Science.gov

Sample records for roof integrated solar

  1. High Efficiency Solar Integrated Roof Membrane Product

    SciTech Connect

    Partyka, Eric; Shenoy, Anil

    2013-05-15

    This project was designed to address the Solar Energy Technology Program objective, to develop new methods to integrate photovoltaic (PV) cells or modules within a building-integrated photovoltaic (BIPV) application that will result in lower installed cost as well as higher efficiencies of the encapsulated/embedded PV module. The technology assessment and development focused on the evaluation and identification of manufacturing technologies and equipment capable of producing such low-cost, high-efficiency, flexible BIPV solar cells on single-ply roofing membranes.

  2. The Development of a Roof Integrated Solar Hot Water System

    SciTech Connect

    Menicucci, David F.; Moss, Timothy A.; Palomino, G. Ernest

    2006-09-01

    The Salt River Project (SRP), in conjunction with Sandia National Laboratories (SNL) and Energy Laboratories, Inc. (ELI), collaborated to develop, test, and evaluate an advanced solar water-heating product for new homes. SRP and SNL collaborated under a Department of Energy Cooperative Research and Development Agreement (CRADA), with ELI as SRP's industry partner. The project has resulted in the design and development of the Roof Integrated Thermal Siphon (RITH) system, an innovative product that features complete roof integration, a storage tank in the back of the collector and below the roofline, easy installation by homebuilders, and a low installed cost. SRP's market research guided the design, and the laboratory tests conducted at SNL provided information used to refine the design of field test units and indicated that the RITH concept is viable. ELI provided design and construction expertise and is currently configured to manufacture the units. This final report for the project provides all of the pertinent and available materials connected to the project including market research studies, the design features and development of the system, and the testing and evaluation conducted at SNL and at a model home test site in Phoenix, Arizona.

  3. Million Solar Roofs

    SciTech Connect

    2003-11-01

    Since its announcement in June 1997, the Million Solar Roofs Initiative has generated a major buzz in communities, states, and throughout the nation. With more than 300,000 installations, the buzz is getting louder. This brochure describes Million Solar Roofs activities and partnerships.

  4. Solar power roof shingle

    NASA Technical Reports Server (NTRS)

    Forestieri, A. F.; Ratajczak, A. F.; Sidorak, L. G.

    1975-01-01

    Silicon solar cell module provides both all-weather protection and electrical power. Module consists of array of circular silicon solar cells bonded to fiberglass substrate roof shingle with fluorinated ethylene propylene encapsulant.

  5. 30 CFR 75.205 - Installation of roof support using mining machines with integral roof bolters.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... machines with integral roof bolters. 75.205 Section 75.205 Mineral Resources MINE SAFETY AND HEALTH... Roof Support § 75.205 Installation of roof support using mining machines with integral roof bolters. When roof bolts are installed by a continuous mining machine with intregal roof bolting equipment:...

  6. 30 CFR 75.205 - Installation of roof support using mining machines with integral roof bolters.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... machines with integral roof bolters. 75.205 Section 75.205 Mineral Resources MINE SAFETY AND HEALTH... Roof Support § 75.205 Installation of roof support using mining machines with integral roof bolters. When roof bolts are installed by a continuous mining machine with intregal roof bolting equipment:...

  7. 30 CFR 75.205 - Installation of roof support using mining machines with integral roof bolters.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... machines with integral roof bolters. 75.205 Section 75.205 Mineral Resources MINE SAFETY AND HEALTH... Roof Support § 75.205 Installation of roof support using mining machines with integral roof bolters. When roof bolts are installed by a continuous mining machine with intregal roof bolting equipment:...

  8. 30 CFR 75.205 - Installation of roof support using mining machines with integral roof bolters.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... machines with integral roof bolters. 75.205 Section 75.205 Mineral Resources MINE SAFETY AND HEALTH... Roof Support § 75.205 Installation of roof support using mining machines with integral roof bolters. When roof bolts are installed by a continuous mining machine with intregal roof bolting equipment:...

  9. 30 CFR 75.205 - Installation of roof support using mining machines with integral roof bolters.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... machines with integral roof bolters. 75.205 Section 75.205 Mineral Resources MINE SAFETY AND HEALTH... Roof Support § 75.205 Installation of roof support using mining machines with integral roof bolters. When roof bolts are installed by a continuous mining machine with intregal roof bolting equipment:...

  10. Packaged residential active-solar space-conditioning system. Appendix B. CSI roof integrated air heating and domestic hot water system. Final subcontract report

    SciTech Connect

    Not Available

    1986-05-01

    This report documents the design and design development process by Contemporary Systems Inc. for a roof-integrated, air-based modular solar collector that uses conventional building practices. Contemporary Systems Inc. (CSI) tested the system their engineers designed in two houses in Walpole, New Hampshire for a twelve-month period. The system was easily installed and performed successfully throughout the test period, displaying winter energy efficiency collection ratios in excess of 30:1 on an integrated monthly basis. CSI concludes that their system can result in an in-place cost of about $100/MMBtu or less than 50% of the cost of the most current solar space and water heating system.

  11. Integrated roof wind energy system

    NASA Astrophysics Data System (ADS)

    Suma, A. B.; Ferraro, R. M.; Dano, B.; Moonen, S. P. G.

    2012-10-01

    Wind is an attractive renewable source of energy. Recent innovations in research and design have reduced to a few alternatives with limited impact on residential construction. Cost effective solutions have been found at larger scale, but storage and delivery of energy to the actual location it is used, remain a critical issue. The Integrated Roof Wind Energy System is designed to overcome the current issues of urban and larger scale renewable energy system. The system is built up by an axial array of skewed shaped funnels that make use of the Venturi Effect to accelerate the wind flow. This inventive use of shape and geometry leads to a converging air capturing inlet to create high wind mass flow and velocity toward a vertical-axis wind turbine in the top of the roof for generation of a relatively high amount of energy. The methods used in this overview of studies include an array of tools from analytical modelling, PIV wind tunnel testing, and CFD simulation studies. The results define the main design parameters for an efficient system, and show the potential for the generation of high amounts of renewable energy with a novel and effective system suited for the built environment.

  12. Structurally integrated steel solar collector

    DOEpatents

    Moore, S.W.

    1975-06-03

    Herein is disclosed a flate plate solar heat collector unit. The solar collector is integrated as a structural unit so that the collector also functions as the building roof. The functions of efficient heat collection, liquid coolant flow passages, roof structural support, and building insulation are combined into one unit.

  13. Structurally integrated steel solar collector

    DOEpatents

    Moore, Stanley W.

    1977-03-08

    Herein is disclosed a flat plate solar heat collector unit. The solar collector is integrated as a structural unit so that the collector also functions as the building roof. The functions of efficient heat collection, liquid coolant flow passages, roof structural support and building insulation are combined into one unit.

  14. Innovative Ballasted Flat Roof Solar PV Racking System

    SciTech Connect

    Peek, Richard T.

    2014-12-15

    The objective of this project was to reduce the cost of racking for PV solar on flat commercial rooftops. Cost reductions would come from both labor savings and material savings related to the installation process. The rack would need to accommodate the majority of modules available on the market. Cascade Engineering has a long history of converting traditional metal type applications over to plastic. Injection molding of plastics have numerous advantages including selection of resin for the application, placing the material exactly where it is needed, designing in features that will speed up the installation process, and weight reduction of the array. A plastic rack would need to meet the requirements of UL2703, Mounting systems, mounting devices, clamping/retention devices, and ground lugs for use with flat-plate photovoltaic modules and panels. Comparing original data to the end of project racking design, racking material costs were reduced 50% and labor costs reduced 64%. The racking product accommodates all 60 and 72 cell panels on the market, meets UL2703 requirements, contributes only 1.3 pounds per square foot of weight to the array, requires little ballast to secure the array, automatically grounds the module when the module is secured, stacks/nests well for shipping/fewer lifts to the roof, provides integrated wire routing, allows water to drain on the roof, and accommodates various seismic roof connections. Project goals were achieved as noted in the original funding application.

  15. Solare Cell Roof Tile And Method Of Forming Same

    DOEpatents

    Hanoka, Jack I.; Real, Markus

    1999-11-16

    A solar cell roof tile includes a front support layer, a transparent encapsulant layer, a plurality of interconnected solar cells and a backskin layer. The front support layer is formed of light transmitting material and has first and second surfaces. The transparent encapsulant layer is disposed adjacent the second surface of the front support layer. The interconnected solar cells has a first surface disposed adjacent the transparent encapsulant layer. The backskin layer has a first surface disposed adjacent a second surface of the interconnected solar cells, wherein a portion of the backskin layer wraps around and contacts the first surface of the front support layer to form the border region. A portion of the border region has an extended width. The solar cell roof tile may have stand-offs disposed on the extended width border region for providing vertical spacing with respect to an adjacent solar cell roof tile.

  16. Effects of Solar Photovoltaic Panels on Roof Heat Transfer

    NASA Technical Reports Server (NTRS)

    Dominguez, A.; Klessl, J.; Samady, M.; Luvall, J. C.

    2010-01-01

    Building Heating, Ventilation and Air Conditioning (HVAC) is a major contributor to urban energy use. In single story buildings with large surface area such as warehouses most of the heat enters through the roof. A rooftop modification that has not been examined experimentally is solar photovoltaic (PV) arrays. In California alone, several GW in residential and commercial rooftop PV are approved or in the planning stages. With the PV solar conversion efficiency ranging from 5-20% and a typical installed PV solar reflectance of 16-27%, 53-79% of the solar energy heats the panel. Most of this heat is then either transferred to the atmosphere or the building underneath. Consequently solar PV has indirect effects on roof heat transfer. The effect of rooftop PV systems on the building roof and indoor energy balance as well as their economic impacts on building HVAC costs have not been investigated. Roof calculator models currently do not account for rooftop modifications such as PV arrays. In this study, we report extensive measurements of a building containing a flush mount and a tilted solar PV array as well as exposed reference roof. Exterior air and surface temperature, wind speed, and solar radiation were measured and thermal infrared (TIR) images of the interior ceiling were taken. We found that in daytime the ceiling surface temperature under the PV arrays was significantly cooler than under the exposed roof. The maximum difference of 2.5 C was observed at around 1800h, close to typical time of peak energy demand. Conversely at night, the ceiling temperature under the PV arrays was warmer, especially for the array mounted flat onto the roof. A one dimensional conductive heat flux model was used to calculate the temperature profile through the roof. The heat flux into the bottom layer was used as an estimate of the heat flux into the building. The mean daytime heat flux (1200-2000 PST) under the exposed roof in the model was 14.0 Watts per square meter larger than

  17. Solar Air Heating Metal Roofing for Reroofing, New Construction, and Retrofit

    DTIC Science & Technology

    2013-06-01

    roof, gym wall and roof before the ESTCP project. ......................... 14 Figure 9. Plan view schematic of solar air heating mechanical systems ...16 Figure 10. Schematic of domestic hot water heating system ................................................. 17...Gaffney Fitness Center, located at Fort Meade, Maryland. The solar air heating metal roofing system uses conventional metal roofing in a traditional

  18. Building Integrated Photovoltaic (BIPV) Roofs for Sustainability and Energy Efficiency

    DTIC Science & Technology

    2014-04-01

    photovoltaic roof; PV; renewable energy; rooftop PV 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 19a. NAME...the adhesive -only approach, but is restricted to certain roofing materials. Crystalline silicon based PV technology is currently the most commonly...TECHNICAL REPORT TR-NAVFAC-EXWC-PW-1406 APRIL 2014 BUILDING INTEGRATED PHOTOVOLTAIC (PV) ROOFS FOR SUSTAINABILITY AND ENERGY EFFICIENCY

  19. 75 FR 7029 - Notice of Availability of the Final Environmental Assessment for Solar Roof Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-16

    ... Geological Survey Notice of Availability of the Final Environmental Assessment for Solar Roof Project AGENCY..., the US Geological Survey (USGS) has prepared a Final Environmental Assessment for the Solar Roof... for the Solar Roof Project should immediately contact the USGS S.O. Conte Anadromous Fish...

  20. Laying the Foundation for a Solar America: The Million Solar Roofs Initiative

    SciTech Connect

    Strahs, G.; Tombari, C.

    2006-10-01

    As the U.S. Department of Energy's Solar Energy Technology Program embarks on the next phase of its technology acceptance efforts under the Solar America Initiative, there is merit to examining the program's previous market transformation effort, the Million Solar Roofs Initiative. Its goal was to transform markets for distributed solar technologies by facilitating the installation of solar systems.

  1. Detail of parachute tower showing integration with main roof form, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail of parachute tower showing integration with main roof form, facing southwest. - Albrook Air Force Station, Parachute & Armament Building, 200 feet north of Andrews Boulevard, Balboa, Former Panama Canal Zone, CZ

  2. Empirically Derived Strength of Residential Roof Structures for Solar Installations.

    SciTech Connect

    Dwyer, Stephen F.; Sanchez, Alfred; Campos, Ivan A.; Gerstle, Walter H.

    2014-12-01

    Engineering certification for the installation of solar photovoltaic (PV) modules on wood roofs is often denied because existing wood roofs do not meet structural design codes. This work is intended to show that many roofs are actually sufficiently strong given the conservatism in codes, documented allowable strengths, roof structure system effects, and beam composite action produced by joist-sheathing interaction. This report provides results from a testing program to provide actual load carrying capacity of residential rooftops. The results reveal that the actual load carrying capacity of structural members and systems tested are significantly stronger than allowable loads provided by the International Residential Code (IRC 2009) and the national structural code found in Minimum Design Loads for Buildings and Other Structures (ASCE 7-10). Engineering analysis of residential rooftops typically ignores the system affects and beam composite action in determining rooftop stresses given a potential PV installation. This extreme conservatism combined with conservatism in codes and published allowable stress values for roof building materials (NDS 2012) lead to the perception that well built homes may not have adequate load bearing capacity to enable a rooftop PV installation. However, based on the test results presented in this report of residential rooftop structural systems, the actual load bearing capacity is several times higher than published values (NDS 2012).

  3. Roof Savings Calculator Suite

    SciTech Connect

    New, Joshua R; Garrett, Aaron; Erdem, Ender; Huang, Yu

    2013-11-22

    The software options currently supported by the simulation engine can be seen/experienced at www.roofcalc.com. It defaults all values to national averages with options to test a base-case (residential or commercial) building versus a comparison building with inputs for building type, location, building vintage, conditioned area, number of floors, and window-to-wall ratio, cooling system efficiency, type of heating, heating system efficiency, duct location, roof/ceiling insulation level, above-sheathing ventilation, radiant barrier, roof thermal mass, roof solar reflectance, roof thermal emittance, utility costs, roof pitch. The Roof Savings Caculator Suite adds utilities and website/web service and the integration of AtticSim with DOE-2.1E, with the end-result being Roof Savings Calculator.

  4. High-Performance Energy-Efficient Cool Metal Roof Assemblies Utilizing Building Integrated Renewable Solar Energy Technologies for New and Retrofit Building Construction

    DTIC Science & Technology

    2014-04-01

    Summary ........................................................................................................................ 1 1.0 INTRODUCTION ...Sustainment, Restoration, and Modernization FSEC Florida Solar Energy Center GFAFB Goodfellow Air Force Base HFT Heat Flux Transducer HVAC...discussed in more detail in Section 8 Implementation Issues. 7 1.0 INTRODUCTION A successful outcome of this project will lead to the

  5. Prolong Your Roof's Performance: Roof Asset Management.

    ERIC Educational Resources Information Center

    Teitsma, Jerry

    2001-01-01

    Discusses the roof asset management process for maintaining a roof system's integrity and value in a cost-effective manner. Included is a breakdown of roofing surface characteristics for multiply and single ply roofing systems. (GR)

  6. Investigation of the proposed solar-driven moisture phenomenon in asphalt shingle roofs

    SciTech Connect

    Boudreaux, Philip; Pallin, Simon; Jackson, Roderick

    2016-01-19

    We report that unvented, sealed or conditioned attics are an energy efficiency measure to reduce the thermal load of the home and decrease the space conditioning energy consumption. This retrofit is usually done by using spray polyurethane foam underneath the roof sheathing and on the gables and soffits of an attic to provide a thermal and air barrier. Unvented attics perform well from this perspective but from a moisture perspective sometimes the unvented attic homes have high interior humidity or moisture damage to the roof. As homes become more air tight and energy efficient, an understanding of the hygrothermal dynamics of the home become more important. One proposed reason for high unvented attic humidity has been that moisture can come through the asphalt shingle roof system and increase the moisture content of the roof sheathing and attic air. This has been called solar driven moisture. Oak Ridge National Laboratory (ORNL) investigated this proposed phenomenon by examining the physical properties of a roof and the physics required for the phenomenon. Results showed that there are not favorable conditions for solar driven moisture to occur. ORNL also conducted an experimental study on an unvented attic home and compared the humidity below the roof sheathing before and after a vapor impermeable underlayment was installed. There was no statistically significant difference in absolute humidity before and after the vapor barrier was installed. Finally, the outcome of the theoretical and experimental study both suggest that solar driven moisture does not occur in any significant amount.

  7. Automatic roof plane detection and analysis in airborne lidar point clouds for solar potential assessment.

    PubMed

    Jochem, Andreas; Höfle, Bernhard; Rutzinger, Martin; Pfeifer, Norbert

    2009-01-01

    A relative height threshold is defined to separate potential roof points from the point cloud, followed by a segmentation of these points into homogeneous areas fulfilling the defined constraints of roof planes. The normal vector of each laser point is an excellent feature to decompose the point cloud into segments describing planar patches. An object-based error assessment is performed to determine the accuracy of the presented classification. It results in 94.4% completeness and 88.4% correctness. Once all roof planes are detected in the 3D point cloud, solar potential analysis is performed for each point. Shadowing effects of nearby objects are taken into account by calculating the horizon of each point within the point cloud. Effects of cloud cover are also considered by using data from a nearby meteorological station. As a result the annual sum of the direct and diffuse radiation for each roof plane is derived. The presented method uses the full 3D information for both feature extraction and solar potential analysis, which offers a number of new applications in fields where natural processes are influenced by the incoming solar radiation (e.g., evapotranspiration, distribution of permafrost). The presented method detected fully automatically a subset of 809 out of 1,071 roof planes where the arithmetic mean of the annual incoming solar radiation is more than 700 kWh/m(2).

  8. Automatic Roof Plane Detection and Analysis in Airborne Lidar Point Clouds for Solar Potential Assessment

    PubMed Central

    Jochem, Andreas; Höfle, Bernhard; Rutzinger, Martin; Pfeifer, Norbert

    2009-01-01

    A relative height threshold is defined to separate potential roof points from the point cloud, followed by a segmentation of these points into homogeneous areas fulfilling the defined constraints of roof planes. The normal vector of each laser point is an excellent feature to decompose the point cloud into segments describing planar patches. An object-based error assessment is performed to determine the accuracy of the presented classification. It results in 94.4% completeness and 88.4% correctness. Once all roof planes are detected in the 3D point cloud, solar potential analysis is performed for each point. Shadowing effects of nearby objects are taken into account by calculating the horizon of each point within the point cloud. Effects of cloud cover are also considered by using data from a nearby meteorological station. As a result the annual sum of the direct and diffuse radiation for each roof plane is derived. The presented method uses the full 3D information for both feature extraction and solar potential analysis, which offers a number of new applications in fields where natural processes are influenced by the incoming solar radiation (e.g., evapotranspiration, distribution of permafrost). The presented method detected fully automatically a subset of 809 out of 1,071 roof planes where the arithmetic mean of the annual incoming solar radiation is more than 700 kWh/m2. PMID:22346695

  9. Evaluation of an Integrated Roof Wind Energy System for urban environments

    NASA Astrophysics Data System (ADS)

    Patankar, B.; Tyagi, R.; Kiss, D.; Suma, A. B.

    2016-09-01

    Integrating renewable energy in the urban environment is of importance for the renewable energy goals set by the European Union. This research is to study and evaluate wind energy potential for an Integrated Roof Wind Energy System on the rooftop of the buildings of different heights and in different locations with the help of numerical modelling (CFD). The Navier-Stokes equations are solved using the SIMPLE algorithm while the turbulence is modelled using the k-ω SST equations. All the simulations are performed using OpenFOAM. Results shows that wind speed can be accelerated by ∼1.4 times till it reaches the periphery of the turbine inside the unit, which will increase wind power output considerably. This results in power factor increase of 1.7 for tall buildings. Therefore, enabling combined micro wind and solar energy systems to be a viable option for urban environments.

  10. Cool roofs with high solar reflectance for the welfare of dairy farming animals

    NASA Astrophysics Data System (ADS)

    Santunione, G.; Libbra, A.; Muscio, A.

    2017-01-01

    Ensuring livestock welfare in dairy farming promotes the production capacity of the animals in terms of both quantity and quality. In welfare conditions, the animals can produce at their full potential. For the dairy cattle the most debilitating period of the year is summer, when the stress arising from overheating induces physiological alterations that compromise the animals’ productivity. In this study, the summer discomfort of dairy animals is primarily quantified and the production loss is quantified versus the Temperature Humidity Index (THI), which correlates the values of temperature and relative humidity to the thermal stress. In order to reduce or eliminate such thermal stress, it is then proposed to coat the roof of the stables with a paint having high solar reflectance and thermal emittance, that is a cool roof product. This type of roofing solution can considerably limit the overheating of stables caused by solar radiation, thus providing a positive impact on the animals’ welfare and improving significantly their productivity in summer.

  11. Investigation of the proposed solar-driven moisture phenomenon in asphalt shingle roofs

    DOE PAGES

    Boudreaux, Philip; Pallin, Simon; Jackson, Roderick

    2016-01-19

    We report that unvented, sealed or conditioned attics are an energy efficiency measure to reduce the thermal load of the home and decrease the space conditioning energy consumption. This retrofit is usually done by using spray polyurethane foam underneath the roof sheathing and on the gables and soffits of an attic to provide a thermal and air barrier. Unvented attics perform well from this perspective but from a moisture perspective sometimes the unvented attic homes have high interior humidity or moisture damage to the roof. As homes become more air tight and energy efficient, an understanding of the hygrothermal dynamicsmore » of the home become more important. One proposed reason for high unvented attic humidity has been that moisture can come through the asphalt shingle roof system and increase the moisture content of the roof sheathing and attic air. This has been called solar driven moisture. Oak Ridge National Laboratory (ORNL) investigated this proposed phenomenon by examining the physical properties of a roof and the physics required for the phenomenon. Results showed that there are not favorable conditions for solar driven moisture to occur. ORNL also conducted an experimental study on an unvented attic home and compared the humidity below the roof sheathing before and after a vapor impermeable underlayment was installed. There was no statistically significant difference in absolute humidity before and after the vapor barrier was installed. Finally, the outcome of the theoretical and experimental study both suggest that solar driven moisture does not occur in any significant amount.« less

  12. Corrosion-Resistant Roof with Integrated Photovoltaic Power System

    DTIC Science & Technology

    2014-02-01

    system as attached to a metal-panel roof that is protected with a high-performance, corrosion -resistant coating . 1.3 Approach A severely corroded...fluoride (PVF) and polyvinylidene fluoride (PVDF) can pro- vide excellent corrosion protection in corrosive environments such as KMC. Sustainable...systems on the corrosion resistance of coated metal roofing systems is not known. Potential corro- sion mechanisms include moisture trapped between the

  13. Development of a Long-Life-Cycle, Highly Water-Resistant Solar Reflective Retrofit Roof Coating

    SciTech Connect

    Polyzos, Georgios; Hunter, Scott; Sharma, Jaswinder; Cheng, Mengdawn; Chen, Sharon S.; Demarest, Victoria; Fabiny, William; Destaillats, Hugo; Levinson, Ronnen

    2016-03-04

    Highly water-resistant and solar-reflective coatings for low-slope roofs are potentially among the most economical retrofit approaches to thermal management of the building envelope. Therefore, they represent a key building technology research program within the Department of Energy. Research efforts in industry and the Department of Energy are currently under way to increase long-term solar reflectance on a number of fronts. These include new polymer coatings technologies to provide longer-lasting solar reflectivity and improved test methodologies to predict long-term soiling and microbial performance. The focus on long-term improvements in soiling and microbial resistance for maximum reflectance does not address the single most important factor impacting the long-term sustainability of low-slope roof coatings: excellent water resistance. The hydrophobic character of asphaltic roof products makes them uniquely suitable for water resistance, but their low albedo and poor exterior durability are disadvantages. A reflective coating that maintains very high water resistance with increased long-term resistance to soiling and microbial activity would provide additional energy savings and extend roof service life.

  14. The Trade-off between Solar Reflectance and Above-Sheathing Ventilation for Metal Roofs on Residential and Commercial Buildings

    SciTech Connect

    Desjarlais, Andre Omer; Kriner, Scott; Miller, William A

    2013-01-01

    An alternative to white and cool-color roofs that meets prescriptive requirements for steep-slope (residential and non-residential) and low-slope (non-residential) roofing has been documented. Roofs fitted with an inclined air space above the sheathing (herein termed above-sheathing ventilation, or ASV), performed as well as if not better than high-reflectance, high-emittance roofs fastened directly to the deck. Field measurements demonstrated the benefit of roofs designed with ASV. A computer tool was benchmarked against the field data. Testing and benchmarks were conducted at roofs inclined at 18.34 ; the roof span from soffit to ridge was 18.7 ft (5.7 m). The tool was then exercised to compute the solar reflectance needed by a roof equipped with ASV to exhibit the same annual cooling load as that for a direct-to-deck cool-color roof. A painted metal roof with an air space height of 0.75 in. (0.019 m) and spanning 18.7 ft (5.7 m) up the roof incline of 18.34 needed only a 0.10 solar reflectance to exhibit the same annual cooling load as a direct-to-deck cool-color metal roof (solar reflectance of 0.25). This held for all eight ASHRAE climate zones complying with ASHRAE 90.1 (2007a). A dark heat-absorbing roof fitted with 1.5 in. (0.038 m) air space spanning 18.7 ft (5.7 m) and inclined at 18.34 was shown to have a seasonal cooling load equivalent to that of a conventional direct-to-deck cool-color metal roof. Computations for retrofit application based on ASHRAE 90.1 (1980) showed that ASV air spaces of either 0.75 or 1.5 in. (0.019 and 0.038 m) would permit black roofs to have annual cooling loads equivalent to the direct-to-deck cool roof. Results are encouraging, and a parametric study of roof slope and ASV aspect ratio is needed for developing guidelines applicable to all steep- and low-slope roof applications.

  15. City of Grand Rapids Building Solar Roof Demonstration

    SciTech Connect

    DeClercq, Mark; Martinez, Imelda

    2012-08-31

    Grand Rapids, Michigan is striving to reduce it environmental footprint. The municipal government organization has established environmental sustainability policies with the goal of securing 100% of its energy from renewable sources by 2020. This report describes the process by which the City of Grand Rapids evaluated, selected and installed solar panels on the Water/Environmental Services Building. The solar panels are the first to be placed on a municipal building. Its new power monitoring system provides output data to assess energy efficiency and utilization. It is expected to generate enough clean solar energy to power 25 percent of the building. The benefit to the public includes the economic savings from reduced operational costs for the building; an improved environmentally sustainable area in which to live and work; and increased knowledge about the use of solar energy. It will serve as a model for future energy saving applications.

  16. Successfully Demonstrating an Integrated Roofing and BIPV Solution for an Historic Building Renovation at the United States Air Force Academy

    DTIC Science & Technology

    2011-05-01

    Successfully Demonstrating an Integrated Roofing and BIPV Solution for an Historic Building Renovation at the United States Air Force Academy...COVERED 00-00-2011 to 00-00-2011 4. TITLE AND SUBTITLE Successfully Demonstrating an Integrated Roofing and BIPV Solution for an Historic...ANSI Std Z39-18 Successfully Demonstrating an Integrated Roofing and BIPV Solution for an Historic Building Renovation at the United States Air Force

  17. Photovoltaic Roofs

    NASA Technical Reports Server (NTRS)

    Drummond, R. W., Jr.; Shepard, N. F., Jr.

    1984-01-01

    Solar cells perform two functions: waterproofing roof and generating electricity. Sections through horizontal and slanting joints show overlapping modules sealed by L-section rubber strips and side-by-side modules sealed by P-section strips. Water seeping through seals of slanting joints drains along channels. Rooftop photovoltaic array used watertight south facing roof, replacing shingles, tar, and gravel. Concept reduces cost of residential solar-cell array.

  18. SolarTile: A rooftop integrated photovoltaic system. Phase 1, final report

    SciTech Connect

    1998-03-26

    AstroPower, Royal Group Technologies, and Solar Design Associates are jointly developing an integrated photovoltaic roofing system for residential and light commercial building applications. This family of products will rely heavily on the technological development of a roofing tile made from recycled plastic and innovative module fabrication and encapsulation processes in conjunction with an advanced Silicon-Film{trademark} solar cell product. This solar power generating roofing product is presently being referred to as the SolarTile. A conceptual drawing of the solar roofing tile is shown. The SolarTile will be integrated with non-solar tiles in a single roof installation permitting ease of assembly and the ability to use conventional roofing techniques at ridges, valleys, and eaves. The Phase 1 effort included tasks aimed at the development of the proposed product concept; product manufacturing or fabrication, and installation cost estimates; business planning; and a market assessment of the proposed product, including target selling prices, target market sectors, size estimates for each market sector, and planned distribution mechanisms for market penetration. Technical goals as stated in the Phase 1 proposal and relevant progress are reported.

  19. Refined estimation of solar energy potential on roof areas using decision trees on CityGML-data

    NASA Astrophysics Data System (ADS)

    Baumanns, K.; Löwner, M.-O.

    2009-04-01

    We present a decision tree for a refined solar energy plant potential estimation on roof areas using the exchange format CityGML. Compared to raster datasets CityGML-data holds geometric and semantic information of buildings and roof areas in more detail. In addition to shadowing effects ownership structures and lifetime of roof areas can be incorporated into the valuation. Since the Renewable Energy Sources Act came into force in Germany in 2000, private house owners and municipals raise attention to the production of green electricity. At this the return on invest depends on the statutory price per Watt, the initial costs of the solar energy plant, its lifetime, and the real production of this installation. The latter depends on the radiation that is obtained from and the size of the solar energy plant. In this context the exposition and slope of the roof area is as important as building parts like chimneys or dormers that might shadow parts of the roof. Knowing the controlling factors a decision tree can be created to support a beneficial deployment of a solar energy plant. Also sufficient data has to be available. Airborne raster datasets can only support a coarse estimation of the solar energy potential of roof areas. While they carry no semantically information, even roof installations are hardly to identify. CityGML as an Open Geospatial Consortium standard is an interoperable exchange data format for virtual 3-dimensional Cities. Based on international standards it holds the aforementioned geometric properties as well as semantically information. In Germany many Cities are on the way to provide CityGML dataset, e. g. Berlin. Here we present a decision tree that incorporates geometrically as well as semantically demands for a refined estimation of the solar energy potential on roof areas. Based on CityGML's attribute lists we consider geometries of roofs and roof installations as well as global radiation which can be derived e. g. from the European Solar

  20. Wind and solar energy resources on the 'Roof of the World'

    NASA Astrophysics Data System (ADS)

    Zandler, Harald; Morche, Thomas; Samimi, Cyrus

    2015-04-01

    The Eastern Pamirs of Tajikistan, often referred to as 'Roof of the World', are an arid high mountain plateau characterized by severe energy poverty that may have great potential for renewable energy resources due to the prevailing natural conditions. The lack of energetic infrastructure makes the region a prime target for decentralized integration of wind and solar power. However, up to date no scientific attempt to assess the regional potential of these resources has been carried out. In this context, it is particularly important to evaluate if wind and solar energy are able to provide enough power to generate thermal energy, as other thermal energy carriers are scarce or unavailable and the existing alternative, local harvest of dwarf shrubs, is unsustainable due to the slow regeneration in this environment. Therefore, this study examines the feasibility of using wind and solar energy as thermal energy sources. Financial frame conditions were set on a maximum amount of five million Euros. This sum provides a realistic scenario as it is based on the current budget of the KfW development bank to finance the modernization of the local hydropower plant in the regions only city, Murghab, with about 1500 households. The basis for resource assessment is data of four climate stations, erected for this purpose in 2012, where wind speed, wind direction, global radiation and temperature are measured at a half hourly interval. These measurements confirm the expectation of a large photovoltaic potential and high panel efficiency with up to 84 percent of extraterrestrial radiation reaching the surface and only 16 hours of temperatures above 25°C were measured in two years at the village stations on average. As these observations are only point measurements, radiation data and the ASTER GDEM was used to train a GIS based solar radiation model to spatially extrapolate incoming radiation. With mean validation errors ranging from 5% in July (minimum) to 15% in December (maximum

  1. Citywide Impacts of Cool Roof and Rooftop Solar Photovoltaic Deployment on Near-Surface Air Temperature and Cooling Energy Demand

    NASA Astrophysics Data System (ADS)

    Salamanca, F.; Georgescu, M.; Mahalov, A.; Moustaoui, M.; Martilli, A.

    2016-10-01

    Assessment of mitigation strategies that combat global warming, urban heat islands (UHIs), and urban energy demand can be crucial for urban planners and energy providers, especially for hot, semi-arid urban environments where summertime cooling demands are excessive. Within this context, summertime regional impacts of cool roof and rooftop solar photovoltaic deployment on near-surface air temperature and cooling energy demand are examined for the two major USA cities of Arizona: Phoenix and Tucson. A detailed physics-based parametrization of solar photovoltaic panels is developed and implemented in a multilayer building energy model that is fully coupled to the Weather Research and Forecasting mesoscale numerical model. We conduct a suite of sensitivity experiments (with different coverage rates of cool roof and rooftop solar photovoltaic deployment) for a 10-day clear-sky extreme heat period over the Phoenix and Tucson metropolitan areas at high spatial resolution (1-km horizontal grid spacing). Results show that deployment of cool roofs and rooftop solar photovoltaic panels reduce near-surface air temperature across the diurnal cycle and decrease daily citywide cooling energy demand. During the day, cool roofs are more effective at cooling than rooftop solar photovoltaic systems, but during the night, solar panels are more efficient at reducing the UHI effect. For the maximum coverage rate deployment, cool roofs reduced daily citywide cooling energy demand by 13-14 %, while rooftop solar photovoltaic panels by 8-11 % (without considering the additional savings derived from their electricity production). The results presented here demonstrate that deployment of both roofing technologies have multiple benefits for the urban environment, while solar photovoltaic panels add additional value because they reduce the dependence on fossil fuel consumption for electricity generation.

  2. Automatic Reconstruction of Building Roofs Through Effective Integration of LIDAR and Multispectral Imagery

    NASA Astrophysics Data System (ADS)

    Awrangjeb, M.; Zhang, C.; Fraser, C. S.

    2012-07-01

    Automatic 3D reconstruction of building roofs from remotely sensed data is important for many applications including city modeling. This paper proposes a new method for automatic 3D roof reconstruction through an effective integration of LIDAR data and multispectral imagery. Using the ground height from a DEM, the raw LIDAR points are separated into two groups. The first group contains the ground points that are exploited to constitute a 'ground mask'. The second group contains the non-ground points that are used to generate initial roof planes. The structural lines are extracted from the grey-scale version of the orthoimage and they are classified into several classes such as 'ground', 'tree', 'roof edge' and 'roof ridge' using the ground mask, the NDVI image (Normalised Difference Vegetation Index from the multi-band orthoimage) and the entropy image (from the grey-scale orthoimage). The lines from the later two classes are primarily used to fit initial planes to the neighbouring LIDAR points. Other image lines within the vicinity of an initial plane are selected to fit the boundary of the plane. Once the proper image lines are selected and others are discarded, the final plane is reconstructed using the selected lines. Experimental results show that the proposed method can handle irregular and large registration errors between the LIDAR data and orthoimagery.

  3. Sleep medicine care under one roof: a proposed model for integrating dentistry and medicine.

    PubMed

    Sharma, Sunil; Essick, Greg; Schwartz, David; Aronsky, Amy J

    2013-08-15

    Integrating oral appliance therapy into the delivery of care for sleeprelated breathing disorders has been a challenge for dental and medical professionals alike. We review the difficulties that have been faced and propose a multidisciplinary care delivery model that integrates dental sleep medicine and sleep medicine under the same roof with educational and research components. The model promises to offer distinct advantages to improved patient care, continuity of treatment, and the central coordination of clinical and insurance-related benefits.

  4. Effects of Soiling and Cleaning on the Reflectance and Solar HeatGain of a Light-Colored Roofing Membrane

    SciTech Connect

    Levinson, Ronnen; Berdahl, Paul; Berhe, Asmeret Asefaw; Akbari,Hashem

    2005-04-12

    A roof with high solar reflectance and high thermalemittance (e.g., a white roof) stays coolin the sun, reducing coolingpower demand in a conditioned building and increasing comfort in anunconditioned building. The high initial solar reflectance of a whitemembrane roof (circa 0.8) can be degraded by deposition of soot, dust,and/or algae to about 0.6 (range 0.3 to 0.8, depending on exposure) Weinvestigate the effects of soiling and cleaning on the solar spectralreflectance and solar absorptance of 15 initially white or light-graymembrane samples taken from roofs across the United States. Soot andorganic carbon were the two identifiable strongly absorbing contaminantson the membranes. Wiping was effective at removing soot, and less so atremoving organic carbon. Rinsing and/or washing removed nearly all of theremaining soil layer, with the exceptions of (a) thin layers of organiccarbon and (b) isolated dark spots of algae. Bleach was required toremove the last two features. The ratio of solar reflectance to unsoiledsolar reflectance (a measure of cleanliness) ranged from 0.41 to 0.89 forthe soiled samples; 0.53to 0.95 for the wiped samples; 0.74 to 0.98 forthe rinsed samples; 0.79 to 1.00 for the washed samples; and 0.94 to 1.02for the bleached samples. However, the influence of membrane soiling andcleaning on roof heat gain is better gauged by variations in solarabsorptance. Relative solar absorptances (indicating solar heat gainrelative to that of the unsoiled membrane) ranged from 1.4 to 3.5 for thesoiled samples; 1.1 to 3.1 for the wiped samples; 1.0 to 2.0 for therinsed samples; 1.0 to 1.9 for the washed samples; and 0.9 to 1.3 for thebleached samples.

  5. An Integrative Analysis of an Extensive Green Roof System: A Case Study of the Schleman Green Roof

    NASA Astrophysics Data System (ADS)

    Hoover, F.; Bowling, L. C.

    2013-12-01

    In urban environments where populations continue to rise, the need for affective stormwater management and runoff control methods is ever prevalent. Increased population growth and city expansion means greater impervious surfaces and higher rates of stormwater runoff. In well-established cities, this proves particularly difficult due to a constraining built environment and limited pervious spaces, even in cities as small as 40,000 residents. Work to reduce runoff in combined sewer systems (CSS) and municipal separated storm sewer systems (MS4) by use of best-management practices is one route currently under investigation. The Purdue University campus is making efforts to reduce their impact on the West Lafayette CSS and MS4. Green roofs are one management practice being used for runoff mitigation. Specifically, Schleman Hall, an administrative student affairs building, has a small green roof located on the second floor installed in 2008. In cooperation with Purdue Physical Facilities, monitoring and analysis for the Schleman extensive green roof at Purdue University was performed from June 2012 to December 2012. The objective was to determine the stormwater retention, output water quality and net present value for the 165 m2 roof. The results from the water balance analysis revealed retention rates on average of 58% of precipitation per rain event, where retention included soil moisture, evaporation and detention/depression storage. The water quality metrics tested were Nitrate-Nitrite (NO2-NO3), Orthophosphate (PO4), Ammonia-Ammonium ion (NH3-NH4), Sulfate (SO4), total suspended solids (TSS) and pH. The pollutant concentration and load results varied, but the pH levels from precipitation increased in all samples after passing through the substrate. SO4 and PO4 results yielded higher concentrations and loads in the green roof output than the control output and precipitation, while NO2-NO3 and NH3-NH4 yielded concentrations and loads that were reduced by the green

  6. Interdisciplinary design study of a high-rise integrated roof wind energy system

    NASA Astrophysics Data System (ADS)

    Dekker, R. W. A.; Ferraro, R. M.; Suma, A. B.; Moonen, S. P. G.

    2012-10-01

    Today's market in micro-wind turbines is in constant development introducing more efficient solutions for the future. Besides the private use of tower supported turbines, opportunities to integrate wind turbines in the built environment arise. The Integrated Roof Wind Energy System (IRWES) presented in this work is a modular roof structure integrated on top of existing or new buildings. IRWES is build up by an axial array of skewed shaped funnels used for both wind inlet and outlet. This inventive use of shape and geometry leads to a converging air capturing inlet to create high wind mass flow and velocity toward a Vertical Axis Wind Turbine (VAWT) in the center-top of the roof unit for the generation of a relatively high amount of energy. The scope of this research aims to make an optimized structural design of IRWES to be placed on top of the Vertigo building in Eindhoven; analysis of the structural performance; and impact to the existing structure by means of Finite Element Modeling (FEM). Results show that the obvious impact of wind pressure to the structural design is easily supported in different configurations of fairly simple lightweight structures. In particular, the weight addition to existing buildings remains minimal.

  7. Building Integrated Photovoltaic (BIPV) Roofs for Sustainability and Energy Efficiency

    DTIC Science & Technology

    2013-09-10

    crystalline silicon PV. However, a-Si cells can be manufactured at lower temperatures and deposited on low-cost substrates. The less energy intensive...W/ INTEGRATED DC & AC DISCONNECTS INVERTER INSTAlLATIOI’I NOTE: IF ’<ALL MOUNTED ASBESTOS INSPECTION NEEDED INVERTER OET AIL: !;CAl£: 1/𔃻· -r

  8. Become One In A Million: Partnership Updates. Million Solar Roofs and Interstate Renewable Energy Council Annual Meeting, Washington, D.C., October 2005

    SciTech Connect

    Tombari, C.

    2005-09-01

    The U.S. Department of Energy's Million Solar Roofs Initiative (MSR) is a unique public-private partnership aimed at overcoming market barriers for photovoltaics (PV), solar water heating, transpired solar collectors, solar space heating and cooling, and pool heating. This report contains annual progress reports from 866 partners across the United States.

  9. Effectiveness of Cool Roof Coatings with Ceramic Particles

    SciTech Connect

    Brehob, Ellen G; Desjarlais, Andre Omer; Atchley, Jerald Allen

    2011-01-01

    Liquid applied coatings promoted as cool roof coatings, including several with ceramic particles, were tested at Oak Ridge National Laboratory (ORNL), Oak Ridge, Tenn., for the purpose of quantifying their thermal performances. Solar reflectance measurements were made for new samples and aged samples using a portable reflectometer (ASTM C1549, Standard Test Method for Determination of Solar Reflectance Near Ambient Temperature Using a Portable Solar Reflectometer) and for new samples using the integrating spheres method (ASTM E903, Standard Test Method for Solar Absorptance, Reflectance, and Transmittance of Materials Using Integrating Spheres). Thermal emittance was measured for the new samples using a portable emissometer (ASTM C1371, Standard Test Method for Determination of Emittance of Materials Near Room 1 Proceedings of the 2011 International Roofing Symposium Temperature Using Portable Emissometers). Thermal conductivity of the coatings was measured using a FOX 304 heat flow meter (ASTM C518, Standard Test Method for Steady-State Thermal Transmission Properties by Means of the Heat Flow Meter Apparatus). The surface properties of the cool roof coatings had higher solar reflectance than the reference black and white material, but there were no significant differences among coatings with and without ceramics. The coatings were applied to EPDM (ethylene propylene diene monomer) membranes and installed on the Roof Thermal Research Apparatus (RTRA), an instrumented facility at ORNL for testing roofs. Roof temperatures and heat flux through the roof were obtained for a year of exposure in east Tennessee. The field tests showed significant reduction in cooling required compared with the black reference roof (~80 percent) and a modest reduction in cooling compared with the white reference roof (~33 percent). The coating material with the highest solar reflectivity (no ceramic particles) demonstrated the best overall thermal performance (combination of reducing the

  10. Soiling of building envelope surfaces and its effect on solar reflectance. Part I: Analysis of roofing product databases

    DOE PAGES

    Sleiman, Mohamad; Ban-Weiss, George; Gilbert, Haley E.; ...

    2011-12-01

    The use of highly reflective “cool” roofing materials can decrease demand for air conditioning, mitigate the urban heat island effect, and potentially slow global warming. However, initially high roof solar reflectance can be degraded by natural soiling and weathering processes. We evaluated solar reflectance losses after three years of natural exposure reported in two separate databases: the Rated Products Directory of the US Cool Roof Rating Council (CRRC) and information reported by manufacturers to the US Environmental Protection Agency (EPA)’s ENERGY STAR® rating program. Many product ratings were culled because they were duplicative (within a database) or not measured. Amore » second, site-resolved version of the CRRC dataset was created by transcribing from paper records the site-specific measurements of aged solar reflectance in Florida, Arizona and Ohio. Products with high initial solar reflectance tended to lose reflectance, while those with very low initial solar reflectance tended to become more reflective as they aged. Within the site-resolved CRRC database, absolute solar reflectance losses for samples of medium-to-high initial solar reflectance were 2 - 3 times greater in Florida (hot and humid) than in Arizona (hot and dry); losses in Ohio (temperate but polluted) were intermediate. Disaggregating results by product type, factory-applied coating, field-applied coating, metal, modified bitumen, shingle, singleply membrane and tile, revealed that absolute solar reflectance losses were largest for fieldapplied coating, modified bitumen and single-ply membrane products, and smallest for factoryapplied coating and metal products.The 2008 Title 24 provisional aged solar reflectance formula overpredicts the measured aged solar reflectance of 0% to 30% of each product type in the culled public CRRC database. The rate of overprediction was greatest for field-applied coating and single-ply membrane products and least for factory-applied coating

  11. Soiling of building envelope surfaces and its effect on solar reflectance. Part I: Analysis of roofing product databases

    SciTech Connect

    Sleiman, Mohamad; Ban-Weiss, George; Gilbert, Haley E.; François, David; Berdahl, Paul; Kirchstetter, Thomas W.; Destaillats, Hugo; Levinson, Ronnen

    2011-12-01

    The use of highly reflective “cool” roofing materials can decrease demand for air conditioning, mitigate the urban heat island effect, and potentially slow global warming. However, initially high roof solar reflectance can be degraded by natural soiling and weathering processes. We evaluated solar reflectance losses after three years of natural exposure reported in two separate databases: the Rated Products Directory of the US Cool Roof Rating Council (CRRC) and information reported by manufacturers to the US Environmental Protection Agency (EPA)’s ENERGY STAR® rating program. Many product ratings were culled because they were duplicative (within a database) or not measured. A second, site-resolved version of the CRRC dataset was created by transcribing from paper records the site-specific measurements of aged solar reflectance in Florida, Arizona and Ohio. Products with high initial solar reflectance tended to lose reflectance, while those with very low initial solar reflectance tended to become more reflective as they aged. Within the site-resolved CRRC database, absolute solar reflectance losses for samples of medium-to-high initial solar reflectance were 2 - 3 times greater in Florida (hot and humid) than in Arizona (hot and dry); losses in Ohio (temperate but polluted) were intermediate. Disaggregating results by product type, factory-applied coating, field-applied coating, metal, modified bitumen, shingle, singleply membrane and tile, revealed that absolute solar reflectance losses were largest for fieldapplied coating, modified bitumen and single-ply membrane products, and smallest for factoryapplied coating and metal products.The 2008 Title 24 provisional aged solar reflectance formula overpredicts the measured aged solar reflectance of 0% to 30% of each product type in the culled public CRRC database. The rate of overprediction was greatest for field-applied coating and single-ply membrane products and least for factory-applied coating, shingle, and

  12. Integrated Modelling and Performance Analysis of Green Roof Technologies in Urban Environments

    NASA Astrophysics Data System (ADS)

    Liu, Xi; Mijic, Ana; Maksimovic, Cedo

    2014-05-01

    As a result of the changing global climate and increase in urbanisation, the behaviour of the urban environment has been significantly altered, causing an increase in both the frequency of extreme weather events, such as flooding and drought, and also the associated costs. Moreover, uncontrolled or inadequately planned urbanisation can exacerbate the damage. The Blue-Green Dream (BGD) project therefore develops a series of components for urban areas that link urban vegetated areas (green infrastructure) with existing urban water (blue) systems, which will enhance the synergy of urban blue and green systems and provide effective, multifunctional BGD solutions to support urban adaptation to future climatic changes. Coupled with new urban water management technologies and engineering, multifunctional benefits can be gained. Some of the technologies associated with BGD solutions include green roofs, swales that might deal with runoff more effectively and urban river restoration that can produce benefits similar to those produced from sustainable urban drainage systems (SUDS). For effective implementation of these technologies, however, appropriate tools and methodologies for designing and modelling BGD solutions are required to be embedded within urban drainage models. Although several software packages are available for modelling urban drainage, the way in which green roofs and other BGD solutions are integrated into these models is not yet fully developed and documented. This study develops a physically based mass and energy balance model to monitor, test and quantitatively evaluate green roof technology for integrated BGD solutions. The assessment of environmental benefits will be limited to three aspects: (1) reduction of the total runoff volume, (2) delay in the initiation of runoff, and (3) reduction of building energy consumption, rather than water quality, visual, social or economic impacts. This physically based model represents water and heat dynamics in a

  13. Integrated solar collector

    DOEpatents

    Tchernev, Dimiter I.

    1985-01-01

    A solar collector having a copper panel in a contiguous space relationship with a condenser-evaporator heat exchanger located under the panel, the panel having a honeycomb-like structure on its interior defining individual cells which are filled with zeolite loaded, in its adsorbed condition, with 18 to 20% by weight of water. The interior of the panel and heat exchanger are maintained at subatmospheric pressure of about 0.1 to 1 psia. The panel and heat exchanger are insulated on their lateral sides and bottoms and on the top of the heat exchange. The panel has a black coating on its top which is exposed to and absorbs solar energy. Surrounding the insulation (which supports the panel) is an extruded aluminum framework which supports a pair of spaced-apart glass panels above the solar panel. Water in conduits from a system for heating or cooling or both is connected to flow into an inlet and discharge from outlet of a finned coil received within the heat exchanger. The collector panel provides heat during the day through desorption and condensing of water vapor from the heated solar panel in the heat exchanger and cools at night by the re-adsorption of the water vapor from the heat exchanger which lowers the absolute pressure within the system and cools the heat exchange coils by evaporation.

  14. Efficiency of a closed-coupled solar pasteurization system in treating roof harvested rainwater.

    PubMed

    Dobrowsky, P H; Carstens, M; De Villiers, J; Cloete, T E; Khan, W

    2015-12-01

    Many studies have concluded that roof harvested rainwater is susceptible to chemical and microbial contamination. The aim of the study was thus to conduct a preliminary investigation into the efficiency of a closed-coupled solar pasteurization system in reducing the microbiological load in harvested rainwater and to determine the change in chemical components after pasteurization. The temperature of the pasteurized tank water samples collected ranged from 55 to 57°C, 64 to 66°C, 72 to 74°C, 78 to 81°C and 90 to 91°C. Cations analyzed were within drinking water guidelines, with the exception of iron [195.59 μg/L (55°C)-170.1 μg/L (91°C)], aluminum [130.98 μg/L (78°C)], lead [12.81 μg/L (55°C)-13.2 μg/L (91°C)] and nickel [46.43 μg/L (55°C)-32.82 μg/L (78°C)], which were detected at levels above the respective guidelines in the pasteurized tank water samples. Indicator bacteria including, heterotrophic bacteria, Escherichia coli and total coliforms were reduced to below the detection limit at pasteurization temperatures of 72°C and above. However, with the use of molecular techniques Yersinia spp., Legionella spp. and Pseudomonas spp. were detected in tank water samples pasteurized at temperatures greater than 72°C. The viability of the bacteria detected in this study at the higher temperature ranges should thus be assessed before pasteurized harvested rainwater is used as a potable water source. In addition, it is recommended that the storage tank of the pasteurization system be constructed from an alternative material, other than stainless steel, in order for a closed-coupled pasteurization system to be implemented and produce large quantities of potable water from roof harvested rainwater.

  15. Integrated solar energy system optimization

    NASA Astrophysics Data System (ADS)

    Young, S. K.

    1982-11-01

    The computer program SYSOPT, intended as a tool for optimizing the subsystem sizing, performance, and economics of integrated wind and solar energy systems, is presented. The modular structure of the methodology additionally allows simulations when the solar subsystems are combined with conventional technologies, e.g., a utility grid. Hourly energy/mass flow balances are computed for interconnection points, yielding optimized sizing and time-dependent operation of various subsystems. The program requires meteorological data, such as insolation, diurnal and seasonal variations, and wind speed at the hub height of a wind turbine, all of which can be taken from simulations like the TRNSYS program. Examples are provided for optimization of a solar-powered (wind turbine and parabolic trough-Rankine generator) desalinization plant, and a design analysis for a solar powered greenhouse.

  16. MUNI Ways and Structures Building Integrated Solar Membrane Project

    SciTech Connect

    Smith, Randall

    2014-07-03

    The initial goal of the MUNI Ways and Structures Building Integrated Solar Membrane Installation Project was for the City and County of San Francisco (CCSF) to gain experience using the integrated higher efficiency solar photovoltaic (PV) single-ply membrane product, as it differs from the conventional, low efficiency, thin-film PV products, to determine the feasibility of success of larger deployment. As several of CCSF’s municipal rooftops are constrained with respect to weight restrictions, staff of the Energy Generation Group of the San Francisco Public Utilities Commission (SFPUC) proposed to install a solar PV system using single-ply membrane The installation of the 100 kW (DC-STC) lightweight photo voltaic (PV) system at the MUNI Ways and Structures Center (700 Pennsylvania Ave., San Francisco) is a continuation of the commitment of the City and County of San Francisco (CCSF) to increase the pace of municipal solar development, and serve its municipal facilities with clean renewable energy. The fourteen (14) solar photovoltaic systems that have already been installed at CCSF municipal facilities are assisting in the reduction of fossil-fuel use, and reduction of greenhouse gases from fossil combustion. The MUNI Ways & Structures Center roof has a relatively low weight-bearing capacity (3.25 pounds per square foot) and use of traditional crystalline panels was therefore rejected. Consequently it was decided to use the best available highest efficiency Building-Integrated PV (BIPV) technology, with consideration for reliability and experience of the manufacturer which can meet the low weight-bearing capacity criteria. The original goal of the project was to provide an opportunity to monitor the results of the BIPV technology and compare these results to other City and County of San Francisco installed PV systems. The MUNI Ways and Structures Center was acquired from the Cookson Doors Company, which had run the Center for many decades. The building was

  17. Soiling of building envelope surfaces and its effect on solar reflectance – Part II: Development of an accelerated aging method for roofing materials

    SciTech Connect

    Sleiman, Mohamad; Kirchstetter, Thomas W.; Berdahl, Paul; Gilbert, Haley E.; Quelen, Sarah; Marlot, Lea; Preble, Chelsea V.; Chen, Sharon; Montalbano, Amandine; Rosseler, Olivier; Akbari, Hashem; Levinson, Ronnen; Destaillats, Hugo

    2014-01-09

    Highly reflective roofs can decrease the energy required for building air conditioning, help mitigate the urban heat island effect, and slow global warming. However, these benefits are diminished by soiling and weathering processes that reduce the solar reflectance of most roofing materials. Soiling results from the deposition of atmospheric particulate matter and the growth of microorganisms, each of which absorb sunlight. Weathering of materials occurs with exposure to water, sunlight, and high temperatures. This study developed an accelerated aging method that incorporates features of soiling and weathering. The method sprays a calibrated aqueous soiling mixture of dust minerals, black carbon, humic acid, and salts onto preconditioned coupons of roofing materials, then subjects the soiled coupons to cycles of ultraviolet radiation, heat and water in a commercial weatherometer. Three soiling mixtures were optimized to reproduce the site-specific solar spectral reflectance features of roofing products exposed for 3 years in a hot and humid climate (Miami, Florida); a hot and dry climate (Phoenix, Arizona); and a polluted atmosphere in a temperate climate (Cleveland, Ohio). A fourth mixture was designed to reproduce the three-site average values of solar reflectance and thermal emittance attained after 3 years of natural exposure, which the Cool Roof Rating Council (CRRC) uses to rate roofing products sold in the US. This accelerated aging method was applied to 25 products₋single ply membranes, factory and field applied coatings, tiles, modified bitumen cap sheets, and asphalt shingles₋and reproduced in 3 days the CRRC's 3-year aged values of solar reflectance. In conclusion, this accelerated aging method can be used to speed the evaluation and rating of new cool roofing materials.

  18. Design, Development, and Performance Evaluation of Solar Heating System for Disinfection of Domestic Roof-Harvested Rainwater.

