Effectiveness of Different Urban Heat Island Mitigation Methods and Their Regional Impacts
NASA Astrophysics Data System (ADS)
Zhang, N.
2017-12-01
Cool roofs and green roofs are two popular methods to mitigate urban heat island and improve urban climate. The effectiveness of different urban heat island mitigation strategies in the summer of 2013 in the Yangtze River Delta, China is investigated using the WRF (Weather Research and Forecasting) model coupled with a physically based urban canopy model. The modifications to the roof surface changed the urban surface radiation balance and then modified the local surface energy budget. Both cool roofs and green roofs led to lower surface skin temperature and near-surface air temperature. Increasing the roof albedo to 0.5 caused a similar effectiveness as covering 25% of urban roofs with vegetation; increasing roof albedo to 0.7 caused a similar near-surface air temperature decrease as 75% green roof coverage. The near-surface relative humidity increased in both cool roof and green roof experiments because of the combination of the impacts of increases in specific humidity and decreases in air temperature. The regional impacts of cool roofs and green roofs were evaluated using the regional effect index. The regional effect could be found in both near-surface air temperature and surface specific/relative humidity when the percentage of roofs covered with high albedo materials or green roofs reached a higher fraction (greater than 50%). The changes in the vertical profiles of temperature cause a more stable atmospheric boundary layer over the urban area; at the same time, the crossover phenomena occurred above the boundary layer due to the decrease in vertical wind speed.
Urban heat mitigation by roof surface materials during the East Asian summer monsoon
NASA Astrophysics Data System (ADS)
Lee, Seungjoon; Ryu, Youngryel; Jiang, Chongya
2017-04-01
Roof surface materials, such as green and white roofs, have attracted attention in their role in urban heat mitigation, and various studies have assessed the cooling performance of roof surface materials during hot and sunny summer seasons. However, summers in the East Asian monsoon climate region are characterized by significant fluctuations in weather events, such as dry periods, heatwaves, and rainy and cloudy days. This study investigated the efficacy of different roof surface materials for heat mitigation, considering the temperatures both at and beneath the surface of the roof covering materials during a summer monsoon in Seoul, Korea. We performed continuous observations of temperature at and beneath the surface of the roof covering materials, and manual observation of albedo and the normalized difference vegetation index (NDVI) for a white roof, two green roofs (grass [Poa pratensis] and sedum [Sedum sarmentosum]), and a reference surface. Overall, the surface temperature of the white roof was significantly lower than that of the grass and sedum roofs (1.1 and 1.3°C), whereas the temperature beneath the surface of the white roof did not differ significantly from that of the grass and sedum roofs during the summer. The degree of cloudiness significantly modified the surface temperature of the white roof compared with that of the grass and sedum roofs, which depended on plant metabolisms. It was difficult for the grass to maintain its cooling ability without adequate watering management. After considering the cooling performance and maintenance efforts for different environmental conditions, we concluded that white roof performed better in urban heat mitigation than grass and sedum during the East Asian summer monsoon. Our findings will be useful in urban heat mitigation in the region.
Thermal performance of a Concrete Cool Roof under different climatic conditions of Mexico
Hernández-Pérez, I.; Álvarez, G.; Gilbert, H.; ...
2014-11-27
A cool roof is an ordinary roof with a reflective coating on the exterior surface which has a high solar reflectance and high thermal emittance. These properties let the roof keep a lower temperature than a standard roof under the same conditions. In this work, the thermal performance of a concrete roof with and without insulation and with two colors has been analyzed using the finite volume method. The boundary conditions of the external roof surface were taken from hourly averaged climatic data of four cities. For the internal surface, it is considered that the building is air-conditioned and themore » inside air has a constant temperature. The interior surface temperature and the heat flux rates into the roofs were obtained for two consecutive days in order to assess the benefits of a cool roofs in different climates.« less
Radiant heat loss, an unexploited path for heat stress reduction in shaded cattle.
Berman, A; Horovitz, T
2012-06-01
Reducing thermal radiation on shaded animals reduces heat stress independently of other means of stress relief. Radiant heat exchange was estimated as a function of climate, shade structure, and animal density. Body surface portion exposed to radiant sources in shaded environments was determined by geometrical relations to determine angles of view of radiation sources (roof underside, sky, sun-exposed ground, shaded ground) on the animal's surface. The relative representation of environment radiation sources on the body surface was determined. Animal thermal radiation balance was derived from radiant heat gained from radiation sources (including surrounding animals) and that lost from the animal surface. The animal environment was assumed to have different shade dimensions and temperatures. These were summed to the radiant heat balance of the cow. The data formed served to estimate the effect of changes in intensity of radiation sources, roof and shaded surface dimensions, and animal density on radiant heat balance (Rbal) of cattle. Roof height effect was expressed by effect of roof temperature on Rbal. Roof underside temperature (35 to 75°C) effect on Rbal was reduced by roof height. If roof height were 4m, an increase in its underside temperature from 35 to 75°C would increase mean Rbal from -63 to -2 W·m⁻², whereas if roof height were 10 m, Rbal would only increase from -99 to -88 W·m⁻². A hot ground temperature increase from 35 to 65°C reduced mean Rbal heat loss from -45 to 3 W·m⁻². Increasing the surface of the shaded area had only a minor effect on Rbal and on the effect of hot ground on Rbal. Increasing shade roof height reduced the effect of roof temperature on Rbal to minor levels when height was > 8m. Increasing the roof height from 4 to 10 m decreased Rbal from -32 to -94 W·m⁻². Increasing indirect radiation from 100 to 500 W·m⁻² was associated with an increase in Rbal from -135 to +23 W·m⁻². Their combined effects were lower Rbal with increasing roof height and a reduction in rate of decrease with increasing level of indirect radiation. Roof height as an Rbal attenuator declined with increasing indirect radiation level. The latter factor might be reduced by lowering roof surface radiation absorption and through roof heat transfer, as well as by use of shade structure elements to reduce indirect radiation in the shaded area. Radiant heat from the cow body surface may be reduced by lower cow density. Radiant heat attenuation may thus further elevate animal productivity in warm climates, with no associated operation costs. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
An environmental cost-benefit analysis of alternative green roofing strategies
NASA Astrophysics Data System (ADS)
Richardson, M.; William, R. K.; Goodwell, A. E.; Le, P. V.; Kumar, P.; Stillwell, A. S.
2016-12-01
Green roofs and cool roofs are alternative roofing strategies that mitigate urban heat island effects and improve building energy performance. Green roofs consist of soil and vegetation layers that provide runoff reduction, thermal insulation, and potential natural habitat, but can require regular maintenance. Cool roofs involve a reflective layer that reflects more sunlight than traditional roofing materials, but require additional insulation during winter months. This study evaluates several roofing strategies in terms of energy performance, urban heat island mitigation, water consumption, and economic cost. We use MLCan, a multi-layer canopy model, to simulate irrigated and non-irrigated green roof cases with shallow and deep soil depths during the spring and early summer of 2012, a drought period in central Illinois. Due to the dry conditions studied, periodic irrigation is implemented in the model to evaluate its effect on evapotranspiration. We simulate traditional and cool roof scenarios by altering surface albedo and omitting vegetation and soil layers. We find that both green roofs and cool roofs significantly reduce surface temperature compared to the traditional roof simulation. Cool roof temperatures always remain below air temperature and, similar to traditional roofs, require low maintenance. Green roofs remain close to air temperature and also provide thermal insulation, runoff reduction, and carbon uptake, but might require irrigation during dry periods. Due to the longer lifetime of a green roof compared to cool and traditional roofs, we find that green roofs realize the highest long term cost savings under simulated conditions. However, using longer-life traditional roof materials (which have a higher upfront cost) can help decrease this price differential, making cool roofs the most affordable option due to the higher maintenance costs associated with green roofs
Fourier analysis of conductive heat transfer for glazed roofing materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roslan, Nurhana Lyana; Bahaman, Nurfaradila; Almanan, Raja Noorliyana Raja
For low-rise buildings, roof is the most exposed surface to solar radiation. The main mode of heat transfer from outdoor via the roof is conduction. The rate of heat transfer and the thermal impact is dependent on the thermophysical properties of roofing materials. Thus, it is important to analyze the heat distribution for the various types of roofing materials. The objectives of this paper are to obtain the Fourier series for the conductive heat transfer for two types of glazed roofing materials, namely polycarbonate and polyfilled, and also to determine the relationship between the ambient temperature and the conductive heatmore » transfer for these materials. Ambient and surface temperature data were collected from an empirical field investigation in the campus of Universiti Teknologi MARA Shah Alam. The roofing materials were installed on free-standing structures in natural ventilation. Since the temperature data are generally periodic, Fourier series and numerical harmonic analysis are applied. Based on the 24-point harmonic analysis, the eleventh order harmonics is found to generate an adequate Fourier series expansion for both glazed roofing materials. In addition, there exists a linear relationship between the ambient temperature and the conductive heat transfer for both glazed roofing materials. Based on the gradient of the graphs, lower heat transfer is indicated through polyfilled. Thus polyfilled would have a lower thermal impact compared to polycarbonate.« less
Using Remote Sensing to Quantify Roof Albedo in Seven California Cities
NASA Astrophysics Data System (ADS)
Ban-Weiss, G. A.; Woods, J.; Millstein, D.; Levinson, R.
2013-12-01
Cool roofs reflect sunlight and therefore can reduce cooling energy use in buildings. Further, since roofs cover about 20-25% of cities, wide spread deployment of cool roofs could mitigate the urban heat island effect and partially counter urban temperature increases associated with global climate change. Accurately predicting the potential for increasing urban albedo using reflective roofs and its associated energy use and climate benefits requires detailed knowledge of the current stock of roofs at the city scale. Until now this knowledge has been limited due to a lack of availability of albedo data with sufficient spatial coverage, spatial resolution, and spectral information. In this work we use a novel source of multiband aerial imagery to derive the albedos of individual roofs in seven California cities: Los Angeles, Long Beach, San Diego, Bakersfield, Sacramento, San Francisco, and San Jose. The radiometrically calibrated, remotely sensed imagery has high spatial resolution (1 m) and four narrow (less than 0.1 μm wide) band reflectances: blue, green, red, and near-infrared. To derive the albedo of roofs in each city, we first locate roof pixels within GIS building outlines. Next we use laboratory measurements of the solar spectral reflectances of 190 roofing products to empirically relate solar reflectance (albedo) to reflectances in the four narrow bands; the root-mean-square of the residuals for the albedo prediction is 0.016. Albedos computed from remotely sensed reflectances are calibrated to ground measurements of roof albedo in each city. The error (both precision and accuracy) of albedo values is presented for each city. The area-weighted mean roof albedo (× standard deviation) for each city ranges from 0.17 × 0.08 (Los Angeles) to 0.29 × 0.15 (San Diego). In each city most roofs have low albedo in the range of 0.1 to 0.3. Roofs with albedo greater than 0.4 comprise less than 3% of total roofs and 7% of total roof area in each city. The California Building Energy Efficiency Standard (Title-24, Part 6) includes the use of high-albedo surfaces on low-sloped roofs on non-residential buildings. Analyzing a subset of large presumably commercial buildings, we find high albedo roofs represent 0.5% and 10% of total roofs and roof surface area, respectively. The potential for high albedo roofs to reduce urban temperatures was investigated for a California city (Bakersfield) with warm summers using a state-of-the-art meteorological model (Weather Research and Forecasting, WRF). Base case and cool roof scenarios were simulated with the only difference being that the surface albedo was increased under the cool roof scenario. Roof albedos derived from the aerial imagery were used as an input to the climate model in the base case scenario. Simulation results indicate that seasonal average afternoon (1500 h) temperatures could be reduced by up to 0.2 °C across Bakersfield during both the summer and winter. While temperature changes are similar during winter and summer, only summer shows statistically significant temperature changes downwind (southeast) from Bakersfield. This indicates that reduced summertime temperatures may be felt over a distance that is 2 or 3 times the length scale of the region with high albedo roofs.
Revisiting the Climate Impacts of Cool Roofs around the Globe Using an Earth System Model
NASA Astrophysics Data System (ADS)
Zhang, J.; Ban-Weiss, G. A.; Zhang, K.; Liu, J.
2016-12-01
Solar reflective "cool roofs" absorb less sunlight than traditional dark roofs, reducing solar heat gain, and decreasing the amount of heat transferred to the atmosphere. Widespread adoption of cool roofs could therefore reduce temperatures in urban areas, partially mitigating the urban heat island effect, and contributing to reversing the local impacts of global climate change. The impacts of cool roofs on global climate remain debated by past research and are uncertain. Using a sophisticated Earth system model, the impacts of cool roofs on climate are investigated at urban, continental, and global scales. We find that global adoption of cool roofs in urban areas reduces urban heat islands everywhere, with an annual- and global-mean decrease from 1.6 to 1.2 K. Decreases are statistically significant, except for some areas in Africa and Mexico where urban fraction is low, and some high-latitude areas during wintertime. Analysis of the surface and TOA energy budget in urban regions at continental-scale shows cool roofs causing increases in solar radiation leaving the Earth-atmosphere system in most regions around the globe, though the presence of aerosols and clouds are found to partially offset increases in upward radiation. Aerosols dampen cool roof-induced increases in upward solar radiation, ranging from 4% in the United States to 18% in more polluted China. Adoption of cool roofs also causes statistically significant reductions in surface air temperatures in urbanized regions of China (-0.11±0.10 K) and the United States (-0.14±0.12 K); India and Europe show statistically insignificant changes. Though past research has disagreed on whether widespread adoption of cool roofs would cool or warm global climate, these studies have lacked analysis on the statistical significance of global temperature changes. The research presented here indicates that adoption of cool roofs around the globe would lead to statistically insignificant reductions in global mean air temperature (-0.0021 ± 0.026 K). Thus, we suggest that while cool roofs are an effective tool for reducing building energy use in hot climates, urban heat islands, and regional air temperatures, their influence on global climate is likely negligible.
Revisiting the climate impacts of cool roofs around the globe using an Earth system model
NASA Astrophysics Data System (ADS)
Zhang, Jiachen; Zhang, Kai; Liu, Junfeng; Ban-Weiss, George
2016-08-01
Solar reflective ‘cool roofs’ absorb less sunlight than traditional dark roofs, reducing solar heat gain, and decreasing the amount of heat transferred to the atmosphere. Widespread adoption of cool roofs could therefore reduce temperatures in urban areas, partially mitigating the urban heat island effect, and contributing to reversing the local impacts of global climate change. The impacts of cool roofs on global climate remain debated by past research and are uncertain. Using a sophisticated Earth system model, the impacts of cool roofs on climate are investigated at urban, continental, and global scales. We find that global adoption of cool roofs in urban areas reduces urban heat islands everywhere, with an annual- and global-mean decrease from 1.6 to 1.2 K. Decreases are statistically significant, except for some areas in Africa and Mexico where urban fraction is low, and some high-latitude areas during wintertime. Analysis of the surface and TOA energy budget in urban regions at continental-scale shows cool roofs causing increases in solar radiation leaving the Earth-atmosphere system in most regions around the globe, though the presence of aerosols and clouds are found to partially offset increases in upward radiation. Aerosols dampen cool roof-induced increases in upward solar radiation, ranging from 4% in the United States to 18% in more polluted China. Adoption of cool roofs also causes statistically significant reductions in surface air temperatures in urbanized regions of China (-0.11 ± 0.10 K) and the United States (-0.14 ± 0.12 K); India and Europe show statistically insignificant changes. Though past research has disagreed on whether widespread adoption of cool roofs would cool or warm global climate, these studies have lacked analysis on the statistical significance of global temperature changes. The research presented here indicates that adoption of cool roofs around the globe would lead to statistically insignificant reductions in global mean air temperature (-0.0021 ± 0.026 K). Thus, we suggest that while cool roofs are an effective tool for reducing building energy use in hot climates, urban heat islands, and regional air temperatures, their influence on global climate is likely negligible.
NASA Astrophysics Data System (ADS)
Gaffin, S. R.; Kong, A. Y.; Hartung, E.; Hsu, B.; Roditi, A.; Rosenzweig, C.
2011-12-01
Urban heat island mitigation strategies include increasing urban vegetation and increasing the albedo of impervious surfaces. Vegetated "green" roofs can provide benefits to stormwater management, water quality, energy cost efficiency, and biodiversity in cities, but the body of research on green roofs in the US is not large and cities in the US have been slow to adopt green roofs. On the other hand, "high-albedo" white roofs have been applied more widely through projects such as New York City Cool Roofs. There are several major issues (e.g., albedo decline, product differences, and long-term temperature controls) about green and white roof performance versus typical black roofs with respect to urban heat island mitigation that have yet to be fully addressed. Here, we present data from an on-going, long-term study in New York City in which pilot, urban albedo enhancement and vegetation effects have been monitored at the building-scale since 2007. Although the urban heat island effect can be detected throughout the year, our objective for this paper was to compare green roof vegetation with those of the high-albedo roofs for their ability to reduce the electricity demand for cooling in the summer. Using energy balance methodology across our sites (three), we found that green and white roof membrane temperature peaks are on average 60°F (33°C) and 30° F (17°C), respectively, cooler than black roof temperature peaks, and that these alternative surfaces significantly reduce thermal stress to roof membranes. Interestingly, we found that industrial white membranes [thermoplastic polyolefin (TPO) and ethylene propylene diene monomer (EPDM)] stay cleaner longer, thereby, maintaining the high-albedo benefits longer than the painted roofs, which tend to lose their albedo properties rapidly. Results thus far suggest that more long-term research comparing the albedo and cooling benefits of green and white roofs to black roofs is necessary to understand temporal changes to roof performance.
40 CFR Appendix A to Subpart M of... - Interpretive Rule Governing Roof Removal Operations
Code of Federal Regulations, 2010 CFR
2010-07-01
...)). 3.B.3. An exemption from wetting is also allowed when the air or roof surface temperature at the point of wetting is below freezing, as specified in § 61.145(c)(7). If freezing temperatures are indicated as the reason for not wetting, records must be kept of the temperature at the beginning, middle...
NASA Astrophysics Data System (ADS)
Sun, T.; Institute of Hydrology; Water Resources
2011-12-01
An experimental evaluation of thermal and energy performance of temperate green roofs was carried out by thermal and meteorological observation and energy budget modeling using a setup of green roof in Beijing urban area. From both the yearly and daily temperature trends, the green roof could effectively damp down the undulation of roof surface temperature comparing with the conventional one. As an insulating screen, the green roof abated the amplitude of temperature by 9.0 in winter and 9.1 °C in summer, respectively. Under different cloud conditions, the green roof in summer time resulted in decreases in sensible heat and heat flux by 125.3W m-2 and 32.0 W m-2, respectively, on daily average comparing with the conventional one. Based on the energy budget analyses, under an assumptive scenario of 50% roof-greening in Beijing, a total of 34.1 PJ of sensible heat and 8.7 PJ of heat flux would be decreased for a summer period of 90 days. This study demonstrated that green roof, serving as an insulating screen to building top in comparison with the conventional roof, proved thermal improving effect in building scale and high energy saving potential for urban development.
Feasibility of determining flat roof heat losses using aerial thermography
NASA Technical Reports Server (NTRS)
Bowman, R. L.; Jack, J. R.
1979-01-01
The utility of aerial thermography for determining rooftop heat losses was investigated experimentally using several completely instrumented test roofs with known thermal resistances. Actual rooftop heat losses were obtained both from in-situ instrumentation and aerial thermography obtained from overflights at an altitude of 305 m. In general, the remotely determined roof surface temperatures agreed very well with those obtained from ground measurements. The roof heat losses calculated using the remotely determined roof temperature agreed to within 17% of those calculated from 1/R delta T using ground measurements. However, this agreement may be fortuitous since the convective component of the heat loss is sensitive to small changes in roof temperature and to the average heat transfer coefficient used, whereas the radiative component is less sensitive. This, at this time, it is felt that an acceptable quantitative determination of roof heat losses using aerial thermography is only feasible when the convective term is accurately known or minimized. The sensitivity of the heat loss determination to environmental conditions was also evaluated. The analysis showed that the most reliable quantitative heat loss determinations can probably be obtained from aerial thermography taken under conditions of total cloud cover with low wind speeds and at low ambient temperatures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jiachen; Zhang, Kai; Liu, Junfeng
Solar reflective “cool roofs” absorb less sunlight than traditional dark roofs, reducing solar heat gain, and decreasing the amount of heat transferred to the atmosphere. Widespread adoption of cool roofs could therefore reduce temperatures in urban areas, partially mitigating the urban heat island effect, and contributing to reversing the local impacts of global climate change. The impacts of cool roofs on global climate remain debated by past research and are uncertain. Using a sophisticated Earth system model, the impacts of cool roofs on climate are investigated at urban, continental, and global scales. We find that global adoption of cool roofsmore » in urban areas reduces urban heat islands everywhere, with an annual- and global-mean decrease from 1.6 to 1.2 K. Decreases are statistically significant, except for some areas in Africa and Mexico where urban fraction is low, and some high-latitude areas during wintertime. Analysis of the surface and TOA energy budget in urban regions at continental-scale shows cool roofs causing increases in solar radiation leaving the Earth-atmosphere system in most regions around the globe, though the presence of aerosols and clouds are found to partially offset increases in upward radiation. Aerosols dampen cool roof-induced increases in upward solar radiation, ranging from 4% in the United States to 18% in more polluted China. Adoption of cool roofs also causes statistically significant reductions in surface air temperatures in urbanized regions of China (0.11±0.10 K) and the United States (0.14±0.12 K); India and Europe show statistically insignificant changes. The research presented here indicates that adoption of cool roofs around the globe would lead to statistically insignificant reductions in global mean air temperature (0.0021 ±0.026 K). This counters past research suggesting that cool roofs can reduce, or even increase global mean temperatures. Thus, we suggest that while cool roofs are an effective tool for reducing building energy use in hot climates, urban heat islands, and regional air temperatures, their influence on global climate is likely negligible.« less
NASA Astrophysics Data System (ADS)
Salamanca, F.; Georgescu, M.; Mahalov, A.; Moustaoui, M.; Martilli, A.
2016-10-01
Assessment of mitigation strategies that combat global warming, urban heat islands (UHIs), and urban energy demand can be crucial for urban planners and energy providers, especially for hot, semi-arid urban environments where summertime cooling demands are excessive. Within this context, summertime regional impacts of cool roof and rooftop solar photovoltaic deployment on near-surface air temperature and cooling energy demand are examined for the two major USA cities of Arizona: Phoenix and Tucson. A detailed physics-based parametrization of solar photovoltaic panels is developed and implemented in a multilayer building energy model that is fully coupled to the Weather Research and Forecasting mesoscale numerical model. We conduct a suite of sensitivity experiments (with different coverage rates of cool roof and rooftop solar photovoltaic deployment) for a 10-day clear-sky extreme heat period over the Phoenix and Tucson metropolitan areas at high spatial resolution (1-km horizontal grid spacing). Results show that deployment of cool roofs and rooftop solar photovoltaic panels reduce near-surface air temperature across the diurnal cycle and decrease daily citywide cooling energy demand. During the day, cool roofs are more effective at cooling than rooftop solar photovoltaic systems, but during the night, solar panels are more efficient at reducing the UHI effect. For the maximum coverage rate deployment, cool roofs reduced daily citywide cooling energy demand by 13-14 %, while rooftop solar photovoltaic panels by 8-11 % (without considering the additional savings derived from their electricity production). The results presented here demonstrate that deployment of both roofing technologies have multiple benefits for the urban environment, while solar photovoltaic panels add additional value because they reduce the dependence on fossil fuel consumption for electricity generation.
NASA Astrophysics Data System (ADS)
Wang, Mingna
2015-04-01
The UHI effect can aggravate summertime heat waves and strongly influence human comfort and health, leading to greater mortality in metropolitan areas. Many geo-engineering technological strategies have been proposed to mitigate climate warming, and for the UHI, increasing the albedo of artificial urban surfaces (rooftops or pavements) has been considered a lucrative and effective way to cool cities. The objective of this work is to quantify the contribution of urbanization to recent extreme heat events of the early 21st century in the Beijing-Tianjin-Hebei metropolitan area, using the mesoscale WRF model coupled with a single urban canopy model and actual urban land cover datasets. This work also investigates a simulation of the regional effects of white roof technology by increasing the albedo of urban areas in the urban canopy model to mitigate the urban heat island, especially in extreme heat waves. The results show that urban land use characteristics that have evolved over the past ~20 years in the Beijing-Tianjin-Hebei metropolitan area have had a significant impact on the extreme temperatures occurring during extreme heat events. Simulations show that new urban development has caused an intensification and expansion of the areas experiencing extreme heat waves with an average increase in temperature of approximately 0.60°C. This change is most obvious at night with an increase up to 0.95°C, for which the total contribution of anthropogenic heat is 34%. We also simulate the effects of geo-engineering strategies increasing the albedo of urban roofs. White roofs reflect a large fraction of incoming sunlight in the daytime, which reduced the net radiation so that the roof surface keep at a lower temperature than regular solar-absorptive roofs. Urban net radiation decreases by approximately 200 W m-2 at local noon because of high solar reflectance of white roofs, which cools the daytime urban temperature afer sunrise, with the largest decrease of almost -0.80°C at local noon. Moreover, the nighttime temperature also shows slightly cooler, approximately 0.2°C, because there is still considerable heat which is stored in the daytime released from urban surfaces at night. The results also suggest that increasing the albedo of urban roofs can reduce the urban mean temperature by approximately 0.51°C during summer extreme heat events. In urban areas, white roofs can counter 80% of the heat wave results from urban sprawl during the last 20 years. These results suggest that increasing the albedo of roofs in the Beijing-Tianjin-Hebei metropolitan area is an effective way of countering some hazards of heat waves. Using a regional climate model, we proposed that white roofs may be an effective strategy to complement urban heat wave mitigation efforts as a way of further slowing the rate of global temperature increase in response to continued greenhouse gas emissions.
Design of evaporative-cooling roof for decreasing air temperatures in buildings in the humid tropics
NASA Astrophysics Data System (ADS)
Kindangen, Jefrey I.; Umboh, Markus K.
2017-03-01
This subject points to assess the benefits of the evaporative-cooling roof, particularly for buildings with corrugated zinc roofs. In Manado, many buildings have roofed with corrugated zinc sheets; because this material is truly practical, easy and economical application. In general, to achieve thermal comfort in buildings in a humid tropical climate, people applying cross ventilation to cool the air in the room and avoid overheating. Cross ventilation is a very popular path to achieve thermal comfort; yet, at that place are other techniques that allow reducing the problem of excessive high temperature in the room in the constructions. This study emphasizes applications of the evaporative-cooling roof. Spraying water on the surface of the ceiling has been executed on the test cell and the reuse of water after being sprayed and cooled once more by applying a heat exchanger. Initial results indicate a reliable design and successfully meet the target as an effective evaporative-cooling roof technique. Application of water spraying automatic and cooling water installations can work optimally and can be an optimal model for the cooling roof as one of the green technologies. The role of heat exchangers can lower the temperature of the water from spraying the surface of the ceiling, which has become a hot, down an average of 0.77° C. The mass flow rate of the cooling water is approximately 1.106 kg/h and the rate of heat flow is around 515 Watt, depend on the site.
Evaluation of the Passive Cooling Strategies for Pei Min Sport Complex
NASA Astrophysics Data System (ADS)
Yam, K. S.; Yem, W. L.; Lee, V. C. C.
2017-07-01
This paper presents a modelling study on the evaluation of the passive cooling strategies for Pei Min sport complex at Miri. The squash centre has experienced excessively high temperature during peak hours that results in complains from the users. We discussed several passive cooling mechanisms and proposed four strategies for the sport centre. Thermal energy simulations were performed on these strategies using OpenStudio to evaluate their impact on the hourly temperature profile within the building. It was found that the peak temperature during the noon was significantly reduced when conductive material was applied at the lower surface of the roof, and the top of the roof was coated with white paint. However, insulating the roof also leads to weaker heat dispersion from the building which lower the rate of temperature drop in the late afternoon. Partitioning the roof was found to have similar effect as insulating roof. Air infiltration is essential for promoting air movement and regulating the temperature within the building. It was found the complex already have sufficient opening for the full effect of air infiltration.
Modelling reduction of urban heat load in Vienna by modifying surface properties of roofs
NASA Astrophysics Data System (ADS)
Žuvela-Aloise, Maja; Andre, Konrad; Schwaiger, Hannes; Bird, David Neil; Gallaun, Heinz
2018-02-01
The study examines the potential of urban roofs to reduce the urban heat island (UHI) effect by changing their reflectivity and implementing vegetation (green roofs) using the example of the City of Vienna. The urban modelling simulations are performed based on high-resolution orography and land use data, climatological observations, surface albedo values from satellite imagery and registry of the green roof potential in Vienna. The modelling results show that a moderate increase in reflectivity of roofs (up to 0.45) reduces the mean summer temperatures in the densely built-up environment by approximately 0.25 °C. Applying high reflectivity materials (roof albedo up to 0.7) leads to average cooling in densely built-up area of approximately 0.5 °C. The green roofs yield a heat load reduction in similar order of magnitude as the high reflectivity materials. However, only 45 % of roof area in Vienna is suitable for greening and the green roof potential mostly applies to industrial areas in city outskirts and is therefore not sufficient for substantial reduction of the UHI effect, particularly in the city centre which has the highest heat load. The strongest cooling effect can be achieved by combining the green roofs with high reflectivity materials. In this case, using 50 or 100 % of the green roof potential and applying high reflectivity materials on the remaining surfaces have a similar cooling effect.
NASA Astrophysics Data System (ADS)
Giovannini, Lorenzo; Zardi, Dino; de Franceschi, Massimiliano
2013-04-01
The results of measurement campaigns are analyzed to investigate the thermal structure in an urban canyon, and to validate a simplified model simulating the air and surface temperatures from surface energy budgets. Starting from measurements at roof-top level, the model provides time series of air and surface temperatures, as well as surface fluxes. Two campaigns were carried out in summer 2007 and in winter 2008/09 in a street of the city of Trento (Italy). Temperature sensors were placed at various levels near the walls flanking the canyon and on a traffic light in the street center. Furthermore, the atmosphere above the mean roof-top level was monitored by a weather station on top of a tower located nearby. Air temperatures near the walls, being strongly influenced by direct solar radiation, display considerable contrasts between the opposite sides of the canyon. On the other hand, when solar radiation is weak or absent, the temperature field remains rather homogeneous.Moreover, air temperature inside the canyon is generally higher than above roof level, with larger differences during summertime. Air temperatures from the above street measurements are well simulated by the model in both seasons. Furthermore, the modeled surface temperatures are tested against a dataset of wall surface temperatures from the Advanced Tools for Rational Energy Use Towards Sustainability-Photocatalytic Innovative Coverings Applications for Depollution (ATREUS-PICADA) experiment, and a very good agreement is found. Results suggest that themodel is a reliable and convenient tool for simplified assessment of climatic conditions occurring in urban canyons under various weather situations.
NASA Astrophysics Data System (ADS)
Hausner, M. B.; Suarez, F. I.; Cousiño, J. A.; Victorero, F.; Bonilla, C. A.; Gironas, J. A.; Vera, S.; Bustamante, W.; Rojas, V.; Leiva, E.; Pasten, P.
2015-12-01
Technological innovations used for sustainable urban development, green roofs offer a range of benefits, including reduced heat island effect, rooftop runoff, roof surface temperatures, energy consumption, and noise levels inside buildings, as well as increased urban biodiversity. Green roofs feature layered construction, with the most important layers being the vegetation and the substrate layers located above the traditional roof. These layers provide both insulation and warm season cooling by latent heat flux, reducing the thermal load to the building. To understand and improve the processes driving this thermal energy reduction, it is important to observe the thermal dynamics of a green roof at the appropriate spatial and temporal scales. Traditionally, to observe the thermal behavior of green roofs, a series of thermocouples have been installed at discrete depths within the layers of the roof. Here, we present a vertical high-resolution distributed-temperature-sensing (DTS) system installed in different green roof modules of the Laboratory of Vegetated Infrastructure for Buildings (LIVE -its acronym in Spanish) of the Pontifical Catholic University of Chile. This DTS system allows near-continuous measurement of the thermal profile at spatial and temporal resolutions of approximately 1 cm and 30 s, respectively. In this investigation, the temperature observations from the DTS system are compared with the measurements of a series of thermocouples installed in the green roofs. This comparison makes it possible to assess the value of thermal observations at better spatial and temporal resolutions. We show that the errors associated with lower resolution observations (i.e., from the thermocouples) are propagated in the calculations of the heat fluxes through the different layers of the green roof. Our results highlight the value of having a vertical high-resolution DTS system to observe the thermal dynamics in green roofs.
Green roofs: potential at LANL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pacheco, Elena M
2009-01-01
Green roofs, roof systems that support vegetation, are rapidly becoming one of the most popular sustainable methods to combat urban environmental problems in North America. An extensive list of literature has been published in the past three decades recording the ecological benefits of green roofs; and now those benefits have been measured in enumerated data as a means to analyze the costs and returns of green roof technology. Most recently several studies have made substantial progress quantifying the monetary savings associated with storm water mitigation, the lessoning of the Urban Heat Island, and reduction of building cooling demands due tomore » the implementation of green roof systems. Like any natural vegetation, a green roof is capable of absorbing the precipitation that falls on it. This capability has shown to significantly decrease the amount of storm water runoff produced by buildings as well as slow the rate at which runoff is dispensed. As a result of this reduction in volume and velocity, storm drains and sewage systems are relieved of any excess stress they might experience in a storm. For many municipalities and private building owners, any increase in storm water mitigation can result in major tax incentives and revenue that does not have to be spent on extra water treatments. Along with absorption of water, vegetation on green roofs is also capable of transpiration, the process by which moisture is evaporated into the air to cool ambient temperatures. This natural process aims to minimize the Urban Heat Island Effect, a phenomenon brought on by the dark and paved surfaces that increases air temperatures in urban cores. As the sun distributes solar radiation over a city's area, dark surfaces such as bitumen rooftops absorb solar rays and their heat. That heat is later released during the evening hours and the ambient temperatures do not cool as they normally would, creating an island of constant heat. Such excessively high temperatures induce heat strokes, heat exhaustion, and pollution that can agitate the respiratory system. The most significant savings associated with green roofs is in the reduction of cooling demands due to the green roof's thermal mass and their insulating properties. Unlike a conventional roof system, a green roof does not absorb solar radiation and transfer that heat into the interior of a building. Instead the vegetation acts as a shade barrier and stabilizes the roof temperature so that interior temperatures remain comfortable for the occupants. Consequently there is less of a demand for air conditioning, and thus less money spent on energy. At LANL the potential of green roof systems has already been realized with the construction of the accessible green roof on the Otowi building. To further explore the possibilities and prospective benefits of green roofs though, the initial capital costs must be invested. Three buildings, TA-03-1698, TA-03-0502, and TA-53-0031 have all been identified as sound candidates for a green roof retrofit project. It is recommended that LANL proceed with further analysis of these projects and implementation of the green roofs. Furthermore, it is recommended that an urban forestry program be initiated to provide supplemental support to the environmental goals of green roofs. The obstacles barring green roof construction are most often budgetary and structural concerns. Given proper resources, however, the engineers and design professionals at LANL would surely succeed in the proper implementation of green roof systems so as to optimize their ecological and monetary benefits for the entire organization.« less
Effects of Solar Photovoltaic Panels on Roof Heat Transfer
NASA Technical Reports Server (NTRS)
Dominguez, A.; Klessl, J.; Samady, M.; Luvall, J. C.
