Science.gov

Sample records for rondonia western amazon

  1. The epidemiology of malaria in Rondonia (Western Amazon region, Brazil): study of a riverine population.

    PubMed

    Camargo, L M; Noronha, E; Salcedo, J M; Dutra, A P; Krieger, H; Pereira da Silva, L H; Camargo, E P

    1999-01-15

    We report on a longitudinal study concerning the incidence of malaria in a riverine population (Portuchuelo) settled on the riverbanks of Rio Madeira, in the State of Rondonia, Brazil. We found the incidence of malaria to be seasonal, prevailing in the dry months of June and July. The Annual Parasite Index (API) was 292/1000 inhabitants, almost three times that of the state of Rondonia for the same period. In contrast with other studied Rondonian populations, malaria in Portuchuelo was more prevalent in youngsters < 16 years old, particularly in the 0-1 year age group. Adults were relatively spared, particularly those over 50 years. Besides being indicative of indoor transmission, these facts may suggest the existence of a certain degree of acquired resistance to infection and/or of lessened symptoms in older people. Riverine populations are spread over the entire Amazon region where most of its members were born. Due to the permanent presence of malaria among riverine populations, we are proposing that they may act as perennial reserves of malaria and, therefore, as sources of infection for migrants or eventual settlers at their vicinity. To date, the opposite view has been generally held. Anopheles darlingi, the main vector species in the area, is essentially sylvatic, which contributes to make the control of malaria highly problematic. The only hopes for control rest on permanent surveillance and the prompt treatment of patients, which are also problematic considering the vastness of the Amazon region and the remoteness of some of its riverine settlements.

  2. Colonization, road development and deforestation in the Brazilian Amazon Basin of Rondonia

    SciTech Connect

    Frohn, R.C.; Dale, V.H. ); Jimenez, B.D. . Dept. of Pharmaceutical Sciences)

    1990-03-01

    Within the past two decades, the forests of Brazil have undergone widespread and large scale clearing. The clearing of tropical rainforests may have serious global and local consequences. Global effects include a decrease in biodiversity with the elimination of plant and animal species; increases in atmospheric carbon dioxide, which may affect climate; and disruption of hydrological regimes. Local effects include soil erosion, siltation, decreases in soil fertility, loss of plant cover and extractive resources, and disruption of indigenous populations. Nowhere in the Brazilian Amazon has deforestation increased at a faster rate than in the state of Rondonia. Deforestation in Rondonia has grown at increasing rates during the past decade mainly because of official colonization schemes, road construction, and the subsequent settlement of farmers. This paper contains a historical summary of colonization and road construction in the Amazon Basin of Brazil relative to deforestation in Rondonia. 60 refs., 11 figs., 14 tabs.

  3. Orientatractis moraveci n. sp. and Rondonia rondoni Travassos, 1920 (Nematoda: Atractidae), parasites of Pimelodus blochii (Osteichthyes, Pimelodidae) from the Acre and Xapuri Rivers, Western Amazon, Brazil.

    PubMed

    Cavalcante, Pedro H O; Silva, Maralina T; Santos, Everton G N; Chagas-Moutinho, Vanessa A; Santos, Claudia P

    2017-02-01

    The fish fauna in the State of Acre represents 10·7% of all fish species recorded from Brazil, but, despite this, there are few fish parasite studies in this area. The recent expansion of fish farming in Acre prompted a need for helminthological studies of the most commonly consumed fish species in the area, Pimelodus blochii (Pimelodidae). The aim of this study was to analyse the helminth fauna of P. blochii from the Acre and Xapuri Rivers in Northwestern Brazil. Numerous nematodes were collected from the intestine and two species of the family Atractidae were identified: Rondonia rondoni Travassos, 1920 and Orientatractis moraveci n. sp. The new species is distinguished from its congeners mainly by having: 10 pairs of caudal papillae (3 pairs pre-cloacal, 2 pairs ad-cloacal and 5 pairs post-cloacal); unequal spicules of 161-198 and 69-100 µ m long; and a gubernaculum 38-58 µ m long with an antero-lateral process. Morphological and ultrastructural data on O. moraveci n. sp. and R. rondoni are presented, in addition to new genetic data based on partial 18S rDNA and 28S rDNA. The taxonomic status of Labeonema synodontisi (Vassiliadès, 1973) is discussed, suggesting that it should be returned to the genus Raillietnema.

  4. Deforestation, Rondonia, Brazil

    NASA Image and Video Library

    1992-08-08

    This view of deforestation in Rondonia, far western Brazil, (10.0S, 63.0W) is part of an agricultural resettlement project which ultimately covers an area about 80% the size of France. The patterns of deforestation in this part of the Amazon River Basin are usually aligned adjacent to highways, secondary roads, and streams for ease of access and transportation. Compare this view with the earlier 51G-37-062 for a comparison of deforestation in the region.

  5. Deforestation, Rondonia, Brazil

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This view of deforestation in Rondonia, far western Brazil, (10.0S, 63.0W) is part of an agricultural resettlement project which ultimately covers an area about 80% the size of France. The patterns of deforestation in this part of the Amazon River Basin are usually aligned adjacent to highways, secondary roads, and streams for ease of access and transportation. Compare this view with the earlier 51G-37-062 for a comparison of deforestation in the region.

  6. Land-use practices in Ouro Preto do Oeste, Rondonia, Brazil

    SciTech Connect

    Pedlowski, M.A.; Dale, V.H.

    1992-09-01

    Road development and colonization projects have brought about wide-scale deforestation in the Brazilian Amazon. The state of Rondonia, located in the western Amazon Basin, best exemplifies the problems related to land-use changes because it has the highest rates of deforestation in the Amazon Basin. In order to identify the main land-use practices in Rondonia, interviews with local farmers were carried out in the central part of Rondonia, in the PIC (Integrated Colonization Project) Ouro Preto do Oeste. This is the oldest colonization project in the state. The governmental colonization programs attracted migrants to the area through the construction of roads and infrastructure necessary for the colonists to occupy the land for agricultural practices. The interviews were done on lots of the PIC Ouro Preto and in PAD Urupa to define the background of the colonists, their land-use practices, their economic situation, and their relationships with governmental institutions.

  7. Land-use practices in Ouro Preto do Oeste, Rondonia, Brazil

    SciTech Connect

    Pedlowski, M.A.; Dale, V.H.

    1992-09-01

    Road development and colonization projects have brought about wide-scale deforestation in the Brazilian Amazon. The state of Rondonia, located in the western Amazon Basin, best exemplifies the problems related to land-use changes because it has the highest rates of deforestation in the Amazon Basin. In order to identify the main land-use practices in Rondonia, interviews with local farmers were carried out in the central part of Rondonia, in the PIC (Integrated Colonization Project) Ouro Preto do Oeste. This is the oldest colonization project in the state. The governmental colonization programs attracted migrants to the area through the construction of roads and infrastructure necessary for the colonists to occupy the land for agricultural practices. The interviews were done on lots of the PIC Ouro Preto and in PAD Urupa to define the background of the colonists, their land-use practices, their economic situation, and their relationships with governmental institutions.

  8. Amazon Anopheles Biology. 12. Occurrence of Anopheles Species, Malaria Control and Transmission Dynamics in the Urban Zone of Ariquemes (Rondonia)

    DTIC Science & Technology

    1988-01-01

    RONDONIA) DTIC W. Tadei et al i ELECTEo0MAR 11991 D Translation of " Biologia de anofelinos amaz6nicos. XII. Ocorr~ncia de especies de anopheles...Serv. Sadde pdbl. (Rio de J.), 1: 3-60, 1947. 15 DEANE, L.M.; CAUSEY. O.R. & DEANE, M.P. - Notas sobre a distri- buigdo e a biologia dos anofelinos...R.G. & MARQUES, A.P. - Algumas obser- vag6es sobre a biologia dos anofelinos de importancia epidemiol6- gica de Beldm, Par&. Some observations on

  9. Future of oil and gas development in the western Amazon

    NASA Astrophysics Data System (ADS)

    Finer, Matt; Babbitt, Bruce; Novoa, Sidney; Ferrarese, Francesco; Eugenio Pappalardo, Salvatore; De Marchi, Massimo; Saucedo, Maria; Kumar, Anjali

    2015-02-01

    The western Amazon is one of the world’s last high-biodiversity wilderness areas, characterized by extraordinary species richness and large tracts of roadless humid tropical forest. It is also home to an active hydrocarbon (oil and gas) sector, characterized by operations in extremely remote areas that require new access routes. Here, we present the first integrated analysis of the hydrocarbon sector and its associated road-building in the western Amazon. Specifically, we document the (a) current panorama, including location and development status of all oil and gas discoveries, of the sector, and (b) current and future scenario of access (i.e. access road versus roadless access) to discoveries. We present an updated 2014 western Amazon hydrocarbon map illustrating that oil and gas blocks now cover 733 414 km2, an area much larger than the US state of Texas, and have been expanding since the last assessment in 2008. In terms of access, we documented 11 examples of the access road model and six examples of roadless access across the region. Finally, we documented 35 confirmed and/or suspected untapped hydrocarbon discoveries across the western Amazon. In the Discussion, we argue that if these reserves must be developed, use of the offshore inland model—a method that strategically avoids the construction of access roads—is crucial to minimizing ecological impacts in one of the most globally important conservation regions.

  10. North Tropical Atlantic influence on western Amazon fire season variability

    NASA Astrophysics Data System (ADS)

    Fernandes, Katia; Baethgen, Walter; Bernardes, Sergio; DeFries, Ruth; DeWitt, David G.; Goddard, Lisa; Lavado, Waldo; Lee, Dong Eun; Padoch, Christine; Pinedo-Vasquez, Miguel; Uriarte, Maria

    2011-06-01

    The prevailing wet climate in the western Amazon is not favorable to the natural occurrence of fires. Nevertheless, the current process of clearing of humid forests for agriculture and cattle ranching has increased the vulnerability of the region to the spread of fires. Using meteorological stations precipitation and the Moderate Resolution Spectroradiometer (MODIS) Active-Fires (AF) during 2000-2009, we show that fire anomalies vary closely with July-August-September (JAS) precipitation variability as measured by the Standardized Precipitation Index (SPI). The precipitation variability is, in turn, greatly determined by sea surface temperature (SST) anomalies in the North Tropical Atlantic (NTA). We develop a linear regression model to relate local fire activity to an index of the NTA-SST. By using seasonal forecasts of SST from a coupled model, we are able to predict anomalous JAS fire activity as early as April. We applied the method to predict the severe 2010 JAS season, which indicated strongly positive seasonal fire anomalies within the 95% prediction confidence intervals in most western Amazon. The spatial distribution of predicted SPI was also in accordance with observed precipitation anomalies. This three months lead time precipitation and fire prediction product in the western Amazon could help local decision makers to establish an early warning systems or other appropriate course of action before the fire season begins.

  11. Decentralizing Education: A Successful Experience in the Brazilian Amazon

    ERIC Educational Resources Information Center

    Proenca, Marilene; Neneve, Miguel

    2004-01-01

    In this article, the authors discuss the importance of education policies that aim at diminishing social disparities in poor countries, focusing on a program in higher education developed in the state of Rondonia in the Brazilian Amazon. Rondonia is a region in which people have suffered deeply from the consequences of social inequalities. Many…

  12. Hydrogeology of the Western Amazon Aquifer System (WAAS)

    NASA Astrophysics Data System (ADS)

    Rosário, Fátima Ferreira do; Custodio, Emilio; Silva, Gerson Cardoso da, Jr.

    2016-12-01

    The Western Amazon Aquifer System (WAAS), as defined and proposed in the present work, encompasses an area of about 2.0·106 km2 located in the northwestern portion of South America. Published and unpublished data were used to define WAAS boundaries and main hydrogeologic characteristics. Petroleum industry data, environmental data, and other diverse thematic data were compiled for this study according to the data's origin. The analysis, treatment and integration of available data allowed us to define the WAAS as a multilayered aquifer system comprised of the Tertiary Solimões Aquifer System (SAS) and the Cretaceous Tikuna Aquifer System (TAS). The thick clay-rich basal strata of the SAS appear to confine the TAS. The SAS is widely used for both domestic and industrial purposes, providing good quality freshwater. The TAS has varying water quality: it contains freshwater near its recharge areas in the Sub-Andean fault belt zone, brackish to brine water in the Sub-Andean basins, and salty water in the Solimões Basin (Brazil). The interpretation and conclusions provided by an increasing understanding of the area's hydrogeology resulting from this work made it possible to propose an improved and new WAAS regional hydrogeologic conceptual model with data and descriptions not previously available. Some surprising results have been later confirmed as true by looking at unpublished reports, logs and field notes. Therefore, this work resulted in new findings and settled the basis for future works, especially for the poorly understood TAS.

  13. Oil and Gas Projects in the Western Amazon: Threats to Wilderness, Biodiversity, and Indigenous Peoples

    PubMed Central

    Finer, Matt; Jenkins, Clinton N.; Pimm, Stuart L.; Keane, Brian; Ross, Carl

    2008-01-01

    Background The western Amazon is the most biologically rich part of the Amazon basin and is home to a great diversity of indigenous ethnic groups, including some of the world's last uncontacted peoples living in voluntary isolation. Unlike the eastern Brazilian Amazon, it is still a largely intact ecosystem. Underlying this landscape are large reserves of oil and gas, many yet untapped. The growing global demand is leading to unprecedented exploration and development in the region. Methodology/Principal Findings We synthesized information from government sources to quantify the status of oil development in the western Amazon. National governments delimit specific geographic areas or “blocks” that are zoned for hydrocarbon activities, which they may lease to state and multinational energy companies for exploration and production. About 180 oil and gas blocks now cover ∼688,000 km2 of the western Amazon. These blocks overlap the most species-rich part of the Amazon. We also found that many of the blocks overlap indigenous territories, both titled lands and areas utilized by peoples in voluntary isolation. In Ecuador and Peru, oil and gas blocks now cover more than two-thirds of the Amazon. In Bolivia and western Brazil, major exploration activities are set to increase rapidly. Conclusions/Significance Without improved policies, the increasing scope and magnitude of planned extraction means that environmental and social impacts are likely to intensify. We review the most pressing oil- and gas-related conservation policy issues confronting the region. These include the need for regional Strategic Environmental Impact Assessments and the adoption of roadless extraction techniques. We also consider the conflicts where the blocks overlap indigenous peoples' territories. PMID:18716679

  14. Oil and gas projects in the Western Amazon: threats to wilderness, biodiversity, and indigenous peoples.

    PubMed

    Finer, Matt; Jenkins, Clinton N; Pimm, Stuart L; Keane, Brian; Ross, Carl

    2008-08-13

    The western Amazon is the most biologically rich part of the Amazon basin and is home to a great diversity of indigenous ethnic groups, including some of the world's last uncontacted peoples living in voluntary isolation. Unlike the eastern Brazilian Amazon, it is still a largely intact ecosystem. Underlying this landscape are large reserves of oil and gas, many yet untapped. The growing global demand is leading to unprecedented exploration and development in the region. We synthesized information from government sources to quantify the status of oil development in the western Amazon. National governments delimit specific geographic areas or "blocks" that are zoned for hydrocarbon activities, which they may lease to state and multinational energy companies for exploration and production. About 180 oil and gas blocks now cover approximately 688,000 km(2) of the western Amazon. These blocks overlap the most species-rich part of the Amazon. We also found that many of the blocks overlap indigenous territories, both titled lands and areas utilized by peoples in voluntary isolation. In Ecuador and Peru, oil and gas blocks now cover more than two-thirds of the Amazon. In Bolivia and western Brazil, major exploration activities are set to increase rapidly. Without improved policies, the increasing scope and magnitude of planned extraction means that environmental and social impacts are likely to intensify. We review the most pressing oil- and gas-related conservation policy issues confronting the region. These include the need for regional Strategic Environmental Impact Assessments and the adoption of roadless extraction techniques. We also consider the conflicts where the blocks overlap indigenous peoples' territories.

  15. Forest response to increased disturbance in the Central Amazon and comparison to Western Amazonian forests

    NASA Astrophysics Data System (ADS)

    Holm, J. A.; Chambers, J. Q.; Collins, W.; Higuchi, N.

    2014-12-01

    Uncertainties surrounding vegetation response to increased disturbance rates associated with climate change remains a major global change issue for Amazon forests. Additionally, turnover rates in the Western Amazon are doubled compared to the Central Amazon, and notable gradients currently exist in specific wood density and aboveground biomass (AGB). This study investigates the extent to which the variation in disturbance regimes contributes to these regional gradients. To address these issues, we evaluated disturbance-recovery processes under scenarios of increased disturbance rates in a Central Amazon forest using first ZELIG-TROP, a dynamic vegetation gap model which we calibrated using long-term inventory data, and second using the Community Land Model (CLM), a global land surface model. Upon doubling the mortality rate in the Central Amazon to mirror the disturbance regime in the Western Amazon of ~2% mortality, the two regions continued to differ in multiple forest processes. With the inclusion of elevated natural disturbances, at steady-state, AGB significantly decreased by 41.9% with no significant difference between modeled AGB and empirical AGB from the western Amazon datasets (104 vs. 107 Mg C ha-1). However, different processes were responsible for the reductions in AGB between the models and empirical dataset. The empirical dataset suggests that a decrease in wood density drives the reduction in AGB. While decreased stand basal area was the driver of AGB loss in ZELIG-TROP, and decreased leaf area index (LAI) was the driver in CLM, two forest attributes that do not significantly vary across the Amazon Basin. Further comparisons found that stem density, specific wood density, and growth rates differed between the two Amazonian regions. This suggests that: 1) the variability between regions cannot be entirely explained by the variability in disturbance regime, but rather potentially sensitive to intrinsic environmental factors; or 2) the models are not

  16. Decadal covariability of Atlantic SSTs and western Amazon dry-season hydroclimate in observations and CMIP5 simulations

    NASA Astrophysics Data System (ADS)

    Fernandes, Katia; Giannini, Alessandra; Verchot, Louis; Baethgen, Walter; Pinedo-Vasquez, Miguel

    2015-08-01

    The unusual severity and return time of the 2005 and 2010 dry-season droughts in western Amazon is attributed partly to decadal climate fluctuations and a modest drying trend. Decadal variability of western Amazon hydroclimate is highly correlated to the Atlantic sea surface temperature (SST) north-south gradient (NSG). Shifts of dry and wet events frequencies are also related to the NSG phase, with a 66% chance of 3+ years of dry events per decade when NSG > 0 and 19% when NSG < 0. The western Amazon and NSG decadal covariability is well reproduced in general circulation models (GCMs) historical (HIST) and preindustrial control (PIC) experiments of the Coupled Model Intercomparison Project Phase 5 (CMIP5). The HIST and PIC also reproduce the shifts in dry and wet events probabilities, indicating potential for decadal predictability based on GCMs. Persistence of the current NSG positive phase favors above normal frequency of western Amazon dry events in coming decades.

  17. Forest response to increased disturbance in the central Amazon and comparison to western Amazonian forests

    NASA Astrophysics Data System (ADS)

    Holm, J. A.; Chambers, J. Q.; Collins, W. D.; Higuchi, N.

    2014-10-01

    Uncertainties surrounding vegetation response to increased disturbance rates associated with climate change remains a major global change issue for Amazonian forests. Additionally, turnover rates computed as the average of mortality and recruitment rates in the western Amazon basin are doubled when compared to the central Amazon, and notable gradients currently exist in specific wood density and aboveground biomass (AGB) between these two regions. This study investigates the extent to which the variation in disturbance regimes contributes to these regional gradients. To address this issue, we evaluated disturbance-recovery processes in a central Amazonian forest under two scenarios of increased disturbance rates using first ZELIG-TROP, a dynamic vegetation gap model which we calibrated using long-term inventory data, and second using the Community Land Model (CLM), a global land surface model that is part of the Community Earth System Model (CESM). Upon doubling the mortality rate in the central Amazon to mirror the natural disturbance regime in the western Amazon of ∼2% mortality, the two regions continued to differ in multiple forest processes. With the inclusion of elevated natural disturbances, at steady state, AGB significantly decreased by 41.9% with no significant difference between modeled AGB and empirical AGB from the western Amazon data sets (104 vs. 107 Mg C ha-1, respectively). However, different processes were responsible for the reductions in AGB between the models and empirical data set. The empirical data set suggests that a decrease in wood density is a driver leading to the reduction in AGB. While decreased stand basal area was the driver of AGB loss in ZELIG-TROP, a forest attribute that does not significantly vary across the Amazon Basin. Further comparisons found that stem density, specific wood density, and basal area growth rates differed between the two Amazonian regions. Last, to help quantify the impacts of increased disturbances on

  18. Projected increases in the annual flood pulse of the Western Amazon

    NASA Astrophysics Data System (ADS)

    Zulkafli, Zed; Buytaert, Wouter; Manz, Bastian; Véliz Rosas, Claudia; Willems, Patrick; Lavado-Casimiro, Waldo; Guyot, Jean-Loup; Santini, William

    2016-01-01

    The impact of a changing climate on the Amazon basin is a subject of intensive research because of its rich biodiversity and the significant role of rainforests in carbon cycling. Climate change has also a direct hydrological impact, and increasing efforts have focused on understanding the hydrological dynamics at continental and subregional scales, such as the Western Amazon. New projections from the Coupled Model Inter-comparison Project Phase 5 ensemble indicate consistent climatic warming and increasing seasonality of precipitation in the Peruvian Amazon basin. Here we use a distributed land surface model to quantify the potential impact of this change in the climate on the hydrological regime of the upper Amazon river. Using extreme value analysis, historical and future projections of the annual minimum, mean, and maximum river flows are produced for a range of return periods between 1 and 100 yr. We show that the RCP 4.5 and 8.5 scenarios of climate change project an increased severity of the wet season flood pulse (7.5% and 12% increases respectively for the 100 yr return floods). These findings agree with previously projected increases in high extremes under the Special Report on Emissions Scenarios climate projections, and are important to highlight due to the potential consequences on reproductive processes of in-stream species, swamp forest ecology, and socio-economy in the floodplain, amidst a growing literature that more strongly emphasises future droughts and their impact on the viability of the rainforest system over greater Amazonia.

  19. Severe Hemorrhagic Syndrome After Lonomia Caterpillar Envenomation in the Western Brazilian Amazon: How Many More Cases Are There?

    PubMed

    Santos, João Hugo A; Oliveira, Sâmella S; Alves, Eliane C; Mendonça-da-Silva, Iran; Sachett, Jacqueline A G; Tavares, Antonio; Ferreira, Luiz Carlos; Fan, Hui Wen; Lacerda, Marcus V G; Monteiro, Wuelton M

    2017-03-01

    Contact with Lonomia caterpillars can cause a hemorrhagic syndrome. In Brazil, Lonomia obliqua and Lonomia achelous are known to cause this venom-induced disease. In the Brazilian Amazon, descriptions of this kind of envenomation are scarce. Herein, we report a severe hemorrhagic syndrome caused by Lonomia envenomation in the Amazonas state, Western Brazilian Amazon. The patient showed signs of hemorrhage lasting 8 days and required Lonomia antivenom administration, which resulted in resolution of hemorrhagic syndrome. Thus, availability of Lonomia antivenom as well as early antivenom therapy administration should be addressed across remote areas in the Amazon.

  20. Forest response to increased disturbance in the Central Amazon and comparison to Western Amazonian forests

    NASA Astrophysics Data System (ADS)

    Holm, J. A.; Chambers, J. Q.; Collins, W. D.; Higuchi, N.

    2014-05-01

    Uncertainties surrounding vegetation response to increased disturbance rates associated with climate change remains a major global change issue for Amazon forests. Additionally, turnover rates computed as the average of mortality and recruitment rates in the Western Amazon basin are doubled when compared to the Central Amazon, and notable gradients currently exist in specific wood density and aboveground biomass (AGB) between these two regions. This study investigates the extent to which the variation in disturbance regimes contributes to these regional gradients. To address these issues, we evaluated disturbance-recovery processes under two scenarios of increased disturbance rates in a complex Central Amazon forest using first ZELIG-TROP, a dynamic vegetation gap model which we calibrated using long-term inventory data, and second using the Community Land Model (CLM), a global land surface model that is part of the Community Earth System Model (CESM). Upon doubling the mortality rate in the Central Amazon to mirror the natural disturbance regime in the Western Amazon of ∼2% mortality, at steady-state, AGB significantly decreased by 41.9% and there was no significant difference between the modeled AGB of 104 Mg C ha-1 and empirical AGB from the western Amazon datasets of 107 Mg C ha-1. We confirm that increases in natural disturbance rates in the Central Amazon will result in terrestrial carbon loss associated with higher turnover. However, different processes were responsible for the reductions in AGB between the models and empirical datasets. We observed that with increased turnover, the subsequent decrease in wood density drives the reduction in AGB in empirical datasets. However, decrease in stand basal area was the driver of the drop in AGB in ZELIG-TROP, and decreased leaf area index (LAI) was the driver in CLM. Further comparisons found that stem density, specific wood density, and basal area growth rates differed between the two Amazonian regions. This

  1. STS-65 Earth observation of deforestation in Rondonia, Brazil taken on OV-102

    NASA Technical Reports Server (NTRS)

    1994-01-01

    STS-65 Earth observation taken aboard Columbia, Orbiter Vehicle (OV) 102, shows deforestation in Rondonia, Brazil. he fishbone pattern in the middle ground is the western half of the great newly deforested zone in the vast green rainforest of Rondonia (deforested area in the view is approximately 200 kilometers in length). Apart from a relatively small area of commercial forestry and some mining in the area covered by the view, clearing of rainforest has taken place since 1988. Points of complete clearing are towns aligned along the axis of the deforested zone. The somewhat cleared areas in the distance (top middle to top right) are a low range of hills (up to 500 meters) known as the Serra dos Parecis. In this south-looking view, the line of clearing in the distance is an axis of development on the main road to the Bolivian border.

  2. Projected increases in the annual flood pulse of the western Amazon

    NASA Astrophysics Data System (ADS)

    Zulkafli, Zed; Buytaert, Wouter; Manz, Bastian; Veliz Rosas, Claudia; Willems, Patrick; Lavado-Casimiro, Waldo; Guyot, Jean-Loup; Santini, William

    2016-04-01

    The impact of a changing climate on the Amazon basin is a subject of intensive research due to its rich biodiversity and the significant role of rain forest in carbon cycling. Climate change has also direct hydrological impact, and there have been increasing efforts to understand such dynamics at continental and subregional scales such as the scale of the western Amazon. New projections from the Coupled Model Inter- comparison Project Phase 5 (CMIP5) ensemble indicate consistent climatic warming and increasing seasonality of precipitation in the Peruvian Amazon basin. Here we use a distributed land surface model to quantify the potential impact of this change in the climate on the hydrological regime of the river. Using extremes value analysis, historical and future projections of the annual minimum, mean, and maximum river flows are produced for a range of return periods between 1 and 100 years. We show that the RCP 4.5 and 8.5 scenarios of climate change project an increased severity of the wet season flood pulse (7.5% and 12% increases respectively for the 100- year return floods). These findings are in agreement with previously projected increases in high extremes under the Special Report on Emissions Scenarios (SRES) climate projections, and are important to highlight due to the potential consequences on reproductive processes of in-stream species, swamp forest ecology, and socio-economy in the floodplain, amid a growing literature that more strongly emphasises future droughts and their impact on the viability of the rain forest system over the greater Amazonia.

  3. Severity of Scorpion Stings in the Western Brazilian Amazon: A Case-Control Study

    PubMed Central

    Queiroz, Amanda M.; Sampaio, Vanderson S.; Mendonça, Iran; Fé, Nelson F.; Sachett, Jacqueline; Ferreira, Luiz Carlos L.; Feitosa, Esaú; Wen, Fan Hui; Lacerda, Marcus; Monteiro, Wuelton

    2015-01-01

    Background Scorpion stings are a major public health problem in Brazil, with an increasing number of registered cases every year. Affecting mostly vulnerable populations, the phenomenon is not well described and is considered a neglected disease. In Brazil, the use of anti-venom formulations is provided free of charge. The associate scorpion sting case is subject to compulsory reporting. This paper describes the epidemiology and identifies factors associated with severity of scorpions stings in the state of Amazonas, in the Western Brazilian Amazon. Methodology/Principal Findings This study included all cases of scorpion stings in the state of Amazonas reported to the Brazilian Diseases Surveillance System from January 1, 2007 to December 31, 2014. A case-control study was conducted to identify factors associated with scorpions sting severity. A total of 2,120 cases were reported during this period. The mean incidence rate in the Amazonas was 7.6 per 100,000 inhabitants/year. Scorpion stings showed a large spatial distribution in the state and represent a potential occupational health problem for rural populations. There was a positive correlation between the absolute number of cases and the altimetric river levels in the Central (p<0.001; Rs = 0.479 linear) and Southwest (p = 0.032; linear Rs = 0.261) regions of the state. Cases were mostly classified as mild (68.6%), followed by moderate (26.8%), and severe (4.6%). The overall lethality rate was 0.3%. Lethality rate among children ≤10 years was 1.3%. Age <10 years [OR = 2.58 (95%CI = 1.47–4.55; p = 0.001)], stings occurring in the rural area [OR = 1.97 (95%CI = 1.18–3.29; p = 0.033) and in the South region of the state [OR = 1.85 (95%CI = 1.17–2.93; p = 0.008)] were independently associated with the risk of developing severity. Conclusions/Significance Scorpion stings show an extensive distribution in the Western Brazilian Amazon threatening especially rural populations, children ≤10 in particular. Thus

  4. The extreme 2014 flood in south-western Amazon basin: the role of tropical-subtropical South Atlantic SST gradient

    NASA Astrophysics Data System (ADS)

    Carlo Espinoza, Jhan; Marengo, José Antonio; Ronchail, Josyane; Molina Carpio, Jorge; Noriega Flores, Luís; Loup Guyot, Jean

    2014-12-01

    Unprecedented wet conditions are reported in the 2014 summer (December-March) in South-western Amazon, with rainfall about 100% above normal. Discharge in the Madeira River (the main southern Amazon tributary) has been 74% higher than normal (58 000 m3 s-1) at Porto Velho and 380% (25 000 m3 s-1) at Rurrenabaque, at the exit of the Andes in summer, while levels of the Rio Negro at Manaus were 29.47 m in June 2014, corresponding to the fifth highest record during the 113 years record of the Rio Negro. While previous floods in Amazonia have been related to La Niña and/or warmer than normal tropical South Atlantic, the 2014 rainfall and flood anomalies are associated with warm condition in the western Pacific-Indian Ocean and with an exceptionally warm Subtropical South Atlantic. Our results suggest that the tropical and subtropical South Atlantic SST gradient is a main driver for moisture transport from the Atlantic toward south-western Amazon, and this became exceptionally intense during summer of 2014.

  5. Depopulation of rural landscapes exacerbates fire activity in the western Amazon

    PubMed Central

    Uriarte, María; Pinedo-Vasquez, Miquel; DeFries, Ruth S.; Fernandes, Katia; Gutierrez-Velez, Victor; Baethgen, Walter E.; Padoch, Christine

    2012-01-01

    Destructive fires in Amazonia have occurred in the past decade, leading to forest degradation, carbon emissions, impaired air quality, and property damage. Here, we couple climate, geospatial, and province-level census data, with farmer surveys to examine the climatic, demographic, and land use factors associated with fire frequency in the Peruvian Amazon from 2000 to 2010. Although our results corroborate previous findings elsewhere that drought and proximity to roads increase fire frequency, the province-scale analysis further identifies decreases in rural populations as an additional factor. Farmer survey data suggest that increased burn scar frequency and size reflect increased flammability of emptying rural landscapes and reduced capacity to control fire. With rural populations projected to decline, more frequent drought, and expansion of road infrastructure, fire risk is likely to increase in western Amazonia. Damage from fire can be reduced through warning systems that target high-risk locations, coordinated fire fighting efforts, and initiatives that provide options for people to remain in rural landscapes. PMID:23236144

  6. Depopulation of rural landscapes exacerbates fire activity in the western Amazon.

    PubMed

    Uriarte, María; Pinedo-Vasquez, Miquel; DeFries, Ruth S; Fernandes, Katia; Gutierrez-Velez, Victor; Baethgen, Walter E; Padoch, Christine

    2012-12-26

    Destructive fires in Amazonia have occurred in the past decade, leading to forest degradation, carbon emissions, impaired air quality, and property damage. Here, we couple climate, geospatial, and province-level census data, with farmer surveys to examine the climatic, demographic, and land use factors associated with fire frequency in the Peruvian Amazon from 2000 to 2010. Although our results corroborate previous findings elsewhere that drought and proximity to roads increase fire frequency, the province-scale analysis further identifies decreases in rural populations as an additional factor. Farmer survey data suggest that increased burn scar frequency and size reflect increased flammability of emptying rural landscapes and reduced capacity to control fire. With rural populations projected to decline, more frequent drought, and expansion of road infrastructure, fire risk is likely to increase in western Amazonia. Damage from fire can be reduced through warning systems that target high-risk locations, coordinated fire fighting efforts, and initiatives that provide options for people to remain in rural landscapes.

  7. Mesozooplankton Graze on Cyanobacteria in the Amazon River Plume and Western Tropical North Atlantic.

    PubMed

    Conroy, Brandon J; Steinberg, Deborah K; Song, Bongkuen; Kalmbach, Andrew; Carpenter, Edward J; Foster, Rachel A

    2017-01-01

    Diazotrophic cyanobacteria, those capable of fixing di-nitrogen (N2), are considered one of the major sources of new nitrogen (N) in the oligotrophic tropical ocean, but direct incorporation of diazotrophic N into food webs has not been fully examined. In the Amazon River-influenced western tropical North Atlantic (WTNA), diatom diazotroph associations (DDAs) and the filamentous colonial diazotrophs Trichodesmium have seasonally high abundances. We sampled epipelagic mesozooplankton in the Amazon River plume and WTNA in May-June 2010 to investigate direct grazing by mesozooplankton on two DDA populations: Richelia associated with Rhizosolenia diatoms (het-1) and Hemiaulus diatoms (het-2), and on Trichodesmium using highly specific qPCR assays targeting nitrogenase genes (nifH). Both DDAs and Trichodesmium occurred in zooplankton gut contents, with higher detection of het-2 predominantly in calanoid copepods (2.33-16.76 nifH copies organism(-1)). Abundance of Trichodesmium was low (2.21-4.03 nifH copies organism(-1)), but they were consistently detected at high salinity stations (>35) in calanoid copepods. This suggests direct grazing on DDAs, Trichodesmium filaments and colonies, or consumption as part of sinking aggregates, is common. In parallel with the qPCR approach, a next generation sequencing analysis of 16S rRNA genes identified that cyanobacterial assemblage associated with zooplankton guts was dominated by the non-diazotrophic unicellular phylotypes Synechococcus (56%) and Prochlorococcus (26%). However, in two separate calanoid copepod samples, two unicellular diazotrophs Candidatus Atelocyanobacterium thalassa (UCYN-A) and Crocosphaera watsonii (UCYN-B) were present, respectively, as a small component of cyanobacterial assemblages (<2%). This study represents the first evidence of consumption of DDAs, Trichodesmium, and unicellular cyanobacteria by calanoid copepods in an area of the WTNA known for high carbon export. These diazotroph populations are

  8. Mesozooplankton Graze on Cyanobacteria in the Amazon River Plume and Western Tropical North Atlantic

    PubMed Central

    Conroy, Brandon J.; Steinberg, Deborah K.; Song, Bongkuen; Kalmbach, Andrew; Carpenter, Edward J.; Foster, Rachel A.

    2017-01-01

    Diazotrophic cyanobacteria, those capable of fixing di-nitrogen (N2), are considered one of the major sources of new nitrogen (N) in the oligotrophic tropical ocean, but direct incorporation of diazotrophic N into food webs has not been fully examined. In the Amazon River-influenced western tropical North Atlantic (WTNA), diatom diazotroph associations (DDAs) and the filamentous colonial diazotrophs Trichodesmium have seasonally high abundances. We sampled epipelagic mesozooplankton in the Amazon River plume and WTNA in May–June 2010 to investigate direct grazing by mesozooplankton on two DDA populations: Richelia associated with Rhizosolenia diatoms (het-1) and Hemiaulus diatoms (het-2), and on Trichodesmium using highly specific qPCR assays targeting nitrogenase genes (nifH). Both DDAs and Trichodesmium occurred in zooplankton gut contents, with higher detection of het-2 predominantly in calanoid copepods (2.33–16.76 nifH copies organism-1). Abundance of Trichodesmium was low (2.21–4.03 nifH copies organism-1), but they were consistently detected at high salinity stations (>35) in calanoid copepods. This suggests direct grazing on DDAs, Trichodesmium filaments and colonies, or consumption as part of sinking aggregates, is common. In parallel with the qPCR approach, a next generation sequencing analysis of 16S rRNA genes identified that cyanobacterial assemblage associated with zooplankton guts was dominated by the non-diazotrophic unicellular phylotypes Synechococcus (56%) and Prochlorococcus (26%). However, in two separate calanoid copepod samples, two unicellular diazotrophs Candidatus Atelocyanobacterium thalassa (UCYN-A) and Crocosphaera watsonii (UCYN-B) were present, respectively, as a small component of cyanobacterial assemblages (<2%). This study represents the first evidence of consumption of DDAs, Trichodesmium, and unicellular cyanobacteria by calanoid copepods in an area of the WTNA known for high carbon export. These diazotroph populations are

  9. Canopy spectral and chemical diversity from lowland to tree line in the Western Amazon using CAO-VSWIR

    NASA Astrophysics Data System (ADS)

    Martin, R. E.; Asner, G. P.

    2012-12-01

    Canopy chemistry and spectroscopy offer insight into community assembly and ecosystem processes in high-diversity tropical forests. Results from one lowland site in the Peruvian Amazon suggests both an environmental and an evolutionary component of canopy trait development however, the degree to which larger environmental differences influence diversity in canopy traits and their respective spectroscopic signatures across remains poorly understood. The spectranomics approach explicitly connects phylogenetic, chemical and spectral patterns in tropical canopies providing the basis for analysis, while high-fidelity, airborne remote sensing measurements extend plot-level data to landscape-scale, achieving a comprehensive view of the region. In 2011, the Carnegie Airborne Observatory (CAO) was used to sample a large region of the Western Amazon Basin in southeastern Peru, extending from lowlands to tree line in the Andean mountains. The CAO Visible-Shortwave Imaging Spectrometer (VSWIR) collected 480-band high-fidelity imaging spectroscopy data of the forest canopy, while its high-resolution LiDAR captured information on canopy structure and the underlying terrain. The data were used to quantify relationships between environmental gradients and canopy chemical and spectral diversity. Results suggest strong environmental control with additional phylogenetic influence over canopy spectral and chemical properties, particularly those related to structure, defense and metabolic function. Data from CAO-VSWIR extends the large range in canopy chemical and spectral diversity related to environmental factors across the Western Amazon Basin.

  10. Breast Cancer Awareness among Women in Western Amazon: a Population Based Cross-Sectional Study

    PubMed

    Schilling, Marla Presa Raulino; Silva, Ilce Ferreira da; Opitz, Simone Perufo; Borges, Maria Fernanda de Sousa Oliveira; Koifman, Sergio; Rosalina Jorge, Koifman

    2017-03-01

    Background: A general lack of women`s awareness of breast cancer has been one of the barriers to screening and early presentation. Thus, the aim of this study was to evaluate levels of knowledge about risk factors, and early warning signs of breast cancer, and to determine factors associated with better levels of comprehension. Methods: A population-based cross-sectional study was carried out among 478 women over 40 years old, living in Rio Branco city, western Amazon. All were interviewed using the “Breast cancer knowledge, attitudes and practice scale”, developed by American Cancer Society. Results: Among the respondents, only 28.6% of women were aware that advanced age highly increases the risk. Around 30% of participants recognized nipple retraction as a sign of breast cancer. Breast cancer knowledge varied according to age in such a way that the mean scores were high from 40-69 years and decreased dramatically among those aged ≥70 (β=-0.06,p=0.031). Access to health services such as the Pap-test (β=2.45,p=0.027) and attending a gynecologist in the past two years (β=1.88,p=0.005) were statistically associated with the score of breast cancer knowledge. Conclusion: The findings indicate that women living in urban areas, having gynecological assessment, considering herself at high risk of developing breast cancer and thinking that breast cancer is a fatal disease are statistically associated with good knowledge of breast cancer risk factors, signs and symptoms, even adjusting for age and education. Creative Commons Attribution License

  11. Grazing by Zooplankton on Diazotrophs in the Amazon River Plume and Western Tropical North Atlantic

    NASA Astrophysics Data System (ADS)

    Conroy, B.; Steinberg, D. K.; Song, B.; Foster, R.

    2016-02-01

    Organisms capable of fixing di-nitrogen (N2), known as diazotrophs, are important primary producers and a potentially significant source for new nitrogen entering the planktonic food web. However, limited evidence exists for zooplankton grazing on diazotrophs compared to other primary producers. In the western tropical North Atlantic Ocean (WTNA), the Amazon River plume creates a niche for symbiotic diatom-diazotroph associations (DDAs) which can form large blooms. In adjacent non-plume-influenced waters, the colonial cyanobacterium Trichodesmium is abundant. In order to reveal zooplankton-diazotroph grazing interactions and determine the fate of newly fixed nitrogen, gut contents of zooplankton captured in these two regions were compared based on quantitative PCR (qPCR) assay of nitrogenase genes (nifH), and their microbiomes compared using next generation sequencing (NGS) analysis of 16S rRNA genes. We sampled individual copepods from discrete depth intervals (0-25m and 25-50m) and in two size classes (0.5-1mm and 1-2mm) for analysis. A modified DNA extraction protocol was developed and 54 extracts were used as templates in nifH qPCR assays for the larger size fraction diazotrophs (>10µm): Trichodesmium, and Hemiaulus or Rhizosolenia (diatoms)-Richelia (diazotroph) associations. Copepod gut content nifH copies ranged from 1.6 to 13.6 copies individual-1 for the assay targeting the Hemiaulus-Richelia DDA and from 1.1 to 3.0 copies individual-1 for Trichodesmium. 16S NGS conducted on 35 extracts with an Ion Torrent PGM and mothur revealed that cyanobacteria sequences accounted for up to 20% of sequences per extract. Our results show that both DDAs and Trichodesmium are prey for zooplankton, and that new nitrogen moves through the food web via these grazing interactions. These interactions should be considered in future explorations of the global ocean nitrogen cycle.

  12. Breast Cancer Awareness among Women in Western Amazon: a Population Based Cross-Sectional Study

    PubMed Central

    Schilling, Marla Presa Raulino; da Silva, Ilce Ferreira; Opitz, Simone Perufo; Borges, Maria Fernanda de Sousa Oliveira; Koifman, Sergio; Koifman, Rosalina Jorge

    2017-01-01

    Background: A general lack of women`s awareness of breast cancer has been one of the barriers to screening and early presentation. Thus, the aim of this study was to evaluate levels of knowledge about risk factors, and early warning signs of breast cancer, and to determine factors associated with better levels of comprehension. Methods: A population-based cross-sectional study was carried out among 478 women over 40 years old, living in Rio Branco city, western Amazon. All were interviewed using the “Breast cancer knowledge, attitudes and practice scale”, developed by American Cancer Society. Results: Among the respondents, only 28.6% of women were aware that advanced age highly increases the risk. Around 30% of participants recognized nipple retraction as a sign of breast cancer. Breast cancer knowledge varied according to age in such a way that the mean scores were high from 40-69 years and decreased dramatically among those aged ≥70 (β=-0.06, p=0.031). Access to health services such as the Pap-test (β=2.45, p=0.027) and attending a gynecologist in the past two years (β=1.88, p=0.005) were statistically associated with the score of breast cancer knowledge. Conclusion: The findings indicate that women living in urban areas, having gynecological assessment, considering herself at high risk of developing breast cancer and thinking that breast cancer is a fatal disease are statistically associated with good knowledge of breast cancer risk factors, signs and symptoms, even adjusting for age and education. PMID:28441797

  13. Mercury degassing from forested and open field soils in Rondônia, Western Amazon, Brazil.

    PubMed

    Almeida, Marcelo D; Marins, Rozane V; Paraquetti, Heloisa H M; Bastos, Wanderley R; Lacerda, Luiz D

    2009-09-01

    A Teflon dynamic flux chamber was used to characterize Gaseous Elemental Mercury (GEM) flux from forested and open field soils in a highly changing environment in Rondônia State, western Amazon. We simultaneously analyzed meteorological parameters at the soil level relating GEM fluxes to soil temperature, air humidity, soil moisture, solar radiation, and speed and wind direction. We also examined variations of atmospheric GEM concentration. GEM fluxes during the day and night in the open field site were significantly different (17+/-14ngm(-2) h(-1) and 0.9+/-1.9ngm(-2)h(-1), for day and night, respectively), but were similar within the forest site (4.8+/-1.4ngm(-2)h(-1) and 4.4+/-1.8ngm(-2) h(-1) for day and night periods, respectively). A comparison between 24-h periods averages in the two sites showed much larger emission from the open field site. GEM fluxes at the open field site were positively correlated with soil moisture, solar irradiation and soil temperature and inversely correlated with air humidity. At the forest site GEM fluxes showed no correlation with meteorological variables. At the open field site GEM concentrations significantly correlated with GEM flux, at least during the day. At night in the open field site and during the day and night at the forest site no correlation was found between GEM fluxes and GEM concentrations in the ambient air. Higher emissions from the open field site support earlier studies showing larger Hg remobilization following forest conversion to pasture.

  14. The distribution of thiamin and pyridoxine in the western tropical North Atlantic Amazon River plume

    PubMed Central

    Barada, Laila P.; Cutter, Lynda; Montoya, Joseph P.; Webb, Eric A.; Capone, Douglas G.; Sañudo-Wilhelmy, Sergio A.

    2013-01-01

    B-vitamins are recognized as essential organic growth factors for many organisms, although little is known about their abundance and distribution in marine ecosystems. Despite their metabolic functions regulating important enzymatic reactions, the methodology to directly measure different B-vitamins in aquatic environments has only recently been developed. Here, we present the first direct measurements of two B-vitamins, thiamin (B1), and pyridoxine (B6), in the Amazon River plume-influenced western tropical North Atlantic (WTNA) Ocean, an area known to have high productivity, carbon (C) and dinitrogen (N2) fixation, and C sequestration. The vitamins B1 and B6 ranged in concentrations from undetectable to 230 and 40 pM, respectively. Significantly higher concentrations were measured in the surface plume water at some stations and variation with salinity was observed, suggesting a possible riverine influence on those B-vitamins. The influences of vitamins B1 and B6 on biogeochemical processes such as C and N2 fixation were investigated using a linear regression model that indicated the availability of those organic factors could affect these rates in the WTNA. In fact, significant increases in C fixation and N2 fixation were observed with increasing vitamin B1 concentrations at some low and mesohaline stations (stations 9.1 and 1; p value <0.017 and <0.03, respectively). N2 fixation was also found to have a significant positive correlation with B1 concentrations at station 1 (p value 0.029), as well as vitamin B6 at station 9.1 (p value <0.017). This work suggests that there can be a dynamic interplay between essential biogeochemical rates (C and N2 fixation) and B-vitamins, drawing attention to potential roles of B-vitamins in ecosystem dynamics, community structure, and global biogeochemistry. PMID:23471170

  15. Stability in a changing world - palm community dynamics in the hyperdiverse western Amazon over 17 years.

    PubMed

    Olivares, Ingrid; Svenning, Jens-Christian; van Bodegom, Peter M; Valencia, Renato; Balslev, Henrik

    2017-03-01

    Are the hyperdiverse local forests of the western Amazon undergoing changes linked to global and local drivers such as climate change, or successional dynamics? We analyzed local climatic records to assess potential climatic changes in Yasuní National Park, Ecuador, and compared two censuses (1995, 2012) of a palm community to assess changes in community structure and composition. Over 17 years, the structure and composition of this palm community remained remarkably stable. Soil humidity was significantly lower and canopy conditions were significantly more open in 2012 compared to 1995, but local climatic records showed that no significant changes in precipitation, temperature or river level have occurred during the last decade. Thus, we found no evidence of recent directional shifts in climate or the palm community in Yasuní. The absence of changes in local climate and plant community dynamics in Yasuní contrasts with recent findings from eastern Amazon, where environmental change is driving significant changes in ecosystem dynamics. Our findings suggest that until now, local forests in the northwest Amazon may have escaped pressure from climate change. The stability of this rich palm community embedded in the hyperdiverse Yasuní National Park underlines its uniqueness as a sanctuary for the protection of Amazonian diversity from global change impacts.

  16. Evolution of wet-day and dry-day frequency in the western Amazon basin: Relationship with atmospheric circulation and impacts on vegetation

    NASA Astrophysics Data System (ADS)

    Espinoza, Jhan Carlo; Segura, Hans; Ronchail, Josyane; Drapeau, Guillaume; Gutierrez-Cori, Omar

    2016-11-01

    This paper documents the spatiotemporal evolution of wet-day and dry-day frequency (WDF and DDF) in the western Amazon, its relationships with oceanic and atmospheric variability and possible impact on vegetation. WDF and DDF changed significantly during the 1980-2009 period (p < 0.05). An increase in WDF is observed after 1995 over the northern part of the western Amazon (Marañón basin). The average annual value of WDF changed from 22 days/yr before 1995 to 34 days after that date (+55% after 1995). In contrast, DDF increased significantly over the central and southern part of this region (Ucayali basin) after 1986. Average annual DDF was 16.2 days before 1986 and 23.8 days afterward (+47% after 1986). Interannual variability in WDF appears to be modulated by changes in Pacific SST and the Walker cell during the November-March season. This mechanism enhances convective activity over the northern part of the western Amazon. The increase in DDF is related to warming of the North Tropical Atlantic SST, which produces changes in the Hadley cell and subsidence over the central and the southern western Amazon. More intense seasonal hydrological extremes in the western Amazon therefore appear to be related to changes in WDF and DDF that occurred in 1995 and 1986, respectively. During the 2001-2009 period, an index of vegetation condition (NDVI) appears negatively correlated with DDF (r = -0.95; p < 0.0001). This suggests that vegetation in the western Amazon is mainly water limited, rather than light limited and indicates that the vegetation is highly sensitive to concentration of rainfall.

  17. The role of capybaras as carriers of leptospires in periurban and rural areas in the western Amazon.

    PubMed

    de Albuquerque, Narianne Ferreira; Martins, Gabriel; Medeiros, Luciana; Lilenbaum, Walter; Ribeiro, Vânia Maria França

    2017-05-01

    Although leptospirosis has been described in capybaras, usually based on serological evidences, bacterial culture of leptospires has been scarcely reported in this species. The western Amazon is a reportedly endemic area where high seroprevalences have been reported in different species of wildlife, domestic animals and in human beings. The present study aimed at investigating the role of capybaras as carriers of leptospires in periurban and rural areas in the western Amazon region. A total of 44 animals were captured, and 41 blood samples (for serology) and 41 urine samples (for PCR and bacterial culture) were obtained. A total of 18/41 (43.9%) of sera were reactive and titers were generally low, indicating chronic infection. PCR was positive in 13/41 (31.7%) samples, isolates were recovered from urine samples belonging to Icterohaemorrhagiae, Grippotyphosa and Shermani serogroups. A high number of carriers (confirmed by PCR) associated to a tendency for harboring Icterohaemorrhagiae serogroup strains could be noticed. Our results suggest that capybaras are massively infected by leptospires. Analogously to Norway rats, capybaras present chronic infection with low titers and long-term bacterial shedding, and may be acting as reservoirs of this bacterium. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Goliath catfish spawning in the far western Amazon confirmed by the distribution of mature adults, drifting larvae and migrating juveniles

    PubMed Central

    Barthem, Ronaldo B.; Goulding, Michael; Leite, Rosseval G.; Cañas, Carlos; Forsberg, Bruce; Venticinque, Eduardo; Petry, Paulo; Ribeiro, Mauro L. de B.; Chuctaya, Junior; Mercado, Armando

    2017-01-01

    We mapped the inferred long-distance migrations of four species of Amazonian goliath catfishes (Brachyplatystoma rousseauxii, B. platynemum, B. juruense and B. vaillantii) based on the presence of individuals with mature gonads and conducted statistical analysis of the expected long-distance downstream migrations of their larvae and juveniles. By linking the distribution of larval, juvenile and mature adult size classes across the Amazon, the results showed: (i) that the main spawning regions of these goliath catfish species are in the western Amazon; (ii) at least three species—B. rousseauxii, B. platynemum, and B. juruense—spawn partially or mainly as far upstream as the Andes; (iii) the main spawning area of B. rousseauxii is in or near the Andes; and (iv) the life history migration distances of B. rousseauxii are the longest strictly freshwater fish migrations in the world. These results provide an empirical baseline for tagging experiments, life histories extrapolated from otolith microchemistry interpretations and other methods to establish goliath catfish migratory routes, their seasonal timing and possible return (homing) to western headwater tributaries where they were born. PMID:28165499

  19. The contribution of edaphic heterogeneity to the evolution and diversity of Burseraceae trees in the western Amazon.

    PubMed

    Fine, Paul V A; Daly, Douglas C; Villa Muñoz, Gorky; Mesones, Italo; Cameron, Kenneth M

    2005-07-01

    Environmental heterogeneity in the tropics is thought to lead to specialization in plants and thereby contribute to the diversity of the tropical flora. We examine this idea with data on the habitat specificity of 35 western Amazonian species from the genera Protium, Crepidospermum, and Tetragastris in the monophyletic tribe Protieae (Burseraceae) mapped on a molecular-based phylogeny. We surveyed three edaphic habitats that occur throughout terra firme Amazonia: white-sand, clay, and terrace soils in eight forests across more than 2000 km in the western Amazon. Twenty-six of the 35 species were found to be associated with only one of three soil types, and no species was associated with all three habitats; this pattern of edaphic specialization was consistent across the entire region. Habitat association mapped onto the phylogenetic tree shows association with terrace soils to be the probable ancestral state in the group, with subsequent speciation events onto clay and white-sand soils. The repeated gain of clay association within the clade likely coincides with the emergence of large areas of clay soils in the Miocene deposited during the Andean uplift. Character optimizations revealed that soil association was not phylogenetically clustered for white-sand and clay specialists, suggesting repeated independent evolution of soil specificity is common within the Protieae. This phylogenetic analysis also showed that multiple cases of putative sister taxa with parapatric distributions differ in their edaphic associations, suggesting that edaphic heterogeneity was an important driver of speciation in the Protieae in the Amazon basin.

  20. Brazilian mosquito (Diptera: Culicidae) fauna: I. Anopheles species from Porto Velho, Rondônia state, western Amazon, Brazil.

    PubMed

    Morais, Sirlei Antunes; Urbinatti, Paulo Roberto; Sallum, Maria Anice Mureb; Kuniy, Adriana Akemi; Moresco, Gilberto Gilmar; Fernandes, Aristides; Nagaki, Sandra Sayuri; Natal, Delsio

    2012-12-01

    This study contributes to knowledge of Anopheles species, including vectors of Plasmodium from the western Brazilian Amazon in Porto Velho, Rondônia State. The sampling area has undergone substantial environmental changes as a consequence of agricultural and hydroelectric projects, which have caused intensive deforestation and favored habitats for some mosquito species. The purpose of this study was to diagnose the occurrence of anopheline species from collections in three locations along an electric-power transmission line. Each locality was sampled three times from 2010 to 2011. The principal adult mosquitoes captured in Shannon trap were Anopheles darlingi, An. triannulatus, An. nuneztovari l.s., An.gilesi and An. costai. In addition, larvae were collected in ground breeding sites for Anopheles braziliensis, An. triannulatus, An. darlingi, An. deaneorum, An. marajoara, An. peryassui, An. nuneztovari l.s. and An. oswaldoi-konderi. Anopheles darlingi was the most common mosquito in the region. We discuss Culicidae systematics, fauna distribution, and aspects of malaria in altered habitats of the western Amazon.

  1. Goliath catfish spawning in the far western Amazon confirmed by the distribution of mature adults, drifting larvae and migrating juveniles.

    PubMed

    Barthem, Ronaldo B; Goulding, Michael; Leite, Rosseval G; Cañas, Carlos; Forsberg, Bruce; Venticinque, Eduardo; Petry, Paulo; Ribeiro, Mauro L de B; Chuctaya, Junior; Mercado, Armando

    2017-02-06

    We mapped the inferred long-distance migrations of four species of Amazonian goliath catfishes (Brachyplatystoma rousseauxii, B. platynemum, B. juruense and B. vaillantii) based on the presence of individuals with mature gonads and conducted statistical analysis of the expected long-distance downstream migrations of their larvae and juveniles. By linking the distribution of larval, juvenile and mature adult size classes across the Amazon, the results showed: (i) that the main spawning regions of these goliath catfish species are in the western Amazon; (ii) at least three species-B. rousseauxii, B. platynemum, and B. juruense-spawn partially or mainly as far upstream as the Andes; (iii) the main spawning area of B. rousseauxii is in or near the Andes; and (iv) the life history migration distances of B. rousseauxii are the longest strictly freshwater fish migrations in the world. These results provide an empirical baseline for tagging experiments, life histories extrapolated from otolith microchemistry interpretations and other methods to establish goliath catfish migratory routes, their seasonal timing and possible return (homing) to western headwater tributaries where they were born.

  2. Molecular epidemiology of hepatitis B and hepatitis delta viruses circulating in the Western Amazon region, North Brazil

    PubMed Central

    2014-01-01

    Background Hepatitis B virus (HBV) and hepatitis D virus (HDV) represent important public health problems in the Western Amazon region with reported cases of fulminant hepatitis. This cross sectional study describes HBV and HDV genotypes circulating in the Brazilian Amazon region. Methods HBsAg positive individuals (n = 224) were recruited in Manaus/Amazonas State (130 blood donors from the Hematology and Hemotherapy Foundation from Amazonas/HEMOAM; 60 subjects from outpatient clinic) and in Eirunepe city (n = 34) from 2003–2009. Most participants (n = 153) lived in Manaus, 63 were from 20 remote isolated municipalities, 8 lived outside Amazonas State. Genotyping was based on PCR products: HBV genotype A-F specific primers, restricted length polymorphism for HDV. HDV isolates were directly sequenced (delta antigen 405 nucleotide fragment) and phylogenetic analysis performed (MEGA; neighbor-joining, Kimura’s two parameter). Results Most participants were young adult males and HBV mono-infection predominated (70.5%, 158/224). Among blood donors, outpatient subjects and individuals from Eirunepe, HBV/A prevailed followed by HBV/D and F (p > 0.05). HBV/A was more frequent in blood donors (p < 0.05). HBV-HDV coinfection rate was 8.5% in blood donors (11/130), 65.0% (39/60) in outpatient subjects and 47.0% (16/34) in individuals from Eirunepe. Compared to blood donors, coinfection was higher in outpatient subjects (65.0% versus 8.5%; RR = 5.0; CI 3.4-7.9; p < 0.0001) and in subjects from Eirunepe (47.0% versus 8.5%; RR = 5.5; CI 3.0-9.9; p < 0.0001). HBV-HDV coinfection rates were higher in patients from highly endemic remote cities. Only HDV genotype 3 was detected, HBV/F-HDV/3 predominated (20/38; 52.7%), followed by HBV/A-HDV/3 (31.6%; 12/38) and HBV/D-HDV/3 (15.8%; 6/38). Conclusions The description of HBV and HDV genotypes circulating in the western Amazon can contribute to a better understanding of their relevance on the

  3. Differential Response of Acidobacteria Subgroups to Forest-to-Pasture Conversion and Their Biogeographic Patterns in the Western Brazilian Amazon

    PubMed Central

    Navarrete, Acacio A.; Venturini, Andressa M.; Meyer, Kyle M.; Klein, Ann M.; Tiedje, James M.; Bohannan, Brendan J. M.; Nüsslein, Klaus; Tsai, Siu M.; Rodrigues, Jorge L. M.

    2015-01-01

    Members of the phylum Acidobacteria are among the most abundant soil bacteria on Earth, but little is known about their response to environmental changes. We asked how the relative abundance and biogeographic patterning of this phylum and its subgroups responded to forest-to-pasture conversion in soils of the western Brazilian Amazon. Pyrosequencing of 16S rRNA genes was employed to assess the abundance and composition of the Acidobacteria community across 54 soil samples taken using a spatially nested sampling scheme at the landscape level. Numerically, Acidobacteria represented 20% of the total bacterial community in forest soils and 11% in pasture soils. Overall, 15 different Acidobacteria subgroups of the current 26 subgroups were detected, with Acidobacteria subgroups 1, 3, 5, and 6 accounting together for 87% of the total Acidobacteria community in forest soils and 75% in pasture soils. Concomitant with changes in soil chemistry after forest-to-pasture conversion—particularly an increase in properties linked to soil acidity and nutrient availability—we observed an increase in the relative abundances of Acidobacteria subgroups 4, 10, 17, and 18, and a decrease in the relative abundances of other Acidobacteria subgroups in pasture relative to forest soils. The composition of the total Acidobacteria community as well as the most abundant Acidobacteria subgroups (1, 3, 5, and 6) was significantly more similar in composition across space in pasture soils than in forest soils. These results suggest that preponderant responses of Acidobacteria subgroups, especially subgroups 1, 3, 4, 5, and 6, to forest-to-pasture conversion effects in soils could be used to define management-indicators of agricultural practices in the Amazon Basin. These acidobacterial responses are at least in part through alterations on acidity- and nutrient-related properties of the Amazon soils. PMID:26733981

  4. Phlebitis associated with peripheral intravenous catheters in adults admitted to hospital in the Western Brazilian Amazon.

    PubMed

    Enes, Sandra Maria Sampaio; Opitz, Simone Perufo; Faro, André Ricardo Maia da Costa de; Pedreira, Mavilde de Luz Gonçalves

    2016-04-01

    To identify the presence of phlebitis and the factors that influence the development of this complication in adult patients admitted to hospital in the western Brazilian Amazon. Exploratory study with a sample of 122 peripheral intravenous catheters inserted in 122 patients in a medical unit. Variables related to the patient and intravenous therapy were analyzed. For the analysis, we used chi-square tests of Pearson and Fisher exact test, with 5% significance level. Complication was the main reason for catheter removal (67.2%), phlebitis was the most frequent complication (31.1%). The mean duration of intravenous therapy use was 8.81 days in continuous and intermittent infusion (61.5%), in 20G catheter (39.3%), inserted in the dorsal hand vein arc (36.9 %), with mean time of usage of 68.4 hours. The type of infusion (p=0.044) and the presence of chronic disease (p=0.005) and infection (p=0.007) affected the development of phlebitis. There was a high frequency of phlebitis in the sample, being influenced by concomitant use of continuous and intermittent infusion of drugs and solutions, and more frequent in patients with chronic diseases and infection. Identificar a presença de flebite e os fatores que influenciam o desenvolvimento desta complicação em pacientes adultos internados em hospital da Amazônia Ocidental Brasileira. Estudo exploratório, com amostra de 122 cateteres intravenosos periféricos instalados em 122 pacientes de uma unidade de clínica médica. Foram analisadas variáveis relacionadas ao paciente e à terapia intravenosa. Para a análise utilizaram-se os testes de Qui-quadrado de Pearson e Exato de Fisher, com nível de significância de 5%. A complicação foi o principal motivo da retirada do cateter (67,2%), e a flebite a complicação mais frequente (31,1%). O tempo médio de uso de terapia intravenosa foi de 8,81 dias, em infusão contínua e intermitente (61,5%), em cateter calibre 20G (39,3%), inseridos nas veias do arco dorsal da m

  5. [Prevalence of arterial hypertension in communities along the Madeira River, Western Brazilian Amazon].

    PubMed

    Oliveira, Beatriz Fátima Alves de; Mourão, Dennys de Souza; Gomes, Núbia; Costa, Janaina Mara C; Souza, Andreia Vasconcelos de; Bastos, Wanderley Rodrigues; Fonseca, Marlon de Freitas; Mariani, Carolina Fiorillo; Abbad, Guilherme; Hacon, Sandra S

    2013-08-01

    The aim of this cross-sectional study was to estimate the prevalence of hypertension among adults (n = 841) in communities along the Madeira River in the Brazilian Amazon, prior to startup of the Santo Antônio Hydroelectric Plant. The study gathered information on sociodemographic conditions, history of diseases, habits, fish consumption, and anthropometric parameters. Logistic regression was used to calculate odds ratios and the respective confidence intervals. Among the riverine communities, 26% (95%CI: 23%-29%) of adults presented hypertension (29% in men [95%CI: 24%-33%] and 23% in women [95%CI: 19%-27%]). Factors associated with hypertension were age, BMI, and place of residence in men and age, triglycerides, and blood glucose in women. The findings can contribute to strategies for state and municipal health services to monitor and prevent cardiovascular events.

  6. The impacts of land use changes in the mercury flux in the Madeira River, Western Amazon.

    PubMed

    Lacerda, Luiz D; Bastos, Wanderley R; Almeida, Marcelo D

    2012-03-01

    Changes in hydrochemistry and Hg distribution in the Madeira River from Porto Velho to the confluence with the Amazon River were studied in two cruises in 1997 and 2002. Water conductivity was similar in both periods, but the pH was significantly higher in 2002, in particular along the middle reaches of the river. Total suspended matter concentrations also increased from 1997 to 2002 along the same river portion, which is a result of forest conversion to other land uses, in particular pastures and agriculture accelerated during the interval between the cruises. Dissolved Hg concentrations were similar along the river in both cruises, but particulate Hg concentrations increased significantly along the middle portion of the river, although the suspended matter from 2002 was relatively poorer in Hg compared to that from 1997. Since particulate Hg represents more than 90% of the total Hg present in the river water, there was a significant increase in the total Hg transport in the Madeira River. Although gold mining has nearly ceased to exist in the region, the remobilization of Hg from forest soils through conversion to other land uses is responsible for maintaining relatively high Hg content in the Madeira River environment.

  7. High risk of respiratory diseases in children in the fire period in Western Amazon

    PubMed Central

    Silva, Pãmela Rodrigues de Souza; Ignotti, Eliane; de Oliveira, Beatriz Fátima Alves; Junger, Washington Leite; Morais, Fernando; Artaxo, Paulo; Hacon, Sandra

    2016-01-01

    ABSTRACT OBJECTIVE To analyze the toxicological risk of exposure to ozone (O3) and fine particulate matter (PM2.5) among schoolchildren.. METHODS Toxicological risk assessment was used to evaluate the risk of exposure to O3 and PM2.5 from biomass burning among schoolchildren aged six to 14 years, residents of Rio Branco, Acre, Southern Amazon, Brazil. We used Monte Carlo simulation to estimate the potential intake dose of both pollutants. RESULTS During the slash-and-burn periods, O3 and PM2.5 concentrations reached 119.4 µg/m3 and 51.1 µg/m3, respectively. The schoolchildren incorporated medium potential doses regarding exposure to O3 (2.83 μg/kg.day, 95%CI 2.72–2.94). For exposure to PM2.5, we did not find toxicological risk (0.93 μg/kg.day, 95%CI 0.86–0.99). The toxicological risk for exposure to O3 was greater than 1 for all children (QR = 2.75; 95%CI 2.64–2.86). CONCLUSIONS Schoolchildren were exposed to high doses of O3 during the dry season of the region. This posed a toxicological risk, especially to those who had previous diseases. PMID:27305405

  8. Ichnologic evidence of a Cambrian age in the southern Amazon Craton: Implications for the onset of the Western Gondwana history

    NASA Astrophysics Data System (ADS)

    Santos, Hudson P.; Mángano, M. Gabriela; Soares, Joelson L.; Nogueira, Afonso C. R.; Bandeira, José; Rudnitzki, Isaac D.

    2017-07-01

    Colonization of the infaunal ecospace by burrowing bilaterians is one of the most important behavioral innovations during the Ediacaran-Cambrian transition. The establishment of vertical burrows by suspension feeders in high-energy nearshore settings during Cambrian Age 2 is reflected by the appearance of the Skolithos Ichnofacies. For the first time, unquestionable vertical burrows typical of the Skolithos Ichnofacies, such as Skolithos linearis, Diplocraterion parallelum and Arenicolites isp., are recorded from nearshore siliciclastic deposits of the Raizama Formation, southeastern Amazon Craton, Brazil. Integration of ichnologic and sedimentologic datasets suggests that these trace fossils record colonization of high-energy and well-oxygenated nearshore sandy environments. Chronostratigraphically, the presence of these vertical burrows indicates an age not older than early Cambrian for the Raizama Formation, which traditionally has been regarded as Ediacaran. Therefore, the Raizama ichnofauna illustrates the advent of modern Phanerozoic ecology marked by the Agronomic Revolution. The discovery of the Skolithos Ichnofacies in these shallow-marine strata suggests possible connections between some central Western Gondwana basins.

  9. Food insecurity and dental caries in schoolchildren: a cross-sectional survey in the western Brazilian Amazon.

    PubMed

    Frazão, Paulo; Benicio, Maria H D; Narvai, Paulo C; Cardoso, Marly A

    2014-06-01

    We analyzed the association between food insecurity and dental caries in 7- to 9-yr-old schoolchildren. We performed a cross-sectional survey nested in a population-based cohort study of 203 schoolchildren. The participants lived in the urban area of a small town within the western Brazilian Amazon. Dental examinations were performed according to criteria recommended by the World Health Organization. The number of decayed deciduous and permanent teeth as a count variable was the outcome measure. Socio-economic status, food security, behavioral variables, and child nutritional status, measured by Z-score for body mass index (BMI), were investigated, and robust Poisson regression models were used. The results showed a mean (SD) of 3.63 (3.26) teeth affected by untreated caries. Approximately 80% of schoolchildren had at least one untreated decayed tooth, and nearly 60% lived in food-insecure households. Sex, household wealth index, mother's education level, and food-insecurity scores were associated with dental caries in the crude analysis. Dental caries was 1.5 times more likely to be associated with high food-insecurity scores after adjusting for socio-economic status and sex. A significant dose-response relationship was observed. In conclusion, food insecurity is highly associated with dental caries in 7- to 9-yr-old children and may be seen as a risk factor. These findings suggest that food-security policies could reduce dental caries. © 2014 Eur J Oral Sci.

  10. Gastrointestinal parasites in captive and free-ranging Cebus albifrons in the Western Amazon, Ecuador.

    PubMed

    Martin-Solano, Sarah; Carrillo-Bilbao, Gabriel A; Ramirez, William; Celi-Erazo, Maritza; Huynen, Marie-Claude; Levecke, Bruno; Benitez-Ortiz, Washington; Losson, Bertrand

    2017-12-01

    Currently, there is a lack of surveys that report the occurrence of gastrointestinal parasites in the white-headed capuchin monkey (Cebus albifrons). We therefore assessed the presence and richness (= number of different parasite genera) of parasites in C. albifrons in wildlife refuges (n = 11) and in a free-ranging group near a human village (n = 15) in the Ecuadorian Amazon. In the 78 samples collected (median of 3 samples per animal), we identified a total of 6 genera of gastrointestinal parasites, representing protozoa, nematodes, acanthocephalans and cestodes. We observed a high prevalence (84%) across the 26 individuals, with the most prevalent parasite being Strongyloides sp. (76.9%), followed by Hymenolepis sp. (38.5%) and Prosthenorchis elegans (11.5%). We found Entamoeba histolytica/dispar/moskovskii/nuttalli and Capillaria sp. in only a minority of the animals (3.8%). In addition, we observed unidentified strongyles in approximately one-third of the animals (34.6%). We found a total of 6 parasite genera for the adult age group, which showed higher parasite richness than the subadult age group (5) and the juvenile age group (3). Faecal egg/cyst counts were not significantly different between captive and free-ranging individuals or between sexes or age groups. The free-ranging group had a higher prevalence than the captive group; however, this difference was not significant. The only genus common to captive and free-ranging individuals was Strongyloides sp. The high prevalence of gastrointestinal parasites and the presence of Strongyloides in both populations support results from previous studies in Cebus species. This high prevalence could be related to the high degree of humidity in the region. For the free-ranging group, additional studies are required to gain insights into the differences in parasite prevalence and intensity between age and sex groups. Additionally, our study demonstrated that a serial sampling of each individual increases the

  11. Terrestrial Carbon Sinks in the Brazilian Amazon and Cerrado Region Predicted from MODIS Satellite Data and Ecosystem Modeling

    NASA Technical Reports Server (NTRS)

    Potter, C.; Klooster, S.; Huete, A.; Genovese, V.; Bustamante, M.; Ferreira, L. Guimaraes; deOliveira, R. C., Jr.; Zepp, R.

    2009-01-01

    A simulation model based on satellite observations of monthly vegetation cover from the Moderate Resolution Imaging Spectroradiometer (MODIS) was used to estimate monthly carbon fluxes in terrestrial ecosystems of Brazilian Amazon and Cerrado regions over the period 2000-2004. Net ecosystem production (NEP) flux for atmospheric CO2 in the region for these years was estimated. Consistently high carbon sink fluxes in terrestrial ecosystems on a yearly basis were found in the western portions of the states of Acre and Rondonia and the northern portions of the state of Par a. These areas were not significantly impacted by the 2002-2003 El Nino event in terms of net annual carbon gains. Areas of the region that show periodically high carbon source fluxes from terrestrial ecosystems to the atmosphere on yearly basis were found throughout the state of Maranhao and the southern portions of the state of Amazonas. As demonstrated though tower site comparisons, NEP modeled with monthly MODIS Enhanced Vegetation Index (EVI) inputs closely resembles the measured seasonal carbon fluxes at the LBA Tapajos tower site. Modeling results suggest that the capacity for use of MODIS Enhanced Vegetation Index (EVI) data to predict seasonal uptake rates of CO2 in Amazon forests and Cerrado woodlands is strong.

  12. Characterization of forest biodiversity in Western Amazon using CAO-VSWIR imaging spectroscopy

    NASA Astrophysics Data System (ADS)

    Féret, J.; Asner, G. P.

    2012-12-01

    Mapping canopy species richness is a key to the study and conservation of biological diversity in tropical forests, but to date, no reliable methods exist for operational biodiversity mapping of tropical regions. Airborne imaging spectroscopy has proven potential for the discrimination of canopy tree species, as a combination of high spectral and spatial resolution allows measurement of subtle spectral variations among individual tree crowns, corresponding to the chemical properties of the leaves in different species. We developed a method to estimate the Shannon diversity index, a popular biodiversity indicator, of a forest canopy from airborne spectral data by building upon the Spectral Variation Hypothesis, which relates biological diversity to spectral variability. We collected and analyzed hyperspectral data acquired by the Carnegie Airborne Observatory (CAO) Airborne Taxonomic Mapping System (AToMS) over the Los Amigos Conservation Concession in the Peruvian Amazon. The data have a spatial resolution of 2.0 m and 217 bands evenly spaced between 380 nm and 2510 nm. The method relies on a k-means clustering of a subset of pixels randomly selected from a site, each cluster serving as a proxy for different species. Each pixel in the image is then assigned to the nearest 'proxy-species', the Shannon index is computed for a given area, i.e. 1 ha, and the process is repeated several times to obtain the average estimated Shannon index. To test our approach, we applied the method to two types of data acquired by CAO AToMS. The first was an artificial gradient of biological diversity generated using pixels corresponding to species identified during a field campaign. This artificial gradient allowed total control on the number of species (ranging from 1 to 36 species per ha), and accurate quantification of the results. The spectral diversity index mapped using our method showed a strong correlation with the actual Shannon diversity index (R^2=0.81). The second dataset

  13. Natural Plasmodium infection in monkeys in the state of Rondônia (Brazilian Western Amazon).

    PubMed

    Araújo, Maisa S; Messias, Mariluce R; Figueiró, Marivaldo R; Gil, Luiz Herman S; Probst, Christian M; Vidal, Newton M; Katsuragawa, Tony H; Krieger, Marco A; Silva, Luiz H Pereira da; Ozaki, Luiz S

    2013-06-03

    Simian malaria is still an open question concerning the species of Plasmodium parasites and species of New World monkeys susceptible to the parasites. In addition, the lingering question as to whether these animals are reservoirs for human malaria might become important especially in a scenario of eradication of the disease. To aid in the answers to these questions, monkeys were surveyed for malaria parasite natural infection in the Amazonian state of Rondônia, Brazil, a state with intense environmental alterations due to human activities, which facilitated sampling of the animals. Parasites were detected and identified in DNA from blood of monkeys, by PCR with primers for the 18S rRNA, CSP and MSP1 genes and sequencing of the amplified fragments. Multiplex PCR primers for the 18S rRNA genes were designed for the parasite species Plasmodium falciparum and Plasmodium vivax, Plasmodium malariae/Plasmodium brasilianum and Plasmodium simium. An overall infection rate of 10.9% was observed or 20 out 184 monkey specimens surveyed, mostly by P. brasilianum. However, four specimens of monkeys were found infected with P. falciparum, two of them doubly infected with P. brasilianum and P. falciparum. In addition, a species of monkey of the family Aotidae, Aotus nigriceps, is firstly reported here naturally infected with P. brasilianum. None of the monkeys surveyed was found infected with P. simium/P. vivax. The rate of natural Plasmodium infection in monkeys in the Brazilian state of Rondônia is in line with previous surveys of simian malaria in the Amazon region. The fact that a monkey species was found that had not previously been described to harbour malaria parasites indicates that the list of monkey species susceptible to Plasmodium infection is yet to be completed. Furthermore, finding monkeys in the region infected with P. falciparum clearly indicates parasite transfer from humans to the animals. Whether this parasite can be transferred back to humans and how

  14. Natural Plasmodium infection in monkeys in the state of Rondônia (Brazilian Western Amazon)

    PubMed Central

    2013-01-01

    Background Simian malaria is still an open question concerning the species of Plasmodium parasites and species of New World monkeys susceptible to the parasites. In addition, the lingering question as to whether these animals are reservoirs for human malaria might become important especially in a scenario of eradication of the disease. To aid in the answers to these questions, monkeys were surveyed for malaria parasite natural infection in the Amazonian state of Rondônia, Brazil, a state with intense environmental alterations due to human activities, which facilitated sampling of the animals. Methods Parasites were detected and identified in DNA from blood of monkeys, by PCR with primers for the 18S rRNA, CSP and MSP1 genes and sequencing of the amplified fragments. Multiplex PCR primers for the 18S rRNA genes were designed for the parasite species Plasmodium falciparum and Plasmodium vivax, Plasmodium malariae/Plasmodium brasilianum and Plasmodium simium. Results An overall infection rate of 10.9% was observed or 20 out 184 monkey specimens surveyed, mostly by P. brasilianum. However, four specimens of monkeys were found infected with P. falciparum, two of them doubly infected with P. brasilianum and P. falciparum. In addition, a species of monkey of the family Aotidae, Aotus nigriceps, is firstly reported here naturally infected with P. brasilianum. None of the monkeys surveyed was found infected with P. simium/P. vivax. Conclusion The rate of natural Plasmodium infection in monkeys in the Brazilian state of Rondônia is in line with previous surveys of simian malaria in the Amazon region. The fact that a monkey species was found that had not previously been described to harbour malaria parasites indicates that the list of monkey species susceptible to Plasmodium infection is yet to be completed. Furthermore, finding monkeys in the region infected with P. falciparum clearly indicates parasite transfer from humans to the animals. Whether this parasite can be

  15. Seasonal variability in methane and nitrous oxide fluxes from tropical peatlands in the western Amazon basin

    NASA Astrophysics Data System (ADS)

    Arn Teh, Yit; Murphy, Wayne A.; Berrio, Juan-Carlos; Boom, Arnoud; Page, Susan E.