    PubMed

    Akintola, O A; Sangodoyin, A Y

    2015-01-01

    A box-type solar heater was designed, constructed, and used to determine the effect of solar heating on quality of domestic roof-harvested rainwater (DRHRW). During testing, naturally contaminated DRHRW was harvested in Ibadan, Nigeria, and released into the system at 93.96 Lh(-1) (2.61 × 10(-5) m(3) s(-1)) in a continuous flow process. Water temperatures at inlet, within the heating chamber, and at outlet from the heating chamber and solar radiation were monitored at 10 min interval. Samples were collected at both inlet to and outlet from the heating chamber at 10 min interval for microbiological analysis. The highest plate stagnation temperature, under no-load condition, was 100°C. The solar water heater attained a maximum operational temperature of 75°C with 89.6 and 94.4% reduction in total viable count and total coliform count, respectively, while Escherichia coli and Staphylococcus aureus were completely eradicated at this temperature. The solar heater developed proved to be effective in enhancing potability of DRHRW in Ibadan, Nigeria. This may be an appropriate household water treatment technology for developing countries, hence, a way of resolving problem of low quality water for potable uses.

  19. Design, Development, and Performance Evaluation of Solar Heating System for Disinfection of Domestic Roof-Harvested Rainwater

    PubMed Central

    Sangodoyin, A. Y.

    2015-01-01

    A box-type solar heater was designed, constructed, and used to determine the effect of solar heating on quality of domestic roof-harvested rainwater (DRHRW). During testing, naturally contaminated DRHRW was harvested in Ibadan, Nigeria, and released into the system at 93.96 Lh−1 (2.61 × 10−5 m3 s−1) in a continuous flow process. Water temperatures at inlet, within the heating chamber, and at outlet from the heating chamber and solar radiation were monitored at 10 min interval. Samples were collected at both inlet to and outlet from the heating chamber at 10 min interval for microbiological analysis. The highest plate stagnation temperature, under no-load condition, was 100°C. The solar water heater attained a maximum operational temperature of 75°C with 89.6 and 94.4% reduction in total viable count and total coliform count, respectively, while Escherichia coli and Staphylococcus aureus were completely eradicated at this temperature. The solar heater developed proved to be effective in enhancing potability of DRHRW in Ibadan, Nigeria. This may be an appropriate household water treatment technology for developing countries, hence, a way of resolving problem of low quality water for potable uses. PMID:27347529

  20. Analysis of urban land use in the megacity of Dhaka, Bangladesh: Roof-top detection in the context of assessing solar photovoltaic potential

    NASA Astrophysics Data System (ADS)

    Jaegermeyr, J.; Kabir, H.; Endlicher, W.

    2009-12-01

    The megacity of Dhaka, Bangladesh is considered to be one of the world’s fastest growing urban centers. With nearly 14 million people Dhaka currently faces tremendous power crisis. The available power supply of Dhaka Megacity is currently 1000-1200 MW against the maximum demand of nearly 2000 MW. The objective of this study is to classify land cover of Dhaka to locate roof-top areas which are adequate for solar photovoltaic applications. Usually this task is performed with additional building-heights data. With lack of that, we present an object-based classification approach which is based on high resolution Quickbird data only. Extensive formal buildings in Dhaka mostly have flat roof-tops made from concrete which are well suited for PV applications. The classification is focused to detect these ‘Bright Roof-Tops’ to assess a lower limit for potential PV areas. With that conservative approach bright roof-top areas of 10.554 km2 out of the city’s 134.282 km2 could be found. The overall classification accuracy is 0.918, the producer’s accuracy of ‘Bright Roof-Tops’ is 0.833. Preliminary result of the PhD work of Humayun Kabir indicates that the application of only 75 Wp stand-alone solar modules on these available bright roof-tops can generate nearly 1,000 MW of electricity. The application of solar modules with high capacity (i.e., >200 Wp) preferably through grid-connected PV systems can substantially meet-up the city’s power demand, although several techno-economic and socio-political factors are certainly involved.

  1. Integrally covered silicon solar cells.

    NASA Technical Reports Server (NTRS)

    Stella, P. M.; Somberg, H.

    1972-01-01

    The electron-beam technique for evaporating dielectric materials onto solar cells has been examined and developed. Titanium oxide cell antireflection coatings have been obtained which compare to silicon monoxide in environmental capabilities and which provide 3 to 4% improvement over SiO for glass covered cells. Evaporation processes have been obtained which provide a 50 to 100 micromil thick transparent (0.5 to 1.0% absorption per mil), low stressed integral cover capable of surviving space type qualification testing. Irradiation with 10 to the 15th power 1-MeV electrons shows 2% darkening, and long term UV irradiation incurs approximately 1.3% cover darkening for 50 micromil thick covers.

  2. Solar Air Heating Metal Roofing for Reroofing, New Construction, and Retrofit

    DTIC Science & Technology

    2013-05-20

    annual energy and life cycle savings from developing a solar assisted geothermal heating and cooling system . The project is funded by the Department...to the geothermal loop. The measurements proved the solar heated air resource and attic exhaust fan system are adequate for solar heat recovery to...support a geothermal heating system . Subsequent to the radiant barrier installation the overall geothermal project was reconfigured due to budget

  3. Automatic Analysis and Classification of the Roof Surfaces for the Installation of Solar Panels Using a Multi-Data Source and Multi-Sensor Aerial Platform

    NASA Astrophysics Data System (ADS)

    López, L.; Lagüela, S.; Picon, I.; González-Aguilera, D.

    2015-02-01

    A low-cost multi-sensor aerial platform, aerial trike, equipped with visible and thermographic sensors is used for the acquisition of all the data needed for the automatic analysis and classification of roof surfaces regarding their suitability to harbour solar panels. The geometry of a georeferenced 3D point cloud generated from visible images using photogrammetric and computer vision algorithms, and the temperatures measured on thermographic images are decisive to evaluate the surfaces, slopes, orientations and the existence of obstacles. This way, large areas may be efficiently analysed obtaining as final result the optimal locations for the placement of solar panels as well as the required geometry of the supports for the installation of the panels in those roofs where geometry is not optimal.

  4. Solar water disinfection (SODIS): a review from bench-top to roof-top.

    PubMed

    McGuigan, Kevin G; Conroy, Ronán M; Mosler, Hans-Joachim; du Preez, Martella; Ubomba-Jaswa, Eunice; Fernandez-Ibañez, Pilar

    2012-10-15

    Solar water disinfection (SODIS) has been known for more than 30 years. The technique consists of placing water into transparent plastic or glass containers (normally 2L PET beverage bottles) which are then exposed to the sun. Exposure times vary from 6 to depending on the intensity of sunlight and sensitivity of the pathogens. Its germicidal effect is based on the combined effect of thermal heating of solar light and UV radiation. It has been repeatedly shown to be effective for eliminating microbial pathogens and reduce diarrhoeal morbidity including cholera. Since 1980 much research has been carried out to investigate the mechanisms of solar radiation induced cell death in water and possible enhancement technologies to make it faster and safer. Since SODIS is simple to use and inexpensive, the method has spread throughout the developing world and is in daily use in more than 50 countries in Asia, Latin America, and Africa. More than 5 million people disinfect their drinking water with the solar disinfection (SODIS) technique. This review attempts to revise all relevant knowledge about solar disinfection from microbiological issues, laboratory research, solar testing, up to and including real application studies, limitations, factors influencing adoption of the technique and health impact.

  5. Building with integral solar-heat storage--Starkville, Mississippi

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Column supporting roof also houses rock-storage bin of solar-energy system supplying more than half building space heating load. Conventional heaters supply hot water. Since bin is deeper and narrower than normal, individual pebble size was increased to keep airflow resistance at minimum.

  6. Final Report. An Integrated Partnership to Create and Lead the Solar Codes and Standards Working Group

    SciTech Connect

    Rosenthal, Andrew

    2013-12-30

    The DOE grant, “An Integrated Partnership to Create and Lead the Solar Codes and Standards Working Group,” to New Mexico State University created the Solar America Board for Codes and Standards (Solar ABCs). From 2007 – 2013 with funding from this grant, Solar ABCs identified current issues, established a dialogue among key stakeholders, and catalyzed appropriate activities to support the development of codes and standards that facilitated the installation of high quality, safe photovoltaic systems. Solar ABCs brought the following resources to the PV stakeholder community; Formal coordination in the planning or revision of interrelated codes and standards removing “stove pipes” that have only roofing experts working on roofing codes, PV experts on PV codes, fire enforcement experts working on fire codes, etc.; A conduit through which all interested stakeholders were able to see the steps being taken in the development or modification of codes and standards and participate directly in the processes; A central clearing house for new documents, standards, proposed standards, analytical studies, and recommendations of best practices available to the PV community; A forum of experts that invites and welcomes all interested parties into the process of performing studies, evaluating results, and building consensus on standards and code-related topics that affect all aspects of the market; and A biennial gap analysis to formally survey the PV community to identify needs that are unmet and inhibiting the market and necessary technical developments.

  7. Solar electric and thermal conversion system in close proximity to the consumer. [solar panels on house roofs

    NASA Technical Reports Server (NTRS)

    Boeer, K. W.

    1975-01-01

    Solar cells may be used to convert sunlight directly into electrical energy and into lowgrade heat to be used for large-scale terrestrial solar-energy conversion. Both forms of energy can be utilized if such cells are deployed in close proximity to the consumer (rooftop). Cadmium-sulfide/copper-sulfide (CdS/Cu2S) solar cells are an example of cells which may be produced inexpensively enough to become economically attractive. Cell parameters relevant for combined solar conversion are presented. Critical issues, such as production yield, life expectancy, and stability of performance, are discussed. Systems-design parameters related to operating temperatures are analyzed. First results obtained on Solar One, the experimental house of the University of Delaware, are given. Economic aspects are discussed. Different modes of operation are discussed in respect to the power utility and consumer incentives.

  8. Sustainable Retrofit of Residential Roofs Using Metal Roofing Panels, Thin-Film Photovoltaic Laminates, and PCM Heat Sink Technology

    SciTech Connect

    Kosny, Jan; Miller, William A; Childs, Phillip W; Biswas, Kaushik

    2011-01-01

    During September-October 2009, research teams representing Metal Construction Association (the largest North American trade association representing metal building manufacturers, builders, and material suppliers), CertainTeed (one of the largest U.S. manufacturers of thermal insulation and building envelope materials), Unisolar (largest U.S. producer of amorphous silicone photo-voltaic (PV) laminates), Phase Change Energy (manufacturer of bio-based PCM), and Oak Ridge National Laboratory (ORNL) installed three experimental attics utilizing different roof retrofit strategies in the ORNL campus. The main goal of this project was experimental evaluation of a newly-developed sustainable re-roofing technology utilizing amorphous silicone PV laminates integrated with metal roof and PCM heat sink. The experimental attic with PV laminate was expected to work during the winter time as a passive solar collector with PCM storing solar heat, absorbed during the day, and increasing overall attic air temperature during the night.

  9. Roof-harvested rainwater for potable purposes: application of solar collector disinfection (SOCO-DIS).

    PubMed

    Amin, M T; Han, M Y

    2009-12-01

    The efficiency of solar disinfection (SODIS), recommended by the World Health Organization, has been determined for rainwater disinfection, and potential benefits and limitations discussed. The limitations of SODIS have now been overcome by the use of solar collector disinfection (SOCO-DIS), for potential use of rainwater as a small-scale potable water supply, especially in developing countries. Rainwater samples collected from the underground storage tanks of a rooftop rainwater harvesting (RWH) system were exposed to different conditions of sunlight radiation in 2-L polyethylene terephthalate bottles in a solar collector with rectangular base and reflective open wings. Total and fecal coliforms were used, together with Escherichia coli and heterotrophic plate counts, as basic microbial and indicator organisms of water quality for disinfection efficiency evaluation. In the SOCO-DIS system, disinfection improved by 20-30% compared with the SODIS system, and rainwater was fully disinfected even under moderate weather conditions, due to the effects of concentrated sunlight radiation and the synergistic effects of thermal and optical inactivation. The SOCO-DIS system was optimized based on the collector configuration and the reflective base: an inclined position led to an increased disinfection efficiency of 10-15%. Microbial inactivation increased by 10-20% simply by reducing the initial pH value of the rainwater to 5. High turbidities also affected the SOCO-DIS system; the disinfection efficiency decreased by 10-15%, which indicated that rainwater needed to be filtered before treatment. The problem of microbial regrowth was significantly reduced in the SOCO-DIS system compared with the SODIS system because of residual sunlight effects. Only total coliform regrowth was detected at higher turbidities. The SOCO-DIS system was ineffective only under poor weather conditions, when longer exposure times or other practical means of reducing the pH were required for the

  10. Passive integral solar heat collector system

    SciTech Connect

    Feldman Jr., K. T.

    1985-04-30

    The present invention relates to an improved apparatus for collecting, absorbing, transferring, and storing solar heat energy, economically and passively, without pumps or electric power. The apparatus comprises a solar collector with a flat finned heat pipe absorber and an attached integral insulated storage tank with a double wall heat exchanger. The absorber, made of one or more slightly tilted gravity assisted heat pipes with flat absorber fins, absorbs and transfers solar heat by evaporation, vapor transport, and condensation to the slightly elevated heat storage tank. The one or more heat pipes turn on when the sun is shining and turn off automatically when the sun is not shining.

  11. Optimal nonimaging integrated evacuated solar collector

    NASA Astrophysics Data System (ADS)

    Garrison, John D.; Duff, W. S.; O'Gallagher, Joseph J.; Winston, Roland

    1993-11-01

    A non imaging integrated evacuated solar collector for solar thermal energy collection is discussed which has the lower portion of the tubular glass vacuum enveloped shaped and inside surface mirrored to optimally concentrate sunlight onto an absorber tube in the vacuum. This design uses vacuum to eliminate heat loss from the absorber surface by conduction and convection of air, soda lime glass for the vacuum envelope material to lower cost, optimal non imaging concentration integrated with the glass vacuum envelope to lower cost and improve solar energy collection, and a selective absorber for the absorbing surface which has high absorptance and low emittance to lower heat loss by radiation and improve energy collection efficiency. This leads to a very low heat loss collector with high optical collection efficiency, which can operate at temperatures up to the order of 250 degree(s)C with good efficiency while being lower in cost than current evacuated solar collectors. Cost estimates are presented which indicate a cost for this solar collector system which can be competitive with the cost of fossil fuel heat energy sources when the collector system is produced in sufficient volume. Non imaging concentration, which reduces cost while improving performance, and which allows efficient solar energy collection without tracking the sun, is a key element in this solar collector design.

  12. Dynamic kirigami structures for integrated solar tracking.

    PubMed

    Lamoureux, Aaron; Lee, Kyusang; Shlian, Matthew; Forrest, Stephen R; Shtein, Max

    2015-09-08

    Optical tracking is often combined with conventional flat panel solar cells to maximize electrical power generation over the course of a day. However, conventional trackers are complex and often require costly and cumbersome structural components to support system weight. Here we use kirigami (the art of paper cutting) to realize novel solar cells where tracking is integral to the structure at the substrate level. Specifically, an elegant cut pattern is made in thin-film gallium arsenide solar cells, which are then stretched to produce an array of tilted surface elements which can be controlled to within ±1°. We analyze the combined optical and mechanical properties of the tracking system, and demonstrate a mechanically robust system with optical tracking efficiencies matching conventional trackers. This design suggests a pathway towards enabling new applications for solar tracking, as well as inspiring a broader range of optoelectronic and mechanical devices.

  13. Dynamic kirigami structures for integrated solar tracking

    PubMed Central

    Lamoureux, Aaron; Lee, Kyusang; Shlian, Matthew; Forrest, Stephen R.; Shtein, Max

    2015-01-01

    Optical tracking is often combined with conventional flat panel solar cells to maximize electrical power generation over the course of a day. However, conventional trackers are complex and often require costly and cumbersome structural components to support system weight. Here we use kirigami (the art of paper cutting) to realize novel solar cells where tracking is integral to the structure at the substrate level. Specifically, an elegant cut pattern is made in thin-film gallium arsenide solar cells, which are then stretched to produce an array of tilted surface elements which can be controlled to within ±1°. We analyze the combined optical and mechanical properties of the tracking system, and demonstrate a mechanically robust system with optical tracking efficiencies matching conventional trackers. This design suggests a pathway towards enabling new applications for solar tracking, as well as inspiring a broader range of optoelectronic and mechanical devices. PMID:26348820

  14. Dynamic kirigami structures for integrated solar tracking

    NASA Astrophysics Data System (ADS)

    Lamoureux, Aaron; Lee, Kyusang; Shlian, Matthew; Forrest, Stephen R.; Shtein, Max

    2015-09-01

    Optical tracking is often combined with conventional flat panel solar cells to maximize electrical power generation over the course of a day. However, conventional trackers are complex and often require costly and cumbersome structural components to support system weight. Here we use kirigami (the art of paper cutting) to realize novel solar cells where tracking is integral to the structure at the substrate level. Specifically, an elegant cut pattern is made in thin-film gallium arsenide solar cells, which are then stretched to produce an array of tilted surface elements which can be controlled to within +/-1°. We analyze the combined optical and mechanical properties of the tracking system, and demonstrate a mechanically robust system with optical tracking efficiencies matching conventional trackers. This design suggests a pathway towards enabling new applications for solar tracking, as well as inspiring a broader range of optoelectronic and mechanical devices.

  15. Roof-harvested rainwater for potable purposes: application of solar disinfection (SODIS) and limitations.

    PubMed

    Amin, Muhammad Tahir; Han, Mooyoung

    2009-01-01

    Efficiency of solar disinfection (SODIS) was evaluated for the potability of rainwater in view of the increasing water and energy crises especially in developing countries. Rainwater samples were collected from an underground storage tank in 2 L polyethylene terephthalate (PET) bottles and SODIS efficiency was evaluated at different weather conditions. For optimizing SODIS, PET bottles with different backing surfaces to enhance the optical and thermal effects of SODIS were used and different physicochemical parameters were selected and evaluated along with microbial re-growth observations and calculating microbial decay constants. Total and fecal coliforms were used along with Escherichia Coli and Heterotrophic Plate Counts (HPC) as basic microbial and indicator organisms of water quality. For irradiance less than 600 W/m(2), reflective type PET bottles were best types while for radiations greater than 700 W/m(2), absorptive type PET bottles offered best solution due to the synergistic effects of both thermal and UV radiations. Microbial inactivation did not improve significantly by changing the initial pH and turbidity values but optimum SODIS efficiency is achieved for rainwater with acidic pH and low initial turbidity values by keeping air-spaced PET bottles in undisturbed conditions. Microbial re-growth occurred after one day only at higher turbidity values and with basic pH values. First-order reaction rate constant was in accordance with recent findings for TC but contradicted with previous researches for E. coli. No microbial parameter met drinking water guidelines even under strong experimental weather conditions rendering SODIS ineffective for complete disinfection and hence needed more exposure time or stronger sunlight radiations. With maximum possible storage of rainwater, however, and by using some means for accelerating SODIS process, rainwater can be disinfected and used for potable purposes.

  16. Green Roofs

    SciTech Connect

    2004-08-01

    A New Technology Demonstration Publication Green roofs can improve the energy performance of federal buildings, help manage stormwater, reduce airborne emissions, and mitigate the effects of urban heat islands.

  17. Green roofs: potential at LANL

    SciTech Connect

    Pacheco, Elena M

    2009-01-01

    Green roofs, roof systems that support vegetation, are rapidly becoming one of the most popular sustainable methods to combat urban environmental problems in North America. An extensive list of literature has been published in the past three decades recording the ecological benefits of green roofs; and now those benefits have been measured in enumerated data as a means to analyze the costs and returns of green roof technology. Most recently several studies have made substantial progress quantifying the monetary savings associated with storm water mitigation, the lessoning of the Urban Heat Island, and reduction of building cooling demands due to the implementation of green roof systems. Like any natural vegetation, a green roof is capable of absorbing the precipitation that falls on it. This capability has shown to significantly decrease the amount of storm water runoff produced by buildings as well as slow the rate at which runoff is dispensed. As a result of this reduction in volume and velocity, storm drains and sewage systems are relieved of any excess stress they might experience in a storm. For many municipalities and private building owners, any increase in storm water mitigation can result in major tax incentives and revenue that does not have to be spent on extra water treatments. Along with absorption of water, vegetation on green roofs is also capable of transpiration, the process by which moisture is evaporated into the air to cool ambient temperatures. This natural process aims to minimize the Urban Heat Island Effect, a phenomenon brought on by the dark and paved surfaces that increases air temperatures in urban cores. As the sun distributes solar radiation over a city's area, dark surfaces such as bitumen rooftops absorb solar rays and their heat. That heat is later released during the evening hours and the ambient temperatures do not cool as they normally would, creating an island of constant heat. Such excessively high temperatures induce heat

  18. Integrated Solar Concentrator and Shielded Radiator

    NASA Technical Reports Server (NTRS)

    Clark, David Larry

    2010-01-01

    A shielded radiator is integrated within a solar concentrator for applications that require protection from high ambient temperatures with little convective heat transfer. This innovation uses a reflective surface to deflect ambient thermal radiation, shielding the radiator. The interior of the shield is also reflective to provide a view factor to deep space. A key feature of the shield is the parabolic shape that focuses incoming solar radiation to a line above the radiator along the length of the trough. This keeps the solar energy from adding to the radiator load. By placing solar cells along this focal line, the concentration of solar energy reduces the number and mass of required cells. By shielding the radiator, the effective reject temperature is much lower, allowing lower radiator temperatures. This is particularly important for lower-temperature processes, like habitat heat rejection and fuel cell operations where a high radiator temperature is not feasible. Adding the solar cells in the focal line uses the concentrating effect of the shield to advantage to accomplish two processes with a single device. This shield can be a deployable, lightweight Mylar structure for compact transport.

  19. Integral glass encapsulation for solar arrays

    NASA Technical Reports Server (NTRS)

    Landis, G. A.

    1981-01-01

    Electrostatic bonding technology, an encapsulation technique for terrestrial solar array was developed. The process produces full integral, hermetic bonds with no adhesives or pottants. Panels of six solar cells on a simple glass superstrate were produced. Electrostatic bonding for making the cell front contact was also developed. A metal mesh is trapped into contact with the cell front during the bonding process. Six cell panels using the bonded mesh as the only cell front contact were produced. The possibility of using lower cost glass, with a higher thermal expansion mismatch to silicon, by making lower temperature bonds is developed. However, this requires a planar surface cell.

  20. Multistep Methods for Integrating the Solar System

    DTIC Science & Technology

    1988-07-01

    Technical Report 1055 [Multistep Methods for Integrating the Solar System 0 Panayotis A. Skordos’ MIT Artificial Intelligence Laboratory DTIC S D g8...RMA ELEENT. PROECT. TASK Artific ial Inteligence Laboratory ARE1A G WORK UNIT NUMBERS 545 Technology Square Cambridge, MA 02139 IL. CONTROLLING...describes research done at the Artificial Intelligence Laboratory of the Massachusetts Institute of Technology, supported by the Advanced Research Projects

  1. Roof Plans: Section "CC", Roof Plan; Roof Framing Plans: Section ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Roof Plans: Section "C-C", Roof Plan; Roof Framing Plans: Section "C-C", Section "D-D"; Roof Framing Sections: Cross Section "G-G", Cross Section "H-H" - Fort Washington, Fort Washington Light, Northeast side of Potomac River at Fort Washington Park, Fort Washington, Prince George's County, MD

  2. SWIFT: A solar system integration software package

    NASA Astrophysics Data System (ADS)

    Levison, Harold F.; Duncan, Martin J.

    2013-03-01

    SWIFT follows the long-term dynamical evolution of a swarm of test particles in the solar system. The code efficiently and accurately handles close approaches between test particles and planets while retaining the powerful features of recently developed mixed variable symplectic integrators. Four integration techniques are included: Wisdom-Holman Mapping; Regularized Mixed Variable Symplectic (RMVS) method; fourth order T+U Symplectic (TU4) method; and Bulirsch-Stoer method. The package is designed so that the calls to each of these look identical so that it is trivial to replace one with another. Complex data manipulations and results can be analyzed with the graphics packace SwiftVis.

  3. Transparent antennas for solar cell integration

    NASA Astrophysics Data System (ADS)

    Yasin, Tursunjan

    Transparent patch antennas are microstrip patch antennas that have a certain level of optical transparency. Highly transparent patch antennas are potentially suitable for integration with solar panels of small satellites, which are becoming increasingly important in space exploration. Traditional patch antennas employed on small satellites compete with solar cells for surface area. However, a transparent patch antenna can be placed directly on top of solar cells and resolve the issue of competing for limited surface real estate. For such an integration, a high optical transparency of the patch antenna is required from the solar cells' point of view. On the other hand, the antenna should possess at least acceptable radiation properties at the same time. This dissertation focuses on some of the most important concerns from the perspective of small satellite applications. For example, an optimization method to simultaneously improve both optical transparency and radiation efficiency of the antenna is studied. Active integrated antenna design method is extended to meshed patch applications in an attempt to improve the overall power efficiency of the front end communication subsystem. As is well known, circular polarization is immune from Faraday rotation effect in the ionosphere and thus can avoid a 3-dB loss in geo-satellite communication. Therefore, this research also aims to present design methods for circularly polarized meshed patch antennas. Moreover, a meshed patch antenna capable of supporting a high communication data rate is investigated. Lastly, other types of transparent patch antennas are also analyzed and compared to meshed patches. In summary, many properties of transparent patch antennas are examined in order to meet different design requirements.

  4. Aging of reflective roofs: soot deposition.

    PubMed

    Berdahl, Paul; Akbari, Hashem; Rose, Leanna S

    2002-04-20

    Solar-reflective roofs remain cooler than absorptive roofs and thus conserve electricity otherwise needed for air conditioning. A currently controversial aspect of solar-reflective cool roofing is the extent to which an initially high solar reflectance decreases with time. We present experimental data on the spectral absorption of deposits that accumulate on roofs, and we attribute most of the absorption to carbon soot originally produced by combustion. The deposits absorb more at short wavelengths (e.g., in the blue) than in the red and infrared, imparting a slightly yellow tinge to formerly white surfaces. The initial rate of reflectance reduction by soot accumulation is consistent with known emission rates that are due to combustion. The long-term reflectance change appears to be determined by the ability of the soot to adhere to the roof, resisting washout by rain.

  5. Integrated solar reforming for thermochemical energy transport

    NASA Astrophysics Data System (ADS)

    Rozenman, T.

    1987-12-01

    This report presents a design study of two reforming processes as applied to the concept of solar thermochemical energy transport. Conceptual designs were carried out for steam-methane and CO2-methane reforming plants. A solar central receiver reformer was designed as an integrated reactor with the chemical reaction tubes placed inside the receiver cavity. The two plant designs were compared for their energy efficiency and capital cost. The CO2 reforming plant design results in higher energy efficiency but requires a catalyst which is still in an experimental stage of development. A third design was performed as a modification of the steam reforming plant utilizing a Direct Contact system, in which the process steam is generated by utilizing the heat of condensation. This system resulted in the highest energy efficiency. A comparison of the capital cost of these three plant designs shows them to be equivalent within the estimation accuracy of 25 percent.

  6. The NERIES Data Portal : integrating distributed heterogeneous data search and access under one roof

    NASA Astrophysics Data System (ADS)

    Kamb, Linus; Spinuso, Alessandro; Frobert, Laurent; Trani, Luca; Bossu, Remy; van Eck, Torild

    2010-05-01

    The NERIES project (NEtwork of Research Infrastructures for European Seismology) is an EC-funded Integrated Infrastructure Initiative (I3) under the 6th Framework Programme developed to integrate data and service resources for the seismological community. The NERIES data portal (http://www.seismicportal.eu) provides a single integrated point of access to distributed data sets available from several of the NERIES activities, including event parametric information, seismic waveforms, and strong motion data. The data portal aggregates data search and access tools from several NERIES participants within a unified access point. These tools operate in a coordinated manner to provide a cohesive distributed search environment, linking data search and access across multiple data providers. In addition, the portal provides a platform from which to integrate access to external tools and processing centers. The portal provides interactive map-based interfaces to discover, explore, and download available data sets. With distributed tools operating in concert, the user is able to search and make selections from the EMSC event database, adding selections to a private Event Cart, and then search the ORFEUS data center archives for available data for the selected events. Data requests are then packaged and made available for download. The packaged data sets can also be made available for external processing services, such as through the RapidSeis system. The NERIES data portal is architected as a collection of web portlets operating at the respective data centers, supported by a distributed collection of web services. The portlets access both local and remote web data services. The data services are exposed through standard HTTP access mechanisms and are thus available for direct access by other external clients. This allows the creation of independent applications that access the data center holdings directly through these exposed web data services, such as the SeismoLink web

  7. Integral Glass Encapsulation for Solar Arrays

    NASA Technical Reports Server (NTRS)

    Younger, P. R.; Tobin, R. G.; Kreisman, W. S.

    1979-01-01

    Work reported was performed during the period from August 1977 to December 1978. The program objective was to continue the development of electrostatic bonding (ESB) as an encapsulation technique for terrestrial cells. Economic analyses shows that this process can be a cost-effective method of producing reliable, long lifetime solar modules. When considered in sufficient volume, both material and equipment costs are competitive with conventional encapsulation systems. In addition, the possibility of integrating cell fabrication into the encapsulation process, as in the case of the preformed cell contacts discussed in this report, offers the potential of significant overall systems cost reduction.

  8. Low concentration solar louvres for building integration

    NASA Astrophysics Data System (ADS)

    Vincenzi, D.; Aldegheri, F.; Baricordi, S.; Bernardoni, P.; Calabrese, G.; Guidi, V.; Pozzetti, L.

    2013-09-01

    The building integration of CPV modules offers several advantages over the integration of flat panel systems, but the decreasing price trend of standard modules observed in the last years has hampered the market expansion of CPV systems, which still don't rely on a low-cost mass production supply chain. To overcome this contingent issue and to foster the diffusion of innovative PV systems we developed a low concentration BIPV module with added functionalities, such as sunlight shading and building illumination. The electrical performances, retrieved under outdoor conditions, and the lighting performances of the Solar F-Light are shown. The latter indicate that it is suitable for ambient lighting, with a very limited power draw.

  9. Understanding Roofing Systems.

    ERIC Educational Resources Information Center

    Michelsen, Ted

    2001-01-01

    Reviews the various types of multi- and single-ply roofing commonly used today in educational facilities. Roofing types described involve built-up systems, modified bitumen systems; ethylene propylene diene terpolymer roofs; and roofs of thermoplastic, metal, and foam. A description of the Roofing Industry Educational Institute is included. (GR)

  10. Integrated Solar Upper Stage Technical Support

    NASA Technical Reports Server (NTRS)

    Jaworske, Donald A.

    1998-01-01

    NASA Lewis Research Center is participating in the Integrated Solar Upper Stage (ISUS) program. This program is a ground-based demonstration of an upper stage concept that will be used to generate both solar propulsion and solar power. Solar energy collected by a primary concentrator is directed into the aperture of a secondary concentrator and further concentrated into the aperture of a heat receiver. The energy stored in the receiver-absorber-converter is used to heat hydrogen gas to provide propulsion during the orbital transfer portion of the mission. During the balance of the mission, electric power is generated by thermionic diodes. Several materials issues were addressed as part of the technical support portion of the ISUS program, including: 1) Evaluation of primary concentrator coupons; 2) Evaluation of secondary concentrator coupons; 3) Evaluation of receiver-absorber-converter coupons; 4) Evaluation of in-test witness coupons. Two different types of primary concentrator coupons were evaluated from two different contractors-replicated coupons made from graphite-epoxy composite and coupons made from microsheet glass. Specular reflectivity measurements identified the replicated graphite-epoxy composite coupons as the primary concentrator material of choice. Several different secondary concentrator materials were evaluated, including a variety of silver and rhodium reflectors. The specular reflectivity of these materials was evaluated under vacuum at temperatures up to 800 C. The optical properties of several coupons of rhenium on graphite were evaluated to predict the thermal performance of the receiver-absorber-converter. Finally, during the ground test demonstration, witness coupons placed in strategic locations throughout the thermal vacuum facility were evaluated for contaminants. All testing for the ISUS program was completed successfully in 1997. Investigations related to materials issues have proven helpful in understanding the operation of the test

  11. Western Wind and Solar Integration Study (Fact Sheet)

    SciTech Connect

    Not Available

    2012-09-01

    Initiated in 2007 to examine the operational impact of up to 35% penetration of wind, photovoltaic (PV), and concentrating solar power (CSP) energy on the electric power system, the Western Wind and Solar Integration Study (WWSIS) is one of the largest regional wind and solar integration studies to date. The goal is to understand the effects of variability and uncertainty of wind, PV, and CSP on the grid. In the Western Wind and Solar Integration Study Phase 1, solar penetration was limited to 5%. Utility-scale PV was not included because of limited capability to model sub-hourly, utility-scale PV output . New techniques allow the Western Wind and Solar Integration Study Phase 2 to include high penetrations of solar - not only CSP and rooftop PV but also utility-scale PV plants.

  12. Fiddling on the roof

    NASA Astrophysics Data System (ADS)

    Willcox, Norman

    2009-08-01

    I would like to pass on my experience with regard to Tim Simpson's comment on hot-water heating (June p19). I had a solar water-heating system installed on my roof here in Southern France in 2008. When I spoke to two "satisfied customers" about their systems, neither could tell me how much they saved in energy costs, and they did not seem to realize that the "auxiliary" immersion heater - which is permanently fitted on all systems, including my own - would come on whenever the temperature in the solar-heated tank dropped below the thermostat setting. This year we were well into the month of May before we could sometimes rely on the solar heat alone. I have fitted a time switch to the immersion heater and I switch it off completely when we have periods of full sunshine, but it is not easy to match the need for hot water to the possible availability.

  13. Rules To Roof By.

    ERIC Educational Resources Information Center

    Hale, Olivia

    2002-01-01

    Advises schools on keeping roofs healthy, thereby saving costly repairs to both the roof and the entire building. Discusses inspections, preventive-maintenance programs, weather, and when to re-roof. (EV)

  14. Colorful solar selective absorber integrated with different colored units.

    PubMed

    Chen, Feiliang; Wang, Shao-Wei; Liu, Xingxing; Ji, Ruonan; Li, Zhifeng; Chen, Xiaoshuang; Chen, Yuwei; Lu, Wei

    2016-01-25

    Solar selective absorbers are the core part for solar thermal technologies such as solar water heaters, concentrated solar power, solar thermoelectric generators and solar thermophotovoltaics. Colorful solar selective absorber can provide new freedom and flexibility beyond energy performance, which will lead to wider utilization of solar technologies. In this work, we present a monolithic integration of colored solar absorber array with different colors on a single substrate based on a multilayered structure of Cu/TiN(x)O(y)/TiO(2)/Si(3)N(4)/SiO(2). A colored solar absorber array with 16 color units is demonstrated experimentally by using combinatorial deposition technique via changing the thickness of SiO(2) layer. The solar absorptivity and thermal emissivity of all the color units is higher than 92% and lower than 5.5%, respectively. The colored solar selective absorber array can have colorful appearance and designable patterns while keeping high energy performance at the same time. It is a new candidate for a number of solar applications, especially for architecture integration and military camouflage.

  15. Solar energy grid integration systems "SEGIS"

    SciTech Connect

    None, None

    2007-10-01

    The inevitable transformation of the electrical grid to a more distributed generation configuration requires solar system capabilities well beyond simple net-metered, grid-connected approaches. Time-of-use and peak-demand rate structures will require more sophisticated systems designs that integrate energy management and/or energy storage into the system architecture. Controlling power flow into and from the utility grid will be required to ensure grid reliability and power quality. Alternative protection strategies will also be required to accommodate large numbers of distributed energy sources. This document provides an overview of the R&D needs and describes some pathways to promising solutions. The solutions will, in many cases, require R&D of new components, innovative inverter/controllers, energy management systems, innovative energy storage and a suite of advanced control algorithms, technical methodologies, protocols and the associated communications. It is expected that these solutions will help to push the “advanced integrated system” and “smart grid” evolutionary processes forward in a faster but focused manner.

  16. Impact of Sustainable Cool Roof Technology on Building Energy Consumption

    NASA Astrophysics Data System (ADS)

    Vuppuluri, Prem Kiran

    Highly reflective roofing systems have been analyzed over several decades to evaluate their ability to meet sustainability goals, including reducing building energy consumption and mitigating the urban heat island. Studies have isolated and evaluated the effects of climate, surface reflectivity, and roof insulation on energy savings, thermal load mitigation and also ameliorating the urban heat island. Other sustainable roofing systems, like green-roofs and solar panels have been similarly evaluated. The motivation for the present study is twofold: the first goal is to present a method for simultaneous evaluation and inter-comparison of multiple roofing systems, and the second goal is to quantitatively evaluate the realized heating and cooling energy savings associated with a white roof system compared to the reduction in roof-top heat flux. To address the first research goal a field experiment was conducted at the International Harvester Building located in Portland, OR. Thermal data was collected for a white roof, vegetated roof, and a solar panel shaded vegetated roof, and the heat flux through these roofing systems was compared against a control patch of conventional dark roof membrane. The second research goal was accomplished using a building energy simulation program to determine the impact of roof area and roof insulation on the savings from a white roof, in both Portland and Phoenix. The ratio of cooling energy savings to roof heat flux reduction from replacing a dark roof with a white roof was 1:4 for the month of July, and 1:5 annually in Portland. The COP of the associated chillers ranges from 2.8-4.2, indicating that the ratio of cooling energy savings to heat flux reduction is not accounted for solely by the COP of the chillers. The results of the building simulation indicate that based on energy savings alone, white roofs are not an optimal choice for Portland. The benefits associated with cooling energy savings relative to a black roof are offset by

  17. Environmental assessment of extensive green roofs in the UK

    NASA Astrophysics Data System (ADS)

    Ruan, Fei

    The advantages of the planted roofs are undoubtedly numerous from both the ecological and the social point of view. They act positively upon the climate of the city and its region, as well as upon the interior climate of the building beneath them. This dissertation, therefore, explores the environmental performance of the extensive green roofs in UK. The investigation was implemented in two phases: during the first phase, detailed introduction of green roofs with the emphasis on their thermal properties and behavior is provided with the support of literature review evidence. During the second phase of the study, the thermal properties of the green roof, as well as, the energy saving were examined, through two computer programs: Wufi and TAS. Two hypothetic models have been developed in these programs to evaluate thermal and energy performances of a building with a green roof, varying different parameters for the green roof or changing different internal condition for the building. The main conclusion of these analyses is that two parameters: vegetation solar absorptivity and water content of green roofs play significant role in the thermal performance of green roofs. Lower vegetation solar absorptivity and higher water content will help green roofs to further reduce the external heat flux and summer inward heat flux which consequently mitigate the urban heat island effect and summer energy consumption. On the other hand, in comparison with the traditional roofs, green roofs appear to have less heating loads but higher cooling loads when internal gain is higher. Finally, when comparing Wufi results to TAS results, both represent that featured as lower solar absorptivity and higher insulation value, green roofs do alleviate the urban heat island effect and reduce the heat flux through the roof. Nevertheless, by taking account of evaporative cooling effect of green roofs, Wufi provides a more accurate approach to simulate the performance of green roofs

  18. Integrated Solar-Panel Antenna Array for CubeSats

    NASA Technical Reports Server (NTRS)

    Baktur, Reyhan

    2016-01-01

    The goal of the Integrated Solar-Panel Antenna Array for CubeSats (ISAAC) project is to design and demonstrate an effective and efficien toptically transparent, high-gain, lightweight, conformal X-band antenna array that is integrated with the solar panels of a CubeSat. The targeted demonstration is for a Near Earth Network (NEN)radio at X-band, but the design can be easilyscaled to other network radios for higher frequencies. ISAAC is a less expensive and more flexible design for communication systemscompared to a deployed dish antenna or the existing integrated solar panel antenna design.

  19. PERFORMANCE EVALUATION OF A SUSTAINABLE AND ENERGY EFFICIENT RE-ROOFING TECHNOLOGY USING FIELD-TEST DATA

    SciTech Connect

    Biswas, Kaushik; Miller, William A; Childs, Phillip W; Kosny, Jan; Kriner, Scott

    2011-01-01

    thermal stresses due to the PV laminates on sunny days. In PV laminates sunlight is converted into electricity and heat simultaneous. In case of building integrated applications, a relatively high solar absorption of amorphous silicon laminates can be utilized during the winter for solar heating purposes with PCM providing necessary heat storage capacity. However, PV laminates may also generate increased building cooling loads during the summer months. Therefore, in this project, the PCM heat sink was to minimize summer heat gains as well. The PCM-fibreglass-PV assembly and the IRR metal panels are capable of being installed directly on top of existing shingle roofs during re-roofing, precluding the need for recycling or disposal of waste materials. The PV laminates installed on the PCM attic are PVL-144 models from Uni-Solar. Each laminate contains 22 triple junction amorphous silicon solar cells connected in series. The silicon cells are of dimensions 356 mm x 239 mm (14-in. x 9.4-in.). The PVL-144 laminate is encapsulated in durable ETFE (poly-ethylene-co-tetrafluoroethylene) high light-transmissive polymer. Table 1 lists the power, voltage and current ratings of the PVL-144 panel.

  20. NPS Solar Cell Array Tester Cubesat Flight Testing and Integration

    DTIC Science & Technology

    2014-09-01

    AND DATES COVERED Master’s Thesis 4. TITLE AND SUBTITLE NPS SOLAR CELL ARRAY TESTER CUBESAT FLIGHT TESTING AND INTEGRATION 5. FUNDING NUMBERS 6...DISTRIBUTION CODE A 13. ABSTRACT (maximum 200 words) The Naval Postgraduate School Solar Cell Array Tester (NPS-SCAT) is the first CubeSat for the...Naval Postgraduate School (NPS). The NPS-SCAT mission was designed to measure solar cell performance degradation in low earth orbit . NPS-SCAT serves as

  1. Eastern Renewable Generation Integration Study Solar Dataset (Presentation)

    SciTech Connect

    Hummon, M.

    2014-04-01

    The National Renewable Energy Laboratory produced solar power production data for the Eastern Renewable Generation Integration Study (ERGIS) including "real time" 5-minute interval data, "four hour ahead forecast" 60-minute interval data, and "day-ahead forecast" 60-minute interval data for the year 2006. This presentation provides a brief overview of the three solar power datasets.

  2. Western Wind and Solar Integration Study Phase 3: Technical Overview

    SciTech Connect

    2015-11-01

    Technical fact sheet outlining the key findings of Phase 3 of the Western Wind and Solar Integration Study (WWSIS-3). NREL and GE find that with good system planning, sound engineering practices, and commercially available technologies, the Western grid can maintain reliability and stability during the crucial first minute after grid disturbances with high penetrations of wind and solar power.

  3. Western Wind and Solar Integration Study Phase 2 (Fact Sheet)

    SciTech Connect

    Not Available

    2013-09-01

    This is one-page, two-sided fact sheet presents high-level summary results of the Western Wind and Solar Integration Study Phase 2, which examined operational impacts of high penetrations of variable renewable generation in the West.

  4. Western Wind and Solar Integration Study: Phase 2 (Presentation)

    SciTech Connect

    Lew, D.; Brinkman, G.; Ibanez, E.; Lefton, S.; Kumar, N.; Venkataraman, S.; Jordan, G.

    2013-09-01

    This presentation summarizes the scope and results of the Western Wind and Solar Integration Study Phase 2, which examined operational impacts of high penetrations of variable renewable generation in the West.

  5. Green roof valuation: a probabilistic economic analysis of environmental benefits.

    PubMed

    Clark, Corrie; Adriaens, Peter; Talbot, F Brian

    2008-03-15

    Green (vegetated) roofs have gained global acceptance as a technologythat has the potential to help mitigate the multifaceted, complex environmental problems of urban centers. While policies that encourage green roofs exist atthe local and regional level, installation costs remain at a premium and deter investment in this technology. The objective of this paper is to quantitatively integrate the range of stormwater, energy, and air pollution benefits of green roofs into an economic model that captures the building-specific scale. Currently, green roofs are primarily valued on increased roof longevity, reduced stormwater runoff, and decreased building energy consumption. Proper valuation of these benefits can reduce the present value of a green roof if investors look beyond the upfront capital costs. Net present value (NPV) analysis comparing a conventional roof system to an extensive green roof system demonstrates that at the end of the green roof lifetime the NPV for the green roof is between 20.3 and 25.2% less than the NPV for the conventional roof over 40 years. The additional upfront investment is recovered at the time when a conventional roof would be replaced. Increasing evidence suggests that green roofs may play a significant role in urban air quality improvement For example, uptake of N0x is estimated to range from $1683 to $6383 per metric ton of NOx reduction. These benefits were included in this study, and results translate to an annual benefit of $895-3392 for a 2000 square meter vegetated roof. Improved air quality leads to a mean NPV for the green roof that is 24.5-40.2% less than the mean conventional roof NPV. Through innovative policies, the inclusion of air pollution mitigation and the reduction of municipal stormwater infrastructure costs in economic valuation of environmental benefits of green roofs can reduce the cost gap that currently hinders U.S. investment in green roof technology.

  6. Integrating Solar PV in Utility System Operations

    SciTech Connect

    Mills, A.; Botterud, A.; Wu, J.; Zhou, Z.; Hodge, B-M.; Heany, M.

    2013-10-31

    This study develops a systematic framework for estimating the increase in operating costs due to uncertainty and variability in renewable resources, uses the framework to quantify the integration costs associated with sub-hourly solar power variability and uncertainty, and shows how changes in system operations may affect these costs. Toward this end, we present a statistical method for estimating the required balancing reserves to maintain system reliability along with a model for commitment and dispatch of the portfolio of thermal and renewable resources at different stages of system operations. We estimate the costs of sub-hourly solar variability, short-term forecast errors, and day-ahead (DA) forecast errors as the difference in production costs between a case with “realistic” PV (i.e., subhourly solar variability and uncertainty are fully included in the modeling) and a case with “well behaved” PV (i.e., PV is assumed to have no sub-hourly variability and can be perfectly forecasted). In addition, we highlight current practices that allow utilities to compensate for the issues encountered at the sub-hourly time frame with increased levels of PV penetration. In this analysis we use the analytical framework to simulate utility operations with increasing deployment of PV in a case study of Arizona Public Service Company (APS), a utility in the southwestern United States. In our analysis, we focus on three processes that are important in understanding the management of PV variability and uncertainty in power system operations. First, we represent the decisions made the day before the operating day through a DA commitment model that relies on imperfect DA forecasts of load and wind as well as PV generation. Second, we represent the decisions made by schedulers in the operating day through hour-ahead (HA) scheduling. Peaking units can be committed or decommitted in the HA schedules and online units can be redispatched using forecasts that are improved

  7. Evolution of cool-roof standards in the United States

    SciTech Connect

    Akbari, Hashem; Akbari, Hashem; Levinson, Ronnen

    2008-07-11

    Roofs that have high solar reflectance and high thermal emittance stay cool in the sun. A roof with lower thermal emittance but exceptionally high solar reflectance can also stay cool in the sun. Substituting a cool roof for a noncool roof decreases cooling-electricity use, cooling-power demand, and cooling-equipment capacity requirements, while slightly increasing heating-energy consumption. Cool roofs can also lower citywide ambient air temperature in summer, slowing ozone formation and increasing human comfort. Provisions for cool roofs in energy-efficiency standards can promote the building- and climate-appropriate use of cool roofing technologies. Cool-roof requirements are designed to reduce building energy use, while energy-neutral cool-roof credits permit the use of less energy-efficient components (e.g., larger windows) in a building that has energy-saving cool roofs. Both types of measures can reduce the life-cycle cost of a building (initial cost plus lifetime energy cost). Since 1999, several widely used building energy-efficiency standards, including ASHRAE 90.1, ASHRAE 90.2, the International Energy Conservation Code, and California's Title 24 have adopted cool-roof credits or requirements. This paper reviews the technical development of cool-roof provisions in the ASHRAE 90.1, ASHRAE 90.2, and California Title 24 standards, and discusses the treatment of cool roofs in other standards and energy-efficiency programs. The techniques used to develop the ASHRAE and Title 24 cool-roof provisions can be used as models to address cool roofs in building energy-efficiency standards worldwide.

  8. Roof aperture system for selective collection and control of solar energy for building heating, cooling and daylighting

    DOEpatents

    Sanders, William J.; Snyder, Marvin K.; Harter, James W.

    1983-01-01

    The amount of building heating, cooling and daylighting is controlled by at least one pair of solar energy passing panels, with each panel of the pair of panels being exposed to a separate direction of sun incidence. A shutter-shade combination is associated with each pair of panels and the shutter is connected to the shade so that rectilinear movement of the shutter causes pivotal movement of the shade.

  9. Integral glass encapsulation for solar arrays

    NASA Technical Reports Server (NTRS)

    Young, P. R.

    1977-01-01

    Electrostatic bonding has been used to join silicon solar cells to borosilicate glass without the aid of any organic binders or adhesives. The results of this investigation have been to demonstrate, without question, the feasibility of this process as an encapsulation technique. The potential of ESB for terrestrial solar arrays was clearly shown. The process is fast, reproducible, and produces a permanent bond between glass and silicon that is stronger than the silicon itself. Since this process is a glass sealing technique requiring no organics it makes moisture tight sealing of solar cells possible.

  10. The Western Wind and Solar Integration Study Phase 2

    SciTech Connect

    Lew, D.; Brinkman, G.; Ibanez, E.; Hodge, B. M.; Hummon, M.; Florita, A.; Heaney, M.

    2013-09-01

    The electric grid is a highly complex, interconnected machine, and changing one part of the grid can have consequences elsewhere. Adding wind and solar affects the operation of the other power plants and adding high penetrations can induce cycling of fossil-fueled generators. Cycling leads to wear-and-tear costs and changes in emissions. Phase 2 of the Western Wind and Solar Integration Study (WWSIS-2) evaluated these costs and emissions and simulated grid operations for a year to investigate the detailed impact of wind and solar on the fossil-fueled fleet. This built on Phase 1, one of the largest wind and solar integration studies ever conducted, which examined operational impacts of high wind and solar penetrations in the West.

  11. The Western Wind and Solar Integration Study Phase 2

    SciTech Connect

    Lew, Debra; Brinkman, Greg; Ibanez, E.; Florita, A.; Heaney, M.; Hodge, B. -M.; Hummon, M.; Stark, G.; King, J.; Lefton, S. A.; Kumar, N.; Agan, D.; Jordan, G.; Venkataraman, S.

    2013-09-01

    The electric grid is a highly complex, interconnected machine, and changing one part of the grid can have consequences elsewhere. Adding wind and solar affects the operation of the other power plants and adding high penetrations can induce cycling of fossil-fueled generators. Cycling leads to wear-and-tear costs and changes in emissions. Phase 2 of the Western Wind and Solar Integration Study (WWSIS-2) evaluated these costs and emissions and simulated grid operations for a year to investigate the detailed impact of wind and solar on the fossil-fueled fleet. This built on Phase 1, one of the largest wind and solar integration studies ever conducted, which examined operational impacts of high wind and solar penetrations in the West(GE Energy 2010).

  12. Integrated Solar Power Converters: Wafer-Level Sub-Module Integrated DC/DC Converter

    SciTech Connect

    2012-02-09

    Solar ADEPT Project: CU-Boulder is developing advanced power conversion components that can be integrated into individual solar panels to improve energy yields. The solar energy that is absorbed and collected by a solar panel is converted into useable energy for the grid through an electronic component called an inverter. Many large, conventional solar energy systems use one, central inverter to convert energy. CU-Boulder is integrating smaller, microinverters into individual solar panels to improve the efficiency of energy collection. The University’s microinverters rely on electrical components that direct energy at high speeds and ensure that minimal energy is lost during the conversion process—improving the overall efficiency of the power conversion process. CU-Boulder is designing its power conversion devices for use on any type of solar panel.

  13. EPA's Green Roof Research

    EPA Science Inventory

    This is a presentation on the basics of green roof technology. The presentation highlights some of the recent ORD research projects on green roofs and provices insight for the end user as to the benefits for green roof technology. It provides links to currently available EPA re...

  14. Raising the Roof.

    ERIC Educational Resources Information Center

    Savage, John

    2000-01-01

    Discusses how the use of metal standing-seam roofs can help conserve energy, and with proper maintenance, be long-lasting. An example is given of one high school's replacement of their leaking roof with a metal standing-seam roof. (GR)

  15. Roof System EPDM Shrinkage.

    ERIC Educational Resources Information Center

    Betker, Edward

    1998-01-01

    Looks at Ethylene Propylene Diene Terpolymer rubber roof membranes and the potential problems associated with this material's shrinkage. Discusses how long such a roof should perform and issues affecting repair or replacement. Recommends that a building's function be considered in any roofing decision. (RJM)

  16. MISPS: Module integrated solar position sensor for concentration photovoltaics

    NASA Astrophysics Data System (ADS)

    Pardell, Ricard

    2012-10-01

    This paper describes a new device, the MISPS (Module Integrated. Solar Position Sensor) for CPV systems. Its main innovation lies in it being module integrated, so that the sensor is a constituent part of the module and uses its optics. The MISPS has been designed within the scope of the CPVRS project, but it can be used in any refractive optics CPV system.

  17. Advanced Energy Efficient Roof System

    SciTech Connect

    Jane Davidson

    2008-09-30

    options considered to date are not ideal. One approach is to insulate between the trusses at the roof plane. The construction process is time consuming and costs more than conventional attic construction. Moreover, the problems of air infiltration and thermal bridges across the insulation remain. Another approach is to use structurally insulated panels (SIPs), but conventional SIPs are unlikely to be the ultimate solution because an additional underlying support structure is required except for short spans. In addition, wood spline and metal locking joints can result in thermal bridges and gaps in the foam. This study undertook a more innovative approach to roof construction. The goal was to design and evaluate a modular energy efficient panelized roof system with the following attributes: (1) a conditioned and clear attic space for HVAC equipment and additional finished area in the attic; (2) manufactured panels that provide structure, insulation, and accommodate a variety of roofing materials; (3) panels that require support only at the ends; (4) optimal energy performance by minimizing thermal bridging and air infiltration; (5) minimal risk of moisture problems; (6) minimum 50-year life; (7) applicable to a range of house styles, climates and conditions; (8) easy erection in the field; (9) the option to incorporate factory-installed solar systems into the panel; and (10) lowest possible cost. A nationwide market study shows there is a defined market opportunity for such a panelized roof system with production and semi-custom builders in the United States. Senior personnel at top builders expressed interest in the performance attributes and indicate long-term opportunity exists if the system can deliver a clear value proposition. Specifically, builders are interested in (1) reducing construction cycle time (cost) and (2) offering increased energy efficiency to the homebuyer. Additional living space under the roof panels is another low-cost asset identified as part of

  18. Lightweight, self-ballasting photovoltaic roofing assembly

    DOEpatents

    Dinwoodie, T.L.

    1998-05-05

    A photovoltaic roofing assembly comprises a roofing membrane (102), a plurality of photovoltaic modules (104, 106, 108) disposed as a layer on top of the roofing membrane (102), and a plurality of pre-formed spacers, pedestals or supports (112, 114, 116, 118, 120, 122) which are respectively disposed below the plurality of photovoltaic modules (104, 106, 108) and integral therewith, or fixed thereto. Spacers (112, 114, 116, 118, 120, 122) are disposed on top of roofing membrane (102). Membrane (102) is supported on conventional roof framing, and attached thereto by conventional methods. In an alternative embodiment, the roofing assembly may have insulation block (322) below the spacers (314, 314', 315, 315'). The geometry of the preformed spacers (112, 114, 116, 118, 120, 122, 314, 314', 315, 315') is such that wind tunnel testing has shown its maximum effectiveness in reducing net forces of wind uplift on the overall assembly. Such construction results in a simple, lightweight, self-ballasting, readily assembled roofing assembly which resists the forces of wind uplift using no roofing penetrations.

  19. Lightweight, self-ballasting photovoltaic roofing assembly

    DOEpatents

    Dinwoodie, Thomas L.

    2006-02-28

    A photovoltaic roofing assembly comprises a roofing membrane (102), a plurality of photovoltaic modules (104, 106, 108) disposed as a layer on top of the roofing membrane (102), and a plurality of pre-formed spacers, pedestals or supports (112, 114, 116, 118, 120, 122) which are respectively disposed below the plurality of photovoltaic modules (104, 106, 108) and integral therewith, or fixed thereto. Spacers (112, 114, 116, 118, 120, 122) are disposed on top of roofing membrane (102). Membrane (102) is supported on conventional roof framing, and attached thereto by conventional methods. In an alternative embodiment, the roofing assembly may have insulation block (322) below the spacers (314, 314', 315, 315'). The geometry of the pre-formed spacers (112, 114, 116, 118, 120, 122, 314, 314', 315, 315') is such that wind tunnel testing has shown its maximum effectiveness in reducing net forces of wind uplift on the overall assembly. Such construction results in a simple, lightweight, self-ballasting, readily assembled roofing assembly which resists the forces of wind uplift using no roofing penetrations.

  20. Lightweight, self-ballasting photovoltaic roofing assembly

    DOEpatents

    Dinwoodie, Thomas L.