2010-01-01
Building Heating, Ventilation and Air Conditioning (HVAC) is a major contributor to urban energy use. In single story buildings with large surface area such as warehouses most of the heat enters through the roof. A rooftop modification that has not been examined experimentally is solar photovoltaic (PV) arrays. In California alone, several GW in residential and commercial rooftop PV are approved or in the planning stages. With the PV solar conversion efficiency ranging from 5-20% and a typical installed PV solar reflectance of 16-27%, 53-79% of the solar energy heats the panel. Most of this heat is then either transferred to the atmosphere or the building underneath. Consequently solar PV has indirect effects on roof heat transfer. The effect of rooftop PV systems on the building roof and indoor energy balance as well as their economic impacts on building HVAC costs have not been investigated. Roof calculator models currently do not account for rooftop modifications such as PV arrays. In this study, we report extensive measurements of a building containing a flush mount and a tilted solar PV array as well as exposed reference roof. Exterior air and surface temperature, wind speed, and solar radiation were measured and thermal infrared (TIR) images of the interior ceiling were taken. We found that in daytime the ceiling surface temperature under the PV arrays was significantly cooler than under the exposed roof. The maximum difference of 2.5 C was observed at around 1800h, close to typical time of peak energy demand. Conversely at night, the ceiling temperature under the PV arrays was warmer, especially for the array mounted flat onto the roof. A one dimensional conductive heat flux model was used to calculate the temperature profile through the roof. The heat flux into the bottom layer was used as an estimate of the heat flux into the building. The mean daytime heat flux (1200-2000 PST) under the exposed roof in the model was 14.0 Watts per square meter larger than under the tilted PV array. The maximum downward heat flux was 18.7 Watts per square meters for the exposed roof and 7.0 Watts per square meters under the tilted PV array, a 63% reduction due to the PV array. This study is unique as the impact of tilted and flush PV arrays could be compared against a typical exposed roof at the same roof for a commercial uninhabited building with exposed ceiling and consisting only of the building envelope. Our results indicate a more comfortable indoor environment in PV covered buildings without HVAC both in hotter and cooler seasons.
COOL ROOF COATINGS INCORPORATING GLASS HOLLOW MICROSPHERES
Solar Gain is in part responsible for up to 56% of energy consumed by cooling systems in residential buildings. By reflecting and scattering radiant energy from the sun, the surface temperature of exterior walls and roofs can be greatly reduced. Previous studies have indicated...
Establishment and performance of an experimental green roof under extreme climatic conditions.
Klein, Petra M; Coffman, Reid
2015-04-15
Green roofs alter the surface energy balance and can help in mitigating urban heat islands. However, the cooling of green roofs due to evapotranspiration strongly depends on the climatic conditions, and vegetation type and density. In the Southern Central Plains of the United States, extreme weather events, such as high winds, heat waves and drought conditions pose challenges for successful implementation of green roofs, and likely alter their standard performance. The National Weather Center Experimental Green Roof, an interdisciplinary research site established in 2010 in Norman, OK, aimed to investigate the ecological performance and surface energy balance of green roof systems. Starting in May 2010, 26 months of vegetation studies were conducted and the radiation balance, air temperature, relative humidity, and buoyancy fluxes were monitored at two meteorological stations during April-October 2011. The establishment of a vegetative community trended towards prairie plant dominance. High mortality of succulents and low germination of grasses and herbaceous plants contributed to low vegetative coverage. In this condition succulent diversity declined. Bouteloua gracilis and Delosperma cooperi showed typological dominance in harsh climatic conditions, while Sedum species experienced high mortality. The plant community diversified through volunteers such as Euphorbia maculate and Portulaca maculate. Net radiation measured at a green-roof meteorological station was higher than at a control station over the original, light-colored roofing material. These findings indicate that the albedo of the green roof was lower than the albedo of the original roofing material. The low vegetative coverage during the heat and drought conditions in 2011, which resulted in the dark substrate used in the green roof containers being exposed, likely contributed to the low albedo values. Nevertheless, air temperatures and buoyancy fluxes were often lower over the green roof indicating that higher evapotranspiration rates compensated for the higher net radiation at the green roof. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Lehtihet, M. C.; Bouchair, A.
2018-05-01
Buildings with dark surfaces, concrete and pavement, needed for the expansion of cities, absorb huge amounts of heat, increasing the mean radiant temperatures of urban areas and offer significant potential for urban heat island (UHI) effect. The purpose of this work is to investigate the impact of green roofs on the improvement of urban heat performance in Mediterranean climate. A field investigation is carried out using two large-scale modules built in the city of Jijel in the north of Algeria. The first is a bare reinforced concrete slab whereas the second is covered with ivy plants. The experimental site, the air and surface temperature parameters and the various measurement points at the level of the modules are chosen. Measurements are performed using thermo-hygrometer, surface sensors and data acquisition apparatus. The results show that green roofs can be a potential mean of improving the thermal performance of the surrounding microclimate and energy performance of buildings in an urban area. The green roof could be an encouraging strategy against urban heat island effect not only for Mediterranean cities but also for other areas.
Office-like Test Chambers to Measure Cool Roof Energy Savings in Four Indian Climates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arumugam, Rathish; B, Sasank; T, Rajappa
Selecting a high albedo (solar reflectance) waterproofing layer on the top of a roof helps lower the roof’s surface temperature and reduce the air conditioning energy consumption in the top floor of a building. The annual energy savings depend on factors including weather, internal loads, and building operation schedule. To demonstrate the energy saving potential of high albedo roofs, an apparatus consisting of two nearly identical test chambers (A and B) has been built in four Indian climates: Chennai (hot & humid), Bangalore (temperate), Jhagadia (Hot & dry) and Delhi (composite). Each chamber has well-insulated walls to mimic the coremore » of an office building. Both chambers have the same construction, equipment, and operating schedule, differing only in roof surface. The reinforced cement concrete roof of Chamber A is surfaced with a low-albedo cement layer, while that of Chamber B is surfaced with a high-albedo water proof membrane (change in solar reflectance of 0.28). The experiment will be carried out for one year to explore seasonal variations in energy savings. Initial results in the month of July (post summer) shows that savings from high albedo roof ranges from 0.04 kWh/m2/day in temperate climates, to 0.08 kWh/m2/day in hot & dry climate.« less
A Study of the Energy-Saving Potential of Metal Roofs Incorporating Dynamic Insulation Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biswas, Kaushik; Miller, William A; Kriner, Scott
2013-01-01
This article presents various metal roof configurations that were tested at Oak Ridge National Laboratory in Tennessee, U.S. between 2009 and 2013, and describes their potential for reducing the attic-generated space-conditioning loads. These roofs contained different combinations of phase-change material, rigid insulation, low emittance surface, and above-sheathing ventilation with standing-seam metal panels on top. These roofs were designed to be installed on existing roofs decks, or on top of asphalt shingles for retrofit construction. All the tested roofs showed the potential for substantial energy savings compared to an asphalt shingle roof, which was used as a control for comparison. Themore » roofs were constructed on a series of adjacent attics separated at the gables using thick foam insulation. The attics were built on top of a conditioned room. All attics were vented at the soffit and ridge. The test roofs and attics were instrumented with an array of thermocouples. Heat flux transducers were installed in the roof deck and attic floor (ceiling) to measure the heat flows through the roof and between the attic and conditioned space below. Temperature and heat flux data were collected during the heating, cooling and swing seasons over a three-year period. Data from previous years of testing have been published. Here, data from the latest roof configurations being tested in year three of the project are presented. All test roofs were highly effective in reducing the heat flows through the roof and ceiling, and in reducing the diurnal attic-temperature fluctuations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biswas, Kaushik; Childs, Phillip W; Atchley, Jerald Allen
2014-05-01
This article presents various metal roof configurations that were tested at Oak Ridge National Laboratory in Tennessee, U.S.A. between 2009 and 2013, and describes their potential for reducing the attic-generated space conditioning loads. These roofs contained different combinations of phase change material, rigid insulation, low emittance surface and above-sheathing ventilation, with standing-seam metal panels on top. These roofs were designed to be installed on existing roofs decks, or on top of asphalt shingles for retrofit construction. All the tested roofs showed the potential for substantial energy savings compared to an asphalt shingle roof, which was used as a control formore » comparison. The roofs were constructed on a series of adjacent attics separated at the gables using thick foam insulation. The attics were built on top of a conditioned room. All attics were vented at the soffit and ridge. The test roofs and attics were instrumented with an array of thermocouples. Heat flux transducers were installed in the roof deck and attic floor (ceiling) to measure the heat flows through the roof and between the attic and conditioned space below. Temperature and heat flux data were collected during the heating, cooling and swing seasons over a 3 year period. Data from previous years of testing have been published. Here, data from the latest roof configurations being tested in year 3 of the project are presented. All test roofs were highly effective in reducing the heat flows through the roof and ceiling, and in reducing the diurnal attic temperature fluctuations.« less
The Equivalent Thermal Resistance of Tile Roofs with and without Batten Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, William A
Clay and concrete tile roofs were installed on a fully instrumented attic test facility operating in East Tennessee s climate. Roof, attic and deck temperatures and heat flows were recorded for each of the tile roofs and also on an adjacent attic cavity covered with a conventionally pigmented and direct-nailed asphalt shingle roof. The data were used to benchmark a computer tool for simulation of roofs and attics and the tool used to develop an approach for computing an equivalent seasonal R-value for sub-tile venting. The approach computed equal heat fluxes through the ceilings of roofs having different combinations ofmore » surface radiation properties and or building constructions. A direct nailed shingle roof served as a control for estimating the equivalent thermal resistance of the air space. Simulations were benchmarked to data in the ASHRAE Fundamentals for the thermal resistance of inclined and closed air spaces.« less
TASK 2.5.7 FIELD EXPERIMENTS TO EVALUATE COOL-COLORED ROOFING
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, William A; Cherry, Nigel J; Allen, Richard Lowell
Aesthetically pleasing dark roofs can be formulated to reflect like a highly reflective white roof in the near infrared portion of the solar spectrum. New paint pigments increase the near infrared reflectance of exterior finishes by minimizing the absorption of near-infrared radiation (NIR). The boost in the NIR reflectance drops the surface temperatures of roofs and walls, which in turn reduces cooling-energy use and provides savings for the homeowner and relief for the utilities. In moderate and hot climates, a roof surface with high solar reflectance and high thermal emittance was shown by Akbari et al. (2004) and by Parkermore » and Sherwin (1998) to reduce the exterior temperature and produce savings in comfort cooling. The new cool color pigments can potentially reduce emissions of carbon dioxide, which in turn reduces metropolitan heat buildup and urban smog. The pigments can also help conserve water resources otherwise used to clean and process fuel consumed by fossil-fuel driven power plants. Cool roofs also result in a lower ambient temperature that further decreases the need for air conditioning, retards smog formation, and improves thermal comfort. Parker, Sonne and Sherwin (2002) demonstrated that white barrel and white flat tiles reduced cooling energy consumption by 22% of the base load used by an adjacent and identical home having direct nailed dark shingles. Part of the savings was due to the reflectance of the white tiles; however, another part was due to the mass of the tile and to the venting occurring within the double batten installation. With, Cherry and Haig (2009) have studied the influence of the thermal mass and batten space ventilation and have found that, referenced to an asphalt shingle system, it can be equivalent to an additional 28 points of solar reflectivity. The double batten arrangement has wooden counter battens laid vertically (soffit-to-ridge) against the roof deck, and then the conventional battens are laid horizontally across the counter battens, providing a nailing surface for the concrete tile. This double batten construction forms an inclined air channel running from the soffit to the ridge. The bottom surface of the channel is formed by the roof decking and is relatively flat and smooth. The top surface is created by the underside of the roofing tiles, and is designed to be an air permeable covering to alleviate the underside air pressure and minimize wind uplift on the tiles. The resulting air flows also have a cooling influence which further complicates prediction of the heat penetrating through the deck because an accurate measure of the airflow is required to predict the heat transfer. Measured temperatures and heat flows at the roof surface, within the attic and at the ceiling of the houses are discussed as well as the power usage to help gauge the benefit of cool-pigmented reflective roof products fitted with and without ventilation above the roof deck. Ventilation occurring above the deck is an inherent feature for tile roof assemblies, and is formed by an air space between the exterior face of the roof sheathing and the underside of the tile. The greater the tile s profile the greater is the effect of the ventilation which herein is termed above-sheathing ventilation (ASV). However, because of the complexity of the thermally induced flow, little credit is allowed by state and federal building codes. ASHRAE (2005) provides empirical data for the effective thermal resistance of plane air spaces. A -in. (0.0191-m) plane air space inclined at 45 with the horizontal has an RUS-0.85 (RSI-0.15) . Our intent is to help further deploy cool color pigments in roofs by conducting field experiments to evaluate the new cool-colored roofing materials in the hot climate of Southern California. The collected data will be used to showcase and market the performance of new cool-roof products and also to help formulate and validate computer codes capable of calculating the heat transfer occurring within the attic and the whole building. Field measures and computer predictions showed that the demonstration home without a NIR-reflective tile coating and without above-sheathing ventilation had the greatest roof deck heat flow and subsequently the highest electrical usage. The house with both NIR paint pigments on the tile and with ASV had the least deck heat flows and therefore caused the home to consume the least amount of energy. The relative performance of the reflective coating and the ventilation individually is less obvious, but it is clear that the combination of a reflective tile with ASV is the preferred solution for the best energy saving.« less
NASA Astrophysics Data System (ADS)
Sharma, A.; Woodruff, S.; Budhathoki, M.; Hamlet, A. F.; Fernando, H. J. S.; Chen, F.
2017-12-01
Urban areas provide organized, engineered, sociological and economical infrastructure designed to provide a high quality of life, but the implementation and management of urban infrastructure has been a continued challenge. Increasing urbanization, warming climate, as well as anthropogenic heat emissions that accompany urban development generates "stress". This rapidly increasing `urban stress' affects the sustainability of cities, making populations more vulnerable to extreme hazards, such as heat. Cities are beginning to extensively use green roofs as a potential urban heat mitigation strategy. This study explores the potential of green roofs to reduce summertime temperatures in the most vulnerable neighborhoods of the Chicago metropolitan area by combining social vulnerability indices (a function of exposure, sensitivity and adaptive capacity), and temperatures from mesoscale model. Numerical simulations using urbanized version the Advanced Research Weather Research and Forecasting (WRF) model were performed to measure rooftop temperatures, a representative variable for exposure in this study. The WRF simulations were dynamically coupled with a green roof algorithm as a part of urban parameterization within WRF. Specifically, the study examines roof surface temperature with changing green roof fractions and how would they help reduce exposure to heat stress for vulnerable urban communities. This study shows an example of applied research that can directly benefit urban communities and be used by urban planners to evaluate mitigation strategies.
The relevance of rooftops: Analyzing the microscale surface energy balance in the Chicago region
NASA Astrophysics Data System (ADS)
Khosla, Radhika
Spatial structure in climate variables often exist over very short length scales within an urban area, and this structure is a result of various site-specific features. In order to analyze the seasonal and diurnal energy flows that take place at a microclimatic surface, this work develops a semi-empirical energy balance model. For this, radiation fluxes and meteorological measurements are determined by direct observation; sensible heat and latent heat fluxes by parameterizations; and the heat storage flux by a 1-D mechanistic model that allows analysis of the temperature profile and heat storage within an underlying slab. Two sites receive detailed study: an anthropogenic site, being a University of Chicago building rooftop, and a natural site, outside Chicago in the open country. Two identical sets of instruments record measurements contemporaneously from these locations during June-November 2007, the entire period for which analyses are carried out. The study yields seasonal trends in surface temperature, surface-to-air temperature contrast and net radiation. At both sites, a temporal hysteresis between net radiation and heat storage flux indicates that surplus energy absorbed during daylight is released to the atmosphere later in the evening. The surface energy balance model responds well to site specific features for both locations. An analysis of the surface energy balance shows that the flux of sensible heat is the largest non-radiative contributor to the roof's surface cooling, while the flux of latent heat (also referred to as evaporative cooling) is the largest heat sink for the soil layer. In the latter part of the study, the surface energy balance model is upgraded by adding the capability to compute changes in surface temperature and non-radiative fluxes for any specified set of thermal and reflective roof properties. The results of this analysis allow an examination of the relationship between the roof temperature, the heat flux entering the building interior through the roof, and the physical properties of the surface. These results hold particular relevance for urban heat island mitigation strategies. Based on the results of this work, recommendations are proposed for widespread adoption of various techniques that enhance building energy efficiency (particularly targeting rooftops), mitigate the negative impacts of the urban heat island, and overcome the current barriers to transforming the market.
Green Roofs: Federal Energy Management Program (FEMP) Federal Technology Alert
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scholz-Barth, K.; Tanner, S.
In a ''green roof,'' a layer of vegetation (e.g., a roof garden) covers the surface of a roof to provide shade, cooler indoor and outdoor temperatures, and effective storm-water management to reduce runoff. The main components are waterproofing, soil, and plants. There are two basic kinds: intensive and extensive. An intensive green roof often features large shrubs and trees, and it can be expensive to install and maintain. An extensive green roof features shallow soil and low-growing, horizontally spreading plants that can thrive in the alpine conditions of many rooftops. These plants do not require a lot of water ormore » soil, and they can tolerate a significant amount of exposure to the sun and wind. This Federal Technology Alert focuses on the benefits, design, and implementation of extensive green roofs and includes criteria for their use on federal facilities.« less
Comparative life cycle assessment of standard and green roofs.
Saiz, Susana; Kennedy, Christopher; Bass, Brad; Pressnail, Kim
2006-07-01
Life cycle assessment (LCA) is used to evaluate the benefits, primarily from reduced energy consumption, resulting from the addition of a green roof to an eight story residential building in Madrid. Building energy use is simulated and a bottom-up LCA is conducted assuming a 50 year building life. The key property of a green roof is its low solar absorptance, which causes lower surface temperature, thereby reducing the heat flux through the roof. Savings in annual energy use are just over 1%, but summer cooling load is reduced by over 6% and reductions in peak hour cooling load in the upper floors reach 25%. By replacing the common flat roof with a green roof, environmental impacts are reduced by between 1.0 and 5.3%. Similar reductions might be achieved by using a white roof with additional insulation for winter, but more substantial reductions are achieved if common use of green roofs leads to reductions in the urban heat island.
Effectiveness of Cool Roof Coatings with Ceramic Particles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brehob, Ellen G; Desjarlais, Andre Omer; Atchley, Jerald Allen
2011-01-01
Liquid applied coatings promoted as cool roof coatings, including several with ceramic particles, were tested at Oak Ridge National Laboratory (ORNL), Oak Ridge, Tenn., for the purpose of quantifying their thermal performances. Solar reflectance measurements were made for new samples and aged samples using a portable reflectometer (ASTM C1549, Standard Test Method for Determination of Solar Reflectance Near Ambient Temperature Using a Portable Solar Reflectometer) and for new samples using the integrating spheres method (ASTM E903, Standard Test Method for Solar Absorptance, Reflectance, and Transmittance of Materials Using Integrating Spheres). Thermal emittance was measured for the new samples using amore » portable emissometer (ASTM C1371, Standard Test Method for Determination of Emittance of Materials Near Room 1 Proceedings of the 2011 International Roofing Symposium Temperature Using Portable Emissometers). Thermal conductivity of the coatings was measured using a FOX 304 heat flow meter (ASTM C518, Standard Test Method for Steady-State Thermal Transmission Properties by Means of the Heat Flow Meter Apparatus). The surface properties of the cool roof coatings had higher solar reflectance than the reference black and white material, but there were no significant differences among coatings with and without ceramics. The coatings were applied to EPDM (ethylene propylene diene monomer) membranes and installed on the Roof Thermal Research Apparatus (RTRA), an instrumented facility at ORNL for testing roofs. Roof temperatures and heat flux through the roof were obtained for a year of exposure in east Tennessee. The field tests showed significant reduction in cooling required compared with the black reference roof (~80 percent) and a modest reduction in cooling compared with the white reference roof (~33 percent). The coating material with the highest solar reflectivity (no ceramic particles) demonstrated the best overall thermal performance (combination of reducing the cooling load cost and not incurring a large heating penalty cost) and suggests solar reflectivity is the significant characteristic for selecting cool roof coatings.« less
Performance of dryland and wetland plant species on extensive green roofs.
MacIvor, J Scott; Ranalli, Melissa A; Lundholm, Jeremy T
2011-04-01
Green roofs are constructed ecosystems where plants perform valuable services, ameliorating the urban environment through roof temperature reductions and stormwater interception. Plant species differ in functional characteristics that alter ecosystem properties. Plant performance research on extensive green roofs has so far indicated that species adapted to dry conditions perform optimally. However, in moist, humid climates, species typical of wetter soils might have advantages over dryland species. In this study, survival, growth and the performance of thermal and stormwater capture functions of three pairs of dryland and wetland plant species were quantified using an extensive modular green roof system. Seedlings of all six species were germinated in a greenhouse and planted into green roof modules with 6 cm of growing medium. There were 34 treatments consisting of each species in monoculture and all combinations of wet- and dryland species in a randomized block design. Performance measures were survival, vegetation cover and roof surface temperature recorded for each module over two growing seasons, water loss (an estimate of evapotranspiration) in 2007, and albedo and water capture in 2008. Over two seasons, dryland plants performed better than wetland plants, and increasing the number of dryland species in mixtures tended to improve functioning, although there was no clear effect of species or habitat group diversity. All species had survival rates >75 % after the first winter; however, dryland species had much greater cover, an important indicator of green roof performance. Sibbaldiopsis tridentata was the top performing species in monoculture, and was included in the best treatments. Although dryland species outperformed wetland species, planting extensive green roofs with both groups decreased performance only slightly, while increasing diversity and possibly habitat value. This study provides further evidence that plant composition and diversity can influence green roof functions.
Performance of dryland and wetland plant species on extensive green roofs
MacIvor, J. Scott; Ranalli, Melissa A.; Lundholm, Jeremy T.
2011-01-01
Background and Aims Green roofs are constructed ecosystems where plants perform valuable services, ameliorating the urban environment through roof temperature reductions and stormwater interception. Plant species differ in functional characteristics that alter ecosystem properties. Plant performance research on extensive green roofs has so far indicated that species adapted to dry conditions perform optimally. However, in moist, humid climates, species typical of wetter soils might have advantages over dryland species. In this study, survival, growth and the performance of thermal and stormwater capture functions of three pairs of dryland and wetland plant species were quantified using an extensive modular green roof system. Methods Seedlings of all six species were germinated in a greenhouse and planted into green roof modules with 6 cm of growing medium. There were 34 treatments consisting of each species in monoculture and all combinations of wet- and dryland species in a randomized block design. Performance measures were survival, vegetation cover and roof surface temperature recorded for each module over two growing seasons, water loss (an estimate of evapotranspiration) in 2007, and albedo and water capture in 2008. Key Results Over two seasons, dryland plants performed better than wetland plants, and increasing the number of dryland species in mixtures tended to improve functioning, although there was no clear effect of species or habitat group diversity. All species had survival rates >75 % after the first winter; however, dryland species had much greater cover, an important indicator of green roof performance. Sibbaldiopsis tridentata was the top performing species in monoculture, and was included in the best treatments. Conclusions Although dryland species outperformed wetland species, planting extensive green roofs with both groups decreased performance only slightly, while increasing diversity and possibly habitat value. This study provides further evidence that plant composition and diversity can influence green roof functions. PMID:21292676
A Subambient Open Roof Surface under the Mid-Summer Sun.
Gentle, Angus R; Smith, Geoff B
2015-09-01
A novel material open to warm air stays below ambient temperature under maximum solar intensities of mid-summer. It is found to be 11 °C cooler than a commercial white cool roof nearby. A combination of specially chosen polymers and a silver thin film yields values near 100% for both solar reflectance, and thermal emittance at infrared wavelengths from 7.9 to 13 μm.
NASA Astrophysics Data System (ADS)
Jelinkova, Vladmira; Dohnal, Michal; Picek, Tomas; Sacha, Jan
2015-04-01
Understanding the performance of technogenic substrates for green roofs is a significant task in the framework of sustainable urban planning and water/energy management. The potential retention and detention of the anthropogenic, light weight soil systems and their temporal soil structure changes are of major importance. A green roof test segment was built to investigate the benefits of such anthropogenic systems. Adaptable low-cost system allows long-term monitoring of preferred characteristics. Temperature and water balance measurements complemented with meteorological observations and knowledge of physical properties of the substrates provide basis for detailed analysis of thermal and hydrological regime in green roof systems. The first results confirmed the benefits of green roof systems. The reduction of temperature fluctuations as well as rainfall runoff was significant. Depending on numerous factors such substrate material or vegetation cover the test green roof suppressed the roof temperature amplitude for the period analyzed. The ability to completely prevent (light rainfall events) or reduce and delay (medium and heavy rainfall events) the peak runoff was also analyzed. Special attention is being paid to the assessment of soil structural properties related to possible aggregation/disaggregation, root growth, weather conditions and associated structural changes using non-invasive imaging method. X-ray computed microtomography of undisturbed soil samples (taken from experimental segments) is used for description of pore space geometry, evaluation of surface to volume ratio, additionally for description of cracks and macropores as a product of soil flora and fauna activity. The information from computed tomography imaging will be used for numerical modeling of water flow in variable saturated porous media. The research was realized as a part of the University Centre for Energy Efficient Buildings supported by the EU and with financial support from the Czech Science Foundation under project number 14-10455P.
Cooler Tile-Roofed Buildings with Near-Infrared-ReflectiveNon-white Coatings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Levinson, Ronnen; Akbari, Hashem; Reilly, Joeseph C.
Owners of homes with pitched roofs visible from ground leveloften prefer non-white roofing products for aesthetic considerations.Non-white, near-infrared-reflective architectural coatings can be appliedin-situ to pitched concrete or clay tile roofs to reduce tiletemperature, building heat gain, and cooling power demand, whilesimultaneously improving the roof s appearance. Scale model measurementsof building temperatures and heat-flux were combined with solar andcooling energy use data to estimate the effects of such cool roofcoatings in various California data. Under typical conditions e.g., 1 kWm-2 summer afternoon insolation, R-11 attic insulation, no radiantbarrier, and a 0.3 reduction in solar absorptance absolute reductions inroof surface temperature, atticmore » air temperature, and ceiling heat fluxare about 12 K, 6.2 K, and 3.7 W m-2, respectively. For a typical 1,500ft2 (139 m2) house with R-11 attic insulation and no radiant barrier,reducing roof absorptance by 0.3 yields whole-house peak power savings of230, 210, and 210 W in Fresno, San Bernardino, and San Diego,respectively. The corresponding absolute and fractional cooling energysavings are 92 kWh yr-1 (5 percent), 67 kWh yr-1 (6 percent), and 8 kWhyr-1 (1 percent), respectively. These savings are about half thosepreviously reported for houses with non-tile roofs. With theseassumptions, the statewide peak cooling power and annual cooling energyreductions would be 240 MW and 63 GWh yr-1, respectively. These energysavings would reduce annual emissions from California power plants by 35kilotonnes CO2, 11 tonnes NOx,and 0.86 tonnes SOx. The economic value ofcooling energy savings is well below the cost of coating a tile roof, butthe simple payback times for using cool pigments in a rooftile coatingare modest (5-7 years) in the hot climates of Fresno and SanBernardino.« less
Positive effects of vegetation: urban heat island and green roofs.
Susca, T; Gaffin, S R; Dell'osso, G R
2011-01-01
This paper attempts to evaluate the positive effects of vegetation with a multi-scale approach: an urban and a building scale. Monitoring the urban heat island in four areas of New York City, we have found an average of 2 °C difference of temperatures between the most and the least vegetated areas, ascribable to the substitution of vegetation with man-made building materials. At micro-scale, we have assessed the effect of surface albedo on climate through the use of a climatological model. Then, using the CO(2) equivalents as indicators of the impact on climate, we have compared the surface albedo, and the construction, replacement and use phase of a black, a white and a green roof. By our analyses, we found that both the white and the green roofs are less impactive than the black one; with the thermal resistance, the biological activity of plants and the surface albedo playing a crucial role. Copyright © 2011 Elsevier Ltd. All rights reserved.
Jerrold E. Winandy; H. Michael Barnes; Robert H. Falk
2004-01-01
For over 10 years, the Forest Products Laboratory has been monitoring the temperature histories of roof sheathing, roof rafters, and unventilated attics in outdoor attic structures that simulate typical light-framed construction. This report briefly summarizes findings from the roof temperature assessment project on black and white fiberglass shingles conducted from...
NASA Astrophysics Data System (ADS)
Giovannini, L.; de Franceschi, M.; Zardi, D.
2009-04-01
The results of a research project, aiming at providing tools and criteria to evaluate the temperature field inside an urban street canyon, are presented. Temperature measurements have been carried out, both in summertime and in wintertime, inside a North-South oriented urban canyon in the city of Trento (Italy) in the Alps, with sensors placed at various heights on the front of buildings flanking the street and on top of traffic lights in the middle of the canyon. The results have been analyzed in comparison with data from an automated weather station placed close to the street canyon, at 33 m above ground level and taken as a reference for the above roof-top level. During sunny days a well defined cycle was identified in the daily evolution of air temperature measured by the sensors inside the urban canyon, which was primarily influenced by direct solar radiation. As expected, during the morning the East-facing sensors warmed up faster than the other ones, while in the afternoon the West-facing instruments were the warmest. In most cases the air temperature inside the canyon was higher than above roof level, with differences depending on weather conditions and hour of the day. The dataset allowed to characterize the microclimate of the urban canopy layer and provided a basis for testing the ability of a simple numerical model to simulate the thermal structure inside the urban canyon. The model displays the following characteristics: assignment of distinct surface types (road, walls and roofs), in order to better simulate their physical properties; computation of radiative exchanges inside the canyon based on view factors between the different surfaces and explicitly treating both the solar reflections and the shadows; storage heat flux simulated by means of the heat conduction equation. The model requires as input the geometry parameters of the street and the values of meteorological variables measured above roof level. The main outputs are the heat fluxes determined by the surface energy balance (road, building fronts), the surface temperatures and the average air temperature inside the urban canyon. The comparison between the results of the model and the measurements made during the field experiments displays a good agreement, with an average error of 0.3-0.4 °C on the evaluation of the mean air temperature inside the street canyon. This result is remarkable, especially considering the low level of complexity of the numerical code and the simplifying assumptions made.
Liu, Rui; Coffman, Reid
2016-07-23
More than 1.15 million cubic meters (1.5 million cubic yards) of sediment require annual removal from harbors and ports along Ohio's Lake Erie coast. Disposing of these materials into landfills depletes land resources, while open water placement of these materials deteriorates water quality. There are more than 14,000 acres of revitalizing brownfields in Cleveland, U.S., many containing up to 90% impervious surface, which does not allow "infiltration" based stormwater practices required by contemporary site-based stormwater regulation. This study investigates the potential of sintering the dredged material from the Harbor of Cleveland in Lake Erie to produce lightweight aggregate (LWA), and apply the LWA to green roof construction. Chemical and thermal analyses revealed the sintered material can serve for LWA production when preheated at 550 °C and sintered at a higher temperature. Through dewatering, drying, sieving, pellet making, preheating, and sintering with varying temperatures (900-1100 °C), LWAs with porous microstructures are produced with specific gravities ranging from 1.46 to 1.74, and water absorption capacities ranging from 11% to 23%. The water absorption capacity of the aggregate decreases as sintering temperature increases. The LWA was incorporated into the growing media of a green roof plot, which has higher water retention capacity than the conventional green roof system.
What land covers are effective in mitigating a heat island in urban building rooftop?
NASA Astrophysics Data System (ADS)
Lee, S.; Ryu, Y.
2014-12-01
Since the 20th century, due to the rapid urbanization many urban environment problems have got blossomed and above all heat island has been recognized as an important issue. There are several causes of urban heat island, but land cover change occupies the largest portion of them. Owing to urban expansion, vegetation is changed into asphalt pavements and concrete buildings, which reduces latent heat flux. To mitigate the problems, people enlarge vegetation covers such as planting street trees, making rooftop gardens and constructing parks or install white roofs that feature high albedo on a building. While the white roofs reflect about 70% of solar radiation and absorb less radiation, vegetation has low albedo but cools the air through transpiration and fixes carbon dioxide through photosynthesis. There are some studies concerning which one is more effective to mitigate heat island between the green roof and white roof. This study compares the green roof and white roof and additionally considers carbon fixation that has not been treated in other studies. Furthermore, this study ascertains an efficiency of solar-cell panel that is used for building roof recently. The panel produces electric power but has low albedo which could warm the air. The experiment is conducted at the rooftop in Seoul, Korea and compares green roof (grass), white roof (painted cover), black roof (solar panel) and normal painted roof. Surface temperature and albedo are observed for the four roof types and incoming shortwave, outgoing longwave and carbon flux are measured in green roof solely. In the case of solar panels, the electricity generation is calculated from the incoming radiation. We compute global warming potentials for the four roof types and test which roof type is most effective in reducing global warming potential.
NASA Astrophysics Data System (ADS)
Rosado, Pablo Javier
Summer urban heat island (UHI) refers to the phenomenon of having higher urban temperatures compared to the those in surrounding suburban and rural areas. Higher urban air temperatures lead to increased cooling demand, accelerates the formation of smog, and contributes to the generation of greenhouse gas emissions. Dark-colored impervious surfaces cover a significant fraction of an urban fabric, and as hot and dry surfaces, are a major contributor to the UHI effect. Adopting solar-reflective ("cool") roofs and cool pavements, and increasing the urban vegetation, are strategies proven to mitigate urban heat islands. These strategies often have an "indirect" effect (ambient cooling) and "direct" effect (change in solar energy flux entering the conditioned space) on the energy use of buildings. This work investigates some elements of the UHI mitigation strategies, specifically the annual direct effect of a cool roof, and the direct and indirect effects of cool pavements. The first topic researched in this paper consists in an experimental assessment of the direct effects from replacing a conventional dark roof with a highly energy-efficient cool roof. The study measures and calculates the annual benefits of the cool roof on the cooling and heating energy uses, and the associated emission reductions. The energy savings attributed to the cool roof are validated by measuring the difference between the homes in the heat loads that entered the conditioned space through the ceiling and HVAC ducts. Fractional annual cooling energy savings (26%) were 2.6 times the 10% daily cooling energy savings measured in a previous study that used a white coating to increase the albedo of an asphalt shingle roof by the same amount (0.44). The improved cooling energy savings (26% vs. 10%) may be attributed to the cool tile's above-sheathing ventilation, rather than to its high thermal mass. The roof also provided energy savings during the heating season, yielding fractional annual gas heating savings of 4% and electric heating savings of 3%. The slightly positive fractional annual heating energy savings likely resulted from the tile roof's high thermal capacitance, which increased the overnight temperature of the attic air. Thus cool tile roofs should be perceived as a technology that provides energy and environmental benefits during the cooling season as well as the heating season. The second topic investigates the direct and indirect effects of cool pavements on the energy use of California's building stock. First, a simple urban canyon model was developed to calculate the canyon albedo after the user provides the solar position, canyon orientation, and dimensions of the canyon walls, road, and setbacks. Next, a method is presented to correct the values of temperature changes obtained from previous urban climate models to values that would be obtained from canyon geometries that distinguish between road and setbacks (e.g. sidewalk, front yard). The new canyon model is used to scale the temperature changes obtained from a recent urban climate model that simulated the climatological impact of cool pavements on various California cities. The adjusted temperature changes are then combined with building energy simulations to investigate the effect of cool pavements on the cooling, heating, and lighting energy uses of buildings as well as the environmental impact related to these energy uses. Net (direct + indirect) conditioning (cooling + heating) energy savings and environmental savings from cool pavements were smaller in residential buildings than in commercial buildings. Additionally, residential buildings strongly dominate the building stock in all of the evaluated cities. Therefore, even though most cities yielded conditioning energy and environmental savings, they were small due to the minuscule savings from the residential buildings. When increasing the albedo by 0.20 of all public pavements in different California cities, Los Angeles was the city with the largest savings, yielding only 0.60% in Primary Energy Demand and 0.30% in Global Warming Potential (GWP). Some of the cities experienced even a small net penalty in GWP of up to 0.20%.