    2017-08-01

    The Amazon plays a critical role in global atmospheric budgets of methane (CH4) and nitrous oxide (N2O). However, while we have a relatively good understanding of the continental-scale flux of these greenhouse gases (GHGs), one of the key gaps in knowledge is the specific contribution of peatland ecosystems to the regional budgets of these GHGs. Here we report CH4 and N2O fluxes from lowland tropical peatlands in the Pastaza-Marañón foreland basin (PMFB) in Peru, one of the largest peatland complexes in the Amazon basin. The goal of this research was to quantify the range and magnitude of CH4 and N2O fluxes from this region, assess seasonal trends in trace gas exchange, and determine the role of different environmental variables in driving GHG flux. Trace gas fluxes were determined from the most numerically dominant peatland vegetation types in the region: forested vegetation, forested (short pole) vegetation, Mauritia flexuosa-dominated palm swamp, and mixed palm swamp. Data were collected in both wet and dry seasons over the course of four field campaigns from 2012 to 2014. Diffusive CH4 emissions averaged 36.05 ± 3.09 mg CH4-C m-2 day-1 across the entire dataset, with diffusive CH4 flux varying significantly among vegetation types and between seasons. Net ebullition of CH4 averaged 973.3 ± 161.4 mg CH4-C m-2 day-1 and did not vary significantly among vegetation types or between seasons. Diffusive CH4 flux was greatest for mixed palm swamp (52.0 ± 16.0 mg CH4-C m-2 day-1), followed by M. flexuosa palm swamp (36.7 ± 3.9 mg CH4-C m-2 day-1), forested (short pole) vegetation (31.6 ± 6.6 mg CH4-C m-2 day-1), and forested vegetation (29.8 ± 10.0 mg CH4-C m-2 day-1). Diffusive CH4 flux also showed marked seasonality, with divergent seasonal patterns among ecosystems. Forested vegetation and mixed palm swamp showed significantly higher dry season (47.2 ± 5.4 mg CH4-C m-2 day-1 and 85.5 ± 26.4 mg CH4-C m-2 day-1, respectively) compared to wet season emissions

  16. Rondonin an antifungal peptide from spider (Acanthoscurria rondoniae) haemolymph

    PubMed Central

    Riciluca, K.C.T.; Sayegh, R.S.R.; Melo, R.L.; Silva, P.I.

    2012-01-01

    Antimicrobial activities were detected in the haemolymph of the spider Acanthoscurrria rondoniae. A novel antifungal peptide, rondonin, was purified by reverse phase high performance liquid chromatography (RP-HPLC). Rondonin has an amino acid sequence of IIIQYEGHKH and a molecular mass of 1236.776 Da. This peptide has identity to a C-terminal fragment of the “d” subunit of haemocyanin from the spiders Eurypelma californicum and Acanthoscurria gomesiana. A synthetic peptide mimicking rondonin had identical characteristics to those of the isolated material, confirming its sequence. The synthetic peptide was active only against fungus. These data led us to conclude that the antifungal activity detected in the plasma of these spiders is the result of enzymatic processing of a protein that delivers oxygen in the haemolymph of many chelicerate. Several studies have suggested that haemocyanins are involved in the arthropod immune system, and the activity of this haemocyanin fragment reinforces this idea. PMID:24371568

  17. Reduction of incidence and relapse or recrudescence cases of malaria in the western region of the Brazilian Amazon.

    PubMed

    Vieira, Gabriel de Deus; Gim, Karla Nayma Mundt; Zaqueo, Guilherme Mendes; Alves, Thaianne da Cunha; Katsuragawa, Tony Hiroshi; Basano, Sergio de Almeida; Camargo, Luís Marcelo Aranha; Maciel de Sousa, Camila

    2014-09-12

    Malaria is one of the major parasitic diseases in the State of Rondônia, located in the western Brazilian Amazon. The basic treatment scheme for this disease is chloroquine and primaquine. This study evaluated the epidemiological profile of malaria in Rondônia between 2008 and 2012. The epidemiological data were provided by the Health Surveillance Agency from the State of Rondônia, and socioeconomic indicators were obtained from the Brazilian Institute of Geography and Statistics, Department of Informatics of the Unified Health System, and from the National Institute for Space Research. The analyzed variables included year of diagnosis, gender, age group, main activity performed in the 15 days previous to the diagnosis, parasite species, level of parasitemia, number of relapse/recrudescence cases, and socioeconomic and environmental data for Rondônia. A total of 238,626 cases of malaria were recorded in Rondônia during the study period. Of this total, 65.6% were men and the most prevalent age group was 20-39 years. Plasmodium vivax was the most common parasite (89.8%), followed by Plasmodium   falciparum (9.4%). An average of 30.9% of the individuals who were tested presented with relapse/recrudescence malaria. The API value was highest in 2008 and lowest in 2012, corresponding to 42.3 cases and 19.2 cases per 1,000 inhabitants, respectively. A 58% reduction in the number of malaria cases and a 36.2% reduction in the number of relapse/recrudescence malaria cases were observed, due to increases in the economy, improvements in the health system, and reduction of deforestation in this region.

  18. High frequency of diabetes and impaired fasting glucose in patients with glucose-6-phosphate dehydrogenase deficiency in the Western brazilian Amazon.

    PubMed

    Santana, Marli S; Monteiro, Wuelton M; Costa, Mônica R F; Sampaio, Vanderson S; Brito, Marcelo A M; Lacerda, Marcus V G; Alecrim, Maria G C

    2014-07-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is one of the most common human genetic abnormalities, and it has a significant prevalence in the male population (X chromosome linked). The purpose of this study was to estimate the frequency of impaired fasting glucose and diabetes among G6PD-deficient persons in Manaus, Brazil, an area in the Western Brazilian Amazon to which malaria is endemic. Glucose-6-phosphate dehydrogenase-deficient males had more impaired fasting glucose and diabetes. This feature could be used as a screening tool for G6PD-deficient persons who are unable to use primaquine for the radical cure of Plasmodium vivax malaria.

  19. Differentiation in the fertility of Inceptisols as related to land use in the upper Solimões river region, western Amazon.

    PubMed

    Moreira, Fatima Maria de Souza; Nóbrega, Rafaela Simão Abrahão; Jesus, Ederson da Conceição; Ferreira, Daniel Furtado; Pérez, Daniel Vidal

    2009-12-20

    The Upper Solimões river region, western Amazon, is the homeland of indigenous populations and contains small-scale agricultural systems that are important for biodiversity conservation. Although traditional slash-and-burn agriculture is being practiced over many years, deforestation there is relatively small compared to other Amazon regions. Pastures are restricted to the vicinity of cities and do not spread to the small communities along the river. Inceptisols are the main soil order (>90%) in the area and have unique attributes including high Al content and high cation exchange capacity (CEC) due to the enrichment of the clay fraction with 2:1 secondary aluminosilicates. Despite its importance, few studies have focussed on this soil order when considering land use effects on the fertility of Amazon soils. Thus, the objective of this study was to evaluate changes in soil fertility of representative land use systems (LUSs) in the Upper Solimões region, namely: primary rainforest, old secondary forest, young secondary forest, agroforestry, pasture and agriculture. LUSs were significantly differentiated by the chemical attributes of their topsoil (0-20 cm). Secondary forests presented soil chemical attributes more similar to primary rainforest areas, while pastures exhibited the highest dissimilarity from all the other LUSs. As a whole, soil chemical changes among Inceptisols dominated LUSs showed patterns that were distinct from those reported from other Amazon soils like Oxisols and Ultisols. This is probably related to the presence of high-activity clays enriched in exchangeable aluminum that heavily influenced the soil chemical reactions over the expected importance of organic matter found in most studies conducted over Oxisol and Ultisol.

  20. Hydrologic changes across western and eastern Amazon during the late Holocene recorded in sediments from the Xingu Ria

    NASA Astrophysics Data System (ADS)

    Bertassoli, Dailson J., Jr.; Sawakuchi, Andre O.; Sawakuchi, Henrique O.; Pupim, Fabiano N.; Hartmann, Gelvam A.; Chiessi, Cristiano M.

    2017-04-01

    The Xingu River is a major tributary of the Amazon. It is a clearwater river with low sedimentary load, unique biodiversity and great socioeconomic relevance for the eastern Amazonia. The lower valley of the Xingu River was flooded after the last glacial maximum and became a lake-like channel known as Xingu Ria. Sedimentation in the Xingu Ria is under tidal influence and is mainly controlled by backwater effects related to the timing difference between the peak stages of the Xingu and the Amazon rivers. This condition allows the input and deposition of sediments of the Amazon River in the downstream sector of the Xingu Ria. This particular sedimentary dynamic records the relative sediment supplies derived from the Amazon and Xingu rivers. Thus, the sediments accumulated in the downstream sector of the Xingu Ria testimony relative shifts between the water discharges of the Amazon and Xingu catchments during the late Holocene, when major physiographic changes were absent. We obtained a 3.7 m long sediment core at the confluence of both rivers and sampled it at every 2 cm for inorganic geochemistry, diatom and magnetic susceptibility analyses. Ages of sediment deposition were constrained by optically stimulated luminescence (OSL) and radiocarbon dating. OSL dating was carried out using a single aliquot regeneration dose (SAR) protocol applied to quartz in fine silt and fine sand grain sizes. The equivalent doses ranged from 0.3 to 3.1 Gy (Central Age Model) and the dose rate values were approximately 2.5 Gy/ka, giving ages from 118±81 (10 cm depth) to 1251±211 (363 cm depth) years. Samples of suspended sediments show that Fe/K and Ti/K ratios increase during the wet season of the Xingu River. Additionally, sediments of the Xingu River have higher Fe/K and Ti/K ratios compared to sediments of the Amazon River. Preliminary results indicate positive anomalies in the relative percentages of Fe and Ti from 700 to 300 years ago. This is interpreted as a relative increase

  1. Genetic and Symbiotic Diversity of Nitrogen-Fixing Bacteria Isolated from Agricultural Soils in the Western Amazon by Using Cowpea as the Trap Plant

    PubMed Central

    Azarias Guimarães, Amanda; Duque Jaramillo, Paula Marcela; Simão Abrahão Nóbrega, Rafaela; Florentino, Ligiane Aparecida; Barroso Silva, Karina

    2012-01-01

    Cowpea is a legume of great agronomic importance that establishes symbiotic relationships with nitrogen-fixing bacteria. However, little is known about the genetic and symbiotic diversity of these bacteria in distinct ecosystems. Our study evaluated the genetic diversity and symbiotic efficiencies of 119 bacterial strains isolated from agriculture soils in the western Amazon using cowpea as a trap plant. These strains were clustered into 11 cultural groups according to growth rate and pH. The 57 nonnodulating strains were predominantly fast growing and acidifying, indicating a high incidence of endophytic strains in the nodules. The other 62 strains, authenticated as nodulating bacteria, exhibited various symbiotic efficiencies, with 68% of strains promoting a significant increase in shoot dry matter of cowpea compared with the control with no inoculation and low levels of mineral nitrogen. Fifty genotypes with 70% similarity and 21 genotypes with 30% similarity were obtained through repetitive DNA sequence (BOX element)-based PCR (BOX-PCR) clustering. The 16S rRNA gene sequencing of strains representative of BOX-PCR clusters showed a predominance of bacteria from the genus Bradyrhizobium but with high species diversity. Rhizobium, Burkholderia, and Achromobacter species were also identified. These results support observations of cowpea promiscuity and demonstrate the high symbiotic and genetic diversity of rhizobia species in areas under cultivation in the western Amazon. PMID:22798370

  2. Genetic and symbiotic diversity of nitrogen-fixing bacteria isolated from agricultural soils in the western Amazon by using cowpea as the trap plant.

    PubMed

    Azarias Guimarães, Amanda; Duque Jaramillo, Paula Marcela; Simão Abrahão Nóbrega, Rafaela; Florentino, Ligiane Aparecida; Barroso Silva, Karina; de Souza Moreira, Fatima Maria

    2012-09-01

    Cowpea is a legume of great agronomic importance that establishes symbiotic relationships with nitrogen-fixing bacteria. However, little is known about the genetic and symbiotic diversity of these bacteria in distinct ecosystems. Our study evaluated the genetic diversity and symbiotic efficiencies of 119 bacterial strains isolated from agriculture soils in the western Amazon using cowpea as a trap plant. These strains were clustered into 11 cultural groups according to growth rate and pH. The 57 nonnodulating strains were predominantly fast growing and acidifying, indicating a high incidence of endophytic strains in the nodules. The other 62 strains, authenticated as nodulating bacteria, exhibited various symbiotic efficiencies, with 68% of strains promoting a significant increase in shoot dry matter of cowpea compared with the control with no inoculation and low levels of mineral nitrogen. Fifty genotypes with 70% similarity and 21 genotypes with 30% similarity were obtained through repetitive DNA sequence (BOX element)-based PCR (BOX-PCR) clustering. The 16S rRNA gene sequencing of strains representative of BOX-PCR clusters showed a predominance of bacteria from the genus Bradyrhizobium but with high species diversity. Rhizobium, Burkholderia, and Achromobacter species were also identified. These results support observations of cowpea promiscuity and demonstrate the high symbiotic and genetic diversity of rhizobia species in areas under cultivation in the western Amazon.

  3. The Rondonia Lightning Detection Network: Network Description, Science Objectives, Data Processing Archival/Methodology, and Results

    NASA Technical Reports Server (NTRS)

    Blakeslee, R. J.; Bailey, J. C.; Pinto, O.; Athayde, A.; Renno, N.; Weidman, C. D.

    2003-01-01

    A four station Advanced Lightning Direction Finder (ALDF) network was established in the state of Rondonia in western Brazil in 1999 through a collaboration of U.S. and Brazilian participants from NASA, INPE, INMET, and various universities. The network utilizes ALDF IMPACT (Improved Accuracy from Combined Technology) sensors to provide cloud-to-ground lightning observations (i.e., stroke/flash locations, signal amplitude, and polarity) using both time-of- arrival and magnetic direction finding techniques. The observations are collected, processed and archived at a central site in Brasilia and at the NASA/Marshall Space Flight Center in Huntsville, Alabama. Initial, non-quality assured quick-look results are made available in near real-time over the Internet. The network, which is still operational, was deployed to provide ground truth data for the Lightning Imaging Sensor (LIS) on the Tropical Rainfall Measuring Mission (TRMM) satellite that was launched in November 1997. The measurements are also being used to investigate the relationship between the electrical, microphysical and kinematic properties of tropical convection. In addition, the long-time series observations produced by this network will help establish a regional lightning climatological database, supplementing other databases in Brazil that already exist or may soon be implemented. Analytic inversion algorithms developed at the NASA/Marshall Space Flight Center have been applied to the Rondonian ALDF lightning observations to obtain site error corrections and improved location retrievals. The data will also be corrected for the network detection efficiency. The processing methodology and the results from the analysis of four years of network operations will be presented.

  4. Amazon River

    Atmospheric Science Data Center

    2013-04-17

    article title:  Mouth of the Amazon River     View ... of the world's mightiest rivers. This image of the Amazon's mouth was captured by the Multi-angle Imaging SpectroRadiometer (MISR) ... available at JPL September 8, 2000 - Mouth of the mighty Amazon River. project:  MISR ...

  5. Significance of the Nova Brasilândia metasedimentary belt in western Brazil: Redefining the Mesoproterozoic boundary of the Amazon craton

    NASA Astrophysics Data System (ADS)

    Tohver, Eric; van der Pluijm, Ben; Mezger, Klaus; Essene, Eric; Scandolara, Jaime; Rizzotto, Gilmar

    2004-12-01

    The Nova Brasilândia metasedimentary belt (NBMB) of western Brazil marks a fundamental crustal boundary in the Amazon craton. The metasedimentary rocks of the NBMB (calc-silicates, metapelites, quartzites, metabasites) contrast strongly with the older, polycyclic granitoid rocks of the adjacent Amazon craton. Aeromagnetic anomalies indicate that the belt is continuous for at least 1000 km in an E-W direction, although the easternmost extent of the NBMB is covered by the Cretaceous sediments of the Parecis Formation. Additional geologic evidence suggests that the belt extends along an E-W trend for ~2000 km. The northern portion of the NBMB preserves vestiges of an early high pressure-temperature (P-T) assemblage (kyanite + staurolite) overprinted by sillimanite during prograde metamorphism. A higher metamorphic grade is observed in the southern portion of the belt, with peak conditions calculated to be 800 MPa and 800°C for granulitic assemblages. The combined P-T path demonstrates that the competing processes of imbrication (northern domain) and magma generation (southern domain) are responsible for regional metamorphism and crustal thickening. Cooling from peak metamorphic conditions is recorded by U-Pb monazite ages of 1090 Ma and titanite ages of ~1060 Ma. Integrated cooling rates of 2°-3°C/Myr from regional metamorphism are calculated from these U/Pb ages combined with 40Ar/39Ar ages of hornblende (~970 Ma) and biotite (~910 Ma). The NBMB marks the Mesoproterozoic limit of the SW Amazon craton. The discordance of the NBMB to the NNW structural trend of the younger Aguapeí belt (200 km SE of NBMB), together with marked differences between the two belts in sedimentary environment, metamorphic grade, and timing of deformation, signify that these two belts are not geologically continuous. The ``Grenvillian'' deformation recorded by the NBMB belt marks the final docking of the Amazon craton and Paragua craton within the Rodinia framework. The Aguapeí belt, in

  6. [Complementary feeding and nutritional status of 6-24-month-old children in Acrelândia, Acre State, Western Brazilian Amazon].

    PubMed

    Garcia, Mariana Tarricone; Granado, Fernanda Serra; Cardoso, Marly Augusto

    2011-02-01

    Our objective was to investigate nutritional status and complementary feeding practices in children from 6 to 24 months of age living in the Western Brazilian Amazon. A cross-sectional study was conducted within an urban area of Acrelândia, Acre State. A total of 164 children were studied. Prevalence rates for stunting and anemia were 12% and 40%, respectively, and overall prevalence of iron deficiency was 85%. Vitamin A and B12 serum levels were below normal thresholds in 15% and 12% of children, respectively. Low intake was observed for the following nutrients (% of children): folic acid (33%), vitamin C (40%), vitamin A (42%), zinc (46%), and iron (71%). Iron bioavailability in the diet was approximately 8%. Very low dietary intakes of fruits, vegetables, and meats were observed, in contrast with excessive consumption of cow's milk and porridge.

  7. Mercury loss from soils following conversion from forest to pasture in Rondônia, Western Amazon, Brazil.

    PubMed

    Almeida, Marcelo D; Lacerda, Luiz D; Bastos, Wanderley R; Herrmann, João Carlos

    2005-09-01

    This work reports on the effect of land use change on Hg distribution in Amazon soils. It provides a comparison among Hg concentrations and distribution along soil profiles under different land use categories; primary tropical forest, slashed forest prior to burning, a 1-year silviculture plot planted after 4 years of forest removal and a 5-year-old pasture plot. Mercury concentrations were highest in deeper (60-80 cm) layers in all four plots. Forest soils showed the highest Hg concentrations, ranging from 128 ngg(-1) at the soil surface to 150 ngg(-1) at 60-80 cm of depth. Lower concentrations were found in pasture soils, ranging from 69 ngg(-1) at the topsoil to 135 ngg(-1) at 60-80 cm of depth. Slashed and silviculture soils showed intermediate concentrations. Differences among plots of different soil-use categories decreased with soil depth, being non-significant below 60 cm of depth. Mercury burdens were only statistically significantly different between pasture and forest soils at the topsoil, due to the large variability of concentrations. Consequently, estimated Hg losses were only significant between these two land use categories, and only for the surface layers. Estimated Hg loss due to forest conversion to pasture ranged from 8.5 mgm(-2) to 18.5 mgm(-2), for the first 20 cm of the soil profile. Mercury loss was comparable to loss rates estimated for other Amazon sites and seems to be directly related to Hg concentrations present in soils.

  8. Influence of the Amazon River on the composition of particulate organic carbon in the western tropical Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    He, D.; Berelson, W.; Yager, P. L.; Medeiros, P. M.

    2016-02-01

    Particulate organic carbon (POC) from surface and multiple depths up to 2000 m, and from sediment traps (placed at 150 and 250 m deep) were collected in the tropical Atlantic Ocean under high and low Amazon River discharges. Sources and levels of POC samples were assessed through bulk elemental and stable carbon isotopic composition, as well as molecular biomarkers. Carbon contents of POC in mesohaline plume waters were up to 10 times higher than those in the non-plume sites with higher salinity. Overall, stable carbon isotopic values of POC samples were enriched, averaging -21.0‰ (± 3.0) in the plume sites. Major contributions to surface POC included low molecular weight fatty acids (saturated and unsaturated) and mono- and disaccharides, i.e., short-lived compounds and indicators of fresh inputs. These biomarkers are presumably derived from algal blooms (primarily diatoms) observed along the core of the plume during both high and low discharges, and were vertically transported and recorded at lower levels in the sediment traps. Terrestrial biomarker inputs, including plant wax homologous series, triterpenoids, and levoglucosan were minor in all samples, including those influenced by the Amazon plume, even at high discharge. Zooplankton (e.g., cholesterol, occelasterol) and bacteria (e.g., branched alkanoic acids) biomarkers were relatively higher in the sediment traps compared to the surface POC. Our preliminary results showed that while sediment traps recorded predominantly inputs from bacteria/zooplankton activity, the overlying POC samples showed a marked autochthonous input, likely from algae.

  9. Soil and vegetation carbon stocks in Brazilian Western Amazonia: relationships and ecological implications for natural landscapes.

    PubMed

    Schaefer, C E G R; do Amaral, E F; de Mendonça, B A F; Oliveira, H; Lani, J L; Costa, L M; Fernandes Filho, E I

    2008-05-01

    The relationships between soils attributes, soil carbon stocks and vegetation carbon stocks are poorly know in Amazonia, even at regional scale. In this paper, we used the large and reliable soil database from Western Amazonia obtained from the RADAMBRASIL project and recent estimates of vegetation biomass to investigate some environmental relationships, quantifying C stocks of intact ecosystem in Western Amazonia. The results allowed separating the western Amazonia into 6 sectors, called pedo-zones: Roraima, Rio Negro Basin, Tertiary Plateaux of the Amazon, Javari-Juruá-Purus lowland, Acre Basin and Rondonia uplands. The highest C stock for the whole soil is observed in the Acre and in the Rio Negro sectors. In the former, this is due to the high nutrient status and high clay activity, whereas in the latter, it is attributed to a downward carbon movement attributed to widespread podzolization and arenization, forming spodic horizons. The youthful nature of shallow soils of the Javari-Juruá-Purus lowlands, associated with high Al, results in a high phytomass C/soil C ratio. A similar trend was observed for the shallow soils from the Roraima and Rondonia highlands. A consistent east-west decline in biomass carbon in the Rio Negro Basin sector is associated with increasing rainfall and higher sand amounts. It is related to lesser C protection and greater C loss of sandy soils, subjected to active chemical leaching and widespread podzolization. Also, these soils possess lower cation exchangeable capacity and lower water retention capacity. Zones where deeply weathered Latosols dominate have a overall pattern of high C sequestration, and greater than the shallower soils from the upper Amazon, west of Madeira and Negro rivers. This was attributed to deeper incorporation of carbon in these clayey and highly pedo-bioturbated soils. The results highlight the urgent need for refining soil data at an appropriate scale for C stocks calculations purposes in Amazonia. There

  10. Selenium Levels in the Whole Blood of Children and Teenagers from Two Riparian Communities at the Madeira River Basin in the Western Brazilian Amazon.

    PubMed

    Vega, Claudia M; Godoy, José M; Barrocas, Paulo R G; Gonçalves, Rodrigo A; De Oliveira, Beatriz F A; Jacobson, Ludmilla V; Mourão, Dennys S; Hacon, Sandra S

    2017-01-01

    Selenium (Se) is an essential micronutrient that exerts multiple functions in the organism, and both its deficiency and excess can cause health impairments. Thus, it is important to monitor its levels in the population, especially in vulnerable groups, such as children from the Brazilian Amazon region, where there is a lack of information in this regard. The aim of this research was to study Se levels in the whole blood of children and teenagers (5-16 years old) from two riparian communities at the Madeira River (Cuniã RESEX and Belmont). Se level variations related to the communities' location, seasonality, diet, and body mass index (BMI) were assessed. Blood samples were collected in both communities for Se determinations, using ICP-MS and hemogram analyses, during May and September of 2011. Food frequency questionnaires were applied to assess consumption rates of specific food items. Non-parametric tests and linear multiple regressions were applied in the data analyses. Median Se levels were significantly higher during May (Cuniã RESEX 149 μg L(-1); Belmont 85 μg L(-1)) compared to September (Cuniã RESEX 79 μg L(-1); Belmont 53 μg L(-1)). No significant differences were found between the communities regarding BMI measurements and anemia prevalence. However, Se blood levels were significantly higher at the Cuniã RESEX compared to Belmont. In addition, the former showed higher fish and Brazil nut intakes, which may be the main Se sources for this community. These results contribute to a better understanding of Se reference levels for children and teenagers of Western Amazon riparian communities.

  11. Correlation between TH1 response standard cytokines as biomarkers in patients with the delta virus in the western Brazilian Amazon

    PubMed Central

    Nicolete, Larissa Deadame de Figueiredo; Borzacov, Lourdes Maria Pinheiro; Vieira, Deusilene Souza; Nicolete, Roberto; Salcedo, Juan Miguel Villalobos

    2016-01-01

    Hepatitis D virus (HDV) is endemic in the Amazon Region and its pathophysiology is the most severe among viral hepatitis. Treatment is performed with pegylated interferon and the immune response appears to be important for infection control. HDV patients were studied: untreated and polymerase chain reaction (PCR) positive (n = 9), anti-HDV positive and PCR negative (n = 8), and responders to treatment (n = 12). The cytokines, interleukin (IL)-2 (p = 0.0008) and IL-12 (p = 0.02) were differentially expressed among the groups and were also correlated (p = 0.0143). Future studies will be conducted with patients at different stages of treatment, associating the viral load with serum cytokines produced, thereby attempting to establish a prognostic indicator of the infection. PMID:27074258

  12. Influence of the Amazon River discharge on the biogeography of phytoplankton communities in the western tropical north Atlantic

    NASA Astrophysics Data System (ADS)

    Goes, Joaquim I.; Gomes, Helga do Rosario; Chekalyuk, Alexander M.; Carpenter, Edward J.; Montoya, Joseph P.; Coles, Victoria J.; Yager, Patricia L.; Berelson, William M.; Capone, Douglas G.; Foster, Rachel A.; Steinberg, Deborah K.; Subramaniam, Ajit; Hafez, Mark A.

    2014-01-01

    An Advanced Laser Fluorometer (ALF) capable of discriminating several phytoplankton pigment types was utilized in conjunction with microscopic data to map the distribution of phytoplankton communities in the Amazon River plume in May-June-2010, when discharge from the river was at its peak. Cluster analysis and Non-metric Multi-Dimensional Scaling (NMDS) helped distinguish three distinct biological communities that separated largely on the basis of salinity gradients across the plume. These three communities included an "estuarine type" comprised of a high biomass mixed population of diatoms, cryptophytes and green-water Synechococcus spp. located upstream of the plume, a "mesohaline type" made up largely of communities of Diatom-Diazotroph Associations (DDAs) and located in the northwestern region of the plume and an "oceanic type" in the oligotrophic waters outside of the plume made up of Trichodesmium and Synechococcus spp. Although salinity appeared to have a substantial influence on the distribution of different phytoplankton groups, ALF and microscopic measurements examined in the context of the hydro-chemical environment of the river plume, helped establish that the phytoplankton community structure and distribution were strongly controlled by inorganic nitrate plus nitrite (NO3 + NO2) availability whose concentrations were low throughout the plume. Towards the southern, low-salinity region of the plume, NO3 + NO2 supplied by the onshore flow of subsurface (∼80 m depth) water, ensured the continuous sustenance of the mixed phytoplankton bloom. The large drawdown of SiO3 and PO4 associated with this "estuarine type" mixed bloom at a magnitude comparable to that observed for DDAs in the mesohaline waters, leads us to contend that, diatoms, cryptophytes and Synechococcus spp., fueled by the offshore influx of nutrients also play an important role in the cycling of nutrients in the Amazon River plume.

  13. Amazon River

    Atmospheric Science Data Center

    2013-04-17

    ... the Rio Solimoes and the Rio Negro converge to form the Amazon River. This image from the Multi-angle Imaging SpectroRadiometer (MISR) ... date:  Jul 23, 2000 Images:  Amazon River location:  South America thumbnail:  ...

  14. Epidemiology and Control of Child Toxocariasis in the Western Brazilian Amazon – A Population-Based Study

    PubMed Central

    Oliart-Guzmán, Humberto; Delfino, Breno M.; Martins, Antonio C.; Mantovani, Saulo A. S.; Braña, Athos M.; Pereira, Thasciany M.; Branco, Fernando L. C. C.; Ramalho, Alanderson A.; Campos, Rhanderson G.; Fontoura, Pablo S.; de Araujo, Thiago S.; de Oliveira, Cristieli S. M.; Muniz, Pascoal T.; Rubinsky-Elefant, Guita; Codeço, Cláudia T.; da Silva-Nunes, Mônica

    2014-01-01

    Toxocara spp. infection and the seroconversion rate in the Amazon have been poorly investigated. This study analyzed individual and household-level risk factors for the presence of IgG antibodies to Toxocara spp. in urban Amazonian children over a period of 7 years and evaluated the seroconversion rates over a 1-year follow-up. In children < 59 months of age, the overall prevalence rate was 28.08% in 2003 and 23.35% in 2010. The 2010–2011 seroconversion rates were 13.90% for children 6–59 months of age and 12.30% for children 84–143 months of age. Multilevel logistic regression analysis identified child age, previous wheezing, and current infection with hookworm as significant associated factors for Toxocara spp. seropositivity in 2003. In 2010, age, previous helminthiasis, and having a dog were associated with seropositivity, whereas having piped water inside the household was a protective factor. Control programs mainly need to target at-risk children, water quality control, and animal deworming strategies. PMID:24515946

  15. Rickettsia bellii and Rickettsia amblyommii in Amblyomma ticks from the State of Rondônia, Western Amazon, Brazil.

    PubMed

    Labruna, Marcelo B; Whitworth, Ted; Bouyer, Donald H; McBride, Jere; Camargo, Luis Marcelo A; Camargo, Erney P; Popov, Vsevolod; Walker, David H

    2004-11-01

    This study evaluates the rickettsial presence in Amblyomma ticks from eight areas of the Amazon forest in Rondônia, Brazil. The following tick species (number in parentheses) were examined: Amblyomma ovale Koch (121), Amblyomma cajennense (F.) (41), Amblyomma naponense (Packard) (36), Amblyomma scalpturatum Neumann (35), Amblyomma oblongoguttatum Koch (30), Amblyomma incisum Neumann (27), Amblyomma rotundatum Koch (16), Amblyomma coelebs Neumann (10), and Amblyomma humerale Koch (6). Ticks were examined individually or in pools (2-10 ticks) by polymerase chain reaction (PCR) targeting the gltA gene. The PCR-determined minimal infection rate for each tick species was A. ovale 28%, A. cajennense 27%, A. naponense 0%, A. scalpturatum 11%, A. oblongoguttatum 3%, A. incisum 0%, A. rotundatum 87%, A. coelebs 10%, and A. humerale 50%. Partial sequences of the gltA gene of Rickettsia from A. ovale, A. scalpturatum, A. oblongoguttatum, A. rotundatum, and A. humerale were 99.9% (349/350) identical to Rickettsia bellii. DNA sequences of PCR products from A. cajennense and A. coelebs were 100% (350/350) identical to Rickettsia amblyommii. R. bellii organisms were isolated in Vero cells from A. scalpturatum, A. ovale, A. rotundatum, and A. oblongoguttatum, but only one of the isolates, cultured from A. scalpturatum, was established in continuous cell culture passage. R. amblyommii was isolated from A. cajennense and was successfully established in continuous passage in cell culture. R. amblyommii infection of Vero cells was analyzed by transmission electron microscopy. This study adds South America to the known geographic distribution of R. amblyommii and reports rickettsiae in six Amblyomma species for the first time.

  16. The Amazon-Laurentian connection as viewed from the Middle Proterozoic rocks in the central Andes, western Bolivia and northern Chile

    USGS Publications Warehouse

    Tosdal, R.M.

    1996-01-01

    Middle Proterozoic rocks underlying the Andes in western Bolivia, western Argentina, and northern Chile and Early Proterozoic rocks of the Arequipa massif in southern Peru?? from the Arequipa-Antofalla craton. These rocks are discontinuously exposed beneath Mesozoic and Cenozoic rocks, but abundant crystalline clasts in Tertiary sedimentary rocks in the western altiplano allow indirect samples of the craton. Near Berenguela, western Bolivia, the Oligocene and Miocene Mauri Formation contains boulders of granodiorite augen gneiss (1171??20 Ma and 1158??12 Ma; U-Pb zircon), quartzose gneiss and granofels that are inferred to have arkosic protoliths (1100 Ma source region; U-Pb zircon), quartzofeldspathic and mafic orthogneisses that have amphibolite- and granulite-facies metamorphic mineral assemblages (???1080 Ma metamorphism; U-Pb zircon), and undeformed granitic rocks of Phanerozoic(?) age. The Middle Proterozoic crystalline rocks from Berenguela and elsewhere in western Bolivia and from the Middle Proterozoic Bele??n Schist in northern Chile generally have present-day low 206Pb/204Pb ( 15.57), and elevated 208Pb/204Pb (37.2 to 50.7) indicative of high time-averaged Th/U values. The Middle Proterozoic rocks in general have higher presentday 206Pb/204Pb values than those of the Early Proterozoic rocks of the Arequipa massif (206Pb/204Pb between 16.1 and 17.1) but lower than rocks of the southern Arequipa-Antofalla craton (206Pb/204Pb> 18.5), a difference inferred to reflect Grenvillian granulite metamorphism. The Pb isotopic compositions for the various Proterozoic rocks lie on common Pb isotopic growth curves, implying that Pb incorporated in rocks composing the Arequipa-Antofalla craton was extracted from a similar evolving Pb isotopic reservoir. Evidently, the craton has been a coherent terrane since the Middle Proterozoic. Moreover, the Pb isotopic compositions for the Arequipa-Antofalla craton overlap those of the Amazon craton, thereby supporting a link

  17. Arboviral diseases in the Western Brazilian Amazon: a perspective and analysis from a tertiary health & research center in Manaus, State of Amazonas.

    PubMed

    Mourão, Maria Paula Gomes; Bastos, Michele de Souza; Figueiredo, Regina Maria Pinto de; Gimaque, João Bosco de Lima; Alves, Valquíria do Carmo Rodrigues; Saraiva, Maria das Graças Gomes; Figueiredo, Mário Luis Garcia; Ramasawmy, Rajendranath; Nogueira, Maurício Lacerda; Figueiredo, Luiz Tadeu Moraes

    2015-01-01

    The Fundação de Medicina Tropical Dr. Heitor Vieira Dourado (FMT-HVD), located in Manaus, the capital of the State of Amazonas (Western Brazilian Amazon), is a pioneering institution in this region regarding the syndromic surveillance of acute febrile illness, including arboviral infections. Based on the data from patients at the FMT-HVD, we have detected recurrent outbreaks in Manaus by the four dengue serotypes in the past 15 years, with increasing severity of the disease. This endemicity has culminated in the simultaneous circulation of all four serotypes in 2011, the first time this has been reported in Brazil. Between 1996 and 2009, 42 cases of yellow fever (YF) were registered in the State of Amazonas, and 71.4% (30/42) were fatal. Since 2010, no cases have been reported. Because the introduction of the yellow fever virus into a large city such as Manaus, which is widely infested by Aedes mosquitoes, may pose a real risk of a yellow fever outbreak, efforts to maintain an appropriate immunization policy for the populace are critical. Manaus has also suffered silent outbreaks of Mayaro and Oropouche fevers lately, most of which were misdiagnosed as dengue fever. The tropical conditions of the State of Amazonas favor the existence of other arboviruses capable of producing human disease. Under this real threat, represented by at least 4 arboviruses producing human infections in Manaus and in other neighboring countries, it is important to develop an efficient public health surveillance strategy, including laboratories that are able to make proper diagnoses of arboviruses.

  18. Conventional U-Pb dating versus SHRIMP of the Santa Barbara Granite Massif, Rondonia, Brazil

    USGS Publications Warehouse

    Sparrenberger, I.; Bettencourt, Jorge S.; Tosdal, R.M.; Wooden, J.L.

    2002-01-01

    The Santa Ba??rbara Granite Massif is part of the Younger Granites of Rondo??nia (998 - 974 Ma) and is included in the Rondo??nia Tin Province (SW Amazonian Craton). It comprises three highly fractionated metaluminous to peraluminous within-plate A-type granite units emplaced in older medium-grade metamorphic rocks. Sn-mineralization is closely associated with the late-stage unit. U-Pb monazite conventional dating of the early-stage Serra do Cicero facies and late-stage Serra Azul facies yielded ages of 993 ?? 5 Ma and 989 ?? 13 Ma, respectively. Conventional multigrain U-Pb isotope analyses of zircon demonstrate isotopic disturbance (discordance) and the preservation of inherited older zircons of several different ages and thus yield little about the ages of Sn-granite magmatism. SHRIMP U-Pb ages for the Santa Ba??rbara facies association yielded a 207Pb/206Pb weighted-mean age of 978 ?? 13 Ma. The textural complexity of the zircon crystals of the Santa Ba??rbara facies association, the variable concentrations of U, Th and Pb, as well as the mixed inheritance of zircon populations are major obstacles to using conventional multigrain U-Pb isotopic analyses. Sm-Nd model ages and ??Nd (T) values reveal anomalous isotopic data, attesting to the complex isotopic behaviour within these highly fractionated granites. Thus, SHRIMP U-Pb zircon and conventional U-Pb monazite dating methods are the most appropriate to constrain the crystallization age of the Sn-bearing granite systems in the Rondo??nia Tin Province.

  19. The Rondonia Lightning Detection Network: Network Description, Science Objectives, Data Processing/Archival Methodology, and First Results

    NASA Technical Reports Server (NTRS)

    Blakeslee, Rich; Bailey, Jeff; Koshak, Bill

    1999-01-01

    A four station Advanced Lightning Direction Finder (ALDF) network was recently established in the state of Rondonia in western Brazil through a collaboration of U.S. and Brazilian participants from NASA, INPE, INMET, and various universities. The network utilizes ALDF IMPACT (Improved Accuracy from Combined Technology) sensors to provide cloud-to-ground lightning observations (i.e., stroke/flash locations, signal amplitude, and polarity) using both time-of-arrival and magnetic direction finding techniques. The observations are collected, processed and archived at a central site in Brasilia and at the NASA/ Marshall Space Flight Center (MSFC) in Huntsville, Alabama. Initial, non-quality assured quick-look results are made available in near real-time over the internet. The network will remain deployed for several years to provide ground truth data for the Lightning Imaging Sensor (LIS) on the Tropical Rainfall Measuring Mission (TRMM) satellite which was launched in November 1997. The measurements will also be used to investigate the relationship between the electrical, microphysical and kinematic properties of tropical convection. In addition, the long-term observations from this network will contribute in establishing a regional lightning climatological data base, supplementing other data bases in Brazil that already exist or may soon be implemented. Analytic inversion algorithms developed at NASA/Marshall Space Flight Center (MSFC) are now being applied to the Rondonian ALDF lightning observations to obtain site error corrections and improved location retrievals. The processing methodology and the initial results from an analysis of the first 6 months of network operations will be presented.

  20. The Rondonia Lightning Detection Network: Network Description, Science Objectives, Data Processing/Archival Methodology, and First Results

    NASA Technical Reports Server (NTRS)

    Blakelee, Richard

    1999-01-01

    A four station Advanced Lightning Direction Finder (ALDF) network was recently established in the state of Rondonia in western Brazil through a collaboration of U.S. and Brazilian participants from NASA, INPE, INMET, and various universities. The network utilizes ALDF IMPACT (Improved Accuracy from Combined Technology) sensors to provide cloud-to-ground lightning observations (i.e., stroke/flash locations, signal amplitude, and polarity) using both time-of-arrival and magnetic direction finding techniques. The observations are collected, processed and archived at a central site in Brasilia and at the NASA/Marshall Space Flight Center (MSFC) in Huntsville, Alabama. Initial, non-quality assured quick-look results are made available in near real-time over the internet. The network will remain deployed for several years to provide ground truth data for the Lightning Imaging Sensor (LIS) on the Tropical Rainfall Measurement Mission (TRMM) satellite which was launched in November 1997. The measurements will also be used to investigate the relationship between the electrical, microphysical and kinematic properties of tropical convection. In addition, the long-term observations from this network will contribute in establishing a regional lightning climatological data base, supplementing other data bases in Brazil that already exist or may soon be implemented. Analytic inversion algorithms developed at NASA/MSFC are now being applied to the Rondonian ALDF lightning observations to obtain site error corrections and improved location retrievals. The processing methodology and the initial results from an analysis of the first 6 months of network operations will be presented.

  1. The Rondonia Lightning Detection Network: Network Description, Science Objectives, Data Processing/Archival Methodology, and First Results

    NASA Technical Reports Server (NTRS)

    Blakelee, Richard

    1999-01-01

    A four station Advanced Lightning Direction Finder (ALDF) network was recently established in the state of Rondonia in western Brazil through a collaboration of U.S. and Brazilian participants from NASA, INPE, INMET, and various universities. The network utilizes ALDF IMPACT (Improved Accuracy from Combined Technology) sensors to provide cloud-to-ground lightning observations (i.e., stroke/flash locations, signal amplitude, and polarity) using both time-of-arrival and magnetic direction finding techniques. The observations are collected, processed and archived at a central site in Brasilia and at the NASA/Marshall Space Flight Center (MSFC) in Huntsville, Alabama. Initial, non-quality assured quick-look results are made available in near real-time over the internet. The network will remain deployed for several years to provide ground truth data for the Lightning Imaging Sensor (LIS) on the Tropical Rainfall Measurement Mission (TRMM) satellite which was launched in November 1997. The measurements will also be used to investigate the relationship between the electrical, microphysical and kinematic properties of tropical convection. In addition, the long-term observations from this network will contribute in establishing a regional lightning climatological data base, supplementing other data bases in Brazil that already exist or may soon be implemented. Analytic inversion algorithms developed at NASA/MSFC are now being applied to the Rondonian ALDF lightning observations to obtain site error corrections and improved location retrievals. The processing methodology and the initial results from an analysis of the first 6 months of network operations will be presented.

  2. The Rondonia Lightning Detection Network: Network Description, Science Objectives, Data Processing/Archival Methodology, and First Results

    NASA Technical Reports Server (NTRS)

    Blakeslee, Rich; Bailey, Jeff; Koshak, Bill

    1999-01-01

    A four station Advanced Lightning Direction Finder (ALDF) network was recently established in the state of Rondonia in western Brazil through a collaboration of U.S. and Brazilian participants from NASA, INPE, INMET, and various universities. The network utilizes ALDF IMPACT (Improved Accuracy from Combined Technology) sensors to provide cloud-to-ground lightning observations (i.e., stroke/flash locations, signal amplitude, and polarity) using both time-of-arrival and magnetic direction finding techniques. The observations are collected, processed and archived at a central site in Brasilia and at the NASA/ Marshall Space Flight Center (MSFC) in Huntsville, Alabama. Initial, non-quality assured quick-look results are made available in near real-time over the internet. The network will remain deployed for several years to provide ground truth data for the Lightning Imaging Sensor (LIS) on the Tropical Rainfall Measuring Mission (TRMM) satellite which was launched in November 1997. The measurements will also be used to investigate the relationship between the electrical, microphysical and kinematic properties of tropical convection. In addition, the long-term observations from this network will contribute in establishing a regional lightning climatological data base, supplementing other data bases in Brazil that already exist or may soon be implemented. Analytic inversion algorithms developed at NASA/Marshall Space Flight Center (MSFC) are now being applied to the Rondonian ALDF lightning observations to obtain site error corrections and improved location retrievals. The processing methodology and the initial results from an analysis of the first 6 months of network operations will be presented.

  3. Two Preliminary SRTM DEMs Within the Amazon Basin

    NASA Astrophysics Data System (ADS)

    Alsdorf, D.; Hess, L.; Melack, J.; Dunne, T.; Mertes, L.; Ballantine, A.; Biggs, T.; Holmes, K.; Sheng, Y.; Hendricks, G.

    2002-12-01

    Digital topography provides important measures, such as hillslope lengths and flow path networks, for understanding hydrologic and geomorphic processes (e.g., runoff response to land use change and floodplain inundation volume). Two preliminary Shuttle Radar Topography Mission digital elevation models of Manaus (1S to 5S and 59W to 63W) and Rondonia (9S to 12S and 61W to 64W) were received from NASA JPL in August 2002. The "PI Processor" produced these initial DEM segments and we are using them to assess the initial accuracy of the interferometrically derived heights and for hydrologic research. The preliminary SRTM derived absolute elevations across the Amazon floodplain in the Cabaliana region generally range from 5 to 15 m with reported errors of 1 to 3 m. This region also includes some preliminary elevations that are erroneously negative. However, topographic contours on 1:100,000 scale quadrangles of 1978 to 1980 vintage indicate elevations of 20 to 30 m. Because double-bounce travel paths are possible over the sparsely vegetated and very-flat 2400 sq-km water surface of the Balbina reservoir near Manaus, it serves to identify the relative accuracy of the SRTM heights. Here, cell-to-cell height changes are generally 0 to 1 m and changes across a ~100 km transect rarely exceed 3 m. Reported errors throughout the transect range from 1 to 2 m with some errors up to 5 m. Deforestation in Rondonia is remarkably clear in the C-band DEM where elevations are recorded from the canopy rather than bare earth. Here, elevation changes are ~30 m (with reported 1 to 2 m errors) across clear-cut areas. Field derived canopy heights are in agreement with this change. Presently, we are deriving stream networks in the Amazon floodplain for comparison with our previous network extraction from JERS-1 SAR mosaics and for hydrologic modeling.

  4. Simulating spatial patterns of land-use change in Rondonia, Brazil

    SciTech Connect

    Dale, V.H.; Southworth, F.; O'Neill, R.V.; Rosen, A.

    1992-11-09

    Large scale deforestation in the Brazilian state of Rondonia has resulted from massive colonization and has caused increases in atmospheric CO[sub 2], soil degradation, loss of extractive resources, and disruption of indigenous populations. A simulation model has been developed that integrates colonization, socioeconomic, and ecological submodels to estimate spatial patterns and rates of deforestation under different immigration policies, land tenure practices, and road development scenarios. It is used to model the socioeconomic causes and ecological impacts of rapid deforestation in Rondonia. The simulation can be used to identify scenarios that might optimize economic and agricultural sustainability or reduce emigration. Spatial analysis of the simulation projections shows that very different patterns of deforestation can result depending on whether soil suitability, distance to market or lot size is the prime factor affecting a colonist's choice of a lot. Projections of the amount and pattern of deforestation under specific scenarios of land-use choice and management can be used to explore the socioeconomic and ecological implications of land-use change.

  5. Simulating spatial patterns of land-use change in Rondonia, Brazil

    SciTech Connect

    Dale, V.H.; Southworth, F.; O`Neill, R.V.; Rosen, A.

    1992-11-09

    Large scale deforestation in the Brazilian state of Rondonia has resulted from massive colonization and has caused increases in atmospheric CO{sub 2}, soil degradation, loss of extractive resources, and disruption of indigenous populations. A simulation model has been developed that integrates colonization, socioeconomic, and ecological submodels to estimate spatial patterns and rates of deforestation under different immigration policies, land tenure practices, and road development scenarios. It is used to model the socioeconomic causes and ecological impacts of rapid deforestation in Rondonia. The simulation can be used to identify scenarios that might optimize economic and agricultural sustainability or reduce emigration. Spatial analysis of the simulation projections shows that very different patterns of deforestation can result depending on whether soil suitability, distance to market or lot size is the prime factor affecting a colonist`s choice of a lot. Projections of the amount and pattern of deforestation under specific scenarios of land-use choice and management can be used to explore the socioeconomic and ecological implications of land-use change.

  6. Deforestation effects on Amazon forest resilience

    NASA Astrophysics Data System (ADS)

    Zemp, D. C.; Schleussner, C.-F.; Barbosa, H. M. J.; Rammig, A.

    2017-06-01

    Through vegetation-atmosphere feedbacks, rainfall reductions as a result of Amazon deforestation could reduce the resilience on the remaining forest to perturbations and potentially lead to large-scale Amazon forest loss. We track observation-based water fluxes from sources (evapotranspiration) to sinks (rainfall) to assess the effect of deforestation on continental rainfall. By studying 21st century deforestation scenarios, we show that deforestation can reduce dry season rainfall by up to 20% far from the deforested area, namely, over the western Amazon basin and the La Plata basin. As a consequence, forest resilience is systematically eroded in the southwestern region covering a quarter of the current Amazon forest. Our findings suggest that the climatological effects of deforestation can lead to permanent forest loss in this region. We identify hot spot regions where forest loss should be avoided to maintain the ecological integrity of the Amazon forest.

  7. Brazil: Rondonia

    Atmospheric Science Data Center

    2016-12-30

    ... end of the Parque Nacional de Pacaas Novos. The CLAIRE aircraft will follow these plumes as they spread over the region, and will ... D.C. The Terra spacecraft is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. The MISR data were obtained from the NASA Langley ...

  8. Spatial and temporal coherence between Amazon River discharge, salinity, and light absorption by colored organic carbon in western tropical Atlantic surface waters

    NASA Astrophysics Data System (ADS)

    Salisbury, J.; Vandemark, D.; Campbell, J.; Hunt, C.; Wisser, D.; Reul, N.; Chapron, B.

    2011-07-01

    The temporal evolution and spatial distribution of surface salinity and colored detrital matter (cdm) were evaluated within and adjacent to the Amazon River Plume. Study objectives were as follows: first, to document the spatial coherence between Amazon discharge, salinity, cdm, and the nature of the salinity-cdm relationship; second, to document the temporal and spatial variability of cdm along the trajectory of the low-salinity Amazon Plume, and third, to explore the departure of cdm from conservative mixing behavior along the plume trajectory into the open ocean. Time series (2003-2007) of surface salinity estimated using the Advanced Microwave Scanning Radiometer-Earth Observing System and corresponding satellite cdm absorption (acdm) data documented a plume of freshened, colored water emanating from the Amazon. Salinity and acdm were generally coherent, but there were regions in which spatial patterns of salinity and acdm did not coincide. Salinity was oppositely phased with discharge, whereas acdm was in phase but lagged discharge and typically remained high after maximum discharge. Along the river plume trajectory, acdm was inversely correlated with salinity, yet there was considerable deviation from conservative mixing behavior during all seasons. Positive anomalies in a linear relationship between salinity and acdm corresponded to areas of enhanced satellite-retrieved net primary productivity, suggesting the importance of phytoplankton biomass or its subsequent remineralization as a source of cdm. Negative anomalies tended to predominate at the distal sections of the plume trajectories, an observation consistent with the process of photo-oxidation of cdm over observed time scales of days to weeks.

  9. Influence Deforestation on Hydrological Cycle at Amazon Basin

    NASA Astrophysics Data System (ADS)

    Cohen, J. C.; Beltrao, J.; Gandu, A. W.

    2007-05-01

    The last three decades, the Amazon Basin has been affected for the occupation with consequence large deforestation. The principal area deforested is located from Maranhao state to Rondonia state. This area is common called "Arc Deforestation", and representing the transition between two important Brazilian ecosystems, Amazon Forest and Savanna Region. Theses ecosystems have precious biodiversity, and it has population about 10.331.000. The objective of this work was to evaluate the impact of arc deforestation on the hydrological cycle at Amazon basin, using BRAMS (Brazilian developments on the Regional Atmospheric Modeling System) including a model of dynamic vegetation, called GEMTM (General Energy and Mass Transport Model). In this study, numerical simulations were performed with a high spatial resolution regional model that allows capture some mesoscale aspects associated to the land used, topography, coastlines and large rivers. In order to predict the impact of the arc deforestation over the hydrological cycle, it was run two model simulations, conducted over a one-year period. In the first simulation, designated "control", it was used the scenarios derived from Soares Filho (2002), for the year 2002, in governance situation. In the second simulation called "deforestation", it was used the scenarios for the 2050, derived from results of Soares-Filho with governance, too. The higher-resolution regional modeling revealed important features of the deforestation process, displaying some associated mesoscale effects that are not typically represented in similar Global Circulation Model simulations. Near coastal zones and along large rivers, deforestation resulted in reduced precipitation. However, it was predicted increased precipitation over mountainous areas, especially on mountain slopes facing river valleys. Then, these higher-resolution simulations showed that, in general, orography, coastline profile and large river distribution play important roles in

  10. Disruption of hydroecological equilibrium in southwest Amazon mediated by drought

    NASA Astrophysics Data System (ADS)

    Maeda, Eduardo Eiji; Kim, Hyungjun; Aragão, Luiz E. O. C.; Famiglietti, James S.; Oki, Taikan

    2015-09-01

    The impacts of droughts on the Amazon ecosystem have been broadly discussed in recent years, but a comprehensive understanding of the consequences is still missing. In this study, we show evidence of a fragile hydrological equilibrium in the western Amazon. While drainage systems located near the equator and the western Amazon do not show water deficit in years with average climate conditions, this equilibrium can be broken during drought events. More importantly, we show that this effect is persistent, taking years until the normal hydrological patterns are reestablished. We show clear links between persistent changes in forest canopy structure and changes in hydrological patterns, revealing physical evidence of hydrological mechanisms that may lead to permanent changes in parts of the Amazon ecosystem. If prospects of increasing drought frequency are confirmed, a change in the current hydroecological patterns in the western Amazon could take place in less than a decade.

  11. Changes in CO2, N2O and NO Emissions in Response to Conventional Tillage and No-tillage Management Practices in the State of Rondonia, Brazil

    NASA Astrophysics Data System (ADS)

    Passianoto, C. C.; Ahrens, T. D.; Feigl, B. J.; Steudler, P. A.; Do Carmo, J. B.; Melillo, J. M.

    2002-12-01

    Land management in the Brazilian State of Rondonia is undergoing a new phase at the start of 21st century. In the 1970s and afterwards, vast tracts of tropical forest were cleared and planted to pasture for cattle grazing. With decades of use, the productivity of these pastures has declined. Now, in an effort to restore productivity, new land management regimes are being implemented that involve either tillage or no-tillage options combined with various combinations of fertilizer application, herbicide use and the planting of a cash crop prior to the planting of forage grasses. We are studying a subset of these restoration practices in a large-scale (>3 ha), replicated field experiment in an area of degraded pasture at Fazenda Nova Vida, a 22,000 ha cattle ranch in central Rondonia. Here we report on the emissions of carbon dioxide (CO2), nitrous oxide (N2O) and nitric oxide (NO) from the initial phases (first six months) of three of the treatments. The treatments are - 1) control; 2) conventional tillage followed by planting of forage grass (Brachiaria brizantha) and fertilizer additions; 3) no-tillage/herbicide treatment followed by two plantings, the first being a cash crop of rice followed by forage grass. In treatment 3, the rice was fertilized. Relative to the control, tillage increased CO2 emission by 37% over the first two months, while the no-tillage/herbicide regime decreased CO2 emissions by 7% over the same period. The cumulative N2O emissions over the first two months from the tillage regime (0.94 kg N ha-1) were much higher than the N2O releases from either the no-tillage/herbicide regime (0.64 kg N ha-1) or the control treatment (0.04 kg N ha-1). The highest levels of N2O fluxes from both management regimes were observed following nitrogen fertilizations. The cumulative NO releases over the first two months were largest in the tillage treatment (0.98 kg N ha-1), intermediate in the no-tillage treatment (0.72 kg N ha-1), and smallest in the control

  12. Agricultural colonization and malaria on the Amazon frontier.

    PubMed

    Singer, B H; de Castro, M C

    2001-12-01

    The purpose of this paper is to characterize the interrelationships between macropolitical, social and economic policies, human migration, agricultural development, and malaria transmission on the Amazon frontier. We focus our analysis on a recent colonization project, POLONOROESTE, in the state of Rondonia. Employing data from field surveys in 1985-1987 and 1995, we use spatial statistical methodologies linked to a geographical information system (GIS) to describe the patterns of human settlement in the area, the ecological transformations induced by forest clearance practices, and the manner in which these factors determine gradations of malaria risk. Our findings show that land use patterns, linked to social organization of the community and the structure of the physical environment, played a key role in promoting malaria transmission. In addition, the location of each occupied area is itself an important determinant of the pattern of malaria risk. Based on lessons learned from our spatial and temporal characterization of malaria risk, we propose policies for malaria mitigation in the Brazilian Amazon.

  13. Stunting in children under five years old is still a health problem in the Western Brazilian Amazon: a population-based study in Assis Brasil, Acre, Brazil.

    PubMed

    Mantovani, Saulo Augusto Silva; Ramalho, Alanderson Alves; Pereira, Thasciany Moraes; Branco, Fernando Luiz Cunha Castelo; Oliart-Guzmán, Humberto; Delfino, Breno Matos; Braña, Athos Muniz; Martins, Antonio Camargo; Filgueira-Júnior, José Alcântara; Santos, Ana Paula; Campos, Rhanderson Gardinali; Guimarães, Andréia Silva; Araújo, Thiago Santos de; Oliveira, Cristieli Sérgio de Menezes; Codeço, Cláudia Torres; da Silva-Nunes, Mônica

    2016-06-01

    Despite the process of nutritional transition in Brazil, in some places, such as the Amazon region, stunting is still an important public health problem. We identified the prevalence and factors associated with stunting in children under five years old residing in the urban area of Assis Brasil. A survey was conducted in which a questionnaire on socioeconomic, maternal and children's conditions was applied, and height or length was measured. The children with height for age index below -2 Z-scores were considered stunted, according to the criteria by the World Health Organization. Four hundred and twenty-eight children were evaluated. Of these, 62 were stunted. Factors associated with stunting, according to adjusted models, were: the presence of open sewer, the wealth index for households, the receipt of governmental financial aid and the mother's height, age and education. Therefore, it was observed that family and the mother's characteristics as well as environmental and socioeconomic factors were closely related to the occurrence of stunting in the population studied, and such nutritional disturbance is still a health problem in the Brazilian Amazon.

  14. Estimates and Measurements of Photosynthetically Active Radiation and Global Solar Irradiance in Rondonia

    SciTech Connect

    Aguiar, Leonardo J. G.; Costa, Jose M. N. da; Fischer, Graciela R.; Aguiar, Renata G.

    2009-03-11

    Measurements of photosynthetically active radiation (PAR) and global solar irradiance (R{sub s}) were made at a LBA (The Large Scale Biosphere-Atmosphere Experiment in Amazonia) experimental site, at Fazenda Nossa Senhora (10 deg. 45' S; 62 deg. 21' W), in Rondonia, in the years of 2004 and 2005, with the objective of estimating the seasonal variation of the ratio between the photosynthetically active radiation and the global solar irradiance. The relationship between PAR and R{sub s} were made by using linear regressions equations with data from year 2004 and tested with data from the year 2005. The seasonal variation of the ratio PAR/R{sub s} ranged from 0.43 (September) to 0.48 (January). The linear regression equations between PAR and R{sub s} obtained were: a) On an hourly basis: PAR 0.747+0.478*R{sub s},(R{sup 2} = 0.99; wet season) and PAR = -4.578+0.452*R{sub s}(R{sup 2} 0.99; dry season); b) On a daily basis: PAR = 4.956+0.466*R{sub s}(R{sup 2} = 0.99; wet season) and PAR = -6.762+0.457*R{sub s}(R{sup 2} = 0.96; dry season)

  15. Influence of the Amazon River on the Nd isotope composition of deep water in the western equatorial Atlantic during the Oligocene-Miocene transition

    NASA Astrophysics Data System (ADS)

    Stewart, Joseph A.; Gutjahr, Marcus; James, Rachael H.; Anand, Pallavi; Wilson, Paul A.

    2016-11-01

    Dissolved and particulate neodymium (Nd) are mainly supplied to the oceans via rivers, dust, and release from marine sediments along continental margins. This process, together with the short oceanic residence time of Nd, gives rise to pronounced spatial gradients in oceanic 143Nd/144Nd ratios (εNd). However, we do not yet have a good understanding of the extent to which the influence of riverine point-source Nd supply can be distinguished from changes in mixing between different water masses in the marine geological record. This gap in knowledge is important to fill because there is growing awareness that major global climate transitions may be associated not only with changes in large-scale ocean water mass mixing, but also with important changes in continental hydroclimate and weathering. Here we present εNd data for fossilised fish teeth, planktonic foraminifera, and the Fe-Mn oxyhydroxide and detrital fractions of sediments recovered from Ocean Drilling Project (ODP) Site 926 on Ceara Rise, situated approximately 800 km from the mouth of the River Amazon. Our records span the Mi-1 glaciation event during the Oligocene-Miocene transition (OMT; ∼23 Ma). We compare our εNd records with data for ambient deep Atlantic northern and southern component waters to assess the influence of particulate input from the Amazon River on Nd in ancient deep waters at this site. εNd values for all of our fish teeth, foraminifera, and Fe-Mn oxyhydroxide samples are extremely unradiogenic (εNd ≈ - 15); much lower than the εNd for deep waters of modern or Oligocene-Miocene age from the North Atlantic (εNd ≈ - 10) and South Atlantic (εNd ≈ - 8). This finding suggests that partial dissolution of detrital particulate material from the Amazon (εNd ≈ - 18) strongly influences the εNd values of deep waters at Ceara Rise across the OMT. We conclude that terrestrially derived inputs of Nd can affect εNd values of deep water many hundreds of kilometres from source. Our

  16. Phenotypic characterization of Leishmania spp. causing cutaneous leishmaniasis in the lower Amazon region, western Pará state, Brazil, reveals a putative hybrid parasite, Leishmania (Viannia) guyanensis × Leishmania (Viannia) shawi shawi

    PubMed Central

    Jennings, Yara Lins; de Souza, Adelson Alcimar Almeida; Ishikawa, Edna Aoba; Shaw, Jeffrey; Lainson, Ralph; Silveira, Fernando

    2014-01-01

    We phenotypically characterized 43 leishmanial parasites from cutaneous leishmaniasis by isoenzyme electrophoresis and the indirect immunofluorescence antibody test (23 McAbs). Identifications revealed 11 (25.6%) strains of Leishmania (V.) braziliensis, 4 (9.3%) of L. (V.) shawi shawi, 7 (16.3%) of L. (V.) shawi santarensis, 6 (13.9%) of L. (V.) guyanensis and L. (V.) lainsoni, 2 (4.7%) of L. (L.) amazonensis, and 7 (16.3%) of a putative hybrid parasite, L. (V.) guyanensis/L. (V.) shawi shawi. McAbs detected three different serodemes of L. (V.) braziliensis: I-7, II-1, and III-3 strains. Among the strains of L. (V.) shawi we identified two populations: one (7 strains) expressing the B19 epitope that was previously considered to be species-specific for L. (V.) guyanensis. We have given this population sub-specific rank, naming it L. (V.) s. santarensis. The other one (4 strains) did not express the B19 epitope like the L. (V.) shawi reference strain, which we now designate as L. (V.) s. shawi. For the first time in the eastern Brazilian Amazon we register a putative hybrid parasite (7 strains), L. (V.) guyanensis/L. (V.) s. shawi, characterized by a new 6PGDH three-band profile at the level of L. (V.) guyanensis. Its PGM profile, however, was very similar to that of L. (V.) s. shawi. These results suggest that the lower Amazon region – western Pará state, Brazil, represents a biome where L. (V.) guyanensis and L. (V.) s. shawi exchange genetic information. PMID:25083790

  17. New species of Orientatractis (Nematoda: Atractidae), new species of Rondonia (Nematoda: Atractidae) and other helminths in Austrochaperina basipalmata (Anura: Microhylidae) from Papua New Guinea.

    PubMed

    Bursey, Charles R; Goldberg, Stephen R; Kraus, Fred

    2014-03-01

    Two new nematode species, Orientatractis hamabatrachos sp. nov. and Rondonia batrachogena sp. nov. (Nematoda: Atractidae), from the gastrointestinal tract of Austrochaperina basipalmata (Anura: Microhylidae) collected in Papua New Guinea are described. Orientatractis hamabatrachos sp. nov. is characterized by the presence of the cephalic end armed with 4 wellsclerotized structures, consisting of 2 "horns" extending outward and downward and immediately below a single well-sclerotized spine. It differs from 5 congeners in spicule lengths and caudal papillae arrangements. Rondonia batrachogena sp. nov. is characterized by the presence of a female cloaca. It differs from 2 congeners primarily in body size. Orientatractis hamabatrachos sp. nov. and Rondonia batrachogena sp. nov. represent the first species assigned to either genus found to infect anurans or to occur in the Australo-Papuan region.

  18. Land-Use Change, Soil Process and Trace Gas Fluxes in the Brazilian Amazon Basin

    NASA Technical Reports Server (NTRS)

    Melillo, Jerry M.; Steudler, Paul A.

    1997-01-01

    We measured changes in key soil processes and the fluxes of CO2, CH4 and N2O associated with the conversion of tropical rainforest to pasture in Rondonia, a state in the southwest Amazon that has experienced rapid deforestation, primarily for cattle ranching, since the late 1970s. These measurements provide a comprehensive quantitative picture of the nature of surface soil element stocks, C and nutrient dynamics, and trace gas fluxes between soils and the atmosphere during the entire sequence of land-use change from the initial cutting and burning of native forest, through planting and establishment of pasture grass and ending with very old continuously-pastured land. All of our work is done in cooperation with Brazilian scientists at the Centro de Energia Nuclear na Agricultura (CENA) through an extant official bi-lateral agreement between the Marine Biological Laboratory and the University of Sao Paulo, CENA's parent institution.

  19. Dependence between Ventilation and Climate as recorded with Biomarkers over the last 420,000 years in the Guianas Region (North-western Amazon Basin)

    NASA Astrophysics Data System (ADS)

    Rama, O.; Lopez-Otalvaro, G.; Martrat, B.; Flores, J.; Sierro, F. J.; Grimalt, J. O.

    2009-12-01

    There is growing evidence that the majority of the Amazon rainforest survived the climatic threshold of the last ice age. This information is crucial given that this region could be currently near its critical resiliency tipping point; thus, minor climate warming, widespread reductions in precipitation and lengthening of the dry season may be sufficient to gradually contribute to the forest dieback and biodiversity loss [Cowling et al., 2004; Lenton et al., 2008; Maslin, 2004]. To contribute to this knowledge, palaeoclimatic oscillations have been identified in this study by using fossil organic compounds synthesized by marine and terrestrial flora and later accumulated on sediment strata (MD03-2616, 7N, 53W, -1233 meters below sea-level) from the Guianas region, closely linked to the Amazon Basin. Different indicators have been considered to continuously reconstruct the climate over the past 420,000 years at centennial scale: average annual sea surface temperatures (SST, Uk’37), productivity of the coccolithophora flora (alken-2-ones), continental vegetation variability (long chain n-alkanes) and changes in oxygenation of the deep-sea floor (ratio between n-alkan-1-ols and n-alkanes). At present, the Guianas region is largely influenced by migration of the intertropical convergence zone (ITCZ), related temperature and wind patterns, together with changes in hydrological conditions, atmospheric and oceanic fronts. Annual SST is 27.7C; two rain seasons and two dry seasons occur. At the core location, surface waters present complex seasonal configuration, while oxygen-enriched and low-salinity Antarctic Intermediate waters (AAIW) flow northward from -700 to -1500 meters depth; the Upper North Atlantic Deep waters circulate southward at greater depths [World Meteo. Org.; Masson & Delecluse, 2001; Arz et al., 2001]. This study reveals that completely different hydrological conditions and much colder climate occurred in the past, e.g. a harsh drop in SST of up to 24C

  20. Utilization of digital LANDSAT imagery for the study of granitoid bodies in Rondonia: Case example of the Pedra Branca massif

    NASA Technical Reports Server (NTRS)

    Parada, N. D. J. (Principal Investigator); Almeidafilho, R.; Payolla, B. L.; Depinho, O. G.; Bettencourt, J. S.

    1984-01-01

    Analysis of digital multispectral MSS-LANDSAT images enhanced through computer techniques and enlarged to a video scale of 1:100.000, show the main geological and structura features of the Pedra Branca granitic massif in Rondonia. These are not observed in aerial photographs or adar images. Field work shows that LANDSAT photogeological units correspond to different facies of granitic rocks in the Pedra Branca massif. Even under the particular characteristics of Amazonia (Tropical Forest, deep weathering, and Quaternary sedimentary covers), an adequate utilization of orbital remote sensing images can be important tools for the orientation of field works.

  1. A new species of Hemigrammus Gill, 1858 (Characiformes: Characidae) from the central and western Amazon and rio Paraná-Paraguai basins.

    PubMed

    Ota, Rafaela P; Lima, Flávio C T; Pavanelli, Carla S

    2015-04-21

    A new species of Hemigrammus is described from the middle rio Solimões/Amazonas and tributaries, upper and middle rio Madeira, and rio Paraná-Paraguai basins in Brazil and Paraguay. The new species is most similar among congeners with Hemigrammus marginatus, with which it shares similar caudal-fin pigmentation pattern. The new species can be distinguished from Hemigrammus marginatus by possessing two conspicuous dark patches of pigmentation on caudal fin, occupying most of caudal-fin lobes, except the tips, by having two dark narrow stripes along anal-fin base, and by possessing 5-8 pored lateral line scales. The new species differs from Hyphessobrycon diancistrus, which is similar in color pattern and general body shape, by the presence of small scales on caudal-fin lobes, occupying approximately its basal third, by the presence of two narrow stripes along anal fin base, and by the absence of bony hooks on analfin in mature males. The occurrence of the new species in both Amazon and rio Paraná-Paraguai basins is discussed in order to clarify and expand recent discussions on the biogeographical relationships between both river systems.

  2. Urban and suburban malaria in Rondônia (Brazilian Western Amazon) II. Perennial transmissions with high anopheline densities are associated with human environmental changes.

    PubMed

    Gil, Luiz Herman Soares; Tada, Mauro Shugiro; Katsuragawa, Tony Hiroshi; Ribolla, Paulo Eduardo Martins; da Silva, Luiz Hildebrando Pereira

    2007-06-01

    Longitudinal entomological surveys were performed in Vila Candelária and adjacent rural locality of Bate Estaca concomitantly with a clinical epidemiologic malaria survey. Vila Candelária is a riverside periurban neighborhood of Porto Velho, capital of the state of Rondônia in the Brazilian Amazon. High anopheline densities were found accompanying the peak of rainfall, as reported in rural areas of the region. Moreover, several minor peaks of anophelines were recorded between the end of the dry season and the beginning of the next rainy season. These secondary peaks were related to permanent anopheline breeding sites resulting from human activities. Malaria transmission is, therefore, observed all over the year. In Vila Candelária, the risk of malaria infection both indoors and outdoors was calculated as being 2 and 10/infecting bites per year per inhabitant respectively. Urban malaria in riverside areas was associated with two factors: (1) high prevalence of asymptomatic carriers in a stable human population and (2) high anopheline densities related to human environmental changes. This association is probably found in other Amazonian urban and suburban communities. The implementation of control measures should include environmental sanitation and better characterization of the role of asymptomatic carriers in malaria transmission.

  3. Sensitivity of the Amazon rainforest to convective storms

    NASA Astrophysics Data System (ADS)

    Negron Juarez, R. I.; Chambers, J. Q.; Rifai, S. W.; Urquiza Munoz, J. D.; Tello, R.; Alegria Munoz, W.; Marra, D.; Ribeiro, G.; Higuchi, N.

    2012-12-01

    The Amazon rainforest is the largest contiguous continental tropical forest in the world and is a world center of carbon storage, biodiversity, biogeochemical cycles and biogeophysical processes that affect the Earth climate system. Yet anthropogenic activities have produced changes in the forest-climate system. Consequently, an increase in rainfall in both the Western and Central Amazon and a decrease in the Eastern Amazon are expected due to these anthropogenic activities. While the projected decrease in rainfall has been discussed under the context of drought, deforestation, and fires, the effect of an increase in rainfall, and associated convective processes, on forest ecosystems has been overlooked. Across the Amazon rainforest, Western Amazonia has the highest precipitation rates, wood productivity, soil fertility, recruitment and mortality rates. Yet our field-measured tree mortality data from blowdowns that occurred in Western and Central Amazonia do not show a statistical difference in tree mortality between these regions. However, downburst velocities associated with these disturbances were calculated to be lower in Western Amazonia than in the Central Amazon. This suggests the Western Amazon is more highly sensitive to intense convective systems. This result is particularly relevant given the expected increase in rainfall in the Western and Central Amazon. The increase in rainfall is associated with more intense convective systems that in turn imply an increase in low level jet stream (LLJ) intensity east of the Andes. The presence of the LLJ is the main cause of squall lines and an increase in LLJ intensity will therefore cause increased propagation of squall lines into the Amazon basin. More frequent and active squall lines have the potential to increase the intensity and frequency of downbursts responsible for large forest blowdowns that will affect the biogeophysical feedbacks on the forest ecosystem and carbon budget.

  4. Influence of early life factors on body mass index trajectory during childhood: a population-based longitudinal analysis in the Western Brazilian Amazon.

    PubMed

    Lourenço, Barbara H; Villamor, Eduardo; Augusto, Rosângela A; Cardoso, Marly A

    2015-04-01

    Low- to middle-income countries may experience the occurrence of a dual burden of under and overnutrition. To better understand the overall progression of body mass index (BMI) during childhood, we estimated average BMI-for-age z-score (BAZ) growth curves in a population-based longitudinal study of 255 children living in the Brazilian Amazon. Children were aged 0.1-5.5 years at recruitment (2003). We collected data on socio-economic and maternal characteristics, children's birthweight and infant feeding practices. Child anthropometric measurements were taken in 2003, 2007 and 2009. BAZ differences among categories of exposure variables were calculated at 6 and 12 months, and 2, 7 and 10 years. At baseline, the mean (standard deviation) age was 2.6 (1.4) years; 12.9% were overweight and 3.9% thin. After adjustment, mean BAZ estimates were mostly negative. Boys were close to the median value for BAZ until 12 months, whereas girls were below the median (P=0.05). Children from households above the wealth median were 0.36 z- and 0.49 z-less underweight than poorer children at 7 and 10 years, respectively (P<0.01). Maternal BMI was positively associated with children's BAZ since 12 months old; BAZ in children from overweight mothers was higher by 0.69 compared with their counterparts at 10 years (P<0.01). Birthweight was positively related to BAZ up until 2 years (P=0.01). Socio-economic background and maternal nutritional status are important predictors of BAZ throughout childhood. Although excessive weight gain is a public health concern, it is critical to restrict inequities, while promoting healthier growth in developing countries.

  5. Trends in formaldehyde columns over the Amazon rainforest, as observed from space with SCIAMACHY, OMI and GOME-2 spectrometers.

    NASA Astrophysics Data System (ADS)

    De Smedt, Isabelle; Stavrakou, Trissevgeni; Lerot, Christophe; Yu, Huan; François, Hendrick; Gielen, Clio; Pinardi, Gaia; Muller, Jean-François; Van Roozendael, Michel

    2015-04-01

    Atmospheric formaldehyde (H2CO) is a central carbonyl compound of tropospheric chemistry. It is produced by the oxidation of a large variety of volatile organic compounds (VOCs), from biogenic, pyrogenic or anthropogenic emission sources. Tropical vegetation, in particular the Amazon forest that represents over half of the planet's remaining rainforests, emit a wide range of highly reactive biogenic volatile organic compounds (BVOCs). Those play a critical role in atmospheric chemistry and climate, by changing the oxidation capacity of the atmosphere and thus the lifetimes of other key trace gases such as CO and CH4, and by producing organic aerosols. Satellite observations of H2CO, bringing information at the global scale and over decades, are essential to trace and understand the nature and the spatio-temporal evolution of VOC emissions. We have been developing algorithms to retrieve formaldehyde columns from satellite nadir UV spectral measurements, and we have processed the full level-1 datasets of GOME/ERS-2, SCIAMACHY/ENVISAT, GOME-2/METOPA&B and OMI/AURA (De Smedt et al., 2008; 2012; 2015). Resulting H2CO products are openly distributed via the TEMIS website (http://h2co.aeronomie.be). In this work, we use the morning and afternoon H2CO columns between 2004 and 2014, respectively composed by the SCIAMACHY and GOME2 A&B datasets, and from the OMI observations, to study the diurnal, seasonal and long-term variations of H2CO over the Amazon rainforest. The highest H2CO columns worldwide are observed, with morning columns markedly higher than early afternoon. Very large variations between the dry and the wet seasons occur each year. Importantly, in some areas of the forest, mainly in the Rondonia Brazilian State, we observe a net decrease of the H2CO columns. We find very high correlation coefficients between the satellite H2CO columns and the reported deforestation fires that have significantly decreased in Rondonia since 2004 [INPE].

  6. Preliminary Measurements Of N2O Partial Pressures In Rivers of Amazon Basin, Brazil

    NASA Astrophysics Data System (ADS)

    Oliveira, C. B.; Rasera, M. F.; Krusche, A. V.; Victoria, R. L.; Richey, J. E.; Cunha, H. B.; Gomes, B. M.

