use as traction rollers. These were the rolling, slip and endurance traction tests. For each material the combination LMM on LMM and LMM on steel were evaluated. Rolling traction test were conducted to determine the load - velocity limits, the rolling traction coefficient of the materials and to establish the type of failures that would result when loading beyond the limit. It was found that in general a simple constant rolling traction coefficient was enough to describe the results of all the test. The slip traction tests revealed that the peak traction coefficients were considerably higher than for lubricated traction contacts. The endurance traction tests were performed to establish the durability of the LMM under conditions of prolonged traction. Wear measurements were performed during and after the test. Energetic wear rates were determined from the wear measurements conducted in the endurance traction tests. These values show that the roller wear is not severe when reasonable levels of traction are transmitted.

  13. Numerical study of the influence of geometrical characteristics of a vertical helical coil on a bubbly flow

    NASA Astrophysics Data System (ADS)

    Saffari, H.; Moosavi, R.

    2014-11-01

    In this article, turbulent single-phase and two-phase (air-water) bubbly fluid flows in a vertical helical coil are analyzed by using computational fluid dynamics (CFD). The effects of the pipe diameter, coil diameter, coil pitch, Reynolds number, and void fraction on the pressure loss, friction coefficient, and flow characteristics are investigated. The Eulerian-Eulerian model is used in this work to simulate the two-phase fluid flow. Three-dimensional governing equations of continuity, momentum, and energy are solved by using the finite volume method. The k- ɛ turbulence model is used to calculate turbulence fluctuations. The SIMPLE algorithm is employed to solve the velocity and pressure fields. Due to the effect of a secondary force in helical pipes, the friction coefficient is found to be higher in helical pipes than in straight pipes. The friction coefficient increases with an increase in the curvature, pipe diameter, and coil pitch and decreases with an increase in the coil diameter and void fraction. The close correlation between the numerical results obtained in this study and the numerical and empirical results of other researchers confirm the accuracy of the applied method. For void fractions up to 0.1, the numerical results indicate that the friction coefficient increases with increasing the pipe diameter and keeping the coil pitch and diameter constant and decreases with increasing the coil diameter. Finally, with an increase in the Reynolds number, the friction coefficient decreases, while the void fraction increases.

  14. Consequences of the presence of a weak fault on the stress and strain within an active margin

    NASA Astrophysics Data System (ADS)

    Conin, M.; Henry, P.; Godard, V.; Bourlange, S.

    2009-12-01

    Accreting margins often display an outer thrust and fold belt and an inner forearc domain overlying the subduction plate. Assuming that this overlying material behaves as Coulomb material, the outer wedge and the inner wedge are classically approximated as a critical state and a stable state Coulomb wedge, respectively. Critical Coulomb wedge theory can account for the transition from wedge to forearc. However, it cannot be used to determine the state of stress in the transition zone, nor the consequences of a discontinuity within the margin. The presence of a discontinuity such as a splay fault having a low effective friction coefficient should affect the stress state within the wedge, at least locally around the splay fault. Moreover, the effective friction coefficient of the seismogenic zone is expected to vary during the seismic cycle, and this may influence the stability of the Coulomb wedges. We use the ADELI finite element code (Chery and Hassani, 2000) to model the quasi-static stress and strain of a decollement and splay fault system, within a two dimensional elasto-plastic wedge with Drucker-Prager rheology. The subduction plane, the basal decollement of the accretionary wedge and the splay fault are modeled with contact elements. The modeled margin comprises an inner and an outer domain with distinct tapers and basal friction coefficients. For a given splay fault geometry, we evaluate the friction coefficient threshold for splay fault activation as a function of the basal friction coefficients, and examine the consequences of motion along the splay fault on stress and strain within the wedge and on the surface slope at equilibrium. Friction coefficients are varied in time to mimic the consequence of the seismic cycle on the static stress state and strain distribution. Results show the possibility of coexistence of localized extensional regime above the splay fault within a regional compressional regime. Such coexistence is consistent with stress orientation estimation made from breakouts in the Nankai accretionary prim (Kinoshita et al, 2009).

  15. Evaluation of the friction coefficient, the radial stress, and the damage work during needle insertions into agarose gels.

    PubMed

    Urrea, Fabián A; Casanova, Fernando; Orozco, Gustavo A; García, José J

    2016-03-01

    Agarose hydrogels have been extensively used as a phantom material to mimic the mechanical behavior of soft biological tissues, e.g. in studies aimed to analyze needle insertions into the organs producing tissue damage. To better predict the radial stress and damage during needle insertions, this study was aimed to determine the friction coefficient between the material of commercial catheters and hydrogels. The friction coefficient, the tissue damage and the radial stress were evaluated at 0.2, 1.8, and 10mm/s velocities for 28, 30, and 32 gauge needles of outer diameters equal to 0.36, 0.31, and 0.23mm, respectively. Force measurements during needle insertions and retractions on agarose gel samples were used to analyze damage and radial stress. The static friction coefficient (0.295±0.056) was significantly higher than the dynamic (0.255±0.086). The static and dynamic friction coefficients were significantly smaller for the 0.2mm/s velocity compared to those for the other two velocities, and there was no significant difference between the friction coefficients for 1.8 and 10mm/s. Radial stress averages were 131.2±54.1, 248.3±64.2, and 804.9±164.3Pa for the insertion velocity of 0.2, 1.8, and 10mm/s, respectively. The radial stress presented a tendency to increase at higher insertion velocities and needle size, which is consistent with other studies. However, the damage work did not show to be a good predictor of tissue damage, which appears to be due to simplifications in the analytical model. Differently to other approaches, the method proposed here based on radial stress may be extended in future studies to quantity tissue damage in vivo along the entire needle track. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Ice Friction in the Sport of Bobsleigh

    NASA Astrophysics Data System (ADS)

    Poirier, Louis

    The primary objective of this work is to examine the effect of the bobsleigh runner profile on ice / runner friction. The work is centered on a computational model (F.A.S.T. 3.2b) which calculates the coefficient of friction between a steel blade and ice. The first step was to analyze runners used in the sport of bobsleigh. This analysis was performed using a handheld rocker gauge, a device used in speed skating. The size of the device was optimized for hockey, short and long track speed skating, and bobsleigh. A number of runners were measured using the gauge and it was found that the portion of the runner contacting the ice generally has a rocker value of (20--50) m. Next, the hardness of athletic ice surfaces was analyzed. The ice hardness was determined by dropping steel balls varying in mass from (8--540) g onto the ice surface, from a height of (0.3--1.2) m, and measuring the diameter of the indentation craters. The ice hardness was found to be P¯(T) = ((--0.6 +/- 0.4) T + 14.7 +/- 2.1) MPa and the elastic recovery of the ice surface was found to be negligible. The F.A.S.T. model was adapted from a speed skate model to calculate the coefficient of friction between a bobsleigh runner and a flat ice surface. The model predicts that maximum velocities are obtained for temperatures between --10 and --20°C, in agreement with observations on the Calgary bobsleigh track. The model for flat ice suggests that the flattest runners produce the lowest coefficient of friction and that the rocker affects friction more than the cross-sectional radius. The coefficient of friction between runners and ice and the drag performance of 2-men bobsleighs were determined from radar speed measurements taken at the Calgary Olympic Oval and at Canada Olympic Park: at the Ice House and on the bobsleigh track during a World Cup competition. The mean coefficient of friction was found to be mu = (5.3 +/- 2.0) x 10--3 and the mean drag performance was CdA = (0.18 +/- 0.02) m2.

  17. The Mohr-Coulomb criterion for intact rock strength and friction - a re-evaluation and consideration of failure under polyaxial stresses

    NASA Astrophysics Data System (ADS)

    Hackston, A.; Rutter, E.

    2015-12-01

    Abstract Darley Dale and Pennant sandstones were tested under conditions of both axisymmetric shortening and extension normal to bedding. These are the two extremes of loading under polyaxial stress conditions. Failure under generalized stress conditions can be predicted from the Mohr-Coulomb failure criterion under axisymmetric compression conditions provided the best form of polyaxial failure criterion is known. The sandstone data are best reconciled using the Mogi (1967) empirical criterion. Fault plane orientations produced vary greatly with respect to the maximum compression direction in the two loading configurations. The normals to the Mohr-Coulomb failure envelopes do not predict the orientations of the fault planes eventually produced. Frictional sliding on variously inclined sawcuts and failure surfaces produced in intact rock samples was also investigated. Friction coefficient is not affected by fault plane orientation in a given loading configuration, but friction coefficients in extension were systematically lower than in compression for both rock types and could be reconciled by a variant on the Mogi (1967) failure criterion. Friction data for these and other porous sandstones accord well with the Byerlee (1977) generalization about rock friction being largely independent of rock type. For engineering and geodynamic modelling purposes, the stress-state dependent friction coefficient should be used for sandstones, but it is not known to what extent this might apply to other rock types.

  18. Large Electric Field–Enhanced–Hardness Effect in a SiO2 Film

    PubMed Central

    Revilla, Reynier I.; Li, Xiao-Jun; Yang, Yan-Lian; Wang, Chen

    2014-01-01

    Silicon dioxide films are extensively used in nano and micro–electromechanical systems. Here we studied the influence of an external electric field on the mechanical properties of a SiO2 film by using nanoindentation technique of atomic force microscopy (AFM) and friction force microscopy (FFM). A giant augmentation of the relative elastic modulus was observed by increasing the localized electric field. A slight decrease in friction coefficients was also clearly observed by using FFM with the increase of applied tip voltage. The reduction of the friction coefficients is consistent with the great enhancement of sample hardness by considering the indentation–induced deformation during the friction measurements. PMID:24681517

  19. Turning behaviour depends on frictional damping in the fruit fly Drosophila.

    PubMed

    Hesselberg, Thomas; Lehmann, Fritz-Olaf

    2007-12-01

    Turning behaviour in the fruit fly Drosophila depends on several factors including not only feedback from sensory organs and muscular control of wing motion, but also the mass moments of inertia and the frictional damping coefficient of the rotating body. In the present study we evaluate the significance of body friction for yaw turning and thus the limits of visually mediated flight control in Drosophila, by scoring tethered flies flying in a flight simulator on their ability to visually compensate a bias on a moving object and a visual background panorama at different simulated frictional dampings. We estimated the fly's natural damping coefficient from a numerical aerodynamic model based on both friction on the body and the flapping wings during saccadic turning. The model predicts a coefficient of 54 x 10(-12) Nm s, which is more than 100-times larger than the value estimated from a previous study on the body alone. Our estimate suggests that friction plays a larger role for yaw turning in Drosophila than moments of inertia. The simulator experiments showed that visual performance of the fruit fly collapses near the physical conditions estimated for freely flying animals, which is consistent with the suggested role of the halteres for flight stabilization. However, kinematic analyses indicate that the measured loss of flight control might be due predominantly to the limited fine control in the fly's steering muscles below a threshold of 1-2 degrees stroke amplitude, rather than resulting from the limits of visual motion detection by the fly's compound eyes. We discuss the impact of these results and suggest that the elevated frictional coefficient permits freely flying fruit flies to passively terminate rotational body movements without producing counter-torque during the second half of the saccadic turning manoeuvre.

  20. Analysis of a Compressible Fluid Soft Recoil (CFSR) Concept Applied to a 155 MM Howitzer

    DTIC Science & Technology

    1979-03-01

    Nitrile or Buna-N ( NBR ) rubber with ’ backup rings of nylotron. HITRILE NVLOTRON Piston seals An unresolved problem is that the coefficient of...fluid at atmospheric pressure Poisson’s ratio for Nitrile rubber dynamic coefficient of friction for rubber mass of recoiling parts weight of...Greene, tweed 5 Co. Palmetto catalog.) 43 [i^ - 0.50 = coefficient of friction (An approximate figure for rubber supplied by RIA Rubber

  1. Dynamics of solid dispersions in oil during the lubrication of point contacts. Part 1: Graphite

    NASA Technical Reports Server (NTRS)

    Cusano, C.; Sliney, H. E.

    1981-01-01

    A Hertzian contact was lubricated with dispersed graphite in mineral oils under boundary lubrication conditions. The contact was optically observed under pure rolling, combined rolling and sliding, and pure sliding conditions. The contact was formed with a steel ball on the flat surface of a glass disk. Photomicrographs are presented which show the distribution of the graphite in and around the contact. Friction and surface damage are also shown for conditions when the base oils are used alone and when graphite is added to the base oils. Under pure rolling and combined rolling and sliding conditions, it is found that, for low speeds, a graphite film can form which will separate the contacting surfaces. Under pure sliding conditions, graphite accumulates at the inlet and sweeps around the contact, but very little of the graphite passes through the contact. The accumulated graphite appears to act as a barrier which reduces the supply of oil available to the contact for boundary lubrication. Friction data show no clear short term beneficial or detrimental effect caused by addition of graphite to the base oil. However, during pure sliding, more abrasion occurs on the polished balls lubricated with the dispersion than on those lubricated with the base oil alone. All observations were for the special case of a highly-polished ball on a glass surface and may not be applicable to other geometries and materials, or to rougher surfaces.

  2. Friction mechanism of individual multilayered nanoparticles.

    PubMed

    Tevet, Ofer; Von-Huth, Palle; Popovitz-Biro, Ronit; Rosentsveig, Rita; Wagner, H Daniel; Tenne, Reshef

    2011-12-13

    Inorganic nanoparticles of layered [two-dimensional (2D)] compounds with hollow polyhedral structure, known as fullerene-like nanoparticles (IF), were found to have excellent lubricating properties. This behavior can be explained by superposition of three main mechanisms: rolling, sliding, and exfoliation-material transfer (third body). In order to elucidate the tribological mechanism of individual nanoparticles in different regimes, in situ axial nanocompression and shearing forces were applied to individual nanoparticles using a high resolution scanning electron microscope. Gold nanoparticles deposited onto the IF nanoparticles surface served as markers, delineating the motion of individual IF nanoparticle. It can be concluded from these experiments that rolling is an important lubrication mechanism for IF-WS(2) in the relatively low range of normal stress (0.96 ± 0.38 GPa). Sliding is shown to be relevant under slightly higher normal stress, where the spacing between the two mating surfaces does not permit free rolling of the nanoparticles. Exfoliation of the IF nanoparticles becomes the dominant mechanism at the high end of normal stress; above 1.2 GPa and (slow) shear; i.e., boundary lubrication conditions. It is argued that the modus operandi of the nanoparticles depends on their degree of crystallinity (defects); sizes; shape, and their mechanical characteristics. This study suggests that the rolling mechanism, which leads to low friction and wear, could be attained by improving the sphericity of the IF nanoparticle, the dispersion (deagglomeration) of the nanoparticles, and the smoothness of the mating surfaces.

  3. Friction mechanism of individual multilayered nanoparticles

    PubMed Central

    Tevet, Ofer; Von-Huth, Palle; Popovitz-Biro, Ronit; Rosentsveig, Rita; Wagner, H. Daniel; Tenne, Reshef

    2011-01-01

    Inorganic nanoparticles of layered [two-dimensional (2D)] compounds with hollow polyhedral structure, known as fullerene-like nanoparticles (IF), were found to have excellent lubricating properties. This behavior can be explained by superposition of three main mechanisms: rolling, sliding, and exfoliation-material transfer (third body). In order to elucidate the tribological mechanism of individual nanoparticles in different regimes, in situ axial nanocompression and shearing forces were applied to individual nanoparticles using a high resolution scanning electron microscope. Gold nanoparticles deposited onto the IF nanoparticles surface served as markers, delineating the motion of individual IF nanoparticle. It can be concluded from these experiments that rolling is an important lubrication mechanism for IF-WS2 in the relatively low range of normal stress (0.96±0.38 GPa). Sliding is shown to be relevant under slightly higher normal stress, where the spacing between the two mating surfaces does not permit free rolling of the nanoparticles. Exfoliation of the IF nanoparticles becomes the dominant mechanism at the high end of normal stress; above 1.2 GPa and (slow) shear; i.e., boundary lubrication conditions. It is argued that the modus operandi of the nanoparticles depends on their degree of crystallinity (defects); sizes; shape, and their mechanical characteristics. This study suggests that the rolling mechanism, which leads to low friction and wear, could be attained by improving the sphericity of the IF nanoparticle, the dispersion (deagglomeration) of the nanoparticles, and the smoothness of the mating surfaces. PMID:22084073

  4. Advanced bulk processing of lightweight materials for utilization in the transportation sector

    NASA Astrophysics Data System (ADS)

    Milner, Justin L.

    The overall objective of this research is to develop the microstructure of metallic lightweight materials via multiple advanced processing techniques with potentials for industrial utilization on a large scale to meet the demands of the aerospace and automotive sectors. This work focused on (i) refining the grain structure to increase the strength, (ii) controlling the texture to increase formability and (iii) directly reducing processing/production cost of lightweight material components. Advanced processing is conducted on a bulk scale by several severe plastic deformation techniques including: accumulative roll bonding, isolated shear rolling and friction stir processing to achieve the multiple targets of this research. Development and validation of the processing techniques is achieved through wide-ranging experiments along with detailed mechanical and microstructural examination of the processed material. On a broad level, this research will make advancements in processing of bulk lightweight materials facilitating industrial-scale implementation. Where accumulative roll bonding and isolated shear rolling, currently feasible on an industrial scale, processes bulk sheet materials capable of replacing more expensive grades of alloys and enabling low-temperature and high-strain-rate formability. Furthermore, friction stir processing to manufacture lightweight tubes, made from magnesium alloys, has the potential to increase the utilization of these materials in the automotive and aerospace sectors for high strength - high formability applications. With the increased utilization of these advanced processing techniques will significantly reduce the cost associated with lightweight materials for many applications in the transportation sectors.

  5. Study on friction coefficient of soft soil based on particle flow code

    NASA Astrophysics Data System (ADS)

    Lei, Xiaohong; Zhang, Zhongwei

    2017-04-01

    There has no uniform method for determining the micro parameters in particle flow code, and the corresponding formulas obtained by each scholar can only be applied to similar situations. In this paper, the relationship between the micro parameters friction coefficient and macro parameters friction angle is established by using the two axis servo compression as the calibration experiment, and the corresponding formula is fitted to solve the difficulties of determining the PFC micro parameters which provide a reference for determination of the micro parameters of soft soil.

  6. Wood variables affecting the friction coefficient of spruce pine on steel

    Treesearch

    Truett J. Lemoine; Charles W. McMillin; Floyd G. Manwiller

    1970-01-01

    Wood of spruce pine, Pinus glabra Walk., was factorially segregated by moisture content (0, 10, and 18 percent), specific gravity (less than 0.45 and more than 0.45), and extractive content (unextracted and extractive-freE), and the kinetic coefficient of friction on steel (having surface roughness of 9 microinches RMS) determined for tangential...

  7. Coefficient of friction of dry slash pine and southern red oak on three tension-grip facings

    Treesearch

    T.J. Lemoine; P. Koch

    1975-01-01

    A urethane material proved to have nine times higher static friction coefficient (0.9) than smooth steel (0.1) on radial and tangential wood surfaces pulled parallel to the grain. It is probably superior to 22O-grit garnet paper or sand coatings for tension-grip facings in lumber testing machines.

  8. Coefficient of friction of dry slash pine and southern red oak on three tension-grip facings

    Treesearch

    Truett J. Lemoine; Peter Koch

    1974-01-01

    A urethane material proved to have nine times higher static friction coefficient (0.9) than smooth steel (0.1) on radial and tangential wood surfaces pulled parallel to the grain. It is probably superior to 220-grit garnet paper or sand coatings for tension-grip facings in lumber testing machines.

  9. Determination of the Static Friction Coefficient from Circular Motion

    ERIC Educational Resources Information Center

    Molina-Bolívar, J. A.; Cabrerizo-Vílchez, M. A.

    2014-01-01

    This paper describes a physics laboratory exercise for determining the coefficient of static friction between two surfaces. The circular motion of a coin placed on the surface of a rotating turntable has been studied. For this purpose, the motion is recorded with a high-speed digital video camera recording at 240 frames s[superscript-1], and the…

  10. Investigation of the Maximum Spin-Up Coefficients of Friction Obtained During Tests of a Landing Gear Having a Static-Load Rating of 20,000 Pounds

    NASA Technical Reports Server (NTRS)

    Batterson, Sidney A.

    1959-01-01

    An experimental investigation was made at the Langley landing loads track to obtain data on the maximum spin-up coefficients of friction developed by a landing gear having a static-load rating of 20,000 pounds. The forward speeds ranged from 0 to approximately 180 feet per second and the sinking speeds, from 2.7 feet per second to 9.4 feet per second. The results indicated the variation of the maximum spin-up coefficient of friction with forward speed and vertical load. Data obtained during this investigation are also compared with some results previously obtained for nonrolling tires to show the effect of forward speed.

  11. Real-Time Dynamic Observation of Micro-Friction on the Contact Interface of Friction Lining

    PubMed Central

    Zhang, Dekun; Chen, Kai; Guo, Yongbo

    2018-01-01

    This paper aims to investigate the microscopic friction mechanism based on in situ microscopic observation in order to record the deformation and contact situation of friction lining during the frictional process. The results show that friction coefficient increased with the shear deformation and energy loss of the surfacee, respectively. Furthermore, the friction mechanism mainly included adhesive friction in the high-pressure and high-speed conditions, whereas hysteresis friction was in the low-pressure and low-speed conditions. The mixed-friction mechanism was in the period when the working conditions varied from high pressure and speed to low pressure and speed. PMID:29498677

  12. Adhesion-dependent negative friction coefficient on chemically modified graphite at the nanoscale

    NASA Astrophysics Data System (ADS)

    Deng, Zhao; Smolyanitsky, Alex; Li, Qunyang; Feng, Xi-Qiao; Cannara, Rachel J.