Carpenter, Corey M G; Todorov, Dimitar; Driscoll, Charles T; Montesdeoca, Mario
2016-11-01
Syracuse, New York is working under a court-ordered agreement to limit combined sewer overflows (CSO) to local surface waters. Green infrastructure technologies, including green roofs, are being implemented as part of a CSO abatement strategy and to develop co-benefits of diminished stormwater runoff, including decreased loading of contaminants to the wastewater system and surface waters. The objective of this study was to examine the quantity and quality of discharge associated with precipitation events over an annual cycle from a green roof in Syracuse, NY and to compare measurements from this monitoring program with results from a roof irrigation experiment. Wet deposition, roof drainage, and water quality were measured for 87 storm events during an approximately 12 month period over 2011-2012. Water and nutrient (total phosphorus, total nitrogen, and dissolved organic carbon) mass balances were conducted on an event basis to evaluate retention annually and during the growing and non-growing seasons. These results are compared with a hydrological manipulation experiment, which comprised of artificially watering of the roof. Loadings of nutrients were calculated for experimental and actual storms using the concentration of nutrients and the flow data of water discharging the roof. The green roof was effective in retaining precipitation quantity from storm events (mean percent retention 96.8%, SD = 2.7%, n = 87), although the relative fraction of water retained decreased with increases in the size of the event. There was no difference in water retention of the green roof for the growing and non-growing seasons. Drainage waters exhibited high concentration of nutrients during the warm temperature growing season, particularly total nitrogen and dissolved organic carbon. Overall, nutrient losses were low because of the strong retention of water. However, there was marked variation in the retention of nutrients by season due to variations in concentrations in roof runoff. Copyright © 2016 Elsevier Ltd. All rights reserved.
Cladonia lichens on extensive green roofs: evapotranspiration, substrate temperature, and albedo.
Heim, Amy; Lundholm, Jeremy
2013-01-01
Green roofs are constructed ecosystems that provide ecosystem services in urban environments. Shallow substrate green roofs subject the vegetation layer to desiccation and other environmental extremes, so researchers have evaluated a variety of stress-tolerant vegetation types for green roof applications. Lichens can be found in most terrestrial habitats. They are able to survive extremely harsh conditions, including frequent cycles of desiccation and rehydration, nutrient-poor soil, fluctuating temperatures, and high UV intensities. Extensive green roofs (substrate depth <20cm) exhibit these harsh conditions, making lichens possible candidates for incorporation into the vegetation layer on extensive green roofs. In a modular green roof system, we tested the effect of Cladonia lichens on substrate temperature, water loss, and albedo compared to a substrate-only control. Overall, the Cladonia modules had significantly cooler substrate temperatures during the summer and significantly warmer temperatures during the fall. Additionally, the Cladonia modules lost significantly less water than the substrate-only control. This implies that they may be able to benefit neighboring vascular plant species by reducing water loss and maintaining favorable substrate temperatures.
Steep-Slope Assembly Testing of Clay and Concrete Tile With and Without Cool Pigmented Colors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, William A
Cool color pigments and sub-tile venting of clay and concrete tile roofs significantly impact the heat flow crossing the roof deck of a steep-slope roof. Field measures for the tile roofs revealed a 70% drop in the peak heat flow crossing the deck as compared to a direct-nailed asphalt shingle roof. The Tile Roofing Institute (TRI) and its affiliate members are keenly interested in documenting the magnitude of the drop for obtaining solar reflectance credits with state and federal "cool roof" building efficiency standards. Tile roofs are direct-nailed or are attached to a deck with batten or batten and counter-battenmore » construction. S-Misson clay and concrete tile roofs, a medium-profile concrete tile roof, and a flat slate tile roof were installed on fully nstrumented attic test assemblies. Temperature measures of the roof, deck, attic, and ceiling, heat flows, solar reflectance, thermal emittance, and the ambient weather were recorded for each of the tile roofs and also on an adjacent attic cavity covered with a conventional pigmented and directnailed asphalt shingle roof. ORNL measured the tile's underside temperature and the bulk air temperature and heat flows just underneath the tile for batten and counter-batten tile systems and compared the results to the conventional asphalt shingle.« less
A Web-Based Simulation Tool on The Performance of Different Roofing Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Joe; New, Joshua Ryan; Miller, William A
The Roof Savings Calculator (www.roofcalc.com) provides the general public with a web-based program for calculating the energy savings of different roofing and attic systems on four different building types (residential, office, retail, and warehouse) in 239 US TMY2 locations. The core simulation engine of the RSC is doe2attic, which couples the AtticSim program developed by Oak Ridge National Laboratory with the DOE-2.1E program originally developed by Lawrence Berkeley National Laboratory a widely used whole-building simulation program since the 1980 s. Although simulating heat flows through the roof may seem to be an easy task, simulating the net effect of roofingmore » strategies on building heating and cooling energy use can be quite challenging. Few simulation programs can reliably capture dynamics including an attic or plenum with large day-night temperature swings, high ventilation rates, significant radiant exchange between the roof and the attic floor and thermal interactions when there are ducts in the attic, as is typical in North American buildings. The doe2attic program has been tested against detailed measurements gathered in two residential buildings in Fresno, California from cooling energy use to air and surface temperatures, and heat fluxes of the roof and attic floor. The focus of this paper is on the doe2attic simulation tool, but the user interface of the RSC will also be briefly described.« less
Liu, Rui; Coffman, Reid
2016-01-01
More than 1.15 million cubic meters (1.5 million cubic yards) of sediment require annual removal from harbors and ports along Ohio’s Lake Erie coast. Disposing of these materials into landfills depletes land resources, while open water placement of these materials deteriorates water quality. There are more than 14,000 acres of revitalizing brownfields in Cleveland, U.S., many containing up to 90% impervious surface, which does not allow “infiltration” based stormwater practices required by contemporary site-based stormwater regulation. This study investigates the potential of sintering the dredged material from the Harbor of Cleveland in Lake Erie to produce lightweight aggregate (LWA), and apply the LWA to green roof construction. Chemical and thermal analyses revealed the sintered material can serve for LWA production when preheated at 550 °C and sintered at a higher temperature. Through dewatering, drying, sieving, pellet making, preheating, and sintering with varying temperatures (900–1100 °C), LWAs with porous microstructures are produced with specific gravities ranging from 1.46 to 1.74, and water absorption capacities ranging from 11% to 23%. The water absorption capacity of the aggregate decreases as sintering temperature increases. The LWA was incorporated into the growing media of a green roof plot, which has higher water retention capacity than the conventional green roof system. PMID:28773734
NASA Astrophysics Data System (ADS)
Kalantar, B.; Mansor, S.; Khuzaimah, Z.; Sameen, M. Ibrahim; Pradhan, B.
2017-09-01
Knowledge of surface albedo at individual roof scale is important for mitigating urban heat islands and understanding urban climate change. This study presents a method for quantifying surface albedo of individual roofs in a complex urban area using the integration of Landsat 8 and airborne LiDAR data. First, individual roofs were extracted from airborne LiDAR data and orthophotos using optimized segmentation and supervised object based image analysis (OBIA). Support vector machine (SVM) was used as a classifier in OBIA process for extracting individual roofs. The user-defined parameters required in SVM classifier were selected using v-fold cross validation method. After that, surface albedo was calculated for each individual roof from Landsat images. Finally, thematic maps of mean surface albedo of individual roofs were generated in GIS and the results were discussed. Results showed that the study area is covered by 35% of buildings varying in roofing material types and conditions. The calculated surface albedo of buildings ranged from 0.16 to 0.65 in the study area. More importantly, the results indicated that the types and conditions of roofing materials significantly effect on the mean value of surface albedo. Mean albedo of new concrete, old concrete, new steel, and old steel were found to be equal to 0.38, 0.26, 0.51, and 0.44 respectively. Replacing old roofing materials with new ones should highly prioritized.
Green roof stormwater retention: effects of roof surface, slope, and media depth.
VanWoert, Nicholaus D; Rowe, D Bradley; Andresen, Jeffrey A; Rugh, Clayton L; Fernandez, R Thomas; Xiao, Lan
2005-01-01
Urban areas generate considerably more stormwater runoff than natural areas of the same size due to a greater percentage of impervious surfaces that impede water infiltration. Roof surfaces account for a large portion of this impervious cover. Establishing vegetation on rooftops, known as green roofs, is one method of recovering lost green space that can aid in mitigating stormwater runoff. Two studies were performed using several roof platforms to quantify the effects of various treatments on stormwater retention. The first study used three different roof surface treatments to quantify differences in stormwater retention of a standard commercial roof with gravel ballast, an extensive green roof system without vegetation, and a typical extensive green roof with vegetation. Overall, mean percent rainfall retention ranged from 48.7% (gravel) to 82.8% (vegetated). The second study tested the influence of roof slope (2 and 6.5%) and green roof media depth (2.5, 4.0, and 6.0 cm) on stormwater retention. For all combined rain events, platforms at 2% slope with a 4-cm media depth had the greatest mean retention, 87%, although the difference from the other treatments was minimal. The combination of reduced slope and deeper media clearly reduced the total quantity of runoff. For both studies, vegetated green roof systems not only reduced the amount of stormwater runoff, they also extended its duration over a period of time beyond the actual rain event.
Prolong Your Roof's Performance: Roof Asset Management.
ERIC Educational Resources Information Center
Teitsma, Jerry
2001-01-01
Discusses the roof asset management process for maintaining a roof system's integrity and value in a cost-effective manner. Included is a breakdown of roofing surface characteristics for multiply and single ply roofing systems. (GR)
Storm Water Retention on Three Green Roofs with Distinct Climates
NASA Astrophysics Data System (ADS)
Breach, P. A.; Sims, A.; O'Carroll, D. M.; Robinson, C. E.; Smart, C. C.; Powers, B. S. C.
2014-12-01
As urbanization continues to increase the impact of cities on their surrounding environments, the feasibility of implementing low-impact development such as green roofs is of increasing interest. Green roofs retain and attenuate storm water thereby reducing the load on urban sewer systems. In addition, green roofs can provide insulation and lower roof surface temperature leading to a decrease in building energy load. Green roof technology in North American urban environments remains underused, in part due to a lack of climate appropriate green roof design guidelines. The capacity of a green roof to moderate runoff depends on the storage capacity of the growing medium at the start of a rainfall event. Storage capacity is finite, which makes rapid drainage and evapotranspiration loss critical for maximizing storage capacity between subsequent storms. Here the retention and attenuation of storm events are quantified for experimental green roof sites located in three representative Canadian climates corresponding to; semiarid conditions in Calgary, Alberta, moderate conditions in London, Ontario, and cool and humid conditions in Halifax, Nova Scotia. The storage recovery and storm water retention at each site is modelled using a modified water balance approach. Components of the water balance including evapotranspiration are predicted using climate data collected from 2012 to 2014 at each of the experimental sites. During the measurement period there were over 300 precipitation events ranging from small, frequent events (< 2 mm) to a storm with a 250 year return period. The modeling approach adopted provides a tool for planners to assess the feasibility of implementing green roofs in their respective climates.
Jerrold E. Winandy; Cherilyn A. Hatfield
2007-01-01
Temperature histories for various types of roof shingles, wood roof sheathing, rafters, and nonventilated attics were monitored in outdoor attic structures using simulated North American light-framed construction. In this paper, 3-year thermal load histories for wood-based composite roof sheathing, wood rafters, and attics under western redcedar (WRC) shingles, wood-...
NASA Astrophysics Data System (ADS)
Tománková, Klára; Sněhota, Michal; Jelínková, Vladimíra
2016-04-01
Extensive green roofs with a thin growing medium require minimal maintenance, and in general no irrigation. The proper functioning of such systems rests with their structural constituents, especially with the substrate used for planting. An extensive green roof with poorly developed vegetation and with a soil layer of a maximum thickness of 5 cm mixed with local stripped topsoil with crushed bricks and green waste was studied with respect to the hydrological behavior. The substrate classified as loam comprises a significant proportion of very fine particles and thus it is prone to clogging up of soil pores and forming of fissures on the surface. The green roof studied is well equipped for measuring meteorological data including air temperature, wind speed and direction, net radiation, relative humidity, and rainfall intensity. The meteorological information on the site is completed by soil temperature measurement. The 12 m long transect is equipped with eight time domain reflectometry probes (TDR) to monitor soil water content. Soil physical properties (bulk density, porosity, grain size distribution) and soil hydraulic characteristics (soil water retention curve) were obtained. The numerical modeling of transient soil water movement in the green roof substrate was performed using a two-dimensional model based on the Richards' equation. Results were compared with the soil water content data acquired. Six alternative scenarios were formulated to discuss possible improvement of green roof functioning and four selected scenarios were simulated. The study helped us to improve our understanding of the flow processes through the green roof soil system under study. The alternative scenario simulations allowed hydrological assessment of roof construction amendments. The research was realized as a part of the University Centre for Energy Efficient Buildings supported by the EU and with financial support from the Czech Science Foundation under project number 14-10455P.
NASA Astrophysics Data System (ADS)
Hamdi, R.; Schayes, G.
2005-07-01
The Martilli's urban parameterization scheme is improved and implemented in a mesoscale model in order to take into account the typical effects of a real city on the air temperature near the ground and on the surface exchange fluxes. The mesoscale model is run on a single column using atmospheric data and radiation recorded above roof level as forcing. Here, the authors validate the Martilli's urban boundary layer scheme using measurements from two mid-latitude European cities: Basel, Switzerland and Marseilles, France. For Basel, the model performance is evaluated with observations of canyon temperature, surface radiation, and energy balance fluxes obtained during the Basel urban boundary layer experiment (BUBBLE). The results show that the urban parameterization scheme is able to reproduce the generation of the Urban Heat Island (UHI) effect over urban area and represents correctly most of the behavior of the fluxes typical of the city center of Basel, including the large heat uptake by the urban fabric and the positive sensible heat flux at night. For Marseilles, the model performance is evaluated with observations of surface temperature, canyon temperature, surface radiation, and energy balance fluxes collected during the field experiments to constrain models of atmospheric pollution and transport of emissions (ESCOMPTE) and its urban boundary layer (UBL) campaign. At both urban sites, vegetation cover is less than 20%, therefore, particular attention was directed to the ability of the Martilli's urban boundary layer scheme to reproduce the observations for the Marseilles city center, where the urban parameters and the synoptic forcing are totally different from Basel. Evaluation of the model with wall, road, and roof surface temperatures gave good results. The model correctly simulates the net radiation, canyon temperature, and the partitioning between the turbulent and storage heat fluxes.
NASA Astrophysics Data System (ADS)
Hamdi, R.; Schayes, G.
2007-08-01
Martilli's urban parameterization scheme is improved and implemented in a mesoscale model in order to take into account the typical effects of a real city on the air temperature near the ground and on the surface exchange fluxes. The mesoscale model is run on a single column using atmospheric data and radiation recorded above roof level as forcing. Here, the authors validate Martilli's urban boundary layer scheme using measurements from two mid-latitude European cities: Basel, Switzerland and Marseilles, France. For Basel, the model performance is evaluated with observations of canyon temperature, surface radiation, and energy balance fluxes obtained during the Basel urban boundary layer experiment (BUBBLE). The results show that the urban parameterization scheme represents correctly most of the behavior of the fluxes typical of the city center of Basel, including the large heat uptake by the urban fabric and the positive sensible heat flux at night. For Marseilles, the model performance is evaluated with observations of surface temperature, canyon temperature, surface radiation, and energy balance fluxes collected during the field experiments to constrain models of atmospheric pollution and transport of emissions (ESCOMPTE) and its urban boundary layer (UBL) campaign. At both urban sites, vegetation cover is less than 20%, therefore, particular attention was directed to the ability of Martilli's urban boundary layer scheme to reproduce the observations for the Marseilles city center, where the urban parameters and the synoptic forcing are totally different from Basel. Evaluation of the model with wall, road, and roof surface temperatures gave good results. The model correctly simulates the net radiation, canyon temperature, and the partitioning between the turbulent and storage heat fluxes.
Heusinger, Jannik; Weber, Stephan
2017-01-15
Green roofs are discussed as a promising type of green infrastructure to lower heat stress in cities. In order to enhance evaporative cooling, green roofs should ideally have similar Bowen ratio (β=sensible heat flux/latent heat flux) characteristics such as rural sites, especially during summer periods with high air temperatures. We use the eddy-covariance (EC) method to quantify the energy balance of an 8600m 2 extensive, non-irrigated green roof at the Berlin Brandenburg Airport, Germany over a full annual cycle. To understand the influence of water availability on green roof-atmosphere energy exchange, we studied dry and wet periods and looked into functional relationships between leaf area, volumetric water content (VWC) of the substrate, shortwave radiation and β. The surface energy balance was dominated by turbulent heat fluxes in comparison to conductive substrate heat fluxes. The Bowen ratio was slightly below unity on average but highly variable due to ambient meteorology and substrate water availability, i.e. β increased to 2 in the summer season. During dry periods mean daytime β was 3, which is comparable to typical values of urban instead of rural sites. In contrast, mean daytime β was 0.3 during wet periods. Following a summer wet period the green roof maximum daily evapotranspiration (ET) was 3.3mm, which is a threefold increase with respect to the mean summer ET. A multiple regression model indicated that the substrate VWC at the present site has to be >0.11m 3 m -3 during summer high insolation periods (>500Wm -2 ) in order to maintain favourable green roof energy partitioning, i.e. mid-day β<1. The microclimate benefit of urban green roofs can be significantly optimised by using sustainable irrigation approaches. Copyright © 2016 Elsevier B.V. All rights reserved.
Test and evaluation of the attic temperature reduction potential of plastic roof shakes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holton, J.K.; Beggs, T.R.
1999-07-01
While monitoring the comparative performance of two test houses in Pittsburgh, Pennsylvania, it was noticed that the attic air temperature of one house with a plastic shake roof was consistently 20 F (11 C) cooler than its twin with asphalt shingles during peak summer cooling periods. More detailed monitoring of the temperatures on the plastic shake, the roof deck, and the attic showed this effect to be largely due to the plastic shake and not to better roof venting or other heat loss mechanisms.
The Influence of Roof Material on Diurnal Urban Canyon Breathing
NASA Astrophysics Data System (ADS)
Abuhegazy, Mohamed; Yaghoobian, Neda
2017-11-01
Improvements in building energy use, air quality in urban canyons and in general urban microclimates require understanding the complex interaction between urban morphology, materials, climate, and inflow conditions. Review of the literature indicates that despite a long history of valuable urban microclimate studies, more comprehensive approaches are needed to address energy, and heat and flow transport in urban areas. In this study, a more comprehensive simulation of the diurnally varying street canyon flow and associated heat transport is numerically investigated, using Large-eddy Simulation (LES). We use computational modeling to examine the impact of diurnal variation of the heat fluxes from urban surfaces on the air flow and temperature distribution in street canyons with a focus on the role of roof materials and their temperature footprints. A detailed building energy model with a three-dimensional raster-type geometry provides urban surface heat fluxes as thermal boundary conditions for the LES to determine the key aero-thermodynamic factors that affect urban street ventilation.
Minimal watering regime impacts on desert adapted green roof plant performance
NASA Astrophysics Data System (ADS)
Kovachich, S.; Pavao-Zuckerman, M.; Templer, S.; Livingston, M.; Stoltz, R.; Smith, S.
2011-12-01
Roof tops can cover one-fifth of urban areas and can greatly alter the movement of matter and energy in cities. With traditional roofing methods and materials, roof tops readily absorb heat and as a result, buildings and the surrounding urban area heat to unnaturally high temperatures. It is hypothesized that extensive green roofs would have wide-ranging benefits for arid environments. However, little is known about the cost of water use associated with green roof installations and how to balance energy reduction needs with water costs in this water limited environment. We are conducting a pilot study to test whether a) green roofs with native plants and environmentally-responsible watering regimes will prove successful in arid environments and if b) green roofs provide ecosystem services with responsible water application. Three species of Sonoran Desert natives, Dyssodia pentachaeta (groundcover), Calliandra eriophylla (shrub), and Hesperaloe parviflora (succulent) have been planted in experimental plots [1 m2 model houses and roofs, replicated in triplicate] with two sandy, rocky desert soil mixtures (light mix: 60% expanded shale and heavy mix: organic and sandy mix with 50% shale) at the Biosphere 2 campus near Oracle, Az. The green roofs are watered by two different techniques. The first technique provides "smart watering", the minimal amount of water needed by green roof plants based on precipitation and historical data. The second watering technique is considered heavy and does not take into account environmental conditions. Preliminary data from the experimental plots shows a 30% decrease in daytime roof top temperatures on green roofs and a 10% decrease in interior temperatures in buildings with green roofs. This trend occurs with both watering regimes (heavy and light). This finding suggests that additional irrigation yields no extra heat reduction and energy savings. In order to explain this phenomenon more clearly, we use co-located temperature and soil moisture readings on each green roof to analyze the spatial and temporal covariance of water and temperature. We link these patterns in soil moisture to measures of plant performance with weekly hyperspectral images (NDVI - Normalized Difference Vegetation Index) of each green roof. The data will allow us to determine the minimal amount of water use required for successful green roofs and healthy green roof plants. Preliminary data from a five week pilot study in the 2011 summer monsoon has shown a variation in NDVI by species. H. parviflora displayed the highest NDVI values, while D. pentachaeta and C. eriophylla shared similar, lower NDVI values. In general, the comparison of soil moisture and NDVI values expressed a very weak positive relationship but stronger species specific responses. D. pentachaeta demonstrated the strongest response to soil water and H. parviflora displayed the weakest response.
Non-isothermal processes during the drying of bare soil: Model Development and Validation
NASA Astrophysics Data System (ADS)
Sleep, B.; Talebi, A.; O'Carrol, D. M.
2017-12-01
Several coupled liquid water, water vapor, and heat transfer models have been developed either to study non-isothermal processes in the subsurface immediately below the ground surface, or to predict the evaporative flux from the ground surface. Equilibrium phase change between water and gas phases is typically assumed in these models. Recently, a few studies have questioned this assumption and proposed a coupled model considering kinetic phase change. However, none of these models were validated against real field data. In this study, a non-isothermal coupled model incorporating kinetic phase change was developed and examined against the measured data from a green roof test module. The model also incorporated a new surface boundary condition for water vapor transport at the ground surface. The measured field data included soil moisture content and temperature at different depths up to the depth of 15 cm below the ground surface. Lysimeter data were collected to determine the evaporation rates. Short and long wave radiation, wind velocity, air ambient temperature and relative humidity were measured and used as model input. Field data were collected for a period of three months during the warm seasons in south eastern Canada. The model was calibrated using one drying period and then several other drying periods were simulated. In general, the model underestimated the evaporation rates in the early stage of the drying period, however, the cumulative evaporation was in good agreement with the field data. The model predicted the trends in temperature and moisture content at the different depths in the green roof module. The simulated temperature was lower than the measured temperature for most of the simulation time with the maximum difference of 5 ° C. The simulated moisture content changes had the same temporal trend as the lysimeter data for the events simulated.
Metal and nutrient dynamics on an aged intensive green roof.
Speak, A F; Rothwell, J J; Lindley, S J; Smith, C L
2014-01-01
Runoff and rainfall quality was compared between an aged intensive green roof and an adjacent conventional roof surface. Nutrient concentrations in the runoff were generally below Environmental Quality Standard (EQS) values and the green roof exhibited NO3(-) retention. Cu, Pb and Zn concentrations were in excess of EQS values for the protection of surface water. Green roof runoff was also significantly higher in Fe and Pb than on the bare roof and in rainfall. Input-output fluxes revealed the green roof to be a potential source of Pb. High concentrations of Pb within the green roof soil and bare roof dusts provide a potential source of Pb in runoff. The origin of the Pb is likely from historic urban atmospheric deposition. Aged green roofs may therefore act as a source of legacy metal pollution. This needs to be considered when constructing green roofs with the aim of improving pollution remediation. Copyright © 2013 Elsevier Ltd. All rights reserved.
The joint influence of albedo and insulation on roof performance: An observational study
Ramamurthy, P.; Sun, T.; Rule, K.; ...
2015-02-23
We focus on understanding the temperature and heat flux fields in building roofs, and how they are modulated by the interacting influences of albedo and insulation at annual, seasonal and diurnal scales. High precision heat flux plates and thermocouples were installed over multiple rooftops of varying insulation thickness and albedo in the Northeastern United States to monitor the temperature and the heat flux into and out of the roof structures for a whole year. This analysis shows that while membrane reflectivity (albedo) plays a dominant role in reducing the heat conducted inward through the roof structures during the warmer months,more » insulation thickness becomes the main roof attribute in preventing heat loss from the buildings during colder months. On a diurnal scale, the thermal state of the white roof structures fluctuated little compared to black roof structures; membrane temperature over white roofs ranged between 10 °C and 45 °C during summer months compared to black membranes that ranged between 10 °C and 80 °C. Insulation thickness, apart from reducing the heat conducted through the roof structure, also delayed the transfer of heat, owing to the thermal inertia of the insulation layer. Furthermore, this has important implications for determining the peak heating and cooling times.« less
The joint influence of albedo and insulation on roof performance: An observational study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramamurthy, P.; Sun, T.; Rule, K.
We focus on understanding the temperature and heat flux fields in building roofs, and how they are modulated by the interacting influences of albedo and insulation at annual, seasonal and diurnal scales. High precision heat flux plates and thermocouples were installed over multiple rooftops of varying insulation thickness and albedo in the Northeastern United States to monitor the temperature and the heat flux into and out of the roof structures for a whole year. This analysis shows that while membrane reflectivity (albedo) plays a dominant role in reducing the heat conducted inward through the roof structures during the warmer months,more » insulation thickness becomes the main roof attribute in preventing heat loss from the buildings during colder months. On a diurnal scale, the thermal state of the white roof structures fluctuated little compared to black roof structures; membrane temperature over white roofs ranged between 10 °C and 45 °C during summer months compared to black membranes that ranged between 10 °C and 80 °C. Insulation thickness, apart from reducing the heat conducted through the roof structure, also delayed the transfer of heat, owing to the thermal inertia of the insulation layer. Furthermore, this has important implications for determining the peak heating and cooling times.« less
NASA Astrophysics Data System (ADS)
Ban-Weiss, G. A.; Lee, S. M.; Katzenstein, A. S.; Carreras-Sospedra, M.; Zhang, X.; Farina, S.; Vahmani, P.; Fine, P.; Epstein, S. A.
2017-12-01
The installation of roofing materials with increased solar reflectance (i.e., "cool roofs") can mitigate the urban heat island effect and reduce energy use. In addition, meteorological changes, along with the possibility of enhanced UV reflection from these surfaces, can have complex impacts on ozone and PM2.5 concentrations. We aim to evaluate the air-quality impacts of widespread cool-roof installations prescribed by building energy efficiency standards within the heavily populated and polluted South Coast Air Basin (SoCAB) in Southern California. Development of a comprehensive rooftop area database and evaluation of spectral reflectance measurements of roofing materials allows us to predict potential future changes in solar and UV reflectance for simulations using the Weather Research Forecast and Community Multiscale Air Quality (CMAQ) models. Meteorological simulations indicate a decrease in daily maximum temperatures, daily maximum boundary layer heights, and ventilation coefficients throughout the SoCAB upon widespread installation of cool roofs. CMAQ simulations show significant increases in PM2.5 concentrations and policy-relevant design values. Changes in 8-h ozone concentrations depend on the potential change in UV reflectance, ranging from a decrease in population-weighted concentrations when UV reflectance remains unchanged to an increase when changes in UV reflectance are at an upper bound. However, 8-h policy-relevant ozone design values increase in all cases. Although the other benefits of cool roofs could outweigh small air-quality penalties, UV reflectance standards for cool roofing materials could mitigate these negative consequences. Results of this study motivate the careful consideration of future rooftop and pavement solar reflectance modification policies.
Effect of age and rainfall pH on contaminant yields from metal roofs.
Wicke, Daniel; Cochrane, Thomas A; O'Sullivan, Aisling D; Cave, Simon; Derksen, Mark
2014-01-01
Metal roofs are recognized for conveying significant metal loads to urban streams through stormwater runoff. Metal concentrations in urban runoff depend on roof types and prevailing weather conditions but the combined effects of roof age and rainfall pH on metal mobilization are not well understood. To investigate these effects on roof runoff, water quality was analysed from galvanized iron and copper roofs following rainfall events and also from simulating runoff using a rainfall simulator on specially constructed roof modules. Zinc and copper yields under different pH regimes were investigated for two roof materials and two different ages. Metal mobilization from older roofs was greater than new roofs with 55-year-old galvanized roof surfaces yielding more Zn, on average increasing by 45% and 30% under a rainfall pH of 4 and 8, respectively. Predominantly dissolved (85-95%) Zn and Cu concentrations in runoff exponentially increased as the rainfall pH decreased. Results also confirmed that copper guttering and downpipes associated with galvanized steel roof systems can substantially increase copper levels in roof runoff. Understanding the dynamics of roof surfaces as a function of weathering and rainfall pH regimes can help developers with making better choices about roof types and materials for stormwater improvement.
Chen, Haoming; Ma, Jinyi; Wei, Jiaxing; Gong, Xin; Yu, Xichen; Guo, Hui; Zhao, Yanwen
2018-09-01
Green roofs have increasingly been designed and applied to relieve environmental problems, such as water loss, air pollution as well as heat island effect. Substrate and vegetation are important components of green roofs providing ecosystem services and benefiting the urban development. Biochar made from sewage sludge could be potentially used as the substrate amendment for green roofs, however, the effects of biochar on substrate quality and plant performance in green roofs are still unclear. We evaluated the effects of adding sludge biochar (0, 5, 10, 15 and 20%, v/v) to natural soil planted with three types of plant species (ryegrass, Sedum lineare and cucumber) on soil properties, plant growth and microbial communities in both green roof and ground ecosystems. Our results showed that sludge biochar addition significantly increased substrate moisture, adjusted substrate temperature, altered microbial community structure and increased plant growth. The application rate of 10-15% sludge biochar on the green roof exerted the most significant effects on both microbial and plant biomass by 63.9-89.6% and 54.0-54.2% respectively. Path analysis showed that biochar addition had a strong effect on microbial biomass via changing the soil air-filled porosity, soil moisture and temperature, and promoted plant growth through the positive effects on microbial biomass. These results suggest that the applications of biochar at an appropriate rate can significantly alter plant growth and microbial community structure, and increase the ecological benefits of green roofs via exerting effects on the moisture, temperature and nutrients of roof substrates. Copyright © 2018 Elsevier B.V. All rights reserved.
Thermal Performance of Vegetative Roofing Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Desjarlais, Andre Omer; Zaltash, Abdolreza; Atchley, Jerald Allen
2010-01-01
Vegetative roofing, otherwise known as green or garden roofing, has seen tremendous growth in the last decade in the United States. The numerous benefits that green roofs provide have helped to fuel their resurgence in industrial and urban settings. There are many environmental and economical benefits that can be realized by incorporating a vegetative roof into the design of a building. These include storm-water retention, energy conservation, reduction in the urban heat island effect, increased longevity of the roofing membrane, the ability of plants to create biodiversity and filter air contaminants, and beautification of the surroundings by incorporating green space.more » The vegetative roof research project at Oak Ridge National Laboratory (ORNL) was initiated to quantify the thermal performance of various vegetative roofing systems relative to black and white roofs. Single Ply Roofing Institute (SPRI) continued its long-term commitment to cooperative research with ORNL in this project. Low-slope roof systems for this study were constructed and instrumented for continuous monitoring in the mixed climate of East Tennessee. This report summarizes the results of the annual cooling and heating loads per unit area of three vegetative roofing systems with side-by-side comparison to black and white roofing systems as well as a test section with just the growing media without plants. Results showed vegetative roofs reduced heat gain (reduced cooling loads) compared to the white control system due to the thermal mass, extra insulation, and evapo-transpiration associated with the vegetative roofing systems. The 4-inch and tray systems reduced the heat gain by approximately 61%, while the reduction with the 8-inch vegetative roof was found to be approximately 67%. The vegetative roofing systems were more effective in reducing heat gain than in reducing heat losses (heating loads). The reduction in heat losses for the 4-inch and tray systems were found to be approximately 40% in the mixed climate of East Tennessee. It should be noted that these values are climate dependent. Vegetative roofs also reduced the temperature (heat exposure) and temperature fluctuations (thermal stress) experienced by the membrane. In the cooling season of East Tennessee, the average peak temperature of the 4-inch and tray systems was found to be approximately 94 F cooler than the control black roofing system. The average temperature fluctuations at the membrane for the 4-inch and tray systems were found to be approximately 10 F compared to 125 F for black and 64 F for white systems. As expected, the 8-inch vegetative roof had the lowest fluctuations at approximately 2 F. Future work will include modeling of the energy performance of vegetative roof panels in the test climate of East Tennessee. The validated model then will be used to predict energy use in roofs with different insulation levels and in climates different from the test climate.« less
Thermal and Energy Performance of Conditioned Building Due To Insulated Sloped Roof
NASA Astrophysics Data System (ADS)
Irwan, Suhandi Syiful; Ahmed, Azni Zain; Zakaria, Nor Zaini; Ibrahim, Norhati
2010-07-01
For low-rise buildings in equatorial region, the roof is exposed to solar radiation longer than other parts of the envelope. Roofs are to be designed to reject heat and moderate the thermal impact. These are determined by the design and construction of the roofing system. The pitch of roof and the properties of construction affect the heat gain into the attic and subsequently the indoor temperature of the living spaces underneath. This finally influences the thermal comfort conditions of naturally ventilated buildings and cooling load of conditioned buildings. This study investigated the effect of insulated sloping roof on thermal energy performance of the building. A whole-building thermal energy computer simulation tool, Integrated Environmental Solution (IES), was used for the modelling and analyses. A building model with dimension of 4.0 m × 4.0 m × 3.0 m was designed with insulated roof and conventional construction for other parts of the envelope. A 75 mm conductive insulation material with thermal conductivity (k-value) of 0.034 Wm-1K-1 was installed underneath the roof tiles. The building was modelled with roof pitch angles of 0° , 15°, 30°, 45°, 60° and simulated for the month of August in Malaysian climate conditions. The profile for attic temperature, indoor temperature and cooling load were downloaded and evaluated. The optimum roof pitch angle for best thermal performance and energy saving was identified. The results show the pitch angle of 0° is able to mitigate the thermal impact to provide the best thermal condition with optimum energy savings. The maximum temperature difference between insulated and non-insulted roof for attic (AtticA-B) and indoor condition (IndoorA-B) is +7.8 °C and 0.4 °C respectively with an average energy monthly savings of 3.9 %.
Delanaud, Stéphane; Decima, Pauline; Pelletier, Amandine; Libert, Jean-Pierre; Stephan-Blanchard, Erwan; Bach, Véronique; Tourneux, Pierre
2016-09-01
Radiant heat loss is high in low-birth-weight (LBW) neonates. Double-wall or single-wall incubators with an additional double-wall roof panel that can be removed during phototherapy are used to reduce Radiant heat loss. There are no data on how the incubators should be used when this second roof panel is removed. The aim of the study was to assess the heat exchanges in LBW neonates in a single-wall incubator with and without an additional roof panel. To determine the optimal thermoneutral incubator air temperature. Influence of the additional double-wall roof was assessed by using a thermal mannequin simulating a LBW neonate. Then, we calculated the optimal incubator air temperature from a cohort of human LBW neonate in the absence of the additional roof panel. Twenty-three LBW neonates (birth weight: 750-1800g; gestational age: 28-32 weeks) were included. With the additional roof panel, R was lower but convective and evaporative skin heat losses were greater. This difference can be overcome by increasing the incubator air temperature by 0.15-0.20°C. The benefit of an additional roof panel was cancelled out by greater body heat losses through other routes. Understanding the heat transfers between the neonate and the environment is essential for optimizing incubators. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.