    2006-12-01

    The concentrations of nitrous oxide (N2O), an important component of the greenhouse effect and with a long residence time in the atmosphere, have significantly increased in this century. The reasons for this atmospheric increase in N2O are still partially unexplained. This uncertainty is worse in relation to aquatic environments. Here we report on preliminary measurements of N2O partial pressures in rivers of the Amazon basin. The study areas are in the state of Rondonia (rivers Ji Parana, Urupa, Comemoracao and Pimenta Bueno) and Amazonas (rivers Solimoes and Negro). The rivers were sampled from October 2005 to April 2006, using with immersion pumps, lowered in the middle of the channel to 60% of total depth. Water was pumped directly into a 1 l plastic bottle, which was overflown three times before closing. Using syringes, 60 ml of N2 were injected into the bottle, simultaenously to the withdrawn of 60 ml of sample. N2O was extracted into these 60 ml of N2 by shaking vigorously for 2 minutes. With the same syringes, the gas was taken from the bottles and injected into sealed evacuated 25 ml vials. Atmospheric samples were taken from one meter above the water column and stored the same way. N2O partial pressures were determined on a Shimadzu GC-14 Green House Gas Analyzer. All rivers showed little variations in N2O partial pressures. Average values in the rivers of Rondonia were around 0.41 ± 0.07 μ atm (n=46), whereas the Solimoes and Negro rivers, in the state of Amazonas, showed values around 0.43 ± 0.08 μ atm (n=131). Atmospheric averages were approximately 0.34 ± 0.04 μ atm (n=58) and 0.32 ± 0.03 μ atm (n=134) in the states of Rondonia and Amazonas, respectively. This means that, although these waters are supersatured in CO2, making evasive fluxes of this gas an important component of the C cycle in this basin, the same does not occur in the N cycle. Small differences in partial pressures of N2O between water and air will result in small fluxes of

  7. Mouth of the Amazon

    NASA Image and Video Library

    2001-02-07

    Flowing over 6450 kilometers eastward across Brazil, the Amazon River originates in the Peruvian Andes as tiny mountain streams that eventually combine to form one of the world mightiest rivers as shown in this image from NASA Terra satellite.

  8. The Amazon and climate

    NASA Technical Reports Server (NTRS)

    Nobre, C. A.

    1984-01-01

    The climatologies of cloudiness and precipitation for the Amazon, are reviewed and the physical causes of some of the observed features and those which are not well known are explained. The atmospheric circulation over the Amazon is discussed on the large scale tropical circulations forced by deep diabatic heating sources. Weather deforestation which leads to a reduction in evapotranspiration into the atmosphere, and a reduction in precipitation and its implicated for the gobal climate is discussed. It is indicated that a large scale clearing of tropical rainforests there would be a reduction in rainfall which would have global effects on climate and weather both in the tropical and extratropical regions.

  9. Vaccine Adverse Events Reported during the First Ten Years (1998–2008) after Introduction in the State of Rondonia, Brazil

    PubMed Central

    Cunha, Mônica P. L.; Dórea, José G.; Marques, Rejane C.; Leão, Renata S.

    2013-01-01

    Despite good safety records, vaccines given to young children can cause adverse events. We investigated the reported adverse events following immunization (AEFI) of vaccines given to children of less than seven years of age during the first ten years (1998 to 2008) in the state of Rondonia, Brazil. We worked with the events related to BCG (Bacillus Calmett-Guérin), HB (hepatitis B), DTwP/Hib (diphtheria-tetanus-pertussis+Hemophillus influenza b), DTP (diphtheria-tetanus-pertussis), MMR (mumps, measles, rubella), and YF (yellow fever) vaccines because they were part of the recommended scheme. The number of doses of vaccines given was 3,231,567 with an average of AEFI of 57.2/year during the studied period. DTwP/Hib was responsible for 298 (57.8%), DTP 114 (22.9%), HB 31 (6%), MMR 28 (5.4%), BCG 24 (4.7%), and YF 20 (3.9%) of the reported AEFI. The combination of the AEFI for DTwP/Hib vaccines showed the highest number of systemic (61.4%) and local events (33.8%). Young children (≤1-year old) were more susceptible to AEFI occurring in the 6 hours (54.2%) following vaccine uptake. This study suggests significant differences in reactogenicity of vaccines and that despite limitations of the AEFI Brazilian registry system we cannot ignore underreporting and should use the system to expand our understanding of adverse events and effects. PMID:23509790

  10. Changes in nutrient dynamics throughout water transfers in a Tropical Forest and Pasture of Rondonia, Brazil

    NASA Astrophysics Data System (ADS)

    Piccolo, M. D.; Neill, C.; Krusche, A.; Laclau, J. P.; Cerri, C. C.

    2006-12-01

    The clearing of tropical forest in the Brazilian Amazon for cattle pasture since the 70s is a globally important land use change that has consequences for soil biogeochemical cycles. Generally, five to ten years after deforestation, pastures become degraded due to inadequate management practices. Development of strategies for restoration of low productivity pastures constitutes the main goal for Rondônia state. We analyzed the concentrations of the main nutrient of the biogeochemical cycles in three representative land uses at Fazenda Nova Vida, in central Rondônia (10o30'S, 62o30'W). The treatments were: (1) native forest; (2) pasture dominated by the forage grass Brachiaria brizantha but containing some weeds, under non- intensive management and; (3) a section of the same pasture that was subjected to tilling, replanting and fertilization (NPK + micronutrients) to eliminate weeds and improve grass productivity. Water samples from rain, throughfall, overland flow, tension lysimeter and zero-tension lysimeter (1.0 m soil depth), were collected during the rainy seasons from January to May of 2002 and 2003. The concentrations of C (DOC and DIC), inorganic-N (NH4+, NO3- and NO2-), Na+, K+, Mg2+, Ca2+, SO42- and Cl- were measured in all treatments. Rain water was dominated by the nutrients (NH4+, Na+, K+, Ca2+ and Cl-) and DOC. Forest throughfall was enriched in most of the elements. Concentrations of elements in the overland flow showed higher variations in the pasture and in the plowed pasture, however samples were not collected in forest. Soil solution waters (tension lysimeter) and lysimeter waters (zero-tension lysimeter) too had higher variations for elements concentrations in all treatments. Forest clearing for pasture and pasture submitted to tillage practices profoundly influence soil properties and, consequently, the nutrient availability in soil profiles. The soil solution composition may be indicative of altered patterns of nutrient availability in this

  11. Amazon basin: a system in equilibrium

    SciTech Connect

    Salati, E.; Vose, P.B.

    1984-07-13

    Despite very active deforestation in the last decade, the Amazon Basin is still primarily covered with trees and is a system in equilibrium. The Andes form a barrier at the western end of the basin and, coupled with the prevailing easterly winds, ensure an almost unique precipitation and water-recycling regime. On average 50% of the precipitation is recycled, and in some areas even more. The soils are poor. Most of the nitrogen and phosphorus is found in the soil, and the remaining nutrient elements are found in the standing biomass. There is some nutrient recycling and little loss from the intact ecosystem, and the small input of nutrients from precipitation maintains a small positive nutrient balance. Continued large-scale deforestation is likely to lead to increased erosion and water runoff with initial flooding in the lower Amazon, together with reduced evapotranspiration and ultimately reduced precipitation. Reduced precipitation in the Amazon could increase the tendency toward continentality and adversely affect climate and the present agriculture in south-central Brazil. 83 references, 1 figure, 5 tables.

  12. Mesoproterozoic rapakivi granites of the Rondonia Tin Province, southwestern border of the Amazonian craton, Brazil-I. Reconnaissance U-Pb geochronology and regional implications

    USGS Publications Warehouse

    Bettencourt, Jorge S.; Tosdal, R.M.; Leite, W.B.; Payolla, B.L.

    1999-01-01

    Rapakivi granites and associated mafic and ultramafic rocks in the Rondonia Tin Province, southwestern Amazonian craton, Brazil were emplaced during six discrete episodes of magmatism between ca 1600 and 970 Ma. The seven rapakivi granite suites emplaced at this time were the Serra da Providencia Intrusive Suite (U-Pb ages between 1606 and 1532 Ma); Santo Antonio Intrusive Suite (U-Pb age 1406 Ma); Teotonio Intrusive Suite (U-Pb age 1387 Ma); Alto Candeias Intrusive Suite (U-Pb ages between 1346 and 1338 Ma); Sao Lourenco-Caripunas Intrusive Suite (U-Pb ages between 1314 and 1309 Ma); Santa Clara Intrusive Suite (U-Pb ages between 1082 and 1074 Ma); and Younger Granites of Rondonia (U-Pb ages between 998 and 974 Ma). The Serra da Providencia Intrusive Suite intruded the Paleoproterozoic (1.80 to 1.70 Ga) Rio Negro-Juruena crust whereas the other suites were emplaced into the 1.50 to 1.30 Ga Rondonia-San Ignacio crust. Their intrusion was contemporaneous with orogenic activity in other parts of the southwestern Amazonian craton, except for the oldest, Serra da Providencia Intrusive Suite. Orogenic events coeval with emplacement of the Serra da Providencia Intrusive Suite are not clearly recognized in the region. The Santo Antonio, Teotonio, Alto Candeias and Sao Lourenco-Caripunas Intrusive Suites are interpreted to represent extensional anorogenic magmatism associated with the terminal stages of the Rondonian-San Ignacio orogeny. At least the Sao Lourenco-Caripunas rapakivi granites and coeval intra-continental rift sedimentary rocks may, in contrast, represent the products of extensional tectonics and rifting preceding the Sunsas/Aguapei orogeny (1.25 to 1.0 Ga). The two youngest rapakivi suites, the Santa Clara Intrusive Suite and Younger Granites of Rondonia, seemingly represent inboard magmatism in the Rondonian-San Ignacio Province during a younger episode of reworking in the Rio Negro-Juruena Province during the waning stages of the collisional 1.1 to 1.0 Ga

  13. The Amazon and climate

    NASA Technical Reports Server (NTRS)

    Nobre, C. A.

    1984-01-01

    The climatologies of cloudiness and precipitation for the Amazon are reviewed. The physical causes of observed features are explained. The question whether deforestation leads to a reduction in evapotranspiration into the atmosphere is examined, as well as the reduction in precipitation and its implication for the global climate. There are indications that for large scale clearing of tropical rain forests there would indeed be a reduction in rainfall, which would have global effects in terms of climate and weather.

  14. Storm intensity and old-growth forest disturbances in the Amazon region

    NASA Astrophysics Data System (ADS)

    Espírito-Santo, F. D. B.; Keller, M.; Braswell, B.; Nelson, B. W.; Frolking, S.; Vicente, G.

    2010-06-01

    We analyzed the pattern of large forest disturbances or blow-downs apparently caused by severe storms in a mostly unmanaged portion of the Brazilian Amazon using 27 Landsat images and daily precipitation estimates from NOAA satellite data. For each Landsat a spectral mixture analysis (SMA) was applied. Based on SMA, we detected and mapped 279 patches (from 5 ha to 2,223 ha) characteristic of blow-downs. A total of 21,931 ha of forest were disturbed. We found a strong correlation between occurrence of blow-downs and frequency of heavy rainfall (Spearman's rank, r2 = 0.84, p < 0.0003). The recurrence intervals of large disturbances were estimated to be 90,000 yr for the eastern Amazon and 27,000 yr for the western Amazon. This suggests that weather patterns affect the frequency of large forest disturbances that may produce different rates of forest turnover in the eastern and western Amazon basin.

  15. The changing Amazon forest.

    PubMed

    Phillips, Oliver L; Lewis, Simon L; Baker, Timothy R; Chao, Kuo-Jung; Higuchi, Niro

    2008-05-27

    Long-term monitoring of distributed, multiple plots is the key to quantify macroecological patterns and changes. Here we examine the evidence for concerted changes in the structure, dynamics and composition of old-growth Amazonian forests in the late twentieth century. In the 1980s and 1990s, mature forests gained biomass and underwent accelerated growth and dynamics, all consistent with a widespread, long-acting stimulation of growth. Because growth on average exceeded mortality, intact Amazonian forests have been a carbon sink. In the late twentieth century, biomass of trees of more than 10cm diameter increased by 0.62+/-0.23tCha-1yr-1 averaged across the basin. This implies a carbon sink in Neotropical old-growth forest of at least 0.49+/-0.18PgCyr-1. If other biomass and necromass components are also increased proportionally, then the old-growth forest sink here has been 0.79+/-0.29PgCyr-1, even before allowing for any gains in soil carbon stocks. This is approximately equal to the carbon emissions to the atmosphere by Amazon deforestation. There is also evidence for recent changes in Amazon biodiversity. In the future, the growth response of remaining old-growth mature Amazon forests will saturate, and these ecosystems may switch from sink to source driven by higher respiration (temperature), higher mortality (as outputs equilibrate to the growth inputs and periodic drought) or compositional change (disturbances). Any switch from carbon sink to source would have profound implications for global climate, biodiversity and human welfare, while the documented acceleration of tree growth and mortality may already be affecting the interactions among millions of species.

  16. The Amazon continuum dataset: quantitative metagenomic and metatranscriptomic inventories of the Amazon River plume, June 2010.

    PubMed

    Satinsky, Brandon M; Zielinski, Brian L; Doherty, Mary; Smith, Christa B; Sharma, Shalabh; Paul, John H; Crump, Byron C; Moran, Mary Ann

    2014-01-01

    The Amazon River is by far the world's largest in terms of volume and area, generating a fluvial export that accounts for about a fifth of riverine input into the world's oceans. Marine microbial communities of the Western Tropical North Atlantic Ocean are strongly affected by the terrestrial materials carried by the Amazon plume, including dissolved (DOC) and particulate organic carbon (POC) and inorganic nutrients, with impacts on primary productivity and carbon sequestration. We inventoried genes and transcripts at six stations in the Amazon River plume during June 2010. At each station, internal standard-spiked metagenomes, non-selective metatranscriptomes, and poly(A)-selective metatranscriptomes were obtained in duplicate for two discrete size fractions (0.2 to 2.0 μm and 2.0 to 156 μm) using 150 × 150 paired-end Illumina sequencing. Following quality control, the dataset contained 360 million reads of approximately 200 bp average size from Bacteria, Archaea, Eukarya, and viruses. Bacterial metagenomes and metatranscriptomes were dominated by Synechococcus, Prochlorococcus, SAR11, SAR116, and SAR86, with high contributions from SAR324 and Verrucomicrobia at some stations. Diatoms, green picophytoplankton, dinoflagellates, haptophytes, and copepods dominated the eukaryotic genes and transcripts. Gene expression ratios differed by station, size fraction, and microbial group, with transcription levels varying over three orders of magnitude across taxa and environments. This first comprehensive inventory of microbial genes and transcripts, benchmarked with internal standards for full quantitation, is generating novel insights into biogeochemical processes of the Amazon plume and improving prediction of climate change impacts on the marine biosphere.

  17. Andean Altiplano, Amazon Basin burning

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This view is centered over Lake Poopo, Bolivia, in the central Andean Altiplano, (20.0S, 65.0W) with a view looking northeast into the lower elevations of Bolivia and Brazil. Extensive dry seasonal burning in the Amazon Basin produces a thick haze which is trapped in the lower atmosphere by a stable air layer. The clarity difference in the scene is caused by the Andes Mountains extending above the haze into cleaner upper atmosphere air. Amazon Basin burning

  18. Analogical reasoning in amazons.

    PubMed

    Obozova, Tanya; Smirnova, Anna; Zorina, Zoya; Wasserman, Edward

    2015-11-01

    Two juvenile orange-winged amazons (Amazona amazonica) were initially trained to match visual stimuli by color, shape, and number of items, but not by size. After learning these three identity matching-to-sample tasks, the parrots transferred discriminative responding to new stimuli from the same categories that had been used in training (other colors, shapes, and numbers of items) as well as to stimuli from a different category (stimuli varying in size). In the critical testing phase, both parrots exhibited reliable relational matching-to-sample (RMTS) behavior, suggesting that they perceived and compared the relationship between objects in the sample stimulus pair to the relationship between objects in the comparison stimulus pairs, even though no physical matches were possible between items in the sample and comparison pairs. The parrots spontaneously exhibited this higher-order relational responding without having ever before been trained on RMTS tasks, therefore joining apes and crows in displaying this abstract cognitive behavior.

  19. Space-Time Controls on Carbon Sequestration Over Large-Scale Amazon Basin

    NASA Technical Reports Server (NTRS)

    Smith, Eric A.; Cooper, Harry J.; Gu, Jiujing; Grose, Andrew; Norman, John; daRocha, Humberto R.; Starr, David O. (Technical Monitor)

    2002-01-01

    A major research focus of the LBA Ecology Program is an assessment of the carbon budget and the carbon sequestering capacity of the large scale forest-pasture system that dominates the Amazonia landscape, and its time-space heterogeneity manifest in carbon fluxes across the large scale Amazon basin ecosystem. Quantification of these processes requires a combination of in situ measurements, remotely sensed measurements from space, and a realistically forced hydrometeorological model coupled to a carbon assimilation model, capable of simulating details within the surface energy and water budgets along with the principle modes of photosynthesis and respiration. Here we describe the results of an investigation concerning the space-time controls of carbon sources and sinks distributed over the large scale Amazon basin. The results are derived from a carbon-water-energy budget retrieval system for the large scale Amazon basin, which uses a coupled carbon assimilation-hydrometeorological model as an integrating system, forced by both in situ meteorological measurements and remotely sensed radiation fluxes and precipitation retrieval retrieved from a combination of GOES, SSM/I, TOMS, and TRMM satellite measurements. Brief discussion concerning validation of (a) retrieved surface radiation fluxes and precipitation based on 30-min averaged surface measurements taken at Ji-Parana in Rondonia and Manaus in Amazonas, and (b) modeled carbon fluxes based on tower CO2 flux measurements taken at Reserva Jaru, Manaus and Fazenda Nossa Senhora. The space-time controls on carbon sequestration are partitioned into sets of factors classified by: (1) above canopy meteorology, (2) incoming surface radiation, (3) precipitation interception, and (4) indigenous stomatal processes varied over the different land covers of pristine rainforest, partially, and fully logged rainforests, and pasture lands. These are the principle meteorological, thermodynamical, hydrological, and biophysical

  20. Space-Time Controls on Carbon Sequestration Over Large-Scale Amazon Basin

    NASA Technical Reports Server (NTRS)

    Smith, Eric A.; Cooper, Harry J.; Gu, Jiujing; Grose, Andrew; Norman, John; daRocha, Humberto R.; Starr, David O. (Technical Monitor)

    2002-01-01

    A major research focus of the LBA Ecology Program is an assessment of the carbon budget and the carbon sequestering capacity of the large scale forest-pasture system that dominates the Amazonia landscape, and its time-space heterogeneity manifest in carbon fluxes across the large scale Amazon basin ecosystem. Quantification of these processes requires a combination of in situ measurements, remotely sensed measurements from space, and a realistically forced hydrometeorological model coupled to a carbon assimilation model, capable of simulating details within the surface energy and water budgets along with the principle modes of photosynthesis and respiration. Here we describe the results of an investigation concerning the space-time controls of carbon sources and sinks distributed over the large scale Amazon basin. The results are derived from a carbon-water-energy budget retrieval system for the large scale Amazon basin, which uses a coupled carbon assimilation-hydrometeorological model as an integrating system, forced by both in situ meteorological measurements and remotely sensed radiation fluxes and precipitation retrieval retrieved from a combination of GOES, SSM/I, TOMS, and TRMM satellite measurements. Brief discussion concerning validation of (a) retrieved surface radiation fluxes and precipitation based on 30-min averaged surface measurements taken at Ji-Parana in Rondonia and Manaus in Amazonas, and (b) modeled carbon fluxes based on tower CO2 flux measurements taken at Reserva Jaru, Manaus and Fazenda Nossa Senhora. The space-time controls on carbon sequestration are partitioned into sets of factors classified by: (1) above canopy meteorology, (2) incoming surface radiation, (3) precipitation interception, and (4) indigenous stomatal processes varied over the different land covers of pristine rainforest, partially, and fully logged rainforests, and pasture lands. These are the principle meteorological, thermodynamical, hydrological, and biophysical

  1. Measuring Water Storage in the Amazon

    NASA Image and Video Library

    2010-07-07

    This image is from data taken by NASA Gravity Recovery and Climate Experiment showing the Amazon basin in South America. The amount of water stored in the Amazon basin varies from month to month. Animations are available at the Photojournal.

  2. Surface Soil Preparetion for Leguminous Plants Growing in Degraded Areas by Mining Located in Amazon Forest-Brazil

    NASA Astrophysics Data System (ADS)

    Irio Ribeiro, Admilson; Hashimoto Fengler, Felipe; Araújo de Medeiros, Gerson; Márcia Longo, Regina; Frederici de Mello, Giovanna; José de Melo, Wanderley

    2015-04-01

    The revegetation of areas degraded by mining usually requires adequate mobilization of surface soil for the development of the species to be implemented. Unlike the traditional tillage, which has periodicity, the mobilization of degraded areas for revegetation can only occur at the beginning of the recovery stage. In this sense, the process of revegetation has as purpose the establishment of local native vegetation with least possible use of inputs and superficial tillage in order to catalyze the process of natural ecological succession, promoting the reintegration of areas and minimizing the negative impacts of mining activities in environmental. In this context, this work describes part of a study of land reclamation by tin exploitation in the Amazon ecosystem in the National Forest Jamari- Rondonia Brazil. So, studied the influence of surface soil mobilization in pit mine areas and tailings a view to the implementation of legumes. The results show that the surface has areas of mobilizing a significant effect on the growth of leguminous plants, areas for both mining and to tailings and pit mine areas.

  3. Potential precipitation reductions in the northwest U.S. in response to the large-scale deforestation of the Amazon

    NASA Astrophysics Data System (ADS)

    Medvigy, D.; Walko, R. L.; Avissar, R.; Otte, M. J.

    2015-12-01

    Numerical models have long predicted that the deforestation of the Amazon would lead to large regional changes in precipitation and temperature, but the extratropical effects of deforestation have been a matter of controversy. Here, we use a numerical model to simulate the potential effects of deforestation on the northwest United States December-February climate. Integrations are carried out using the Ocean-Land Atmosphere Model (OLAM), run as a variable-resolution atmospheric GCM. When the Amazon is simulated at < 50 km resolution, deforestation causes a redistribution of precipitation within the Amazon, accompanied by vorticity and thermal anomalies. These anomalies set up Rossby waves that propagate into the extratropics and impact western North America. Ultimately, Amazon deforestation results in 10%-20% precipitation reductions for the coastal northwest United States and the Sierra Nevada. However, when the Amazon is simulated at coarse resolution, this mechanism is not resolved and precipitation is not reduced in the northwest United States. These results highlight the need for adequate model resolution in modeling the impacts of Amazon deforestation. It is concluded that the deforestation of the Amazon may act as a driver of regional climate change in the extratropics, including areas of the western United States that are agriculturally important. Such ecoclimate teleconnections warrant further investigation.

  4. Hydrologic resilience and Amazon productivity.

    PubMed

    Ahlström, Anders; Canadell, Josep G; Schurgers, Guy; Wu, Minchao; Berry, Joseph A; Guan, Kaiyu; Jackson, Robert B

    2017-08-30

    The Amazon rainforest is disproportionately important for global carbon storage and biodiversity. The system couples the atmosphere and land, with moist forest that depends on convection to sustain gross primary productivity and growth. Earth system models that estimate future climate and vegetation show little agreement in Amazon simulations. Here we show that biases in internally generated climate, primarily precipitation, explain most of the uncertainty in Earth system model results; models, empirical data and theory converge when precipitation biases are accounted for. Gross primary productivity, above-ground biomass and tree cover align on a hydrological relationship with a breakpoint at ~2000 mm annual precipitation, where the system transitions between water and radiation limitation of evapotranspiration. The breakpoint appears to be fairly stable in the future, suggesting resilience of the Amazon to climate change. Changes in precipitation and land use are therefore more likely to govern biomass and vegetation structure in Amazonia.Earth system model simulations of future climate in the Amazon show little agreement. Here, the authors show that biases in internally generated climate explain most of this uncertainty and that the balance between water-saturated and water-limited evapotranspiration controls the Amazon resilience to climate change.

  5. Role of methylmercury exposure (from fish consumption) on growth and neurodevelopment of children under 5 years of age living in a transitioning (tin-mining) area of the western Amazon, Brazil.

    PubMed

    Marques, Rejane C; Dórea, José G; Leão, Renata S; Dos Santos, Verusca G; Bueno, Lucélia; Marques, Rayson C; Brandão, Katiane G; Palermo, Elisabete F A; Guimarães, Jean Remy D

    2012-02-01

    Human occupation of the Amazon region has recently increased, bringing deforestation for agriculture and open-cast mining, activities that cause environmental degradation and pollution. Families of new settlers in mining areas might have a diet less dependent on abundant fish and their children might also be impacted by exposures to mining environments. Therefore, there is compounded interest in assessing young children's nutritional status and neurobehavioral development with regard to family fish consumption. Anthropometric (z-scores, WHO standards) and neurologic [Gesell developmental scores (GDS)] development in 688 preschool children (1-59 months of age) was studied. Overall, the prevalence of malnutrition [i.e., moderate stunting (≤2 H/A-Z), underweight (≤2 W/A-Z), and wasting (≤2 W/H-Z) were respectively 0.3% (n = 2), 1.6% (n = 11), and 2.5% (n = 17). Children's mean hair Hg (HHg) concentration was 2.56 μg/g (SD = 1.67); only 14% of children had HHg concentrations lower than 1 μg/g and 1.7% had ≥5 μg/g. The biomarker of fish consumption was weakly but positively correlated with GDS (Spearman r = 0.080; p = 0.035). In the bivariate model, attained W/H-Z scores were not significantly correlated with GDS. A moderate level of GDS deficits (70-84%) was seen in 20% of children. There was significant correlation between family fish consumption and children's hair Hg (HHg) (Spearman r = 0.1756; p < 0.0001) but no significant correlation between children's HHg and W/H-Z scores. However, the multivariate model showed that breastfeeding, a fish consumption biomarker (HHg), maternal education, and child's age were statistically significant associated with specific domains (language and personal-social) of the Gesell scale. In this mining environment, family fish-eating did not affect children's linear growth, but it showed a positive influence (along with maternal variables) on neurodevelopment. Health hazards attendant on a high prevalence of moderate

  6. The Amazon basin in transition.

    PubMed

    Davidson, Eric A; de Araújo, Alessandro C; Artaxo, Paulo; Balch, Jennifer K; Brown, I Foster; C Bustamante, Mercedes M; Coe, Michael T; DeFries, Ruth S; Keller, Michael; Longo, Marcos; Munger, J William; Schroeder, Wilfrid; Soares-Filho, Britaldo S; Souza, Carlos M; Wofsy, Steven C

    2012-01-18

    Agricultural expansion and climate variability have become important agents of disturbance in the Amazon basin. Recent studies have demonstrated considerable resilience of Amazonian forests to moderate annual drought, but they also show that interactions between deforestation, fire and drought potentially lead to losses of carbon storage and changes in regional precipitation patterns and river discharge. Although the basin-wide impacts of land use and drought may not yet surpass the magnitude of natural variability of hydrologic and biogeochemical cycles, there are some signs of a transition to a disturbance-dominated regime. These signs include changing energy and water cycles in the southern and eastern portions of the Amazon basin.

  7. Detection and Molecular Characterization of Zoonotic Poxviruses Circulating in the Amazon Region of Colombia, 2014

    PubMed Central

    Usme-Ciro, Jose A.; Paredes, Andrea; Walteros, Diana M.; Tolosa-Pérez, Erica Natalia; Laiton-Donato, Katherine; Pinzón, Maria del Carmen; Petersen, Brett W.; Gallardo-Romero, Nadia F.; Li, Yu; Wilkins, Kimberly; Davidson, Whitni; Gao, Jinxin; Patel, Nishi; Nakazawa, Yoshinori; Reynolds, Mary G.; Satheshkumar, P. S.; Emerson, Ginny L.

    2017-01-01

    During 2014, cutaneous lesions were reported in dairy cattle and farmworkers in the Amazon Region of western Colombia. Samples from 6 patients were analyzed by serologic and PCR testing, and results demonstrated the presence of vaccinia virus and pseudocowpox virus. These findings highlight the need for increased poxvirus surveillance in Colombia. PMID:28322708

  8. Detection and Molecular Characterization of Zoonotic Poxviruses Circulating in the Amazon Region of Colombia, 2014.

    PubMed

    Usme-Ciro, Jose A; Paredes, Andrea; Walteros, Diana M; Tolosa-Pérez, Erica Natalia; Laiton-Donato, Katherine; Pinzón, Maria Del Carmen; Petersen, Brett W; Gallardo-Romero, Nadia F; Li, Yu; Wilkins, Kimberly; Davidson, Whitni; Gao, Jinxin; Patel, Nishi; Nakazawa, Yoshinori; Reynolds, Mary G; Satheshkumar, P S; Emerson, Ginny L; Páez-Martínez, Andrés

    2017-04-01

    During 2014, cutaneous lesions were reported in dairy cattle and farmworkers in the Amazon Region of western Colombia. Samples from 6 patients were analyzed by serologic and PCR testing, and results demonstrated the presence of vaccinia virus and pseudocowpox virus. These findings highlight the need for increased poxvirus surveillance in Colombia.

  9. GoAmazon – Scaling Amazon Carbon Water Couplings

    SciTech Connect

    Dubey, Manvendra Krishna

    2016-09-06

    Forests soak up 25% of the carbon dioxide (CO2) emitted by anthropogenic fossil energy use (10 Gt C y-1) moderating its atmospheric accumulation. How this terrestrial CO2 uptake will evolve with climate change in the 21st century is largely unknown. Rainforests are the most active ecosystems with the Amazon basin storing 120 Gt C as biomass and exchanging 18 Gt C y-1 of CO2 via photosynthesis and respiration and fixing carbon at 2-3 kg C m-2 y-1. Furthermore, the intense hydrologic and carbon cycles are tightly coupled in the Amazon where about half of the water is recycled by evapotranspiration and the other half imported from the ocean by Northeasterly trade winds. Climate models predict a drying in the Amazon with reduced carbon uptake while observationally guided assessments indicate sustained uptake. We will resolve this huge discrepancy in the size and sign of the future Amazon carbon cycle by performing the first simultaneous regional scale high frequency measurements of atmospheric CO2, H2O, HOD, CH4, N2O and CO at the T3 site in Manacupuru, Brazil as part of DOE's GoAmazon project. Our data will be used to inform and develop DOE's CLM on the tropical carbon-water couplings at the appropriate grid scale (10-50km). Our measurements will also validate the CO2 data from Japan's GOSAT and NASA's imminent OCO-2 satellite (launch date July 2014).

  10. The Amazon Basin in transition

    Treesearch

    Eric A. Davidson; Alessandro C. de Araujo; Paulo Artaxo; Jennifer K. Balch; I. Foster Brown; Mercedes M.C. Bustamente; Michael T. Coe; Ruth S. DeFriess; Michael Keller; Marcos Longo; J. William Munger; Wilfrid Schroeder; Britaldo Soares-Filho; Carlos M. Souza, Jr.; Steven C. Wofsy

    2012-01-01

    Agricultural expansion and climate variability have become important agents of disturbance in the Amazon basin. Recent studies have demonstrated considerable resilience of Amazonian forests to moderate annual drought, but they also show that interactions between deforestation, fire and drought potentially lead to losses of carbon storage and changes in regional...

  11. Geochemistry of the Amazon Estuary

    USGS Publications Warehouse

    Smoak, Joseph M.; Krest, James M.; Swarzenski, Peter W

    2006-01-01

    The Amazon River supplies more freshwater to the ocean than any other river in the world. This enormous volume of freshwater forces the estuarine mixing out of the river channel and onto the continental shelf. On the continental shelf, the estuarine mixing occurs in a very dynamic environment unlike that of a typical estuary. The tides, the wind, and the boundary current that sweeps the continental shelf have a pronounced influence on the chemical and biological processes occurring within the estuary. The dynamic environment, along with the enormous supply of water, solutes and particles makes the Amazon estuary unique. This chapter describes the unique features of the Amazon estuary and how these features influence the processes occurring within the estuary. Examined are the supply and cycling of major and minor elements, and the use of naturally occurring radionuclides to trace processes including water movement, scavenging, sediment-water interaction, and sediment accumulation rates. The biogeochemical cycling of carbon, nitrogen, and phosphorus, and the significances of the Amazon estuary in the global mass balance of these elements are examined.

  12. An extensive reef system at the Amazon River mouth.

    PubMed

    Moura, Rodrigo L; Amado-Filho, Gilberto M; Moraes, Fernando C; Brasileiro, Poliana S; Salomon, Paulo S; Mahiques, Michel M; Bastos, Alex C; Almeida, Marcelo G; Silva, Jomar M; Araujo, Beatriz F; Brito, Frederico P; Rangel, Thiago P; Oliveira, Braulio C V; Bahia, Ricardo G; Paranhos, Rodolfo P; Dias, Rodolfo J S; Siegle, Eduardo; Figueiredo, Alberto G; Pereira, Renato C; Leal, Camille V; Hajdu, Eduardo; Asp, Nils E; Gregoracci, Gustavo B; Neumann-Leitão, Sigrid; Yager, Patricia L; Francini-Filho, Ronaldo B; Fróes, Adriana; Campeão, Mariana; Silva, Bruno S; Moreira, Ana P B; Oliveira, Louisi; Soares, Ana C; Araujo, Lais; Oliveira, Nara L; Teixeira, João B; Valle, Rogerio A B; Thompson, Cristiane C; Rezende, Carlos E; Thompson, Fabiano L

    2016-04-01

    Large rivers create major gaps in reef distribution along tropical shelves. The Amazon River represents 20% of the global riverine discharge to the ocean, generating up to a 1.3 × 10(6)-km(2) plume, and extensive muddy bottoms in the equatorial margin of South America. As a result, a wide area of the tropical North Atlantic is heavily affected in terms of salinity, pH, light penetration, and sedimentation. Such unfavorable conditions were thought to imprint a major gap in Western Atlantic reefs. We present an extensive carbonate system off the Amazon mouth, underneath the river plume. Significant carbonate sedimentation occurred during lowstand sea level, and still occurs in the outer shelf, resulting in complex hard-bottom topography. A permanent near-bottom wedge of ocean water, together with the seasonal nature of the plume's eastward retroflection, conditions the existence of this extensive (~9500 km(2)) hard-bottom mosaic. The Amazon reefs transition from accretive to erosional structures and encompass extensive rhodolith beds. Carbonate structures function as a connectivity corridor for wide depth-ranging reef-associated species, being heavily colonized by large sponges and other structure-forming filter feeders that dwell under low light and high levels of particulates. The oxycline between the plume and subplume is associated with chemoautotrophic and anaerobic microbial metabolisms. The system described here provides several insights about the responses of tropical reefs to suboptimal and marginal reef-building conditions, which are accelerating worldwide due to global changes.

  13. Suspended sediments of the modern Amazon and Orinoco rivers

    USGS Publications Warehouse

    Meade, R.H.

    1994-01-01

    The Amazon and Orinoco Rivers are massive transcontinental conveyance systems for suspended sediment. They derive about 90% of their sediment from the Andes that support their western headwaters, transport it for thousands of kilometers across the breadth of the continent and deposit it in the coastal zones of the Atlantic. At their points of maximum suspended-sediment discharge, the Amazon transports an average of 1100-1300 ?? 106 tons per year and the Orinoco transports about 150 ?? 106 tons per year. Relations of sediment discharge to water discharge are complicated by unusual patterns of seasonal storage and remobilization, increased storage and reduced transport of sediment in the middle Orinoco during periods of peak water discharge, and storage of suspended sediment in the lower Amazon during rising discharge and resuspension during falling discharge. Spatial distributions of suspended sediment in cross-sections of both rivers are typically heterogeneous, not only in the vertical sense but also in the lateral. The cross-channel mixing of tributary inputs into the mainstem waters is a slow process that requires several hundred kilometers of downriver transport to complete. Considerable fine-grained sediment is exchanged between rivers and floodplains by the combination of overbank deposition and bank erosion. ?? 1994.

  14. Impacts of Amazon deforestation on regional weather and climate extremes

    NASA Astrophysics Data System (ADS)

    Medvigy, D.; Walko, R. L.; Avissar, R.

    2010-12-01

    Recent deforestation projections estimate that 40% of the Amazon rainforest will be deforested by 2050. Many modeling studies have indicated that deforestation will reduce average rainfall in the Amazon. However, very few studies have investigated the potential for deforestation to change the frequency and intensity of extreme climate and weather events. To fill this gap in our understanding, we use a variable-resolution GCM to investigate how precipitation and temperature extremes throughout South America respond to deforestation. The model’s grid mesh is set up to cover South America and nearby oceans at mesoscale (25 km) resolution, and then to gradually coarsen and cover the rest of the world at 200 km resolution. This approach differs from the two most common current approaches: (1) to use a GCM with too coarse of a resolution to evaluate regional climate extremes, or (2) to use a regional atmospheric model that requires lateral boundary conditions from a GCM or reanalysis. We find that deforestation induces large changes in winter (June-July-August) climate throughout much of South America. Extreme cold events become much more common along the eastern slopes of the Andes. The largest changes were in the western Amazon and, surprisingly, in Argentina, far from the actual deforested area. We also find shifts in precipitation extremes, especially in September-October-November. Such changes in temperature and precipitation extremes have important consequences for agriculture, natural ecosystems, and human society.

  15. Contrasting Patterns of Damage and Recovery in Logged Amazon Forests From Small Footprint LiDAR Data

    NASA Technical Reports Server (NTRS)

    Morton, D. C.; Keller, M.; Cook, B. D.; Hunter, Maria; Sales, Marcio; Spinelli, L.; Victoria, D.; Andersen, H.-E.; Saleska, S.

    2012-01-01

    Tropical forests ecosystems respond dynamically to climate variability and disturbances on time scales of minutes to millennia. To date, our knowledge of disturbance and recovery processes in tropical forests is derived almost exclusively from networks of forest inventory plots. These plots typically sample small areas (less than or equal to 1 ha) in conservation units that are protected from logging and fire. Amazon forests with frequent disturbances from human activity remain under-studied. Ongoing negotiations on REDD+ (Reducing Emissions from Deforestation and Forest Degradation plus enhancing forest carbon stocks) have placed additional emphasis on identifying degraded forests and quantifying changing carbon stocks in both degraded and intact tropical forests. We evaluated patterns of forest disturbance and recovery at four -1000 ha sites in the Brazilian Amazon using small footprint LiDAR data and coincident field measurements. Large area coverage with airborne LiDAR data in 2011-2012 included logged and unmanaged areas in Cotriguacu (Mato Grosso), Fiona do Jamari (Rondonia), and Floresta Estadual do Antimary (Acre), and unmanaged forest within Reserva Ducke (Amazonas). Logging infrastructure (skid trails, log decks, and roads) was identified using LiDAR returns from understory vegetation and validated based on field data. At each logged site, canopy gaps from logging activity and LiDAR metrics of canopy heights were used to quantify differences in forest structure between logged and unlogged areas. Contrasting patterns of harvesting operations and canopy damages at the three logged sites reflect different levels of pre-harvest planning (i.e., informal logging compared to state or national logging concessions), harvest intensity, and site conditions. Finally, we used multi-temporal LiDAR data from two sites, Reserva Ducke (2009, 2012) and Antimary (2010, 2011), to evaluate gap phase dynamics in unmanaged forest areas. The rates and patterns of canopy gap

  16. Ecohydrology of a Dammed Amazon

    NASA Astrophysics Data System (ADS)

    Timpe, K. A.; Kaplan, D. A.

    2016-12-01

    The Amazon River watershed is the world's largest river basin and provides >US$30 billion/yr in ecosystem services to local populations, national societies and humanity at large. Construction of >30 large hydroelectric dams and >170 small dams in the Brazilian Amazon is currently underway as a result of governmental plans geared toward increased energy security, economic growth, improved living standards and industrialization. Changes in the Amazon's freshwater ecosystems from the development of hydropower will have a cascade of physical, ecological, and social effects at local to global scales. Here we demonstrate the extensive and large-scale effects of hydroelectric dams in the Amazon region on hydrologic parameters calculated using the Indicators of Hydrologic Alteration (IHA) method applied to 33 small and large dams in the Brazilian Amazon. Our analysis provides the first holistic assessment of hydrological alterations (HA) caused by Amazonian dams and offers insight on the primary physical and management drivers of dam impacts. Across sites, results show that dams have affected all ecologically important flow characteristics (i.e., magnitude, duration, timing, frequency and rate of change of pulse events). While each dam/river system are unique, some dams cause substantially greater HA. The "worst" dams were Balbina (HA=108%), Manso (HA=62%), and Serra da Mesa (HA=48%). All three are "large" dams with substantial reservoirs, however Serra da Mesa produces 6 times more electricity than either Balbina or Manso, with lower impact. The most dramatic dam-induced shifts in hydrologic regime were related to the frequency/duration and frequency/rate of change of pulse events. HA on rivers with multiple dams was only 8% higher than those with individual dams. Dam elevation and reservoir area were the best environmental predictors of HA. Results suggest that hydrological impacts from dams are similar among temperate and tropical climates (i.e., peak flows are often

  17. The Amazon River reversal explained by tectonic and surface processes

    NASA Astrophysics Data System (ADS)

    Sacek, V.

    2014-12-01

    The drainage pattern in Amazonia was expressively modified during the mountain building of central and northern Andes. In Early Miocene, the fluvial systems in western Amazonia flowed to the foreland basins and northward to the Caribbean. By Late Miocene the drainage reversal occurred and formed the transcontinental Amazon River, connecting the Andes and the equatorial Atlantic margin. This event is recorded in the stratigraphic evolution of the Foz do Amazonas Basin by the onset of Andean-derived sedimentation. Additionally, an abrupt increase in sedimentation rate after the reversal occurred in the Foz do Amazonas Basin. Based on three-dimensional numerical models that couple surface processes, flexural isostasy and crustal thickening due to orogeny, I concluded that the Miocene drainage reversal can be explained by the flexural and surface processes response to the Andes formation with no need to invoke dynamic topography induced by mantle convection, as previously proposed. I observed that the instant of drainage reversal is directly linked to the rate of crustal thickening in the orogeny, the rate of erosion and, mainly, the efficiency of sediment transport. Moreover, the numerical experiments were able to predict the increase in sedimentation rate in the Amazon fan after the drainage reversal of the Amazon River as observed in the Late Miocene-Pliocene sedimentary record. However, the present numerical model fails to fully reproduce the evolution of the Pebas system, a megawetland in western Amazonia that preceded the drainage reversal. Therefore, further investigation is necessary to evaluate the mechanisms that generated and sustained the Pebas system.

  18. Selective logging in the Brazilian Amazon.

    Treesearch

    G. P. Asner; D. E. Knapp; E. N. Broadbent; P. J. C. Oliveira; M Keller; J. N. Silva

    2005-01-01

    Amazon deforestation has been measured by remote sensing for three decades. In comparison, selective logging has been mostly invisible to satellites. We developed a large-scale, high-resolution, automated remote-sensing analysis of selective logging in the top five timber-producing states of the Brazilian Amazon. Logged areas ranged from 12,075 to 19,823 square...

  19. Partition of the relative contribution of nitrification and denitrification from Amazon forest soils using a model based on bulk 15N of N2O natural abundance determinations.

    NASA Astrophysics Data System (ADS)

    Perez, T. J.; Trumbore, S. E.; Tyler, S. C.; Park, S.; Boering, K.; Decamargo, P.

    2004-12-01

    Most of the available methods for the determination of the relative contribution of nitrification and denitrification to the soil emitted N2O are invasive. Therefore, they could produce biased results due to the change in soil structure, alteration to the microbial community and substrates. However, the soil community bacterial activity has intrinsic properties such as isotopic fractionation factors that are relative constant through different sets of soil conditions. We took advantage of these bacterial properties and devised a mass balance method for partitioning the relative contribution of each process by using: (1) The 15N enrichment factors for N2O production via nitrification and denitrification for soils (determined previously by acetylene addition soil incubation methods) and (2) the δ 15N-N2O soil emission values from the selected studied soils. We selected soils from a forest soil texture gradient from the Tapajos National Forest (TNF), in the Amazon Basin, Pará State, Brazil and Nova Vida Farm (NV), Rondonia State, Brazil where we had determined the 15N enrichment factors for each microbial process and collected N2O soil emissions for bulk stable isotope analysis during the rainy season of 2002. The soils selected were Oxisol (clay) and Ultison (sandy) at TNF and Latosol (sandy loam) at NV. We found that for all studied soils, the relative contribution of nitrification was smaller than 40 %. This corroborates the assumption that the N2O emitted from Amazon forest is mostly denitrification-derived. The advantage of this method is that is non invasive. However, the uncertainties associated with the method increase when δ 15N-N2O values of emitted N2O are smaller than -25 per mil.

  20. Confluence of the Amazon and Topajos Rivers, Brazil, South America

    NASA Image and Video Library

    1991-08-11

    This view shows the confluence of the Amazon and the Topajos Rivers at Santarem, Brazil (2.0S, 55.0W). The Am,azon flows from lower left to upper right of the photo. Below the river juncture of the Amazon and Tapajos, there is considerable deforestation activity along the Trans-Amazon Highway.

  1. Confluence of the Amazon and Topajos Rivers, Brazil, South America

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This view shows the confluence of the Amazon and the Topajos Rivers at Santarem, Brazil (2.0S, 55.0W). The Am,azon flows from lower left to upper right of the photo. Below the river juncture of the Amazon and Tapajos, there is considerable deforestation activity along the Trans-Amazon Highway.

  2. Amazon deforestation and climate change

    SciTech Connect

    Shukla, J.; Nobre, C.; Sellers, P. )

    1990-03-16

    A coupled numerical model of the global atmosphere and biosphere has been used to assess the effects of Amazon deforestation on the regional and global climate. When the tropical forests in the model were replaced by degraded grass (pasture), there was a significant increase in surface temperature and a decrease in evapotranspiration and precipitation over Amazonia. In the simulation, the length of the dry season also increased; such an increase could make reestablishment of the tropical forests after massive deforestation particularly difficult. 31 refs., 3 figs., 2 tabs.

  3. Potential Hydrologic Changes in the Amazon By the End of the 21st Century and the Groundwater Buffer

    NASA Astrophysics Data System (ADS)

    Pokhrel, Y. N.; Fan, Y.; Miguez-Macho, G.

    2014-12-01

    This study contributes to the discussions on the future of the Amazon rainforest under a projected warmer-drier climate from the perspectives of land hydrology. Using IPCC HadGEM2-ES simulations of the present and future Amazon climate to drive a land hydrology model that accounts for groundwater constraint on land drainage, we assess potential hydrologic changes in soil water, evapotranspiration (ET), water table depth, and river discharge, assuming unchanged vegetation. We ask: how will ET regimes shift at the end of the 21st century, and will the groundwater help buffer the anticipated water stress in some places-times? We conducted four 10yr model simulations, at the end of 20th and 21st century, with and without the groundwater. Our model results suggest that, first, over the western and central Amazon, ET will increase due to increased potential evapotranspiration (PET) with warmer temperatures, despite a decrease in soil water; that is, ET will remain atmosphere or demand-limited. Second, in the eastern Amazon dry season, ET will decrease in response to decreasing soil water, despite increasing PET demand; that is, ET in these regions-seasons will remain or become more soil water or supply-limited. Third, the area of water-limited regions will likely expand in the eastern Amazonia, with the dry season, as indicated by soil water store, even drier and longer. Fourth, river discharge will be significantly reduced over the entire Amazon but particularly so in the southeastern Amazon. By contrasting model results with and without the groundwater, we found that the slow soil drainage constrained by a shallow groundwater can buffer soil water stress, particularly in southeastern Amazon dry season. Our model suggests that, if the groundwater buffering effect is accounted for, the future Amazon water stress may be less than projected by most climate models.

  4. Potential hydrologic changes in the Amazon by the end of the 21st century and the groundwater buffer

    NASA Astrophysics Data System (ADS)

    Pokhrel, Yadu N.; Fan, Ying; Miguez-Macho, Gonzalo

    2014-08-01

    This study contributes to the discussions on the future of the Amazon rainforest under a projected warmer-drier climate from the perspectives of land hydrology. Using IPCC HadGEM2-ES simulations of the present and future Amazon climate to drive a land hydrology model that accounts for groundwater constraint on land drainage, we assess potential hydrologic changes in soil water, evapotranspiration (ET), water table depth, and river discharge, assuming unchanged vegetation. We ask: how will ET regimes shift at the end of the 21st century, and will the groundwater help buffer the anticipated water stress in some places-times? We conducted four 10 yr model simulations, at the end of 20th and 21st century, with and without the groundwater. Our model results suggest that, first, over the western and central Amazon, ET will increase due to increased potential evapotranspiration (PET) with warmer temperatures, despite a decrease in soil water; that is, ET will remain PET or atmospheric demand-limited. Second, in the eastern Amazon dry season, ET will decrease in response to decreasing soil water, despite increasing PET demand; that is, ET in these regions-seasons will remain or become more soil water or supply-limited. Third, the area of water-limited regions will likely expand in the eastern Amazonia, with the dry season, as indicated by soil water store, even drier and longer. Fourth, river discharge will be significantly reduced over the entire Amazon but particularly so in the southeastern Amazon. By contrasting model results with and without the groundwater, we found that the slow soil drainage constrained by shallow groundwater can buffer soil water stress, particularly in southeastern Amazon dry season. Our model suggests that, if groundwater buffering effect is accounted for, the future Amazon water stress may be less than that projected by most climate models.

  5. Marine environmental changes at the Brazilian equatorial margin related to Amazon River evolution during the Neogene

    NASA Astrophysics Data System (ADS)

    Lammertsma, Emmy; Troelstra, Simon; Sangiorgi, Francesca; Chemale, Farid, Jr.; do Carmo, Dermeval A.; D'Avila, Roberto; Soares, Emilson; Hoorn, Carina

    2014-05-01

    Today, the nutrient-rich Amazon River outflow causes massive algal blooms in the western equatorial Atlantic Ocean, forming a considerable carbon sink as well as a primary food source in the otherwise oligotrophic surface water. However, the history of this high-productivity system is largely unknown, although a strong relation to the evolution of the Amazon River can be expected. The Amazon submarine fan provides direct evidence for the development of a transcontinental river system, of which the base of the primarily Andean-sourced siliciclastic deposits is dated as late Miocene. Ditch cuttings from Amazon Fan exploration 'Well 2' were made available by Petrobras for microfossil and lithological research. 'Well 2' is located on the uppermost fan at a water depth of 750 meters. Organic-walled dinoflagellate cyst and foraminifer assemblages were studied to reconstruct Neogene marine environmental changes in relation to the Amazon River development. Planktonic foraminifera are present throughout the studied section and largely confirm the already available biostratigraphic age determination based on nannofossils. Benthic foraminifer assemblages indicate that the paleo-water depth has not substantially deviated from current conditions. The ecological affinities of most observed dinocyst taxa are well known, which allows us to reconstruct changes in paleo-productivity based on the assemblages. Mineral composition suggests that local river systems already drained into the Amazon basin before the onset of the transcontinental system, but environmental conditions remained oligotrophic at this time. Decreased abundances of both dinocysts and planktonic foraminifera during the Pleistocene are related to highest sedimentation rates (dilution effect). Overall, a complex interplay of orogenesis, climatic and sea level variations during the Neogene are responsible for the fluvially-induced changes in the marine environment at the Atlantic margin.

  6. Damming the rivers of the Amazon basin.

    PubMed

    Latrubesse, Edgardo M; Arima, Eugenio Y; Dunne, Thomas; Park, Edward; Baker, Victor R; d'Horta, Fernando M; Wight, Charles; Wittmann, Florian; Zuanon, Jansen; Baker, Paul A; Ribas, Camila C; Norgaard, Richard B; Filizola, Naziano; Ansar, Atif; Flyvbjerg, Bent; Stevaux, Jose C

    2017-06-14

    More than a hundred hydropower dams have already been built in the Amazon basin and numerous proposals for further dam constructions are under consideration. The accumulated negative environmental effects of existing dams and proposed dams, if constructed, will trigger massive hydrophysical and biotic disturbances that will affect the Amazon basin's floodplains, estuary and sediment plume. We introduce a Dam Environmental Vulnerability Index to quantify the current and potential impacts of dams in the basin. The scale of foreseeable environmental degradation indicates the need for collective action among nations and states to avoid cumulative, far-reaching impacts. We suggest institutional innovations to assess and avoid the likely impoverishment of Amazon rivers.

  7. Damming the rivers of the Amazon basin

    NASA Astrophysics Data System (ADS)

    Latrubesse, Edgardo M.; Arima, Eugenio Y.; Dunne, Thomas; Park, Edward; Baker, Victor R.; D'Horta, Fernando M.; Wight, Charles; Wittmann, Florian; Zuanon, Jansen; Baker, Paul A.; Ribas, Camila C.; Norgaard, Richard B.; Filizola, Naziano; Ansar, Atif; Flyvbjerg, Bent; Stevaux, Jose C.

    2017-06-01

    More than a hundred hydropower dams have already been built in the Amazon basin and numerous proposals for further dam constructions are under consideration. The accumulated negative environmental effects of existing dams and proposed dams, if constructed, will trigger massive hydrophysical and biotic disturbances that will affect the Amazon basin’s floodplains, estuary and sediment plume. We introduce a Dam Environmental Vulnerability Index to quantify the current and potential impacts of dams in the basin. The scale of foreseeable environmental degradation indicates the need for collective action among nations and states to avoid cumulative, far-reaching impacts. We suggest institutional innovations to assess and avoid the likely impoverishment of Amazon rivers.

  8. An extensive reef system at the Amazon River mouth

    PubMed Central

    Moura, Rodrigo L.; Amado-Filho, Gilberto M.; Moraes, Fernando C.; Brasileiro, Poliana S.; Salomon, Paulo S.; Mahiques, Michel M.; Bastos, Alex C.; Almeida, Marcelo G.; Silva, Jomar M.; Araujo, Beatriz F.; Brito, Frederico P.; Rangel, Thiago P.; Oliveira, Braulio C. V.; Bahia, Ricardo G.; Paranhos, Rodolfo P.; Dias, Rodolfo J. S.; Siegle, Eduardo; Figueiredo, Alberto G.; Pereira, Renato C.; Leal, Camille V.; Hajdu, Eduardo; Asp, Nils E.; Gregoracci, Gustavo B.; Neumann-Leitão, Sigrid; Yager, Patricia L.; Francini-Filho, Ronaldo B.; Fróes, Adriana; Campeão, Mariana; Silva, Bruno S.; Moreira, Ana P. B.; Oliveira, Louisi; Soares, Ana C.; Araujo, Lais; Oliveira, Nara L.; Teixeira, João B.; Valle, Rogerio A. B.; Thompson, Cristiane C.; Rezende, Carlos E.; Thompson, Fabiano L.

    2016-01-01

    Large rivers create major gaps in reef distribution along tropical shelves. The Amazon River represents 20% of the global riverine discharge to the ocean, generating up to a 1.3 × 106–km2 plume, and extensive muddy bottoms in the equatorial margin of South America. As a result, a wide area of the tropical North Atlantic is heavily affected in terms of salinity, pH, light penetration, and sedimentation. Such unfavorable conditions were thought to imprint a major gap in Western Atlantic reefs. We present an extensive carbonate system off the Amazon mouth, underneath the river plume. Significant carbonate sedimentation occurred during lowstand sea level, and still occurs in the outer shelf, resulting in complex hard-bottom topography. A permanent near-bottom wedge of ocean water, together with the seasonal nature of the plume’s eastward retroflection, conditions the existence of this extensive (~9500 km2) hard-bottom mosaic. The Amazon reefs transition from accretive to erosional structures and encompass extensive rhodolith beds. Carbonate structures function as a connectivity corridor for wide depth–ranging reef-associated species, being heavily colonized by large sponges and other structure-forming filter feeders that dwell under low light and high levels of particulates. The oxycline between the plume and subplume is associated with chemoautotrophic and anaerobic microbial metabolisms. The system described here provides several insights about the responses of tropical reefs to suboptimal and marginal reef-building conditions, which are accelerating worldwide due to global changes. PMID:27152336

  9. Assessing Mammal Exposure to Climate Change in the Brazilian Amazon

    PubMed Central

    Ribeiro, Bruno R.; Sales, Lilian P.; De Marco, Paulo; Loyola, Rafael

    2016-01-01

    Human-induced climate change is considered a conspicuous threat to biodiversity in the 21st century. Species’ response to climate change depends on their exposition, sensitivity and ability to adapt to novel climates. Exposure to climate change is however uneven within species’ range, so that some populations may be more at risk than others. Identifying the regions most exposed to climate change is therefore a first and pivotal step on determining species’ vulnerability across their geographic ranges. Here, we aimed at quantifying mammal local exposure to climate change across species’ ranges. We identified areas in the Brazilian Amazon where mammals will be critically exposed to non-analogue climates in the future with different variables predicted by 15 global circulation climate forecasts. We also built a null model to assess the effectiveness of the Amazon protected areas in buffering the effects of climate change on mammals, using an innovative and more realistic approach. We found that 85% of species are likely to be exposed to non-analogue climatic conditions in more than 80% of their ranges by 2070. That percentage is even higher for endemic mammals; almost all endemic species are predicted to be exposed in more than 80% of their range. Exposure patterns also varied with different climatic variables and seem to be geographically structured. Western and northern Amazon species are more likely to experience temperature anomalies while northeastern species will be more affected by rainfall abnormality. We also observed an increase in the number of critically-exposed species from 2050 to 2070. Overall, our results indicate that mammals might face high exposure to climate change and that protected areas will probably not be efficient enough to avert those impacts. PMID:27829036

  10. Assessing Mammal Exposure to Climate Change in the Brazilian Amazon.

    PubMed

    Ribeiro, Bruno R; Sales, Lilian P; De Marco, Paulo; Loyola, Rafael

    2016-01-01

    Human-induced climate change is considered a conspicuous threat to biodiversity in the 21st century. Species' response to climate change depends on their exposition, sensitivity and ability to adapt to novel climates. Exposure to climate change is however uneven within species' range, so that some populations may be more at risk than others. Identifying the regions most exposed to climate change is therefore a first and pivotal step on determining species' vulnerability across their geographic ranges. Here, we aimed at quantifying mammal local exposure to climate change across species' ranges. We identified areas in the Brazilian Amazon where mammals will be critically exposed to non-analogue climates in the future with different variables predicted by 15 global circulation climate forecasts. We also built a null model to assess the effectiveness of the Amazon protected areas in buffering the effects of climate change on mammals, using an innovative and more realistic approach. We found that 85% of species are likely to be exposed to non-analogue climatic conditions in more than 80% of their ranges by 2070. That percentage is even higher for endemic mammals; almost all endemic species are predicted to be exposed in more than 80% of their range. Exposure patterns also varied with different climatic variables and seem to be geographically structured. Western and northern Amazon species are more likely to experience temperature anomalies while northeastern species will be more affected by rainfall abnormality. We also observed an increase in the number of critically-exposed species from 2050 to 2070. Overall, our results indicate that mammals might face high exposure to climate change and that protected areas will probably not be efficient enough to avert those impacts.

  11. Distribution of Aboveground Live Biomass in the Amazon Basin

    NASA Technical Reports Server (NTRS)

    Saatchi, S. S.; Houghton, R. A.; DosSantos Alvala, R. C.; Soares, J. V.; Yu, Y.

    2007-01-01

    The amount and spatial distribution of forest biomass in the Amazon basin is a major source of uncertainty in estimating the flux of carbon released from land-cover and land-use change. Direct measurements of aboveground live biomass (AGLB) are limited to small areas of forest inventory plots and site-specific allometric equations that cannot be readily generalized for the entire basin. Furthermore, there is no spaceborne remote sensing instrument that can measure tropical forest biomass directly. To determine the spatial distribution of forest biomass of the Amazon basin, we report a method based on remote sensing metrics representing various forest structural parameters and environmental variables, and more than 500 plot measurements of forest biomass distributed over the basin. A decision tree approach was used to develop the spatial distribution of AGLB for seven distinct biomass classes of lowland old-growth forests with more than 80% accuracy. AGLB for other vegetation types, such as the woody and herbaceous savanna and secondary forests, was directly estimated with a regression based on satellite data. Results show that AGLB is highest in Central Amazonia and in regions to the east and north, including the Guyanas. Biomass is generally above 300Mgha(sup 1) here except in areas of intense logging or open floodplains. In Western Amazonia, from the lowlands of Peru, Ecuador, and Colombia to the Andean mountains, biomass ranges from 150 to 300Mgha(sup 1). Most transitional and seasonal forests at the southern and northwestern edges of the basin have biomass ranging from 100 to 200Mgha(sup 1). The AGLB distribution has a significant correlation with the length of the dry season. We estimate that the total carbon in forest biomass of the Amazon basin, including the dead and below ground biomass, is 86 PgC with +/- 20% uncertainty.

  12. Distribution of Aboveground Live Biomass in the Amazon Basin

    NASA Technical Reports Server (NTRS)

    Saatchi, S. S.; Houghton, R. A.; DosSantos Alvala, R. C.; Soares, J. V.; Yu, Y.

    2007-01-01

    The amount and spatial distribution of forest biomass in the Amazon basin is a major source of uncertainty in estimating the flux of carbon released from land-cover and land-use change. Direct measurements of aboveground live biomass (AGLB) are limited to small areas of forest inventory plots and site-specific allometric equations that cannot be readily generalized for the entire basin. Furthermore, there is no spaceborne remote sensing instrument that can measure tropical forest biomass directly. To determine the spatial distribution of forest biomass of the Amazon basin, we report a method based on remote sensing metrics representing various forest structural parameters and environmental variables, and more than 500 plot measurements of forest biomass distributed over the basin. A decision tree approach was used to develop the spatial distribution of AGLB for seven distinct biomass classes of lowland old-growth forests with more than 80% accuracy. AGLB for other vegetation types, such as the woody and herbaceous savanna and secondary forests, was directly estimated with a regression based on satellite data. Results show that AGLB is highest in Central Amazonia and in regions to the east and north, including the Guyanas. Biomass is generally above 300Mgha(sup 1) here except in areas of intense logging or open floodplains. In Western Amazonia, from the lowlands of Peru, Ecuador, and Colombia to the Andean mountains, biomass ranges from 150 to 300Mgha(sup 1). Most transitional and seasonal forests at the southern and northwestern edges of the basin have biomass ranging from 100 to 200Mgha(sup 1). The AGLB distribution has a significant correlation with the length of the dry season. We estimate that the total carbon in forest biomass of the Amazon basin, including the dead and below ground biomass, is 86 PgC with +/- 20% uncertainty.

  13. Origin, transport and deposition of leaf-wax biomarkers in the Amazon Basin and the adjacent Atlantic

    NASA Astrophysics Data System (ADS)

    Häggi, Christoph; Sawakuchi, André O.; Chiessi, Cristiano M.; Mulitza, Stefan; Mollenhauer, Gesine; Sawakuchi, Henrique O.; Baker, Paul A.; Zabel, Matthias; Schefuß, Enno

    2016-11-01

    Paleoenvironmental studies based on terrigenous biomarker proxies from sediment cores collected close to the mouth of large river systems rely on a proper understanding of the processes controlling origin, transport and deposition of biomarkers. Here, we contribute to the understanding of these processes by analyzing long-chain n-alkanes from the Amazon River system. We use the δD composition of long-chain n-alkanes from river bed sediments from the Amazon River and its major tributaries, as well as marine core-top samples collected off northeastern South America as tracers for different source areas. The δ13C composition of the same compounds is used to differentiate between long-chain n-alkanes from modern forest vegetation and petrogenic organic matter. Our δ13C results show depleted δ13C values (-33 to -36‰) in most samples, indicating a modern forest source for most of the samples. Enriched values (-31 to -33‰) are only found in a few samples poor in organic carbon indicating minor contributions from a fossil petrogenic source. Long-chain n-alkane δD analyses show more depleted values for the western tributaries, the Madeira and Solimões Rivers (-152 to -168‰), while n-alkanes from the lowland tributaries, the Negro, Xingu and Tocantins Rivers (-142 to -154‰), yield more enriched values. The n-alkane δD values thus reflect the mean annual isotopic composition of precipitation, which is most deuterium-depleted in the western Amazon Basin and more enriched in the eastern sector of the basin. Samples from the Amazon estuary show a mixed long-chain n-alkane δD signal from both eastern lowland and western tributaries. Marine core-top samples underlying the Amazon freshwater plume yield δD values similar to those from the Amazon estuary, while core-top samples from outside the plume showed more enriched values. Although the variability in the river bed data precludes quantitative assessment of relative contributions, our results indicate that long

  14. Jotï ecogony, Venezuelan Amazon

    NASA Astrophysics Data System (ADS)

    Zent, Egleé L.

    2013-03-01

    The current environmental crisis permeates the discourse and concerns of people all over the world. Consideration of diverse environmental ethics showing the alternative ways in which people conceptualize and relate to nature and natural resources are critical for bringing about more sustainable human behaviors. After a brief review of Western historical notions of nature, this work explores the ecogony, or causal reasons, that trigger the behavior of the Jotï, an Amerindian people of the Venezuelan Amazon, with other entities and the forest that they inhabit. The analysis presented synthesizes 15 years of transdisciplinary ethno-ecological research comprising quantitative and qualitative methods (collection of herbarium voucher specimens, floristic inventories in forest plots, structured interviews focused on plot vegetation, semi-structured interviews of life-histories, participant observation, time allocation studies, food resource accounting, focal person following observations, garden crop inventories and censuses, mapping of wild resource harvest locations, among others). Jotï pragmatic and ideological tenets generate a distinctive environmental ethics based on ecogonic nodes. Notions of interdependence, humanity and person are articulated on a daily basis through several dynamics: (1) hyper-awareness of all living things’ dependence on each other and other elements of the biophysical environment at macroscales and microscales, (2) the construction of human spiritual, conscious, physical and agentive constituents from a variety of diverse botanical and zoological species and mineral components of their homeland, and (3) an understanding of the aggregate surroundings, including a significant portion of the biotic and abiotic components, as potential subjects with awareness, creativity and moral stances. This condition of interdependence confers rights and duties on all the parts. Jotï horizontal communications with and among life-forms sustain their

  15. Amazon Forest Responses to Drought and Fire

    NASA Astrophysics Data System (ADS)

    Morton, D. C.

    2015-12-01

    Deforestation and agricultural land uses provide a consistent source of ignitions along the Amazon frontier during the dry season. The risk of understory fires in Amazon forests is amplified by drought conditions, when fires at the forest edge may spread for weeks before rains begin. Fire activity also impacts the regional response of intact forests to drought through diffuse light effects and nutrient redistribution, highlighting the complexity of feedbacks in this coupled human and natural system. This talk will focus on recent advances in our understanding of fire-climate feedbacks in the Amazon, building on research themes initiated under NASA's Large-scale Biosphere-Atmosphere Experiment in Amazonia (LBA). NASA's LBA program began in the wake of the 1997-1998 El Niño, a strong event that exposed the vulnerability of Amazon forests to drought and fire under current climate and projections of climate change. With forecasts of another strong El Niño event in 2015-2016, this talk will provide a multi-scale synthesis of Amazon forest responses to drought and fire based on field measurements, airborne lidar data, and satellite observations of fires, rainfall, and terrestrial water storage. These studies offer new insights into the mechanisms governing fire season severity in the southern Amazon and regional variability in carbon losses from understory fires. The contributions from remote sensing to our understanding of drought and fire in Amazon forests reflect the legacy of NASA's LBA program and the sustained commitment to interdisciplinary research across the Amazon region.

  16. Severe convection features in the Amazon Basin: a TRMM-based 15-year evaluation

    NASA Astrophysics Data System (ADS)

    Pereira Nunes, Ana; Silva Dias, Maria; Anselmo, Evandro; Rodriguez, Carlos

    2016-04-01

    Rainfall in the Amazon Basin is very heterogeneous, mainly because the area encompassed is quite large. Among the systems responsible for rainfall, some stand out as extreme storm events. This study presents a criterion for identifying potentially severe convection in the Amazon region from the Tropical Rainfall Measuring Mission (TRMM) database, specifically from Precipitation Features (PF) - 1998-2012 - generated and stored by the University of Utah. The seasonal and spatial distributions are similar to distributions of Mesoscale Convective Systems already catalogued in previous studies based on GOES satellite images. The seasons with the highest number of cases are austral spring, winter, and fall. With the Amazon region divided into six subregions and cases accumulated by quarter (JFM, AMJ, JAS, OND) the south of the Amazon subregion (SA) accounts for the largest number of cases with the OND quarter with higher occurrence and the lowest in AMJ. Different diurnal cycles of potentially severe convection are observed across the region with the more western areas, closer to the Andes, favoring nighttime cases, especially in the austral spring and summer. The diurnal cycle of the number of the most extreme cases is more pronounced than the diurnal cycle when a large collection of deep convection cases are included.

  17. Contributions from the Amazon River mouth to the carbonate and nutrient dynamics of the tropical Atlantic Ocean (Invited)

    NASA Astrophysics Data System (ADS)

    Yager, P. L.; Richey, J. E.; Page, B. P.; Ward, N.; Krusche, A. V.; Weber, S.; Montoya, J. P.; Rezende, C. E.

    2013-12-01

    The Amazon River contributes considerable freshwater and dissolved constituents to the global ocean, and its low-salinity plume offshore significantly impacts the carbon and nutrient cycles of the western tropical North Atlantic Ocean. Viewing the river-plume-ocean system as a continuum, rather than a point source, is a key component of the ROCA / ANACONDAS project effort. Here we report the findings of a multi-season field effort in the lower reach of the Amazon mainstem and offshore plume to determine the concentrations and variability of the full carbonate system as well as dissolved inorganic nitrogen, phosphorus, and silica at the mouth, providing for the first time the critical "river end members" for the Amazon's contribution to the sea. We find that concentrations at the mouth differ significantly from measurements made upriver at Manaus and Óbidos, historically used to represent the Amazon's contribution. With these new end members, the impact of the plume on the tropical marine ecosystem can be better determined, including its role as a globally significant atmospheric carbon dioxide sink and its sensitivity to change. These data, in combination with other microbial and geochemical data from the Amazon River continuum, improve our understanding of the links between the river, the plume, and the tropical Atlantic carbon cycle, as well as improve predictive capabilities of future climate change impacts. True color satellite image of Amazon River plume - NASA pCO2 versus salinity for outer Amazon River plume with color bar showing chlorophyll a fluorescence. Line is linear regression through the data, not a mixing line.

  18. The Late Miocene paleogeography of the Amazon Basin and the evolution of the Amazon River system

    NASA Astrophysics Data System (ADS)

    Latrubesse, Edgardo M.; Cozzuol, Mario; da Silva-Caminha, Silane A. F.; Rigsby, Catherine A.; Absy, Maria Lucia; Jaramillo, Carlos

    2010-05-01

    On the basis of paleontological content (vertebrates and palynology) and facies analysis from river banks, road cuts, and three wells, we have assigned the uppermost levels of the Solimões Formation in western Amazonia, Brazil, to the Late Miocene. The vertebrate fossil record from outcropping sediments is assigned to the Huayquerian-Mesopotamian mammalian biozones, spanning 9-6.5 Ma. Additionally, we present results that demonstrate that deposits in Peruvian Amazonia attributed to Miocene tidal environments are actually fluvial sediments that have been misinterpreted (both environmentally and chronologically) by several authors. The entire Late Miocene sequence was deposited in a continental environment within a subsiding basin. The facies analysis, fossil fauna content, and palynological record indicate that the environment of deposition was dominated by avulsive rivers associated with megafan systems, and avulsive rivers in flood basins (swamps, lakes, internal deltas, and splays). Soils developed on the flatter, drier areas, which were dominated by grasslands and gallery forest in a tropical to subtropical climate. These Late Miocene sediments were deposited from westward of the Purus arch up to the border of Brazil with Peru (Divisor Ranges) and Bolivia (Pando block). Eastward of the Iquitos structural high, however, more detailed studies, including vertebrate paleontology, need to be performed to calibrate with more precision the ages of the uppermost levels of the Solimões Formation. The evolution of the basin during the late Miocene is mainly related to the tectonic behavior of the Central Andes (˜ 3°-15°S). At approximately 5 Ma, a segment of low angle of subduction was well developed in the Nazca Plate, and the deformation in the Subandean foreland produced the inland reactivation of the Divisor/Contamana Ranges and tectonic arrangements in the Eastern Andes. During the Pliocene southwestern Brazilian Amazonia ceased to be an effective sedimentary

  19. Pattern and process in Amazon tree turnover, 1976-2001.

    PubMed Central

    Phillips, O L; Baker, T R; Arroyo, L; Higuchi, N; Killeen, T J; Laurance, W F; Lewis, S L; Lloyd, J; Malhi, Y; Monteagudo, A; Neill, D A; Vargas, P Núñez; Silva, J N M; Terborgh, J; Martínez, R Vásquez; Alexiades, M; Almeida, S; Brown, S; Chave, J; Comiskey, J A; Czimczik, C I; Di Fiore, A; Erwin, T; Kuebler, C; Laurance, S G; Nascimento, H E M; Olivier, J; Palacios, W; Patiño, S; Pitman, N C A; Quesada, C A; Saldias, M; Lezama, A Torres; Vinceti, B

    2004-01-01

    Previous work has shown that tree turnover, tree biomass and large liana densities have increased in mature tropical forest plots in the late twentieth century. These results point to a concerted shift in forest ecological processes that may already be having significant impacts on terrestrial carbon stocks, fluxes and biodiversity. However, the findings have proved controversial, partly because a rather limited number of permanent plots have been monitored for rather short periods. The aim of this paper is to characterize regional-scale patterns of 'tree turnover' (the rate with which trees die and recruit into a population) by using improved datasets now available for Amazonia that span the past 25 years. Specifically, we assess whether concerted changes in turnover are occurring, and if so whether they are general throughout the Amazon or restricted to one region or environmental zone. In addition, we ask whether they are driven by changes in recruitment, mortality or both. We find that: (i) trees 10 cm or more in diameter recruit and die twice as fast on the richer soils of southern and western Amazonia than on the poorer soils of eastern and central Amazonia; (ii) turnover rates have increased throughout Amazonia over the past two decades; (iii) mortality and recruitment rates have both increased significantly in every region and environmental zone, with the exception of mortality in eastern Amazonia; (iv) recruitment rates have consistently exceeded mortality rates; (v) absolute increases in recruitment and mortality rates are greatest in western Amazonian sites; and (vi) mortality appears to be lagging recruitment at regional scales. These spatial patterns and temporal trends are not caused by obvious artefacts in the data or the analyses. The trends cannot be directly driven by a mortality driver (such as increased drought or fragmentation-related death) because the biomass in these forests has simultaneously increased. Our findings therefore indicate that

  20. Pattern and process in Amazon tree turnover, 1976-2001.

    PubMed

    Phillips, O L; Baker, T R; Arroyo, L; Higuchi, N; Killeen, T J; Laurance, W F; Lewis, S L; Lloyd, J; Malhi, Y; Monteagudo, A; Neill, D A; Vargas, P Núñez; Silva, J N M; Terborgh, J; Martínez, R Vásquez; Alexiades, M; Almeida, S; Brown, S; Chave, J; Comiskey, J A; Czimczik, C I; Di Fiore, A; Erwin, T; Kuebler, C; Laurance, S G; Nascimento, H E M; Olivier, J; Palacios, W; Patiño, S; Pitman, N C A; Quesada, C A; Saldias, M; Lezama, A Torres; Vinceti, B

    2004-03-29

    Previous work has shown that tree turnover, tree biomass and large liana densities have increased in mature tropical forest plots in the late twentieth century. These results point to a concerted shift in forest ecological processes that may already be having significant impacts on terrestrial carbon stocks, fluxes and biodiversity. However, the findings have proved controversial, partly because a rather limited number of permanent plots have been monitored for rather short periods. The aim of this paper is to characterize regional-scale patterns of 'tree turnover' (the rate with which trees die and recruit into a population) by using improved datasets now available for Amazonia that span the past 25 years. Specifically, we assess whether concerted changes in turnover are occurring, and if so whether they are general throughout the Amazon or restricted to one region or environmental zone. In addition, we ask whether they are driven by changes in recruitment, mortality or both. We find that: (i) trees 10 cm or more in diameter recruit and die twice as fast on the richer soils of southern and western Amazonia than on the poorer soils of eastern and central Amazonia; (ii) turnover rates have increased throughout Amazonia over the past two decades; (iii) mortality and recruitment rates have both increased significantly in every region and environmental zone, with the exception of mortality in eastern Amazonia; (iv) recruitment rates have consistently exceeded mortality rates; (v) absolute increases in recruitment and mortality rates are greatest in western Amazonian sites; and (vi) mortality appears to be lagging recruitment at regional scales. These spatial patterns and temporal trends are not caused by obvious artefacts in the data or the analyses. The trends cannot be directly driven by a mortality driver (such as increased drought or fragmentation-related death) because the biomass in these forests has simultaneously increased. Our findings therefore indicate that

  1. Monitoring selective logging in western Amazonia with repeat lidar flights

    Treesearch

    H.E. Andersen; S.E. Reutebuch; R.J. McGaughey; M.V.N. d' Oliveira; M. Keller

    2014-01-01

    The objective of this study was to test the use of repeat flight, airborne laser scanning data (lidar) for estimating changes associated with low-impact selective logging (approx. 10-15 m3 ha−1 = 5-7% of total standing volume harvested) in natural tropical forests in the Western Brazilian Amazon. Specifically, we investigated change in area...

  2. Business as Usual: Amazon.com and the Academic Library

    ERIC Educational Resources Information Center

    Van Ullen, Mary K.; Germain, Carol Anne

    2002-01-01

    In 1999, Steve Coffman proposed that libraries form a single interlibrary loan based entity patterned after Amazon.com. This study examined the suitability of Amazon.com's Web interface and record enhancements for academic libraries. Amazon.com could not deliver circulating monographs in the University at Albany Libraries' collection quickly…

  3. Forecasting Total Water Storage Changes in the Amazon basin using Atlantic and Pacific Sea Surface Temperatures

    NASA Astrophysics Data System (ADS)

    De Linage, C.; Famiglietti, J. S.; Randerson, J. T.