    2012-12-01

    From the early tribological studies of Leonardo da Vinci to Amontons’ law, friction has been shown to increase with increasing normal load. This trend continues to hold at the nanoscale, where friction can vary nonlinearly with normal load. Here we present nanoscale friction force microscopy (FFM) experiments for a nanoscale probe tip sliding on a chemically modified graphite surface in an atomic force microscope (AFM). Our results demonstrate that, when adhesion between the AFM tip and surface is enhanced relative to the exfoliation energy of graphite, friction can increase as the load decreases under tip retraction. This leads to the emergence of an effectively negative coefficient of friction in the low-load regime. We show that the magnitude of this coefficient depends on the ratio of tip-sample adhesion to the exfoliation energy of graphite. Through both atomistic- and continuum-based simulations, we attribute this unusual phenomenon to a reversible partial delamination of the topmost atomic layers, which then mimic few- to single-layer graphene. Lifting of these layers with the AFM tip leads to greater deformability of the surface with decreasing applied load. This discovery suggests that the lamellar nature of graphite yields nanoscale tribological properties outside the predictive capacity of existing continuum mechanical models.

  13. Effect of bone-soft tissue friction on ultrasound axial shear strain elastography

    NASA Astrophysics Data System (ADS)

    Tang, Songyuan; Chaudhry, Anuj; Kim, Namhee; Reddy, J. N.; Righetti, Raffaella

    2017-08-01

    Bone-soft tissue friction is an important factor affecting several musculoskeletal disorders, frictional syndromes and the ability of a bone fracture to heal. However, this parameter is difficult to determine using non-invasive imaging modalities, especially in clinical settings. Ultrasound axial shear strain elastography is a non-invasive imaging modality that has been used in the recent past to estimate the bonding between different tissue layers. As most elastography methods, axial shear strain elastography is primarily used in soft tissues. More recently, this technique has been proposed to assess the bone-soft tissue interface. In this paper, we investigate the effect of a variation in bone-soft tissue friction coefficient in the resulting axial shear strain elastograms. Finite element poroelastic models of bone specimens exhibiting different bone-soft tissue friction coefficients were created and mechanically analyzed. These models were then imported to an ultrasound elastography simulation module to assess the presence of axial shear strain patterns. In vitro experiments were performed to corroborate selected simulation results. The results of this study show that the normalized axial shear strain estimated at the bone-soft tissue interface is statistically correlated to the bone-soft tissue coefficient of friction. This information may prove useful to better interpret ultrasound elastography results obtained in bone-related applications and, possibly, monitor bone healing.

  14. Effect of bone-soft tissue friction on ultrasound axial shear strain elastography.

    PubMed

    Tang, Songyuan; Chaudhry, Anuj; Kim, Namhee; Reddy, J N; Righetti, Raffaella

    2017-07-12

    Bone-soft tissue friction is an important factor affecting several musculoskeletal disorders, frictional syndromes and the ability of a bone fracture to heal. However, this parameter is difficult to determine using non-invasive imaging modalities, especially in clinical settings. Ultrasound axial shear strain elastography is a non-invasive imaging modality that has been used in the recent past to estimate the bonding between different tissue layers. As most elastography methods, axial shear strain elastography is primarily used in soft tissues. More recently, this technique has been proposed to assess the bone-soft tissue interface. In this paper, we investigate the effect of a variation in bone-soft tissue friction coefficient in the resulting axial shear strain elastograms. Finite element poroelastic models of bone specimens exhibiting different bone-soft tissue friction coefficients were created and mechanically analyzed. These models were then imported to an ultrasound elastography simulation module to assess the presence of axial shear strain patterns. In vitro experiments were performed to corroborate selected simulation results. The results of this study show that the normalized axial shear strain estimated at the bone-soft tissue interface is statistically correlated to the bone-soft tissue coefficient of friction. This information may prove useful to better interpret ultrasound elastography results obtained in bone-related applications and, possibly, monitor bone healing.

  15. The role of crystallographic texture in achieving low friction zinc oxide nanolaminate films

    NASA Astrophysics Data System (ADS)

    Mojekwu, Nneoma

    Metal oxide nanolaminate films are potential high temperature solid lubricants due to their ability to exhibit significant plasticity when grain size is reduced to the nanometer scale, and defective growth structure is achieved by condensation of oxygen vacancies to form intrinsic stacking faults. This is in contrast to conventional microcrystalline and single crystal oxides that exhibit brittle fracture during loading in a sliding contact. This study emphasizes the additional effect of growth orientation, in particular crystallographic texture, on determining the sliding friction behavior in nanocolumnar grain zinc oxide films grown by atomic layer deposition. It was determined that zinc oxide low (0002) versus higher (101¯3) surface energy crystallographic planes influenced the sliding friction coefficient. Texturing of the (0002) grains resulted in a decreased adhesive component of friction thereby lowering the sliding friction coefficient to ˜0.25, while the friction coefficient doubled to ˜0.5 with increasing contribution of surface (101¯3) grains. In addition, the variation of the x-ray grazing incident angle from 0.5° to 5° was studied to better understand the surface grain orientation as a function of ZnO layer thickness in one versus four bilayer nanolaminates where the under layer (seed layer) was load-bearing Zn(Ti,Zr)O3.

  16. Sliding Seal Materials for Adiabatic Engines, Phase 2

    NASA Technical Reports Server (NTRS)

    Lankford, J.; Wei, W.

    1986-01-01

    An essential task in the development of the heavy-duty adiabatic diesel engine is identification and improvements of reliable, low-friction piston seal materials. In the present study, the sliding friction coefficients and wear rates of promising carbide, oxide, and nitride materials were measured under temperature, environmental, velocity, and loading conditions that are representative of the adiabatic engine environment. In addition, silicon nitride and partially stabilized zirconia disks were ion implanted with TiNi, Ni, Co, and Cr, and subsequently run against carbide pins, with the objective of producing reduced friction via solid lubrication at elevated temperature. In order to provide guidance needed to improve materials for this application, the program stressed fundamental understanding of the mechanisms involved in friction and wear. Electron microscopy was used to elucidate the micromechanisms of wear following wear testing, and Auger electron spectroscopy was used to evaluate interface/environment interactions which seemed to be important in the friction and wear process. Unmodified ceramic sliding couples were characterized at all temperatures by friction coefficients of 0.24 and above. The coefficient at 800 C in an oxidizing environment was reduced to below 0.1, for certain material combinations, by the ion implanation of TiNi or Co. This beneficial effect was found to derive from lubricious Ti, Ni, and Co oxides.

  17. The behavior of the skin-friction coefficient of a turbulent boundary layer flow over a flat plate with differently configured transverse square grooves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wahidi, R.; Chakroun, W.; Al-Fahed, S.

    2005-11-01

    Skin-friction coefficient of turbulent boundary layer flow over a smooth-wall with transverse square grooves was investigated. Four grooved-wall cases were investigated. The four grooved-wall configurations are single 5mm square grooved-wall, and 5mm square grooves spaced 10, 20 and 40 element widths apart in the streamwise direction. Laser-Doppler Anemometer (LDA) was used for the mean velocity and turbulence intensity measurements. The skin-friction coefficient determined from the velocity profile increases sharply just downstream of the groove. This overshoot is followed by an undershoot and then relaxation back to the smooth-wall value. This behavior is observed in most grooved-wall cases. Integrating the skin-frictionmore » coefficient in the streamwise direction indicates that there is an increase in the overall drag in all the grooved-wall cases.« less

  18. Demonstration of the Feasibility of High Temperature Bearing Lubrication From Carbonaceous Gases

    NASA Technical Reports Server (NTRS)

    Blanchet, Thierry A.; Sawyer, W. Gregory

    1996-01-01

    Research has been conducted on silicon nitride pin-on-disk sliding contacts at temperatures of up to 520 C, and four-ball rolling contacts with silicon nitride balls and 52100 steel or silicon nitride races at 590 C. These tests were conducted in a variety of gaseous environments in order to determine the effects of simulated engine exhaust gas on the carbonaceous gas decomposition lubrication scheme. In rolling tests with steel races and exhaust gas the wear track depth was roughly half that of tests run in nitrogen gas alone. The deposition of lubricous microcrystalline graphitic carbon on the rolling surfaces, generated from the carbon monoxide within the exhaust gas mixture, was verified by microfocused Raman spectroscopy. Ten-fold reductions in rolling wear could be achieved by the exhaust gas atmosphere in cases where water vapor was removed or not present. The exhaust gas mixture alone was not found to provide any lubricating effect on silicon nitride sliding contacts, where the rate of wear greatly exceeds the rate of carbon deposition. Directed admixture of acetylene (as low as 5% of the exhaust gas flow rates), has provided reductions in both wear volume and coefficient of friction by factors of 60X and 20X respectively for sliding contacts during the initial 80 m of sliding distance. Exhaust gas atmosphere with the acetylene admixture provided 65OX reductions in steady state wear rate compared to that measured for sliding contacts in dry N2. Such acetylene admixture also augments the ability of the exhaust gas atmosphere to lubricate high-temperature rolling contacts, with up to 25-fold reductions in wear track depth compared to those measured in the presence of N2 alone. In addition to providing some lubricating benefit itself, an important potential role of the exhaust gas from rich mixtures would be to shield bearings from 02. Such shielding enables surface deposition of lubricous pyrolytic carbon from the acetylene admixture, instead of combustion, rendering feasible the continuously replenished solid lubrication of high-temperature bearing surfaces.

  19. Friction and Wear Properties of Selected Solid Lubricating Films

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa; Iwaki, Masanori; Gotoh, Kenichi; Obara, Shingo; Imagawa, Kichiro

    1999-01-01

    To evaluate commercially developed solid film lubricants for aerospace bearing applications, we investigated the friction and wear behavior of bonded molybdenum disulfide (MoS2), magnetron-sputtered MoS2 and ion-plated silver films in sliding contact with 6-mm-diameter American Iron and Steel Institute (AISI) 440 C stainless steel balls. Unidirectional sliding friction experiments were conducted with a load of 5.9 N (600 g), a mean Herizian contact pressure of 0.79 GPa maximum 1.19 GPa), and a sliding velocity of 0.2 m/s at room temperature in three environments: ultrahigh vacuum (7x10 (exp -7Pa)), humid air (approx. 20 percent humidity), and dry nitrogen (less than 1 percent humidity). The resultant films were characterized by scanning electron microscopy, energy-dispersive x-ray spectroscopy, and surface profilometry. Marked differences in friction and wear resulted front the environmental conditions and the film materials. The main criteria for judging the performance were coefficient of friction and wear rate, which had to be less than 0.3 and on the order of 10 (exp -6mm exp 3/Nm or less), respectively. The bonded MoS2 and magnetron-sputtered MoS2 films met the criteria in all three environments. Also, the wear rates of the counterpart AISI 440 C stainless steel balls met that criterion in all three environments. The ion-plated silver films met the criteria only in ultrahigh vacuum. In ultrahigh vacuum the bonded MoS2 films were superior. In humid air the bonded MoS2 films had higher coefficient of friction and shorter wear life than did the magnetron-sputtered MoS2 films. The ion-plated silver films had a high coefficient of friction in humid air but relatively low coefficients of friction in the nonoxidative environments. Adhesion and plastic deformation played important roles in all three environments. All sliding involved adhesive transfer of materials.

  20. Effects of nano-LaF3 on the friction and wear behaviors of PTFE-based bonded solid lubricating coatings under different lubrication conditions

    NASA Astrophysics Data System (ADS)

    Jia, Yulong; Wan, Hongqi; Chen, Lei; Zhou, Huidi; Chen, Jianmin

    2016-09-01

    Influence of nanometer lanthanum fluoride (nano-LaF3) on the tribological behaviors of polytetrafluoroethylene (PTFE) bonded solid lubricating coatings were investigated using a ring-on-block friction-wear tester under dry friction and RP-3 jet fuel lubrication conditions. The worn surfaces and transfer films formed on the counterpart steel rings were observed by scanning electron microscope (SEM) and optical microscope (OM), respectively. The microstructures of the nano-LaF3 modified coatings and the distribution states of nano-LaF3 were studied by field-emission scanning electron microscope (FESEM) and transmission electron microscopy (TEM), respectively. The results show that incorporation of nano-LaF3 improves the microhardness and the friction-reduced and anti-wear abilities of PTFE bonded solid lubricating coatings. The wear life of the modified coating is about 6 times longer than that of the coating without nano-LaF3 filler at a relatively low applied load (200 N) and rotary speed (1000 rev/min) under dry friction condition. The friction coefficient and wear life of the modified coating decrease with increase of applied load under dry friction, but the friction coefficient has hardly any variation and wear life decreases under RP-3 jet fuel lubrication condition. In addition, the friction coefficient of the modified coating reduces with the rotary speed increasing under dry sliding but has little change under RP-3 lubrication, the wear life increases firstly and then decreases. The results indicated that the wear failure mechanism is dominated by applied load, which plays an important role in guidance of application of nano-LaF3 modified PTFE bonded coating under different working environment.

  1. Contrasting frictional behaviour of fault gouges containing Mg-rich phyllosilicates

    NASA Astrophysics Data System (ADS)

    Sanchez Roa, C.; Faulkner, D.; Jimenez Millan, J.; Nieto, F.

    2015-12-01

    The clay mineralogy of fault gouges has important implications on frictional properties and stability of fault planes. We studied the specific case of the Galera fault zone where fault gouges containing Mg-rich phyllosilicates appear as hydrothermal deposits related to high salinity fluids enriched in Mg2+. These deposits are dominated by sepiolite and palygorskite, both fibrous clay minerals with similar composition to Mg-smectite. The frictional strengths of sepiolite and palygorskite have not yet been determined, however, as they are part of the clay mineral group, it has been assumed that their frictional behaviour would be in line with platy clay minerals. We performed frictional sliding experiments on powdered pure standards and fault rocks in order to establish the frictional behaviour of sepiolite and palygorskite using a triaxial deformation apparatus with a servo-controlled axial loading system and fluid pressure pump. Friction coefficients for palygorskite and sepiolite as monomineralic samples were found to be 0.65 to 0.7 for dry experiments, and 0.45 to 0.5 for water-saturated experiments. Although these fibrous minerals are part of the phyllosilicates group, they show higher friction coefficients and their mechanical behaviour is less stable than platy clay minerals. This difference is a consequence of their stronger structural framework and the discontinuity of water layers. Our results present a contrast in mechanical behaviour between Mg-rich fibrous and platy clay minerals in fault gouges, where smectite is known to considerably reduce friction coefficients and to increase the stability of the fault plane leading to creeping processes. Transformations between saponite and sepiolite have been previously observed and could modify the deformation regime of a fault zone. Constraining the stability conditions and possible mineral reactions or transformations in fault gouges could help us understand the general role of clay minerals in fault stability.

  2. A Projectile for a Rectangular Barreled Rail Gun

    DTIC Science & Technology

    1999-12-01

    fins Cfb ’ skin friction drag coefficient for nose/body combination modified for equations of motion Cff’ skin friction drag coefficient for fins...occasionally referred to as the last point method, uses a loop , shown in simplified form in Figure (2) as a flow chart. The program loop takes the final... Cfb ’ = CfofCf(Sno/s+Sbs)/ScsS (4.11) Cff = CfffcfSw/Scss (4.12) 2. Form Drag The form drag coefficients are determined by the methods from

  3. Determining Experimental Parameters for Thermal-Mechanical Forming Simulation considering Martensite Formation in Austenitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Schmid, Philipp; Liewald, Mathias

    2011-08-01

    The forming behavior of metastable austenitic stainless steel is mainly dominated by the temperature-dependent TRIP effect (transformation induced plasticity). Of course, the high dependency of material properties on the temperature level during forming means the temperature must be considered during the FE analysis. The strain-induced formation of α'-martensite from austenite can be represented by using finite element programs utilizing suitable models such as the Haensel-model. This paper discusses the determination of parameters for a completely thermal-mechanical forming simulation in LS-DYNA based on the material model of Haensel. The measurement of the martensite evolution in non-isothermal tensile tests was performed with metastable austenitic stainless steel EN 1.4301 at different rolling directions between 0° and 90 °. This allows an estimation of the influence of the rolling direction to the martensite formation. Of specific importance is the accuracy of the martensite content measured by magnetic induction methods (Feritscope). The observation of different factors, such as stress dependence of the magnetisation, blank thickness and numerous calibration curves discloses a substantial important influence on the parameter determination for the material models. The parameters obtained for use of Haensel model and temperature-dependent friction coefficients are used to simulate forming process of a real component and to validate its implementation in the commercial code LS-DYNA.

  4. Evaluation of the friction force generated by monocristalyne and policristalyne ceramic brackets in sliding mechanics.

    PubMed

    Pimentel, Roberta Ferreira; de Oliveira, Roberto Sotto Maior Fortes; Chaves, Maria das Graças Afonso Miranda; Elias, Carlos Nelson; Gravina, Marco Abdo

    2013-01-01

    To evaluate and compare "in vitro" the maximum friction force generated by three types of esthetic brackets, two types of polycrystalline conventional ceramic brackets (20/40 and InVu) and one type of sapphire monocrystalline bracket (Radiance) in dry and artificial saliva wet settings. Also, to evaluate the influence exerted by artificial saliva on the friction forces of those brackets. Tests were performed in dry and artificial saliva wet setting (Oral Balance) by using an EMIC DL 10000 testing machine, simulating a 2 mm slide of 0.019 x 0.025-in rectangular stainless steel wires over the pre-angulated and pre-torqued (right superior canine, Roth prescription, slot 0.022 x 0.030-in) brackets (n = 18 for each bracket). In order to compare groups in dry and wet settings, the ANOVA was used. For comparisons related to the dry versus wet setting, the student t test was used for each group. The results showed that in the absence of saliva the Radiance monocrystalline brackets showed the highest friction coefficients, followed by the 20/40 and the InVu polycrystalline brackets. In tests with artificial saliva, the Radiance and the 20/40 brackets had statistically similar friction coefficients and both were greater than that presented by the InVu brackets. The artificial saliva did not change the maximum friction force of the Radiance brackets, but, for the others (20/40 and InVu), an increase of friction was observed in its presence. The InVu brackets showed, in the absence and in the presence of saliva, the lowest friction coefficient.

  5. Effect of Coulomb friction on orientational correlation and velocity distribution functions in a sheared dilute granular gas.

    PubMed

    Gayen, Bishakhdatta; Alam, Meheboob

    2011-08-01

    From particle simulations of a sheared frictional granular gas, we show that the Coulomb friction can have dramatic effects on orientational correlation as well as on both the translational and angular velocity distribution functions even in the Boltzmann (dilute) limit. The dependence of orientational correlation on friction coefficient (μ) is found to be nonmonotonic, and the Coulomb friction plays a dual role of enhancing or diminishing the orientational correlation, depending on the value of the tangential restitution coefficient (which characterizes the roughness of particles). From the sticking limit (i.e., with no sliding contact) of rough particles, decreasing the Coulomb friction is found to reduce the density and spatial velocity correlations which, together with diminished orientational correlation for small enough μ, are responsible for the transition from non-gaussian to gaussian distribution functions in the double limit of small friction (μ→0) and nearly elastic particles (e→1). This double limit in fact corresponds to perfectly smooth particles, and hence the maxwellian (gaussian) is indeed a solution of the Boltzmann equation for a frictional granular gas in the limit of elastic collisions and zero Coulomb friction at any roughness. The high-velocity tails of both distribution functions seem to follow stretched exponentials even in the presence of Coulomb friction, and the related velocity exponents deviate strongly from a gaussian with increasing friction.

  6. Comparisons of physical experiment and discrete element simulations of sheared granular materials in an annular shear cell

    USGS Publications Warehouse

    Ji, S.; Hanes, D.M.; Shen, H.H.

    2009-01-01

    In this study, we report a direct comparison between a physical test and a computer simulation of rapidly sheared granular materials. An annular shear cell experiment was conducted. All parameters were kept the same between the physical and the computational systems to the extent possible. Artificially softened particles were used in the simulation to reduce the computational time to a manageable level. Sensitivity study on the particle stiffness ensured such artificial modification was acceptable. In the experiment, a range of normal stress was applied to a given amount of particles sheared in an annular trough with a range of controlled shear speed. Two types of particles, glass and Delrin, were used in the experiment. Qualitatively, the required torque to shear the materials under different rotational speed compared well with those in the physical experiments for both the glass and the Delrin particles. However, the quantitative discrepancies between the measured and simulated shear stresses were nearly a factor of two. Boundary conditions, particle size distribution, particle damping and friction, including a sliding and rolling, contact force model, were examined to determine their effects on the computational results. It was found that of the above, the rolling friction between particles had the most significant effect on the macro stress level. This study shows that discrete element simulation is a viable method for engineering design for granular material systems. Particle level information is needed to properly conduct these simulations. However, not all particle level information is equally important in the study regime. Rolling friction, which is not commonly considered in many discrete element models, appears to play an important role. ?? 2009 Elsevier Ltd.

  7. The effect of ion plated silver and sliding friction on tensile stress-induced cracking in aluminum oxide

    NASA Technical Reports Server (NTRS)

    Sliney, Harold E.; Spalvins, Talivaldis

    1991-01-01

    A Hertzian analysis of the effect of sliding friction on contact stresses in alumina is used to predict the critical load for crack generation. The results for uncoated alumina and alumina coated with ion plated silver are compared. Friction coefficient inputs to the analysis are determined experimentally with a scratch test instrument employing an 0.2 mm radius diamond stylus. A series of scratches were made at constant load increments on coated and uncoated flat alumina surfaces. Critical loads for cracking are detected by microscopic examination of cross sections of scratches made at various loads and friction coefficients. Acoustic emission (AE) and friction trends were also evaluated as experimental techniques for determining critical loads for cracking. Analytical predictions correlate well with micrographic evidence and with the lowest load at which AE is detected in multiple scratch tests. Friction/load trends are not good indicators of early crack formation. Lubrication with silver films reduced friction and thereby increased the critical load for crack initiation in agreement with analytical predictions.