    1998-01-01

    A photovoltaic roofing assembly comprises a roofing membrane (102), a plurality of photovoltaic modules (104, 106, 108) disposed as a layer on top of the roofing membrane (102), and a plurality of pre-formed spacers, pedestals or supports (112, 114, 116, 118, 120, 122) which are respectively disposed below the plurality of photovoltaic modules (104, 106, 108) and integral therewith, or fixed thereto. Spacers (112, 114, 116, 118, 120, 122) are disposed on top of roofing membrane (102). Membrane (102) is supported on conventional roof framing, and attached thereto by conventional methods. In an alternative embodiment, the roofing assembly may have insulation block (322) below the spacers (314, 314', 315, 315'). The geometry of the preformed spacers (112, 114, 116, 118, 120, 122, 314, 314', 315, 315') is such that wind tunnel testing has shown its maximum effectiveness in reducing net forces of wind uplift on the overall assembly. Such construction results in a simple, lightweight, self-ballasting, readily assembled roofing assembly which resists the forces of wind uplift using no roofing penetrations.

  1. Role of Concentrating Solar Power in Integrating Solar and Wind Energy: Preprint

    SciTech Connect

    Denholm, P.; Mehos, M.

    2015-06-03

    As wind and solar photovoltaics (PV) increase in penetration it is increasingly important to examine enabling technologies that can help integrate these resources at large scale. Concentrating solar power (CSP) when deployed with thermal energy storage (TES) can provide multiple services that can help integrate variable generation (VG) resources such as wind and PV. CSP with TES can provide firm, highly flexible capacity, reducing minimum generation constraints which limit penetration and results in curtailment. By acting as an enabling technology, CSP can complement PV and wind, substantially increasing their penetration in locations with adequate solar resource.

  2. Influence of solar heating on the performance of integrated solar cell microstrip patch antennas

    SciTech Connect

    Roo-Ons, M.J.; Shynu, S.V.; Ammann, M.J.; Seredynski, M.; McCormack, S.J.; Norton, B.

    2010-09-15

    The integration of microstrip patch antennas with photovoltaics has been proposed for applications in autonomous wireless communication systems located on building facades. Full integration was achieved using polycrystalline silicon solar cells as both antenna ground plane and direct current power generation in the same device. An overview of the proposed photovoltaic antenna designs is provided and the variation characterised of the electromagnetic properties of the device with temperature and solar radiation. Measurements for both copper and solar antennas are reported on three different commercial laminates with contrasting values for thermal coefficient of the dielectric constant. (author)

  3. Spectrophotometer-Integrating-Sphere System for Computing Solar Absorptance

    NASA Technical Reports Server (NTRS)

    Witte, William G., Jr.; Slemp, Wayne S.; Perry, John E., Jr.

    1991-01-01

    A commercially available ultraviolet, visible, near-infrared spectrophotometer was modified to utilize an 8-inch-diameter modified Edwards-type integrated sphere. Software was written so that the reflectance spectra could be used to obtain solar absorptance values of 1-inch-diameter specimens. A descriptions of the system, spectral reflectance, and software for calculation of solar absorptance from reflectance data are presented.

  4. Development of a new integral solar cell protective cover

    NASA Technical Reports Server (NTRS)

    Naselow, A. B.; Dupont, P. S.; Scott-Monck, J.

    1983-01-01

    A unique polyimide polymer has been developed which shows promise as an encapsulant for interconnected solar cell modules. Such an integral cover offers important weight and cost advantages. The polymer has been characterized on silicon solar cells with respect to electrical output and spectral response. The response of the material-coated cells to electron, low-energy proton, and vacuum-ultraviolet radiation, thermal shock and humidity tests was determined.

  5. Integrated photoelectrochemical energy storage: solar hydrogen generation and supercapacitor.

    PubMed

    Xia, Xinhui; Luo, Jingshan; Zeng, Zhiyuan; Guan, Cao; Zhang, Yongqi; Tu, Jiangping; Zhang, Hua; Fan, Hong Jin

    2012-01-01

    Current solar energy harvest and storage are so far realized by independent technologies (such as solar cell and batteries), by which only a fraction of solar energy is utilized. It is highly desirable to improve the utilization efficiency of solar energy. Here, we construct an integrated photoelectrochemical device with simultaneous supercapacitor and hydrogen evolution functions based on TiO(2)/transition metal hydroxides/oxides core/shell nanorod arrays. The feasibility of solar-driven pseudocapacitance is clearly demonstrated, and the charge/discharge is indicated by reversible color changes (photochromism). In such an integrated device, the photogenerated electrons are utilized for H(2) generation and holes for pseudocapacitive charging, so that both the reductive and oxidative energies are captured and converted. Specific capacitances of 482 F g(-1) at 0.5 A g(-1) and 287 F g(-1) at 1 A g(-1) are obtained with TiO(2)/Ni(OH)(2) nanorod arrays. This study provides a new research strategy for integrated pseudocapacitor and solar energy application.

  6. Integrated solar thermochemical reaction system for steam methane reforming

    DOE PAGES

    Zheng, Feng; Diver, Rich; Caldwell, Dustin D.; ...

    2015-06-05

    Solar-aided upgrade of the energy content of fossil fuels, such as natural gas, can provide a near-term transition path towards a future solar-fuel economy and reduce carbon dioxide emission from fossil fuel consumption. Both steam and dry reforming a methane-containing fuel stream have been studied with concentrated solar power as the energy input to drive the highly endothermic reactions but the concept has not been demonstrated at a commercial scale. Under a current project with the U.S. Department of Energy, PNNL is developing an integrated solar thermochemical reaction system that combines solar concentrators with micro- and meso-channel reactors and heatmore » exchangers to accomplish more than 20% solar augment of methane higher heating value. The objective of our three-year project is to develop and prepare for commercialization such solar reforming system with a high enough efficiency to serve as the frontend of a conventional natural gas (or biogas) combined cycle power plant, producing power with a levelized cost of electricity less than 6¢/kWh, without subsidies, by the year 2020. In this paper, we present results from the first year of our project that demonstrated a solar-to-chemical energy conversion efficiency as high as 69% with a prototype reaction system.« less

  7. Integrated solar thermochemical reaction system for steam methane reforming

    SciTech Connect

    Zheng, Feng; Diver, Rich; Caldwell, Dustin D.; Fritz, Brad G.; Cameron, Richard J.; Humble, Paul H.; TeGrotenhuis, Ward E.; Dagle, Robert A.; Wegeng, Robert S.

    2015-06-05

    Solar-aided upgrade of the energy content of fossil fuels, such as natural gas, can provide a near-term transition path towards a future solar-fuel economy and reduce carbon dioxide emission from fossil fuel consumption. Both steam and dry reforming a methane-containing fuel stream have been studied with concentrated solar power as the energy input to drive the highly endothermic reactions but the concept has not been demonstrated at a commercial scale. Under a current project with the U.S. Department of Energy, PNNL is developing an integrated solar thermochemical reaction system that combines solar concentrators with micro- and meso-channel reactors and heat exchangers to accomplish more than 20% solar augment of methane higher heating value. The objective of our three-year project is to develop and prepare for commercialization such solar reforming system with a high enough efficiency to serve as the frontend of a conventional natural gas (or biogas) combined cycle power plant, producing power with a levelized cost of electricity less than 6¢/kWh, without subsidies, by the year 2020. In this paper, we present results from the first year of our project that demonstrated a solar-to-chemical energy conversion efficiency as high as 69% with a prototype reaction system.

  8. Research and Development Needs for Building-Integrated Solar Technologies

    SciTech Connect

    none,

    2014-01-01

    The Building Technologies Office (BTO) has identified Building Integrated Solar Technologies (BIST) as a potentially valuable piece of the comprehensive pathway to help achieve its goal of reducing energy consumption in residential and commercial buildings by 50% by the year 2030. This report helps to identify the key research and development (R&D) needs that will be required for BIST to make a substantial contribution toward that goal. BIST include technologies for space heating and cooling, water heating, hybrid photovoltaic-thermal systems (PV/T), active solar lighting, and building-integrated photovoltaics (BIPV).

  9. Cool Roof Systems; What is the Condensation Risk?

    SciTech Connect

    Kehrer, Manfred; Pallin, Simon B

    2014-01-01

    A white roof, or cool roof, is constructed to decrease thermal loads from solar radiation, therefore saving energy by decreasing the cooling demands. Unfortunately, cool roofs with a mechanically attached membrane have shown a higher risk of intermediate condensation in the materials below the membrane in certain climates (Ennis & Kehrer, 2011) and in comparison with similar constructions with a darker exterior surface (Bludau, Zirkelbach, & Kuenzel, 2009). As a consequence, questions have been raised regarding the sustainability and reliability of using cool roof membranes in northern U.S. climate zones.

  10. Evaluation of Green Roof Plants and Materials for Semi-Arid Climates

    EPA Science Inventory

    Abstract While green roof systems have proven to be highly effective in the evaporative cooling of buildings, reduction of roof top temperatures, protection of roof membranes from solar radiation degradation, reducing stormwater runoff, as well as beautification of the urban roo...

  11. Building-integrated fluorescent solar collector

    SciTech Connect

    Neuroth, N.

    1987-02-24

    This patent describes a building wall wherein the building wall includes windows, window parapets and areas below the window parapets. The window parapets include overhanging lips defining slots with the areas beneath the parapets. Fluorescent solar collectors are received in the slots to form an exterior facing over the area beneath the parapets. A photoelectric cell means is arranged with the fluorescent panels and has leads thereon for conducting electric current therefrom, the photoelectric cell means being positioned within the slots so as to be protected thereby.

  12. Development of integral covers on solar cells

    NASA Technical Reports Server (NTRS)

    Stella, P.; Somberg, H.

    1971-01-01

    The electron-beam technique for evaporating a dielectric material onto solar cells is investigated. A process has been developed which will provide a highly transparent, low stress, 2 mil thick cover capable of withstanding conventional space type qualification tests including humidity, thermal shock, and thermal cycling. The covers have demonstrated the ability to withstand 10 to the 15th power 1 MeV electrons and UV irradiation with minor darkening. Investigation of the cell AR coating has produced a space qualifiable titanium oxide coating which will give an additional 6% current output over similar silicon oxide coated cells when covered by glass.

  13. Weathering of Roofing Materials-An Overview

    SciTech Connect

    Berdahl, Paul; Akbari, Hashem; Levinson, Ronnen; Miller, William A.

    2006-03-30

    An overview of several aspects of the weathering of roofing materials is presented. Degradation of materials initiated by ultraviolet radiation is discussed for plastics used in roofing, as well as wood and asphalt. Elevated temperatures accelerate many deleterious chemical reactions and hasten diffusion of material components. Effects of moisture include decay of wood, acceleration of corrosion of metals, staining of clay, and freeze-thaw damage. Soiling of roofing materials causes objectionable stains and reduces the solar reflectance of reflective materials. (Soiling of non-reflective materials can also increase solar reflectance.) Soiling can be attributed to biological growth (e.g., cyanobacteria, fungi, algae), deposits of organic and mineral particles, and to the accumulation of flyash, hydrocarbons and soot from combustion.

  14. What's Up with Your Roof?

    ERIC Educational Resources Information Center

    Kalinger, Peter

    1998-01-01

    Explains the importance of knowing what condition the school's roof(s) is in and how to design a preventive maintenance program that is cost effective and will help extend the roof's lifecycle. Cost calculation techniques to value a roof maintenance program, maintenance documentation requirements, and roof surveying are discussed. (GR)

  15. Mine roof support

    SciTech Connect

    Bollmann, A.

    1981-02-24

    A mine roof support has a base and a roof shield pivoted to the base and carrying at its upper end a pivoted cap which is urged upwardly against the mine roof by a hydraulic pit prop reacting between the cap and the base. The lower end of the roof shield is connected to the base by two links each having a pivot cooperating with a pivot on the roof shield, and a pivot cooperating with a pivot on the base. In addition, the base and/or the lower end of the roof shield has an auxiliary for each link and each link has an auxiliary pivot which can be connected with one of the auxiliary pivots of the base or lower end.

  16. IMPROVED ROOF STABILIZATION TECHNOLOGIES

    SciTech Connect

    M.A. Ebadian, Ph.D.

    1999-01-01

    Many U.S. Department of Energy (DOE) remediation sites have performed roof repair and roof replacement to stabilize facilities prior to performing deactivation and decommissioning (D&D) activities. This project will review the decision criteria used by these DOE sites, along with the type of repair system used for each different roof type. Based on this information, along with that compiled from roofing experts, a decision-making tool will be generated to aid in selecting the proper roof repair systems. Where appropriate, innovative technologies will be reviewed and applied to the decision-making tool to determine their applicability. Based on the results, applied research and development will be conducted to develop a method to repair these existing roofing systems, while providing protection for the D and D worker in a cost-efficient manner.

  17. System integration issues of residential solar photovoltaic systems

    NASA Astrophysics Data System (ADS)

    Yamayee, Z. A.; Peschon, J.

    1980-03-01

    The economic effects of residential solar PV systems on the utility's revenue, capacity, and energy requirements from the electric utility's perspective are evaluated. The price that it might pay for surplus energy and what it would charge for deficits are compared. The power and energy generated by the solar PV systems reduce the capital and operating costs that would otherwise be incurred by the utility. These avoided costs suggest what the utility might pay for surplus solar PV energy. The avoided costs are evaluated under three integration hypotheses, namely: (1) the utility has no system storage; (2) the utility has system storage; and (3) the solar PV systems are supported by dedicated storage devices, the purpose of which is to minimize sales to and purchases from the utility.

  18. A solar air collector with integrated latent heat thermal storage

    NASA Astrophysics Data System (ADS)

    Charvat, Pavel; Ostry, Milan; Mauder, Tomas; Klimes, Lubomir

    2012-04-01

    Simulations of the behaviour of a solar air collector with integrated latent heat thermal storage were performed. The model of the collector was created with the use of coupling between TRNSYS 17 and MATLAB. Latent heat storage (Phase Change Material - PCM) was integrated with the solar absorber. The model of the latent heat storage absorber was created in MATLAB and the model of the solar air collector itself was created in TRNSYS with the use of TYPE 56. The model of the latent heat storage absorber allows specification of the PCM properties as well as other parameters. The simulated air collector was the front and back pass collector with the absorber in the middle of the air cavity. Two variants were considered for comparison; the light-weight absorber made of sheet metal and the heat-storage absorber with the PCM. Simulations were performed for the climatic conditions of the Czech Republic (using TMY weather data).

  19. Integrated Solar Array and Reflectarray Antenna for High Bandwidth Cubesats

    NASA Technical Reports Server (NTRS)

    Lewis, Dorothy; Martinez, Andres; Petro, Andrew

    2015-01-01

    The Integrated Solar Array and Reflectarray Antenna (ISARA) mission will demonstrate a reflectarray antenna that increases downlink data rates for Cube- Sats from the existing baseline rate of 9.6 kilobits per second (kbps) to more than 100 megabits per second (Mbps). The ISARA spacecraft is slated for launch no earlier than Dec. 1, 2015.

  20. 77 FR 39736 - Certain Integrated Solar Power Systems and Components Thereof; Notice of Termination of the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-05

    ... Integrated Solar Power Systems and Components Thereof; Notice of Termination of the Investigation Based on... States after importation of certain integrated solar power systems and components thereof by reason of... complaint filed by Westinghouse Solar, Inc. and Andalay Solar, Inc., both of Campbell, California,...

  1. Good Roof Construction Makes Sense.

    ERIC Educational Resources Information Center

    Hubert, Edward F.

    1987-01-01

    A roofing project of any substantial size should involve an architect, an engineer, or a roof consultant. Careful planning and design, diligent construction, and quality inspection, offer owners a quality roof job. (MLF)

  2. Roof Overhangs for Solar Houses

    NASA Technical Reports Server (NTRS)

    Gracey, W.

    1985-01-01

    Convenient graphical method determines both width and vertical position of overhangs for standard wall section having "typical" window arrangement. Overhangs for this wall section determined for two extremes of latitude in United States.

  3. Western Wind and Solar Integration Study Phase 2: Preprint

    SciTech Connect

    Lew, D.; Brinkman, G.; Ibanez, E.; Hodge, B.-M.; King, J.

    2012-09-01

    The Western Wind and Solar Integration Study (WWSIS) investigates the impacts of high penetrations of wind and solar power into the Western Interconnection of the United States. WWSIS2 builds on the Phase 1 study but with far greater refinement in the level of data inputs and production simulation. It considers the differences between wind and solar power on systems operations. It considers mitigation options to accommodate wind and solar when full costs of wear-and-tear and full impacts of emissions rates are taken into account. It determines wear-and-tear costs and emissions impacts. New data sets were created for WWSIS2, and WWSIS1 data sets were refined to improve realism of plant output and forecasts. Four scenarios were defined for WWSIS2 that examine the differences between wind and solar and penetration level. Transmission was built out to bring resources to load. Statistical analysis was conducted to investigate wind and solar impacts at timescales ranging from seasonal down to 5 minutes.

  4. Operation of Concentrating Solar Power Plants in the Western Wind and Solar Integration Phase 2 Study

    SciTech Connect

    Denholm, P.; Brinkman, G.; Lew, D.; Hummon, M.

    2014-05-01

    The Western Wind and Solar Integration Study (WWSIS) explores various aspects of the challenges and impacts of integrating large amounts of wind and solar energy into the electric power system of the West. The phase 2 study (WWSIS-2) is one of the first to include dispatchable concentrating solar power (CSP) with thermal energy storage (TES) in multiple scenarios of renewable penetration and mix. As a result, it provides unique insights into CSP plant operation, grid benefits, and how CSP operation and configuration may need to change under scenarios of increased renewable penetration. Examination of the WWSIS-2 results indicates that in all scenarios, CSP plants with TES provides firm system capacity, reducing the net demand and the need for conventional thermal capacity. The plants also reduced demand during periods of short-duration, high ramping requirements that often require use of lower efficiency peaking units. Changes in CSP operation are driven largely by the presence of other solar generation, particularly PV. Use of storage by the CSP plants increases in the higher solar scenarios, with operation of the plant often shifted to later in the day. CSP operation also becomes more variable, including more frequent starts. Finally, CSP output is often very low during the day in scenarios with significant PV, which helps decrease overall renewable curtailment (over-generation). However, the configuration studied is likely not optimal for High Solar Scenario implying further analysis of CSP plant configuration is needed to understand its role in enabling high renewable scenarios in the Western United States.

  5. Hawaii Solar Integration Study: Solar Modeling Developments and Study Results; Preprint

    SciTech Connect

    Orwig, K.; Corbus, D.; Piwko, R.; Schuerger, M.; Matsuura, M.; Roose, L.

    2012-12-01

    The Hawaii Solar Integration Study (HSIS) is a follow-up to the Oahu Wind Integration and Transmission Study completed in 2010. HSIS focuses on the impacts of higher penetrations of solar energy on the electrical grid and on other generation. HSIS goes beyond the island of Oahu and investigates Maui as well. The study examines reserve strategies, impacts on thermal unit commitment and dispatch, utilization of energy storage, renewable energy curtailment, and other aspects of grid reliability and operation. For the study, high-frequency (2-second) solar power profiles were generated using a new combined Numerical Weather Prediction model/ stochastic-kinematic cloud model approach, which represents the 'sharp-edge' effects of clouds passing over solar facilities. As part of the validation process, the solar data was evaluated using a variety of analysis techniques including wavelets, power spectral densities, ramp distributions, extreme values, and cross correlations. This paper provides an overview of the study objectives, results of the solar profile validation, and study results.

  6. Integrated thin film cadmium sulfide solar cell module

    NASA Technical Reports Server (NTRS)

    Mickelsen, R. A.; Abbott, D. D.

    1971-01-01

    The design, development, fabrication and tests of flexible integrated thin-film cadmium sulfide solar cells and modules are discussed. The development of low cost and high production rate methods for interconnecting cells into large solar arrays is described. Chromium thin films were applied extensively in the deposited cell structures as a means to: (1) achieve high adherence between the cadmium sulfide films and the vacuum-metallized copper substrates, (2) obtain an ohmic contact to the cadmium sulfide films, and (3) improve the adherence of gold films as grids or contact areas.

  7. Why Cool Roofs?

    SciTech Connect

    Chu, Steven

    2010-01-01

    By installing a cool roof at DOE, the federal government and Secretary Chu are helping to educate families and businesses about the important energy and cost savings that can come with this simple, low-cost technology. Cool roofs have the potential to quickly and dramatically reduce global carbon emissions while saving money every month on consumers' electrical bills.

  8. Guide to Cool Roofs

    SciTech Connect

    2011-02-01

    Traditional dark-colored roofing materials absorb sunlight, making them warm in the sun and increasing the need for air conditioning. White or special "cool color" roofs absorb less sunlight, stay cooler in the sun and transmit less heat into the building.

  9. Why Cool Roofs?

    ScienceCinema

    Chu, Steven

    2016-07-12

    By installing a cool roof at DOE, the federal government and Secretary Chu are helping to educate families and businesses about the important energy and cost savings that can come with this simple, low-cost technology. Cool roofs have the potential to quickly and dramatically reduce global carbon emissions while saving money every month on consumers' electrical bills.

  10. Roofing Source File.

    ERIC Educational Resources Information Center

    American School & University, 1998

    1998-01-01

    Provides guidelines for school administrators to aid in the selection of school-roofing systems, and information required to make specification and purchasing decisions. Low-slope roofing systems are examined, as are multiply systems such as modified bitumen, EPDM, thermoplastic, metal, and foam. (GR)

  11. 76 FR 69284 - Certain Integrated Solar Power Systems and Components Thereof: Notice of Institution of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-08

    ... COMMISSION Certain Integrated Solar Power Systems and Components Thereof: Notice of Institution of... importation, and the sale within the United States after importation of certain integrated solar power systems... importation of certain integrated solar power systems and components thereof that infringe one or more...

  12. Optimal Solar PV Arrays Integration for Distributed Generation

    SciTech Connect

    Omitaomu, Olufemi A; Li, Xueping

    2012-01-01

    Solar photovoltaic (PV) systems hold great potential for distributed energy generation by installing PV panels on rooftops of residential and commercial buildings. Yet challenges arise along with the variability and non-dispatchability of the PV systems that affect the stability of the grid and the economics of the PV system. This paper investigates the integration of PV arrays for distributed generation applications by identifying a combination of buildings that will maximize solar energy output and minimize system variability. Particularly, we propose mean-variance optimization models to choose suitable rooftops for PV integration based on Markowitz mean-variance portfolio selection model. We further introduce quantity and cardinality constraints to result in a mixed integer quadratic programming problem. Case studies based on real data are presented. An efficient frontier is obtained for sample data that allows decision makers to choose a desired solar energy generation level with a comfortable variability tolerance level. Sensitivity analysis is conducted to show the tradeoffs between solar PV energy generation potential and variability.

  13. Large Scale Wind and Solar Integration in Germany

    SciTech Connect

    Ernst, Bernhard; Schreirer, Uwe; Berster, Frank; Pease, John; Scholz, Cristian; Erbring, Hans-Peter; Schlunke, Stephan; Makarov, Yuri V.

    2010-02-28

    This report provides key information concerning the German experience with integrating of 25 gigawatts of wind and 7 gigawatts of solar power capacity and mitigating its impacts on the electric power system. The report has been prepared based on information provided by the Amprion GmbH and 50Hertz Transmission GmbH managers and engineers to the Bonneville Power Administration (BPA) and Pacific Northwest National Laboratory representatives during their visit to Germany in October 2009. The trip and this report have been sponsored by the BPA Technology Innovation office. Learning from the German experience could help the Bonneville Power Administration engineers to compare and evaluate potential new solutions for managing higher penetrations of wind energy resources in their control area. A broader dissemination of this experience will benefit wind and solar resource integration efforts in the United States.

  14. Protected Membrane Roofs: A Sustainable Roofing Solution.

    ERIC Educational Resources Information Center

    Roodvoets, David L.

    2003-01-01

    Examines the benefits of protected membrane roofing (PMR) for school buildings. PMR uses an upside-down approach, where the insulation is placed on top of the waterproofing membrane to improve membrane effectiveness, reduce ultraviolet degradation, and improve insulation efficiency. The article explains what makes PMR sustainable, focusing on…

  15. Improved roof stabilization technologies

    SciTech Connect

    Ebadian, M.A.

    1998-01-01

    Decontamination and decommissioning (D and D) activities require that personnel have access to all areas of structures, some of which are more than 40 years old. In many cases, these structures have remained in a standby condition for up to 10 years; few preventative maintenance activities have been performed on them because of lack of funding or a defined future plan of action. This situation has led to deteriorated building conditions, resulting in potential personnel safety hazards. In addition, leaky roofs allow water to enter the buildings, which can cause the spread of contamination and increase building deterioration, worsening the already unsafe working conditions. To ensure worker safety and facilitate building dismantlement, the assessment of roof stabilization techniques applicable to US Department of Energy (DOE) structures has become an important issue. During Fiscal year 1997 (FY97), a comprehensive reliability-based model for the structural stabilization analysis of roof system in complex structures was developed. The model consists of three major components: a material testing method, a deterministic structural computer model, and a reliability-based optimization, and probabilistic analyses of roof structures can be implemented. Given site-specific needs, this model recommends the most appropriate roof stabilization system. This model will give not only an accurate evaluation of the existing roof system in complex structures, but it will also be a reliable method to aid the decision-making process. This final report includes in its appendix a Users` Manual for the Program of Deterministic and Reliability Analysis of Roof Structures.

  16. Green Roofs for Stormwater Management

    EPA Science Inventory

    This project evaluated green roofs as a stormwater management tool. Results indicate that the green roofs are capable of removing 40% of the annual rainfall volume from a roof through retention and evapotranspiration. Rainfall not retained by green roofs is detained, effectively...

  17. Thermal performance of a Concrete Cool Roof under different climatic conditions of Mexico

    SciTech Connect

    Hernández-Pérez, I.; Álvarez, G.; Gilbert, H.; Xamán, J.; Chávez, Y.; Shah, B.

    2014-11-27

    A cool roof is an ordinary roof with a reflective coating on the exterior surface which has a high solar reflectance and high thermal emittance. These properties let the roof keep a lower temperature than a standard roof under the same conditions. In this work, the thermal performance of a concrete roof with and without insulation and with two colors has been analyzed using the finite volume method. The boundary conditions of the external roof surface were taken from hourly averaged climatic data of four cities. For the internal surface, it is considered that the building is air-conditioned and the inside air has a constant temperature. The interior surface temperature and the heat flux rates into the roofs were obtained for two consecutive days in order to assess the benefits of a cool roofs in different climates.

  18. Thermal performance of a Concrete Cool Roof under different climatic conditions of Mexico

    DOE PAGES

    Hernández-Pérez, I.; Álvarez, G.; Gilbert, H.; ...

    2014-11-27

    A cool roof is an ordinary roof with a reflective coating on the exterior surface which has a high solar reflectance and high thermal emittance. These properties let the roof keep a lower temperature than a standard roof under the same conditions. In this work, the thermal performance of a concrete roof with and without insulation and with two colors has been analyzed using the finite volume method. The boundary conditions of the external roof surface were taken from hourly averaged climatic data of four cities. For the internal surface, it is considered that the building is air-conditioned and themore » inside air has a constant temperature. The interior surface temperature and the heat flux rates into the roofs were obtained for two consecutive days in order to assess the benefits of a cool roofs in different climates.« less

  19. A Review of Methods for the Manufacture of Residential Roofing Materials

    SciTech Connect

    Akbari, Hashem; Levinson, Ronnen; Berdahl, Paul

    2003-06-01

    Shingles, tiles, and metal products comprise over 80% (by roof area) of the California roofing market (54-58% fiberglass shingle, 8-10% concrete tile, 8-10% clay tile, 7% metal, 3% wood shake, and 3% slate). In climates with significant demand for cooling energy, increasing roof solar reflectance reduces energy consumption in mechanically cooled buildings, and improves occupant comfort in non-conditioned buildings. This report examines methods for manufacturing fiberglass shingles, concrete tiles, clay tiles, and metal roofing. The report also discusses innovative methods for increasing the solar reflectance of these roofing materials. We have focused on these four roofing products because they are typically colored with pigmented coatings or additives. A better understanding of the current practices for manufacturing colored roofing materials would allow us to develop cool colored materials creatively and more effectively.

  20. Roof bolting equipment & technology

    SciTech Connect

    Fiscor, S.

    2009-04-15

    Technology provides an evaluator path to improvement for roof bolting machines. Bucyrus offers three different roof bolts models for various mining conditions. The LRB-15 AR is a single-arm boiler recommended for ranges of 32 inches and above; the dual-arm RB2-52A for ranges of 42 inches and above; and the dual-arm RB2-88A for ranges of 54 inches and above. Design features are discussed in the article. Developments in roof bolting technology by Joy Mining Machinery are reported. 4 photos.

  1. Construction of Experimental Roofing.

    DTIC Science & Technology

    1981-11-01

    Asphalt Built-Up Roofing -- Initial Physical Properties 31 FIGURES 1 Building Selected for Test Roofing at Fort Lewis 16 2 Building Selected for EPDM and...Characteristics A. h : t A1 t ’ I tPnsthat t &t tAJoi. Asphalt Abl I’ IL’ lio,h tcs-,wn t , sablmh thatiP, ,, ¢lltr,.~ un, t t ’ " nrru (lass mat A!CtM p...surface over two courses of 1-1/4-in.- (32-mm)- thick wood fiberboard insulation set in an asphalt floodcoat on a sloping concrete roof deck. The

  2. Cluster and Integral In-Orbit Solar Array Performance Prediction

    NASA Astrophysics Data System (ADS)

    d'Accolti, Gianfelice; Gonzalez, Jose Ramon; Taylor, Stephen; Escoubet, Philippe; Volpp, Juergen; Southworth, Richard; Bordoni, Emanuela

    2014-08-01

    Solar array in-orbit performance prediction is a key point to allow the extension of a mission, especially when margins of few watts are of paramount importance to keep working instruments relevant to its continuation. This is the case of the four Cluster satellites whose mission survival was depending on 10 to 15 Watts, a quantity normally neglected or absorbed in the simulation error. This verification was carried out after the first 12 years in orbit, with the aim of requesting a mission extension up to 2017. In order to verify if the solar array could deliver the requested power to satisfy the mission needs, ESA's Solar Generator Section reviewed its performance at a very detailed level. The approach followed produced four cases with different levels of probability. With this method, the data retrieved from the telemetry have been fitted with a very high degree of accuracy. The approach followed for Integral is slightly different. In this case the orbit is quite different, very eccentric and with a low perigee that crosses the trapped particle belts at some periods during the orbital evolution. The main implication of this fact lies in the higher doses of radiation and in the difficulty of making a reliable prediction. This situation has been overcome by assuming safety margins for the radiation dose to ensure the operation of solar array under the mission request.

  3. Comprehensive Solutions for Integration of Solar Resources into Grid Operations

    SciTech Connect

    Pennock, Kenneth; Makarov, Yuri V.; Rajagopal, Sankaran; Loutan, Clyde; Etingov, Pavel V.; Miller, Laurie E.; Lu, Bo; Mansingh, Ashmin; Zack, John; Sherick, Robert; Romo, Abraham; Habibi-Ashrafi, Farrokh; Johnson, Raymond

    2016-01-14

    The need for proactive closed-loop integration of uncertainty information into system operations and probability-based controls is widely recognized, but rarely implemented in system operations. Proactive integration for this project means that the information concerning expected uncertainty ranges for net load and balancing requirements, including required balancing capacity, ramping and ramp duration characteristics, will be fed back into the generation commitment and dispatch algorithms to modify their performance so that potential shortages of these characteristics can be prevented. This basic, yet important, premise is the motivating factor for this project. The achieved project goal is to demonstrate the benefit of such a system. The project quantifies future uncertainties, predicts additional system balancing needs including the prediction intervals for capacity and ramping requirements of future dispatch intervals, evaluates the impacts of uncertainties on transmission including the risk of overloads and voltage problems, and explores opportunities for intra-hour generation adjustments helping to provide more flexibility for system operators. The resulting benefits culminate in more reliable grid operation in the face of increased system uncertainty and variability caused by solar power. The project identifies that solar power does not require special separate penetration level restrictions or penalization for its intermittency. Ultimately, the collective consideration of all sources of intermittency distributed over a wide area unified with the comprehensive evaluation of various elements of balancing process, i.e. capacity, ramping, and energy requirements, help system operators more robustly and effectively balance generation against load and interchange. This project showed that doing so can facilitate more solar and other renewable resources on the grid without compromising reliability and control performance. Efforts during the project included

  4. Summer Thermal Performance of Ventilated Roofs with Tiled Coverings

    NASA Astrophysics Data System (ADS)

    Bortoloni, M.; Bottarelli, M.; Piva, S.

    2017-01-01

    The thermal performance of a ventilated pitched roof with tiled coverings is analysed and compared with unventilated roofs. The analysis is carried out by means of a finite element numerical code, by solving both the fluid and thermal problems in steady-state. A whole one-floor building with a pitched roof is schematized as a 2D computational domain including the air-permeability of tiled covering. Realistic data sets for wind, temperature and solar radiation are used to simulate summer conditions at different times of the day. The results demonstrate that the batten space in pitched roofs is an effective solution for reducing the solar heat gain in summer and thus for achieving better indoor comfort conditions. The efficiency of the ventilation is strictly linked to the external wind conditions and to buoyancy forces occurring due to the heating of the tiles.

  5. Fourier analysis of conductive heat transfer for glazed roofing materials

    NASA Astrophysics Data System (ADS)

    Roslan, Nurhana Lyana; Bahaman, Nurfaradila; Almanan, Raja Noorliyana Raja; Ismail, Razidah; Zakaria, Nor Zaini

    2014-07-01

    For low-rise buildings, roof is the most exposed surface to solar radiation. The main mode of heat transfer from outdoor via the roof is conduction. The rate of heat transfer and the thermal impact is dependent on the thermophysical properties of roofing materials. Thus, it is important to analyze the heat distribution for the various types of roofing materials. The objectives of this paper are to obtain the Fourier series for the conductive heat transfer for two types of glazed roofing materials, namely polycarbonate and polyfilled, and also to determine the relationship between the ambient temperature and the conductive heat transfer for these materials. Ambient and surface temperature data were collected from an empirical field investigation in the campus of Universiti Teknologi MARA Shah Alam. The roofing materials were installed on free-standing structures in natural ventilation. Since the temperature data are generally periodic, Fourier series and numerical harmonic analysis are applied. Based on the 24-point harmonic analysis, the eleventh order harmonics is found to generate an adequate Fourier series expansion for both glazed roofing materials. In addition, there exists a linear relationship between the ambient temperature and the conductive heat transfer for both glazed roofing materials. Based on the gradient of the graphs, lower heat transfer is indicated through polyfilled. Thus polyfilled would have a lower thermal impact compared to polycarbonate.

  6. Hygrothermal Performance of West Coast Wood Deck Roofing System

    SciTech Connect

    Pallin, Simon B; Kehrer, Manfred; Desjarlais, Andre Omer

    2014-02-01

    Simulations of roofing assemblies are necessary in order to understand and adequately predict actual the hygrothermal performance. At the request of GAF, simulations have been setup to verify the difference in performance between white and black roofing membrane colors in relation to critical moisture accumulation for traditional low slope wood deck roofing systems typically deployed in various western U.S. Climate Zones. The performance of these roof assemblies has been simulated in the hygrothermal calculation tool of WUFI, from which the result was evaluated based on a defined criterion for moisture safety. The criterion was defined as the maximum accepted water content for wood materials and the highest acceptable moisture accumulation rate in relation to the risk of rot. Based on the criterion, the roof assemblies were certified as being either safe, risky or assumed to fail. The roof assemblies were simulated in different western climates, with varying insulation thicknesses, two different types of wooden decking, applied with varying interior moisture load and with either a high or low solar absorptivity at the roof surface (black or white surface color). The results show that the performance of the studied roof assemblies differs with regard to all of the varying parameters, especially the climate and the indoor moisture load.

  7. Fourier analysis of conductive heat transfer for glazed roofing materials

    SciTech Connect

    Roslan, Nurhana Lyana; Bahaman, Nurfaradila; Almanan, Raja Noorliyana Raja; Ismail, Razidah; Zakaria, Nor Zaini

    2014-07-10

    For low-rise buildings, roof is the most exposed surface to solar radiation. The main mode of heat transfer from outdoor via the roof is conduction. The rate of heat transfer and the thermal impact is dependent on the thermophysical properties of roofing materials. Thus, it is important to analyze the heat distribution for the various types of roofing materials. The objectives of this paper are to obtain the Fourier series for the conductive heat transfer for two types of glazed roofing materials, namely polycarbonate and polyfilled, and also to determine the relationship between the ambient temperature and the conductive heat transfer for these materials. Ambient and surface temperature data were collected from an empirical field investigation in the campus of Universiti Teknologi MARA Shah Alam. The roofing materials were installed on free-standing structures in natural ventilation. Since the temperature data are generally periodic, Fourier series and numerical harmonic analysis are applied. Based on the 24-point harmonic analysis, the eleventh order harmonics is found to generate an adequate Fourier series expansion for both glazed roofing materials. In addition, there exists a linear relationship between the ambient temperature and the conductive heat transfer for both glazed roofing materials. Based on the gradient of the graphs, lower heat transfer is indicated through polyfilled. Thus polyfilled would have a lower thermal impact compared to polycarbonate.

  8. Waste and Abuse: Public School Roofing Projects.

    ERIC Educational Resources Information Center

    2000

    This report details the results of a comprehensive inquiry by New Jersey into one aspect of school construction, the repair and replacement of roof systems, which represents the single most expensive and integral component of a school's physical structure. The investigation began in late 1997 after confidential complaints suggested abuse in the…

  9. Installation of a Roof Mounted Photovoltaic System

    NASA Astrophysics Data System (ADS)

    Lam, M.

    2015-12-01

    In order to create a safe and comfortable environment for students to learn, a lot of electricity, which is generated from coal fired power plants, is used. Therefore, ISF Academy, a school in Hong Kong with approximately 1,500 students, will be installing a rooftop photovoltaic (PV) system with 302 solar panels. Not only will these panels be used to power a classroom, they will also serve as an educational opportunity for students to learn about the importance of renewable energy technology and its uses. There were four different options for the installation of the solar panels, and the final choice was made based on the loading capacity of the roof, considering the fact that overstressing the roof could prove to be a safety hazard. Moreover, due to consideration of the risk of typhoons in Hong Kong, the solar panel PV system will include concrete plinths as counterweights - but not so much that the roof would be severely overstressed. During and after the installation of the PV system, students involved would be able to do multiple calculations, such as determining the reduction of the school's carbon footprint. This can allow students to learn about the impact renewable energy can have on the environment. Another project students can participate in includes measuring the efficiency of the solar panels and how much power can be produced per year, which in turn can help with calculate the amount of money saved per year and when we will achieve economic parity. In short, the installation of the roof mounted PV system will not only be able to help save money for the school but also provide learning opportunities for students studying at the ISF Academy.

  10. Window-Integrated Low Concentration Planar Light Guide Solar Concentrators

    NASA Astrophysics Data System (ADS)

    Williams, Daniel James Lawler

    Several novel low concentration solar concentrator photovoltaic designs are presented, based on the planar light guide architecture pioneered by the University of Rochester. These systems are designed for integration into windows, requiring them to be stationary and to have a large acceptance angle since they cannot move to track the sun. The application goal is to use solar generated electricity to offset the energy lost through the window during cold times of the year. The systems are evaluated for their effective insulation properties given the calculated net energy lost. Without moving parts, they optimize to have acceptance angles of about 20° to 35° in the vertical direction and +/-90° in the horizontal direction, but have peak optical efficiencies of less than 50%. By including internally moving parts, the acceptance angle is increased to nearly a full pi steradians (the full sky from the point of view of the window) and the average optical efficiency increases to over 50%. Systems in certain locations are not viable due to low solar irradiance in the wintertime, e.g., Rochester, NY. Others, however, reduce net energy loss to zero for much of the year. A prototype of one of the systems is fabricated, measured, and modeled. The simulated and measured performance data are compared and are in close agreement, validating the model and the evaluation methods used during system optimization.

  11. Rod shop, roof and truss detail showing older pink roof ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Rod shop, roof and truss detail showing older pink roof truss, newer pratt truss, and longitudinal, truss for overhead traveling crane - Chicago, Burlington & Quincy Railroad, Roundhouse & Shops, Broadway & Spring Streets, Aurora, Kane County, IL

  12. 5. MAIN BAY SHOWING ROOF CONSTRUCTION, ROOF TRUSS, CLERESTORY MONITOR, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. MAIN BAY SHOWING ROOF CONSTRUCTION, ROOF TRUSS, CLERESTORY MONITOR, AND GIRDER FOR ELECTRIC OVERHEAD TRAVEL CRANE (BOTTOM) - Oldman Boiler Works, Boilershop, 32 Illinois Street, Buffalo, Erie County, NY

  13. Roof structural system, similar in design to peaked roofs of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Roof structural system, similar in design to peaked roofs of rolling mill, yet note abandonment of phoenix columns for compression members. - Phoenix Iron Company, Girder Shop No. 6, North of French Creek, west of Gay Street, Phoenixville, Chester County, PA

  14. 8. Detail of interior roof showing truss bracing and roof ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. Detail of interior roof showing truss bracing and roof plank decking; view to east from approximately the center of the shelter. - Warm River Shelter, Warm River Campground, Ashton, Fremont County, ID

  15. ROOF, A view looking north from the stair tower roof ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ROOF, A view looking north from the stair tower roof at the external piping - Department of Energy, Mound Facility, Hydrolysis House Building (HH Building), One Mound Road, Miamisburg, Montgomery County, OH

  16. Integrated Solar-Energy-Harvesting and -Storage Device

    NASA Technical Reports Server (NTRS)

    whitacre, Jay; Fleurial, Jean-Pierre; Mojarradi, Mohammed; Johnson, Travis; Ryan, Margaret Amy; Bugga, Ratnakumar; West, William; Surampudi, Subbarao; Blosiu, Julian

    2004-01-01

    A modular, integrated, completely solid-state system designed to harvest and store solar energy is under development. Called the power tile, the hybrid device consists of a photovoltaic cell, a battery, a thermoelectric device, and a charge-control circuit that are heterogeneously integrated to maximize specific energy capacity and efficiency. Power tiles could be used in a variety of space and terrestrial environments and would be designed to function with maximum efficiency in the presence of anticipated temperatures, temperature gradients, and cycles of sunlight and shadow. Because they are modular in nature, one could use a single power tile or could construct an array of as many tiles as needed. If multiple tiles are used in an array, the distributed and redundant nature of the charge control and distribution hardware provides an extremely fault-tolerant system. The figure presents a schematic view of the device.

  17. Green Roofs for Stormwater Runoff Control - Abstract

    EPA Science Inventory

    This project evaluated green roofs as a stormwater management tool. Specifically, runoff quantity and quality from green and flat asphalt roofs were compared. Evapotranspiration from planted green roofs and evaporation from unplanted media roofs were also compared. The influence...

  18. Factory-built integrated solar homes - A progress report

    SciTech Connect

    Rawlings, L.K.

    1995-12-31

    Over the past fifteen years, hundreds of people across the US have built for themselves highly advanced residences which integrated passive solar architecture; photovoltaic power systems; high-efficiency lights, appliances, and HVAC (heating, ventilating, and cooling) equipment; high-level insulation and airtight construction; and other renewable energy and energy-efficient technologies. Such a home can be referred to as an {open_quotes}integrated solar home{close_quotes}. As the essential technologies have improved in performance, price, and availability, the performance of such homes has steadily advanced to the point where they could provide amenities at more-or-less normal US standards of luxury, yet require as little as 5% to 10% of the level of fossil fuel or biomass use that are required in an average US home. However, the resources required to build such a home, both in terms of the time and dedication needed for research, design, and construction of the homes, and in terms of the additional cost of the renewable energy/energy efficient features, have prevented such construction from moving beyond a tiny handful of highly motivated homeowners and into the mainstream of residential construction. This paper has design summaries of six different houses.

  19. Western Wind and Solar Integration Study: Hydropower Analysis

    SciTech Connect

    Acker, T.; Pete, C.

    2012-03-01

    The U.S. Department of Energy's (DOE) study of 20% Wind Energy by 2030 was conducted to consider the benefits, challenges, and costs associated with sourcing 20% of U.S. energy consumption from wind power by 2030. This study found that with proactive measures, no insurmountable barriers were identified to meet the 20% goal. Following this study, DOE and the National Renewable Energy Laboratory (NREL) conducted two more studies: the Eastern Wind Integration and Transmission Study (EWITS) covering the eastern portion of the U.S., and the Western Wind and Solar Integration Study (WWSIS) covering the western portion of the United States. The WWSIS was conducted by NREL and research partner General Electric (GE) in order to provide insight into the costs, technical or physical barriers, and operational impacts caused by the variability and uncertainty of wind, photovoltaic, and concentrated solar power when employed to serve up to 35% of the load energy in the WestConnect region (Arizona, Colorado, Nevada, New Mexico, and Wyoming). WestConnect is composed of several utility companies working collaboratively to assess stakeholder and market needs to and develop cost-effective improvements to the western wholesale electricity market. Participants include the Arizona Public Service, El Paso Electric Company, NV Energy, Public Service of New Mexico, Salt River Project, Tri-State Generation and Transmission Cooperative, Tucson Electric Power, Xcel Energy and the Western Area Power Administration.

  20. 24. Roof detail from liftbed truck, showing pan roof above ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    24. Roof detail from lift-bed truck, showing pan roof above breezeway, with sawn redwood trim, tube-type drains; note missing rain gutter at roof edge, deteriorated condition of slates; view to south, 90mm lens. - Southern Pacific Depot, 559 El Camino Real, San Carlos, San Mateo County, CA

  1. Roofing: Workbook and Tests. Built-up Roofing.

    ERIC Educational Resources Information Center

    Klingensmith, Robert, Ed.

    Designed for use in roofing apprenticeship classes, this workbook contains eight units on skills used in built-up roofing, a listing of instructional materials, a glossary, and the text of Labor Code Article 30, Construction Safety Orders, "Roofing Operations and Equipment." Each instructional unit includes a listing of performance statements and…

  2. Solar energy grid integration systems : final report of the Florida Solar Energy Center Team.

    SciTech Connect

    Ropp, Michael; Gonzalez, Sigifredo; Schaffer, Alan; Katz, Stanley; Perkinson, Jim; Bower, Ward Isaac; Prestero, Mark; Casey, Leo; Moaveni, Houtan; Click, David; Davis, Kristopher; Reedy, Robert; Kuszmaul, Scott S.; Sena-Henderson, Lisa; David, Carolyn; Akhil, Abbas Ali

    2012-03-01

    Initiated in 2008, the Solar Energy Grid Integration Systems (SEGIS) program is a partnership involving the U.S. DOE, Sandia National Laboratories, private sector companies, electric utilities, and universities. Projects supported under the program have focused on the complete-system development of solar technologies, with the dual goal of expanding utility-scale penetration and addressing new challenges of connecting large-scale solar installations in higher penetrations to the electric grid. The Florida Solar Energy Center (FSEC), its partners, and Sandia National Laboratories have successfully collaborated to complete the work under the third and final stage of the SEGIS initiative. The SEGIS program was a three-year, three-stage project that include conceptual design and market analysis in Stage 1, prototype development and testing in Stage 2, and moving toward commercialization in Stage 3. Under this program, the FSEC SEGIS team developed a comprehensive vision that has guided technology development that sets one methodology for merging photovoltaic (PV) and smart-grid technologies. The FSEC team's objective in the SEGIS project is to remove barriers to large-scale general integration of PV and to enhance the value proposition of photovoltaic energy by enabling PV to act as much as possible as if it were at the very least equivalent to a conventional utility power plant. It was immediately apparent that the advanced power electronics of these advanced inverters will go far beyond conventional power plants, making high penetrations of PV not just acceptable, but desirable. This report summarizes a three-year effort to develop, validate and commercialize Grid-Smart Inverters for wider photovoltaic utilization, particularly in the utility sector.

  3. How To Prevent Roof Abuse.

    ERIC Educational Resources Information Center

    Hutchinson, Thomas W.

    2000-01-01

    Discusses ways to prevent school roofing failure through good maintenance practice and the proper handling of emergency situations. What types of problems show up when roofs are not maintained are highlighted. (GR)

  4. NREL Analysis: Cost-Effective and Reliable Integration of High-Penetration Solar in the Western United States (Poster)

    SciTech Connect

    Lew, D.; Brinkman, G.; Ibanez, E.; Hodge, B.; Lefton, S.; Kumar, N.; Agan, D.; Jordan, G.; Venkatataman, S.

    2012-07-01

    SunShot Initiative awardee posters describing the different technologies within the four subprograms of the DOE Solar Program (Photovoltaics, Concentrating Solar Power, Soft Costs, and Systems Integration).

  5. Design and realization of transparent solar modules based on luminescent solar concentrators integrating nanostructured photonic crystals

    PubMed Central

    Jiménez‐Solano, Alberto; Delgado‐Sánchez, José‐Maria; Calvo, Mauricio E.; Miranda‐Muñoz, José M.; Lozano, Gabriel; Sancho, Diego; Sánchez‐Cortezón, Emilio

    2015-01-01

    Abstract Herein, we present a prototype of a photovoltaic module that combines a luminescent solar concentrator integrating one‐dimensional photonic crystals and in‐plane CuInGaSe2 (CIGS) solar cells. Highly uniform and wide‐area nanostructured multilayers with photonic crystal properties were deposited by a cost‐efficient and scalable liquid processing amenable to large‐scale fabrication. Their role is to both maximize light absorption in the targeted spectral range, determined by the fluorophore employed, and minimize losses caused by emission at angles within the escape cone of the planar concentrator. From a structural perspective, the porous nature of the layers facilitates the integration with the thermoplastic polymers typically used to encapsulate and seal these modules. Judicious design of the module geometry, as well as of the optical properties of the dielectric mirrors employed, allows optimizing light guiding and hence photovoltaic performance while preserving a great deal of transparency. Optimized in‐plane designs like the one herein proposed are of relevance for building integrated photovoltaics, as ease of fabrication, long‐term stability and improved performance are simultaneously achieved. © 2015 The Authors. Progress in Photovoltaics: Research and Applications published by John Wiley & Sons Ltd. PMID:27656090

  6. Design and realization of transparent solar modules based on luminescent solar concentrators integrating nanostructured photonic crystals.

    PubMed

    Jiménez-Solano, Alberto; Delgado-Sánchez, José-Maria; Calvo, Mauricio E; Miranda-Muñoz, José M; Lozano, Gabriel; Sancho, Diego; Sánchez-Cortezón, Emilio; Míguez, Hernán

    2015-12-01

    Herein, we present a prototype of a photovoltaic module that combines a luminescent solar concentrator integrating one-dimensional photonic crystals and in-plane CuInGaSe2 (CIGS) solar cells. Highly uniform and wide-area nanostructured multilayers with photonic crystal properties were deposited by a cost-efficient and scalable liquid processing amenable to large-scale fabrication. Their role is to both maximize light absorption in the targeted spectral range, determined by the fluorophore employed, and minimize losses caused by emission at angles within the escape cone of the planar concentrator. From a structural perspective, the porous nature of the layers facilitates the integration with the thermoplastic polymers typically used to encapsulate and seal these modules. Judicious design of the module geometry, as well as of the optical properties of the dielectric mirrors employed, allows optimizing light guiding and hence photovoltaic performance while preserving a great deal of transparency. Optimized in-plane designs like the one herein proposed are of relevance for building integrated photovoltaics, as ease of fabrication, long-term stability and improved performance are simultaneously achieved. © 2015 The Authors. Progress in Photovoltaics: Research and Applications published by John Wiley & Sons Ltd.

  7. High-Tech Roof Management.

    ERIC Educational Resources Information Center

    Benzie, Tim

    1997-01-01

    Describes the use of a computerized roof management system (CRMS) for school districts to foster multiple roof maintenance efficiency and cost effectiveness. Highlights CRMS software manufacturer choices, as well as the types of nondestructive testing equipment tools that can be used to evaluate roof conditions. (GR)

  8. Installation package for integrated programmable electronic controller and hydronic subsystem - solar heating and cooling

    NASA Technical Reports Server (NTRS)

    1978-01-01

    A description is given of the Installation, Operation, and Maintenance Manual and information on the power panel and programmable microprocessor, a hydronic solar pump system and a hydronic heating hot water pumping system. These systems are integrated into various configurations for usages in solar energy management, control and monitoring, lighting control, data logging and other solar related applications.

  9. Structural assessment of roof decking using visual inspection methods

    SciTech Connect

    Giller, R.A.; McCoy, R.M.; Wagenblast, G.R.

    1993-10-01

    The Hanford Site has approximately 1,100 buildings, some of which date back to the early 1940s. The roof on these buildings provides a weather resisting cover as well as the load resisting structure. Past experience has been that these roof structures may have structural modifications, the weather resisting membrane may have been replaced several times, and the members may experience some type of material degradation. This material degradation has progressed to cause the collapse of some roof deck members. The intent of the Hanford Site Central Engineering roof assessment effort is to provide an expedient structural assessment of the large number of buildings at the Hanford Site. This assessment is made by qualified structural inspectors following the {open_quotes}Preliminary Assessment{close_quote} procedures given in the American Society of Civil Engineers (ASCE) Standard ASCE 11-90. This roof assessment effort does not provide a total qualification of the roof for the design or in-place loads. This inspection does provide a reasonable estimate of the roof loading capacity to determine if personnel access restrictions are needed. A document search and a visual walkdown inspection provide the initial screening to identify modifications and components having questionable structural integrity. The structural assessment consists of baseline dead and live load stress calculations of all roofing components based on original design material strengths. The results of these assessments are documented in a final report which is retrievable form that future inspections will have comparative information.

  10. Choosing the Right Roof.

    ERIC Educational Resources Information Center

    Evans, Jeff

    1999-01-01

    Offers tips for selecting roofing products for new or renovated buildings. Examines various site-specific design parameters such as building life, climatic exposure, water drainage, traffic resistance, and insurer's requirements. Notes points to address in preparing clear, detailed, and well-conceived specifications. (GR)

  11. Comparative life cycle assessment of standard and green roofs.

    PubMed

    Saiz, Susana; Kennedy, Christopher; Bass, Brad; Pressnail, Kim

    2006-07-01

    Life cycle assessment (LCA) is used to evaluate the benefits, primarily from reduced energy consumption, resulting from the addition of a green roof to an eight story residential building in Madrid. Building energy use is simulated and a bottom-up LCA is conducted assuming a 50 year building life. The key property of a green roof is its low solar absorptance, which causes lower surface temperature, thereby reducing the heat flux through the roof. Savings in annual energy use are just over 1%, but summer cooling load is reduced by over 6% and reductions in peak hour cooling load in the upper floors reach 25%. By replacing the common flat roof with a green roof, environmental impacts are reduced by between 1.0 and 5.3%. Similar reductions might be achieved by using a white roof with additional insulation for winter, but more substantial reductions are achieved if common use of green roofs leads to reductions in the urban heat island.

  12. Integrated perovskite/bulk-heterojunction toward efficient solar cells.

    PubMed

    Liu, Yongsheng; Hong, Ziruo; Chen, Qi; Chang, Weihsuan; Zhou, Huanping; Song, Tze-Bin; Young, Eric; Yang, Yang Michael; You, Jingbi; Li, Gang; Yang, Yang

    2015-01-14

    We successfully demonstrated an integrated perovskite/bulk-heterojunction (BHJ) photovoltaic device for efficient light harvesting and energy conversion. Our device efficiently integrated two photovoltaic layers, namely a perovskite film and organic BHJ film, into the device. The device structure is ITO/TiO2/perovskite/BHJ/MoO3/Ag. A wide bandgap small molecule DOR3T-TBDT was used as donor in the BHJ film, and a power conversion efficiency (PCE) of 14.3% was achieved in the integrated device with a high short circuit current density (JSC) of 21.2 mA cm(-2). The higher JSC as compared to that of the traditional perovskite/HTL (hole transporting layer) device (19.3 mA cm(-2)) indicates that the BHJ film absorbs light and contributes to the current density of the device. Our result further suggests that the HTL in traditional perovskite solar cell, even with good light absorption capability, cannot contribute to the overall device photocurrent, unless this HTL becomes a BHJ layer (by adding electron transporting material like PC71BM).

  13. Daniel K. Inouye Solar Telescope: integration, testing, and commissioning planning

    NASA Astrophysics Data System (ADS)

    Craig, Simon; Gonzales, Kerry; Hubbard, Robert P.; Liang, Chen; Kneale, Ruth A.; McBride, William R.; Sekulic, Predrag; Williams, Timothy R.

    2016-08-01

    The Daniel K. Inouye Solar Telescope (DKIST) has been in its construction phase since 2010, anticipating the onset of the integration, test, and commissioning (IT&C) phase in early 2017, and the commencement of science verification in 2019. The works on Haleakala are progressing at a phenomenal rate and many of the various subsystems are either through or about to enter their Factory (or Laboratory) acceptance. The delays in obtaining site planning permissions, while a serious issue for Project Management, has allowed the sub-systems to develop well ahead of their required delivery to site. We have benefited from the knowledge that many sub-systems will be on site and ready for integration well before affecting the critical path. Opportunities have been presented for additional laboratory/factory testing which, while not free, significantly reduce the risks of potential delays and rework on site. From the perspective of IT&C this has provided an opportunity to develop the IT&C plans and schedules free from the pressures of imminent deployment. In this paper we describe the ongoing planning of the Integration, Testing and Commissioning (IT&C) phase of the project in particular the detailed planning phase that we are currently developing.