Evaluation of Green Roof Plants and Materials for Semi-Arid Climates
Abstract While green roof systems have proven to be highly effective in the evaporative cooling of buildings, reduction of roof top temperatures, protection of roof membranes from solar radiation degradation, reducing stormwater runoff, as well as beautification of the urban roo...
Radiative Forcing and Temperature Response to Changes in Urban Albedos and Associated CO2 Offsets
NASA Technical Reports Server (NTRS)
Menon, Surabi; Akbari, Hashem; Mahanama, Sarith; Sednev, Igor; Levinson, Ronnen
2009-01-01
The two main forcings that can counteract to some extent the positive forcings from greenhouse gases from pre-industrial times to present-day are the aerosol and related aerosol-cloud forcings, and the radiative response to changes in surface albedo. Here, we quantify the change in radiative forcing and surface temperature that may be obtained by increasing the albedos of roofs and pavements in urban areas in temperate and tropical regions of the globe. Using the catchment land surface model (the land model coupled to the GEOS-5 Atmospheric General Circulation Model), we quantify the response of the total outgoing (outgoing shortwave+longwave) radiation to urban albedo changes. Globally, the total outgoing radiation increased by 0.5 W/square m and temperature decreased by -0.008 K for an average 0.003 increase in albedo. For the U.S. the total outgoing total radiation increased by 2.3 W/square meter, and temperature decreased by approximately 0.03 K for an average 0.01 increase in albedo. These values are for the boreal summer (Tune-July-August). Based on these forcings, the expected emitted CO2 offset for a plausible 0.25 and 0.15 increase in albedos of roofs and pavements, respectively, for all global urban areas, was found to be approximately 57 Gt CO2 . A more meaningful evaluation of the impacts of urban albedo increases on climate and the expected CO2 offsets would require simulations which better characterizes urban surfaces and represents the full annual cycle.
Practical issues for using solar-reflective materials to mitigate urban heat islands
NASA Astrophysics Data System (ADS)
Bretz, Sarah; Akbari, Hashem; Rosenfeld, Arthur
Solar-reflective or high-albedo, alternatives to traditionally absorptive urban surfaces such as rooftops and roadways can reduce cooling energy use and improve urban air quality at almost no cost. This paper presents information to support programs that mitigate urban heat islands with solar-reflective surfaces: estimates of the achievable increase in albedo for a variety of surfaces, issues related to the selection of materials and costs and benefits of using them. As an example, we present data for Sacramento, California. In Sacramento, we estimate that 20% of the 96 square mile area is dark roofing and 10% is dark pavement. Based on the change in albedo that is achievable for these surfaces, the overall albedo of Sacramento could be increased by 18%, a change that would produce significant energy savings and increase comfort within the city. Roofing market data indicate which roofing materials should be targeted for incentive programs. In 1995, asphalt shingle was used for over 65% of residential roofing area in the U.S. and 6% of commercial. Built-up roofing was used for about 5% of residential roofing and about 30% of commercial roofing. Single-ply membranes covered about 9% of the residential roofing area and over 30% of the commercial area. White, solar-reflective alternatives are presently available for these roofing materials but a low- first-cost, solar-reflective alternative to asphalt shingles is needed to capture the sloped-roof market. Since incoming solar radiation has a large non-visible component, solar-reflective materials can also be produced in a variety of colors.
Aerial thermography for energy efficiency of buildings: the ChoT project
NASA Astrophysics Data System (ADS)
Mandanici, Emanuele; Conte, Paolo
2016-10-01
The ChoT project aims at analysing the potential of aerial thermal imagery to produce large scale datasets for energetic efficiency analyses and policies in urban environments. It is funded by the Italian Ministry of Education, University and Research (MIUR) in the framework of the SIR 2014 (Scientific Independence of young Researchers) programme. The city of Bologna (Italy) was chosen as the case study. The acquisition of thermal infrared images at different times by multiple aerial flights is one of the main tasks of the project. The present paper provides an overview of the ChoT project, but it delves into some specific aspects of the data processing chain: the computing of the radiometric quantities of the atmosphere, the estimation of surface emissivity (through an object-oriented classification applied on a very high resolution multispectral image, to distinguish among the major roofing materials) and sky-view factor (by means of a digital surface model). To collect ground truth data, the surface temperature of roofs and road pavings was measured at several locations at the same time as the aircraft acquired the thermal images. Furthermore, the emissivity of some roofing materials was estimated by means of a thermal camera and a contact probe. All the surveys were georeferenced by GPS. The results of the first surveying campaign demonstrate the high sensitivity of the model to the variability of the surface emissivity and the atmospheric parameters.
Miličević, Ivana; Štirmer, Nina; Banjad Pečur, Ivana
2016-01-01
This paper presents the residual mechanical properties of concrete made with crushed bricks and clay roof tile aggregates after exposure to high temperatures. One referent mixture and eight mixtures with different percentages of replacement of natural aggregate by crushed bricks and roof tiles are experimentally tested. The properties of the concrete were measured before and after exposure to 200, 400, 600 and 800 °C. In order to evaluate the basic residual mechanical properties of concrete with crushed bricks and roof tiles after exposure to high temperatures, ultrasonic pulse velocity is used as a non-destructive test method and the results are compared with those of a destructive method for validation. The mixture with the highest percentage of replacement of natural aggregate by crushed brick and roof tile aggregate has the best physical, mechanical, and thermal properties for application of such concrete in precast concrete elements exposed to high temperatures. PMID:28773420
Urban area thermal monitoring: Liepaja case study using satellite and aerial thermal data
NASA Astrophysics Data System (ADS)
Gulbe, Linda; Caune, Vairis; Korats, Gundars
2017-12-01
The aim of this study is to explore large (60 m/pixel) and small scale (individual building level) temperature distribution patterns from thermal remote sensing data and to conclude what kind of information could be extracted from thermal remote sensing on regular basis. Landsat program provides frequent large scale thermal images useful for analysis of city temperature patterns. During the study correlation between temperature patterns and vegetation content based on NDVI and building coverage based on OpenStreetMap data was studied. Landsat based temperature patterns were independent from the season, negatively correlated with vegetation content and positively correlated with building coverage. Small scale analysis included spatial and raster descriptor analysis for polygons corresponding to roofs of individual buildings for evaluating insulation of roofs. Remote sensing and spatial descriptors are poorly related to heat consumption data, however, thermal aerial data median and entropy can help to identify poorly insulated roofs. Automated quantitative roof analysis has high potential for acquiring city wide information about roof insulation, but quality is limited by reference data quality and information on building types, and roof materials would be crucial for further studies.
NASA Astrophysics Data System (ADS)
Hampton, S. J.; Cole, J. W.; Wilson, G.; Wilson, T. M.; Broom, S.
2015-10-01
Volcanic ash load is dependent on the migration and accumulation of ash on roofing surfaces and guttering, of which limited research has been conducted. This study investigates this knowledge gap through the empirical experimental testing of volcanic ash on variably pitched metal sheet roofs with modern PVC gutter systems, highlighting the relative importance of accumulation, migration, remobilization, saturation, and subsequent load. A testing rig delivered ash onto variably pitched roofs (pitches 15°, 25°, 30°, 35°, and 45°) with two 45° tests involving a wet surface with subsequent ashfall, and the second of ashfall with periods of wetting, followed by wetting until failure. In testing, dry ash on a dry roof accumulates at pitches up to 35°, above this pitch the percentage of ash accumulating reduces with greater percentages infilling guttering and or lost to the ground. With the introduction of a wet roof surface at 45° pitch, adherence of dry ash greatly increases, increasing accumulated ash thickness as compared to dry tests from 8% to 38%. For testing involving periods of wetting at 45° roof pitch, accumulation percentages further increased to 50%. Ash migrating from the roof surface filled guttering more rapidly at greater pitches, which once full resulted in further migrating ash to spill over the front or back gutter lips. Collapse of guttering did not occur during testing, but deformation and bracket detachment did occur at loads > 1 kPa. This study provides data on load calculations on roofing and PVC guttering through the quantification and utilization of relationships between ash fate, pitch, and the influence of water, in the development of two scenarios for both roof and gutter. These two scenarios then enable the estimation of ash accumulation and thus the load and collapse thresholds for roof and gutter at different roof pitch, which could be adopted for volcanic risk modeling or risk management.
Spatial environmental heterogeneity affects plant growth and thermal performance on a green roof.
Buckland-Nicks, Michael; Heim, Amy; Lundholm, Jeremy
2016-05-15
Green roofs provide ecosystem services, including stormwater retention and reductions in heat transfer through the roof. Microclimates, as well as designed features of green roofs, such as substrate and vegetation, affect the magnitude of these services. Many green roofs are partially shaded by surrounding buildings, but the effects of this within-roof spatial environmental heterogeneity on thermal performance and other ecosystem services have not been examined. We quantified the effects of spatial heterogeneity in solar radiation, substrate depth and other variables affected by these drivers on vegetation and ecosystem services in an extensive green roof. Spatial heterogeneity in substrate depth and insolation were correlated with differential growth, survival and flowering in two focal plant species. These effects were likely driven by the resulting spatial heterogeneity in substrate temperature and moisture content. Thermal performance (indicated by heat flux and substrate temperature) was influenced by spatial heterogeneity in vegetation cover and substrate depth. Areas with less insolation were cooler in summer and had greater substrate moisture, leading to more favorable conditions for plant growth and survival. Spatial variation in substrate moisture (7%-26% volumetric moisture content) and temperature (21°C-36°C) during hot sunny conditions in summer could cause large differences in stormwater retention and heat flux within a single green roof. Shaded areas promote smaller heat fluxes through the roof, leading to energy savings, but lower evapotranspiration in these areas should reduce stormwater retention capacity. Spatial heterogeneity can thus result in trade-offs between different ecosystem services. The effects of these spatial heterogeneities are likely widespread in green roofs. Structures that provide shelter from sun and wind may be productively utilized to design higher functioning green roofs and increase biodiversity by providing habitat heterogeneity. Copyright © 2016 Elsevier B.V. All rights reserved.
Assessing the Performance of Large Scale Green Roofs and Their Impact on the Urban Microclimate
NASA Astrophysics Data System (ADS)
Smalls-Mantey, L.; Foti, R.; Montalto, F. A.
2015-12-01
In ultra-urban environments green roofs offer a feasible solution to add green infrastructure (GI) in neighborhoods where space is limited. Green roofs offer the typical advantages of urban GI such as stormwater reduction and management while providing direct benefits to the buildings on which they are installed through thermal protection and mitigation of temperature fluctuations. At 6.8 acres, the Jacob K. Javits Convention Center (JJCC) in New York City, hosts the second largest green roof in the United States. Since its installation in August 2013, the Sustainable Water Resource (SWRE) Laboratory at Drexel University has monitored the climate on and around the green roof by means of four weather stations situated on various roof and ground locations. Using two years of fine scale climatic data collected at the JJCC, this study explores the energy balance of a large scale green roof system. Temperature, radiation, evapotranspiration and wind profiles pre- and post- installation of the JJCC green roof were analyzed and compared across monitored locations, with the goal of identifying the impact of the green roof on the building and urban micro-climate. Our findings indicate that the presence of the green roof, not only altered the climatic conditions above the JJCC, but also had a measurable impact on the climatic profile of the areas immediately surrounding it. Furthermore, as a result of the mitigation of roof temperature fluctuations and of the cooling provided during warmer months, an improvement of the building thermal efficiency was contextually observed. Such findings support the installation of GI as an effective practice in urban settings and important in the discussion of key issues including energy conservation measures, carbon emission reductions and the mitigation of urban heat islands.
Charters, F J; Cochrane, T A; O'Sullivan, A D
2017-09-01
Characterising stormwater runoff quality provides useful insights into the dynamics of pollutant generation and wash off rates. These can be used to prioritise stormwater management strategies. This study examined the effects of a low intensity rainfall climate on zinc contributions from different impermeable urban surface types. First flush (FF) and steady state samples were collected from seven different surfaces for characterisation, and the data were also used to calibrate an event-based pollutant load model to predict individual 'hotspot' surfaces across the catchment. Unpainted galvanised roofs generated very high concentrations of zinc, primarily in the more biologically available dissolved form. An older, unpainted galvanised roof had FF concentrations averaging 32,338 μg/L, while the new unpainted roof averaged 4,782 μg/L. Roads and carparks also had elevated zinc, but FF concentrations averaged only 822-1,584 μg/L. Modelling and mapping expected zinc loads from individual impermeable surfaces across the catchment identified specific commercial roof surfaces to be targeted for zinc management. The results validate a policy strategy to replace old galvanised roof materials and avoid unpainted galvanised roofing in future urban development for better urban water quality outcomes. In the interim, readily-implemented treatment options are required to help mitigate chronic zinc impacts on receiving waterways.
Epstein, Scott A; Lee, Sang-Mi; Katzenstein, Aaron S; Carreras-Sospedra, Marc; Zhang, Xinqiu; Farina, Salvatore C; Vahmani, Pouya; Fine, Philip M; Ban-Weiss, George
2017-08-22
The installation of roofing materials with increased solar reflectance (i.e., "cool roofs") can mitigate the urban heat island effect and reduce energy use. In addition, meteorological changes, along with the possibility of enhanced UV reflection from these surfaces, can have complex impacts on ozone and PM 2.5 concentrations. We aim to evaluate the air-quality impacts of widespread cool-roof installations prescribed by California's Title 24 building energy efficiency standards within the heavily populated and polluted South Coast Air Basin (SoCAB). Development of a comprehensive rooftop area database and evaluation of spectral reflectance measurements of roofing materials allows us to project potential future changes in solar and UV reflectance for simulations using the Weather Research Forecast and Community Multiscale Air Quality (CMAQ) models. 2012 meteorological simulations indicate a decrease in daily maximum temperatures, daily maximum boundary layer heights, and ventilation coefficients throughout the SoCAB upon widespread installation of cool roofs. CMAQ simulations show significant increases in PM 2.5 concentrations and policy-relevant design values. Changes in 8-h ozone concentrations depend on the potential change in UV reflectance, ranging from a decrease in population-weighted concentrations when UV reflectance remains unchanged to an increase when changes in UV reflectance are at an upper bound. However, 8-h policy-relevant ozone design values increase in all cases. Although the other benefits of cool roofs could outweigh small air-quality penalties, UV reflectance standards for cool roofing materials could mitigate these negative consequences. Results of this study motivate the careful consideration of future rooftop and pavement solar reflectance modification policies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sleiman, Mohamad; Kirchstetter, Thomas W.; Berdahl, Paul
2014-01-09
Highly reflective roofs can decrease the energy required for building air conditioning, help mitigate the urban heat island effect, and slow global warming. However, these benefits are diminished by soiling and weathering processes that reduce the solar reflectance of most roofing materials. Soiling results from the deposition of atmospheric particulate matter and the growth of microorganisms, each of which absorb sunlight. Weathering of materials occurs with exposure to water, sunlight, and high temperatures. This study developed an accelerated aging method that incorporates features of soiling and weathering. The method sprays a calibrated aqueous soiling mixture of dust minerals, black carbon,more » humic acid, and salts onto preconditioned coupons of roofing materials, then subjects the soiled coupons to cycles of ultraviolet radiation, heat and water in a commercial weatherometer. Three soiling mixtures were optimized to reproduce the site-specific solar spectral reflectance features of roofing products exposed for 3 years in a hot and humid climate (Miami, Florida); a hot and dry climate (Phoenix, Arizona); and a polluted atmosphere in a temperate climate (Cleveland, Ohio). A fourth mixture was designed to reproduce the three-site average values of solar reflectance and thermal emittance attained after 3 years of natural exposure, which the Cool Roof Rating Council (CRRC) uses to rate roofing products sold in the US. This accelerated aging method was applied to 25 products₋single ply membranes, factory and field applied coatings, tiles, modified bitumen cap sheets, and asphalt shingles₋and reproduced in 3 days the CRRC's 3-year aged values of solar reflectance. In conclusion, this accelerated aging method can be used to speed the evaluation and rating of new cool roofing materials.« less
Vahmani, P.; Sun, F.; Hall, A.; ...
2016-12-15
The climate warming effects of accelerated urbanization along with projected global climate change raise an urgent need for sustainable mitigation and adaptation strategies to cool urban climates. Our modeling results show that historical urbanization in the Los Angeles and San Diego metropolitan areas has increased daytime urban air temperature by 1.3 °C, in part due to a weakening of the onshore sea breeze circulation. We find that metropolis-wide adoption of cool roofs can meaningfully offset this daytime warming, reducing temperatures by 0.9 °C relative to a case without cool roofs. Residential cool roofs were responsible for 67% of the cooling.more » Nocturnal temperature increases of 3.1 °C from urbanization were larger than daytime warming, while nocturnal temperature reductions from cool roofs of 0.5 °C were weaker than corresponding daytime reductions. We further show that cool roof deployment could partially counter the local impacts of global climate change in the Los Angeles metropolitan area. Assuming a scenario in which there are dramatic decreases in greenhouse gas emissions in the 21st century (RCP2.6), mid- and end-of-century temperature increases from global change relative to current climate are similarly reduced by cool roofs from 1.4 °C to 0.6 °C. Assuming a scenario with continued emissions increases throughout the century (RCP8.5), mid-century warming is significantly reduced by cool roofs from 2.0 °C to 1.0 °C. The end-century warming, however, is significantly offset only in small localized areas containing mostly industrial/commercial buildings where cool roofs with the highest albedo are adopted. We conclude that metropolis-wide adoption of cool roofs can play an important role in mitigating the urban heat island effect, and offsetting near-term local warming from global climate change. Global-scale reductions in greenhouse gas emissions are the only way of avoiding long-term warming, however. We further suggest that both climate mitigation and adaptation can be pursued simultaneously using 'cool photovoltaics'.« less
NASA Astrophysics Data System (ADS)
Vahmani, P.; Sun, F.; Hall, A.; Ban-Weiss, G.
2016-12-01
The climate warming effects of accelerated urbanization along with projected global climate change raise an urgent need for sustainable mitigation and adaptation strategies to cool urban climates. Our modeling results show that historical urbanization in the Los Angeles and San Diego metropolitan areas has increased daytime urban air temperature by 1.3 °C, in part due to a weakening of the onshore sea breeze circulation. We find that metropolis-wide adoption of cool roofs can meaningfully offset this daytime warming, reducing temperatures by 0.9 °C relative to a case without cool roofs. Residential cool roofs were responsible for 67% of the cooling. Nocturnal temperature increases of 3.1 °C from urbanization were larger than daytime warming, while nocturnal temperature reductions from cool roofs of 0.5 °C were weaker than corresponding daytime reductions. We further show that cool roof deployment could partially counter the local impacts of global climate change in the Los Angeles metropolitan area. Assuming a scenario in which there are dramatic decreases in greenhouse gas emissions in the 21st century (RCP2.6), mid- and end-of-century temperature increases from global change relative to current climate are similarly reduced by cool roofs from 1.4 °C to 0.6 °C. Assuming a scenario with continued emissions increases throughout the century (RCP8.5), mid-century warming is significantly reduced by cool roofs from 2.0 °C to 1.0 °C. The end-century warming, however, is significantly offset only in small localized areas containing mostly industrial/commercial buildings where cool roofs with the highest albedo are adopted. We conclude that metropolis-wide adoption of cool roofs can play an important role in mitigating the urban heat island effect, and offsetting near-term local warming from global climate change. Global-scale reductions in greenhouse gas emissions are the only way of avoiding long-term warming, however. We further suggest that both climate mitigation and adaptation can be pursued simultaneously using ‘cool photovoltaics’.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vahmani, P.; Sun, F.; Hall, A.
The climate warming effects of accelerated urbanization along with projected global climate change raise an urgent need for sustainable mitigation and adaptation strategies to cool urban climates. Our modeling results show that historical urbanization in the Los Angeles and San Diego metropolitan areas has increased daytime urban air temperature by 1.3 °C, in part due to a weakening of the onshore sea breeze circulation. We find that metropolis-wide adoption of cool roofs can meaningfully offset this daytime warming, reducing temperatures by 0.9 °C relative to a case without cool roofs. Residential cool roofs were responsible for 67% of the cooling.more » Nocturnal temperature increases of 3.1 °C from urbanization were larger than daytime warming, while nocturnal temperature reductions from cool roofs of 0.5 °C were weaker than corresponding daytime reductions. We further show that cool roof deployment could partially counter the local impacts of global climate change in the Los Angeles metropolitan area. Assuming a scenario in which there are dramatic decreases in greenhouse gas emissions in the 21st century (RCP2.6), mid- and end-of-century temperature increases from global change relative to current climate are similarly reduced by cool roofs from 1.4 °C to 0.6 °C. Assuming a scenario with continued emissions increases throughout the century (RCP8.5), mid-century warming is significantly reduced by cool roofs from 2.0 °C to 1.0 °C. The end-century warming, however, is significantly offset only in small localized areas containing mostly industrial/commercial buildings where cool roofs with the highest albedo are adopted. We conclude that metropolis-wide adoption of cool roofs can play an important role in mitigating the urban heat island effect, and offsetting near-term local warming from global climate change. Global-scale reductions in greenhouse gas emissions are the only way of avoiding long-term warming, however. We further suggest that both climate mitigation and adaptation can be pursued simultaneously using 'cool photovoltaics'.« less
ERIC Educational Resources Information Center
Liscum, Curtis L.
1999-01-01
Presents the items to review in roofing maintenance to prepare for the impact of summer, including checking drainage, roof-field surface and membrane, flashings, sheet metal, and rooftop equipment, such as skylights and penthouses. A list of roofing facts facility managers should know are highlighted. (GR)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akbari, Hashem; Xu, Tengfang; Taha, Haider
Cool roofs, cool pavements, and urban vegetation reduce energy use in buildings, lower local air pollutant concentrations, and decrease greenhouse gas emissions from urban areas. This report summarizes the results of a detailed monitoring project in India and related simulations of meteorology and air quality in three developing countries. The field results quantified direct energy savings from installation of cool roofs on individual commercial buildings. The measured annual energy savings potential from roof-whitening of previously black roofs ranged from 20-22 kWh/m2 of roof area, corresponding to an air-conditioning energy use reduction of 14-26% in commercial buildings. The study estimated thatmore » typical annual savings of 13-14 kWh/m2 of roof area could be achieved by applying white coating to uncoated concrete roofs on commercial buildings in the Metropolitan Hyderabad region, corresponding to cooling energy savings of 10-19%. With the assumption of an annual increase of 100,000 square meters of new roof construction for the next 10 years in the Metropolitan Hyderabad region, the annual cooling energy savings due to whitening concrete roof would be 13-14 GWh of electricity in year ten alone, with cumulative 10-year cooling energy savings of 73-79 GWh for the region. The estimated savings for the entire country would be at least 10 times the savings in Hyderabad, i.e., more than 730-790 GWh. We estimated that annual direct CO2 reduction associated with reduced energy use would be 11-12 kg CO2/m2 of flat concrete roof area whitened, and the cumulative 10-year CO2 reduction would be approximately 0.60-0.65 million tons in India. With the price of electricity estimated at seven Rupees per kWh, the annual electricity savings on air-conditioning would be approximately 93-101 Rupees per m2 of roof. This would translate into annual national savings of approximately one billion Rupees in year ten, and cumulative 10-year savings of over five billion Rupees for cooling energy in India. Meteorological simulations in this study indicated that a reduction of 2C in air temperature in the Hyderabad area would be likely if a combination of increased surface albedo and vegetative cover are used as urban heat-island control strategies. In addition, air-temperature reductions on the order of 2.5-3.5C could be achieved if moderate and aggressive heat-island mitigation measures are adopted, respectively. A large-scale deployment of mitigation measures can bring additional indirect benefit to the urban area. For example, cooling outside air can improve the efficiency of cooling systems, reduce smog and greenhouse gas (GHG) emissions, and indirectly reduce pollution from power plants - all improving environmental health quality. This study has demonstrated the effectiveness of cool-roof technology as one of the urban heat-island control strategies for the Indian industrial and scientific communities and has provided an estimate of the national energy savings potential of cool roofs in India. These outcomes can be used for developing cool-roof building standards and related policies in India. Additional field studies, built upon the successes and lessons learned from this project, may be helpful to further confirm the scale of potential energy savings from the application of cooler roofs in various regions of India. In the future, a more rigorous meteorological simulation using urbanized (meso-urban) meteorological models should be conducted, which may produce a more accurate estimate of the air-temperature reductions for the entire urban area.« less
Solare Cell Roof Tile And Method Of Forming Same
Hanoka, Jack I.; Real, Markus
1999-11-16
A solar cell roof tile includes a front support layer, a transparent encapsulant layer, a plurality of interconnected solar cells and a backskin layer. The front support layer is formed of light transmitting material and has first and second surfaces. The transparent encapsulant layer is disposed adjacent the second surface of the front support layer. The interconnected solar cells has a first surface disposed adjacent the transparent encapsulant layer. The backskin layer has a first surface disposed adjacent a second surface of the interconnected solar cells, wherein a portion of the backskin layer wraps around and contacts the first surface of the front support layer to form the border region. A portion of the border region has an extended width. The solar cell roof tile may have stand-offs disposed on the extended width border region for providing vertical spacing with respect to an adjacent solar cell roof tile.
Heat transfer capability of solar radiation in colored roof and influence on room thermal comfort
NASA Astrophysics Data System (ADS)
Syuhada, Ahmad; Maulana, Muhammad Ilham
2018-02-01
Colored zinc is the most widely used by people in Indonesia as the roof of the building. Each color has different heat absorption capability, the higher the absorption capacity of a roof will cause high room temperature. A high temperature in the room will cause the room is not thermally comfortable for activity. Lack of public knowledge about the ability of each color to absorb heat can cause errors in choosing the color of the roof of the building so that it becomes uncomfortable regarding thermal comfort. This study examined how big the ability of each color in influencing the heat absorption on the roof of the zinc. The purpose of this study is to examine which colors are the lowest to absorb radiation heat. This research used theexperimental method. Data collected by measuring the temperature of the environment above and below the colored tin roof, starting at 11:00 am until 15:00 pm. The zinc roofs tested in this study are zinc black, red zinc, green zinc, blue zinc, brown zinc, maroon zinc, orange zinc, zinc gray, zinc color chrome and zinc white color. The study results show that black and blackish colors will absorb more heat than other colors. While the color white or close to whitish color will absorb a slight heat.
Reducing Heat Gains and Cooling Loads Through Roof Structure Configurations of A House in Medan
NASA Astrophysics Data System (ADS)
Handayani Lubis, Irma; Donny Koerniawan, Mochamad
2018-05-01
Heat gains and heat losses through building surfaces are the main factors that determine the building’s cooling and heating loads. Roof as a building surface that has the most exposed area to the sun, contribute most of heat gains in the building. Therefore, the amount of solar heat gains on the roofs need to be minimized by roof structure configurations. This research aims to discover the optimization of roof structure configurations (coating material, structure material, inclination, overhang, and insulation) as one of passive design strategies that reduce heat gains and cooling loads of a house in Medan. The result showed that case four, white-painted metal roof combined with 45° roof pitched, 1.5m overhang, and addition of insulation, indicates the minimum heat gains production and the less cooling loads during clear sky day but not in the overcast sky condition. In conclusion, heat gains and cooling loads of a house in Medan could be diminished during clear sky day by the addition of roof coating with high reflectance low solar absorbtance, the slope roof, the extension of wider veranda, and the addition of insulation in the roof structure.
Susca, Tiziana
2012-04-01
Traditionally, life cycle assessment (LCA) does not estimate a key property: surface albedo. Here an enhancement of the LCA methodology has been proposed through the development and employment of a time-dependent climatological model for including the effect of surface albedo on climate. The theoretical findings derived by the time-dependent model have been applied to the case study of a black and a white roof evaluated in the time-frames of 50 and 100 years focusing on the impact on global warming potential. The comparative life cycle impact assessment of the two roofs shows that the high surface albedo plays a crucial role in offsetting radiative forcings. In the 50-year time horizon, surface albedo is responsible for a decrease in CO(2)eq of 110-184 kg and 131-217 kg in 100 years. Furthermore, the white roof compared to the black roof, due to the high albedo, decreases the annual energy use of about 3.6-4.5 kWh/m(2). Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Heene, V.; Buchholz, S.; Kossmann, M.
2016-12-01
Numerical studies of thermal conditions in cities based on model simulations of idealized urban domains are carried out to investigate how changes in the characteristics of urban areas influence street level air temperatures. The simulated modifications of the urban characteristics represent possible adaptation measures for heat reduction in cities, which are commonly used in urban planning. Model simulations are performed with the thermodynamic version of the 3-dimensional micro-scale urban climate model MUKLIMO_3. The simulated idealized urban areas are designed in a simplistic way, i. e. defining homogeneous squared cities of one settlement type, without orography and centered in the model domain. To assess the impact of different adaptation measures the characteristics of the urban areas have been systematically modified regarding building height, albedo of building roof and impervious surfaces, fraction of impervious surfaces between buildings, and percentage of green roofs. To assess the impact of green and blue infrastructure in cities, different configurations for parks and lakes have been investigated - e. g. varying size and distribution within the city. The experiments are performed for different combinations of typical German settlement types and surrounding rural types under conditions of a typical summer day in July. The adaptation measures implemented in the experiments show different impacts for different settlement types mainly due to the differences in building density, building height or impervious surface fraction. Parks and lakes implemented as adaptation measure show strong potential to reduce daytime air temperature, with cooling effects on their built-up surroundings. At night lakes generate negative and positive effects on air temperature, depending on water temperature. In general, all adaptation measures implemented in experiments reveal different impacts on day and night air temperature.
Jerrold E. Winandy; Michael Grambsch; Cherilyn Hatfield
2005-01-01
Temperature histories for various types of roof shingles, wood roof sheathing, roof rafters, and non-ventilated attics are being monitored in outdoor attic structures using simulated North American light-framed construction. This report presents 2-year data histories for annual thermal loads for western redcedar, woodâthermoplastic composite, and fiberglass shingles...
Integration of active and passive cool roof system for attic temperature reduction
NASA Astrophysics Data System (ADS)
Yew, Ming Chian; Yew, Ming Kun; Saw, Lip Huat; Durairaj, Rajkumar
2017-04-01
The aim of this project is to study the capability of cool roof system in the reduction of heat transmission through metal roof into an attic. The cool roof system is designed in active and passive methods to reduce the thermal loads imposed to a building. Two main features are introduced to this cool roof system, which is thermal insulation coating (TIC) and moving air cavity (MAC) that served as active and passive manner, respectively. For MAC, two designs are introduced. Normal MAC is fabricated by six aluminium tubes whereby each aluminium tube is made up by sticking up of five aluminium cans. While improved MAC is also made by six aluminium tubes whereby each aluminium tube is custom made from steel rods and aluminium foils. MAC provides ventilation and heat reflection under the metal roof before the heat transfer into attic. It also coupled with three solar powered fans to increase heat flow inside the channel. The cool roof that incorporated TIC, MAC with solar powered fans and opened attic inlet showed a significant improvement with a reduction of up to 14 °C in the attic temperature compared to conventional roof system.
Remelting in caldera and rift environments and the genesis of hot, “recycled” rhyolites
NASA Astrophysics Data System (ADS)
Simakin, A. G.; Bindeman, I. N.
2012-07-01
Large and small volume rhyolites are generated in calderas and rift zones, inheriting older and isotopically diverse crystal populations from their volcanic predecessors. Low-δ18O values in many of these rhyolites suggest that they were derived from the remelting of solid, hydrothermally altered by meteoric water protoliths that were once close to the surface, but become buried by caldera collapse or rifting. These rhyolites persist for millions of years in these environments with little evidence of coeval basalts. We present a series of numerical experiments on convective melting of roof-rocks by the underplated by near liquidus to superheated silicic melts, generated at the base of the chamber by basaltic intrusions in shallow crustal conditions. We used a range of temperatures and compositions, an appropriate phase diagram with a defined extended eutectic zone appropriate for these environments, varied sill thickness, viscosity of the boundary layer, and considered hydrothermal and lower boundary heat losses. The goal was to estimate melting rates and mechanisms, define conditions that are required for efficient and rapid remelting in the upper crust, quantitatively describe novel details of the dynamics of convecting melting, and compare it to the earlier parametric and numerical treatments of roof melting by underplating. Resolution of numerical experiments allowed us to track mixed thermal and two-phase plume-like convection in silicic magma with a bulk viscosity of 104.5-105.5 Pa s. The following results were obtained: (1) remarkably fast melting/magma generation rates of many meters per year, (2) intrinsic inhomogeneities in the roof accelerates convection and melting rates via rapid gravitational settling of refractory blocks and exposing detachment scars to the melting front, (3) due to rapid melting, hydrothermal heat loss through the roof, and conductive heat dissipation through the bottom are less important on melting timescales. (4) Convective melting is capable of digesting cold roof-rocks, with high assimilation degrees, which are primarily controlled by sill thickness and roof-rock temperature: thin 10 m sills are able to digest 40% of the initially hot roof-rock T=650 °C roof-rock, but>100 m sills achieve the same level of bulk digestion with T=400 °C roof-rocks. The proposed model can explain the origin of hot (above 800-850 °C), crystal-poor, "recycled" rhyolites in calderas and rift zones. It can also explain the generation of large, supervolcanic rhyolite volumes through remelting of their erupted and subvolcanic predecessors on rapid timescales, dictated by their zoned and disequilibrium crystalline cargo.
NASA Astrophysics Data System (ADS)
Epstein, Scott A.; Lee, Sang-Mi; Katzenstein, Aaron S.; Carreras-Sospedra, Marc; Zhang, Xinqiu; Farina, Salvatore C.; Vahmani, Pouya; Fine, Philip M.; Ban-Weiss, George
2017-08-01
The installation of roofing materials with increased solar reflectance (i.e., “cool roofs”) can mitigate the urban heat island effect and reduce energy use. In addition, meteorological changes, along with the possibility of enhanced UV reflection from these surfaces, can have complex impacts on ozone and PM2.5 concentrations. We aim to evaluate the air-quality impacts of widespread cool-roof installations prescribed by California’s Title 24 building energy efficiency standards within the heavily populated and polluted South Coast Air Basin (SoCAB). Development of a comprehensive rooftop area database and evaluation of spectral reflectance measurements of roofing materials allows us to project potential future changes in solar and UV reflectance for simulations using the Weather Research Forecast and Community Multiscale Air Quality (CMAQ) models. 2012 meteorological simulations indicate a decrease in daily maximum temperatures, daily maximum boundary layer heights, and ventilation coefficients throughout the SoCAB upon widespread installation of cool roofs. CMAQ simulations show significant increases in PM2.5 concentrations and policy-relevant design values. Changes in 8-h ozone concentrations depend on the potential change in UV reflectance, ranging from a decrease in population-weighted concentrations when UV reflectance remains unchanged to an increase when changes in UV reflectance are at an upper bound. However, 8-h policy-relevant ozone design values increase in all cases. Although the other benefits of cool roofs could outweigh small air-quality penalties, UV reflectance standards for cool roofing materials could mitigate these negative consequences. Results of this study motivate the careful consideration of future rooftop and pavement solar reflectance modification policies.
Lee, Sang-Mi; Katzenstein, Aaron S.; Carreras-Sospedra, Marc; Zhang, Xinqiu; Farina, Salvatore C.; Vahmani, Pouya; Fine, Philip M.