  8. Estimation of wheel-rail friction for vehicle certification

    NASA Astrophysics Data System (ADS)

    Petrov, Vladislav; Berg, Mats; Persson, Ingemar

    2014-08-01

    In certification of new rail vehicles with respect to running characteristics, a wide variety of operating conditions needs to be considered. However, in associated test runs the wheel-rail friction condition is difficult to handle because the friction coefficient needs to be fairly high and the friction is also generally hard to assess. This is an issue that has been studied in the European project DynoTRAIN and part of the results is presented in this paper. More specifically, an algorithm for estimating the wheel-rail friction coefficient at vehicle certification tests is proposed. Owing to lack of some measurement results, the algorithm here is evaluated in a simulation environment which is also an important step towards practical implementation. A quality measure of the friction estimate is suggested in terms of estimated wheel-rail spin and total creep. It is concluded that, tentatively, the total creep should exceed 0.006 and the spin should be less than 1.0 m-1 for the algorithm to give a good friction estimate. Sensitivity analysis is carried out to imitate measurement errors, but should be expanded in further work.

  9. The effect of ion-plated silver and sliding friction on tensile stress-induced cracking in aluminum oxide

    NASA Technical Reports Server (NTRS)

    Sliney, Harold E.; Spalvins, Talivaldis

    1993-01-01

    A Hertzian analysis of the effect of sliding friction on contact stresses in alumina is used to predict the critical load for crack generation. The results for uncoated alumina and alumina coated with ion plated silver are compared. Friction coefficient inputs to the analysis are determined experimentally with a scratch test instrument employing an 0.2 mm radius diamond stylus. A series of scratches were made at constant load increments on coated and uncoated flat alumina surfaces. Critical loads for cracking are detected by microscopic examination of cross sections of scratches made at various loads and friction coefficients. Acoustic emission (AE) and friction trends were also evaluated as experimental techniques for determining critical loads for cracking. Analytical predictions correlate well with micrographic evidence and with the lowest load at which AE is detected in multiple scratch tests. Friction/load trends are not good indicators of early crack formation. Lubrication with silver films reduced friction and thereby increased the critical load for crack initiation in agreement with analytical predictions.

  10. Dynamic nature of abutment screw retightening: finite element study of the effect of retightening on the settling effect.

    PubMed

    Bulaqi, Haddad Arabi; Mousavi Mashhadi, Mahmoud; Safari, Hamed; Samandari, Mohammad Mahdi; Geramipanah, Farideh

    2015-05-01

    A fundamental problem in fully understanding the dynamic nature of screw loosening is lack of recognition of the entire process of screw tightening and retightening. The purpose of this study was to explain the dynamic nature of abutment screw retightening by using finite element methods to investigate the effect of the coefficient of friction and retightening on the settling effect. Precise computer models were designed of a Straumann dental implant, a directly attached crown, an abutment screw, and the bone surrounding the implant. All threaded interfaces were designed with a spiral thread helix with a specific coefficient of static and kinetic friction, and the surfaces were characterized as fine, regular, and rough. Abaqus software was used for dynamic simulation, which involved applying rotational displacement to the abutment screw and torque controlling during the steps of tightening, relaxation, retightening, and second relaxation and at different coefficients of friction. The obtained torque and preload values were compared to the predicted values. When surfaces changed from fine to rough, the remaining torque and preload decreased, and the settling effect increased. Upon retightening, the remaining torque and preload increased, and the settling effect also decreased. The reduction of the coefficient of friction contributes to increases in the preload and decreases in the settling effect. Retightening reduced the settling effect and had an insignificant effect on the preload. At high coefficients of friction, the retightening effect was intensified. Copyright © 2015 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  11. Is frictional heating needed to cause dramatic weakening of nanoparticle gouge during seismic slip? Insights from friction experiments with variable thermal evolutions

    NASA Astrophysics Data System (ADS)

    Yao, Lu; Ma, Shengli; Niemeijer, André R.; Shimamoto, Toshihiko; Platt, John D.

    2016-07-01

    To examine whether faults can be lubricated by preexisting and newly formed nanoparticles, we perform high-velocity friction experiments on periclase (MgO) nanoparticles and on bare surfaces of Carrara marble cylinders/slices, respectively. Variable temperature conditions were simulated by using host blocks of different thermal conductivities. When temperature rises are relatively low, we observe high friction in nano-MgO tests and unexpected slip strengthening following initial weakening in marble slice tests, suggesting that the dominant weakening mechanisms are of thermal origin. Solely the rolling of nanoparticles without significant temperature rise is insufficient to cause dynamic fault weakening. For nano-MgO experiments, comprehensive investigations suggest that flash heating is the most likely weakening mechanism. In marble experiments, flash heating controls the unique evolutions of friction, and the competition between bulk temperature rise and wear-induced changes of asperity contact numbers seems to strongly affect the efficiency of flash heating.

  12. The effect of friction in the hold down post spherical bearings on hold down post loads

    NASA Technical Reports Server (NTRS)

    Richardson, James A.

    1990-01-01

    The effect of friction at the connection of the Solid Rocket Booster (SRB) aft skirt and the mobile launch platform (MLP) hold down posts was analyzed. A simplified model of the shuttle response during the Space Shuttle Main Engine (SSME) buildup was constructed. The model included the effect of stick-slip friction for the rotation of the skirt about the spherical bearing. Current finite element models assume the joint is completely frictionless in rotation and therefore no moment is transferred between the skirt and the hold down posts. The model was partially verified against test data and preliminary parameter studies were performed. The parameter studies indicated that the coefficient of friction strongly influenced the moment on the hold down posts. The coefficient of friction had little effect on hold down post vertical loads, however. Further calibration of the model is necessary before the effect of friction on the hold down post horizontal loads can be analyzed.

  13. Design of tyre force excitation for tyre-road friction estimation

    NASA Astrophysics Data System (ADS)

    Albinsson, Anton; Bruzelius, Fredrik; Jacobson, Bengt; Fredriksson, Jonas

    2017-02-01

    Knowledge of the current tyre-road friction coefficient is essential for future autonomous vehicles. The environmental conditions, and the tyre-road friction in particular, determine both the braking distance and the maximum cornering velocity and thus set the boundaries for the vehicle. Tyre-road friction is difficult to estimate during normal driving due to low levels of tyre force excitation. This problem can be solved by using active tyre force excitation. A torque is added to one or several wheels in the purpose of estimating the tyre-road friction coefficient. Active tyre force excitation provides the opportunity to design the tyre force excitation freely. This study investigates how the tyre force should be applied to minimise the error of the tyre-road friction estimate. The performance of different excitation strategies was found to be dependent on both tyre model choice and noise level. Furthermore, the advantage with using tyre models with more parameters decreased when noise was added to the force and slip ratio.

  14. Friction and morphology of magnetic tapes in sliding contact with nickel-zinc ferrite

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.; Bhushan, B.

    1984-01-01

    Friction and morphological studies were conducted with magnetic tapes containing a Ni-Zn ferrite hemispherical pin in laboratory air at a relative humidity of 40 percent and at 23 C. The results indicate that the binder plays a significant role in the friction properties, morphology, and microstructure of the tape. Comparisons were made with four binders: nitrocellulose; poly (vinyledene) chloride; cellulose acetate; and hydroxyl-terminated, low molecular weight polyester added to the base polymer, polyester-polyurethane. The coefficient of friction was lowest for the tape with the nitrocellulose binder and increased in the order hydroxylterminated, low molecular weight polyester resin; poly (vinyledene) chloride; and cellulose acetate. The degree of enclosure of the oxide particles by the binder was highest for hydroxyl-terminated, low molecular weight polyester and decreased in the order cellulose acetate, poly (vinyledene) chloride, and nitrocellulose. The nature of deformation of the tape was a factor in controlling friction. The coefficient of friction under elastic contact conditions was considerably lower than under conditions that produced plastic contacts.

  15. Direct measurement of friction of a fluctuating contact line

    NASA Astrophysics Data System (ADS)

    Guo, Shuo; Gao, Min; Xiong, Xiaomin; Wang, Yong Jian; Wang, Xiaoping; Sheng, Ping; Tong, Penger

    2013-03-01

    What happens at a moving contact line, where one fluid displaces another (immiscible) fluid over a solid surface, is a fundamental issue in fluid dynamics. In this presentation, we report a direct measurement of the friction coefficient in the immediate vicinity of a fluctuating contact line using a micron-sized vertical glass fiber with one end glued to an atomic force microscope (AFM) cantilever beam and the other end touching a liquid-air interface. By measuring the broadening of the resonance peak of the cantilever system with varying liquid viscosity η, we obtain the friction coefficient ξc associated with the contact line fluctuations on the glass fiber of diameter d and find it has the universal form, ξc = 0 . 8 πdη , independent of the contact angle. The result is further confirmed by using a soap film system whose bulk effect is negligibly small. This is the first time that the friction coefficient of a fluctuating contact line is measured. *Work supported by the Research Grants Council of Hong Kong SAR.

  16. Study on Abrasive Wear of Brake Pad in the Large-megawatt Wind Turbine Brake Based on Deform Software

    NASA Astrophysics Data System (ADS)

    Zhang, Shengfang; Hao, Qiang; Sha, Zhihua; Yin, Jian; Ma, Fujian; Liu, Yu

    2017-12-01

    For the friction and wear issues of brake pads in the large-megawatt wind turbine brake during braking, this paper established the micro finite element model of abrasive wear by using Deform-2D software. Based on abrasive wear theory and considered the variation of the velocity and load in the micro friction and wear process, the Archard wear calculation model is developed. The influence rules of relative sliding velocity and friction coefficient in the brake pad and disc is analysed. The simulation results showed that as the relative sliding velocity increases, the wear will be more serious, while the larger friction coefficient lowered the contact pressure which released the wear of the brake pad.

  17. Effect of initial contact surface condition on the friction and wear properties of bearing steel in cyclic reciprocating sliding contact

    NASA Astrophysics Data System (ADS)

    Tanaka, Y.; Endo, M.; Moriyama, S.

    2017-05-01

    Delamination failure is one of the most important engineering problems. This failure can frequently be detrimental to rolling contact machine elements such as bearings, gear wheels, etc. This phenomenon, called rolling contact fatigue, has a close relationship not only with opening-mode but also with shear-mode fatigue crack growth. The crack face interference is known to significantly affect the shear-mode fatigue crack propagation and its threshold behavior. Quantitative investigation on friction and wear at fatigue crack faces in the material is essentially impossible. Previously, thus, a novel ring-on-ring test by making use of fatigue testing machine was proposed to simulate a cyclic reciprocating sliding contact of crack surfaces. However, this test procedure had some problems. For instance, in order to achieve the uniform contact at the start of test, the rubbing of specimens must be conducted in advance. By this treatment, the specimen surfaces were already damaged before the test. In this study, an improvement of experimental method was made to perform the test using the damage-free specimens. The friction and wear properties for heat-treated high carbon-chromium bearing steel were investigated with this new method and the results were compared to the results obtained by using the initially damaged specimens.

  18. Turbulent Plume Dispersion over Two-dimensional Idealized Urban Street Canyons

    NASA Astrophysics Data System (ADS)

    Wong, C. C. C.; Liu, C. H.

    2012-04-01

    Human activities are the primary pollutant sources which degrade the living quality in the current era of dense and compact cities. A simple and reasonably accurate pollutant dispersion model is helpful to reduce pollutant concentrations in city or neighborhood scales by refining architectural design or urban planning. The conventional method to estimate the pollutant concentration from point/line sources is the Gaussian plume model using empirical dispersion coefficients. Its accuracy is pretty well for applying to rural areas. However, the dispersion coefficients only account for the atmospheric stability and streamwise distance that often overlook the roughness of urban surfaces. Large-scale buildings erected in urban areas significantly modify the surface roughness that in turn affects the pollutant transport in the urban canopy layer (UCL). We hypothesize that the aerodynamic resistance is another factor governing the dispersion coefficient in the UCL. This study is thus conceived to study the effects of urban roughness on pollutant dispersion coefficients and the plume behaviors. Large-eddy simulations (LESs) are carried out to examine the plume dispersion from a ground-level pollutant source over idealized 2D street canyons in neutral stratification. Computations with a wide range of aspect ratios (ARs), including skimming flow to isolated flow regimes, are conducted. The vertical profiles of pollutant distribution for different values of friction factor are compared that all reach a self-similar Gaussian shape. Preliminary results show that the pollutant dispersion is closely related to the friction factor. For relatively small roughness, the factors of dispersion coefficient vary linearly with the friction factor until the roughness is over a certain level. When the friction factor is large, its effect on the dispersion coefficient is less significant. Since the linear region covers at least one-third of the full range of friction factor in our empirical analysis, urban roughness is a major factor for dispersion coefficient. The downstream air quality could then be a function of both atmospheric stability and urban roughness.

  19. Friction and Wear Reduction of Eccentric Journal Bearing Made of Sn-Based Babbitt for Ore Cone Crusher

    PubMed Central

    Amanov, Auezhan; Ahn, Byungmin; Lee, Moon Gu; Jeon, Yongho; Pyun, Young-Sik

    2016-01-01

    An anti-friction Babbitt alloy-coated bearing made by a casting process is a journal bearing, which is used in an ore cone crusher eccentric. The main purpose of the Babbitt coated eccentric is to provide a low friction to support and guide a rotating shaft. Despite the fact that the Babbitt-coated eccentric offers a low friction coefficient and can be operated without a continuous supply of lubricant, it suffers from mining environments and short service life. In this study, an ultrasonic nanocrystalline surface modification (UNSM) technique was used to further reduce the friction coefficient, to increase the wear resistance, and to extend the service life of the Sn-based Babbitt metal. The friction and wear behavior of the Sn-based Babbitt metal was investigated using a block-on-ring tester under both dry and oil-lubricated conditions. The results of the experiments revealed that the friction and wear behavior of Sn-based Babbitt metal could be improved by the application of the UNSM technique. The friction and wear mechanisms of the specimens were explained and discussed in terms of changes in surface properties—microstructure, surface hardness, surface roughness, etc. PMID:28774070

  20. [Evaluation of orthodontic friction using a tribometer with alternating movement].

    PubMed

    Pernier, C M; Jablonska-Mazanek, E D; Ponsonnet, L; Grosgogeat, B

    2005-12-01

    It is essential for orthodontists to control the complex phenomenon of friction. The in vitro techniques, usually dynamometers or tensile testing machines, used to measure the frictional resistance between arch wires and brackets are linear and unidirectional and can be criticised because tooth movements, such as tipping and uprighting, as well everyday oral activities, primarily chewing, are not uni-dimensional but more closely resemble the small amplitude oscillatory phenomena known as fretting. We therefore decided to develop a fretting machine not with linear but with alternating movements better suited to evaluate the frictional behaviour of orthodontic bracket-wire combinations. Once we had completed construction of this device, we proceeded to measure the frictional resistance between one stainless steel bracket (MicroArch GAC) and five wires currently used in orthodontics (Two nickel-titanium shape memory alloys: Neo Sentalloy and Neo Sentalloy with Ionguard GAC--Three titanium-molybdenum alloys: TMA and Low Friction TMA Ormco and Resolve GAC). We were able to set up a classification of the wires according to their coefficient of friction, demonstrating the inefficacy of ion implantation and quantifying the increase in the coefficient of friction which occurs when Resolve wires are placed in the oral environment for approximately one year.

  1. Tribological properties of boron nitride synthesized by ion beam deposition

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.; Spalvins, T.

    1985-01-01

    The adhesion and friction behavior of boron nitride films on 440 C bearing stainless steel substrates was examined. The thin films containing the boron nitride were synthesized using an ion beam extracted from a borazine plasma. Sliding friction experiments were conducted with BN in sliding contact with itself and various transition metals. It is indicated that the surfaces of atomically cleaned BN coating film contain a small amount of oxides and carbides, in addition to boron nitride. The coefficients of friction for the BN in contact with metals are related to the relative chemical activity of the metals. The more active the metal, the higher is the coefficient of friction. The adsorption of oxygen on clean metal and BN increases the shear strength of the metal - BN contact and increases the friction. The friction for BN-BN contact is a function of the shear strength of the elastic contacts. Clean BN surfaces exhibit relatively strong interfacial adhesion and high friction. The presence of adsorbates such as adventitious carbon contaminants on the BN surfaces reduces the shear strength of the contact area. In contrast, chemically adsorbed oxygen enhances the shear strength of the BN-BN contact and increases the friction.

  2. Improving friction performance of cast iron by laser shock peening

    NASA Astrophysics Data System (ADS)

    Feng, Xu; Zhou, Jianzhong; Huang, Shu; Sheng, Jie; Mei, Yufen; Zhou, Hongda

    2015-05-01

    According to different purpose, some high or low friction coefficient of the material surface is required. In this study, micro-dent texture was fabricated on cast iron specimens by a set of laser shock peening (LSP) experiments under different laser energy, with different patterns of micro dimples in terms of the depth over diameter. The mechanism of LSP was discussed and surface morphology of the micro dimples were investigated by utilizing a Keyence KS-1100 3D optical surface profilometer. The tests under the conditions of dry and lubricating sliding friction were accomplished on the UMT-2 apparatus. The performance of treated samples during friction and wear tests were characterized and analyzed. Based on theoretical analysis and experimental study, friction performance of textured and untextured samples were studied and compared. Morphological characteristics were observed by scanning electron microscope (SEM) and compared after friction tests under dry condition. The results showed that friction coefficient of textured samples were obvious changed than smooth samples. It can be seen that LSP is an effective way to improve the friction performance of cast iron by fabricating high quality micro dimples on its surface, no matter what kind of engineering application mentioned in this paper.

  3. Friction and Wear Reduction of Eccentric Journal Bearing Made of Sn-Based Babbitt for Ore Cone Crusher.

    PubMed

    Amanov, Auezhan; Ahn, Byungmin; Lee, Moon Gu; Jeon, Yongho; Pyun, Young-Sik

    2016-11-22

    An anti-friction Babbitt alloy-coated bearing made by a casting process is a journal bearing, which is used in an ore cone crusher eccentric. The main purpose of the Babbitt coated eccentric is to provide a low friction to support and guide a rotating shaft. Despite the fact that the Babbitt-coated eccentric offers a low friction coefficient and can be operated without a continuous supply of lubricant, it suffers from mining environments and short service life. In this study, an ultrasonic nanocrystalline surface modification (UNSM) technique was used to further reduce the friction coefficient, to increase the wear resistance, and to extend the service life of the Sn-based Babbitt metal. The friction and wear behavior of the Sn-based Babbitt metal was investigated using a block-on-ring tester under both dry and oil-lubricated conditions. The results of the experiments revealed that the friction and wear behavior of Sn-based Babbitt metal could be improved by the application of the UNSM technique. The friction and wear mechanisms of the specimens were explained and discussed in terms of changes in surface properties-microstructure, surface hardness, surface roughness, etc.

  4. In-flight Compressible Turbulent Boundary Layer Measurements on a Hollow Cylinder at a Mach Number of 3.0

    NASA Technical Reports Server (NTRS)

    Quinn, R. D.; Gong, L.

    1978-01-01

    Skin temperatures, shearing forces, surface static pressures, and boundary layer pitot pressures and total temperatures were measured on a hollow cylinder 3.04 meters long and 0.437 meter in diameter mounted beneath the fuselage of the YF-12A airplane. The data were obtained at a nominal free stream Mach number of 3.0 and at wall-to-recovery temperature ratios of 0.66 to 0.91. The free stream Reynolds number had a minimal value of 4.2 million per meter. Heat transfer coefficients and skin friction coefficients were derived from skin temperature time histories and shear force measurements, respectively. Boundary layer velocity profiles were derived from pitot pressure measurements, and a Reynolds analogy factor of 1.11 was obtained from the measured heat transfer and skin friction data. The skin friction coefficients predicted by the theory of van Driest were in excellent agreement with the measurements. Theoretical heat transfer coefficients, in the form of Stanton numbers calculated by using a modified Reynolds analogy between skin friction and heat transfer, were compared with measured values. The measured velocity profiles were compared to Coles' incompressible law-of-the-wall profile.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shanaghi, Ali, E-mail: alishanaghi@gmail.com; Rouhaghdam, Ali Reza Sabour, E-mail: sabour01@modares.ac.ir; Ahangarani, Shahrokh, E-mail: sh.ahangarani@gmail.com

    Highlights: ► The TiC{sub x} nanostructure coatings have been deposited by PACVD method. ► Dominant mechanism of growth structure at 490 °C is island-layer type. ► TiC{sub x} nanostructure coating applied at 490 °C, exhibits lowest friction coefficient. ► Young's moduli are 289.9, 400 and 187.6 GPa for 470, 490 and 510 °C, respectively. ► This higher elastic modulus and higher hardness of nanocoating obtain at 490 °C. -- Abstract: The structure, composition, and mechanical properties of nanostructured titanium carbide (TiC) coatings deposited on H{sub 11} hot-working tool steel by pulsed-DC plasma assisted chemical vapor deposition at three different temperaturesmore » are investigated. Nanoindentation and nanoscratch tests are carried out by atomic force microscopy to determine the mechanical properties such as hardness, elastic modulus, surface roughness, and friction coefficient. The nanostructured TiC coatings prepared at 490 °C exhibit lower friction coefficient (0.23) than the ones deposited at 470 and 510 °C. Increasing the deposition temperature reduces the Young's modulus and hardness. The overall superior mechanical properties such as higher hardness and lower friction coefficient render the coatings deposited at 490 °C suitable for wear resistant applications.« less

  6. Control system for maximum use of adhesive forces of a railway vehicle in a tractive mode

    NASA Astrophysics Data System (ADS)

    Spiryagin, Maksym; Lee, Kwan Soo; Yoo, Hong Hee

    2008-04-01

    The realization of maximum adhesive forces for a railway vehicle is a very difficult process, because it involves using tractive efforts and depends on friction characteristics in the contact zone between wheels and rails. Tractive efforts are realized by means of tractive torques of motors, and their maximum values can provide negative effects such as slip and skid. These situations usually happen when information about friction conditions is lacking. The negative processes have a major influence on wearing of contact bodies and tractive units. Therefore, many existing control systems for vehicles use an effect of a prediction of a friction coefficient between wheels and rails because measuring a friction coefficient at the moment of running vehicle movement is very difficult. One of the ways to solve this task is to use noise spectrum analysis for friction coefficient detection. This noise phenomenon has not been clearly studied and analyzed. In this paper, we propose an adhesion control system of railway vehicles based on an observer, which allows one to determine the maximum tractive torque based on the optimal adhesive force between the wheels (wheel pair) of a railway vehicle and rails (rail track) depending on weight load from a wheel to a rail, friction conditions in the contact zone, a lateral displacement of wheel set and wheel sleep. As a result, it allows a railway vehicle to be driven in a tractive mode by the maximum adhesion force for real friction conditions.