  14. Phototropic solar tracking in sunflower plants: an integrative perspective

    PubMed Central

    Kutschera, Ulrich; Briggs, Winslow R.

    2016-01-01

    Background One of the best-known plant movements, phototropic solar tracking in sunflower (Helianthus annuus), has not yet been fully characterized. Two questions are still a matter of debate. (1) Is the adaptive significance solely an optimization of photosynthesis via the exposure of the leaves to the sun? (2) Is shade avoidance involved in this process? In this study, these concepts are discussed from a historical perspective and novel insights are provided. Scope and Methods Results from the primary literature on heliotropic growth movements led to the conclusion that these responses cease before anthesis, so that the flowering heads point to the East. Based on observations on 10-week-old plants, the diurnal East–West oscillations of the upper fifth of the growing stem and leaves in relation to the position of the sun (inclusive of nocturnal re-orientation) were documented, and photon fluence rates on the leaf surfaces on clear, cloudy and rainy days were determined. In addition, the light–response curve of net CO2 assimilation was determined on the upper leaves of the same batch of plants, and evidence for the occurrence of shade-avoidance responses in growing sunflower plants is summarized. Conclusions. Only elongating, vegetative sunflower shoots and the upper leaves perform phototropic solar tracking. Photon fluence response and CO2 assimilation measurements cast doubt on the ‘photosynthesis-optimization hypothesis’ as the sole explanation for the evolution of these plant movements. We suggest that the shade-avoidance response, which maximizes light-driven CO2 assimilation, plays a major role in solar tracking populations of competing sunflower plants, and an integrative scheme of these growth movements is provided. PMID:26420201

  15. Demonstration of Three Corrosion-Resistant Sustainable Roofing Systems

    DTIC Science & Technology

    2013-06-01

    is ENERGY STAR® qualified (http://www.energystar.gov) and has an initial solar reflectance of 0.25 and unchanged reflectance of 0.25 after 3 years...Decra Roofing Systems, Inc., 1230 Railroad Street, Corona , CA 92882. http://www.decra.com/ ERDC...sierra tan, was chosen to match the surrounding building architecture. It has an initial solar reflectance of 0.49, a solar reflectance of 0.45

  16. Solar energy grid integration systems - Energy storage (SEGIS-ES)

    SciTech Connect

    Ton, Dan; Peek, Georgianne H.; Hanley, Charles; Boyes, John

    2008-05-01

    In late 2007, the U.S. Department of Energy (DOE) initiated a series of studies to address issues related to potential high penetration of distributed photovoltaic (PV) generation systems on our nation’s electric grid. This Renewable Systems Interconnection (RSI) initiative resulted in the publication of 14 reports and an Executive Summary that defined needs in areas related to utility planning tools and business models, new grid architectures and PV systems configurations, and models to assess market penetration and the effects of high-penetration PV systems. As a result of this effort, the Solar Energy Grid Integration Systems (SEGIS) program was initiated in early 2008. SEGIS is an industry-led effort to develop new PV inverters, controllers, and energy management systems that will greatly enhance the utility of distributed PV systems.

  17. Western Wind and Solar Integration Study Phase 2 (Presentation)

    SciTech Connect

    Lew, D.; Brinkman, G.; Ibanez, E.; Kumar, N.; Lefton, S.; Jordan, G.; Venkataraman, S.; King, J.

    2013-06-01

    This presentation accompanies Phase 2 of the Western Wind and Solar Integration Study, a follow-on to Phase 1, which examined the operational impacts of high penetrations of variable renewable generation on the electric power system in the West and was one of the largest variable generation studies to date. High penetrations of variable generation can induce cycling of fossil-fueled generators. Cycling leads to wear-and-tear costs and changes in emissions. Phase 2 calculated these costs and emissions, and simulated grid operations for a year to investigate the detailed impact of variable generation on the fossil-fueled fleet. The presentation highlights the scope of the study and results.

  18. Lightweight, Flexible, Thin, Integrated Solar-Power Packs

    NASA Technical Reports Server (NTRS)

    Hanson, Robert R.

    2004-01-01

    Lightweight, flexible, thin, one-piece, solar-power packs are undergoing development. Each power pack of this type is a complete, modular, integrated power-supply system comprising three power subsystems that, in conventional practice, have been constructed as separate units and connected to each other by wires. These power packs are amenable to a variety of uses: For example, they could be laminated to the tops of tents and other shelters to provide or augment power for portable electronic equipment in the field, and they could be used as power sources for such small portable electronic systems as radio transceivers (including data relays and cellular telephones), laptop computers, video camcorders, and Global Positioning System receivers.

  19. Integrated function nonimaging concentrating collector tubes for solar thermal energy

    NASA Astrophysics Data System (ADS)

    Winston, R.; Ogallagher, J. J.

    1982-09-01

    A substantial improvement in optical efficiency over contemporary external reflector evacuated tube collectors has been achieved by integrating the reflector surface into the outer glass envelope. Described are the design fabrication and test results for a prototype collector based on this concept. A comprehensive test program to measure performance and operational characteristics of a 2 sq m panel (45 tubes) has been completed. Efficiencies above 50% relative to beam at 200 C have been repeatedly demonstrated. Both the instantaneous and long term average performance of this totally stationary solar collector are comparable to those for tracking line focus parabolic troughs. The yield, reliability and stability of performance achieved have been excellent. Subcomponent assemblies and fabrication procedures have been used which are expected to be compatible with high volume production. The collector has a wide variety of applications in the 100 to 300 C range including industrial progress heat, air conditioning and Rankine engine operation.

  20. Aging and weathering of cool roofing membranes

    SciTech Connect

    Akbari, Hashem; Berhe, Asmeret A.; Levinson, Ronnen; Graveline,Stanley; Foley, Kevin; Delgado, Ana H.; Paroli, Ralph M.

    2005-08-23

    Aging and weathering can reduce the solar reflectance of cool roofing materials. This paper summarizes laboratory measurements of the solar spectral reflectance of unweathered, weathered, and cleaned samples collected from single-ply roofing membranes at various sites across the United States. Fifteen samples were examined in each of the following six conditions: unweathered; weathered; weathered and brushed; weathered, brushed and then rinsed with water; weathered, brushed, rinsed with water, and then washed with soap and water; and weathered, brushed, rinsed with water, washed with soap and water, and then washed with an algaecide. Another 25 samples from 25 roofs across the United States and Canada were measured in their unweathered state, weathered, and weathered and wiped. We document reduction in reflectivity resulted from various soiling mechanisms and provide data on the effectiveness of various cleaning approaches. Results indicate that although the majority of samples after being washed with detergent could be brought to within 90% of their unweathered reflectivity, in some instances an algaecide was required to restore this level of reflectivity.

  1. Integral glass sheet encapsulation for terrestrial panel applications. [solar cell modules

    NASA Technical Reports Server (NTRS)

    Minnucci, J. A.; Kirkpatrick, A. R.; Kreisman, W. S.

    1976-01-01

    Concepts for integral glass sheet encapsulation of terrestrial solar cell modules using techniques based upon electrostatic bonding are being developed. It is possible for the glass to provide hermetic encapsulation, the structural support, and a vehicle for integral interconnection of the solar cells. Anticipated capabilities, present status, and cost projections for large scale terrestrial utilization are discussed.

  2. Monte Carlo Simulations of Luminescent Solar Concentrators with Front-Facing Photovoltaic Cells for Building Integrated Photovoltaics

    NASA Astrophysics Data System (ADS)

    Leow, Shin; Corrado, Carley; Osborn, Melissa; Carter, Sue

    2013-03-01

    Luminescent solar concentrators (LSCs) have the ability to receive light from a wide range of angles and concentrate the captured light on to small photo active areas. This enables LSCs to be integrated more extensively into buildings as windows and wall claddings on top of roof installations. LSCs with front facing PV cells collect both direct and concentrated light ensuring a gain factor greater than one. It also allows for flexibility in determining the placement and percentage coverage of PV cells when designing panels to balance reabsorption losses, power output and the level of concentration desired. A Monte-Carlo ray tracing program was developed to study the transport of photons and loss mechanisms in LSC panels and aid in design optimization. The program imports measured absorption/emission spectra and transmission coefficients as simulation parameters. Interactions of photons with the LSC panel are determined by comparing calculated probabilities with random number generators. Simulation results reveal optimal panel dimensions and PV cell layouts to achieve maximum power output.

  3. Demonstration of Cooling Savings of Light Colored Roof Surfacing in Florida Commercial Buildings: Our Savior's School.

    ERIC Educational Resources Information Center

    Parker, Danny S.; Sherwin, John R.; Sonne, Jeffrey K.; Barkaszi, Stephen F., Jr.

    A 2-year Florida study attempted to quantify air conditioning cost savings when buildings have a white reflective roof. A 10,000 square foot elementary school with a gray modified bitumen roof over plywood decking that had a solar reflectance of 23 percent was monitored for an entire year. After one year of building thermal conditions and…

  4. Analytical study of residential building with reflecting roofs

    SciTech Connect

    Zarr, R.R.

    1998-10-01

    This report presents an analysis of the effect of roof solar reflectance on the annual heating (cooling) loads, peak heating (cooling) loads, and roof temperatures of the residential buildings. The annual heating (cooling) loads, peak heating (cooling) loads, and exterior roof temperatures for a small compact ranch house are computed using the Thermal Analysis Research Program (TARP). The residential models, with minor modifications in the thermal envelope for different locations, are subjected to hourly weather data for one year compiled in the Weather Year for Energy Calculation (WYEC) for in the following locations: Birmingham, Alabama; Bismarck, North Dakota; Miami, Florida; Phoenix, Arizona; Portland, Maine; and, Washington, D.C. Building loads have been determined for a full factorial experimental design that varies the following parameters of the residential model: solar reflectance of the roof, ceiling thermal resistance, attic ventilation, and attic mass framing area. The computed results for annual heating (cooling) loads and peak heating (cooling) loads are illustrated graphically, both globally for all cities and locally for each geographic location. The effect of peak parameter is ranked (highest to lowest) for effect on annual heating and cooling loads, and peak heating and cooling loads. A parametric study plots the building loads as a function of roof solar reflectance for different levels of ceiling thermal resistances and for each geographic location.

  5. Producing superhydrophobic roof tiles.

    PubMed

    Carrascosa, Luis A M; Facio, Dario S; Mosquera, Maria J

    2016-03-04

    Superhydrophobic materials can find promising applications in the field of building. However, their application has been very limited because the synthesis routes involve tedious processes, preventing large-scale application. A second drawback is related to their short-term life under outdoor conditions. A simple and low-cost synthesis route for producing superhydrophobic surfaces on building materials is developed and their effectiveness and their durability on clay roof tiles are evaluated. Specifically, an organic-inorganic hybrid gel containing silica nanoparticles is produced. The nanoparticles create a densely packed coating on the roof tile surface in which air is trapped. This roughness produces a Cassie-Baxter regime, promoting superhydrophobicity. A surfactant, n-octylamine, was also added to the starting sol to catalyze the sol-gel process and to coarsen the pore structure of the gel network, preventing cracking. The application of ultrasound obviates the need to use volatile organic compounds in the synthesis, thereby making a 'green' product. It was also demonstrated that a co-condensation process effective between the organic and inorganic species is crucial to obtain durable and effective coatings. After an aging test, high hydrophobicity was maintained and water absorption was completely prevented for the roof tile samples under study. However, a transition from a Cassie-Baxter to a Wenzel state regime was observed as a consequence of the increase in the distance between the roughness pitches produced by the aging of the coating.

  6. Producing superhydrophobic roof tiles

    NASA Astrophysics Data System (ADS)

    Carrascosa, Luis A. M.; Facio, Dario S.; Mosquera, Maria J.

    2016-03-01

    Superhydrophobic materials can find promising applications in the field of building. However, their application has been very limited because the synthesis routes involve tedious processes, preventing large-scale application. A second drawback is related to their short-term life under outdoor conditions. A simple and low-cost synthesis route for producing superhydrophobic surfaces on building materials is developed and their effectiveness and their durability on clay roof tiles are evaluated. Specifically, an organic-inorganic hybrid gel containing silica nanoparticles is produced. The nanoparticles create a densely packed coating on the roof tile surface in which air is trapped. This roughness produces a Cassie-Baxter regime, promoting superhydrophobicity. A surfactant, n-octylamine, was also added to the starting sol to catalyze the sol-gel process and to coarsen the pore structure of the gel network, preventing cracking. The application of ultrasound obviates the need to use volatile organic compounds in the synthesis, thereby making a ‘green’ product. It was also demonstrated that a co-condensation process effective between the organic and inorganic species is crucial to obtain durable and effective coatings. After an aging test, high hydrophobicity was maintained and water absorption was completely prevented for the roof tile samples under study. However, a transition from a Cassie-Baxter to a Wenzel state regime was observed as a consequence of the increase in the distance between the roughness pitches produced by the aging of the coating.

  7. Reuniting the Solar System: Integrated Education and Public Outreach Projects for Solar System Exploration Missions and Programs

    NASA Technical Reports Server (NTRS)

    Lowes, Leslie; Lindstrom, Marilyn; Stockman, Stephanie; Scalice, Daniela; Klug, Sheri

    2003-01-01

    The Solar System Exploration Education Forum has worked for five years to foster Education and Public Outreach (E/PO) cooperation among missions and programs in order to leverage resources and better meet the needs of educators and the public. These efforts are coming together in a number of programs and products and in '2004 - The Year of the Solar System.' NASA's practice of having independent E/PO programs for each mission and its public affairs emphasis on uniqueness has led to a public perception of a fragmented solar system exploration program. By working to integrate solar system E/PO, the breadth and depth of the solar system exploration program is revealed. When emphasis is put on what missions have in common, as well as their differences, each mission is seen in the context of the whole program.

  8. The Benefits of Preventive Roof Maintenance.

    ERIC Educational Resources Information Center

    Kalinger, Peter

    1998-01-01

    Explains how to convince school administration of the importance of roof-maintenance programs as a way of extending roof life and saving money, even in the presence of roof warranties. Discusses techniques for evaluating the cost benefits of roof maintenance and the importance of creating a roof historical file. (GR)

  9. Stormwater Attenuation by Green Roofs

    NASA Astrophysics Data System (ADS)

    Sims, A.; O'Carroll, D. M.; Robinson, C. E.; Smart, C. C.

    2014-12-01

    Innovative municipal stormwater management technologies are urgently required in urban centers. Inadequate stormwater management can lead to excessive flooding, channel erosion, decreased stream baseflows, and degraded water quality. A major source of urban stormwater is unused roof space. Green roofs can be used as a stormwater management tool to reduce roof generated stormwater and generally improve the quality of runoff. With recent legislation in some North American cities, including Toronto, requiring the installation of green roofs on large buildings, research on the effectiveness of green roofs for stormwater management is important. This study aims to assess the hydrologic response of an extensive sedum green roof in London, Ontario, with emphasis on the response to large precipitation events that stress municipal stormwater infrastructure. A green roof rapidly reaches field capacity during large storm events and can show significantly different behavior before and after field capacity. At field capacity a green roof has no capillary storage left for retention of stormwater, but may still be an effective tool to attenuate peak runoff rates by transport through the green roof substrate. The attenuation of green roofs after field capacity is linked to gravity storage, where gravity storage is the water that is temporarily stored and can drain freely over time after field capacity has been established. Stormwater attenuation of a modular experimental green roof is determined from water balance calculations at 1-minute intervals. Data is used to evaluate green roof attenuation and the impact of field capacity on peak flow rates and gravity storage. In addition, a numerical model is used to simulate event based stormwater attenuation. This model is based off of the Richards equation and supporting theory of multiphase flow through porous media.

  10. Stormwater quality from extensive green roofs in a subtropical region

    NASA Astrophysics Data System (ADS)

    Onis Pessoa, Jonas; Allasia, Daniel; Tassi, Rutineia; Vaz Viega, Juliana; Fensterseifer, Paula

    2016-04-01

    Green roofs have increasingly become an integral part of urban environments, mainly due to their aesthetic benefits, thermal comfort and efficiency in controlling excess runoff. However, the effects of this emerging technology in the qualitative characteristics of rainwater is still poorly understood. In this study was evaluated the effect of two different extensive green roofs (EGRs) and a traditional roof built with corrugated fiber cement sheets (control roof) in the quality of rainwater, in a subtropical climate area in the city of Santa Maria, in southern Brazil. The principal variant between the two EGRs were the type of plant species, time since construction, soil depth and the substrate characteristics. During the monitoring period of the experiment, between the months of April and December of 2015 fourteen rainfall events were selected for qualitative analysis of water from the three roofs and directly from rainfall. It was analyzed physical (turbidity, apparent color, true color, electrical conductivity, total solids, dissolved solids, suspended solids and temperature), chemical (pH, phosphate, total nitrogen, nitrate, nitrite, chloride, sulfate, BOD, iron and total hardness), heavy metals (copper, zinc, lead and chromium) and microbiological parameters (total coliforms and E. coli). It was also characterized the substrates used in both extensive green roofs. The results showed that the quality of the water drained from EGR s was directly influenced by their substrates (in turn containing significant levels of nutrients, organic matter and some metals). The passage of rainwater through green roofs and control roof resulted in the elevation of pH, allowing the conversion of the slightly acidic rainfall into basic water. Similarly, on both types of roofs occurred an increase of the values of most of the physical, chemical and microbiological parameters compared to rainwater. This same trend was observed for heavy metals, although with a much smaller degree

  11. Energy Performance Impacts from Competing Low-slope Roofing Choices and Photovoltaic Technologies

    NASA Astrophysics Data System (ADS)

    Nagengast, Amy L.

    -forward methodology to roughly estimate heat flux impacts of different roof types in other climates using ambient temperature and solar irradiance. While managing heat flow is important for building energy performance, roof choices need to include a systems level analysis encompassing a year for the specific region to best quantify the overall energy impacts.

  12. Monitoring the Energy-Use Effects of Cool Roofs on California Commercial Buildings

    SciTech Connect

    Akbari, Hashem; Levinson, Ronnen; Konopaki, Steve; Rainer, Leo

    2004-07-01

    Solar-reflective roofs stay cooler in the sun than solar-absorptive roofs. Such ''cool'' roofs achieve lower surface temperatures that reduce heat conduction into the building and the building's cooling load. The California Energy Commission has funded research in which Lawrence Berkeley National Laboratory (LBNL) has measured the electricity use and peak demand in commercial buildings to document savings from implementing the Commission's Cool Roofs program. The study seeks to determine the savings achieved by cool roofs by monitoring the energy use of a carefully selected assortment of buildings participating in the Cool Roofs program. Measurements were needed because the peak savings resulting from the application of cool roofs on different types of buildings in the diverse California climate zones have not been well characterized to date. Only a few occupancy categories (e.g., office and retail buildings) have been monitored before this, and those were done under a limited number of climatic conditions. To help rectify this situation, LBNL was tasked to select the buildings to be monitored, measure roof performance before and after replacing a hot roof by a cool roof, and document both energy and peak demand savings resulting from installation of cool roofs. We monitored the effects of cool roofs on energy use and environmental parameters in six California buildings at three different sites: a retail store in Sacramento; an elementary school in San Marcos (near San Diego); and a 4-building cold storage facility in Reedley (near Fresno). The latter included a cold storage building, a conditioning and fruit-palletizing area, a conditioned packing area, and two unconditioned packing areas (counted as one building).

  13. Integrated Photoelectrochemical Solar Energy Conversion and Organic Redox Flow Battery Devices.

    PubMed

    Li, Wenjie; Fu, Hui-Chun; Li, Linsen; Cabán-Acevedo, Miguel; He, Jr-Hau; Jin, Song

    2016-10-10

    Building on regenerative photoelectrochemical solar cells and emerging electrochemical redox flow batteries (RFBs), more efficient, scalable, compact, and cost-effective hybrid energy conversion and storage devices could be realized. An integrated photoelectrochemical solar energy conversion and electrochemical storage device is developed by integrating regenerative silicon solar cells and 9,10-anthraquinone-2,7-disulfonic acid (AQDS)/1,2-benzoquinone-3,5-disulfonic acid (BQDS) RFBs. The device can be directly charged by solar light without external bias, and discharged like normal RFBs with an energy storage density of 1.15 Wh L(-1) and a solar-to-output electricity efficiency (SOEE) of 1.7 % over many cycles. The concept exploits a previously undeveloped design connecting two major energy technologies and promises a general approach for storing solar energy electrochemically with high theoretical storage capacity and efficiency.

  14. 12. CENTRAL ROOF TRUSS AND ROOF SUPPORT BEAMS OF SARATOGA ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. CENTRAL ROOF TRUSS AND ROOF SUPPORT BEAMS OF SARATOGA GAS LIGHT COMPANY GASHOLDER NO. 2 HOUSE, LOOKING WEST. THE WIRES AND BEAM AT RIGHT OF PHOTOGRAPH HAVE BEEN ADDED TO STABILIZE TRUSS SYSTEM. - Saratoga Gas Light Company, Gasholder No. 2, Niagara Mohawk Power Corporation Substation Facility, intersection of Excelsior & East Avenues, Saratoga Springs, NY

  15. 13. ONE OF TWO LATERAL ROOF TRUSSES AND ROOF SUPPORT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. ONE OF TWO LATERAL ROOF TRUSSES AND ROOF SUPPORT BEAMS OF SARATOGA GAS LIGHT COMPANY GASHOLDER NO. 2 HOUSE LOOKING WEST. THE WIRES AND BEAM AT RIGHT CENTER OF PHOTOGRAPH HAVE BEEN ADDED TO STABILIZE TRUSS SYSTEM - Saratoga Gas Light Company, Gasholder No. 2, Niagara Mohawk Power Corporation Substation Facility, intersection of Excelsior & East Avenues, Saratoga Springs, NY

  16. EXTERIOR, ROOF, A view looking southeast from the roof toward ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    EXTERIOR, ROOF, A view looking southeast from the roof toward a low wall and the west facade of a penthouse with two stacks located in the southern courtyard - Department of Energy, Mound Facility, B Building, One Mound Road, Miamisburg, Montgomery County, OH

  17. Entering the Roofing and Waterproofing Industry. Roofing Workbook and Tests.

    ERIC Educational Resources Information Center

    California State Dept. of Education, Sacramento. Bureau of Publications.

    This book is one of a series of 10 units of instruction for roofing apprenticeship classes in California. It covers the following 14 topics and provides tests for them: the nature of the roofing and waterproofing industry; the apprenticeship program; apprenticeship and the public schools; collective bargaining, wages, and benefits; safety in the…

  18. The impact of roofing material on building energy performance

    NASA Astrophysics Data System (ADS)

    Badiee, Ali

    The last decade has seen an increase in the efficient use of energy sources such as water, electricity, and natural gas as well as a variety of roofing materials, in the heating and cooling of both residential and commercial infrastructure. Oil costs, coal and natural gas prices remain high and unstable. All of these instabilities and increased costs have resulted in higher heating and cooling costs, and engineers are making an effort to keep them under control by using energy efficient building materials. The building envelope (that which separates the indoor and outdoor environments of a building) plays a significant role in the rate of building energy consumption. An appropriate architectural design of a building envelope can considerably lower the energy consumption during hot summers and cold winters, resulting in reduced HVAC loads. Several building components (walls, roofs, fenestration, foundations, thermal insulation, external shading devices, thermal mass, etc.) make up this essential part of a building. However, thermal insulation of a building's rooftop is the most essential part of a building envelope in that it reduces the incoming "heat flux" (defined as the amount of heat transferred per unit area per unit time from or to a surface) (Sadineni et al., 2011). Moreover, more than 60% of heat transfer occurs through the roof regardless of weather, since a roof is often the building surface that receives the largest amount of solar radiation per square annually (Suman, and Srivastava, 2009). Hence, an argument can be made that the emphasis on building energy efficiency has influenced roofing manufacturing more than any other building envelope component. This research project will address roofing energy performance as the source of nearly 60% of the building heat transfer (Suman, and Srivastava, 2009). We will also rank different roofing materials in terms of their energy performance. Other parts of the building envelope such as walls, foundation

  19. Design Considerations for an Integrated Solar Sail Diagnostics System

    NASA Technical Reports Server (NTRS)

    Jenkins, Christopher H. M.; Gough, Aaron R.; Pappa, Richard S.; Carroll, Joe; Blandino, Joseph R.; Miles, Jonathan J.; Rakoczy, John

    2004-01-01

    Efforts are continuing under NASA support to improve the readiness level of solar sail technology. Solar sails have one of the best chances to be the next gossamer spacecraft flown in space. In the gossamer spacecraft community thus far, solar sails have always been considered a "low precision" application compared with, say, radar or optical devices. However, as this paper shows, even low precision gossamer applications put extraordinary demands on structural measurement systems if they are to be traceable to use in space.

  20. System integration of marketable subsystems. [for residential solar heating and cooling

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Progress is reported in the following areas: systems integration of marketable subsystems; development, design, and building of site data acquisition subsystems; development and operation of the central data processing system; operation of the MSFC Solar Test Facility; and systems analysis.

  1. How Cool Is Your Roof?

    ERIC Educational Resources Information Center

    Fickes, Michael

    2001-01-01

    Explains a concept called cool roof that is used to reduce electricity costs for air conditioning, and also reduce the price of air conditioning units. Discusses the light reflecting capabilities of metal roofing as well as coatings that can stop leaks. (GR)

  2. EMA-qPCR to monitor the efficiency of a closed-coupled solar pasteurization system in reducing Legionella contamination of roof-harvested rainwater.

    PubMed

    Reyneke, B; Dobrowsky, P H; Ndlovu, T; Khan, S; Khan, W

    2016-05-15

    Solar pasteurization is effective in reducing the level of indicator organisms in stored rainwater to within drinking water standards. However, Legionella spp. were detected at temperatures exceeding the recommended pasteurization temperatures using polymerase chain reaction assays. The aim of the current study was thus to apply EMA quantitative polymerase chain reaction (EMA-qPCR) to determine whether the Legionella spp. detected were intact cells and therefore possibly viable at pasteurization temperatures >70°C. The BacTiter-Glo™ Microbial Cell Viability Assay was also used to detect the presence of ATP in the tested samples, as ATP indicates the presence of metabolically active cells. Chemical analysis also indicated that all anions and cations were within the respective drinking water guidelines, with the exception of iron (mean: 186.76 μg/L) and aluminium (mean: 188.13 μg/L), which were detected in the pasteurized tank water samples at levels exceeding recommended guidelines. The BacTiter-Glo™ Microbial Cell Viability Assay indicated the presence of viable cells for all pasteurized temperatures tested, with the percentage of ATP (in the form of relative light units) decreasing with increasing temperature [70-79°C (96.7%); 80- 89°C (99.2%); 90-95°C (99.7%)]. EMA-qPCR then indicated that while solar pasteurization significantly reduced (p<0.05) the genomic copy numbers of intact Legionella cells in the pasteurized tank water (~99%), no significant difference (p>0.05) in the mean copy numbers was detected with an increase in the pasteurization temperature, with 6 × 10(3) genomic copies/mL DNA sample obtained at 95°C. As intact Legionella cells were detected in the pasteurized tank water samples, quantitative microbial risk assessment studies need to be conducted to determine the potential health risk associated with using the water for domestic purposes.

  3. Measuring mine roof bolt strains

    DOEpatents

    Steblay, Bernard J.

    1986-01-01

    A mine roof bolt and a method of measuring the strain in mine roof bolts of this type are disclosed. According to the method, a flat portion on the head of the mine roof bolt is first machined. Next, a hole is drilled radially through the bolt at a predetermined distance from the bolt head. After installation of the mine roof bolt and loading, the strain of the mine roof bolt is measured by generating an ultrasonic pulse at the flat portion. The time of travel of the ultrasonic pulse reflected from the hole is measured. This time of travel is a function of the distance from the flat portion to the hole and increases as the bolt is loaded. Consequently, the time measurement is correlated to the strain in the bolt. Compensation for various factors affecting the travel time are also provided.

  4. Radiation control coatings installed on rough-surfaced built-up roofs -- Initial results

    SciTech Connect

    Petrie, T.W.; Childs, P.W.; Christian, J.E.

    1998-01-01

    The authors have tracked the solar reflectance and thermal performance of small samples of various radiation control coatings on smooth surfaces for several years on a roof test facility in East Tennessee. The focus is on white coatings because of their potential to weather, causing the solar reflectance to decrease as the coatings age. Support of the federal New Technology Demonstration Program allowed them to extend the study to more samples on smooth surfaces and entire rough-surfaced roofs at a federal facility in the Panhandle of Florida. Two rough-surfaced, moderately well-insulated, low solar reflectance built-up roofs (BURs) were spray-coated with a latex-based product with ceramic beads added to improve solar reflectance. In the first three months after installation, the fresh BUR coatings showed a significant decrease in both the outside-surface temperature and the heat flux through the roof insulation. Average sunlit values were generated to exclude nighttime data, data on cloudy days, and data when the uncoated patch on one roof was more strongly shaded in mid-afternoon on sunny days. The average power demand during occupied periods for the first month with the coating for the building with the thermally massive roof deck was 13% less than during the previous month without the coating. For the other buildings with a lightweight roof deck but high internal loads, there were no clear average power savings due to the coating. The authors are continuing to monitor electricity use in these all-electric buildings to calibrate a model for the peak power and annual energy use of the buildings. Modeling results to be given at the end of the two year project will address the effect of roof R-value, geographic location, and solar reflectance, including the effect of weathering, on the performance of coated roofs. The calibrated models should allow one to segregate site-specific effects such as shading and large thermal mass.

  5. Integrated Antenna/Solar Array Cell (IA/SAC) System for Flexible Access Communications

    NASA Technical Reports Server (NTRS)

    Lee, Ricard Q.; Clark, Eric B.; Pal, Anna Maria T.; Wilt, David M.; Mueller, Carl H.

    2004-01-01

    Present satellite communications systems normally use separate solar cells and antennas. Since solar cells generally account for the largest surface area of the spacecraft, co-locating the antenna and solar cells on the same substrate opens the possibility for a number of data-rate-enhancing communications link architecture that would have minimal impact on spacecraft weight and size. The idea of integrating printed planar antenna and solar array cells on the same surface has been reported in the literature. The early work merely attempted to demonstrate the feasibility by placing commercial solar cells besides a patch antenna. Recently, Integrating multiple antenna elements and solar cell arrays on the same surface was reported for both space and terrestrial applications. The application of photovoltaic solar cell in a planar antenna structure where the radiating patch antenna is replaced by a Si solar cell has been demonstrated in wireless communication systems (C. Bendel, J. Kirchhof and N. Henze, 3rd Would Photovotaic Congress, Osaka, Japan, May 2003). Based on a hybrid approach, a 6x1 slot array with circularly polarized crossdipole elements co-located on the same surface of the solar cells array has been demonstrated (S. Vaccaro, J. R. Mosig and P. de Maagt, IEEE Trans. Ant. and Propag., Vol. 5 1, No. 8, Aug. 2003). Amorphous silicon solar cells with about 5-10% efficiency were used in these demonstrations. This paper describes recent effort to integrate advanced solar cells with printed planar antennas. Compared to prior art, the proposed WSAC concept is unique in the following ways: 1) Active antenna element will be used to achieve dynamic beam steering; 2) High efficiency (30%) GaAs multi-junction solar cells will be used instead of Si, which has an efficiency of about 15%; 3) Antenna and solar cells are integrated on a common GaAs substrate; and 4) Higher data rate capability. The IA/SAC is designed to operate at X-band (8-12 GH) and higher frequencies

  6. Using Remote Sensing to Quantify Roof Albedo in Seven California Cities

    NASA Astrophysics Data System (ADS)

    Ban-Weiss, G. A.; Woods, J.; Millstein, D.; Levinson, R.

    2013-12-01

    Cool roofs reflect sunlight and therefore can reduce cooling energy use in buildings. Further, since roofs cover about 20-25% of cities, wide spread deployment of cool roofs could mitigate the urban heat island effect and partially counter urban temperature increases associated with global climate change. Accurately predicting the potential for increasing urban albedo using reflective roofs and its associated energy use and climate benefits requires detailed knowledge of the current stock of roofs at the city scale. Until now this knowledge has been limited due to a lack of availability of albedo data with sufficient spatial coverage, spatial resolution, and spectral information. In this work we use a novel source of multiband aerial imagery to derive the albedos of individual roofs in seven California cities: Los Angeles, Long Beach, San Diego, Bakersfield, Sacramento, San Francisco, and San Jose. The radiometrically calibrated, remotely sensed imagery has high spatial resolution (1 m) and four narrow (less than 0.1 μm wide) band reflectances: blue, green, red, and near-infrared. To derive the albedo of roofs in each city, we first locate roof pixels within GIS building outlines. Next we use laboratory measurements of the solar spectral reflectances of 190 roofing products to empirically relate solar reflectance (albedo) to reflectances in the four narrow bands; the root-mean-square of the residuals for the albedo prediction is 0.016. Albedos computed from remotely sensed reflectances are calibrated to ground measurements of roof albedo in each city. The error (both precision and accuracy) of albedo values is presented for each city. The area-weighted mean roof albedo (× standard deviation) for each city ranges from 0.17 × 0.08 (Los Angeles) to 0.29 × 0.15 (San Diego). In each city most roofs have low albedo in the range of 0.1 to 0.3. Roofs with albedo greater than 0.4 comprise less than 3% of total roofs and 7% of total roof area in each city. The California

  7. The Western Wind and Solar Integration Study Phase 2 (Executive Summary)

    SciTech Connect

    Lew, Debra; Brinkman, Greg

    2013-09-01

    The electric grid is a highly complex, interconnected machine, and changing one part of the grid can have consequences elsewhere. Adding wind and solar affects the operation of the other power plants and adding high penetrations can induce cycling of fossil-fueled generators. Cycling leads to wear-and-tear costs and changes in emissions. Phase 2 of the Western Wind and Solar Integration Study (WWSIS-2) evaluated these costs and emissions and simulated grid operations for a year to investigate the detailed impact of wind and solar on the fossil-fueled fleet. This built on Phase 1, one of the largest wind and solar integration studies ever conducted, which examined operational impacts of high wind and solar penetrations in the West(GE Energy 2010).

  8. Integrating Multiple Approaches to Solving Solar Wind Turbulence Problems (Invited)

    NASA Astrophysics Data System (ADS)

    Karimabadi, H.; Roytershteyn, V.

    2013-12-01

    The ultimate understanding of the solar wind turbulence must explain the physical process and their connection at all scales ranging from the largest down to electron kinetic scales. This is a daunting task and as a result a more piecemeal approach to the problem has been followed. For example, the role of each wave has been explored in isolation and in simulations with scales limited to those of the underlying waves. In this talk, we present several issues with this approach and offer an alternative with an eye towards more realistic simulations of solar wind turbulence. The main simulation techniques used have been MHD, Hall MHD, hybrid, fully kinetic, and gyrokinetic. We examine the limitations of each approach and their viability for studies of solar wind turbulence. Finally, the effect of initial conditions on the resulting turbulence and their comparison with solar wind are demonstrated through several kinetic simulations.

  9. Integrating perovskite solar cells into a flexible fiber.

    PubMed

    Qiu, Longbin; Deng, Jue; Lu, Xin; Yang, Zhibin; Peng, Huisheng

    2014-09-22

    Perovskite solar cells have triggered a rapid development of new photovoltaic devices because of high energy conversion efficiencies and their all-solid-state structures. To this end, they are particularly useful for various wearable and portable electronic devices. Perovskite solar cells with a flexible fiber structure were now prepared for the first time by continuously winding an aligned multiwalled carbon nanotube sheet electrode onto a fiber electrode; photoactive perovskite materials were incorporated in between them through a solution process. The fiber-shaped perovskite solar cell exhibits an energy conversion efficiency of 3.3%, which remained stable on bending. The perovskite solar cell fibers may be woven into electronic textiles for large-scale application by well-developed textile technologies.

  10. a Research on the Hierarchy and Completeness of Roof Topology for Robust Building Reconstruction from Airborne Point Cloud

    NASA Astrophysics Data System (ADS)

    Xu, B.; Jiang, W. S.; Zhu, Q. S.

    2015-05-01

    In this work, we concentrate on the hierarchy and completeness of roof topology, and the aim is to avoid or correct the errors in roof topology. The hierarchy of topology is expressed by the hierarchical roof topology graph (HRTG) in accord with the definition of CityGML LOD (level of details). We decompose the roof topology graph (RTG) with a progressive approach while maintain the integrality and consistency of the data set simultaneously. Common feathers like collinear ridges or boundaries are calculated integrally to maintain their completeness. The roof items will only detected locally to decrease the error caused by data spare or mutual interference. Finally, a topology completeness test is adopted to detect and correct errors in roof topology, which results in a complete and hierarchical building model. Experiments shows that our methods have obvious improvements to the RTG based reconstruction method, especially for sparse data or roof topology with ambiguous.

  11. Inclusion of cool roofs in nonresidential Title 24 prescriptive requirements

    SciTech Connect

    Levinson, Ronnen; Akbari, Hashem; Konopacki, Steve; Bretz, Sarah

    2002-12-15

    Roofs that have high solar reflectance (high ability to reflect sunlight) and high thermal emittance (high ability to radiate heat) tend to stay cool in the sun. The same is true of low-emittance roofs with exceptionally high solar reflectance. Substituting a cool roof for a noncool roof tends to decrease cooling electricity use, cooling power demand, and cooling-equipment capacity requirements, while slightly increasing heating energy consumption. Cool roofs can also lower the ambient air temperature in summer, slowing ozone formation and increasing human comfort. DOE-2.1E building energy simulations indicate that use of a cool roofing material on a prototypical California nonresidential building with a low-sloped roof yields average annual cooling energy savings of approximately 300 kWh/1000 ft2 [3.2 kWh/m2], average annual natural gas deficits of 4.9 therm/1000 ft2 [5.6 MJ/m2], average source energy savings of 2.6 MBTU/1000 ft2 [30 MJ/m2], and average peak power demand savings of 0. 19 kW/1000 ft2 [2.1 W/m2]. The 15-year net present value (NPV) of energy savings averages $450/1000 ft2 [$4.90/m2] with time dependent valuation (TDV), and $370/1000 ft2 [$4.00/m2] without TDV. When cost savings from downsizing cooling equipment are included, the average total savings (15-year NPV + equipment savings) rises to $550/1000 ft2 [$5.90/m2] with TDV, and to $470/1000 ft2 [$5.00/m2] without TDV. Total savings range from 0.18 to 0.77 $/ft2 [1.90 to 8.30 $/m2] with TDV, and from 0.16 to 0.66 $/ft2 [1.70 to 7.10 $/m2] without TDV, across California's 16 climate zones. The typical cost premium for a cool roof is 0.00 to 0.20 $/ft2 [0.00 to 2.20 $/m2]. Cool roofs with premiums up to $0.20/ft2 [$2.20/m2] are expected to be cost effective in climate zones 2 through 16; those with premiums not exceeding $0.18/ft2 [$1.90/m2] are expected to be also cost effective in climate zone 1. Hence, this study recommends that the year-2005 California building energy efficiency code (Title 24

  12. Low Impact Development (LID) Technologies for Sustainable Water Management: Studies from a Green Roof

    NASA Astrophysics Data System (ADS)

    Digiovanni, K. A.; Montalto, F. A.; Gaffin, S.

    2009-12-01

    Anthropogenic induced landscape alterations, such as urbanization, can cause drastic alterations to predevelopment hydrologic conditions and the systems linked to these cycles. Low impact development (LID) technologies, such as green roofs, can help to minimize these impacts given their ability to retain and detain stormwater and subsequently evapotranspire or infiltrate excess water. An innovative technique for simultaneously monitoring stormwater retention, allowing for runoff quantification, as well as evapotranspiration from a small scale green roof box was employed for a green roof at the Ethical Culture Fieldston School located in the Bronx, NY. A 1.2 meter long by 0.6 meter wide green roof box was created as a replica section of the 525 m2 green roof on the building. The layers of the green roof box consisted of a roof membrane, drainage layer, four inch media layer, and vegetative Sedum layer. Monitoring equipment on the green roof included a weather station and real time environmental sensors which quantify wind speed, precipitation, soil moisture, temperature, humidity, albedo, and incident solar radiation. In addition to this equipment, a platform scale was positioned beneath the green roof box. Data was collected at 5 minute time intervals over a six month monitoring period between Spring and Fall 2009. A mass balance technique was utilized to quantify runoff from the green roof box. Evapotranspiration during antecedent conditions was also quantified utilizing a mass balance methodology and compared to energy balance estimates based on climatic conditions measured on the green roof. Results of runoff generation under a variety of rainfall conditions, as well as a comparison between mass balance and energy balance measures of evapotranspiration will be presented. The incorporation of this and further data collection into model development and calibration activities will be informative in predicting the impact that the implementation of green roof

  13. Integrating Wind and Solar Energy in the U.S. Bulk Power System: Lessons from Regional Integration Studies

    SciTech Connect

    Bird, L.; Lew, D.

    2012-09-01

    Two recent studies sponsored by the U.S. Department of Energy (DOE) and the National Renewable Energy Laboratory (NREL) have examined the impacts of integrating high penetrations of wind and solar energy on the Eastern and Western electric grids. The Eastern Wind Integration and Transmission Study (EWITS), initiated in 2007, examined the impact on power system operations of reaching 20% to 30% wind energy penetration in the Eastern Interconnection. The Western Wind and Solar Integration Study (WWSIS) examined the operational implications of adding up to 35% wind and solar energy penetration to the Western Interconnect. Both studies examined the costs of integrating variable renewable energy generation into the grid and transmission and operational changes that might be necessary to address higher penetrations of wind or solar generation. This paper identifies key insights from these regional studies for integrating high penetrations of renewables in the U.S. electric grid. The studies share a number of key findings, although in some instances the results vary due to differences in grid operations and markets, the geographic location of the renewables, and the need for transmission.

  14. The Effects of Infrared-Blocking Pigments and Deck Venting on Stone-Coated Metal Residential Roofs

    SciTech Connect

    Miller, William A

    2006-01-01

    Field data show that stone-coated metal shakes and S-mission tile, which exploit the use of infraredblocking color pigments (IrBCPs), along with underside venting reduce the heat flow penetrating the conditioned space of a residence by 70% compared with the amount of heat flow penetrating roofs with conventional asphalt shingles. Stone-coated metal roof products are typically placed on battens and counter-battens and nailed through the battens to the roof deck. The design provides venting on the underside of the metal roof that reduces the heat flow penetrating a home. The Metal Construction Association (MCA) and its affiliate members installed stone-coated metal roofs with shake and S-mission tile profiles and a painted metal shake roof on a fully instrumented attic test assembly at Oak Ridge National Laboratory (ORNL). Measurements of roof, deck, attic, and ceiling temperatures; heat flows; solar reflectance; thermal emittance; and ambient weather were recorded for each of the test roofs and also for an adjacent attic cavity covered with a conventional pigmented and direct nailed asphalt shingle roof. All attic assemblies had ridge and soffit venting; the ridge was open to the underside of the stone-coated metal roofs. A control assembly with a conventional asphalt shingle roof was used for comparing deck and ceiling heat transfer rates.

  15. Solar Energy Demonstrations

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Solar energy furnishes all of the heating and hot water needs, plus 80 percent of the air conditioning, for the two-story Reedy Creek building. A unique feature of this installation is that the 16 semi-cylindrical solar collectors (center photo on opposite page with closeup of a single collector below it) are not mounted atop the roof as is customary, they actually are the roof. This arrangement eliminates the usual trusses, corrugated decking and insulating concrete in roof construction; that, in turn, reduces overall building costs and makes the solar installation more attractive economically. The Reedy Creek collectors were designed and manufactured by AAI Corporation of Baltimore, Maryland.

  16. Green Roofs for Stormwater Runoff Control

    EPA Science Inventory

    This project evaluated green roofs as a stormwater management tool. Specifically, runoff quantity and quality from green and flat asphalt roofs were compared. Evapotranspiration from planted green roofs and evaporation from unplanted media roofs were also compared. The influence...

  17. 30 CFR 75.204 - Roof bolting.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... accessories addressed in ASTM F432-95, “Standard Specification for Roof and Rock Bolts and Accessories,” the.... (4) In each roof bolting cycle, the actual torque or tension of the first tensioned roof bolt... during each roof bolting cycle shall be tested during or immediately after the first row of bolts...

  18. 30 CFR 75.204 - Roof bolting.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... accessories addressed in ASTM F432-95, “Standard Specification for Roof and Rock Bolts and Accessories,” the.... (4) In each roof bolting cycle, the actual torque or tension of the first tensioned roof bolt... during each roof bolting cycle shall be tested during or immediately after the first row of bolts...

  19. 30 CFR 75.204 - Roof bolting.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... accessories addressed in ASTM F432-95, “Standard Specification for Roof and Rock Bolts and Accessories,” the.... (4) In each roof bolting cycle, the actual torque or tension of the first tensioned roof bolt... during each roof bolting cycle shall be tested during or immediately after the first row of bolts...

  20. 30 CFR 75.204 - Roof bolting.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... accessories addressed in ASTM F432-95, “Standard Specification for Roof and Rock Bolts and Accessories,” the.... (4) In each roof bolting cycle, the actual torque or tension of the first tensioned roof bolt... during each roof bolting cycle shall be tested during or immediately after the first row of bolts...

  1. 30 CFR 75.204 - Roof bolting.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... accessories addressed in ASTM F432-95, “Standard Specification for Roof and Rock Bolts and Accessories,” the.... (4) In each roof bolting cycle, the actual torque or tension of the first tensioned roof bolt... during each roof bolting cycle shall be tested during or immediately after the first row of bolts...

  2. Sustainable roofs with real energy savings

    SciTech Connect

    Christian, J.E.; Petrie, T.W.

    1996-12-31

    This paper addresses the general concept of sustainability and relates it to the building owner`s selection of a low-slope roof. It offers a list of performance features of sustainable roofs. Experiences and data relevant to these features for four unique roofs are then presented which include: self-drying systems, low total equivalent warming foam insulation, roof coatings and green roofs. The paper concludes with a list of sustainable roofing features worth considering for a low-slope roof investment. Building owners and community developers are showing more interest in investing in sustainability. The potential exists to design, construct, and maintain roofs that last twice as long and reduce the building space heating and cooling energy loads resulting from the roof by 50% (based on the current predominant design of a 10-year life and a single layer of 1 to 2 in. (2.5 to 5.1 cm) of insulation). The opportunity to provide better low-slope roofs and sell more roof maintenance service is escalating. The general trend of outsourcing services could lead to roofing companies` owning the roofs they install while the traditional building owner owns the rest of the building. Such a situation would have a very desirable potential to internalize the costs of poor roof maintenance practices and high roof waste disposal costs, and to offer a profit for installing roofs that are more sustainable. 14 refs., 12 figs.

  3. Highly stable tandem solar cell monolithically integrating dye-sensitized and CIGS solar cells

    NASA Astrophysics Data System (ADS)

    Chae, Sang Youn; Park, Se Jin; Joo, Oh-Shim; Jun, Yongseok; Min, Byoung Koun; Hwang, Yun Jeong

    2016-08-01

    A highly stable monolithic tandem solar cell was developed by combining the heterogeneous photovoltaic technologies of dye-sensitized solar cell (DSSC) and solution-processed CuInxGa1-xSeyS1-y (CIGS) thin film solar cells. The durability of the tandem cell was dramatically enhanced by replacing the redox couple from to [Co(bpy)3]2+ /[Co(bpy)3]3+), accompanied by a well-matched counter electrode (PEDOT:PSS) and sensitizer (Y123). A 1000 h durability test of the DSSC/CIGS tandem solar cell in ambient conditions resulted in only a 5% decrease in solar cell efficiency. Based on electrochemical impedance spectroscopy and photoelectrochemical cell measurement, the enhanced stability of the tandem cell is attributed to minimal corrosion by the cobalt-based polypyridine complex redox couple.

  4. Highly stable tandem solar cell monolithically integrating dye-sensitized and CIGS solar cells

    PubMed Central

    Chae, Sang Youn; Park, Se Jin; Joo, Oh-Shim; Jun, Yongseok; Min, Byoung Koun; Hwang, Yun Jeong

    2016-01-01

    A highly stable monolithic tandem solar cell was developed by combining the heterogeneous photovoltaic technologies of dye-sensitized solar cell (DSSC) and solution-processed CuInxGa1-xSeyS1-y (CIGS) thin film solar cells. The durability of the tandem cell was dramatically enhanced by replacing the redox couple from to [Co(bpy)3]2+ /[Co(bpy)3]3+), accompanied by a well-matched counter electrode (PEDOT:PSS) and sensitizer (Y123). A 1000 h durability test of the DSSC/CIGS tandem solar cell in ambient conditions resulted in only a 5% decrease in solar cell efficiency. Based on electrochemical impedance spectroscopy and photoelectrochemical cell measurement, the enhanced stability of the tandem cell is attributed to minimal corrosion by the cobalt-based polypyridine complex redox couple. PMID:27489138

  5. Integrating solar energy and climate research into science education

    NASA Astrophysics Data System (ADS)

    Betts, Alan K.; Hamilton, James; Ligon, Sam; Mahar, Ann Marie

    2016-01-01

    This paper analyzes multi-year records of solar flux and climate data from two solar power sites in Vermont. We show the inter-annual differences of temperature, wind, panel solar flux, electrical power production, and cloud cover. Power production has a linear relation to a dimensionless measure of the transmission of sunlight through the cloud field. The difference between panel and air temperatures reaches 24°C with high solar flux and low wind speed. High panel temperatures that occur in summer with low wind speeds and clear skies can reduce power production by as much as 13%. The intercomparison of two sites 63 km apart shows that while temperature is highly correlated on daily (R2=0.98) and hourly (R2=0.94) timescales, the correlation of panel solar flux drops markedly from daily (R2=0.86) to hourly (R2=0.63) timescales. Minimum temperatures change little with cloud cover, but the diurnal temperature range shows a nearly linear increase with falling cloud cover to 16°C under nearly clear skies, similar to results from the Canadian Prairies. The availability of these new solar and climate datasets allows local student groups, a Rutland High School team here, to explore the coupled relationships between climate, clouds, and renewable power production. As our society makes major changes in our energy infrastructure in response to climate change, it is important that we accelerate the technical education of high school students using real-world data.

  6. Development of design guidelines and roof-control standards for coal-mine roofs

    SciTech Connect

    Unal, E.

    1983-01-01

    Three of the most crucial problems still facing the mining-engineering profession today are that of finding better anchorage testing procedures, effective roof-stability monitoring systems and rationally based design guidelines. First the feasibility of new anchorage-testing procedures and roof-stability monitoring techniques has been investigated through a series of laboratory experiments, utilizing a special instrumented facility and an acoustic emission (AE) monitoring system. Furthermore, two engineering approaches have been used in analyzing the time-dependent behavior of coal-mine roofs and in developing the design guidelines for support selection. The anchorage-testing results provide information on the behavior of the bolt shell and the bolt rod. The bolt capacity is determined from the resulting support characteristic curves which appear to represent a more realistic picture of the behavior of the rock-bolt unit than data presently available from typical field pull-tests. The stability monitoring results indicate a significant correlation between the applied torque, shell movement, bolt-tension and AE. The Integrated Approach is found useful in analyzing the time-dependent behavior of the unsupported and supported roofs, conceptually. The design procedures presented in the Empirical Approach are intended as a guide for selecting rock-bolt types, rock-bolt specifications, bolting patterns, and supplementary support needs for coal-mine roadways as well as for four-way intersections. Furthermore, for a quick reference, in selecting the roof-support options, a series of support charts is presented. Finally, for the step-by-step illustration of the design procedures, a practical example is included.

  7. [A review of green roof performance towards management of roof runoff].

    PubMed

    Chen, Xiao-ping; Huang, Pei; Zhou, Zhi-xiang; Gao, Chi

    2015-08-01

    Green roof has a significant influence on reducing runoff volume, delaying runoff-yielding time, reducing the peak flow and improving runoff quality. This paper addressed the related research around the world and concluded from several aspects, i.e., the definition of green roof of different types, the mechanism how green roof manages runoff quantity and quality, the ability how green roof controls roof runoff, and the influence factors of green roof toward runoff quantity and quality. Afterwards, there was a need for more future work on research of green roof toward roof runoff, i.e., vegetation selection of green roof, efficient construction model selection of green roof, the regulating characteristics of green roof on roof runoff, the value assessment of green roof on roof runoff, analysis of source-sink function of green roof on the water pollutants of roof runoff and the research on the mitigation measures of roof runoff pollution. This paper provided a guideline to develop green roofs aiming to regulating roof runoff.

  8. Western Wind and Solar Integration Study: Executive Summary

    SciTech Connect

    none,

    2010-05-01

    This Study investigates the operational impact of up to 35% energy penetration of wind, photovoltaics (PVs), and concentrating solar power (CSP) on the power system operated by the WestConnect group of utilities in Arizona, Colorado, Nevada, New Mexico, and Wyoming.

  9. An Integrative STEM Aproach to Teaching Solar Energy Collection

    ERIC Educational Resources Information Center

    Hughes, Bill; Mona, Lynn; Stout, Heath; Bierly, Mike; McAninch, Steve

    2015-01-01

    "Against the backdrop of the daunting carbon-neutral energy needs of our global future, the largest gap between our present use of solar energy and its enormous undeveloped potential defines a compelling imperative for science and technology in the 21st century" (Lewis & Norcera 2006). Concurrently, the United States educational…

  10. Multifunctional integration of thin-film silicon solar cells on carbon-fiber-reinforced epoxy composites

    SciTech Connect

    Jason Maung, K.; Hahn, H. Thomas; Ju, Y.S.

    2010-03-15

    Multifunction integration of solar cells in load-bearing structures can enhance overall system performance by reducing parasitic components and material redundancy. The article describes a manufacturing strategy, named the co-curing scheme, to integrate thin-film silicon solar cells on carbon-fiber-reinforced epoxy composites and eliminate parasitic packaging layers. In this scheme, an assembly of a solar cell and a prepreg is cured to form a multifunctional composite in one processing step. The photovoltaic performance of the manufactured structures is then characterized under controlled cyclic mechanical loading. The study finds that the solar cell performance does not degrade under 0.3%-strain cyclic tension loading up to 100 cycles. Significant degradation, however, is observed when the magnitude of cyclic loading is increased to 1% strain. The present study provides an initial set of data to guide and motivate further studies of multifunctional energy harvesting structures. (author)

  11. Integrated residential photovoltaic array development

    NASA Technical Reports Server (NTRS)

    Shepard, N. F., Jr.

    1981-01-01

    The design details of an optimized integrated residential photovoltaic module/array are presented. This selected design features a waterproofing and mounting scheme which was devised to simplify the installation procedures by the avoidance of complex gasketed or caulked joints, while still maintaining a high confidence that the watertight integrity of the integral roofing surface will be achieved for the design lifetime of the system. The production and installation costs for the selected module/array design are reported for a range of annual production rates as a function of the cost of solar cells.

  12. The Western Wind and Solar Integration Study Phase 2 (Fact Sheet)

    SciTech Connect

    2013-09-01

    This fact sheet is a basic overview of the Western Wind and Solar Integration Study, Phase 2. The electric grid is a highly complex, interconnected machine, and changing one part of the grid can have consequences elsewhere. Adding wind and solar affects the operation of the other power plants and adding high penetrations can induce cycling of fossil-fueled generators. Cycling leads to wear-and-tear costs and changes in emissions.

  13. Lightweight Integrated Solar Array and Transceiver. [Improving Electrical Power and Communication Capabilities in Small Spacecraft

    NASA Technical Reports Server (NTRS)

    Carr, John; Martinez, Andres; Petro, Andrew

    2015-01-01

    The Lightweight Integrated Solar Array and Transceiver (LISA-T) project will leverage several existing and on-going efforts at Marshall Space Flight Center (MSFC) for the design, development, fabrication, and test of a launch stowed, orbit deployed structure on which thin-film photovoltaics for power generation and antenna elements for communication, are embedded. Photovoltaics is a method for converting solar energy into electricity using semiconductor materials. The system will provide higher power generation with a lower mass, smaller stowage volume, and lower cost than the state of the art solar arrays, while simultaneously enabling deployable antenna concepts.

  14. Solar Reserve Methodology for Renewable Energy Integration Studies Based on Sub-Hourly Variability Analysis: Preprint

    SciTech Connect

    Ibanez, E.; Brinkman, G.; Hummon, M.; Lew, D.

    2012-08-01

    Increasing penetrations of wind a solar energy are raising concerns among electric system operators because of the variability and uncertainty associated with power sources. Previous work focused on the quantification of reserves for systems with wind power. This paper presents a new methodology that allows the determination of necessary reserves for high penetrations of photovoltaic (PV) power and compares it to the wind-based methodology. The solar reserve methodology is applied to Phase 2 of the Western Wind and Solar Integration Study. A summary of the results is included.