2017-01-01
The installation of roofing materials with increased solar reflectance (i.e., “cool roofs”) can mitigate the urban heat island effect and reduce energy use. In addition, meteorological changes, along with the possibility of enhanced UV reflection from these surfaces, can have complex impacts on ozone and PM2.5 concentrations. We aim to evaluate the air-quality impacts of widespread cool-roof installations prescribed by California’s Title 24 building energy efficiency standards within the heavily populated and polluted South Coast Air Basin (SoCAB). Development of a comprehensive rooftop area database and evaluation of spectral reflectance measurements of roofing materials allows us to project potential future changes in solar and UV reflectance for simulations using the Weather Research Forecast and Community Multiscale Air Quality (CMAQ) models. 2012 meteorological simulations indicate a decrease in daily maximum temperatures, daily maximum boundary layer heights, and ventilation coefficients throughout the SoCAB upon widespread installation of cool roofs. CMAQ simulations show significant increases in PM2.5 concentrations and policy-relevant design values. Changes in 8-h ozone concentrations depend on the potential change in UV reflectance, ranging from a decrease in population-weighted concentrations when UV reflectance remains unchanged to an increase when changes in UV reflectance are at an upper bound. However, 8-h policy-relevant ozone design values increase in all cases. Although the other benefits of cool roofs could outweigh small air-quality penalties, UV reflectance standards for cool roofing materials could mitigate these negative consequences. Results of this study motivate the careful consideration of future rooftop and pavement solar reflectance modification policies. PMID:28784778
The application of photovoltaic roof shingles to residential and commercial buildings
NASA Technical Reports Server (NTRS)
Shepard, N. F., Jr.; Sanchez, L. E.
1978-01-01
The recent development of a shingle-type solar-cell module makes it possible to incorporate easily photovoltaic power generation into the sloping roofs of residential or commercial buildings. These modules, which use a closely packed array of nineteen 53-mm-diameter circular solar cells, are capable of producing 101 watts/sq m of module area under standard operating conditions. This module performance is achievable by the use of solar cells with an average efficiency of 13.3 percent at 1 kW/sq m air-mass-1.5 insolation and at a cell temperature of 28 C. When these modules are mounted on a sloping south-facing roof which is insulated on the rear surface, the annual energy generated at the maximum power operating point will vary from 255.6 to 137.3 kWh/sq m of module area depending on the site location, with Albuquerque, NM, and Seattle, WA, representing the highest and lowest values of the thirteen sites considered.
The 3.5-meter telescope enclosure
NASA Astrophysics Data System (ADS)
Brady, Michael H.
1994-04-01
The 3.5-m telescope enclosure is designed to perform two functions as part of the U.S. Air Force's 3.5-m telescope system: (1) to provide weather and temperature protection when the telescope is not in use and (2) to permit open-air operation of the telescope while minimizing atmospheric disturbances in the field of view (FOV). The use of a standard rotating dome is impractical because of the large telescope and its high rotational rate and acceleration. The enclosure is a 40-ft tall cylinder with a diameter of 72 ft. This steel and aluminum structure does not rotate but collapses vertically to fully expose the telescope to the open air and to provide it with an unobscured view of the horizon at all azimuthal angles. To lessen wind disturbances in the FOV, the enclosure has a moderately sloped roof and smooth, vertical walls. To minimize thermal flow, the outer surface has a high-reflectivity, low-emissivity coating and ambient air is forced through the double-skinned walls and roof. These measures make it possible to keep the enclosure surface temperature near that of the ambient air during viewing. With these features, the enclosure adds minimal degradation to the seeing.
Bright is the New Black - Multi-Year Performance of Generic High-Albedo Roofs in an Urban Climate
NASA Technical Reports Server (NTRS)
Gaffin, S. R.; Imhoff, M.; Rosenzweig, C.; Khanbilvardi, R.; Pasqualini, A.; Kong, A. Y. Y.; Grillo, D.; Freed, A.; Hillel, D.; Hartung, E.
2012-01-01
High-albedo white and cool roofing membranes are recognized as a fundamental strategy that dense urban areas can deploy on a large scale, at low cost, to mitigate the urban heat island effect. We are monitoring three generic white membranes within New York City that represent a cross-section of the dominant white membrane options for U.S. flat roofs: (1) an ethylene propylene diene monomer (EPDM) rubber membrane; (2) a thermoplastic polyolefin (TPO) membrane and; (3) an asphaltic multi-ply built-up membrane coated with white elastomeric acrylic paint. The paint product is being used by New York City s government for the first major urban albedo enhancement program in its history. We report on the temperature and related albedo performance of these three membranes at three different sites over a multi-year period. The results indicate that the professionally installed white membranes are maintaining their temperature control effectively and are meeting the Energy Star Cool Roofing performance standards requiring a three-year aged albedo above 0.50. The EPDM membrane however shows evidence of low emissivity. The painted asphaltic surface shows high emissivity but lost about half of its initial albedo within two years after installation. Given that the acrylic approach is an important "do-it-yourself," low-cost, retrofit technique, and, as such, offers the most rapid technique for increasing urban albedo, further product performance research is recommended to identify conditions that optimize its long-term albedo control. Even so, its current multi-year performance still represents a significant albedo enhancement for urban heat island mitigation.
Kelly, David G; Weir, Ron D; White, Steven D
2011-01-01
The Royal Military College of Canada, located on the north eastern shore of Lake Ontario, possesses an abundance of copper roofs and lacks surface water treatment prior to discharge into Lake Ontario. Rainwater, roof runoff and soil samples were collected and analyzed for copper and other parameters. Copper was consistently detected in runoff samples with average concentrations of 3200 +/- 2100 microg/L. Multivariable linear regression analysis for a dependant copper runoff concentration yielded an adjusted R2 value of 0.611, based on an independent variable model using minimum temperature, maximum temperature, total precipitation, and wind speed. Lake water samples taken in the vicinity of storm water outfalls draining areas with copper roofs ranged from 2.0 to 40 microg/L copper. Such data exceed the 2.0 microg/L Canadian Water Quality Guidelines for the Protection of Aquatic Life as outlined by the Canadian Council of Ministers of the Environment (CCME). Analysis of raw, filtered and digested forms suggested that the majority of copper present in runoff and lake water samples was in a dissolved form. The majority of soils taken in this study displayed copper concentrations below the 63 microg/g CCME residential/parkland land use limits. These findings suggested that ion exchange processes between runoff water and soil do not occur to a sufficient extent to elevate copper levels in soil. It may therefore be concluded that the eventual fate of copper, which is not discharged via storm water outfalls, is lost to the water table and Lake Ontario through the sub-soil.
40 CFR 61.271 - Emission standard.
Code of Federal Regulations, 2010 CFR
2010-07-01
... provide a projection below the liquid surface. Except for automatic bleeder vents, rim space vents, roof... floating roof means a cover that rests on the liquid surface (but not necessarily in complete contact with... floating on the liquid surface at all times, except during initial fill and during those intervals when the...
40 CFR 61.271 - Emission standard.
Code of Federal Regulations, 2014 CFR
2014-07-01
... provide a projection below the liquid surface. Except for automatic bleeder vents, rim space vents, roof... floating roof means a cover that rests on the liquid surface (but not necessarily in complete contact with... floating on the liquid surface at all times, except during initial fill and during those intervals when the...
Hygrothermal Performance of West Coast Wood Deck Roofing System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pallin, Simon B.; Kehrer, Manfred; Desjarlais, Andre Omer
2014-02-01
Simulations of roofing assemblies are necessary in order to understand and adequately predict actual the hygrothermal performance. At the request of GAF, simulations have been setup to verify the difference in performance between white and black roofing membrane colors in relation to critical moisture accumulation for traditional low slope wood deck roofing systems typically deployed in various western U.S. Climate Zones. The performance of these roof assemblies has been simulated in the hygrothermal calculation tool of WUFI, from which the result was evaluated based on a defined criterion for moisture safety. The criterion was defined as the maximum accepted watermore » content for wood materials and the highest acceptable moisture accumulation rate in relation to the risk of rot. Based on the criterion, the roof assemblies were certified as being either safe, risky or assumed to fail. The roof assemblies were simulated in different western climates, with varying insulation thicknesses, two different types of wooden decking, applied with varying interior moisture load and with either a high or low solar absorptivity at the roof surface (black or white surface color). The results show that the performance of the studied roof assemblies differs with regard to all of the varying parameters, especially the climate and the indoor moisture load.« less
NASA Astrophysics Data System (ADS)
Lavender, S.; Oliphant, A. J.; Thorp, R.
2014-12-01
Living roofs have very different surface energy, water and carbon budgets than conventional roofs. Since roofs cover approximately one third of the planimetric surface area of cities, they are a significant driver of the urban boundary layer. Living roofs have been thought to be beneficial for reducing the urban heat island through increased latent heat exchange, uptake of atmospheric carbon dioxide and storage in soil and plant matter, building energy conservation through soil heat storage and latent heat fluxes and reduction in runoff. Here we present evidence of some of these through ongoing observations of surface energy, water and carbon budget estimates for the extensive living roof of the California Academy of Sciences building in Golden Gate Park, San Francisco, California. Micrometeorological measurements including the eddy covariance approach are used to estimate CO2, water vapor and both ground and atmospheric heat fluxes. The California Academy's roof encompasses an area of 18,000 m2. Vegetation surveys were conducted in the spring; beach strawberry (Fragaria chiloensis) and California bentgrass (Agrostis) were found to dominate the project footprint out of the 26 species observed. Eddy covariance measurements are made about one meter above the 10-20 cm tall vegetation on the downwind side of the building. Approximately 50% of data are rejected due to less than 80% of the flux source area being contained in the roof or due to low friction velocity. Nevertheless, we are able to develop robust diurnal ensemble fluxes, and will present data from a nine month period. During summer, the roof acted as a carbon sink of approximately 1.5 gC m-2 d-1. Turbulent heat fluxes were dominated by sensible heat flux with a mean Bowen ratio of approximately 1.5 and daily evapotranspiration rates of about 1.8 mm d-1. The role of seasonality and meteorology on surface microclimate characteristics will also be discussed.
FPL roof temperature and moisture model : description and verification
A. TenWolde
This paper describes a mathematical model developed by the Forest Products Laboratory to predict attic temperatures, relative humidities, and roof sheathing moisture content. Comparison of data from model simulation and measured data provided limited validation of the model and led to the following conclusions: (1) the model can...
Wu, Hong-Zhang; Huang, Wei-Qiu; Yang, Guang; Zhao, Chen-Lu; Wang, Ying-Xia; Cai, Dao-Fei
2013-12-01
Internal floating roof tank has the advantages of external floating roof tank and fixed roof tank and has its own evaporation loss properties. The influences of volatile organic compounds (VOCs) distribution gradient, molecular diffusion, thermal diffusion and forced convection on the evaporation loss of oil were studied in the space of the homemade platform of an internal floating roof tank. The results showed that thermal diffusion with temperature change was the main cause for the static loss in the internal floating roof tank. On this basis, there were some measures for reduction of the evaporation loss and formulas to calculate the evaporation loss of the internal floating roof tank in this research.
Preliminary skyshine calculations for the Poloidal Diverter Tokamak Experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nigg, D.W.; Wheeler, F.J.
1981-01-01
The Poloidal Diverter Experiment (PDX) facility at Princeton University is the first operating tokamak to require substantial radiation shielding. A calculational model has been developed to estimate the radiation dose in the PDX control room and at the site boundary due to the skyshine effect. An efficient one-dimensional method is used to compute the neutron and capture gamma leakage currents at the top surface of the PDX roof shield. This method employs an S /SUB n/ calculation in slab geometry and, for the PDX, is superior to spherical models found in the literature. If certain conditions are met, the slabmore » model provides the exact probability of leakage out the top surface of the roof for fusion source neutrons and for capture gamma rays produced in the PDX floor and roof shield. The model also provides the correct neutron and capture gamma leakage current spectra and angular distributions, averaged over the top roof shield surface. For the PDX, this method is nearly as accurate as multidimensional techniques for computing the roof leakage and is much less costly. The actual neutron skyshine dose is computed using a Monte Carlo model with the neutron source at the roof surface obtained from the slab S /SUB n/ calculation. The capture gamma dose is computed using a simple point-kernel single-scatter method.« less
Retention performance of green roofs in representative climates worldwide
NASA Astrophysics Data System (ADS)
Viola, F.; Hellies, M.; Deidda, R.
2017-10-01
The ongoing process of global urbanization contributes to an increase in stormwater runoff from impervious surfaces, threatening also water quality. Green roofs have been proved to be innovative stormwater management measures to partially restore natural states, enhancing interception, infiltration and evapotranspiration fluxes. The amount of water that is retained within green roofs depends not only on their depth, but also on the climate, which drives the stochastic soil moisture dynamic. In this context, a simple tool for assessing performance of green roofs worldwide in terms of retained water is still missing and highly desirable for practical assessments. The aim of this work is to explore retention performance of green roofs as a function of their depth and in different climate regimes. Two soil depths are investigated, one representing the intensive configuration and another representing the extensive one. The role of the climate in driving water retention has been represented by rainfall and potential evapotranspiration dynamics. A simple conceptual weather generator has been implemented and used for stochastic simulation of daily rainfall and potential evapotranspiration. Stochastic forcing is used as an input of a simple conceptual hydrological model for estimating long-term water partitioning between rainfall, runoff and actual evapotranspiration. Coupling the stochastic weather generator with the conceptual hydrological model, we assessed the amount of rainfall diverted into evapotranspiration for different combinations of annual rainfall and potential evapotranspiration in five representative climatic regimes. Results quantified the capabilities of green roofs in retaining rainfall and consequently in reducing discharges into sewer systems at an annual time scale. The role of substrate depth has been recognized to be crucial in determining green roofs retention performance, which in general increase from extensive to intensive settings. Looking at the role of climatic conditions, namely annual rainfall, potential evapotranspiration and their seasonality cycles, we found that they drive green roofs retention performance, which are the maxima when rainfall and temperature are in phase. Finally, we provide design charts for a first approximation of possible hydrological benefits deriving from the implementation of intensive or extensive green roofs in different world areas. As an example, 25 big cities have been indicated as benchmark case studies.
Code of Federal Regulations, 2010 CFR
2010-10-01
... the initial point of contact, or on the center of the initial contact area, with the roof; and (2... center of the initial contact area, is on the longitudinal centerline of the lower surface of the test..., with respect to a roof which includes an area that protrudes above the surrounding exterior roof...
Green roof impact on the hydrological cycle components
NASA Astrophysics Data System (ADS)
Lamera, Carlotta; Rulli, Maria Cristina; Becciu, Gianfranco; Rosso, Renzo
2013-04-01
In the last decades the importance of storm water management in urban areas has increased considerably, due to both urbanization extension and to a greater concern for environment pollution. Traditional storm water control practices, based on the "all to the sewer" attitude, rely on conveyance to route storm water runoff from urban impervious surfaces towards the nearby natural water bodies. In recent years, infiltration facilities are receiving an increasing attention, due to their particular efficiency in restoring a balance in hydrological cycle quite equal to quite pre-urbanization condition. In particular, such techniques are designed to capture, temporarily retain and infiltrate storm water, promote evapotranspiration and harvest water at the source, encouraging in general evaporation, evapotranspiration, groundwater recharge and the re-use of storm water. Green roofs are emerging as an increasingly popular Sustainable Urban Drainage Systems (SUDS) technique for urban storm water management. Indeed, they are able to operate hydrologic control over storm water runoff: they allow a significant reduction of peak flows and runoff volumes collected by drainage system, with a consequent reduction of flooding events and pollution masses discharges by CSO. Furthermore green roofs have a positive influence on the microclimate in urban areas by helping in lower urban air temperatures and mitigate the heat island effect. Last but not least, they have the advantage of improving the thermal insulation of buildings, with significant energy savings. A detailed analysis of the hydrological dynamics, connected both with the characteristics of the climatic context and with the green roof technical design, is essential in order to obtain a full characterization of the hydrologic behavior of a green roof system and its effects on the urban water cycle components. The purpose of this paper is to analysis the hydrological effects and urban benefits of the vegetation cover of a building by installing green roofs and, thus, providing a conversion of rooftops in pervious areas; the objective is modeling hydrological fluxes (interception, evapotranspiration, soil water fluxes in the surface and hypodermic components) in relation to climate forcing, basic technology components and geometric characteristics of green roof systems (thickness of the stratigraphy, soil layers and materials, vegetation typology and density). The sensitivity analysis of hydrological processes at different hydrological, climatic and geometric parameters has allowed to draw some general guidelines useful in the design and construction of this type of drainage systems.
[Analysis of first flush effect of typical underlying surface runoff in Beijing urban city].
Ren, Yu-Fen; Wang, Xiao-Ke; Ouyang, Zhi-Yun; Hou, Pei-Qiang
2013-01-01
Rapid increase of the urban impervious underlying surfaces causes a great increase of urban runoff and the accumulation of pollutants on the roof and road surfaces brings many pollutants into the drainage system with the runoff, and it thus becomes a great threat to the urban water environment. To know the runoff pollution process and to build scientific basis for pollutant control, runoff processes from the roof and road surfaces were monitored and analyzed from 2004 to 2006, and the runoff EMC (Event Mean Concentration) was calculated. It was found that two types of runoff were seriously polluted by COD and TN. The COD and TN of roof runoff exceeded the fifth level of the surface water environmental quality standard (GB 3838-2002) by 3.64 and 4.80 times, respectively, and the COD and TN of road runoff exceeded by 3.73 and 1.07 times, respectively. M (V) curve was used to determine the relation between runoff volume and runoff pollution load. Various degrees of the first flush phenomenon were found for TSS, COD, TN and TP in roof runoff. But this phenomenon occurred only for TSS and TP of the road runoff, and on the whole it was not obvious. Properties of the underlying surfaces, rainfall intensity, and pollutant accumulation are all important factors affecting the roof and road runoff pollutant emission characteristics.
Venting of Heat and Carbon Dioxide from Urban Canyons at Night.
NASA Astrophysics Data System (ADS)
Salmond, J. A.; Oke, T. R.; Grimmond, C. S. B.; Roberts, S.; Offerle, B.
2005-08-01
Turbulent fluxes of carbon dioxide and sensible heat were observed in the surface layer of the weakly convective nocturnal boundary layer over the center of the city of Marseille, France, during the Expérience sur Sites pour Contraindre les Modèles de Pollution Atmosphérique et de Transport d'Emission (ESCOMPTE) field experiment in the summer of 2001. The data reveal intermittent events or bursts in the time series of carbon dioxide (CO2) concentration and air temperature that are superimposed upon the background values. These features relate to intermittent structures in the fluxes of CO2 and sensible heat. In Marseille, CO2 is primarily emitted into the atmosphere at street level from vehicle exhausts. In a similar way, nocturnal sensible heat fluxes are most likely to originate in the deep street canyons that are warmer than adjacent roof surfaces. Wavelet analysis is used to examine the hypothesis that CO2 concentrations can be used as a tracer to identify characteristics of the venting of pollutants and heat from street canyons into the above-roof nocturnal urban boundary layer. Wavelet analysis is shown to be effective in the identification and analysis of significant events and coherent structures within the turbulent time series. Late in the evening, there is a strong correlation between the burst structures observed in the air temperature and CO2 time series. Evidence suggests that the localized increases of temperature and CO2 observed above roof level in the urban boundary layer (UBL) are related to intermittent venting of sensible heat from the warmer urban canopy layer (UCL). However, later in the night, local advection of CO2 in the UBL, combined with reduced traffic emissions in the UCL, limit the value of CO2 as a tracer of convective plumes in the UBL.
NASA Astrophysics Data System (ADS)
Zhang, Yue; Zhuo, Qing-Qing; Liu, Hong-Xia; Ma, Xiao-Hua; Hao, Yue
2014-05-01
The effect of the static negative bias temperature (NBT) stress on a p-channel power metal—oxide—semiconductor field-effect transistor (MOSFET) is investigated by experiment and simulation. The time evolution of the negative bias temperature instability (NBTI) degradation has the trend predicted by the reaction—diffusion (R—D) model but with an exaggerated time scale. The phenomena of the flat-roof section are observed under various stress conditions, which can be considered as the dynamic equilibrium phase in the R—D process. Based on the simulated results, the variation of the flat-roof section with the stress condition can be explained.
Trumbore, David C; Osborn, Linda V; Johnson, Kathleen A; Fayerweather, William E
2015-01-01
We studied exposure of 151 workers to polycyclic aromatic compounds and asphalt emissions during the manufacturing of asphalt roofing products-including 64 workers from 10 asphalt plants producing oxidized, straight-run, cutback, and wax- or polymer-modified asphalts, and 87 workers from 11 roofing plants producing asphalt shingles and granulated roll roofing. The facilities were located throughout the United States and used asphalt from many refiners and crude oils. This article helps fill a gap in exposure data for asphalt roofing manufacturing workers by using a fluorescence technique that targets biologically active 4-6 ring polycyclic aromatic compounds and is strongly correlated with carcinogenic activity in animal studies. Worker exposures to polycyclic aromatic compounds were compared between manufacturing plants, at different temperatures and using different raw materials, and to important external benchmarks. High levels of fine limestone particulate in the plant air during roofing manufacturing increased polycyclic aromatic compound exposure, resulting in the hypothesis that the particulate brought adsorbed polycyclic aromatic compounds to the worker breathing zone. Elevated asphalt temperatures increased exposures during the pouring of asphalt. Co-exposures in these workplaces which act as confounders for both the measurement of total organic matter and fluorescence were detected and their influence discussed. Exposures to polycyclic aromatic compounds in asphalt roofing manufacturing facilities were lower than or similar to those reported in hot-mix paving application studies, and much below those reported in studies of hot application of built-up roofing asphalt. These relatively low exposures in manufacturing are primarily attributed to air emission controls in the facilities, and the relatively moderate temperatures, compared to built-up roofing, used in these facilities for oxidized asphalt. The exposure to polycyclic aromatic compounds was a very small part of the overall worker exposure to asphalt fume, on average less than 0.07% of the benzene-soluble fraction. Measurements of benzene-soluble fraction were uniformly below the American Conference of Governmental Industrial Hygienists' Threshold Limit Value for asphalt fume.
Solar heat collection with suspended metal roofing and whole house ventilation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maynard, T.
1996-10-01
A south pitched roof is employed for solar collection directly onto a roofing with chocolate brown color. The roofing is structural and is suspended over plywood decking so as to create an air space which receives input from the coolest and lowest basement air of the house interior. Air heated beneath the metal roofing is returned to a basement storage wall. Full length plenum cavities are formed into the ordinary rafter truss framing--at the knee wall and collar tie spaces. Preliminary testing of BTU gain at known air flows is acquired with a microprocessor system continuously collecting input and outputmore » temperatures at the roof collector into disk data files.« less
Retrofitted green roofs and walls and improvements in thermal comfort
NASA Astrophysics Data System (ADS)
Feitosa, Renato Castiglia; Wilkinson, Sara
2017-06-01
Increased urbanization has led to a worsening in the quality of life for many people living in large cities in respect of the urban heat island effect and increases of indoor temperatures in housing and other buildings. A solution may be to retrofit existing environments to their former conditions, with a combination of green infrastructures applied to existing walls and rooftops. Retrofitted green roofs may attenuate housing temperature. However, with tall buildings, facade areas are much larger compared to rooftop areas, the role of green walls in mitigating extreme temperatures is more pronounced. Thus, the combination of green roofs and green walls is expected to promote a better thermal performance in the building envelope. For this purpose, a modular vegetated system is adopted for covering both walls and rooftops. Rather than temperature itself, the heat index, which comprises the combined effect of temperature and relative humidity is used in the evaluation of thermal comfort in small scale experiments performed in Sydney - Australia, where identical timber framed structures prototypes (vegetated and non-vegetated) are compared. The results have shown a different understanding of thermal comfort improvement regarding heat index rather than temperature itself. The combination of green roof and walls has a valid role to play in heat index attenuation.
Bright is the new black—multi-year performance of high-albedo roofs in an urban climate
NASA Astrophysics Data System (ADS)
Gaffin, S. R.; Imhoff, M.; Rosenzweig, C.; Khanbilvardi, R.; Pasqualini, A.; Kong, A. Y. Y.; Grillo, D.; Freed, A.; Hillel, D.; Hartung, E.
2012-03-01
High-albedo white and cool roofing membranes are recognized as a fundamental strategy that dense urban areas can deploy on a large scale, at low cost, to mitigate the urban heat island effect. We are monitoring three generic white membranes within New York City that represent a cross section of the dominant white membrane options for US flat roofs: (1) an ethylene-propylene-diene monomer (EPDM) rubber membrane; (2) a thermoplastic polyolefin (TPO) membrane; and (3) an asphaltic multi-ply built-up membrane coated with white elastomeric acrylic paint. The paint product is being used by New York City’s government for the first major urban albedo enhancement program in its history. We report on the temperature and related albedo performance of these three membranes at three different sites over a multi-year period. The results indicate that the professionally installed white membranes are maintaining their temperature control effectively and are meeting the Energy Star Cool Roofing performance standards requiring a three-year aged albedo above 0.50. The EPDM membrane shows evidence of low emissivity; however this had the interesting effect of avoiding any ‘winter heat penalty’ for this building. The painted asphaltic surface shows high emissivity but lost about half of its initial albedo within two years of installation. Given that the acrylic approach is such an important ‘do-it-yourself’, low-cost, retrofit technique, and, as such, offers the most rapid technique for increasing urban albedo, further product performance research is recommended to identify conditions that optimize its long-term albedo control. Even so, its current multi-year performance still represents a significant albedo enhancement for urban heat island mitigation.
23. INTERIOR OF TAN 629 HANGAR, TAKEN FROM LOW ROOF, ...
23. INTERIOR OF TAN 629 HANGAR, TAKEN FROM LOW ROOF, FACING NORTHEAST. SHOWS GROUND LEVEL USE OF FLOOR SPACE FOR TEMPORARY STORAGE OF CRATES. MOISTURE ON SURFACE IS FROM LEAKY HANGAR ROOF. - Idaho National Engineering Laboratory, Test Area North, Hangar No. 629, Scoville, Butte County, ID
Evaluation of an urban land surface scheme over a tropical suburban neighborhood
NASA Astrophysics Data System (ADS)
Harshan, Suraj; Roth, Matthias; Velasco, Erik; Demuzere, Matthias
2017-07-01
The present study evaluates the performance of the SURFEX (TEB/ISBA) urban land surface parametrization scheme in offline mode over a suburban area of Singapore. Model performance (diurnal and seasonal characteristics) is investigated using measurements of energy balance fluxes, surface temperatures of individual urban facets, and canyon air temperature collected during an 11-month period. Model performance is best for predicting net radiation and sensible heat fluxes (both are slightly overpredicted during daytime), but weaker for latent heat (underpredicted during daytime) and storage heat fluxes (significantly underpredicted daytime peaks and nighttime storage). Daytime surface temperatures are generally overpredicted, particularly those containing horizontal surfaces such as roofs and roads. This result, together with those for the storage heat flux, point to the need for a better characterization of the thermal and radiative characteristics of individual urban surface facets in the model. Significant variation exists in model behavior between dry and wet seasons, the latter generally being better predicted. The simple vegetation parametrization used is inadequate to represent seasonal moisture dynamics, sometimes producing unrealistically dry conditions.
Quantitative analysis on the urban flood mitigation effect by the extensive green roof system.
Lee, J Y; Moon, H J; Kim, T I; Kim, H W; Han, M Y
2013-10-01
Extensive green-roof systems are expected to have a synergetic effect in mitigating urban runoff, decreasing temperature and supplying water to a building. Mitigation of runoff through rainwater retention requires the effective design of a green-roof catchment. This study identified how to improve building runoff mitigation through quantitative analysis of an extensive green-roof system. Quantitative analysis of green-roof runoff characteristics indicated that the extensive green roof has a high water-retaining capacity response to rainfall of less than 20 mm/h. As the rainfall intensity increased, the water-retaining capacity decreased. The catchment efficiency of an extensive green roof ranged from 0.44 to 0.52, indicating reduced runoff comparing with efficiency of 0.9 for a concrete roof. Therefore, extensive green roofs are an effective storm water best-management practice and the proposed parameters can be applied to an algorithm for rainwater-harvesting tank design. © 2013 Elsevier Ltd. All rights reserved.
Experimental Investigation of Thermal Performance in a Vehicle Cabin Test Setup With Pcm in the Roof
NASA Astrophysics Data System (ADS)
Purusothaman, M.; kota, Saichand; Cornilius, C. Sam; Siva, R.
2017-05-01
Heat flow from the roof with radiation through glass windows obviously high level that contributes to the total heat gained of a vehicle cabin. The cabin temperature of closed stationary vehicles in direct sunlight can quickly rise to a very level that may damage property and harm children or pets left in the vehicle. The problem that is faced by many car users today is very hot interior after certain minutes or hours of parking in open or un-shaded parking area. The heat accumulated inside the vehicle with undesired temperature rise would cause the parts of the car’s interior to degrade. Even the passengers are affected with the thermal condition inside the vehicle itself. The passenger has to wait for a certain time before getting into the car to cool down the interior condition either by lowering down the window or switching on the air conditioner at high speed that really affect the fuel consumption. A new roofing structure to improve its total thermal resistance is developed. Its uses phase change material properties to trap the heat from solar radiation and then release it back to the outer atmosphere by external convection when the vehicle is in use or during the nocturnal cycle. Phase change material, which has become an attractive means to store. Thermal energy, which has a wide range of applications, has been used. Phase change material has a high heat of fusion which is able to store and release large amount of energy. This PCM has been insulated in the roof of the vehicle to arrest the heat entering into the vehicle cabin. Experimental and numerical analyses have been conducted to compare the thermal performance of the new roofing structure and the normal roofing. By this experiment, the cooling process of the cabin could be much lower. The experimental investigation revealed that, on a hot day, the interior temperature of the vehicles cabin was approximately 22ºCe higher than the ambient temperature. The results show that the new roofing structure could effectively reduce the inlet of heat from the roof into the cabin. As a result, the interior temperature of the cabin could be much lower.
NASA Astrophysics Data System (ADS)
Khongdee, Titaporn; Sripoon, S.; Vajrabukka, C.
2013-05-01
The objective of the experiments reported here was to measure the effects of cooling techniques (Modified roof vs Normal roof) on the performance and physiology of 12 young male buffaloes with a similar live weight of 160 kg. The study was conducted at Chainat Agriculture and Technology College, Chainat Province, Thailand. The animals were divided randomly into two groups, each group comprising six buffaloes, and the two groups were studied to evaluate the effects of modified roofing (normal roof fitted with woven polypropylene shade cloth) on the subjects' physiological responses to heat stress under hot humid conditions. The modified roof resulted in lowered heat stress in buffaloes compared to those under a standard roof. The difference was shown by the buffaloes having a significantly lower mean rectal temperature (39.14 ± 0.07 vs 40.00 ± 0.10°C) and plasma cortisol (2.14 ± 0.24 vs 3.38 ± 0.37 ng/ml). The average daily water consumption was significantly lower in the MR group (MR, 29.71 ± 0.86 vs NR, 34.14 ± 1.06 L head -1 day-1), while there was a tendency for the roughage intake to be higher in the MR group compared to that of the NR group (MR, 5.88 ± 0.18 vs NR, 6.44 ± 0.19 kg head-1 -1 day-1; P = 0.0508). It was concluded that roof modification facilitated a reduction in heat load from roof re-radiation, and was an effective means of alleviating thermal stress in young buffaloes.
Charters, Frances J; Cochrane, Thomas A; O'Sullivan, Aisling D
2015-11-15
Understanding the particle size distribution (PSD) of sediment in urban runoff assists in the selection of appropriate treatment systems for sediment removal as systems vary in their ability to remove sediment across different particle size fractions. Variation in PSD in runoff from individual urban surfaces both during and across multiple rain events is not well understood and it may lead to performance uncertainty in treatment systems. Runoff PSDs in international literature were compiled to provide a comparative summary of PSDs from different urban surfaces. To further assess both intra-event and inter-event PSD variation, untreated runoff was collected from road, concrete roof, copper roof, and galvanized roof surfaces within an urban catchment exposed to the same rainfall conditions and analysed for PSD and total suspended solids (TSS). Road runoff had the highest TSS concentrations, while copper roofs had high initial TSS that reduced to very low levels under steady state conditions. Despite variation in TSS concentrations, the median particle diameter of the TSS was comparable across the surfaces. Intra-event variation was generally not significant, but substantial inter-event variation was observed, particularly for coarser road and concrete roof surfaces. PSD variation for each surface contributed to a wide range in predicted treatment performance and suggests that short-retention treatment devices carry a high performance risk of not being able to achieve adequate TSS removal across all rain events. Copyright © 2015 Elsevier Ltd. All rights reserved.
Shen, Zhenyao; Liu, Jin; Aini, Guzhanuer; Gong, Yongwei
2016-02-01
The deposition of pollutants on impervious surfaces is a serious problem associated with rapid urbanization, which results in non-point-source pollution. Characterizing the build-up and wash-off processes of pollutants in urban catchments is essential for urban planners. In this paper, the spatial variation and particle-size distributions of five heavy metals and two nutrients in surface dust were analyzed, and the runoff water first-flush effect (FF30) and event-mean concentrations (EMCs) of 10 common constituents were characterized. The relationships between runoff variables and stormwater characteristics were examined from three typical urban impervious surfaces in Beijing, China. Dust on road surfaces with smaller grain sizes had higher pollutant concentrations, whereas concentrations of Mn, Zn, Fe, and TP in roof surface dust increased with grain size. Particles with grain sizes of 38-74 and 125-300 μm contributed most to the total pollutant load in roads, while particles with the smallest grain sizes (<38 μm) contributed most on roofs (23.46-41.71 %). Event-mean concentrations (EMCs) and FF30 values for most runoff pollutants tended to be higher on roofs than on roads. The maximum intensity (I max) and the antecedent dry days (ADD) were critical parameters for EMCs in roads, while ADD was the only dominant parameter for EMCs on our studied roof. The rainfall intensity (RI) and maximum intensity (I max) were found to be the parameters with the strongest correlation to the first-flush effect on both roads and roofs. Significant correlations of total suspended solids (TSS) concentration in runoff with grain-size fractions of surface dust indicated that coarser particles (74-300 μm) are most likely to contribute to the solid-phase pollutants, and finer particles (<38 μm) are likely the main source of dissolved pollutants.
A microscale three-dimensional urban energy balance model for studying surface temperatures
NASA Astrophysics Data System (ADS)
Krayenhoff, E. Scott; Voogt, James A.
2007-06-01
A microscale three-dimensional (3-D) urban energy balance model, Temperatures of Urban Facets in 3-D (TUF-3D), is developed to predict urban surface temperatures for a variety of surface geometries and properties, weather conditions, and solar angles. The surface is composed of plane-parallel facets: roofs, walls, and streets, which are further sub-divided into identical square patches, resulting in a 3-D raster-type model geometry. The model code is structured into radiation, conduction and convection sub-models. The radiation sub-model uses the radiosity approach and accounts for multiple reflections and shading of direct solar radiation. Conduction is solved by finite differencing of the heat conduction equation, and convection is modelled by empirically relating patch heat transfer coefficients to the momentum forcing and the building morphology. The radiation and conduction sub-models are tested individually against measurements, and the complete model is tested against full-scale urban surface temperature and energy balance observations. Modelled surface temperatures perform well at both the facet-average and the sub-facet scales given the precision of the observations and the uncertainties in the model inputs. The model has several potential applications, such as the calculation of radiative loads, and the investigation of effective thermal anisotropy (when combined with a sensor-view model).
Self-contained all-terrain living apparatus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moeser, J.