  7. Friction and wear performance of bearing ball sliding against diamond-like carbon coatings

    NASA Astrophysics Data System (ADS)

    Wu, Shenjiang; Kousaka, Hiroyuki; Kar, Satyananda; Li, Dangjuan; Su, Junhong

    2017-01-01

    We have studied the tribological properties of bearing steel ball (Japan standard, SUJ2) sliding against tetrahedral amorphous carbon (ta-C) coatings and amorphous hydrogenated carbon (a-C:H) coatings. The reciprocating sliding testes are performed with ball-on-plate friction tester in ambient air condition. Analysis of friction coefficient, wear volume and microstructure in wear scar are carried out using optical microscopy, atom force morphology (AFM) and Raman spectroscopy. The results show the SUJ2 on ta-C coating has low friction coefficient (around 0.15) but high wear loss. In contrast, the low wear loss of SUJ2 on a-C:H coating with high (around 0.4) and unsteady friction coefficient. Some Fe2O3, FeO and graphitization have been found on the wear scar of SUJ2 sliding against ta-C coating. Nearly no oxide materials exist on the wear scar of SUJ2 against a-C:H coating. The mechanism and hypothesis of the wear behavior have been investigated according to the measurement results. This study will contribute to proper selection and understand the tribological performance of bearing steels against DLC coatings.

  8. Torsional Tribological Behavior and Torsional Friction Model of Polytetrafluoroethylene against 1045 Steel

    PubMed Central

    Wang, Shibo; Niu, Chengchao

    2016-01-01

    In this work, the plane-on-plane torsional fretting tribological behavior of polytetrafluoroethylene (PTFE) was studied. A model of a rigid, flat-ended punch acting on an elastic half-space was built according to the experimental conditions. The results indicate that the shape of T–θ curves was influenced by both the torsional angle and the normal load. The torsion friction torque and wear rate of PTFE exponentially decreased when the torsion angle rose. The torsional torque increased from 0.025 N·m under a normal load of 43 N to 0.082 N·m under a normal load of 123 N. With sequentially increasing normal load, the value of torque was maintained. With rising normal load, the wear mass loss of PTFE disks was increased and the wear rate was decreased. Good agreement was found with the calculated torque according to the model and the experimental torque except for that under a normal load of 163 N. The difference under a normal load of 163 N was caused by the coefficient of friction. Usually the coefficient of friction of a polymer decreases with increasing normal load, whereas a constant coefficient of friction was applied in the model. PMID:26799324

  9. [Determination of a Friction Coefficient for THA Bearing Couples].

    PubMed

    Vrbka, M; Nečas, D; Bartošík, J; Hartl, M; Křupka, I; Galandáková, A; Gallo, J

    2015-01-01

    The wear of articular surfaces is considered one of the most important factors limiting the life of total hip arthroplasty (THA). It is assumed that the particles released from the surface of a softer material induce a complex inflammatory response, which will eventually result in osteolysis and aseptic loosening. Implant wear is related to a friction coefficient which depends on combination of the materials used, roughness of the articulating surfaces, internal clearance, and dimensions of the prosthesis. The selected parameters of the bearing couples tested were studied using an experimental device based on the principle of a pendulum. Bovine serum was used as a lubricant and the load corresponded to a human body mass of 75 kg. The friction coefficient was derived from a curve of slowdown of pendulum oscillations. Roughness was measured with a device working on the principle of interferometry. Clearance was assessed by measuring diameters of the acetabular and femoral heads with a 3D optical scanner. The specimens tested included unused metal-on-highly cross-linked polyethylene, ceramic-on-highly cross-linked polyethylene and ceramic-on-ceramic bearing couples with the diameters of 28 mm and 36 mm. For each measured parameter, an arithmetic mean was calculated from 10 measurements. 1) The roughness of polyethylene surfaces was higher by about one order of magnitude than the roughness of metal and ceramic components. The Protasul metal head had the least rough surface (0.003 μm). 2) The ceramic-on-ceramic couples had the lowest clearance. Bearing couples with polyethylene acetabular liners had markedly higher clearances ranging from 150 μm to 545 μm. A clearance increased with large femoral heads (up to 4-fold in one of the couple tested). 3) The friction coefficient was related to the combination of materials; it was lowest in ceramic-on-ceramic surfaces (0.11 to 0.12) and then in ceramic-on-polyethylene implants (0.13 to 0.14). The friction coefficient is supposed to increase with a decreasing femoral head diameter. However, in the bearing couples with polyethylene liners manufactured by one company, paradoxically, the friction coefficient slightly increased with an increase in femoral head size from 28 mm to 36 mm. 4) The lowest friction moment (< 3.5 Nm) was found for ceramic-on-ceramic implants 28 mm in diameter; the highest values were recorded in metal-on-polyethylene bearing couples 36 mm in diameter (> 7 Nm). Although our study confirmed that the bearing couples produced by different manufacturers varied to some extent in the parameters studied, in our opinion, this variability was not significant because it was not within an order of magnitude in any of the tests. The study showed that both the friction coefficient and the friction moment are affected more by the combination of materials than by the diameter of a femoral head. The best results were achieved in ceramic-on-ceramic implants.

  10. Influence of the chemical surface structure on the nanoscale friction in plasma nitrided and post-oxidized ferrous alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freislebem, Márcia; Menezes, Caren M.; Cemin, Felipe

    2014-09-15

    Friction is a ubiquitous phenomenon in everyday activities spanning from vehicles where efficient brakes are mandatory up to mechanical devices where its minimum effects are pursued for energy efficiency issues. Recently, theoretical models succeed correlating the friction behavior with energy transference via phonons between sliding surfaces. Therefore, considering that the energy losses by friction are prompted through phonons, the chemical surface structure between sliding surfaces is very important to determine the friction phenomenon. In this work, we address the issue of friction between a conical diamond tip sliding on different functionalized flat steel surfaces by focusing the influence of themore » chemical bonds in the outermost layers on the sliding resistance. This geometry allows probing the coupling of the sharp tip with terminator species on the top and underneath material surface at in-depth friction measurements from 20 to 200 nm. Experimentally, the friction coefficient decreases when nitrogen atoms are substituted for oxygen in the iron network. This effect is interpreted as due to energy losses through phonons whilst lower vibrational frequency excitation modes imply lower friction coefficients and a more accurate adjustment is obtained when a theoretical model with longitudinal adsorbate vibration is used.« less

  11. 40 CFR 1066.210 - Dynamometers.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... to recreate the mechanical inertia and frictional forces that a vehicle exerts on road surfaces... drive axles may share a single drive roll. Use good engineering judgment to ensure that the dynamometer... engineering judgment. (3) The load applied by the dynamometer simulates forces acting on the vehicle during...

  12. Effect of Mn and Cr additions on kinetics of recrystallization and parameters of grain-boundary relaxation of Al-4.9Mg alloy

    NASA Astrophysics Data System (ADS)

    Mikhailovskaya, A. V.; Golovin, I. S.; Zaitseva, A. A.; Portnoi, V. K.; Dröttboom, P.; Cifre, J.

    2013-03-01

    Methods of microstructural analysis, measurements of hardness, and temperature and time dependences of internal friction (TDIF and TDIF(iso), respectively) have been used to study recrystallization in cold-rolled alloys and grain-boundary relaxation in annealed alloys. A complex analysis of the effect of additions of transition metals (Mn, Cr) on the magnitude of the activation energy of the background of the internal friction in deformed and annealed states and on the activation parameters of grain-boundary relaxation has been performed. Methods of amplitude dependences of internal friction (ADIF) have been used to determine the critical amplitude that corresponds to the beginning of microplastic deformation in the alloys at different temperatures.

  13. Automated vehicle location, data recording, friction measurement and applicator control for winter road maintenance.

    DOT National Transportation Integrated Search

    2010-02-01

    The first part of this project conducted a detailed evaluation of the ability of a new friction measurement system to : provide an accurate measure of road conditions. A system that records friction coefficient as a function of road : location was de...

  14. Characterization of wear debris generated in accelerated rolling-element fatigue tests

    NASA Technical Reports Server (NTRS)

    Jones, W. R., Jr.; Parker, R. J.

    1978-01-01

    A ferrographic analysis was used to determine the types and quantities of wear debris generated during accelerated rolling contact fatigue tests. The five-ball rolling contact fatigue tester was used. Ball specimens were made of a corrosion resistant, high-temperature bearing steel. The lubricant was a superrefined naphthenic mineral oil. Conditions included a maximum Hertz stress of 5.52 10 to the 9th power Pa and a shaft speed of 10,000 rpm. Four types of wear debris were observed: (1) normal rubbing wear particles, (2) fatigue microspall particles, (3) spheres, and (4) friction polymer deposits. The characterization of wear debris as a function of time was of limited use in predicting fatigue failures in these accelerated tests.

  15. Some Effects of Roll Rate on the Longitudinal Stability Characteristics of a Cruciform Missile Configuration as Determined from Flight Test for a Mach Number Range of 1.1 to 1.8

    NASA Technical Reports Server (NTRS)

    Barber, H. T., Jr.; Lundstrom, R. R.

    1956-01-01

    A model of a cruciform missile configuration having a low-aspectratio wing equipped with flap-type controls was flight tested in order to determine stability and control characteristics while rolling at about 5 radians per second. Comparison is made with results from a similar model which rolled at a much lower rate. Results showed that, if the ratio of roll rate to natural circular frequency in pitch is not greater than about 0.3, the motion following a step disturbance in pitch essentially remains in a plane in space. The slope of normal-force coefficient against angle of attack C(sub N(sub A)) was the same as for the slowly rolling model at O deg control deflection but C(sub N(sub A)) was much higher for the faster rolling model at about 5 deg control deflection. The slope of pitching-moment coefficient against angle of attack & same for both models at 0 deg control deflection but was lower for the faster rolling model at about 5 deg control deflection. Damping data for the faster rolling model showed considerably more scatter than for the slowly rolling model.

  16. Friction Stir Welding of Al-B4C Composite Fabricated by Accumulative Roll Bonding: Evaluation of Microstructure and Mechanical Behavior

    NASA Astrophysics Data System (ADS)

    Moradi Faradonbeh, Alireza; Shamanian, Morteza; Edris, Hossein; Paidar, Moslem; Bozkurt, Yahya

    2018-02-01

    In this investigation, friction stir welding (FSW) of Al-B4C composite fabricated by 10 cycles accumulative roll bonding was conducted. In order to investigate the influences of pin geometry on microstructure and mechanical properties, four different pin geometries (cylindrical, square, triangular and hexagonal) were selected. It was found that FSW parameters had a major effect on the fragmentation and distribution of reinforcement particles in stir zone. When the tool travel speed was increased, the distribution of B4C particles was become gradually uniform in the aluminum matrix. The effect of tool rotational speed on the peak temperature was determined to be greater than the tool travel speed. The attained data of tensile properties and microhardness tests showed that the tool travel speed had bilateral effect on the tensile strength. The maximum tensile joint efficiency was obtained as 238% for FSWed of Al-2%B4C composite to annealed base Al sheet.

  17. Monitoring the biomechanics of a wheelchair sprinter racing the 100 m final at the 2016 Paralympic Games

    NASA Astrophysics Data System (ADS)

    Barbosa, Tiago M.; Coelho, Eduarda

    2017-07-01

    The aim was to run a case study of the biomechanics of a wheelchair sprinter racing the 100 m final at the 2016 Paralympic Games. Stroke kinematics was measured by video analysis in each 20 m split. Race kinetics was estimated by employing an analytical model that encompasses the computation of the rolling friction, drag, energy output and energy input. A maximal average speed of 6.97 m s-1 was reached in the last split. It was estimated that the contributions of the rolling friction and drag force would account for 54% and 46% of the total resistance at maximal speed, respectively. Energy input and output increased over the event. However, we failed to note a steady state or any impairment of the energy input and output in the last few metres of the race. Data suggest that the 100 m is too short an event for the sprinter to be able to achieve his maximal power in such a distance.

  18. Assessing the accuracy of different simplified frictional rolling contact algorithms

    NASA Astrophysics Data System (ADS)

    Vollebregt, E. A. H.; Iwnicki, S. D.; Xie, G.; Shackleton, P.

    2012-01-01

    This paper presents an approach for assessing the accuracy of different frictional rolling contact theories. The main characteristic of the approach is that it takes a statistically oriented view. This yields a better insight into the behaviour of the methods in diverse circumstances (varying contact patch ellipticities, mixed longitudinal, lateral and spin creepages) than is obtained when only a small number of (basic) circumstances are used in the comparison. The range of contact parameters that occur for realistic vehicles and tracks are assessed using simulations with the Vampire vehicle system dynamics (VSD) package. This shows that larger values for the spin creepage occur rather frequently. Based on this, our approach is applied to typical cases for which railway VSD packages are used. The results show that particularly the USETAB approach but also FASTSIM give considerably better results than the linear theory, Vermeulen-Johnson, Shen-Hedrick-Elkins and Polach methods, when compared with the 'complete theory' of the CONTACT program.

  19. Numerical calculation of boundary layers and wake characteristics of high-speed trains with different lengths

    PubMed Central

    Zhou, Dan; Niu, Jiqiang

    2017-01-01

    Trains with different numbers of cars running in the open air were simulated using the delayed detached-eddy simulation (DDES). The numbers of cars included in the simulation are 3, 4, 5 and 8. The aim of this study was to investigate how train length influences the boundary layer, the wake flow, the surface pressure, the aerodynamic drag and the friction drag. To certify the accuracy of the mesh and methods, the drag coefficients from numerical simulation of trains with 3 cars were compared with those from the wind tunnel test, and agreement was obtained. The results show that the boundary layer is thicker and the wake vortices are less symmetric as the train length increases. As a result, train length greatly affects pressure. The upper surface pressure of the tail car reduced by 2.9%, the side surface pressure of the tail car reduced by 8.3% and the underneath surface pressure of the tail car reduced by 19.7% in trains that included 3 cars to those including 8 cars. In addition, train length also has a significant effect on the friction drag coefficient and the drag coefficient. The friction drag coefficient of each car in a configuration decreases along the length of the train. In a comparison between trains consisting of 3 cars to those consisting of 8 cars, the friction drag coefficient of the tail car reduced by 8.6% and the drag coefficient of the tail car reduced by 3.7%. PMID:29261758

  20. Fabrication of GRCop-84 Rocket Thrust Chambers

    NASA Technical Reports Server (NTRS)

    Loewenthal, William; Ellis, David

    2006-01-01

    GRCop-84, a copper alloy, Cu-8 at% Cr-4 at% Nb developed at NASA Glenn Research Center for regenerative1y cooled rocket engine liners has excellent combinations of elevated temperature strength, creep resistance, thermal conductivity and low cycle fatigue. GRCop-84 is produced from pre-alloyed atomized powder and has been fabricated into plate, sheet and tube forms as well as near net shapes. Fabrication processes to produce demonstration rocket combustion chambers will be presented and includes powder production, extruding, rolling, forming, friction stir welding, and metal spinning. GRCop-84 has excellent workability and can be readily fabricated into complex components using conventional powder and wrought metallurgy processes. Rolling was examined in detail for process sensitivity at various levels of total reduction, rolling speed and rolling temperature representing extremes of commercial processing conditions. Results indicate that process conditions can range over reasonable levels without any negative impact to properties.

  1. Fabrication of GRCop-84 Rocket Thrust Chambers

    NASA Technical Reports Server (NTRS)

    Loewenthal, William S.; Ellis, David L.

    2005-01-01

    GRCop-84, a copper alloy, Cu-8 at% Cr-4 at% Nb developed at NASA Glenn Research Center for regeneratively cooled rocket engine liners has excellent combinations of elevated temperature strength, creep resistance, thermal conductivity and low cycle fatigue. GRCop-84 is produced from prealloyed atomized powder and has been fabricated into plate, sheet and tube forms as well as near net shapes. Fabrication processes to produce demonstration rocket combustion chambers will be presented and includes powder production, extruding, rolling, forming, friction stir welding, and metal spinning. GRCop-84 has excellent workability and can be readily fabricated into complex components using conventional powder and wrought metallurgy processes. Rolling was examined in detail for process sensitivity at various levels of total reduction, rolling speed and rolling temperature representing extremes of commercial processing conditions. Results indicate that process conditions can range over reasonable levels without any negative impact to properties.

  2. Aluminum runway surface as possible aid to aircraft braking

    NASA Technical Reports Server (NTRS)

    Miller, C. D.; Pinkel, I. I.

    1973-01-01

    Several concepts are described for use singly or in combination to improve aircraft braking. All involve a thin layer of aluminum covering all or part of the runway. Advantage would derive from faster heat conduction from the tire-runway interface. Heating of tread surface with consequent softening and loss of friction coefficient should be reduced. Equations are developed indicating that at least 99 percent of friction heat should flow into the aluminum. Preliminary test results indicate a coefficient of sliding friction of 1.4, with predictably slight heating of tread. Elimination of conventional brakes is at least a remote possibility.

  3. Self-Regulating Shock Absorber

    NASA Technical Reports Server (NTRS)

    Wesselski, Clarence J.

    1995-01-01

    Mechanical shock absorber keeps frictional damping force within tolerable limit. Its damping force does not increase with coefficient of friction between energy-absorbing components; rather, frictional damping force varies only slightly. Relatively insensitive to manufacturing variations and environmental conditions altering friction. Does not exhibit high breakaway friction and consequent sharp increase followed by sharp decrease in damping force at beginning of stroking. Damping force in absorber does not vary appreciably with speed of stroking. In addition, not vulnerable to leakage of hydraulic fluid.

  4. Prehension Synergies in the Grasps With Complex Friction Patterns: Local Versus Synergic Effects and the Template Control

    PubMed Central

    Niu, Xun; Latash, Mark L.; Zatsiorsky, Vladimir M.

    2010-01-01

    We studied adjustments of digit forces to changes in the friction. The subjects held a handle statically in a three-digit grasp. The friction under each digit was either high or low, resulting in eight three-element friction sets (such grasps were coined the grasps with complex friction pattern). The total load was also manipulated. It was found that digit forces were adjusted not only to the supported load and local friction, but also to friction at other digits (synergic effects). When friction under a digit was low, its tangential force decreased and the normal force increased (local effects). The synergic effects were directed to maintain the equilibrium of the handle. The relation between the individual digit forces and loads agreed with the triple-product model: fin=ki(2)ki(1)L, where fin is normal force of digit i, L is the load (newtons), ki(1) is a dimensionless coefficient representing sharing the total tangential force among the digits (Σki(1)=1.0), and ki(2) is a coefficient representing the relation between the tangential and normal forces of digit i (the overall friction equivalent, OFE). At each friction set, the central controller selected the grasping template—a three-element array of ki(2)ki(1) products—and then scaled the template with the load magnitude. PMID:17493928

  5. Skin friction related behaviour of artificial turf systems.

    PubMed

    Tay, Sock Peng; Fleming, Paul; Hu, Xiao; Forrester, Steph

    2017-08-01

    The occurrence of skin friction related injuries is an issue for artificial turf sports pitches and remains a barrier to their acceptance. The purpose of this study was to evaluate the current industry standard Securisport® Sports Surface Tester that measures skin surface related frictional behaviour of artificial turf. Little research has been published about the device and its efficacy, despite its widespread use as a standard FIFA test instrument. To achieve a range of frictional behaviours, several "third generation" (3G) carpet and infill combinations were investigated; friction time profiles throughout the Securisport rotations were assessed in combination with independent measurements of skin roughness before and after friction testing via 3D surface scanning. The results indicated that carpets without infill had greatest friction (coefficients of friction 0.97-1.20) while those completely filled with sand or rubber had similar and lower values independent of carpet type (coefficient of friction (COF) ≈0.57). Surface roughness of a silicone skin (s-skin) decreased after friction testing, with the largest change on sand infilled surfaces, indicating an "abrasive" polishing effect. The combined data show that the s-skin is damaged in a surface-specific manner, thus the Securisport COF values appear to be a poor measure of the potential for skin abrasion. It is proposed that the change in s-skin roughness improves assessment of the potential for skin damage when players slide on artificial turf.

  6. Skin friction under pressure. The role of micromechanics

    NASA Astrophysics Data System (ADS)

    Leyva-Mendivil, Maria F.; Lengiewicz, Jakub; Limbert, Georges

    2018-03-01

    The role of contact pressure on skin friction has been documented in multiple experimental studies. Skin friction significantly raises in the low-pressure regime as load increases while, after a critical pressure value is reached, the coefficient of friction of skin against an external surface becomes mostly insensitive to contact pressure. However, up to now, no study has elucidated the qualitative and quantitative nature of the interplay between contact pressure, the material and microstructural properties of the skin, the size of an indenting slider and the resulting measured macroscopic coefficient of friction. A mechanistic understanding of these aspects is essential for guiding the rational design of products intended to interact with the skin through optimally-tuned surface and/or microstructural properties. Here, an anatomically-realistic 2D multi-layer finite element model of the skin was embedded within a computational contact homogenisation procedure. The main objective was to investigate the sensitivity of macroscopic skin friction to the parameters discussed above, in addition to the local (i.e. microscopic) coefficient of friction defined at skin asperity level. This was accomplished via the design of a large-scale computational experiment featuring 312 analyses. Results confirmed the potentially major role of finite deformations of skin asperities on the resulting macroscopic friction. This effect was shown to be modulated by the level of contact pressure and relative size of skin surface asperities compared to those of a rigid slider. The numerical study also corroborated experimental observations concerning the existence of two contact pressure regimes where macroscopic friction steeply and non-linearly increases up to a critical value, and then remains approximately constant as pressure increases further. The proposed computational modelling platform offers attractive features which are beyond the reach of current analytical models of skin friction, namely, the ability to accommodate arbitrary kinematics, non-linear constitutive properties and the complex skin microstructure.