    2013-12-01

    Floods and droughts frequently affect the Amazon River basin, impacting the transportation, river navigation, agriculture, economy and the carbon balance and biodiversity of several South American countries. The present study aims to find the main variables controlling the natural interannual variability of terrestrial water storage in the Amazon region and to propose a modeling framework for flood and drought forecasting. We propose three simple empirical models using a linear combination of lagged spatial averages of central Pacific (Niño 4 index) and tropical North Atlantic (TNAI index) sea surface temperatures (SST) to predict a decade-long record of 3°, monthly terrestrial water storage anomalies (TWSA) observed by the Gravity Recovery And Climate Experiment (GRACE) mission. In addition to a SST forcing term, the models included a relaxation term to simulate the memory of water storage anomalies in response to external variability in forcing. Model parameters were spatially-variable and individually optimized for each 3° grid cell. We also investigated the evolution of the predictive capability of our models with increasing minimum lead times for TWSA forecasts. TNAI was the primary external forcing for the central and western regions of the southern Amazon (35% of variance explained with a 3-month forecast), whereas Niño 4 was dominant in the northeastern part of the basin (61% of variance explained with a 3-month forecast). Forcing the model with a combination of the two indices improved the fit significantly (p<0.05) for at least 64% of the grid cells, compared to models forced solely with Niño 4 or TNAI. The combined model was able to explain 43% of the variance in the Amazon basin as a whole with a 3-month lead time. While 66% of the observed variance was explained in the northeastern Amazon, only 39% of the variance was captured by the combined model in the central and western regions, suggesting that other, more local, forcing sources were

  4. The Effects of Amazon Deforestation on Rainfall

    NASA Technical Reports Server (NTRS)

    Starr, David OC. (Technical Monitor); Negri, Andrew J.; Adler, Robert F.; Surratt, Jason

    2002-01-01

    This study begins with the hypothesis that heavily deforested regions will experience increased surface heating, leading to local circulations that will ultimately enhance the rainfall, or at least, change the pattern of diurnal evolution of rainfall. This would be an important finding because several modeling studies have concluded that widespread deforestation would lead to decreased rainfall. Towards that end rain estimates from a combined GOES infrared/TRMM microwave technique were analyzed with respect to percent forest cover from Landsat data (courtesy of TRFIC at Michigan State University) and GOES visible channel data over a deforested area in Rondonia (southwest Brazil). Five 1" x 1" areas of varying forest cover were examined during the onset of the wet season in Amazonia (Aug-Sept), when the effects of the surface would not be dominated by large-scale synoptic weather patterns. Preliminary results revealed that: maximum rainfall fell in most deforested area; heavily forested areas received the least rainfall; cumulus cloud development initiated at borders; the amplitude of the diurnal cycle of precipitation was a function of th surface cover. Further work will be presented detailing effects of land surface cover on the GOES infrared-measured surface heating, GOES visible observed cumulus development, thunderstorm initiation based on the location of temperature minima in the infrared data, and estimated rainfall and its diurnal cycle from a combined GOES/TRMM technique. Rainfall estimates derived from non-geosynchronous microwave observations (i.e. Goddard Profiling Algorithm, GPROF) will also be examined.

  5. The Effects of Amazon Deforestation on Rainfall

    NASA Technical Reports Server (NTRS)

    Starr, David OC. (Technical Monitor); Negri, Andrew J.; Adler, Robert F.; Surratt, Jason

    2002-01-01

    This study begins with the hypothesis that heavily deforested regions will experience increased surface heating, leading to local circulations that will ultimately enhance the rainfall, or at least, change the pattern of diurnal evolution of rainfall. This would be an important finding because several modeling studies have concluded that widespread deforestation would lead to decreased rainfall. Towards that end rain estimates from a combined GOES infrared/TRMM microwave technique were analyzed with respect to percent forest cover from Landsat data (courtesy of TRFIC at Michigan State University) and GOES visible channel data over a deforested area in Rondonia (southwest Brazil). Five 1" x 1" areas of varying forest cover were examined during the onset of the wet season in Amazonia (Aug-Sept), when the effects of the surface would not be dominated by large-scale synoptic weather patterns. Preliminary results revealed that: maximum rainfall fell in most deforested area; heavily forested areas received the least rainfall; cumulus cloud development initiated at borders; the amplitude of the diurnal cycle of precipitation was a function of th surface cover. Further work will be presented detailing effects of land surface cover on the GOES infrared-measured surface heating, GOES visible observed cumulus development, thunderstorm initiation based on the location of temperature minima in the infrared data, and estimated rainfall and its diurnal cycle from a combined GOES/TRMM technique. Rainfall estimates derived from non-geosynchronous microwave observations (i.e. Goddard Profiling Algorithm, GPROF) will also be examined.

  6. Diagnosing nonlinearities in the local and remote responses to partial Amazon deforestation

    NASA Astrophysics Data System (ADS)

    Badger, Andrew M.; Dirmeyer, Paul A.

    2016-08-01

    Using a set of fully coupled climate model simulations, the response to partial deforestation over the Amazon due to agricultural expansion has been analyzed. Three variations of 50% deforestation (all of western half, all of eastern half, and half of each grid box) were compared with total deforestation to determine the degree and character of nonlinearity of the climate response to partial deforestation. A metric is developed to quantify the degree and distribution of nonlinearity in the response, applicable to any variable. The metric also quantifies whether the response is saturating or accelerating, meaning significantly either more or less than 50% of the simulated response to total deforestation is attained at 50% deforestation. The spatial structure of the atmospheric response to Amazon deforestation reveals large areas across the tropics that exhibit a significant nonlinear component, particularly for temperature and geopotential height. Over the domain between 45°S and 45°N across all longitudes, 50% deforestation generally provides less than half of the total response to deforestation over oceans, indicating the marine portion of climate system is somewhat resilient to progressive deforestation. However, over continents there are both accelerating and saturating responses to 50% Amazon deforestation, and the response is different depending on whether the eastern or western half of Amazonia is deforested or half of the forest is removed uniformly across the region.

  7. Indications of regional scale groundwater flows in the Amazon Basins: Inferences from results of geothermal studies

    NASA Astrophysics Data System (ADS)

    Pimentel, Elizabeth T.; Hamza, Valiya M.

    2012-08-01

    The present work deals with determination groundwater flows in the Amazon region, based on analysis of geothermal data acquired in shallow and deep wells. The method employed is based on the model of simultaneous heat transfer by conduction and advection in permeable media. Analysis of temperature data acquired in water wells indicates down flows of groundwaters with velocities in excess of 10-7 m/s at depths less than 300 m in the Amazonas basin. Bottom-hole temperature (BHT) data sets have been used in determining characteristics of fluid movements at larger depths in the basins of Acre, Solimões, Amazonas, Marajó and Barreirinhas. The results of model simulations point to down flow of groundwaters with velocities of the order of 10-8 to 10-9 m/s, at depths of up to 4000 m. No evidence has been found for up flow typical of discharge zones. The general conclusion compatible with such results is that large-scale groundwater recharge systems operate at both shallow and deep levels in all sedimentary basins of the Amazon region. However, the basement rock formations of the Amazon region are relatively impermeable and hence extensive down flow systems through the sedimentary strata are possible only in the presence of generalized lateral movement of groundwater in the basal parts of the sedimentary basins. The direction of this lateral flow, inferred from the basement topography and geological characteristics of the region, is from west to east, following roughly the course of surface drainage system of the Amazon River, with eventual discharge into the Atlantic Ocean. The estimated flow rate at the continental margin is 3287 m3/s, with velocities of the order of 218 m/year. It is possible that dynamic changes in the fluvial systems in the western parts of South American continent have been responsible for triggering alterations in the groundwater recharge systems and deep seated lateral flows in the Amazon region.

  8. Modelling conservation in the Amazon basin.

    PubMed

    Soares-Filho, Britaldo Silveira; Nepstad, Daniel Curtis; Curran, Lisa M; Cerqueira, Gustavo Coutinho; Garcia, Ricardo Alexandrino; Ramos, Claudia Azevedo; Voll, Eliane; McDonald, Alice; Lefebvre, Paul; Schlesinger, Peter

    2006-03-23

    Expansion of the cattle and soy industries in the Amazon basin has increased deforestation rates and will soon push all-weather highways into the region's core. In the face of this growing pressure, a comprehensive conservation strategy for the Amazon basin should protect its watersheds, the full range of species and ecosystem diversity, and the stability of regional climates. Here we report that protected areas in the Amazon basin--the central feature of prevailing conservation approaches--are an important but insufficient component of this strategy, based on policy-sensitive simulations of future deforestation. By 2050, current trends in agricultural expansion will eliminate a total of 40% of Amazon forests, including at least two-thirds of the forest cover of six major watersheds and 12 ecoregions, releasing 32 +/- 8 Pg of carbon to the atmosphere. One-quarter of the 382 mammalian species examined will lose more than 40% of the forest within their Amazon ranges. Although an expanded and enforced network of protected areas could avoid as much as one-third of this projected forest loss, conservation on private lands is also essential. Expanding market pressures for sound land management and prevention of forest clearing on lands unsuitable for agriculture are critical ingredients of a strategy for comprehensive conservation.

  9. Flooding dynamics on the lower Amazon floodplain

    NASA Astrophysics Data System (ADS)

    Rudorff, C.; Melack, J. M.; Bates, P. D.

    2013-05-01

    We analyzed flooding dynamics of a large floodplain lake in the lower reach of the Amazon River for the period between 1995 through 2010. Floodplain inundation was simulated using the LISFLOOD-FP model, which combines one-dimensional river routing with two-dimensional overland flow, and a local hydrological model. Accurate representation of floodplain flows and inundation extent depends on the quality of the digital elevation model (DEM). We combined digital topography (derived from the Shuttle Radar Topography Mission) with extensive floodplain echo-sounding data to generate a hydraulically sound DEM. Analysis of daily water balances revealed that the dominant source of inflow alternated seasonally among direct rain and local runoff (October through January), Amazon River (March through August), and seepage (September). As inflows from the Amazon River increase during the rising limb of the hydrograph, regional floodwaters encounter the floodplain partially inundated from local hydrological inputs. At peak flow the floodplain routes, on average, 2.5% of the total discharge for this reach. The falling limb of the hydrograph coincides with the locally dry period, allowing seepage of water stored in sediments to become a dominant source. The average annual inflow from the Amazon River was 58.8 km3 (SD = 33.5), representing more than three thirds (80%) of inputs from all sources, with substantial inter-annual variability. The average annual net export of water from the floodplain to the Amazon River was 7.9 km3 (SD = 2.7).

  10. Modelling basin-wide variations in Amazon forest photosynthesis

    NASA Astrophysics Data System (ADS)

    Mercado, Lina; Lloyd, Jon; Domingues, Tomas; Fyllas, Nikolaos; Patino, Sandra; Dolman, Han; Sitch, Stephen

    2010-05-01

    Given the importance of Amazon rainforest in the global carbon and hydrological cycles, there is a need to use parameterized and validated ecosystem gas exchange and vegetation models for this region in order to adequately simulate present and future carbon and water balances. Recent research has found major differences in above-ground net primary productivity (ANPP), above ground biomass and tree dynamics across Amazonia. West Amazonia is more dynamic, with younger trees, higher stem growth rates and lower biomass than central and eastern Amazon (Baker et al. 2004; Malhi et al. 2004; Phillips et al. 2004). A factor of three variation in above-ground net primary productivity has been estimated across Amazonia by Malhi et al. (2004). Different hypotheses have been proposed to explain the observed spatial variability in ANPP (Malhi et al. 2004). First, due to the proximity to the Andes, sites from western Amazonia tend to have richer soils than central and eastern Amazon and therefore soil fertility could possibly be highly related to the high wood productivity found in western sites. Second, if GPP does not vary across the Amazon basin then different patterns of carbon allocation to respiration could also explain the observed ANPP gradient. However since plant growth depends on the interaction between photosynthesis, transport of assimilates, plant respiration, water relations and mineral nutrition, variations in plant gross photosynthesis (GPP) could also explain the observed variations in ANPP. In this study we investigate whether Amazon GPP can explain variations of observed ANPP. We use a sun and shade canopy gas exchange model that has been calibrated and evaluated at five rainforest sites (Mercado et al. 2009) to simulate gross primary productivity of 50 sites across the Amazon basin during the period 1980-2001. Such simulation differs from the ones performed with global vegetation models (Cox et al. 1998; Sitch et al. 2003) where i) single plant functional

  11. Isoprene over the Amazon Basin

    NASA Astrophysics Data System (ADS)

    Rasmussen, R. A.; Khalil, M. A. K.

    1988-02-01

    Data obtained during the 1985 ABLE expedition to the Amazon are used to describe the diurnal and vertical variations of isoprene. Isoprene is a natural hydrocarbon emitted by many species of trees, particularly those in tropical forests. The concentrations of isoprene at lower levels in the atmosphere undergo large diurnal variations, with the highest concentrations during midday and the lowest during the night. At ground level, outside the forest, peak concentrations of about 3-parts per billion by volume (ppbv) of isoprene were observed around midday. Concentrations were nearly zero before sunrise, increased to their maximum values during the day, and declined after sunset. Concentrations of 1-2 ppbv of isoprene were observed up to 300 m. Near the canopy level, up to 8 ppbv of isoprene were observed. In the forest, concentrations are generally quite low below the canopy and are highest at the level of the canopy. Since the reaction of isoprene with OH radicals is extremely fast, its concentrations fall off rapidly with altitude, so that practically none of it was seen above the boundary layer. During nighttime, however, concentrations comparable to daytime values were observed at altitudes of 300 m and above.

  12. Isoprene over the Amazon Basin

    NASA Technical Reports Server (NTRS)

    Rasmussen, R. A.; Khalil, M. A. K.

    1988-01-01

    Data obtained during the 1985 ABLE expedition to the Amazon are used to describe the diurnal and vertical variations of isoprene. Isoprene is a natural hydrocarbon emitted by many species of trees, particularly those in tropical forests. The concentrations of isoprene at lower levels in the atmosphere undergo large diurnal variations, with the highest concentrations during midday and the lowest during the night. At ground level, outside the forest, peak concentrations of about 3-parts per billion by volume (ppbv) of isoprene were observed around midday. Concentrations were nearly zero before sunrise, increased to their maximum values during the day, and declined after sunset. Concentrations of 1-2 ppbv of isoprene were observed up to 300 m. Near the canopy level, up to 8 ppbv of isoprene were observed. In the forest, concentrations are generally quite low below the canopy and are highest at the level of the canopy. Since the reaction of isoprene with OH radicals is extremely fast, its concentrations fall off rapidly with altitude, so that practically none of it was seen above the boundary layer. During nighttime, however, concentrations comparable to daytime values were observed at altitudes of 300 m and above.

  13. The Amazon forest-rainfall feedback: the roles of transpiration and interception

    NASA Astrophysics Data System (ADS)

    Dekker, Stefan; Staal, Arie; Tuinenburg, Obbe

    2017-04-01

    essential for the resilience of the south-western and northern parts of the Amazon forest. Without the forest-rainfall feedbacks, these forest wouldn't exist.

  14. Biomass burning aerosol over the Amazon during SAMBBA: impact of chemical composition on radiative properties

    NASA Astrophysics Data System (ADS)

    Morgan, William; Allan, James; Flynn, Michael; Darbyshire, Eoghan; Hodgson, Amy; Liu, Dantong; O'shea, Sebastian; Bauguitte, Stephane; Szpek, Kate; Langridge, Justin; Johnson, Ben; Haywood, Jim; Longo, Karla; Artaxo, Paulo; Coe, Hugh

    2014-05-01

    Biomass burning represents one of the largest sources of particulate matter to the atmosphere, resulting in a significant perturbation to the Earth's radiative balance coupled with serious impacts on public health. Globally, biomass burning aerosols are thought to exert a small warming effect but with the uncertainty being 4 times greater than the central estimate. On regional scales, the impact is substantially greater, particularly in areas such as the Amazon Basin where large, intense and frequent burning occurs on an annual basis for several months. Absorption by atmospheric aerosols is underestimated by models over South America, which points to significant uncertainties relating to Black Carbon (BC) aerosol properties. Initial results from the South American Biomass Burning Analysis (SAMBBA) field experiment, which took place during September and October 2012 over Brazil on-board the UK Facility for Airborne Atmospheric Measurement (FAAM) BAe-146 research aircraft, are presented here. Aerosol chemical composition was measured by an Aerodyne Aerosol Mass Spectrometer (AMS) and a DMT Single Particle Soot Photometer (SP2). The physical, chemical and optical properties of the aerosols across the region will be characterized in order to establish the impact of biomass burning on regional air quality, weather and climate. The aircraft sampled a range of conditions including sampling of pristine Rainforest, fresh biomass burning plumes, regional haze and elevated biomass burning layers within the free troposphere. The aircraft sampled biomass burning aerosol across the southern Amazon in the states of Rondonia and Mato Grosso, as well as in a Cerrado (Savannah-like) region in Tocantins state. This presented a range of fire conditions, both in terms of their number, intensity, vegetation-type and their combustion efficiencies. Near-source sampling of fires in Rainforest environments suggested that smouldering combustion dominated, while flaming combustion dominated

  15. Evapotranspiration seasonality across the Amazon Basin

    NASA Astrophysics Data System (ADS)

    Eiji Maeda, Eduardo; Ma, Xuanlong; Wagner, Fabien Hubert; Kim, Hyungjun; Oki, Taikan; Eamus, Derek; Huete, Alfredo

    2017-06-01

    Evapotranspiration (ET) of Amazon forests is a main driver of regional climate patterns and an important indicator of ecosystem functioning. Despite its importance, the seasonal variability of ET over Amazon forests, and its relationship with environmental drivers, is still poorly understood. In this study, we carry out a water balance approach to analyse seasonal patterns in ET and their relationships with water and energy drivers over five sub-basins across the Amazon Basin. We used in situ measurements of river discharge, and remotely sensed estimates of terrestrial water storage, rainfall, and solar radiation. We show that the characteristics of ET seasonality in all sub-basins differ in timing and magnitude. The highest mean annual ET was found in the northern Rio Negro basin (˜ 1497 mm year-1) and the lowest values in the Solimões River basin (˜ 986 mm year-1). For the first time in a basin-scale study, using observational data, we show that factors limiting ET vary across climatic gradients in the Amazon, confirming local-scale eddy covariance studies. Both annual mean and seasonality in ET are driven by a combination of energy and water availability, as neither rainfall nor radiation alone could explain patterns in ET. In southern basins, despite seasonal rainfall deficits, deep root water uptake allows increasing rates of ET during the dry season, when radiation is usually higher than in the wet season. We demonstrate contrasting ET seasonality with satellite greenness across Amazon forests, with strong asynchronous relationships in ever-wet watersheds, and positive correlations observed in seasonally dry watersheds. Finally, we compared our results with estimates obtained by two ET models, and we conclude that neither of the two tested models could provide a consistent representation of ET seasonal patterns across the Amazon.

  16. The Amazon, measuring a mighty river

    USGS Publications Warehouse

    ,

    1967-01-01

    The Amazon, the world's largest river, discharges enough water into the sea each day to provide fresh water to the City of New York for over 9 years. Its flow accounts for about 15 percent of all the fresh water discharged into the oceans by all the rivers of the world. By comparison, the Amazon's flow is over 4 times that of the Congo River, the world's second largest river. And it is 10 times that of the Mississippi, the largest river on the North American Continent.

  17. Black carbon over the Amazon during SAMBBA: it gets everywhere

    NASA Astrophysics Data System (ADS)

    Morgan, W.; Allan, J. D.; Flynn, M.; Darbyshire, E.; Liu, D.; Szpek, K.; Langridge, J.; Johnson, B. T.; Haywood, J.; Longo, K.; Artaxo, P.; Coe, H.

    2014-12-01

    Biomass burning represents a major source of Black Carbon (BC) aerosol to the atmosphere, which can result in major perturbations to weather, climate and ecosystem development. Large uncertainties in these impacts prevail, particularly on regional scales. One such region is the Amazon Basin, where large, intense and frequent burning occurs on an annual basis during the dry season. Absorption by atmospheric aerosols is underestimated by models over South America, which points to significant uncertainties relating to BC aerosol properties. Results from the South American Biomass Burning Analysis (SAMBBA) field experiment, which took place during September and October 2012 over Brazil on-board the UK Facility for Airborne Atmospheric Measurement (FAAM) BAe-146 research aircraft, are presented here. Aerosol chemical composition was measured by a DMT Single Particle Soot Photometer (SP2) and an Aerodyne Aerosol Mass Spectrometer (AMS). The physical, chemical and optical properties of BC-containing particles across the region will be characterised, with particular emphasis on the vertical distribution. BC was ubiquitous across the region, with measurements extending from heavily deforested regions in the Western Amazon Basin, through to agricultural fires in the Cerrado (Savannah-like) region and more pristine areas over the Amazon Rainforest. Measurements in the vicinity of Manaus (a city located deep into the jungle) were also conducted. BC concentrations peaked within the boundary layer at a height of around 1.5km. BC-containing particles were found to be rapidly coated in the near-field, with little evidence for additional coating upon advection and dilution. Biomass burning layers within the free troposphere were routinely observed. BC-containing particles within such layers were typically associated with less coating than those within the boundary layer, suggestive of wet removal of more coated BC particles. The importance of such properties in relation to the

  18. Polycystic Echinococcosis in Pacas, Amazon Region, Peru

    PubMed Central

    Mayor, Pedro; Baquedano, Laura E.; Sanchez, Elisabeth; Aramburu, Javier; Gomez-Puerta, Luis A.; Mamani, Victor J.

    2015-01-01

    In the Peruvian Amazon, paca meat is consumed by humans. To determine human risk for polycystic echinococcosis, we examined wild pacas from 2 villages; 15 (11.7%) of 128 were infected with Echinococcus vogeli tapeworms. High E. vogeli prevalence among pacas indicates potential risk for humans living in E. vogeli–contaminated areas. PMID:25695937

  19. Land Use Dynamics in the Brazilian Amazon

    Treesearch

    Robert Walker

    1996-01-01

    The articles presented in this special issue of Ecological Economics address the important theme of land use dynamics as it pertains to the Brazilian Amazon. Much environmental change is an ecological artifact of human agency, and such agency is often manifested in land use impacts, particularly in tropical areas. The critical problem of tropical deforestation is but...

  20. Amazon Flooded Forest. Teacher Resource Guide.

    ERIC Educational Resources Information Center

    Duvall, Todd

    This teacher's resource guide was created to accompany the Amazon Flooded Forest exhibit at the Oregon Zoo. The enclosed lessons and activities are designed to extend into several aspects of daily curriculum including science, math, reading, writing, speaking, and geography. The materials are intended for use in grades 3-6 although most activities…

  1. Principal Connection / Amazon and the Whole Teacher

    ERIC Educational Resources Information Center

    Hoerr, Thomas R.

    2015-01-01

    A recent controversy over Amazon's culture has strong implications for the whole child approach, and it offers powerful lessons for principals. A significant difference between the culture of so many businesses today and the culture at good schools is that in good schools, the welfare of the employees is very important. Student success is the…

  2. Amazon Flooded Forest. Teacher Resource Guide.

    ERIC Educational Resources Information Center

    Duvall, Todd

    This teacher's resource guide was created to accompany the Amazon Flooded Forest exhibit at the Oregon Zoo. The enclosed lessons and activities are designed to extend into several aspects of daily curriculum including science, math, reading, writing, speaking, and geography. The materials are intended for use in grades 3-6 although most activities…

  3. Principal Connection / Amazon and the Whole Teacher

    ERIC Educational Resources Information Center

    Hoerr, Thomas R.

    2015-01-01

    A recent controversy over Amazon's culture has strong implications for the whole child approach, and it offers powerful lessons for principals. A significant difference between the culture of so many businesses today and the culture at good schools is that in good schools, the welfare of the employees is very important. Student success is the…

  4. Vaccinia virus infection in monkeys, Brazilian Amazon.

    PubMed

    Abrahão, Jônatas S; Silva-Fernandes, André T; Lima, Larissa S; Campos, Rafael K; Guedes, Maria I M C; Cota, Marcela M G; Assis, Felipe L; Borges, Iara A; Souza-Júnior, Milton F; Lobato, Zélia I P; Bonjardim, Cláudio A; Ferreira, Paulo C P; Trindade, Giliane S; Kroon, Erna G

    2010-06-01

    To detect orthopoxvirus in the Brazilian Amazon, we conducted a serosurvey of 344 wild animals. Neutralizing antibodies against orthopoxvirus were detected by plaque-reduction neutralizing tests in 84 serum samples. Amplicons from 6 monkey samples were sequenced. These amplicons identified vaccinia virus genetically similar to strains from bovine vaccinia outbreaks in Brazil.

  5. Polycystic echinococcosis in Pacas, Amazon region, Peru.

    PubMed

    Mayor, Pedro; Baquedano, Laura E; Sanchez, Elisabeth; Aramburu, Javier; Gomez-Puerta, Luis A; Mamani, Victor J; Gavidia, Cesar M

    2015-03-01

    In the Peruvian Amazon, paca meat is consumed by humans. To determine human risk for polycystic echinococcosis, we examined wild pacas from 2 villages; 15 (11.7%) of 128 were infected with Echinococcus vogeli tapeworms. High E. vogeli prevalence among pacas indicates potential risk for humans living in E. vogeli-contaminated areas.

  6. Vaccinia Virus Infection in Monkeys, Brazilian Amazon

    PubMed Central

    Abrahão, Jônatas S.; Silva-Fernandes, André T.; Lima, Larissa S.; Campos, Rafael K.; Guedes, Maria I.M.C.; Cota, Marcela M.G.; Assis, Felipe L.; Borges, Iara A.; Souza-Júnior, Milton F.; Lobato, Zélia I.P.; Bonjardim, Cláudio A.; Ferreira, Paulo C.P.; Trindade, Giliane S.

    2010-01-01

    To detect orthopoxvirus in the Brazilian Amazon, we conducted a serosurvey of 344 wild animals. Neutralizing antibodies against orthopoxvirus were detected by plaque-reduction neutralizing tests in 84 serum samples. Amplicons from 6 monkey samples were sequenced. These amplicons identified vaccinia virus genetically similar to strains from bovine vaccinia outbreaks in Brazil. PMID:20507750

  7. Exploring the Geomorphology of the Amazon's Planalto with Imaging Radar: Understanding the Origins of the Modern Amazon Basin

    NASA Astrophysics Data System (ADS)

    McDonald, K. C.; Campbell, K.; Islam, R.; Azarderakhsh, M.; Cracraft, J.

    2013-12-01

    Amazonia is Earth's most iconic center of biological diversity and endemism and, owing to its contributions to global systems ecology, is arguably Earth's most important terrestrial biome . Amazonia includes a vast landscape of mostly lowland rainforest found in Brazil, Peru, Colombia, Ecuador, Bolivia, and Venezuela. It harbors the world's highest species diversity, the largest fresh-water ecosystem in the world, and contributes substantially to shaping the Earth's atmospheric gasses and oceans and consequently its climate. Despite this global importance, we still have an incomplete understanding of how this biodiversity-rich biome developed over time. Knowing its history is crucially important for understanding how the short and long-term effects of biodiversity loss and climate change will impact the region, and the globe, in the future. Hence, we seek to understand the evolutionary and environmental-ecological history of Amazonia over the past 10 million years through a comparative approach that integrates across the disciplines of systematic biology, population biology, ecosystem structure and function, geology, Earth systems modeling and remote sensing, and paleoenvironmental history. During springtime 2013, the NASA/JPL airborne imaging radar, UAVSAR, conducted airborne studies over many regions of South America including portions of the western Amazon basin. We utilize UAVSAR imagery acquired over the Madre de Dios region of southeastern Peru in an assessment of the underlying geomorphology of the Amazon's planalto, its relationship to the current distribution of vegetation, and its relationship to geologic processes through deep time. In the late Neogene, the Amazonian lowlands comprised either a series of independent basins or a single sedimentary basin. The Amazonian planalto is variously described as either an erosional surface or a surface of deposition. We employ UAVSAR data collections to assess (1) the utility of these high quality imaging radar

  8. Hydroclimate changes across the Amazon lowlands over the past 45,000 years.

    PubMed

    Wang, Xianfeng; Edwards, R Lawrence; Auler, Augusto S; Cheng, Hai; Kong, Xinggong; Wang, Yongjin; Cruz, Francisco W; Dorale, Jeffrey A; Chiang, Hong-Wei

    2017-01-11

    Reconstructing the history of tropical hydroclimates has been difficult, particularly for the Amazon basin-one of Earth's major centres of deep atmospheric convection. For example, whether the Amazon basin was substantially drier or remained wet during glacial times has been controversial, largely because most study sites have been located on the periphery of the basin, and because interpretations can be complicated by sediment preservation, uncertainties in chronology, and topographical setting. Here we show that rainfall in the basin responds closely to changes in glacial boundary conditions in terms of temperature and atmospheric concentrations of carbon dioxide. Our results are based on a decadally resolved, uranium/thorium-dated, oxygen isotopic record for much of the past 45,000 years, obtained using speleothems from Paraíso Cave in eastern Amazonia; we interpret the record as being broadly related to precipitation. Relative to modern levels, precipitation in the region was about 58% during the Last Glacial Maximum (around 21,000 years ago) and 142% during the mid-Holocene epoch (about 6,000 years ago). We find that, as compared with cave records from the western edge of the lowlands, the Amazon was widely drier during the last glacial period, with much less recycling of water and probably reduced plant transpiration, although the rainforest persisted throughout this time.

  9. Hydroclimate changes across the Amazon lowlands over the past 45,000 years

    NASA Astrophysics Data System (ADS)

    Wang, Xianfeng; Edwards, R. Lawrence; Auler, Augusto S.; Cheng, Hai; Kong, Xinggong; Wang, Yongjin; Cruz, Francisco W.; Dorale, Jeffrey A.; Chiang, Hong-Wei

    2017-01-01

    Reconstructing the history of tropical hydroclimates has been difficult, particularly for the Amazon basin—one of Earth’s major centres of deep atmospheric convection. For example, whether the Amazon basin was substantially drier or remained wet during glacial times has been controversial, largely because most study sites have been located on the periphery of the basin, and because interpretations can be complicated by sediment preservation, uncertainties in chronology, and topographical setting. Here we show that rainfall in the basin responds closely to changes in glacial boundary conditions in terms of temperature and atmospheric concentrations of carbon dioxide. Our results are based on a decadally resolved, uranium/thorium-dated, oxygen isotopic record for much of the past 45,000 years, obtained using speleothems from Paraíso Cave in eastern Amazonia; we interpret the record as being broadly related to precipitation. Relative to modern levels, precipitation in the region was about 58% during the Last Glacial Maximum (around 21,000 years ago) and 142% during the mid-Holocene epoch (about 6,000 years ago). We find that, as compared with cave records from the western edge of the lowlands, the Amazon was widely drier during the last glacial period, with much less recycling of water and probably reduced plant transpiration, although the rainforest persisted throughout this time.

  10. The legacy of cultural landscapes in the Brazilian Amazon: implications for biodiversity.

    PubMed

    Heckenberger, Michael J; Russell, J Christian; Toney, Joshua R; Schmidt, Morgan J

    2007-02-28

    For centuries Amazonia has held the Western scientific and popular imagination as a primordial forest, only minimally impacted by small, simple and dispersed groups that inhabit the region. Studies in historical ecology refute this view. Rather than pristine tropical forest, some areas are better viewed as constructed or 'domesticated' landscapes, dramatically altered by indigenous groups in the past. This paper reviews recent archaeological research in several areas along the Amazon River with evidence of large pre-European (ca 400-500 calendar years before the present) occupations and large-scale transformations of forest and wetland environments. Research from the southern margins of closed tropical forest, in the headwaters of the Xingu River, are highlighted as an example of constructed nature in the Amazon. In all cases, human influences dramatically altered the distribution, frequency and configurations of biological communities and ecological settings. Findings of historical change and cultural variability, including diverse small to medium-sized complex societies, have clear implications for questions of conservation and sustainability and, specifically, what constitutes 'hotspots' of bio-historical diversity in the Amazon region.

  11. Variations in Amazon forest productivity correlated with foliar nutrients and modelled rates of photosynthetic carbon supply.

    PubMed

    Mercado, Lina M; Patiño, Sandra; Domingues, Tomas F; Fyllas, Nikolaos M; Weedon, Graham P; Sitch, Stephen; Quesada, Carlos Alberto; Phillips, Oliver L; Aragão, Luiz E O C; Malhi, Yadvinder; Dolman, A J; Restrepo-Coupe, Natalia; Saleska, Scott R; Baker, Timothy R; Almeida, Samuel; Higuchi, Niro; Lloyd, Jon

    2011-11-27

    The rate of above-ground woody biomass production, W(P), in some western Amazon forests exceeds those in the east by a factor of 2 or more. Underlying causes may include climate, soil nutrient limitations and species composition. In this modelling paper, we explore the implications of allowing key nutrients such as N and P to constrain the photosynthesis of Amazon forests, and also we examine the relationship between modelled rates of photosynthesis and the observed gradients in W(P). We use a model with current understanding of the underpinning biochemical processes as affected by nutrient availability to assess: (i) the degree to which observed spatial variations in foliar [N] and [P] across Amazonia affect stand-level photosynthesis; and (ii) how these variations in forest photosynthetic carbon acquisition relate to the observed geographical patterns of stem growth across the Amazon Basin. We find nutrient availability to exert a strong effect on photosynthetic carbon gain across the Basin and to be a likely important contributor to the observed gradient in W(P). Phosphorus emerges as more important than nitrogen in accounting for the observed variations in productivity. Implications of these findings are discussed in the context of future tropical forests under a changing climate.

  12. Variations in Amazon forest productivity correlated with foliar nutrients and modelled rates of photosynthetic carbon supply

    PubMed Central

    Mercado, Lina M.; Patiño, Sandra; Domingues, Tomas F.; Fyllas, Nikolaos M.; Weedon, Graham P.; Sitch, Stephen; Quesada, Carlos Alberto; Phillips, Oliver L.; Aragão, Luiz E. O. C.; Malhi, Yadvinder; Dolman, A. J.; Restrepo-Coupe, Natalia; Saleska, Scott R.; Baker, Timothy R.; Almeida, Samuel; Higuchi, Niro; Lloyd, Jon

    2011-01-01

    The rate of above-ground woody biomass production, WP, in some western Amazon forests exceeds those in the east by a factor of 2 or more. Underlying causes may include climate, soil nutrient limitations and species composition. In this modelling paper, we explore the implications of allowing key nutrients such as N and P to constrain the photosynthesis of Amazon forests, and also we examine the relationship between modelled rates of photosynthesis and the observed gradients in WP. We use a model with current understanding of the underpinning biochemical processes as affected by nutrient availability to assess: (i) the degree to which observed spatial variations in foliar [N] and [P] across Amazonia affect stand-level photosynthesis; and (ii) how these variations in forest photosynthetic carbon acquisition relate to the observed geographical patterns of stem growth across the Amazon Basin. We find nutrient availability to exert a strong effect on photosynthetic carbon gain across the Basin and to be a likely important contributor to the observed gradient in WP. Phosphorus emerges as more important than nitrogen in accounting for the observed variations in productivity. Implications of these findings are discussed in the context of future tropical forests under a changing climate. PMID:22006971

  13. Hydrological Retrospective of floods and droughts: Case study in the Amazon

    NASA Astrophysics Data System (ADS)

    Wongchuig Correa, Sly; Cauduro Dias de Paiva, Rodrigo; Carlo Espinoza Villar, Jhan; Collischonn, Walter

    2017-04-01

    Recent studies have reported an increase in intensity and frequency of hydrological extreme events in many regions of the Amazon basin over last decades, these events such as seasonal floods and droughts have originated a significant impact in human and natural systems. Recently, methodologies such as climatic reanalysis are being developed in order to create a coherent register of climatic systems, thus taking this notion, this research efforts to produce a methodology called Hydrological Retrospective (HR), that essentially simulate large rainfall datasets over hydrological models in order to develop a record over past hydrology, enabling the analysis of past floods and droughts. We developed our methodology on the Amazon basin, thus we used eight large precipitation datasets (more than 30 years) through a large scale hydrological and hydrodynamic model (MGB-IPH), after that HR products were validated against several in situ discharge gauges dispersed throughout Amazon basin, given focus in maximum and minimum events. For better HR results according performance metrics, we performed a forecast skill of HR to detect floods and droughts considering in-situ observations. Furthermore, statistical temporal series trend was performed for intensity of seasonal floods and drought in the whole Amazon basin. Results indicate that better HR represented well most past extreme events registered by in-situ observed data and also showed coherent with many events cited by literature, thus we consider viable to use some large precipitation datasets as climatic reanalysis mainly based on land surface component and datasets based in merged products for represent past regional hydrology and seasonal hydrological extreme events. On the other hand, an increase trend of intensity was realized for maximum annual discharges (related to floods) in north-western regions and for minimum annual discharges (related to drought) in central-south regions of the Amazon basin, these features were

  14. Patterns of diversification in the discus fishes (Symphysodon spp. Cichlidae) of the Amazon basin.

    PubMed

    Farias, Izeni Pires; Hrbek, Tomas

    2008-10-01

    We carried out a phylogeograhic and population genetic analysis of fishes of the taxonomically contentious genus Symphysodon from the Amazon basin in order to test hypotheses of relationships among taxonomic units, and potential processes driving diversification within this genus. We sampled 334 individuals of the genus Symphysodon from 24 localities that span the complete geographic distribution of this genus. The sampling scheme included all known phenotypic groups, species and subspecies. Analyses were based on 474 bp of the mitochondrial control region and 1443 bp of the exon 3 of RAG1 gene. We observed 102 mtDNA haplotypes defined by 89 segregating sites, and 5 nuDNA alleles defined by three segregating sites. Maximum-likelihood, Bayesian-inference and statistical parsimony analyses revealed three well defined monophyletic groups. These clades corresponded to the 'green' and 'blue' groups of Symphysodon aequifasciatus, and to a previously morphologically unrecognized clade from the Xingu River drainage. These three clades were nested within a paraphyletic assemblage consisting of the 'brown' group of S. aequifasciatus and of both described subspecies of S. discus, the 'Heckel' and the 'abacaxi' discus. Nuclear allele sharing was observed among groups, but there were significant differences in frequencies. We inferred several processes including past fragmentation among groups, and restricted gene flow with isolation by distance within the paraphyletic 'brown+Heckel+abacaxi' groups, and suggest that differences among the 'blue', 'Heckel' and 'brown' groups are potentially maintained by differences in water chemistry preferences. We further inferred colonization of the western Amazon basin by an ancestor of the 'green' clade. The 'green' group was the only group with a pattern of haplotype distribution consistent of a demographic expansion, and the divergence of this clade from other groups of discus was consistent with recent geologic evidence on the breach of

  15. Metagenomic and metatranscriptomic inventories of the lower Amazon River, May 2011.

    PubMed

    Satinsky, Brandon M; Fortunato, Caroline S; Doherty, Mary; Smith, Christa B; Sharma, Shalabh; Ward, Nicholas D; Krusche, Alex V; Yager, Patricia L; Richey, Jeffrey E; Moran, Mary Ann; Crump, Byron C

    2015-09-10

    The Amazon River runs nearly 6500 km across the South American continent before emptying into the western tropical North Atlantic Ocean. In terms of both volume and watershed area, it is the world's largest riverine system, affecting elemental cycling on a global scale. A quantitative inventory of genes and transcripts benchmarked with internal standards was obtained at five stations in the lower Amazon River during May 2011. At each station, metagenomes and metatranscriptomes were obtained in duplicate for two microbial size fractions (free-living, 0.2 to 2.0 μm; particle-associated, 2.0 to 297 μm) using 150 × 150 paired-end Illumina sequencing. Forty eight sample datasets were obtained, averaging 15 × 10(6) potential protein-encoding reads each (730 × 10(6) total). Prokaryotic metagenomes and metatranscriptomes were dominated by members of the phyla Actinobacteria, Planctomycetes, Betaproteobacteria, Verrucomicrobia, Nitrospirae, and Acidobacteria. The actinobacterium SCGC AAA027-L06 reference genome recruited the greatest number of reads overall, with this single bin contributing an average of 50 billion genes and 500 million transcripts per liter of river water. Several dominant taxa were unevenly distributed between the free-living and particle-associated size fractions, such as a particle-associated bias for reads binning to planctomycete Schlesneria paludicola and a free-living bias for actinobacterium SCGC AAA027-L06. Gene expression ratios (transcripts to gene copy ratio) increased downstream from Óbidos to Macapá and Belém, indicating higher per cell activity of Amazon River bacteria and archaea as river water approached the ocean. This inventory of riverine microbial genes and transcripts, benchmarked with internal standards for full quantitation, provides an unparalleled window into microbial taxa and functions in the globally important Amazon River ecosystem.

  16. Multi-decadal Hydrological Retrospective: Case study of Amazon floods and droughts

    NASA Astrophysics Data System (ADS)

    Wongchuig Correa, Sly; Paiva, Rodrigo Cauduro Dias de; Espinoza, Jhan Carlo; Collischonn, Walter

    2017-06-01

    Recently developed methodologies such as climate reanalysis make it possible to create a historical record of climate systems. This paper proposes a methodology called Hydrological Retrospective (HR), which essentially simulates large rainfall datasets, using this as input into hydrological models to develop a record of past hydrology, making it possible to analyze past floods and droughts. We developed a methodology for the Amazon basin, where studies have shown an increase in the intensity and frequency of hydrological extreme events in recent decades. We used eight large precipitation datasets (more than 30 years) as input for a large scale hydrological and hydrodynamic model (MGB-IPH). HR products were then validated against several in situ discharge gauges controlling the main Amazon sub-basins, focusing on maximum and minimum events. For the most accurate HR, based on performance metrics, we performed a forecast skill of HR to detect floods and droughts, comparing the results with in-situ observations. A statistical temporal series trend was performed for intensity of seasonal floods and droughts in the entire Amazon basin. Results indicate that HR could represent most past extreme events well, compared with in-situ observed data, and was consistent with many events reported in literature. Because of their flow duration, some minor regional events were not reported in literature but were captured by HR. To represent past regional hydrology and seasonal hydrological extreme events, we believe it is feasible to use some large precipitation datasets such as i) climate reanalysis, which is mainly based on a land surface component, and ii) datasets based on merged products. A significant upward trend in intensity was seen in maximum annual discharge (related to floods) in western and northwestern regions and for minimum annual discharge (related to droughts) in south and central-south regions of the Amazon basin. Because of the global coverage of rainfall datasets

  17. Up-regulation of Amazon forest photosynthesis precedes elevated mortality under drought

    NASA Astrophysics Data System (ADS)

    Saleska, S. R.; Christoffersen, B. O.; Longo, M.; Restrepo-Coupe, N.; Alves, L. F.; Wiedemann, K. T.; Stark, S. C.; Hayek, M.; Wu, J.; Munger, J. W.; Meir, P.; Oliveira Junior, R. C.; da Silva, R.; Camargo, P. B. D.

    2015-12-01

    Coupled climate-carbon cycle models indicate that Amazon forests may be vulnerable to drought, with some predicting drought-induced collapse of the Amazon forest and conversion to savanna, under future climate change. While much progress has been made in understanding tropical forest drought response, a holistic picture encompassing both short-term physiological (e.g., photosynthesis) and longer term demographic responses (e.g., mortality) remains elusive, mainly due to the rarity of coinciding relevant measurements and drought events. Here we address this knowledge gap by analyzing the response of an eastern Amazonian forest at both timescales to the El Nino-induced drought of late 2009 / early 2010 (distinct from the Atlantic SST-induced drought to hit Western Amazonia in mid/late 2010) using eddy flux measurements of carbon exchange and periodic tree demographic surveys. We partitioned the drought response of GPP into environmental (light, vapor pressure deficit (VPD), diffuse light) and biological responses. Based on environmental conditions alone (high VPD), we expected GPP to be 1-2 umol CO2 m-2 s-1 less than average during drought. In contrast, GPP was elevated by 2-4 umol CO2 m-2 s-1 above this expected negative response over a period of ~45 days, consistent with previously observed green-up from satelliltes during the 2005 Amazon drought. At the same time, drought significantly elevated 2009-2011 tree mortality, by ~50% above that during non-drought periods, consistent with a quantitative drought-mortality relationship reported for other Amazon forests. This work suggests that observations of "green-up" of forest canopies during drought may be consistent with subsequent drought-induced tree mortality, in contrast to expectation. More importantly, it highlights endogenous biological regulation of photosynthesis as an important mechanism, neglected by models, in mediating drought responses in tropical forests.

  18. Climate Change Impacts in the Amazon. Review of scientific literature

    SciTech Connect

    2006-04-15

    The Amazon's hydrological cycle is a key driver of global climate, and global climate is therefore sensitive to changes in the Amazon. Climate change threatens to substantially affect the Amazon region, which in turn is expected to alter global climate and increase the risk of biodiversity loss. In this literature review the following subjects can be distinguished: Observed Climatic Change and Variability, Predicted Climatic Change, Impacts, Forests, Freshwater, Agriculture, Health, and Sea Level Rise.

  19. Amazon forests green-up during 2005 drought.

    PubMed

    Saleska, Scott R; Didan, Kamel; Huete, Alfredo R; da Rocha, Humberto R

    2007-10-26

    Coupled climate-carbon cycle models suggest that Amazon forests are vulnerable to both long- and short-term droughts, but satellite observations showed a large-scale photosynthetic green-up in intact evergreen forests of the Amazon in response to a short, intense drought in 2005. These findings suggest that Amazon forests, although threatened by human-caused deforestation and fire and possibly by more severe long-term droughts, may be more resilient to climate changes than ecosystem models assume.

  20. Selective Logging in the Brazilian Amazon

    NASA Astrophysics Data System (ADS)

    Asner, Gregory P.; Knapp, David E.; Broadbent, Eben N.; Oliveira, Paulo J. C.; Keller, Michael; Silva, Jose N.

    2005-10-01

    Amazon deforestation has been measured by remote sensing for three decades. In comparison, selective logging has been mostly invisible to satellites. We developed a large-scale, high-resolution, automated remote-sensing analysis of selective logging in the top five timber-producing states of the Brazilian Amazon. Logged areas ranged from 12,075 to 19,823 square kilometers per year (+/-14%) between 1999 and 2002, equivalent to 60 to 123% of previously reported deforestation area. Up to 1200 square kilometers per year of logging were observed on conservation lands. Each year, 27 million to 50 million cubic meters of wood were extracted, and a gross flux of ~0.1 billion metric tons of carbon was destined for release to the atmosphere by logging.

  1. Selective logging in the Brazilian Amazon.

    PubMed

    Asner, Gregory P; Knapp, David E; Broadbent, Eben N; Oliveira, Paulo J C; Keller, Michael; Silva, Jose N

    2005-10-21

    Amazon deforestation has been measured by remote sensing for three decades. In comparison, selective logging has been mostly invisible to satellites. We developed a large-scale, high-resolution, automated remote-sensing analysis of selective logging in the top five timber-producing states of the Brazilian Amazon. Logged areas ranged from 12,075 to 19,823 square kilometers per year (+/-14%) between 1999 and 2002, equivalent to 60 to 123% of previously reported deforestation area. Up to 1200 square kilometers per year of logging were observed on conservation lands. Each year, 27 million to 50 million cubic meters of wood were extracted, and a gross flux of approximately 0.1 billion metric tons of carbon was destined for release to the atmosphere by logging.

  2. Suspected Lead Poisoning in an Amazon Parrot

    PubMed Central

    McDonald, Lawrence J.

    1986-01-01

    A double yellow headed Amazon parrot (Amazona ochrocephala tresmariae) of unknown age and sex was examined for an acute onset of anorexia, listlessness, central nervous system signs and diarrhea. A tentative diagnosis of lead toxicosis was achieved based on radiographs, clinical pathology and response to therapy. Chelation therapy (Calcium EDTA) and supportive measures resulted in an uneventful recovery. ImagesFigure 1.Figure 2.Figure 3. PMID:17422638

  3. Sustainable settlement in the Brazilian Amazon

    SciTech Connect

    Almeida, A.L.O.; Campari, J.S.

    1996-02-01

    Presents and analyzes the largest and most complete data set ever produced on the economic variables that influence deforestation by small farmers in the Amazon. This landmark study presents the largest and most analytically complete data set ever produced on the economic variables that influence deforestation by small farmers in the Amazon. The authors examine the changing character of the Amazon frontier based on field surveys conducted during twenty years of settlement experience. By observing the economic behavior of small farmers from colonization during the 1970s until the chaotic aftermath of the early 1990s, the authors are able to pinpoint a central paradox: unsuccessful farmers tend to be unstable, moving on to new frontiers where they will again destroy forests. Successful farmers tend to increase deforestation in the places where they remain. The findings reveal that much of the Amazonian frontier land cleared by pioneers in the 1970s is becoming agriculturally unproductive. Small farmers should be rewarded for staying where they are and for pursuing sustainable farming. Good farming methods must be promoted, and deforestation must be penalized. The authors recommend the implementation of innovative economic policies and new forms of cooperation between environmental and economic agencies, including the World Bank, at both local and international levels. The aim of these policies should be to raise agricultural incomes and reduce environmental aggression.

  4. Carbon isotopic composition of Amazon shelf sediments

    SciTech Connect

    Showers, W.J.; Angle, D.G.; Nittrouer, C.A.; Demaster, D.J.

    1985-02-01

    The distribution of carbon isotopes in Amazon shelf sediment is controlled by the same processes that are forming the modern subaqueous delta. The terrestrial (-27 to -25 per thousand) isotopic carbon signal observed in surficial sediments near the river mouth extends over 400 km northwest along the shelf. Terrestrial carbon is associated with areas of rapid sediment accumulation (topset and foreset regions). A sharp boundary between terrestrial (-27 to -25 per thousand) and marine (-23 to -22 per thousand) isotopic carbon values in surficial sediments is associated with a change in depositional conditions (foreset to bottomset regions) and a decrease in sediment accumulation rate. POC water-column isotopic values (-27 per thousand) near the river mouth are similar to the underlying surficial-sediment TOC isotopic values, but POC water-column samples collected 20 km off the river mouth have marine carbon isotopic values (-22 to -19 per thousand) and differ from the underlying surficial-sediment TOC isotopic values. These water column observations are related to variations in turbidity and productivity. Down-core isotopic variation is only observed in cores taken in areas of lower sediment accumulation rates. These observations indicate that the organic carbon in Amazon shelf sediment is dominantly terrestrial in composition, and the location of deposition of this carbon is controlled by modern processes of sediment accumulation. The modern Amazon shelf is similar to large clinoform shale deposits of the Cretaceous in North America. Thus, the stratigraphic setting may help predict the isotopic variations of carbon in ancient deposits.

  5. A multidisciplinary Amazon Shelf Sediment Study

    NASA Astrophysics Data System (ADS)

    AmasSeds Research Group

    A new research program is taking a comprehensive look at the continental shelf at the mouth of the Amazon, the world's largest river. This paper describes the objectives, the design, some preliminary results, and the future plans of the program, which is called A Multidisciplinary Amazon Shelf Sediment Study (AmasSeds). The participants in the program's research group are listed at the end of this article.Among the initial findings from AmasSeds are observations of mammoth pulses of water (and sediment) discharge on weekly time scales from the Amazon, and documentation of the advection of this material over 1000 km over a couple of weeks. The study has also measured suspended sediment concentrations that affect seawater density and biological productivity, and revealed shoreline erosion even while billions of tons of sediment are being supplied. In addition, iron and manganese cycling has been found to be so extensive that it controls seabed chemistry. Finally, the project has identified a major environmental change that occurred several hundred years ago.

  6. Chagas disease and globalization of the Amazon.

    PubMed

    Briceño-León, Roberto

    2007-01-01

    The increasing number of autochthonous cases of Chagas disease in the Amazon since the 1970s has led to fear that the disease may become a new public health problem in the region. This transformation in the disease's epidemiological pattern in the Amazon can be explained by environmental and social changes in the last 30 years. The current article draws on the sociological theory of perverse effects to explain these changes as the unwanted result of the shift from the "inward" development model prevailing until the 1970s to the "outward" model that we know as globalization, oriented by industrial forces and international trade. The current article highlights the implementation of five new patterns in agriculture, cattle-raising, mining, lumbering, and urban occupation that have generated changes in the environment and the traditional indigenous habitat and have led to migratory flows, deforestation, sedentary living, the presence of domestic animals, and changes in the habitat that facilitate colonization of human dwellings by vectors and the domestic and work-related transmission of the disease. The expansion of Chagas disease is thus a perverse effect of the globalization process in the Amazon.

  7. Biomarkers of Mercury Exposure in the Amazon

    PubMed Central

    de Castro, Nathália Santos Serrão; Lima, Marcelo de Oliveira

    2014-01-01

    Mercury exposure in the Amazon has been studied since the 1980s decade and the assessment of human mercury exposure in the Amazon is difficult given that the natural occurrence of this metal is high and the concentration of mercury in biological samples of this population exceeds the standardized value of normality established by WHO. Few studies have focused on the discovery of mercury biomarkers in the region's population. In this way, some studies have used genetics as well as immunological and cytogenetic tools in order to find a molecular biomarker for assessing the toxicological effect of mercury in the Amazonian population. Most of those studies focused attention on the relation between mercury exposure and autoimmunity and, because of that, they will be discussed in more detail. Here we introduce the general aspects involved with each biomarker that was studied in the region in order to contextualize the reader and add information about the Amazonian life style and health that may be considered for future studies. We hope that, in the future, the toxicological studies in this field use high technological tools, such as the next generation sequencing and proteomics skills, in order to comprehend basic questions regarding the metabolic route of mercury in populations that are under constant exposure, such as in the Amazon. PMID:24895619

  8. Petrobras eyes LNG project in Amazon region

    SciTech Connect

    1995-08-07

    The Brazilian state oil company has proved gas reserves in the Rio Urucu area of the Amazon jungle totaling 1.84 tcf. That compares with 3.08 tcf contained in the offshore Campos basin, source of most of Brazil`s oil and gas production. The environmentally sensitive Urucu region is one of the most dense, remote jungles in the world. Because of environmental concerns about pipelines in the rain forest and a government emphasis on boosting the natural gas share of Brazil`s energy mix, a small liquefied natural gas project is shaping up as the best option for developing and marketing Urucu gas. The amazon campaign underscores a government initiative to boost Brazilian consumption of natural gas. In Brazil natural gas accounts for only 4% of primary energy consumption. Some years ago, the government set an official goal of boosting the gas share of the primary energy mix to 10% by 2000. The paper discusses current drilling activities, gas production and processing, the logistics of the upper Amazon, and gas markets.

  9. Numerical modeling of the Amazon River plume

    NASA Astrophysics Data System (ADS)

    Nikiema, Oumarou; Devenon, Jean-Luc; Baklouti, Malika

    2007-04-01

    Marine circulation above the northern Brazilian continental shelf is subject to energetic forcing factors of various origins: high water buoyancy fluxes induced by the Amazon River freshwater discharge, a strong coastal current associated with a mesoscale current (North Brazil Current (NBC)), a forcing by semidiurnal tide and by Northeast or Southeast trade winds according to the season. Using a three-dimensional (3-D) hydrodynamic numerical model (MOBEEHDYCS), and realistic bathymetry and coastline of the northern Brazilian shelf, this paper aims at studying the influence of some specific physical processes on the morphology of the Amazon plume. The very large volume discharge (180 000 m 3/s on average) and the weak effect of Coriolis force are additional characteristics of the studied system, which induce a particular dynamics. The various forcing factors are successively introduced into the model in order to simulate and to determine their respective influences upon the plume extent and the hydrodynamics at the shelf scale. Simulation reveal that the coastal current is at the origin of the permanent northwestward Amazon plume extension while wind effect can either reinforce or moderate this situation. The tide intervenes also to modify the position of the salinity front: a horizontal migration of salinity front is observed under its action.

  10. The pathways and properties of the Amazon River Plume in the tropical North Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Coles, Victoria J.; Brooks, Maureen T.; Hopkins, Julia; Stukel, Michael R.; Yager, Patricia L.; Hood, Raleigh R.

    2013-12-01

    The Amazon River Plume spreads across the tropical North Atlantic creating a barrier to vertical mixing. Here using a 1/6° HYCOM model and data from three research cruises in May-June 2010, September-October 2011, and July 2012, we investigate the pathways and properties of the plume. Four plume pathways for export of freshwater from the western tropical North Atlantic are identified. These consist of direct and indirect pathways to the northwest, and eastward pathways toward the subtropical gyre and toward Africa in the North Equatorial Counter Current. Because of the seasonality and cooccurrence of these pathways, plume characteristics are highly variable. Two pathways export water to the Caribbean, however the time scales associated with those direct and indirect pathways (3 versus 6+ months) differ, leading to different salinity characteristics of the plume water. Models results show that the Amazon river and tropical precipitation have similar magnitude impact on the observed seasonal cycle of freshwater within the western tropical Atlantic and at the 8°N, 38°W PIRATA mooring. Freshwater associated with the Amazon also influences surface salinity in winter as far as 20W in the model. The mean plume salinity minimum leads maximum discharge, highlighting the importance of currents and advection rather than discharge in maintaining plume properties. Plume pathways are tied to the underlying current structure, with the North Equatorial Counter Current jet preventing direct freshwater transport into the southern hemisphere. The plume influences underlying currents as well, generating vertical current shear that leads to enhanced eddy stirring and mixing in the model simulations.

  11. Introduction: Observations and modeling of the Green Ocean Amazon (GoAmazon2014/5)

    DOE PAGES

    Martin, S. T.; Artaxo, P.; Machado, L. A. T.; ...

    2016-04-19

    The Observations and Modeling of the Green Ocean Amazon (GoAmazon2014/5) Experiment was carried out in the environs of Manaus, Brazil, in the central region of the Amazon basin for 2 years from 1 January 2014 through 31 December 2015. The experiment focused on the complex interactions among vegetation, atmospheric chemistry, and aerosol production on the one hand and their connections to aerosols, clouds, and precipitation on the other. The objective was to understand and quantify these linked processes, first under natural conditions to obtain a baseline and second when altered by the effects of human activities. To this end, the pollution plume from themore » Manaus metropolis, superimposed on the background conditions of the central Amazon basin, served as a natural laboratory. The present paper, as the introduction to the special issue of GoAmazon2014/5, presents the context and motivation of the GoAmazon2014/5 Experiment. The nine research sites, including the characteristics and instrumentation of each site, are presented. The sites range from time point zero (T0) upwind of the pollution, to T1 in the midst of the pollution, to T2 just downwind of the pollution, to T3 furthest downwind of the pollution (70 km). In addition to the ground sites, a low-altitude G-159 Gulfstream I (G-1) observed the atmospheric boundary layer and low clouds, and a high-altitude Gulfstream G550 (HALO) operated in the free troposphere. During the 2-year experiment, two Intensive Operating Periods (IOP1 and IOP2) also took place that included additional specialized research instrumentation at the ground sites as well as flights of the two aircraft. GoAmazon2014/5 IOP1 was carried out from 1 February to 31 March 2014 in the wet season. GoAmazon2014/5 IOP2 was conducted from 15 August to 15 October 2014 in the dry season. In addition, the G-1 aircraft flew during both IOP1 and IOP2, and the HALO aircraft flew during IOP2. In the context of the Amazon basin, the two IOPs

  12. Introduction: Observations and Modeling of the Green Ocean Amazon (GoAmazon2014/5)

    NASA Astrophysics Data System (ADS)

    Martin, S. T.; Artaxo, P.; Machado, L. A. T.; Manzi, A. O.; Souza, R. A. F.; Schumacher, C.; Wang, J.; Andreae, M. O.; Barbosa, H. M. J.; Fan, J.; Fisch, G.; Goldstein, A. H.; Guenther, A.; Jimenez, J. L.; Pöschl, U.; Silva Dias, M. A.; Smith, J. N.; Wendisch, M.

    2016-04-01

    The Observations and Modeling of the Green Ocean Amazon (GoAmazon2014/5) Experiment was carried out in the environs of Manaus, Brazil, in the central region of the Amazon basin for 2 years from 1 January 2014 through 31 December 2015. The experiment focused on the complex interactions among vegetation, atmospheric chemistry, and aerosol production on the one hand and their connections to aerosols, clouds, and precipitation on the other. The objective was to understand and quantify these linked processes, first under natural conditions to obtain a baseline and second when altered by the effects of human activities. To this end, the pollution plume from the Manaus metropolis, superimposed on the background conditions of the central Amazon basin, served as a natural laboratory. The present paper, as the introduction to the special issue of GoAmazon2014/5, presents the context and motivation of the GoAmazon2014/5 Experiment. The nine research sites, including the characteristics and instrumentation of each site, are presented. The sites range from time point zero (T0) upwind of the pollution, to T1 in the midst of the pollution, to T2 just downwind of the pollution, to T3 furthest downwind of the pollution (70 km). In addition to the ground sites, a low-altitude G-159 Gulfstream I (G-1) observed the atmospheric boundary layer and low clouds, and a high-altitude Gulfstream G550 (HALO) operated in the free troposphere. During the 2-year experiment, two Intensive Operating Periods (IOP1 and IOP2) also took place that included additional specialized research instrumentation at the ground sites as well as flights of the two aircraft. GoAmazon2014/5 IOP1 was carried out from 1 February to 31 March 2014 in the wet season. GoAmazon2014/5 IOP2 was conducted from 15 August to 15 October 2014 in the dry season. The G-1 aircraft flew during both IOP1 and IOP2, and the HALO aircraft flew during IOP2. In the context of the Amazon basin, the two IOPs also correspond to the clean and

  13. Introduction: Observations and Modeling of the Green Ocean Amazon (GoAmazon2014/5)

    NASA Astrophysics Data System (ADS)

    Martin, S. T.; Artaxo, P.; Machado, L. A. T.; Manzi, A. O.; Souza, R. A. F.; Schumacher, C.; Wang, J.; Andreae, M. O.; Barbosa, H. M. J.; Fan, J.; Fisch, G.; Goldstein, A. H.; Guenther, A.; Jimenez, J. L.; Pöschl, U.; Silva Dias, M. A.; Smith, J. N.; Wendisch, M.

    2015-11-01

    The Observations and Modeling of the Green Ocean Amazon (GoAmazon2014/5) Experiment was carried out in the environs of Manaus, Brazil, in the central region of the Amazon basin during two years from 1 January 2014 through 31 December 2015. The experiment focused on the complex interactions among vegetation, atmospheric chemistry, and aerosol production on the one hand and their connections to aerosols, clouds, and precipitation on the other. The objective was to understand and quantify these linked processes, first under natural conditions to obtain a baseline and second when altered by the effects of human activities. To this end, the pollution plume from the Manaus metropolis, superimposed on the background conditions of the central Amazon basin, served as a natural laboratory. The present paper, as the Introduction to the GoAmazon2014/5 Special Issue, presents the context and motivation of the GoAmazon2014/5 Experiment. The nine research sites, including the characteristics and instrumentation of each site, are presented. The sites range from time point zero (T0) upwind of the pollution, to T1 in the midst of the pollution, to T2 just downwind of the pollution, to T3 furthest downwind of the pollution (70 km). In addition to the ground sites, a low-altitude G-159 Gulfstream I (G1) observed the atmospheric boundary layer and low clouds, and a high-altitude Gulfstream G550 (HALO) operated in the free troposphere. During the two-year experiment, two Intensive Operating Periods (IOP1 and IOP2) also took place that included additional specialized research instrumentation at the ground sites as well as flights of the two aircraft. GoAmazon2014/5 IOP1 was carried out from 1 February to 31 March 2014 in the wet season. GoAmazon2014/5 IOP2 was conducted from 15 August to 15 October 2014 in the dry season. The G1 aircraft flew during both IOP1 and IOP2, and the HALO aircraft flew during IOP2. In the context of the Amazon basin, the two IOPs also correspond to the clean

  14. Introduction: Observations and modeling of the Green Ocean Amazon (GoAmazon2014/5)

    SciTech Connect

    Martin, S. T.; Artaxo, P.; Machado, L. A. T.; Manzi, A. O.; Souza, R. A. F.; Schumacher, C.; Wang, J.; Andreae, M. O.; Barbosa, H. M. J.; Fan, J.; Fisch, G.; Goldstein, A. H.; Guenther, A.; Jimenez, J. L.; Poschl, U.; Silva Dias, M. A.; Smith, J. N.; Wendisch, M.

    2016-04-19

    The Observations and Modeling of the Green Ocean Amazon (GoAmazon2014/5) Experiment was carried out in the environs of Manaus, Brazil, in the central region of the Amazon basin for 2 years from 1 January 2014 through 31 December 2015. The experiment focused on the complex interactions among vegetation, atmospheric chemistry, and aerosol production on the one hand and their connections to aerosols, clouds, and precipitation on the other. The objective was to understand and quantify these linked processes, first under natural conditions to obtain a baseline and second when altered by the effects of human activities. To this end, the pollution plume from the Manaus metropolis, superimposed on the background conditions of the central Amazon basin, served as a natural laboratory. The present paper, as the introduction to the special issue of GoAmazon2014/5, presents the context and motivation of the GoAmazon2014/5 Experiment. The nine research sites, including the characteristics and instrumentation of each site, are presented. The sites range from time point zero (T0) upwind of the pollution, to T1 in the midst of the pollution, to T2 just downwind of the pollution, to T3 furthest downwind of the pollution (70 km). In addition to the ground sites, a low-altitude G-159 Gulfstream I (G-1) observed the atmospheric boundary layer and low clouds, and a high-altitude Gulfstream G550 (HALO) operated in the free troposphere. During the 2-year experiment, two Intensive Operating Periods (IOP1 and IOP2) also took place that included additional specialized research instrumentation at the ground sites as well as flights of the two aircraft. GoAmazon2014/5 IOP1 was carried out from 1 February to 31 March 2014 in the wet season. GoAmazon2014/5 IOP2 was conducted from 15 August to 15 October 2014 in the dry season. In addition, the G-1 aircraft flew during both IOP1 and IOP2, and the HALO aircraft flew during IOP2. In the context of the Amazon basin, the two IOPs also

  15. The Polarimetric Radar Estimation of Rainfall over the Amazon during TRMM-LBA

    NASA Astrophysics Data System (ADS)

    Carey, L. D.; Cifelli, R.; Petersen, W. A.; Rutledge, S. A.

    2002-05-01

    The Tropical Rainfall Measuring Mission (TRMM) is a NASA satellite project initiated to address a gap in our ability to accurately observe detailed rainfall patterns over the tropical continents and oceans. To support TRMM, several field campaigns were conducted. The TRMM-LBA (Large-scale Biosphere Atmosphere) experiment was conducted over the southwestern region of the Amazon (state of Rondonia, Brazil) in order to provide detailed information on the precipitation characteristics in the interior of a tropical continent. Information from TRMM-LBA will be used for validation of TRMM satellite products and for initialization and validation of cloud-resolving models and passive microwave retrieval algorithms. During the TRMM-LBA field campaign, a variety of instrumentation was deployed during the wet season (January - February 1999) to measure rainfall including several rain gauge networks, disdrometers, and the S-band polarimetric (NCAR S-POL) research radar. The focus of this study will be on the estimation, validation, and uncertainty of rain rate estimates derived from the NCAR S-POL radar. The S-POL data were carefully corrected for the presence of clear-air echo, ground clutter, anomalous propagation, partial beam blocking, precipitation attenuation, and calibration biases by applying polarimetric radar methods. Using an optimal polarimetric radar technique, maps of rain rate have been calculated from observations of S-POL horizontal reflectivity (Zh), differential reflectivity (Zdr), and specific differential phase (Kdp) every ten minutes from 10 January to 28 February 1999. From these rain rate estimates, daily and 30-day rain accumulation maps have been compiled. When validated against the rain gauge totals, preliminary S-POL estimates of monthly rainfall, which utilized the equilibrium raindrop shape model of Beard and Chuang (1987), have a negative bias error in the range of -5% to -11% and a standard error of 14% to 20%. We will compare these results with

  16. Metagenome sequencing of the microbial community of two Brazilian anthropogenic Amazon dark earth sites, Brazil.

    PubMed

    Lemos, Leandro Nascimento; de Souza, Rosineide Cardoso; de Souza Cannavan, Fabiana; Patricio, André; Pylro, Victor Satler; Hanada, Rogério Eiji; Mui, Tsai Siu

    2016-12-01

    The Anthropogenic Amazon Dark Earth soil is considered one of the world's most fertile soils. These soils differs from conventional Amazon soils because its higher organic content concentration. Here we describe the metagenome sequencing of microbial communities of two sites of Anthropogenic Amazon Dark Earth soils from Amazon Rainforest, Brazil. The raw sequence data are stored under Short Read Accession number: PRJNA344917.

  17. Rivers in the sea - Can we quantify pigments in the Amazon and the Orinoco River plumes from space?

    NASA Technical Reports Server (NTRS)

    Muller-Karger, Frank E.; Walsh, John J.; Carder, Kendall L.; Zika, Rod G.

    1989-01-01

    Coastal Zone Color Scanner (CZCS) images of the western tropical Atlantic (1979-1982) were combined into monthly mean surface pigment fields. These suggest that Amazon River water flows along northeastern South America directly toward the Caribbean sea early in the year. After June, however, the North Brazil Current is shunted eastward, carrying a large fraction of Amazon water into the North Equatorial Countercurrent (NECC). This eastward flow causes diminished flow through the Caribbean, which permits northwestward dispersal of Orinoco River water due to local Ekman forcing. The Orinoco plume crosses the Caribbean, leading to seasonal variation in surface salinity near Puerto Rico. At least 50 percent of the pigment concentration estimated in these plumes seems due to viable phytoplankton.

  18. Rivers in the sea - Can we quantify pigments in the Amazon and the Orinoco River plumes from space?

    NASA Technical Reports Server (NTRS)

    Muller-Karger, Frank E.; Walsh, John J.; Carder, Kendall L.; Zika, Rod G.

    1989-01-01

    Coastal Zone Color Scanner (CZCS) images of the western tropical Atlantic (1979-1982) were combined into monthly mean surface pigment fields. These suggest that Amazon River water flows along northeastern South America directly toward the Caribbean sea early in the year. After June, however, the North Brazil Current is shunted eastward, carrying a large fraction of Amazon water into the North Equatorial Countercurrent (NECC). This eastward flow causes diminished flow through the Caribbean, which permits northwestward dispersal of Orinoco River water due to local Ekman forcing. The Orinoco plume crosses the Caribbean, leading to seasonal variation in surface salinity near Puerto Rico. At least 50 percent of the pigment concentration estimated in these plumes seems due to viable phytoplankton.

  19. Proliferation of Hydroelectric Dams in the Andean Amazon and Implications for Andes-Amazon Connectivity

    PubMed Central

    Finer, Matt; Jenkins, Clinton N.

    2012-01-01

    Due to rising energy demands and abundant untapped potential, hydropower projects are rapidly increasing in the Neotropics. This is especially true in the wet and rugged Andean Amazon, where regional governments are prioritizing new hydroelectric dams as the centerpiece of long-term energy plans. However, the current planning for hydropower lacks adequate regional and basin-scale assessment of potential ecological impacts. This lack of strategic planning is particularly problematic given the intimate link between the Andes and Amazonian flood plain, together one of the most species rich zones on Earth. We examined the potential ecological impacts, in terms of river connectivity and forest loss, of the planned proliferation of hydroelectric dams across all Andean tributaries of the Amazon River. Considering data on the full portfolios of existing and planned dams, along with data on roads and transmission line systems, we developed a new conceptual framework to estimate the relative impacts of all planned dams. There are plans for 151 new dams greater than 2 MW over the next 20 years, more than a 300% increase. These dams would include five of the six major Andean tributaries of the Amazon. Our ecological impact analysis classified 47% of the potential new dams as high impact and just 19% as low impact. Sixty percent of the dams would cause the first major break in connectivity between protected Andean headwaters and the lowland Amazon. More than 80% would drive deforestation due to new roads, transmission lines, or inundation. We conclude with a discussion of three major policy implications of these findings. 1) There is a critical need for further strategic regional and basin scale evaluation of dams. 2) There is an urgent need for a strategic plan to maintain Andes-Amazon connectivity. 3) Reconsideration of hydropower as a low-impact energy source in the Neotropics. PMID:22529979

  20. Proliferation of hydroelectric dams in the Andean Amazon and implications for Andes-Amazon connectivity.

    PubMed

    Finer, Matt; Jenkins, Clinton N

    2012-01-01

    Due to rising energy demands and abundant untapped potential, hydropower projects are rapidly increasing in the Neotropics. This is especially true in the wet and rugged Andean Amazon, where regional governments are prioritizing new hydroelectric dams as the centerpiece of long-term energy plans. However, the current planning for hydropower lacks adequate regional and basin-scale assessment of potential ecological impacts. This lack of strategic planning is particularly problematic given the intimate link between the Andes and Amazonian flood plain, together one of the most species rich zones on Earth. We examined the potential ecological impacts, in terms of river connectivity and forest loss, of the planned proliferation of hydroelectric dams across all Andean tributaries of the Amazon River. Considering data on the full portfolios of existing and planned dams, along with data on roads and transmission line systems, we developed a new conceptual framework to estimate the relative impacts of all planned dams. There are plans for 151 new dams greater than 2 MW over the next 20 years, more than a 300% increase. These dams would include five of the six major Andean tributaries of the Amazon. Our ecological impact analysis classified 47% of the potential new dams as high impact and just 19% as low impact. Sixty percent of the dams would cause the first major break in connectivity between protected Andean headwaters and the lowland Amazon. More than 80% would drive deforestation due to new roads, transmission lines, or inundation. We conclude with a discussion of three major policy implications of these findings. 1) There is a critical need for further strategic regional and basin scale evaluation of dams. 2) There is an urgent need for a strategic plan to maintain Andes-Amazon connectivity. 3) Reconsideration of hydropower as a low-impact energy source in the Neotropics.

  1. Green Ocean Amazon 2014/15 – Scaling Amazon Carbon Water Couplings Field Campaign Report

    SciTech Connect

    Dubey, Manvendra; Parket, Harrison; Myers, Katherine; Rahn, Thom; Christoffersson, B.; Wunch, Debra; Wennberg, Paul

    2016-08-01

    Forests soak up 25% of the carbon dioxide (CO2) emitted by anthropogenic fossil energy use (10 Gt C y-1), moderating its atmospheric accumulation. How this terrestrial CO2 uptake will evolve with climate change in the 21st Century is largely unknown. Rainforests are the most active ecosystems, with the Amazon basin storing 120 Gt C as biomass and exchanging 18 Gt C y-1 of CO2 via photosynthesis and respiration and fixing carbon at 2-3 kg C m-2 y-1. Furthermore, the intense hydrologic and carbon cycles are tightly coupled in the Amazon where about half of the water is recycled by evapotranspiration and the other half imported from the ocean by Northeasterly trade winds. Climate models predict a drying in the Amazon with reduced carbon uptake while observationally guided assessments indicate sustained uptake. We set out to resolve this huge discrepancy in the size and sign of the future Amazon carbon cycle by performing the first simultaneous regional-scale high-frequency measurements of atmospheric CO2, H2O, HOD, CH4, N2O, and CO at the T3 site in Manacupuru, Brazil, as part of DOE's GoAmazon 2014/15 project. Our data will be used to inform and develop DOE's Community Land Model (CLM) on the tropical carbon-water couplings at the appropriate grid scale (10-50 km). Our measurements will also validate the CO2 data from Japan's Greenhouse gases Observing Satellite (GOSAT) and NASA's Orbiting Carbon Observatory (OCO)-2 satellite (launched in July, 2014). Our data addresses these science questions: 1. How does ecosystem heterogeneity and climate variability influence the rainforest carbon cycle? 2. How well do current tropical ecosystem models simulate the observed regional carbon cycle? 3. Does nitrogen deposition (from the Manaus, Brazil, plume) enhance rainforest carbon uptake?

  2. Isoprene photochemistry over the Amazon rainforest.

    PubMed

    Liu, Yingjun; Brito, Joel; Dorris, Matthew R; Rivera-Rios, Jean C; Seco, Roger; Bates, Kelvin H; Artaxo, Paulo; Duvoisin, Sergio; Keutsch, Frank N; Kim, Saewung; Goldstein, Allen H; Guenther, Alex B; Manzi, Antonio O; Souza, Rodrigo A F; Springston, Stephen R; Watson, Thomas B; McKinney, Karena A; Martin, Scot T

    2016-05-31

    Isoprene photooxidation is a major driver of atmospheric chemistry over forested regions. Isoprene reacts with hydroxyl radicals (OH) and molecular oxygen to produce isoprene peroxy radicals (ISOPOO). These radicals can react with hydroperoxyl radicals (HO2) to dominantly produce hydroxyhydroperoxides (ISOPOOH). They can also react with nitric oxide (NO) to largely produce methyl vinyl ketone (MVK) and methacrolein (MACR). Unimolecular isomerization and bimolecular reactions with organic peroxy radicals are also possible. There is uncertainty about the relative importance of each of these pathways in the atmosphere and possible changes because of anthropogenic pollution. Herein, measurements of ISOPOOH and MVK + MACR concentrations are reported over the central region of the Amazon basin during the wet season. The research site, downwind of an urban region, intercepted both background and polluted air masses during the GoAmazon2014/5 Experiment. Under background conditions, the confidence interval for the ratio of the ISOPOOH concentration to that of MVK + MACR spanned 0.4-0.6. This result implies a ratio of the reaction rate of ISOPOO with HO2 to that with NO of approximately unity. A value of unity is significantly smaller than simulated at present by global chemical transport models for this important, nominally low-NO, forested region of Earth. Under polluted conditions, when the concentrations of reactive nitrogen compounds were high (>1 ppb), ISOPOOH concentrations dropped below the instrumental detection limit (<60 ppt). This abrupt shift in isoprene photooxidation, sparked by human activities, speaks to ongoing and possible future changes in the photochemistry active over the Amazon rainforest.

  3. Isoprene photochemistry over the Amazon rainforest

    NASA Astrophysics Data System (ADS)

    Liu, Yingjun; Brito, Joel; Dorris, Matthew R.; Rivera-Rios, Jean C.; Seco, Roger; Bates, Kelvin H.; Artaxo, Paulo; Duvoisin, Sergio; Keutsch, Frank N.; Kim, Saewung; Goldstein, Allen H.; Guenther, Alex B.; Manzi, Antonio O.; Souza, Rodrigo A. F.; Springston, Stephen R.; Watson, Thomas B.; McKinney, Karena A.; Martin, Scot T.

    2016-05-01

    Isoprene photooxidation is a major driver of atmospheric chemistry over forested regions. Isoprene reacts with hydroxyl radicals (OH) and molecular oxygen to produce isoprene peroxy radicals (ISOPOO). These radicals can react with hydroperoxyl radicals (HO2) to dominantly produce hydroxyhydroperoxides (ISOPOOH). They can also react with nitric oxide (NO) to largely produce methyl vinyl ketone (MVK) and methacrolein (MACR). Unimolecular isomerization and bimolecular reactions with organic peroxy radicals are also possible. There is uncertainty about the relative importance of each of these pathways in the atmosphere and possible changes because of anthropogenic pollution. Herein, measurements of ISOPOOH and MVK + MACR concentrations are reported over the central region of the Amazon basin during the wet season. The research site, downwind of an urban region, intercepted both background and polluted air masses during the GoAmazon2014/5 Experiment. Under background conditions, the confidence interval for the ratio of the ISOPOOH concentration to that of MVK + MACR spanned 0.4-0.6. This result implies a ratio of the reaction rate of ISOPOO with HO2 to that with NO of approximately unity. A value of unity is significantly smaller than simulated at present by global chemical transport models for this important, nominally low-NO, forested region of Earth. Under polluted conditions, when the concentrations of reactive nitrogen compounds were high (>1 ppb), ISOPOOH concentrations dropped below the instrumental detection limit (<60 ppt). This abrupt shift in isoprene photooxidation, sparked by human activities, speaks to ongoing and possible future changes in the photochemistry active over the Amazon rainforest.

  4. Isoprene photochemistry over the Amazon rainforest

    DOE PAGES

    Liu, Yingjun; Brito, Joel; Dorris, Matthew R.; ...