  15. Integrated Modeling of Building Energy Requirements IncorporatingSolar Assisted Cooling

    SciTech Connect

    Firestone, Ryan; Marnay, Chris; Wang, Juan

    2005-08-10

    This paper expands on prior Berkeley Lab work on integrated simulation of building energy systems by the addition of active solar thermal collecting devices, technology options not previously considered (Siddiqui et al 2005). Collectors can be used as an alternative or additional source of hot water to heat recovery from reciprocating engines or microturbines. An example study is presented that evaluates the operation of solar assisted cooling at a large mail sorting facility in southern California with negligible heat loads and year-round cooling loads. Under current conditions solar thermal energy collection proves an unattractive option, but is a viable carbon emission control strategy.

  16. Science cases in the integrated modeling of Chinese Giant Solar Telescope

    NASA Astrophysics Data System (ADS)

    Liu, Zhong; Ji, Haisheng; Jin, Zhenyu; Lin, Jun; Deng, Yuanyong

    2016-07-01

    Science goals of telescopes are the fundament data of integrated modeling of astronomical telescopes. The differences between science goals are sources of telescope's diversities. Solar telescopes are a very special type in astronomical telescopes. Chinese Giant Solar Telescope1 (CGST) is currently designed to be an 8-meter Ring Interferometric Telescope (RIT). Even compare with the other solar telescopes, CGST is also an unusual telescope due to its ring aperture and distinctive science goals. As the initial data of integrated modeling of CGST, the main science cases determine the basic structure of the telescope as well as its working mode. This paper will discuss the importance of the primary science case in integrated modeling of CGST.

  17. Roof selection for rainwater harvesting: quantity and quality assessments in Spain.

    PubMed

    Farreny, Ramon; Morales-Pinzón, Tito; Guisasola, Albert; Tayà, Carlota; Rieradevall, Joan; Gabarrell, Xavier

    2011-05-01

    Roofs are the first candidates for rainwater harvesting in urban areas. This research integrates quantitative and qualitative data of rooftop stormwater runoff in an urban Mediterranean-weather environment. The objective of this paper is to provide criteria for the roof selection in order to maximise the availability and quality of rainwater. Four roofs have been selected and monitored over a period of 2 years (2008-2010): three sloping roofs - clay tiles, metal sheet and polycarbonate plastic - and one flat gravel roof. The authors offer a model for the estimation of the runoff volume and the initial abstraction of each roof, and assess the physicochemical contamination of roof runoff. Great differences in the runoff coefficient (RC) are observed, depending mostly on the slope and the roughness of the roof. Thus, sloping smooth roofs (RC>0.90) may harvest up to about 50% more rainwater than flat rough roofs (RC=0.62). Physicochemical runoff quality appears to be generally better than the average quality found in the literature review (conductivity: 85.0 ± 10.0 μS/cm, total suspended solids: 5.98 ± 0.95 mg/L, total organic carbon: 11.6 ± 1.7 mg/L, pH: 7.59 ± 0.07 upH). However, statistically significant differences are found between sloping and flat rough roofs for some parameters (conductivity, total organic carbon, total carbonates system and ammonium), with the former presenting better quality in all parameters (except for ammonium). The results have an important significance for local governments and urban planners in the (re)design of buildings and cities from the perspective of sustainable rainwater management. The inclusion of criteria related to the roof's slope and roughness in city planning may be useful to promote rainwater as an alternative water supply while preventing flooding and water scarcity.

  18. Can Integrated Micro-Optical Concentrator Technology Revolutionize Flat-Plate Photovoltaic Solar Energy Harvesting?

    NASA Astrophysics Data System (ADS)

    Haney, Michael W.

    2015-12-01

    The economies-of-scale and enhanced performance of integrated micro-technologies have repeatedly delivered disruptive market impact. Examples range from microelectronics to displays to lighting. However, integrated micro-scale technologies have yet to be applied in a transformational way to solar photovoltaic panels. The recently announced Micro-scale Optimized Solar-cell Arrays with Integrated Concentration (MOSAIC) program aims to create a new paradigm in solar photovoltaic panel technology based on the incorporation of micro-concentrating photo-voltaic (μ-CPV) cells. As depicted in Figure 1, MOSAIC will integrate arrays of micro-optical concentrating elements and micro-scale PV elements to achieve the same aggregated collection area and high conversion efficiency of a conventional (i.e., macro-scale) CPV approach, but with the low profile and mass, and hopefully cost, of a conventional non-concentrated PV panel. The reduced size and weight, and enhanced wiring complexity, of the MOSAIC approach provide the opportunity to access the high-performance/low-cost region between the conventional CPV and flat-plate (1-sun) PV domains shown in Figure 2. Accessing this portion of the graph in Figure 2 will expand the geographic and market reach of flat-plate PV. This talk reviews the motivation and goals for the MOSAIC program. The diversity of the technical approaches to micro-concentration, embedded solar tracking, and hybrid direct/diffuse solar resource collection found in the MOSAIC portfolio of projects will also be highlighted.

  19. Integral: collector solar greenhouse using solar membrane and external rock storage

    SciTech Connect

    Droll, P.W.

    1980-12-31

    The results of a three-year study to evaluate engineering aspects of converting a commercial greenhouse to more effectively used solar energy as a heating source are summarized. The solar retrofit greenhouse and nine other similar buildings are located in northern California. They are large Quonset style greenhouses glazed on all curved surfaces with a conventional corrugated fiberglass covering. The solar retrofit building was modified in 1978 by installing on the inside surface of the original corrugated fiberglass three air-separated layers of a material called Solar Membrane which reduces convective losses through the overlapping fiberglass panels and effectively prevents long wave infrared transmission out of the greenhouse. A large above-ground rock storage bin was also constructed. Two control buildings were also monitored, one for two years, and the second for only the second year. The measured values of electrical and gas consumption indicate that the modified solar building: (1) used less than 50% of the gas by the two-year control building, and (2) used 40% less gas than the one-year control building. Detailed mechanical design data are included, along with a development of the computer program used to predict actual modified and unmodified greenhouse performance. Good agreement was obtained between actual performance and the theoretical values predicted by the simulation. (LEW)

  20. Revisiting the Climate Impacts of Cool Roofs around the Globe Using an Earth System Model

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Zhang, K.; Ban-Weiss, G. A.

    2015-12-01

    In this study, we use the Community Earth System Model to investigate the effects of employing cool roofs (i.e. increasing roof albedo from 0.15 to 0.9) on urban, regional, and global climates. After increasing the roof albedo, urban heat islands are reduced significantly over the globe during summer, and those at low latitudes during winter; the annual- and global-mean urban minus rural air temperature decreases from 1.6 K to 1.2 K. We mainly focus on changes in energy fluxes and climates in four regions: the United States, China, India, and Europe. For each region, solar radiation reflected by surface increases proportionally to the estimated albedo increase induced by roof albedo change. Without considering clouds, the increase in reflected solar radiation at surface leads to proportional increase in outgoing shortwave radiation at top of the atmosphere, suggesting a radiative cooling effect of cool roofs. On the other hand, the variations of cloud forcing in the model are more significant than the influence of cool roofs on energy balance at top of the atmosphere in some areas. Aerosols are known to partially offset the effects of cool roofs by absorbing solar radiation, and also reflecting radiation back to surface. However, we find that additional aerosol forcing is only 5-10% of the increase in reflected solar radiation at surface. Previous studies disagree in cool roof's influence on global climate. We find that its influence on global mean temperature is negligible; the temperature decreases by 0.0015 K, with a high uncertainty of 0.026 K.

  1. OUT Success Stories: Solar Roofing Shingles

    DOE R&D Accomplishments Database

    Johnson, N.

    2000-08-01

    Thin-film photovoltaic (PV) cells are now doubling as rooftop shingles. PV shingles offer many advantages. The energy generated from a building's PV rooftop shingles can provide power both to the building and the utility's power grid.

  2. EVALUATION OF ROOF BOLTING REQUIREMENTS BASED ON IN-MINE ROOF BOLTER DRILLING

    SciTech Connect

    Syd S. Peng

    2003-04-15

    Roof bolting is the most popular method for underground openings in the mining industry, especially in the bedded deposits such as coal, potash, salt etc. In fact, all U.S. underground coal mine entries are roof-bolted as required by law. However, roof falls still occur frequently in the roof bolted entries. The two possible reasons are: the lack of knowledge of and technology to detect the roof geological conditions in advance of mining, and lack of roof bolting design criteria for modern roof bolting systems. This research is to develop a method for predicting the roof geology and stability condition in real time during roof bolting operation. Based on such information, roof bolting design criteria for modern roof bolting systems will be developed for implementation in real time. More field tests have been performed. A trendline analysis method has been developed. This method would improve the accuracy in detecting the locations of fractures and in determining the rock strength.

  3. EVALUATION OF ROOF BOLTING REQUIREMENTS BASED ON IN-MINE ROOF BOLTER DRILLING

    SciTech Connect

    Syd S. Peng

    2003-01-15

    Roof bolting is the most popular method for underground openings in the mining industry, especially in the bedded deposits such as coal, potash, salt etc. In fact, all U.S. underground coal mine entries are roof-bolted as required by law. However, roof falls still occur frequently in the roof bolted entries. The two possible reasons are: the lack of knowledge of and technology to detect the roof geological conditions in advance of mining, and lack of roof bolting design criteria for modern roof bolting systems. This research is to develop a method for predicting the roof geology and stability condition in real time during roof bolting operation. Based on such information, roof bolting design criteria for modern roof bolting systems will be developed for implementation in real time. Additional field tests have been performed. It is found that the drilling power can be used as a supplementary method for detecting voids/fractures and rock interfaces.

  4. EVALUATION OF ROOF BOLTING REQUIREMENTS BASED ON IN-MINE ROOF BOLTER DRILLING

    SciTech Connect

    Syd S. Peng

    2002-10-15

    Roof bolting is the most popular method for underground openings in the mining industry, especially in the bedded deposits such as coal, potash, salt etc. In fact, all U.S. underground coal mine entries are roof-bolted as required by law. However, roof falls still occur frequently in the roof bolted entries. The two possible reasons are: the lack of knowledge of and technology to detect the roof geological conditions in advance of mining, and lack of roof bolting design criteria for modern roof bolting systems. This research is to develop a method for predicting the roof geology and stability condition in real time during roof bolting operation. Based on such information, roof bolting design criteria for modern roof bolting systems will be developed for implementation in real time. Additional field tests have been performed in this quarter. The development of the data interpretation methodology and other related tasks are still continuing.

  5. Integrating Solar Power onto the Electric Grid - Bridging the Gap between Atmospheric Science, Engineering and Economics

    NASA Astrophysics Data System (ADS)

    Ghonima, M. S.; Yang, H.; Zhong, X.; Ozge, B.; Sahu, D. K.; Kim, C. K.; Babacan, O.; Hanna, R.; Kurtz, B.; Mejia, F. A.; Nguyen, A.; Urquhart, B.; Chow, C. W.; Mathiesen, P.; Bosch, J.; Wang, G.

    2015-12-01

    One of the main obstacles to high penetrations of solar power is the variable nature of solar power generation. To mitigate variability, grid operators have to schedule additional reliability resources, at considerable expense, to ensure that load requirements are met by generation. Thus despite the cost of solar PV decreasing, the cost of integrating solar power will increase as penetration of solar resources onto the electric grid increases. There are three principal tools currently available to mitigate variability impacts: (i) flexible generation, (ii) storage, either virtual (demand response) or physical devices and (iii) solar forecasting. Storage devices are a powerful tool capable of ensuring smooth power output from renewable resources. However, the high cost of storage is prohibitive and markets are still being designed to leverage their full potential and mitigate their limitation (e.g. empty storage). Solar forecasting provides valuable information on the daily net load profile and upcoming ramps (increasing or decreasing solar power output) thereby providing the grid advance warning to schedule ancillary generation more accurately, or curtail solar power output. In order to develop solar forecasting as a tool that can be utilized by the grid operators we identified two focus areas: (i) develop solar forecast technology and improve solar forecast accuracy and (ii) develop forecasts that can be incorporated within existing grid planning and operation infrastructure. The first issue required atmospheric science and engineering research, while the second required detailed knowledge of energy markets, and power engineering. Motivated by this background we will emphasize area (i) in this talk and provide an overview of recent advancements in solar forecasting especially in two areas: (a) Numerical modeling tools for coastal stratocumulus to improve scheduling in the day-ahead California energy market. (b) Development of a sky imager to provide short term

  6. Photovoltaic Roof Heat Flux

    NASA Astrophysics Data System (ADS)

    Samady, Mezhgan Frishta

    Solar panels were mounted with different designs onto 1:800 scale building models while temperature and radiation were measured. While there have been other studies aimed at finding the optimal angles for solar panels [9], in this study both the angle and the mounting method were tested. The three PV mounting designs that were considered to provide the most insulation to a building's rooftop were flush, offset (control), and angled. The solar panel offset height became a key component for rooftop insulation as well as the performance of the actual solar panel. Experimental results were given to verify the thermal behavior of the heat loads from the different designs of the photovoltaic panel. From the results, the angled PV design needed 16Z more heat extraction than the offset and flush PV design needed 60% more heat extracted than the offset. In addition to the heat transfer analysis, thermal models were performed to incorporate main atmospheric conditions which were based on the effects of PV mounting structure.

  7. The Solar System/El Sistema Solar--A Fully Integrated Instructional Unit.

    ERIC Educational Resources Information Center

    Van Heukelem, Tom; Mercado, Maria de Jesus

    This lesson plan for the second grade uses information on the solar system to provide science education for limited-English-proficient (LEP) students in San Diego, California. The lesson has been developed to be taught in a bilingual class, a Spanish-language immersion class, or a two-way bilingual class. Lessons are arranged so that native…

  8. The green roof dilemma - discussion of Francis and Lorimer (2011).

    PubMed

    Henry, Alexandre; Frascaria-Lacoste, Nathalie

    2012-08-15

    Urban ecosystems are the most complex mosaics of vegetative land cover that can be found. In a recent paper, Francis and Lorimer (2011) evaluated the reconciliation potential of living roofs and walls. For these authors, these two techniques for habitat improvement have strong potential for urban reconciliation ecology. However they have some ecological and societal limitations such as the physical extreme environmental characteristics, the monetary investment and the cultural perceptions of urban nature. We are interested in their results and support their conclusions. However, for a considerable time, green roofs have been designed to provide urban greenery for buildings and the green roof market has only focused on extensive roof at a restricted scale within cities. Thus, we have strong doubts about the relevance of their use as possible integrated elements of the network. Furthermore, without dynamic progress in research and the implementation of well-thought-out policies, what will be the real capital gain from green roofs with respect to land-use complementation in cities? If we agree with Francis and Lorimer (2011) considering that urban reconciliation ecology between nature and citizens is a current major challenge, then "adaptive collaborative management" is a fundamental requirement.

  9. Downscaling Solar Power Output to 4-Seconds for Use in Integration Studies: Preprint

    SciTech Connect

    Hummon, M.; Weekley, A.; Searight, K.; Clark, K.

    2013-10-01

    High penetration renewable integration studies require solar power data with high spatial and temporal accuracy to quantify the impact of high frequency solar power ramps on the operation of the system. Our previous work concentrated on downscaling solar power from one hour to one minute by simulation. This method used clearness classifications to categorize temporal and spatial variability, and iterative methods to simulate intra-hour clearness variability. We determined that solar power ramp correlations between sites decrease with distance and the duration of the ramp, starting at around 0.6 for 30-minute ramps between sites that are less than 20 km apart. The sub-hour irradiance algorithm we developed has a noise floor that causes the correlations to approach ~0.005. Below one minute, the majority of the correlations of solar power ramps between sites less than 20 km apart are zero, and thus a new method to simulate intra-minute variability is needed. These intra-minute solar power ramps can be simulated using several methods, three of which we evaluate: a cubic spline fit to the one-minute solar power data; projection of the power spectral density toward the higher frequency domain; and average high frequency power spectral density from measured data. Each of these methods either under- or over-estimates the variability of intra-minute solar power ramps. We show that an optimized weighted linear sum of methods, dependent on the classification of temporal variability of the segment of one-minute solar power data, yields time series and ramp distributions similar to measured high-resolution solar irradiance data.

  10. Downscaling Solar Power Output to 4-Seconds for Use in Integration Studies (Presentation)

    SciTech Connect

    Hummon, M.; Weekley, A.; Searight, K.; Clark, K.

    2013-10-01

    High penetration renewable integration studies require solar power data with high spatial and temporal accuracy to quantify the impact of high frequency solar power ramps on the operation of the system. Our previous work concentrated on downscaling solar power from one hour to one minute by simulation. This method used clearness classifications to categorize temporal and spatial variability, and iterative methods to simulate intra-hour clearness variability. We determined that solar power ramp correlations between sites decrease with distance and the duration of the ramp, starting at around 0.6 for 30-minute ramps between sites that are less than 20 km apart. The sub-hour irradiance algorithm we developed has a noise floor that causes the correlations to approach ~0.005. Below one minute, the majority of the correlations of solar power ramps between sites less than 20 km apart are zero, and thus a new method to simulate intra-minute variability is needed. These intra-minute solar power ramps can be simulated using several methods, three of which we evaluate: a cubic spline fit to the one-minute solar power data; projection of the power spectral density toward the higher frequency domain; and average high frequency power spectral density from measured data. Each of these methods either under- or over-estimates the variability of intra-minute solar power ramps. We show that an optimized weighted linear sum of methods, dependent on the classification of temporal variability of the segment of one-minute solar power data, yields time series and ramp distributions similar to measured high-resolution solar irradiance data.

  11. Roof Management Program--Three Steps to Success.

    ERIC Educational Resources Information Center

    Young, D. B., Jr.

    1987-01-01

    A roof management program protects the capital investment of a new roof. Steps to create a program are (1) assemble roof information files, (2) implement a roof inspection program with periodic inspection, and (3) establish maintenance scheduling and implementation. (MLF)

  12. Conceptual design and techno-economic assessment of integrated solar combined cycle system with DSG technology

    SciTech Connect

    Nezammahalleh, H.; Farhadi, F.; Tanhaemami, M.

    2010-09-15

    Direct steam generation (DSG) in parabolic trough collectors causes an increase to competitiveness of solar thermal power plants (STPP) by substitution of oil with direct steam generation that results in lower investment and operating costs. In this study the integrated solar combined cycle system with DSG technology is introduced and techno-economic assessment of this plant is reported compared with two conventional cases. Three considered cases are: an integrated solar combined cycle system with DSG technology (ISCCS-DSG), a solar electric generating system (SEGS), and an integrated solar combined cycle system with HTF (heat transfer fluid) technology (ISCCS-HTF). This study shows that levelized energy cost (LEC) for the ISCCS-DSG is lower than the two other cases due to reducing O and M costs and also due to increasing the heat to electricity net efficiency of the power plant. Among the three STPPs, SEGS has the lowest CO{sub 2} emissions, but it will operate during daytime only. (author)

  13. A fully integrated nanosystem of semiconductor nanowires for direct solar water splitting.

    PubMed

    Liu, Chong; Tang, Jinyao; Chen, Hao Ming; Liu, Bin; Yang, Peidong

    2013-06-12

    Artificial photosynthesis, the biomimetic approach to converting sunlight's energy directly into chemical fuels, aims to imitate nature by using an integrated system of nanostructures, each of which plays a specific role in the sunlight-to-fuel conversion process. Here we describe a fully integrated system of nanoscale photoelectrodes assembled from inorganic nanowires for direct solar water splitting. Similar to the photosynthetic system in a chloroplast, the artificial photosynthetic system comprises two semiconductor light absorbers with large surface area, an interfacial layer for charge transport, and spatially separated cocatalysts to facilitate the water reduction and oxidation. Under simulated sunlight, a 0.12% solar-to-fuel conversion efficiency is achieved, which is comparable to that of natural photosynthesis. The result demonstrates the possibility of integrating material components into a functional system that mimics the nanoscopic integration in chloroplasts. It also provides a conceptual blueprint of modular design that allows incorporation of newly discovered components for improved performance.

  14. A Fully Integrated Nanosystem of Semiconductor Nanowires for Direct Solar Water Splitting

    SciTech Connect

    Liu, Chong; Tang, Jinyao; Chen, Hao Ming; Liu, Bin; Yang, Peidong

    2013-06-12

    Artificial photosynthesis, the biomimetic approach to converting sunlight?s energy directly into chemical fuels, aims to imitate nature by using an integrated system of nanostructures, each of which plays a specific role in the sunlight-to-fuel conversion process. Here we describe a fully integrated system of nanoscale photoelectrodes assembled from inorganic nanowires for direct solar water splitting. Similar to the photosynthetic system in a chloroplast, the artificial photosynthetic system comprises two semiconductor light absorbers with large surface area, an interfacial layer for charge transport, and spatially separated cocatalysts to facilitate the water reduction and oxidation. Under simulated sunlight, a 0.12percent solar-to-fuel conversion efficiency is achieved, which is comparable to that of natural photosynthesis. The result demonstrates the possibility of integrating material components into a functional system that mimics the nanoscopic integration in chloroplasts. It also provides a conceptual blueprint of modular design that allows incorporation of newly discovered components for improved performance.

  15. Radiation control coatings on rough-surfaced roofs at a federal facility: Two summers of monitoring plus roof and whole building modeling

    SciTech Connect

    Petrie, T.W.; Childs, P.W.; Christian, J.E.

    1998-01-01

    Support of the federal New Technology Demonstration Program (NTDP) allowed the authors to learn the effect of radiation control coatings on roofs at a federal facility in the Panhandle of Florida. Two rough-surfaced, moderately well-insulated, low solar reflectance built-up roofs (BURs) were spray coated with a white, latex-based product with ceramic beads. Samples of the coated roofs were brought periodically to the laboratory to measure the solar reflectance as the coatings weathered. The authors monitored the power demand of the all-electric buildings that the roofs covered and temperatures and heat fluxes for two instrumented areas on each roof. Average decreases in the sunlit temperatures of the coated vs. the uncoated surfaces show weathering effects. They also show that the shading enhanced the effect of the coating on the significantly shaded roof because the coated instrumented area on it was preferentially shaded near noon of sunny days. Whole building models were constructed for DOE 2.1E and model predictions were compared to measurements of total electrical power for each all-electric building. The building with the significantly shaded roof had very high internal loads. The effect of the shading on annual energy use for cooling was twice that of the coating but the coating decreased annual cooling energy needs only by 0.5%. The building with the heavyweight concrete-decked roof had small internal loads. For it, the DOE 2.1E model predicted a 7.4% decrease in annual cooling energy use due to the coating and a comparatively small effect of the less extensive shading.

  16. Integration of Semiconducting Sulfides for Full-Spectrum Solar Energy Absorption and Efficient Charge Separation.

    PubMed

    Zhuang, Tao-Tao; Liu, Yan; Li, Yi; Zhao, Yuan; Wu, Liang; Jiang, Jun; Yu, Shu-Hong

    2016-05-23

    The full harvest of solar energy by semiconductors requires a material that simultaneously absorbs across the whole solar spectrum and collects photogenerated electrons and holes separately. The stepwise integration of three semiconducting sulfides, namely ZnS, CdS, and Cu2-x S, into a single nanocrystal, led to a unique ternary multi-node sheath ZnS-CdS-Cu2-x S heteronanorod for full-spectrum solar energy absorption. Localized surface plasmon resonance (LSPR) in the nonstoichiometric copper sulfide nanostructures enables effective NIR absorption. More significantly, the construction of pn heterojunctions between Cu2-x S and CdS leads to staggered gaps, as confirmed by first-principles simulations. This band alignment causes effective electron-hole separation in the ternary system and hence enables efficient solar energy conversion.

  17. Fabrication of multijunction high voltage concentrator solar cells by integrated circuit technology

    NASA Technical Reports Server (NTRS)

    Valco, G. J.; Kapoor, V. J.; Evans, J. C., Jr.; Chai, A.-T.

    1981-01-01

    Standard integrated circuit technology has been developed for the design and fabrication of planar multijunction (PMJ) solar cell chips. Each 1 cm x 1 cm solar chip consisted of six n(+)/p, back contacted, internally series interconnected unit cells. These high open circuit voltage solar cells were fabricated on 2 ohm-cm, p-type 75 microns thick, silicon substrates. A five photomask level process employing contact photolithography was used to pattern for boron diffusions, phorphorus diffusions, and contact metallization. Fabricated devices demonstrated an open circuit voltage of 3.6 volts and a short circuit current of 90 mA at 80 AMl suns. An equivalent circuit model of the planar multi-junction solar cell was developed.

  18. Western Wind and Solar Integration Study Phase 3 – Frequency Response and Transient Stability

    SciTech Connect

    Miller, N. W.; Shao, M.; Pajic, S.; D'Aquila, R.

    2014-12-01

    Power system operators and utilities worldwide have concerns about the impact of high-penetration wind and solar generation on electric grid reliability (EirGrid 2011b, Hydro-Quebec 2006, ERCOT 2010). The stability of North American grids under these conditions is a particular concern and possible impediment to reaching future renewable energy goals. Phase 3 of the Western Wind and Solar Integration Study (WWSIS-3) considers a 33% wind and solar annual energy penetration level that results in substantial changes to the characteristics of the bulk power system, including different power flow patterns, different commitment and dispatch of existing synchronous generation, and different dynamic behavior of wind and solar generation. WWSIS-3 evaluates two specific aspects of fundamental frequency system stability: frequency response and transient stability.

  19. Tracking-integrated optics: applications in solar concentration

    NASA Astrophysics Data System (ADS)

    Wheelwright, Brian M.; Angel, Roger; Coughenour, Blake

    2014-12-01

    Conventional concentrating photovoltaic (CPV) systems track the sun with high precision dual-axis trackers. The emergent field of tracking-integrated optics has the potential to simplify the mechanics of CPV systems by loosening or eliminating the need for dual-axis tracking. In a tracking-integrated scheme, external module tracking is complemented or entirely replaced by miniature tracking within the module. This internal tracking-integration may take the form of active small-motion translation, rotation of arrayed optics, or by passive material property changes induced by the concentrated light. These methods are briefly reviewed. An insolation weighting model is presented which will aid in the design of tracking-integrated optics by quantifying the tradeoff between angular operation range and annual sunlight collection. We demonstrate that when tracking-integrated optics are used to complement external module tracking about a horizontal, North-South oriented axis, truncating the operational range may be advantageous. At Tucson AZ latitude (32.2°N), 15.6% of the angular range may be truncated while only sacrificing 3.6% of the annual insolation. We show that modules tracked about a polar-aligned axis are poorly-suited for truncation.

  20. Solar astronomy

    NASA Technical Reports Server (NTRS)

    Rosner, Robert; Noyes, Robert; Antiochos, Spiro K.; Canfield, Richard C.; Chupp, Edward L.; Deming, Drake; Doschek, George A.; Dulk, George A.; Foukal, Peter V.; Gilliland, Ronald L.

    1991-01-01

    An overview is given of modern solar physics. Topics covered include the solar interior, the solar surface, the solar atmosphere, the Large Earth-based Solar Telescope (LEST), the Orbiting Solar Laboratory, the High Energy Solar Physics mission, the Space Exploration Initiative, solar-terrestrial physics, and adaptive optics. Policy and related programmatic recommendations are given for university research and education, facilitating solar research, and integrated support for solar research.

  1. The challenges and opportunities for integration of solar syngas production with liquid fuel synthesis

    NASA Astrophysics Data System (ADS)

    Hinkley, James T.; McNaughton, Robbie K.; Pye, John; Saw, Woei; Stechel, Ellen B.

    2016-05-01

    Reforming of methane is practiced on a vast scale globally for the production of syngas as a precursor for the production of many commodities, including hydrogen, ammonia and synthetic liquid fuels. Solar reforming can reduce the greenhouse gas intensity of syngas production by up to about 40% by using solar thermal energy to provide the endothermic heat of reaction, traditionally supplied by combustion of some of the feed. This has the potential to enable the production of solar derived synthetic fuels as drop in replacements for conventional fuels with significantly lower CO2 intensity than conventional gas to liquids (GTL) processes. However, the intermittent nature of the solar resource - both diurnal and seasonal - poses significant challenges for such a concept, which relies on synthesis processes that typically run continuously on very stable feed compositions. We find that the integration of solar syngas production to a GTL process is a non-trivial exercise, with the ability to turn down the capacity of the GTL synthesis section, and indeed to suspend operations for short periods without significant detriment to product quality or process operability, likely to be a key driver for the commercial implementation of solar liquid fuels. Projected costs for liquid fuel synthesis suggest that solar reforming and small scale gas to liquid synthesis can potentially compete with conventional oil derived transport fuels in the short to medium term.

  2. Development of an integrated heat pipe-thermal storage system for a solar receiver

    NASA Technical Reports Server (NTRS)

    Keddy, E. S.; Sena, J. T.; Merrigan, M. A.; Heidenreich, G.; Johnson, S.

    1987-01-01

    The Organic Rankine Cycle (ORC) Solar Dynamic Power System (SDPS) is one of the candidates for Space Station prime power application. In the low Earth orbit of the Space Station approximately 34 minutes of the 94-minute orbital period is spent in eclipse with no solar energy input to the power system. For this period the SDPS will use thermal energy storage (TES) material to provide a constant power output. An integrated heat-pipe thermal storage receiver system is being developed as part of the ORC-SDPS solar receiver. This system incorporates potassium heat pipe elements to absorb and transfer the solar energy within the receiver cavity. The heat pipes contain the TES canisters within the potassium vapor space with the toluene heater tube used as the condenser region of the heat pipe. During the insolation period of the Earth orbit, solar energy is delivered to the heat pipe in the ORC-SDPS receiver cavity. The heat pipe transforms the non-uniform solar flux incident in the heat pipe surface within the receiver cavity to an essentially uniform flux at the potassium vapor condensation interface in the heat pipe. During solar insolation, part of the thermal energy is delivered to the heater tube and the balance is stored in the TES units. During the eclipse period of the orbit, the balance stored in the TES units is transferred by the potassium vapor to the toluene heater tube.

  3. Fast and flexible integrators for solar system dynamics

    NASA Astrophysics Data System (ADS)

    Laakso, T.; Kaasalainen, M.

    1999-12-01

    Since Lagrange, dynamicists have invented integration methods that can explicitly take into account the near-integrable character of problems in celestial mechanics. Any scheme that returns the exact Kepler orbit of a two-body problem when perturbations are removed describes the system much better than a `blind' conventional N-body method, the foremost advantage being a longer timestep. Traditional schemes modelled in cumbersome forms and variables have been replaced by symplectic integrators (SIs); development in this field has been rapid in recent years, and some of the disadvantages of early SIs have been alleviated by, e.g., symplectic correctors and limited adjustability of stepsize. However, SIs cannot by definition tackle non-Hamiltonian forces, and there is as yet no proper way of using multistep information to build inexpensive high-order schemes. We present a simple near-integrable non-symplectic but SI-like formulation that is suitable for almost any numerical integrator; thus, multistep schemes are easy to build, stepsize can be adjusted, and dissipative forces are allowed. The formulation is based on the choice of variables: we use the phase-space coordinates the object would have at a given point in its (Keplerian) orbit if the perturbing forces were removed. In one choice of frame, low-order methods resemble SIs with similar `kicks' from perturbations and `drifts' via Gauss´ f- and g-functions. A fourth-order scheme needs (asymptotically) only one and a half force evaluations per step. What is more, the variational equations for the Liapunov exponent are especially simple to integrate in this approach. In another frame, any high-order multistep scheme can be efficiently applied. Our formulation is complementary to SIs, offering an increase in speed/accuracy in problems of celestial mechanics where SIs cannot be employed.

  4. See-through dye-sensitized solar cells: photonic reflectors for tandem and building integrated photovoltaics.

    PubMed

    Heiniger, Leo-Philipp; O'Brien, Paul G; Soheilnia, Navid; Yang, Yang; Kherani, Nazir P; Grätzel, Michael; Ozin, Geoffrey A; Tétreault, Nicolas

    2013-10-25

    See-through dye-sensitized solar cells with 1D photonic crystal Bragg reflector photoanodes show an increase in peak external quantum efficiency of 47% while still maintaining high fill factors, resulting in an almost 40% increase in power conversion efficiency. These photoanodes are ideally suited for tandem and building integrated photovoltaics.

  5. Flat Plate Solar Array Project: Proceedings of the 20th Project Integration Meeting

    NASA Technical Reports Server (NTRS)

    Mcdonald, R. R.

    1982-01-01

    Progress made by the Flat-Plate Solar Array Project during the period November 1981 to April 1982 is reported. Project analysis and integration, technology research in silicon material, large-area silicon sheet and environmental isolation, cell and module formation, engineering sciences, and module performance and failure analysis are covered.

  6. Low-cost solar array project and Proceedings of the 15th Project Integration Meeting

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Progress made by the Low-Cost Solar Array Project during the period December 1979 to April 1980 is described. Project analysis and integration, technology development in silicon material, large area silicon sheet and encapsulation, production process and equipment development, engineering, and operation are included.

  7. Energy Systems Integration: NREL + SolarCity and the Hawaiian Electric Companies (Fact Sheet)

    SciTech Connect

    Not Available

    2015-02-01

    This fact sheet describes the collaboration between NREL, SolarCity, and the Hawaiian Electric Companies at the Energy Systems Integration Facility (ESIF) to address the safety, reliability, and stability challenges of interconnecting high penetrations of distributed photovoltaics with the electric power system.

  8. Effects of solar cell environment on contact integrity

    NASA Technical Reports Server (NTRS)

    Weizer, Victor G.; Fatemi, Navid S.

    1993-01-01

    The III-V semiconductors react extremely rapidly with most commonly used contact metallizations. This precludes the use of elevated temperatures in the contact formation process for solar cells and other shallow junction devices. These devices must rely upon contact metallizations that are sufficiently conductive in their 'as-fabricated' state. However, while there are a number of non-sintered metallizations that have acceptable characteristics, the lack of a sintering step makes them vulnerable to a variety of environmentally induced degradation processes. The degrading effects resulting from the exposure of unsintered devices to a humid environment and to a vacuum (space) environment are described. It is shown, further, that these effects are magnified by the presence of mechanical damage in the contact metallization. The means to avoid or prevent these degrading interactions are presented.

  9. Tilt optimization of a building integrated solar concentrating unit

    NASA Astrophysics Data System (ADS)

    Chemisana, D.; Tripanagnostopoulos, Y.; Lamnatou, Chr.; Souliotis, M.; Rosell, J. I.; Barrau, J.

    2012-10-01

    The concept of a static linear Fresnel concentrator with a tracking absorber has been simulated and well understood in the past. This paper bridges the gap between theoretical optical performances and operation in outdoor conditions. The effort focuses on the characterization of weather and tilt angle effects on the solar concentrator annual performance. Useful mathematical expressions are derived to show the dependence of the annual concentrated energy on latitude, global radiation, mean clearness index and tilt angle. An equation for the optimization of the annual yield is also proposed. The results are applied to a PVT generator and the annual production of thermal and electrical output energy is evaluated for an installation in Barcelona (Spain). A performance improvement above 5% is reached when the optimized tilt angle is used.

  10. A Solar System Collaboratory: Integrating Technology and Collaboration

    NASA Astrophysics Data System (ADS)

    Bagenal, F.

    1998-01-01

    The Solar System Collaboratory aims to improve the quality of learning in science courses designed for non-science majors through two new technologies: hypertext and distant collaboration. We are developing a web-based, modular, introductory astronomy course that is taught collaboratively across Colorado. The first module, a 2-week module on the greenhouse effect, was tested in Spring 1997 and Fall 1997 with further classes scheduled to be taught collaboratively between the participating schools in Spring 1998. The project includes an extensive assessment and evaluation component, and preliminary results indicate that the module can increase student participation in the course, student interest in science, and student self-confidence in solving novel, open-ended problems.

  11. Common Roofing and Waterproofing Materials and Equipment. Roofing Workbook and Tests.

    ERIC Educational Resources Information Center

    California State Dept. of Education, Sacramento. Bureau of Publications.

    This publication on common roofing and waterproofing materials and equipment is one of a series of units of instruction for roofing apprenticeship classes. The workbook portion is divided into eight topics: production of bitumens and asphalt roofing materials, built-up materials and adhesives, asphalt products and rigid roofing materials,…

  12. Roofing: Workbook and Tests. Common Roofing and Waterproofing Materials and Equipment.

    ERIC Educational Resources Information Center

    California State Dept. of Education, Sacramento. Bureau of Publications.

    This workbook on materials and equipment is one of a series of nine individual units of instruction for roofing apprenticeship classes in California. The workbook covers eight topics: production of bitumens and asphaltic roofing materials; built-up roofing materials and adhesives; asphaltic products and rigid roofing materials; elastomeric and…

  13. 40 CFR 65.45 - External floating roof converted into an internal floating roof.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 15 2010-07-01 2010-07-01 false External floating roof converted into an internal floating roof. 65.45 Section 65.45 Protection of Environment ENVIRONMENTAL PROTECTION... External floating roof converted into an internal floating roof. The owner or operator who elects...

  14. 40 CFR 65.45 - External floating roof converted into an internal floating roof.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 15 2011-07-01 2011-07-01 false External floating roof converted into an internal floating roof. 65.45 Section 65.45 Protection of Environment ENVIRONMENTAL PROTECTION... External floating roof converted into an internal floating roof. The owner or operator who elects...

  15. Cold-Applied Roofing Systems and Waterproofing and Dampproofing. Roofing Workbook and Tests.

    ERIC Educational Resources Information Center

    Brown, Arthur

    This workbook for students in California roofing apprenticeship programs provides information for classroom work in the area of cold-applied roofing systems and waterproofing and dampproofing. Eight topics are covered: introduction to cold-applied roofing systems and waterproofing and dampproofing, tools and equipment used in cold-applied roofing,…

  16. Spatial environmental heterogeneity affects plant growth and thermal performance on a green roof.

    PubMed

    Buckland-Nicks, Michael; Heim, Amy; Lundholm, Jeremy

    2016-05-15

    Green roofs provide ecosystem services, including stormwater retention and reductions in heat transfer through the roof. Microclimates, as well as designed features of green roofs, such as substrate and vegetation, affect the magnitude of these services. Many green roofs are partially shaded by surrounding buildings, but the effects of this within-roof spatial environmental heterogeneity on thermal performance and other ecosystem services have not been examined. We quantified the effects of spatial heterogeneity in solar radiation, substrate depth and other variables affected by these drivers on vegetation and ecosystem services in an extensive green roof. Spatial heterogeneity in substrate depth and insolation were correlated with differential growth, survival and flowering in two focal plant species. These effects were likely driven by the resulting spatial heterogeneity in substrate temperature and moisture content. Thermal performance (indicated by heat flux and substrate temperature) was influenced by spatial heterogeneity in vegetation cover and substrate depth. Areas with less insolation were cooler in summer and had greater substrate moisture, leading to more favorable conditions for plant growth and survival. Spatial variation in substrate moisture (7%-26% volumetric moisture content) and temperature (21°C-36°C) during hot sunny conditions in summer could cause large differences in stormwater retention and heat flux within a single green roof. Shaded areas promote smaller heat fluxes through the roof, leading to energy savings, but lower evapotranspiration in these areas should reduce stormwater retention capacity. Spatial heterogeneity can thus result in trade-offs between different ecosystem services. The effects of these spatial heterogeneities are likely widespread in green roofs. Structures that provide shelter from sun and wind may be productively utilized to design higher functioning green roofs and increase biodiversity by providing habitat

  17. Self advancing mine roof supports

    SciTech Connect

    Seddon, J.; Jones, F.

    1985-03-19

    A self-advancing mine-roof-support for use in or aligned with a main roadway or gate has a floor-engaging part and a roof engaging part spaced apart by extensible load-bearing prop or jack means, and engagement means for a face-conveyor and a transversely acting transfer conveyor whereby their relative positions are constrained to facilitate discharge of mineral from one conveyor to the other. The engagement means for the face conveyor comprises sliding anchor beams that assure maintenance of the relative attitudes of the support and the face conveyor and the transfer conveyor is held fore and aft of the support.

  18. Revisiting the climate impacts of cool roofs around the globe using an Earth system model

    NASA Astrophysics Data System (ADS)

    Zhang, Jiachen; Zhang, Kai; Liu, Junfeng; Ban-Weiss, George

    2016-08-01

    Solar reflective ‘cool roofs’ absorb less sunlight than traditional dark roofs, reducing solar heat gain, and decreasing the amount of heat transferred to the atmosphere. Widespread adoption of cool roofs could therefore reduce temperatures in urban areas, partially mitigating the urban heat island effect, and contributing to reversing the local impacts of global climate change. The impacts of cool roofs on global climate remain debated by past research and are uncertain. Using a sophisticated Earth system model, the impacts of cool roofs on climate are investigated at urban, continental, and global scales. We find that global adoption of cool roofs in urban areas reduces urban heat islands everywhere, with an annual- and global-mean decrease from 1.6 to 1.2 K. Decreases are statistically significant, except for some areas in Africa and Mexico where urban fraction is low, and some high-latitude areas during wintertime. Analysis of the surface and TOA energy budget in urban regions at continental-scale shows cool roofs causing increases in solar radiation leaving the Earth-atmosphere system in most regions around the globe, though the presence of aerosols and clouds are found to partially offset increases in upward radiation. Aerosols dampen cool roof-induced increases in upward solar radiation, ranging from 4% in the United States to 18% in more polluted China. Adoption of cool roofs also causes statistically significant reductions in surface air temperatures in urbanized regions of China (-0.11 ± 0.10 K) and the United States (-0.14 ± 0.12 K); India and Europe show statistically insignificant changes. Though past research has disagreed on whether widespread adoption of cool roofs would cool or warm global climate, these studies have lacked analysis on the statistical significance of global temperature changes. The research presented here indicates that adoption of cool roofs around the globe would lead to statistically insignificant reductions in global mean

  19. Revisiting the climate impacts of cool roofs around the globe using an Earth system model

    SciTech Connect

    Zhang, Jiachen; Zhang, Kai; Liu, Junfeng; Ban-Weiss, George

    2016-08-01

    Solar reflective “cool roofs” absorb less sunlight than traditional dark roofs, reducing solar heat gain, and decreasing the amount of heat transferred to the atmosphere. Widespread adoption of cool roofs could therefore reduce temperatures in urban areas, partially mitigating the urban heat island effect, and contributing to reversing the local impacts of global climate change. The impacts of cool roofs on global climate remain debated by past research and are uncertain. Using a sophisticated Earth system model, the impacts of cool roofs on climate are investigated at urban, continental, and global scales. We find that global adoption of cool roofs in urban areas reduces urban heat islands everywhere, with an annual- and global-mean decrease from 1.6 to 1.2 K. Decreases are statistically significant, except for some areas in Africa and Mexico where urban fraction is low, and some high-latitude areas during wintertime. Analysis of the surface and TOA energy budget in urban regions at continental-scale shows cool roofs causing increases in solar radiation leaving the Earth-atmosphere system in most regions around the globe, though the presence of aerosols and clouds are found to partially offset increases in upward radiation. Aerosols dampen cool roof-induced increases in upward solar radiation, ranging from 4% in the United States to 18% in more polluted China. Adoption of cool roofs also causes statistically significant reductions in surface air temperatures in urbanized regions of China (0.11±0.10 K) and the United States (0.14±0.12 K); India and Europe show statistically insignificant changes. The research presented here indicates that adoption of cool roofs around the globe would lead to statistically insignificant reductions in global mean air temperature (0.0021 ±0.026 K). This counters past research suggesting that cool roofs can reduce, or even increase global mean temperatures. Thus, we suggest that while cool roofs are an effective tool for

  20. Roof heat loss detection using airborne thermal infrared imagery

    NASA Astrophysics Data System (ADS)

    Kern, K.; Bauer, C.; Sulzer, W.

    2012-12-01

    As part of the Austrian and European attempt to reduce energy consumption and greenhouse gas emissions, thermal rehabilitation and the improvement of the energy efficiency of buildings became an important topic in research as well as in building construction and refurbishment. Today, in-situ thermal infrared measurements are routinely used to determine energy loss through the building envelope. However, in-situ thermal surveys are expensive and time consuming, and in many cases the detection of the amount and location of waste heat leaving building through roofs is not possible with ground-based observations. For some years now, a new generation of high-resolution thermal infrared sensors makes it possible to survey heat-loss through roofs at a high level of detail and accuracy. However, to date, comparable studies have mainly been conducted on buildings with uniform roof covering and provided two-dimensional, qualitative information. This pilot study aims to survey the heat-loss through roofs of the buildings of the University of Graz (Austria) campus by using high-resolution airborne thermal infrared imagery (TABI 1800 - Thermal Airborne Broadband imager). TABI-1800 acquires data in a spectral range from 3.7 - 4.8 micron, a thermal resolution of 0.05 °C and a spatial resolution of 0.6 m. The remote sensing data is calibrated to different roof coverings (e.g. clay shingle, asphalt shingle, tin roof, glass) and combined with a roof surface model to determine the amount of waste heat leaving the building and to identify hot spots. The additional integration of information about the conditions underneath the roofs into the study allows a more detailed analysis of the upward heat flux and is a significant improvement of existing methods. The resulting data set provides useful information to the university facility service for infrastructure maintenance, especially in terms of attic and roof insulation improvements. Beyond that, the project is supposed to raise public

  1. Roofing Workbook and Tests: Entering the Roofing and Waterproofing Industry.

    ERIC Educational Resources Information Center

    California State Dept. of Education, Sacramento. Vocational Education Services.

    This document is one of a series of nine individual units of instruction for use in roofing apprenticeship classes in California. The unit consists of a workbook and test, perforated for student use. Fourteen topics are covered in the workbook and corresponding multiple-choice tests. For each topic, objectives, information sheets, and study…

  2. Integration between solar and space science data for space weather forecast using web services

    NASA Astrophysics Data System (ADS)

    Kato, S.

    2007-08-01

    As the technology develops, the opportunity that the human beings behave in space, and it is still understood that the solar activities (especially the solar flare) influence the airlines communication, the ship communication and the power generator of the electric power company, etc. Forecasting the effects of the solar activities is becoming very important because there is such a background. Our goal is that constructs the detailed model from the Sun to the magnetosphere of the earth and simulates the solar activities and the effects. We try to integrate the existing observational data including the ground observational data and satellite observational data using by web service technology as a base to construct the model. We introduce our activity to combine the solar and space science data in Japan. Methods Generally, it is difficult to develop the virtual common database, but web service makes interconnection among different databases comparatively easy. We try to connect some databases in the portal site. Each different data objects is aggregated to a common data object. We can develop more complex services. We use RELAX NG in order to develop these applications easily. We begin the trial of the interconnection among the solar and space science data in Japan. In the case of solar observational data, we find the activity such as VO, for example, VSO and EGSO, but space science data seems to be very complex. In addition to this, there is time lag that solar activity has an effect on the magnetosphere of the Earth. We discuss these characteristic in the data analysis between the solar and space data. This work was supported by the Grant-in-Aid for Creative Scientific Research `The Basic Study of Space Weather Prediction' (17GS0208) from the Ministry of Education, Science, Sports, Technology, and Culture of Japan

  3. Habitat connectivity shapes urban arthropod communities: the key role of green roofs.

    PubMed

    Braaker, S; Ghazoul, J; Obrist, M K; Moretti, M

    2014-04-01

    The installation of green roofs, defined here as rooftops with a shallow soil cover and extensive vegetation, has been proposed as a possible measure to mitigate the loss of green space caused by the steady growth of cities. However, the effectiveness of green roofs in supporting arthropod communities, and the extent to which they facilitate connectivity of these communities within the urban environment is currently largely unknown. We investigated the variation of species community composition (beta diversity) of four arthropod groups with contrasting mobility (Carabidae, Araneae, Curculionidae, and Apidae) on 40 green roofs and 40 extensively managed green sites on the ground in the city of Zurich, Switzerland. With redundancy analysis and variation partitioning, we (1) disentangled the relative importance of local environmental conditions, the surrounding land cover composition, and habitat connectivity on species community composition, (2) searched for specific spatial scales of habitat connectivity for the different arthropod groups, and (3) discussed the ecological and functional value of green roofs in cities. Our study revealed that on green roofs community composition of high-mobility arthropod groups (bees and weevils) were mainly shaped by habitat connectivity, while low-mobility arthropod groups (carabids and spiders) were more influenced by local environmental conditions. A similar but less pronounced pattern was found for ground communities. The high importance of habitat connectivity in shaping high-mobility species community composition indicates that these green roof communities are substantially connected by the frequent exchange of individuals among surrounding green roofs. On the other hand, low-mobility species communities on green roofs are more likely connected to ground sites than to other green roofs. The integration of green roofs in urban spatial planning strategies has great potential to enable higher connectivity among green spaces, so

  4. Life-cycle cost-benefit analysis of extensive vegetated roof systems.

    PubMed

    Carter, Timothy; Keeler, Andrew

    2008-05-01

    The built environment has been a significant cause of environmental degradation in the previously undeveloped landscape. As public and private interest in restoring the environmental integrity of urban areas continues to increase, new construction practices are being developed that explicitly value beneficial environmental characteristics. The use of vegetation on a rooftop--commonly called a green roof--as an alternative to traditional roofing materials is an increasingly utilized example of such practices. The vegetation and growing media perform a number of functions that improve environmental performance, including: absorption of rainfall, reduction of roof temperatures, improvement in ambient air quality, and provision of urban habitat. A better accounting of the green roof's total costs and benefits to society and to the private sector will aid in the design of policy instruments and educational materials that affect individual decisions about green roof construction. This study uses data collected from an experimental green roof plot to develop a benefit cost analysis (BCA) for the life cycle of extensive (thin layer) green roof systems in an urban watershed. The results from this analysis are compared with a traditional roofing scenario. The net present value (NPV) of this type of green roof currently ranges from 10% to 14% more expensive than its conventional counterpart. A reduction of 20% in green roof construction cost would make the social NPV of the practice less than traditional roof NPV. Considering the positive social benefits and relatively novel nature of the practice, incentives encouraging the use of this practice in highly urbanized watersheds are strongly recommended.

  5. Condensation Risk of Mechanically Attached Roof Systems in Cold Climate Zones

    SciTech Connect

    Pallin, Simon B

    2013-01-01

    A white roof, cool roof, is constructed to decrease thermal loads from solar radiation, therefore saving energy by decreasing the cooling demands. Unfortunately, cool roofs with mechanically attached membrane, have shown to have a higher risk of intermediate condensation in the materials below the membrane in certain climates (Ennis & Kehrer, 2011) and in comparisons with similar construction with a darker exterior surface (Bludau, Zirkelbach, & Kuenzel, 2009). As a consequence, questions have been raised regarding the sustainability and reliability of using cool roof membranes in Northern U.S. climate zones. A white roof surface reflects more of the incident solar radiation in comparisons with a dark surface, which makes a distinguished difference on the surface temperature of the roof. However, flat roofs with either a light or dark surface and if facing a clear sky, are constantly losing energy to the sky due to the exchange of infrared radiation. This phenomenon exists both during the night and the day. During the day, if the sun shines on the roof surface, the exchange of infrared radiation typically becomes insignificant. During nights and in cold climates, the temperature difference between the roof surface and the sky can deviate up to 20 C (Hagentoft, 2001) which could result in a very cold surface temperature compared to the ambient temperature. Further, a colder surface temperature of the roof increases the energy loss and the risk of condensation in the building materials below the membrane. In conclusion, both light and dark coated roof membranes are cooled by the infrared radiation exchange during the night, though a darker membrane is more heated by the solar radiation during the day, thus decreasing the risk of condensation. The phenomenon of night time cooling from the sky and the lack of solar gains during the day is not likely the exclusive problem concerning the risk of condensation in cool roofs with mechanically attached membranes. Roof

  6. GREEN ROOFS — A GROWING TREND

    EPA Science Inventory

    One of the most interesting stormwater control systems under evaluation by EPA are “green roofs”. Green roofs are vegetative covers applied to building roofs to slow, or totally absorb, rainfall runoff during storms. While the concept of over-planted roofs is very ancient, the go...

  7. Guidelines for Inspecting Your Roof Systems.

    ERIC Educational Resources Information Center

    Watkins, Daniel L.

    2003-01-01

    Provides guidelines for inspecting the roof of a facility. Suggests that periodic roof inspections should be performed on a quarterly or semi-annual basis and after severe storms. Proactively identifying potential problem areas is the best defense against roof leaks. (SLD)

  8. High Performance Ultrathin GaAs Solar Cells Enabled with Heterogeneously Integrated Dielectric Periodic Nanostructures.

    PubMed

    Lee, Sung-Min; Kwong, Anthony; Jung, Daehwan; Faucher, Joseph; Biswas, Roshni; Shen, Lang; Kang, Dongseok; Lee, Minjoo Larry; Yoon, Jongseung

    2015-10-27

    Due to their favorable materials properties including direct bandgap and high electron mobilities, epitaxially grown III-V compound semiconductors such as gallium arsenide (GaAs) provide unmatched performance over silicon in solar energy harvesting. Nonetheless, their large-scale deployment in terrestrial photovoltaics remains challenging mainly due to the high cost of growing device quality epitaxial materials. In this regard, reducing the thickness of constituent active materials under appropriate light management schemes is a conceptually viable option to lower the cost of GaAs solar cells. Here, we present a type of high efficiency, ultrathin GaAs solar cell that incorporates bifacial photon management enabled by techniques of transfer printing to maximize the absorption and photovoltaic performance without compromising the optimized electronic configuration of planar devices. Nanoimprint lithography and dry etching of titanium dioxide (TiO2) deposited directly on the window layer of GaAs solar cells formed hexagonal arrays of nanoscale posts that serve as lossless photonic nanostructures for antireflection, diffraction, and light trapping in conjunction with a co-integrated rear-surface reflector. Systematic studies on optical and electrical properties and photovoltaic performance in experiments, as well as numerical modeling, quantitatively describe the optimal design rules for ultrathin, nanostructured GaAs solar cells and their integrated modules.

  9. Global Cooling: Policies to Cool the World and Offset Global Warming from CO2 Using Reflective Roofs and Pavements

    SciTech Connect

    Akbari, Hashem; Levinson, Ronnen; Rosenfeld, Arthur; Elliot, Matthew

    2009-08-28

    Increasing the solar reflectance of the urban surface reduce its solar heat gain, lowers its temperatures, and decreases its outflow of thermal infrared radiation into the atmosphere. This process of 'negative radiative forcing' can help counter the effects of global warming. In addition, cool roofs reduce cooling-energy use in air conditioned buildings and increase comfort in unconditioned buildings; and cool roofs and cool pavements mitigate summer urban heat islands, improving outdoor air quality and comfort. Installing cool roofs and cool pavements in cities worldwide is a compelling win-win-win activity that can be undertaken immediately, outside of international negotiations to cap CO{sub 2} emissions. We propose an international campaign to use solar reflective materials when roofs and pavements are built or resurfaced in temperate and tropical regions.

  10. Solar Spots - Activities to Introduce Solar Energy into the K-8 Curricula.

    ERIC Educational Resources Information Center

    Longe, Karen M.; McClelland, Michael J.

    Following an introduction to solar technology which reviews solar heating and cooling, passive solar systems (direct gain systems, thermal storage walls, sun spaces, roof ponds, and convection loops), active solar systems, solar electricity (photovoltaic and solar thermal conversion systems), wind energy, and biomass, activities to introduce solar…

  11. Evaluation of Roof Bolting Requirements Based on In-Mine Roof Bolter Drilling

    SciTech Connect

    Syd S. Peng

    2005-10-01

    Roof bolting is the most popular method for underground openings in the mining industry, especially in the bedded deposits such as coal. In fact, all U.S. underground coal mine entries are roof-bolted as required by law. However, roof falls still occur frequently in the roof bolted entries. The two possible reasons are: the lack of knowledge of and technology to detect the roof geological conditions in advance of mining, and lack of roof bolting design criteria for modern roof bolting systems. This research is to develop a method for predicting the roof geology and stability condition in real time during roof bolting operation. Based on this information, roof bolting design criteria for modern roof bolting systems will be developed for implementation in real time. For the prediction of roof geology and stability condition in real time, a micro processor was used and a program developed to monitor and record the drilling parameters of roof bolter. These parameters include feed pressure, feed flow (penetration rate), rotation pressure, rotation rate, vacuum pressure, oil temperature of hydraulic circuit, and signals for controlling machine. From the results of a series of laboratory and underground tests so far, feed pressure is found to be a good indicator for identifying the voids/fractures and estimating the roof rock strength. The method for determining quantitatively the location and the size of void/fracture and estimating the roof rock strength from the drilling parameters of roof bolter was developed. Also, a set of computational rules has been developed for in-mine roof using measured roof drilling parameters and implemented in MRGIS (Mine Roof Geology Information System), a software package developed to allow mine engineers to make use of the large amount of roof drilling parameters for predicting roof geology properties automatically. For the development of roof bolting criteria, finite element models were developed for tensioned and fully grouted bolting

  12. Reduced Graphene Oxide Bipolar Membranes for Integrated Solar Water Splitting in Optimal pH.

    PubMed

    McDonald, Michael B; Bruce, Jared P; McEleney, Kevin; Freund, Michael S

    2015-08-24

    The integration of light absorbers and catalysts for the water splitting process requires a membrane capable of both ion and electron management and product separation to realize efficient solar fuels systems. Bipolar membranes can maintain a pH gradient for optimal reaction conditions by the dissociation of water. Such membranes that contain graphene in the interfacial layer are fabricated by the chemical reduction of a uniformly deposited graphene oxide layer to convert sp(3) catalyst regions to sp(2) conductive regions. The resulting electrical and water dissociation properties are optimized by adjusting the exposure conditions, and treatments of less than 5 min render an interface that exceeds the conductivity requirements for integrated solar water splitting and increases the overpotential by <0.3 V. Integration with photoelectrodes is examined by characterizing the electrical interface formed between graphene and Si microwires, and we found that efficient Ohmic junctions are possible.