  7. Postoperative Changes in In Vivo Measured Friction in Total Hip Joint Prosthesis during Walking

    PubMed Central

    Damm, Philipp; Bender, Alwina; Bergmann, Georg

    2015-01-01

    Loosening of the artificial cup and inlay is the most common reasons for total hip replacement failures. Polyethylene wear and aseptic loosening are frequent reasons. Furthermore, over the past few decades, the population of patients receiving total hip replacements has become younger and more active. Hence, a higher level of activity may include an increased risk of implant loosening as a result of friction-induced wear. In this study, an instrumented hip implant was used to measure the contact forces and friction moments in vivo during walking. Subsequently, the three-dimensional coefficient of friction in vivo was calculated over the whole gait cycle. Measurements were collected from ten subjects at several time points between three and twelve months postoperative. No significant change in the average resultant contact force was observed between three and twelve months postoperative. In contrast, a significant decrease of up to 47% was observed in the friction moment. The coefficient of friction also decreased over postoperative time on average. These changes may be caused by ‘running-in’ effects of the gliding components or by the improved lubricating properties of the synovia. Because the walking velocity and contact forces were found to be nearly constant during the observed period, the decrease in friction moment suggests an increase in fluid viscosity. The peak values of the contact force individually varied by 32%-44%. The friction moment individually differed much more, by 110%-129% at three and up to 451% at twelve months postoperative. The maximum coefficient of friction showed the highest individual variability, about 100% at three and up to 914% at twelve months after surgery. These individual variations in the friction parameters were most likely due to different ‘running-in’ effects that were influenced by the individual activity levels and synovia properties. PMID:25806805

  8. Surface chemistry, friction, and wear of Ni-Zn and Mn-Zn ferrites in contact with metals

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1983-01-01

    X-ray photoelectron and Auger electron spectroscopy analysis were used in sliding friction experiments. These experiments were conducted with hot-pressed polycrystalline Ni-Zn and Mn-Zn ferrites, and single-crystal Mn-Zn ferrite in contact with various transition metals at room temperature in both vacuum and argon. The results indicate that Ni2O3 and Fe3O4 were present on the Ni-Zn ferrite surface in addition to the nominal bulk constituents, while MnO2 and Fe3O4 were present on the Mn-Zn ferrite surface in addition to the nominal bulk constituents. The coefficients of friction for the ferrites in contact with metals were related to the relative chemical activity of these metals. The more active the metal, the higher is the coefficient of friction. The coefficients of friction for the ferrites were correlated with the free energy of formation of the lowest metal oxide. The interfacial bond can be regarded as a chemical bond between the metal atoms and the oxygen anions in the ferrite surfaces. The adsorption of oxygen on clean metal and ferrite does strengthen the metal-ferrite contact and increase the friction. The ferrites exhibit local cracking and fracture with sliding under adhesive conditions. All the metals transferred to the surfaces of the ferrites in sliding. Previously announced in STAR as N83-19901

  9. Surface chemistry, friction and wear of Ni-Zn and Mn-Zn ferrites in contact with metals

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1982-01-01

    X-ray photoelectron and Auger electron spectroscopy analysis were used in sliding friction experiments. These experiments were conducted with hot-pressed polycrystalline Ni-Zn and Mn-Zn ferrites, and single-crystal Mn-Zn ferrite in contact with various transition metals at room temperature in both vacuum and argon. The results indicate that Ni2O3 and Fe3O4 were present on the Ni-Zn ferrite surface in addition to the nominal bulk constituents, while MnO2 and Fe3O4 were present on the Mn-Zn ferrite surface in addition to the nominal bulk constituents. The coefficients of friction for the ferrites in contact with metals were related to the relative chemical activity of these metals. The more active the metal, the higher is the coefficient of friction. The coefficients of friction for the ferrites were correlated with the free energy of formation of the lowest metal oxide. The interfacial bond can be regarded as a chemical bond between the metal atoms and the oxygen anions in the ferrite surfaces. The adsorption of oxygen on clean metal and ferrite does strengthen the metal-ferrite contact and increase the friction. The ferrites exhibit local cracking and fracture with sliding under adhesive conditions. All the metals transferred to he surfaces of the ferrites in sliding.

  10. Surface contact and design of fibrillar ‘friction pads’ in stick insects (Carausius morosus): mechanisms for large friction coefficients and negligible adhesion

    PubMed Central

    Labonte, David; Williams, John A.; Federle, Walter

    2014-01-01

    Many stick insects and mantophasmids possess tarsal ‘heel pads’ (euplantulae) covered by arrays of conical, micrometre-sized hairs (acanthae). These pads are used mainly under compression; they respond to load with increasing shear resistance, and show negligible adhesion. Reflected-light microscopy in stick insects (Carausius morosus) revealed that the contact area of ‘heel pads’ changes with normal load on three hierarchical levels. First, loading brought larger areas of the convex pads into contact. Second, loading increased the density of acanthae in contact. Third, higher loads changed the shape of individual hair contacts gradually from circular (tip contact) to elongated (side contact). The resulting increase in real contact area can explain the load dependence of friction, indicating a constant shear stress between acanthae and substrate. As the euplantula contact area is negligible for small loads (similar to hard materials), but increases sharply with load (resembling soft materials), these pads show high friction coefficients despite little adhesion. This property appears essential for the pads’ use in locomotion. Several morphological characteristics of hairy friction pads are in apparent contrast to hairy pads used for adhesion, highlighting key adaptations for both pad types. Our results are relevant for the design of fibrillar structures with high friction coefficients but small adhesion. PMID:24554580

  11. Analysis Method of Friction Torque and Weld Interface Temperature during Friction Process of Steel Friction Welding

    NASA Astrophysics Data System (ADS)

    Kimura, Masaaki; Inoue, Haruo; Kusaka, Masahiro; Kaizu, Koichi; Fuji, Akiyoshi

    This paper describes an analysis method of the friction torque and weld interface temperature during the friction process for steel friction welding. The joining mechanism model of the friction welding for the wear and seizure stages was constructed from the actual joining phenomena that were obtained by the experiment. The non-steady two-dimensional heat transfer analysis for the friction process was carried out by calculation with FEM code ANSYS. The contact pressure, heat generation quantity, and friction torque during the wear stage were calculated using the coefficient of friction, which was considered as the constant value. The thermal stress was included in the contact pressure. On the other hand, those values during the seizure stage were calculated by introducing the coefficient of seizure, which depended on the seizure temperature. The relationship between the seizure temperature and the relative speed at the weld interface in the seizure stage was determined using the experimental results. In addition, the contact pressure and heat generation quantity, which depended on the relative speed of the weld interface, were solved by taking the friction pressure, the relative speed and the yield strength of the base material into the computational conditions. The calculated friction torque and weld interface temperatures of a low carbon steel joint were equal to the experimental results when friction pressures were 30 and 90 MPa, friction speed was 27.5 s-1, and weld interface diameter was 12 mm. The calculation results of the initial peak torque and the elapsed time for initial peak torque were also equal to the experimental results under the same conditions. Furthermore, the calculation results of the initial peak torque and the elapsed time for initial peak torque at various friction pressures were equal to the experimental results.

  12. Low friction wear resistant graphene films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sumant, Anirudha V.; Berman, Diana; Erdemir, Ali

    A low friction wear surface with a coefficient of friction in the superlubric regime including graphene and nanoparticles on the wear surface is provided, and methods of producing the low friction wear surface are also provided. A long lifetime wear resistant surface including graphene exposed to hydrogen is provided, including methods of increasing the lifetime of graphene containing wear surfaces by providing hydrogen to the wear surface.

  13. Development and evaluation of a reinforced polymeric biomaterial for use as an orthodontic wire

    NASA Astrophysics Data System (ADS)

    Zufall, Scott William

    Composite archwires have the potential to provide esthetic and functional improvements over conventional wires. As part of an ongoing effort to bring these materials into general use, composite wires were fabricated using a photo-pultrusion manufacturing technique, and subsequently coated with a 10 mum layer of poly(chloro-p-xylylene). Coated and uncoated composites were subjected to several different evaluations to assess their ability to perform the functions of an orthodontic archwire. An investigation of the viscoelastic behavior of uncoated composite wires was conducted at a physiological temperature of 37°C using a bend stress relaxation test. Over 90 day testing periods, energy losses increased with decreasing reinforcement levels from to 8% of the initial wire stress. Final viscous losses were 1% for all reinforcement levels. Relaxed elastic moduli for the composite wires were comparable to the reported elastic moduli of conventional orthodontic wires that are typically used for initial and intermediate alignment procedures. Frictional characteristics were evaluated in passive and active configurations for uncoated composite wires against three contemporary orthodontic brackets. Kinetic coefficients of friction were the same for all wire-bracket combinations tested and were slightly lower than the reported coefficients of other initial and intermediate alignment wires. Wear patterns on the wires, which were largely caused by sharp leading edges of the bracket slots, were characteristic of plowing and cutting wear behaviors. This wear caused glass fibers to be released from the surface of the wires, presenting a potential irritant. Coated composite wires were subjected to the same frictional analysis as the uncoated wires. A mathematical model of the archwire-bracket system was derived using engineering mechanics, and used to define a coefficient of binding. The coating increased the frictional coefficients of the wires by 72%, yet the binding coefficient was unchanged. When frictional data for initial and intermediate alignment wires were compared, the coated composites had higher friction than all but one couple. However, binding coefficients were comparable. Glass fibers were contained for all testing conditions, although the coating was often damaged by plowing or cutting wear. Overall, the coating improved the clinical acceptability of the composite wires.

  14. The role of compressional viscoelasticity in the lubrication of rolling contacts.

    NASA Technical Reports Server (NTRS)

    Harrison, G.; Trachman, E. G.

    1972-01-01

    A simple model for the time-dependent volume response of a liquid to an applied pressure step is used to calculate the variation with rolling speed of the traction coefficient in a rolling contact system. Good agreement with experimental results is obtained at rolling speeds above 50 in/sec. At lower rolling speeds a very rapid change in the effective viscosity of the lubricant is predicted. This behavior, in conjunction with shear rate effects, is shown to lead to large errors when experimental data are extrapolated to zero rolling speed.

  15. Velocity space scattering coefficients with applications in antihydrogen recombination studies

    NASA Astrophysics Data System (ADS)

    Chang, Yongbin; Ordonez, C. A.

    2000-12-01

    An approach for calculating velocity space friction and diffusion coefficients with Maxwellian field particles is developed based on a kernel function derived in a previous paper [Y. Chang and C. A. Ordonez, Phys. Plasmas 6, 2947 (1999)]. The original fivefold integral expressions for the coefficients are reduced to onefold integrals, which can be used for any value of the Coulomb logarithm. The onefold integrals can be further reduced to standard analytical expressions by using a weak coupling approximation. The integral expression for the friction coefficient is used to predict a time scale that describes the rate at which a reflecting antiproton beam slows down within a positron plasma, while both species are simultaneously confined by a nested Penning trap. The time scale is used to consider the possibility of achieving antihydrogen recombination within the trap. The friction and diffusion coefficients are then used to derive an expression for calculating the energy transfer rate between antiprotons and positrons. The expression is employed to illustrate achieving antihydrogen recombination while taking into account positron heating by the antiprotons. The effect of the presence of an electric field on recombination is discussed.

  16. The Ballistic Cart on an Incline Revisited.

    ERIC Educational Resources Information Center

    Serway, Raymond A.; And Others

    1995-01-01

    Presents the theory behind the mechanics demonstration that involves projecting a ball vertically upward from a ballistic cart moving along an inclined plane. The measured overshoot is believed to be due, in part, to the presence of rolling friction and the inertial properties of the cart wheels. (JRH)

  17. 14 CFR 25.253 - High-speed characteristics.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... sudden or excessive reduction of elevator control force as VDF/MDF is reached. (4) Adequate roll..., inadvertent control movements, low stick force gradient in relation to control friction, passenger movement... VMO/MMO, the slope of the elevator control force versus speed curve need not be stable at speeds...

  18. 14 CFR 25.253 - High-speed characteristics.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... sudden or excessive reduction of elevator control force as VDF/MDF is reached. (4) Adequate roll..., inadvertent control movements, low stick force gradient in relation to control friction, passenger movement... VMO/MMO, the slope of the elevator control force versus speed curve need not be stable at speeds...

  19. Skin-friction measurements in high-enthalpy hypersonic boundary layers

    NASA Astrophysics Data System (ADS)

    Goyne, C. P.; Stalker, R. J.; Paull, A.

    2003-06-01

    Skin-friction measurements are reported for high-enthalpy and high-Mach-number laminar, transitional and turbulent boundary layers. The measurements were performed in a free-piston shock tunnel with air-flow Mach number, stagnation enthalpy and Reynolds numbers in the ranges of 4.4 6.7, 3 13 MJ kg(-1) and 0.16× 10(6) 21× 10(6) , respectively. Wall temperatures were near 300 K and this resulted in ratios of wall enthalpy to flow-stagnation enthalpy in the range of 0.1 0.02. The experiments were performed using rectangular ducts. The measurements were accomplished using a new skin-friction gauge that was developed for impulse facility testing. The gauge was an acceleration compensated piezoelectric transducer and had a lowest natural frequency near 40 kHz. Turbulent skin-friction levels were measured to within a typical uncertainty of ± 7%. The systematic uncertainty in measured skin-friction coefficient was high for the tested laminar conditions; however, to within experimental uncertainty, the skin-friction and heat-transfer measurements were in agreement with the laminar theory of van Driest (1952). For predicting turbulent skin-friction coefficient, it was established that, for the range of Mach numbers and Reynolds numbers of the experiments, with cold walls and boundary layers approaching the turbulent equilibrium state, the Spalding & Chi (1964) method was the most suitable of the theories tested. It was also established that if the heat transfer rate to the wall is to be predicted, then the Spalding & Chi (1964) method should be used in conjunction with a Reynolds analogy factor near unity. If more accurate results are required, then an experimentally observed relationship between the Reynolds analogy factor and the skin-friction coefficient may be applied.

  20. Friction and wear behaviour of plasma sprayed Cr2O3-TiO2 coating

    NASA Astrophysics Data System (ADS)

    Bagde, Pranay; Sapate, S. G.; Khatirkar, R. K.; Vashishtha, Nitesh; Tailor, Satish

    2018-02-01

    Cr2O3-25TiO2 coating was deposited by atmospheric plasma spray (APS) coating technique. Effect of load (5-30 N) and sliding velocity (0.25, 0.75 m s-1) on friction coefficient and abrasive wear behaviour of the Cr2O3-25TiO2 coating was studied. Mechanical and microstructural characterization of the Cr2O3-25TiO2 coating was carried out. With an increase in sliding velocity, abrasive wear rate and friction coefficient (COF) decreased while wear rate and friction coefficient showed an increasing trend with the load. The worn out surfaces were analyzed by SEM, EDS and XRD. At lower sliding velocity, XRD analysis revealed peaks of Ti2O3, Ti3O5, CrO2 and CrO3. In addition, peak of Ti4O7 was also detected at higher sliding velocity and at 30 N load. At higher sliding velocity medium to severe tribo oxidation was observed. XPS analysis of worn surfaces at both the sliding velocities, showed surface film of oxides of titanium and chromium along with Cr(OH)3. Magneli phase titanium oxides with sub stoichiometric composition, along with surface films of chromium oxides and hydroxides altered the friction and wear behaviour of the coating. The decrease in friction coefficient with an increase in sliding velocity was attributed to tribo oxides and tribochemical reaction films having lower shear strength with good lubricating properties. The mechanism of material removal involved plastic deformation at lower load whereas inter-granular and trans-granular fracture, delamination cracking and splat fracture was observed with an increase load from 10 N to 30 N.

  1. Impact of laser power density on tribological properties of Pulsed Laser Deposited DLC films

    NASA Astrophysics Data System (ADS)

    Gayathri, S.; Kumar, N.; Krishnan, R.; AmirthaPandian, S.; Ravindran, T. R.; Dash, S.; Tyagi, A. K.; Sridharan, M.

    2013-12-01

    Fabrication of wear resistant and low friction carbon films on the engineered substrates is considered as a challenging task for expanding the applications of diamond-like carbon (DLC) films. In this paper, pulsed laser deposition (PLD) technique is used to deposit DLC films on two different types of technologically important class of substrates such as silicon and AISI 304 stainless steel. Laser power density is one of the important parameter used to tailor the fraction of sp2 bonded amorphous carbon (a-C) and tetrahedral amorphous carbon (ta-C) made by sp3 domain in the DLC film. The I(D)/I(G) ratio decreases with the increasing laser power density which is associated with decrease in fraction of a-C/ta-C ratio. The fraction of these chemical components is quantitatively analyzed by EELS which is well supported to the data obtained from the Raman spectroscopy. Tribological properties of the DLC are associated with chemical structure of the film. However, the super low value of friction coefficient 0.003 is obtained when the film is predominantly constituted by a-C and sp2 fraction which is embedded within the clusters of ta-C. Such a particular film with super low friction coefficient is measured while it was deposited on steel at low laser power density of 2 GW/cm2. The super low friction mechanism is explained by low sliding resistance of a-C/sp2 and ta-C clusters. Combination of excellent physical and mechanical properties of wear resistance and super low friction coefficient of DLC films is desirable for engineering applications. Moreover, the high friction coefficient of DLC films deposited at 9GW/cm2 is related to widening of the intergrain distance caused by transformation from sp2 to sp3 hybridized structure.

  2. Direct Measurements of Skin Friction

    NASA Technical Reports Server (NTRS)

    Dhawan, Satish

    1953-01-01

    A device has been developed to measure local skin friction on a flat plate by measuring the force exerted upon a very small movable part of the surface of the flat plate. These forces, which range from about 1 milligram to about 100 milligrams, are measured by means of a reactance device. The apparatus was first applied to measurements in the low-speed range, both for laminar and turbulent boundary layers. The measured skin-friction coefficients show excellent agreement with Blasius' and Von Karman's results. The device was then applied to high-speed subsonic flow and the turbulent-skin-friction coefficients were determined up to a Mach number of about 0.8. A few measurements in supersonic flow were also made. This paper describes the design and construction of the device and the results of the measurements.

  3. Optimizing the equal channel angular pressing process (ECAP) operation parameters to produce bulk nanostructure materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abushgair, K.

    In this work we were interested in doing simulation using finite elements analysis (FEA) to study the equal channel angular pressing process (ECAP), which is currently one of the most popular methods of severe plastic deformation Processes (SPD). for fabricating Ultra-Fine Grained (UFG) materials, because it allows very high strains to be imposed leading to extreme work hardening and microstructural refinement. The main object of this study is to establish the influence of main parameters which effect ECAP process which are magnitude of the die angle and the friction coefficient. The angle studied between (90-135°) degree, and magnitude of themore » friction coefficient μ between (0.12-0.6), and number of pass. The samples were made from aluminum alloy at room temperature with (15X 15) mm cross section and 150 mm length. The simulation result shows that normal elastic strain, shears elastic strain, and max. shear elastic strain increased, when changing the angle from 90° to 100°. and decrease between the angle 110° to 135°. Also the total deformation increased when we change die angle from 90° to 135°. By studding the friction effect on the die and sample we noted that increasing the friction coefficient from 0.12 to 0.6, normal elastic strain, and shear elastic strain increased and increasing the friction coefficient from 0.1 to 0.6 decrease the normal and shear stress.« less

  4. Optimizing the equal channel angular pressing process (ECAP) operation parameters to produce bulk nanostructure materials

    NASA Astrophysics Data System (ADS)

    Abushgair, K.

    2015-03-01

    In this work we were interested in doing simulation using finite elements analysis (FEA) to study the equal channel angular pressing process (ECAP), which is currently one of the most popular methods of severe plastic deformation Processes (SPD). for fabricating Ultra-Fine Grained (UFG) materials, because it allows very high strains to be imposed leading to extreme work hardening and microstructural refinement. The main object of this study is to establish the influence of main parameters which effect ECAP process which are magnitude of the die angle and the friction coefficient. The angle studied between (90-135°) degree, and magnitude of the friction coefficient μ between (0.12-0.6), and number of pass. The samples were made from aluminum alloy at room temperature with (15X 15) mm cross section and 150 mm length. The simulation result shows that normal elastic strain, shears elastic strain, and max. shear elastic strain increased, when changing the angle from 90° to 100°. and decrease between the angle 110° to 135°. Also the total deformation increased when we change die angle from 90° to 135°. By studding the friction effect on the die and sample we noted that increasing the friction coefficient from 0.12 to 0.6, normal elastic strain, and shear elastic strain increased and increasing the friction coefficient from 0.1 to 0.6 decrease the normal and shear stress.

  5. A tribological and biomimetic study of potential bone joint repair materials

    NASA Astrophysics Data System (ADS)

    Ribeiro, Rahul

    This research investigates materials for bone-joint failure repair using tribological and biomimicking approaches. The materials investigated represent three different repairing strategies. Refractory metals with and without treatment are candidates for total joint replacements due to their mechanical strength, high corrosion resistance and biocompatibility. A composite of biodegradable polytrimethylene carbonate, hydroxyl apatite, and nanotubes was investigated for application as a tissue engineering scaffold. Non-biodegradable polymer polyimide combined with various concentrations of nanotubes was investigated as a cartilage replacement material. A series of experimental approaches were used in this research. These include analysis of material surfaces and debris using high-resolution techniques and tribological experiments, as well as evaluation of nanomechanical properties. Specifically, the surface structure and wear mechanisms were investigated using a scanning electron microscope and an atomic force microscope. Debris morphology and structure was investigated using a transmission electron microscope. The debris composition was analyzed using an X-ray diffractometer. Nanoindentation was incorporated to investigate the surface nanomechanical properties. Polytrimythelene carbonate combined with hydroxyapatite and nanotubes exhibited a friction coefficient lower than UHMWPE. The nanoindentation response mimicked cartilage more closely than UHMWPE. A composite formed with PI and nanotubes showed a varying friction coefficient and varying nanoindentation response with variation in nanotube concentration. Low friction coefficients corresponded with low modulus values. A theory was proposed to explain this behavior based on surface interactions between nanotubes and between nanotubes and PI. A model was developed to simulate the modulus as a function of nanotube concentration. The boronized refractory metals exhibited brittleness and cracking. Higher friction coefficients were associated with the formation of amorphous debris. The friction coefficient for boronized Cr (˜0.06) under simulated body fluid conditions was in the range found in natural joints.