    2016-05-31

    Isoprene photooxidation is a major driver of atmospheric chemistry over forested regions. Isoprene reacts with hydroxyl radicals (OH) and molecular oxygen to produce isoprene peroxy radicals (ISOPOO). These radicals can react with hydroperoxyl radicals (HO2) to dominantly produce hydroxyhydroperoxides (ISOPOOH). They can also react with nitric oxide (NO) to largely produce methyl vinyl ketone (MVK) and methacrolein (MACR). Unimolecular isomerization and bimolecular reactions with organic peroxy radicals are also possible. There is uncertainty about the relative importance of each of these pathways in the atmosphere and possible changes because of anthropogenic pollution. Herein, measurements of ISOPOOH and MVK + MACRmore » concentrations are reported over the central region of the Amazon basin during the wet season. The research site, downwind of an urban region, intercepted both background and polluted air masses during the GoAmazon2014/5 Experiment. Under background conditions, the confidence interval for the ratio of the ISOPOOH concentration to that of MVK + MACR spanned 0.4–0.6. This result implies a ratio of the reaction rate of ISOPOO with HO2 to that with NO of approximately unity. Also, a value of unity is significantly smaller than simulated at present by global chemical transport models for this important, nominally low-NO, forested region of Earth. Under polluted conditions, when the concentrations of reactive nitrogen compounds were high (>1 ppb), ISOPOOH concentrations dropped below the instrumental detection limit (<60 ppt). In conclusion, this abrupt shift in isoprene photooxidation, sparked by human activities, speaks to ongoing and possible future changes in the photochemistry active over the Amazon rainforest.« less

  5. Isoprene photochemistry over the Amazon rainforest

    PubMed Central

    Liu, Yingjun; Brito, Joel; Dorris, Matthew R.; Rivera-Rios, Jean C.; Seco, Roger; Bates, Kelvin H.; Artaxo, Paulo; Duvoisin, Sergio; Keutsch, Frank N.; Kim, Saewung; Goldstein, Allen H.; Guenther, Alex B.; Manzi, Antonio O.; Souza, Rodrigo A. F.; Springston, Stephen R.; Watson, Thomas B.; McKinney, Karena A.

    2016-01-01

    Isoprene photooxidation is a major driver of atmospheric chemistry over forested regions. Isoprene reacts with hydroxyl radicals (OH) and molecular oxygen to produce isoprene peroxy radicals (ISOPOO). These radicals can react with hydroperoxyl radicals (HO2) to dominantly produce hydroxyhydroperoxides (ISOPOOH). They can also react with nitric oxide (NO) to largely produce methyl vinyl ketone (MVK) and methacrolein (MACR). Unimolecular isomerization and bimolecular reactions with organic peroxy radicals are also possible. There is uncertainty about the relative importance of each of these pathways in the atmosphere and possible changes because of anthropogenic pollution. Herein, measurements of ISOPOOH and MVK + MACR concentrations are reported over the central region of the Amazon basin during the wet season. The research site, downwind of an urban region, intercepted both background and polluted air masses during the GoAmazon2014/5 Experiment. Under background conditions, the confidence interval for the ratio of the ISOPOOH concentration to that of MVK + MACR spanned 0.4–0.6. This result implies a ratio of the reaction rate of ISOPOO with HO2 to that with NO of approximately unity. A value of unity is significantly smaller than simulated at present by global chemical transport models for this important, nominally low-NO, forested region of Earth. Under polluted conditions, when the concentrations of reactive nitrogen compounds were high (>1 ppb), ISOPOOH concentrations dropped below the instrumental detection limit (<60 ppt). This abrupt shift in isoprene photooxidation, sparked by human activities, speaks to ongoing and possible future changes in the photochemistry active over the Amazon rainforest. PMID:27185928

  6. Contrasting andean geodynamics drive evolution of lowland taxa in western Amazonia

    USDA-ARS?s Scientific Manuscript database

    Using a palm lineage of 15 species (Astrocaryum sect. Huicungo), we tested an hypothesis that past geologic events in western Amazonia influenced the modern configuration of the upper Amazon drainage and thus diversification and distribution of these palsm, which found only in this region. The chang...

  7. Impacts on regional climate of Amazon deforestation

    SciTech Connect

    Dickinson, R.E.; Kennedy, P. NCAR, Boulder, CO )

    1992-10-01

    A simulation of the climate response to Amazon deforestation has been carried out. Precipitation is decreased on the average by 25 percent or 1.4 mm/day, with ET and runoff both decreasing by 0.7 mm/day. Modifications of surface energy balance through change of albedo and roughness are complicated by cloud feedbacks. The initial decrease of the absorption of solar radiation by higher surface albedos is largely cancelled by a reduction in cloud cover, but consequent reduction in downward longwave has a substantial impact on surface energy balance. Smoke aerosols might have an effect comparable to deforestation during burning season. 8 refs.

  8. [The Amazon Sanitation Plan (1940-1942)].

    PubMed

    Andrade, Rômulo de Paula; Hochman, Gilberto

    2007-12-01

    The article addresses the Amazon Sanitation Plan and the political context in which it was formulated between 1940 and 1941. It examines the role of Getúlio Vargas, the activities of the plan's main protagonists (such as Evandro Chagas, João de Barros Barreto, and Valério Konder), its key proposals, and its demise as of 1942 upon creation of the Special Public Health Service (Sesp), which grew out of cooperation agreements between Brazil and the US following both nations' involvement in World War II. A reproduction of the Plan as published in the Arquivos de Higiene in 1941 is included.

  9. Amazon Deforestation Impacts on Pacific Climate

    NASA Astrophysics Data System (ADS)

    Lindsey, L. A.; Randall, D. A.

    2015-12-01

    Variability in eastern Pacific sea surface temperature (SST) associated with the El Niño Southern Oscillation is known to affect Amazonian precipitation, but to what extent does changing Amazonian vegetation and rainfall impact eastern Pacific SST? Correlations between Amazonian rainfall rates and other atmospheric parameters (e.g. global precipitation, surface air temperature, vertical velocity, etc.) over the eastern Pacific indicate a strong relationship between these processes, but it does not show causality. In order to investigate the impact on the Pacific climate, the Community Earth System Model is used to test an extreme case of deforestation where broadleaf evergreen trees over the Amazon are replaced by C4 grass.

  10. How Do Atmosphere and Land Surface Influence Seasonal Changes of Convection in the Tropical Amazon?.

    NASA Astrophysics Data System (ADS)

    Fu, Rong; Zhu, Bin; Dickinson, Robert E.

    1999-05-01

    Although the wet season in the tropical Amazon (10°N-20°S) at any one place and in any one year is initiated rapidly by synoptic systems, large-scale thermodynamic conditions modulate the frequency and intensity of these synoptic systems and hence control the climatology of the wet season. In this study, the satellite radiances, radiosondes, and assimilation data of the atmosphere are analyzed to show that the conditioning of the large-scale thermodynamics for the onset of the wet season is controlled by a moistening of the planetary boundary layer (PBL) and a lowering of temperature at its top, hence reducing convective inhibition energy (CINE). These changes occur either in phase with or lagging by one month the enhancement of low-level moisture convergence. Integration of a slab mixed-layer model shows how a higher humidity can reduce the drying effect of the entrainment and increase the humidity of the daytime PBL. Hence, the increase of low-level moisture convergence may provide enough moisture to initiate the wet seasons.In the southern part of the basin (5°S-20°S), the land surface warming from austral winter to spring reduces the strong stability of the dry season and increases the frequency of unstable profiles for deep convection (fCUS), but convection remains infrequent until, in addition, the PBL is moistened and the inversion decays to lower CINE in October. The latter occur one month after the moisture becomes convergent. The seasonal changes in land surface temperatures are stronger than those over the adjacent oceans and hence have more influence on the gradient between land and ocean, and so on the changes in the large-scale circulation.In the equatorial western Amazon, a warmer land surface provides high fCUS all year round, but the seasonal changes of convection are more controlled by CINE. In the eastern basin, a lower fCUS in spring suppresses the expected wet season. Hence, convection is most frequent during austral fall, but also occurs

  11. Western USA

    Atmospheric Science Data Center

    2014-05-15

    article title:  Western United States Beyond the Four Corners     View ... to examine Earth's land, oceans, atmosphere, ice, and life as a total integrated system. MISR was built and is managed by NASA's ...

  12. Carbon uptake by mature Amazon forests has mitigated Amazon nations' carbon emissions.

    PubMed

    Phillips, Oliver L; Brienen, Roel J W

    2017-12-01

    Several independent lines of evidence suggest that Amazon forests have provided a significant carbon sink service, and also that the Amazon carbon sink in intact, mature forests may now be threatened as a result of different processes. There has however been no work done to quantify non-land-use-change forest carbon fluxes on a national basis within Amazonia, or to place these national fluxes and their possible changes in the context of the major anthropogenic carbon fluxes in the region. Here we present a first attempt to interpret results from ground-based monitoring of mature forest carbon fluxes in a biogeographically, politically, and temporally differentiated way. Specifically, using results from a large long-term network of forest plots, we estimate the Amazon biomass carbon balance over the last three decades for the different regions and nine nations of Amazonia, and evaluate the magnitude and trajectory of these differentiated balances in relation to major national anthropogenic carbon emissions. The sink of carbon into mature forests has been remarkably geographically ubiquitous across Amazonia, being substantial and persistent in each of the five biogeographic regions within Amazonia. Between 1980 and 2010, it has more than mitigated the fossil fuel emissions of every single national economy, except that of Venezuela. For most nations (Bolivia, Colombia, Ecuador, French Guiana, Guyana, Peru, Suriname) the sink has probably additionally mitigated all anthropogenic carbon emissions due to Amazon deforestation and other land use change. While the sink has weakened in some regions since 2000, our analysis suggests that Amazon nations which are able to conserve large areas of natural and semi-natural landscape still contribute globally-significant carbon sequestration. Mature forests across all of Amazonia have contributed significantly to mitigating climate change for decades. Yet Amazon nations have not directly benefited from providing this global scale

  13. Copepods and fishes in the Brazilian Amazon

    NASA Astrophysics Data System (ADS)

    Thatcher, Vernon E.

    1998-06-01

    The Amazon basin comprises the largest river ecosystem in the world (7 million km 2) with annual high and low water peaks and a constant temperature near 29°C. Some 2000 fish species and 40 species of free-living copepods are known to occur in Amazonia. The free-living forms serve as food for most larval fishes and some adults, but they also transmit several parasites including representatives of the nematode family Camallanidae. About three dozen species of parasitic copepods have been described from the Brazilian Amazon. Females of Amazonian parasitic copepods are found on skin, gill filaments, gill rakers or within the nasal fossae. Parasitic copepods are found on fishes that are from a few millimeters long up to those over 2 m in length and they are usually quite host specific. All have body pigmentation in different patterns and colors (frequently blues, such as cerulean, cobalt, spectrum, smalt or campanula). It is suggested that the coloration serves to attract specific host fish. Copepods have evolved adaptations for attachment and feeding, especially in the second antennae and endopods. Examples of progenesis, phoresis and commensalism are shown. Some species produce pathology such as a tourniquet effect, hyperplasia, blood loss and anemia, and can kill fishes by limiting their respiration.

  14. How Pecten Brazil drilled the Amazon basin

    SciTech Connect

    Bleakley, W.B.

    1983-09-01

    Pecten Brazil overcame numerous obstacles to drill two exploratory wells in the Amazon Basin last year. These included: The threat of low water in normally navigable rivers. Dense jungle growth at both locations. Lack of suitable roads for heavy hauling. Inconvenient distances from supply points. An unusual basalt formation responsible for unique drilling problems. Hundreds of helicopter lifts to move drilling rigs, supplies, and personnel. Pecten contracted with Petrobras, the Brazilian national oil company, to evaluate three blocks in the Amazon jungle, each about 68 miles (110 km) on a side, through seismic study and ultimate drilling. Planning for the drilling phase got started on March 17, 1981 with December 1 targeted as spud date for the first well. Actual spud date was November 25, 5 days ahead of schedule, in spite of all obstacles. Pecten has a mid-Amazonas block now under seismic investigation for possible exploratory drilling. Logistics problems in this one provide new difficulties, as the area is extremely wet. Most work is carried on by boat. The company is also looking offshore Bahia, testing the possible extension of the Renconcavo basin. Two wells have already provided good shows of a high pour point oil, with flow rates from 400 to 1,000 b/d. Another area of interest to Pecten is offshore Rio Grande do Norte.

  15. Size distribution of Amazon River bed sediment

    USGS Publications Warehouse

    Nordin, C.F.; Meade, R.H.; Curtis, W.F.; Bosio, N.J.; Landim, P.M.B.

    1980-01-01

    The first recorded observations of bed material of the Amazon River were made in 1843 by Lt William Lewis Herndon of the US Navy, when he travelled the river from its headwaters to its mouth, sounding its depths, and noting the nature of particles caught in a heavy grease smeared to the bottom of his sounding weight1. He reported the bed material of the river to be mostly sand and fine gravel. Oltman and Ames took samples at a few locations in 1963 and 1964, and reported the bed material at O??bidos, Brazil, to be fine sands, with median diameters ranging from 0.15 to 0.25 mm (ref. 2). We present here a summary of particle-size analyses of samples of streambed material collected from the Amazon River and its major tributaries along a reach of the river from Iquitos in Peru, ???3,500 km above Macapa?? Brazil, to a point 220 km above Macapa??3. ?? 1980 Nature Publishing Group.

  16. Patents on periphery of the Amazon rainforest.

    PubMed

    de Moura, Emanoel G; Araújo, José R G; Monroe, Paulo H M; de O Nascimento, Ivaneide; Aguiar, Alana C F

    2009-06-01

    In the humid tropics, on the edges of the Amazon forest, the technological challenges to establishing and maintaining productive and sustainable agricultural systems have yet to be overcome. The groups involved in agriculture in the north of Brazil still engage in the practice of slash and burn in order to prepare and fertilize the soil. This produces negative effects for the local and global environment, without the counter-effect of providing social benefits to rural communities. Whether this process continues is of fundamental importance to many countries because it means that slash and burn agriculture is advancing on the Amazon rainforest, with a negative effect on every dimension of national policy. Beyond social political problems the biggest challenge for researchers in the field of tropical agriculture is to offer technological alternatives that can sustain agriculture in soils derived from sedimentary rocks that have been subjected to a high degree of weathering. In this article patented information is also discussed. Experiments undertaken in this region recommend taking advantage of the rapid growth of plants in the tropics. We aimed at proposing a suitable alternative system for a sustainable soil management in the particular conditions of humid tropics, named as "no-till in alley cropping using tree leguminous mulch." This system offers the advantages of: bringing together, in the same space and at the same time, the processes of cultivation and the regeneration of soil fertility.

  17. Precipitation recycling in the Amazon basin

    NASA Technical Reports Server (NTRS)

    Eltahir, E. A. B.; Bras, R. L.

    1994-01-01

    Precipitation recycling is the contribution of evaporation within a region to precipitation in that same region. The recycling rate is a diagnostic measure of the potential for interactions between land surface hydrology and regional climate. In this paper we present a model for describing the seasonal and spatial variability of the recycling process. The precipitation recycling ratio, rho, is the basic variable in describing the recycling process. Rho is the fraction of precipitation at a certain location and time which is contributed by evaporation within the region under study. The recycling model is applied in studyiing the hydrologic cycle in the Amazon basin. It is estimated that about 25% of all the rain that falls in the Amazon basin is contributed by evaporation within the basin. This estimate is based on analysis of a data set supplied by the European Centre for Medium-range Weather Forecasts (ECMWF). The same analysis is repeated using a different data set from the Geophysical Fluid Dynamics Laboratory (GFDL). Based on this data set, the recycling ratio is estimated to be 35%. The seasonal variability of the recycling ratio is small compared with the yearly average. The new estimates of the recycling ratio are compared with results of previous studies, and the differences are explained.

  18. Protecting the Amazon with protected areas.

    PubMed

    Walker, Robert; Moore, Nathan J; Arima, Eugenio; Perz, Stephen; Simmons, Cynthia; Caldas, Marcellus; Vergara, Dante; Bohrer, Claudio

    2009-06-30

    This article addresses climate-tipping points in the Amazon Basin resulting from deforestation. It applies a regional climate model to assess whether the system of protected areas in Brazil is able to avoid such tipping points, with massive conversion to semiarid vegetation, particularly along the south and southeastern margins of the basin. The regional climate model produces spatially distributed annual rainfall under a variety of external forcing conditions, assuming that all land outside protected areas is deforested. It translates these results into dry season impacts on resident ecosystems and shows that Amazonian dry ecosystems in the southern and southeastern basin do not desiccate appreciably and that extensive areas experience an increase in precipitation. Nor do the moist forests dry out to an excessive amount. Evidently, Brazilian environmental policy has created a sustainable core of protected areas in the Amazon that buffers against potential climate-tipping points and protects the drier ecosystems of the basin. Thus, all efforts should be made to manage them effectively.

  19. Precipitation recycling in the Amazon basin

    NASA Technical Reports Server (NTRS)

    Eltahir, E. A. B.; Bras, R. L.

    1994-01-01

    Precipitation recycling is the contribution of evaporation within a region to precipitation in that same region. The recycling rate is a diagnostic measure of the potential for interactions between land surface hydrology and regional climate. In this paper we present a model for describing the seasonal and spatial variability of the recycling process. The precipitation recycling ratio, rho, is the basic variable in describing the recycling process. Rho is the fraction of precipitation at a certain location and time which is contributed by evaporation within the region under study. The recycling model is applied in studyiing the hydrologic cycle in the Amazon basin. It is estimated that about 25% of all the rain that falls in the Amazon basin is contributed by evaporation within the basin. This estimate is based on analysis of a data set supplied by the European Centre for Medium-range Weather Forecasts (ECMWF). The same analysis is repeated using a different data set from the Geophysical Fluid Dynamics Laboratory (GFDL). Based on this data set, the recycling ratio is estimated to be 35%. The seasonal variability of the recycling ratio is small compared with the yearly average. The new estimates of the recycling ratio are compared with results of previous studies, and the differences are explained.

  20. Protecting the Amazon with protected areas

    PubMed Central

    Walker, Robert; Moore, Nathan J.; Arima, Eugenio; Perz, Stephen; Simmons, Cynthia; Caldas, Marcellus; Vergara, Dante; Bohrer, Claudio

    2009-01-01

    This article addresses climate-tipping points in the Amazon Basin resulting from deforestation. It applies a regional climate model to assess whether the system of protected areas in Brazil is able to avoid such tipping points, with massive conversion to semiarid vegetation, particularly along the south and southeastern margins of the basin. The regional climate model produces spatially distributed annual rainfall under a variety of external forcing conditions, assuming that all land outside protected areas is deforested. It translates these results into dry season impacts on resident ecosystems and shows that Amazonian dry ecosystems in the southern and southeastern basin do not desiccate appreciably and that extensive areas experience an increase in precipitation. Nor do the moist forests dry out to an excessive amount. Evidently, Brazilian environmental policy has created a sustainable core of protected areas in the Amazon that buffers against potential climate-tipping points and protects the drier ecosystems of the basin. Thus, all efforts should be made to manage them effectively. PMID:19549819

  1. Drought sensitivity of the Amazon rainforest.

    PubMed

    Phillips, Oliver L; Aragão, Luiz E O C; Lewis, Simon L; Fisher, Joshua B; Lloyd, Jon; López-González, Gabriela; Malhi, Yadvinder; Monteagudo, Abel; Peacock, Julie; Quesada, Carlos A; van der Heijden, Geertje; Almeida, Samuel; Amaral, Iêda; Arroyo, Luzmila; Aymard, Gerardo; Baker, Tim R; Bánki, Olaf; Blanc, Lilian; Bonal, Damien; Brando, Paulo; Chave, Jerome; de Oliveira, Atila Cristina Alves; Cardozo, Nallaret Dávila; Czimczik, Claudia I; Feldpausch, Ted R; Freitas, Maria Aparecida; Gloor, Emanuel; Higuchi, Niro; Jiménez, Eliana; Lloyd, Gareth; Meir, Patrick; Mendoza, Casimiro; Morel, Alexandra; Neill, David A; Nepstad, Daniel; Patiño, Sandra; Peñuela, Maria Cristina; Prieto, Adriana; Ramírez, Fredy; Schwarz, Michael; Silva, Javier; Silveira, Marcos; Thomas, Anne Sota; Steege, Hans Ter; Stropp, Juliana; Vásquez, Rodolfo; Zelazowski, Przemyslaw; Alvarez Dávila, Esteban; Andelman, Sandy; Andrade, Ana; Chao, Kuo-Jung; Erwin, Terry; Di Fiore, Anthony; Honorio C, Eurídice; Keeling, Helen; Killeen, Tim J; Laurance, William F; Peña Cruz, Antonio; Pitman, Nigel C A; Núñez Vargas, Percy; Ramírez-Angulo, Hirma; Rudas, Agustín; Salamão, Rafael; Silva, Natalino; Terborgh, John; Torres-Lezama, Armando

    2009-03-06

    Amazon forests are a key but poorly understood component of the global carbon cycle. If, as anticipated, they dry this century, they might accelerate climate change through carbon losses and changed surface energy balances. We used records from multiple long-term monitoring plots across Amazonia to assess forest responses to the intense 2005 drought, a possible analog of future events. Affected forest lost biomass, reversing a large long-term carbon sink, with the greatest impacts observed where the dry season was unusually intense. Relative to pre-2005 conditions, forest subjected to a 100-millimeter increase in water deficit lost 5.3 megagrams of aboveground biomass of carbon per hectare. The drought had a total biomass carbon impact of 1.2 to 1.6 petagrams (1.2 x 10(15) to 1.6 x 10(15) grams). Amazon forests therefore appear vulnerable to increasing moisture stress, with the potential for large carbon losses to exert feedback on climate change.

  2. Spatial Variability of the Background Diurnal Cycle of Deep Convection around the GoAmazon2014/5 Field Campaign Sites

    SciTech Connect

    Burleyson, Casey D.; Feng, Zhe; Hagos, Samson M.; Fast, Jerome; Machado, Luiz A. T.; Martin, Scot T.

    2016-07-01

    The Amazon rainforest is one of a few regions of the world where continental tropical deep convection occurs. The Amazon’s isolation makes it challenging to observe, but also creates a unique natural laboratory to study anthropogenic impacts on clouds and precipitation in an otherwise pristine environment. Extensive measurements were made upwind and downwind of the large city of Manaus, Brazil during the Observations and Modeling of the Green Ocean Amazon 2014-2015 (GoAmazon2014/5) field campaign. In this study, 15 years of high-resolution satellite data are analyzed to examine the spatial and diurnal variability of convection occurring around the GoAmazon2014/5 sites. Interpretation of anthropogenic differences between the upwind (T0) and downwind (T1-T3) sites is complicated by naturally-occurring spatial variability between the sites. During the rainy season, the inland propagation of the previous day’s sea-breeze front happens to be in phase with the background diurnal cycle near Manaus, but is out of phase elsewhere. Enhanced convergence between the river-breezes and the easterly trade winds generates up to 10% more frequent deep convection at the GoAmazon2014/5 sites east of the river (T0a, T0t/k, and T1) compared to the T3 site which was located near the western bank. In general, the annual and diurnal cycles during 2014 were representative of the 2000-2013 distributions. The only exceptions were in March when the monthly mean rainrate was above the 95th percentile and September when both rain frequency and intensity were suppressed. The natural spatial variability must be accounted for before interpreting anthropogenically-induced differences among the GoAmazon2014/5 sites.

  3. Radium and barium in the Amazon River system

    SciTech Connect

    Moore, W.S.; Edmond, J.M.

    1984-03-20

    Data for /sup 226/Ra and /sup 228/Ra in the Amazon River system show that the activity of each radium isotope is strongly correlated with barium concentrations. Two trends are apparent, one for rivers which drain shield areas and another for all other rivers. These data suggest that there has been extensive fractionation of U, Th, and Ba during weathering in the Amazon basin. The /sup 226/Ra data fit a flux model for the major ions indicating that /sup 226/Ra behaves conservatively along the main channel of the Amazon River.

  4. Spectrometry of Pasture Condition and Biogeochemistry in the Central Amazon

    NASA Technical Reports Server (NTRS)

    Asner, Gregory P.; Townsend, Alan R.; Bustamante, Mercedes M. C.

    1999-01-01

    Regional analyses of Amazon cattle pasture biogeochemistry are difficult due to the complexity of human, edaphic, biotic and climatic factors and persistent cloud cover in satellite observations. We developed a method to estimate key biophysical properties of Amazon pastures using hyperspectral reflectance data and photon transport inverse modeling. Remote estimates of live and senescent biomass were strongly correlated with plant-available forms of soil phosphorus and calcium. These results provide a basis for monitoring pasture condition and biogeochemistry in the Amazon Basin using spaceborne hyperspectral sensors.

  5. Amazon River investigations, reconnaissance measurements of July 1963

    USGS Publications Warehouse

    Oltman, Roy Edwin; Sternberg, H. O'R.; Ames, F.C.; Davis, L.C.

    1964-01-01

    The first measurements of the flow of the Amazon River were made in July 1963 as a joint project of the University of Brazil, the Brazilian Navy, and the U.S. Geological Survey. The discharge of the Amazon River at Obidos was 7,640,000 cfs at an annual flood stage somewhat lower than the average. For comparison the maximum known discharge of the Mississippi River at Vicksburg is about 2,300,000 cfs. Dissolved-solids concentrations and sediment loads of the Amazon River and of several major tributaries were found to be low.

  6. Spectrometry of Pasture Condition and Biogeochemistry in the Central Amazon

    NASA Technical Reports Server (NTRS)

    Asner, Gregory P.; Townsend, Alan R.; Bustamante, Mercedes M. C.

    1999-01-01

    Regional analyses of Amazon cattle pasture biogeochemistry are difficult due to the complexity of human, edaphic, biotic and climatic factors and persistent cloud cover in satellite observations. We developed a method to estimate key biophysical properties of Amazon pastures using hyperspectral reflectance data and photon transport inverse modeling. Remote estimates of live and senescent biomass were strongly correlated with plant-available forms of soil phosphorus and calcium. These results provide a basis for monitoring pasture condition and biogeochemistry in the Amazon Basin using spaceborne hyperspectral sensors.

  7. Potential of best practice to reduce impacts from oil and gas projects in the Amazon.

    PubMed

    Finer, Matt; Jenkins, Clinton N; Powers, Bill

    2013-01-01

    The western Amazon continues to be an active and controversial zone of hydrocarbon exploration and production. We argue for the urgent need to implement best practices to reduce the negative environmental and social impacts associated with the sector. Here, we present a three-part study aimed at resolving the major obstacles impeding the advancement of best practice in the region. Our focus is on Loreto, Peru, one of the largest and most dynamic hydrocarbon zones in the Amazon. First, we develop a set of specific best practice guidelines to address the lack of clarity surrounding the issue. These guidelines incorporate both engineering-based criteria and key ecological and social factors. Second, we provide a detailed analysis of existing and planned hydrocarbon activities and infrastructure, overcoming the lack of information that typically hampers large-scale impact analysis. Third, we evaluate the planned activities and infrastructure with respect to the best practice guidelines. We show that Loreto is an extremely active hydrocarbon front, highlighted by a number of recent oil and gas discoveries and a sustained government push for increased exploration. Our analyses reveal that the use of technical best practice could minimize future impacts by greatly reducing the amount of required infrastructure such as drilling platforms and access roads. We also document a critical need to consider more fully the ecological and social factors, as the vast majority of planned infrastructure overlaps sensitive areas such as protected areas, indigenous territories, and key ecosystems and watersheds. Lastly, our cost analysis indicates that following best practice does not impose substantially greater costs than conventional practice, and may in fact reduce overall costs. Barriers to the widespread implementation of best practice in the Amazon clearly exist, but our findings show that there can be great benefits to its implementation.

  8. Potential of Best Practice to Reduce Impacts from Oil and Gas Projects in the Amazon

    PubMed Central

    Finer, Matt; Jenkins, Clinton N.; Powers, Bill

    2013-01-01

    The western Amazon continues to be an active and controversial zone of hydrocarbon exploration and production. We argue for the urgent need to implement best practices to reduce the negative environmental and social impacts associated with the sector. Here, we present a three-part study aimed at resolving the major obstacles impeding the advancement of best practice in the region. Our focus is on Loreto, Peru, one of the largest and most dynamic hydrocarbon zones in the Amazon. First, we develop a set of specific best practice guidelines to address the lack of clarity surrounding the issue. These guidelines incorporate both engineering-based criteria and key ecological and social factors. Second, we provide a detailed analysis of existing and planned hydrocarbon activities and infrastructure, overcoming the lack of information that typically hampers large-scale impact analysis. Third, we evaluate the planned activities and infrastructure with respect to the best practice guidelines. We show that Loreto is an extremely active hydrocarbon front, highlighted by a number of recent oil and gas discoveries and a sustained government push for increased exploration. Our analyses reveal that the use of technical best practice could minimize future impacts by greatly reducing the amount of required infrastructure such as drilling platforms and access roads. We also document a critical need to consider more fully the ecological and social factors, as the vast majority of planned infrastructure overlaps sensitive areas such as protected areas, indigenous territories, and key ecosystems and watersheds. Lastly, our cost analysis indicates that following best practice does not impose substantially greater costs than conventional practice, and may in fact reduce overall costs. Barriers to the widespread implementation of best practice in the Amazon clearly exist, but our findings show that there can be great benefits to its implementation. PMID:23650541

  9. Biomass burning in the Amazon region: Aerosol source apportionment and associated health risk assessment

    NASA Astrophysics Data System (ADS)

    de Oliveira Alves, Nilmara; Brito, Joel; Caumo, Sofia; Arana, Andrea; de Souza Hacon, Sandra; Artaxo, Paulo; Hillamo, Risto; Teinilä, Kimmo; Batistuzzo de Medeiros, Silvia Regina; de Castro Vasconcellos, Pérola

    2015-11-01

    The Brazilian Amazon represents about 40% of the world's remaining tropical rainforest. However, human activities have become important drivers of disturbance in that region. The majority of forest fire hotspots in the Amazon arc due to deforestation are impacting the health of the local population of over 10 million inhabitants. In this study we characterize western Amazonia biomass burning emissions through the quantification of 14 Polycyclic Aromatic Hydrocarbons (PAHs), Organic Carbon, Elemental Carbon and unique tracers of biomass burning such as levoglucosan. From the PAHs dataset a toxic equivalence factor is calculated estimating the carcinogenic and mutagenic potential of biomass burning emissions during the studied period. Peak concentration of PM10 during the dry seasons was observed to reach 60 μg m-3 on the 24 h average. Conversely, PM10 was relatively constant throughout the wet season indicating an overall stable balance between aerosol sources and sinks within the filter sampling resolution. Similar behavior is identified for OC and EC components. Levoglucosan was found in significant concentrations (up to 4 μg m-3) during the dry season. Correspondingly, the estimated lung cancer risk calculated during the dry seasons largely exceeded the WHO health-based guideline. A source apportionment study was carried out through the use of Absolute Principal Factor Analysis (APFA), identifying a three-factor solution. The biomass burning factor is found to be the dominating aerosol source, having 75.4% of PM10 loading. The second factor depicts an important contribution of several PAHs without a single source class and therefore was considered as mixed sources factor, contributing to 6.3% of PM10. The third factor was mainly associated with fossil fuel combustion emissions, contributing to 18.4% of PM10. This work enhances the knowledge of aerosol sources and its impact on climate variability and local population, on a site representative of the

  10. Western Samoa.

    PubMed

    1985-12-01

    This discussion of Western Samoa, which lies 2575 km northeast of Auckland, New Zealand, focuses on the following: geography; the people; history; government; political conditions; the economy; foreign relations; and relations the US. The population of Western Samoa, as of 1985, totals 163,000 with an annual growth rate of 0.9%. The infant mortality rate is 13/1000; life expectancy is 65 years. The main islands are formed ranges of extinct volcanoes. Volcanic activity last occurred in 1911. More than 2000 years age, waves of Polynesians migrated from Southeast Asia to the Samoan Islands. Samoans are the 2nd largest Polynesian group, after the Maoris of New Zealand, and speak a Polynesian dialect. Samoans have tended to retain their traditional ways despite exposure to European influence for more than 150 years. Most Samoans live within the traditional social system based on an extended family group, headed by a chief. Western Samoans are Christian. Education is free but not compulsory. In 1967, 95% of the children of primary school age attended school. From 1947 to 1961, a series of constitutional advances, assisted by visits from UN missions, brought Western Samoa from dependent status to self-government and finally to independence. The 1960 constitution is based on the British pattern of parliamentary democracy, modified to take Samoan customs into account. The present head of state holds his position for life. Future heads of state will be elected by the Legislative Assembly for 5-year terms. The Parliament consists of the Legislative Assembly and the head of state. The Supreme Court is the superior court of record and has full jurisdiction in civil, criminal, and constitutional matters. The "matai" of chief system still dominates the politics of Western Samoa, although several political parties have been formed and seem to be taking root. The "matai" system is a predominantly conservative force but does provide for change. Western Samoa is predominantly

  11. Current Characterization at the Amazon estuary

    NASA Astrophysics Data System (ADS)

    Bezerra, M. O.

    2009-04-01

    At the estuary there are several mechanisms that cause turbulence: influence of solid contours (estuary bottom and shores), speed vertical shearing (fluid inside), wind shearing stress (free surface) and surface and internal gravity waves. Turbulence intensity controls vertical distribution of estuary water mass property concentration. As flow into the estuary takes place during the transition or turbulent regimen, produced by small space and time scale movements, entrainment, turbulent scattering and advection are the processes responsible for fresh water mixing up with the sea and for local salinity variation, as well as for concentration of natural properties and man-made ones. According to this focus, we shall describe general circulation, conveyance and mixing characteristics of the Amazon low estuary waters. Amazon estuary shows unusual characteristics: it is of vast length and enormous outflow. It is extremely wide - 150 Km - and its discharge into the Atlantic amounts to 180,000 m3s-1 (Otman, 1968, Figueiredo et al, 1991), which means 18% of all water discharged by rivers into oceans; this is the largest punctual source of fresh water for oceans (Milliman and Meade, 1983). Maximum outflow is 2.5 x 105 m3s-1, and it happens at the end of May. Minimum outflow is 1.2 x 105 m3 s-1, and it takes place in November. At Amazon River, the Mixing Zone occurs where the Coastal Zone usually is. The reason for that is the extension of fresh water plume moves Northeast for over 1000 Km (Gibbs, 1970; Muller-Karger et al 1988). This is the most extensive estuarine plume ever found in the ocean. During low fluvial discharge (June-November) plume reaches 300 Km; however, on high discharge (November-May) plume reaches 500 Km. Plume already is 3 to 10 m thick and 80 to 300 Km wide (Lentz and Limeburner, 1995). From June to January plume moves towards Africa, from whence 70% of it goes east carried by North Brazil Current retroflection and 30% goes towards the Caribbean. From

  12. The new occurrence of Marinoan cap carbonate in Brazil: The expansion of snowball Earth events to the southwesternmost Amazon Craton

    NASA Astrophysics Data System (ADS)

    Gaia, Valber do Carmo de Souza; Nogueira, Afonso César Rodrigues; Domingos, Fábio Henrique Garcia; Sans-Jofre, Pierre; Bandeira, José Cavalcante da Silva; Oliveira, José Guilherme Ferreira de; Sial, Alcides Nóbrega

    2017-07-01

    Carbonate deposits exposed in the border of the Pimenta Bueno and Colorado grabens, western part of Parecis Basin, southwestern Amazon Craton, Brazil, have been previously considered as Paleozoic record. These deposits lying unconformably on Mesoproterozoic crystalline rocks, the basement of the grabens, and consist predominantly by pinkish dolomite overlying glacial diamictites, with average negative values of δ13C of -3,10‰VPDB. The contact between the dolostone and diamictites is sharp and deformed similarly with others Neoproterozoic cap carbonates occurrences in the Amazon Craton, also related to the Marinoan Glaciation (635 Ma). This new occurrence of Marinoan cap carbonate is composed by two facies associations. Facies Association 1 consists of pinkish peloidal dolostone with even parallel and quasi-planar laminations, wavy and megarriple bedding, macropeloid lenses associated with low-angle truncations, interpreted as fairwhether- and storm-influenced shallow platform deposits. Facies association 2 consists in dolostone rhythmically interbedded with shale underlaid by 5 m-thick laminated siltstones, interpreted as moderately deep platform deposits. This retrogradational succession is overlaid in angular unconformity by Early Paleozoic diamictites and locally by Mesozoic volcanic rocks. This cap carbonate precedes the Paleozoic deposits of Parecis Basin and represents a post-glacial event linked to the Marinoan glaciation, extending to the southwesternmost Amazon Craton the phenomena of the Snowball Earth hypothesis.

  13. Remote sensing in forestry: Application to the Amazon region

    NASA Technical Reports Server (NTRS)

    Dejesusparada, N. (Principal Investigator); Tardin, A. T.; Dossantos, A.; Filho, P. H.; Shimabukuro, Y. E.

    1981-01-01

    The utilization of satellite remote sensing in forestry is reviewed with emphasis on studies performed for the Brazilian Amazon Region. Timber identification, deforestation, and pasture degradation after deforestation are discussed.

  14. Lipid Panel Reference Intervals for Amazon Parrots (Amazona species).

    PubMed

    Ravich, Michelle; Cray, Carolyn; Hess, Laurie; Arheart, Kristopher L

    2014-09-01

    The lipoprotein panel is a useful diagnostic tool that allows clinicians to evaluate blood lipoprotein fractions. It is a standard diagnostic test in human medicine but is poorly understood in avian medicine. Amazon parrots (Amazona species) are popular pets that frequently lead a sedentary lifestyle and are customarily fed high-fat diets. Similar to people with comparable diets and lifestyles, Amazon parrots are prone to obesity and atherosclerosis. In human medicine, these conditions are typically correlated with abnormalities in the lipoprotein panel. To establish reference intervals for the lipoprotein panel in Amazon parrots, plasma samples from 31 captive Amazon parrots were analyzed for concentrations of cholesterol, triglycerides, high-density lipoprotein (HDL), low-density lipoprotein (LDL), and very low-density lipoprotein (VLDL). The data were also grouped according to sex, diet, body condition score, and age. Aside from HDL levels, which were significantly different between male and female parrots, no intergroup differences were found for any of the lipoprotein fractions.

  15. Evidence of Apeu Virus Infection in Wild Monkeys, Brazilian Amazon

    PubMed Central

    Oliveira, Danilo B.; Luiz, Ana Paula Moreira Franco; Fagundes, Alexandre; Pinto, Carla Amaral; Bonjardim, Cláudio A.; Trindade, Giliane S.; Kroon, Erna G.; Abrahão, Jônatas S.; Ferreira, Paulo C. P.

    2016-01-01

    Orthobunyaviruses are arboviruses in which at least 30 members are human pathogens. The members of group C orthobunyaviruses were first isolated in the Brazilian Amazon in 1950, since that time little information is accumulated about ecology and the medical impact of these virus groups in Brazil. Herein, we describe the evidence of Apeu virus (APEUV; an Orthobunyavirus member) infection in wild monkeys from the Brazilian Amazon forest. APEUV was detected by using a neutralizing antibody in serum and its RNA, suggesting past and acute infection of Amazonian monkeys by this virus. These results altogether represent an important contribution of orthobunyavirus ecology in the Amazon and an update about recent circulation and risk for humans with expansion of the cities to Amazon forest. PMID:26787153

  16. Evidence of Apeu Virus Infection in Wild Monkeys, Brazilian Amazon.

    PubMed

    Oliveira, Danilo B; Luiz, Ana Paula Moreira Franco; Fagundes, Alexandre; Pinto, Carla Amaral; Bonjardim, Cláudio A; Trindade, Giliane S; Kroon, Erna G; Abrahão, Jônatas S; Ferreira, Paulo C P

    2016-03-01

    Orthobunyaviruses are arboviruses in which at least 30 members are human pathogens. The members of group C orthobunyaviruses were first isolated in the Brazilian Amazon in 1950, since that time little information is accumulated about ecology and the medical impact of these virus groups in Brazil. Herein, we describe the evidence of Apeu virus (APEUV; an Orthobunyavirus member) infection in wild monkeys from the Brazilian Amazon forest. APEUV was detected by using a neutralizing antibody in serum and its RNA, suggesting past and acute infection of Amazonian monkeys by this virus. These results altogether represent an important contribution of orthobunyavirus ecology in the Amazon and an update about recent circulation and risk for humans with expansion of the cities to Amazon forest.

  17. The JERS-1 Amazon Multi-Season Mapping Study (JAMMS)

    NASA Technical Reports Server (NTRS)

    Freeman, A.; Chapman, B.; Alves, M.

    1996-01-01

    Regional mapping of the Amazon basin using imaging radar is described. Two 60-day periods of radar mapping will be conducted, one in 1995, and one in 1996. One period will view the low-water season, and the other will view during the high-flood season. The main objective of the JAMMS project is to generate a regional map showing inundation throughout the Amazon Basin by comparing the two data sets.

  18. Mouths of the Amazon River, Brazil, South America

    NASA Image and Video Library

    1992-08-08

    STS046-80-009 (31 July-8 Aug. 1992) --- A view of the mouth of the Amazon River and the Amazon Delta shows a large sediment plume expanding outward into the Atlantic Ocean. The sediment plume can be seen hugging the coast north of the Delta. This is caused by the west-northwest flowing Guyana Current. The large island of Marajo is partially visible through the clouds.

  19. Amazon River enhances diazotrophy and carbon sequestration in the tropical North Atlantic Ocean

    PubMed Central

    Subramaniam, A.; Yager, P. L.; Carpenter, E. J.; Mahaffey, C.; Björkman, K.; Cooley, S.; Kustka, A. B.; Montoya, J. P.; Sañudo-Wilhelmy, S. A.; Shipe, R.; Capone, D. G.

    2008-01-01

    The fresh water discharged by large rivers such as the Amazon is transported hundreds to thousands of kilometers away from the coast by surface plumes. The nutrients delivered by these river plumes contribute to enhanced primary production in the ocean, and the sinking flux of this new production results in carbon sequestration. Here, we report that the Amazon River plume supports N2 fixation far from the mouth and provides important pathways for sequestration of atmospheric CO2 in the western tropical North Atlantic (WTNA). We calculate that the sinking of carbon fixed by diazotrophs in the plume sequesters 1.7 Tmol of C annually, in addition to the sequestration of 0.6 Tmol of C yr−1 of the new production supported by NO3 delivered by the river. These processes revise our current understanding that the tropical North Atlantic is a source of 2.5 Tmol of C to the atmosphere [Mikaloff-Fletcher SE, et al. (2007) Inverse estimates of the oceanic sources and sinks of natural CO2 and the implied oceanic carbon transport. Global Biogeochem Cycles 21, doi:10.1029/2006GB002751]. The enhancement of N2 fixation and consequent C sequestration by tropical rivers appears to be a global phenomenon that is likely to be influenced by anthropogenic activity and climate change. PMID:18647838

  20. Potential Impact of Planned Andean Dams on the Amazon Fluvial Ecosystem

    NASA Astrophysics Data System (ADS)

    Forsberg, B.; Melack, J. M.; Dunne, T.; Barthem, R. B.; Paiva, R. C. D.; Sorribas, M.; Silva, U. L., Jr.

    2016-12-01

    Increased energy demand has led to plans for building 151 new dams in the western Amazon, mostly in the Andes Region. Historical data and simulation scenarios were used to explore potential impacts above and below six of the largest storage dams planned for the region. These impacts included: 1) reduction in the downstream sediment supply 2) reduction in the downstream nutrient supply, 3) attenuation of the downstream flood pulse and 4) increased greenhouse gas emissions. Together, the six dams are expected to reduce the total downstream supply of sediments, total phosphorus (TP) and total nitrogen (TN) from the Andes by 66, 65 and 49%, respectively. These large reductions in sediment and nutrient supplies will have major impacts on channel geomorphology, floodplain fertility and aquatic productivity. These impacts are expected to be greatest close to the dams but could also extend to the central Amazon floodplain and delta regions. The attenuation of the downstream flood pulse following impoundment is expected to alter the survival, phenology and growth patterns of floodplain vegetation and result in lower fish yields in the downstream regions closest to the dams. Greenhouse gas emissions above and below the dams are expected to increase, contributing to significantly higher regional and global emissions for dams. Gas fired power plants are suggested as a cleaner, less impactful alternative to meeting regional energy demands.

  1. Isolation of viruses from mosquitoes (Diptera: Culicidae) collected in the Amazon Basin region of Peru.

    PubMed

    Turell, M J; O'Guinn, M L; Jones, J W; Sardelis, M R; Dohm, D J; Watts, D M; Fernandez, R; Travassos da Rosa, A; Guzman, H; Tesh, R; Rossi, C A; Ludwig, V; Mangiafico, J A; Kondig, J; Wasieloski, L P; Pecor, J; Zyzak, M; Schoeler, G; Mores, C N; Calampa, C; Lee, J S; Klein, T A

    2005-09-01

    As part of a comprehensive study on the ecology of arthropod-borne viruses in the Amazon Basin region of Peru, we assayed 539,694 mosquitoes captured in Loreto Department, Peru, for arboviruses. Mosquitoes were captured either by dry ice-baited miniature light traps or with aspirators while mosquitoes were landing on human collectors, identified to species, and later tested on Vero cells for virus. In total, 164 virus isolations were made and included members of the Alphavirus (eastern equine encephalomyelitis, Trocara, Una, Venezuelan equine encephalomyelitis, and western equine encephalomyelitis viruses), Flavivirus (Ilheus and St. Louis encephalitis), and Orthobunyavirus (Caraparu, Itaqui, Mirim, Murutucu, and Wyeomyia viruses) genera. In addition, several viruses distinct from the above-mentioned genera were identified to the serogroup level. Eastern equine encephalomyelitis virus was associated primarily with Culex pedroi Sirivanakarn & Belkin, whereas Venezuelan equine encephalomyelitis virus was associated primarily with Culex gnomatos Sallum, Huchings & Ferreira. Most isolations of Ilheus virus were made from Psorophora ferox (Von Humboldt). Although species of the Culex subgenus Melanoconion accounted for only 45% of the mosquitoes collected, 85% of the virus isolations were made from this subgenus. Knowledge of the viruses that are being transmitted in the Amazon Basin region of Peru will enable the development of more effective diagnostic assays, more efficient and rapid diagnoses of clinical illnesses caused by these pathogens, risk analysis for military/civilian operations, and development of potential disease control measures.

  2. Evaluation of organic compounds and trace elements in Amazon Creek Basin, Oregon, September 1990

    USGS Publications Warehouse

    Rinella, F.A.

    1993-01-01

    Water and bottom sediment were collected from Amazon Creek, Oregon during a summer low-flow condition and analyzed for different classes of organic compounds, including many from the U.S. Environmental Protection Agency's priority pollutant list. Bottom sediment also was analyzed for trace elements typically associated with urban runoff. Trace-element concentrations in the less than 63 micrometer fraction of Amazon Creek bottom-sediment samples were compared with baseline concentrations (expected 95 percent confidence range) for soils from the Western United States and with concen- trations found in bottom sediment from the Willamette River Basin. Total-digestion concentrations of antimony, arsenic, cadmium, chromium, cobalt, copper, lead, manganese, mercury, nickel, silver, titanium, and zinc were enriched at some or all sites sampled. Whole-water samples from some sites contained concentrations of several chlorophenoxy-acid herbicides, the organophosphorus insecticide diazinon, and several semivolatile priority pollutants. Classes of compounds not detected in whole-water samples included carbamate insecticides, triazine and other nitrogen-containing herbicides, and purgeable organic compounds. Bottom-sediment samples contained many organochlorine compounds, including chlordane, DDT plus metabolites, dieldrin, endrin, heptachlor epoxide (a metabolite of heptachlor), and PCBs at some or all sites sampled. Twenty-four of 54 semivolatile compounds were detected in bottom- sediment samples at some or all sites sampled.

  3. A new "Bat-Voiced" species of Dendropsophus Fitzinger, 1843 (Anura, Hylidae) from the Amazon Basin, Brazil.

    PubMed

    Orrico, Victor G D; Peloso, Pedro L V; Sturaro, Marcelo J; Da Silva-Filho, Heriberto F; Neckel-Oliveira, Selvino; Gordo, Marcelo; Faivovich, Julián; Haddad, Célio F B

    2014-11-06

    We describe Dendropsophus ozzyi sp. nov., a new species of treefrog, tentatively included in the Dendropsophus microcephalus Group and most notably diagnosed by the presence of pointed fingers and an advertisement call with a very high dominant frequency. The new species is known from three localities in the Brazilian Amazon forest, two on western State of Pará and one (the type locality) in eastern State of Amazonas (03°56'50"S and 58°26'36"W, 45 m a.s.l.).

  4. Fog and rain in the Amazon

    NASA Astrophysics Data System (ADS)

    Anber, Usama; Gentine, Pierre; Wang, Shuguang; Sobel, Adam H.

    2015-09-01

    The diurnal and seasonal water cycles in the Amazon remain poorly simulated in general circulation models, exhibiting peak evapotranspiration in the wrong season and rain too early in the day. We show that those biases are not present in cloud-resolving simulations with parameterized large-scale circulation. The difference is attributed to the representation of the morning fog layer, and to more accurate characterization of convection and its coupling with large-scale circulation. The morning fog layer, present in the wet season but absent in the dry season, dramatically increases cloud albedo, which reduces evapotranspiration through its modulation of the surface energy budget. These results highlight the importance of the coupling between the energy and hydrological cycles and the key role of cloud albedo feedback for climates over tropical continents.

  5. Fog and rain in the Amazon.

    PubMed

    Anber, Usama; Gentine, Pierre; Wang, Shuguang; Sobel, Adam H

    2015-09-15

    The diurnal and seasonal water cycles in the Amazon remain poorly simulated in general circulation models, exhibiting peak evapotranspiration in the wrong season and rain too early in the day. We show that those biases are not present in cloud-resolving simulations with parameterized large-scale circulation. The difference is attributed to the representation of the morning fog layer, and to more accurate characterization of convection and its coupling with large-scale circulation. The morning fog layer, present in the wet season but absent in the dry season, dramatically increases cloud albedo, which reduces evapotranspiration through its modulation of the surface energy budget. These results highlight the importance of the coupling between the energy and hydrological cycles and the key role of cloud albedo feedback for climates over tropical continents.

  6. Smoking rain clouds over the Amazon.

    PubMed

    Andreae, M O; Rosenfeld, D; Artaxo, P; Costa, A A; Frank, G P; Longo, K M; Silva-Dias, M A F

    2004-02-27

    Heavy smoke from forest fires in the Amazon was observed to reduce cloud droplet size and so delay the onset of precipitation from 1.5 kilometers above cloud base in pristine clouds to more than 5 kilometers in polluted clouds and more than 7 kilometers in pyro-clouds. Suppression of low-level rainout and aerosol washout allows transport of water and smoke to upper levels, where the clouds appear "smoking" as they detrain much of the pollution. Elevating the onset of precipitation allows invigoration of the updrafts, causing intense thunderstorms, large hail, and greater likelihood for overshooting cloud tops into the stratosphere. There, detrained pollutants and water vapor would have profound radiative impacts on the climate system. The invigorated storms release the latent heat higher in the atmosphere. This should substantially affect the regional and global circulation systems. Together, these processes affect the water cycle, the pollution burden of the atmosphere, and the dynamics of atmospheric circulation.

  7. Fog and rain in the Amazon

    PubMed Central

    Anber, Usama; Gentine, Pierre; Wang, Shuguang; Sobel, Adam H.

    2015-01-01

    The diurnal and seasonal water cycles in the Amazon remain poorly simulated in general circulation models, exhibiting peak evapotranspiration in the wrong season and rain too early in the day. We show that those biases are not present in cloud-resolving simulations with parameterized large-scale circulation. The difference is attributed to the representation of the morning fog layer, and to more accurate characterization of convection and its coupling with large-scale circulation. The morning fog layer, present in the wet season but absent in the dry season, dramatically increases cloud albedo, which reduces evapotranspiration through its modulation of the surface energy budget. These results highlight the importance of the coupling between the energy and hydrological cycles and the key role of cloud albedo feedback for climates over tropical continents. PMID:26324902

  8. Monte-Carlo Opening Books for Amazons

    NASA Astrophysics Data System (ADS)

    Kloetzer, Julien

    Automatically creating opening books is a natural step towards the building of strong game-playing programs, especially when there is little available knowledge about the game. However, while recent popular Monte-Carlo Tree-Search programs showed strong results for various games, we show here that programs based on such methods cannot efficiently use opening books created using algorithms based on minimax. To overcome this issue, we propose to use an MCTS-based technique, Meta-MCTS, to create such opening books. This method, while requiring some tuning to arrive at the best opening book possible, shows promising results to create an opening book for the game of the Amazons, even if this is at the cost of removing its Monte-Carlo part.

  9. Fog and rain in the Amazon

    DOE PAGES

    Anber, Usama; Gentine, Pierre; Wang, Shuguang; ...

    2015-08-31

    The diurnal and seasonal water cycles in the Amazon remain poorly simulated in general circulation models, exhibiting peak evapotranspiration in the wrong season and rain too early in the day. We show that those biases are not present in cloud-resolving simulations with parameterized large-scale circulation. The difference is attributed to the representation of the morning fog layer, and to more accurate characterization of convection and its coupling with large-scale circulation. The morning fog layer, present in the wet season but absent in the dry season, dramatically increases cloud albedo, which reduces evapotranspiration through its modulation of the surface energy budget.more » Finally, these results highlight the importance of the coupling between the energy and hydrological cycles and the key role of cloud albedo feedback for climates over tropical continents.« less

  10. Hydrological Predictability for the Peruvian Amazon

    NASA Astrophysics Data System (ADS)

    Towner, Jamie; Stephens, Elizabeth; Cloke, Hannah; Bazo, Juan; Coughlan, Erin; Zsoter, Ervin

    2017-04-01

    Population growth in the Peruvian Amazon has prompted the expansion of livelihoods further into the floodplain and thus increasing vulnerability to the annual rise and fall of the river. This growth has coincided with a period of increasing hydrological extremes with more frequent severe flood events. The anticipation and forecasting of these events is crucial for mitigating vulnerability. Forecast-based Financing (FbF) an initiative of the German Red Cross implements risk reducing actions based on threshold exceedance within hydrometeorological forecasts using the Global Flood Awareness System (GloFAS). However, the lead times required to complete certain actions can be long (e.g. several weeks to months ahead to purchase materials and reinforce houses) and are beyond the current capabilities of GloFAS. Therefore, further calibration of the model is required in addition to understanding the climatic drivers and associated hydrological response for specific flood events, such as those observed in 2009, 2012 and 2015. This review sets out to determine the current capabilities of the GloFAS model while exploring the limits of predictability for the Amazon basin. More specifically, how the temporal patterns of flow within the main coinciding tributaries correspond to the overall Amazonian flood wave under various climatic and meteorological influences. Linking the source areas of flow to predictability within the seasonal forecasting system will develop the ability to expand the limit of predictability of the flood wave. This presentation will focus on the Iquitos region of Peru, while providing an overview of the new techniques and current challenges faced within seasonal flood prediction.

  11. Dimethyl sulfide in the Amazon rain forest

    NASA Astrophysics Data System (ADS)

    Jardine, K.; Yañez-Serrano, A. M.; Williams, J.; Kunert, N.; Jardine, A.; Taylor, T.; Abrell, L.; Artaxo, P.; Guenther, A.; Hewitt, C. N.; House, E.; Florentino, A. P.; Manzi, A.; Higuchi, N.; Kesselmeier, J.; Behrendt, T.; Veres, P. R.; Derstroff, B.; Fuentes, J. D.; Martin, S. T.; Andreae, M. O.

    2015-01-01

    Surface-to-atmosphere emissions of dimethyl sulfide (DMS) may impact global climate through the formation of gaseous sulfuric acid, which can yield secondary sulfate aerosols and contribute to new particle formation. While oceans are generally considered the dominant sources of DMS, a shortage of ecosystem observations prevents an accurate analysis of terrestrial DMS sources. Using mass spectrometry, we quantified ambient DMS mixing ratios within and above a primary rainforest ecosystem in the central Amazon Basin in real-time (2010-2011) and at high vertical resolution (2013-2014). Elevated but highly variable DMS mixing ratios were observed within the canopy, showing clear evidence of a net ecosystem source to the atmosphere during both day and night in both the dry and wet seasons. Periods of high DMS mixing ratios lasting up to 8 h (up to 160 parts per trillion (ppt)) often occurred within the canopy and near the surface during many evenings and nights. Daytime gradients showed mixing ratios (up to 80 ppt) peaking near the top of the canopy as well as near the ground following a rain event. The spatial and temporal distribution of DMS suggests that ambient levels and their potential climatic impacts are dominated by local soil and plant emissions. A soil source was confirmed by measurements of DMS emission fluxes from Amazon soils as a function of temperature and soil moisture. Furthermore, light- and temperature-dependent DMS emissions were measured from seven tropical tree species. Our study has important implications for understanding terrestrial DMS sources and their role in coupled land-atmosphere climate feedbacks.

  12. Socio-ecological costs of Amazon nut and timber production at community household forests in the Bolivian Amazon.

    PubMed

    Soriano, Marlene; Mohren, Frits; Ascarrunz, Nataly; Dressler, Wolfram; Peña-Claros, Marielos

    2017-01-01

    The Bolivian Amazon holds a complex configuration of people and forested landscapes in which communities hold secure tenure rights over a rich ecosystem offering a range of livelihood income opportunities. A large share of this income is derived from Amazon nut (Bertholletia excelsa). Many communities also have long-standing experience with community timber management plans. However, livelihood needs and desires for better living conditions may continue to place these resources under considerable stress as income needs and opportunities intensify and diversify. We aim to identify the socioeconomic and biophysical factors determining the income from forests, husbandry, off-farm and two keystone forest products (i.e., Amazon nut and timber) in the Bolivian Amazon region. We used structural equation modelling tools to account for the complex inter-relationships between socioeconomic and biophysical factors in predicting each source of income. The potential exists to increase incomes from existing livelihood activities in ways that reduce dependency upon forest resources. For example, changes in off-farm income sources can act to increase or decrease forest incomes. Market accessibility, social, financial, and natural and physical assets determined the amount of income community households could derive from Amazon nut and timber. Factors related to community households' local ecological knowledge, such as the number of non-timber forest products harvested and the number of management practices applied to enhance Amazon nut production, defined the amount of income these households could derive from Amazon nut and timber, respectively. The (inter) relationships found among socioeconomic and biophysical factors over income shed light on ways to improve forest-dependent livelihoods in the Bolivian Amazon. We believe that our analysis could be applicable to other contexts throughout the tropics as well.

  13. Socio-ecological costs of Amazon nut and timber production at community household forests in the Bolivian Amazon

    PubMed Central

    Mohren, Frits; Ascarrunz, Nataly; Dressler, Wolfram; Peña-Claros, Marielos

    2017-01-01

    The Bolivian Amazon holds a complex configuration of people and forested landscapes in which communities hold secure tenure rights over a rich ecosystem offering a range of livelihood income opportunities. A large share of this income is derived from Amazon nut (Bertholletia excelsa). Many communities also have long-standing experience with community timber management plans. However, livelihood needs and desires for better living conditions may continue to place these resources under considerable stress as income needs and opportunities intensify and diversify. We aim to identify the socioeconomic and biophysical factors determining the income from forests, husbandry, off-farm and two keystone forest products (i.e., Amazon nut and timber) in the Bolivian Amazon region. We used structural equation modelling tools to account for the complex inter-relationships between socioeconomic and biophysical factors in predicting each source of income. The potential exists to increase incomes from existing livelihood activities in ways that reduce dependency upon forest resources. For example, changes in off-farm income sources can act to increase or decrease forest incomes. Market accessibility, social, financial, and natural and physical assets determined the amount of income community households could derive from Amazon nut and timber. Factors related to community households’ local ecological knowledge, such as the number of non-timber forest products harvested and the number of management practices applied to enhance Amazon nut production, defined the amount of income these households could derive from Amazon nut and timber, respectively. The (inter) relationships found among socioeconomic and biophysical factors over income shed light on ways to improve forest-dependent livelihoods in the Bolivian Amazon. We believe that our analysis could be applicable to other contexts throughout the tropics as well. PMID:28235090

  14. Elevated rates of gold mining in the Amazon revealed through high-resolution monitoring

    PubMed Central

    Asner, Gregory P.; Llactayo, William; Tupayachi, Raul; Luna, Ernesto Ráez

    2013-01-01

    Gold mining has rapidly increased in western Amazonia, but the rates and ecological impacts of mining remain poorly known and potentially underestimated. We combined field surveys, airborne mapping, and high-resolution satellite imaging to assess road- and river-based gold mining in the Madre de Dios region of the Peruvian Amazon from 1999 to 2012. In this period, the geographic extent of gold mining increased 400%. The average annual rate of forest loss as a result of gold mining tripled in 2008 following the global economic recession, closely associated with increased gold prices. Small clandestine operations now comprise more than half of all gold mining activities throughout the region. These rates of gold mining are far higher than previous estimates that were based on traditional satellite mapping techniques. Our results prove that gold mining is growing more rapidly than previously thought, and that high-resolution monitoring approaches are required to accurately quantify human impacts on tropical forests. PMID:24167281

  15. Elevated rates of gold mining in the Amazon revealed through high-resolution monitoring.

    PubMed

    Asner, Gregory P; Llactayo, William; Tupayachi, Raul; Luna, Ernesto Ráez

    2013-11-12

    Gold mining has rapidly increased in western Amazonia, but the rates and ecological impacts of mining remain poorly known and potentially underestimated. We combined field surveys, airborne mapping, and high-resolution satellite imaging to assess road- and river-based gold mining in the Madre de Dios region of the Peruvian Amazon from 1999 to 2012. In this period, the geographic extent of gold mining increased 400%. The average annual rate of forest loss as a result of gold mining tripled in 2008 following the global economic recession, closely associated with increased gold prices. Small clandestine operations now comprise more than half of all gold mining activities throughout the region. These rates of gold mining are far higher than previous estimates that were based on traditional satellite mapping techniques. Our results prove that gold mining is growing more rapidly than previously thought, and that high-resolution monitoring approaches are required to accurately quantify human impacts on tropical forests.

  16. Demographic and health attributes of the Nahua, initial contact population of the Peruvian Amazon.

    PubMed

    Culqui, Dante R; Ayuso-Alvarez, Ana; Munayco, Cesar V; Quispe-Huaman, Carlos; Mayta-Tristán, Percy; Campos, Juan de Mata Donado

    2016-01-01

    We present the case of the Nahua population of Santa Rosa de Serjali, Peruvian Amazon's population, considered of initial contact. This population consists of human groups that for a long time decided to live in isolation, but lately have begun living a more sedentary lifestyle and in contact with Western populations. There are two fully identified initial contact groups in Peru: the Nahua and the Nanti. The health statistics of the Nahua are scarce. This study offers an interpretation of demographic and epidemiological indicators of the Nahua people, trying to identify if a certain degree of health vulnerability exists. We performed a cross sectional study, and after analyzing their health indicators, as well as the supplemental qualitative analysis of the population, brought us to conclude that in 2006, the Nahua, remained in a state of health vulnerability.

  17. Influence of the Amazon/Orinoco Plume on the summertime Atlantic climate

    NASA Astrophysics Data System (ADS)

    Vizy, Edward K.; Cook, Kerry H.

    2010-11-01

    A plume of fresh water forms in the Atlantic due to discharge from the Amazon and Orinoco rivers and creates a stable barrier layer near the surface that is associated with warm sea surface temperature anomalies (SSTAs). The boreal summer atmospheric response to this sea surface temperature (SST) forcing is investigated using a regional atmospheric model. Results from two ensembles, one with the plume SSTA removed, and the other with an idealized plume SSTA imposed, reveal that the scale of the SSTA forcing is large enough to influence the summer climate over the tropical western Atlantic and Central America. Rainfall increases over the SSTAs and downstream over the Caribbean Sea and Central America, as sensible and latent heating associated with the plume SSTAs force a Rossby/Kelvin wave dynamical response. The result is westward shift by 12° of longitude of the North Atlantic subtropical anticyclone, a northward repositioning of the summertime subtropical anticyclone extension over the Gulf of Mexico, and increased moisture convergence into Central America. Warm SSTAs associated with the plume also influence simulated summer tropical Atlantic storms. The presence of the plume increases the number of Atlantic basin storms by 60% (i.e., 4.66 more storms). An increase in storm intensity also occurs, with a 61% increase of the number of storms that reach tropical storm and hurricane strength. However, these storms tend to be shorter lived and are associated with a 12% decrease in the number of tropical storm days. Storm trajectories also shift westward over the western Atlantic associated with the presence of the plume, bringing them closer to the U.S. coast as both the steering winds and vertical wind shear over the Atlantic are modified. These results suggest that the August storm systems may be more likely to track closer to the U.S. coast and/or over the Gulf of Mexico. Since the Amazon and Orinoco rivers are fed primarily by rainfall in the Amazon Basin during

  18. Granular cell tumor in an endangered Puerto Rican Amazon parrot (Amazon vittata)

    USGS Publications Warehouse

    Quist, C.F.; Latimer, K.S.; Goldade, S.L.; Rivera, A.; Dein, F.J.

    1999-01-01

    A 3 cm diameter mass from the metacarpus of a Puerto Rican Amazon parrot was diagnosed as a granular cell tumour based on light microscopy. The cytoplasmic granules were periodic-acid Schiff positive and diastase resistant. Ultrastructural characteristics of the cells included convoluted nuclei and the presence of numerous cytoplasmic tertiary lysosomes. This is only the second granular cell tumour reported in a bird. We speculate that most granular cell tumours are derived from cells that are engaged in some type of cellular degradative process, creating a similar morphologic appearance, but lacking a uniform histogenesis.

  19. Carbon Emissions from Deforestation in the Brazilian Amazon Region

    NASA Technical Reports Server (NTRS)

    Potter, C.; Klooster, S.; Genovese, V.

    2009-01-01

    A simulation model based on satellite observations of monthly vegetation greenness from the Moderate Resolution Imaging Spectroradiometer (MODIS) was used to estimate monthly carbon fluxes in terrestrial ecosystems of Brazilian Amazon and Cerrado regions over the period 2000-2002. The NASA-CASA (Carnegie Ames Stanford Approach) model estimates of annual forest production were used for the first time as the basis to generate a prediction for the standing pool of carbon in above-ground biomass (AGB; gC/sq m) for forested areas of the Brazilian Amazon region. Plot-level measurements of the residence time of carbon in wood in Amazon forest from Malhi et al. (2006) were interpolated by inverse distance weighting algorithms and used with CASA to generate a new regional map of AGB. Data from the Brazilian PRODES (Estimativa do Desflorestamento da Amazonia) project were used to map deforested areas. Results show that net primary production (NPP) sinks for carbon varied between 4.25 Pg C/yr (1 Pg=10(exp 15)g) and 4.34 Pg C for the region and were highest across the eastern and northern Amazon areas, whereas deforestation sources of CO2 flux from decomposition of residual woody debris were higher and less seasonal in the central Amazon than in the eastern and southern areas. Increased woody debris from past deforestation events was predicted to alter the net ecosystem carbon balance of the Amazon region to generate annual CO2 source fluxes at least two times higher than previously predicted by CASA modeling studies. Variations in climate, land cover, and forest burning were predicted to release carbon at rates of 0.5 to 1 Pg C/yr from the Brazilian Amazon. When direct deforestation emissions of CO2 from forest burning of between 0.2 and 0.6 Pg C/yr in the Legal Amazon are overlooked in regional budgets, the year-to-year variations in this net biome flux may appear to be large, whereas our model results implies net biome fluxes had actually been relatively consistent from

  20. Carbon emissions from deforestation in the Brazilian Amazon Region

    NASA Astrophysics Data System (ADS)

    Potter, C.; Klooster, S.; Genovese, V.

    2009-11-01

    A simulation model based on satellite observations of monthly vegetation greenness from the Moderate Resolution Imaging Spectroradiometer (MODIS) was used to estimate monthly carbon fluxes in terrestrial ecosystems of Brazilian Amazon and Cerrado regions over the period 2000-2002. The NASA-CASA (Carnegie Ames Stanford Approach) model estimates of annual forest production were used for the first time as the basis to generate a prediction for the standing pool of carbon in above-ground biomass (AGB; g C m-2) for forested areas of the Brazilian Amazon region. Plot-level measurements of the residence time of carbon in wood in Amazon forest from Malhi et al. (2006) were interpolated by inverse distance weighting algorithms and used with CASA to generate a new regional map of AGB. Data from the Brazilian PRODES (Estimativa do Desflorestamento da Amazônia) project were used to map deforested areas. Results show that net primary production (NPP) sinks for carbon varied between 4.25 Pg C yr-1 (1 Pg{=}1015 g) and 4.34 Pg C for the region and were highest across the eastern and northern Amazon areas, whereas deforestation sources of CO2 flux from decomposition of residual woody debris were higher and less seasonal in the central Amazon than in the eastern and southern areas. Increased woody debris from past deforestation events was predicted to alter the net ecosystem carbon balance of the Amazon region to generate annual CO2 source fluxes at least two times higher than previously predicted by CASA modeling studies. Variations in climate, land cover, and forest burning were predicted to release carbon at rates of 0.5 to 1 Pg C yr-1 from the Brazilian Amazon. When direct deforestation emissions of CO2 from forest burning of between 0.2 and 0.6 Pg C yr-1 in the Legal Amazon are overlooked in regional budgets, the year-to-year variations in this net biome flux may appear to be large, whereas our model results implies net biome fluxes had actually been relatively consistent from

  1. Recent and subrecent changes in the dispersal of amazon mud

    NASA Astrophysics Data System (ADS)

    Eisma, D.; Augustinus, P. G. E. F.; Alexander, C.

    The dispersal of Amazon mud reaches from the mouth of the Amazon river to the Orinoco delta and to the eastern Caribbean, a distance of more than 1500 km. The present dispersal system has been in existence for at least 10 3 years, but the deposition of mud from this system has not been constant during that period. A change from net erosion to net deposition along the Suriname coast between 1947 and 1981 was found to coincide with a shift of the trade winds from a dominantly NE to a more ENE direction from 1959 onward, accompanied by an increase in mean wind velocity. The change to net-deposition can be explained by enhanced longshore transport of suspended matter with simulataneous reduction of erosion by reduction of the onshore wave energy component. The sequence of a recent mud deposit 100-200 years old off the Amazon river mouth separated by a period of non-deposition from an older mud deposit less than 1000 years old, agrees well with indications for a wetter period in the Amazon basin and in the Colombian Andes since about 200 years BP and a wetter period between 500 and 900 y BP. This implies that during wetter periods the suspended-sediment supply from the Amazon (and the Orinoco) was (is) higher.

  2. Methane emissions from floodplain trees of the Amazon basin

    NASA Astrophysics Data System (ADS)

    Pangala, Sunitha; Bastviken, David; Enrich-Prast, Alex; Gauci, Vincent

    2016-04-01

    Wetlands are the largest source of methane to the atmosphere, but emission estimates are highly uncertain leading to large discrepancies between emission inventories and much larger estimates of the Amazon methane source derived at larger scales. We examined methane emissions from all emission pathways including aquatic surfaces, emergent soils and herbaceous vegetation and more than 2000 trees from 13 locations across the central Amazon floodplain in 2014. Our data are the first measurements of stem emission from emergent portions of inundated trees in the Amazon and they demonstrate that regionally, tree stems are the dominant means of emissions for soil produced methane to the atmosphere. Emissions via the range of egress pathways varied substantially between sample locations and water-table exerted some control over emissions from ~2m below the soil surface upto 0.5-1m of inundation. Higher water (upto ~10m of inundation) exerted no further control over emissions. Applying our measurements to models of whole tree emission and scaling to the entire Amazon lowland basin demonstrates the significant contribution of trees to regional emissions that can close the Amazon basin methane budget.

  3. Spatiotemporal variability of methane over the Amazon from satellite observations

    NASA Astrophysics Data System (ADS)

    Ribeiro, Igor Oliveira; de Souza, Rodrigo Augusto Ferreira; Andreoli, Rita Valéria; Kayano, Mary Toshie; Costa, Patrícia dos Santos

    2016-07-01

    The spatiotemporal variability of the greenhouse gas methane (CH4) in the atmosphere over the Amazon is studied using data from the space-borne measurements of the Atmospheric Infrared Sounder on board NASA's AQUA satellite for the period 2003-12. The results show a pronounced variability of this gas over the Amazon Basin lowlands region, where wetland areas occur. CH4 has a well-defined seasonal behavior, with a progressive increase of its concentration during the dry season, followed by a decrease during the wet season. Concerning this variability, the present study indicates the important role of ENSO in modulating the variability of CH4 emissions over the northern Amazon, where this association seems to be mostly linked to changes in flooded areas in response to ENSO-related precipitation changes. In this region, a CH4 decrease (increase) is due to the El Niño-related (La Niña-related) dryness (wetness). On the other hand, an increase (decrease) in the biomass burning over the southeastern Amazon during very dry (wet) years explains the increase (decrease) in CH4 emissions in this region. The present analysis identifies the two main areas of the Amazon, its northern and southeastern sectors, with remarkable interannual variations of CH4. This result might be useful for future monitoring of the variations in the concentration of CH4, the second-most important greenhouse gas, in this area.

  4. Rickettsial Disease in the Peruvian Amazon Basin

    PubMed Central

    Kocher, Claudine; Morrison, Amy C.; Leguia, Mariana; Loyola, Steev; Castillo, Roger M.; Galvez, Hugo A.; Astete, Helvio; Flores-Mendoza, Carmen; Ampuero, Julia S.; Bausch, Daniel G.; Halsey, Eric S.; Cespedes, Manuel; Zevallos, Karine; Jiang, Ju; Richards, Allen L.

    2016-01-01

    Using a large, passive, clinic-based surveillance program in Iquitos, Peru, we characterized the prevalence of rickettsial infections among undifferentiated febrile cases and obtained evidence of pathogen transmission in potential domestic reservoir contacts and their ectoparasites. Blood specimens from humans and animals were assayed for spotted fever group rickettsiae (SFGR) and typhus group rickettsiae (TGR) by ELISA and/or PCR; ectoparasites were screened by PCR. Logistic regression was used to determine associations between patient history, demographic characteristics of participants and symptoms, clinical findings and outcome of rickettsial infection. Of the 2,054 enrolled participants, almost 2% showed evidence of seroconversion or a 4-fold rise in antibody titers specific for rickettsiae between acute and convalescent blood samples. Of 190 fleas (Ctenocephalides felis) and 60 ticks (Rhipicephalus sanguineus) tested, 185 (97.4%) and 3 (5%), respectively, were positive for Rickettsia spp. Candidatus Rickettsia asemboensis was identified in 100% and 33% of the fleas and ticks tested, respectively. Collectively, our serologic data indicates that human pathogenic SFGR are present in the Peruvian Amazon and pose a significant risk of infection to individuals exposed to wild, domestic and peri-domestic animals and their ectoparasites. PMID:27416029

  5. Rickettsial Disease in the Peruvian Amazon Basin.

    PubMed

    Kocher, Claudine; Morrison, Amy C; Leguia, Mariana; Loyola, Steev; Castillo, Roger M; Galvez, Hugo A; Astete, Helvio; Flores-Mendoza, Carmen; Ampuero, Julia S; Bausch, Daniel G; Halsey, Eric S; Cespedes, Manuel; Zevallos, Karine; Jiang, Ju; Richards, Allen L

    2016-07-01

    Using a large, passive, clinic-based surveillance program in Iquitos, Peru, we characterized the prevalence of rickettsial infections among undifferentiated febrile cases and obtained evidence of pathogen transmission in potential domestic reservoir contacts and their ectoparasites. Blood specimens from humans and animals were assayed for spotted fever group rickettsiae (SFGR) and typhus group rickettsiae (TGR) by ELISA and/or PCR; ectoparasites were screened by PCR. Logistic regression was used to determine associations between patient history, demographic characteristics of participants and symptoms, clinical findings and outcome of rickettsial infection. Of the 2,054 enrolled participants, almost 2% showed evidence of seroconversion or a 4-fold rise in antibody titers specific for rickettsiae between acute and convalescent blood samples. Of 190 fleas (Ctenocephalides felis) and 60 ticks (Rhipicephalus sanguineus) tested, 185 (97.4%) and 3 (5%), respectively, were positive for Rickettsia spp. Candidatus Rickettsia asemboensis was identified in 100% and 33% of the fleas and ticks tested, respectively. Collectively, our serologic data indicates that human pathogenic SFGR are present in the Peruvian Amazon and pose a significant risk of infection to individuals exposed to wild, domestic and peri-domestic animals and their ectoparasites.

  6. Carbon Tetrachloride Emissions from the Amazon Forest

    NASA Astrophysics Data System (ADS)

    Jardine, K.; Chambers, J. Q.; Higuchi, N.; Jardine, A. B.; Martin, S. T.; Manzi, A. O.

    2014-12-01

    As a chemically inert greenhouse gas in the troposphere with lifetimes up to 50 years but active in ozone destruction in the stratosphere, carbon tetrachloride (CCl4) plays a major role in the atmospheric chlorine budget and is widely considered strictly of anthropogenic origin deriving from numerous industrial processes and products. However, satellite remote sensing studies have shown higher concentrations at the Equator, and earlier work has suggested possible biogenic sources. Here we present highly vertically-resolved atmospheric gradients of CCl4 within and above a primary rainforest ecosystem from three towers in the Central Amazon. The observed buildup of CCl4 mixing ratios near the top of the main canopies provides new evidence for a potentially large biogenic source from the Basin. By demonstrating the need to represent tropical forests as biogenic sources of CCl4, our study may help narrow the gap between remote sensing observations of CCl4 and emission, chemistry, and transport models and therefore lead to improved predictions of its role in atmospheric chemistry and climate.

  7. Boosted carbon emissions from Amazon deforestation

    NASA Astrophysics Data System (ADS)

    Loarie, Scott R.; Asner, Gregory P.; Field, Christopher B.

    2009-07-01

    Standing biomass is a major, often poorly quantified determinate of carbon losses from land clearing. We analyzed maps from the 2001-2007 PRODES deforestation time series with recent regional pre-deforestation aboveground biomass estimates to calculate carbon emission trends for the Brazilian Amazon basin. Although the annual rate of deforestation has not changed significantly since the 1990s (ANOVA, p = 0.3), the aboveground biomass lost per unit of forest cleared increased from 2001 to 2007 (183 to 201 Mg C ha-1 slope of regression significant: p < 0.01). Remaining unprotected forests harbor significantly higher aboveground biomass still, averaging 231 Mg C ha-1. This difference is large enough that, even if the annual area deforested remains unchanged, future clearing will increase regional emissions by ˜0.04 Pg C yr-1 - a ˜25% increase over 2001-2007 annual carbon emissions. These results suggest increased climate risk from future deforestation, but highlight opportunities through reductions in deforestation and forest degradation (REDD).