  13. Development of an integrated heat pipe-thermal storage system for a solar receiver

    NASA Technical Reports Server (NTRS)

    Keddy, E.; Sena, J. Tom; Merrigan, M.; Heidenreich, Gary; Johnson, Steve

    1988-01-01

    An integrated heat pipe-thermal storage system was developed as part of the Organic Rankine Cycle Solar Dynamic Power System solar receiver for space station application. The solar receiver incorporates potassium heat pipe elements to absorb and transfer the solar energy within the receiver cavity. The heat pipes contain thermal energy storage (TES) canisters within the vapor space with a toluene heater tube used as the condenser region of the heat pipe. During the insolation period of the earth orbit, solar energy is delivered to the heat pipe. Part of this thermal energy is delivered to the heater tube and the balance is stored in the TES units. During the eclipse period of earth orbit, the stored energy in the TES units is transferred by the potassium vapor to the toluene heater tube. A developmental heat pipe element was constructed that contains axial arteries and a distribution wick connecting the toluene heater and the TES units to the solar insolation surface of the heat pipe. Tests were conducted to demonstrate the heat pipe, TES units, and the heater tube operation. The heat pipe element was operated at design input power of 4.8 kW. Thermal cycle tests were conducted to demonstrate the successful charge and discharge of the TES units. Axial power flux levels up to 15 watts/sq cm were demonstrated and transient tests were conducted on the heat pipe element. Details of the heat pipe development and test procedures are presented.

  14. Large integrated absorption enhancement in plasmonic solar cells by combining metallic gratings and antireflection coatings.

    PubMed

    Munday, Jeremy N; Atwater, Harry A

    2011-06-08

    We describe an ultrathin solar cell architecture that combines the benefits of both plasmonic photovoltaics and traditional antireflection coatings. Spatially resolved electron generation rates are used to determine the total integrated current improvement under AM1.5G solar illumination, which can reach a factor of 1.8. The frequency-dependent absorption is found to strongly correlate with the occupation of optical modes within the structure, and the improved absorption is mainly attributed to improved coupling to guided modes rather than localized resonant modes.

  15. The Integrated Solar Upper Stage engine ground demonstration power management and distribution subsystem design

    NASA Astrophysics Data System (ADS)

    Baez, Anastacio N.; Kimnach, Greg L.

    1997-01-01

    The National Aeronautics and Space Administration (NASA), the Air Force Phillips Laboratory (PL), and the Defense Special Weapons Agency (DSWA) in a joint effort are developing technologies for a solar bimodal system. A solar bimodal system combines thermal propulsion and electric power generation in a single integrated system. A spacecraft Integrated Solar Upper Stage (ISUS) bimodal system combines orbital transfer propulsion, electric power generation, and on-board propulsion into one overall system. A key benefit of such integrated system is the augmentation of payload to spacecraft mass ratio thus resulting in lower launch vehicle requirements. Scaling down to smaller launch vehicles increases space access by reducing overall mission cost. The NASA/PL/DSWA ISUS program is concentrating efforts on a near-term ground test demonstration of the bimodal concept. A successful ground demonstration of the ISUS various technologies will enable a full system flight demonstration of the bimodal concept. NASA Lewis Research Center in Cleveland Ohio will be the site for the engine ground demonstrator (EGD). The ISUS bimodal system uses solar concentrators to focus solar energy into an integrated receiver, absorber, and converter (RAC) power plant. The power plant main body is a graphite blackbody that stores thermal energy within a cavity in its main core. During the propulsion phase of the bimodal system a propellant flows into the graphite main core and is distributed uniformly through axial flow channels in the heated cavity. The blackbody core heats the propellant that is then discharged into an output tube thus creating thrust. An array of thermionic generators encircles the graphite core cavity and provides electrical energy conversion functions during the power generation phase. The power management and distribution subsystem's main functions are to condition raw electrical power generated by the RAC power plant and deliver it to the spacecraft payloads. This paper

  16. Solar cell shingle

    NASA Technical Reports Server (NTRS)

    Forestieri, A. F.; Ratajczak, A. F.; Sidorak, L. G. (Inventor)

    1977-01-01

    A solar cell shingle was made of an array of solar cells on a lower portion of a substantially rectangular shingle substrate made of fiberglass cloth or the like. The solar cells may be encapsulated in flourinated ethylene propylene or some other weatherproof translucent or transparent encapsulant to form a combined electrical module and a roof shingle. The interconnected solar cells were connected to connectors at the edge of the substrate through a connection to a common electrical bus or busses. An overlap area was arranged to receive the overlap of a cooperating similar shingle so that the cell portion of the cooperating shingle may overlie the overlap area of the roof shingle. Accordingly, the same shingle serves the double function of an ordinary roof shingle which may be applied in the usual way and an array of cooperating solar cells from which electrical energy may be collected.

  17. Integrated Phase Array Antenna/Solar Cell System for Flexible Access Communication (IA/SAC)

    NASA Technical Reports Server (NTRS)

    Clark, E. B.; Lee, R. Q.; Pal, A. T.; Wilt, D. M.; McElroy, B. D.; Mueller, C. H.

    2005-01-01

    This paper describes recent efforts to integrate advanced solar cells with printed planar antennas. Several previous attempts have been reported in the literature, but this effort is unique in several ways. It uses Gallium Arsenide (GaAs) multi-junction solar cell technology. The solar cells and antennas will be integrated onto a common GaAs substrate. When fully implemented, IA/SAC will be capable of dynamic beam steering. In addition, this program targets the X-band (8 - 12 GHz) and higher frequencies, as compared to the 2.2 - 2.9 GHz arrays targeted by other organizations. These higher operating frequencies enable a greater bandwidth and thus higher data transfer rates. The first phase of the effort involves the development of 2 x 2 cm GaAs Monolithically Integrated Modules (MIM) with integrated patch antennas on the opposite side of the substrate. Subsequent work will involve the design and development of devices having the GaAs MIMs and the antennas on the same side of the substrate. Results from the phase one efforts will be presented.

  18. Integrating Solar PV in Utility System Operations: Analytical Framework and Arizona Case Study

    SciTech Connect

    Wu, Jing; Botterud, Audun; Mills, Andrew; Zhou, Zhi; Hodge, Bri-Mathias; Mike, Heaney

    2015-06-01

    A systematic framework is proposed to estimate the impact on operating costs due to uncertainty and variability in renewable resources. The framework quantifies the integration costs associated with subhourly variability and uncertainty as well as day-ahead forecasting errors in solar PV (photovoltaics) power. A case study illustrates how changes in system operations may affect these costs for a utility in the southwestern United States (Arizona Public Service Company). We conduct an extensive sensitivity analysis under different assumptions about balancing reserves, system flexibility, fuel prices, and forecasting errors. We find that high solar PV penetrations may lead to operational challenges, particularly during low-load and high solar periods. Increased system flexibility is essential for minimizing integration costs and maintaining reliability. In a set of sensitivity cases where such flexibility is provided, in part, by flexible operations of nuclear power plants, the estimated integration costs vary between $1.0 and $4.4/MWh-PV for a PV penetration level of 17%. The integration costs are primarily due to higher needs for hour-ahead balancing reserves to address the increased sub-hourly variability and uncertainty in the PV resource. (C) 2015 Elsevier Ltd. All rights reserved.

  19. A Roof for ALMA

    NASA Astrophysics Data System (ADS)

    2007-03-01

    On 10 March, an official ceremony took place on the 2,900m high site of the Atacama Large Millimeter/submillimeter Array (ALMA) Operations Support Facility, from where the ALMA antennas will be remotely controlled. The ceremony marked the completion of the structural works, while the building itself will be finished by the end of the year. This will become the operational centre of one of the most important ground-based astronomical facilities on Earth. ESO PR Photo 13a/07 ESO PR Photo 13a/07 Cutting the Red Ribbon The ceremony, known as 'Tijerales' in Chile, is the equivalent to the 'roof-topping ceremony' that takes place worldwide, in one form or another, to celebrate reaching the highest level of a construction. It this case, the construction is the unique ALMA Operations Support Facility (OSF), located near the town of San Pedro de Atacama. "The end of this first stage represents an historic moment for ALMA," said Hans Rykaczewski, the European ALMA Project Manager. "Once completed in December 2007, this monumental building of 7,000 square metres will be one of the largest and most important astronomical operation centres in the world." ALMA, located at an elevation of 5,000m in the Atacama Desert of northern Chile, will provide astronomers with the world's most advanced tool for exploring the Universe at millimetre and submillimetre wavelengths. ALMA will detect fainter objects and be able to produce much higher-quality images at these wavelengths than any previous telescope system. The OSF buildings are designed to suit the requirements of this exceptional observatory in a remote, desert location. The facility, which will host about 100 people during operations, consists of three main buildings: the technical building, hosting the control centre of the observatory, the antenna assembly building, including four antenna foundations for testing and maintenance purposes, and the warehouse building, including mechanical workshops. Further secondary buildings are

  20. Experiments and simulations on a thermosyphon solar collector with integrated storage

    NASA Astrophysics Data System (ADS)

    Toninelli, P.; Mariani, A.; Del, D., Col

    2015-11-01

    This paper deals with the thermal behaviour of a new type of flat solar collector that integrates the fluid storage tank. Often the main limitation of the solar thermosyphon installations is the prohibition to adopt external storage tanks due to their impact, especially for historical centres of particular architectural significance. To avoid this issue, a new system, that includes the collector and the storage, has been developed. This new apparatus works as a thermosyphon: it is possible to take advantage of the natural convection to avoid using a pump. Experimental tests have been conducted in such a collector with and without the absorbing plate. Furthermore, CFD simulations are reported to analyze in detail the dynamic thermal performance of the innovative solar collector and a good-agreement with the experimental tests has been found. Finally, both in numerical simulations and in experimental data the thermosyphon effect has been verified, obtaining the desired water temperature for domestic applications.

  1. Integrated three-dimensional photonic nanostructures for achieving near-unity solar absorption and superhydrophobicity

    NASA Astrophysics Data System (ADS)

    Kuang, Ping; Hsieh, Mei-Li; Lin, Shawn-Yu

    2015-06-01

    In this paper, we proposed and realized 3D photonic nanostructures consisting of ultra-thin graded index antireflective coatings (ARCs) and woodpile photonic crystals. The use of the integrated ARC and photonic crystal structure can achieve broadband, broad-angle near unity solar absorption. The amorphous silicon based photonic nanostructure experimentally shows an average absorption of ˜95% for λ = 400-620 nm over a wide angular acceptance of θ = 0°-60°. Theoretical studies show that a Gallium Arsenide (GaAs) based structure can achieve an average absorption of >95% for λ = 400-870 nm. Furthermore, the use of the slanted SiO2 nanorod ARC surface layer by glancing angle deposition exhibits Cassie-Baxter state wetting, and superhydrophobic surface is obtained with highest water contact angle θCB ˜ 153°. These properties are fundamentally important for achieving maximum solar absorption and surface self-cleaning in thin film solar cell applications.

  2. Intergration of LiDAR Data with Aerial Imagery for Estimating Rooftop Solar Photovoltaic Potentials in City of Cape Town

    NASA Astrophysics Data System (ADS)

    Adeleke, A. K.; Smit, J. L.

    2016-06-01

    Apart from the drive to reduce carbon dioxide emissions by carbon-intensive economies like South Africa, the recent spate of electricity load shedding across most part of the country, including Cape Town has left electricity consumers scampering for alternatives, so as to rely less on the national grid. Solar energy, which is adequately available in most part of Africa and regarded as a clean and renewable source of energy, makes it possible to generate electricity by using photovoltaics technology. However, before time and financial resources are invested into rooftop solar photovoltaic systems in urban areas, it is important to evaluate the potential of the building rooftop, intended to be used in harvesting the solar energy. This paper presents methodologies making use of LiDAR data and other ancillary data, such as high-resolution aerial imagery, to automatically extract building rooftops in City of Cape Town and evaluate their potentials for solar photovoltaics systems. Two main processes were involved: (1) automatic extraction of building roofs using the integration of LiDAR data and aerial imagery in order to derive its' outline and areal coverage; and (2) estimating the global solar radiation incidence on each roof surface using an elevation model derived from the LiDAR data, in order to evaluate its solar photovoltaic potential. This resulted in a geodatabase, which can be queried to retrieve salient information about the viability of a particular building roof for solar photovoltaic installation.

  3. Western Wind and Solar Integration Study Phase 3A: Low Levels of Synchronous Generation

    SciTech Connect

    Miller, Nicholas W.; Leonardi, Bruno; D'Aquila, Robert; Clark, Kara

    2015-11-17

    The stability of the North American electric power grids under conditions of high penetrations of wind and solar is a significant concern and possible impediment to reaching renewable energy goals. The 33% wind and solar annual energy penetration considered in this study results in substantial changes to the characteristics of the bulk power system. This includes different power flow patterns, different commitment and dispatch of existing synchronous generation, and different dynamic behavior from wind and solar generation. The Western Wind and Solar Integration Study (WWSIS), sponsored by the U.S. Department of Energy, is one of the largest regional solar and wind integration studies to date. In multiple phases, it has explored different aspects of the question: Can we integrate large amounts of wind and solar energy into the electric power system of the West? The work reported here focused on the impact of low levels of synchronous generation on the transient stability performance in one part of the region in which wind generation has displaced synchronous thermal generation under highly stressed, weak system conditions. It is essentially an extension of WWSIS-3. Transient stability, the ability of the power system to maintain synchronism among all elements following disturbances, is a major constraint on operations in many grids, including the western U.S. and Texas systems. These constraints primarily concern the performance of the large-scale bulk power system. But grid-wide stability concerns with high penetrations of wind and solar are still not thoroughly understood. This work focuses on 'traditional' fundamental frequency stability issues, such as maintaining synchronism, frequency, and voltage. The objectives of this study are to better understand the implications of low levels of synchronous generation and a weak grid on overall system performance by: 1) Investigating the Western Interconnection under conditions of both high renewable generation (e

  4. Solar Energy Grid Integration Systems -- Energy Storage (SEGIS-ES).

    SciTech Connect

    Hanley, Charles J.; Ton, Dan T.; Boyes, John D.; Peek, Georgianne Huff

    2008-07-01

    This paper describes the concept for augmenting the SEGIS Program (an industry-led effort to greatly enhance the utility of distributed PV systems) with energy storage in residential and small commercial applications (SEGIS-ES). The goal of SEGIS-ES is to develop electrical energy storage components and systems specifically designed and optimized for grid-tied PV applications. This report describes the scope of the proposed SEGIS-ES Program and why it will be necessary to integrate energy storage with PV systems as PV-generated energy becomes more prevalent on the nation's utility grid. It also discusses the applications for which energy storage is most suited and for which it will provide the greatest economic and operational benefits to customers and utilities. Included is a detailed summary of the various storage technologies available, comparisons of their relative costs and development status, and a summary of key R&D needs for PV-storage systems. The report concludes with highlights of areas where further PV-specific R&D is needed and offers recommendations about how to proceed with their development.

  5. Sloped Roof Conversions for Small, Flat-Roof Buildings.

    DTIC Science & Technology

    1984-12-01

    Stub Column Supporting Beam Above Barrel Vaulte, Case Study No. 6a 49 41 View of Trusses Being Erected, Case Study No. 6a 50 6 wVCv Mim^^^m&^&mä...basic systems: roof trusses , post and beam , and conventional framing (rafters and joists) (Figure 2). Each of these systems has distinct advantages...choice. Similarly, where the clear span exceeds the capacity of conventional framing, trusses would be required. Post and Beam Method Another type of

  6. Building-Integrated Solar Energy Devices based on Wavelength Selective Films

    NASA Astrophysics Data System (ADS)

    Ulavi, Tejas

    A potentially attractive option for building integrated solar is to employ hybrid solar collectors which serve dual purposes, combining solar thermal technology with either thin film photovoltaics or daylighting. In this study, two hybrid concepts, a hybrid photovoltaic/thermal (PV/T) collector and a hybrid 'solar window', are presented and analyzed to evaluate technical performance. In both concepts, a wavelength selective film is coupled with a compound parabolic concentrator (CPC) to reflect and concentrate the infrared portion of the solar spectrum onto a tubular absorber. The visible portion of the spectrum is transmitted through the concentrator to either a thin film Cadmium Telluride (CdTe) solar panel for electricity generation or into the interior space for daylighting. Special attention is given to the design of the hybrid devices for aesthetic building integration. An adaptive concentrator design based on asymmetrical truncation of CPCs is presented for the hybrid solar window concept. The energetic and spectral split between the solar thermal module and the PV or daylighting module are functions of the optical properties of the wavelength selective film and the concentrator geometry, and are determined using a Monte Carlo Ray-Tracing (MCRT) model. Results obtained from the MCRT can be used in conjugation with meteorological data for specific applications to study the impact of CPC design parameters including the half-acceptance angle thetac, absorber diameter D and truncation on the annual thermal and PV/daylighting efficiencies. The hybrid PV/T system is analyzed for a rooftop application in Phoenix, AZ. Compared to a system of the same area with independent solar thermal and PV modules, the hybrid PV/T provides 20% more energy, annually. However, the increase in total delivered energy is due solely to the addition of the thermal module and is achieved at an expense of a decrease in the annual electrical efficiency from 8.8% to 5.8% due to shading by

  7. Modelling unsaturated flow patterns in green roof substrates

    NASA Astrophysics Data System (ADS)

    Palla, Anna; Gnecco, Ilaria; Lanza, Luca G.

    2010-05-01

    The aim of this research is to examine the unsaturated flow within the green roof substrates realized with high conductivity and coarse grained porous media. In order to base our research on experimental evidences, a monitoring program was carried out at University of Genova (Italy). The green roof experimental site was obtained by retrofitting an existing single-layer vegetated roof built in the sixties into a modern technological system fully equipped with sensors for on-site meteorological, hygrometric and flow rate measurements. The drainage and growing substrates are volcanic material mined, blended and graded by Europomice Srl (Grosseto, Italy). These graded porous media are employed in green roof systems for their low bulk density, high porosity and high hydraulic conductivity. The site is equipped with a meteorological station (for rain data, air temperature and humidity, solar radiation and air pressure), four TDR probes for continuous water content monitoring along a vertical profile and a suitable hydraulic device for continuous outflow monitoring. The SWMS - 2D model that solves the Richards' equation for two-dimensional saturated -unsaturated water flow was used to simulate the hydrologic response of the experimental green roof. The model was calibrated and validated using rain events recorded at the experimental site in a one-year monitoring campaign. The calibration and validation events are selected in order to include events representative of the four seasonal conditions characterized by different antecedent dry weather periods and consequently different initial soil water content distributions. The calibration and validation strategy involved comparing predicted and measured outflow hydrographs. The mechanistic model, here employed to describe the variably saturated flow within the thin stratigraphy of a green roof, is based on a single porosity approach and is demonstrated to suitably describe both the outflow hydrograph and the water content

  8. Development of an integrated heat pipe-thermal storage system for a solar receiver

    SciTech Connect

    Keddy, E.S.; Sena, J.T.; Merrigan, M.A.; Heidenreich, G.; Johnson, S.

    1987-01-01

    The Organic Rankine Cycle (ORC) Solar Dynamic Power System (SDPS) is one of the candidates for Space Station prime power application. In the low earth orbit of the Space Station approximately 34 minutes of the 94-minute orbital period is spent in eclipse with no solar energy input to the power system. For this period the SDPS will use thermal energy storage (TES) material to provide a constant power output. Sundstrand Corporation is developing a ORC-SDPS candidate for the Space Station that uses toluene as the organic fluid and LiOH as the TES material. An integrated heat-pipe thermal storage receiver system is being developed as part of the ORC-SDPS solar receiver. This system incorporates potassium heat pipe elements to absorb and transfer the solar energy within the receiver cavity. The heat pipes contain the TES canisters within the potassium vapor space with the toluene heater tube used as the condenser region of the heat pipe. During the insolation period of the earth orbit, solar energy is delivered to the heat pipe in the ORC-SDPS receiver cavity. The heat pipe transforms the non-uniform solar flux incident in the heat pipe surface within the receiver cavity to an essentially uniform flux at the potassium vapor condensation interface in the heat pipe. During solar insolation, part of the thermal energy is delivered to the heater tube and the balance is stored in the TES units. During the eclipse period of the orbit, the balance stored in the TES units is transferred by the potassium vapor to the toluene heater tube. 3 refs., 8 figs.

  9. Light absorption enhancement in heterostructure organic solar cells through the integration of 1-D plasmonic gratings.

    PubMed

    Zilio, Pierfrancesco; Sammito, Davide; Zacco, Gabriele; Mazzeo, Marco; Gigli, Giuseppe; Romanato, Filippo

    2012-07-02

    The integration of a plasmonic lamellar grating in a heterostructure organic solar cell as a light trapping mechanism is investigated with numerical Finite Elements simulations. A global optimization of all the geometric parameters has been performed. The obtained wide-band enhancement in optical absorption is correlated with both the propagating and the localized plasmonic modes of the structure, which have been identified and characterized in detail.

  10. Self drying roofs: What! No dripping!

    SciTech Connect

    Desjarlais, A.

    1995-12-31

    Many roofs are replaced because water accumulates in portions of the roofing system.These accumulations can cause dripping, accelerated membrane failure, poor thermal performance, the threat of structural decay, and the depreciation of building assets. Traditionally, the roofing industry has been concerned with controlling the inflow of water into the roof. An example of this strategy would be the development of a more reliable membrane. However, roof membranes inevitably leak. For this reason, the roof design strategy of the future must be concerned with controlling water outflow. The requirements of this type of roof system are described. Under normal operating conditions (no leaks), the total moisture content of a self-drying roof system shall not increase with time and condensation shall not occur under the membrane during winter uptake. Moisture vapor movement by convection must be eliminated and the flow of water by gravity through imperfections in the roof system must be controlled. After a leak has occurred, no condensation on the upper surface of the deck shall be tolerated and the water introduced by the leak must be dissipated to the building interior in a minimum amount of time. Finite difference computer modeling is used to demonstrate the effectiveness of the design. The impact of deck and insulation permeance, climate, leaks, and wintertime water uptake are simulated. A database of simulations is qualitatively described; this database will be used in future work to produce a simplified means of assessing the design parameters of a self-drying roof system.

  11. NREL Confirms Large Potential for Grid Integration of Wind, Solar Power (Fact Sheet)

    SciTech Connect

    Not Available

    2011-10-01

    To fully harvest the nation's bountiful wind and solar resources, it is critical to know how much electrical power from these renewable resources could be integrated reliably into the grid. To inform the discussion about the potential of such variable sources, the National Renewable Energy Laboratory (NREL) launched two key regional studies, examining the east and west sections of the U.S. power grid. The studies show that it is technically possible for U.S. power systems to integrate 20%-35% renewable electricity if infrastructure and operational improvements can be made.

  12. Integration Costs: Are They Unique to Wind and Solar Energy? Preprint

    SciTech Connect

    Milligan, M.; Hodge, B.; Kirby, B.; Clark, C.

    2012-05-01

    Over the past several years, there has been considerable interest in assessing wind integration costs. This is understandable because wind energy does increase the variability and uncertainty that must be managed on a power system. However, there are other sources of variability and uncertainty that also must be managed in the power system. This paper describes some of these sources and shows that even the introduction of base-load generation can cause additional ramping and cycling. The paper concludes by demonstrating that integration costs are not unique to wind and solar, and should perhaps instead be assessed by power plant and load performance instead of technology type.

  13. Integral glass encapsulation for solar arrays. Quarterly progress report No. 14

    SciTech Connect

    1980-08-01

    This is the fourteenth quarterly report under a JPL/DOE program to develop electrostatic bonding as a method of integral encapsulation of solar cells in glass. Efforts for the current phase of this program are to continue demonstrations of process uniformity of electrostatic bonding encapsulation by production of 24-cell minimodules by ESB. Additional goals of this program are to develop preformed (wire-mesh) contacts as a method of integrating cell processing into the encapsulation procedure, resulting in a low-cost module assembly technique, and to investigate low-temperature bonding to commercially available glass (Pyrex) superstrates. Progress is reported.

  14. Final Technical Report: Integrated Distribution-Transmission Analysis for Very High Penetration Solar PV

    SciTech Connect

    Palmintier, Bryan; Hale, Elaine; Hansen, Timothy M.; Jones, Wesley; Biagioni, David; Baker, Kyri; Wu, Hongyu; Giraldez, Julieta; Sorensen, Harry; Lunacek, Monte; Merket, Noel; Jorgenson, Jennie; Hodge, Bri-Mathias

    2016-01-29

    Transmission and distribution simulations have historically been conducted separately, echoing their division in grid operations and planning while avoiding inherent computational challenges. Today, however, rapid growth in distributed energy resources (DERs)--including distributed generation from solar photovoltaics (DGPV)--requires understanding the unprecedented interactions between distribution and transmission. To capture these interactions, especially for high-penetration DGPV scenarios, this research project developed a first-of-its-kind, high performance computer (HPC) based, integrated transmission-distribution tool, the Integrated Grid Modeling System (IGMS). The tool was then used in initial explorations of system-wide operational interactions of high-penetration DGPV.

  15. An Integrated Device View on Photo-Electrochemical Solar-Hydrogen Generation.

    PubMed

    Modestino, Miguel A; Haussener, Sophia

    2015-01-01

    Devices that directly capture and store solar energy have the potential to significantly increase the share of energy from intermittent renewable sources. Photo-electrochemical solar-hydrogen generators could become an important contributor, as these devices can convert solar energy into fuels that can be used throughout all sectors of energy. Rather than focusing on scientific achievement on the component level, this article reviews aspects of overall component integration in photo-electrochemical water-splitting devices that ultimately can lead to deployable devices. Throughout the article, three generalized categories of devices are considered with different levels of integration and spanning the range of complete integration by one-material photo-electrochemical approaches to complete decoupling by photovoltaics and electrolyzer devices. By using this generalized framework, we describe the physical aspects, device requirements, and practical implications involved with developing practical photo-electrochemical water-splitting devices. Aspects reviewed include macroscopic coupled multiphysics device models, physical device demonstrations, and economic and life cycle assessments, providing the grounds to draw conclusions on the overall technological outlook.

  16. Solar Electric Propulsion System Integration Technology (SEPSIT). Volume 2: Encke rendezvous mission and space vehicle functional description

    NASA Technical Reports Server (NTRS)

    Gardner, J. A.

    1972-01-01

    A solar electric propulsion system integration technology study is discussed. Detailed analyses in support of the solar electric propulsion module were performed. The thrust subsystem functional description is presented. The space vehicle and the space mission to which the propulsion system is applied are analyzed.

  17. Development towards cell-to-cell monolithic integration of a thin-film solar cell and lithium-ion accumulator

    NASA Astrophysics Data System (ADS)

    Agbo, Solomon N.; Merdzhanova, Tsvetelina; Yu, Shicheng; Tempel, Hermann; Kungl, Hans; Eichel, Rüdiger-A.; Rau, Uwe; Astakhov, Oleksandr

    2016-09-01

    This work focuses on the potentials of monolithic integrated thin-film silicon solar cell and lithium ion cell in a simple cell-to-cell integration without any control electronics as a compact power solution for portable electronic devices. To demonstrate this we used triple-junction thin-film silicon solar cell connected directly to a lithium ion battery cell to charge the battery and in turn discharge the battery through the solar cell. Our results show that with appropriate voltage matching the solar cell provides efficient charging for lab-scale lithium ion storage cell. Despite the absence of any control electronics the discharge rate of the Li-ion cell through the non-illuminated solar cell can be much lower than the charging rate when the current voltage (IV) characteristics of the solar cell is matched properly to the charge-discharge characteristics of the battery. This indicates good sustainability of the ultimately simple integrated device. At the maximum power point, solar energy-to-battery charging efficiency of 8.5% which is nearly the conversion efficiency of the solar cell was obtained indicating potential for loss-free operation of the photovoltaic (PV)-battery integration. For the rest of the charging points, an average of 8.0% charging efficiency was obtained.

  18. EVALUATION OF ROOF BOLTING REQUIREMENTS BASED ON IN-MINE ROOF BOLTER DRILLING

    SciTech Connect

    Syd S. Peng

    2001-10-15

    Roof bolting is the most popular method for underground openings in the mining industry, especially in the bedded deposits such as coal, potash, salt etc. In fact, all U.S. underground coal mine entries are roof-bolted as required by law. However, roof falls still occur frequently in the roof bolted entries. The two possible reasons are: the lack of knowledge of and technology to detect the roof geological conditions in advance of mining, and lack of roof bolting design criteria for modern roof bolting systems. This research is to develop a method for predicting the roof geology and stability condition in real time during roof bolting operation. Based on such information, roof bolting design criteria for modern roof bolting systems will be developed for implementation in real time. The retrofitting works for a dedicated roof bolter for this research has been completed. The laboratory tests performed using this machine on simulated roof blocks have been conducted. The analysis performed on the testing data showed promising signs to detect the rock interface, fractures, as well as the rock types. The other tasks were progressing as planned.

  19. EVALUATION OF ROOF BOLTING REQUIREMENTS BASED ON IN-MINE ROOF BOLTER DRILLING

    SciTech Connect

    Syd S. Peng

    2001-07-15

    Roof bolting is the most popular method for underground openings in the mining industry, especially in the bedded deposits such as coal, potash, salt etc. In fact, all U.S. underground coal mine entries are roof-bolted as required by law. However, roof falls still occur frequently in the roof bolted entries. The two possible reasons are: the lack of knowledge of and technology to detect the roof geological conditions in advance of mining, and lack of roof bolting design criteria for modern roof bolting systems. This research is to develop a method for predicting the roof geology and stability condition in real time during roof bolting operation. Based on such information, roof bolting design criteria for modern roof bolting systems will be developed for implementation in real time. In this quarter, retrofitting work to build a dedicated roof bolter for this research has been started. A number of numerical methods have been developed to improve the quality of and to analyze the collected drilling parameters. Finite element modeling of roof bolting mechanism is continuing.

  20. Solar energy assessment in the Alpine area: satellite data and ground instruments integration for studying the radiative forcing of aerosols.

    NASA Astrophysics Data System (ADS)

    Castelli, M.; Petitta, M.; Emili, E.

    2012-04-01

    The primary objective of this work is to purpose an approach for estimating the effect of aerosols on surface incoming shortwave radiation (SIS) in the Alpine region, which is based on the integration of different instruments: we develop a GIS model, whose output is corrected by monthly atmospheric coefficients, and then we progressively add details by daily updated atmospheric information. The assessment of solar energy availability at the earth's surface over a specific geographic area is crucial for planning photovoltaic panels installation. When modeling SIS with GIS instruments or retrieving it from satellites measurements, we have to account for terrain shadowing and atmospheric extinction, both of which are difficult to describe in the Alpine area, because of the topographic complexity and the local atmospheric circulation influence on the atmospheric composition. While advanced methods were developed to carefully describe the effect of topography, the atmospheric attenuation was considered so far only through monthly turbidity values, and the question remains whether it be possible to develop a time-effective routine to model the atmospheric effect on SIS at daily scale. As a first step we produced a WebGIS for the town of Bressanone, Italy, showing a classification of the roofs of the buildings according to the yearly amount of global irradiance. Furthermore we provide the annual electricity production based on the efficiency of the most common PV technologies. At this stage clear sky irradiance was computed with a GIS based model, and afterwards monthly correction coefficients were applied to add real sky conditions to the merely geometrical computations, which were obtained from 20 years of measurement collected by the pyranometer in the closest meteorological station. As a second step we investigate the influence of aerosol optical properties on SIS by running the radiative transfer model libRadtran by using as input the aerosol model defined for the

  1. Testing of a Receiver-Absorber-Converter (RAC) for the Integrated Solar Upper Stage (ISUS) program

    NASA Astrophysics Data System (ADS)

    Westerman, Kurt O.; Miles, Barry J.

    1998-01-01

    The Integrated Solar Upper Stage (ISUS) is a solar bi-modal system based on a concept developed by Babcock & Wilcox in 1992. ISUS will provide advanced power and propulsion capabilities that will enable spacecraft designers to either increase the mass to orbit or decrease the cost to orbit for their satellites. In contrast to the current practice of using chemical propulsion for orbit transfer and photovoltaic conversion/battery storage for electrical power, ISUS uses a single collection, storage, and conversion system for both the power and propulsion functions. The ISUS system is currently being developed by the Air Force's Phillips Laboratory. The ISUS program consists of a systems analysis, design, and integration (SADI) effort, and three major sub-system development efforts: the Concentrator Array and Tracking (CATS) sub-system which tracks the sun and collects/focuses the energy; the Receiver-Absorber-Converter (RAC) sub-system which receives and stores the solar energy, transfers the stored energy to the propellant during propulsion operations, and converts the stored energy to electricity during power operations; and the Cryogenic Storage and Propellant Feed Sub-system (CSPFS) which stores the liquid hydrogen propellant and provides it to the RAC during propulsion operations. This paper discuses the evolution of the RAC sub-system as a result of the component level testing, and provides the initial results of systems level ground testing. A total of 5 RACs were manufactured as part of the Phillips Laboratory ISUS Technology Development program. The first series of component tests were carried out at the Solar Rocket Propulsion Laboratory at Edwards AFB, California. These tests provided key information on the propulsion mode of operations. The second series of RAC tests were performed at the Thermionic Evaluation Facility (TEF) in Albuquerque, New Mexico and provided information on the electrical performance of the RAC. The systems level testing was

  2. The Solar Surface Differential Rotation from Disk-Integrated Chromospheric Fluxes

    NASA Astrophysics Data System (ADS)

    Donahue, Robert A.; Keil, Steven L.

    1995-06-01

    Disk-integrated solar chromospheric Ca ii K-line (3933.68 Å) fluxes have been measured almost daily at Sacramento Peak Observatory since 1977. Using observing windows selected to mimic seasonal windows for chromospheric measurements of lower Main-Sequence stars such as those observed by Mount Wilson Observatory's HK Project, we have measured the solar rotation from the modulation of the Ca ii K-line flux. We track the change of rotation period from the decline of cycle 21 through the maximum of cycle 22. This variation in rotation period is shown to behave as expected from the migration of active regions in latitude according to Maunder's ‘butterfly diagram’, including an abrupt change in rotation period at the transition from cycle 21 to cycle 22. These results indicate the successful detection of solar surface differential rotation from disk-integrated observations. We argue that the success of our study compared to previous investigations of the solar surface differential rotation from disk-integrated fluxes lies primarily with the choice of the length of the time-series window. Our selection of 200 days is shorter than in previous studies whose windows are typically on the order of one year. The 200-day window is long enough to permit an accurate determination of the rotation period, yet short enough to avoid complications arising from active region evolution. Thus, measurements of the variation of rotation period in lower Main-Sequence stars, especially those that appear to be correlated with long-term changes in chromospheric activity (i.e., cycles), are probably evidence for stellar surface differential rotation.

  3. Solar Ready: An Overview of Implementation Practices

    SciTech Connect

    Watson, A.; Guidice, L.; Lisell, L.; Doris, L.; Busche, S.

    2012-01-01

    This report explores three mechanisms for encouraging solar ready building design and construction: solar ready legislation, certification programs for solar ready design and construction, and stakeholder education. These methods are not mutually exclusive, and all, if implemented well, could contribute to more solar ready construction. Solar ready itself does not reduce energy use or create clean energy. Nevertheless, solar ready building practices are needed to reach the full potential of solar deployment. Without forethought on incorporating solar into design, buildings may be incompatible with solar due to roof structure or excessive shading. In these cases, retrofitting the roof or removing shading elements is cost prohibitive. Furthermore, higher up-front costs due to structural adaptations and production losses caused by less than optimal roof orientation, roof equipment, or shading will lengthen payback periods, making solar more expensive. With millions of new buildings constructed each year in the United States, solar ready can remove installation barriers and increase the potential for widespread solar adoption. There are many approaches to promoting solar ready, including solar ready legislation, certification programs, and education of stakeholders. Federal, state, and local governments have the potential to implement programs that encourage solar ready and in turn reduce barriers to solar deployment. With the guidance in this document and the examples of jurisdictions and organizations already working to promote solar ready building practices, federal, state, and local governments can guide the market toward solar ready implementation.

  4. Habitat connectivity and local conditions shape taxonomic and functional diversity of arthropods on green roofs.

    PubMed

    Braaker, Sonja; Obrist, Martin Karl; Ghazoul, Jaboury; Moretti, Marco

    2017-05-01

    by specific trait assemblages. The study also provides details on the environmental conditions that influence arthropod diversity and gives new perspectives on how the design of green roofs can be improved to increase their ecological value. Furthermore, the study highlights the importance of integrating green roofs in planning policies which aim to enhance urban habitat connectivity.

  5. Short-term solar flare prediction using multi-model integration method

    NASA Astrophysics Data System (ADS)

    Liu, Jin-Fu; Li, Fei; Wan, Jie; Yu, Da-Ren

    2017-03-01

    A multi-model integration method is proposed to develop a multi-source and heterogeneous model for short-term solar flare prediction. Different prediction models are constructed on the basis of extracted predictors from a pool of observation databases. The outputs of the base models are normalized first because these established models extract predictors from many data resources using different prediction methods. Then weighted integration of the base models is used to develop a multi-model integrated model (MIM). The weight set that single models assign is optimized by a genetic algorithm. Seven base models and data from Solar and Heliospheric Observatory/Michelson Doppler Imager longitudinal magnetograms are used to construct the MIM, and then its performance is evaluated by cross validation. Experimental results showed that the MIM outperforms any individual model in nearly every data group, and the richer the diversity of the base models, the better the performance of the MIM. Thus, integrating more diversified models, such as an expert system, a statistical model and a physical model, will greatly improve the performance of the MIM.

  6. 29 CFR 570.67 - Occupations in roofing operations and on or about a roof (Order 16).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 3 2011-07-01 2011-07-01 false Occupations in roofing operations and on or about a roof... Health or Well-Being § 570.67 Occupations in roofing operations and on or about a roof (Order 16). (a... roof are particularly hazardous for the employment of minors between 16 and 18 years of age...

  7. 29 CFR 570.67 - Occupations in roofing operations and on or about a roof (Order 16).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 3 2010-07-01 2010-07-01 false Occupations in roofing operations and on or about a roof... Health or Well-Being § 570.67 Occupations in roofing operations and on or about a roof (Order 16). (a... roof are particularly hazardous for the employment of minors between 16 and 18 years of age...

  8. An innovative integrated system utilizing solar energy as power for the treatment of decentralized wastewater.

    PubMed

    Han, Changfu; Liu, Junxin; Liang, Hanwen; Guo, Xuesong; Li, Lin

    2013-02-01

    This article reports an innovative integrated system utilizing solar energy as power for decentralized wastewater treatment, which consists of an oxidation ditch with double channels and a photovoltaic (PV) system without a storage battery. Because the system operates without a storage battery, which can reduce the cost of the PV system, the solar radiation intensity affects the amount of power output from the PV system. To ensure that the power output is sufficient in all different weather conditions, the solar radiation intensity of 78 W/m2 with 95% confidence interval was defined as a threshold of power output for the PV system according to the monitoring results in this study, and a step power output mode was used to utilize the solar energy as well as possible. The oxidation ditch driven by the PV system without storage battery ran during the day and stopped at night. Therefore, anaerobic, anoxic and aerobic conditions could periodically appear in the oxidation ditch, which was favorable to nitrogen and phosphate removal from the wastewater. The experimental results showed that the system was efficient, achieving average removal efficiencies of 88% COD, 98% NH4+-N, 70% TN and 83% TP, under the loading rates of 140 mg COD/(g MLSS x day), 32 mg NH4+-N/(g MLSS x day), 44 mg TN/(g MLSS x day) and 5 mg TP/(g MLSS x day).

  9. The synergistic effect of nanocrystal integration and process optimization on solar cell efficiency.

    PubMed

    Ren, Liqiang; Wang, Shiren; Holtz, Mark; Qiu, Jingjing

    2012-02-24

    This paper investigates the roles of semiconducting single-walled carbon nanotubes (SWNTs) and metallic SWNTs in the SWNT/poly(3-hexylthiophene) (P3HT)-based photovoltaic conversion system. SWNTs containing different fractions of semiconducting nanotubes were conjugated with P3HT by virtue of π-π interaction. The energy transfer and carrier transport mechanisms in the photovoltaic composites were experimentally investigated by optical absorption spectroscopy, photoluminescence spectroscopy and carrier mobility measurements. At low loading of SWNTs, a high percentage of semiconducting nanotubes result in diminished non-radiative decay of exciton and lower carrier mobility, causing higher open circuit voltage and lower photocurrent. At an optimized morphology, SWNT/P3HT/phenyl-C61-butyric acid methyl ester (PCBM) hybrid-based solar cells demonstrated much higher photocurrent than a reference solar cell (P3HT:PCBM) due to the improved carrier mobility. Further thermal annealing of the devices significantly increased the open circuit voltage to 610 mV, resulting in an 80% increase of power conversion efficiency in comparison to the reference solar cell. These results are expected to lay a foundation for the integration of various nanocrystals into solar cells for efficient photovoltaic conversion.

  10. The synergistic effect of nanocrystal integration and process optimization on solar cell efficiency

    NASA Astrophysics Data System (ADS)

    Ren, Liqiang; Wang, Shiren; Holtz, Mark; Qiu, Jingjing

    2012-02-01

    This paper investigates the roles of semiconducting single-walled carbon nanotubes (SWNTs) and metallic SWNTs in the SWNT/poly(3-hexylthiophene) (P3HT)-based photovoltaic conversion system. SWNTs containing different fractions of semiconducting nanotubes were conjugated with P3HT by virtue of π-π interaction. The energy transfer and carrier transport mechanisms in the photovoltaic composites were experimentally investigated by optical absorption spectroscopy, photoluminescence spectroscopy and carrier mobility measurements. At low loading of SWNTs, a high percentage of semiconducting nanotubes result in diminished non-radiative decay of exciton and lower carrier mobility, causing higher open circuit voltage and lower photocurrent. At an optimized morphology, SWNT/P3HT/phenyl-C61-butyric acid methyl ester (PCBM) hybrid-based solar cells demonstrated much higher photocurrent than a reference solar cell (P3HT:PCBM) due to the improved carrier mobility. Further thermal annealing of the devices significantly increased the open circuit voltage to 610 mV, resulting in an 80% increase of power conversion efficiency in comparison to the reference solar cell. These results are expected to lay a foundation for the integration of various nanocrystals into solar cells for efficient photovoltaic conversion.

  11. JSUS solar thermal thruster and its integration with thermionic power converter

    NASA Astrophysics Data System (ADS)

    Shimizu, Morio; Eguchi, Kunihisa; Itoh, Katsuya; Sato, Hitoshi; Fujii, Tadayuki; Okamoto, Ken-Ichi; Igarashi, Tadashi

    1998-01-01

    This paper describes solar heating test results of a single crystal Mo thruster of solar thermal propulsion (STP) with super high-temperature brazing of Mo/Ru for hydrogen-gas sealing, using the paraboloidal concentrator of 1.6 m diameter newly installed in NAL in the Japan Solar Upper Stage (JSUS) research program. The designed thruster has a target Isp about 800 sec for 2,250 K or higher temperatures of hydrogen propellant. Additionally, tungsten CVD-coating was applied to a outer surface of the thruster in order to prevent vaporization of the wall material and Mo/Ru under the condition of high temperature over 2,500K and high vacuum. Also addressed in our paper is solar thermionic power module design for the integration with the STP receiver. The thermionic converter (TIC) module is of a planar type in a Knudsen-mode operation and provides a high conversion efficiency of 23% at the TIC emitter temperature of nearly 1,850 K for a heat input flux of 24 W/cm2.

  12. Integrated Orbit, Attitude, and Structural Control Systems Design for Space Solar Power Satellites

    NASA Technical Reports Server (NTRS)

    Wie, Bong; Roithmayr, Carlos M.

    2001-01-01

    The major objective of this study is to develop an integrated orbit, attitude, and structural control systems architecture for very large Space Solar Power Satellites (SSPS) in geosynchronous orbit. This study focuses on the 1.2-GW Abacus SSPS concept characterized by a 3.2 x 3.2 km solar-array platform, a 500-m diameter microwave beam transmitting antenna, and a 500 x 700 m earth-tracking reflector. For this baseline Abacus SSPS configuration, we derive and analyze a complete set of mathematical models, including external disturbances such as solar radiation pressure, microwave radiation, gravity-gradient torque, and other orbit perturbation effects. The proposed control systems architecture utilizes a minimum of 500 1-N electric thrusters to counter, simultaneously, the cyclic pitch gravity-gradient torque, the secular roll torque caused by an offset of the center-of-mass and center-of-pressure, the cyclic roll/yaw microwave radiation torque, and the solar radiation pressure force whose average value is about 60 N.

  13. Integrated Orbit, Attitude, and Structural Control System Design for Space Solar Power Satellites

    NASA Technical Reports Server (NTRS)

    Woods-Vedeler, Jessica (Technical Monitor); Moore, Chris (Technical Monitor); Wie, Bong; Roithmayr, Carlos

    2001-01-01

    The major objective of this study is to develop an integrated orbit, attitude, and structural control system architecture for very large Space Solar Power Satellites (SSPS) in geosynchronous orbit. This study focuses on the 1.2-GW Abacus SSPS concept characterized by a 3.2 x 3.2 km solar-array platform, a 500-m diameter microwave beam transmitting antenna, and a 500 700 m earth-tracking reflector. For this baseline Abacus SSPS configuration, we derive and analyze a complete set of mathematical models, including external disturbances such as solar radiation pressure, microwave radiation, gravity-gradient torque, and other orbit perturbation effects. The proposed control system architecture utilizes a minimum of 500 1-N electric thrusters to counter, simultaneously, the cyclic pitch gravity-gradient torque, the secular roll torque caused by an o.set of the center-of-mass and center-of-pressure, the cyclic roll/yaw microwave radiation torque, and the solar radiation pressure force whose average value is about 60 N.

  14. Orbital dystopia due to orbital roof defect.

    PubMed

    Rha, Eun Young; Joo, Hong Sil; Byeon, Jun Hee

    2013-01-01

    We performed a retrospective review of patients who presented with delayed dystopia as a consequence of an orbital roof defect due to fractures and nontraumatic causes to search for a correlation between orbital roof defect size and surgical indications for the treatment thereof. Retrospective analyses were performed in 7 patients, all of whom presented with delayed dystopia due to orbital roof defects, between January 2001 and June 2011. The causes of orbital roof defects were displaced orbital roof fractures (5 cases), tumor (1 case), and congenital sphenoid dysplasia (1 case). All 7 patients had initially been treated conservatively and later presented with significant dystopia. The sizes of the defects were calculated on computed tomographic scans. Among the 7 patients, aspiration of cerebrospinal fluid, which caused ocular symptoms, in 1 patient with minimal displaced orbital roof and reconstruction with calvarial bone, titanium micromesh, or Medpor in 6 other patients were performed. The minimal size of the orbital roof in patients who underwent orbital roof reconstruction was 1.2 cm (defect height) x 1.0 cm (defect length), 0.94 cm(2). For all patients with orbital dystopia, displacement of the globe was corrected without any complications, regardless of whether the patient was evaluated grossly or by radiology. In this retrospective study, continuous monitoring of clinical signs and active surgical management should be considered for cases in which an orbital roof defect is detected, even if no definite symptoms are noted, to prevent delayed sequelae.

  15. Development of integral coating for solar cell modules. Final report, February 1985-September 1986

    SciTech Connect

    Adams, C.D.

    1986-12-01

    A process was developed by which integral solar cell covers (ISCC's) can be applied directly to the front surface of solar cell modules. The covers are a codeposited mixture of silica and alumina. The tensile-stressed alumina serves to compensate for the compressive stress of the silica. The process by which these covers are applied is Plasma Activated Chemical Vapor Deposition (PACVD) which is a low-temperature CVD process (145 C). The process utilizes the OCLI-proprietary Plasma Activated Source (PAS) to generate activated oxygen species to simultaneously oxidize silane and trimethylaluminum (TMA) to form silica and alumina on the substrate surface. By adjusting the reactant flow rates, the codeposited cover stress can be adjusted to quite low stress levels, typically zero to three kpsi. Besides serving to protect the junction of the solar cells from particle damage, the cover may also serve as an electrical insulator in high-voltage array applications. Tests as to the effectiveness of the integral cover as an insulator will be performed in the future by the Air Force. A significant advantage of ISCC's over conventional covers is that the minimum degradation temperature of the assembly is significantly increased by elimination of the adhesive used to bond the conventional covers. In this project, four ISCC modules were delivered: two for the Interaction Measurements Payload for Shuttle (IMPS)/Photovoltaic Array Space Power (PASP) project and two for a Living Plume Shield III (LIPS III) project.

  16. The Effects of Roof Membrane Color on Moisture Accumulation in Low-slope Commercial Roof Systems

    SciTech Connect

    Kehrer, Manfred

    2011-01-01

    The use of highly reflective roof membrane systems is being promoted and in some cases required in energy codes and green building codes and standards. Highly reflective membranes, which typically are light in color, have demonstrated reduced overall energy consumption in cooling dominated climate. These membranes also are theorized to reduce the heat island effect. Concern has been expressed about using highly reflective roof membrane systems in cool to cold climate zones because they potentially increase moisture accumulation in roof systems. Roof membranes are vapor retarders. The theory is that highly reflective membranes reflect the heat that could enter the roof assembly, potentially providing a condensing surface on the cold side of the roof assembly during winter months. The other concern is that roof systems using highly reflective membranes will not get hot enough during the summer months to dry out moisture that may have condensed or otherwise entered the roof assembly. This study focuses on mechanically attached, highly reflective, single-ply roof systems installed on low-slope (less than 2:12) structures in cool to cold climate zones. Three sources of data are considered when determining the moisture accumulation potential of these systems. 1.Test roof cuts taken during the winter months 2.Modeling data from a building envelope model specifically designed to evaluate moisture accumulation 3.Data from previous studies to determine the effects of roof membrane color on the drying rate of low-slope roof assemblies

  17. 40 CFR 65.43 - Fixed roof with an internal floating roof (IFR).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... floating roof shall be equipped with a closure device between the wall of the storage vessel and the floating roof edge and shall consist of one of the following devices: (i) A liquid-mounted seal. (ii) A... 40 Protection of Environment 15 2010-07-01 2010-07-01 false Fixed roof with an internal...

  18. EVALUATION OF ROOF BOLTING REQUIREMENTS BASED ON IN-MINE ROOF BOLTER DRILLING

    SciTech Connect

    Syd S. Peng

    2003-07-15

    Roof bolting is the most popular method for underground openings in the mining industry, especially in the bedded deposits such as coal, potash, salt etc. In fact, all U.S. underground coal mine entries are roof-bolted as required by law. However, roof falls still occur frequently in the roof bolted entries. The two possible reasons are: the lack of knowledge of and technology to detect the roof geological conditions in advance of mining, and lack of roof bolting design criteria for modern roof bolting systems. This research is to develop a method for predicting the roof geology and stability condition in real time during roof bolting operation. Based on such information, roof bolting design criteria for modern roof bolting systems will be developed for implementation in real time. In this quarter, the field, theoretical and programming works have been performed toward achieving the research goals set in the proposal. The selected site and the field testing plan enabled us to test all three aspects of roof geological features. The development of the data interpretation methodologies and the geology mapping computer program have also been preceding well.

  19. Study of water infiltration in a lightweight green roof substrate

    NASA Astrophysics Data System (ADS)

    Tomankova, Klara; Holeckova, Martina; Jelinkova, Vladimira; Snehota, Michal

    2015-04-01

    Green roofs have a positive impact on the environment (e.g. improving microclimate and air quality in cities, reducing solar absorbance and storm water). A laboratory infiltration experiment was conducted on the narrow flume serving as 2D vertical model of a green roof. The lightweight Optigreen substrate Type M was used (depth of 20 cm). The front wall of the flume was transparent and inspected by digital camera. The experiment was designed to measure pressure head, volumetric water content and calculate water retention in the substrate. Experiment comprised three artificial rainfall intensities with different values of initial water content of the substrate. The experimental results confirmed that green roofs have the ability to retain rainwater and thus have a beneficial effect on reducing runoff. In the experiment with the artificial 10 minutes rainfall event (total precipitation of 29 mm), the air dry substrate retained 95.9 % of precipitation. On the other hand for moist initial condition 4.2 % of precipitations amount was captured in the substrate. Additionally, the analysis of images taken during the experiment confirmed preferential flow and uneven advancement of the wetting front. The research was realized as a part of the University Centre for Energy Efficient Buildings supported by the EU and with financial support from the Czech Science Foundation under project number 14-10455P.

  20. Assessment of the hydrological impacts of green roof: From building scale to basin scale

    NASA Astrophysics Data System (ADS)

    Versini, P.-A.; Ramier, D.; Berthier, E.; de Gouvello, B.

    2015-05-01

    At the building scale, the use of green roof has shown a positive impact on urban runoff (decrease and slow-down in peak discharge, decrease in runoff volume). The present work aims to study whether similar effects are possible at the basin scale and what is the minimum spreading of green runoff needed to observe significant impacts. It is particularly focused on the circumstances of such impacts and how they can contribute to storm water management in urban environment. Based on observations on experimental green roofs, a conceptual model has been developed and integrated into the SWMM urban rainfall-runoff model to reproduce the hydrological behaviour of two different types of green roof. It has been combined with a method defining green roofing scenarios by estimating the maximum roof area that can be covered. This methodology has been applied on a long time series (18 years) to the Châtillon urban basin (Haut-de-Seine county, France) frequently affected by urban flooding. For comparison, the same methodology has been applied at the building scale and a complementary analysis has been conducted to study which hydrometeorological variables may affect the magnitude of these hydrological impacts at both scales. The results show green roofs, when they are widely implemented, can affect urban runoff in terms of peak discharge and volume, and avoid flooding in several cases. Both precipitation - generally accumulated during the whole event- and the initial substrate saturation are likely to have an impact on green roof effects. In this context, the studied green roofs seem useful to mitigate the effects of usual rainfall events but turn out being less helpful for the more severe ones. We conclude that, combined with other infrastructures, green roofs represent an interesting contribution to urban water management in the future.

  1. Grid Integration of Single Stage Solar PV System using Three-level Voltage Source Converter

    NASA Astrophysics Data System (ADS)

    Hussain, Ikhlaq; Kandpal, Maulik; Singh, Bhim

    2016-08-01

    This paper presents a single stage solar PV (photovoltaic) grid integrated power generating system using a three level voltage source converter (VSC) operating at low switching frequency of 900 Hz with robust synchronizing phase locked loop (RS-PLL) based control algorithm. To track the maximum power from solar PV array, an incremental conductance algorithm is used and this maximum power is fed to the grid via three-level VSC. The use of single stage system with three level VSC offers the advantage of low switching losses and the operation at high voltages and high power which results in enhancement of power quality in the proposed system. Simulated results validate the design and control algorithm under steady state and dynamic conditions.

  2. Advancements of the Lightweight Integrated Solar Array and Transceiver (LISA-T) Small Spacecraft System

    NASA Technical Reports Server (NTRS)

    Russell, Tiffany; Martinez, Armando; Boyd, Darren; SanSoucie, Michael; Farmer, Brandon; Schneider, Todd; Fabisinski, Leo; Johnson, Les; Carr, John A.

    2015-01-01

    This paper describes recent advancements of the Lightweight Integrated Solar Array and Transceiver (LISA-T) currently being developed at NASA's Marshall Space Flight Center. The LISA-T array comprises a launch stowed, orbit deployed structure on which thin-film photovoltaic (PV) and antenna devices are embedded. The system provides significant electrical power generation at low weights, high stowage efficiency, and without the need for solar tracking. Leveraging high-volume terrestrial-market PVs also gives the potential for lower array costs. LISA-T is addressing the power starvation epidemic currently seen by many small-scale satellites while also enabling the application of deployable antenna arrays. Herein, an overview of the system and its applications are presented alongside sub-system development progress and environmental testing plans/initial results.

  3. Advancements of the Lightweight Integrated Solar Array and Transceiver (LISA-T) Small Spacecraft System

    NASA Technical Reports Server (NTRS)

    Lockett, Tiffany Russell; Martinez, Armando; Boyd, Darren; SanSouice, Michael; Farmer, Brandon; Schneider, Todd; Laue, Greg; Fabisinski, Leo; Johnson, Les; Carr, John A.