  6. The stochastic distribution of available coefficient of friction for human locomotion of five different floor surfaces.

    PubMed

    Chang, Wen-Ruey; Matz, Simon; Chang, Chien-Chi

    2014-05-01

    The maximum coefficient of friction that can be supported at the shoe and floor interface without a slip is usually called the available coefficient of friction (ACOF) for human locomotion. The probability of a slip could be estimated using a statistical model by comparing the ACOF with the required coefficient of friction (RCOF), assuming that both coefficients have stochastic distributions. An investigation of the stochastic distributions of the ACOF of five different floor surfaces under dry, water and glycerol conditions is presented in this paper. One hundred friction measurements were performed on each floor surface under each surface condition. The Kolmogorov-Smirnov goodness-of-fit test was used to determine if the distribution of the ACOF was a good fit with the normal, log-normal and Weibull distributions. The results indicated that the ACOF distributions had a slightly better match with the normal and log-normal distributions than with the Weibull in only three out of 15 cases with a statistical significance. The results are far more complex than what had heretofore been published and different scenarios could emerge. Since the ACOF is compared with the RCOF for the estimate of slip probability, the distribution of the ACOF in seven cases could be considered a constant for this purpose when the ACOF is much lower or higher than the RCOF. A few cases could be represented by a normal distribution for practical reasons based on their skewness and kurtosis values without a statistical significance. No representation could be found in three cases out of 15. Copyright © 2013 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  7. The role of adsorbed water on the friction of a layer of submicron particles

    USGS Publications Warehouse

    Sammis, Charles G.; Lockner, David A.; Reches, Ze’ev

    2011-01-01

    Anomalously low values of friction observed in layers of submicron particles deformed in simple shear at high slip velocities are explained as the consequence of a one nanometer thick layer of water adsorbed on the particles. The observed transition from normal friction with an apparent coefficient near μ = 0.6 at low slip speeds to a coefficient near μ = 0.3 at higher slip speeds is attributed to competition between the time required to extrude the water layer from between neighboring particles in a force chain and the average lifetime of the chain. At low slip speeds the time required for extrusion is less than the average lifetime of a chain so the particles make contact and lock. As slip speed increases, the average lifetime of a chain decreases until it is less than the extrusion time and the particles in a force chain never come into direct contact. If the adsorbed water layer enables the otherwise rough particles to rotate, the coefficient of friction will drop to μ = 0.3, appropriate for rotating spheres. At the highest slip speeds particle temperatures rise above 100°C, the water layer vaporizes, the particles contact and lock, and the coefficient of friction rises to μ = 0.6. The observed onset of weakening at slip speeds near 0.001 m/s is consistent with the measured viscosity of a 1 nm thick layer of adsorbed water, with a minimum particle radius of approximately 20 nm, and with reasonable assumptions about the distribution of force chains guided by experimental observation. The reduction of friction and the range of velocities over which it occurs decrease with increasing normal stress, as predicted by the model. Moreover, the analysis predicts that this high-speed weakening mechanism should operate only for particles with radii smaller than approximately 1 μm. For larger particles the slip speed required for weakening is so large that frictional heating will evaporate the adsorbed water and weakening will not occur.

  8. Direct measurements of bed stress under swash in the field

    NASA Astrophysics Data System (ADS)

    Conley, Daniel C.; Griffin, John G.

    2004-03-01

    Utilizing flush mounted hot film anemometry, the bed stress under swash was measured directly in a field experiment conducted on Barret Beach, Fire Island, New York. The theory, development, and calibration of the instrument package are discussed, and results from the field experiment are presented. Examples of bed stress time series throughout a swash cycle are presented, and an ensemble averaged swash bed stress cycle is calculated. Strong asymmetry is observed between the uprush and backwash phases of the swash flow. The maximum bed shear stress exerted by the uprush is approximately double that of the backwash, while the duration of the backwash is 135% greater than that of the uprush. Friction coefficients in the swash zone are observed to be similar in magnitude to those from steady flow, with the mean observed friction coefficient equal to 0.0037. Swash friction coefficients derived from the current measurements exhibit a Reynolds number dependence similar to that observed for other flows. A systematic difference between coefficients for uprush and backwash is suggested.

  9. Tribological Properties of PVD Ti/C-N Nanocoatnigs

    NASA Astrophysics Data System (ADS)

    Leitans, A.; Lungevics, J.; Rudzitis, J.; Filipovs, A.

    2017-04-01

    The present paper discusses and analyses tribological properties of various coatings that increase surface wear resistance. Four Ti/C-N nanocoatings with different coating deposition settings are analysed. Tribological and metrological tests on the samples are performed: 2D and 3D parameters of the surface roughness are measured with modern profilometer, and friction coefficient is measured with CSM Instruments equipment. Roughness parameters Ra, Sa, Sz, Str, Sds, Vmp, Vmc and friction coefficient at 6N load are determined during the experiment. The examined samples have many pores, which is the main reason for relatively large values of roughness parameter. A slight wear is identified in all four samples as well; its friction coefficient values range from 0,.21 to 0.29. Wear rate values are not calculated for the investigated coatings, as no expressed tribotracks are detected on the coating surface.

  10. Measuring internal friction of an ultrafast-folding protein.

    PubMed

    Cellmer, Troy; Henry, Eric R; Hofrichter, James; Eaton, William A

    2008-11-25

    Nanosecond laser T-jump was used to measure the viscosity dependence of the folding kinetics of the villin subdomain under conditions where the viscogen has no effect on its equilibrium properties. The dependence of the unfolding/refolding relaxation time on solvent viscosity indicates a major contribution to the dynamics from internal friction. The internal friction increases with increasing temperature, suggesting a shift in the transition state along the reaction coordinate toward the native state with more compact structures, and therefore, a smaller diffusion coefficient due to increased landscape roughness. Fitting the data with an Ising-like model yields a relatively small position dependence for the diffusion coefficient. This finding is consistent with the excellent correlation found between experimental and calculated folding rates based on free energy barrier heights using the same diffusion coefficient for every protein.

  11. Filament wound data base development, revision 1, appendix A

    NASA Technical Reports Server (NTRS)

    Sharp, R. Scott; Braddock, William F.

    1985-01-01

    Data are presented in tabular form for the High Performance Nozzle Increments, Filament Wound Case (FWC) Systems Tunnel Increments, Steel Case Systems Tunnel Increments, FWC Stiffener Rings Increments, Steel Case Stiffener Rings Increments, FWC External Tank (ET) Attach Ring Increments, Steel Case ET Attach Ring Increments, and Data Tape 8. The High Performance Nozzle are also presented in graphical form. The tabular data consist of six-component force and moment coefficients as they vary with angle of attack at a specific Mach number and roll angle. The six coefficients are normal force, pitching moment, side force, yawing moment, axial force, and rolling moment. The graphical data for the High Performance Nozzle Increments consist of a plot of a coefficient increment as a function of angle of attack at a specific Mach number and at a roll angle of 0 deg.

  12. Evaluation of tribological properties of selected engine oils during operation of the friction pairs of steel-on-steel

    NASA Astrophysics Data System (ADS)

    Barszcz, Marcin; Józwik, Jerzy; Dziedzic, Krzysztof; Stec, Kamil

    2017-10-01

    The paper includes an assessment of the tribological properties of mineral and synthetic Lotos oil marked SAE 15W/40 and SAE 5W/40 at ambient temperature and 100 °C. The evaluation was based on the analysis of the tribological properties of friction couple consumables. Tribological tests were performed using the Anton Paar THT 1000 high temperature tribotester according to ASTM G133. Tribological properties were investigated using the "ball on disc" method. The change of friction coefficient, friction couple temperature, volume wear of samples and counter-samples and Hertz stresses were evaluated. In addition, hardness tests of the friction couple materials as well as surface roughness before and after friction were performed. On the basis of tribological studies, it was noted that Lotos Synthetic 5W/40 oil has better cooling properties compared. For both oils the coefficient of friction was lower at ambient temperature than at 100 °C. The highest value of volume wear of the sample was noted for the combination lubricated with Mineral Oil 15W/40 at 100 °C (0.0143 mm3) while for counter-sample lubricated with synthetic oil at ambient temperature (0.0039 mm3). The highest sample wear coefficient was recorded for the mineral oil lubricated at temperature of 100 °C (3.585*10-7 mm3/N/m) while for counter-sample lubricated with synthetic oil at ambient temperature (9.8768*10-8 mm3/N/m). The Hertz stress for each test couple had a value of 1.787 GPa.

  13. Prediction of static friction coefficient in rough contacts based on the junction growth theory

    NASA Astrophysics Data System (ADS)

    Spinu, S.; Cerlinca, D.

    2017-08-01

    The classic approach to the slip-stick contact is based on the framework advanced by Mindlin, in which localized slip occurs on the contact area when the local shear traction exceeds the product between the local pressure and the static friction coefficient. This assumption may be too conservative in the case of high tractions arising at the asperities tips in the contact of rough surfaces, because the shear traction may be allowed to exceed the shear strength of the softer material. Consequently, the classic frictional contact model is modified in this paper so that gross sliding occurs when the junctions formed between all contacting asperities are independently sheared. In this framework, when the contact tractions, normal and shear, exceed the hardness of the softer material on the entire contact area, the material of the asperities yields and the junction growth process ends in all contact regions, leading to gross sliding inception. This friction mechanism is implemented in a previously proposed numerical model for the Cattaneo-Mindlin slip-stick contact problem, which is modified to accommodate the junction growth theory. The frictionless normal contact problem is solved first, then the tangential force is gradually increased, until gross sliding inception. The contact problems in the normal and in the tangential direction are successively solved, until one is stabilized in relation to the other. The maximum tangential force leading to a non-vanishing stick area is the static friction force that can be sustained by the rough contact. The static friction coefficient is eventually derived as the ratio between the latter friction force and the normal force.

  14. Friction and wear of some ferrous-base metallic glasses

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1983-01-01

    Sliding friction experiments, X-ray photoelectron spectroscopy (XPS) analysis, and electron microscopy and diffraction studies were conducted with ferrous base metallic glasses (amorphous alloys) in contact with aluminum oxide at temperatures to 750 C in a vacuum. Sliding friction experiments were also conducted in argon and air atmospheres. The results of the investigation indicate that the coefficient of friction increases with increasing temperature to 350 C in vacuum. The increase in friction is due to an increase in adhesion resulting from surface segregation of boric oxide and/or silicon oxide to the surface of the foil. Above 500 C the coefficient of friction decreased rapidly. The decrease correlates with the segregation of boron nitride to the surface. Contaminants can come from the bulk of the material to the surface upon heating and impart boric oxide and/or silicon oxide at 350 C and boron nitride above 500 C. The segregation of contaminants is responsible for the friction behavior. The amorphous alloys have superior wear resistance to crystalline 304 stainless steel. The relative concentrations of the various constituents at the surfaces of the amorphous alloys are very different from the nominal bulk compositions.

  15. Modelling clustering of vertically aligned carbon nanotube arrays.

    PubMed

    Schaber, Clemens F; Filippov, Alexander E; Heinlein, Thorsten; Schneider, Jörg J; Gorb, Stanislav N

    2015-08-06

    Previous research demonstrated that arrays of vertically aligned carbon nanotubes (VACNTs) exhibit strong frictional properties. Experiments indicated a strong decrease of the friction coefficient from the first to the second sliding cycle in repetitive measurements on the same VACNT spot, but stable values in consecutive cycles. VACNTs form clusters under shear applied during friction tests, and self-organization stabilizes the mechanical properties of the arrays. With increasing load in the range between 300 µN and 4 mN applied normally to the array surface during friction tests the size of the clusters increases, while the coefficient of friction decreases. To better understand the experimentally obtained results, we formulated and numerically studied a minimalistic model, which reproduces the main features of the system with a minimum of adjustable parameters. We calculate the van der Waals forces between the spherical friction probe and bunches of the arrays using the well-known Morse potential function to predict the number of clusters, their size, instantaneous and mean friction forces and the behaviour of the VACNTs during consecutive sliding cycles and at different normal loads. The data obtained by the model calculations coincide very well with the experimental data and can help in adapting VACNT arrays for biomimetic applications.

  16. Friction and wear of some ferrous-base metallic glasses

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1984-01-01

    Sliding friction experiments, X-ray photoelectron spectroscopy (XPS) analysis, and electron microscopy and diffraction studies were conducted with ferrous base metallic glasses (amorphous alloys) in contact with aluminium oxide at temperatures to 750 C in a vacuum. Sliding friction experiments were also conducted in argon and air atmospheres. The results of the investigation indicate that the coefficient of friction increases with increasing temperature to 350 C in vacuum. The increase in friction is due to an increase in adhesion resulting from surface segregation of boric oxide and/or silicon oxide to the surface of the foil. Above 500 C the coefficient of friction decreased rapidly. The decrease correlates with the segregation of boron nitride to the surface. Contaminants can come from the bulk of the material to the surface upon heating and impart boric oxide and/or silicon oxide at 350 C and boron nitride above 500 C. The segregation of contaminants is responsible for the friction behavior. The amorphous alloys have superior wear resistance to crystalline 304 stainless steel. The relative concentrations of the various constituents at the surfaces of the amorphous alloys are very different from the nominal bulk compositions.

  17. Effects of friction layer characteristics on the tribological properties of Ni3Al solid-lubricating composites at different load conditions

    NASA Astrophysics Data System (ADS)

    Lu, Guanchen; Shi, Xiaoliang; Huang, Yuchun; Liu, Xiyao; Yang, Meijun

    2018-05-01

    This paper investigates the effects of friction layer characteristics of Ni3Al matrix self-lubricating composites (NMCs) on the tribological properties sliding against ceramic ball Si3N4 at dry friction process at the different load conditions. The characteristics of friction layer are performed in terms of hardness of wear scars, thickness and elemental distributions of friction layer. The results show that the microhardness of wear scars of NMCs increases with the increase of the sliding time and applied load, which results in friction coefficient reduced and wear rate decreased, indicating that the tribological performance of NMCs is obviously affected by microhardness of wear scar. However, under excessive applied load, the performance of friction layer of NMCs is deteriorated for the spalling of wear debris and deformation of contact surface. Therefore, selecting appropriate load conditions during the sliding contact, at the transition to the optimal properties of friction layer maybe occur. NMCs exhibits excellent tribological properties at 15N, which leads to the lowest friction coefficient (0.386) and wear rate (2.48 × 10‑5 mm3 N‑1 m‑1), as well as the smoothest surface of wear track compared with the other load conditions. Meanwhile, the elemental distributions analysis of cross-section of friction layer of NMCs shows that the frictional structures can be divided into three main layers. The thickness of the friction-affected layer varies with the changing of applied load. These results could provide a reference for preparing the solid-lubrication materials with better tribological properties.

  18. Modifying friction between ultra-high molecular weight polyethylene (UHMWPE) yarns with plasma enhanced chemical vapour deposition (PCVD)

    NASA Astrophysics Data System (ADS)

    Chu, Yanyan; Chen, Xiaogang; Tian, Lipeng

    2017-06-01

    Ultra-high molecular weight polyethylene (UHMWPE) yarns are widely used in military applications for protection owing to its high modulus and high strength; however, the friction between UHMWPE yarns is too small, which is a weakness for ballistic applications. The purpose of current research is to increase the friction between UHMWPE yarns by plasma enhanced chemical vapour deposition (PCVD). The changes of morphology and chemical structure were characterised by SEM and FTIR individually. The coefficients of friction between yarns were tested by means of Capstan method. Results from tests showed that the yarn-yarn coefficient of static friction (CSF) has been improved from 0.12 to 0.23 and that of kinetic friction (CSF) increased from 0.11 to 0.19, as the samples exposure from 21 s to 4 min. The more inter-yarn friction can be attributed to more and more particles and more polar groups deposited on the surfaces of yarns, including carboxyl, carbonyl, hydroxyl and amine groups and compounds containing silicon. The tensile strength and modulus of yarns, which are essential to ballistic performance, keep stable and are not affected by the treatments, indicating that PCVD treatment is an effective way to improve the inter-yarn friction without mechanical property degradation.

  19. Effect of roughness on stiction

    NASA Astrophysics Data System (ADS)

    Fuadi, Zahrul; Zahouani, Hassan; Takagi, Toshiyuki; Miki, Hiroyuki

    2018-05-01

    In this paper, the viscoelastic material was used to investigate the effect of roughness on stiction. The material is chosen because it is highly deformable so that contact during friction can be fully elastic. The soft surfaces were prepared by casting the silicon material on metal surfaces having smooth and unidirectional grooved texture. Two tests were conducted, indentation and friction, to find out the effect of roughness on parameters of normal contact stiffness, friction force and the difference between static and kinetic friction coefficient, μs-μk. As the results, it is found that all parameters are related to the surface roughness. Smoother surface tends to have a higher value of normal contact stiffness and higher value of friction force thus resulting in a larger difference between the static and kinetic coefficient of friction. Since the value of μs-μk is commonly related to the stick-slip motion, the smoother surface tends to have a larger propensity of stiction. It is shown by the result that the texture can reduce the stiction because it reduces the value of normal contact stiffness, resulting in a lower value of μs-μk.

  20. Steady-state wear and friction in boundary lubrication studies

    NASA Technical Reports Server (NTRS)

    Loomis, W. R.; Jones, W. R., Jr.

    1980-01-01

    A friction and wear study was made at 20 C to obtain improved reproducibility and reliability in boundary lubrication testing. Ester-base and C-ether-base fluids were used to lubricate a pure iron rider in sliding contact with a rotating M-50 steel disk in a friction and wear apparatus. Conditions included loads of 1/2 and 1 kg and sliding velocities of 3.6 to 18.2 m/min in a dry air atmosphere and stepwise time intervals from 1 to 250 min for wear measurements. The wear rate results were compared with those from previous studies where a single 25 min test period was used. Satisfactory test conditions for studying friction and wear in boundary lubrication for this apparatus were found to be 1 kg load; sliding velocities of 7.1 to 9.1 m/min (50 rpm disk speed); and use of a time stepwise test procedure. Highly reproducible steady-state wear rates and steady-state friction coefficients were determined under boundary conditions. Wear rates and coefficients of friction were constant following initially high values during run-in periods.

  1. Calculation of skin-friction coefficients for low Reynolds number turbulent boundary layer flows. M.S. Thesis - California Univ. at Davis

    NASA Technical Reports Server (NTRS)

    Barr, P. K.

    1980-01-01

    An analysis is presented of the reliability of various generally accepted empirical expressions for the prediction of the skin-friction coefficient C/sub f/ of turbulent boundary layers at low Reynolds numbers in zero-pressure-gradient flows on a smooth flat plate. The skin-friction coefficients predicted from these expressions were compared to the skin-friction coefficients of experimental profiles that were determined from a graphical method formulated from the law of the wall. These expressions are found to predict values that are consistently different than those obtained from the graphical method over the range 600 Re/sub theta 2000. A curve-fitted empirical relationship was developed from the present data and yields a better estimated value of C/sub f/ in this range. The data, covering the range 200 Re/sub theta 7000, provide insight into the nature of transitional flows. They show that fully developed turbulent boundary layers occur at Reynolds numbers Re/sub theta/ down to 425. Below this level there appears to be a well-ordered evolutionary process from the laminar to the turbulent profiles. These profiles clearly display the development of the turbulent core region and the shrinking of the laminar sublayer with increasing values of Re/sub theta/.

  2. Minimizing of the boundary friction coefficient in automotive engines using Al2O3 and TiO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Ali, Mohamed Kamal Ahmed; Xianjun, Hou; Elagouz, Ahmed; Essa, F. A.; Abdelkareem, Mohamed A. A.

    2016-12-01

    Minimizing of the boundary friction coefficient is critical for engine efficiency improvement. It is known that the tribological behavior has a major role in controlling the performance of automotive engines in terms of the fuel consumption. The purpose of this research is an experimental study to minimize the boundary friction coefficient via nano-lubricant additives. The tribological characteristics of Al2O3 and TiO2 nano-lubricants were evaluated under reciprocating test conditions to simulate a piston ring/cylinder liner interface in automotive engines. The nanoparticles were suspended in a commercially available lubricant in a concentration of 0.25 wt.% to formulate the nano-lubricants. The Al2O3 and TiO2 nanoparticles had sizes of 8-12 and 10 nm, respectively. The experimental results have shown that the boundary friction coefficient reduced by 35-51% near the top and bottom dead center of the stroke (TDC and BDC) for the Al2O3 and TiO2 nano-lubricants, respectively. The anti-wear mechanism was generated via the formation of protective films on the worn surfaces of the ring and liner. These results will be a promising approach for improving fuel economy in automotive.

  3. [Process study on hysteresis of vegetation cover influencing sand-dust events].