  8. Conducting behavioral research on Amazon's Mechanical Turk.

    PubMed

    Mason, Winter; Suri, Siddharth

    2012-03-01

    Amazon's Mechanical Turk is an online labor market where requesters post jobs and workers choose which jobs to do for pay. The central purpose of this article is to demonstrate how to use this Web site for conducting behavioral research and to lower the barrier to entry for researchers who could benefit from this platform. We describe general techniques that apply to a variety of types of research and experiments across disciplines. We begin by discussing some of the advantages of doing experiments on Mechanical Turk, such as easy access to a large, stable, and diverse subject pool, the low cost of doing experiments, and faster iteration between developing theory and executing experiments. While other methods of conducting behavioral research may be comparable to or even better than Mechanical Turk on one or more of the axes outlined above, we will show that when taken as a whole Mechanical Turk can be a useful tool for many researchers. We will discuss how the behavior of workers compares with that of experts and laboratory subjects. Then we will illustrate the mechanics of putting a task on Mechanical Turk, including recruiting subjects, executing the task, and reviewing the work that was submitted. We also provide solutions to common problems that a researcher might face when executing their research on this platform, including techniques for conducting synchronous experiments, methods for ensuring high-quality work, how to keep data private, and how to maintain code security.

  9. Climate drivers of the Amazon forest greening.

    PubMed

    Wagner, Fabien Hubert; Hérault, Bruno; Rossi, Vivien; Hilker, Thomas; Maeda, Eduardo Eiji; Sanchez, Alber; Lyapustin, Alexei I; Galvão, Lênio Soares; Wang, Yujie; Aragão, Luiz E O C

    2017-01-01

    Our limited understanding of the climate controls on tropical forest seasonality is one of the biggest sources of uncertainty in modeling climate change impacts on terrestrial ecosystems. Combining leaf production, litterfall and climate observations from satellite and ground data in the Amazon forest, we show that seasonal variation in leaf production is largely triggered by climate signals, specifically, insolation increase (70.4% of the total area) and precipitation increase (29.6%). Increase of insolation drives leaf growth in the absence of water limitation. For these non-water-limited forests, the simultaneous leaf flush occurs in a sufficient proportion of the trees to be observed from space. While tropical cycles are generally defined in terms of dry or wet season, we show that for a large part of Amazonia the increase in insolation triggers the visible progress of leaf growth, just like during spring in temperate forests. The dependence of leaf growth initiation on climate seasonality may result in a higher sensitivity of these ecosystems to changes in climate than previously thought.

  10. Evolution of biomass burning aerosol over the Amazon: airborne measurements of aerosol chemical composition, microphysical properties, mixing state and optical properties during SAMBBA

    NASA Astrophysics Data System (ADS)

    Morgan, W.; Allan, J. D.; Flynn, M.; Darbyshire, E.; Hodgson, A.; Liu, D.; O'Shea, S.; Bauguitte, S.; Szpek, K.; Johnson, B.; Haywood, J.; Longo, K.; Artaxo, P.; Coe, H.

    2013-12-01

    Biomass burning represents one of the largest sources of particulate matter to the atmosphere, resulting in a significant perturbation to the Earth's radiative balance coupled with serious impacts on public health. On regional scales, the impacts are substantial, particularly in areas such as the Amazon Basin where large, intense and frequent burning occurs on an annual basis for several months. Absorption by atmospheric aerosols is underestimated by models over South America, which points to significant uncertainties relating to Black Carbon (BC) aerosol properties. Initial results from the South American Biomass Burning Analysis (SAMBBA) field experiment, which took place during September and October 2012 over Brazil on-board the UK Facility for Airborne Atmospheric Measurement (FAAM) BAe-146 research aircraft, are presented here. Aerosol chemical composition was measured by an Aerodyne Aerosol Mass Spectrometer (AMS) and a DMT Single Particle Soot Photometer (SP2). The physical, chemical and optical properties of the aerosols across the region will be characterized in order to establish the impact of biomass burning on regional air quality, weather and climate. The aircraft sampled a range of conditions including sampling of pristine Rainforest, fresh biomass burning plumes, regional haze and elevated biomass burning layers within the free troposphere. The aircraft sampled biomass burning aerosol across the southern Amazon in the states of Rondonia and Mato Grosso, as well as in a Cerrado (Savannah-like) region in Tocantins state. This presented a range of fire conditions, in terms of their number, intensity, vegetation-type and their combustion efficiencies. Near-source sampling of fires in Rainforest environments suggested that smouldering combustion dominated, while flaming combustion dominated in the Cerrado. This led to significant differences in aerosol chemical composition, particularly in terms of the BC content, with BC being enhanced in the Cerrado

  11. Boundary layer ozone - An airborne survey above the Amazon Basin

    NASA Technical Reports Server (NTRS)

    Gregory, Gerald L.; Browell, Edward V.; Warren, Linda S.

    1988-01-01

    Ozone data obtained over the forest canopy of the Amazon Basin during July and August 1985 in the course of NASA's Amazon Boundary Layer Experiment 2A are discussed, and ozone profiles obtained during flights from Belem to Tabatinga, Brazil, are analyzed to determine any cross-basin effects. The analyses of ozone data indicate that the mixed layer of the Amazon Basin, for the conditions of undisturbed meteorology and in the absence of biomass burning, is a significant sink for tropospheric ozone. As the coast is approached, marine influences are noted at about 300 km inland, and a transition from a forest-controlled mixed layer to a marine-controlled mixed layer is noted.

  12. From where does the Amazon forest gets its water?

    NASA Astrophysics Data System (ADS)

    Miguez-Macho, G.; Fan, Y.

    2016-12-01

    The Amazon receives abundant annual rainfall but parts of it experience a multi-month dry season. Here we ask: what is the water source that sustains the dry-season ET? Where over the Amazon it is largely local and recent rain (hence ET shutting down in dry season), or past rain that is stored in the deep soils and the groundwater (deep roots tapping deep reservoirs sustaining ET), or is it rain that fell on higher grounds (through topography-driven lateral convergence)? Using synthesis of isotope and other tracer observations and basin-wide inverse modeling (shallow soil, deep soil, with and without groundwater, with and without dynamic rooting depth), we attempt to tease out these components. The results shed light on likely ET sources and how future global change may preferentially impact Amazon ecosystem functioning.

  13. Resilience of Amazon forests emerges from plant trait diversity

    NASA Astrophysics Data System (ADS)

    Sakschewski, Boris; von Bloh, Werner; Boit, Alice; Poorter, Lourens; Peña-Claros, Marielos; Heinke, Jens; Joshi, Jasmin; Thonicke, Kirsten

    2016-11-01

    Climate change threatens ecosystems worldwide, yet their potential future resilience remains largely unquantified. In recent years many studies have shown that biodiversity, and in particular functional diversity, can enhance ecosystem resilience by providing a higher response diversity. So far these insights have been mostly neglected in large-scale projections of ecosystem responses to climate change. Here we show that plant trait diversity, as a key component of functional diversity, can have a strikingly positive effect on the Amazon forests' biomass under future climate change. Using a terrestrial biogeochemical model that simulates diverse forest communities on the basis of individual tree growth, we show that plant trait diversity may enable the Amazon forests to adjust to new climate conditions via a process of ecological sorting, protecting the Amazon's carbon sink function. Therefore, plant trait diversity, and biodiversity in general, should be considered in large-scale ecosystem projections and be included as an integral part of climate change research and policy.

  14. Multi-model analysis of the Atlantic influence on Southern Amazon rainfall

    DOE PAGES

    Yoon, Jin -Ho

    2015-12-07

    Amazon rainfall is subject to year-to-year fluctuation resulting in drought and flood in various intensities. A major climatic driver of the interannual variation of the Amazon rainfall is El Niño/Southern Oscillation. Also, the Sea Surface Temperature over the Atlantic Ocean is identified as an important climatic driver on the Amazon water cycle. Previously, observational datasets were used to support the Atlantic influence on Amazon rainfall. Furthermore, it is found that multiple global climate models do reproduce the Atlantic-Amazon link robustly. However, there exist differences in rainfall response, which primarily depends on the climatological rainfall amount.

  15. Assessing the Amazon Cloud Suitability for CLARREO's Computational Needs

    NASA Technical Reports Server (NTRS)

    Goldin, Daniel; Vakhnin, Andrei A.; Currey, Jon C.

    2015-01-01

    In this document we compare the performance of the Amazon Web Services (AWS), also known as Amazon Cloud, with the CLARREO (Climate Absolute Radiance and Refractivity Observatory) cluster and assess its suitability for computational needs of the CLARREO mission. A benchmark executable to process one month and one year of PARASOL (Polarization and Anistropy of Reflectances for Atmospheric Sciences coupled with Observations from a Lidar) data was used. With the optimal AWS configuration, adequate data-processing times, comparable to the CLARREO cluster, were found. The assessment of alternatives to the CLARREO cluster continues and several options, such as a NASA-based cluster, are being considered.

  16. Osteoma in a blue-fronted Amazon parrot (Amazona aestiva).

    PubMed

    Cardoso, João Felipe Rito; Levy, Marcelo Guilherme Bezerra; Liparisi, Flavia; Romão, Mario Antonio Pinto

    2013-09-01

    Osteoma is an uncommon bone formation documented in avian species and other animals. A blue-fronted Amazon parrot (Amazona aestiva) with clinical respiratory symptoms was examined because of a hard mass present on the left nostril. Radiographs suggested a bone tumor, and the mass was surgically excised. Histopathologic examination revealed features of an osteoma. To our knowledge, this is the first description of an osteoma in a blue-fronted Amazon parrot. Osteoma should be considered as a differential diagnosis in birds with respiratory distress and swelling of the nostril.

  17. Deforestation and increased flooding of the upper Amazon.

    PubMed

    Gentry, A H; Lopez-Parodi, J

    1980-12-19

    The height of the annual flood crest of the Amazon at Iquitos has increased markedly in the last decade. During this same period, there has been greatly increased deforestation in the upper parts of the Amazon watershed in Peru and Ecuador, but no significant changes in regional patterns of precipitation. The change in Amazonian water balance during the last decade appears to be the result of increased runoff due to deforestation. If so, the long-predicted regional climatic and hydrological changes that would be the expected result of Amazonian deforestation may already be beginning.

  18. Amazon Forests' Response to Droughts: A Perspective from the MAIAC Product

    NASA Astrophysics Data System (ADS)

    Bi, J.; Myneni, R.; Lyapustin, A.; Wang, Y.; Park, T.; Chen, C.; Yan, K.; Knyazikhin, Y.

    2016-12-01

    Amazon forests experienced two severe droughts at the beginning of the 21st century: one in 2005 and the other in 2010. How Amazon forests responded to these droughts is critical for the future of the Earth's climate system. It is only possible to assess Amazon forests' response to the droughts in large areal extent through satellite remote sensing. Here, we used the Multi-Angle Implementation of Atmospheric Correction (MAIAC) Moderate Resolution Imaging Spectroradiometer (MODIS) vegetation index (VI) data to assess Amazon forests' response to droughts, and compared the results with those from the standard (Collection 5 and Collection 6) MODIS VI data. Overall, the MAIAC data reveal more realistic Amazon forests inter-annual greenness dynamics than the standard MODIS data. Our results from the MAIAC data suggest that: (1) the droughts decreased the greenness (i.e., photosynthetic activity) of Amazon forests; (2) the Amazon wet season precipitation reduction induced by El Niño events could also lead to reduced photosynthetic activity of Amazon forests; and (3) in the subsequent year after the water stresses, the greenness of Amazon forests recovered from the preceding decreases. However, as previous research shows droughts cause Amazon forests to reduce investment in tissue maintenance and defense, it is not clear whether the photosynthesis of Amazon forests will continue to recover after future water stresses, because of the accumulated damages caused by the droughts.

  19. Amazon Forests Response to Droughts: A Perspective from the MAIAC Product

    NASA Technical Reports Server (NTRS)

    Bi, Jian; Myneni, Ranga; Lyapustin, Alexei; Wang, Yujie; Park, Taejin; Chi, Chen; Yan, Kai; Knyazikhin, Yuri

    2016-01-01

    Amazon forests experienced two severe droughts at the beginning of the 21st century: one in 2005 and the other in 2010. How Amazon forests responded to these droughts is critical for the future of the Earth's climate system. It is only possible to assess Amazon forests' response to the droughts in large areal extent through satellite remote sensing. Here, we used the Multi-Angle Implementation of Atmospheric Correction (MAIAC) Moderate Resolution Imaging Spectroradiometer (MODIS) vegetation index (VI) data to assess Amazon forests' response to droughts, and compared the results with those from the standard (Collection 5 and Collection 6) MODIS VI data. Overall, the MAIAC data reveal more realistic Amazon forests inter-annual greenness dynamics than the standard MODIS data. Our results from the MAIAC data suggest that: (1) the droughts decreased the greenness (i.e., photosynthetic activity) of Amazon forests; (2) the Amazon wet season precipitation reduction induced by El Niño events could also lead to reduced photosynthetic activity of Amazon forests; and (3) in the subsequent year after the water stresses, the greenness of Amazon forests recovered from the preceding decreases. However, as previous research shows droughts cause Amazon forests to reduce investment in tissue maintenance and defense, it is not clear whether the photosynthesis of Amazon forests will continue to recover after future water stresses, because of the accumulated damages caused by the droughts.

  20. Amazon Forests Response to Droughts: A Perspective from the MAIAC Product

    NASA Technical Reports Server (NTRS)

    Bi, Jian; Myneni, Ranga; Lyapustin, Alexei; Wang, Yujie; Park, Taejin; Chi, Chen; Yan, Kai; Knyazikhin, Yuri

    2016-01-01

    Amazon forests experienced two severe droughts at the beginning of the 21st century: one in 2005 and the other in 2010. How Amazon forests responded to these droughts is critical for the future of the Earth's climate system. It is only possible to assess Amazon forests' response to the droughts in large areal extent through satellite remote sensing. Here, we used the Multi-Angle Implementation of Atmospheric Correction (MAIAC) Moderate Resolution Imaging Spectroradiometer (MODIS) vegetation index (VI) data to assess Amazon forests' response to droughts, and compared the results with those from the standard (Collection 5 and Collection 6) MODIS VI data. Overall, the MAIAC data reveal more realistic Amazon forests inter-annual greenness dynamics than the standard MODIS data. Our results from the MAIAC data suggest that: (1) the droughts decreased the greenness (i.e., photosynthetic activity) of Amazon forests; (2) the Amazon wet season precipitation reduction induced by El Niño events could also lead to reduced photosynthetic activity of Amazon forests; and (3) in the subsequent year after the water stresses, the greenness of Amazon forests recovered from the preceding decreases. However, as previous research shows droughts cause Amazon forests to reduce investment in tissue maintenance and defense, it is not clear whether the photosynthesis of Amazon forests will continue to recover after future water stresses, because of the accumulated damages caused by the droughts.

  1. Recent Amazon climate as background for possible ongoing and future changes of Amazon humid forests

    NASA Astrophysics Data System (ADS)

    Gloor, M.; Barichivich, J.; Ziv, G.; Brienen, R.; Schöngart, J.; Peylin, P.; Ladvocat Cintra, B. Barcante; Feldpausch, T.; Phillips, O.; Baker, J.

    2015-09-01

    Recent analyses of Amazon runoff and gridded precipitation data suggest an intensification of the hydrological cycle over the past few decades in the following sense: wet season precipitation and peak river runoff (since ˜1980) as well as annual mean precipitation (since ˜1990) have increased, while dry season precipitation and minimum runoff have slightly decreased. There has also been an increase in the frequency of anomalously severe floods and droughts. To provide context for the special issue on Amazonia and its forests in a warming climate we expand here on these analyses. The contrasting recent changes in wet and dry season precipitation have continued and are generally consistent with changes in catchment-level peak and minimum river runoff as well as a positive trend of water vapor inflow into the basin. Consistent with the river records, the increased vapor inflow is concentrated to the wet season. Temperature has been rising by 0.7°C since 1980 with more pronounced warming during dry months. Suggestions for the cause of the observed changes of the hydrological cycle come from patterns in tropical sea surface temperatures (SSTs). Tropical and North Atlantic SSTs have increased rapidly and steadily since 1990, while Pacific SSTs have shifted during the 1990s from a positive Pacific Decadal Oscillation (PDO) phase with warm eastern Pacific temperatures to a negative phase with cold eastern Pacific temperatures. These SST conditions have been shown to be associated with an increase in precipitation over most of the Amazon except the south and southwest. If ongoing changes continue, we expect forests to continue to thrive in those regions where there is an increase in precipitation with the exception of floodplain forests. An increase in flood pulse height and duration could lead to increased mortality at higher levels of the floodplain and, over the long term, to a lateral shift of the zonally stratified floodplain forest communities. Negative effects on

  2. Viruses and bacteria in floodplain lakes along a major Amazon tributary respond to distance to the Amazon River.

    PubMed

    Almeida, Rafael M; Roland, Fábio; Cardoso, Simone J; Farjalla, Vinícius F; Bozelli, Reinaldo L; Barros, Nathan O

    2015-01-01

    In response to the massive volume of water along the Amazon River, the Amazon tributaries have their water backed up by 100s of kilometers upstream their mouth. This backwater effect is part of the complex hydrodynamics of Amazonian surface waters, which in turn drives the variation in concentrations of organic matter and nutrients, and also regulates planktonic communities such as viruses and bacteria. Viruses and bacteria are commonly tightly coupled to each other, and their ecological role in aquatic food webs has been increasingly recognized. Here, we surveyed viral and bacterial abundances (BAs) in 26 floodplain lakes along the Trombetas River, the largest clear-water tributary of the Amazon River's north margin. We correlated viral and BAs with temperature, pH, dissolved inorganic carbon, dissolved organic carbon (DOC), phosphorus, nitrogen, turbidity, water transparency, partial pressure of carbon dioxide (pCO2), phytoplankton abundance, and distance from the lake mouth until the confluence of the Trombetas with the Amazon River. We hypothesized that both bacterial and viral abundances (VAs) would change along a latitudinal gradient, as the backwater effect becomes more intense with increased proximity to the Amazon River; different flood duration and intensity among lakes and waters with contrasting sources would cause spatial variation. Our measurements were performed during the low water period, when floodplain lakes are in their most lake-like conditions. Viral and BAs, DOC, pCO2, and water transparency increased as distance to the Amazon River increased. Most viruses were bacteriophages, as viruses were strongly linked to bacteria, but not to phytoplankton. We suggest that BAs increase in response to DOC quantity and possibly quality, consequently leading to increased VAs. Our results highlight that hydrodynamics plays a key role in the regulation of planktonic viral and bacterial communities in Amazonian floodplain lakes.

  3. Viruses and bacteria in floodplain lakes along a major Amazon tributary respond to distance to the Amazon River

    PubMed Central

    Almeida, Rafael M.; Roland, Fábio; Cardoso, Simone J.; Farjalla, Vinícius F.; Bozelli, Reinaldo L.; Barros, Nathan O.

    2015-01-01

    In response to the massive volume of water along the Amazon River, the Amazon tributaries have their water backed up by 100s of kilometers upstream their mouth. This backwater effect is part of the complex hydrodynamics of Amazonian surface waters, which in turn drives the variation in concentrations of organic matter and nutrients, and also regulates planktonic communities such as viruses and bacteria. Viruses and bacteria are commonly tightly coupled to each other, and their ecological role in aquatic food webs has been increasingly recognized. Here, we surveyed viral and bacterial abundances (BAs) in 26 floodplain lakes along the Trombetas River, the largest clear-water tributary of the Amazon River’s north margin. We correlated viral and BAs with temperature, pH, dissolved inorganic carbon, dissolved organic carbon (DOC), phosphorus, nitrogen, turbidity, water transparency, partial pressure of carbon dioxide (pCO2), phytoplankton abundance, and distance from the lake mouth until the confluence of the Trombetas with the Amazon River. We hypothesized that both bacterial and viral abundances (VAs) would change along a latitudinal gradient, as the backwater effect becomes more intense with increased proximity to the Amazon River; different flood duration and intensity among lakes and waters with contrasting sources would cause spatial variation. Our measurements were performed during the low water period, when floodplain lakes are in their most lake-like conditions. Viral and BAs, DOC, pCO2, and water transparency increased as distance to the Amazon River increased. Most viruses were bacteriophages, as viruses were strongly linked to bacteria, but not to phytoplankton. We suggest that BAs increase in response to DOC quantity and possibly quality, consequently leading to increased VAs. Our results highlight that hydrodynamics plays a key role in the regulation of planktonic viral and bacterial communities in Amazonian floodplain lakes. PMID:25788895

  4. Anaerobic methane oxidation on the Amazon shelf

    SciTech Connect

    Blair, N.E.; Aller, R.C.

    1995-09-01

    Anaerobic methane oxidation on the Amazon shelf is strongly controlled by dynamic physical sedimentation processes. Rapidly accumulating, physically reworked deltaic sediments characteristic of much of the shelf typically support what appear to be low rates of steady state anaerobic methane oxidation at depths of 5-8 m below the sediment-water interface. Methane oxidation in these cases is responsible for < {approximately}10% of the {Sigma}CO{sub 2} inventory in the oxidation zone and is limited largely by the steady-state diffusive flux of methane into the overlying sulfate reduction zone. In contrast, a large area of the shelf has been extensively eroded, reexposing once deeply buried (>10 m) methane-charged sediment directly to seawater. In this nonsteady-state situation, methane is a major source of recently produced {Sigma}CO{sub 2} and an important reductant for sulfate. These observations suggest that authigenic sedimentary carbonates derived from anaerobic methane oxidation may sometimes reflect physically enhanced nonsteady-state exposure of methane to sulfate in otherwise biogeochemically unreactive deposits. The concentration profiles of CH{sub 4}, SO{sub 4}{sup =}, and {Sigma}CO{sub 2} in the eroded deposit were reproduced by a coupled reaction-transport model. This area of the shelf was reexposed to seawater approximately 5-10 years ago based on the model results and the assumption that the erosion of the deposit occurred as a single event that has now ceased. The necessary second order rate constant for anaerobic methane oxidation was {le}0.1 mM{sup -1} d{sup -1}.

  5. Particle growth kinetics over the Amazon rainforest

    NASA Astrophysics Data System (ADS)

    Pinterich, T.; Andreae, M. O.; Artaxo, P.; Kuang, C.; Longo, K.; Machado, L.; Manzi, A. O.; Martin, S. T.; Mei, F.; Pöhlker, C.; Pöhlker, M. L.; Poeschl, U.; Shilling, J. E.; Shiraiwa, M.; Tomlinson, J. M.; Zaveri, R. A.; Wang, J.

    2016-12-01

    Aerosol particles larger than 100 nm play a key role in global climate by acting as cloud condensation nuclei (CCN). Most of these particles, originated from new particle formation or directly emitted into the atmospheric, are initially too small to serve as CCN. These small particles grow to CCN size mainly through condensation of secondary species. In one extreme, the growth is dictated by kinetic condensation of very low-volatility compounds, favoring the growth of the smallest particles; in the other extreme, the process is driven by Raoult's law-based equilibrium partitioning of semi-volatile organic compound, favoring the growth of larger particles. These two mechanisms can lead to very different production rates of CCN. The growth of particles depends on a number of parameters, including the volatility of condensing species, particle phase, and diffusivity inside the particles, and this process is not well understood in part due to lack of ambient data. Here we examine atmospheric particle growth using high-resolution size distributions measured onboard the DOE G-1 aircraft during GoAmazon campaign, which took place from January 2014 to December 2015 near Manaus, Brazil, a city surrounded by natural forest for over 1000 km in every direction. City plumes are clearly identified by the strong enhancement of nucleation and Aitken mode particle concentrations over the clean background. As the plume traveled downwind, particle growth was observed, and is attributed to condensation of secondary species and coagulation (Fig.1). Observed aerosol growth is modeled using MOSAIC (Model for Simulating Aerosol Interactions and Chemistry), which dynamically partitions multiple compounds to all particle size bins by taking into account compound volatility, gas-phase diffusion, interfacial mass accommodation, particle-phase diffusion, and particle-phase reaction. The results from both wet and dry seasons will be discussed.

  6. Biomedical cloud computing with Amazon Web Services.

    PubMed

    Fusaro, Vincent A; Patil, Prasad; Gafni, Erik; Wall, Dennis P; Tonellato, Peter J

    2011-08-01

    In this overview to biomedical computing in the cloud, we discussed two primary ways to use the cloud (a single instance or cluster), provided a detailed example using NGS mapping, and highlighted the associated costs. While many users new to the cloud may assume that entry is as straightforward as uploading an application and selecting an instance type and storage options, we illustrated that there is substantial up-front effort required before an application can make full use of the cloud's vast resources. Our intention was to provide a set of best practices and to illustrate how those apply to a typical application pipeline for biomedical informatics, but also general enough for extrapolation to other types of computational problems. Our mapping example was intended to illustrate how to develop a scalable project and not to compare and contrast alignment algorithms for read mapping and genome assembly. Indeed, with a newer aligner such as Bowtie, it is possible to map the entire African genome using one m2.2xlarge instance in 48 hours for a total cost of approximately $48 in computation time. In our example, we were not concerned with data transfer rates, which are heavily influenced by the amount of available bandwidth, connection latency, and network availability. When transferring large amounts of data to the cloud, bandwidth limitations can be a major bottleneck, and in some cases it is more efficient to simply mail a storage device containing the data to AWS (http://aws.amazon.com/importexport/). More information about cloud computing, detailed cost analysis, and security can be found in references.

  7. Dimethyl sulfide in the Amazon rain forest: DMS in the Amazon

    DOE PAGES

    Jardine, K.; Yañez-Serrano, A. M.; Williams, J.; ...

    2015-01-08

    Surface-to-atmosphere emissions of dimethyl sulfide (DMS) may impact global climate 44 through the formation of gaseous sulfuric acid, which can yield secondary sulfate 45 aerosols and contribute to new particle formation. While oceans are generally 46 considered the dominant source of DMS, a shortage of ecosystem observations prevents 47 an accurate analysis of terrestrial DMS sources. Using mass spectrometry, we quantified 48 ambient DMS mixing ratios within and above a primary rainforest ecosystem in the 49 central Amazon Basin in real-time (2010-2011) and at high vertical resolution (2013-50 2014). Elevated but highly variable DMS mixing ratios were observed within themore » 51 canopy, showing clear evidence of a net ecosystem source to the atmosphere during 52 both day and night in both the dry and wet seasons. Periods of high DMS mixing ratios 53 lasting up to 8 hours (up to 160 ppt) often occurred within the canopy and near the 54 surface during many evenings and nights. Daytime gradients showed mixing ratios (up 55 to 80 ppt) peaking near the top of the canopy as well as near the ground following a rain 56 event. The spatial and temporal distribution of DMS suggests that ambient levels and 57 their potential climatic impacts are dominated by local soil and plant emissions. A soil 58 source was confirmed by measurements of DMS emission fluxes from Amazon soils as 59 a function of temperature and soil moisture. Furthermore, light and temperature 60 dependent DMS emissions were measured from seven tropical tree species. Our study 61 has important implications for understanding terrestrial DMS sources and their role in 62 coupled land-atmosphere climate feedbacks. 63« less

  8. Highways and outposts: economic development and health threats in the central Brazilian Amazon region

    PubMed Central

    2010-01-01

    Background Economic development is often evoked as a driving force that has the capacity to improve the social and health conditions of remote areas. However, development projects produce uneven impacts on local communities, according to their different positions within society. This study examines the spatial distribution of three major health threats in the Brazilian Amazon region that may undergo changes through highway construction. Homicide mortality, AIDS incidence and malaria prevalence rates were calculated for 70 municipalities located within the areas of influence of the Cuiabá-Santarém highway (BR-163), i.e. in the western part of the state of Pará state and the northern part of Mato Grosso. Results The municipalities were characterized using social and economic indicators such as gross domestic product (GDP), urban and indigenous populations, and recent migration. The municipalities' connections to the region's main transportation routes (BR-163 and Trans-Amazonian highways, along with the Amazon and Tapajós rivers) were identified by tagging the municipalities that have boundaries crossing these routes, using GIS overlay operations. Multiple regression was used to identify the major driving forces and constraints relating to the distribution of health threats. The main explanatory variables for higher malaria prevalence were: proximity to the Trans-Amazonian highway, high proportion of indigenous population and low proportion of migrants. High homicide rates were associated with high proportions of migrants, while connection to the Amazon River played a protective role. AIDS incidence was higher in municipalities with recent increases in GDP and high proportions of urban population. Conclusions Highways induce social and environmental changes and play different roles in spreading and maintaining diseases and health threats. The most remote areas are still protected against violence but are vulnerable to malaria. Rapid economic and demographic

  9. Highways and outposts: economic development and health threats in the central Brazilian Amazon region.

    PubMed

    Barcellos, Christovam; Feitosa, Patrícia; Damacena, Giseli N; Andreazzi, Marco A

    2010-06-17

    Economic development is often evoked as a driving force that has the capacity to improve the social and health conditions of remote areas. However, development projects produce uneven impacts on local communities, according to their different positions within society. This study examines the spatial distribution of three major health threats in the Brazilian Amazon region that may undergo changes through highway construction. Homicide mortality, AIDS incidence and malaria prevalence rates were calculated for 70 municipalities located within the areas of influence of the Cuiabá-Santarém highway (BR-163), i.e. in the western part of the state of Pará state and the northern part of Mato Grosso. The municipalities were characterized using social and economic indicators such as gross domestic product (GDP), urban and indigenous populations, and recent migration. The municipalities' connections to the region's main transportation routes (BR-163 and Trans-Amazonian highways, along with the Amazon and Tapajós rivers) were identified by tagging the municipalities that have boundaries crossing these routes, using GIS overlay operations. Multiple regression was used to identify the major driving forces and constraints relating to the distribution of health threats. The main explanatory variables for higher malaria prevalence were: proximity to the Trans-Amazonian highway, high proportion of indigenous population and low proportion of migrants. High homicide rates were associated with high proportions of migrants, while connection to the Amazon River played a protective role. AIDS incidence was higher in municipalities with recent increases in GDP and high proportions of urban population. Highways induce social and environmental changes and play different roles in spreading and maintaining diseases and health threats. The most remote areas are still protected against violence but are vulnerable to malaria. Rapid economic and demographic growth increases the risk of AIDS

  10. The potential impact of new Andean dams on Amazon fluvial ecosystems

    PubMed Central

    Melack, John M.; Dunne, Thomas; Barthem, Ronaldo B.; Goulding, Michael; Paiva, Rodrigo C. D.; Sorribas, Mino V.; Silva, Urbano L.; Weisser, Sabine

    2017-01-01

    Increased energy demand has led to plans for building many new dams in the western Amazon, mostly in the Andean region. Historical data and mechanistic scenarios are used to examine potential impacts above and below six of the largest dams planned for the region, including reductions in downstream sediment and nutrient supplies, changes in downstream flood pulse, changes in upstream and downstream fish yields, reservoir siltation, greenhouse gas emissions and mercury contamination. Together, these six dams are predicted to reduce the supply of sediments, phosphorus and nitrogen from the Andean region by 69, 67 and 57% and to the entire Amazon basin by 64, 51 and 23%, respectively. These large reductions in sediment and nutrient supplies will have major impacts on channel geomorphology, floodplain fertility and aquatic productivity. These effects will be greatest near the dams and extend to the lowland floodplains. Attenuation of the downstream flood pulse is expected to alter the survival, phenology and growth of floodplain vegetation and reduce fish yields below the dams. Reservoir filling times due to siltation are predicted to vary from 106–6240 years, affecting the storage performance of some dams. Total CO2 equivalent carbon emission from 4 Andean dams was expected to average 10 Tg y-1 during the first 30 years of operation, resulting in a MegaWatt weighted Carbon Emission Factor of 0.139 tons C MWhr-1. Mercury contamination in fish and local human populations is expected to increase both above and below the dams creating significant health risks. Reservoir fish yields will compensate some downstream losses, but increased mercury contamination could offset these benefits. PMID:28832638

  11. Aquatic Biodiversity in the Amazon: Habitat Specialization and Geographic Isolation Promote Species Richness.

    PubMed

    Albert, James S; Carvalho, Tiago P; Petry, Paulo; Holder, Meghan A; Maxime, Emmanuel L; Espino, Jessica; Corahua, Isabel; Quispe, Roberto; Rengifo, Blanca; Ortega, Hernan; Reis, Roberto E

    2011-04-29

    The Neotropical freshwater ichthyofauna has among the highest species richness and density of any vertebrate fauna on Earth, with more than 5,600 species compressed into less than 12% of the world's land surface area, and less than 0.002% of the world's total liquid water supply. How have so many species come to co-exist in such a small amount of total habitat space? Here we report results of an aquatic faunal survey of the Fitzcarrald region in southeastern Peru, an area of low-elevation upland (200-500 m above sea level) rainforest in the Western Amazon, that straddles the headwaters of four large Amazonian tributaries; the Juruá (Yurúa), Ucayali, Purús, and Madre de Dios rivers. All measures of fish species diversity in this region are high; there is high alpha diversity with many species coexisting in the same locality, high beta diversity with high turnover between habitats, and high gamma diversity with high turnover between adjacent tributary basins. Current data show little species endemism, and no known examples of sympatric sister species, within the Fitzcarrald region, suggesting a lack of localized or recent adaptive divergences. These results support the hypothesis that the fish species of the Fitzcarrald region are relatively ancient, predating the Late Miocene-Pliocene (c. 4 Ma) uplift that isolated its several headwater basins. The results also suggest that habitat specialization (phylogenetic niche conservatism) and geographic isolation (dispersal limitation) have contributed to the maintenance of high species richness in this region of the Amazon Basin.

  12. TOLLIP gene variant is associated with Plasmodium vivax malaria in the Brazilian Amazon.

    PubMed

    Brasil, Larissa W; Barbosa, Laila R A; de Araujo, Felipe J; da Costa, Allyson G; da Silva, Luan D O; Pinheiro, Suzana K; de Almeida, Anne C G; Kuhn, Andrea; Vitor-Silva, Sheila; de Melo, Gisely C; Monteiro, Wuelton M; de Lacerda, Marcus V G; Ramasawmy, Rajendranath

    2017-03-13

    Toll-interacting protein is a negative regulator in the TLR signaling cascade, particularly by impeding the TLR2 and, TLR4 pathway. Recently, TOLLIP was shown to regulate human TLR signaling pathways. Two common TOLLIP polymorphisms (rs5743899 and rs3750920) were reported to be influencing IL-6, TNF and IL-10 expression. In this study, TOLLIP variants were investigated to their relation to Plasmodium vivax malaria in the Brazilian Amazon. This cohort study was performed in the municipalities of Careiro and, Manaus, in Western Brazilian Amazon. A total of 319 patients with P. vivax malaria and, 263 healthy controls with no previous history of malaria were included in the study. Genomic DNA was extracted from blood collected on filter paper, using the QIAamp(®) DNA Mini Kit, according to the manufacturer's suggested protocol. The rs5743899 and rs3750920 polymorphisms of the TOLLIP gene were typed by PCR-RFLP. Homozygous individuals for the rs3750920 T allele gene had twice the risk of developing malaria when compared to individuals homozygous for the C allele (OR 2.0 [95% CI 1.23-3.07]; p = 0.004). In the dominant model, carriers the C allele indicates protection to malaria, carriers of the C allele were compared to individuals with the T allele, and the difference is highly significant (OR 0.52 [95% CI 0.37-0.76]; p = 0.0006). The linkage disequilibrium between the two polymorphisms was weak (r(2) = 0.037; D' = 0.27). These findings suggest that genes involved in the TLRs-pathway may be involved in malaria susceptibility. The association of the TOLLIP rs3750920 T allele with susceptibility to malaria further provides evidence that genetic variations in immune response genes may predispose individuals to malaria.

  13. Do the Amazon and Orinoco freshwater plumes really matter for hurricane-induced ocean surface cooling?

    NASA Astrophysics Data System (ADS)

    Hernandez, O.; Jouanno, J.; Durand, F.

    2016-04-01

    Recent studies suggested that the plume of low-saline waters formed by the discharge of the Amazon and Orinoco rivers could favor Atlantic Tropical Cyclone (TC) intensification by weakening the cool wake and its impact on the hurricane growth potential. The main objective of this study is to quantify the effects of the Amazon-Orinoco river discharges in modulating the amplitude of TC-induced cooling in the western Tropical Atlantic. Our approach is based on the analysis of TC cool wake statistics obtained from an ocean regional numerical simulation with ¼º horizontal resolution over the 1998-2012 period, forced with realistic TC winds. In both model and observations, the amplitude of TC-induced cooling in plume waters (0.3-0.4ºC) is reduced significantly by around 50-60% compared to the cooling in open ocean waters out of the plume (0.6-0.7ºC). A twin simulation without river runoff shows that TC-induced cooling over the plume region (defined from the reference experiment) is almost unchanged (˜0.03ºC) despite strong differences in salinity stratification and the absence of barrier layers. This argues for a weaker than thought cooling inhibition effect of salinity stratification and barrier layers in this region. Indeed, results suggest that haline stratification and barrier layers caused by the river runoff may explain only ˜10% of the cooling difference between plume waters and open ocean waters. Instead, the analysis of the background oceanic conditions suggests that the regional distribution of the thermal stratification is the main factor controlling the amplitude of cooling in the plume region.

  14. Condition and fate of logged forests in the Brazilian Amazon.

    Treesearch

    Gregory P. Asner; Eben N. Broadbent; Paulo J. C. Oliveira; Michael Keller; David E. Knapp; Jose N. M. Silva

    2006-01-01

    The long-term viability of a forest industry in the Amazon region of Brazil depends on the maintenance of adequate timber volume and growth in healthy forests. Using extensive high-resolution satellite analyses, we studied the forest damage caused by recent logging operations and the likelihood that logged forests would be cleared within 4 years after timber harvest....

  15. Deforestation in the Brazilian Amazon: A Classroom Project.

    ERIC Educational Resources Information Center

    Nijman, Jan; Hill, A. David

    1991-01-01

    Presents a classroom project dealing with tropical deforestation in the Brazilian Amazon. Addresses environmental consequences and economic, social, and political causes. Involves both lectures and individual research and reports by student groups on deforestation causes. Includes a note-playing activity in which students make recommendations for…

  16. Organic carbon-14 in the Amazon River system

    SciTech Connect

    Hedges, J.I.; Ertel, J.R.; Quay, P.D.; Grootes, P.M.; Richey, J.E.; Devol, A.H.; Farwell, G.W.; Schmidt, F.W.; Salati, E.

    1986-03-07

    Coarse and fine suspended particulate organic materials and dissolved humic and fulvic acids transported by the Amazon River all contain bomb-produced carbon-14, indicating relatively rapid turnover of the parent carbon pools. However, the carbon-14 contents of these coexisting carbon forms are measurably different and may reflect varying degrees of retention by soils in the drainage basin. 20 references, 1 table.

  17. Nutrient and phytoplankton biomass in the Amazon River shelf waters.

    PubMed

    Santos, Maria L S; Muniz, Kátia; Barros-Neto, Benício; Araujo, Moacyr

    2008-12-01

    The Amazon River estuary is notable at the Amazon Continental Shelf, where the presence of the large amount of water originating from the Amazon during the river's falling discharge period was made evident by the low salinity values and high nutrient levels. Even so, the presence of oceanic waters in the shelf area was significant. Dissolved organic nitrogen was the predominant species of the nitrogen cycle phases, followed by total particulate nitrogen, nitrate, ammonium and nitrite. The chlorophyll a data in the eutrophic area indicated that there is sufficient nitrogen in the area to withstand productivity, though dissolved inorganic nitrogen removal processes are faster than regeneration or mineralization. The anomalous amounts of inorganic dissolved nitrogen showed more removal than addition. The simulations with the bidimensional MAAC-2D model confirmed that high nutrient waters are displaced northwest-ward (two cores at 2.5 degrees N-50 degrees W and 4 degrees N-51 degrees W) by the stronger NBC during falling river discharge. During high river flow period these nutrient-rich lenses are distributed around 0.5 degrees N-48.5 degrees W as well as along the shallow Amazonian shelf (20 m-50 m depth, 1 degree N-3.5 degrees N), as a result of the spreading of Amazon freshwater outflow.

  18. Spatial pattern of standing timber value across the Brazilian Amazon.

    PubMed

    Ahmed, Sadia E; Ewers, Robert M

    2012-01-01

    The Amazon is a globally important system, providing a host of ecosystem services from climate regulation to food sources. It is also home to a quarter of all global diversity. Large swathes of forest are removed each year, and many models have attempted to predict the spatial patterns of this forest loss. The spatial patterns of deforestation are determined largely by the patterns of roads that open access to frontier areas and expansion of the road network in the Amazon is largely determined by profit seeking logging activities. Here we present predictions for the spatial distribution of standing value of timber across the Amazon. We show that the patterns of timber value reflect large-scale ecological gradients, determining the spatial distribution of functional traits of trees which are, in turn, correlated with timber values. We expect that understanding the spatial patterns of timber value across the Amazon will aid predictions of logging movements and thus predictions of potential future road developments. These predictions in turn will be of great use in estimating the spatial patterns of deforestation in this globally important biome.

  19. Backwater effects in the Amazon River basin of Brazil

    USGS Publications Warehouse

    Meade, R.H.; Rayol, J.M.; Da Conceicao, S.C.; Natividade, J.R.G.

    1991-01-01

    The Amazon River mainstem of Brazil is so regulated by differences in the timing of tributary inputs and by seasonal storage of water on floodplains that maximum discharges exceed minimum discharges by a factor of only 3. Large tributaries that drain the southern Amazon River basin reach their peak discharges two months earlier than does the mainstem. The resulting backwater in the lowermost 800 km of two large southern tributaries, the Madeira and Puru??s rivers, causes falling river stages to be as much as 2-3 m higher than rising stages at any given discharge. Large tributaries that drain the northernmost Amazon River basin reach their annual minimum discharges three to four months later than does the mainstem. In the lowermost 300-400 km of the Negro River, the largest northern tributary and the fifth largest river in the world, the lowest stages of the year correspond to those of the Amazon River mainstem rather than to those in the upstream reaches of the Negro River. ?? 1991 Springer-Verlag New York Inc.

  20. Andes hantavirus variant in rodents, southern Amazon Basin, Peru.

    PubMed

    Razuri, Hugo; Tokarz, Rafal; Ghersi, Bruno M; Salmon-Mulanovich, Gabriela; Guezala, M Claudia; Albujar, Christian; Mendoza, A Patricia; Tinoco, Yeny O; Cruz, Christopher; Silva, Maria; Vasquez, Alicia; Pacheco, Víctor; Ströher, Ute; Guerrero, Lisa Wiggleton; Cannon, Deborah; Nichol, Stuart T; Hirschberg, David L; Lipkin, W Ian; Bausch, Daniel G; Montgomery, Joel M

    2014-02-01

    We investigated hantaviruses in rodents in the southern Amazon Basin of Peru and identified an Andes virus variant from Neacomys spinosus mice. This finding extends the known range of this virus in South America and the range of recognized hantaviruses in Peru. Further studies of the epizoology of hantaviruses in this region are warranted.

  1. Extreme Drought Events Revealed in Amazon Tree Ring Records

    NASA Astrophysics Data System (ADS)

    Jenkins, H. S.; Baker, P. A.; Guilderson, T. P.

    2010-12-01

    The Amazon basin is a center of deep atmospheric convection and thus acts as a major engine for global hydrologic circulation. Yet despite its significance, a full understanding of Amazon rainfall variability remains elusive due to a poor historical record of climate. Temperate tree rings have been used extensively to reconstruct climate over the last thousand years, however less attention has been given to the application of dendrochronology in tropical regions, in large part due to a lower frequency of tree species known to produce annual rings. Here we present a tree ring record of drought extremes from the Madre de Dios region of southeastern Peru over the last 190 years. We confirm that tree ring growth in species Cedrela odorata is annual and show it to be well correlated with wet season precipitation. This correlation is used to identify extreme dry (and wet) events that have occurred in the past. We focus on drought events identified in the record as drought frequency is expected to increase over the Amazon in a warming climate. The Cedrela chronology records historic Amazon droughts of the 20th century previously identified in the literature and extends the record of drought for this region to the year 1816. Our analysis shows that there has been an increase in the frequency of extreme drought (mean recurrence interval = 5-6 years) since the turn of the 20th century and both Atlantic and Pacific sea surface temperature (SST) forcing mechanisms are implicated.

  2. Serologic Evidence of Scrub Typhus in the Peruvian Amazon

    PubMed Central

    Jiang, Ju; Morrison, Amy C.; Castillo, Roger; Leguia, Mariana; Loyola, Steev; Ampuero, Julia S.; Cespedes, Manuel; Halsey, Eric S.; Bausch, Daniel G.; Richards, Allen L.

    2017-01-01

    Using a large, passive, febrile surveillance program in Iquitos, Peru, we retrospectively tested human blood specimens for scrub typhus group orientiae by ELISA, immunofluorescence assay, and PCR. Of 1,124 participants, 60 (5.3%) were seropositive, and 1 showed evidence of recent active infection. Our serologic data indicate that scrub typhus is present in the Peruvian Amazon. PMID:28726619

  3. Long-term decline of the Amazon carbon sink.

    PubMed

    Brienen, R J W; Phillips, O L; Feldpausch, T R; Gloor, E; Baker, T R; Lloyd, J; Lopez-Gonzalez, G; Monteagudo-Mendoza, A; Malhi, Y; Lewis, S L; Vásquez Martinez, R; Alexiades, M; Álvarez Dávila, E; Alvarez-Loayza, P; Andrade, A; Aragão, L E O C; Araujo-Murakami, A; Arets, E J M M; Arroyo, L; Aymard C, G A; Bánki, O S; Baraloto, C; Barroso, J; Bonal, D; Boot, R G A; Camargo, J L C; Castilho, C V; Chama, V; Chao, K J; Chave, J; Comiskey, J A; Cornejo Valverde, F; da Costa, L; de Oliveira, E A; Di Fiore, A; Erwin, T L; Fauset, S; Forsthofer, M; Galbraith, D R; Grahame, E S; Groot, N; Hérault, B; Higuchi, N; Honorio Coronado, E N; Keeling, H; Killeen, T J; Laurance, W F; Laurance, S; Licona, J; Magnussen, W E; Marimon, B S; Marimon-Junior, B H; Mendoza, C; Neill, D A; Nogueira, E M; Núñez, P; Pallqui Camacho, N C; Parada, A; Pardo-Molina, G; Peacock, J; Peña-Claros, M; Pickavance, G C; Pitman, N C A; Poorter, L; Prieto, A; Quesada, C A; Ramírez, F; Ramírez-Angulo, H; Restrepo, Z; Roopsind, A; Rudas, A; Salomão, R P; Schwarz, M; Silva, N; Silva-Espejo, J E; Silveira, M; Stropp, J; Talbot, J; ter Steege, H; Teran-Aguilar, J; Terborgh, J; Thomas-Caesar, R; Toledo, M; Torello-Raventos, M; Umetsu, R K; van der Heijden, G M F; van der Hout, P; Guimarães Vieira, I C; Vieira, S A; Vilanova, E; Vos, V A; Zagt, R J

    2015-03-19

    Atmospheric carbon dioxide records indicate that the land surface has acted as a strong global carbon sink over recent decades, with a substantial fraction of this sink probably located in the tropics, particularly in the Amazon. Nevertheless, it is unclear how the terrestrial carbon sink will evolve as climate and atmospheric composition continue to change. Here we analyse the historical evolution of the biomass dynamics of the Amazon rainforest over three decades using a distributed network of 321 plots. While this analysis confirms that Amazon forests have acted as a long-term net biomass sink, we find a long-term decreasing trend of carbon accumulation. Rates of net increase in above-ground biomass declined by one-third during the past decade compared to the 1990s. This is a consequence of growth rate increases levelling off recently, while biomass mortality persistently increased throughout, leading to a shortening of carbon residence times. Potential drivers for the mortality increase include greater climate variability, and feedbacks of faster growth on mortality, resulting in shortened tree longevity. The observed decline of the Amazon sink diverges markedly from the recent increase in terrestrial carbon uptake at the global scale, and is contrary to expectations based on models.

  4. Kindling: The Amazon e-Reader as an Educational Tool

    ERIC Educational Resources Information Center

    Brezicki, Colin

    2011-01-01

    The revolutionary electronic reading device, Amazon's Kindle, is already obsolete. Such is the breakneck speed of technology that the machine touted to spell the death of printed books is already heading for the scrap heap, replaced by e-readers like the iPad that access the Internet, make phone calls, download movies, and connect users with all…

  5. Social and health dimensions of climate change in the Amazon.

    PubMed

    Brondízio, Eduardo S; de Lima, Ana C B; Schramski, Sam; Adams, Cristina

    2016-07-01

    The Amazon region has been part of climate change debates for decades, yet attention to its social and health dimensions has been limited. This paper assesses literature on the social and health dimensions of climate change in the Amazon. A conceptual framework underscores multiple stresses and exposures created by interactions between climate change and local social-environmental conditions. Using the Thomson-Reuter Web of Science, this study bibliometrically assessed the overall literature on climate change in the Amazon, including Physical Sciences, Social Sciences, Anthropology, Environmental Science/Ecology and Public, Environmental/Occupational Health. From this assessment, a relevant sub-sample was selected and complemented with literature from the Brazilian database SciELO. This sample discusses three dimensions of climate change impacts in the region: livelihood changes, vector-borne diseases and microbial proliferation, and respiratory diseases. This analysis elucidates imbalance and disconnect between ecological, physical and social and health dimensions of climate change and between continental and regional climate analysis, and sub-regional and local levels. Work on the social and health implications of climate change in the Amazon falls significantly behind other research areas, limiting reliable information for analytical models and for Amazonian policy-makers and society at large. Collaborative research is called for.

  6. The riverine silicon isotope composition of the Amazon Basin

    NASA Astrophysics Data System (ADS)

    Hughes, H. J.; Sondag, F.; Santos, R. V.; André, L.; Cardinal, D.

    2013-11-01

    We present here the first large-scale study of riverine silicon isotope signatures in the Amazon Basin. The Amazon and five of its main tributaries were studied at different seasons of the annual hydrological cycle. The δ30Si signature of the dissolved silicon (DSi) exported to the estuary (weighted for DSi flux) for the period considered is estimated at +0.92‰. A river cross-section shows the homogeneity of the Amazon River regarding DSi concentration and isotope ratio. The biogenic silica (BSi) concentration measured in surface water from all rivers is generally small compared to the DSi reservoir but large variations exist between rivers. Very low isotope signatures were measured in the upper Rio Negro (δ30Si = +0.05 ± 0.06‰), which we explain both by an equilibrium between clay formation and dissolution and by gibbsite formation. The Si isotope fractionation in the Andean tributaries and the Amazon main stem can be explained by clay formation and follow either a Rayleigh or a batch equilibrium fractionation model. Our results also suggest that the formation of 2:1 clays induces a fractionation factor similar to that of kaolinite formation.

  7. Condition and fate of logged forests in the Brazilian Amazon.

    PubMed

    Asner, Gregory P; Broadbent, Eben N; Oliveira, Paulo J C; Keller, Michael; Knapp, David E; Silva, José N M

    2006-08-22

    The long-term viability of a forest industry in the Amazon region of Brazil depends on the maintenance of adequate timber volume and growth in healthy forests. Using extensive high-resolution satellite analyses, we studied the forest damage caused by recent logging operations and the likelihood that logged forests would be cleared within 4 years after timber harvest. Across 2,030,637 km2 of the Brazilian Amazon from 1999 to 2004, at least 76% of all harvest practices resulted in high levels of canopy damage sufficient to leave forests susceptible to drought and fire. We found that 16+/-1% of selectively logged areas were deforested within 1 year of logging, with a subsequent annual deforestation rate of 5.4% for 4 years after timber harvests. Nearly all logging occurred within 25 km of main roads, and within that area, the probability of deforestation for a logged forest was up to four times greater than for unlogged forests. In combination, our results show that logging in the Brazilian Amazon is dominated by highly damaging operations, often followed rapidly by deforestation decades before forests can recover sufficiently to produce timber for a second harvest. Under the management regimes in effect at the time of our study in the Brazilian Amazon, selective logging would not be sustained.

  8. Kindling: The Amazon e-Reader as an Educational Tool

    ERIC Educational Resources Information Center

    Brezicki, Colin

    2011-01-01

    The revolutionary electronic reading device, Amazon's Kindle, is already obsolete. Such is the breakneck speed of technology that the machine touted to spell the death of printed books is already heading for the scrap heap, replaced by e-readers like the iPad that access the Internet, make phone calls, download movies, and connect users with all…

  9. Deforestation in the Brazilian Amazon: A Classroom Project.

    ERIC Educational Resources Information Center

    Nijman, Jan; Hill, A. David

    1991-01-01

    Presents a classroom project dealing with tropical deforestation in the Brazilian Amazon. Addresses environmental consequences and economic, social, and political causes. Involves both lectures and individual research and reports by student groups on deforestation causes. Includes a note-playing activity in which students make recommendations for…

  10. Andes Hantavirus Variant in Rodents, Southern Amazon Basin, Peru

    PubMed Central

    Tokarz, Rafal; Ghersi, Bruno M.; Salmon-Mulanovich, Gabriela; Guezala, M. Claudia; Albujar, Christian; Mendoza, A. Patricia; Tinoco, Yeny O.; Cruz, Christopher; Silva, Maria; Vasquez, Alicia; Pacheco, Víctor; Ströher, Ute; Guerrero, Lisa Wiggleton; Cannon, Deborah; Nichol, Stuart T.; Hirschberg, David L.; Lipkin, W. Ian; Bausch, Daniel G.; Montgomery, Joel M.

    2014-01-01

    We investigated hantaviruses in rodents in the southern Amazon Basin of Peru and identified an Andes virus variant from Neacomys spinosus mice. This finding extends the known range of this virus in South America and the range of recognized hantaviruses in Peru. Further studies of the epizoology of hantaviruses in this region are warranted. PMID:24447689

  11. Neogene origins and implied warmth tolerance of Amazon tree species.

    PubMed

    Dick, Christopher W; Lewis, Simon L; Maslin, Mark; Bermingham, Eldredge

    2012-01-01

    Tropical rain forest has been a persistent feature in South America for at least 55 million years. The future of the contemporary Amazon forest is uncertain, however, as the region is entering conditions with no past analogue, combining rapidly increasing air temperatures, high atmospheric carbon dioxide concentrations, possible extreme droughts, and extensive removal and modification by humans. Given the long-term Cenozoic cooling trend, it is unknown whether Amazon forests can tolerate air temperature increases, with suggestions that lowland forests lack warm-adapted taxa, leading to inevitable species losses. In response to this uncertainty, we posit a simple hypothesis: the older the age of a species prior to the Pleistocene, the warmer the climate it has previously survived, with Pliocene (2.6-5 Ma) and late-Miocene (8-10 Ma) air temperature across Amazonia being similar to 2100 temperature projections under low and high carbon emission scenarios, respectively. Using comparative phylogeographic analyses, we show that 9 of 12 widespread Amazon tree species have Pliocene or earlier lineages (>2.6 Ma), with seven dating from the Miocene (>5.6 Ma) and three >8 Ma. The remarkably old age of these species suggest that Amazon forests passed through warmth similar to 2100 levels and that, in the absence of other major environmental changes, near-term high temperature-induced mass species extinction is unlikely.

  12. Mayaro virus infection, Amazon Basin region, Peru, 2010-2013.

    PubMed

    Halsey, Eric S; Siles, Crystyan; Guevara, Carolina; Vilcarromero, Stalin; Jhonston, Erik J; Ramal, Cesar; Aguilar, Patricia V; Ampuero, Julia S

    2013-11-01

    During 2010-2013, we recruited 16 persons with confirmed Mayaro virus infection in the Peruvian Amazon to prospectively follow clinical symptoms and serologic response over a 12-month period. Mayaro virus infection caused long-term arthralgia in more than half, similar to reports of other arthritogenic alphaviruses.

  13. Mouth of the Amazon River as seen from STS-58

    NASA Technical Reports Server (NTRS)

    1993-01-01

    A near-nadir view of the mouth of the Amazon River, that shows all signs of being a relatively healthy system, breathing and exhaling. The well-developed cumulus field over the forested areas on both the north and south sides of the river (the view is slightly to the west) shows that good evapotranspiration is underway.

  14. Mimivirus Circulation among Wild and Domestic Mammals, Amazon Region, Brazil

    PubMed Central

    Dornas, Fábio P.; Rodrigues, Felipe P.; Boratto, Paulo V.M.; Silva, Lorena C.F.; Ferreira, Paulo C.P.; Bonjardim, Cláudio A.; Trindade, Giliane S.; Kroon, Erna G.; La Scola, Bernard

    2014-01-01

    To investigate circulation of mimiviruses in the Amazon Region of Brazil, we surveyed 513 serum samples from domestic and wild mammals. Neutralizing antibodies were detected in 15 sample pools, and mimivirus DNA was detected in 9 pools of serum from capuchin monkeys and in 16 pools of serum from cattle. PMID:24564967

  15. Neogene origins and implied warmth tolerance of Amazon tree species

    PubMed Central

    Dick, Christopher W; Lewis, Simon L; Maslin, Mark; Bermingham, Eldredge

    2013-01-01

    Tropical rain forest has been a persistent feature in South America for at least 55 million years. The future of the contemporary Amazon forest is uncertain, however, as the region is entering conditions with no past analogue, combining rapidly increasing air temperatures, high atmospheric carbon dioxide concentrations, possible extreme droughts, and extensive removal and modification by humans. Given the long-term Cenozoic cooling trend, it is unknown whether Amazon forests can tolerate air temperature increases, with suggestions that lowland forests lack warm-adapted taxa, leading to inevitable species losses. In response to this uncertainty, we posit a simple hypothesis: the older the age of a species prior to the Pleistocene, the warmer the climate it has previously survived, with Pliocene (2.6–5 Ma) and late-Miocene (8–10 Ma) air temperature across Amazonia being similar to 2100 temperature projections under low and high carbon emission scenarios, respectively. Using comparative phylogeographic analyses, we show that 9 of 12 widespread Amazon tree species have Pliocene or earlier lineages (>2.6 Ma), with seven dating from the Miocene (>5.6 Ma) and three >8 Ma. The remarkably old age of these species suggest that Amazon forests passed through warmth similar to 2100 levels and that, in the absence of other major environmental changes, near-term high temperature-induced mass species extinction is unlikely. PMID:23404439

  16. GT-9A - EARTH SKY - BRAZIL - MOUTH OF AMAZON

    NASA Image and Video Library

    1966-06-04

    S66-38191 (4 June 1966) --- The mouth of the Amazon River on the northern coast of Brazil, looking southwest, as seen from the Gemini-9A spacecraft during its 18th revolution of Earth. The image was taken with a 70mm Hasselblad camera, using Eastman Kodak, Ektachrome MS (S.O. 217) color film. Photo credit: NASA

  17. Selenium and aflatoxin levels in raw Brazil nuts from the Amazon basin.

    PubMed

    Pacheco, Ariane M; Scussel, Vildes M

    2007-12-26

    Whereas selenium (Se) is an important antioxidant in human metabolism to prevent cancer, aflatoxins are highly carcinogenic. Brazil nuts from Eastern and Western Amazon regions were evaluated to find any relationship between Se and aflatoxins levels. A total of 80 (in-shell and shelled) nuts samples were collected directly from different forest sites and analyzed for Se by atomic emission spectrometry and aflatoxins by liquid chromatography tandem mass spectrometry. The limit of quantitation (LOQ) for Se was 2.0 mg/kg, and LOQ for total aflatoxins was 0.390 microg/kg. Nut Se levels from the Eastern region were higher than the Western, in addition to the aflatoxins. The moisture content (mc) and water activity (aw) of the raw nuts from the two regions did not present a significant difference, for either in-shell or shelled. The mc was 24.5% (minimum of 20.1% and maximum of 30.4%) and 22.1% (minimum of 14.6% and maximum of 28.9%) and a w of 0.85 for both regions. Further studies need to be carried out to discover the role of Se on fungi growth stress and aflatoxin production mechanisms.

  18. Geochemistry of Amazon Basin supported by the ADCP measurements

    NASA Astrophysics Data System (ADS)

    Paca, Victor; Moreira, Daniel; Monteiro, Achiles; Roig, Henrique

    2014-05-01

    The Amazon River is the largest river in the world in volume of water. The basin has 6.915.000 Km2, but the last gauging station of Amazon River with regular and continuous measurements of discharge and sediment transport are Óbidos station with 4.670.000 Km2. Óbidos It is also the last stream gauge station with no or less tidal effect observed from Atlantic Ocean and registered. The Clim-Amazon Project has been done the first measurements with the purpose to acquire geochemical and hydrological informations downstream Óbidos station. The system studied has input data of sediments load after Óbidos, and the output of the system, at the Amazon River is at Macapá, close to the mouth of Amazon river. And flow the main tributaries along this way, between these two stations. To evaluate the geochemical source, the mass balance, and isotopic geochemistry is necessary the informations about the traces the main chemical elements, transported by the discharge from the main rivers of this area: Tapajos, Xingu, Paru, Jari, and the Amazon River at Monte Alegre and at Macapá. The ADCP - Acoustic Doppler Current Profile, equipment is used to get the stream discharge value at the moment of transect. But also get two more informations necessary for the geochemistry, and do the collecting points profiles. The place with most velocity at transect or the place with more backscatter. These informations are related with the sediment load of the river. Or which one can provide the better idea of how are transported the sediments at the measured transects. What was to observe was the main speed of the stream flow or the main backscatter sectional. The main purpose of the work is to show how works the correlation between the backscatter and speed data given by the ADCP, downstream Óbidos, and the main confluences of Amazon River, until Macapá. The ADCP measurements support the geochemical studies and the course of sediments load transported by the discharge of these rivers.

  19. Monitoring the Amazon plume northwestward transport along Lagrangian pathways

    NASA Astrophysics Data System (ADS)

    Fournier, Severine; Gaultier, Lucile; Vandemark, Douglas; Lee, Tong; Gierach, Michelle

    2016-04-01

    Large rivers are important to marine air-sea interactions and local biogeochemistry. By modifying the local and regional sea surface salinity (SSS), the freshwater inputs associated with major river plumes cause the formation of a layer near the surface with salinity stratification but near-uniform temperature, known as the barrier layer (BL). The BL prevent exchanges between the warm mixed layer and the cold ocean interior, and thus affect the vertical mixing of heat between the mixed layer and the thermocline. This can have an important impact on air-sea interactions such as hurricanes intensification. Our study focuses on the Amazon and Orinoco rivers, respectively the first and fourth world's largest rivers in terms of discharge. Amazon-Orinoco waters are carried northwestward by the North Brazilian Current (NBC) during the first part of the year and then eastward along the North Equatorial Counter Current. The hurricane season in the tropical Atlantic extends from June through November, the period of Amazon-Orinoco plume maximum northwestward extension, on a hurricane route. Being able to monitor the spatial and temporal dispersal of the Amazon and Orinoco river plumes is therefore important to better understand their impact on barrier layer thickness and SST variation at seasonal to interannual time scales. Variations from year to year in spatial extent of the plume may result from several processes including changes in Amazon discharge, ocean advection, turbulent mixing, and wind field. Satellite remote sensing data provide several means to visualize the surface dispersal of the Amazon plume, with ocean color data being the first to track it in the tropical Atlantic ocean further than 1000 km from shore. With the launches of the ESA Soil Moisture and Ocean Salinity (SMOS) and the NASA Aquarius/SAC-D missions, we are now able to use the SSS observations in combination with ocean color, altimetry and sea surface temperature observations to track surface plume

  20. Amazon forest response to repeated droughts

    NASA Astrophysics Data System (ADS)

    Feldpausch, T. R.; Phillips, O. L.; Brienen, R. J. W.; Gloor, E.; Lloyd, J.; Lopez-Gonzalez, G.; Monteagudo-Mendoza, A.; Malhi, Y.; Alarcón, A.; Álvarez Dávila, E.; Alvarez-Loayza, P.; Andrade, A.; Aragao, L. E. O. C.; Arroyo, L.; Aymard C., G. A.; Baker, T. R.; Baraloto, C.; Barroso, J.; Bonal, D.; Castro, W.; Chama, V.; Chave, J.; Domingues, T. F.; Fauset, S.; Groot, N.; Honorio Coronado, E.; Laurance, S.; Laurance, W. F.; Lewis, S. L.; Licona, J. C.; Marimon, B. S.; Marimon-Junior, B. H.; Mendoza Bautista, C.; Neill, D. A.; Oliveira, E. A.; Oliveira dos Santos, C.; Pallqui Camacho, N. C.; Pardo-Molina, G.; Prieto, A.; Quesada, C. A.; Ramírez, F.; Ramírez-Angulo, H.; Réjou-Méchain, M.; Rudas, A.; Saiz, G.; Salomão, R. P.; Silva-Espejo, J. E.; Silveira, M.; Steege, H.; Stropp, J.; Terborgh, J.; Thomas-Caesar, R.; Heijden, G. M. F.; Vásquez Martinez, R.; Vilanova, E.; Vos, V. A.

    2016-07-01

    The Amazon Basin has experienced more variable climate over the last decade, with a severe and widespread drought in 2005 causing large basin-wide losses of biomass. A drought of similar climatological magnitude occurred again in 2010; however, there has been no basin-wide ground-based evaluation of effects on vegetation. We examine to what extent the 2010 drought affected forest dynamics using ground-based observations of mortality and growth from an extensive forest plot network. We find that during the 2010 drought interval, forests did not gain biomass (net change: -0.43 Mg ha-1, confidence interval (CI): -1.11, 0.19, n = 97), regardless of whether forests experienced precipitation deficit anomalies. This contrasted with a long-term biomass sink during the baseline pre-2010 drought period (1998 to pre-2010) of 1.33 Mg ha-1 yr-1 (CI: 0.90, 1.74, p < 0.01). The resulting net impact of the 2010 drought (i.e., reversal of the baseline net sink) was -1.95 Mg ha-1 yr-1 (CI:-2.77, -1.18; p < 0.001). This net biomass impact was driven by an increase in biomass mortality (1.45 Mg ha-1 yr-1 CI: 0.66, 2.25, p < 0.001) and a decline in biomass productivity (-0.50 Mg ha-1 yr-1, CI:-0.78, -0.31; p < 0.001). Surprisingly, the magnitude of the losses through tree mortality was unrelated to estimated local precipitation anomalies and was independent of estimated local pre-2010 drought history. Thus, there was no evidence that pre-2010 droughts compounded the effects of the 2010 drought. We detected a systematic basin-wide impact of the 2010 drought on tree growth rates across Amazonia, which was related to the strength of the moisture deficit. This impact differed from the drought event in 2005 which did not affect productivity. Based on these ground data, live biomass in trees and corresponding estimates of live biomass in lianas and roots, we estimate that intact forests in Amazonia were carbon neutral in 2010 (-0.07 Pg C yr-1 CI:-0.42, 0.23), consistent with results from an

  1. Seroprevalence of Toxoplasma gondii in free-living Amazon river dolphins (Inia geoffrensis) from central Amazon, Brazil

    USDA-ARS?s Scientific Manuscript database

    Toxoplasma gondii is an important pathogen in aquatic mammals and its presence in these animals may indicate water contamination of aquatic environment by oocysts. Serum samples from 95 dolphins from free-living Amazon River dolphins (Inia geoffrensis) from Sustainable Development Reserve Mamirauá (...

  2. Seroprevalence of Toxoplasma gondii in free-living amazon river dolphins (Inia geoffrensis) from central Amazon, Brazil

    USDA-ARS?s Scientific Manuscript database

    Toxoplasma gondii is an important pathogen in aquatic mammals and its presence in these animals may indicate water contamination of aquatic environment by oocysts. Serum samples from 95 dolphins from free-living Amazon River dolphins (Inia geoffrensis) from Sustainable Development Reserve Mamirauá (...

  3. Ecological diversity of Trypanosoma cruzi transmission in the Amazon basin. The main scenaries in the Brazilian Amazon.

    PubMed

    Coura, J R; Junqueira, A C V

    2015-11-01

    The ecological diversity of Trypanosoma cruzi transmission in the Brazilian Amazon region is directly interlinked with the parasite's extensive reservoir, composed of 33 species of wild mammals within the following orders: Marsupialia, Chiroptera, Rodentia, Xenarthra, Carnivora and Primates; and of 16 species of wild triatomines, of which ten may be infected with T. cruzi. Four scenarios for the diversity of T. cruzi transmission in the Brazilian Amazon region are evident: (i) T. cruzi transmission between vectors and wild mammals, which is characterized as a wild enzooty encompassing the entire Amazon basin; (ii) accidental T. cruzi transmission from vectors and wild mammals to humans, when they invade the wild ecotope or when these vectors and wild mammals invade human homes; (iii) occupational Chagas disease among piassava (Leopoldinia piassaba) palm fiber gatherers, transmitted by the vector Rhodnius brethesi, for which these palm trees are the specific ecotope; (IV) oral T. cruzi transmission to humans through food contamination, particularly in juices from plants such as assai, which today is considered to be endemic in the Brazilian Amazon region, with more than 1500 cases notified.

  4. New sediment budget calculations for the submarine Amazon Delta indicates enhanced modern sediment fluxes of the Amazon system

    NASA Astrophysics Data System (ADS)

    Schwenk, T.; Haberkern, J.; Mulitza, S.; Chiessi, C. M.

    2011-12-01

    The submarine Amazon Delta is one major sink in the Amazon source-to-sink system. It is estimated, that the Amazon transports around 1200 Mt/yr. Around 50% of this river sediment load, namely 400 - 800 Mt/yr, is stored on the submarine delta, leading to sedimentation rates of decimeters per year (Nittrouer et al., 1995). The majority of the remaining sediments is deposited on the lower delta plain of the Amazon, but another significant portion is accumulated at the Amapa shoreline or is bypassed further northwestwards. These sediment budget calculations are mainly based on radioisotopic profiles measured at sediment cores in the frame of the AmasSeds project, which was carried out in the 1980ties and 1990ties (Nittrouer et al., 1995). Here we present another approach for calculating mass fluxes in the Amazon system. Within the Project AMADEUS, a cooperation between the MARUM, Bremen, Germany and the University Sao Paulo, Brazil, high-resolution seismic multichannel seismic data and sediment echosounder data (PARASOUND) were collected during Cruise MSM20/3 in February/March 2012. Main emphases of the surveying were set to the forset and bottomset of the delta, where most of the accretion occurs. A special outcome of the new data is the comparison with PARASOUND data collected in 1996 during Cruise M34/4. Due to several crossing points of both data sets it is now possible to carry out direct measurements of the accumulation during these 16 years. Another time horizon is a prominent unconformity spreading over the submarine delta, since the sedimentation on top of this unconformity had been dated to start roughly 100 yrs ago (Sommerfield et al., 1995). Mapping of this unconformity as well as the reflector representing the seafloor of 1996 gives the opportunity to calculate volumes and mass of the sediment stored within the survey area for two different time spans. First calculations show, that the sediment accumulation on the submarine delta since 1996 is

  5. New sediment budget calculations for the submarine Amazon Delta indicates enhanced modern sediment fluxes of the Amazon system

    NASA Astrophysics Data System (ADS)

    Schwenk, T.; Haberkern, J.; Mulitza, S.; Chiessi, C. M.

    2013-12-01

    The submarine Amazon Delta is one major sink in the Amazon source-to-sink system. It is estimated, that the Amazon transports around 1200 Mt/yr. Around 50% of this river sediment load, namely 400 - 800 Mt/yr, is stored on the submarine delta, leading to sedimentation rates of decimeters per year (Nittrouer et al., 1995). The majority of the remaining sediments is deposited on the lower delta plain of the Amazon, but another significant portion is accumulated at the Amapa shoreline or is bypassed further northwestwards. These sediment budget calculations are mainly based on radioisotopic profiles measured at sediment cores in the frame of the AmasSeds project, which was carried out in the 1980ties and 1990ties (Nittrouer et al., 1995). Here we present another approach for calculating mass fluxes in the Amazon system. Within the Project AMADEUS, a cooperation between the MARUM, Bremen, Germany and the University Sao Paulo, Brazil, high-resolution seismic multichannel seismic data and sediment echosounder data (PARASOUND) were collected during Cruise MSM20/3 in February/March 2012. Main emphases of the surveying were set to the forset and bottomset of the delta, where most of the accretion occurs. A special outcome of the new data is the comparison with PARASOUND data collected in 1996 during Cruise M34/4. Due to several crossing points of both data sets it is now possible to carry out direct measurements of the accumulation during these 16 years. Another time horizon is a prominent unconformity spreading over the submarine delta, since the sedimentation on top of this unconformity had been dated to start roughly 100 yrs ago (Sommerfield et al., 1995). Mapping of this unconformity as well as the reflector representing the seafloor of 1996 gives the opportunity to calculate volumes and mass of the sediment stored within the survey area for two different time spans. First calculations show, that the sediment accumulation on the submarine delta since 1996 is

  6. Supply of terrestrial organic matter to Amazon Shelf sediments of the last 1000 years deduced from bacteriohopanepolyols and other lipid biomarkers

    NASA Astrophysics Data System (ADS)

    Kallweit, Wiebke; Mollenhauer, Gesine; Talbot, Helen M.; Wagner, Thomas; Zabel, Matthias

    2010-05-01

    In the Amazon Shelf and Fan region large amounts of particulate material - mainly derived from the Andes - are transported via the Amazon River into the western tropical Atlantic Ocean. Previous studies have shown that the Amazon Fan sediments dominantly consist of terrigenous material. In this study we investigate the distribution of lipid biomarkers for terrigenous and soil organic matter (SOM), in particular bacteriohopanepolyols (BHPs), and other lipid biomarkers in a sediment core covering approximately the last 1000 years, recovered on the Amazon Shelf about 350 km north of the Amazon River mouth at about 50 m water depth. Here we present the first evidence for the presence of soil-specific and other BHPs in these sediments. Concentrations of soil BHP within the range of 70 to 220 µg/g TOC are amongst the highest reported to date from marine environments confirming the exceptional role of SOM export from major tropical rivers. Enhanced concentrations of 35-amino-BHPs in the sediments also suggest intense aerobic methane-oxidation, testifying for intense and active microbial cycling of labile organic matter. However, we can not rule out the possibility that this signal is exported from the catchment with the soil-marker BHPs. The concentrations of n-alkanes also show fluctuations, albeit less distinctive and not correlated with the cyclic variations of the BHPs. Very low concentrations of alkenones as molecular markers for prymnesiophyte algae imply comparatively small contributions of marine organic matter. The relative abundances of different groups of BHPs remain rather constant downcore, arguing that the type of SOM being exported over the last >1000 years was uniform. The concentrations of all individual BHPs reveal a cyclic pattern that might be related to changes in the supply of terrestrial material due to climatic fluctuations. This is also supported by the Al/Ti record of our core showing a similar cyclicity as the BHPs. The current observations

  7. Biogeography of squirrel monkeys (genus Saimiri): South-central Amazon origin and rapid pan-Amazonian diversification of a lowland primate.

    PubMed

    Lynch Alfaro, Jessica W; Boubli, Jean P; Paim, Fernanda P; Ribas, Camila C; Silva, Maria Nazareth F da; Messias, Mariluce R; Röhe, Fabio; Mercês, Michelle P; Silva Júnior, José S; Silva, Claudia R; Pinho, Gabriela M; Koshkarian, Gohar; Nguyen, Mai T T; Harada, Maria L; Rabelo, Rafael M; Queiroz, Helder L; Alfaro, Michael E; Farias, Izeni P

    2015-01-01

    The squirrel monkey, Saimiri, is a pan-Amazonian Pleistocene radiation. We use statistical phylogeographic methods to create a mitochondrial DNA-based timetree for 118 squirrel monkey samples across 68 localities spanning all Amazonian centers of endemism, with the aim of better understanding (1) the effects of rivers as barriers to dispersal and distribution; (2) the area of origin for modern Saimiri; (3) whether ancestral Saimiri was a lowland lake-affiliated or an upland forest taxa; and (4) the effects of Pleistocene climate fluctuation on speciation. We also use our topology to help resolve current controversies in Saimiri taxonomy and species relationships. The Rondônia and Inambari centers in the southern Amazon were recovered as the most likely areas of origin for Saimiri. The Amazon River proved a strong barrier to dispersal, and squirrel monkey expansion and diversification was rapid, with all speciation events estimated to occur between 1.4 and 0.6Ma, predating the last three glacial maxima and eliminating climate extremes as the main driver of squirrel monkey speciation. Saimiri expansion was concentrated first in central and western Amazonia, which according to the "Young Amazon" hypothesis was just becoming available as floodplain habitat with the draining of the Amazon Lake. Squirrel monkeys also expanded and diversified east, both north and south of the Amazon, coincident with the formation of new rivers. This evolutionary history is most consistent with a Young Amazon Flooded Forest Taxa model, suggesting Saimiri has always maintained a lowland wetlands niche and was able to greatly expand its range with the transition from a lacustrine to a riverine system in Amazonia. Saimiri vanzolinii was recovered as the sister group to one clade of Saimiri ustus, discordant with the traditional Gothic vs. Roman morphological division of squirrel monkeys. We also found paraphyly within each of the currently recognized species: S. sciureus, S. ustus, and S

  8. Downstream Amazon river dynamics under oceanic tide influence

    NASA Astrophysics Data System (ADS)

    Kosuth, P.; Larque, A.; Soussa da Silva, M.; Filizola, N.