1980-10-21
A living apparatus comprises a first reservoir within the ground surface of circular form and having a quantity of water therein. A building having a roof and a peripheral side wall of circular form is concentrically nested and spaced within said reservoir. A convex hull is peripherally connected and sealed to the bottom of said building wall and immersed within the water and floatingly projected into said reservoir, a substantial portion of said building wall extending above said ground surface. A second reservoir within the ground surface is spaced from and below said first reservoir. A drain outlet is spacedmore » above the bottom of said first reservoir; and a conduit interconnects said outlet and said second reservoir. A valve on said outlet is adapted to variably control the drain of water from said first reservoir to said second reservoir with the building adapted to controllably descend within said first reservoir throughout any desired distance up to the building roof yet, buoyantly immersed within the remaining water in said first reservoir for protectively enclosing the building within said first reservoir against storms , tornados, earthquakes, extreme temperatures or other conditions endangering the intergrity of the building. A power-operated pump is connected to a conduit between said reservoirs for returning water from said second reservoir to said first said reservoir and controllably regulating elevation of the building within said first reservoir. Within a central vertical axis of the building, there is provided an energy core upon the hull. An apertured support column is coaxially mounted upon said core and at its upper end, supports the roof.« less
Weathering of radiocaesium contamination on urban streets, walls and roofs.
Andersson, K G; Roed, J; Fogh, C L
2002-01-01
Recent investigations in Russia have emphasised the significance of dose contributions from contamination on urban streets and roof pavings, and, typically to a lesser extent, walls in the urban environment. The crucial factor determining the magnitude of these contributions is the retention of the contamination by the different types of urban surface. Since the Chernobyl accident, a series of long-term field studies has been carried out on urban streets, walls and roofs, to examine the weathering processes of 137Cs on the various surface types. The derived time-functions are applied to estimate resultant long-term doses to inhabitants of an urban centre. The paper highlights the effect on caesium retention of surface material characteristics.
NASA Astrophysics Data System (ADS)
Taleghani, Mohammad; Sailor, David; Ban-Weiss, George A.
2016-02-01
The urban heat island impacts the thermal comfort of pedestrians in cities. In this paper, the effects of four heat mitigation strategies on micrometeorology and the thermal comfort of pedestrians were simulated for a neighborhood in eastern Los Angeles County. The strategies investigated include solar reflective ‘cool roofs’, vegetative ‘green roofs’, solar reflective ‘cool pavements’, and increased street-level trees. A series of micrometeorological simulations for an extreme heat day were carried out assuming widespread adoption of each mitigation strategy. Comparing each simulation to the control simulation assuming current land cover for the neighborhood showed that additional street-trees and cool pavements reduced 1.5 m air temperature, while cool and green roofs mostly provided cooling at heights above pedestrian level. However, cool pavements increased reflected sunlight from the ground to pedestrians at a set of unshaded receptor locations. This reflected radiation intensified the mean radiant temperature and consequently increased physiological equivalent temperature (PET) by 2.2 °C during the day, reducing the thermal comfort of pedestrians. At another set of receptor locations that were on average 5 m from roadways and underneath preexisting tree cover, cool pavements caused significant reductions in surface air temperatures and small changes in mean radiant temperature during the day, leading to decreases in PET of 1.1 °C, and consequent improvements in thermal comfort. For improving thermal comfort of pedestrians during the afternoon in unshaded locations, adding street trees was found to be the most effective strategy. However, afternoon thermal comfort improvements in already shaded locations adjacent to streets were most significant for cool pavements. Green and cool roofs showed the lowest impact on the thermal comfort of pedestrians since they modify the energy balance at roof level, above the height of pedestrians.
City ventilation of Hong Kong at no-wind conditions
NASA Astrophysics Data System (ADS)
Yang, Lina; Li, Yuguo
We hypothesize that city ventilation due to both thermally-driven mountain slope flows and building surface flows is important in removing ambient airborne pollutants in the high-rise dense city Hong Kong at no-wind conditions. Both spatial and temporal urban surface temperature profiles are an important boundary condition for studying city ventilation by thermal buoyancy. Field measurements were carried out to investigate the diurnal thermal behavior of urban surfaces (mountain slopes, and building exterior walls and roofs) in Hong Kong by using the infrared thermography. The maximum urban surface temperature was measured in the early noon hours (14:00-15:00 h) and the minimum temperature was observed just before sunrise (5:00 h). The vertical surface temperature of the building exterior wall was found to increase with height at daytime and the opposite occurred at nighttime. The solar radiation and the physical properties of the various urban surfaces were found to be important factors affecting the surface thermal behaviors. The temperature difference between the measured maximum and minimum surface temperatures of the four selected exterior walls can be at the highest of 16.7 °C in the early afternoon hours (15:00 h). Based on the measured surface temperatures, the ventilation rate due to thermal buoyancy-induced wall surface flows of buildings and mountain slope winds were estimated through an integral analysis of the natural convection flow over a flat surface. At no-wind conditions, the total air change rate by the building wall flows (2-4 ACH) was found to be 2-4 times greater than that by the slope flows due to mountain surface (1 ACH) due to larger building exterior surface areas and temperature differences with surrounding air. The results provide useful insights into the ventilation of a high-rise dense city at no-wind conditions.
NASA Astrophysics Data System (ADS)
Kang, Hongpu; Li, Jianzhong; Yang, Jinghe; Gao, Fuqiang
2017-02-01
In underground coal mining, high abutment loads caused by the extraction of coal can be a major contributor to many rock mechanic issues. In this paper, a large-scale physical modeling of a 2.6 × 2.0 × 1.0 m entry roof has been conducted to investigate the fundamentals of the fracture mechanics of entry roof strata subjected to high abutment loads. Two different types of roof, massive roof and laminated roof, are considered. Rock bolt system has been taken into consideration. A distinct element analyses based on the physical modeling conditions have been performed, and the results are compared with the physical results. The physical and numerical models suggest that under the condition of high abutment loads, the massive roof and the laminated roof fail in a similar pattern which is characterized as vertical tensile fracturing in the middle of the roof and inclined shear fracturing initiated at the roof and rib intersections and propagated deeper into the roof. Both the massive roof and the laminated roof collapse in a shear sliding mode shortly after shear fractures are observed from the roof surface. It is found that shear sliding is a combination of tensile cracking of intact rock and sliding on bedding planes and cross joints. Shear sliding occurs when the abutment load is much less than the compressive strength of roof.
Impact of zinc roofing on urban runoff pollutant loads: the case of Paris.
Gromaire, M C; Chebbo, G; Constant, A
2002-01-01
Previous research on the Marais catchment in Paris demonstrated the very high zinc and cadmium contamination of runoff from zinc roofing. Thus further investigations were aimed at evaluating the relative importance of this type of roofing in Paris and its potential contribution to zinc and cadmium loads in wet weather flows. According to these results, about 40% of the surface of roofs in Paris is covered with rolled zinc (1016 ha), and this proportion is not likely to vary significantly in the next years, due to architectural rules. The Zn and Cd concentrations measured in runoff from these roofs are in accordance with literature
The Effects of Infrared-Blocking Pigments and Deck Venting on Stone-Coated Metal Residential Roofs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, William A
2006-01-01
Field data show that stone-coated metal shakes and S-mission tile, which exploit the use of infraredblocking color pigments (IrBCPs), along with underside venting reduce the heat flow penetrating the conditioned space of a residence by 70% compared with the amount of heat flow penetrating roofs with conventional asphalt shingles. Stone-coated metal roof products are typically placed on battens and counter-battens and nailed through the battens to the roof deck. The design provides venting on the underside of the metal roof that reduces the heat flow penetrating a home. The Metal Construction Association (MCA) and its affiliate members installed stone-coated metalmore » roofs with shake and S-mission tile profiles and a painted metal shake roof on a fully instrumented attic test assembly at Oak Ridge National Laboratory (ORNL). Measurements of roof, deck, attic, and ceiling temperatures; heat flows; solar reflectance; thermal emittance; and ambient weather were recorded for each of the test roofs and also for an adjacent attic cavity covered with a conventional pigmented and direct nailed asphalt shingle roof. All attic assemblies had ridge and soffit venting; the ridge was open to the underside of the stone-coated metal roofs. A control assembly with a conventional asphalt shingle roof was used for comparing deck and ceiling heat transfer rates.« less
Diurnal changes in urban boundary layer environment induced by urban greening
NASA Astrophysics Data System (ADS)
Song, Jiyun; Wang, Zhi-Hua
2016-11-01
Urban green infrastructure has been widely used for mitigating adverse environmental problems as well as enhancing urban sustainability of cities worldwide. Here we develop an integrated urban-land-atmosphere modeling framework with the land surface processes parameterized by an advanced urban canopy model and the atmospheric processes parameterized by a single column model. The model is then applied to simulate a variety of forms of green infrastructure, including urban lawns, shade trees, green and cool roofs, and their impact on environmental changes in the total urban boundary layer (UBL) for a stereotypical desert city, viz. Phoenix, Arizona. It was found that green roofs have a relatively uniform cooling effect proportional to their areal coverage. In particular, a reduction of UBL temperature of 0.3 °C and 0.2 °C per 10% increase of green roof coverage was observed at daytime and nighttime, respectively. In contrast, the effect of greening of street canyons is constrained by the overall abundance of green infrastructure and the energy available for evapotranspiration. In addition, the increase in urban greening causes boundary-layer height to decrease during daytime but increase at nighttime, leading to different trends of changes in urban air quality throughout a diurnal cycle.
Balance and exposure to an elevated sloped surface.
Wade, Chip; Davis, Jerry; Weimar, Wendi H
2014-01-01
Fall injuries and fatalities exceed 50 billion dollars annually. One half of fatal falls are from pitched roof settings. Falls from elevation in an occupational setting have been documented to be a significant issue in today's workforce. The purpose of this study was to investigate the influence of exposure to inclined surfaces on flat surface balance at varying heights above the ground. Thirty participants, 10 male college students (inexperienced), 10 female college students (inexperienced) and 10 male roofers (experienced) between age 19 and 50 years participated in this study. Participants walked for 20 min on an elevated roof segment (9-14 feet above ground level) and a ground level roof segment (0-5 feet above ground level) on separate days. Results indicated a significant difference for all groups in sway velocity over time at both levels (elevated and ground) and from eyes open to eyes closed conditions at both levels (p<0.05). Statistical analysis revealed that roofers had significantly less increase in sway velocity, post exposure than that of the inexperienced group (p<0.05). These findings provide practical information to employers and employees during the construction of structures that employ a pitched roof design. The implication of these findings include the knowledge that an individual is less stable directly after performing roofing tasks on a pitched roof setting, and should be afforded ample time to recover before moving into activities that would place them at a higher risk of injury from falls. Copyright © 2013 Elsevier B.V. All rights reserved.
Climates of U.S. cities in the 21st century
NASA Astrophysics Data System (ADS)
Krayenhoff, E. S.; Georgescu, M.; Moustaoui, M.
2017-12-01
Urban climates are projected to warm over the 21st century due to global climate change and urban development. To assess this projected warming, Weather Research and Forecasting (WRF) model simulations are performed at 20 km resolution over the contiguous U.S. for three 10-year periods: contemporary (2000-2009), mid-century (2050-2059), and end-of-century (2090-2099). Urban land use projections are derived from the EPA's ICLUS data set, and future climate projections are based on two global climate models and two greenhouse gas emissions scenarios. The potential for design implementations such as `green' roofs and high albedo roofs to offset the projected warming is considered. Effects of urban expansion, urban densification and infrastructure adaptation on urban climate are compared over the century. Assessment considers impacts at both seasonal and diurnal scales, isolates fair weather impacts, and considers multiple climate variables: air temperature, precipitation, humidity, wind speed, and surface energy budget partitioning.
Modelling of surface fluxes and Urban Boundary Layer over an old mediterannean city core
NASA Astrophysics Data System (ADS)
Lemonsu, A.; Masson, V.; Grimmond, Cs. B.
2003-04-01
In the frameworks of the UBL(Urban Boundary Layer)-ESCOMPTE campaign, the Town Energy Balance (TEB) model was run in off-line mode for Marseille. TEB's performance is evaluated with observations of surface temperatures and surface energy balance fluxes collected during the campaign. Parameterization improvements allow to better represent the energy exchanges between the air inside the canyon and the atmosphere above the roof level. Then, high resolution Méso-NH simulations are done to study the 3-D structure and the evolution of the Urban Boundary Layer (UBL) over Marseille. Will will give a special attention to the impact of the seabord effects (sea-breeze circulation) on the UBL.
Field Testing of an Unvented Roof with Fibrous Insulation, Tiles and Vapor Diffusion Venting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ueno, K.; Lstiburek, J. W.
This research is a test implementation of an unvented tile roof assembly in a hot-humid climate (Orlando, FL; Zone 2A), insulated with air permeable insulation (netted and blown fiberglass). Given the localized moisture accumulation and failures seen in previous unvented roof field work, it was theorized that a 'diffusion vent' (water vapor open, but air barrier 'closed') at the highest points in the roof assembly might allow for the wintertime release of moisture, to safe levels. The 'diffusion vent' is an open slot at the ridge and hips, covered with a water-resistant but vapor open (500+ perm) air barrier membrane.more » As a control comparison, one portion of the roof was constructed as a typical unvented roof (self-adhered membrane at ridge). The data collected to date indicate that the diffusion vent roof shows greater moisture safety than the conventional, unvented roof design. The unvented roof had extended winter periods of 95-100% RH, and wafer (wood surrogate RH sensor) measurements indicating possible condensation; high moisture levels were concentrated at the roof ridge. In contrast, the diffusion vent roofs had drier conditions, with most peak MCs (sheathing) below 20%. In the spring, as outdoor temperatures warmed, all roofs dried well into the safe range (10% MC or less). Some roof-wall interfaces showed moderately high MCs; this might be due to moisture accumulation at the highest point in the lower attic, and/or shading of the roof by the adjacent second story. Monitoring will be continued at least through spring 2016 (another winter and spring).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
This research is a test implementation of an unvented tile roof assembly in a hot-humid climate (Orlando, FL; Zone 2A), insulated with air permeable insulation (netted and blown fiberglass). Given the localized moisture accumulation and failures seen in previous unvented roof field work, it was theorized that a 'diffusion vent' (water vapor open, but air barrier 'closed') at the highest points in the roof assembly might allow for the wintertime release of moisture, to safe levels. The 'diffusion vent' is an open slot at the ridge and hips, covered with a water-resistant but vapor open (500+ perm) air barrier membrane.more » As a control comparison, one portion of the roof was constructed as a typical unvented roof (self-adhered membrane at ridge). The data collected to date indicate that the diffusion vent roof shows greater moisture safety than the conventional, unvented roof design. The unvented roof had extended winter periods of 95-100% RH, and wafer (wood surrogate RH sensor) measurements indicating possible condensation; high moisture levels were concentrated at the roof ridge. In contrast, the diffusion vent roofs had drier conditions, with most peak MCs (sheathing) below 20%. In the spring, as outdoor temperatures warmed, all roofs dried well into the safe range (10% MC or less). Some roof-wall interfaces showed moderately high MCs; this might be due to moisture accumulation at the highest point in the lower attic, and/or shading of the roof by the adjacent second story. Monitoring will be continued at least through spring 2016 (another winter and spring).« less
Integration of LIDAR Data Into a Municipal GIS to Study Solar Radiation
NASA Astrophysics Data System (ADS)
Africani, P.; Bitelli, G.; Lambertini, A.; Minghetti, A.; Paselli, E.
2013-04-01
Identifying the right roofs to install solar panels inside a urban area is crucial for both private citizens and the whole local population. The aim is not easy because a lot of consideration must be made: insolation, orientation of the surface, size of the surface, shading due to topography, shading due to taller buildings next the surface, shading due to taller vegetation and other possible problems typical of urban areas like the presence of chimneys. Accuracy of data related to the analyzed surfaces is indeed fundamental, and also the detail of geometric models used to represent buildings and their roofs. The complexity that these roofs can reach is elevated. This work uses LiDAR data to obtain, with a semi-automatic technique, the full geometry of each roof part complementing the pre-existing building data in the municipal cartography. With this data is possible to evaluate the placement of solar panels on roofs of a whole city analyzing the solar potential of each building in detail. Other traditional techniques, like photogrammetry, need strong manual editing effort in order to identify slopes and insert vector on surfaces at the right height. Regarding LiDAR data, in order to perform accurate modelling, it is necessary to obtain an high density point cloud. The method proposed can also be used as a fast and linear workflow process for an area where LiDAR data are available and a municipal cartography already exist: LiDAR data can be furthermore successfully used to cross-check errors in pre-existent digital cartography that can remain otherwise hidden.
ERIC Educational Resources Information Center
Parker, Danny S.; Sherwin, John R.; Sonne, Jeffrey K.; Barkaszi, Stephen F., Jr.
A 2-year Florida study attempted to quantify air conditioning cost savings when buildings have a white reflective roof. A 10,000 square foot elementary school with a gray modified bitumen roof over plywood decking that had a solar reflectance of 23 percent was monitored for an entire year. After one year of building thermal conditions and…
A wedge strategy for mitigation of urban warming in future climate scenarios
NASA Astrophysics Data System (ADS)
Zhao, L.
2016-12-01
Heat stress is one of the most severe climate threats to the human society in a future warmer world. The situation is further compounded in urban areas by the urban heat island (UHI). Because the majority of the world's population is projected to live in cities, there is a pressing need to find effective solutions for the high temperature problem. It is now recognized that in addition to the traditional emphasis on preparedness to cope with heat stress, these solutions should include active modifications of urban land form to reduce urban temperatures. Here we use an urban climate model to investigate the effectiveness of these active methods in mitigating the urban heat, both individually and collectively. By adopting highly reflective roofs citywide, almost all the cities in the USA and in southern Canada are transformed into cold islands or "white oases" where the daytime surface temperatures are lower than those in the surrounding rural land. The average oasis effect is -3.4 ± 0.3 K (mean ± 1 standard error) for the period 2071-2100 under the RCP4.5 scenario. A UHI mitigation wedge strategy consisting of cool roof, street vegetation and reflective pavement has the potential to eliminate the daytime UHI plus the greenhouse gas induced warming.
Plant species and functional group combinations affect green roof ecosystem functions.
Lundholm, Jeremy; Macivor, J Scott; Macdougall, Zachary; Ranalli, Melissa
2010-03-12
Green roofs perform ecosystem services such as summer roof temperature reduction and stormwater capture that directly contribute to lower building energy use and potential economic savings. These services are in turn related to ecosystem functions performed by the vegetation layer such as radiation reflection and transpiration, but little work has examined the role of plant species composition and diversity in improving these functions. We used a replicated modular extensive (shallow growing- medium) green roof system planted with monocultures or mixtures containing one, three or five life-forms, to quantify two ecosystem services: summer roof cooling and water capture. We also measured the related ecosystem properties/processes of albedo, evapotranspiration, and the mean and temporal variability of aboveground biomass over four months. Mixtures containing three or five life-form groups, simultaneously optimized several green roof ecosystem functions, outperforming monocultures and single life-form groups, but there was much variation in performance depending on which life-forms were present in the three life-form mixtures. Some mixtures outperformed the best monocultures for water capture, evapotranspiration, and an index combining both water capture and temperature reductions. Combinations of tall forbs, grasses and succulents simultaneously optimized a range of ecosystem performance measures, thus the main benefit of including all three groups was not to maximize any single process but to perform a variety of functions well. Ecosystem services from green roofs can be improved by planting certain life-form groups in combination, directly contributing to climate change mitigation and adaptation strategies. The strong performance by certain mixtures of life-forms, especially tall forbs, grasses and succulents, warrants further investigation into niche complementarity or facilitation as mechanisms governing biodiversity-ecosystem functioning relationships in green roof ecosystems.
Plant Species and Functional Group Combinations Affect Green Roof Ecosystem Functions
Lundholm, Jeremy; MacIvor, J. Scott; MacDougall, Zachary; Ranalli, Melissa
2010-01-01
Background Green roofs perform ecosystem services such as summer roof temperature reduction and stormwater capture that directly contribute to lower building energy use and potential economic savings. These services are in turn related to ecosystem functions performed by the vegetation layer such as radiation reflection and transpiration, but little work has examined the role of plant species composition and diversity in improving these functions. Methodology/Principal Findings We used a replicated modular extensive (shallow growing- medium) green roof system planted with monocultures or mixtures containing one, three or five life-forms, to quantify two ecosystem services: summer roof cooling and water capture. We also measured the related ecosystem properties/processes of albedo, evapotranspiration, and the mean and temporal variability of aboveground biomass over four months. Mixtures containing three or five life-form groups, simultaneously optimized several green roof ecosystem functions, outperforming monocultures and single life-form groups, but there was much variation in performance depending on which life-forms were present in the three life-form mixtures. Some mixtures outperformed the best monocultures for water capture, evapotranspiration, and an index combining both water capture and temperature reductions. Combinations of tall forbs, grasses and succulents simultaneously optimized a range of ecosystem performance measures, thus the main benefit of including all three groups was not to maximize any single process but to perform a variety of functions well. Conclusions/Significance Ecosystem services from green roofs can be improved by planting certain life-form groups in combination, directly contributing to climate change mitigation and adaptation strategies. The strong performance by certain mixtures of life-forms, especially tall forbs, grasses and succulents, warrants further investigation into niche complementarity or facilitation as mechanisms governing biodiversity-ecosystem functioning relationships in green roof ecosystems. PMID:20300196
Thermal and water regime of green roof segments filled with Technosol
NASA Astrophysics Data System (ADS)
Jelínková, Vladimíra; Šácha, Jan; Dohnal, Michal; Skala, Vojtěch
2016-04-01
Artificial soil systems and structures comprise appreciable part of the urban areas and are considered to be perspective for number of reasons. One of the most important lies in contribution of green roofs and facades to the heat island effect mitigation, air quality improvement, storm water reduction, etc. The aim of the presented study is to evaluate thermal and water regime of the anthropogenic soil systems during the first months of the construction life cycle. Green roof test segments filled with two different anthropogenic soils were built to investigate the benefits of such systems in the temperate climate. Temperature and water balance measurements complemented with meteorological observations and knowledge of physical properties of the soil substrates provided basis for detailed analysis of thermal and hydrological regime. Water balance of green roof segments was calculated for available vegetation seasons and individual rainfall events. On the basis of an analysis of individual rainfall events rainfall-runoff dependency was found for green roof segments. The difference between measured actual evapotranspiration and calculated potential evapotranspiration was discussed on period with contrasting conditions in terms of the moisture stress. Thermal characteristics of soil substrates resulted in highly contrasting diurnal variation of soils temperatures. Green roof systems under study were able to reduce heat load of the roof construction when comparing with a concrete roof construction. Similarly, received rainfall was significantly reduced. The extent of the rainfall reduction mainly depends on soil, vegetation status and experienced weather patterns. The research was realized as a part of the University Centre for Energy Efficient Buildings supported by the EU and with financial support from the Czech Science Foundation under project number 14-10455P.
Untreated runoff quality from roof and road surfaces in a low intensity rainfall climate.
Charters, Frances J; Cochrane, Thomas A; O'Sullivan, Aisling D
2016-04-15
Sediment and heavy metals in stormwater runoff are key pollutants of urban waterways, and their presence in stormwater is driven by climatic factors such as rainfall intensity. This study describes the total suspended solids (TSS) and heavy metal concentrations found in runoff from four different urban surfaces within a residential/institutional catchment, in a climate where rainfall is typically of low intensity (<5.1mm·h(-1)). The results were compared to untreated runoff quality from a compilation of international studies. The road runoff had the highest TSS concentrations, while copper and galvanized roof runoff had the highest copper and zinc concentrations, respectively. Pollutant concentrations were found to be significantly different between surfaces; quantification and prediction of pollutant contributions from urban surfaces should thus take account of the different surface materials, instead of being aggregated into more generalized categories such as land use. The TSS and heavy metal concentrations were found to be at the low to medium end of ranges observed internationally, except for total copper and zinc concentrations generated by dissolution of copper and galvanized roofing material respectively; these concentrations were at least as high as those reported internationally. TSS wash-off from the roofs was seen to be a source-limited process, where all available TSS is washed off during the rain event despite the low intensity rainfall, whereas both road TSS and heavy metals wash-off from roof and road surfaces appeared to all be transport-limited and therefore some carryover of pollutants occurs between rain events. A first flush effect was seen from most surfaces for TSS, but not for heavy metals. This study demonstrates that in low intensity rainfall climates, quantification of untreated runoff quality from key individual surface types in a catchment are needed to enable development of targeted and appropriately sized stormwater treatment systems. Copyright © 2016 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fulkerson, P.L.
1988-02-02
In a structure having a roof with a skylight including a glass panel which transmits solar energy, a shutter arrangement supported on the roof is described comprising an insulative flat one-piece solid shutter in the form of a panel selectively and linearly slidable on tracks which conceal the side edges thereof from a position blocking transmittal of solar energy through the glass panel of the skylight into an area within the structure to a position permitting transmittal of solar energy through the glass panel of the skylight into the area within the structure. The skylight presents a space between themore » glass panel and the selectively and linearly slidable insulative flat one-piece solid shutter, where the latter serves as the selective inner wall of the space contiguous with the area within the structure and the glass panel serves as the fixed outer wall of the space, where temperature responsive means is disposed within the space and in direct engagement with the inner surface of the glass panel, where the temperature responsive means is a black thermocouple operating a motor in a driving relationship with the insulative flat one-piece solid shutter. The insulative flat one-piece solid shutter is supported by a cable secured to a rotatable shaft controlled by the motor, where bi-directional movement of the rotatable shaft achieves raising and lowering of the insulative flat one-piece solid shutter to each of the solar energy blocking and transmittal positions, and where the insulative flat one-piece solid shutter includes a reflective surface facing the skylight and a decorative surface facing the area within the structure.« less
Impact of Sustainable Cool Roof Technology on Building Energy Consumption
NASA Astrophysics Data System (ADS)
Vuppuluri, Prem Kiran
Highly reflective roofing systems have been analyzed over several decades to evaluate their ability to meet sustainability goals, including reducing building energy consumption and mitigating the urban heat island. Studies have isolated and evaluated the effects of climate, surface reflectivity, and roof insulation on energy savings, thermal load mitigation and also ameliorating the urban heat island. Other sustainable roofing systems, like green-roofs and solar panels have been similarly evaluated. The motivation for the present study is twofold: the first goal is to present a method for simultaneous evaluation and inter-comparison of multiple roofing systems, and the second goal is to quantitatively evaluate the realized heating and cooling energy savings associated with a white roof system compared to the reduction in roof-top heat flux. To address the first research goal a field experiment was conducted at the International Harvester Building located in Portland, OR. Thermal data was collected for a white roof, vegetated roof, and a solar panel shaded vegetated roof, and the heat flux through these roofing systems was compared against a control patch of conventional dark roof membrane. The second research goal was accomplished using a building energy simulation program to determine the impact of roof area and roof insulation on the savings from a white roof, in both Portland and Phoenix. The ratio of cooling energy savings to roof heat flux reduction from replacing a dark roof with a white roof was 1:4 for the month of July, and 1:5 annually in Portland. The COP of the associated chillers ranges from 2.8-4.2, indicating that the ratio of cooling energy savings to heat flux reduction is not accounted for solely by the COP of the chillers. The results of the building simulation indicate that based on energy savings alone, white roofs are not an optimal choice for Portland. The benefits associated with cooling energy savings relative to a black roof are offset by the winter-time penalty, and the net benefit from adopting white roof technology in Portland is small. That said, there are other potential benefits of white roofing such as impact on urban heat islands and roof life that must also be considered.
Water quality function of an extensive vegetated roof.
Todorov, Dimitar; Driscoll, Charles T; Todorova, Svetoslava; Montesdeoca, Mario
2018-06-01
In this paper we present the results of a four-year study of water quality in runoff from an extensive, sedum covered, vegetated roof on an urban commercial building. Monitoring commenced seven months after the roof was constructed, with the first growing season. Stormwater drainage quality function of the vegetated roof was compared to a conventional (impermeable, high-albedo) membrane roof in addition to paired measurements of wet and bulk depositions at the study site. We present concentrations and fluxes of nutrients and major solutes. We discuss seasonal and year-to-year variation in water quality of drainage from the vegetated roof and how it compares with atmospheric deposition and drainage from the impermeable roof. Drainage waters from the vegetated roof exhibited a high concentration of nutrients compared to atmospheric deposition, particularly during the warm temperature growing season. However, nutrient losses were generally low because of the strong retention of water by the vegetated roof. There was marked variation in the retention of nutrients by season due to variations in concentrations in drainage from the vegetated roof. The vegetated roof was a sink of nitrogen, total phosphorus and chloride, and a source of phosphate and dissolved inorganic and organic carbon. Chloride exhibited elevated inputs and leaching during the winter. The drainage from the vegetated and impermeable roofs met the United States Environmental Protection Agency freshwater standards for all parameters, except for total phosphorus. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
MacAvoy, S. E.; Mucha, S.; Williamson, G.
2017-12-01
While green roofs have well understood benefits for retaining runoff, there is less of a consensus regarding the potential for retaining and absorbing nutrients or suspended solids from roof runoff that would otherwise travel to waterways. Additionally, there are numerous designs, materials and maintenance plans associated with "green" roofs/surfaces that may greatly impact not only their hydrological benefit but also their pollution mitigation potential. Here we examine the NO3, NH4, total organic carbon (TOC), total phosphorus (TP) and total suspended solids (TSS) retention potential from planted and unplanted foam roofs and traditional soil roofs. Direct precipitation, untreated runoff and throughflow from the different roof types were collected for 3 to 11 rain events over a year (depending on roof). Unplanted and traditional roofs reduced TSS by 80% or better relative to runoff. Traditional roofs showed 50% lower TP than runoff or other roof types. TOC was higher than direct precipitation for all treatments, although there were no differences among the treatments themselves. Taken as averages over the 11 events, NO3 and NH4 concentrations were highly variable for runoff and treatments and significant differences were not detected. Preliminary analysis suggests there were no differences between performance of traditional versus foam-based roofs, although a greater sample size is required to be definitive.
Modeling the Surface Energy Balance of the Core of an Old Mediterranean City: Marseille.
NASA Astrophysics Data System (ADS)
Lemonsu, A.; Grimmond, C. S. B.; Masson, V.
2004-02-01
The Town Energy Balance (TEB) model, which parameterizes the local-scale energy and water exchanges between urban surfaces and the atmosphere by treating the urban area as a series of urban canyons, coupled to the Interactions between Soil, Biosphere, and Atmosphere (ISBA) scheme, was run in offline mode for Marseille, France. TEB's performance is evaluated with observations of surface temperatures and surface energy balance fluxes collected during the field experiments to constrain models of atmospheric pollution and transport of emissions (ESCOMPTE) urban boundary layer (UBL) campaign. Particular attention was directed to the influence of different surface databases, used for input parameters, on model predictions. Comparison of simulated canyon temperatures with observations resulted in improvements to TEB parameterizations by increasing the ventilation. Evaluation of the model with wall, road, and roof surface temperatures gave good results. The model succeeds in simulating a sensible heat flux larger than heat storage, as observed. A sensitivity comparison using generic dense city parameters, derived from the Coordination of Information on the Environment (CORINE) land cover database, and those from a surface database developed specifically for the Marseille city center shows the importance of correctly documenting the urban surface. Overall, the TEB scheme is shown to be fairly robust, consistent with results from previous studies.
Household scale of greenhouse design in Merauke
NASA Astrophysics Data System (ADS)
Alahudin, Muchlis; Widarnati, Indah; Luh Sri Suryaningsih, Ni
2018-05-01
Merauke is one of the areas that still use conventional methods in agriculture, The agricultural business does not run the maximum during the year because agricultural products quite difficult to obtain in the market. In the rainy season, the intensity of rain is very high, the water condition is abundant and hard to be channeled due to topography/soil contour conditions average, otherwise in the dry season the water is quite difficult to obtain. The purpose of this research is to compare the thermal conditions between greenhouse with auvplastic and plastic bottle roof.This research is experimental, measurement of thermal conditions in Greenhouse using measuring weather station.Greenhouse design with Quonset type with area of 24 m2The result of this research are greenhouse with paranet + UV plastic roof has an average temperature of 28.7 °C, 70.4% humidity and 0.5 m/s wind speed, while the greenhouse with paranet + plastic bottle roof has an average temperature of 26, 2 °C, humidity 66.4% and wind speed 0.9 m/s. Conclusion is Greenhouse with paranet + plastic bottle roof more thermally comfortable than greenhouse with paranet + UV plastic roof.
NASA Technical Reports Server (NTRS)
1987-01-01
United Scanning Technologies, Inc.'s Infrared thermography is a relatively new noncontact, nondestructive inspection and testing tool which makes temperatures visible to the human eye. Infrared scanning devices produce images that show, by color or black and white shading differences, heat losses through damaged or inadequately insulated walls or roofs. The MISS Aeroscan services are designed to take the guesswork out of industrial roof maintenance and provide companies big savings by identifying the location of moisture damage from roof leaks, effectively targeting maintenance attention.
Rainwater runoff retention on an aged intensive green roof.
Speak, A F; Rothwell, J J; Lindley, S J; Smith, C L
2013-09-01
Urban areas are characterised by large proportions of impervious surfaces which increases rainwater runoff and the potential for surface water flooding. Increased precipitation is predicted under current climate change projections, which will put further pressure on urban populations and infrastructure. Roof greening can be used within flood mitigation schemes to restore the urban hydrological balance of cities. Intensive green roofs, with their deeper substrates and higher plant biomass, are able to retain greater quantities of runoff, and there is a need for more studies on this less common type of green roof which also investigate the effect of factors such as age and vegetation composition. Runoff quantities from an aged intensive green roof in Manchester, UK, were analysed for 69 rainfall events, and compared to those on an adjacent paved roof. Average retention was 65.7% on the green roof and 33.6% on the bare roof. A comprehensive soil classification revealed the substrate, a mineral soil, to be in good general condition and also high in organic matter content which can increase the water holding capacity of soils. Large variation in the retention data made the use of predictive regression models unfeasible. This variation arose from complex interactions between Antecedant Dry Weather Period (ADWP), season, monthly weather trends, and rainfall duration, quantity and peak intensity. However, significantly lower retention was seen for high rainfall events, and in autumn, which had above average rainfall. The study period only covers one unusually wet year, so a longer study may uncover relationships to factors which can be applied to intensive roofs elsewhere. Annual rainfall retention for Manchester city centre could be increased by 2.3% by a 10% increase in intensive green roof construction. The results of this study will be of particular interest to practitioners implementing greenspace adaptation in temperate and cool maritime climates. Copyright © 2013 Elsevier B.V. All rights reserved.
Rossi, Luca; Hari, Renata E
2007-07-01
The discharge of urban stormwater may cause a sudden temperature increase in receiving waters that may be harmful to fish and other aquatic organisms. A screening procedure is proposed with temperature thresholds for the runoff from roofs and roads as well as for the receiving water system to protect brown trout from thermal damage. The stormwater temperature is calculated on the basis of a simple thermodynamic estimate for different latitudes. Only receiving waters with maximum daily mean temperatures of 22 degrees C (T1) are considered potential habitats for brown trout. The maximum temperature for a 1-h exposure time with a safety margin for 100% survival is 25 degrees C (T2), the sudden temperature change at the beginning of a rain event must not exceed 7 degrees C (T3), and fish-egg development requires the daily maximum temperature in winter to be below 12 degrees C (T4). Examples of stormwater runoff from roof or road surfaces from Switzerland validate our approach within +/-0.5 degrees C. Effects of runoff into receiving waters without detailed data can be predicted within +/-0.8 degrees C. With the restriction by T1, T2 seems not to be an acute problem at Swiss latitudes. T3 could play a role, especially if a large amount of runoff is discharged in small and rather cool rivers and streams. Finally, T4 deserves more attention than hitherto given. The proposed procedure may be a useful tool for assessing the influence of urban stormwater on the temperature of the receiving waters, particularly with regard to predicting the thermal impacts of urban or suburban runoff to populations of brown trout.