    PubMed

    Xu, Xing-Kui; Wang, Xiao-Tao; Zhang, Feng

    2009-02-15

    Data analysis from satellite and weather stations during 1982-2000 shows nonlinear relationship between vegetation cover and sand-dust events is present in most part of China. Vegetation cover ratio in summer can impact significantly on the frequency of sand-dust storms from winter to spring in the source regions of sand-dust events. It is not quite clear about the hysteresis that vegetation cover in summer influence sand-dust events during winter and spring. A quasi-geostrophic barotropic model is used under the condition of 3 magnitude of frictional coefficient to investigate the cause of the hysteresis. Wind velocity shows a greatest decline at 90% during 72 h as initial wind velocity is 10 m/s for magnitude of frictional coefficient between atmosphere and water surface, greatest decline at 100% during 18 h for magnitude of frictional coefficient between atmosphere and bare soil and a 100% reduction of wind speed during 1 h for magnitude of frictional coefficient between atmosphere and vegetation cover. Observation and simulation prove that residual root and stem from summervegetation are one of factors to influence sand-dust events happened during winter and spring. Air inhibition from residual root and stem is a most important reason for hysteresis that vegetation cover influence sand-dust events.

  4. Tribological behavior of 440C martensitic stainless steel from -184 C to 750 C

    NASA Technical Reports Server (NTRS)

    Slifka, A. J.; Compos, R.; Morgan, T. J.; Siegwarth, J. D.; Chaudhuri, Dilip K.

    1992-01-01

    Characterization of the coefficient of friction and wear rate of 440C stainless steel is needed to understand the effects of frictional heating in the bearings of the High Pressure Oxygen Turbopump of the Space Shuttle Main Engine. The coefficient of friction and wear rate have been measured over a range of temperature varying from liquid oxygen temperature (-184 C) to 750 C. The normal load has also been varied resulting in a variation of Hertzian stress from 0.915 to 3.660 GPa while the surface velocity has been varied from 0.5 to 2.0 m/s.

  5. Helical grip for the cable cars of San Francisco

    NASA Technical Reports Server (NTRS)

    Peyran, R. J.

    1979-01-01

    A helical cable car grip to minimize high maintenance costs of San Francisco's cable car operation is presented. The grip establishes a rolling contact between the cable and grip to reduce sliding friction and associated cable wear. The design, development, and testing of the helical cable car grip are described.

  6. Effect of friction on shear jamming

    NASA Astrophysics Data System (ADS)

    Wang, Dong; Ren, Jie; Dijksman, Joshua; Behringer, Robert

    2014-11-01

    Shear Jamming of granular materials was first found for systems of frictional disks, with a static friction coefficients μs ~= 0 . 6 . Jamming by shear is obtained by starting from a zero-stress state with a packing fraction ϕS <= ϕ <=ϕJ between ϕJ (isotropic jamming) and a lowest ϕS for shear jamming. This phenomenon is associated with strong anisotropy in stress and the contact network in the form of ``force chains,'' which are stabilized and/or enhanced by the presence of friction. The issue that we address experimentally is how reducing friction affects shear jamming. We use photoelastic disks that have been wrapped with Teflon, lowering the friction coefficient substantially from previous experiments. The Teflon-wrapped disks were placed in a well-studied 2D shear apparatus (Ren et al., PRL, 110, 018302 (2013)), which provides uniform simple shear without generating shear bands. Shear jamming is still observed, but the difference ϕJ -ϕS is smaller than for higher friction particles. With Teflon-wrapped disks, we observe larger anisotropies compared to the previous experiment with higher friction particles at the same packing fraction, which indicates force chains tending to be straight in the low friction system. We acknowledge support from NSF Grant No. DMR12-06351, ARO Grant No. W911NF-1-11-0110, and NASA Grant No. NNX10AU01G.

  7. Effects of wall friction on flow in a quasi-2D hopper

    NASA Astrophysics Data System (ADS)

    Shah, Neil; Birwa, Sumit; Carballo-Ramirez, Brenda; Pleau, Mollie; Easwar, Nalini; Tewari, Shubha

    Our experiments on the gravity-driven flow of spherical particles in a vertical hopper examine how the flow rate varies with opening size and wall friction. We report here on a model simulation using LAMMPS of the experimental geometry, a quasi-2D hopper. Keeping inter-particle friction fixed, the coefficient of friction at the walls is varied from 0.0 to 0.9 for a range of opening sizes. Our simulations find a steady rate of flow at each wall friction and outlet size. The Janssen effect attributes the constant rate of flow of a granular column to the column height independence of the pressure at the base, since the weight of the grains is borne in part by friction at the walls. However, we observe a constant flow regime even in the absence of wall friction, suggesting that wall friction may not be a necessary condition for pressure saturation. The observed velocities of particles near the opening are used to extrapolate their starting positions had they been in free fall. In contrast to scaling predictions, our data suggest that the height of this free-fall arch does not vary with opening size for higher frictional coefficients. We analyze the velocity traces of particles to see the range over which contact interactions remain collisional as they approach the hopper outlet.

  8. Influence of Boussinesq coefficient on depth-averaged modelling of rapid flows

    NASA Astrophysics Data System (ADS)

    Yang, Fan; Liang, Dongfang; Xiao, Yang

    2018-04-01

    The traditional Alternating Direction Implicit (ADI) scheme has been proven to be incapable of modelling trans-critical flows. Its inherent lack of shock-capturing capability often results in spurious oscillations and computational instabilities. However, the ADI scheme is still widely adopted in flood modelling software, and various special treatments have been designed to stabilise the computation. Modification of the Boussinesq coefficient to adjust the amount of fluid inertia is a numerical treatment that allows the ADI scheme to be applicable to rapid flows. This study comprehensively examines the impact of this numerical treatment over a range of flow conditions. A shock-capturing TVD-MacCormack model is used to provide reference results. For unsteady flows over a frictionless bed, such as idealised dam-break floods, the results suggest that an increase in the value of the Boussinesq coefficient reduces the amplitude of the spurious oscillations. The opposite is observed for steady rapid flows over a frictional bed. Finally, a two-dimensional urban flooding phenomenon is presented, involving unsteady flow over a frictional bed. The results show that increasing the value of the Boussinesq coefficient can significantly reduce the numerical oscillations and reduce the predicted area of inundation. In order to stabilise the ADI computations, the Boussinesq coefficient could be judiciously raised or lowered depending on whether the rapid flow is steady or unsteady and whether the bed is frictional or frictionless. An increase in the Boussinesq coefficient generally leads to overprediction of the propagating speed of the flood wave over a frictionless bed, but the opposite is true when bed friction is significant.

  9. Some Effects of Roll Rate on the Longitudinal Stability Characteristics of a Cruciform Missile Configuration as Determined from Flight Test for a Mach Number Range of 1.1. to 1.8

    NASA Technical Reports Server (NTRS)

    Lundstrom, Reginald R; Baber, Hal T , Jr

    1956-01-01

    A model of a cruciform missile configuration having a low-aspect-ratio wing equipped with flap-type controls was flight tested in order to determine stability and control characteristics while rolling at about 5 radians per second. Comparison is made with results from a similar model which rolled at a much lower rate. Results showed that, if the ratio of roll rate to natural circular frequency in pitch is not greater than about 0.3, the motion following a step disturbance in pitch essentially remains in a plane in space. The slope of normal- force coefficient against angle of attack C(sub N(sub alpha)) was the same as for the slowly rolling model at 0 degrees control deflection but C(sub N(sub alpha)) was much higher for the faster rolling model at about 5 degrees control deflection. The slope of pitching-moment coefficient against angle of attack C(sub m(sub alpha)) as determined from the model period of oscillation was the same for both models at 0 degrees control deflection but was lower for the faster rolling model at about 5 degrees control deflection. Damping data for the faster rolling model showed considerably more scatter than for the slowly rolling model.

  10. Correlation between Mechanical Properties with Specific Wear Rate and the Coefficient of Friction of Graphite/Epoxy Composites

    PubMed Central

    Alajmi, Mahdi; Shalwan, Abdullah

    2015-01-01

    The correlation between the mechanical properties of Fillers/Epoxy composites and their tribological behavior was investigated. Tensile, hardness, wear, and friction tests were conducted for Neat Epoxy (NE), Graphite/Epoxy composites (GE), and Data Palm Fiber/Epoxy with or without Graphite composites (GFE and FE). The correlation was made between the tensile strength, the modulus of elasticity, elongation at the break, and the hardness, as an individual or a combined factor, with the specific wear rate (SWR) and coefficient of friction (COF) of composites. In general, graphite as an additive to polymeric composite has had an eclectic effect on mechanical properties, whereas it has led to a positive effect on tribological properties, whilst date palm fibers (DPFs), as reinforcement for polymeric composite, promoted a mechanical performance with a slight improvement to the tribological performance. Statistically, this study reveals that there is no strong confirmation of any marked correlation between the mechanical and the specific wear rate of filler/Epoxy composites. There is, however, a remarkable correlation between the mechanical properties and the friction coefficient of filler/Epoxy composites. PMID:28793431

  11. Modelling the stochastic nature of the available coefficient of friction at footwear-floor interfaces.

    PubMed

    Gragg, Jared; Klose, Ellison; Yang, James

    2017-07-01

    The available coefficient of friction (ACOF) is a measure of the friction available between two surfaces, which for human gait would be the footwear-floor interface. It is often compared to the required coefficient of friction (RCOF) to determine the likelihood of a slip in gait. Both the ACOF and RCOF are stochastic by nature meaning that neither should be represented by a deterministic value, such as the sample mean. Previous research has determined that the RCOF can be modelled well by either the normal or lognormal distributions, but previous research aimed at determining an appropriate distribution for the ACOF was inconclusive. This study focuses on modelling the stochastic nature of the ACOF by fitting eight continuous probability distributions to ACOF data for six scenarios. In addition, the data were used to study the effect that a simple housekeeping action such as sweeping could have on the ACOF. Practitioner Summary: Previous research aimed at determining an appropriate distribution for the ACOF was inconclusive. The study addresses this issue as well as looking at the effect that an act such as sweeping has on the ACOF.

  12. Correlation between Mechanical Properties with Specific Wear Rate and the Coefficient of Friction of Graphite/Epoxy Composites.

    PubMed

    Alajmi, Mahdi; Shalwan, Abdullah

    2015-07-08

    The correlation between the mechanical properties of Fillers/Epoxy composites and their tribological behavior was investigated. Tensile, hardness, wear, and friction tests were conducted for Neat Epoxy (NE), Graphite/Epoxy composites (GE), and Data Palm Fiber/Epoxy with or without Graphite composites (GFE and FE). The correlation was made between the tensile strength, the modulus of elasticity, elongation at the break, and the hardness, as an individual or a combined factor, with the specific wear rate (SWR) and coefficient of friction (COF) of composites. In general, graphite as an additive to polymeric composite has had an eclectic effect on mechanical properties, whereas it has led to a positive effect on tribological properties, whilst date palm fibers (DPFs), as reinforcement for polymeric composite, promoted a mechanical performance with a slight improvement to the tribological performance. Statistically, this study reveals that there is no strong confirmation of any marked correlation between the mechanical and the specific wear rate of filler/Epoxy composites. There is, however, a remarkable correlation between the mechanical properties and the friction coefficient of filler/Epoxy composites.

  13. Development of Nanofluids as Lubricant to Study Friction and Wear Behavior of Stainless Steels

    NASA Astrophysics Data System (ADS)

    Sahoo, Rashmi Ranjan; Bhattacharjee, Santu; Das, Tuhin

    A number of nanofluids have been prepared to study the effect of lubrication properties of nanofluids on stainless steels taking Kaolin and Boron Nitride (BN) as the lubricant particles and Sodium Dodecyl Sulfate (SDS), Cetyl Trimethyl Ammonium Bromide (CTAB), Sodium Hexa Meta Phosphate (SHMP) as dispersants in the same liquid medium i.e. water. A pin on disc tribometer is being used to access the tribological behaviour of the prepared nanofluids. The particle size of these particle dispersions are examined with a nanoparticle size analyzer. It has been found that the use of dispersants significantly control the particle size and tribological behavior of the nanofluids as for Boron Nitride particle with Sodium Dodecyl Sulfate (SDS) as dispersant has got a very low value of coefficient of friction being equal to 0.142 while without dispersant the value is 0.498. Similarly, in case of Kaolin water with SDS as dispersant the value of coefficient of friction obtained is 0.161 and without dispersant it is 0.333. Sodium Dodecyl Sulfate (SDS) as dispersant has resulted a very low coefficient of friction compared to other dispersants tested even though it doesn’t always assure a least particle size. The role of SDS in yielding the lowest friction has pursued significant attention for further investigation.

  14. Mechanics of load-drag-unload contact cleaning of gecko-inspired fibrillar adhesives.

    PubMed

    Abusomwan, Uyiosa A; Sitti, Metin

    2014-10-14

    Contact self-cleaning of gecko-inspired synthetic adhesives with mushroom-shaped tips has been demonstrated recently using load-drag-unload cleaning procedures similar to that of the natural animal. However, the underlying mechanics of contact cleaning has yet to be fully understood. In this work, we present a detailed experiment of contact self-cleaning that shows that rolling is the dominant mechanism of cleaning for spherical microparticle contaminants, during the load-drag-unload procedure. We also study the effect of dragging rate and normal load on the particle rolling friction. A model of spherical particle rolling on an elastomer fibrillar adhesive interface is developed and agrees well with the experimental results. This study takes us closer to determining design parameters for achieving self-cleaning fibrillar adhesives.

  15. Tactile texture and friction of soft sponge surfaces.

    PubMed

    Takahashi, Akira; Suzuki, Makoto; Imai, Yumi; Nonomura, Yoshimune

    2015-06-01

    We evaluated the tactile texture and frictional properties of five soft sponges with various cell sizes. The frictional forces were measured by a friction meter containing a contact probe with human-finger-like geometry and mechanical properties. When the subjects touched these sponges with their fingers, hard-textured sponges were deemed unpleasant. This tactile feeling changed with friction factors including friction coefficients, their temporal patterns, as well as mechanical and shape factors. These findings provide useful information on how to control the tactile textures of various sponges. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Rockburst Disaster Prediction of Isolated Coal Pillar by Electromagnetic Radiation Based on Frictional Effect

    PubMed Central

    Zhao, Tongbin; Yin, Yanchun; Xiao, Fukun; Tan, Yunliang; Zou, Jianchao

    2014-01-01

    Based on the understanding that charges generated during coal cracking are due to coal particle friction, a microstructure model was developed by considering four different variation laws of friction coefficient. Firstly, the frictional energy release of coal sample during uniaxial compressive tests was investigated and discussed. Then electromagnetic radiation method was used to predict the potential rockburst disaster in isolated coal pillar mining face, Muchengjian Colliery. The results indicate that the friction coefficient of coal particles decreases linearly with the increase of axial loading force. In predicting the strain-type rockburst, the high stress state of coal must be closely monitored. Field monitoring shows that electromagnetic radiation signal became abnormal before the occurrence of rockburst during isolated coal pillar mining. Furthermore, rockburst tends to occur at the early and ending stages of isolated coal pillar extraction. Mine-site investigation shows the occurrence zone of rockburst is consistent with the prediction, proving the reliability of the electromagnetic radiation method to predict strain-type rockburst disaster. PMID:25054186

  17. Friction and wear with a single-crystal abrasive grit of silicon carbide in contact with iron base binary alloys in oil: Effects of alloying element and its content

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1979-01-01

    Sliding friction experiments were conducted with various iron-base binary alloys (alloying elements were Ti, Cr, Mn, Ni, Rh, and W) in contact with a rider of 0.025-millimeter-radius, single-crystal silicon carbide in mineral oil. Results indicate that atomic size and content of alloying element play a dominant role in controlling the abrasive-wear and -friction properties of iron-base binary alloys. The coefficient of friction and groove height (wear volume) general alloy decrease, and the contact pressure increases in solute content. There appears to be very good correlation of the solute to iron atomic radius ratio with the decreasing rate of coefficient of friction, the decreasing rate of groove height (wear volume), and the increasing rate of contact pressure with increasing solute content C. Those rates increase as the solute to iron atomic radius ratio increases from unity.

  18. Rockburst disaster prediction of isolated coal pillar by electromagnetic radiation based on frictional effect.

    PubMed

    Zhao, Tongbin; Yin, Yanchun; Xiao, Fukun; Tan, Yunliang; Zou, Jianchao

    2014-01-01

    Based on the understanding that charges generated during coal cracking are due to coal particle friction, a microstructure model was developed by considering four different variation laws of friction coefficient. Firstly, the frictional energy release of coal sample during uniaxial compressive tests was investigated and discussed. Then electromagnetic radiation method was used to predict the potential rockburst disaster in isolated coal pillar mining face, Muchengjian Colliery. The results indicate that the friction coefficient of coal particles decreases linearly with the increase of axial loading force. In predicting the strain-type rockburst, the high stress state of coal must be closely monitored. Field monitoring shows that electromagnetic radiation signal became abnormal before the occurrence of rockburst during isolated coal pillar mining. Furthermore, rockburst tends to occur at the early and ending stages of isolated coal pillar extraction. Mine-site investigation shows the occurrence zone of rockburst is consistent with the prediction, proving the reliability of the electromagnetic radiation method to predict strain-type rockburst disaster.

  19. Influence of friction forces on the motion of VTOL aircraft during landing operations on ships at sea

    NASA Technical Reports Server (NTRS)

    Howard, J. C.; Chin, D. O.

    1981-01-01

    Equations describing the friction forces generated during landing operations on ships at sea were formulated. These forces depend on the platform reaction and the coefficient of friction. The platform reaction depends on the relative sink rate and the shock absorbing capability of the landing gear. The friction coefficient varies with the surface condition of the landing platform and the angle of yaw of the aircraft relative to the landing platform. Landings by VTOL aircraft, equipped with conventional oleopneumatic landing gears are discussed. Simplifications are introduced to reduce the complexity of the mathematical description of the tire and shock strut characteristics. Approximating the actual complicated force deflection characteristic of the tire by linear relationship is adequate. The internal friction forces in the shock strut are included in the landing gear model. A set of relatively simple equations was obtained by including only those tire and shock strut characteristics that contribute significantly to the generation of landing gear forces.

  20. On the Link Between Kolmogorov Microscales and Friction in Wall-Bounded Flow of Viscoplastic Fluids

    NASA Astrophysics Data System (ADS)

    Ramos, Fabio; Anbarlooei, Hamid; Cruz, Daniel; Silva Freire, Atila; Santos, Cecilia M.

    2017-11-01

    Most discussions in literature on the friction coefficient of turbulent flows of fluids with complex rheology are empirical. As a rule, theoretical frameworks are not available even for some relatively simple constitutive models. In this work, we present a new family of formulas for the evaluation of the friction coefficient of turbulent flows of a large family of viscoplastic fluids. The developments combine an unified analysis for the description of the Kolmogorov's micro-scales and the phenomenological turbulence model of Gioia and Chakraborty. The resulting Blasius-type friction equation has only Blasius' constant as a parameter, and tests against experimental data show excellent agreement over a significant range of Hedstrom and Reynolds numbers. The limits of the proposed model are also discussed. We also comment on the role of the new formula as a possible benchmark test for the convergence of DNS simulations of viscoplastic flows. The friction formula also provides limits for the Maximum Drag Reduction (MDR) for viscoplastic flows, which resembles MDR asymptote for viscoelastic flows.

  1. The friction and wear of metals and binary alloys in contact with an abrasive grit of single-crystal silicon carbide

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1979-01-01

    Sliding friction experiments were conducted with various metals and iron-base binary alloys (alloying elements Ti, Cr, Mn, Ni, Rh and W) in contact with single crystal silicon carbide riders. Results indicate that the friction force in the plowing of metal and the groove height (corresponding to the wear volume of the groove) decrease linearly as the shear strength of the bulk metal increases. The coefficient of friction and groove height generally decrease, and the contact pressure increases with an increase in solute content of binary alloys. There appears to be very good correlation of the solute to iron atomic ratio with the decreasing rate of change of coefficient of friction, the decreasing rate of change of groove height and the increasing rate of change of contact pressure with increasing solute content. These rates of change increase as the solute to iron atomic radius ratio increases or decreases from unity.

  2. Friction and wear behavior of single-crystal silicon carbide in sliding contact with various metals

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1978-01-01

    Sliding friction experiments were conducted with single-crystal silicon carbide in contact with various metals. Results indicate the coefficient of friction is related to the relative chemical activity of the metals. The more active the metal, the higher the coefficient of friction. All the metals examined transferred to silicon carbide. The chemical activity of the metal and its shear modulus may play important roles in metal transfer, the form of the wear debris and the surface roughness of the metal wear scar. The more active the metal, and the less resistance to shear, the greater the transfer to silicon carbide and the rougher the wear scar on the surface of the metal. Hexagon shaped cracking and fracturing formed by cleavage of both prismatic and basal planes is observed on the silicon carbide surface.

  3. Diffusion in different models of active Brownian motion

    NASA Astrophysics Data System (ADS)

    Lindner, B.; Nicola, E. M.

    2008-04-01

    Active Brownian particles (ABP) have served as phenomenological models of self-propelled motion in biology. We study the effective diffusion coefficient of two one-dimensional ABP models (simplified depot model and Rayleigh-Helmholtz model) differing in their nonlinear friction functions. Depending on the choice of the friction function the diffusion coefficient does or does not attain a minimum as a function of noise intensity. We furthermore discuss the case of an additional bias breaking the left-right symmetry of the system. We show that this bias induces a drift and that it generally reduces the diffusion coefficient. For a finite range of values of the bias, both models can exhibit a maximum in the diffusion coefficient vs. noise intensity.

  4. Interpretation of the human skin biotribological behaviour after tape stripping

    PubMed Central

    Pailler-Mattei, C.; Guerret-Piécourt, C.; Zahouani, H.; Nicoli, S.