    2003-04-01

    Effect of oceanic tide over downstream Amazon river dynamics has been monitored between 1999 and 2001. River topography and bathymetry has been determined, tide induced water levels fluctuations have been monitored at eleven gauging stations along a 1100 km long fluvial reach, water discharges fluctuations along a tide cycle have been measured at 9 sections during low, medium and high river stages measurement campaigns. Specific measurement campaigns have been organised on northern and southern branch of Amazon river near Macapa at various river stages, including suspended sediment determination along a tide cycle. Hydrodynamic modelling has been initiated along this downstream reach. Results show an upwards propagation of oceanic tide waves along Amazon river, semi-diurnal water level fluctuations being eventually observed 1100 km from the estuary at low river stage and 530 km from the estuary at high river stage. At low river stage (November 1997) river water level at Parintins, 1100 km from the estuary, was 3.13m above mean sea level, revealing a 3 mm/km mean slope along the downstream reach of Amazon river. Mean upwards celerity of semi-diurnal tide waves is 40 km/hour with an amplitude damping and wave profile modification : as the wave moves upwards falling phase gets longer and rising phase shorter. Inversion of water discharge during a tide cycle (i.e. negative water discharge) has been observed along the Northern branch up to its divergence with Canal do Gurupa (Southern branch), 444 km from the estuary. In front of Macapa, 200 km from the estuary, Amazon water discharge during a tide cycle (16/03/2000) fluctuated from 580 000 m3/s to - 290 000 m3/s with an average 209 000 m3/s, representative of the Amazon river mean flow. Suspended sediments concentration during a tide cycle stays constant at river surface while it shows a low tide pulse at the lower part of the profile, when water velocity increase generates a sediment re-suspension. Tributaries of the

  9. Retinal diseases in a reference center from a Western Amazon capital city

    PubMed Central

    Malerbi, Fernando Korn; Matsudo, Nilson Hideo; Carneiro, Adriano Biondi Monteiro; Lottenberg, Claudio Luiz

    2015-01-01

    ABSTRACT Objective To describe retinal diseases found in patients who were waiting for treatment at a tertiary care hospital in Rio Branco, Acre, Brazil. Methods Patients underwent slit lamp biomicroscopy, dilated fundus exam and ocular ultrasound. Patients were classified according to phakic status and retinal disease of the most severely affected eye. Results A total of 138 patients were examined. The mean age was 51.3 years. Diabetes was present in 35.3% and hypertension in 45.4% of these patients. Cataract was found in 23.2% of patients, in at least one eye. Retinal examination was possible in 129 patients. The main retinal diseases identified were rhegmatogenous retinal detachment (n=23; 17.8%) and diabetic retinopathy (n=32; 24.8%). Out of 40 patients evaluated due to diabetes, 13 (32.5%) had absent or mild forms of diabetic retinopathy and did not need further treatment, only observation. Conclusion Diabetic retinopathy was the main retinal disease in this population. It is an avoidable cause of blindness and can be remotely evaluated, in its initial stages, by telemedicine strategies. In remote Brazilian areas, telemedicine may be an important tool for retinal diseases diagnosis and follow-up. PMID:26761550

  10. A new species of monadal coral snake of the genus Micrurus (Serpentes, Elapidae) from western Amazon.

    PubMed

    Feitosa, Darlan Tavares; Da Silva, Nelson Jorge Jr; Pires, Matheus Godoy; Zaher, Hussam; Prudente, Ana Lúcia Da Costa

    2015-06-24

    We described a new species of monadal coral snake of the genus Micrurus from the region of Tabatinga and Leticia, along the boundaries of Brazil, Colombia, and Peru. The new species can be distinguished from the other congeners by the combination of the following characters: absence of a pale nuchal collar; black cephalic-cap extending from rostral to firstdorsal scale and enclosing white tipped prefrontal scales; upper half of first to four supralabials and postoculars black; tricolor body coloration, with 27-31 black rings bordered by narrower white rings and 27-31 red rings; tail coloration similar to body, with alternating black rings bordered by irregular narrow white rings, red rings of the same width as the black rings; ventral scales 205-225; subcaudal scales 39-47.

  11. New tick records from the state of Rondônia, western Amazon, Brazil.

    PubMed

    Martins, Thiago F; Venzal, José M; Terassini, Flávio A; Costa, Francisco B; Marcili, Arlei; Camargo, Luis M A; Barros-Battesti, Darci M; Labruna, Marcelo B

    2014-01-01

    From 2005 to 2012, ticks were collected from different hosts at different localities of the state of Rondônia. The following 16 ixodid tick species were identified: Ixodes fuscipes, Amblyomma auricularium, Amblyomma coelebs, Amblyomma dubitatum, Amblyomma geayi, Amblyomma humerale, Amblyomma latepunctatum, Amblyomma longirostre, Amblyomma naponense, Amblyomma nodosum, Amblyomma oblongoguttatum, Amblyomma ovale, Amblyomma romitii, Amblyomma rotundatum, Amblyomma scalpturatum, and Amblyomma varium. From these, A. auricularium, A. dubitatum, and A. geayi are reported for the first time in the state of Rondônia. We provide the following tick-host associations that have not been reported anywhere: A. longirostre on Pteroglossus bitorquatus, A. rotundatum on Hydrodynastes gigas, and A. latepunctatum and A. scalpturatum on Hydrochoerus hydrochaeris. An adult male specimen of A. rotundatum is reported on Boa constrictor, comprising only the fourth male specimen to be recorded for this obligate parthenogenetic tick species. We also report the presence of the argasid species Ornithodoros kohlsi for the first time in Brazil, based on larval specimens collected on bats Molossops (Neoplatymops) mattogrossensis in Monte Negro, Rondônia. The present study increases the Brazilian tick fauna to 65 species, from which 34 species (52 %) are now registered to Rondônia. Such high diversity of ticks in a relatively small state, associated with increasing environmental alteration due to deforestation and human occupation, makes Rondônia a potential source of tick-borne diseases.

  12. Nonalcoholic Fatty Liver Disease in Chronic Hepatitis B and C Patients from Western Amazon

    PubMed Central

    Nascimento, A. C. M.; Maia, D. R.; Neto, S. M.; Lima, E. M.; Twycross, M.; Baquette, R. F.; Lobato, C. M. O.

    2012-01-01

    Nonalcoholic fatty liver disease (NAFLD) includes a wide spectrum of histological conditions, extending from simple steatosis to end-stage liver failure. The aim of this study was to examine the prevalence of NAFLD and its associations in chronic hepatitis B and C patients. Methods. We included all patients diagnosed with chronic hepatitis B and C who underwent a liver biopsy between January 2010 and October 2011 (n = 104). Parameters studied included hepatitis type, anthropometric data, histologic, hepatic, metabolic and lipid assessments, presence of hypertension and viral load. Results. Hepatitis B was presented in 28.8% (n = 30) of patients, while hepatitis C was presented in 71.2% (n = 74). In addition, hepatic steatosis was present in 25% (n = 26) of the patients. Steatosis was frequently found in hepatitis C patients (31.1%; 25% n = 23), but infrequently in hepatitis B patients (10%; n = 3) (P = 0.024). It was also found that steatosis was frequently present in hepatitis C patients with intense fibrosis (52.94%) (P = 0.025). Discussion. Our results suggest that steatosis is a common feature in patients with viral chronic hepatitis, and that it plays a different role in each type of hepatitis. PMID:22934189

  13. Using water chemistry time series to model dissolved inorganic carbon dynamics in the western Amazon basin

    NASA Astrophysics Data System (ADS)

    Vihermaa, Leena; Waldron, Susan; Newton, Jason

    2013-04-01

    Two small streams (New Colpita and Main Trail) and two rivers (Tambopata and La Torre), in the Tambopata National Reserve, Madre de Dios, Peru, were sampled for water chemistry (conductivity, pH and dissolved oxygen) and hydrology (stage height and flow velocity). In the small streams water chemistry and hydrology variables were logged at 15 minute intervals from Feb 2011 to November 2012. Water samples were collected from all four channels during field campaigns spanning different seasons and targeting the hydrological extremes. All the samples were analysed for dissolved inorganic carbon (DIC) concentration and δ13C (sample size ranging from 77 to 172 depending on the drainage system) and a smaller subset for dissolved organic carbon (DOC) and particulate organic carbon (POC) concentrations. Strong positive relationships were found between conductivity and both DIC concentration and δ13C in the New Colpita stream and the La Torre river. In Tambopata river the trends were less clear and in the Main Trail stream there was very little change in DIC and isotopic composition. The conductivity data was used to model continuous DIC time series for the New Colpita stream. The modelled DIC data agreed well with the measurements; the concordance correlation coefficients between predicted and measured data were 0.91 and 0.87 for mM-DIC and δ13C-DIC, respectively. The predictions of δ13C-DIC were improved when calendar month was included in the model, which indicates seasonal differences in the δ13C-DIC conductivity relationship. At present, continuous DIC sampling still requires expensive instrumentation. Therefore, modelling DIC from a proxy variable which can be monitored continuously with ease and at relatively low cost, such as conductivity, provides a powerful alternative method of DIC determination.

  14. Isolation of a coronavirus from a green-cheeked Amazon parrot (Amazon viridigenalis Cassin).

    PubMed

    Gough, Richard E; Drury, Sally E; Culver, Francesca; Britton, Paul; Cavanagh, Dave

    2006-04-01

    A virus (AV71/99) was isolated from a green-cheeked Amazon parrot by propagation and passage in both primary embryo liver cells derived from blue and yellow macaw (Ara ararauna) embryos and chicken embryo liver cells. Electron microscopic examination of cytopathic agents derived from both types of cell cultures suggested that it was a coronavirus. This was confirmed using a pan-coronavirus reverse transcriptase polymerase chain reaction that amplified part of gene 1 that encodes the RNA-dependent RNA polymerase. The deduced sequence of 66 amino acids had 66 to 74% amino acid identity with the corresponding sequence of coronaviruses in groups 1, 2 and 3. Several other oligonucleotide primer pairs that give PCR products corresponding to genes 3, 5, N and the 3'-untranslated region of infectious bronchitis virus, turkey coronavirus and pheasant coronavirus (all in group 3) failed to do so with RNA from the parrot coronavirus. This is the first demonstration of a coronavirus in a psittacine species.

  15. Planetary boundary layer dynamics over the Amazon rain forest

    NASA Astrophysics Data System (ADS)

    Pereiradeoliveira, Amauri

    Observations of the diurnal evolution of the planetary boundary layer (PBL) over the Amazon rain forest, in the area of the Amazon boundary layer experiment (ABLE) 2A and 2B experiments showed the existence of a low level circulation with low level nocturnal maxima winds. These circulations are shown to be induced by the thermal contrast between the river and the forest. A linear model was applied to identify the horizontal extent of these circulations and an associated perturbation pressure gradient consistent with the observations. A second order closure model was used to simulate changes in the PBL caused by the thermal circulation. Good agreement with the observations was obtained when the forcing was a horizontal pressure gradient equal to 0.5 mb/100km of limited vertical extent. The dynamics of the equatorial PBL was shown to be plausibly explained using a hypothesis of a river breeze circulation.

  16. Amazon River discharge estimated from TOPEX/Poseidon altimetry

    NASA Astrophysics Data System (ADS)

    Zakharova, Elena A.; Kouraev, Alexei V.; Cazenave, Anny; Seyler, Frédérique

    2006-02-01

    This paper presents an application of the TOPEX/Poseidon (T/P) satellite altimetry data to estimate river discharge at three sites along the Amazon River. We discuss the methodology to establish empirical relationships between satellite-derived water levels and daily estimations of river discharges based on rating curves and in situ level measurements at gauging stations. Three sites are chosen: Manacapuru (River Solimões), Jatuarana (nearby the confluence of the Solimões and Rio Negro rivers) and Óbidos (Amazon River). We then reconstruct the satellite-based river discharge over a 10-year time span (1992-2002). Comparison between satellite-derived and river discharge at the gauging stations shows that the T/P data can successfully be used for hydrological studies of large rivers, in providing in particular discharge estimates when in situ data are not available. To cite this article: E.A. Zakharova et al., C. R. Geoscience 338 (2006).

  17. The Amazon Boundary Layer Experiment - Wet season 1987

    NASA Technical Reports Server (NTRS)

    Harriss, R. C.; Beck, S. M.; Bendura, R. J.; Drewry, J. W.; Hoell, J. M., Jr.; Matson, P. A.; Mcneal, R. J.; Navarro, R. L.; Rabine, V.; Snell, R. L.

    1990-01-01

    This paper describes the overall experimental design for the Amazon Boundary Layer Experiment (ABLE 2B), which used data from aircraft, ground-based, and satellite platforms to characterize the chemistry and dynamics of the lower atmosphere over the Amazon Basin during wet season conditions in April-May 1987. The ABLE 2B focused on determining the spatial and temporal scales of variability in trace gases and aerosols in the lower and midtroposphere over the Amazonian rain forest during wet season conditions, and assessing the role of local-to-regional atmospheric scales of motion on determining the distribution of atmospheric chemical species and their photochemical environment. A summary of the results from the combined ABLE 2A and ABLE 2B are presented.

  18. Remote tropical and sub-tropical responses to Amazon deforestation

    NASA Astrophysics Data System (ADS)

    Badger, Andrew M.; Dirmeyer, Paul A.

    2016-05-01

    Replacing natural vegetation with realistic tropical crops over the Amazon region in a global Earth system model impacts vertical transport of heat and moisture, modifying the interaction between the atmospheric boundary layer and the free atmosphere. Vertical velocity is decreased over a majority of the Amazon region, shifting the ascending branch and modifying the seasonality of the Hadley circulation over the Atlantic and eastern Pacific oceans. Using a simple model that relates circulation changes to heating anomalies and generalizing the upper-atmosphere temperature response to deforestation, agreement is found between the response in the fully-coupled model and the simple solution. These changes to the large-scale dynamics significantly impact precipitation in several remote regions, namely sub-Saharan Africa, Mexico, the southwestern United States and extratropical South America, suggesting non-local climate repercussions for large-scale land use changes in the tropics are possible.

  19. [Globalization and environmentalism: polyphonic ethnicities in the Amazon].

    PubMed

    Garnelo, Luiza; Sampaio, Sully

    2005-01-01

    The article examines the issue of globalization, along with its contradictions and the ways in which it guides and shapes specific situations within the Amazon's present-day reality, while simultaneously engendering the uniformization of economic production and the valorization of cultural differences. The discussion explores the nuances of implementing a massified, standardized productive base that paradoxically fosters the valorization of cultural differences and favors alliances between, on the one hand, ethno-political leaders from indigenous Amazon groups and, on the other, environmentalists and other transworld actors who wield strong decision-making power. The article analyzes the indigenous movement's network of alliances and highlights the polyphony of the different political agents that come to clash with each other within this post-modern geopolitical setting.

  20. Rare models: Roger Casement, the Amazon, and the ethnographic picturesque.

    PubMed

    Wylie, Lesley

    2010-01-01

    In 1910 Roger Casement was sent by the British government to investigate the alleged humanitarian abuses of the Peruvian Amazon Company in the Putumayo, a disputed border zone in North West Amazonia. Casement brought more than verbal and written testimony back to London. On 26 June, some six months after he returned from the Amazon, Casement collected two Amerindian boys - Omarino and Ricudo - from Southampton docks. This paper will reconstruct the brief period that these young men spent in Britain in the summer of 1911 and assess, in particular, to what extent they were treated as 'exhibits' by Casement, who not only introduced them to leading members of the British establishment but also arranged for them to be painted and photographed following contemporary ethnographic conventions.

  1. Carbon dioxide in the atmosphere over the Amazon Basin

    NASA Technical Reports Server (NTRS)

    Wofsy, Steven C.; Kaplan, Warren A.; Harriss, Robert C.

    1988-01-01

    As a part of the NASA's Amazon Boundary Layer Experiment 2A mission, the cycle of atmospheric CO2 over the Amazon Basin was examined using measured vertical profiles of CO2 concentrations in the canopy and aloft, and direct measurements of CO2 emissions from soils. The results provide a detailed picture of daily exchanges of air between the tropical forest (0-30) and the atmospheric boundary layer (30-2000 m). A comparison of atmospheric CO2 distributions over forests, wetlands, and rivers shows that the lower atmosphere over forests functions separately from that over rivers or wetlands during the night and to some extent during the day; the basic diurnal cycle of CO2 over wetlands is much weaker than over forests, and the cycle is almost absent over rivers. This result is consistent with expectations based on the biogeochemistry of organic carbon in these systems.

  2. Methane emissions to the troposphere from the Amazon floodplain

    NASA Technical Reports Server (NTRS)

    Devol, Allen H.; Richey, Jeffrey E.; Clark, Wayne A.; King, Stagg L.; Martinelli, Luiz A.

    1988-01-01

    The magnitudes of CH4 emissions to the troposphere from the Amazon River floodplain and the mechanism of these emissions were investigated using the data of 94 individual flux measurements made along a 1700-km stretch of the river during July/August 1985. The overall average rate of CH4 emission from wetlands was found to be 390 mg CH4/sq m per day, with the highest emissions (590 mg CH4/sq m per day) attributed to the water surfaces covered by aquatic macrophytes. Ebullition was the dominant mechanism of emission, accounting for 85 percent of the total. Surface-water CH4 concentrations were highly supersaturated, averaging 6.4 micromolar. The annual emission of CH4 from the Amazon Basin to the troposphere, estimated from the area and the known emission rate, is about 10 CH4 Tg/yr, indicating the importance of the area in the global atmospheric CH4 cycle.

  3. Methane emissions to the troposphere from the Amazon floodplain

    NASA Technical Reports Server (NTRS)

    Devol, Allen H.; Richey, Jeffrey E.; Clark, Wayne A.; King, Stagg L.; Martinelli, Luiz A.

    1988-01-01

    The magnitudes of CH4 emissions to the troposphere from the Amazon River floodplain and the mechanism of these emissions were investigated using the data of 94 individual flux measurements made along a 1700-km stretch of the river during July/August 1985. The overall average rate of CH4 emission from wetlands was found to be 390 mg CH4/sq m per day, with the highest emissions (590 mg CH4/sq m per day) attributed to the water surfaces covered by aquatic macrophytes. Ebullition was the dominant mechanism of emission, accounting for 85 percent of the total. Surface-water CH4 concentrations were highly supersaturated, averaging 6.4 micromolar. The annual emission of CH4 from the Amazon Basin to the troposphere, estimated from the area and the known emission rate, is about 10 CH4 Tg/yr, indicating the importance of the area in the global atmospheric CH4 cycle.

  4. Tree ring reconstructed rainfall over the southern Amazon Basin

    NASA Astrophysics Data System (ADS)

    Lopez, Lidio; Stahle, David; Villalba, Ricardo; Torbenson, Max; Feng, Song; Cook, Edward

    2017-07-01

    Moisture sensitive tree ring chronologies of Centrolobium microchaete have been developed from seasonally dry forests in the southern Amazon Basin and used to reconstruct wet season rainfall totals from 1799 to 2012, adding over 150 years of rainfall estimates to the short instrumental record for the region. The reconstruction is correlated with the same atmospheric variables that influence the instrumental measurements of wet season rainfall. Anticyclonic circulation over midlatitude South America promotes equatorward surges of cold and relatively dry extratropical air that converge with warm moist air to form deep convection and heavy rainfall over this sector of the southern Amazon Basin. Interesting droughts and pluvials are reconstructed during the preinstrumental nineteenth and early twentieth centuries, but the tree ring reconstruction suggests that the strong multidecadal variability in instrumental and reconstructed wet season rainfall after 1950 may have been unmatched since 1799.

  5. Methane Evasion and Carbon Dynamics on the Amazon Floodplain

    NASA Astrophysics Data System (ADS)

    Melack, J. M.

    2007-12-01

    The fringing floodplain along the 2600 km reach of the Amazon River in Brazil inundates up to about 80,000 km squared of flooded forests, open water and floating macrophytes. These habitats outgas significant amount of carbon dioxide and methane as a result of autochthonous and allochthonous fixation and exchanges of carbon on the floodplain and with the neighboring uplands. Based on our measurements and those of others, we have assembled sufficient data to characterize the following fluxes and transformations in a representative central Amazon floodplain lake: inputs of litterfall, dissolved organic carbon (DOC) in rainfall, DOC and particulate organic carbon (POC) in streams, DOC in groundwater seepage; exchanges of DOC and POC with the mainstem river; net primary productivity of floating macrophyes, periphyton and phytoplankton; sedimentation; carbon dioxide and methane evasion. These data are the basis for models of carbon processing and methane evasion.

  6. Role of Brazilian Amazon protected areas in climate change mitigation

    PubMed Central

    Soares-Filho, Britaldo; Moutinho, Paulo; Nepstad, Daniel; Anderson, Anthony; Rodrigues, Hermann; Garcia, Ricardo; Dietzsch, Laura; Merry, Frank; Bowman, Maria; Hissa, Letícia; Silvestrini, Rafaella; Maretti, Cláudio

    2010-01-01

    Protected areas (PAs) now shelter 54% of the remaining forests of the Brazilian Amazon and contain 56% of its forest carbon. However, the role of these PAs in reducing carbon fluxes to the atmosphere from deforestation and their associated costs are still uncertain. To fill this gap, we analyzed the effect of each of 595 Brazilian Amazon PAs on deforestation using a metric that accounts for differences in probability of deforestation in areas of pairwise comparison. We found that the three major categories of PA (indigenous land, strictly protected, and sustainable use) showed an inhibitory effect, on average, between 1997 and 2008. Of 206 PAs created after the year 1999, 115 showed increased effectiveness after their designation as protected. The recent expansion of PAs in the Brazilian Amazon was responsible for 37% of the region's total reduction in deforestation between 2004 and 2006 without provoking leakage. All PAs, if fully implemented, have the potential to avoid 8.0 ± 2.8 Pg of carbon emissions by 2050. Effectively implementing PAs in zones under high current or future anthropogenic threat offers high payoffs for reducing carbon emissions, and as a result should receive special attention in planning investments for regional conservation. Nevertheless, this strategy demands prompt and predictable resource streams. The Amazon PA network represents a cost of US$147 ± 53 billion (net present value) for Brazil in terms of forgone profits and investments needed for their consolidation. These costs could be partially compensated by an international climate accord that includes economic incentives for tropical countries that reduce their carbon emissions from deforestation and forest degradation. PMID:20505122

  7. Reserves Protect against Deforestation Fires in the Amazon

    PubMed Central

    Adeney, J. Marion; Christensen, Norman L.; Pimm, Stuart L.

    2009-01-01

    Background Reserves are the principal means to conserve forests and biodiversity, but the question of whether reserves work is still debated. In the Amazon, fires are closely linked to deforestation, and thus can be used as a proxy for reserve effectiveness in protecting forest cover. We ask whether reserves in the Brazilian Amazon provide effective protection against deforestation and consequently fires, whether that protection is because of their location or their legal status, and whether some reserve types are more effective than others. Methodology/Principal Findings Previous work has shown that most Amazonian fires occur close to roads and are more frequent in El Niño years. We quantified these relationships for reserves and unprotected areas by examining satellite-detected hot pixels regressed against road distance across the entire Brazilian Amazon and for a decade with 2 El Niño-related droughts. Deforestation fires, as measured by hot pixels, declined exponentially with increasing distance from roads in all areas. Fewer deforestation fires occurred within protected areas than outside and the difference between protected and unprotected areas was greatest near roads. Thus, reserves were especially effective at preventing these fires where they are known to be most likely to burn; but they did not provide absolute protection. Even within reserves, at a given distance from roads, there were more deforestation fires in regions with high human impact than in those with low impact. The effect of El Niño on deforestation fires was greatest outside of reserves and near roads. Indigenous reserves, limited-use reserves, and fully protected reserves all had fewer fires than outside areas and did not appear to differ in their effectiveness. Conclusions/Significance Taking time, regional factors, and climate into account, our results show that reserves are an effective tool for curbing destructive burning in the Amazon. PMID:19352423

  8. Defending the Amazon: Conservation, Development and Security in Brazil

    DTIC Science & Technology

    2009-03-01

    appeal to a broad sector of society. Once popular mandate is won, presidents have the rest of their term to enact preferred policies without danger...reconcile these two forces— conservationists and the military—because his remaining time in office was so short. The lack of popular support for...disinherited by Collor, learned that conservation ideas were gaining popularity in Brazil. To remain an important actor in the Amazon, the military had to

  9. Role of Brazilian Amazon protected areas in climate change mitigation.

    PubMed

    Soares-Filho, Britaldo; Moutinho, Paulo; Nepstad, Daniel; Anderson, Anthony; Rodrigues, Hermann; Garcia, Ricardo; Dietzsch, Laura; Merry, Frank; Bowman, Maria; Hissa, Letícia; Silvestrini, Rafaella; Maretti, Cláudio

    2010-06-15

    Protected areas (PAs) now shelter 54% of the remaining forests of the Brazilian Amazon and contain 56% of its forest carbon. However, the role of these PAs in reducing carbon fluxes to the atmosphere from deforestation and their associated costs are still uncertain. To fill this gap, we analyzed the effect of each of 595 Brazilian Amazon PAs on deforestation using a metric that accounts for differences in probability of deforestation in areas of pairwise comparison. We found that the three major categories of PA (indigenous land, strictly protected, and sustainable use) showed an inhibitory effect, on average, between 1997 and 2008. Of 206 PAs created after the year 1999, 115 showed increased effectiveness after their designation as protected. The recent expansion of PAs in the Brazilian Amazon was responsible for 37% of the region's total reduction in deforestation between 2004 and 2006 without provoking leakage. All PAs, if fully implemented, have the potential to avoid 8.0 +/- 2.8 Pg of carbon emissions by 2050. Effectively implementing PAs in zones under high current or future anthropogenic threat offers high payoffs for reducing carbon emissions, and as a result should receive special attention in planning investments for regional conservation. Nevertheless, this strategy demands prompt and predictable resource streams. The Amazon PA network represents a cost of US$147 +/- 53 billion (net present value) for Brazil in terms of forgone profits and investments needed for their consolidation. These costs could be partially compensated by an international climate accord that includes economic incentives for tropical countries that reduce their carbon emissions from deforestation and forest degradation.

  10. Reserves protect against deforestation fires in the Amazon.

    PubMed

    Adeney, J Marion; Christensen, Norman L; Pimm, Stuart L

    2009-01-01

    Reserves are the principal means to conserve forests and biodiversity, but the question of whether reserves work is still debated. In the Amazon, fires are closely linked to deforestation, and thus can be used as a proxy for reserve effectiveness in protecting forest cover. We ask whether reserves in the Brazilian Amazon provide effective protection against deforestation and consequently fires, whether that protection is because of their location or their legal status, and whether some reserve types are more effective than others. Previous work has shown that most Amazonian fires occur close to roads and are more frequent in El Niño years. We quantified these relationships for reserves and unprotected areas by examining satellite-detected hot pixels regressed against road distance across the entire Brazilian Amazon and for a decade with 2 El Niño-related droughts. Deforestation fires, as measured by hot pixels, declined exponentially with increasing distance from roads in all areas. Fewer deforestation fires occurred within protected areas than outside and the difference between protected and unprotected areas was greatest near roads. Thus, reserves were especially effective at preventing these fires where they are known to be most likely to burn; but they did not provide absolute protection. Even within reserves, at a given distance from roads, there were more deforestation fires in regions with high human impact than in those with low impact. The effect of El Niño on deforestation fires was greatest outside of reserves and near roads. Indigenous reserves, limited-use reserves, and fully protected reserves all had fewer fires than outside areas and did not appear to differ in their effectiveness. Taking time, regional factors, and climate into account, our results show that reserves are an effective tool for curbing destructive burning in the Amazon.

  11. Mouths of the Amazon River, Brazil, South America

    NASA Image and Video Library

    1991-08-11

    Huge sediment loads from the interior of the country flow through the Mouths of the Amazon River, Brazil (0.5S, 50.0W). The river current carries hundreds of tons of sediment through the multiple outlets of the great river over 100 miles from shore before it is carried northward by oceanic currents. The characteristic "fair weather cumulus" pattern of low clouds over the land but not over water may be observed in this scene.

  12. Deforestation, floodplain dynamics, and carbon biogeochemistry in the Amazon Basin

    NASA Technical Reports Server (NTRS)

    Bryan, M. L.; Dunne, T.; Richey, J.; Melack, J.; Simonett, D. S.; Woodwell, G.

    1984-01-01

    Three aspects of the physical geographic environment of the Amazon Basin are considered: (1) deforestation and reforestation, (2) floodplain dynamics, and (3) fluvial geomorphology. Three independent projects are coupled in this experiment to improve the in-place research and to ensure that the Shuttle Imaging Radar-B (SIR-B) experiment stands on a secure base of ongoing work. Major benefits to be obtained center on: (1) areal and locational information, (2) data from various depression angles, and (3) digital radar signatures. Analysis will be conducted for selected sites to define how well SIR-B data can be used for: (1) definition of extent and location of deforestation in a tropical moist forest, (2) definition and quantification of the nature of the vegetation and edaphic conditions on the (floodplain) of the Amazon River, and (3) quantification of the accuracy with which the geometry and channel shifting of the Amazon River may be mapped using SIR-B imagery in conjunction with other remote sensing data.

  13. Artisanal fisheries of the Xingu River basin in Brazilian Amazon.

    PubMed

    Isaac, V J; Almeida, M C; Cruz, R E A; Nunes, L G

    2015-08-01

    The present study characterises the commercial fisheries of the basin of the Xingu River, a major tributary of the Amazon River, between the towns of Gurupá (at the mouth of the Amazon) and São Félix do Xingu. Between April, 2012, and March, 2014, a total of 23,939 fishing trips were recorded, yielding a total production of 1,484 tons of fish, harvested by almost three thousand fishers. The analysis of the catches emphasizes the small-scale and artisanal nature of the region's fisheries, with emphasis on the contribution of the motorised canoes powered by "long-tail" outboard motors. Larger motorboats operate only at the mouth of the Xingu and on the Amazon. Peacock bass (Cichla spp.), croakers (Plagioscion spp.), pacu (a group containing numerous serrasalmid species), aracu (various anostomids), and curimatã (Prochilodus nigricans) together contributed more than 60% of the total catch. Mean catch per unit effort was 18 kg/fisher-1.day-1, which varied among fishing methods (type of vessel and fishing equipment used), river sections, and time of the year. In most cases, yields varied little between years (2012 and 2013). The technical database provided by this study constitutes an important resource for the regulation of the region's fisheries, as well as for the evaluation of future changes resulting from the construction of the Belo Monte dam on the Xingu River.

  14. The structure and energetics of Amazon squall lines

    SciTech Connect

    Massie, H.L. Jr.

    1991-01-01

    The role of the Amazon Basin as a global center of action for deep convection is quantified in the context of the planet's heat balance. Mesoscale heat and moisture budgets are presented for three synoptic-scale coastal originating systems (COS) over the Amazon Basin during the 1987 wet season. The budgets are obtained from volumetric analysis of mesoscale rawinsonde data from the April-May 1987 Amazon Boundary Layer Experiment (ABLE-2B). Classification of cloud and rainfall components is based on data from Portable Automated Mesonet (PAM) towers, GOES images, and radar. Satellite measurements of the total active cloud area, coupled with the mesoscale budge calculations, are used to determine the system-wide vertical transport of heat as a function of the COS life cycle. Maximum heat transport occurs in the COS mature stage when the system has its maximum spatial extent. The instantaneous heat transport for the 300-100 mb layer in a mature COS equals nearly 20% of the theoretical heat export requirements for the equatorial trough zone. A little more than half of the system-wide transport occurs in the dynamically active anvil cloud.

  15. Carbon monoxide over the Amazon basin during the wet season

    SciTech Connect

    Harriss, R.C. ); Sachse, G.W.; Hill, G.F.; Gregory, G.L. ); Wade, L.O. )

    1990-09-20

    Measurements of carbon monoxide (CO) were made over the Amazon Basin of Brazil during the 1987 wet season as part of the NASA Global Tropospheric Experiment/Amazon Boundary Layer Experiment (ABLE 2B). The distribution of CO over the altitude range sampled (0.15-4.5 km) was influenced by surface emissions from biological sources, long-range transport of pollutants from northern hemisphere sources, and by transport processes associated with local convective mixing. Surface sources are indicated by a qualitative interpretation of the typical pattern of decreasing concentrations with increasing altitude and increasing concentrations of CO at 0.15-km altitude during a transect from the Atlantic coast to the central basin. Atmospheric convective activity produced irregular patterns of variability at time scales of less than 1 hour over a localized area. The disruption of mixed layer growth and decay processes has a particularly important influence on CO concentrations in the daytime lower troposphere. Intrusions of northern hemisphere air into the central Amazon resulted in increased CO concentrations in the lower and midtroposphere. The correlation of CO with O{sub 3} was positive under conditions interpreted as being influenced by northern hemisphere air, and negative during all other meteorological conditions experienced in ABLE 2B.

  16. Cyclic sediment deposition within Amazon deep-sea fan

    SciTech Connect

    Manley, P.L.; Flood, R.D.

    1988-08-01

    The Upper and middle Amazon Fan has grown in a cyclic fashion. An individual deposition cycle consists of (1) a widespread basal, acoustically transparent seismic unit (interpreted as debris-flow deposits) that fills and levels preexisting topographic lows, and (2) a levee complex built of overlapping channel-levee systems. Two and possibly three cycles have been identified within the Amazon Fan. The levee complex beneath one debris flow originated from a different submarine canyon than did the levee complex above the debris flow, suggesting that these levee complexes formed during different sea level lowstands. Calculations based on present sediment discharge of the Amazon River suggest that an entire levee complex can form within the time span of a single glacial stage, such as the Wisconsin; however, the levee complex probably could not have formed during the relatively short time interval when sea level rose rapidly at the end of a glacial stage. The basal seismic units (debris-flow deposits) may have been deposited at any time during sea level fluctuations. Although seismic evidence suggests that this cyclic sedimentation pattern may be related to glacio-eustatic sea level variations, cyclic fan growth may be attributed to other processes as well. For example, a bottom-simulating reflector (BSR) observed within the upper fan appears to be a gas hydrate. Migration of the hydrate phase boundary during sea level fluctuations and diapiric activity may be mechanisms for initiating widespread debris flows. 10 figs.

  17. Large-scale Modeling of Inundation in the Amazon Basin

    NASA Astrophysics Data System (ADS)

    Luo, X.; Li, H. Y.; Getirana, A.; Leung, L. R.; Tesfa, T. K.

    2015-12-01

    Flood events have impacts on the exchange of energy, water and trace gases between land and atmosphere, hence potentially affecting the climate. The Amazon River basin is the world's largest river basin. Seasonal floods occur in the Amazon Basin each year. The basin being characterized by flat gradients, backwater effects are evident in the river dynamics. This factor, together with large uncertainties in river hydraulic geometry, surface topography and other datasets, contribute to difficulties in simulating flooding processes over this basin. We have developed a large-scale inundation scheme in the framework of the Model for Scale Adaptive River Transport (MOSART) river routing model. Both the kinematic wave and the diffusion wave routing methods are implemented in the model. A new process-based algorithm is designed to represent river channel - floodplain interactions. Uncertainties in the input datasets are partly addressed through model calibration. We will present the comparison of simulated results against satellite and in situ observations and analysis to understand factors that influence inundation processes in the Amazon Basin.

  18. [Ground-clearing fires in the amazon and respiratory disease].

    PubMed

    Gonçalves, Karen dos Santos; de Castro, Hermano Albuquerque; Hacon, Sandra de Souza

    2012-06-01

    The intentional burning of forest biomass commonly known as "ground-clearing fires" is an age-old and widespread practice in the country and is seen as a major contributor to global emissions of greenhouse gases. However, global awareness of their potential impact is relatively recent. The occurrence of large ground-clearing fires in the Brazilian and international scenarios drew attention to the problem, but the measures taken to prevent and/or control the fires are still insufficient. In the Amazon region, with distinct geographical and environmental features from the rest of the country, with its historic process of land occupation, every year the ground-clearing fires expose larger portions of the population making them vulnerable to its effects. In this context, this non-systematic review presents the papers written over the past five years about the fires in the Brazilian Amazon and respiratory illness. The main objective is to provide information for managers and leaders on environmental issues about the problems related to biomass burning in the Amazon region.

  19. Ballast water: a threat to the Amazon Basin.

    PubMed

    Pereira, Newton Narciso; Botter, Rui Carlos; Folena, Rafael Dompieri; Pereira, José Pinheiro Fragoso Neto; da Cunha, Alan Cavalcanti

    2014-07-15

    Ballast water exchange (BWE) is the most efficient measure to control the invasion of exotic species from ships. This procedure is being used for merchant ships in national and international voyages. The ballast water (BW) salinity is the main parameter to evaluate the efficacy of the mid-ocean ballast water exchange. The vessels must report to the Port State Control (PSC), via ballast water report (BWR), where and how the mid-ocean BWE was performed. This measure allows the PSC to analyze this information before the ship arrives at the port, and to decide whether or not it should berth. Ship BW reporting forms were collected from the Captaincy of Santana and some ships were visited near the Port of Santana, located in Macapá (Amazon River), to evaluate the BW quality onboard. We evaluated data submitted in these BWR forms and concluded that the BWE efficacy might be compromised, because data contained in these BWR indicate that some ships did not change their BW. We found mistakes in filling the BWR forms and lack of information. Moreover, these ships had discharged BW with high level of salinity, Escherichia coli and total coliforms into the Amazon River. We concluded that the authorities of the Amazon Region need to develop more efficient proceedings to evaluate the ballast water reporting forms and BW quality, as there is potential risk of future invasion of exotic species in Brazilian ports. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Forest Structure at Five Sites in the Brazilian Amazon

    NASA Astrophysics Data System (ADS)

    Hunter, M. O.; Keller, M.; Camargo, P.; Palace, M.; de Oliveira, R. C.; Espirito-Santo, F. D.; Keizer, E.; Lefsky, M.; Asner, G.

    2006-12-01

    Insufficient knowledge of the spatial distribution of forest biomass in the Amazon limits the accuracy of estimates for carbon release resulting from deforestation. Recent research has attempted to improve the estimation of Amazon forest biomass through detailed analysis of extensive plot studies, remotely sensed variables, and knowledge of regional soils and climate. Because plot surveys are scarce, remote sensing offers an alternative approach to improve our knowledge of regional biomass. Remotely sensed variables are sensitive to underlying forest structural properties. We measured forest structure variables during field studies at five old growth forest sites in the Brazilian Amazon. The data collected included the frequency of stem diameters, tree heights, and crown diameters. Above-ground biomass at the sites ranged from 155 to 297 Mg ha-1 using an allometric equation developed by Chave et al. (2005) based on tree diameter at breast height (DBH), total height, and wood density. A single Weibull function based on DBH for 1539 trees fit total tree height with a small uncertainty (RMS error = 1.2 m) and a minimal bias (mean of residuals = -0.2 m) for all sites. These results suggest that remotely sensed tree height may be a useful predictor of forest biomass at a regional scale.

  1. Concurrent Dengue and malaria in the Amazon region.

    PubMed

    Santana, Vinícius Dos Santos; Lavezzo, Lígia Carolina; Mondini, Adriano; Terzian, Ana Carolina Bernardes; Bronzoni, Roberta Vieira de Moraes; Rossit, Andrea Regina Baptista; Machado, Ricardo Luiz Dantas; Rahal, Paula; Nogueira, Mara Correa Lelles; Nogueira, Maurício Lacerda

    2010-01-01

    The Amazon region has extensive forested areas and natural ecosystems, providing favorable conditions for the existence of innumerous arboviruses. Over 200 arboviruses have been isolated in Brazil and about 40 are associated with human disease. Four out of 40 are considered to be of public health importance in Brazil: Dengue viruses (1-4), Oropouche, Mayaro and Yellow Fever. Along with these viruses, about 98% of the malaria cases are restricted to the Legal Amazon region. This study aimed to investigate the presence of arboviruses in 111 clinical serum samples from patients living in Novo Repartimento (Pará), Plácido de Castro (Acre), Porto Velho (Rondônia) and Oiapoque (Amapá). The viral RNA was extracted and RT-PCR was performed followed by a Multiplex-Nested-PCR, using Flavivirus, Alphavirus and Orthobunyavirus generic and species-specific primers. Dengue virus serotype 2 was detected in two patients living in Novo Repartimento (Pará) that also presented active Plasmodium vivax infection. Despite scant data, this situation is likely to occur more frequently than detected in the Amazon region. Finally, it is important to remember that both diseases have similar clinical findings, thus the diagnosis could be made concomitantly for dengue and malaria in patients living or returning from areas where both diseases are endemic or during dengue outbreaks.

  2. Contrasting Strategies of Tree Function in a Seasonal Amazon Rainforest

    NASA Astrophysics Data System (ADS)

    Ivanov, V. Y.; Oliveira, R.; Agee, E.; Brum, M., Jr.; Saleska, S. R.; Fatichi, S.; Ewing, G.

    2015-12-01

    The increased frequency and severity of drought conditions in the Amazon Basin region have emphasized the question of rainforest vulnerability and resilience to heat and drought-induced stresses. However, what emerges from much research is that the impacts of droughts, essential controlling factors of the rainforest function, and variability of tree-scale strategies are yet to be fully understood. We present here a preliminary analysis of hydraulic relations of a seasonal Amazon rainforest using a set of ecohydrologic data collected through the GoAmazon project over dry and wet seasons. Expressions of different hydraulic strategies are identified that convey different implications for tree resilience during short- (diurnal) and longer-term (seasonal) stress periods. These hydraulic strategies appear to be inter-related with the tree growth and non-structural carbohydrate dynamics, contributing to the understanding of trait coordination at the whole-plant scale. Integration of individual responses is conducted over a range of wood density and exposure conditions. The results of this research thus shed light on the implication of variations in the rainforest function for future stresses, vital for predictive models of ecosystem dynamics of next generation.

  3. New products made with lignocellulosic nanofibers from Brazilian amazon forest

    NASA Astrophysics Data System (ADS)

    Bufalino, L.; Mendes, L. M.; Tonoli, G. H. D.; Rodrigues, A.; Fonseca, A.; Cunha, P. I.; Marconcini, J. M.

    2014-08-01

    The biodiversity of the Amazon forest is undoubtedly rich; hence there is considerable variety of plant fibers regarding their morphological, chemical and structural properties. The legal exploration of the Brazilian Amazon is based on sustainable management techniques, but the generation of a relevant amount of plant wastes still cant be avoided. The correct destination of such materials is a challenge that Brazilian companies have to face. In this context, the National Council of Science and Technology (CNPq) promoted the creation of investigation nets on sustainability of Brazilian agribusiness. The Brazilian Net on Lignocellulosic Composites and Nanocomposites was then created, with partnership between several national and international research institutions. Until the moment, the results showed that Amazon plant fibers that are discarded as residues have great potential to nanofiber production. Nanopapers with considerable high mechanical and physical strength, proper opacity and great crystalline index were produced by using a clean and simple mechanical method. Those materials are candidates to several uses such as packaging, substrates transparent conductive films, gas barrier films, solar cells and e-papers.

  4. Population genetic structure and vocal dialects in an amazon parrot.

    PubMed Central

    Wright, T F; Wilkinson, G S

    2001-01-01

    The relationship between cultural and genetic evolution was examined in the yellow-naped amazon Amazona auropalliata. This species has previously been shown to have regional dialects defined by large shifts in the acoustic structure of its learned contact call. Mitochondrial DNA sequence variation from a 680 base pair segment of the first domain of the control region was assayed in 41 samples collected from two neighbouring dialects in Costa Rica. The relationship of genetic variation to vocal variation was examined using haplotype analysis, genetic distance analysis, a maximum-likelihood estimator of migration rates and phylogenetic reconstructions. All analyses indicated a high degree of gene flow and, thus, individual dispersal across dialect boundaries. Calls sampled from sound libraries suggested that temporally stable contact call dialects occur throughout the range of the yellow-naped amazon, while the presence of similar dialects in the sister species Amazona ochrocephala suggests that the propensity to form dialects is ancestral in this clade. These results indicate that genes and culture are not closely associated in the yellow-naped amazon. Rather, they suggest that regional diversity in vocalizations is maintained by selective pressures that promote social learning and allow individual repertoires to conform to local call types. PMID:11297178

  5. Deforestation, floodplain dynamics, and carbon biogeochemistry in the Amazon Basin

    NASA Technical Reports Server (NTRS)

    Bryan, M. L.; Dunne, T.; Richey, J.; Melack, J.; Simonett, D. S.; Woodwell, G.

    1984-01-01

    Three aspects of the physical geographic environment of the Amazon Basin are considered: (1) deforestation and reforestation, (2) floodplain dynamics, and (3) fluvial geomorphology. Three independent projects are coupled in this experiment to improve the in-place research and to ensure that the Shuttle Imaging Radar-B (SIR-B) experiment stands on a secure base of ongoing work. Major benefits to be obtained center on: (1) areal and locational information, (2) data from various depression angles, and (3) digital radar signatures. Analysis will be conducted for selected sites to define how well SIR-B data can be used for: (1) definition of extent and location of deforestation in a tropical moist forest, (2) definition and quantification of the nature of the vegetation and edaphic conditions on the (floodplain) of the Amazon River, and (3) quantification of the accuracy with which the geometry and channel shifting of the Amazon River may be mapped using SIR-B imagery in conjunction with other remote sensing data.

  6. Amazon plant diversity revealed by a taxonomically verified species list.

    PubMed

    Cardoso, Domingos; Särkinen, Tiina; Alexander, Sara; Amorim, André M; Bittrich, Volker; Celis, Marcela; Daly, Douglas C; Fiaschi, Pedro; Funk, Vicki A; Giacomin, Leandro L; Goldenberg, Renato; Heiden, Gustavo; Iganci, João; Kelloff, Carol L; Knapp, Sandra; Cavalcante de Lima, Haroldo; Machado, Anderson F P; Dos Santos, Rubens Manoel; Mello-Silva, Renato; Michelangeli, Fabián A; Mitchell, John; Moonlight, Peter; de Moraes, Pedro Luís Rodrigues; Mori, Scott A; Nunes, Teonildes Sacramento; Pennington, Terry D; Pirani, José Rubens; Prance, Ghillean T; de Queiroz, Luciano Paganucci; Rapini, Alessandro; Riina, Ricarda; Rincon, Carlos Alberto Vargas; Roque, Nádia; Shimizu, Gustavo; Sobral, Marcos; Stehmann, João Renato; Stevens, Warren D; Taylor, Charlotte M; Trovó, Marcelo; van den Berg, Cássio; van der Werff, Henk; Viana, Pedro Lage; Zartman, Charles E; Forzza, Rafaela Campostrini

    2017-09-18

    Recent debates on the number of plant species in the vast lowland rain forests of the Amazon have been based largely on model estimates, neglecting published checklists based on verified voucher data. Here we collate taxonomically verified checklists to present a list of seed plant species from lowland Amazon rain forests. Our list comprises 14,003 species, of which 6,727 are trees. These figures are similar to estimates derived from nonparametric ecological models, but they contrast strongly with predictions of much higher tree diversity derived from parametric models. Based on the known proportion of tree species in neotropical lowland rain forest communities as measured in complete plot censuses, and on overall estimates of seed plant diversity in Brazil and in the neotropics in general, it is more likely that tree diversity in the Amazon is closer to the lower estimates derived from nonparametric models. Much remains unknown about Amazonian plant diversity, but this taxonomically verified dataset provides a valid starting point for macroecological and evolutionary studies aimed at understanding the origin, evolution, and ecology of the exceptional biodiversity of Amazonian forests.

  7. Public policies and communication affecting forest cover in the Amazon

    NASA Astrophysics Data System (ADS)

    Kawakami Savaget, E.; Batistella, M.; Aguiar, A. P. D.

    2014-12-01

    The research program Amazalert was based on information delivered by the IPCC through its 2007 report, which indicates forest degradation processes in the Amazonian region as a consequence of anthropogenic actions. Such processes affecting the structural and functional characteristics of ecosystems would harm environmental services that guarantee, for example, the regulation of climate and the provision of fresh water. A survey was organized, through a multidisciplinary perspective, on the main policies and programs that can affect forest cover in the Amazon. These rules and norms seek to regulate societal actions by defining a developmental model for the region. Although deforestation rates in the Brazilian Amazon have decreased significantly since 2004, some locations maintain high levels of deforestation. In 2013, for example, the municipalities of Monte Alegre, Óbidos, Alenquer, Oriximiná, Curuá and Almeirin, in the northern region of the state of Para, showed the highest rates of deforestation in the Amazon. Managers and stakeholders within these areas are being interviewed to provide insights on how policies are interpreted and applied locally. There is an understanding delay between discourses normalized by federal governmental institutions and claims of local societies. The possible lack of clarity in official discourses added to the absence of a local communicative dynamics cause the phenomenon of incomplete information. Conflicts often occur in local institutional arenas resulting in violence and complex social and historical dissonances, enhanced by other public policies idealized in different temporal and spatial conditions.

  8. New observations of sinuous channels on the Amazon Fan

    NASA Astrophysics Data System (ADS)

    Flood, R. D.

    2014-12-01

    High-sinuosity submarine fan channels on the Amazon Fan were first observed using long-range (GLORIA) side-scan sonar in 1982 and mapped in greater detail using multibeam sonar in 1984. These data have provided important insights into the nature and evolution of submarine channel systems. Subsequent studies on the Amazon Fan have focused on avulsion patterns, sedimentation patterns, fan growth and the climate record contained in fan sediments, and there has been relatively little additional work on the details of sinuous channel morphology. Channels on the Amazon Fan have been imaged by multibeam sonar on several occasions since 1984 during focused studies, regional mapping and ship transit. These multibeam data are being compiled and studied to better characterize these iconic channels. One observation of particular interest is that, on the Amazon Fan, channel-wall slumps appear to be more common than previously thought. Drilling of a cut-off meander during ODP Leg 155 on the Amazon Fan showed the presence of slumped material deeper in the channel suggesting that failure of the channel wall was in part responsible for the abandonment and filling of that meander loop. The failure also apparently created a sandy debris flow with clasts of fine-grained levee material transported in a sandy matrix. This sandy debris flow may have been able to flow along the channel and deposit at the seaward end where similar sediments can be found. Disturbed zones now visible on the inner walls of channels at several other places along the channels suggest that these kinds of inner-wall slumps may play important roles in channel evolution and fan growth. Channel-blocking slumps can isolate channel loops which can then fill with sandy sediments, and avulsions are likely if this kind of slump fills the channel. The failure of channel walls can also lead to new channel segments that tend to straighten the channel. Dramatic changes to the shape of the channel can likely lead to large and

  9. Quantifying How Climate Affects Vegetation in the Amazon Rainforest

    NASA Astrophysics Data System (ADS)

    Das, K.; Kodali, A.; Szubert, M.; Ganguly, S.; Bongard, J.

    2016-12-01

    Amazon droughts in 2005 and 2010 have raised serious concern about the future of the rainforest. Amazon forests are crucial because of their role as the largest carbon sink in the world which would effect the global warming phenomena with decreased photosynthesis activity. Especially, after a decline in plant growth in 1.68 million km2 forest area during the once-in-a-century severe drought in 2010, it is of primary importance to understand the relationship between different climatic variables and vegetation. In an earlier study, we have shown that non-linear models are better at capturing the relation dynamics of vegetation and climate variables such as temperature and precipitation, compared to linear models. In this research, we learn precise models between vegetation and climatic variables (temperature, precipitation) for normal conditions in the Amazon region using genetic programming based symbolic regression. This is done by removing high elevation and drought affected areas and also considering the slope of the region as one of the important factors while building the model. The model learned reveals new and interesting ways historical and current climate variables affect the vegetation at any location. MAIAC data has been used as a vegetation surrogate in our study. For temperature and precipitation, we have used TRMM and MODIS Land Surface Temperature data sets while learning the non-linear regression model. However, to generalize the model to make it independent of the data source, we perform transfer learning where we regress a regularized least squares to learn the parameters of the non-linear model using other data sources such as the precipitation and temperature from the Climatic Research Center (CRU). This new model is very similar in structure and performance compared to the original learned model and verifies the same claims about the nature of dependency between these climate variables and the vegetation in the Amazon region. As a result of this

  10. Could the STARS detect deforestation in the Brazilian Amazon?

    NASA Astrophysics Data System (ADS)

    Mello, M. P.; Trabaquini, K.; Rudorff, B. F.; Oliveira, J. C.

    2013-05-01

    The Brazilian National Institute for Space Research (INPE) has been monitoring the Brazilian Legal Amazon deforestation through the PRODES project since 1988, providing yearly deforestation maps based on about 60 m spatial resolution. Additionally, INPE's Real Time Deforestation Detection System (DETER) has monthly indicating, based on high temporal resolution satellite data, where and when the forest is being felled. However, those monitoring processes are mainly based on visual interpretation, which is accurate but a hard and time consuming task. The Spectral-Temporal Analysis by Response Surface (STARS), which synthesizes the full information content of a multitemporal-multispectral remote sensing image dataset to represent the spectral variation over time of features on the Earth's surface, comes as an alternative for applications in land cover change detection, such as deforestation in the Brazilian Amazon. Thus, since deforestation process presents particular spectral changes over time, spectral-temporal response surfaces could be fitted to describe its change patterns, allowing to detect deforested areas. In this context, this work aims to apply the STARS to detect deforestation in the Brazilian Amazon, using Landsat-5 multitemporal-multispectral images. Four georeferenced images covering about 3.400 square kilometres within the Mato Grosso State, Brazil (13°17'S; 55°50'W to 14°20'S; 55°10'W) were used: one Multispectral Scanner (MSS) image from 1980 (bands 4, 5, 6 and 7 - 60 m spatial resolution); and three Thematic Mapper (TM) images from 1990, 2000 and 2010 (bands 1, 2, 3, 4, 5 and 7 - 30 m spatial resolution). The MSS image was resampled to 30 m to match the TM spatial resolution. All images were then used as input for STARS resulting in a Multi-Coefficient Image (MCI) with 10 synthetic bands formed by the 10 fitted coefficients of a Polynomial Trend Surface (PTS) model with degree equal to three. The MCI was used as input for a decision tree (DT

  11. Biogeochemistry of the Amazon River Basin: the role of aquatic ecosystems in the Amazon functioning

    NASA Astrophysics Data System (ADS)

    Victoria, R. L.; Ballester, V. R.; Krushe, A. V.; Richey, J. E.; Aufdenkampe, A. K.; Kavaguishi, N. L.; Gomes, B. M.; Victoria, D. D.; Montebello, A. A.; Niell, C.; Deegan, L.

    2004-12-01

    In this study we present the results of an integrated analysis of physical and anthropogenic controls of river biogeochemistry in Amazônia. At the meso-scale level, our results show that both soil properties and land use are the main drivers of river biogeochemistry and metabolism, with pasture cover and soil exchange cation capacity explaining 99% (p < 0.01) of the variability observed in surface water ions and nutrients concentrations. In small rivers, forest clearing can increase cations, P and C inputs. P and light are the main PPL limiting factors in forested streams, while in pasture streams N becomes limiting. P export to streams may increase or remain nearly undetectable after forest-to-pasture conversion, depending on soil type. Pasture streams on Oxisols have very low P export, while on Ultisols P export is increased. Conversions of forest to pasture leads to extensive growth of in channel Paspalum resulting in higher DOC concentrations and respiration rates. Pasture streams have higher DOC fluxes when compared to the forest ones. In pasture areas the soil are compacted, there is less infiltration and higher surface run off, leaching soil superficial layers and caring more DOC to the streams. In forest areas infiltration is deeper into the soils and canopy interaction is higher. Mineralogy and soil properties are key factors determining exports of nutrients to streams. Therefore, land use change effects on nutrient export from terrestrial to aquatic ecosystems and the atmosphere must be understood within the context of varying soil properties across the Amazon Basin.

  12. Assessing the Amazon Basin Circulation with Stable Water Isotopes

    NASA Astrophysics Data System (ADS)

    McGuffie, K.; Henderson-Sellers, A.

    2004-05-01

    The isotopic abundances of Oxygen-18 (δ 18O) and Deuterium (δ D) over the Amazon are used to constrain simulations of the water cycle in this, the largest river basin in the world. Tracking the two stable but rare isotopes of water (1HD16O and 1H218O) makes it possible to trace Amazonian regional evaporative and condensation processes. This offers isotopic constraints on regional to global-scale atmospheric moisture budgets. Based on data in the Global Network on Isotopes in Precipitation (GNIP) database, we analyse the simulation of the land surface hydrology and water cycling. Temporal changes between 1965 and 2000 in stable water isotopic signatures in the Amazon have been used to evaluate global climate model (GCM) predictions revealing notable anomalies. For example, the differences in the wet season deuterium excess between Belem and Manaus are consistent with recent GCM simulations only if there has been a relative increase in evaporation from non-fractionating water sources over this period. Despite earlier predictions that land-use change signals would be found, late twentieth century data reveal no significant change in dry season isotopic characteristics. On the other hand, more recent isotopic data do show trends at stations in the Andes, where as much as 88% of the rainfall is thought to be derived from recycled moisture. At Izobamba the wet season depletions are enhanced (greater depletion) and the dry season ones decreased (less depletion). At Bogota only the wet months show statistically significant changes - also an enhancement. More depletion in the wet months is consistent with reductions in non-fractioning recycling such as through transpiration and in full re-evaporation of canopy-intercepted rainfall. These data might be linked to deforestation impacts. Results of GCM and simpler model simulations of the Amazon suggest that the recent stable isotope record is consistent with the predicted effects of forest removal, perhaps combined with

  13. Molecular characterization of an earliest cacao (Theobroma cacao L.) collection from Peruvian Amazon using microsatllite DNA markers

    USDA-ARS?s Scientific Manuscript database

    Cacao (Theobroma cacao L.) is indigenous to the Amazon region of South America. The Peruvian Amazon harbors a large number of diverse cacao populations. Since the 1930s, several numbers of populations have been collected from the Peruvian Amazon and maintained as ex situ germplasm repositories in ...

  14. Detecting climate change concurrent with deforestation in the Amazon Basin: Which way has it gone

    SciTech Connect

    Chu, P.S.; Yu, Z.P. ); Hastenrath, S. )

    1994-04-01

    To detect climate change in the Amazon Basin, as possibly induced by deforestation, time series of monthly mean outgoing longwave radiation (OLR), an index of tropical convection, and monthly rainfall totals at Belem and Manaus for the past 15 years are analyzed. A systematic bias in the original OLR series was removed prior to the analysis. Linear regression analysis and nonlinear Mann-Kendall rank statistic are employed to detect trends. Over almost all of the basin, the OLR trend values are negative, indicating an increase of convection with time. The largest negative and statistically significant values are found in the western equatorial portion of Amazonia, where rainfall is most abundant. Consistent with this, the rainfall series at Belem and Manaus also feature upward trends. Small positive and statistically insignificant, OLR trend values are confined to the southern fringe of the basin, where deforestation has been most drastic. Thus, there is little indication for a rainfall increase associated with deforestation, but rather a strong signal of enhanced convection in the portion of Amazonia contributing most strongly to the total precipitation over the basin. 23 refs., 5 figs.

  15. Functional and biological diversity of foliar spectra in tree canopies throughout the Andes to Amazon region.

    PubMed

    Asner, Gregory P; Martin, Roberta E; Carranza-Jiménez, Loreli; Sinca, Felipe; Tupayachi, Raul; Anderson, Christopher B; Martinez, Paola

    2014-10-01

    Spectral properties of foliage express fundamental chemical interactions of canopies with solar radiation. However, the degree to which leaf spectra track chemical traits across environmental gradients in tropical forests is unknown. We analyzed leaf reflectance and transmittance spectra in 2567 tropical canopy trees comprising 1449 species in 17 forests along a 3400-m elevation and soil fertility gradient from the Amazonian lowlands to the Andean treeline. We developed quantitative links between 21 leaf traits and 400-2500-nm spectra, and developed classifications of tree taxa based on spectral traits. Our results reveal enormous inter-specific variation in spectral and chemical traits among canopy trees of the western Amazon. Chemical traits mediating primary production were tightly linked to elevational changes in foliar spectral signatures. By contrast, defense compounds and rock-derived nutrients tracked foliar spectral variation with changing soil fertility in the lowlands. Despite the effects of abiotic filtering on mean foliar spectral properties of tree communities, the spectra were dominated by phylogeny within any given community, and spectroscopy accurately classified 85-93% of Amazonian tree species. Our findings quantify how tropical tree canopies interact with sunlight, and indicate how to measure the functional and biological diversity of forests with spectroscopy. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  16. Impacts of stocking on the genetic diversity of Colossoma macropomum in central Amazon, Brazil.

    PubMed

    de Queiroz, C A; Sousa, N R; da Silva, G F; Inoue, L A K A

    2016-04-07

    Tambaqui (Colossoma macropomum) is the main fish species farmed on a commercial scale in northern Brazil. In view of the current scenario of Brazilian aquaculture, studies on the genetic improvement and reproductive management of captive tambaqui are crucial in identifying the genetic variability of broodstocks and devising management practices. Genetic diversity of three tambaqui broodstocks in western Amazon was evaluated using molecular markers. Fin samples were collected from 89 fish; 38 from Balbina, 30 from a hatchery in Rio Preto da Eva, and 21 from the experimental farm of the Federal University of Amazonas (UFAM). Ten primers were used for the analysis of diversity and genetic structure. Of the 152 bands produced, 146 were polymorphic. The proportion of polymorphic loci showed little variation among the three stocks. The lowest and highest rates were found in the Rio Preto da Eva (80.92%) and Balbina (85.53%) stocks, respectively. Heterozygosity (H) and Shannon (I) indices were similar among the stocks; the lowest values were found in Balbina (H = 0.279 and I = 0.419), and the highest in UFAM (H = 0.294 and I = 0.439). Following analysis of the genetic structure and relationship, the sample was divided into two groups, with the Balbina stock clearly deviating from the others. The results suggest that, to increase genetic variability, molecular information may be used instead of replacement of wild breeders. The groups characterized here can be used in genetic improvement programs with other tambaqui broodstocks from different areas of South America.

  17. Hepatitis B Infection Is Associated with Asymptomatic Malaria in the Brazilian Amazon

    PubMed Central

    Andrade, Bruno B.; Santos, Cristiane J. N.; Camargo, Luís M.; Souza-Neto, Sebastião M.; Reis-Filho, Antonio; Clarêncio, Jorge; Mendonça, Vitor R. R.; Luz, Nívea F.; Camargo, Erney P.; Barral, Aldina; Silva, Antônio A. M.; Barral-Netto, Manoel

    2011-01-01

    Background Areas that are endemic for malaria are also highly endemic for hepatitis B virus (HBV) infection. Nevertheless, it is unknown whether HBV infection modifies the clinical presentation of malaria. This study aimed to address this question. Methodology and Findings An observational study of 636 individuals was performed in Rondônia, western Amazon, Brazil between 2006 and 2007. Active and passive case detections identified Plasmodium infection by field microscopy and nested Polymerase Chain Reaction (PCR). HBV infections were identified by serology and confirmed by real-time PCR. Epidemiological information and plasma cytokine profiles were studied. The data were analyzed using adjusted multinomial logistic regression. Plasmodium-infected individuals with active HBV infection were more likely to be asymptomatic (OR: 120.13, P<0.0001), present with lower levels of parasitemia and demonstrate a decreased inflammatory cytokine profile. Nevertheless, co-infected individuals presented higher HBV viremia. Plasmodium parasitemia inversely correlated with plasma HBV DNA levels (r = −0.6; P = 0.0003). Conclusion HBV infection diminishes the intensity of malaria infection in individuals from this endemic area. This effect seems related to cytokine balance and control of inflammatory responses. These findings add important insights to the understanding of the factors affecting the clinical outcomes of malaria in endemic regions. PMID:21625634

  18. Haline hurricane wake in the Amazon/Orinoco plume: AQUARIUS/SACD and SMOS observations

    NASA Astrophysics Data System (ADS)

    Grodsky, Semyon A.; Reul, Nicolas; Lagerloef, Gary; Reverdin, Gilles; Carton, James A.; Chapron, Bertrand; Quilfen, Yves; Kudryavtsev, Vladimir N.; Kao, Hsun-Ying

    2012-10-01

    At its seasonal peak the Amazon/Orinoco plume covers a region of 106 km2 in the western tropical Atlantic with more than 1 m of extra freshwater, creating a near-surface barrier layer (BL) that inhibits mixing and warms the sea surface temperature (SST) to >29°C. Here new sea surface salinity (SSS) observations from the Aquarius/SACD and SMOS satellites help elucidate the ocean response to hurricane Katia, which crossed the plume in early fall, 2011. Its passage left a 1.5 psu high haline wake covering >105 km2 (in its impact on density, the equivalent of a 3.5°C cooling) due to mixing of the shallow BL. Destruction of this BL apparently decreased SST cooling in the plume, and thus preserved higher SST and evaporation than outside. Combined with SST, the new satellite SSS data provide a new and better tool to monitor the plume extent and quantify tropical cyclone upper ocean responses with important implications for forecasting.

  19. Paleoproterozoic felsic volcanism of the Tapajós Mineral Province, Southern Amazon Craton, Brazil

    NASA Astrophysics Data System (ADS)

    Roverato, M.; Giordano, D.; Echeverri-Misas, C. M.; Juliani, C.

    2016-01-01

    Amazonian rocks record one amongst the most complete and best-preserved Paleoproterozoic magmatic episodes on Earth. The present contribution documents the extremely well preserved paleoproterozoic architecture of a series of felsic rocks found in the Tapajós Mineral Province (TMP), located in the western part of Pará State, southern Amazon Craton, north of Brazil. These rocks are the first to be investigated to comprehend, based on their textural evidences, their emplacement mechanisms. Textural characterization allowed to identify three main facies with, as following reported, 1) chaotic ("Breccia") group, 2) eutaxitic ("Eutax") group and 3) parataxitic ("Paratax") group vitrophyric textures. Given the superb preservation of our samples, the investigated rocks are grouped, according to their grade of welding, into a wide variety of lithofacies from very low-grade to high-grade and rheomorphic ignimbrites. In the "Paratax group" strong similarities with banding in lava flows are observed. Based on the presented data we discuss the effusive or explosive origin of the observed flow mechanisms.

  20. A Slippery Slope: Children's Perceptions of Their Role in Environmental Preservation in the Peruvian Amazon

    ERIC Educational Resources Information Center

    Galeano, Rebecca

    2013-01-01

    Despite international attention and attempts to preserve the environmental diversity of the Amazon, it is an accepted fact that those who inhabit the forest must be the ones who preserve it. This article presents an analysis of how children in small rural riverine communities along the Amazon understand the importance of environmental preservation…

  1. First record of Anastrepha flavipennis Greene (Diptera: Tephritidae) and of its host in the Brazilian Amazon.

    PubMed

    Corrêa, E C; Silva, N M; Silva, F C C; Pena, M R

    2011-01-01

    Anastrepha flavipennis Greene was obtained from Pouteria glomerata (Sapotaceae) fruits, known as "abiurana-da-várzea" in the Brazilian Amazon. This is the first record of A. flavipennis for the state of Amazonas and of P. glomerata as a host for this fruit fly in the Amazon Basin.

  2. The JERS Amazon Multi-Season Mapping Study (JAMMS): Observation Strategies and Data Characteristics

    NASA Technical Reports Server (NTRS)

    Chapman, B.; Freeman, A.; Siqueira, P.

    2000-01-01

    The JERS-1 Amazon Multi-season Mapping Study (JAMMS), part of the Global Rain Forest Mapping (GRFM) project led by the National Space Development Agency of Japan (NASDA), had an ambitious agenda to completely map the Amazon River floodpain (and surrounding areas) twice at high resolution.

  3. Metagenomics Analysis of Microorganisms in Freshwater Lakes of the Amazon Basin.

    PubMed

    Toyama, Danyelle; Kishi, Luciano Takeshi; Santos-Júnior, Célio Dias; Soares-Costa, Andrea; de Oliveira, Tereza Cristina Souza; de Miranda, Fernando Pellon; Henrique-Silva, Flávio

    2016-12-22

    The Amazon Basin is the largest hydrographic basin on the planet, and the dynamics of its aquatic microorganisms strongly impact global biogeochemical cycles. However, it remains poorly studied. This metagenome project was performed to obtain a snapshot of prokaryotic microbiota from four important lakes in the Amazon Basin.

  4. East of the Andes: The genetic profile of the Peruvian Amazon populations.

    PubMed

    Di Corcia, T; Sanchez Mellado, C; Davila Francia, T J; Ferri, G; Sarno, S; Luiselli, D; Rickards, O

    2017-06-01

    Assuming that the differences between the Andes and the Amazon rainforest at environmental and historical levels have influenced the distribution patterns of genes, languages, and cultures, the maternal and paternal genetic reconstruction of the Peruvian Amazon populations was used to test the relationships within and between these two extreme environments. We analyzed four Peruvian Amazon communities (Ashaninka, Huambisa, Cashibo, and Shipibo) for both Y chromosome (17 STRs and 8 SNPs) and mtDNA data (control region sequences, two diagnostic sites of the coding region, and one INDEL), and we studied their variability against the rest of South America. We detected a high degree of genetic diversity in the Peruvian Amazon people, both for mtDNA than for Y chromosome, excepting for Cashibo people, who seem to have had no exchanges with their neighbors, in contrast with the others communities. The genetic structure follows the divide between the Andes and the Amazon, but we found a certain degree of gene flow between these two environments, as particularly emerged with the Y chromosome descent cluster's (DCs) analysis. The Peruvian Amazon is home to an array of populations with differential rates of genetic exchanges with their neighbors and with the Andean people, depending on their peculiar demographic histories. We highlighted some successful Y chromosome lineages expansions originated in Peru during the pre-Columbian history which involved both Andeans and Amazon Arawak people, showing that at least a part of the Amazon rainforest did not remain isolated from those exchanges. © 2017 Wiley Periodicals, Inc.

  5. Amazon Forest Structure from IKONOS Satellite Data and the Automated Characterization of Forest Canopy Properties

    Treesearch

    Michael Palace; Michael Keller; Gregory P. Asner; Stephen Hagen; Bobby . Braswell

    2008-01-01

    We developed an automated tree crown analysis algorithm using 1-m panchromatic IKONOS satellite images to examine forest canopy structure in the Brazilian Amazon. The algorithm was calibrated on the landscape level with tree geometry and forest stand data at the Fazenda Cauaxi (3.75◦ S, 48.37◦ W) in the eastern Amazon, and then compared with forest...

  6. Metagenomics Analysis of Microorganisms in Freshwater Lakes of the Amazon Basin

    PubMed Central

    Toyama, Danyelle; Kishi, Luciano Takeshi; Santos-Júnior, Célio Dias; Soares-Costa, Andrea; de Oliveira, Tereza Cristina Souza; de Miranda, Fernando Pellon

    2016-01-01

    The Amazon Basin is the largest hydrographic basin on the planet, and the dynamics of its aquatic microorganisms strongly impact global biogeochemical cycles. However, it remains poorly studied. This metagenome project was performed to obtain a snapshot of prokaryotic microbiota from four important lakes in the Amazon Basin. PMID:28007865

  7. A Slippery Slope: Children's Perceptions of Their Role in Environmental Preservation in the Peruvian Amazon

    ERIC Educational Resources Information Center

    Galeano, Rebecca

    2013-01-01

    Despite international attention and attempts to preserve the environmental diversity of the Amazon, it is an accepted fact that those who inhabit the forest must be the ones who preserve it. This article presents an analysis of how children in small rural riverine communities along the Amazon understand the importance of environmental preservation…

  8. The JERS Amazon Multi-Season Mapping Study (JAMMS): Observation Strategies and Data Characteristics

    NASA Technical Reports Server (NTRS)

    Chapman, B.; Freeman, A.; Siqueira, P.

    2000-01-01

    The JERS-1 Amazon Multi-season Mapping Study (JAMMS), part of the Global Rain Forest Mapping (GRFM) project led by the National Space Development Agency of Japan (NASDA), had an ambitious agenda to completely map the Amazon River floodpain (and surrounding areas) twice at high resolution.

  9. Atmospheric correction analysis on LANDSAT data over the Amazon region. [Manaus, Brazil

    NASA Technical Reports Server (NTRS)

    Parada, N. D. J. (Principal Investigator); Dias, L. A. V.; Dossantos, J. R.; Formaggio, A. R.

    1983-01-01

    The Amazon Region natural resources were studied in two ways and compared. A LANDSAT scene and its attributes were selected, and a maximum likelihood classification was made. The scene was atmospherically corrected, taking into account Amazonic peculiarities revealed by (ground truth) of the same area, and the subsequent classification. Comparison shows that the classification improves with the atmospherically corrected images.

  10. Vibrio cholerae O1 from superficial water of the Tucunduba Stream, Brazilian Amazon

    PubMed Central

    Sá, L.L.C.; Vale, E.R.V.; Garza, D.R.; Vicente, A.C.P.

    2012-01-01

    Isolation and genetic characterization of an environmental Vibrio cholerae O1 from the Amazon is reported. This strain lacks two major virulence factors - CTX and TCP - but carries other genes related to virulence. Genetic similarity with epidemic strains is evaluated and the importance of V. cholerae surveillance in the Amazon is emphasized. PMID:24031874

  11. A forensic entomology case from the Amazon rain forest of Brazil.

    PubMed

    Pujol-Luz, José R; Marques, Helder; Ururahy-Rodrigues, Alexandre; Rafael, José Albertino; Santana, Fernando H A; Arantes, Luciano C; Constantino, Reginaldo

    2006-09-01

    The first case of application of forensic entomology in the Brazilian Amazonia is described. The corpses of 26 men were found in the rainforest in Rondonia State, Brazil. Fly larvae collected on the bodies during autopsy were identified as Paralucilia fulvinota (Diptera, Calliphoridae). No data or specimens were collected at the crime scene. At the laboratory, the larvae developed into pupae in 58 h and into adults in 110.5 h. The total development time for P. fulvinota was measured in field experiments inside the forest. The age of the larvae when collected from the bodies was estimated as the difference between the time required for them to become adults and the total development time for this species. The estimated age of the maggots and the minimum postmortem interval was 5.7 days.

  12. Tropical North Atlantic ocean-atmosphere interactions synchronize forest carbon losses from hurricanes and Amazon fires

    NASA Astrophysics Data System (ADS)

    Chen, Yang; Randerson, James T.; Morton, Douglas C.

    2015-08-01

    We describe a climate mode synchronizing forest carbon losses from North and South America by analyzing time series of tropical North Atlantic sea surface temperatures (SSTs), landfall hurricanes and tropical storms, and Amazon fires during 1995-2013. Years with anomalously high tropical North Atlantic SSTs during March-June were often followed by a more active hurricane season and a larger number of satellite-detected fires in the southern Amazon during June-November. The relationship between North Atlantic tropical cyclones and southern Amazon fires (r = 0.61, p < 0.003) was stronger than links between SSTs and either cyclones or fires alone, suggesting that fires and tropical cyclones were directly coupled to the same underlying atmospheric dynamics governing tropical moisture redistribution. These relationships help explain why seasonal outlook forecasts for hurricanes and Amazon fires both failed in 2013 and may enable the design of improved early warning systems for drought and fire in Amazon forests.

  13. An explicit GIS-based river basin framework for aquatic ecosystem conservation in the Amazon

    NASA Astrophysics Data System (ADS)

    Venticinque, Eduardo; Forsberg, Bruce; Barthem, Ronaldo; Petry, Paulo; Hess, Laura; Mercado, Armando; Cañas, Carlos; Montoya, Mariana; Durigan, Carlos; Goulding, Michael

    2016-11-01

    Despite large-scale infrastructure development, deforestation, mining and petroleum exploration in the Amazon Basin, relatively little attention has been paid to the management scale required for the protection of wetlands, fisheries and other aspects of aquatic ecosystems. This is due, in part, to the enormous size, multinational composition and interconnected nature of the Amazon River system, as well as to the absence of an adequate spatial model for integrating data across the entire Amazon Basin. In this data article we present a spatially uniform multi-scale GIS framework that was developed especially for the analysis, management and monitoring of various aspects of aquatic systems in the Amazon Basin. The Amazon GIS-Based River Basin Framework is accessible as an ESRI geodatabase at doi:10.5063/F1BG2KX8.

  14. What We Can Learn from Amazon for Clinical Decision Support Systems.

    PubMed

    Abid, Sidra; Keshavjee, Karim; Karim, Arsalan; Guergachi, Aziz

    2017-01-01

    Health care continue to lag behind other industries, such as retail and financial services, in the use of decision-support-like tools. Amazon is particularly prolific in the use of advanced predictive and prescriptive analytics to assist its customers to purchase more, while increasing satisfaction, retention, repeat-purchases and loyalty. How can we do the same in health care? In this paper, we explore various elements of the Amazon website and Amazon's data science and big data practices to gather inspiration for re-designing clinical decision support in the health care sector. For each Amazon element we identified, we present one or more clinical applications to help us better understand where Amazon's.

  15. Patterns of Transcript Abundance of Eukaryotic Biogeochemically-Relevant Genes in the Amazon River Plume.

    PubMed

    Zielinski, Brian L; Allen, Andrew E; Carpenter, Edward J; Coles, Victoria J; Crump, Byron C; Doherty, Mary; Foster, Rachel A; Goes, Joaquim I; Gomes, Helga R; Hood, Raleigh R; McCrow, John P; Montoya, Joseph P; Moustafa, Ahmed; Satinsky, Brandon M; Sharma, Shalabh; Smith, Christa B; Yager, Patricia L; Paul, John H

    2016-01-01

    The Amazon River has the largest discharge of all rivers on Earth, and its complex plume system fuels a wide array of biogeochemical processes, across a large area of the western tropical North Atlantic. The plume thus stimulates microbial processes affecting carbon sequestration and nutrient cycles at a global scale. Chromosomal gene expression patterns of the 2.0 to 156 μm size-fraction eukaryotic microbial community were investigated in the Amazon River Plume, generating a robust dataset (more than 100 million mRNA sequences) that depicts the metabolic capabilities and interactions among the eukaryotic microbes. Combining classical oceanographic field measurements with metatranscriptomics yielded characterization of the hydrographic conditions simultaneous with a quantification of transcriptional activity and identity of the community. We highlight the patterns of eukaryotic gene expression for 31 biogeochemically significant gene targets hypothesized to be valuable within forecasting models. An advantage to this targeted approach is that the database of reference sequences used to identify the target genes was selectively constructed and highly curated optimizing taxonomic coverage, throughput, and the accuracy of annotations. A coastal diatom bloom highly expressed nitrate transporters and carbonic anhydrase presumably to support high growth rates and enhance uptake of low levels of dissolved nitrate and CO2. Diatom-diazotroph association (DDA: diatoms with nitrogen fixing symbionts) blooms were common when surface salinity was mesohaline and dissolved nitrate concentrations were below detection, and hence did not show evidence of nitrate utilization, suggesting they relied on ammonium transporters to aquire recently fixed nitrogen. These DDA blooms in the outer plume had rapid turnover of the photosystem D1 protein presumably caused by photodegradation under increased light penetration in clearer waters, and increased expression of silicon transporters as

  16. Aquatic Biodiversity in the Amazon: Habitat Specialization and Geographic Isolation Promote Species Richness

    PubMed Central

    Albert, James S.; Carvalho, Tiago P.; Petry, Paulo; Holder, Meghan A.; Maxime, Emmanuel L.; Espino, Jessica; Corahua, Isabel; Quispe, Roberto; Rengifo, Blanca; Ortega, Hernan; Reis, Roberto E.