America's Urban Forests: Keeping Our Cities Cool
NASA Technical Reports Server (NTRS)
Luvall, Jeffrey C.; Quattrochi, Dale A.
1997-01-01
The additional heating of the air over the city is the result of the replacement of naturally vegetated surfaces with those composed of asphalt, concrete, rooftops and other man-made materials. The temperatures of these artificial surfaces can be 20 to 40 C higher than vegetated surfaces. Materials such as asphalt store much of the sun's energy and remains hot long after sunset. This produces a dome of elevated air temperatures 5 to 8 C greater over the city, compared to the air temperatures over adjacent rural areas. This effect is called the "urban heat island". Tree canopies can reduce the urban heat island effect by dissipating the solar energy received by transpiring water from leaf surfaces which cools the air by taking "heat" from the air to evaporate the water and by shading surfaces like asphalt, roofs, and concrete parking lots which prevents initial heating and storage of heat. It is difficult to take enough temperature measurements over a large city area to characterize the surface temperature variability and quantify the temperature reduction effects of tree canopies. However, the use of remotely sensed thermal data from airborne scanners are ideal for the task. In a study funded by NASA, a series of flights over Huntsville AL were performed in September 1994 and over Atlanta in May 1997. In this article we will examine the techniques of analyzing remotely sensed data for measuring the effect of tree canopies in reducing the urban heat island effect.
Vogel, Anja; Fester, Thomas; Eisenhauer, Nico; Scherer-Lorenzen, Michael; Schmid, Bernhard; Weisser, Wolfgang W.; Weigelt, Alexandra
2013-01-01
1 Given the predictions of increased drought probabilities under various climate change scenarios, there have been numerous experimental field studies simulating drought using transparent roofs in different ecosystems and regions. Such roofs may, however, have unknown side effects, called artifacts, on the measured variables potentially confounding the experimental results. A roofed control allows the quantification of potential artifacts, which is lacking in most experiments. 2 We conducted a drought experiment in experimental grasslands to study artifacts of transparent roofs and the resulting effects of artifacts on ecosystems relative to drought on three response variables (aboveground biomass, litter decomposition and plant metabolite profiles). We established three drought treatments, using (1) transparent roofs to exclude rainfall, (2) an unroofed control treatment receiving natural rainfall and (3) a roofed control, nested in the drought treatment but with rain water reapplied according to ambient conditions. 3 Roofs had a slight impact on air (+0.14°C during night) and soil temperatures (−0.45°C on warm days, +0.25°C on cold nights), while photosynthetically active radiation was decreased significantly (−16%). Aboveground plant community biomass was reduced in the drought treatment (−41%), but there was no significant difference between the roofed and unroofed control, i.e., there were no measurable roof artifact effects. 4 Compared to the unroofed control, litter decomposition was decreased significantly both in the drought treatment (−26%) and in the roofed control treatment (−18%), suggesting artifact effects of the transparent roofs. Moreover, aboveground metabolite profiles in the model plant species Medicago x varia were different from the unroofed control in both the drought and roofed control treatments, and roof artifact effects were of comparable magnitude as drought effects. 5 Our results stress the need for roofed control treatments when using transparent roofs for studying drought effects, because roofs can cause significant side effects. PMID:23936480
Pre-Engineered Buildings and School Construction.
ERIC Educational Resources Information Center
Jurney, Douglas M.
1979-01-01
A preengineered building has the advantages of factory production and computerized quality control. Insulation efficiency and a roofing system that enables the entire roof membrane to react a full two inches to any temperature-induced movement are two of the innovations of preengineered building research. (Author/MLF)
Cool roofs with high solar reflectance for the welfare of dairy farming animals
NASA Astrophysics Data System (ADS)
Santunione, G.; Libbra, A.; Muscio, A.
2017-01-01
Ensuring livestock welfare in dairy farming promotes the production capacity of the animals in terms of both quantity and quality. In welfare conditions, the animals can produce at their full potential. For the dairy cattle the most debilitating period of the year is summer, when the stress arising from overheating induces physiological alterations that compromise the animals’ productivity. In this study, the summer discomfort of dairy animals is primarily quantified and the production loss is quantified versus the Temperature Humidity Index (THI), which correlates the values of temperature and relative humidity to the thermal stress. In order to reduce or eliminate such thermal stress, it is then proposed to coat the roof of the stables with a paint having high solar reflectance and thermal emittance, that is a cool roof product. This type of roofing solution can considerably limit the overheating of stables caused by solar radiation, thus providing a positive impact on the animals’ welfare and improving significantly their productivity in summer.
Green roof hydrologic performance and modeling: a review.
Li, Yanling; Babcock, Roger W
2014-01-01
Green roofs reduce runoff from impervious surfaces in urban development. This paper reviews the technical literature on green roof hydrology. Laboratory experiments and field measurements have shown that green roofs can reduce stormwater runoff volume by 30 to 86%, reduce peak flow rate by 22 to 93% and delay the peak flow by 0 to 30 min and thereby decrease pollution, flooding and erosion during precipitation events. However, the effectiveness can vary substantially due to design characteristics making performance predictions difficult. Evaluation of the most recently published study findings indicates that the major factors affecting green roof hydrology are precipitation volume, precipitation dynamics, antecedent conditions, growth medium, plant species, and roof slope. This paper also evaluates the computer models commonly used to simulate hydrologic processes for green roofs, including stormwater management model, soil water atmosphere and plant, SWMS-2D, HYDRUS, and other models that are shown to be effective for predicting precipitation response and economic benefits. The review findings indicate that green roofs are effective for reduction of runoff volume and peak flow, and delay of peak flow, however, no tool or model is available to predict expected performance for any given anticipated system based on design parameters that directly affect green roof hydrology.
Wind tunnel tests for wind pressure distribution on gable roof buildings.
Jing, Xiao-kun; Li, Yuan-qi
2013-01-01
Gable roof buildings are widely used in industrial buildings. Based on wind tunnel tests with rigid models, wind pressure distributions on gable roof buildings with different aspect ratios were measured simultaneously. Some characteristics of the measured wind pressure field on the surfaces of the models were analyzed, including mean wind pressure, fluctuating wind pressure, peak negative wind pressure, and characteristics of proper orthogonal decomposition results of the measured wind pressure field. The results show that extremely high local suctions often occur in the leading edges of longitudinal wall and windward roof, roof corner, and roof ridge which are the severe damaged locations under strong wind. The aspect ratio of building has a certain effect on the mean wind pressure coefficients, and the effect relates to wind attack angle. Compared with experimental results, the region division of roof corner and roof ridge from AIJ2004 is more reasonable than those from CECS102:2002 and MBMA2006.The contributions of the first several eigenvectors to the overall wind pressure distributions become much bigger. The investigation can offer some basic understanding for estimating wind load distribution on gable roof buildings and facilitate wind-resistant design of cladding components and their connections considering wind load path.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mayerovitch, M.D.
1980-03-25
A solar collector cell formed as an integral portion of a roof flashing is disclosed as comprising a flashing base having a dihedral surface including a larger base portion and a smaller ramp portion, and a solar collector cell container built integrally with the base portion of the flashing. The combination is designed to be installed in the roof of a dwelling or other building structure. The container portion of the flashing is substantially shorter in height above the roof line than conventional solar collector cell structures added to a roof subsequent to its construction. As a result, the inventionmore » gives the building constructor or owner, the option of either including the solar cell components at the time of construction of the roof to provide a solar heating device, or to fill the solar collector cell container with a temporary support structure, such as roof shakes or tiles. The shape of the solar collector cell and flashing assembly permits the solar collector cell structure to be camouflaged by overlying shakes or tiles of which the roof is constructed.« less
The Advancement of Cool Roof Standards in China from 2010 to 2015
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ge, Jing; Levinson, Ronnen M.
Since the initiation of the U.S.-China Clean Energy Research Center-Building Energy Efficiency (CERC-BEE) cool roof research collaboration between the Lawrence Berkeley National Laboratory Heat Island Group and Chinese institutions in 2010, new cool surface credits (insulation trade- offs) have been adopted in Chinese building energy efficiency standards, industry standards, and green building standards. JGJ 75-2012: Design Standard for Energy Efficiency of Residential Buildings in Hot Summer and Warm Winter Zone became the first national level standard to provide cool surface credits. GB/T 50378-2014: Assessment Standard for Green Building is the first national level green building standard that offers points formore » heat island mitigation. JGJ/T 359-2015: Technical Specification for Application of Architectural Reflective Thermal Insulation Coating is the first industry standard that offers cool coating credits for both public and residential buildings in all hot-summer climates (Hot Summer/Cold Winter, Hot Summer/Warm Winter). As of December 2015, eight provinces or municipalities in hot-summer regions have credited cool surfaces credits in their residential and/or public building design standards; five other provinces or municipalities in hot-summer regions recommend, but do not credit, the use of cool surfaces in their building design standards. Cool surfaces could be further advanced in China by including cool roof credits for residential and public building energy efficiency standards in all hot-summer regions; developing a standardized process for natural exposure and aged-property rating of cool roofing products; and adapting the U.S.-developed laboratory aging process for roofing materials to replicate solar reflectance changes induced by natural exposure in China.« less
Impact of green roofs on stormwater quality in a South Australian urban environment.
Razzaghmanesh, M; Beecham, S; Kazemi, F
2014-02-01
Green roofs are an increasingly important component of water sensitive urban design systems and can potentially improve the quality of urban runoff. However, there is evidence that they can occasionally act as a source rather than a sink for pollutants. In this study, the water quality of the outflow from both intensive and extensive green roof systems were studied in the city of Adelaide, South Australia over a period of nine months. The aim was to examine the effects of different green roof configurations on stormwater quality and to compare this with runoff from aluminium and asphalt roofs as control surfaces. The contaminant concentrations in runoff from both intensive and extensive green roofs generally decreased during the study period. A comparison between the two types of green roof showed that except for some events for EC, TDS and chloride, the values of the parameters such as pH, turbidity, nitrate, phosphate and potassium in intensive green roof outflows were higher than in the outflows from the extensive green roofs. These concentrations were compared to local, state, national and international water quality guidelines in order to investigate the potential for outflow runoff from green roofs to be reused for potable and non-potable purposes. The study found that green roof outflow can provide an alternative water source for non-potable purposes such as urban landscape irrigation and toilet flushing. © 2013.
The impact of roofing material on building energy performance
NASA Astrophysics Data System (ADS)
Badiee, Ali
The last decade has seen an increase in the efficient use of energy sources such as water, electricity, and natural gas as well as a variety of roofing materials, in the heating and cooling of both residential and commercial infrastructure. Oil costs, coal and natural gas prices remain high and unstable. All of these instabilities and increased costs have resulted in higher heating and cooling costs, and engineers are making an effort to keep them under control by using energy efficient building materials. The building envelope (that which separates the indoor and outdoor environments of a building) plays a significant role in the rate of building energy consumption. An appropriate architectural design of a building envelope can considerably lower the energy consumption during hot summers and cold winters, resulting in reduced HVAC loads. Several building components (walls, roofs, fenestration, foundations, thermal insulation, external shading devices, thermal mass, etc.) make up this essential part of a building. However, thermal insulation of a building's rooftop is the most essential part of a building envelope in that it reduces the incoming "heat flux" (defined as the amount of heat transferred per unit area per unit time from or to a surface) (Sadineni et al., 2011). Moreover, more than 60% of heat transfer occurs through the roof regardless of weather, since a roof is often the building surface that receives the largest amount of solar radiation per square annually (Suman, and Srivastava, 2009). Hence, an argument can be made that the emphasis on building energy efficiency has influenced roofing manufacturing more than any other building envelope component. This research project will address roofing energy performance as the source of nearly 60% of the building heat transfer (Suman, and Srivastava, 2009). We will also rank different roofing materials in terms of their energy performance. Other parts of the building envelope such as walls, foundation, fenestration, etc. and their thermal insulation energy performance value will not be included this study. Five different UAB campus buildings with the same reinforced concrete structure (RC Structure), each having a different roofing material were selected, surveyed, analyzed, and evaluated in this study. Two primary factors are considered in this evaluation: the energy consumption and utility bills. The data has been provided by the UAB Facilities Management Department and has been monitored from 2007 to 2013 using analysis of variance (ANOVA) and t-test methods. The energy utilities examined in this study involved electricity, domestic water, and natural gas. They were measured separately in four different seasons over a seven-year time period. The building roofing materials consisted of a green roof, a white (reflective) roof, a river rock roof, a concrete paver roof, and a traditional black roof. Results of the tested roofs from this study indicate that the white roof is the most energy efficient roofing material.
Life-cycle cost-benefit analysis of extensive vegetated roof systems.
Carter, Timothy; Keeler, Andrew
2008-05-01
The built environment has been a significant cause of environmental degradation in the previously undeveloped landscape. As public and private interest in restoring the environmental integrity of urban areas continues to increase, new construction practices are being developed that explicitly value beneficial environmental characteristics. The use of vegetation on a rooftop--commonly called a green roof--as an alternative to traditional roofing materials is an increasingly utilized example of such practices. The vegetation and growing media perform a number of functions that improve environmental performance, including: absorption of rainfall, reduction of roof temperatures, improvement in ambient air quality, and provision of urban habitat. A better accounting of the green roof's total costs and benefits to society and to the private sector will aid in the design of policy instruments and educational materials that affect individual decisions about green roof construction. This study uses data collected from an experimental green roof plot to develop a benefit cost analysis (BCA) for the life cycle of extensive (thin layer) green roof systems in an urban watershed. The results from this analysis are compared with a traditional roofing scenario. The net present value (NPV) of this type of green roof currently ranges from 10% to 14% more expensive than its conventional counterpart. A reduction of 20% in green roof construction cost would make the social NPV of the practice less than traditional roof NPV. Considering the positive social benefits and relatively novel nature of the practice, incentives encouraging the use of this practice in highly urbanized watersheds are strongly recommended.
NASA Astrophysics Data System (ADS)
Partovi, T.; Fraundorfer, F.; Azimi, S.; Marmanis, D.; Reinartz, P.
2017-05-01
3D building reconstruction from remote sensing image data from satellites is still an active research topic and very valuable for 3D city modelling. The roof model is the most important component to reconstruct the Level of Details 2 (LoD2) for a building in 3D modelling. While the general solution for roof modelling relies on the detailed cues (such as lines, corners and planes) extracted from a Digital Surface Model (DSM), the correct detection of the roof type and its modelling can fail due to low quality of the DSM generated by dense stereo matching. To reduce dependencies of roof modelling on DSMs, the pansharpened satellite images as a rich resource of information are used in addition. In this paper, two strategies are employed for roof type classification. In the first one, building roof types are classified in a state-of-the-art supervised pre-trained convolutional neural network (CNN) framework. In the second strategy, deep features from deep layers of different pre-trained CNN model are extracted and then an RBF kernel using SVM is employed to classify the building roof type. Based on roof complexity of the scene, a roof library including seven types of roofs is defined. A new semi-automatic method is proposed to generate training and test patches of each roof type in the library. Using the pre-trained CNN model does not only decrease the computation time for training significantly but also increases the classification accuracy.
Sub-surface structures and collapse mechanisms of summit pit craters
NASA Astrophysics Data System (ADS)
Roche, O.; van Wyk de Vries, B.; Druitt, T. H.
2001-01-01
Summit pit craters are found in many types of volcanoes and are generally thought to be the product of collapse into an underpressured reservoir caused by magma withdrawal. We investigate the mechanisms and structures associated with summit pit crater formation by scaled analogue experiments and make comparisons with natural examples. Models use a sand plaster mixture as analogue rock over a cylinder of silicone simulating an underpressured magma reservoir. Experiments are carried out using different roof aspect ratios (roof thickness/roof width) of 0.2-2. They reveal two basic collapse mechanisms, dependant on the roof aspect ratio. One occurs at low aspect ratios (≤1), as illustrated by aspect ratios of 0.2 and 1. Outward dipping reverse faults initiated at the silicone margins propagates through the entire roof thickness and cause subsidence of a coherent block. Collapse along the reverse faults is accommodated by marginal flexure of the block and tension fractures at the surface (aspect ratio of 0.2) or by the creation of inward dipping normal faults delimiting a terrace (aspect ratio of 1). At an aspect ratio of 1, overhanging pit walls are the surface expressions of the reverse faults. Experiments at high aspect ratio (>1.2) reveal a second mechanism. In this case, collapse occurs by stopping, which propagates upwards by a complex pattern of both reverse faults and tension fractures. The initial underground collapse is restricted to a zone above the reservoir and creates a cavity with a stable roof above it. An intermediate mechanism occurs at aspect ratios of 1.1-1.2. In this case, stopping leads to the formation of a cavity with a thin and unstable roof, which collapses suddenly. The newly formed depression then exhibits overhanging walls. Surface morphology and structure of natural examples, such as the summit pit craters at Masaya Volcano, Nicaragua, have many of the features created in the models, indicating that the internal structural geometry of experiments can be applied to real examples. In particular, the surface area and depth of the underpressured reservoir can be roughly estimated. We present a morphological analysis of summit pit craters at volcanoes such as Kilimanjaro (Tanzania), San Cristobal, Telica and Masaya (Nicaragua), and Ubinas (Peru), and indicate a likely type of subsidence and possible position of the former magma reservoir responsible for collapse in each case.
Code of Federal Regulations, 2014 CFR
2014-07-01
..., floors, roofs, roadways and sidewalks in the industrial area, utility poles, unmanned machinery, concrete... areas above 6 feet in height, roofs, asphalt roadways, concrete roadways, wooden utility poles, unmanned..., metals, glass, aluminum siding, and enameled or laminated surfaces. Low-concentration PCBs means PCBs...
Code of Federal Regulations, 2012 CFR
2012-07-01
..., floors, roofs, roadways and sidewalks in the industrial area, utility poles, unmanned machinery, concrete... areas above 6 feet in height, roofs, asphalt roadways, concrete roadways, wooden utility poles, unmanned..., metals, glass, aluminum siding, and enameled or laminated surfaces. Low-concentration PCBs means PCBs...
Code of Federal Regulations, 2013 CFR
2013-07-01
..., floors, roofs, roadways and sidewalks in the industrial area, utility poles, unmanned machinery, concrete... areas above 6 feet in height, roofs, asphalt roadways, concrete roadways, wooden utility poles, unmanned..., metals, glass, aluminum siding, and enameled or laminated surfaces. Low-concentration PCBs means PCBs...
NASA Astrophysics Data System (ADS)
Alchapar, Noelia Liliana; Pezzuto, Claudia Cotrim; Correa, Erica Norma; Chebel Labaki, Lucila
2017-10-01
This paper describes different ways of reducing urban air temperature and their results in two cities: Campinas, Brazil—a warm temperate climate with a dry winter and hot summer (Cwa), and Mendoza, Argentina—a desert climate with cold steppe (BWk). A high-resolution microclimate modeling system—ENVI-met 3.1—was used to evaluate the thermal performance of an urban canyon in each city. A total of 18 scenarios were simulated including changes in the surface albedo, vegetation percentage, and the H/W aspect ratio of the urban canyons. These results revealed the same trend in behavior for each of the combinations of strategies evaluated in both cities. Nevertheless, these strategies produce a greater temperature reduction in the warm temperate climate (Cwa). Increasing the vegetation percentage reduces air temperatures and mean radiant temperatures in all scenarios. In addition, there is a greater decrease of urban temperature with the vegetation increase when the H/W aspect ratio is lower. Also, applying low albedo on vertical surfaces and high albedo on horizontal surfaces is successful in reducing air temperatures without raising the mean radiant temperature. The best combination of strategies—60 % of vegetation, low albedos on walls and high albedos on pavements and roofs, and 1.5 H/W—could reduce air temperatures up to 6.4 °C in Campinas and 3.5 °C in Mendoza.
Summer Thermal Performance of Ventilated Roofs with Tiled Coverings
NASA Astrophysics Data System (ADS)
Bortoloni, M.; Bottarelli, M.; Piva, S.
2017-01-01
The thermal performance of a ventilated pitched roof with tiled coverings is analysed and compared with unventilated roofs. The analysis is carried out by means of a finite element numerical code, by solving both the fluid and thermal problems in steady-state. A whole one-floor building with a pitched roof is schematized as a 2D computational domain including the air-permeability of tiled covering. Realistic data sets for wind, temperature and solar radiation are used to simulate summer conditions at different times of the day. The results demonstrate that the batten space in pitched roofs is an effective solution for reducing the solar heat gain in summer and thus for achieving better indoor comfort conditions. The efficiency of the ventilation is strictly linked to the external wind conditions and to buoyancy forces occurring due to the heating of the tiles.
Hugo Destaillats Home page. Presentation.
simulate effects of natural exposure on solar reflectance and thermal emittance of cool roofing materials practice for laboratory soiling and weathering of roofing materials to simulate effects of natural exposure Catalysis B: Environmental, 2012, 128, 159-170. Download it here . ÂQuantitative room-temperature
A new technology for harnessing the dye polluted water and dye collection in a chemical factory.
Pu, J P; Pu, P M; Hu, C H; Qian, J L; Pu, J X; Hua, J K
2001-04-01
A new technology for harnessing the dye polluted water and dye collection was developed. It is based on the enhanced evaporation by using solar, wind and air temperature energy and additional heat-electric energy. It consists of four parts: (1) evaporation carrier system (evaporation carrier and frame for evaporation carrier) for polluted water; (2) polluted water circulating system (pumping-spraying-collecting); (3) heating system; (4) workshop with polluted water reservoir-tanks and rainfall prevention roof. The polluted water was (heated in case necessary) sprayed to the evaporation carrier system and the water was evaporated when it moved in the space and downward along the carrier mainly by using natural (solar, wind and air temperature energy). In case, when there is no roof for the carrier system, the polluted water can be stored in the reservoirs (storage volume for about 20 days). The first 10-25 mm rainfall also need to be stored in the reservoirs to meet the state standard for discharging wastewater. The dye may be collected at the surface in the reservoir-tanks and the crystallized salt may be collected at the bottom plate. The black-color wastewater released by the factory is no more discharged to the surface water system of Taihu Lake Basin. About 2 kg dye and 200 kg industrial salt may be collected from each tone of the polluted water. The non-pollution production of dye may be realized by using this technology with environmental, economical and social benefits.
NASA Astrophysics Data System (ADS)
Fogarty, S.; Grogan, D. S.; Hale, S. R.
2013-12-01
A green roof is typically installed for one of two reasons: to mitigate the 'urban heat island' effect, reducing ambient temperatures and creating energy savings, or to reduce both the quantity and intensity of stormwater runoff, which is a major cause of river erosion and eutrophication. The study of green roofs in the United States has focused on commercial systems that use a proprietary expanded shale or clay substrate, along with succulent desert plants (mainly Sedum species). The green roof has the potential not only to provide thermal insulation and reduce storm runoff, but also to reclaim some of the natural habitat that has been lost to the built environment. Of special importance is the loss of habitat for pollinating insects, particularly native bees, which have been in decline for at least two decades. These pollinators are essential for crop production and for the reproduction of at least 65% of wild plants globally. Our study involves the installation of a small (4ft by 4ft), self-designed green roof system built with readily available components from a hardware store. The garden will be filled with a soilless potting mix, combined with 15% compost, and planted with grasses and wildflowers native to the Seacoast, New Hampshire region. Some of the plant species are used by bees for nesting materials, while others provide food in the form of nectar, pollen, and seeds for bees, butterflies, hummingbirds, and granivorous birds. We monitor precipitation on the roof and runoff from the garden on a per storm basis, and test grab samples of runoff for dissolved organic nitrogen and phosphorous. Runoff and nutrient concentration results are compared to a non-vegetated roof surface, and a proprietary Green Grid green roof system. This project is designed to address three main questions of interest: 1) Can these native plant species, which potentially provide greater ecosystem services than Sedum spp. in the form of food and habitat, survive in the conditions on a rooftop? 2) How does this design compare with the performance of the extant Green Grid green roof system on the roof in regard to storm water runoff mitigation and nutrient leaching? and 3) Using GIS, can this information be scaled to a larger region (i.e. UNH campus, the NH Seacoast, NH cities, etc.) to determine areas of particular interest for pollinator conservation? Runoff mitigation, as a percentage of precipitation, is expected to be greater than that on the roof with proprietary substrate, though nutrient leaching may be greater as well due to the higher organic matter content. Paired with GIS data on NH ecoregions, these results will help to identify areas in the state that would benefit from the construction of pollinator habitat corridors, including urban areas that may not have been previously considered.
Analysis of materials used for Greenhouse roof covering - structure using CFD
NASA Astrophysics Data System (ADS)
Subin, M. C.; Savio Lourence, Jason; Karthikeyan, Ram; Periasamy, C.
2018-04-01
Greenhouse is widely used to create a suitable environment for the growth of plant. During summer, high temperatures cause harm to the plant. This work calculates characteristics required to optimize the above-mentioned parameters using different roof structure covering materials for the greenhouse. Moreover, this work also presents a simulation of the cooling and heating system. In addition, a computer model based on Ansys Fluent has been using to predict the temperature profiles inside the greenhouse. Greenhouse roof structure shading may have a time-dependent effect the production, water and nutrient uptake in plants. An experiment was conducted in the emirate of Dubai in United Arab Emirates to discover the impact of different materials in order to have an optimal plant growth zone and yield production. These structures were poly ethylene and poly carbonate sheets of 2 different configurations. Results showed that poly carbonate sheets configuration of optimal thickness has given a high result in terms of yield production. Therefore, there is a need for appropriate material selection of greenhouse roof structure in this area of UAE. Major parameters and properties need to be considered while selecting a greenhouse roof structure are the resistance to solar radiation, weathering, thermal as well as mechanical properties and good abrasion resistance. In the present study, an experiment has been conducted to find out the material suitability of the greenhouse roof structure in terms of developing proper ambient conditions especially to minimize the energy lose by reducing the HVAC and lighting expenses. The configuration verified using the CFD, so it has been concluded that polycarbonate can be safely used in the greenhouse than other roof structure material having white or green colour.
Metal roof corrosion related to volcanic ash deposition
NASA Astrophysics Data System (ADS)
Oze, C.; Cole, J. W.; Scott, A.; Wilson, T.; Wilson, G.; Gaw, S.; Hampton, S.; Doyle, C.; Li, Z.
2013-12-01
Volcanoes produce a wide range of hazards capable of leading to increased rates of corrosion to the built environment. Specifically, widely distributed volcanic ash derived from explosive volcanic eruptions creates both short- and long-term hazards to infrastructure including increased corrosion to exposed building materials such as metal roofing. Corrosion has been attributed to volcanic ash in several studies, but these studies are observational and are beset by limitations such as not accounting for pre-existing corrosion damage and/or other factors that may have also directly contributed to corrosion. Here, we evaluate the corrosive effects of volcanic ash, specifically focusing on the role of ash leachates, on a variety of metal roofing materials via weathering chamber experiments. Weathering chamber tests were carried out for up to 30 days using a synthetic ash dosed with an acidic solution to produce a leachate comparable to a real volcanic ash. Visual, chemical and surface analyses did not definitively identify significant corrosion in any of the test roofing metal samples. These experiments attempted to provide quantitative information with regards to the rates of corrosion of different types of metal roof materials. However, they demonstrate that no significant corrosion was macroscopically or microscopically present on any of the roofing surfaces despite the presence of corrosive salts after a duration of thirty days. These results suggest ash leachate-related corrosion is not a major or immediate concern in the short-term (< 1 month).
Pollutant loads of surface runoff in Wuhan City Zoo, an urban tourist area.
Zhao, Jian-wei; Shan, Bao-qing; Yin, Cheng-qing
2007-01-01
The pollutant loads of surface runoff in an urban tourist area have been investigated for two years in the Wuhan City Zoo, China. Eight sampling sites, including two woodlands, three animal yards, two roofs and one road, were selected for sampling and study. The results indicate that pollutants ranked in a predictable order of decreasing load (e.g. animal yard > roof > woodland > road), with animal yards acting as the key pollution source in the zoo. Pollutants were transported mainly by particulate form in runoff. Particulate nitrogen and particulate phosphorous accounted on average for 61%, 78% of total pollutant, respectively, over 13 monitored rainfall events. These results indicate the treatment practices should be implemented to improve particulate nutrient removal. Analysis of the M(V) curve indicate that no first flush effect existed in the surface runoff from pervious areas (e.g. woodland, animal ground yard), whereas a first flush effect was evident in runoff from impervious surfaces (e.g. animal cement yard, roof, road).
Wind Tunnel Tests for Wind Pressure Distribution on Gable Roof Buildings
2013-01-01
Gable roof buildings are widely used in industrial buildings. Based on wind tunnel tests with rigid models, wind pressure distributions on gable roof buildings with different aspect ratios were measured simultaneously. Some characteristics of the measured wind pressure field on the surfaces of the models were analyzed, including mean wind pressure, fluctuating wind pressure, peak negative wind pressure, and characteristics of proper orthogonal decomposition results of the measured wind pressure field. The results show that extremely high local suctions often occur in the leading edges of longitudinal wall and windward roof, roof corner, and roof ridge which are the severe damaged locations under strong wind. The aspect ratio of building has a certain effect on the mean wind pressure coefficients, and the effect relates to wind attack angle. Compared with experimental results, the region division of roof corner and roof ridge from AIJ2004 is more reasonable than those from CECS102:2002 and MBMA2006.The contributions of the first several eigenvectors to the overall wind pressure distributions become much bigger. The investigation can offer some basic understanding for estimating wind load distribution on gable roof buildings and facilitate wind-resistant design of cladding components and their connections considering wind load path. PMID:24082851
Footwear effects on walking balance at elevation.
Simeonov, Peter; Hsiao, Hongwei; Powers, John; Ammons, Douglas; Amendola, Alfred; Kau, Tsui-Ying; Cantis, Douglas
2008-12-01
The study evaluated the effects of shoe style on workers' instability during walking at elevation. Twenty-four construction workers performed walking tasks on roof planks in a surround-screen virtual reality system, which simulated a residential roof environment. Three common athletic and three work shoe styles were tested on wide, narrow and tilted planks on a simulated roof and on an unrestricted surface at simulated ground. Dependent variables included lateral angular velocities of the trunk and the rear foot, as well as the workers' rated perceptions of instability. The results demonstrated that shoe style significantly affected workers walking instability at elevated work environments. The results highlighted two major shoe-design pathways for improving walking balance at elevation: enhancing rear foot motion control; and improving ankle proprioception. This study also outlined some of the challenges in optimal shoe selection and specific shoe-design needs for improved walking stability during roof work. The study adds to the knowledge in the area of balance control, by emphasising the role of footwear as a critical human-support surface interface during work on narrow surfaces at height. The results can be used for footwear selection and improvements to reduce risk of falls from elevation.
Stress evolution during caldera collapse
NASA Astrophysics Data System (ADS)
Holohan, E. P.; Schöpfer, M. P. J.; Walsh, J. J.
2015-07-01
The mechanics of caldera collapse are subject of long-running debate. Particular uncertainties concern how stresses around a magma reservoir relate to fracturing as the reservoir roof collapses, and how roof collapse in turn impacts upon the reservoir. We used two-dimensional Distinct Element Method models to characterise the evolution of stress around a depleting sub-surface magma body during gravity-driven collapse of its roof. These models illustrate how principal stress orientations rotate during progressive deformation so that roof fracturing transitions from initial reverse faulting to later normal faulting. They also reveal four end-member stress paths to fracture, each corresponding to a particular location within the roof. Analysis of these paths indicates that fractures associated with ultimate roof failure initiate in compression (i.e. as shear fractures). We also report on how mechanical and geometric conditions in the roof affect pre-failure unloading and post-failure reloading of the reservoir. In particular, the models show how residual friction within a failed roof could, without friction reduction mechanisms or fluid-derived counter-effects, inhibit a return to a lithostatically equilibrated pressure in the magma reservoir. Many of these findings should be transferable to other gravity-driven collapse processes, such as sinkhole formation, mine collapse and subsidence above hydrocarbon reservoirs.
Diffractive-refractive optics: X-ray splitter.
Hrdý, Jaromír
2010-01-01
The possibility of splitting a thin (e.g. undulator) X-ray beam based on diffraction-refraction effects is discussed. The beam is diffracted from a crystal whose diffracting surface has the shape of a roof with the ridge lying in the plane of diffraction. The crystal is cut asymmetrically. One half of the beam impinges on the left-hand part of the roof and the other half impinges on the right-hand side of the roof. Owing to refraction the left part of the beam is deviated to the left whereas the right part is deviated to the right. The device proposed consists of two channel-cut crystals with roof-like diffraction surfaces; the crystals are set in a dispersive position. The separation of the beams after splitting is calculated at a distance of 10 m from the crystals for various asymmetry and inclination angles. It is shown that such a splitting may be utilized for long beamlines. Advantages and disadvantages of this method are discussed.
Wu, Junliang; Ren, Yufen; Wang, Xuemei; Wang, Xiaoke; Chen, Liding; Liu, Gangcai
2015-10-01
Roofs and roads, accounting for a large portion of the urban impervious land surface, have contributed significantly to urban nonpoint pollution. In this study, in Beijing, China, roof and road runoff are sampled to measure the suspended solids (SS), nitrogen (N), and phosphorus (P) contained in particles with different sizes. The SS content in the road runoff (151.59 mg/L) was sevenfold that in the roof runoff (21.13 mg/L, p < 0.05). The SS contained more coarse particulates in the roof runoff than in road runoff. The small particulates in the range of 0.45-50 μm consisted of 59 % SS in the roof runoff and 94 % SS in the road runoff. P was mainly attached to particle sizes of 10-50 μm in the roof (73 %) and road (48 %) runoffs, while N was mainly in a dissolved phase state in both runoffs. So, the different associations of N and P raise a challenge in preventing stormwater pollution in urban environments.
Multi-scale monitoring of a remarkable green roof: the Green Wave of Champs-sur-Marne
NASA Astrophysics Data System (ADS)
Stanic, Filip; Versini, Pierre-Antoine; Schertzer, Daniel; Delage, Pierre; Tchiguirinskaia, Ioulia; Cui, Yu-Jun; Baudoin, Genevieve
2017-04-01
The installation of green infrastructures on existing or new roofs has become very popular in recent years (more than 2 km2 of green roofs is implemented each year in France) for many reasons. Among all of the green roofs' advantages, those related to storm water management are often pushed forward, since it has been pointed out that urban runoff peak can be significantly reduced and delayed thanks to the green roofs' retention and detention capabilities. Microclimate can also be affected by decreasing the temperature in the surrounding green area. However, dynamic physical processes involved in green roofs are highly non linear and variable. In order to accurately assess their performances, detailed monitoring experiments are required, both in situ and in the lab, so as to better understand the thermo-hydric behaviour of green roofs and to capture the related spatio-temporal variability at different scales. Based on these considerations, the 1 ha area wavy-form green roof of a section of the Bienvenüe building, called the Green Wave, is currently being monitored in Champs-sur-Marne (France), in front of Ecole des Ponts ParisTech. Initiated in the "Blue Green Dream" European project, detailed measurements systems have been implemented for studying all components of the water balance. Among others, a wireless network of water content and temperature sensors has been especially installed for characterizing spatial and temporal variability of infiltration, retention and evapotranspiration processes. In parallel, some laboratory tests have been conducted to better characterize the hydro-mechanical properties of the substrate. Moreover, at the Green Wave scale, some discharge measurements are carried out in the storm-water pipes that are collecting drained water, to determine runoff flow. This talk will present the current monitoring campaigns and analyze the data collected in the Universal Multifractal framework. This work represents the initial stage for developing a model capable to simulate reliable hydrological responses of different kinds of green roofs. Such a tool could be used to quantify hydrological impacts and interfere with the stormwater policies at the lot scale.