    2011-01-01

    The present study deals with the modification of the human skin biotribological behaviour after tape stripping. The tape-stripping procedure consists in the sequential application and removal of adhesive tapes on the skin surface in order to remove stratum corneum (SC) layers, which electrically charges the skin surface. The skin electric charges generated by tape stripping highly change the skin friction behaviour by increasing the adhesion component of the skin friction coefficient. It has been proposed to rewrite the friction adhesion component as the sum of two terms: the first classical adhesion term depending on the intrinsic shear strength, τ0, and the second term depending on the electric shear strength, τelec. The experimental results allowed to estimate a numerical value of the electric shear strength τelec. Moreover, a plan capacitor model with a dielectric material inside was used to modelize the experimental system. This physical model permitted to evaluate the friction electric force and the electric shear strength values to calculate the skin friction coefficient after the tape stripping. The comparison between the experimental and the theoretical value of the skin friction coefficient after the tape stripping has shown the importance of the electric charges on skin biotribological behaviour. The static electric charges produced by tape stripping on the skin surface are probably able to highly modify the interaction of formulations with the skin surface and their spreading properties. This phenomenon, generally overlooked, should be taken into consideration as it could be involved in alteration of drug absorption. PMID:21227961

  5. Internal rotor friction instability

    NASA Technical Reports Server (NTRS)

    Walton, J.; Artiles, A.; Lund, J.; Dill, J.; Zorzi, E.

    1990-01-01

    The analytical developments and experimental investigations performed in assessing the effect of internal friction on rotor systems dynamic performance are documented. Analytical component models for axial splines, Curvic splines, and interference fit joints commonly found in modern high speed turbomachinery were developed. Rotor systems operating above a bending critical speed were shown to exhibit unstable subsynchronous vibrations at the first natural frequency. The effect of speed, bearing stiffness, joint stiffness, external damping, torque, and coefficient of friction, was evaluated. Testing included material coefficient of friction evaluations, component joint quantity and form of damping determinations, and rotordynamic stability assessments. Under conditions similar to those in the SSME turbopumps, material interfaces experienced a coefficient of friction of approx. 0.2 for lubricated and 0.8 for unlubricated conditions. The damping observed in the component joints displayed nearly linear behavior with increasing amplitude. Thus, the measured damping, as a function of amplitude, is not represented by either linear or Coulomb friction damper models. Rotordynamic testing of an axial spline joint under 5000 in.-lb of static torque, demonstrated the presence of an extremely severe instability when the rotor was operated above its first flexible natural frequency. The presence of this instability was predicted by nonlinear rotordynamic time-transient analysis using the nonlinear component model developed under this program. Corresponding rotordynamic testing of a shaft with an interference fit joint demonstrated the presence of subsynchronous vibrations at the first natural frequency. While subsynchronous vibrations were observed, they were bounded and significantly lower in amplitude than the synchronous vibrations.

  6. Effect of Polishing on the Friction Behaviors and Cutting Performance of Boron-Doped Diamond Films on WC-Co Inserts

    NASA Astrophysics Data System (ADS)

    Wang, Liang; Shen, Bin; Sun, Fanghong; Zhang, Zhiming

    2014-04-01

    Boron doped (B-doped) diamond films are deposited onto WC-Co inserts by HFCVD with the mixture of acetone, trimethyl borate (C3H9BO3) and H2. The as-deposited B-doped diamond films are characterized with scanning electron microscope (SEM), X-ray diffraction (XRD) spectroscopy, Raman spectroscopy, 3D surface topography based on white-light interferometry and Rockwell hardness tester. The effects of mechanical polishing on the friction behavior and cutting performance of B-doped diamond are evaluated by ball-on-plate type reciprocating tribometer and turning of aluminum alloy 7075 materials, respectively. For comparison, the same tests are also conducted for the bare WC-Co inserts with smooth surface. Friction tests suggest that the unpolished and polished B-doped diamond films possess relatively low fluctuation of friction coefficient than as-received bare WC-Co samples. The average stable friction coefficient for B-doped diamond films decreases apparently after mechanical polishing. The values for WC-Co sample, unpolished and polished B-doped diamond films are approximately 0.38, 0.25 and 0.11, respectively. The cutting results demonstrate that the low friction coefficient and high adhesive strength of B-doped diamond films play an essential role in the cutting performance enhancement of the WC-Co inserts. However, the mechanical polishing process may lower the adhesive strength of B-doped diamond films. Consequently, the polished B-doped diamond coated inserts show premature wear in the machining of adhesive aluminum alloy materials.

  7. Interpretation of the human skin biotribological behaviour after tape stripping.

    PubMed

    Pailler-Mattei, C; Guerret-Piécourt, C; Zahouani, H; Nicoli, S

    2011-07-06

    The present study deals with the modification of the human skin biotribological behaviour after tape stripping. The tape-stripping procedure consists in the sequential application and removal of adhesive tapes on the skin surface in order to remove stratum corneum (SC) layers, which electrically charges the skin surface. The skin electric charges generated by tape stripping highly change the skin friction behaviour by increasing the adhesion component of the skin friction coefficient. It has been proposed to rewrite the friction adhesion component as the sum of two terms: the first classical adhesion term depending on the intrinsic shear strength, τ(0), and the second term depending on the electric shear strength, τ(elec). The experimental results allowed to estimate a numerical value of the electric shear strength τ(elec). Moreover, a plan capacitor model with a dielectric material inside was used to modelize the experimental system. This physical model permitted to evaluate the friction electric force and the electric shear strength values to calculate the skin friction coefficient after the tape stripping. The comparison between the experimental and the theoretical value of the skin friction coefficient after the tape stripping has shown the importance of the electric charges on skin biotribological behaviour. The static electric charges produced by tape stripping on the skin surface are probably able to highly modify the interaction of formulations with the skin surface and their spreading properties. This phenomenon, generally overlooked, should be taken into consideration as it could be involved in alteration of drug absorption.

  8. Hinge Moment Coefficient Prediction Tool and Control Force Analysis of Extra-300 Aerobatic Aircraft

    NASA Astrophysics Data System (ADS)

    Nurohman, Chandra; Arifianto, Ony; Barecasco, Agra

    2018-04-01

    This paper presents the development of tool that is applicable to predict hinge moment coefficients of subsonic aircraft based on Roskam’s method, including the validation and its application to predict hinge moment coefficient of an Extra-300. The hinge moment coefficients are used to predict the stick forces of the aircraft during several aerobatic maneuver i.e. inside loop, half cuban 8, split-s, and aileron roll. The maximum longitudinal stick force is 566.97 N occurs in inside loop while the maximum lateral stick force is 340.82 N occurs in aileron roll. Furthermore, validation hinge moment prediction method is performed using Cessna 172 data.

  9. Motion of packings of frictional grains.

    PubMed

    Halsey, Thomas C

    2009-07-01

    Friction plays a key role in controlling the rheology of dense granular flows. Counting the number of constraints vs the number of variables indicates that critical coordination numbers Zc=3 (in D=2) and Zc=4 (in D=3) are special, in that states in which all contacts roll without frictional sliding are naively possible at and below these average coordination numbers. We construct an explicit example of such a state in D=2 based on a honeycomb lattice. This state has surprisingly large values for the typical angular velocities of the particles. Solving for the forces in such a state, we conclude that organized shear can exist in this state only on scales l

  10. A robust control scheme for flexible arms with friction in the joints

    NASA Technical Reports Server (NTRS)

    Rattan, Kuldip S.; Feliu, Vicente; Brown, H. Benjamin, Jr.

    1988-01-01

    A general control scheme to control flexible arms with friction in the joints is proposed in this paper. This scheme presents the advantage of being robust in the sense that it minimizes the effects of the Coulomb friction existing in the motor and the effects of changes in the dynamic friction coefficient. A justification of the robustness properties of the scheme is given in terms of the sensitivity analysis.

  11. Length scale effects of friction in particle compaction using atomistic simulations and a friction scaling model

    NASA Astrophysics Data System (ADS)

    Stone, T. W.; Horstemeyer, M. F.

    2012-09-01

    The objective of this study is to illustrate and quantify the length scale effects related to interparticle friction under compaction. Previous studies have shown as the length scale of a specimen decreases, the strength of a single crystal metal or ceramic increases. The question underlying this research effort continues the thought—If there is a length scale parameter related to the strength of a material, is there a length scale parameter related to friction? To explore the length scale effects of friction, molecular dynamics (MD) simulations using an embedded atom method potential were performed to analyze the compression of two spherical FCC nickel nanoparticles at different contact angles. In the MD model study, we applied a macroscopic plastic contact formulation to determine the normal plastic contact force at the particle interfaces and used the average shear stress from the MD simulations to determine the tangential contact forces. Combining this information with the Coulomb friction law, we quantified the MD interparticle coefficient of friction and showed good agreement with experimental studies and a Discrete Element Method prediction as a function of contact angle. Lastly, we compared our MD simulation friction values to the tribological predictions of Bhushan and Nosonovsky (BN), who developed a friction scaling model based on strain gradient plasticity and dislocation-assisted sliding that included a length scale parameter. The comparison revealed that the BN elastic friction scaling model did a much better job than the BN plastic scaling model of predicting the coefficient of friction values obtained from the MD simulations.

  12. Required coefficient of friction during turning at self-selected slow, normal, and fast walking speeds.

    PubMed

    Fino, Peter; Lockhart, Thurmon E

    2014-04-11

    This study investigated the relationship of required coefficient of friction to gait speed, obstacle height, and turning strategy as participants walked around obstacles of various heights. Ten healthy, young adults performed 90° turns around corner pylons of four different heights at their self selected normal, slow, and fast walking speeds using both step and spin turning strategies. Kinetic data was captured using force plates. Results showed peak required coefficient of friction (RCOF) at push off increased with increased speed (slow μ=0.38, normal μ=0.45, and fast μ=0.54). Obstacle height had no effect on RCOF values. The average peak RCOF for fast turning exceeded the OSHA safety guideline for static COF of μ>0.50, suggesting further research is needed into the minimum static COF to prevent slips and falls, especially around corners. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Pleural liquid and kinetic friction coefficient of mesothelium after mechanical ventilation.

    PubMed

    Bodega, Francesca; Sironi, Chiara; Porta, Cristina; Zocchi, Luciano; Agostoni, Emilio

    2015-01-15

    Volume and protein concentration of pleural liquid in anesthetized rabbits after 1 or 3h of mechanical ventilation, with alveolar pressure equal to atmospheric at end expiration, were compared to those occurring after spontaneous breathing. Moreover, coefficient of kinetic friction between samples of visceral and parietal pleura, obtained after spontaneous or mechanical ventilation, sliding in vitro at physiological velocity under physiological load, was determined. Volume of pleural liquid after mechanical ventilation was similar to that previously found during spontaneous ventilation. This finding is contrary to expectation of Moriondo et al. (2005), based on measurement of lymphatic and interstitial pressure. Protein concentration of pleural liquid after mechanical ventilation was also similar to that occurring after spontaneous ventilation. Coefficient of kinetic friction after mechanical ventilation was 0.023±0.001, similar to that obtained after spontaneous breathing. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. The Effect of Kinematic Conditions and Synovial Fluid Composition on the Frictional Behaviour of Materials for Artificial Joints

    PubMed Central

    Vrbka, Martin; Křupka, Ivan; Hartl, Martin

    2018-01-01

    The paper introduces an experimental investigation of frictional behaviour of materials used for joint replacements. The measurements were performed using a ball-on-disc tribometer, while four material combinations were tested; metal-on-metal, ceramic-on-ceramic, metal-on-polyethylene, and ceramic-on-polyethylene, respectively. The contact was lubricated by pure saline and various protein solutions. The experiments were realized at two mean speeds equal to 5.7 mm/s and 22 mm/s and two slide-to-roll ratios, −150% and 150%. It was found that the implant material is the fundamental parameter affecting friction. In general, the metal pair exhibited approximately two times higher friction compared to the ceramic. In particular, the friction in the case of the metal varied between 0.3 and 0.6 while the ceramic pair exhibited friction within the range from 0.15 to 0.3 at the end of the test. The lowest friction was observed for polyethylene while it decreased to 0.05 under some conditions. It can be also concluded that adding proteins to the lubricant has a positive impact on friction in the case of hard-on-hard pairs. For hard-on-soft pairs, no substantial influence of proteins was observed. The effect of kinematic conditions was found to be negligible in most cases. PMID:29748491

  15. The Effect of Kinematic Conditions and Synovial Fluid Composition on the Frictional Behaviour of Materials for Artificial Joints.

    PubMed

    Nečas, David; Vrbka, Martin; Křupka, Ivan; Hartl, Martin

    2018-05-10

    The paper introduces an experimental investigation of frictional behaviour of materials used for joint replacements. The measurements were performed using a ball-on-disc tribometer, while four material combinations were tested; metal-on-metal, ceramic-on-ceramic, metal-on-polyethylene, and ceramic-on-polyethylene, respectively. The contact was lubricated by pure saline and various protein solutions. The experiments were realized at two mean speeds equal to 5.7 mm/s and 22 mm/s and two slide-to-roll ratios, −150% and 150%. It was found that the implant material is the fundamental parameter affecting friction. In general, the metal pair exhibited approximately two times higher friction compared to the ceramic. In particular, the friction in the case of the metal varied between 0.3 and 0.6 while the ceramic pair exhibited friction within the range from 0.15 to 0.3 at the end of the test. The lowest friction was observed for polyethylene while it decreased to 0.05 under some conditions. It can be also concluded that adding proteins to the lubricant has a positive impact on friction in the case of hard-on-hard pairs. For hard-on-soft pairs, no substantial influence of proteins was observed. The effect of kinematic conditions was found to be negligible in most cases.

  16. Scaling features of the tribology of polymer brushes of increasing grafting density around the mushroom-to-brush transition.

    PubMed

    Mayoral, E; Klapp, J; Gama Goicochea, A

    2017-01-01

    Nonequilibrium coarse-grained, dissipative particle dynamics simulations of complex fluids, made up of polymer brushes tethered to planar surfaces immersed in a solvent yield nonmonotonic behavior of the friction coefficient as a function of the polymer grating density on the substrates, Γ, while the viscosity shows a monotonically increasing dependence on Γ. This effect is shown to be independent of the degree of polymerization, N, and the size of the system. It arises from the composition and the structure of the first particle layer adjacent to each surface that results from the confinement of the fluid. Whenever such layers are made up of as close a proportion of polymer beads to solvent particles as there are in the fluid, the friction coefficient shows a minimum, while for disparate proportions the friction coefficient grows. At the mushroom-to-brush transition (MBT) the viscosity scales with an exponent that depends on the characteristic exponent of the MBT (6/5) and the solvent quality exponent (ν=0.5, for θsolvent), but it is independent of the polymerization degree (N). On the other hand, the friction coefficient at the MBT scales as μ∼N^{6/5}, while the grafting density at the MBT scales as Γ∼N^{-6/5} when friction is minimal, in agreement with previous scaling theories. We argue these aspects are the result of cooperative phenomena that have important implications for the understanding of biological brushes and the design of microfluidics devices, among other applications of current academic and industrial interest.

  17. Particle interaction and rheological behavior of cement-based materials at micro- and macro-scales

    NASA Astrophysics Data System (ADS)

    Lomboy, Gilson Rescober

    Rheology of cement based materials is controlled by the interactions at the particle level. The present study investigates the particle interactions and rheological properties of cement-based materials in the micro- and macro-scales. The cementitious materials studied are Portland cement (PC), fly ash (FA), ground granulated blast furnace slag (GGBFS) and densified silica fume (SF). At the micro-scale, aside from the forces on particles due to collisions, interactions of particles in a flowing system include the adhesion and friction. Adhesion is due to the attraction between materials and friction depends on the properties of the sliding surfaces. Atomic Force Microscopy (AFM) is used to measure the adhesion force and coefficient of friction. The adhesion force is measured by pull-off force measurements and is used to calculate Hamaker constants. The coefficient of friction is measured by increasing the deflection set-points on AFM probes with sliding particles, thereby increasing normal loads and friction force. AFM probes were commercial Si3N4 tips and cementitious particles attached to the tips of probe cantilevers. SF was not included in the micro-scale tests due to its limiting size when attaching it to the AFM probes. Other materials included in the tests were silica, calcite and mica, which were used for verification of the developed test method for the adhesion study. The AFM experiments were conducted in dry air and fluid environments at pH levels of 7, 8, 9, 11 and 13. The results in dry air indicate that the Hamaker constant of Class F FA can be similar to PC, but Class C FA can have a high Hamaker constant, also when in contact with other cementitious materials. The results in fluid environments showed low Hamaker constants for Class F fly ashes compared to PC and also showed high Hamaker constants for PC and Class C fly ash. The results for the friction test in dry air indicated that the coefficient of friction of PC is lower than fly ashes, which is attributed to the asperities present on the particle surface. At the macro-scale, flow of cementitious materials may be in its dry or wet state, during transport and handling or when it is used in concrete mixtures, respectively. Hence, the behavior of bulk cementitious materials in their dry state and wet form are studied. In the dry state, the compression, recompression and swell indices, and stiffness modulus of plain and blended cementitious materials are determined by confined uniaxial compression. The coefficients of friction of the bulk materials studied are determined by a direct shear test. The results indicate that shape of particles has a great influence on the compression and shear parameters. The indices for PC blends with FA do not change with FA replacement, while it increases with GGBFS replacement. Replacement with GGBFS slightly decreases coefficient of friction, while replacement with FA significantly decreases coefficient of friction. At low SF replacement, coefficient of friction decreases. In wet state, unary, binary, ternary and quaternary mixes with w/b of 0.35, 0.45 and 0.55 were tested for yield stress, viscosity and thixotropy. It is found that fly ash replacement lowers the rheological properties and replacement with GGBFS and SF increases rheological properties. The distinct element method (DEM) was employed to model particle interaction and bulk behavior. The AFM force curve measurement is simulated to validate the adhesion model in the DEM. The contact due to asperities was incorporated by considering the asperities as a percentage of the radius of the contacting particles. The results of the simulation matches the force-curve obtained from actual AFM experiments. The confined uniaxial compression test is simulated to verify the use of DEM to relate micro-scale properties to macros-scale behavior. The bulk stiffness from the physical experiments is matched in the DEM simulation. The particle stiffness and coefficient of friction are found to have a direct relation to bulk stiffness.

  18. A comparative study of tribological characteristics of hydrogenated DLC film sliding against ceramic mating materials for helium applications

    NASA Astrophysics Data System (ADS)

    Wu, Daheng; Ren, Siming; Pu, Jibin; Lu, Zhibin; Zhang, Guangan; Wang, Liping

    2018-05-01

    The tribological behaviors of hydrogenated DLC film sliding against Al2O3, ZrO2, Si3N4 and WC mating balls have been comparatively investigated by a ball-on-disk tribometer at 150 °C under helium and air (RH = 6%) conditions. The results showed that the mating material influenced the friction and wear behavior remarkably in helium atmosphere, where the wear rates were in inversely proportional to the friction coefficients (COF) of those tribo-pairs. Compared to the tests in helium, the tribological performance of DLC film significantly improved in air. Scanning electron microscope (SEM) and Raman spectroscopy were performed to study the friction behavior and wear mechanism of the film under different conditions. It suggested that the severe abrasion was caused by the strong interaction between the tribo-pairs in helium atmosphere at 150 °C, whereas the sufficient passivation of the dangling bonds of carbon atoms at sliding interface by chemically active molecules, such as water and oxygen, dominated the ultralow friction under air condition. Meanwhile, Hertz analysis was used to further elucidate the frictional mechanism of DLC film under helium and air conditions. It showed that the coefficient of friction was consistent with the varied tendency of the contact radius, namely, higher friction coefficient corresponded to the larger contact radius, which was the same with the relationship between the wear rate and the contact pressure. All of the results made better understanding of the essential mechanism of hydrogenated DLC film sliding against different pairs, which were able to guide the further application of DLC film in the industrial fields of helium atmosphere.

  19. Numerical Modeling of Earthquake-Induced Landslide Using an Improved Discontinuous Deformation Analysis Considering Dynamic Friction Degradation of Joints

    NASA Astrophysics Data System (ADS)

    Huang, Da; Song, Yixiang; Cen, Duofeng; Fu, Guoyang

    2016-12-01

    Discontinuous deformation analysis (DDA) as an efficient technique has been extensively applied in the dynamic simulation of discontinuous rock mass. In the original DDA (ODDA), the Mohr-Coulomb failure criterion is employed as the judgment principle of failure between contact blocks, and the friction coefficient is assumed to be constant in the whole calculation process. However, it has been confirmed by a host of shear tests that the dynamic friction of rock joints degrades. Therefore, the friction coefficient should be gradually reduced during the numerical simulation of an earthquake-induced rockslide. In this paper, based on the experimental results of cyclic shear tests on limestone joints, exponential regression formulas are fitted for dynamic friction degradation, which is a function of the relative velocity, the amplitude of cyclic shear displacement and the number of its cycles between blocks with an edge-to-edge contact. Then, an improved DDA (IDDA) is developed by implementing the fitting regression formulas and a modified removing technique of joint cohesion, in which the cohesion is removed once the `sliding' or `open' state between blocks appears for the first time, into the ODDA. The IDDA is first validated by comparing with the theoretical solutions of the kinematic behaviors of a sliding block on an inclined plane under dynamic loading. Then, the program is applied to model the Donghekou landslide triggered by the 2008 Wenchuan earthquake in China. The simulation results demonstrate that the dynamic friction degradation of joints has great influences on the runout and velocity of sliding mass. Moreover, the friction coefficient possesses higher impact than the cohesion of joints on the kinematic behaviors of the sliding mass.

  20. Pure rotation of a prism on a ramp

    PubMed Central

    Zhao, Zhen; Liu, Caishan; Ma, Daolin

    2014-01-01

    In this work, we study a prism with a cross section in polygon rolling on a ramp inclined at a small angle. The prism under gravity rolls purely around each individual edge, intermittently interrupted by a sequence of face collisions between the side face of the prism and the ramp. By limiting the prism in a planar motion, we propose a mathematical model to deal with the events of the impacts. With a pair of laser-Doppler vibrometers, experiments are also conducted to measure the motions of various prisms made of different materials and with different edge number. Not only are good agreements achieved between our numerical and experimental results, but also an intriguing physical phenomenon is discovered: the purely rolling motion is nearly independent of the prism's materials, yet it is closely related to the prism's geometry. Imagine that an ideal circular section can be approximately equivalent to a polygon with a large enough edge number N, the finding presented in this paper may help discover the physical mechanism of rolling friction. PMID:25197242

Top