    2011-01-01

    Simple Summary The immense rainforest ecosystems of tropical America represent some of the greatest concentrations of biodiversity on the planet. Prominent among these are evolutionary radiations of freshwater fishes, including electric eels, piranhas, stingrays, and a myriad of small-bodied and colorful tetras, cichlids, and armored catfishes. In all, the many thousands of these forms account for nearly 10% of all the vertebrate species on Earth. This article explores the complimentary roles that ecological and geographic filters play in limiting dispersal in aquatic species, and how these factors contribute to the accumulation of species richness over broad geographic and evolutionary time scales. Abstract The Neotropical freshwater ichthyofauna has among the highest species richness and density of any vertebrate fauna on Earth, with more than 5,600 species compressed into less than 12% of the world's land surface area, and less than 0.002% of the world's total liquid water supply. How have so many species come to co-exist in such a small amount of total habitat space? Here we report results of an aquatic faunal survey of the Fitzcarrald region in southeastern Peru, an area of low-elevation upland (200–500 m above sea level) rainforest in the Western Amazon, that straddles the headwaters of four large Amazonian tributaries; the Juruá (Yurúa), Ucayali, Purús, and Madre de Dios rivers. All measures of fish species diversity in this region are high; there is high alpha diversity with many species coexisting in the same locality, high beta diversity with high turnover between habitats, and high gamma diversity with high turnover between adjacent tributary basins. Current data show little species endemism, and no known examples of sympatric sister species, within the Fitzcarrald region, suggesting a lack of localized or recent adaptive divergences. These results support the hypothesis that the fish species of the Fitzcarrald region are relatively ancient

  17. Patterns of Transcript Abundance of Eukaryotic Biogeochemically-Relevant Genes in the Amazon River Plume

    PubMed Central

    Allen, Andrew E.; Carpenter, Edward J.; Coles, Victoria J.; Crump, Byron C.; Doherty, Mary; Foster, Rachel A.; Goes, Joaquim I.; Gomes, Helga R.; Hood, Raleigh R.; McCrow, John P.; Montoya, Joseph P.; Moustafa, Ahmed; Satinsky, Brandon M.; Sharma, Shalabh; Smith, Christa B.; Yager, Patricia L.; Paul, John H.

    2016-01-01

    The Amazon River has the largest discharge of all rivers on Earth, and its complex plume system fuels a wide array of biogeochemical processes, across a large area of the western tropical North Atlantic. The plume thus stimulates microbial processes affecting carbon sequestration and nutrient cycles at a global scale. Chromosomal gene expression patterns of the 2.0 to 156 μm size-fraction eukaryotic microbial community were investigated in the Amazon River Plume, generating a robust dataset (more than 100 million mRNA sequences) that depicts the metabolic capabilities and interactions among the eukaryotic microbes. Combining classical oceanographic field measurements with metatranscriptomics yielded characterization of the hydrographic conditions simultaneous with a quantification of transcriptional activity and identity of the community. We highlight the patterns of eukaryotic gene expression for 31 biogeochemically significant gene targets hypothesized to be valuable within forecasting models. An advantage to this targeted approach is that the database of reference sequences used to identify the target genes was selectively constructed and highly curated optimizing taxonomic coverage, throughput, and the accuracy of annotations. A coastal diatom bloom highly expressed nitrate transporters and carbonic anhydrase presumably to support high growth rates and enhance uptake of low levels of dissolved nitrate and CO2. Diatom-diazotroph association (DDA: diatoms with nitrogen fixing symbionts) blooms were common when surface salinity was mesohaline and dissolved nitrate concentrations were below detection, and hence did not show evidence of nitrate utilization, suggesting they relied on ammonium transporters to aquire recently fixed nitrogen. These DDA blooms in the outer plume had rapid turnover of the photosystem D1 protein presumably caused by photodegradation under increased light penetration in clearer waters, and increased expression of silicon transporters as

  18. Volcanic Ashes Intercalated with Cultural Vestiges at Archaeological Sites from the Piedmont to the Amazon, Ecuador

    NASA Astrophysics Data System (ADS)

    Valverde, Viviana; Mothes, Patricia; Andrade, Daniel

    2014-05-01

    Huapula and Pablo VI sites (in the western Amazon region of Ecuador), the reworked ashes are predominantly of Sangay volcano (in permanent eruptive activity since 1628). Finally, the work shared between archaeologists and volcanologists allowed us to discover more deposits of volcanic ashes at archaeological sites. These layers sometimes have more than 30 cm thickness in distal regions, such as the thick ash layer left by Pululahua's 2400 yBP eruption, a fact which helps us to comprehend the impact of volcanoes on past cultures.

  19. Climatic variability between SST and river discharge at Amazon region

    NASA Astrophysics Data System (ADS)

    Silva, M. E.; Silva, E. R. L.

    2012-04-01

    Climatic variability, related both to precipitation and river discharge, has been associated to ocean variability. Authors commonly relate Pacific sea surface temperature (SST) variation to South America (SA) precipitation. Zonal displacement of Walker cell, with intensified subsidence over northern portion of SA, Subtropical Jet strengthening/weakening over extratropical latitudes of SA are, respectively, dynamical reasons scientifically accepted for increasing and depletion of precipitation at the respective areas. Many studies point out the influence of tropical Atlantic SST anomalies in relation to precipitation/river discharge variability over northeast of Brazil. Aliseos variability at tropical Atlantic is also a physic process that contributes to explain precipitation and river flow variability over SA, mainly over the north portion. In this study, we aim to investigate the temporal correlation between SST, mainly from Pacific and Atlantic oceans, and rivers discharge at the Amazon region. Ji-Parana, Madeira and Tapajós river discharge in monthly and annual scale, between 1968 and 2008, were the time series selected to reach the purpose. Time series for river discharge were obtained from Agência Nacional de Águas (ANA, in Portuguese) and, SST data were obtained from CDC/NOAA. Before linear correlation computations between river discharge and SST have been made, seasonal cycle and linear tendency were removed from all original time series. Areas better correlated to river discharge at Amazon region show oceanic patterns apparently associated to PDO (Pacific Decadal Oscillation) and ENSO (El Niño-South Oscillation) variability, with absolute values greater than 0.3 and reaching 0.5 or 0.6. The spatial pattern observed at Pacific basin is similar to that showed by the first mode of PCA (Principal Component Analysis), such seen in many studies (the "horse shoe" pattern). In general, negative correlation values appear far more to the west of Pacific basin

  20. Climatic impact of Amazon deforestation - a mechanistic model study

    SciTech Connect

    Ning Zeng; Dickinson, R.E.; Xubin Zeng

    1996-04-01

    Recent general circulation model (GCM) experiments suggest a drastic change in the regional climate, especially the hydrological cycle, after hypothesized Amazon basinwide deforestation. To facilitate the theoretical understanding os such a change, we develop an intermediate-level model for tropical climatology, including atmosphere-land-ocean interaction. The model consists of linearized steady-state primitive equations with simplified thermodynamics. A simple hydrological cycle is also included. Special attention has been paid to land-surface processes. It generally better simulates tropical climatology and the ENSO anomaly than do many of the previous simple models. The climatic impact of Amazon deforestation is studied in the context of this model. Model results show a much weakened Atlantic Walker-Hadley circulation as a result of the existence of a strong positive feedback loop in the atmospheric circulation system and the hydrological cycle. The regional climate is highly sensitive to albedo change and sensitive to evapotranspiration change. The pure dynamical effect of surface roughness length on convergence is small, but the surface flow anomaly displays intriguing features. Analysis of the thermodynamic equation reveals that the balance between convective heating, adiabatic cooling, and radiation largely determines the deforestation response. Studies of the consequences of hypothetical continuous deforestation suggest that the replacement of forest by desert may be able to sustain a dry climate. Scaling analysis motivated by our modeling efforts also helps to interpret the common results of many GCM simulations. When a simple mixed-layer ocean model is coupled with the atmospheric model, the results suggest a 1{degrees}C decrease in SST gradient across the equatorial Atlantic Ocean in response to Amazon deforestation. The magnitude depends on the coupling strength. 66 refs., 16 figs., 4 tabs.

  1. Amazon basin ozone and aerosol: Wet season observations

    SciTech Connect

    Gregory, G.L.; Browell, E.V.; Warren, L.S.; Hudgins, C.H. )

    1990-09-20

    The tropical environment is recognized as having a major impact on global tropospheric chemistry. The data show that the wet season Amazon Basin is an effective sink for ozone and a net source for aerosols. Mixed layer ozone at 150-m altitude averaged 8.5 ppbv compared to about 18 ppbv at 3-km altitude. In addition, a negative ozone gradient (decreasing value to the surface) was observed within the mixed layer. The averaged wet season mixed layer ozone was about 7 ppbv lower than observed during the dry season. This is attributed to the enhanced convective activity associated with the wet season and the change in mixed layer photochemistry from net ozone production (dry season) to a net destruction (wet season). The net sink characteristics of the wet season mixed layer are seen throughout the troposphere of the Amazon Basin in that ozone (3- to 4-km altitude) is typically 15-25 ppbv as compared to dry season values of 30-35 ppbv. In terms of the aerosol source characteristics of the Amazon Basin, mixed layer aerosols (0.1- to 0.4-{mu}m diameter) are a factor of 5-10 higher than observed in the troposphere with mixed layer values of 100-200 aerosols/cm{sup 3}. Analyses of both tropospheric and mixed layer aerosol samples show aerosols which are multisource. Tropospheric samples have size distributions which are trimodal and show modes at aerosol diameters which suggest the aerosols are (1) of lifetimes <1 hour, (2) of lifetimes of days, and (3) mechanically generated elements (e.g., wind-blow dust). Mixed layer data show two of the three modes with no mode which represent aerosols with lifetimes of days.

  2. Consistency of Vegetation Index Seasonality Across the Amazon Rainforest

    NASA Technical Reports Server (NTRS)

    Maeda, Eduardo Eiji; Moura, Yhasmin Mendes; Wagner, Fabien; Hilker, Thomas; Lyapustin, Alexei I.; Wang, Yujie; Chave, Jerome; Mottus, Matti; Aragao, Luiz E.O.C.; Shimabukuro, Yosio

    2016-01-01

    Vegetation indices (VIs) calculated from remotely sensed reflectance are widely used tools for characterizing the extent and status of vegetated areas. Recently, however, their capability to monitor the Amazon forest phenology has been intensely scrutinized. In this study, we analyze the consistency of VIs seasonal patterns obtained from two MODIS products: the Collection 5 BRDF product (MCD43) and the Multi-Angle Implementation of Atmospheric Correction algorithm (MAIAC). The spatio-temporal patterns of the VIs were also compared with field measured leaf litterfall, gross ecosystem productivity and active microwave data. Our results show that significant seasonal patterns are observed in all VIs after the removal of view-illumination effects and cloud contamination. However, we demonstrate inconsistencies in the characteristics of seasonal patterns between different VIs and MODIS products. We demonstrate that differences in the original reflectance band values form a major source of discrepancy between MODIS VI products. The MAIAC atmospheric correction algorithm significantly reduces noise signals in the red and blue bands. Another important source of discrepancy is caused by differences in the availability of clear-sky data, as the MAIAC product allows increased availability of valid pixels in the equatorial Amazon. Finally, differences in VIs seasonal patterns were also caused by MODIS collection 5 calibration degradation. The correlation of remote sensing and field data also varied spatially, leading to different temporal offsets between VIs, active microwave and field measured data. We conclude that recent improvements in the MAIAC product have led to changes in the characteristics of spatio-temporal patterns of VIs seasonality across the Amazon forest, when compared to the MCD43 product. Nevertheless, despite improved quality and reduced uncertainties in the MAIAC product, a robust biophysical interpretation of VIs seasonality is still missing.

  3. Socioeconomic drivers of deforestation in the Northern Ecuadorian Amazon.

    PubMed

    Mena, Carlos F; Bilsborrow, Richard E; McClain, Michael E

    2006-06-01

    Investigations of land use/land cover (LULC) change and forest management are limited by a lack of understanding of how socioeconomic factors affect land use. This lack also constrains the predictions of future deforestation, which is especially important in the Amazon basin, where large tracts of natural forest are being converted to managed uses. Research presented in this article was conducted to address this lack of understanding. Its objectives are (a) to quantify deforestation in the Northern Ecuadorian Amazon (NEA) during the periods 1986-1996 and 1996-2002; and (b) to determine the significance and magnitude of the effects of socioeconomic factors on deforestation rates at both the parroquia (parish) and finca (farm) levels. Annual deforestation rates were quantified via satellite image processing and geographic information systems. Linear spatial lag regression analyses were then used to explore relationships between socioeconomic factors and deforestation. Socioeconomic factors were obtained, at the finca level, from a detailed household survey carried out in 1990 and 1999, and at the parroquia level from data in the 1990 and 2001 Ecuadorian censuses of population. We found that the average annual deforestation rate was 2.5% and 1.8%/year for 1986-1996 and 1996-2002, respectively. At the parroquia level, variables representing demographic factors (i.e., population density) and accessibility factors (i.e., road density), among others, were found to be significantly related to deforestation. At the farm level, the factors related to deforestation were household size, distance by road to main cities, education, and hired labor. The findings of this research demonstrate both the severity of deforestation in the Northern Ecuadorian Amazon and the array of factors affecting deforestation in the tropics.

  4. Inundation and Gas Fluxes from Amazon Lakes and Wetlands

    NASA Astrophysics Data System (ADS)

    Melack, J. M.; MacIntyre, S.; Forsberg, B. R.; Amaral, J. H.; Barbosa, P.

    2015-12-01

    Inundation areas and wetland habitats for the lowland Amazon basin derived remote sensing with synthetic aperture radar are combined with measurements of greenhouse gas evasion derived from field measurements and new formulations of atmosphere-water. On-going field studies in representative aquatic habitats on the central Amazon floodplain are combining monthly measurements of carbon dioxide and methane concentrations and fluxes to the atmosphere with deployment of meteorological sensors and high-resolution thermistors and optical dissolved oxygen sensors. A real-time cavity ringdown spectrometer is being used to determine the gas concentrations; vertical profiles were obtained by using an equilibrator to extract gases from water, and floating chambers are used to assess fluxes. Gas fluxes varied as a function of season, habitat and water depth. Greatest carbon dioxide fluxes occurred during high and falling water levels. During low water, periods with high chlorophyll, indicative of phytoplankton, the flux of carbon dioxide switched from being emitted from the lake to being taken-up by the lake some of the time. The highest pCO2 concentration (5500 μatm) was about three times higher than the median (1700 μatm). Higher CO2 fluxes were observed in open water than in areas with flooded or floating vegetation. In contrast, methane fluxes were higher in vegetated regions. We measured turbulence as rate of dissipation of turbulent kinetic energy based on microstructure profiling. Comparison of these measurements with those calculated from meteorological and time series measurements validated new equations for turbulent kinetic energy dissipation (TKE) rates during moderate winds and cooling and illustrated that the highest dissipation rates occurred under heating. Measured gas exchange coefficients (k600) were similar to those based on the TKE dissipation rates and are well described using the surface renewal model. These k values are several times higher than

  5. Consistency of vegetation index seasonality across the Amazon rainforest

    NASA Astrophysics Data System (ADS)

    Maeda, Eduardo Eiji; Moura, Yhasmin Mendes; Wagner, Fabien; Hilker, Thomas; Lyapustin, Alexei I.; Wang, Yujie; Chave, Jérôme; Mõttus, Matti; Aragão, Luiz E. O. C.; Shimabukuro, Yosio

    2016-10-01

    Vegetation indices (VIs) calculated from remotely sensed reflectance are widely used tools for characterizing the extent and status of vegetated areas. Recently, however, their capability to monitor the Amazon forest phenology has been intensely scrutinized. In this study, we analyze the consistency of VIs seasonal patterns obtained from two MODIS products: the Collection 5 BRDF product (MCD43) and the Multi-Angle Implementation of Atmospheric Correction algorithm (MAIAC). The spatio-temporal patterns of the VIs were also compared with field measured leaf litterfall, gross ecosystem productivity and active microwave data. Our results show that significant seasonal patterns are observed in all VIs after the removal of view-illumination effects and cloud contamination. However, we demonstrate inconsistencies in the characteristics of seasonal patterns between different VIs and MODIS products. We demonstrate that differences in the original reflectance band values form a major source of discrepancy between MODIS VI products. The MAIAC atmospheric correction algorithm significantly reduces noise signals in the red and blue bands. Another important source of discrepancy is caused by differences in the availability of clear-sky data, as the MAIAC product allows increased availability of valid pixels in the equatorial Amazon. Finally, differences in VIs seasonal patterns were also caused by MODIS collection 5 calibration degradation. The correlation of remote sensing and field data also varied spatially, leading to different temporal offsets between VIs, active microwave and field measured data. We conclude that recent improvements in the MAIAC product have led to changes in the characteristics of spatio-temporal patterns of VIs seasonality across the Amazon forest, when compared to the MCD43 product. Nevertheless, despite improved quality and reduced uncertainties in the MAIAC product, a robust biophysical interpretation of VIs seasonality is still missing.

  6. Recent variations in Amazon carbon balance driven by climate anomalies

    NASA Astrophysics Data System (ADS)

    Miller, J. B.

    2015-12-01

    Understanding tropical rainforest response to heat and drought is critical for quantifying the effects of climate change on tropical ecosystems, including global climate-carbon feedbacks. Of particular importance for the global carbon budget is net ecosystem exchange of CO2 with the atmosphere (NEE), a metric that represents the total integrated signal of carbon fluxes into and out of ecosystems. Sub-annual and sub-basin NEE estimates have previously been derived from process-based biosphere models, despite often disagreeing with plot-scale observations. Our analysis of airborne CO2 and CO measurements reveals monthly, sub-Basin scale (~106 km2) NEE variations in a framework that is largely independent of bottom-up estimates. As such, our approach provides new insights about tropical forest response to climate. We find acute sensitivity of NEE to daily and monthly climate extremes. In particular, increased central-Amazon NEE was associated with wet-season heat and dry-season drought in 2010. We analyze satellite proxies for photosynthesis and find that suppression of photosynthesis may have contributed to increased carbon loss in the 2010 drought, consistent with recent analysis of plot-scale measurements. In the eastern Amazon, pulses of increased NEE (i.e. net respiration) persisted through 2011, suggesting legacy effects of the drought that occurred in 2010. Regional differences in post-drought recovery in 2011 and 2012 appear related to long-term water availability. These results provide novel evidence of the vulnerability of Amazon carbon stocks to short-term temperature and moisture extremes.

  7. Delayed fertility transition among indigenous women in the Ecuadorian Amazon.

    PubMed

    Davis, Jason; Bilsborrow, Richard; Gray, Clark

    2015-03-01

    Communities indigenous to the Amazon are among the few remaining worldwide still practicing near-natural fertility, without the use of modern contraceptives. Given the large proportion of women desiring no more births, information on the challenges women there face in limiting fertility would be useful. Samples of women of reproductive age from five indigenous ethnic groups in the Northern Ecuadorian Amazon were surveyed in 2001 and 2012. Cross-sectional and longitudinal analyses examined married women's desire for another child at both times and modern contraceptive use in 2012, as well as determinants of a change in women's desire to have more children and of the number of children born during the study period. In 2001, 48% of married women desired another child, 2% used a modern contraceptive and 50% had an unmet need for limiting; in 2012, the proportions were 40%, 19% and 47%, respectively. The total fertility rate was 7.9 births per woman in 2001 and 7.0 births per woman in 2012. Characteristics associated with wanting another child in 2001 and 2012 included parity (odds ratios, 0.6 and 0.4, respectively) and experience of a child death (2.0 each); characteristics associated with contraceptive use in 2012 included desire for another child, experience of a child death and presence of a community health worker (0.3-0.5). Number of children born was positively associated, and the square of the term negatively associated, with no longer wanting more children in 2012 among women who wanted more in 2001 (2.1 and 0.9, respectively). Indigenous women in the Northern Ecuadorian Amazon appear to be making the transition to lower fertility. Insufficient access to credible information about the safety and efficacy of modern contraceptives, however, may slow the transition.

  8. On the sources of hydrological prediction uncertainty in the Amazon

    NASA Astrophysics Data System (ADS)

    Paiva, R. C. D.; Collischonn, W.; Bonnet, M. P.; Gonçalves, L. G. G.

    2012-03-01

    Recent extreme events in the Amazon River basin and the vulnerability of local population motivate the development of hydrological forecast systems (HFSs) using process based models for this region. In this direction, the knowledge of the source of errors in HFSs may guide the choice on improving model structure, model forcings or developing data assimilation (DA) systems for estimation of initial model states. We evaluate the relative importance of hydrologic initial conditions (ICs) and model meteorological forcings (MFs) errors (precisely precipitation) as sources of stream flow forecast uncertainty in the Amazon River basin. We used a hindcast approach developed by Wood and Lettenmaier (2008) that contrasts Ensemble Streamflow Prediction (ESP) and a reverse Ensemble Streamflow Prediction (reverse-ESP). Simulations were performed using the physically-based and distributed hydrological model MGB-IPH, comprising surface energy and water balance, soil water, river and floodplain hydrodynamics processes. Model was forced using TRMM 3B42 precipitation estimates. Results show that uncertainty on initial conditions play an important role for discharge predictability even for large lead times (~1 to 3 months) on main Amazonian Rivers. ICs of surface waters state variables are the major source of hydrological forecast uncertainty, mainly in rivers with low slope and large floodplains. ICs of groundwater state variables are important mostly during low flow period and southeast part of the Amazon, where lithology and the strong rainfall seasonality with a marked dry season may be the explaining factors. Analyses indicate that hydrological forecasts based on a hydrological model forced with historical meteorological data and optimal initial conditions, may be feasible. Also, development of DA methods is encouraged for this region.

  9. TRMM Observations of Convective Regimes in the Amazon

    NASA Technical Reports Server (NTRS)

    Petersen, W. A.; Nesbitt, S. W.; Blakeslee, Robert J.; Hein, P.; Cifelli, R.; Rutledge, S. A.; Arnold, James E. (Technical Monitor)

    2001-01-01

    This study utilizes TRMM satellite precipitation radar, lightning imaging sensor, and passive microwave imager data together with ground-based lightning data to investigate the vertical structure, lightning, and rainfall characteristics of Amazonian and central South American convection for three separate wet-seasons. These characteristics are partitioned as a function of 850 mb zonal wind direction, motivated by observations collected during the six-week TRMM-LBA field campaign. The TRMM-LBA field campaign observations suggest that systematic variations in Amazonian convective vertical structure, lightning, and rainfall are all linked to bimodal variations in the low-level zonal wind (e.g., easterly and westerly regimes). The more spatially and temporally comprehensive TRMM dataset used in this study extends the TRMM-LBA observations by examining regime variability in Amazonian and South American convective structure over a continental scale domain. On a continental-scale, patterns of east and west regime 850 mb winds combined with LIS lightning flash densities suggest the presence of synoptic-scale controls (e.g., intrusion of extratropical frontal systems and interaction with the SACZ) on regional-scale variability in convective vertical structure. TRMM PR, TMI and ground-based lightning data suggest that regional variability in wet-season convective structure is most evident over the southern Amazon, Mato Grosso, Altiplano, southern Brazil, and eastern coastal regions of central and southern South America. Convective vertical structure, rain fall rates, and lightning activity are all more pronounced during easterly (westerly) regimes over the southern Amazon and Mato Grosso (Altiplano, and southern Brazil). Importantly, when considered with case-study results from TRMM-LBA, the systematic differences in convective structure that occur as a function of regime suggest that associated regime-differences may exist in the vertical distribution of diabatic heating

  10. Roads Investments, Spatial Intensification and Deforestation in the Brazilian Amazon

    NASA Technical Reports Server (NTRS)

    Pfaff, Alexander; Robalino, Juan; Walker, Robert; Aldrich, Steven; Caldas, Marcellus; Reis, Eustaquio; Perz, Stephen; Bohrer, Claudio; Arima, Eugenio; Laurance, William; hide

    2007-01-01

    Understanding the impact of road investments on deforestation is part of a complete evaluation of the expansion of infrastructure for development. We find evidence of spatial spillovers from roads in the Brazilian Amazon: deforestation rises in the census tracts that lack roads but are in the same county as and within 100 km of a tract with a new paved or unpaved road. At greater distances from the new roads the evidence is mixed, including negative coefficients of inconsistent significance between 100 and 300 km, and if anything, higher neighbor deforestation at distances over 300 km.

  11. PALEOCLIMATE: The Amazon Reveals Its Secrets--Partly.

    PubMed

    Betancourt, J L

    2000-12-22

    The role of the tropics in global climate change during glacial cycles is hotly debated in paleoclimate cycles today. Records from South America have not provided a clear picture of tropical climate change. In his Perspective, Betancourt highlights the study by Maslin and Burns, who have deduced the outflow of the Amazon over the past 14,000 years. This may serve as a proxy that integrates hydrology over the entire South American tropics, although the record must be interpreted cautiously because factors other than rainfall may contribute to the variability in outflow.

  12. The Green Ocean Over the Amazon: Implications for Cloud Electrification

    NASA Technical Reports Server (NTRS)

    Williams, E.; Blakeslee, R.; Boccippio, D.; Arnold, James E. (Technical Monitor)

    2001-01-01

    A convective regime with distinct maritime characteristics (weak updraft, low CCN, prevalent coalescence and rainout, weak mixed phase reflectivity, low glaciation temperature, and little if any lightning) is documented over the Amazon basin of the South American continent, and dubbed the "green ocean". Radar, lightning, thermodynamic and AVHRR satellite observations are examined to shed light on the roles of updraft and aerosol in providing departures from the green ocean regime toward continental behavior. Extreme case studies are identified in which the updraft control is dominant and in which the aerosol control is dominant. The tentative conclusion gives importance to both updrafts and aerosol in shaping the electrification of tropical convection.

  13. First documented outbreak of dengue in the Peruvian Amazon region.

    PubMed

    Phillips, I; Need, J; Escamilla, J; Colán, E; Sánchez, S; Rodríguez, M; Vásquez, L; Seminario, J; Betz, T; da Rosa, A T

    1992-01-01

    This article describes a classical dengue outbreak caused by dengue serotypes 1 and 4 that occurred from March to July 1990 in the city of Iquitos and surrounding areas of Loreto Department in the Peruvian Amazon. Epidemiologic data indicate that more than 150,000 persons may have been affected in Iquitos alone. Another dengue outbreak occurred in Tarapoto, a city in the neighboring department of San Martín. Laboratory data indicate that the same dengue serotypes were involved in both outbreaks. No cases of dengue hemorrhagic fever/shock syndrome appear to have occurred. Prior to this outbreak, no indigenous dengue cases had been documented in Peru.

  14. The Green Ocean Over the Amazon: Implications for Cloud Electrification

    NASA Technical Reports Server (NTRS)

    Williams, E.; Blakeslee, R.; Boccippio, D.; Arnold, James E. (Technical Monitor)

    2001-01-01

    A convective regime with distinct maritime characteristics (weak updraft, low CCN, prevalent coalescence and rainout, weak mixed phase reflectivity, low glaciation temperature, and little if any lightning) is documented over the Amazon basin of the South American continent, and dubbed the "green ocean". Radar, lightning, thermodynamic and AVHRR satellite observations are examined to shed light on the roles of updraft and aerosol in providing departures from the green ocean regime toward continental behavior. Extreme case studies are identified in which the updraft control is dominant and in which the aerosol control is dominant. The tentative conclusion gives importance to both updrafts and aerosol in shaping the electrification of tropical convection.

  15. Cloacolith in a blue-fronted amazon parrot (Amazona aestiva).

    PubMed

    Beaufrère, Hugues; Nevarez, Javier; Tully, Thomas N

    2010-06-01

    A 4-year-old blue-fronted Amazon parrot (Amazona aestiva) was admitted for vocalization secondary to constipation. Saline infusion cloacoscopy revealed the presence of a 2-cm-diameter cloacolith within the coprodeum that was obstructing the rectal opening. The cloacolith was fragmented with a pair of biopsy forceps and the pieces removed. The cloacolith was subsequently analyzed and was composed of 100% uric acid salts. The bird improved completely and was able to defecate normally after the procedure. Cloacoliths are relative uncommon cloacal conditions, and this case documents cloacoscopic findings, rectal obstruction, and confirmation of its uric acid composition by urolith analysis.

  16. Oil Extraction and Indigenous Livelihoods in the Northern Ecuadorian Amazon

    PubMed Central

    Bozigar, Matthew; Gray, Clark L.; Bilsborrow, Richard E.

    2015-01-01

    Globally, the extraction of minerals and fossil fuels is increasingly penetrating into isolated regions inhabited by indigenous peoples, potentially undermining their livelihoods and well-being. To provide new insight to this issue, we draw on a unique longitudinal dataset collected in the Ecuadorian Amazon over an 11-year period from 484 indigenous households with varying degrees of exposure to oil extraction. Fixed and random effects regression models of the consequences of oil activities for livelihood outcomes reveal mixed and multidimensional effects. These results challenge common assumptions about these processes and are only partly consistent with hypotheses drawn from the Dutch disease literature. PMID:26543302

  17. Roads Investments, Spatial Intensification and Deforestation in the Brazilian Amazon

    NASA Technical Reports Server (NTRS)

    Pfaff, Alexander; Robalino, Juan; Walker, Robert; Aldrich, Steven; Caldas, Marcellus; Reis, Eustaquio; Perz, Stephen; Bohrer, Claudio; Arima, Eugenio; Laurance, William; Kibry, Kathryn

    2007-01-01

    Understanding the impact of road investments on deforestation is part of a complete evaluation of the expansion of infrastructure for development. We find evidence of spatial spillovers from roads in the Brazilian Amazon: deforestation rises in the census tracts that lack roads but are in the same county as and within 100 km of a tract with a new paved or unpaved road. At greater distances from the new roads the evidence is mixed, including negative coefficients of inconsistent significance between 100 and 300 km, and if anything, higher neighbor deforestation at distances over 300 km.

  18. Seasonal variations in methane emission from Amazon River and tributaries

    NASA Astrophysics Data System (ADS)

    Sawakuchi, H. O.; Krusche, A. V.; Ballester, M. V.; Sawakuchi, A. O.; Richey, J. E.

    2012-12-01

    Inland waters are known as important sources of methane to atmosphere. Methane is produced in anaerobic environments usually found in lake and floodplain bottom sediments, which is the main reason why most of the information regarding methane fluxes come from this environments. However, while floodplains dry during low water season, reducing methanogenesis, rivers keep the capacity to emit methane throughout the year. Here we present results of CH4 flux measurements from 4 large tropical rivers within the Amazon basin obtained with floating chambers in 10 sampling sites during low water (between September and November of 2011) and high water seasons (May, 2012). Sampling sites were located in three main tributaries of Amazon Rivers, Madeira, Xingu and Tapajós, and in the Amazon River mainstem. In the Madeira River high water fluxes ranged from 2.85 to 30.99 mmol m-2 yr-1 while during low water from 77.47 to 183.31 mmol m-2 yr-1. Fluxes for the Amazon and Tapajós were, respectively, 110.99 and 80.01 mmol m-2 yr-1 for the high water season and 169.71 and 193.18 mmol m-2 yr-1 for low water. In the Xingu River two sites had higher fluxes during low water, 314.90 and 571.49 mmol m-2 yr-1 (91.93 and 51.11 mmol m-2 yr-1 in the high water respectively). The two other sites had an opposite pattern with 296.56 and 60.80 mmol m-2 yr-1 in the low water and 846.95 and 360.93 mmol m-2 yr-1 during high water; one site showed equal fluxes for both seasons. Most of the fluxes were higher during low water, with the exception of the three sites at the Xingu River, where fluxes during high water were higher or equal than in low water. These results show a different pattern than described before for these riverine systems, in which higher methane fluxes during high water were expected due to inputs from surrounding anoxic floodplain environments. Instead, our data shows that methane in rivers can be produced within river channels. Lower fluxes during high water could be related to

  19. Oil Extraction and Indigenous Livelihoods in the Northern Ecuadorian Amazon.

    PubMed

    Bozigar, Matthew; Gray, Clark L; Bilsborrow, Richard E

    2016-02-01

    Globally, the extraction of minerals and fossil fuels is increasingly penetrating into isolated regions inhabited by indigenous peoples, potentially undermining their livelihoods and well-being. To provide new insight to this issue, we draw on a unique longitudinal dataset collected in the Ecuadorian Amazon over an 11-year period from 484 indigenous households with varying degrees of exposure to oil extraction. Fixed and random effects regression models of the consequences of oil activities for livelihood outcomes reveal mixed and multidimensional effects. These results challenge common assumptions about these processes and are only partly consistent with hypotheses drawn from the Dutch disease literature.

  20. Living Rivers: Importance of Andes-Amazon Connectivity and Consequences of Hydropower Development

    NASA Astrophysics Data System (ADS)

    Anderson, E.

    2016-12-01

    The inherent dynamism of rivers along elevational and longitudinal gradients underpins freshwater biodiversity, ecosystem function, and ecosystem services in the Andean-Amazon. While this region covers only a small part of the entire Amazon Basin, its influences on downstream ecology, biogeochemistry, and human wellbeing are disproportionate with its relative small size. Seasonal flow pulses from Andean rivers maintain habitat, signal migratory fishes, and export sediment, nutrients, and organic matter to distant ecosystems—like lowland Amazonia and the Atlantic coast of Brazil. Rivers are key transportation routes, and freshwater fisheries are a primary protein source for the >30 million people that inhabit the Amazon Basin. Numerous cultural traditions depend on free-flowing Andean rivers; examples include Kukama beliefs in the underwater cities of the Marañon River, where people who have drowned in rivers whose bodies are not recovered go to live, or the pre-dawn bathing rituals of the Peruvian Shawi, who gain energy and connect with ancestors in cold, fast-flowing Andean waters. Transformations in the Andean-Amazon landscape—in particular from dams—threaten to compromise flows critical for human and ecosystem wellbeing. Presently, at least 250 hydropower dams are in operation, under construction, or proposed for Andean-Amazon rivers. This presentation will discuss regional trends in hydropower development, quantify effects of existing and proposed dams on Andean-Amazon connectivity, and examine the social and cultural importance of free-flowing Andean-Amazon rivers.

  1. A Quantified Reconstruction of Amazon River Discharge for the Last 40 kyr

    NASA Astrophysics Data System (ADS)

    Ettwein, V.; Maslin, M.; Burns, S.; Leng, M.; Weyhenmeyer, C.

    2003-04-01

    The glacial moisture history of the Amazon Basin is comparatively poorly known. Previous estimates have been inferred from highly localised and qualitative indicators of effective moisture, and debate exists as to whether the glacial Amazon Basin was humid or dry. Reconstructing glacial Amazon aridity is essential for three main reasons: 1) Aridity is a key physiological control on the distribution of vegetation and therefore provides a means of testing the Pleistocene tropical rainforest refuge hypothesis; 2) Amazonian wetlands represent a major source of atmospheric methane and may exert a primary control on the ice core methane records; 3) the Amazon Basin is a major source of tropical atmospheric water vapour, another important greenhouse gas. Here we present unequivocal evidence to suggest widespread aridity within the Amazon Basin during the Last Glacial Maximum (LGM) and also the Younger Dryas (YD). We have used δ18O of planktonic foraminifera from ODP Site 942 on the Amazon Fan to quantify Amazon River discharge for the last 40 kyr, employing an age model constructed around 35 14C AMS dates. Our calculations suggest outflow to have been c. 70% relative to modern during the LGM (i.e. c. 30% reduced), and c. 60% relative to modern during the YD. Sedimentation rates are relatively more elevated during the YD with two distinct peaks around 11200 and 13500 Cal yr BP. Centennial and millennial-scale variability in the data are most likely climate-driven.

  2. Engaging indigenous and academic knowledge on bees in the Amazon: implications for environmental management and transdisciplinary research.

    PubMed

    Athayde, Simone; Stepp, John Richard; Ballester, Wemerson C

    2016-06-20

    This paper contributes to the development of theoretical and methodological approaches that aim to engage indigenous, technical and academic knowledge for environmental management. We present an exploratory analysis of a transdisciplinary project carried out to identify and contrast indigenous and academic perspectives on the relationship between the Africanized honey bee and stingless bee species in the Brazilian Amazon. The project was developed by practitioners and researchers of the Instituto Socioambiental (ISA, a Brazilian NGO), responding to a concern raised by a funding agency, regarding the potential impact of apiculture development by indigenous peoples, on the diversity of stingless bee species in the Xingu Park, southern Brazilian Amazon. Research and educational activities were carried out among four indigenous peoples: Kawaiwete or Kaiabi, Yudja or Juruna, Kīsêdjê or Suyá and Ikpeng or Txicão. A constructivist qualitative approach was developed, which included academic literature review, conduction of semi-structured interviews with elders and leaders, community focus groups, field walks and workshops in schools in four villages. Semi-structured interviews and on-line surveys were carried out among academic experts and practitioners. We found that in both indigenous and scientific perspectives, diversity is a key aspect in keeping exotic and native species in balance and thus avoiding heightened competition and extinction. The Africanized honey bee was compared to the non-indigenous westerners who colonized the Americas, with whom indigenous peoples had to learn to coexist. We identify challenges and opportunities for engagement of indigenous and scientific knowledge for research and management of bee species in the Amazon. A combination of small-scale apiculture and meliponiculture is viewed as an approach that might help to maintain biological and cultural diversity in Amazonian landscapes. The articulation of knowledge from non

  3. The impact of rise of the Andes and Amazon landscape evolution on diversification of lowland terra-firme forest birds

    NASA Astrophysics Data System (ADS)

    Aleixo, A.; Wilkinson, M. J.

    2011-12-01

    upland terra-firme forest develop. The youngest landsurfaces thus appear to lie furthest from the mountains. In this scenario major drainages were also reoriented in wholesale fashion from a northward (Caribbean) outlet to a generally eastward, Atlantic Ocean outlet. More importantly, other major river courses in western-central Amazonia will have been established at progressively younger dates with distance eastward. The bird DNA data appears to confirm the role of Amazonian rivers as primary diversification barriers, and thus probably as promoters of bird speciation. We show for the first time that a general spatio-temporal pattern of diversification for terra-firme lineages in the Amazon is associated with rivers of apparently different ages ("younging-eastward"), and furthermore parallels a specific scenario of regional drainage evolution.

  4. The chemical control of soluble phosphorus in the Amazon estuary

    NASA Technical Reports Server (NTRS)

    Fox, L. E.; Wofsy, S. C.; Sager, S. L.

    1986-01-01

    The role of sediments in controlling concentrations of soluble phosphorous in the Amazon estuary is examined. The efflux of phosphorous through the estuary is calculated using data collected on field excursions in December 1982 and May 1983, and laboratory mixing experiments. It is observed that soluble phosphorus was released from bottom sediments at a rate of 0.2 micro-M/day, when in seawater and deionizd water mixtures. The relation between release rates and salinity and sediment concentrations is studied. A one-dimensional dispersion model was developed to estimate phosphate inputs to the estuary. The model predicted total fluxes of soluble inorganic phosphorous of 15 x 10 to the 6th mole/day for December 1982 and 27 x 10 to the 6th mole/day for May 1983; the predictions correlate with field observations. It is noted that phosphorous removal is between 0 and 4 ppt at a rate of 0.044 + or - 0.01 micron-M/ppt per day and the annual mean input of phophorous from Amazon to outer-estuary is 23 x 10 to the 6th moles/day.

  5. Pharmacokinetics of nebulized terbinafine in Hispaniolan Amazon parrots (Amazona ventralis).

    PubMed

    Emery, Lee C; Cox, Sherry K; Souza, Marcy J

    2012-09-01

    Aspergillosis is one of the most difficult diseases to treat successfully in avian species. Terbinafine hydrochloride offers numerous potential benefits over traditionally used antifungals for treatment of this disease. Adding nebulized antifungals to treatment strategies is thought to improve clinical outcomes in lung diseases. To determine plasma concentrations of terbinafine after nebulization, 6 adult Hispaniolan Amazon parrots were randomly divided into 2 groups of 3. Each bird was nebulized for 15 minutes with 1 of 2 terbinafine solutions, one made with a crushed tablet and the second with raw drug powder. Blood samples were collected at baseline and at multiple time points up to 720 minutes after completing nebulization. Plasma and nebulization solutions were analyzed by high-performance liquid chromatography. The terbinafine concentration of the solution made with a crushed tablet (0.87 +/- 0.05 mg/mL) was significantly lower than was that made with raw powder (1.02 +/- 0.09 mg/mL). Plasma concentrations of terbinafine did not differ significantly between birds in the 2 groups. Plasma terbinafine concentrations in birds were maintained above in vitro minimum inhibitory concentrations for approximately 1 hour in birds nebulized with the crushed tablet solution and 4 hours in birds nebulized with the raw powder solution. Higher concentrations of solution, longer nebulization periods, or more frequent administration are likely needed to reach therapeutic plasma concentrations of terbinafine for clinically relevant periods in Hispaniolan Amazon parrots.

  6. Vegetation Dynamics and Rainfall Sensitivity of the Amazon

    NASA Technical Reports Server (NTRS)

    Hilker, Thomas; Lyapustin, Alexei I.; Tucker, Compton J.; Hall, Forrest G.; Myneni, Ranga B.; Wang, Yujie; Bi, Jian; Mendes de Moura, Yhasmin; Sellers, Piers J.

    2014-01-01

    We show that the vegetation canopy of the Amazon rainforest is highly sensitive to changes in precipitation patterns and that reduction in rainfall since 2000 has diminished vegetation greenness across large parts of Amazonia. Large-scale directional declines in vegetation greenness may indicate decreases in carbon uptake and substantial changes in the energy balance of the Amazon. We use improved estimates of surface reflectance from satellite data to show a close link between reductions in annual precipitation, El Nino southern oscillation events, and photosynthetic activity across tropical and subtropical Amazonia. We report that, since the year 2000, precipitation has declined across 69% of the tropical evergreen forest (5.4 million sq km) and across 80% of the subtropical grasslands (3.3 million sq km). These reductions, which coincided with a decline in terrestrial water storage, account for about 55% of a satellite-observed widespread decline in the normalized difference vegetation index (NDVI). During El Nino events, NDVI was reduced about 16.6% across an area of up to 1.6 million sq km compared with average conditions. Several global circulation models suggest that a rise in equatorial sea surface temperature and related displacement of the intertropical convergence zone could lead to considerable drying of tropical forests in the 21st century. Our results provide evidence that persistent drying could degrade Amazonian forest canopies, which would have cascading effects on global carbon and climate dynamics.

  7. Microspatial gene expression patterns in the Amazon River Plume.

    PubMed

    Satinsky, Brandon M; Crump, Byron C; Smith, Christa B; Sharma, Shalabh; Zielinski, Brian L; Doherty, Mary; Meng, Jun; Sun, Shulei; Medeiros, Patricia M; Paul, John H; Coles, Victoria J; Yager, Patricia L; Moran, Mary Ann

    2014-07-29

    We investigated expression of genes mediating elemental cycling at the microspatial scale in the ocean's largest river plume using, to our knowledge, the first fully quantitative inventory of genes and transcripts. The bacterial and archaeal communities associated with a phytoplankton bloom in Amazon River Plume waters at the outer continental shelf in June 2010 harbored ∼ 1.0 × 10(13) genes and 4.7 × 10(11) transcripts per liter that mapped to several thousand microbial genomes. Genomes from free-living cells were more abundant than those from particle-associated cells, and they generated more transcripts per liter for carbon fixation, heterotrophy, nitrogen and phosphorus uptake, and iron acquisition, although they had lower expression ratios (transcripts ⋅ gene(-1)) overall. Genomes from particle-associated cells contributed more transcripts for sulfur cycling, aromatic compound degradation, and the synthesis of biologically essential vitamins, with an overall twofold up-regulation of expression compared with free-living cells. Quantitatively, gene regulation differences were more important than genome abundance differences in explaining why microenvironment transcriptomes differed. Taxa contributing genomes to both free-living and particle-associated communities had up to 65% of their expressed genes regulated differently between the two, quantifying the extent of transcriptional plasticity in marine microbes in situ. In response to patchiness in carbon, nutrients, and light at the micrometer scale, Amazon Plume microbes regulated the expression of genes relevant to biogeochemical processes at the ecosystem scale.

  8. Interpretation of seismic stratigraphy on the Amazon continental shelf

    SciTech Connect

    Alexander, C.R. Jr.; Nittrouer, C.A.; Demaster, D.J.

    1985-01-01

    The stratigraphy of the Amazon subaqueous delta has been examined using high-resolution reflection profiles. 15 piston cores from the Amazon Shelf were used to interpret the significance of the reflectors evident in the seismic profiles. Acoustic reflectors correlate with changes in grain size within cores, and generally represent coarser layers within the muddy deposits of the delta. Measurement of compressional-wave seismic velocity and saturated bulk density demonstrate that the correlation results from changes in acoustic impedance, caused by the grain-size variations. The reflectors reveal two predominant types of seismic stratigraphy: depositional and erosional. The depositional stratigraphy contains reflectors formed by relatively subtle change in grain size. Gently dipping topset and steeply dipping foreset demonstrate upward and seaward progradation of the subaqueous delta. This stratigraphy is truncated by erosional reflectors, which are significantly coarser layers. The erosional reflectors divide the depositional stratigraphy into distinct sets. The prevalence of erosional reflectors is greatest in the topset region near the river mouth, suggesting that sediment in this region, which is rapidly accumulating on 100-year time scales, has been eroded over longer time scales within the Holocene.

  9. Daytime turbulent exchange between the Amazon forest and the atmosphere

    SciTech Connect

    Fitzjarrald, D.R.; Moore, K.E. ); Cabral, M.R. ); Scolar, J. ); Manzi, A.O.; de Abreau Sa, L.D. )

    1990-09-20

    Detailed observations of turbulence just above and below the crown of the Amazon rain forest during the wet season are presented. The forest canopy is shown to remove high-frequency turbulent fluctuations while passing lower frequencies. Filter characteristics of turbulent transfer into the Amazon rain forest canopy are quantified. In spite of the ubiquitous presence of clouds and frequent rain during this season, the average horizontal wind speed spectrum and the relationship between the horizontal wind speed and its standard deviation are well described by dry convective boundary layer similarity hypotheses originally found to apply in flat terrain. Diurnal changes in the sign of the vertical velocity skewness observed above and inside the canopy are shown to be plausibly explained by considering the skewness budget. Simple empirical formulas that relate observed turbulent heat fluxes to horizontal wind speed and variance are presented. Changes in the amount of turbulent coupling between the forest and the boundary layer associated with deep convective clouds are presented in three case studies. Even small raining clouds are capable of evacuating the canopy of substances normally trapped by persistent static stability near the forest floor. Recovery from these events can take more than an hour, even during midday.

  10. Microspatial gene expression patterns in the Amazon River Plume

    PubMed Central

    Satinsky, Brandon M.; Crump, Byron C.; Smith, Christa B.; Sharma, Shalabh; Zielinski, Brian L.; Doherty, Mary; Meng, Jun; Sun, Shulei; Medeiros, Patricia M.; Paul, John H.; Coles, Victoria J.; Yager, Patricia L.; Moran, Mary Ann

    2014-01-01

    We investigated expression of genes mediating elemental cycling at the microspatial scale in the ocean’s largest river plume using, to our knowledge, the first fully quantitative inventory of genes and transcripts. The bacterial and archaeal communities associated with a phytoplankton bloom in Amazon River Plume waters at the outer continental shelf in June 2010 harbored ∼1.0 × 1013 genes and 4.7 × 1011 transcripts per liter that mapped to several thousand microbial genomes. Genomes from free-living cells were more abundant than those from particle-associated cells, and they generated more transcripts per liter for carbon fixation, heterotrophy, nitrogen and phosphorus uptake, and iron acquisition, although they had lower expression ratios (transcripts⋅gene−1) overall. Genomes from particle-associated cells contributed more transcripts for sulfur cycling, aromatic compound degradation, and the synthesis of biologically essential vitamins, with an overall twofold up-regulation of expression compared with free-living cells. Quantitatively, gene regulation differences were more important than genome abundance differences in explaining why microenvironment transcriptomes differed. Taxa contributing genomes to both free-living and particle-associated communities had up to 65% of their expressed genes regulated differently between the two, quantifying the extent of transcriptional plasticity in marine microbes in situ. In response to patchiness in carbon, nutrients, and light at the micrometer scale, Amazon Plume microbes regulated the expression of genes relevant to biogeochemical processes at the ecosystem scale. PMID:25024226

  11. Sunphotometer network for monitoring aerosol properties in the Brazilian Amazon

    NASA Technical Reports Server (NTRS)

    Holben, Brent N.; Eck, T. F.; Setzer, A.; Pereira, Alfredo; Vermote, E.; Reagan, J. A.; Kaufman, Y. A.; Tanre, D.; Slutsker, I.

    1993-01-01

    Satellite platforms have provided a methodology for regional and global remote sensing of aerosols. New systems will significantly improve that capability during the EOS era; however, the voluminous 20 year record of satellite data has produced only regional snapshots of aerosol loading and have not yielded a data base of the optical properties of those aerosols which are fundamental to our understanding of their influence on climate change. The prospect of fully understanding the properties of the aerosols with respect to climate change is small without validation and augmentation by ancillary ground based observations. Sun photometry was demonstrated to be an effective tool for ground based measurements of aerosol optical properties from fire emissions. Newer technology has expanded routine sun photometer measurements to spectral observations of solar aureole and almucantar allowing retrievals of size distribution, scattering phase function, and refractive index. A series of such observations were made in Brazil's Amazon basin from a network of six simultaneously recording instruments deployed in Sep. 1992. The instruments were located in areas removed from local aerosol sources such that sites are representative of regional aerosol conditions. The overall network was designed to cover the counter clockwise tropospheric circulation of the Amazon Basin. Spectral measurements of sun, aureole and sky data for retrieval of aerosol optical thickness, particle size distribution, and scattering phase function as well as measurements of precipitable water were made during noncloudy conditions.

  12. Cloudiness over the Amazon rainforest: Meteorology and thermodynamics

    NASA Astrophysics Data System (ADS)

    Collow, Allison B. Marquardt; Miller, Mark A.; Trabachino, Lynne C.

    2016-07-01

    Comprehensive meteorological observations collected during GOAmazon2014/15 using the Atmospheric Radiation Measurement Mobile Facility no. 1 and assimilated observations from the Modern-Era Retrospective Analysis for Research and Applications, Version 2 are used to document the seasonal cycle of cloudiness, thermodynamics, and precipitation above the Amazon rainforest. The reversal of synoptic-scale vertical motions modulates the transition between the wet and dry seasons. Ascending moist air during the wet season originates near the surface of the Atlantic Ocean and is advected into the Amazon rainforest, where it experiences convergence and, ultimately, precipitates. The dry season is characterized by weaker winds and synoptic-scale subsidence with little or no moisture convergence accompanying moisture advection. This combination results in the drying of the midtroposphere during June through October as indicated by a decrease in liquid water path, integrated water, and the vertical profile of water vapor mixing ratio. The vertical profile of cloud fraction exhibits a relatively consistent decline in cloud fraction from the lifting condensation level (LCL) to the freezing level where a minimum is observed, unlike many other tropical regions. Coefficients of determination between the LCL and cloud fractional coverage suggest a relatively robust relationship between the LCL and cloudiness beneath 5 km during the dry season (R2 = 0.42) but a weak relationship during the wet season (0.12).

  13. Daytime turbulent exchange between the Amazon forest and the atmosphere

    NASA Technical Reports Server (NTRS)

    Fitzjarrald, David R.; Moore, Kathleen E.; Cabral, Osvaldo M. R.; Scolar, Jose; Manzi, Antonio O.; Deabreusa, Leonardo D.

    1989-01-01

    Detailed observations of turbulence just above and below the crown of the Amazon rain forest during the wet season are presented. The forest canopy is shown to remove high frequency turbulent fluctuations while passing lower frequencies. Filter characteristics of turbulent transfer into the Amazon rain forest canopy are quantified. Simple empirical relations that relate observed turbulent heat fluxes to horizontal wind variance are presented. Changes in the amount of turbulent coupling between the forest and the boundary layer associated with deep convective clouds are presented both as statistical averages and as a series of case studies. These convective processes during the rainy season are shown to alter the diurnal course of turbulent fluxes. In wake of giant coastal systems, no significant heat or moisture fluxes occur for up to a day after the event. Radar data is used to demonstrate that even small raining clouds are capable of evacuating the canopy of substances normally trapped by persistent static stability near the forest floor. Recovery from these events can take more than an hour, even during mid-day. In spite of the ubiquitous presence of clouds and frequent rain during this season, the average horizontal wind speed spectrum is well described by dry CBL similarity hypotheses originally found to apply in flat terrain.

  14. Promoting health and happiness in the Brazilian Amazon.

    PubMed

    Scannavino, Caetano; Anastácio, Rui

    2007-01-01

    With the motto "Health, happiness of the body. Happiness, health of the soul", the Health & Happiness Project (PSA) works to promote integrated and sustainable community development in parts of the Brazilian Amazon. PSA grew out of local workers' personal experience in collaborating with communities and the need for sustainable actions for their future development. PSA was established as a not-for-profit organization in 1987 It started off by implementing strategies that would increase the health status of the population, which was identified as the biggest challenge, to then extend to other areas of development. Education, training and community participation were key elements of the project's actions, which included basic sanitation, reproductive health and child health, technical assistance in agricultural practices and youth empowerment through communications, among others. Once the health structure was established, the work moved on to new priorities related to education, economic production, protection of the environment and community management in the medium and long terms. The project's success has helped to institutionalize the practices and today it reaches a total of approximately 5,000 families distributed across 150 rural communities in the mid- and low-Amazon region.

  15. Climatic shift in patterns of shallow clouds over the Amazon

    NASA Astrophysics Data System (ADS)

    Chagnon, F. J. F.; Bras, R. L.; Wang, J.

    2004-12-01

    The Amazon rain forest has experienced dramatic changes in the past 50 years due to active deforestation. As of 2001, 15% of the 4,000,000 km2 Brazilian Amazon has been deforested [Instituto Nacional de Pesquisas Espaciais (INPE), 2003]; each year, agricultural exploitation claims an estimated 13,000 km2 of tropical forest [Achard et al., 2002]. In this paper we investigate the climatic effects caused by the observed change of the physical characteristics of the land surface (i.e., increased surface albedo, decreased root-zone depth, decreased surface roughness and decreased leaf-area index). More precisely, we examine the spatial correspondence of shallow cumulus clouds with deforestation. Through the creation of an 8-year record of thrice daily shallow cumulus cloud cover at 1 km resolution from multi-spectral satellite imagery, we quantitatively show the existence of a significant climatic shift in shallow cloudiness patterns associated with deforestation. This shift manifests itself as an enhancement of shallow cumuli over deforested patches, and has potentially important climatic, hydrologic and ecological implications.

  16. Daytime turbulent exchange between the Amazon forest and the atmosphere

    NASA Technical Reports Server (NTRS)

    Fitzjarrald, David R.; Moore, Kathleen E.; Cabral, Osvaldo M. R.; Scolar, Jose; Manzi, Antonio

    1990-01-01

    Detailed observations of turbulence just above and below the crown of the Amazon rain forest during the wet season are presented. The forest canopy is shown to remove high frequency turbulent fluctuations while passing lower frequencies. Filter characteristics of turbulent transfer into the Amazon rain forest canopy are quantified. Simple empirical relations that relate observed turbulent heat fluxes to horizontal wind variance are presented. Changes in the amount of turbulent coupling between the forest and the boundary layer associated with deep convective clouds are presented both as statistical averages and as a series of case studies. These convective processes during the rainy season are shown to alter the diurnal course of turbulent fluxes. In wake of giant coastal systems, no significant heat or moisture fluxes occur for up to a day after the event. Radar data is used to demonstrate that even small raining clouds are capable of evacuating the canopy of substances normally trapped by persistent static stability near the forest floor. Recovery from these events can take more than an hour, even during mid-day. In spite of the ubiquitous presence of clouds and frequent rain during this season, the average horizontal wind speed spectrum is well described by dry CBL similarity hypotheses originally found to apply in flat terrain.

  17. Highly reactive light-dependent monoterpenes in the Amazon

    DOE PAGES

    Jardine, A. B.; Jardine, K. J.; Fuentes, J. D.; ...

    2015-03-06

    Despite orders of magnitude difference in atmospheric reactivity and great diversity in biological functioning, little is known about monoterpene speciation in tropical forests. Here we report vertically resolved ambient air mixing ratios for 12 monoterpenes in a central Amazon rainforest including observations of the highly reactive cis-β-ocimene (160 ppt), trans-β-ocimene (79 ppt), and terpinolene (32 ppt) which accounted for an estimated 21% of total monoterpene composition yet 55% of the upper canopy monoterpene ozonolysis rate. All 12 monoterpenes showed a mixing ratio peak in the upper canopy, with three demonstrating subcanopy peaks in 7 of 11 profiles. Leaf level emissionsmore » of highly reactive monoterpenes accounted for up to 1.9% of photosynthesis confirming light-dependent emissions across several Amazon tree genera. These results suggest that highly reactive monoterpenes play important antioxidant roles during photosynthesis in plants and serve as near-canopy sources of secondary organic aerosol precursors through atmospheric photooxidation via ozonolysis.« less

  18. The chemical control of soluble phosphorus in the Amazon estuary

    NASA Technical Reports Server (NTRS)

    Fox, L. E.; Wofsy, S. C.; Sager, S. L.

    1986-01-01

    The role of sediments in controlling concentrations of soluble phosphorous in the Amazon estuary is examined. The efflux of phosphorous through the estuary is calculated using data collected on field excursions in December 1982 and May 1983, and laboratory mixing experiments. It is observed that soluble phosphorus was released from bottom sediments at a rate of 0.2 micro-M/day, when in seawater and deionizd water mixtures. The relation between release rates and salinity and sediment concentrations is studied. A one-dimensional dispersion model was developed to estimate phosphate inputs to the estuary. The model predicted total fluxes of soluble inorganic phosphorous of 15 x 10 to the 6th mole/day for December 1982 and 27 x 10 to the 6th mole/day for May 1983; the predictions correlate with field observations. It is noted that phosphorous removal is between 0 and 4 ppt at a rate of 0.044 + or - 0.01 micron-M/ppt per day and the annual mean input of phophorous from Amazon to outer-estuary is 23 x 10 to the 6th moles/day.

  19. Branchial cysts in two Amazon parrots (Amazona species).

    PubMed

    Beaufrère, Hugues; Castillo-Alcala, Fernanda; Holmberg, David L; Boston, Sarah; Smith, Dale A; Taylor, W Michael

    2010-03-01

    A 37-year-old yellow-crowned Amazon parrot (Amazona ochrocephala) and a 20-year-old red-lored Amazon parrot (Amazona autumnalis) each presented with a large mass localized on the lateral neck. With the first bird, there was no evidence of signs of pain or discomfort, and the bird prehended and swallowed food normally. The second bird showed signs of mild upper-gastrointestinal discomfort. Results of an ultrasound examination and aspiration of the mass on each bird revealed a cystic structure. A computed tomography performed on the second bird revealed a large polycystic mass connected to the pharynx by a lateral tract. During surgical resection, both masses were found to originate from the subpharyngeal area. Based on topography and the histopathologic and immunohistochemical results, the masses were determined to be a second branchial cleft cyst for the first case and a second branchial pouch cyst for the second case. In addition, a carcinoma was present in situ within the epithelium of case 1, and the cyst in case 2 was secondarily infected. Branchial cysts are uncommonly diagnosed in veterinary and human medicine. These 2 cases are the first documented in parrots and appear similar to second branchial cysts reported in adult humans.

  20. Vegetation dynamics and rainfall sensitivity of the Amazon.

    PubMed

    Hilker, Thomas; Lyapustin, Alexei I; Tucker, Compton J; Hall, Forrest G; Myneni, Ranga B; Wang, Yujie; Bi, Jian; Mendes de Moura, Yhasmin; Sellers, Piers J

    2014-11-11

    We show that the vegetation canopy of the Amazon rainforest is highly sensitive to changes in precipitation patterns and that reduction in rainfall since 2000 has diminished vegetation greenness across large parts of Amazonia. Large-scale directional declines in vegetation greenness may indicate decreases in carbon uptake and substantial changes in the energy balance of the Amazon. We use improved estimates of surface reflectance from satellite data to show a close link between reductions in annual precipitation, El Niño southern oscillation events, and photosynthetic activity across tropical and subtropical Amazonia. We report that, since the year 2000, precipitation has declined across 69% of the tropical evergreen forest (5.4 million km(2)) and across 80% of the subtropical grasslands (3.3 million km(2)). These reductions, which coincided with a decline in terrestrial water storage, account for about 55% of a satellite-observed widespread decline in the normalized difference vegetation index (NDVI). During El Niño events, NDVI was reduced about 16.6% across an area of up to 1.6 million km(2) compared with average conditions. Several global circulation models suggest that a rise in equatorial sea surface temperature and related displacement of the intertropical convergence zone could lead to considerable drying of tropical forests in the 21st century. Our results provide evidence that persistent drying could degrade Amazonian forest canopies, which would have cascading effects on global carbon and climate dynamics.

  1. Neogene sharks and rays from the Brazilian 'Blue Amazon'.

    PubMed

    Aguilera, Orangel; Luz, Zoneibe; Carrillo-Briceño, Jorge D; Kocsis, László; Vennemann, Torsten W; de Toledo, Peter Mann; Nogueira, Afonso; Amorim, Kamilla Borges; Moraes-Santos, Heloísa; Polck, Marcia Reis; Ruivo, Maria de Lourdes; Linhares, Ana Paula; Monteiro-Neto, Cassiano

    2017-01-01

    The lower Miocene Pirabas Formation in the North of Brazil was deposited under influence of the proto-Amazon River and is characterized by large changes in the ecological niches from the early Miocene onwards. To evaluate these ecological changes, the elasmobranch fauna of the fully marine, carbonate-rich beds was investigated. A diverse fauna with 24 taxa of sharks and rays was identified with the dominant groups being carcharhiniforms and myliobatiforms. This faunal composition is similar to other early Miocene assemblages from the proto-Carribbean bioprovince. However, the Pirabas Formation has unique features compared to the other localities; being the only Neogene fossil fish assemblage described from the Atlantic coast of Tropical Americas. Phosphate oxygen isotope composition of elasmobranch teeth served as proxies for paleotemperatures and paleoecology. The data are compatible with a predominantly tropical marine setting with recognized inshore and offshore habitats with some probable depth preferences (e.g., Aetomylaeus groups). Paleohabitat of taxa particularly found in the Neogene of the Americas (†Carcharhinus ackermannii, †Aetomylaeus cubensis) are estimated to have been principally coastal and shallow waters. Larger variation among the few analyzed modern selachians reflects a larger range for the isotopic composition of recent seawater compared to the early Miocene. This probably links to an increased influence of the Amazon River in the coastal regions during the Holocene.

  2. Fires increase Amazon forest productivity through increases in diffuse radiation

    NASA Astrophysics Data System (ADS)

    Rap, A.; Spracklen, D. V.; Mercado, L.; Reddington, C. L.; Haywood, J. M.; Ellis, R. J.; Phillips, O. L.; Artaxo, P.; Bonal, D.; Restrepo Coupe, N.; Butt, N.

    2015-06-01

    Atmospheric aerosol scatters solar radiation increasing the fraction of diffuse radiation and the efficiency of photosynthesis. We quantify the impacts of biomass burning aerosol (BBA) on diffuse radiation and plant photosynthesis across Amazonia during 1998-2007. Evaluation against observed aerosol optical depth allows us to provide lower and upper BBA emissions estimates. BBA increases Amazon basin annual mean diffuse radiation by 3.4-6.8% and net primary production (NPP) by 1.4-2.8%, with quoted ranges driven by uncertainty in BBA emissions. The enhancement of Amazon basin NPP by 78-156 Tg C a-1 is equivalent to 33-65% of the annual regional carbon emissions from biomass burning. This NPP increase occurs during the dry season and acts to counteract some of the observed effect of drought on tropical production. We estimate that 30-60 Tg C a-1 of this NPP enhancement is within woody tissue, accounting for 8-16% of the observed carbon sink across mature Amazonian forests.

  3. Vegetation dynamics and rainfall sensitivity of the Amazon

    PubMed Central

    Hilker, Thomas; Lyapustin, Alexei I.; Tucker, Compton J.; Hall, Forrest G.; Myneni, Ranga B.; Wang, Yujie; Bi, Jian; Mendes de Moura, Yhasmin; Sellers, Piers J.

    2014-01-01

    We show that the vegetation canopy of the Amazon rainforest is highly sensitive to changes in precipitation patterns and that reduction in rainfall since 2000 has diminished vegetation greenness across large parts of Amazonia. Large-scale directional declines in vegetation greenness may indicate decreases in carbon uptake and substantial changes in the energy balance of the Amazon. We use improved estimates of surface reflectance from satellite data to show a close link between reductions in annual precipitation, El Niño southern oscillation events, and photosynthetic activity across tropical and subtropical Amazonia. We report that, since the year 2000, precipitation has declined across 69% of the tropical evergreen forest (5.4 million km2) and across 80% of the subtropical grasslands (3.3 million km2). These reductions, which coincided with a decline in terrestrial water storage, account for about 55% of a satellite-observed widespread decline in the normalized difference vegetation index (NDVI). During El Niño events, NDVI was reduced about 16.6% across an area of up to 1.6 million km2 compared with average conditions. Several global circulation models suggest that a rise in equatorial sea surface temperature and related displacement of the intertropical convergence zone could lead to considerable drying of tropical forests in the 21st century. Our results provide evidence that persistent drying could degrade Amazonian forest canopies, which would have cascading effects on global carbon and climate dynamics. PMID:25349419

  4. Effects of CO2 Physiological Forcing on Amazon Climate

    NASA Astrophysics Data System (ADS)

    Halladay, K.; Good, P.; Kay, G.; Betts, R.

    2014-12-01

    Earth system models provide us with an opportunity to examine the complex interactions and feedbacks between land surface, vegetation and atmosphere. A more thorough understanding of these interactions is essential in reducing uncertainty surrounding the potential impacts of climate and environmental change on the future state and extent of the Amazon rainforest. This forest is a important resource for the region and globally in terms of ecosystem services, hydrology and biodiversity. We aim to investigate the effect of CO2 physiological forcing on the Amazon rainforest and its feedback on regional climate by using the CMIP5 idealised 1% CO2 simulations with a focus on HadGEM2-ES. In these simulations, the atmospheric CO2 concentration is increased by 1% per year for 140 years, reaching around 1150ppm at the end of the simulation. The use of idealised simulations allows the effect of CO2 to be separated from other forcings and the sensitivities to be quantified. In particular, it enables non-linear feedbacks to be identified. In addition to the fully coupled 1% CO2 simulation, in which all schemes respond to the forcing, we use simulations in which (a) only the biochemistry scheme sees the rising CO2 concentration, and (b) in which rising CO2 is only seen by the radiation scheme. With these simulations we examine the degree to which CO2 effects are additive or non-linear when in combination. We also show regional differences in climate and vegetation response, highlighting areas of increased sensitivity.

  5. Dusty air masses transport between Amazon Basin and Caribbean Islands

    NASA Astrophysics Data System (ADS)

    Euphrasie-Clotilde, Lovely; Molinie, Jack; Prospero, Joseph; Feuillard, Tony; Brute, Francenor; Jeannot, Alexis

    2015-04-01

    Depend on the month, African desert dust affect different parts of the North Atlantic Ocean. From December to April, Saharan dust outbreaks are often reported over the amazon basin and from May to November over the Caribbean islands and the southern regions of USA. This annual oscillation of Saharan dust presence, related to the ITCZ position, is perturbed some time, during March. Indeed, over Guadeloupe, the air quality network observed between 2007 and 2012 several dust events during March. In this paper, using HISPLIT back trajectories, we analyzed air masses trajectories for March dust events observed in Guadeloupe, from 2007 to 2012.We observed that the high pressure positions over the Atlantic Ocean allow the transport of dusty air masses from southern region of West Africa to the Caribbean Sea with a path crossing close to coastal region of French Guyana. Complementary investigations including the relationship between PM10 concentrations recorded in two sites Pointe-a-Pitre in the Caribbean, and Cayenne in French Guyana, have been done. Moreover we focus on the mean delay observed between the times arrival. All the results show a link between pathway of dusty air masses present over amazon basin and over the Caribbean region during several event of March. The next step will be the comparison of mineral dust composition for this particular month.

  6. Methane emissions from northern Amazon savanna wetlands and Balbina Reservoir

    NASA Astrophysics Data System (ADS)

    Kemenes, A.; Belger, L.; Forsberg, B.; Melack, J. M.

    2006-12-01

    To improve estimates of methane emission for the Amazon basin requires information from aquatic environments not represented in the central basin near the Solimoes River, where most of the current data were obtained. We have combined intensive, year-long measurements of methane emission and water levels made in interfluvial wetlands located in the upper Negro basin with calculations of inundation based on a time series of Radarsat synthetic aperature radar images. These grass-dominated savannas emitted methane at an average rate of 18 mg C per m squared per day, a low rate compared to the habitats with floating grasses the occur in the Solimoes floodplains. Reservoirs constructed in the Amazon typically flood forested landscapes and lead to conditions conducive for methane production. The methane is released to the atmosphere from the reservoir and as the water exits the turbines and from the downstream river. Balbina Reservoir near Manaus covers about 2400 km squared along the Uatuma River. Annual averages of measurements of methane emission from the various habitats in the reservoir range from 23 to 64 mg C per m squared per day. Total annual emission from the reservoir is about 58 Gg C. In addition, about 39 Gg C per year are released below the dam, about 50 percent of which is released as the water passes through the turbines. On an annual areal basis, Balbina Reservoir emits 40 Mg C km squared, in contrast to 30 Mg km squared for the Solimoes mainstem floodplain

  7. Sensitivity of Regional Climate to Deforestation in the Amazon Basin

    NASA Technical Reports Server (NTRS)

    Eltahir, Elfatih A. B.; Bras, Rafael L.

    1994-01-01

    The deforestation results in several adverse effect on the natural environment. The focus of this paper is on the effects of deforestation on land-surface processes and regional climate of the Amazon basin. In general, the effect of deforestation on climate are likely to depend on the scale of the defrosted area. In this study, we are interested in the effects due to deforestation of areas with a scale of about 250 km. Hence, a meso-scale climate model is used in performing numerical experiments on the sensitivity of regional climate to deforestation of areas with that size. It is found that deforestation results in less net surface radiation, less evaporation, less rainfall, and warmer surface temperature. The magnitude of the of the change in temperature is of the order 0.5 C, the magnitudes of the changes in the other variables are of the order of IO%. In order to verify some of he results of the numerical experiments, the model simulations of net surface radiation are compared to recent observations of net radiation over cleared and undisturbed forest in the Amazon. The results of the model and the observations agree in the following conclusion: the difference in net surface radiation between cleared and undisturbed forest is, almost, equally partioned between net solar radiation and net long-wave radiation. This finding contributes to our understanding of the basic physics in the deforestation problem.

  8. Sensitivity of Regional Climate to Deforestation in the Amazon Basin

    NASA Technical Reports Server (NTRS)

    Eltahir, Elfatih A. B.; Bras, Rafael L.

    1994-01-01

    The deforestation results in several adverse effect on the natural environment. The focus of this paper is on the effects of deforestation on land-surface processes and regional climate of the Amazon basin. In general, the effect of deforestation on climate are likely to depend on the scale of the defrosted area. In this study, we are interested in the effects due to deforestation of areas with a scale of about 250 km. Hence, a meso-scale climate model is used in performing numerical experiments on the sensitivity of regional climate to deforestation of areas with that size. It is found that deforestation results in less net surface radiation, less evaporation, less rainfall, and warmer surface temperature. The magnitude of the of the change in temperature is of the order 0.5 C, the magnitudes of the changes in the other variables are of the order of IO%. In order to verify some of he results of the numerical experiments, the model simulations of net surface radiation are compared to recent observations of net radiation over cleared and undisturbed forest in the Amazon. The results of the model and the observations agree in the following conclusion: the difference in net surface radiation between cleared and undisturbed forest is, almost, equally partioned between net solar radiation and net long-wave radiation. This finding contributes to our understanding of the basic physics in the deforestation problem.

  9. Daytime turbulent exchange between the Amazon forest and the atmosphere

    NASA Technical Reports Server (NTRS)

    Fitzjarrald, David R.; Moore, Kathleen E.; Cabral, Osvaldo M. R.; Scolar, Jose; Manzi, Antonio

    1990-01-01

    Detailed observations of turbulence just above and below the crown of the Amazon rain forest during the wet season are presented. The forest canopy is shown to remove high frequency turbulent fluctuations while passing lower frequencies. Filter characteristics of turbulent transfer into the Amazon rain forest canopy are quantified. Simple empirical relations that relate observed turbulent heat fluxes to horizontal wind variance are presented. Changes in the amount of turbulent coupling between the forest and the boundary layer associated with deep convective clouds are presented both as statistical averages and as a series of case studies. These convective processes during the rainy season are shown to alter the diurnal course of turbulent fluxes. In wake of giant coastal systems, no significant heat or moisture fluxes occur for up to a day after the event. Radar data is used to demonstrate that even small raining clouds are capable of evacuating the canopy of substances normally trapped by persistent static stability near the forest floor. Recovery from these events can take more than an hour, even during mid-day. In spite of the ubiquitous presence of clouds and frequent rain during this season, the average horizontal wind speed spectrum is well described by dry CBL similarity hypotheses originally found to apply in flat terrain.

  10. Water stress detection in the Amazon using radar

    NASA Astrophysics Data System (ADS)

    van Emmerik, Tim; Steele-Dunne, Susan; Paget, Aaron; Oliveira, Rafael S.; Bittencourt, Paulo R. L.; Barros, Fernanda de V.; van de Giesen, Nick

    2017-07-01

    The Amazon rainforest plays an important role in the global water and carbon cycle, and though it is predicted to continue drying in the future, the effect of drought remains uncertain. Developments in remote sensing missions now facilitate large-scale observations. The RapidScat scatterometer (Ku band) mounted on the International Space Station observes the Earth in a non-Sun-synchronous orbit, which allows for studying changes in the diurnal cycle of radar backscatter over the Amazon. Diurnal cycles in backscatter are significantly affected by the state of the canopy, especially during periods of increased water stress. We use RapidScat backscatter time series and water deficit measurements from dendrometers in 20 trees during a 9 month period to relate variations in backscatter to increased tree water deficit. Morning radar bacskcatter dropped significantly with increased tree water deficit measured with dendrometers. This provides unique observational evidence that demonstrates the sensitivity of radar backscatter to vegetation water stress, highlighting the potential of drought detection and monitoring using radar.

  11. Understanding Hydrological Regime Alterations Caused by dams: the Santiago River case in the Andean Region of the Amazon Basin.

    NASA Astrophysics Data System (ADS)

    Rosero-Lopez, D.; Flecker, A.; Walter, M. T.

    2016-12-01

    Water resources in South America have been clearly targeted as key sources for hydropower expansion over the next 30 years. Ecuador, among the most biologically diverse countries in the world, has the highest density of hydropower dams, either operational, under construction, or planned, in the Amazon Basin. Ecuador's ambitious plan to change its energy portfolio is conceived to satisfy the country's demand and to empower the country to be the region's first hydroelectric energy exporter. The Santiago watershed located in the southeast part of the country has 39 facilities either under construction or in operation. The Santiago River and its main tributaries (Zamora and Upano) are expected to be impounded by large dams over the next 10 years. In order to understand the magnitude and potential impacts of regional dam development on hydrological regimes, a 35-year historical data set of stream discharge was analyzed. We examined flow regimes for time series between the construction of each dam, starting with the oldest and largest built in 1982 up until the most recent dam built in 2005. Preliminary results indicate a systematic displacement in flow seasonality following post-dam compared to pre-dam conditions. There are also notable differences in the distributions of peaks and pulses in post-dam flows. The range of changes from these results shows that punctuated and cumulative impacts are related to the size of each new impoundment. These observations and their implications to the livelihoods, biota, and ecosystems services in the Santiago watershed need to be incorporated into a broader cost-benefit analysis of hydropower generation in the western Amazon Basin.

  12. Hyperspectral remote detection of niche partitioning among canopy trees driven by blowdown gap disturbances in the Central Amazon.

    PubMed

    Chambers, Jeffrey Q; Robertson, Amanda L; Carneiro, Vilany M C; Lima, Adriano J N; Smith, Marie-Louise; Plourde, Lucie C; Higuchi, Niro

    2009-05-01

    Advanced recruitment and neutral processes play important roles in determining tree species composition in tropical forest canopy gaps, with few gaps experiencing clear secondary successional processes. However, most studies are limited to the relatively limited spatial scales provided by forest inventory plots, and investigations over the entire range of gap size are needed to better understand how ecological processes vary with tree mortality events. This study employed a landscape approach to test the hypothesis that tree species composition and forest structural attributes differ between large blowdown gaps and relatively undisturbed primary forest. Spectral mixture analysis on hyperspectral satellite imagery was employed to direct field sampling to widely distributed sites, and blowdown plots were compared with undisturbed primary forest plots. Tree species composition and forest structural attributes differed markedly between gap and non-gap sites, providing evidence of niche partitioning in response to disturbance across the region. Large gaps were dominated by classic Neotropical pioneer genera such as Cecropia and Vismia, and average tree size was significantly smaller. Mean wood density of trees recovering in large gaps (0.55 g cm(-3)) was significantly lower than in primary forest plots (0.71 g cm(-3)), a difference similar to that found when comparing less dynamic (i.e., tree recruitment, growth, and mortality) Central Amazon forests with more dynamic Western Amazon forests. Based on results, we hypothesize that the importance of neutral processes weaken, and niche processes strengthen, in determining community assembly along a gradient in gap size and tree mortality intensity. Over evolutionary time scales, pervasive dispersal among colonizers could result in the loss of tree diversity in the pioneer guild through competitive exclusion. Results also underscore the importance of considering disturbance processes across the landscape when addressing

  13. Constancy in the vegetation of the Amazon Basin during the late Pleistocene: Evidence from the organic matter composition of Amazon deep sea fan sediments

    NASA Astrophysics Data System (ADS)

    Kastner, Thomas P.; Goñi, Miguel A.

    2003-04-01

    Analyses of more than 60 sediment samples from the Amazon deep sea fan show remarkably constant terrigenous biomarkers (lignin phenols and cutin acids) and stable carbon isotopic compositions of organic matter (δ13COM) deposited from 10 to 70 ka. Sediments from the nine Amazon deep sea fan channel-levee systems investigated in this study yielded relatively narrow ranges for diagnostic parameters such as organic carbon (OC) normalized total lignin yields (Λ = 3.1 ± 1.1 mg/100 mg OC), syringyl:vanillyl phenol ratios (S/V = 0.84 ± 0.06), cinnamyl:vanillyl phenol ratios (C/V = 0.08 ± 0.02), isomeric abundances of cutin-derived dihydroxyhexadecanoic acid (f10,16-OH = 0.65 ± 0.02), and δ13COM (-27.6% ± 0.6 ‰). Our measurements support the hypothesis that the vegetation of the Amazon Basin did not change significantly during the late Pleistocene, even during the Last Glacial Maximum. Moreover, the compositions obtained from the Amazon deep sea fan are similar to those of modern Amazon River suspended sediments. Such results strongly indicate that the current tropical rainforest vegetation has been a permanent and dominant feature of the Amazon River watershed over the past 70 k.y. Specifically, we found no evidence for the development of large savannas that had been previously postulated as indicators of increased glacial aridity in Amazonia. Clima