    2015-01-01

    This paper describes recent advancements of the Lightweight Integrated Solar Array and Transceiver (LISA-T) currently being developed at NASA's Marshall Space Flight Center. The LISA-T array comprises a launch stowed, orbit deployed structure on which thin-film photovoltaic (PV) and antenna devices are embedded. The system provides significant electrical power generation at low weights, high stowage efficiency, and without the need for solar tracking. Leveraging high-volume terrestrial-market PVs also gives the potential for lower array costs. LISA-T is addressing the power starvation epidemic currently seen by many small-scale satellites while also enabling the application of deployable antenna arrays. Herein, an overview of the system and its applications are presented alongside sub-system development progress and environmental testing plans.

  4. Lightweight Integrated Solar Array (LISA): Providing Higher Power to Small Spacecraft

    NASA Technical Reports Server (NTRS)

    Johnson, Les; Carr, John; Fabisinski, Leo; Lockett, Tiffany Russell

    2015-01-01

    Affordable and convenient access to electrical power is essential for all spacecraft and is a critical design driver for the next generation of smallsats, including CubeSats, which are currently extremely power limited. The Lightweight Integrated Solar Array (LISA), a concept designed, prototyped, and tested at the NASA Marshall Space Flight Center (MSFC) in Huntsville, Alabama provides an affordable, lightweight, scalable, and easily manufactured approach for power generation in space. This flexible technology has many wide-ranging applications from serving small satellites to providing abundant power to large spacecraft in GEO and beyond. By using very thin, ultraflexible solar arrays adhered to an inflatable or deployable structure, a large area (and thus large amount of power) can be folded and packaged into a relatively small volume.

  5. Benefits of the integrated solar upper stage (ISUS) to commercial space systems

    NASA Astrophysics Data System (ADS)

    Malloy, John; Miles, Barry

    1997-01-01

    The Integrated Solar Upper Stage (ISUS) is a solar thermal system that provides both propulsion and electric power. Using hydrogen as the propellant, ISUS can provide average specific impulses between 750 and 800 seconds. Once in final orbit, the stage uses thermionic diodes to produce electricity for the satellite payload throughout its operating lifetime. Because of its high specific impulse, ISUS can increase the total mass delivered to GEO by any launch vehicle by up to 250%. ISUS can provide benefits to commercial system in lower orbits as well. These orbits are particularly demanding on battery system because of the short orbit periods and the resulting number of battery cycles. Thermal storage in the ISUS receiver can accommodate these cycles without increasing system mass. ISUS also provide more efficient propulsion for station keeping and for separation of satellites when multiple satellites are launched for a single launch vehicle.

  6. Career Directions--Renewable Energy Systems Integrator

    ERIC Educational Resources Information Center

    Fleeman, Stephen R.

    2012-01-01

    Renewable energy systems are beginning to appear everywhere. Solar modules are creating "blue roofs" that convert the energy from the sun into household electricity. Solar thermal systems on roofs can generate hot water. Wind turbines catch breezes to provide even more electricity. Recommendations for saving energy, specifying systems for…

  7. A Subambient Open Roof Surface under the Mid-Summer Sun.

    PubMed

    Gentle, Angus R; Smith, Geoff B

    2015-09-01

    A novel material open to warm air stays below ambient temperature under maximum solar intensities of mid-summer. It is found to be 11 °C cooler than a commercial white cool roof nearby. A combination of specially chosen polymers and a silver thin film yields values near 100% for both solar reflectance, and thermal emittance at infrared wavelengths from 7.9 to 13 μm.

  8. Solar Energy Grid Integration Systems (SEGIS): adding functionality while maintaining reliability and economics

    NASA Astrophysics Data System (ADS)

    Bower, Ward

    2011-09-01

    An overview of the activities and progress made during the US DOE Solar Energy Grid Integration Systems (SEGIS) solicitation, while maintaining reliability and economics is provided. The SEGIS R&D opened pathways for interconnecting PV systems to intelligent utility grids and micro-grids of the future. In addition to new capabilities are "value added" features. The new hardware designs resulted in smaller, less material-intensive products that are being viewed by utilities as enabling dispatchable generation and not just unpredictable negative loads. The technical solutions enable "advanced integrated system" concepts and "smart grid" processes to move forward in a faster and focused manner. The advanced integrated inverters/controllers can now incorporate energy management functionality, intelligent electrical grid support features and a multiplicity of communication technologies. Portals for energy flow and two-way communications have been implemented. SEGIS hardware was developed for the utility grid of today, which was designed for one-way power flow, for intermediate grid scenarios, AND for the grid of tomorrow, which will seamlessly accommodate managed two-way power flows as required by large-scale deployment of solar and other distributed generation. The SEGIS hardware and control developed for today meets existing standards and codes AND provides for future connections to a "smart grid" mode that enables utility control and optimized performance.

  9. Thermal Performance of Vegetative Roofing Systems

    SciTech Connect

    Desjarlais, Andre Omer; Zaltash, Abdolreza; Atchley, Jerald Allen; Ennis, Mike J

    2010-01-01

    Vegetative roofing, otherwise known as green or garden roofing, has seen tremendous growth in the last decade in the United States. The numerous benefits that green roofs provide have helped to fuel their resurgence in industrial and urban settings. There are many environmental and economical benefits that can be realized by incorporating a vegetative roof into the design of a building. These include storm-water retention, energy conservation, reduction in the urban heat island effect, increased longevity of the roofing membrane, the ability of plants to create biodiversity and filter air contaminants, and beautification of the surroundings by incorporating green space. The vegetative roof research project at Oak Ridge National Laboratory (ORNL) was initiated to quantify the thermal performance of various vegetative roofing systems relative to black and white roofs. Single Ply Roofing Institute (SPRI) continued its long-term commitment to cooperative research with ORNL in this project. Low-slope roof systems for this study were constructed and instrumented for continuous monitoring in the mixed climate of East Tennessee. This report summarizes the results of the annual cooling and heating loads per unit area of three vegetative roofing systems with side-by-side comparison to black and white roofing systems as well as a test section with just the growing media without plants. Results showed vegetative roofs reduced heat gain (reduced cooling loads) compared to the white control system due to the thermal mass, extra insulation, and evapo-transpiration associated with the vegetative roofing systems. The 4-inch and tray systems reduced the heat gain by approximately 61%, while the reduction with the 8-inch vegetative roof was found to be approximately 67%. The vegetative roofing systems were more effective in reducing heat gain than in reducing heat losses (heating loads). The reduction in heat losses for the 4-inch and tray systems were found to be approximately 40

  10. Prospects for integrating utility-scale solar photovoltaics and industrial agriculture in the U.S

    NASA Astrophysics Data System (ADS)

    Dahlin, K.; Anderegg, W.; Hernandez, R. R.; Hiza, N.; Johnson, J. E.; Maltais-landry, G.; Wolf, A.; Zimmerman, N. B.

    2011-12-01

    benefits of integrated solar-agricultural systems in different regions and cropping systems.

  11. EVALUATION OF ROOF BOLTING REQUIREMENTS BASED ON IN-MINE ROOF BOLTER DRILLING

    SciTech Connect

    Syd S. Peng

    2002-01-15

    Roof bolting is the most popular method for underground openings in the mining industry, especially in the bedded deposits such as coal, potash, salt etc. In fact, all U.S. underground coal mine entries are roof-bolted as required by law. However, roof falls still occur frequently in the roof bolted entries. The two possible reasons are: the lack of knowledge of and technology to detect the roof geological conditions in advance of mining, and lack of roof bolting design criteria for modern roof bolting systems. This research is to develop a method for predicting the roof geology and stability condition in real time during roof bolting operation. Based on such information, roof bolting design criteria for modern roof bolting systems will be developed for implementation in real time. A new mechanical approach to estimate rock strengths using the acquired drilling parameters has been proposed. This approach takes a number of important factors, that have never been studied in the previous researches, into the considerations. Good results have been shown using the new approach on the testing data.

  12. EVALUATION OF ROOF BOLTING REQUIREMENTS BASED ON IN-MINE ROOF BOLTER DRILLING

    SciTech Connect

    Syd S. Peng

    2002-04-15

    Roof bolting is the most popular method for underground openings in the mining industry, especially in the bedded deposits such as coal, potash, salt etc. In fact, all U.S. underground coal mine entries are roof-bolted as required by law. However, roof falls still occur frequently in the roof bolted entries. The two possible reasons are: the lack of knowledge of and technology to detect the roof geological conditions in advance of mining, and lack of roof bolting design criteria for modern roof bolting systems. This research is to develop a method for predicting the roof geology and stability condition in real time during roof bolting operation. Based on such information, roof bolting design criteria for modern roof bolting systems will be developed for implementation in real time. More laboratory tests have been performed in this quarter. The analysis performed on the testing data showed: (1) abnormal rotational accelerations can be used as the indicator of the rock interfaces, and (2) the sharp drops of drilling thrust and torque agree well with the locations of fractures.

  13. Integrated, Flexible, High-efficiency Solar Cells: Epitaxial Lift-Off GaAs Solar Cells and Enabling Substrate Reuse

    DTIC Science & Technology

    2012-08-01

    Solar   Cells :     Epitaxial  Li>-­‐Off   GaAs   Solar   Cells   and  Enabling...Flexible, High-efficiency Solar Cells : Epitaxial Lift-Off GaAs Solar Cells and Enabling Substrate Reuse 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c...n+- GaAs contact, 0.2 µm n-InGaAlP window, 25 nm p-InGaP BSF, 75 nm n- GaAs emitter, 0.15 µm MBE  Growth  of  Epi-­‐layers Solar

  14. Periodic nanostructures on unpolished substrates and their integration in solar cells.

    PubMed

    Cornago, I; Dominguez, S; Ezquer, M; Rodríguez, M J; Lagunas, A R; Pérez-Conde, J; Rodriguez, R; Bravo, J

    2015-03-06

    We present a novel fabrication process based on laser interference lithography, lift-off and reactive ion etching, which allows us to fabricate periodic nanostructures on photovoltaic substrates with an average root mean square (RMS) roughness of 750 nm. We fabricate nanostructures on unpolished crystalline silicon substrates, which reduces their reflectance 30% as fabricated. When an additional passivation layer is deposited, the light trapping grows, achieving a reflectance reduction of 60%. In addition, we have successfully integrated the nanostructured substrates in silicon wafer-based solar cells following standard processes, achieving a final efficiency of 15.56%.

  15. Roofs--Their Problems and Solutions.

    ERIC Educational Resources Information Center

    Swentkofske, Carl J.

    Most roofs are meant to withstand the elements for a period of 20 years; to achieve this goal, however, school officials must believe in a dedicated maintenance program and sell it to their superiors and school boards. Establishment of a school district roof maintenance program is explained. Job qualifications and training methods for an inhouse…

  16. Metal Roofing in a "Class" by Itself.

    ERIC Educational Resources Information Center

    Nimtz, Paul D.

    1990-01-01

    The structural standing seam roof has the advantages of ease of application, low maintenance, and low life-cycle costs. Explains and illustrates how the system's concealed clip attachments are designed so that the roof panels can expand and contract independently of the insulation. (MLF)

  17. Solar heated office complex--Greenwood, South Carolina

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Report contains thorough docuumentation of project meeting 85 percent of building heat requirements. System uses roof mounted recirculating water solar panels and underground hot water energy storage. Aluminum film reflectors increase total solar flux captured by panels.

  18. Winnebago Tribe Solar Project

    SciTech Connect

    Nieman, Autumn

    2016-02-26

    The strategy of the Solar Project was to reduce fuel use within two years by a roof mounted photovoltaic system. The police/fire building is completely powered by electricity. The renewable energy system we have selected has a power capacity of 23kW and the ability to export 44.3 MWh. We anticipate 32.55% kWh energy savings, an excess of the required 30% reduction, in the building’s total fuel use based on the most current 12 months of data (2012). The solar electric system is a grid-tie, ballast mounted on a flat roof over the police/fire station. The solar electric system includes 280 Watt modules for a nominal total of 22.80 kW. Approximately 84 modules are ballast mounted to the flat roof facing south.

  19. The Abacus/Reflector and Integrated Symmetrical Concentrator: Concepts for Space Solar Power Collection and Transmission

    NASA Technical Reports Server (NTRS)

    Carrington, Connie; Fikes, John; Gerry, Mark; Perkinson, Don

    2000-01-01

    New energy sources are vital for the development of emerging nations, and the growth of industry in developed economies. Also vital is the need for these energy sources to be clean and renewable. For the past several years, NASA has been taking a new look at collecting solar energy in space and transmitting it to Earth, to planetary surfaces, and to orbiting spacecraft. Several innovative concepts are being studied for the space segment component of solar power beaming. One is the Abacus/Reflector, a large sun-oriented array structure fixed to the transmitter, and a rotating RF reflector that tracks a receiving rectenna on Earth. This concept eliminates the need for power-conducting slip rings in rotating joints between the solar collectors and the transmitter. Another concept is the Integrated Symmetrical Concentrator (ISC), composed of two very large segmented reflectors which rotate to collect and reflect the incident sunlight onto two centrally-located photovoltaic arrays. Adjacent to the PV arrays is the RF transmitter, which as a unit track the receiving rectenna, again eliminating power-conducting joints, and in addition reducing the cable lengths between the arrays and transmitter. The metering structure to maintain the position of the reflectors is a long mast, oriented perpendicular to the equatorial orbit plane. This paper presents a status of ongoing systems studies and configurations for the Abacus/Reflector and the ISC concepts, and a top-level study of packaging for launch and assembly.

  20. Modelling Concentrating Solar Power with Thermal Energy Storage for Integration Studies: Preprint

    SciTech Connect

    Hummon, M.; Denholm, P.; Jorgenson, J.; Mehos, M.

    2013-10-01

    Concentrating solar power with thermal energy storage (CSP-TES) can provide multiple benefits to the grid, including low marginal cost energy and the ability to levelize load, provide operating reserves, and provide firm capacity. It is challenging to properly value the integration of CSP because of the complicated nature of this technology. Unlike completely dispatchable fossil sources, CSP is a limited energy resource, depending on the hourly and daily supply of solar energy. To optimize the use of this limited energy, CSP-TES must be implemented in a production cost model with multiple decision variables for the operation of the CSP-TES plant. We develop and implement a CSP-TES plant in a production cost model that accurately characterizes the three main components of the plant: solar field, storage tank, and power block. We show the effect of various modelling simplifications on the value of CSP, including: scheduled versus optimized dispatch from the storage tank and energy-only operation versus co-optimization with ancillary services.

  1. Integrated three-dimensional photonic nanostructures for achieving near-unity solar absorption and superhydrophobicity

    SciTech Connect

    Kuang, Ping; Lin, Shawn-Yu; Hsieh, Mei-Li

    2015-06-07

    In this paper, we proposed and realized 3D photonic nanostructures consisting of ultra-thin graded index antireflective coatings (ARCs) and woodpile photonic crystals. The use of the integrated ARC and photonic crystal structure can achieve broadband, broad-angle near unity solar absorption. The amorphous silicon based photonic nanostructure experimentally shows an average absorption of ∼95% for λ = 400–620 nm over a wide angular acceptance of θ = 0°–60°. Theoretical studies show that a Gallium Arsenide (GaAs) based structure can achieve an average absorption of >95% for λ = 400–870 nm. Furthermore, the use of the slanted SiO{sub 2} nanorod ARC surface layer by glancing angle deposition exhibits Cassie-Baxter state wetting, and superhydrophobic surface is obtained with highest water contact angle θ{sub CB} ∼ 153°. These properties are fundamentally important for achieving maximum solar absorption and surface self-cleaning in thin film solar cell applications.

  2. Modelling Concentrating Solar Power with Thermal Energy Storage for Integration Studies (Presentation)

    SciTech Connect

    Hummon, M.; Jorgenson, J.; Denholm, P.; Mehos, M.

    2013-10-01

    Concentrating solar power with thermal energy storage (CSP-TES) can provide multiple benefits to the grid, including low marginal cost energy and the ability to levelize load, provide operating reserves, and provide firm capacity. It is challenging to properly value the integration of CSP because of the complicated nature of this technology. Unlike completely dispatchable fossil sources, CSP is a limited energy resource, depending on the hourly and daily supply of solar energy. To optimize the use of this limited energy, CSP-TES must be implemented in a production cost model with multiple decision variables for the operation of the CSP-TES plant. We develop and implement a CSP-TES plant in a production cost model that accurately characterizes the three main components of the plant: solar field, storage tank, and power block. We show the effect of various modelling simplifications on the value of CSP, including: scheduled versus optimized dispatch from the storage tank and energy-only operation versus co-optimization with ancillary services.

  3. Energy factors and temperature distribution in insulated built-up roofs. Technical note July 1977-January 1980

    SciTech Connect

    Keeton, J.R.; Alumbaugh, R.L.

    1981-02-01

    Surface temperatures of 4-ply built-up roofs insulated with (1) 1 inch of perlite (R = 2.8) and 2-1/2 inches of urethane (R = 19.2) and (2) 1 inch of urethane (R = 7.1) and 1-7/8 inches of glass fiber (R = 7.7) are presented. Energy factors are shown in terms of temperature-time areas defined as solar heat response, cooling (heating) required, radiative cooling, and insulation efficiency. Results indicate that for a black surface, solar heat response is significantly higher in the roof portion with the higher R-value. Solar heat response is directly affected by color of surfacing; lowest to highest values were found with white, white gravel, gray gravel, aluminum-gray, and black. Recommendations are given for reducing surface temperatures of insulated built-up roofs.

  4. Data Distribution System (DDS) and Solar Dynamic Observatory Ground Station (SDOGS) Integration Manager

    NASA Technical Reports Server (NTRS)

    Pham, Kim; Bialas, Thomas

    2012-01-01

    The DDS SDOGS Integration Manager (DSIM) provides translation between native control and status formats for systems within DDS and SDOGS, and the ASIST (Advanced Spacecraft Integration and System Test) control environment in the SDO MOC (Solar Dynamics Observatory Mission Operations Center). This system was created in response for a need to centralize remote monitor and control of SDO Ground Station equipments using ASIST control environment in SDO MOC, and to have configurable table definition for equipment. It provides translation of status and monitoring information from the native systems into ASIST-readable format to display on pages in the MOC. The manager is lightweight, user friendly, and efficient. It allows data trending, correlation, and storing. It allows using ASIST as common interface for remote monitor and control of heterogeneous equipments. It also provides failover capability to back up machines.

  5. Structural Integration of Silicon Solar Cells and Lithium-ion Batteries Using Printed Electronics

    NASA Astrophysics Data System (ADS)

    Kang, Jin Sung

    Inkjet printing of electrode using copper nanoparticle ink is presented. Electrode was printed on a flexible glass epoxy composite substrate using drop on demand piezoelectric dispenser and was sintered at 200°C in N 2 gas condition. The printed electrodes were made with various widths and thicknesses. Surface morphology of electrode was analyzed using scanning electron microscope (SEM) and atomic force microscope (AFM). Reliable dimensions for printed electronics were found from this study. Single-crystalline silicon solar cells were tested under four-point bending to find the feasibility of directly integrating them onto a carbon fiber/epoxy composite laminate. These solar cells were not able to withstand 0.2% strain. On the other hand, thin-film amorphous silicon solar cells were subjected to flexural fatigue loadings. The current density-voltage curves were analyzed at different cycles, and there was no noticeable degradation on its performance up to 100 cycles. A multifunctional composite laminate which can harvest and store solar energy was fabricated using printed electrodes. The integrated printed circuit board (PCB) was co-cured with a carbon/epoxy composite laminate by the vacuum bag molding process in an autoclave; an amorphous silicon solar cell and a thin-film solid state lithium-ion (Li-ion) battery were adhesively joined and electrically connected to a thin flexible PCB; and then the passive components such as resistors and diodes were electrically connected to the printed circuit board by silver pasting. Since a thin-film solid state Li-ion battery was not able to withstand tensile strain above 0.4%, thin Li-ion polymer batteries were tested under various mechanical loadings and environmental conditions to find the feasibility of using the polymer batteries for our multifunctional purpose. It was found that the Li-ion polymer batteries were stable under pressure and tensile loading without any noticeable degradation on its charge and discharge

  6. Roof Rockmass Characterization in an Illinois Underground Coal Mine

    NASA Astrophysics Data System (ADS)

    Osouli, Abdolreza; Shafii, Iman

    2016-08-01

    Among all United States underground coal fields, those in Illinois have the highest rate of roof fall events due to their weak and severely moisture sensitive roof rock units. Rockmass characterization is the key initial step in designing safe and economical roof control measures in underground coal mines. In this study, a performance-based roof rockmass characterization is investigated. The geologic conditions as well as underground mine geographic specifications, roof fall analysis, mining method, utilized supplemental roof control measures, and geotechnical properties of roof rock units were considered to link the roof performance to rockmass characterization. The coal mine roof rating (CMRR) rockmass characterization method was used to evaluate the roof conditions and roof support design for an underground coal mine located in the Illinois Coal Basin. The results of several mine visit mappings, laboratory test results, and geotechnical issues and concerns are presented and discussed. The roof support designs are analyzed based on the rockmass characterization and are compared with the observed performance. This study shows that (1) CMRR index is a reasonable method for characterizing roof rockmass; (2) moisture sensitivity and bedding strengths in the horizontal direction are essential parameters for roof support design in mines with weak roof conditions; and (3) the applicability of the analysis of roof bolt system for roof support design of the studied mine is questionable.

  7. High-performance integrated perovskite and organic solar cells with efficient near-infrared harvesting

    NASA Astrophysics Data System (ADS)

    Kim, Junghwan; Lee, Kwanghee

    2016-09-01

    The integration of planar-type perovskite (Eg 1.5 eV) solar cells (PSCs) with a bulk-heterojunction (BHJ) composite comprising a near-infrared (NIR) absorbing conjugated polymer (Eg < 1.4 eV) and a fullerene derivative is a promising approach to overcoming the narrow absorption limit of typical PSCs. Nevertheless, integrated solar cells (ISCs) suffer from low fill factors (FFs) and inefficient NIR harvesting, mainly due to poor charge transport in the BHJ films. Here, we successfully demonstrate highly efficient P-I-N perovskite/BHJ ISCs with an enhanced FF and improved NIR harvesting by introducing a novel n-type semiconducting polymer and a new processing additive into the BHJ films. The optimized ISCs exhibit a power conversion efficiency (PCE) of 16.36%, which far surpasses that of the reference PSCs ( 14.70%) due to the increased current density (Jsc 20.04 mA cm-2) resulting from the additional NIR harvesting. Meanwhile, the optimized ISCs maintain a high FF of 77% and an open-circuit voltage (Voc) of 1.06 V. These results indicate that this approach is a versatile means of overcoming the absorption and theoretical efficiency limits of state-ofthe- art PSCs.

  8. Integrated dynamic analysis simulation of space stations with controllable solar array

    NASA Technical Reports Server (NTRS)

    Heinrichs, J. A.; Fee, J. J.

    1972-01-01

    A methodology is formulated and presented for the integrated structural dynamic analysis of space stations with controllable solar arrays and non-controllable appendages. The structural system flexibility characteristics are considered in the dynamic analysis by a synthesis technique whereby free-free space station modal coordinates and cantilever appendage coordinates are inertially coupled. A digital simulation of this analysis method is described and verified by comparison of interaction load solutions with other methods of solution. Motion equations are simulated for both the zero gravity and artificial gravity (spinning) orbital conditions. Closed loop controlling dynamics for both orientation control of the arrays and attitude control of the space station are provided in the simulation by various generic types of controlling systems. The capability of the simulation as a design tool is demonstrated by utilizing typical space station and solar array structural representations and a specific structural perturbing force. Response and interaction load solutions are presented for this structural configuration and indicate the importance of using an integrated type analysis for the predictions of structural interactions.

  9. Theoretical modeling and experimental analysis of solar still integrated with evacuated tubes

    NASA Astrophysics Data System (ADS)

    Panchal, Hitesh; Awasthi, Anuradha

    2016-12-01

    In this present research work, theoretical modeling of single slope, single basin solar still integrated with evacuated tubes has been performed based on energy balance equations. Major variables like water temperature, inner glass cover temperature and distillate output has been computed based on theoretical modeling. The experimental setup has been made from locally available materials and installed at Gujarat Power Engineering and Research Institute, Mehsana, Gujarat, India (23.5880°N, 72.3693°E) with 0.04 m depth during 6 months of time interval. From the series of experiments, it is found considerable increment in average distillate output of a solar still when integrated with evacuated tubes not only during daytime but also from night time. In all experimental cases, the correlation of coefficient (r) and root mean square percentage deviation of theoretical modeling and experimental study found good agreement with 0.97 < r < 0.98 and 10.22 < e < 38.4% respectively.

  10. Heterogeneous integration of InGaAs nanowires on the rear surface of Si solar cells for efficiency enhancement.

    PubMed

    Shin, Jae Cheol; Mohseni, Parsian K; Yu, Ki Jun; Tomasulo, Stephanie; Montgomery, Kyle H; Lee, Minjoo L; Rogers, John A; Li, Xiuling

    2012-12-21

    We demonstrate energy-conversion-efficiency (η) enhancement of silicon (Si) solar cells by the heterogeneous integration of an In(x)Ga(1-x)As nanowire (NW) array on the rear surface. The NWs are grown via a catalyst-free, self-assembled method on Si(111) substrates using metalorganic chemical vapor deposition (MOCVD). Heavily p-doped In(x)Ga(1-x)As (x ≈ 0.7) NW arrays are utilized as not only back-reflectors but also low bandgap rear-point-contacts of the Si solar cells. External quantum efficiency of the hybrid In(x)Ga(1-x)As NW-Si solar cell is increased over the entire solar response wavelength range; and η is enhanced by 36% in comparison to Si solar cells processed under the same condition without the NWs.

  11. Green roof stormwater retention: effects of roof surface, slope, and media depth.

    PubMed

    VanWoert, Nicholaus D; Rowe, D Bradley; Andresen, Jeffrey A; Rugh, Clayton L; Fernandez, R Thomas; Xiao, Lan

    2005-01-01

    Urban areas generate considerably more stormwater runoff than natural areas of the same size due to a greater percentage of impervious surfaces that impede water infiltration. Roof surfaces account for a large portion of this impervious cover. Establishing vegetation on rooftops, known as green roofs, is one method of recovering lost green space that can aid in mitigating stormwater runoff. Two studies were performed using several roof platforms to quantify the effects of various treatments on stormwater retention. The first study used three different roof surface treatments to quantify differences in stormwater retention of a standard commercial roof with gravel ballast, an extensive green roof system without vegetation, and a typical extensive green roof with vegetation. Overall, mean percent rainfall retention ranged from 48.7% (gravel) to 82.8% (vegetated). The second study tested the influence of roof slope (2 and 6.5%) and green roof media depth (2.5, 4.0, and 6.0 cm) on stormwater retention. For all combined rain events, platforms at 2% slope with a 4-cm media depth had the greatest mean retention, 87%, although the difference from the other treatments was minimal. The combination of reduced slope and deeper media clearly reduced the total quantity of runoff. For both studies, vegetated green roof systems not only reduced the amount of stormwater runoff, they also extended its duration over a period of time beyond the actual rain event.

  12. A Monolithically Integrated Gallium Nitride Nanowire/Silicon Solar Cell Photocathode for Selective Carbon Dioxide Reduction to Methane.

    PubMed

    Wang, Yichen; Fan, Shizhao; AlOtaibi, Bandar; Wang, Yongjie; Li, Lu; Mi, Zetian

    2016-06-20

    A gallium nitride nanowire/silicon solar cell photocathode for the photoreduction of carbon dioxide (CO2 ) is demonstrated. Such a monolithically integrated nanowire/solar cell photocathode offers several unique advantages, including the absorption of a large part of the solar spectrum and highly efficient carrier extraction. With the incorporation of copper as the co-catalyst, the devices exhibit a Faradaic efficiency of about 19 % for the 8e(-) photoreduction to CH4 at -1.4 V vs Ag/AgCl, a value that is more than thirty times higher than that for the 2e(-) reduced CO (ca. 0.6 %).

  13. The Integrated Science Investigation of the Sun (ISIS): Energetic Particle Measurements for the Solar Probe Plus Mission

    NASA Technical Reports Server (NTRS)

    McComas, D. J.; Christian, E. R.; Wiedenbeck, M. E.; McNutt, R. L.; Cummings, A. C.; Desai, M. I.; Giacalone, J.; Hill, M. E.; Mewaldt, R. A.; Krimigis, SA. M.; Livi, S. A.; Mitchell, D. G.; Matthaeus, W. H.; Roelof, E. C.; Stone, E. C.; Schwardron, N. A.; vonRosenvinge, T. T.

    2011-01-01

    One of the major goals of NASA's Solar Probe Plus (SPP) mission is to determine the mechanisms that accelerate and transport high-energy particles from the solar atmosphere out into the heliosphere. Processes such as coronal mass ejections and solar flares, which peak roughly every 11 years around solar maximum, release huge quantities of energized matter, magnetic fields and electromagnetic radiation into space. The high-energy particles, known as solar energetic particles or SEPs, present a serious radiation threat to human explorers living and working outside low-Earth orbit and to technological assets such as communications and scientific satellites in space. This talk describes the Integrated Science Investigation of the Sun (ISIS) - Energetic Particle Instrument suite. ISIS measures key properties such as intensities, energy spectra, composition, and angular distributions of the low-energy suprathermal source populations, as well as the more hazardous, higher energy particles ejected from the Sun. By making the first-ever direct measurements of the near-Sun regions where the acceleration takes place, ISIS will provide the critical measurements that, when integrated with other SPP instruments and with solar and interplanetary observations, will lead to a revolutionary new understanding of the Sun and major drivers of solar system space weather.

  14. Performance of 3-Sun Mirror Modules on Sun Tracking Carousels on Flat Roof Buildings

    SciTech Connect

    Fraas, Dr. Lewis; Avery, James E.; Minkin, Leonid M; Maxey, L Curt; Gehl, Anthony C; Hurt, Rick A; Boehm, Robert F

    2008-01-01

    Commercial buildings represent a near term market for cost competitive solar electric power provided installation costs and solar photovoltaic module costs can be reduced. JX Crystals has developed a carousel sun tracker that is prefabricated and can easily be deployed on building flat roof tops without roof penetration. JX Crystals is also developing 3-sun PV mirror modules where less expensive mirrors are substituted for two-thirds of the expensive single crystal silicon solar cell surface area. Carousels each with four 3-sun modules have been set up at two sites, specifically at Oak Ridge National Lab and at the University of Nevada in Las Vegas. The test results for these systems are presented.

  15. Green roofs for a drier world: effects of hydrogel amendment on substrate and plant water status.

    PubMed

    Savi, Tadeja; Marin, Maria; Boldrin, David; Incerti, Guido; Andri, Sergio; Nardini, Andrea

    2014-08-15

    Climate features of the Mediterranean area make plant survival over green roofs challenging, thus calling for research work to improve water holding capacities of green roof systems. We assessed the effects of polymer hydrogel amendment on the water holding capacity of a green roof substrate, as well as on water status and growth of Salvia officinalis. Plants were grown in green roof experimental modules containing 8 cm or 12 cm deep substrate (control) or substrate mixed with hydrogel at two different concentrations: 0.3 or 0.6%. Hydrogel significantly increased the substrate's water content at saturation, as well as water available to vegetation. Plants grown in 8 cm deep substrate mixed with 0.6% of hydrogel showed the best performance in terms of water status and membrane integrity under drought stress, associated to the lowest above-ground biomass. Our results provide experimental evidence that polymer hydrogel amendments enhance water supply to vegetation at the establishment phase of a green roof. In particular, the water status of plants is most effectively improved when reduced substrate depths are used to limit the biomass accumulation during early growth stages. A significant loss of water holding capacity of substrate-hydrogel blends was observed after 5 months from establishment of the experimental modules. We suggest that cross-optimization of physical-chemical characteristics of hydrogels and green roof substrates is needed to improve long term effectiveness of polymer-hydrogel blends.

  16. Drought versus heat: What's the major constraint on Mediterranean green roof plants?

    PubMed

    Savi, Tadeja; Dal Borgo, Anna; Love, Veronica L; Andri, Sergio; Tretiach, Mauro; Nardini, Andrea

    2016-10-01

    Green roofs are gaining momentum in the arid and semi-arid regions due to their multiple benefits as compared with conventional roofs. One of the most critical steps in green roof installation is the selection of drought and heat tolerant species that can thrive under extreme microclimate conditions. We monitored the water status, growth and survival of 11 drought-adapted shrub species grown on shallow green roof modules (10 and 13cm deep substrate) and analyzed traits enabling plants to cope with drought (symplastic and apoplastic resistance) and heat stress (root membrane stability). The physiological traits conferring efficiency/safety to the water transport system under severe drought influenced plant water status and represent good predictors of both plant water use and growth rates over green roofs. Moreover, our data suggest that high substrate temperature represents a stress factor affecting plant survival to a larger extent than drought per se. In fact, the major cause influencing seedling survival on shallow substrates was the species-specific root resistance to heat, a single and easy measurable trait that should be integrated into the methodological framework for screening and selection of suitable shrub species for roof greening in the Mediterranean.

  17. Automatic extraction of building roofs using LIDAR data and multispectral imagery

    NASA Astrophysics Data System (ADS)

    Awrangjeb, Mohammad; Zhang, Chunsun; Fraser, Clive S.

    2013-09-01

    Automatic 3D extraction of building roofs from remotely sensed data is important for many applications including city modelling. This paper proposes a new method for automatic 3D roof extraction through an effective integration of LIDAR (Light Detection And Ranging) data and multispectral orthoimagery. Using the ground height from a DEM (Digital Elevation Model), the raw LIDAR points are separated into two groups. The first group contains the ground points that are exploited to constitute a 'ground mask'. The second group contains the non-ground points which are segmented using an innovative image line guided segmentation technique to extract the roof planes. The image lines are extracted from the grey-scale version of the orthoimage and then classified into several classes such as 'ground', 'tree', 'roof edge' and 'roof ridge' using the ground mask and colour and texture information from the orthoimagery. During segmentation of the non-ground LIDAR points, the lines from the latter two classes are used as baselines to locate the nearby LIDAR points of the neighbouring planes. For each plane a robust seed region is thereby defined using the nearby non-ground LIDAR points of a baseline and this region is iteratively grown to extract the complete roof plane. Finally, a newly proposed rule-based procedure is applied to remove planes constructed on trees. Experimental results show that the proposed method can successfully remove vegetation and so offers high extraction rates.

  18. Decision Guide for Roof Slope Selection

    SciTech Connect

    Sharp, T.R.

    1988-01-01

    This decision guide has been written for personnel who are responsible for the design, construction, and replacement of Air Force roofs. It provides the necessary information and analytical tools for making prudent and cost-effective decisions regarding the amount of slope to provide in various roofing situations. Because the expertise and experience of the decision makers will vary, the guide contains both basic slope-related concepts as well as more sophisticated technical data. This breadth of information enables the less experienced user to develop an understanding of roof slope issues before applying the more sophisticated analytical tools, while the experienced user can proceed directly to the technical sections. Although much of this guide is devoted to the analysis of costs, it is not a cost-estimating document. It does, however, provide the reader with the relative costs of a variety of roof slope options; and it shows how to determine the relative cost-effectiveness of different options. The selection of the proper roof slope coupled with good roof design, a quality installation, periodic inspection, and appropriate maintenance and repair will achieve the Air Force's objective of obtaining the best possible roofing value for its buildings.

  19. Use of treated woods in roof assembly.

    PubMed

    Edlich, Richard F; Winters, Kathryne L; Long, William B; Gubler, K Dean; Britt, L D

    2005-01-01

    On February 12, 2002, the US Environmental Protection Agency (EPA) announced a voluntary decision by industry to move consumer use of treated lumber products away from a variety of pressure-treated wood that contains Arsenate (As) by December 31, 2003, in favor of new alternative wood preservatives. It is the purpose of this report to outline legislative efforts to ban the use of chromated copper arsenate (CCA)-treated wood for residential roofing in the State of Oregon. At the time that the legislation was introduced, it was coincidental that the National Roofing Contractors Association (NRCA) recommended that CCA-treated wood should not be used in residential roofing. A summary of the report is included in this review. Finally, we discuss some of the potentially harmful environmental hazards of wood preservatives on the environment. In addition to the toxicity of pressure-treated wood on our environment, we point out that wood as well as pressure-treated wood assemblies are highly flammable. Consequently, we recommend the use of residential roofing systems that have Class A fire protection for the homeowner. Because residential roof fires remain a life-threatening danger to residential homeowners in the United States, we describe a national fire prevention program for reducing residential roof fires by use of an Underwriters Laboratories Inc. (UL) and National Fire Protection Association Class A fire-rated roof system.

  20. You're a What? Solar Photovoltaic Installer

    ERIC Educational Resources Information Center

    Torpey, Elka Maria

    2009-01-01

    This article talks about solar photovoltaic (PV) installer and features Rebekah Hren, a solar PV installer who puts solar panels on roofs and in other sunny places to turn the sun's power into electricity. Hren enjoys promoting renewable energy, in part because it's an emerging field. In solar PV systems, solar cells--devices that convert sunlight…

  1. Modeling the effects of reflective roofing

    SciTech Connect

    Gartland, L.M.; Konopacki, S.J.; Akbari, H.

    1996-08-01

    Roofing materials which are highly reflective to sunlight are currently being developed. Reflective roofing is an effective summertime energy saver in warm and sunny climates. It has been demonstrated to save up to 40% of the energy needed to cool a building during the summer months. Buildings without air conditioning can reduce their indoor temperatures and improve occupant comfort during the summer if highly reflective roofing materials are used. But there are questions about the tradeoff between summer energy savings and extra wintertime energy use due to reduced heat collection by the roof. These questions are being answered by simulating buildings in various climates using the DOE-2 program (version 2.1E). Unfortunately, DOE-2 does not accurately model radiative, convective and conductive processes in the roof-attic. Radiative heat transfer from the underside of a reflective roof is much smaller than that of a roof which absorbs heat from sunlight, and must be accounted for in the building energy model. Convection correlations for the attic and the roof surface must be fine tuned. An equation to model the insulation`s conductivity dependence on temperature must also be added. A function was written to incorporate the attic heat transfer processes into the DOE-2 building energy simulation. This function adds radiative, convective and conductive equations to the energy balance of the roof. Results of the enhanced DOE-2 model were compared to measured data collected from a school bungalow in a Sacramento Municipal Utility District monitoring project, with particular attention paid to the year-round energy effects.

  2. 30 CFR 75.221 - Roof control plan information.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Roof control plan information. 75.221 Section... AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Roof Support § 75.221 Roof control plan information. (a) The following information shall be included in each roof control plan: (1) The name...

  3. 30 CFR 75.220 - Roof control plan.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Roof control plan. 75.220 Section 75.220... MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Roof Support § 75.220 Roof control plan. (a)(1) Each mine operator shall develop and follow a roof control plan, approved by the District Manager, that is...

  4. 30 CFR 75.211 - Roof testing and scaling.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Roof testing and scaling. 75.211 Section 75.211... MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Roof Support § 75.211 Roof testing and scaling. (a) A visual examination of the roof, face and ribs shall be made immediately before any work is started in...

  5. 30 CFR 75.221 - Roof control plan information.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Roof control plan information. 75.221 Section... AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Roof Support § 75.221 Roof control plan information. (a) The following information shall be included in each roof control plan: (1) The name...

  6. 30 CFR 75.213 - Roof support removal.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Roof support removal. 75.213 Section 75.213... MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Roof Support § 75.213 Roof support removal. (a)(1) All persons who perform the work of removing permanent roof supports shall be supervised by a...

  7. 30 CFR 75.220 - Roof control plan.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Roof control plan. 75.220 Section 75.220... MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Roof Support § 75.220 Roof control plan. (a)(1) Each mine operator shall develop and follow a roof control plan, approved by the District Manager, that is...

  8. 30 CFR 75.220 - Roof control plan.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Roof control plan. 75.220 Section 75.220... MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Roof Support § 75.220 Roof control plan. (a)(1) Each mine operator shall develop and follow a roof control plan, approved by the District Manager, that is...

  9. 30 CFR 75.206 - Conventional roof support.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Conventional roof support. 75.206 Section 75... HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Roof Support § 75.206 Conventional roof support. (a) Except in anthracite mines using non-mechanized mining systems, when conventional roof...

  10. 30 CFR 75.206 - Conventional roof support.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Conventional roof support. 75.206 Section 75... HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Roof Support § 75.206 Conventional roof support. (a) Except in anthracite mines using non-mechanized mining systems, when conventional roof...

  11. Metal and nutrient dynamics on an aged intensive green roof.

    PubMed

    Speak, A F; Rothwell, J J; Lindley, S J; Smith, C L

    2014-01-01

    Runoff and rainfall quality was compared between an aged intensive green roof and an adjacent conventional roof surface. Nutrient concentrations in the runoff were generally below Environmental Quality Standard (EQS) values and the green roof exhibited NO3(-) retention. Cu, Pb and Zn concentrations were in excess of EQS values for the protection of surface water. Green roof runoff was also significantly higher in Fe and Pb than on the bare roof and in rainfall. Input-output fluxes revealed the green roof to be a potential source of Pb. High concentrations of Pb within the green roof soil and bare roof dusts provide a potential source of Pb in runoff. The origin of the Pb is likely from historic urban atmospheric deposition. Aged green roofs may therefore act as a source of legacy metal pollution. This needs to be considered when constructing green roofs with the aim of improving pollution remediation.

  12. Simulation tests to assess occupational exposure to airborne asbestos from artificially weathered asphalt-based roofing products.

    PubMed

    Sheehan, Patrick; Mowat, Fionna; Weidling, Ryan; Floyd, Mark

    2010-11-01

    Historically, asbestos-containing roof cements and coatings were widely used for patching and repairing leaks. Although fiber releases from these materials when newly applied have been studied, there are virtually no useful data on airborne asbestos fiber concentrations associated with the repair or removal of weathered roof coatings and cements, as most studies involve complete tear-out of old roofs, rather than only limited removal of the roof coating or cement during a repair job. This study was undertaken to estimate potential chrysotile asbestos fiber exposures specific to these types of roofing products following artificially enhanced weathering. Roof panels coated with plastic roof cement and fibered roof coating were subjected to intense solar radiation and daily simulated precipitation events for 1 year and then scraped to remove the weathered materials to assess chrysotile fiber release and potential worker exposures. Analysis of measured fiber concentrations for hand scraping of the weathered products showed 8-h time-weighted average concentrations that were well below the current Occupational Safety and Health Administration permissible exposure limit for asbestos. There was, however, visibly more dust and a few more fibers collected during the hand scraping of weathered products compared to the cured products previously tested. There was a notable difference between fibers released from weathered and cured roofing products. In weathered samples, a large fraction of chrysotile fibers contained low concentrations of or essentially no magnesium and did not meet the spectral, mineralogical, or morphological definitions of chrysotile asbestos. The extent of magnesium leaching from chrysotile fibers is of interest because several researchers have reported that magnesium-depleted chrysotile fibers are less toxic and produce fewer mesothelial tumors in animal studies than normal chrysotile fibers.

  13. The effect of roof strength on reducing occupant injury in rollovers.

    PubMed

    Herbst, Brian; Forrest, Steve; Orton, Tia; Meyer, Steven E; Sances, Anthony; Kumaresan, Srirangam

    2005-01-01

    Roof crush occurs and potentially contributes to serious or fatal occupant injury in 26% of rollovers. It is likely that glazing retention is related to the degree of roof crush experienced in rollover accidents. Occupant ejection (including partial ejection) is the leading cause of death and injury in rollover accidents. In fatal passenger car accidents involving ejection, 34% were ejected through the side windows. Side window glass retention during a rollover is likely to significantly reduce occupant ejections. The inverted drop test methodology is a test procedure to evaluate the structural integrity of roofs under loadings similar to those seen in real world rollovers. Recent testing on many different vehicle types indicates that damage consistent with field rollover accidents can be achieved through inverted drop testing at very small drop heights. Drop test comparisons were performed on 16 pairs of vehicles representing a large spectrum of vehicle types. Each vehicle pair includes a production vehicle and a vehicle with a reinforced roof structure dropped under the same test conditions. This paper offers several examples of post-production reinforcements to roof structures that significantly increase the crush resistance of the roof as measured by inverted drop tests. These modifications were implemented with minimal impact on vehicle styling, interior space and visual clearances. The results of these modifications indicate that roof crush can be mitigated by nearly an order of magnitude, as roof crush was reduced by 44-91% with only a 1-2.3% increase in vehicle weight. Additionally, this paper analyzes the glazing breakage patterns in the moveable tempered side windows on the side adjacent to the vehicle impact point in the inverted drop tests. A comparison is made between the production vehicles and the reinforced vehicles in order to determine if the amount roof crush is related to glazing integrity in the side windows. Lastly, two drop test pairs

  14. Integration of functional safety systems on the Daniel K. Inouye Solar Telescope

    NASA Astrophysics Data System (ADS)

    Williams, Timothy R.; Hubbard, Robert P.; Shimko, Steve

    2016-07-01

    The Daniel K. Inouye Solar Telescope (DKIST) was envisioned from an early stage to incorporate a functional safety system to ensure the safety of personnel and equipment within the facility. Early hazard analysis showed the need for a functional safety system. The design used a distributed approach in which each major subsystem contains a PLC-based safety controller. This PLC-based system complies with the latest international standards for functional safety. The use of a programmable controller also allows for flexibility to incorporate changes in the design of subsystems without adversely impacting safety. Various subsystems were built by different contractors and project partners but had to function as a piece of the overall control system. Using distributed controllers allows project contractors and partners to build components as standalone subsystems that then need to be integrated into the overall functional safety system. Recently factory testing was concluded on the major subsystems of the facility. Final integration of these subsystems is currently underway on the site. Building on lessons learned in early factory tests, changes to the interface between subsystems were made to improve the speed and ease of integration of the entire system. Because of the distributed design each subsystem can be brought online as it is delivered and assembled rather than waiting until the entire facility is finished. This enhances safety during the risky period of integration and testing. The DKIST has implemented a functional safety system that has allowed construction of subsystems in geographically diverse locations but that function cohesively once they are integrated into the facility currently under construction.

  15. Building-integrated photovoltaics: A case study

    SciTech Connect

    Kiss, G.; Kinkead, J.; Raman, M.

    1995-03-01

    In 1992, Kiss Cathcart Anders Architects performed a study for NREL on Building-Integrated Photovoltaics (BIPV) issues as seen from the perspective of the building community. In general, the purpose of the study was to list major issues and potential applications; by it`s nature it asked more questions than it answered. This second phase study was to produce quantitative data on the performance of specific BIPV systems. Only roof systems are evaluated. The energy performance, construction cost and simple payback for five different BIPV roof options are evaluated in six different locations: Oakland, New York, Miami, Phoenix, Chicago, and Cincinnati. The roof options evaluated include the following: single-glazed PV roof using glass-substrate PVs; double-glazed PV roof with insulating PV modules; ballasted roof-mounted system; sawtooth light monitor roof with indirect north daylighting; sawtooth roof with north light and active heat recovery.

  16. Building-integrated photovoltaics: A case study

    NASA Astrophysics Data System (ADS)

    Kiss, G.; Kinkead, J.; Raman, M.

    1995-03-01

    In 1992, Kiss Cathcart Anders Architects performed a study for NREL on Building-Integrated Photovoltaics (BIPV) issues as seen from the perspective of the building community. In general, the purpose of the study was to list major issues and potential applications; by it's nature it asked more questions than it answered. This second phase study was to produce quantitative data on the performance of specific BIPV systems. Only roof systems are evaluated. The energy performance, construction cost and simple payback for five different BIPV roof options are evaluated in six different locations: Oakland, New York, Miami, Phoenix, Chicago, and Cincinnati. The roof options evaluated include the following: single-glazed PV roof using glass-substrate PVs; double-glazed PV roof with insulating PV modules; ballasted roof-mounted system; sawtooth light monitor roof with indirect north daylighting; sawtooth roof with north light and active heat recovery.

  17. Cool Roofs Through Time and Space

    ScienceCinema

    Levinson, Ronnen

    2016-07-12

    Ronnen Levinson, from the Lab's Heat Island Group, presents his research on cool roofs and introduces the California Cities Albedo Map at our '8 Big Ideas' Science at the Theater event on October 8th, 2014, in Oakland, California

  18. MC Contracting, Paint, & Roofing, LLC Information Sheet

    EPA Pesticide Factsheets

    MC Contracting, Paint, & Roofing, LLC, d/b/a M.C. Painting & Contractor and M.C. Painting Group (the Company) is located in Philadelphia, Pennsylvania. The settlement involves renovation activities conducted at property constructed prior to 1978.

  19. Cool Roofs Through Time and Space

    SciTech Connect

    Levinson, Ronnen

    2014-10-17

    Ronnen Levinson, from the Lab's Heat Island Group, presents his research on cool roofs and introduces the California Cities Albedo Map at our '8 Big Ideas' Science at the Theater event on October 8th, 2014, in Oakland, California

  20. Integration of solar process heat into an existing thermal desalination plant in Qatar

    NASA Astrophysics Data System (ADS)

    Dieckmann, S.; Krishnamoorthy, G.; Aboumadi, M.; Pandian, Y.; Dersch, J.; Krüger, D.; Al-Rasheed, A. S.; Krüger, J.; Ottenburger, U.

    2016-05-01

    The water supply of many countries in the Middle East relies mainly on water desalination. In Qatar, the water network is completely fed with water from desalination plants. One of these power and desalination plants is located in Ras Abu Fontas, 20 km south of the capital Doha. The heat required for thermal desalination is provided by steam which is generated in waste heat recovery boilers (HRB) connected to gas turbines. Additionally, gas fired boilers or auxiliary firing in the HRBs are used in order to decouple the water generation from the electricity generation. In Ras Abu Fontas some auxiliary boilers run 24/7 because the HRB capacity does not match the demand of the desalination units. This paper contains the techno-economic analysis of two large-scale commercial solar field options, which could reduce the fuel consumption significantly. Both options employ parabolic trough technology with a nominal saturated steam output of 350 t/h at 15 bar (198°C, 240 MW). The first option uses direct steam generation without storage while the second relies on common thermal oil in combination with a molten salt thermal storage with 6 hours full-load capacity. The economic benefit of the integration of solar power depends mainly on the cost of the fossil alternative, and thus the price (respectively opportunity costs) of natural gas. At a natural gas price of 8 US-/MMBtu the internal rate of return on equity (IRR) is expected at about 5%.

  1. Space Solar Power Multi-body Dynamics and Controls, Concepts for the Integrated Symmetrical Concentrator Configuration

    NASA Technical Reports Server (NTRS)

    Glaese, John R.; McDonald, Emmett J.

    2000-01-01

    Orbiting space solar power systems are currently being investigated for possible flight in the time frame of 2015-2020 and later. Such space solar power (SSP) satellites are required to be extremely large in order to make practical the process of collection, conversion to microwave radiation, and reconversion to electrical power at earth stations or at remote locations in space. These large structures are expected to be very flexible presenting unique problems associated with their dynamics and control. The purpose of this project is to apply the expanded TREETOPS multi-body dynamics analysis computer simulation program (with expanded capabilities developed in the previous activity) to investigate the control problems associated with the integrated symmetrical concentrator (ISC) conceptual SSP system. SSP satellites are, as noted, large orbital systems having many bodies (perhaps hundreds) with flexible arrays operating in an orbiting environment where the non-uniform gravitational forces may be the major load producers on the structure so that a high fidelity gravity model is required. The current activity arises from our NRA8-23 SERT proposal. Funding, as a supplemental selection, has been provided by NASA with reduced scope from that originally proposed.

  2. Efficient inverted polymer solar cells integrated with a compound electron extraction layer

    NASA Astrophysics Data System (ADS)

    Ma, Zhong-Sheng; Wang, Qian-Kun; Li, Chi; Li, Yan-Qing; Zhang, Dan-Dan; Liu, Weimin; Wang, Pengfei; Tang, Jian-Xin

    2015-12-01

    We constructed an effective electron extraction layer (EEL) used for polymer solar cells by integrating one new kind of organic material of 4,4‧-(1,4-phenylene) bis(2-phenyl-6-p-tolylnicotinonitrile) (p-PPtNT) and cesium carbonate (Cs2CO3) used as a compound EEL (CEEL). The CEEL based device exhibits an ideal PCE of 4.15%, corresponding to an enhancement 220% in contrast to that of control device without EEL, which is also comparable to that of ZnO based device. Our analyses indicated that the remarkably improved PCE for CEEL based device is mainly ascribed to the Ohmic contact and the negligible electron extraction barrier at cathode/active layer by inserting CEEL.

  3. Carbon sequestration potential of extensive green roofs.

    PubMed

    Getter, Kristin L; Rowe, D Bradley; Robertson, G Philip; Cregg, Bert M; Andresen, Jeffrey A

    2009-10-01

    Two studies were conducted with the objective of quantifying the carbon storage potential of extensive green roofs. The first was performed on eight roofs in Michigan and four roofs in Maryland, ranging from 1 to 6 years in age. All 12 green roofs were composed primarily of Sedum species, and substrate depths ranged from 2.5 to 12.7 cm. Aboveground plant material was harvested in the fall of 2006. On average, these roofs stored 162 g C x m(-2) in aboveground biomass. The second study was conducted on a roof in East Lansing, MI. Twenty plots were established on 21 April 2007 with a substrate depth of 6.0 cm. In addition to a substrate only control, the other plots were sown with a single species of Sedum (S. acre, S. album, S. kamtshaticum, or S. spurium). Species and substrate depth represent typical extensive green roofs in the United States. Plant material and substrate were harvested seven times across two growing seasons. Results at the end of the second year showed that aboveground plant material storage varied by species, ranging from 64 g C x m(-2) (S. acre) to 239 g C x m(-2) (S. album), with an average of 168 g C x m(-2). Belowground biomass ranged from 37 g C x m(-2) (S. acre) to 185 g C x m(-2) (S. kamtschaticum) and averaged 107 g C x m(-2). Substrate carbon content averaged 913 g C x m(-2), with no species effect, which represents a sequestration rate of 100 g C x m(-2) over the 2 years of this study. The entire extensive green roof system sequestered 375 g C x m(-2) in above- and belowground biomass and substrate organic matter.

  4. Liquid storage tank with floating roof structure

    SciTech Connect

    Vaughn, L.G.

    1993-07-27

    In a cylindrical wall storage tank for containing a liquid, said tank is described having a floor, a floatable roof supportable by said contained liquid, said roof including a peripheral seal for engaging the cylindrical wall to maintain a fluid-tight sliding seal therewith, and support means associated with said roof including, the improvement in said tank of, at least one cylindrical guide sleeve extending downwardly from said floatable roof; a shoe depending laterally from said at least one cylindrical guide sleeve's lower end for engaging the tank floor when the level of contained liquid is insufficient to support said floatable roof, said shoe having means forming a passage there through to register a support column and, an elongated support column removably positioned in said at least one cylindrical guide sleeve, of being sufficient length to extend downward beyond the shoe to engage the tank floor, whereby to sustain the floatable roof a predetermined distance above said floor after the contained liquid has drained from the tank.

  5. Integrated energy, economic, and environmental assessment for the optimal solar absorption cooling and heating system

    NASA Astrophysics Data System (ADS)

    Hang, Yin

    Buildings in the United States are responsible for 41% of the primary energy use and 30% of carbon dioxide emissions. Due to mounting concerns about climate change and resource depletion, meeting building heating and cooling demand with renewable energy has attracted increasing attention in the energy system design of green buildings. One of these approaches, the solar absorption cooling and heating (SACH) technology can be a key solution to addressing the energy and environmental challenges. SACH system is an integration of solar thermal heating system and solar thermal driven absorption cooling system. So far, SACH systems still remain at the demonstration and testing stage due to not only its high cost but also complicated system characteristics. This research aims to develop a methodology to evaluate the life cycle energy, economic and environmental performance of SACH systems by high-fidelity simulations validated by experimental data. The developed methodology can be used to assist the system design. In order to achieve this goal, the study includes four objectives as follows: * Objective 1: Develop the evaluation model for the SACH system. The model includes three aspects: energy, economy, and environment from a life cycle point of view. * Objective 2: Validate the energy system model by solar experiments performance data. * Objective 3: Develop a fast and effective multi-objective optimization methodology to find the optimal system configuration which achieves the maximum system benefits on energy, economy and environment. Statistic techniques are explored to reveal the relations between the system key parameters and the three evaluation targets. The Pareto front is generated by solving this multi-objective optimization problem. * Objective 4: Apply the developed assessment methodology to different building types and locations. Furthermore, this study considered the influence of the input uncertainties on the overall system performance. The sensitivity

  6. DYNAMIC STABILITY OF THE SOLAR SYSTEM: STATISTICALLY INCONCLUSIVE RESULTS FROM ENSEMBLE INTEGRATIONS

    SciTech Connect

    Zeebe, Richard E.

    2015-01-01

    Due to the chaotic nature of the solar system, the question of its long-term stability can only be answered in a statistical sense, for instance, based on numerical ensemble integrations of nearby orbits. Destabilization of the inner planets, leading to close encounters and/or collisions can be initiated through a large increase in Mercury's eccentricity, with a currently assumed likelihood of ∼1%. However, little is known at present about the robustness of this number. Here I report ensemble integrations of the full equations of motion of the eight planets and Pluto over 5 Gyr, including contributions from general relativity. The results show that different numerical algorithms lead to statistically different results for the evolution of Mercury's eccentricity (e{sub M}). For instance, starting at present initial conditions (e{sub M}≃0.21), Mercury's maximum eccentricity achieved over 5 Gyr is, on average, significantly higher in symplectic ensemble integrations using heliocentric rather than Jacobi coordinates and stricter error control. In contrast, starting at a possible future configuration (e{sub M}≃0.53), Mercury's maximum eccentricity achieved over the subsequent 500 Myr is, on average, significantly lower using heliocentric rather than Jacobi coordinates. For example, the probability for e{sub M} to increase beyond 0.53 over 500 Myr is >90% (Jacobi) versus only 40%-55% (heliocentric). This poses a dilemma because the physical evolution of the real system—and its probabilistic behavior—cannot depend on the coordinate system or the numerical algorithm chosen to describe it. Some tests of the numerical algorithms suggest that symplectic integrators using heliocentric coordinates underestimate the odds for destabilization of Mercury's orbit at high initial e{sub M}.

  7. Solar heating system final design package

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The system is composed of a warm air collector, a logic control unit and a universal switching and transport unit. The collector was originally conceived and designed as an integrated roof/wall system and therefore provides a dual function in the structure. The collector serves both as a solar energy conversion system and as a structural weather resistant skin. The control unit provides totally automatic control over the operation of the system. It receives input data from sensor probes in collectors, storage and living space. The logic was designed so as to make maximum use of solar energy and minimize use of conventional energy. The transport and switching unit is a high-efficiency air-handling system equipped with gear motor valves that respond to outputs from the control system. The fan unit was designed for maximum durability and efficiency in operation, and has permanently lubricated ball bearings and excellent air-handling efficiency.

  8. Design challenges and methodology for developing new integrated circuits for the robotics exploration of the solar system

    NASA Technical Reports Server (NTRS)

    Mojarradi, Mohammad M.; Kolawa, Elizabeth; Blalock, Benjamin; Johnson, R. Wayne

    2005-01-01

    Next generation space-based robotics systems will be constructed using distributed architectures where electronics capable of working in the extreme environments of the planets of the solar system are integrated with the sensors and actuators in plug-and-play modules and are connected through common multiple redundant data and power buses.

  9. Solar Fireworks - Integrating an Exhibit on Solar Physics and Space Science into the Science and Astronomy Curriculum of High-School and College Students

    NASA Astrophysics Data System (ADS)

    Denker, C.; Wang, H.; Conod, K. D.; Wintemberg, T.; Calderon, I.

    2005-05-01

    Astronomers at The Newark Museum's Alice and Leonard Dreyfuss Planetarium teamed up with the New Jersey Institute of Technology's (NJIT) Center for Solar-Terrestrial Research (CSTR) and the Big Bear Solar Observatory in presenting Solar Fireworks. The exhibit opened on May 15, 2004 and features two exhibition kiosks with interactive touch screen displays, where students and other visitors can take "virtual tours" in the fields of solar physics, solar activity, Sun-Earth connection, and geo-sciences. Planetarium and museum visits are an integral part of the introductory physics and astronomy classes at NJIT and the exhibition has been integrated in the astronomy curriculum. For example, NJIT students of the Astronomy Club and regular astronomy courses were closely involved in the design and development of the exhibit. The exhibit is the latest addition to the long-running natural science exhibit "Dynamic Earth: Revealing Nature's Secrets" at the museum. More than 30,000 people per year attend various programs offered by the planetarium including public shows, more than a dozen programs for school groups, after school activities, portable planetarium outreach, outdoor sky watches, solar observing and other family events. More than 1,000 high school students visited the planetarium in 2004. The exhibit is accompanied by a yearly teacher workshop (the first one was held on October 18-20, 2004) to enhance the learning experience of classes visiting the Newark Museum. The planetarium and museum staff has been working with teachers of Newark high schools and has presented many workshops for educators on a wide range of topics from astronomy to zoology. At the conclusion of the exhibit in December 2005, the exhibit will go "on the road" and will be made available to schools or other museums. Finally, the exhibit will find its permanent home at the new office complex of CSTR at NJIT. Acknowledgements: Solar Fireworks was organized by The Newark Museum and the New Jersey

  10. An Integrated Approach to Modeling Solar Electric Propulsion Vehicles During Long Duration, Near-Earth Orbit Transfers

    NASA Technical Reports Server (NTRS)

    Smith, David A.; Hojnicki, Jeffrey S.; Sjauw, Waldy K.

    2014-01-01

    Recent NASA interest in utilizing solar electronic propulsion (SEP) technology to transfer payloads, e.g. from low-Earth orbit (LEO) to higher energy geostationary-Earth orbit (GEO) or to Earth escape, has necessitated the development of high fidelity SEP vehicle models and simulations. These models and simulations need to be capable of capturing vehicle dynamics and sub-system interactions experienced during the transfer trajectories which are typically accomplished with continuous-burn (potentially interrupted by solar eclipse), long duration "spiral out" maneuvers taking several months or more to complete. This paper presents details of an integrated simulation approach achieved by combining a high fidelity vehicle simulation code with a detailed solar array model. The combined simulation tool gives researchers the functionality to study the integrated effects of various vehicle sub-systems (e.g. vehicle guidance, navigation and control (GN&C), electric propulsion system (EP)) with time varying power production. Results from a simulation model of a vehicle with a 50 kW class SEP system using the integrated tool are presented and compared to the results from another simulation model employing a 50 kW end-of-life (EOL) fixed power level assumption. These models simulate a vehicle under three degree of freedom dynamics (i.e. translational dynamics only) and include the effects of a targeting guidance algorithm (providing a "near optimal" transfer) during a LEO to near Earth escape (C (sub 3) = -2.0 km (sup 2) / sec (sup -2) spiral trajectory. The presented results include the impact of the fully integrated, time-varying solar array model (e.g. cumulative array degradation from traversing the Van Allen belts, impact of solar eclipses on the vehicle and the related temperature responses in the solar arrays due to operating in the Earth's thermal environment, high fidelity array power module, etc.); these are used to assess the impact on vehicle performance (i

  11. Pv-Thermal Solar Power Assembly

    DOEpatents

    Ansley, Jeffrey H.; Botkin, Jonathan D.; Dinwoodie, Thomas L.

    2001-10-02

    A flexible solar power assembly includes a flexible photovoltaic device attached to a flexible thermal solar collector. The solar power assembly can be rolled up for transport and then unrolled for installation on a surface, such as the roof or side wall of a building or other structure, by use of adhesive and/or other types of fasteners.

  12. Bonded Bracket Assmebly for Frameless Solar Panels

    SciTech Connect

    Murray, Todd; Jackson, Nick; Dupont, Luc; Moser, Jeff

    2013-01-30

    In February 2011 the US Department of Energy announced their new Sunshot Initiative. The Sunshot goal is to reduce the total cost of solar energy systems by about 75 percent before the end of the decade. The DOE estimated that a total installed cost of $$1 per watt for photovoltaic systems would be equivalent to 5-6¢/kilowatt hour (kWh) for energy available from the grid. The DOE also estimated that to meet the $1 per watt goal, PV module costs would need to be reduced to $ .50 per watt, balance of systems costs would need to be reduced to $.40 per watt, and power electronic costs would need to reach $.10 per watt. To address the BOS balance of systems cost component of the $1 per watt goal, the DOE announced a funding opportunity called (BOS-X) Extreme Balance of System Hardware Cost Reductions. The DOE identified eight areas within the total BOS costs: 1) installation labor, 2) installation materials, 3) installation overhead and profit, 4) tracker, 5) permitting and commissioning, 6) site preparation, 7) land acquisition, 8) sales tax. The BOS-X funding announcement requested applications in four specific topics;Topic 1: Transformational Building Integrated Photovoltaic (BIPV) Modules; Topic 2: Roof and Ground Mount Innovations; Topic 3: Transformational Photovoltaic System Designs; and Topic 4: Development of New Wind Load Codes for PV Systems.The application submitted by ARaymond Tinnerman reflected the requirements listed in Topic #2, Roof and Ground Mount Innovations. The goal of topic #2 was to develop technologies that would result in the extreme reduction of material and labor costs associated with applications that require physical connections and attachments to roof and ground mount structures. The topics researched in this project included component cost reduction, labor reduction, weight reduction, wiring innovations, and alternative material utilization. The project objectives included; 1) The development of an innovative quick snap bracket assembly

  13. 40 CFR 65.43 - Fixed roof with an internal floating roof (IFR).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... internal floating roof (IFR). (a) IFR design requirements. The owner or operator who elects to control... installing the control equipment required to comply with § 65.42(b)(1) or (3), visually inspect the internal... 40 Protection of Environment 15 2011-07-01 2011-07-01 false Fixed roof with an internal...

  14. Flat-plate solar array project. Volume 8: Project analysis and integration

    NASA Technical Reports Server (NTRS)

    Mcguire, P.; Henry, P.

    1986-01-01

    Project Analysis and Integration (PA&I) performed planning and integration activities to support management of the various Flat-Plate Solar Array (FSA) Project R&D activities. Technical and economic goals were established by PA&I for each R&D task within the project to coordinate the thrust toward the National Photovoltaic Program goals. A sophisticated computer modeling capability was developed to assess technical progress toward meeting the economic goals. These models included a manufacturing facility simulation, a photovoltaic power station simulation and a decision aid model incorporating uncertainty. This family of analysis tools was used to track the progress of the technology and to explore the effects of alternative technical paths. Numerous studies conducted by PA&I signaled the achievement of milestones or were the foundation of major FSA project and national program decisions. The most important PA&I activities during the project history are summarized. The PA&I planning function is discussed and how it relates to project direction and important analytical models developed by PA&I for its analytical and assessment activities are reviewed.

  15. TiO2 nanowires for potential facile integration of solar cells and electrochromic devices

    NASA Astrophysics Data System (ADS)

    Qiang, Pengfei; Chen, Zhongwei; Yang, Peihua; Cai, Xiang; Tan, Shaozao; Liu, Pengyi; Mai, Wenjie

    2013-11-01

    Self-powered systems usually consist of energy-acquisition components, energy-storage components and functional components. The development of nanoscience and nanotechnology has greatly improved the performance of all the components of self-powered systems. However, huge differences in the materials and configurations in the components cause large difficulties for integration and miniaturization of self-powered systems. Design and fabrication of different components in a self-powered system with the same or similar materials/configurations should be able to make the above goal easier. In this work, a proof-of-concept experiment involving an integrated self-powered color-changing system consisting of TiO2 nanowire based sandwich dye-sensitized solar cells (DSSCs) and electrochromic devices (ECDs) is designed and demonstrated. When sunlight illuminates the entire system, the DSSCs generate electrical power and turn the ECD to a darker color, dimming the light; by switching the connection polarity of the DSSCs, the lighter color can be regained, implying the potential application of this self-powered color-changing system for next generation sun glasses and smart windows.

  16. Integrated mitigation and solar radiation management scenarios under combined climate guardrails

    NASA Astrophysics Data System (ADS)

    Stankoweit, Marius; Schmidt, Hauke; Roshan, Elnaz; Pieper, Patrick; Held, Hermann

    2015-04-01

    In addition to the climate policy options 'mitigation' and 'adaptation' solar radiation management (SRM) has been put on the agenda. As SRM costs are comparably low compared to mitigation costs, including SRM risks in the analysis proves essential. In our contribution we focus on precipitation pattern changes as potential side-effects of SRM and perform an integrated mitigation-SRM-based analysis on the basis of economic welfare optimization, constrained by climate guardrails. We define a tolerable scale of precipitation changes by the anomalies that would have been tolerated under a temperature target. Given that metric and a temperature target, by utilizing the integrated assessment model MIND, we derive the cost reduction, induced by including the additional option of SRM. We show that the cost reduction is a strong function of the fraction of Giorgi regions, for which we require compliance with the newly defined SRM guardrail. Compliance with all Giorgi regions might eliminate most of the economic gain achievable through SRM. The effects of alternative parameterizations of the SRM-precipitation pattern change influence chain are discussed.

  17. TiO2 nanowires for potential facile integration of solar cells and electrochromic devices.

    PubMed

    Qiang, Pengfei; Chen, Zhongwei; Yang, Peihua; Cai, Xiang; Tan, Shaozao; Liu, Pengyi; Mai, Wenjie

    2013-11-01

    Self-powered systems usually consist of energy-acquisition components, energy-storage components and functional components. The development of nanoscience and nanotechnology has greatly improved the performance of all the components of self-powered systems. However, huge differences in the materials and configurations in the components cause large difficulties for integration and miniaturization of self-powered systems. Design and fabrication of different components in a self-powered system with the same or similar materials/configurations should be able to make the above goal easier. In this work, a proof-of-concept experiment involving an integrated self-powered color-changing system consisting of TiO2 nanowire based sandwich dye-sensitized solar cells (DSSCs) and electrochromic devices (ECDs) is designed and demonstrated. When sunlight illuminates the entire system, the DSSCs generate electrical power and turn the ECD to a darker color, dimming the light; by switching the connection polarity of the DSSCs, the lighter color can be regained, implying the potential application of this self-powered color-changing system for next generation sun glasses and smart windows.

  18. Monitoring the energy-use effects of cool roofs on Californiacommercial buildings

    SciTech Connect

    Akbari, Hashem; Levinson, Ronnen; Rainer, Leo

    2004-07-14

    Solar-reflective roofs stay cooler in the sun than solar-absorptive roofs. Such 'cool' roofs achieve lower surface temperatures that reduce heat conduction into the building and the building's cooling load. We monitored the effects of cool roofs on energy use and environmental parameters in six California buildings at three different sites: a retail store in Sacramento; an elementary school in San Marcos (near San Diego); and a four-building cold storage facility in Reedley (near Fresno). The latter included a cold storage building, a conditioning and fruit-palletizing area, a conditioned packing area, and two unconditioned packing areas. Results showed that installing a cool roof reduced the daily peak roof surface temperature of each building by 33-42 K. In the retail store building in Sacramento, for the monitored period of 8 August-30 September 2002, the estimated savings in average air conditioning energy use was about 72 Wh/m{sup 2}/day (52%). On hot days when the afternoon temperature exceeded 38 C, the measured savings in average peak demand for peak hours (noon-5 p.m.) was about 10 W/m{sup 2} of conditioned area. In the school building in San Marcos, for the monitored period of 8 July-20 August 2002, the estimated savings in average air conditioning energy use was about 42-48 Wh/m{sup 2}/day (17-18%). On hot days, when the afternoon temperature exceeded 32 C, the measured savings in average peak demand for hours 10 a.m.-4 p.m. was about 5 W/m{sup 2} of conditioned area. In the cold storage facility in Reedley, for the monitored period of 11 July-14 September 2002, and 11 July-18 August 2003, the estimated savings in average chiller energy use was about 57-81 Wh/m{sup 2}/day (3-4%). On hot days when the afternoon temperature exceeded 38 C, the measured savings in average peak-period demand (average cooling-power demand during peak demand hours, typically noon-6 p.m.) was about 5-6 W/m{sup 2} of conditioned area. Using the measured data and calibrated

  19. Solar-heating system

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Report describes solar modular domestic-hot-water and space-heating system intended for use in small single family dwelling where roof-mounted collectors are not feasible. Contents include design, performance, and hardware specifications for assembly, installation, operation, and maintenance of system.

  20. A novel technique for the production of cool colored concrete tile and asphalt shingle roofing products

    SciTech Connect

    Levinson, Ronnen; Akbari, Hashem; Berdahl, Paul; Wood, Kurt; Skilton, Wayne; Petersheim, Jerry

    2009-11-20

    The widespread use of solar-reflective roofing materials can save energy, mitigate urban heat islands and slow global warming by cooling the roughly 20% of the urban surface that is roofed. In this study we created prototype solar-reflective nonwhite concrete tile and asphalt shingle roofing materials using a two-layer spray coating process intended to maximize both solar reflectance and factory-line throughput. Each layer is a thin, quick-drying, pigmented latex paint based on either acrylic or a poly(vinylidene fluoride)/acrylic blend. The first layer is a titanium dioxide rutile white basecoat that increases the solar reflectance of a gray-cement concrete tile from 0.18 to 0.79, and that of a shingle surfaced with bare granules from 0.06 to 0.62. The second layer is a 'cool' color topcoat with weak near-infrared (NIR) absorption and/or strong NIR backscattering. Each layer dries within seconds, potentially allowing a factory line to pass first under the white spray, then under the color spray. We combined a white basecoat with monocolor topcoats in various shades of red, brown, green and blue to prepare 24 cool color prototype tiles and 24 cool color prototypes shingles. The solar reflectances of the tiles ranged from 0.26 (dark brown; CIELAB lightness value L* = 29) to 0.57 (light green; L* = 76); those of the shingles ranged from 0.18 (dark brown; L* = 26) to 0.34 (light green; L* = 68). Over half of the tiles had a solar reflectance of at least 0.40, and over half of the shingles had a solar reflectance of at least 0.25.

  1. Efficiently-cooled plasmonic amorphous silicon solar cells integrated with a nano-coated heat-pipe plate

    PubMed Central

    Zhang, Yinan; Du, Yanping; Shum, Clifford; Cai, Boyuan; Le, Nam Cao Hoai; Chen, Xi; Duck, Benjamin; Fell, Christopher; Zhu, Yonggang; Gu, Min

    2016-01-01

    Solar photovoltaics (PV) are emerging as a major alternative energy source. The cost of PV electricity depends on the efficiency of conversion of light to electricity. Despite of steady growth in the efficiency for several decades, little has been achieved to reduce the impact of real-world operating temperatures on this efficiency. Here we demonstrate a highly efficient cooling solution to the recently emerging high performance plasmonic solar cell technology by integrating an advanced nano-coated heat-pipe plate. This thermal cooling technology, efficient for both summer and winter time, demonstrates the heat transportation capability up to ten times higher than those of the metal plate and the conventional wickless heat-pipe plates. The reduction in temperature rise of the plasmonic solar cells operating under one sun condition can be as high as 46%, leading to an approximate 56% recovery in efficiency, which dramatically increases the energy yield of the plasmonic solar cells. This newly-developed, thermally-managed plasmonic solar cell device significantly extends the application scope of PV for highly efficient solar energy conversion. PMID:27113558

  2. Efficiently-cooled plasmonic amorphous silicon solar cells integrated with a nano-coated heat-pipe plate

    NASA Astrophysics Data System (ADS)

    Zhang, Yinan; Du, Yanping; Shum, Clifford; Cai, Boyuan; Le, Nam Cao Hoai; Chen, Xi; Duck, Benjamin; Fell, Christopher; Zhu, Yonggang; Gu, Min

    2016-04-01

    Solar photovoltaics (PV) are emerging as a major alternative energy source. The cost of PV electricity depends on the efficiency of conversion of light to electricity. Despite of steady growth in the efficiency for several decades, little has been achieved to reduce the impact of real-world operating temperatures on this efficiency. Here we demonstrate a highly efficient cooling solution to the recently emerging high performance plasmonic solar cell technology by integrating an advanced nano-coated heat-pipe plate. This thermal cooling technology, efficient for both summer and winter time, demonstrates the heat transportation capability up to ten times higher than those of the metal plate and the conventional wickless heat-pipe plates. The reduction in temperature rise of the plasmonic solar cells operating under one sun condition can be as high as 46%, leading to an approximate 56% recovery in efficiency, which dramatically increases the energy yield of the plasmonic solar cells. This newly-developed, thermally-managed plasmonic solar cell device significantly extends the application scope of PV for highly efficient solar energy conversion.

  3. Efficiently-cooled plasmonic amorphous silicon solar cells integrated with a nano-coated heat-pipe plate.

    PubMed

    Zhang, Yinan; Du, Yanping; Shum, Clifford; Cai, Boyuan; Le, Nam Cao Hoai; Chen, Xi; Duck, Benjamin; Fell, Christopher; Zhu, Yonggang; Gu, Min

    2016-04-26

    Solar photovoltaics (PV) are emerging as a major alternative energy source. The cost of PV electricity depends on the efficiency of conversion of light to electricity. Despite of steady growth in the efficiency for several decades, little has been achieved to reduce the impact of real-world operating temperatures on this efficiency. Here we demonstrate a highly efficient cooling solution to the recently emerging high performance plasmonic solar cell technology by integrating an advanced nano-coated heat-pipe plate. This thermal cooling technology, efficient for both summer and winter time, demonstrates the heat transportation capability up to ten times higher than those of the metal plate and the conventional wickless heat-pipe plates. The reduction in temperature rise of the plasmonic solar cells operating under one sun condition can be as high as 46%, leading to an approximate 56% recovery in efficiency, which dramatically increases the energy yield of the plasmonic solar cells. This newly-developed, thermally-managed plasmonic solar cell device significantly extends the application scope of PV for highly efficient solar energy conversion.

  4. Development of a near-infrared detector and a fiber-optic integral field unit for a space solar observatory SOLAR-C

    NASA Astrophysics Data System (ADS)

    Katsukawa, Yukio; Kamata, Yukiko; Anan, Tetsu; Hara, Hirohisa; Suematsu, Yoshinori; Bando, Takamasa; Ichimoto, Kiyoshi; Shimizu, Toshifumi

    2016-07-01

    We are developing a high sensitivity and fast readout near-infrared (NIR) detector and an integral field unit (IFU) for making spectro-polarimetric observations of rapidly varying chromospheric spectrum lines, such as He I 1083 nm and Ca II 854 nm, in the next space-based solar mission SOLAR-C. We made tests of a 1.7 μm cutoff H2RG detector with the SIDECAR ASIC for the application in SOLAR-C. It's important to verify its perfor- mance in the temperature condition around -100 °C, which is hotter than the typical temperature environment used for a NIR detector. We built a system for testing the detector between -70 °C and -140 °C. We verified linearity, read-out noise, and dark current in both the slow and fast readout modes. We found the detector has to be cooled down lower than -100 °C because of significant increase of the number of hot pixels in the hotter environment. The compact and polarization maintenance IFU was designed using fiber-optic ribbons consisting of rectangular cores which exhibit good polarization maintenance. A Silicone adhesive DC-SE9187L was used to hold the fragile fiber-optic ribbons in a metal housing. Polarization maintenance property was confirmed though polarization calibration as well as temperature control are required to suppress polarization crosstalk and to achieve the polarization accuracy in SOLAR-C.

  5. Eastern Renewable Generation Integration Study: Flexibility and High Penetrations of Wind and Solar; NREL (National Renewable Energy Laboratory)

    SciTech Connect

    Bloom, Aaron; Townsend, Aaron; Palchak, David

    2015-07-29

    Balancing wind and solar in a model is relatively easy. All you need to do is assume a very large system with infinite flexibility! But what if you don't have an infinitely flexible system? What if there are thousands of generators nestled in a handful of regions that are unlikely to change their operational practices? Would you still have enough flexibility to balance hundreds of gigawatts of wind and solar at a 5 minute level? At NREL, we think we can, and our industry partners agree. This presentation was presented at the IEEE Power and Energy Society General Meeting by Aaron Bloom, highlighting results of the Eastern Renewable Generation Integration Study.

  6. Fuel Consumption Impacts of Auto Roof Racks

    SciTech Connect

    Chen, Yuche; Meier, Alan

    2016-05-01

    The after-market roof rack is one of the most common components attached to a vehicle for carrying over-sized items, such as bicycles and skis. It is important to understand these racks' fuel consumption impacts on both individual vehicles and the national fleet because they are widely used. We estimate the national fuel consumption impacts of roof racks using a bottom-up approach. Our model incorporates real-world data and vehicle stock information to enable assessing fuel consumption impacts for several categories of vehicles, rack configurations, and usage conditions. In addition, the model draws on two new data-gathering techniques, on-line forums and crowd-sourcing. The results show that nationwide, roof racks are responsible for 0.8% of light duty vehicle fuel consumption in 2015, corresponding to 100 million gallons of gasoline per year. Sensitivity analyses show that results are most sensitive to the fraction of vehicles with installed roof racks but carrying no equipment. The aerodynamic efficiency of typical roof racks can be greatly improved and reduce individual vehicle fuel consumption; however, government policies to minimize extensive driving with empty racks--if successful--could save more fuel nationally.

  7. Fuel consumption impacts of auto roof racks

    SciTech Connect

    Chen, Yuche; Meier, Alan

    2016-03-23

    The after-market roof rack is one of the most common components attached to a vehicle for carrying over-sized items, such as bicycles and skis. It is important to understand these racks' fuel consumption impacts on both individual vehicles and the national fleet because they are widely used. We estimate the national fuel consumption impacts of roof racks using a bottom-up approach. Our model incorporates real-world data and vehicle stock information to enable assessing fuel consumption impacts for several categories of vehicles, rack configurations, and usage conditions. In addition, the model draws on two new data-gathering techniques, on-line forums and crowd-sourcing. The results show that nationwide, roof racks are responsible for 0.8‰ of light duty vehicle fuel consumption in 2015, corresponding to 100 million gallons of gasoline per year. Sensitivity analyses show that results are most sensitive to the fraction of vehicles with installed roof racks but carrying no equipment. Here, the aerodynamic efficiency of typical roof racks can be greatly improved and reduce individual vehicle fuel consumption; however, government policies to minimize extensive driving with empty racks--if successful--could save more fuel nationally.

  8. Fuel consumption impacts of auto roof racks

    DOE PAGES

    Chen, Yuche; Meier, Alan

    2016-03-23

    The after-market roof rack is one of the most common components attached to a vehicle for carrying over-sized items, such as bicycles and skis. It is important to understand these racks' fuel consumption impacts on both individual vehicles and the national fleet because they are widely used. We estimate the national fuel consumption impacts of roof racks using a bottom-up approach. Our model incorporates real-world data and vehicle stock information to enable assessing fuel consumption impacts for several categories of vehicles, rack configurations, and usage conditions. In addition, the model draws on two new data-gathering techniques, on-line forums and crowd-sourcing.more » The results show that nationwide, roof racks are responsible for 0.8‰ of light duty vehicle fuel consumption in 2015, corresponding to 100 million gallons of gasoline per year. Sensitivity analyses show that results are most sensitive to the fraction of vehicles with installed roof racks but carrying no equipment. Here, the aerodynamic efficiency of typical roof racks can be greatly improved and reduce individual vehicle fuel consumption; however, government policies to minimize extensive driving with empty racks--if successful--could save more fuel nationally.« less

  9. Solar ponds. Citations from the NTIS data base

    NASA Astrophysics Data System (ADS)

    Hundemann, A. S.

    1980-08-01

    Federally funded research on the design, performance, and use of solar ponds is discussed on these. Topic areas cover the use of solar ponds in industrial process heat production, roof ponds for passive solar buildings, and solar ponds use in the production of biomass for renewable fuels.

  10. Solar Powered Classroom

    ScienceCinema

    none

    2016-07-12

    A group of fourth graders in Durham, North Carolina, are showing America the way to a clean energy future. They are installing solar panels on their classroom roof for a project that goes above and beyond a normal day in school. From researching solar panel installation, to generating funds for the project via Kickstarter, these are students who put their plans into action. Their accomplishments go beyond the classroom and stress the importance of getting people of all ages involved in renewable energy.

  11. Solar Powered Classroom

    SciTech Connect

    2013-06-13

    A group of fourth graders in Durham, North Carolina, are showing America the way to a clean energy future. They are installing solar panels on their classroom roof for a project that goes above and beyond a normal day in school. From researching solar panel installation, to generating funds for the project via Kickstarter, these are students who put their plans into action. Their accomplishments go beyond the classroom and stress the importance of getting people of all ages involved in renewable energy.

  12. Roofing as a source of nonpoint water pollution.

    PubMed

    Chang, Mingteh; McBroom, Matthew W; Scott Beasley, R

    2004-12-01

    Sixteen wooden structures with two roofs each were installed to study runoff quality for four commonly used roofing materials (wood shingle, composition shingle, painted aluminum, and galvanized iron) at Nacogdoches, Texas. Each roof, either facing NW or SE, was 1.22 m wide x 3.66 m long with a 25.8% roof slope. Thus, there were 32 alternatively arranged roofs, consisting of four roof types x two aspects x four replicates, in the study. Runoff from the roofs was collected through galvanized gutters, downspouts, and splitters. The roof runoff was compared to rainwater collected by a wet/dry acid rain collector for the concentrations of eight water quality variables, i.e. Cu(2+), Mn(2+), Pb(2+), Zn(2+), Mg(2+), Al(3+), EC and pH. Based on 31 storms collected between October 1997 and December 1998, the results showed: (1) concentrations of pH, Cu, and Zn in rainwater already exceed the EPA freshwater quality standards even without pollutant inputs from roofs, (2) Zn and Cu, the two most serious pollutants in roof runoff, exceeded the EPA national freshwater water quality standards in virtually 100% and more than 60% of the samples, respectively, (3) pH, EC, and Zn were the only three variables significantly affected by roofing materials, (4) differences in Zn concentrations were significant among all roof types and between all roof runoff and rainwater samples, (5) although there were no differences in Cu concentrations among all roof types and between roof runoff and rainwater, all means and medians of runoff and rainwater exceeded the national water quality standards, (6) water quality from wood shingles was the worst among the roof types studied, and (7) although SE is the most frequent and NW the least frequent direction for incoming storms, only EC, Mg, Mn, and Zn in wood shingle runoff from the SE were significantly higher than those from the NW; the two aspects affected no other elements in runoff from the other three roof types. Also, Zn concentrations from

  13. Energizing Government Decision-Makers with the Facts on Solar Technology, Policy, and Integration

    SciTech Connect

    2017-01-01

    The Solar Technical Assistance Team (STAT) is a network of solar technology and implementation experts who provide timely, unbiased expertise to assist policymakers and regulators in making informed decisions about solar programs and policies. Government officials can submit requests directly to the STAT for technical assistance. STAT then partners with experts in solar policy, regulation, finance, technology, and other areas to deliver accurate, up-to-date information to state and local decision makers. The STAT responds to requests on a wide range of issues -- including, but not limited to, feed-in tariffs, renewable portfolio standards, rate design, program design, workforce and economic impacts of solar on jurisdictions, and project financing.

  14. A Trnsys simulation of a solar-driven ejector air conditioning system with an integrated PCM cold storage

    NASA Astrophysics Data System (ADS)

    Allouche, Yosr; Varga, Szabolcs; Bouden, Chiheb; Oliveira, Armando

    2017-02-01

    In this paper, the development of a TRNSYS model, for the simulation of a solar driven ejector cooling system with an integrated PCM cold storage is presented. The simulations were carried out with the aim of satisfying the cooling needs of a 140 m3 space during the summer season in Tunis, Tunisia. The system is composed of three main subsystems, which include: a solar loop, an ejector cycle and a PCM cold storage tank. The latter is connected to the air-conditioned space. The influence of applying cold storage on the system performance was investigated. It was found that the system COP increased compared to a system without cold storage. An optimal storage volume of 1000 l was identified resulting in the highest cooling COP and highest indoor comfort (95% of the time with a room temperature below 26°C). The maximum COP and solar thermal ratio (STR) were 0.193 and 0.097, respectively.

  15. Roofs That Last...And Last...And Last.

    ERIC Educational Resources Information Center

    Fickes, Michael

    1999-01-01

    Describes the benefits of using protected membrane roofing (PMR) systems as a means of cutting maintenance and repair costs over the roof's lifetime. Addresses responses to arguments against using PMR systems. (GR)

  16. Eastern portal, looking W. Note hipped roof covered with wood ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Eastern portal, looking W. Note hipped roof covered with wood shingles, added in 1993. The hipped roof is unique in U.S. covered bridges. - Doe River Bridge, Spanning Doe River, Third Avenue, Elizabethton, Carter County, TN

  17. Thermoplastic Single-Ply Roof Relieves Water Damage and Inconvenience.

    ERIC Educational Resources Information Center

    Williams, Jennifer Lynn

    2002-01-01

    Assesses use of thermoplastic single-ply roofs by North Carolina's Mars Hill College to prevent leaks, reduce maintenance costs, and enhance the value of their older historic buildings. Administrators comment on the roof's installation efficiency and cleanliness. (GR)

  18. 14. DETAIL OF ROOF SUPPORT BEAMS BRACED AGAINST HEXAGONAL WOODEN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. DETAIL OF ROOF SUPPORT BEAMS BRACED AGAINST HEXAGONAL WOODEN COMPRESSION RING AT TOP OF CENTRAL ROOF TRUSS. - Saratoga Gas Light Company, Gasholder No. 2, Niagara Mohawk Power Corporation Substation Facility, intersection of Excelsior & East Avenues, Saratoga Springs, NY

  19. The Map to Cost-Effective Summer Roofing.

    ERIC Educational Resources Information Center

    Waldron, Larry W.

    1988-01-01

    Roofing is one of the major expense items in school district maintenance budgets. Outlines steps to take in project planning, developing budget estimates and specifications, and completing a roofing project on time. (MLF)

  20. 5. ROOF DETAIL, LOOKING EAST TOWARD SECOND FLOOR WAREHOUSE FROM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. ROOF DETAIL, LOOKING EAST TOWARD SECOND FLOOR WAREHOUSE FROM ROOF OF ASSEMBLY AREA. - Ford Motor Company Long Beach Assembly Plant, Assembly Building, 700 Henry Ford Avenue, Long Beach, Los Angeles County, CA

  1. BLACKSMITH SHOP ROOF STRUCTURE AT JUNCTION BETWEEN 60 FT. AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    BLACKSMITH SHOP ROOF STRUCTURE AT JUNCTION BETWEEN 60 FT. AND 90 FT. SPAN ROOF TRUSSES, LOOKING SOUTH. - Southern Pacific, Sacramento Shops, Blacksmith Shop, 111 I Street, Sacramento, Sacramento County, CA

  2. 42. SOUTHEAST TOWER & EAST WING ROOF FROM SOUTH TOWER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    42. SOUTHEAST TOWER & EAST WING ROOF FROM SOUTH TOWER ROOF, LOOKING EAST BY NORTHEAST - Smithsonian Institution Building, 1000 Jefferson Drive, between Ninth & Twelfth Streets, Southwest, Washington, District of Columbia, DC

  3. 46. OCTAGONAL & WEST TOWERS FROM SOUTH TOWER ROOF, LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    46. OCTAGONAL & WEST TOWERS FROM SOUTH TOWER ROOF, LOOKING NORTHWEST, WITH WEST WING ROOF - Smithsonian Institution Building, 1000 Jefferson Drive, between Ninth & Twelfth Streets, Southwest, Washington, District of Columbia, DC

  4. Interior view of the Sheet Metal Shop showing the roof ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Interior view of the Sheet Metal Shop showing the roof trusses and corrugated metal roof covering, view facing northwest - Kahului Cannery, Plant No. 28, Boiler House, Sheet Metal and Electrical Shops, 120 Kane Street, Kahului, Maui County, HI

  5. Actinometric measurement of solar ultraviolet and development of a weighted solar UV integral. [photochemical reaction rate determination

    NASA Technical Reports Server (NTRS)

    Gupta, A.; Coulbert, C.

    1978-01-01

    An actinometer has been developed to measure outdoor irradiance in the range 295-400 nm. Actinometric measurements of radiation are based on determination of photochemical reaction rates for reactions of known quantum efficiency. Actinometers have the advantage of providing irradiance data over surfaces of difficult accessibility; in addition, actinometrically determined irradiance data are wavelength weighted and therefore provide a useful means of assessing the degradation rates of polymers employed in solar energy systems.

  6. A Novel Photo-Thermoelectric Generator Integrating Dye-sensitized Solar Cells with Thermoelectric Modules

    NASA Astrophysics Data System (ADS)

    Chang, Ho; Kao, Mu-Jung; Huang, Kouhsiu David; Chen, Sih-Li; Yu, Zhi-Rong

    2010-06-01

    In this study, we adopt two different morphologies of self-made nano-TiO2 powder to prepare a double-layer photoelectrode for dye-sensitized solar cells (DSSCs). Further, DSSC module and thermoelectric generator (TEG) coated with nano-Cu thin film were integrated with a novel photo-thermoelectric generator. For the fabrication of photoelectric conversion modules, TiO2 nanoparticles (H200) fabricated by the hydrothermal method and the powder of TiO2 nanofluid prepared by the submerged arc nanofluid synthesis system (SANSS) were utilized to prepare a double-layer thin film using a surgical blade as the photoelectrode of DSSCs. And then, commercial nano-Cu powder was coated on two sides of TEG to fabricate thermoelectric conversion module by surgical blade. Nano-Cu thin film, as the medium of thermal conductivity, can effectively transfer heat produced by sunlight on the surface of DSSC to the two sides of TEG. Finally, the two modules were combined into the optical thermoelectric generator. The overall experiment utilizes the intensity of 100 mW/cm2 illumination of simulated sunlight, which can produce 4.97 mW/cm2, an increase of 2.87% output compared with merely employing the DSSCs.

  7. CO2 post-combustion capture in coal-fired power plants integrated with solar systems

    NASA Astrophysics Data System (ADS)

    Carapellucci, R.; Giordano, L.; Vaccarelli, M.

    2015-11-01

    The majority of the World's primary energy consumption is still based on fossil fuels, representing the largest source of global CO2 emissions. According to the Intergovernmental Panel on Climate Change (IPCC), such emissions must be significantly reduced in order to avoid the dramatic consequences of global warming. A potential way to achieve this ambitious goal is represented by the implementation of CCS (Carbon Capture and Storage) technologies. However, the significant amount of energy required by the CCS systems still represents one the major barriers for their deployment. Focusing on post-combustion capture based on amine absorption, several interesting options have been investigated to compensate the energy losses due to solvent regeneration, also using renewable energy sources. One of the most promising is based on the use of concentrating solar power (CSP), providing a part of the energy requirement of the capture island. In this study the integration of a CSP system into a coal-fired power plant with CO2 postcombustion capture is investigated. Basically, a CSP system is used to support the heat requirement for amine regeneration, by producing saturated steam at low temperature. This allows to reduce or even eliminate the conventional steam extraction from the main power plant, affecting positively net power production and efficiency. The energy analysis of the whole system is carried out using the GateCycle software to simulate the coal-fired power plant and ChemCad platform for the CO2 capture process based on amine absorption.

  8. Double Power Laws in the Event-integrated Solar Energetic Particle Spectrum

    NASA Astrophysics Data System (ADS)

    Zhao, Lulu; Zhang, Ming; Rassoul, Hamid K.

    2016-04-01

    A double power law or a power law with exponential rollover at a few to tens of MeV nucleon-1 of the event-integrated differential spectra has been reported in many solar energetic particle (SEP) events. The rollover energies per nucleon of different elements correlate with a particle's charge-to-mass ratio (Q/A). The probable causes are suggested as residing in shock finite lifetimes, shock finite sizes, shock geometry, and an adiabatic cooling effect. In this work, we conduct a numerical simulation to investigate a particle's transport process in the inner heliosphere. We solve the focused transport equation using a time-backward Markov stochastic approach. The convection, magnetic focusing, adiabatic cooling effect, and pitch-angle scattering are included. The effects that the interplanetary turbulence imposes on the shape of the resulting SEP spectra are examined. By assuming a pure power-law differential spectrum at the Sun, a perfect double-power-law feature with a break energy ranging from 10 to 120 MeV nucleon-1 is obtained at 1 au. We found that the double power law of the differential energy spectrum is a robust result of SEP interplanetary propagation. It works for many assumptions of interplanetary turbulence spectra that give various forms of momentum dependence of a particle's mean free path. The different spectral shapes in low-energy and high-energy ends are not just a transition from the convection-dominated propagation to diffusion-dominated propagation.

  9. Mine roof drill bits that save money

    SciTech Connect

    Ford, L.M.

    1982-04-01

    Sandia National Laboratories, Albuquerque, NM, has developed advanced technology roof bolt drill bits which have demonstrated longer life, higher penetration rates at lower thrust and torque, and lower specific energy than conventional roof bolt drill bits. This is achieved through use of advanced technology cutting materials and novel bit body designs. These bits have received extensive laboratory and mine testing. Their performance has been evaluated and estimates of their value in reducing coal production costs have been made. The work was sponsored by the United States Department of Energy.

  10. Spatially dependent biotic and abiotic factors drive survivorship and physical structure of green roof vegetation.

    PubMed

    Aloisio, Jason M; Palmer, Matthew I; Giampieri, Mario A; Tuininga, Amy R; Lewis, James D

    2017-01-01

    Plant survivorship depends on biotic and abiotic factors that vary at local and regional scales. This survivorship, in turn, has cascading effects on community composition and the physical structure of vegetation. Survivorship of native plant species is variable among populations planted in environmentally stressful habitats like urban roofs, but the degree to which factors at different spatial scales affect survivorship in urban systems is not well understood. We evaluated the effects of biotic and abiotic factors on survivorship, composition, and physical structure of two native perennial species assemblages, one characterized by a mixture of C4 grasses and forbs (Hempstead Plains, HP) and one characterized by a mixture of C3 grasses and forbs (Rocky Summit, RS), that were initially sown at equal ratios of growth forms (5:1:4; grass, N-fixing forb and non-N-fixing forb) in replicate 2-m(2) plots planted on 10 roofs in New York City (New York, USA). Of 24 000 installed plants, 40% survived 23 months after planting. Within-roof factors explained 71% of variation in survivorship, with biotic (species identity and assemblage) factors accounting for 54% of the overall variation, and abiotic (growing medium depth and plot location) factors explaining 17% of the variation. Among-roof factors explained 29% of variation in survivorship and increased solar radiation correlated with decreased survivorship. While growing medium properties (pH, nutrients, metals) differed among roofs there was no correlation with survivorship. Percent cover and sward height increased with increasing survivorship. At low survivorship, cover of the HP assemblage was greater compared to the RS assemblage. Sward height of the HP assemblage was about two times greater compared to the RS assemblage. These results highlight the effects of local biotic and regional abiotic drivers on community composition and physical structure of green roof vegetation. As a result, initial green roof plant

  11. Integrating satellite imagery-derived data and GIS-based solar radiation algorithms to map solar radiation in high temporal and spatial resolutions for the province of Salta, Argentina

    NASA Astrophysics Data System (ADS)

    Ramirez Camargo, Luis; Dorner, Wolfgang

    2016-10-01

    An accurate estimation of solar radiation availability is vital for planning solar energy generation systems. Classically, this type of estimation is made by cumulating data for periods of one year and serves to determine locations with the highest solar radiation availability. However, the integration of high shares of technologies such as photovoltaics in the energy matrix and the evaluation of the economic viability of these systems under time-dependent promotion mechanisms, also requires estimations in a high temporal resolution. When looking at the yearly solar resource availability, the north-west of Argentina is one of the regions of the world with the highest solar radiation potential. Yet estimations are available mainly in low spatial resolutions and there are only few studies that try to characterize the temporal variability of the solar resource in this part of the world. This paper presents a methodology to integrate satellite imagery derived data and a GIS-based solar radiation algorithm in order to generate a high resolution solar irradiance spatiotemporal data set for the province of Salta, north-west Argentina. This data set describes in a better way the differences in solar resource availability between flat and mountainous regions in the province, serves to accurately identify locations with the highest global solar radiation and to characterize its variability on time. Furthermore, the presented methodology can be easily replicated for the rest of South America that is covered by Down-welling Surface Shortwave Flux (DSSF) product provided by the Land Surface Analysis Satellite Applications Facility.

  12. TASK 2.5.7 FIELD EXPERIMENTS TO EVALUATE COOL-COLORED ROOFING

    SciTech Connect

    Miller, William A; Cherry, Nigel J; Allen, Richard Lowell; Childs, Phillip W; Atchley, Jerald Allen; Ronnen, Levinson; Akbari, Hashem; Berhahl, Paul

    2010-03-01

    Aesthetically pleasing dark roofs can be formulated to reflect like a highly reflective white roof in the near infrared portion of the solar spectrum. New paint pigments increase the near infrared reflectance of exterior finishes by minimizing the absorption of near-infrared radiation (NIR). The boost in the NIR reflectance drops the surface temperatures of roofs and walls, which in turn reduces cooling-energy use and provides savings for the homeowner and relief for the utilities. In moderate and hot climates, a roof surface with high solar reflectance and high thermal emittance was shown by Akbari et al. (2004) and by Parker and Sherwin (1998) to reduce the exterior temperature and produce savings in comfort cooling. The new cool color pigments can potentially reduce emissions of carbon dioxide, which in turn reduces metropolitan heat buildup and urban smog. The pigments can also help conserve water resources otherwise used to clean and process fuel consumed by fossil-fuel driven power plants. Cool roofs also result in a lower ambient temperature that further decreases the need for air conditioning, retards smog formation, and improves thermal comfort. Parker, Sonne and Sherwin (2002) demonstrated that white barrel and white flat tiles reduced cooling energy consumption by 22% of the base load used by an adjacent and identical home having direct nailed dark shingles. Part of the savings was due to the reflectance of the white tiles; however, another part was due to the mass of the tile and to the venting occurring within the double batten installation. With, Cherry and Haig (2009) have studied the influence of the thermal mass and batten space ventilation and have found that, referenced to an asphalt shingle system, it can be equivalent to an additional 28 points of solar reflectivity. The double batten arrangement has wooden counter battens laid vertically (soffit-to-ridge) against the roof deck, and then the conventional battens are laid horizontally across the

  13. Study of thermal effects and optical properties of an innovative absorber in integrated collector storage solar water heater

    NASA Astrophysics Data System (ADS)

    Taheri, Yaser; Alimardani, Kazem; Ziapour, Behrooz M.

    2015-10-01

    Solar passive water heaters are potential candidates for enhanced heat transfer. Solar water heaters with an integrated water tank and with the low temperature energy resource are used as the simplest and cheapest recipient devices of the solar energy for heating and supplying hot water in the buildings. The solar thermal performances of one primitive absorber were determined by using both the experimental and the simulation model of it. All materials applied for absorber such as the cover glass, the black colored sands and the V shaped galvanized plate were submerged into the water. The water storage tank was manufactured from galvanized sheet of 0.0015 m in thickness and the effective area of the collector was 0.67 m2. The absorber was installed on a compact solar water heater. The constructed flat-plate collectors were tested outdoors. However the simulation results showed that the absorbers operated near to the gray materials and all experimental results showed that the thermal efficiencies of the collector are over than 70 %.

  14. 29 CFR 570.67 - Occupations in roofing operations and on or about a roof (Order 16).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... pitch, asphalt prepared paper, tile, composite roofing materials, slate, metal, translucent materials..., roofing helper, materials handler and tending a tar heater. (c) Exemptions. This section shall not apply...) and (c)....

  15. 29 CFR 570.67 - Occupations in roofing operations and on or about a roof (Order 16).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... pitch, asphalt prepared paper, tile, composite roofing materials, slate, metal, translucent materials..., roofing helper, materials handler and tending a tar heater. (c) Exemptions. This section shall not apply...) and (c)....

  16. Recovery and reuse of asphalt roofing waste. Final report

    SciTech Connect

    Desai, S.; Graziano, G.; Shepherd, P.

    1984-02-02

    Burning of asphalt roofing waste as a fuel and incorporating asphalt roofing waste in bituminous paving were identified as the two outstanding resource recovery concepts out of ten studied. Four additional concepts might be worth considering under different market or technical circumstances. Another four concepts were rated as worth no further consideration at this time. This study of the recovery of the resource represented in asphalt roofing waste has identified the sources and quantities of roofing waste. About six million cubic yards of scrap roofing are generated annually in the United States, about 94% from removal of old roofing at the job site and the remainder from roofing material production at factories. Waste disposal is a growing problem for manufacturers and contractors. Nearly all roofing waste is hauled to landfills at a considerable expense to roofing contractors and manufacturers. Recovery of the roofing waste resource should require only a modest economic incentive. The asphalt contained in roofing waste represents an energy resource of more than 7 x 10/sup 13/ Btu/year. Another 1 x 10/sup 13/ Btu/year may be contained in field-applied asphalt on commercial building roofs. The two concepts recommended by this study appear to offer the broadest applicability, the most favorable economics, and the highest potential for near-term implementation to reuse this resource.

  17. 40 CFR 65.44 - External floating roof (EFR).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... breaker vents) and rim space vents, each opening in the noncontact external floating roof shall provide a... they are closed. (iii) Except for automatic bleeder vents, rim space vents, roof drains, and leg... and rim space vents shall be equipped with a gasket. (v) Each roof drain that empties into the...

  18. 40 CFR 65.44 - External floating roof (EFR).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... breaker vents) and rim space vents, each opening in the noncontact external floating roof shall provide a... they are closed. (iii) Except for automatic bleeder vents, rim space vents, roof drains, and leg... and rim space vents shall be equipped with a gasket. (v) Each roof drain that empties into the...

  19. 40 CFR 65.44 - External floating roof (EFR).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 15 2010-07-01 2010-07-01 false External floating roof (EFR). 65.44... (CONTINUED) CONSOLIDATED FEDERAL AIR RULE Storage Vessels § 65.44 External floating roof (EFR). (a) EFR... emissions by using an external floating roof shall comply with the design requirements listed in...

  20. 49 CFR 238.441 - Emergency roof access.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Emergency roof access. 238.441 Section 238.441... Equipment § 238.441 Emergency roof access. (a) Existing passenger cars and power cars. Each passenger car..., 2011, shall have a minimum of one roof hatch emergency access location with a minimum opening of...

  1. 49 CFR 238.123 - Emergency roof access.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Emergency roof access. 238.123 Section 238.123... § 238.123 Emergency roof access. Except as provided in § 238.441 of this chapter— (a) Number and... or after April 1, 2011, shall have a minimum of two emergency roof access locations, each with...

  2. 49 CFR 238.123 - Emergency roof access.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Emergency roof access. 238.123 Section 238.123... § 238.123 Emergency roof access. Except as provided in § 238.441 of this chapter— (a) Number and... or after April 1, 2011, shall have a minimum of two emergency roof access locations, each with...

  3. Which Roof is Tops? Grades PreK-2.

    ERIC Educational Resources Information Center

    Rushton, Erik; Ryan, Emily; Swift, Charles

    This introductory activity explores the advantages of different roof shapes for different climates or situations. It addresses questions such as "When you walk or drive around your neighborhood, what do the roofs look like?" and "What if you lived in an area with a different climate, how would that affect the style of roof that you might find?"…

  4. 49 CFR 238.441 - Emergency roof access.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Emergency roof access. 238.441 Section 238.441... Equipment § 238.441 Emergency roof access. (a) Existing passenger cars and power cars. Each passenger car..., 2011, shall have a minimum of one roof hatch emergency access location with a minimum opening of...

  5. 24 CFR 3280.402 - Test procedure for roof trusses.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 24 Housing and Urban Development 5 2012-04-01 2012-04-01 false Test procedure for roof trusses... HOUSING AND URBAN DEVELOPMENT MANUFACTURED HOME CONSTRUCTION AND SAFETY STANDARDS Testing § 3280.402 Test procedure for roof trusses. (a) Roof load tests. The following is an acceptable test procedure,...

  6. 40 CFR 63.902 - Standards-Tank fixed roof.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... floating roof. (b) The tank shall be equipped with a fixed roof designed to meet the following specifications: (1) The fixed roof and its closure devices shall be designed to form a continuous barrier over... closure device designed to operate such that when the closure device is secured in the closed...

  7. 40 CFR 63.902 - Standards-Tank fixed roof.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... floating roof. (b) The tank shall be equipped with a fixed roof designed to meet the following specifications: (1) The fixed roof and its closure devices shall be designed to form a continuous barrier over... closure device designed to operate such that when the closure device is secured in the closed...

  8. 40 CFR 63.1042 - Standards-Separator fixed roof.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) National Emission Standards for Oil-Water Separators and Organic-Water Separators § 63.1042 Standards... controlling air emissions from an oil-water separator or organic-water separator using a fixed roof. (b) The... interface of the roof edge and the separator wall. (3) Each opening in the fixed roof shall be equipped...

  9. ROOFER Inventory Procedures and Inspection Manual for Metal Panel Roofing

    DTIC Science & Technology

    2012-12-01

    from the NRCA Roofing Manual: Metal Panel and SPF Roof Systems – 2012, with the permission of the Na- tional Roofing Contractor Association (NRCA...RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE ( DD -MM-YYYY) December 2012 2. REPORT TYPE Final 3. DATES COVERED (From - To) 4. TITLE

  10. 30 CFR 75.213 - Roof support removal.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... persons who perform the work of removing permanent roof supports shall be supervised by a management... mining experience shall perform permanent roof support removal work. (b) Prior to the removal of... where— (1) Roof bolt torque or tension measurements or the condition of conventional support...

  11. High-Performance Integrated Perovskite and Organic Solar Cells with Enhanced Fill Factors and Near-Infrared Harvesting.

    PubMed

    Kim, Junghwan; Kim, Geunjin; Back, Hyungcheol; Kong, Jaemin; Hwang, In-Wook; Kim, Tae Kyun; Kwon, Sooncheol; Lee, Jong-Hoon; Lee, Jinho; Yu, Kilho; Lee, Chang-Lyoul; Kang, Hongkyu; Lee, Kwanghee

    2016-04-01

    Highly efficient P-I-N type perovskite/bulk-heterojunction (BHJ) integrated solar cells (ISCs) with enhanced fill factor (FF) (≈80%) and high near-infrared harvesting (>30%) are demonstrated by optimizing the BHJ morphology with a novel n-type polymer, N2200, and a new solvent-processing additive. This work proves the feasibility of highly efficient ISCs with panchromatic absorption as a new photovoltaic architecture and provides important design rules for optimizing ISCs.

  12. SOLERAS - Solar Controlled Environment Agriculture Project. Final report, Volume 5. Science Applications, Incorporated system requirements definition

    SciTech Connect

    Not Available

    1985-01-01

    This report sets forth the system requirements for a Solar Controlled-Environment Agriculture System (SCEAS) Project. In the report a conceptual baseline system description for an engineering test facility is given. This baseline system employs a fluid roof/roof filter in combination with a large storage tank and a ground water heat exchanger in order to provide cooling and heating as needed. Desalination is accomplished by pretreatment followed by reverse osmosis. Energy is provided by means of photovoltaics and wind machines in conjunction with storage batteries. Site and climatic data needed in the design process are given. System performance specifications and integrated system design criteria are set forth. Detailed subsystem design criteria are presented and appropriate references documented.

  13. SEPS mission and system integration/interface requirements for the space transportation system. [Solar Electric Propulsion System

    NASA Technical Reports Server (NTRS)

    Cork, M. J.; Barnett, P. M.; Shaffer, J., Jr.; Doran, B. J.

    1979-01-01

    Earth escape mission requirements on Solar Electric Propulsion System (SEPS), and the interface definition and planned integration between SEPS, user spacecraft, and other elements of the STS. Emphasis is placed on the Comet rendezvous mission, scheduled to be the first SEPS user. Interactive SEPS interface characteristics with spacecraft and mission, as well as the multiple organizations and inter-related development schedules required to integrate the SEPS with spacecraft and STS, require early attention to definition of interfaces in order to assure a successful path to the first SEPS launch in July 1985

  14. 40 CFR 65.43 - Fixed roof with an internal floating roof (IFR).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... drains, each opening shall be equipped with a gasketed cover or gasketed lid. (iii) Each penetration of... cover, access hatch, gauge float well, or lid on any opening in the internal floating roof shall...

  15. 40 CFR 65.43 - Fixed roof with an internal floating roof (IFR).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... drains, each opening shall be equipped with a gasketed cover or gasketed lid. (iii) Each penetration of... cover, access hatch, gauge float well, or lid on any opening in the internal floating roof shall...

  16. 7 CFR 3201.11 - Roof coatings.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ..., overlap with the following EPA-designated recovered content product: Roofing Materials. USDA is requesting that manufacturers of these qualifying biobased products provide information for the BioPreferred Web... not the product contains any type of recovered material, in addition to biobased ingredients,...

  17. 7 CFR 2902.11 - Roof coatings.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... the following EPA-designated recovered content product: Roofing Materials. USDA is requesting that manufacturers of these qualifying biobased products provide information for the BioPreferred Web site of... product contains any type of recovered material, in addition to biobased ingredients, and...

  18. 7 CFR 3201.11 - Roof coatings.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ..., overlap with the following EPA-designated recovered content product: Roofing Materials. USDA is requesting that manufacturers of these qualifying biobased products provide information for the BioPreferred Web... not the product contains any type of recovered material, in addition to biobased ingredients,...

  19. 7 CFR 3201.11 - Roof coatings.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ..., overlap with the following EPA-designated recovered content product: Roofing Materials. USDA is requesting that manufacturers of these qualifying biobased products provide information for the BioPreferred Web... not the product contains any type of recovered material, in addition to biobased ingredients,...

  20. 7 CFR 2902.11 - Roof coatings.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... the following EPA-designated recovered content product: Roofing Materials. USDA is requesting that manufacturers of these qualifying biobased products provide information for the BioPreferred Web site of... product contains any type of recovered material, in addition to biobased ingredients, and...