42. GARRET, SOUTHWEST CORNER. The roof rafters have been notched ...
42. GARRET, SOUTHWEST CORNER. The roof rafters have been notched for shingle lath. In some places the notches and lath do not align. Attached to each joist are furring strips for the 1812 ceiling, allowing it to be lowered about one inch below the under surfaces of the joists. Note that the 1851 shingles were left in place when the 1873-74 tin roof was added. - Twelfth Street Meeting House, 20 South Twelfth Street, Philadelphia, Philadelphia County, PA
Radioactive cesium in dirt accumulations on the roof of buildings.
Fujita, J; Mikasa, H; Fujii, N; Suzuki, Y; Nishiyama, K
1992-12-01
The concentrations of 137Cs and 134Cs in dirt deposits on the roofs of buildings are much higher than those in the surface of soil at ground level. Thus dirt on roofs concentrates radioactive cesium in fall-outs. The 137Cs concentration in dirt deposits on the roofs of older buildings is not consistently higher than that on the roofs of new ones, but the 137Cs/134Cs ratio is higher in deposits on older buildings constructed before the first half of the 1970s, and decreases exponentially with decrease in age of the buildings gradually reaching 1.9 +/- 0.2, the value in the air-borne dust at the time of the Chernobyl accident. From this relationship, the contribution of Chernobyl radioactivity to accumulated 137Cs was calculated as 32% on buildings constructed in 1962. The radioactive cesium concentrations in dirt deposits in gutters of private houses and on the roofs of university buildings in Japan were also determined.
Asbestos exposure during renovation and demolition of asbestos-cement clad buildings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, S.K.
External asbestos cement (AC) claddings become weathered after many years by the gradual loss of cement from exposed surfaces; as a result, loosely bound layers enriched with asbestos fibers are formed. Asbestos fibers on such weathered surfaces may be mixtures of chrysotile with amosite or crocidolite. Renovation and demolition of old AC clad buildings could cause asbestos fiber emission, but this has not been investigated in the past. The exposure of workers to asbestos dust during these operations and precautions to minimize exposure now have been investigated at several building sites. Asbestos dust concentrations during water jet cleaning or paintingmore » of weathered AC roofing were approximately 0.1 to 0.2 fibers per milliliter (f/mL). Limited results suggest that concentrations may be reduced substantially by avoiding abrasion of surfaces. Concentrations during AC roof replacement averaged approximately 0.1 f/mL and were reduced markedly by employing more careful work procedures. Asbestos dust concentrations during demolition by removal of whole sheets averaged 0.3 to 0.6 f/mL for roofs and less than 0.1 f/mL for walls, reflecting the significant differences in extent of weathering between these elements. Suppression of asbestos emissions from roof sheets by wetting or sealing of weathered surfaces was not predictable because of the occurrence of asbestos fibers in dust trapped under sheet laps.« less
The Urban Heat Island Behavior of a Large Northern Latitude Metropolitan Area
NASA Astrophysics Data System (ADS)
Twine, T. E.; Snyder, P. K.; Hertel, W.; Mykleby, P.
2012-12-01
Urban heat islands (UHIs) occur when urban and suburban areas experience elevated temperatures relative to their rural surroundings because of differences in vegetation cover, buildings and other development, and infrastructure. Most cities in the United States are warming at twice the rate of the outlying rural areas and the planet as a whole. Temperatures in the urban center can be 2-5°C warmer during the daytime and as much as 10°C at night. Urban warming is responsible for excessive energy consumption, heat-related health effects, an increase in urban pollution, degradation of urban ecosystems, changes in the local meteorology, and an increase in thermal pollution into urban water bodies. One mitigation strategy involves manipulating the surface energy budget to either reduce the amount of solar radiation absorbed at the surface or offset absorbed energy through latent cooling. Options include using building materials with different properties of reflectivity and emissivity, increasing the reflectivity of parking lots, covering roofs with vegetation, and increasing the amount of vegetation overall through tree planting or increasing green space. The goal of the Islands in the Sun project is to understand the formation and behavior of urban heat islands and to mitigate their effects through sensible city engineering and design practices. As part of this project, we have been characterizing the UHI of the Twin Cities Metropolitan Area (TCMA), a 16,000 square kilometer urban and suburban region located in east central Minnesota that includes the two cities of Minneapolis and Saint Paul, and evaluating mitigation strategies for reducing urban warming. Annually, the TCMA has a modest 2-3°C UHI that is especially apparent in winter when the urban core can be up to 5-6°C warmer than the surrounding countryside. We present an analysis of regional temperature variations from a dense network of sensors located throughout the TCMA. We focus on the diurnal and seasonal behavior of the TCMA UHI with an emphasis on the contribution of different land use types on the UHI. We also present a comparison of thermal and radiative properties of two different roofing materials with data collected from the roof of the Science Museum of Minnesota in Saint Paul, MN. The impact of the TCMA UHI on thermal pollution into local water bodies is also investigated.
Evaluation of Contractor Quality Control of Built-Up Roofing.
1983-10-01
flood coat Mnd surfacing applied. 1144 - -- , -. .. - -. .. . J - - - - .- o 7. APLICATION OF ROOFrNG. 7.1. GKNERA REUIZNTS. The entire roofing...ATTN: Chief, HNDED-M USA-WES 39180 Mobile 36628 ATTN: Chief, HNDED-SR ATTN: C/Structures ATTN: Chief, SA14EN-D Lower Mississippi 39180 ATTN: Soils
Two-dimensional modeling of water and heat fluxes in green roof substrates
NASA Astrophysics Data System (ADS)
Suarez, F. I.; Sandoval, V. P.
2016-12-01
Due to public concern towards sustainable development, greenhouse gas emissions and energy efficiency, green roofs have become popular in the last years. Green roofs integrate vegetation into infrastructures to reach additional benefits that minimize negative impacts of the urbanization. A properly designed green roof can reduce environmental pollution, noise levels, energetic requirements or surface runoff. The correct performance of green roofs depends on site-specific conditions and on each component of the roof. The substrate and the vegetation layers strongly influence water and heat fluxes on a green roof. The substrate is an artificial media that has an improved performance compared to natural soils as it provides critical resources for vegetation survival: water, nutrients, and a growing media. Hence, it is important to study the effects of substrate properties on green roof performance. The objective of this work is to investigate how the thermal and hydraulic properties affect the behavior of a green roof through numerical modeling. The substrates that were investigated are composed by: crushed bricks and organic soil (S1); peat with perlite (S2); crushed bricks (S3); mineral soil with tree leaves (S4); and a mixture of topsoil and mineral soil (S5). The numerical model utilizes summer-arid meteorological information to evaluate the performance of each substrate. Results show that the area below the water retention curve helps to define the substrate that retains more water. In addition, the non-linearity of the water retention curve can increment the water needed to irrigate the roof. The heat propagation through the roof depends strongly on the hydraulic behavior, meaning that a combination of a substrate with low thermal conductivity and more porosity can reduce the heat fluxes across the roof. Therefore, it can minimize the energy consumed of an air-conditioner system.
Roof temperatures in simulated attics
J. E. Winandy; R. Beaumont
The degradation of wood treated with fire retardant (FR) chemicals in roof systems is a problem of major national significance. Understanding of this phenomenon is limited by lack of information on how the performance of FR-treated wood in the laboratory correlates to that of FR-treated wood in the field. In this study, five outdoor field exposure chambers were...
Choosing and applying fire-retardant-treated plywood and lumber for roof designs
Susan LeVan; Mary Collet
1989-01-01
Fire-retardant-treated (FRT) plywood used as roof sheathing has exhibited strength degradation in some situations. The cause appears to be certain fire retardant chemicals that are activated under environmental conditions of high temperature and moisture content. This report describes how fire retardants are made, how they work, and what causes strength degradation of...
Modeling Košice Green Roofs Maps
NASA Astrophysics Data System (ADS)
Poorova, Zuzana; Vranayova, Zuzana
2017-06-01
The need to house population in urban areas is expected to rise to 66% in 2050, according to United Nations. The replacement of natural permeable green areas with concrete constructions and hard surfaces will be noticed. The densification of existing built-up areas is responsible for the decreasing vegetation, which results in the lack of evapotranspiration cooling the air. Such decreasing vegetation causes urban heat islands. Since roofs and pavements have a very low albedo, they absorb a lot of sunlight. Several studies have shown that natural and permeable surfaces, as in the case of green roofs, can play crucial role in mitigating this negative climate phenomenon and providing higher efficiency for the building, leading to savings. Such as water saving, what is the main idea of this research.
Air temperature recordings in infant incubators.
Aynsley-Green, A; Roberton, N R; Rolfe, P
1975-01-01
Air temperatures were continuously recorded inside four incubators with proportional heating control and six incubators with on/off heating cycles, during routine use. The air temperatures in the former were constant throughout, with a gradient between the roof and above-mattress air temperature not exceeding 1 degree C. In contrast, the recordings from the latter models showed a regular cyclical oscillation, the duration of the cycle varying from 14 to 44 minutes. Each incubator had a characteristic profile. The roof air temperature could vary by as much as 7-1 degrees C and the above-mattress air temperature by as much as 2-6 degrees C during the cycle. The oscillation persisted in the air temperatures recorded inside an open-ended hemicylindrical heat shield when used inside these incubators, but was markedly reduced inside a closed-ended heat shield, Carbon dioxide concentration did not increase significantly inside the latter. Images FIG. 1 FIG. 2 PMID:1147654
DOE Office of Scientific and Technical Information (OSTI.GOV)
New, Joshua Ryan; Levinson, Ronnen; Huang, Yu
The Roof Savings Calculator (RSC) was developed through collaborations among Oak Ridge National Laboratory (ORNL), White Box Technologies, Lawrence Berkeley National Laboratory (LBNL), and the Environmental Protection Agency in the context of a California Energy Commission Public Interest Energy Research project to make cool-color roofing materials a market reality. The RSC website and a simulation engine validated against demonstration homes were developed to replace the liberal DOE Cool Roof Calculator and the conservative EPA Energy Star Roofing Calculator, which reported different roof savings estimates. A preliminary analysis arrived at a tentative explanation for why RSC results differed from previous LBNLmore » studies and provided guidance for future analysis in the comparison of four simulation programs (doe2attic, DOE-2.1E, EnergyPlus, and MicroPas), including heat exchange between the attic surfaces (principally the roof and ceiling) and the resulting heat flows through the ceiling to the building below. The results were consolidated in an ORNL technical report, ORNL/TM-2013/501. This report is an in-depth inter-comparison of four programs with detailed measured data from an experimental facility operated by ORNL in South Carolina in which different segments of the attic had different roof and attic systems.« less
Sellami-Kaaniche, Emna; de Gouvello, Bernard; Gromaire, Marie-Christine; Chebbo, Ghassan
2014-04-01
Today, urban runoff is considered as an important source of environmental pollution. Roofing materials, in particular, the metallic ones, are considered as a major source of urban runoff metal contaminations. In the context of the European Water Directive (2000/60 CE), an accurate evaluation of contaminant flows from roofs is thus required on the city scale, and therefore the development of assessment tools is needed. However, on this scale, there is an important diversity of roofing materials. In addition, given the size of a city, a complete census of the materials of the different roofing elements represents a difficult task. Information relating roofing materials and their surfaces on an urban district do not currently exist in urban databases. The objective of this paper is to develop a new method of evaluating annual contaminant flow emissions from the different roofing material elements (e.g., gutter, rooftop) on the city scale. This method is based on using and adapting existing urban databases combined with a statistical approach. Different rules for identifying the materials of the different roofing elements on the city scale have been defined. The methodology is explained through its application to the evaluation of zinc emissions on the scale of the city of Créteil.
Experimental study on foam coverage on simulated longwall roof.
Reed, W R; Zheng, Y; Klima, S; Shahan, M R; Beck, T W
2017-01-01
Testing was conducted to determine the ability of foam to maintain roof coverage in a simulated longwall mining environment. Approximately 27 percent of respirable coal mine dust can be attributed to longwall shield movement, and developing controls for this dust source has been difficult. The application of foam is a possible dust control method for this source. Laboratory testing of two foam agents was conducted to determine the ability of the foam to adhere to a simulated longwall face roof surface. Two different foam generation methods were used: compressed air and blower air. Using a new imaging technology, image processing and analysis utilizing ImageJ software produced quantifiable results of foam roof coverage. For compressed air foam in 3.3 m/s (650 fpm) ventilation, 98 percent of agent A was intact while 95 percent of agent B was intact on the roof at three minutes after application. At 30 minutes after application, 94 percent of agent A was intact while only 20 percent of agent B remained. For blower air in 3.3 m/s (650 fpm) ventilation, the results were dependent upon nozzle type. Three different nozzles were tested. At 30 min after application, 74 to 92 percent of foam agent A remained, while 3 to 50 percent of foam agent B remained. Compressed air foam seems to remain intact for longer durations and is easier to apply than blower air foam. However, more water drained from the foam when using compressed air foam, which demonstrates that blower air foam retains more water at the roof surface. Agent A seemed to be the better performer as far as roof application is concerned. This testing demonstrates that roof application of foam is feasible and is able to withstand a typical face ventilation velocity, establishing this technique's potential for longwall shield dust control.
Experimental study on foam coverage on simulated longwall roof
Reed, W.R.; Zheng, Y.; Klima, S.; Shahan, M.R.; Beck, T.W.
2018-01-01
Testing was conducted to determine the ability of foam to maintain roof coverage in a simulated longwall mining environment. Approximately 27 percent of respirable coal mine dust can be attributed to longwall shield movement, and developing controls for this dust source has been difficult. The application of foam is a possible dust control method for this source. Laboratory testing of two foam agents was conducted to determine the ability of the foam to adhere to a simulated longwall face roof surface. Two different foam generation methods were used: compressed air and blower air. Using a new imaging technology, image processing and analysis utilizing ImageJ software produced quantifiable results of foam roof coverage. For compressed air foam in 3.3 m/s (650 fpm) ventilation, 98 percent of agent A was intact while 95 percent of agent B was intact on the roof at three minutes after application. At 30 minutes after application, 94 percent of agent A was intact while only 20 percent of agent B remained. For blower air in 3.3 m/s (650 fpm) ventilation, the results were dependent upon nozzle type. Three different nozzles were tested. At 30 min after application, 74 to 92 percent of foam agent A remained, while 3 to 50 percent of foam agent B remained. Compressed air foam seems to remain intact for longer durations and is easier to apply than blower air foam. However, more water drained from the foam when using compressed air foam, which demonstrates that blower air foam retains more water at the roof surface. Agent A seemed to be the better performer as far as roof application is concerned. This testing demonstrates that roof application of foam is feasible and is able to withstand a typical face ventilation velocity, establishing this technique’s potential for longwall shield dust control. PMID:29563765
NASA Astrophysics Data System (ADS)
Kaplanis, S.; Kaplani, E.
2014-10-01
Temperatures of c-Si, pc-Si and a-Si PV modules making part of a roof in a building or hanging outside windows with various inclinations were measured with respect to the Intensity of the solar radiation on them under various environmental conditions. A relationship coefficient f was provided whose values are compared to those from a PV array operating in a free standing mode on a terrace. A theoretical model to predict f was elaborated. According to the analysis, the coefficient f takes higher values for PV modules embedded on a roof compared to the free standing PV array. The wind effect is much stronger for the free standing PV than for any BIPV configuration, either the PV is part of the roof, or placed upon the roof, or is placed outside a window like a shadow hanger. The f coefficient depends on various parameters such as angle of inclination, wind speed and direction, as well as solar radiation. For very low wind speeds the effect of the angle of inclination, β, of the PV module with respect to the horizontal on PV temperature is clear. As the wind speed increases, the heat transfer from the PV module shifts from natural flow to forced flow and this effect vanishes. The coefficient f values range from almost 0.01 m2°C/W for free standing PV arrays at strong wind speeds, vW>7m/s, up to around 0.05 m2°C/W for the case of flexible PV modules which make part of the roof in a BIPV system.
Harnessing solar pressure to slew and point large infrared space telescopes
NASA Astrophysics Data System (ADS)
Errico, Simona; Angel, Roger P.; Calvert, Paul D.; Woof, Neville
2003-03-01
Large astronomical Gossamer telescopes in space will need to employ large solar shields to safeguard the optics from solar radiation. These types of telescopes demand accurate controls to maintain telescope pointing over long integration periods. We propose an active solar shield system that harnesses radiation pressure to accurately slew and acquire new targets without the need for reaction wheels or thrusters. To provide the required torques, the solar shield is configured as an inverted, 4-sided pyramidal roof. The sloped roof interior surfaces are covered with hinged “tiles” made from piezoelectric film bimorphs with specular metallized surfaces. Nominally, the tiles lie flat against the roof and the sunlight is reflected outward equally from all sloped surfaces. However, when the tiles on one roof pitch are raised, the pressure balance is upset and the sunshade is pushed to one side. By judicious selection of the tiles and control of their lift angle, the solar pressure can be harvested to stabilize the spacecraft orientation or to change its angular momentum. A first order conceptual design performance analysis and the results from the experimental design, fabrication and testing of piezoelectric bimorph hinge elements will be presented. Next phase challenges in engineering design, materials technology, and systems testing will be discussed.
NASA Astrophysics Data System (ADS)
Erell, E.; Williamson, T.
2006-10-01
A model is proposed that adapts data from a standard meteorological station to provide realistic site-specific air temperature in a city street exposed to the same meso-scale environment. In addition to a rudimentary description of the two sites, the canyon air temperature (CAT) model requires only inputs measured at standard weather stations; yet it is capable of accurately predicting the evolution of air temperature in all weather conditions for extended periods. It simulates the effect of urban geometry on radiant exchange; the effect of moisture availability on latent heat flux; energy stored in the ground and in building surfaces; air flow in the street based on wind above roof height; and the sensible heat flux from individual surfaces and from the street canyon as a whole. The CAT model has been tested on field data measured in a monitoring program carried out in Adelaide, Australia, in 2000-2001. After calibrating the model, predicted air temperature correlated well with measured data in all weather conditions over extended periods. The experimental validation provides additional evidence in support of a number of parameterisation schemes incorporated in the model to account for sensible heat and storage flux.
Impact Study of Metal Fasteners in Roofing Assemblies using Three-Dimensional Heat Transfer Analysis
Singh, Manan; Gulati, Rupesh; Ravi, Srinivasan; ...
2016-11-29
Heat transfer analysis was performed on typical roofing assemblies using HEAT3, a three-dimensional heat transfer analysis software. The difference in heat transferred through the roofing assemblies considered is compared between two cases - without any steel fasteners and with steel fasteners. In the latter case, the metal roofing fasteners were arranged as per Factor Mutual Global (FMG) approvals, in the field, perimeter, and corner zones of the roof. The temperature conditions used for the analysis represented summer and winter conditions for three separate Climate Zones (CZ) namely Climate Zone 2 or CZ2 represented by Orlando, FL; CZ3 represented by Atlanta,more » GA; and CZ6 zone represented by St. Paul, MN. In all the climatic conditions, higher energy transfer was observed with increase in the number of metal fasteners attributed to high thermal conductivity of metals as compared to the insulation and other materials used in the roofing assembly. This difference in heat loss was also quantified in the form of percentage change in the overall or effective insulation of the roofing assembly for better understanding of the practical aspects. Besides, a comparison of 2D heat transfer analysis (using THERM software) and 3D analysis using HEAT3 is also discussed.« less
Impact Study of Metal Fasteners in Roofing Assemblies using Three-Dimensional Heat Transfer Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Manan; Gulati, Rupesh; Ravi, Srinivasan
Heat transfer analysis was performed on typical roofing assemblies using HEAT3, a three-dimensional heat transfer analysis software. The difference in heat transferred through the roofing assemblies considered is compared between two cases - without any steel fasteners and with steel fasteners. In the latter case, the metal roofing fasteners were arranged as per Factor Mutual Global (FMG) approvals, in the field, perimeter, and corner zones of the roof. The temperature conditions used for the analysis represented summer and winter conditions for three separate Climate Zones (CZ) namely Climate Zone 2 or CZ2 represented by Orlando, FL; CZ3 represented by Atlanta,more » GA; and CZ6 zone represented by St. Paul, MN. In all the climatic conditions, higher energy transfer was observed with increase in the number of metal fasteners attributed to high thermal conductivity of metals as compared to the insulation and other materials used in the roofing assembly. This difference in heat loss was also quantified in the form of percentage change in the overall or effective insulation of the roofing assembly for better understanding of the practical aspects. Besides, a comparison of 2D heat transfer analysis (using THERM software) and 3D analysis using HEAT3 is also discussed.« less
Drought versus heat: What's the major constraint on Mediterranean green roof plants?
Savi, Tadeja; Dal Borgo, Anna; Love, Veronica L; Andri, Sergio; Tretiach, Mauro; Nardini, Andrea
2016-10-01
Green roofs are gaining momentum in the arid and semi-arid regions due to their multiple benefits as compared with conventional roofs. One of the most critical steps in green roof installation is the selection of drought and heat tolerant species that can thrive under extreme microclimate conditions. We monitored the water status, growth and survival of 11 drought-adapted shrub species grown on shallow green roof modules (10 and 13cm deep substrate) and analyzed traits enabling plants to cope with drought (symplastic and apoplastic resistance) and heat stress (root membrane stability). The physiological traits conferring efficiency/safety to the water transport system under severe drought influenced plant water status and represent good predictors of both plant water use and growth rates over green roofs. Moreover, our data suggest that high substrate temperature represents a stress factor affecting plant survival to a larger extent than drought per se. In fact, the major cause influencing seedling survival on shallow substrates was the species-specific root resistance to heat, a single and easy measurable trait that should be integrated into the methodological framework for screening and selection of suitable shrub species for roof greening in the Mediterranean. Copyright © 2016 Elsevier B.V. All rights reserved.
Evaluation of green roof as green technology for urban stormwater quantity and quality controls
NASA Astrophysics Data System (ADS)
Kok, K. H.; Sidek, L. M.; Abidin, M. R. Z.; Basri, H.; Muda, Z. C.; Beddu, S.
2013-06-01
Promoting green design, construction, reconstruction and operation of buildings has never been more critical than now due to the ever increasing greenhouse gas emissions and rapid urbanizations that are fuelling climate change more quickly. Driven by environmental needs, Green Building Index (GBI) was founded in Malaysia to drive initiative to lead the property industry towards becoming more environment-friendly. Green roof system is one of the assessment criteria of this rating system which is under category of sustainable site planning and management. An extensive green roof was constructed in Humid Tropics Center (HTC) Kuala Lumpur as one of the components for Stormwater Management Ecohydrology (SME) in order to obtain scientific data of the system. This paper evaluates the performance of extensive green roof at Humid Tropics Center with respect to urban heat island mitigation and stormwater quantity and quality controls. Findings indicate that there was a reduction of around 1.5°C for indoor temperature of the building after installation of green roof. Simulations showed that the peak discharge was reduced up to 24% relative to impervious brown roof. The results show an increment of pH and high concentration of phosphate for the runoff generated from the green roof and the runoff water quality ranged between class I and II under INWQS.
Stretching morphogenesis of the roof plate and formation of the central canal.
Kondrychyn, Igor; Teh, Cathleen; Sin, Melvin; Korzh, Vladimir
2013-01-01
Neurulation is driven by apical constriction of actomyosin cytoskeleton resulting in conversion of the primitive lumen into the central canal in a mechanism driven by F-actin constriction, cell overcrowding and buildup of axonal tracts. The roof plate of the neural tube acts as the dorsal morphogenetic center and boundary preventing midline crossing by neural cells and axons. The roof plate zebrafish transgenics expressing cytosolic GFP were used to study and describe development of this structure in vivo for a first time ever. The conversion of the primitive lumen into the central canal causes significant morphogenetic changes of neuroepithelial cells in the dorsal neural tube. We demonstrated that the roof plate cells stretch along the D-V axis in parallel with conversion of the primitive lumen into central canal and its ventral displacement. Importantly, the stretching of the roof plate is well-coordinated along the whole spinal cord and the roof plate cells extend 3× in length to cover 2/3 of the neural tube diameter. This process involves the visco-elastic extension of the roof place cytoskeleton and depends on activity of Zic6 and the Rho-associated kinase (Rock). In contrast, stretching of the floor plate is much less extensive. The extension of the roof plate requires its attachment to the apical complex of proteins at the surface of the central canal, which depends on activity of Zic6 and Rock. The D-V extension of the roof plate may change a range and distribution of morphogens it produces. The resistance of the roof plate cytoskeleton attenuates ventral displacement of the central canal in illustration of the novel mechanical role of the roof plate during development of the body axis.
Stretching Morphogenesis of the Roof Plate and Formation of the Central Canal
Kondrychyn, Igor; Teh, Cathleen; Sin, Melvin; Korzh, Vladimir
2013-01-01
Background Neurulation is driven by apical constriction of actomyosin cytoskeleton resulting in conversion of the primitive lumen into the central canal in a mechanism driven by F-actin constriction, cell overcrowding and buildup of axonal tracts. The roof plate of the neural tube acts as the dorsal morphogenetic center and boundary preventing midline crossing by neural cells and axons. Methodology/Principal Findings The roof plate zebrafish transgenics expressing cytosolic GFP were used to study and describe development of this structure in vivo for a first time ever. The conversion of the primitive lumen into the central canal causes significant morphogenetic changes of neuroepithelial cells in the dorsal neural tube. We demonstrated that the roof plate cells stretch along the D–V axis in parallel with conversion of the primitive lumen into central canal and its ventral displacement. Importantly, the stretching of the roof plate is well-coordinated along the whole spinal cord and the roof plate cells extend 3× in length to cover 2/3 of the neural tube diameter. This process involves the visco-elastic extension of the roof place cytoskeleton and depends on activity of Zic6 and the Rho-associated kinase (Rock). In contrast, stretching of the floor plate is much less extensive. Conclusions/Significance The extension of the roof plate requires its attachment to the apical complex of proteins at the surface of the central canal, which depends on activity of Zic6 and Rock. The D–V extension of the roof plate may change a range and distribution of morphogens it produces. The resistance of the roof plate cytoskeleton attenuates ventral displacement of the central canal in illustration of the novel mechanical role of the roof plate during development of the body axis. PMID:23409159
Effects of building roof greening on air quality in street canyons
NASA Astrophysics Data System (ADS)
Baik, Jong-Jin; Kwak, Kyung-Hwan; Park, Seung-Bu; Ryu, Young-Hee
2012-12-01
Building roof greening is a successful strategy for improving urban thermal environment. It is of theoretical interest and practical importance to study the effects of building roof greening on urban air quality in a systematic and quantitative way. In this study, we examine the effects of building roof greening on air quality in street canyons using a computational fluid dynamics (CFD) model that includes the thermodynamic energy equation and the transport equation of passive, non-reactive pollutants. For simplicity, building roof greening is represented by specified cooling. Results for a simple building configuration with a street canyon aspect ratio of one show that the cool air produced due to building roof greening flows into the street canyon, giving rise to strengthened street canyon flow. The strengthened street canyon flow enhances pollutant dispersion near the road, which decreases pollutant concentration there. Thus, building roof greening improves air quality near the road. The degree of air quality improvement near the road increases as the cooling intensity increases. In the middle region of the street canyon, the air quality can worsen when the cooling intensity is not too strong. Results for a real urban morphology also show that building roof greening improves air quality near roads. The degree of air quality improvement near roads due to building roof greening depends on the ambient wind direction. These findings provide a theoretical foundation for constructing green roofs for the purpose of improving air quality near roads or at a pedestrian level as well as urban thermal environment. Further studies using a CFD model coupled with a photochemistry model and a surface energy balance model are required to evaluate the effects of building roof greening on air quality in street canyons in a more realistic framework.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kosny, Jan; Miller, William A; Childs, Phillip W
2011-01-01
During September-October 2009, research teams representing Metal Construction Association (the largest North American trade association representing metal building manufacturers, builders, and material suppliers), CertainTeed (one of the largest U.S. manufacturers of thermal insulation and building envelope materials), Unisolar (largest U.S. producer of amorphous silicone photo-voltaic (PV) laminates), Phase Change Energy (manufacturer of bio-based PCM), and Oak Ridge National Laboratory (ORNL) installed three experimental attics utilizing different roof retrofit strategies in the ORNL campus. The main goal of this project was experimental evaluation of a newly-developed sustainable re-roofing technology utilizing amorphous silicone PV laminates integrated with metal roof and PCM heatmore » sink. The experimental attic with PV laminate was expected to work during the winter time as a passive solar collector with PCM storing solar heat, absorbed during the day, and increasing overall attic air temperature during the night.« less
[Capacity of extensive green roof to retain rainwater runoff in hot and humid region.
Liu, Ming Xin; Dai, Se Ping; Zhou, Tian Yang; Ruan, Lin; Zhang, Qiao Song
2017-02-01
The water logging has become the environmental problem of major cities with the sharp increase of impermeable urban pavement as the contributing cause. Abroad, the green roof has been widely used as a practical measure to intercept rainwater, yet the capacity of green roof to retain rainwater varies with climate conditions. As the hot and humid climate zone features high temperature, humidity and precipitation, it is meaningful to study the capacity of green roof to retain rainwater under such climatic condition. In this research, 3 plat forms were set up in Guangzhou in rainy and hot summer to test the capability of simple green roof to retain rainwater runoff, and the efficiency of green roof to retain rainwater under local climate conditions was worked out based on the meteorological observation and data measurement during the 13-month test period. The results showed that the simple green roof with a substrate thickness of 30, 50 and 70 mm could retain 27.2%, 30.9% and 32.1% of precipitation and reduce the average peak value by 18.9%, 26.2% and 27.7%, respectively. Given an urban built-up area of 1035.01 km 2 in Guangzhou and a roof area percentage of approximately 37.3% and assuming the green roofs with 30 mm-thick substrate were applied within the area, the light, medium and heavy rain could be delayed at 72.8%, 22.6% and 17.4%, respectively. Accordingly, the rainwater retained could reach up to 14317×10 4 m 3 . It suggested the great potential of the simple green roof in retaining rainwater. The research could serve as reference for the hot and humid climate zone to alleviate water logging and visualize sponge city construction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biswas, Kaushik; Childs, Phillip W.; Atchley, Jerald Allen
2015-01-01
This article presents some miscellaneous data from two low-slope and two steep-slope experimental roofs. The low-slope roofs were designed to compare the performance of various roof coatings exposed to natural weatherization. The steep-slope roofs contained different combinations of phase change material, rigid insulation, low emittance surface and above-sheathing ventilation, with standing-seam metal panels on top. The steep-slope roofs were constructed on a series of adjacent attics separated at the gables using thick foam insulation. This article describes phase three (3) of a study that began in 2009 to evaluate the energy benefits of a sustainable re-roofing technology utilizing standing-seam metalmore » roofing panels combined with energy efficient features like above-sheathing-ventilation (ASV), phase change material (PCM) and rigid insulation board. The data from phases 1 and 2 have been previously published and reported [Kosny et al., 2011; Biswas et al., 2011; Biswas and Childs, 2012; Kosny et al., 2012]. Based on previous data analyses and discussions within the research group, additional test roofs were installed in May 2012, to test new configurations and further investigate different components of the dynamic insulation systems. Some experimental data from phase 3 testing from May 2012 to December 2013 and some EnergyPlus modeling results have been reported in volumes 1 and 3, respectively, of the final report [Biswas et al., 2014; Biswas and Bhandari, 2014].« less
Hybrid Automatic Building Interpretation System
NASA Astrophysics Data System (ADS)
Pakzad, K.; Klink, A.; Müterthies, A.; Gröger, G.; Stroh, V.; Plümer, L.
2011-09-01
HABIS (Hybrid Automatic Building Interpretation System) is a system for an automatic reconstruction of building roofs used in virtual 3D building models. Unlike most of the commercially available systems, HABIS is able to work to a high degree automatically. The hybrid method uses different sources intending to exploit the advantages of the particular sources. 3D point clouds usually provide good height and surface data, whereas spatial high resolution aerial images provide important information for edges and detail information for roof objects like dormers or chimneys. The cadastral data provide important basis information about the building ground plans. The approach used in HABIS works with a multi-stage-process, which starts with a coarse roof classification based on 3D point clouds. After that it continues with an image based verification of these predicted roofs. In a further step a final classification and adjustment of the roofs is done. In addition some roof objects like dormers and chimneys are also extracted based on aerial images and added to the models. In this paper the used methods are described and some results are presented.
Residential roof condition assessment system using deep learning
NASA Astrophysics Data System (ADS)
Wang, Fan; Kerekes, John P.; Xu, Zhuoyi; Wang, Yandong
2018-01-01
The emergence of high resolution (HR) and ultra high resolution (UHR) airborne remote sensing imagery is enabling humans to move beyond traditional land cover analysis applications to the detailed characterization of surface objects. A residential roof condition assessment method using techniques from deep learning is presented. The proposed method operates on individual roofs and divides the task into two stages: (1) roof segmentation, followed by (2) condition classification of the segmented roof regions. As the first step in this process, a self-tuning method is proposed to segment the images into small homogeneous areas. The segmentation is initialized with simple linear iterative clustering followed by deep learned feature extraction and region merging, with the optimal result selected by an unsupervised index, Q. After the segmentation, a pretrained residual network is fine-tuned on the augmented roof segments using a proposed k-pixel extension technique for classification. The effectiveness of the proposed algorithm was demonstrated on both HR and UHR imagery collected by EagleView over different study sites. The proposed algorithm has yielded promising results and has outperformed traditional machine learning methods using hand-crafted features.
Comparison of software models for energy savings from cool roofs
New, Joshua; Miller, William A.; Huang, Yu; ...
2015-06-07
For this study, a web-based Roof Savings Calculator (RSC) has been deployed for the United States Department of Energy as an industry-consensus tool to help building owners, manufacturers, distributors, contractors and researchers easily run complex roof and attic simulations. RSC simulates multiple roof and attic technologies for side-by-side comparison including reflective roofs, different roof slopes, above sheathing ventilation, radiant barriers, low-emittance roof surfaces, duct location, duct leakage rates, multiple substrate types, and insulation levels. Annual simulations of hour-by-hour, whole-building performance are used to provide estimated annual energy and cost savings from reduced HVAC use. While RSC reported similar cooling savingsmore » to other simulation engines, heating penalty varied significantly. RSC results show reduced cool roofing cost-effectiveness, thus mitigating expected economic incentives for this countermeasure to the urban heat island effect. This paper consolidates comparison of RSC's projected energy savings to other simulation engines including DOE-2.1E, AtticSim, Micropas, and EnergyPlus. Also included are comparisons to previous simulation-based studies, analysis of RSC cooling savings and heating penalties, the role of radiative heat exchange in an attic assembly, and changes made for increased accuracy of the duct model. Finally, radiant heat transfer and duct interaction not previously modeled is considered a major contributor to heating penalties.« less
NASA Astrophysics Data System (ADS)
Cheng, Liang; Xu, Hao; Li, Shuyi; Chen, Yanming; Zhang, Fangli; Li, Manchun
2018-04-01
As the rate of urbanization continues to accelerate, the utilization of solar energy in buildings plays an increasingly important role in sustainable urban development. For this purpose, we propose a LiDAR-based joint approach for calculating the solar irradiance incident on roofs and façades of buildings at city scale, which includes a methodology for calculating solar irradiance, the validation of the proposed method, and analysis of its application. The calculation of surface irradiance on buildings may then inform photovoltaic power generation simulations, architectural design, and urban energy planning. Application analyses of the proposed method in the experiment area found that: (1) Global and direct irradiations vary significantly by hour, day, month and season, both following the same trends; however, diffuse irradiance essentially remains unchanged over time. (2) Roof irradiation, but not façade irradiation, displays distinct time-dependent patterns. (3) Global and direct irradiations on roofs are highly correlated with roof aspect and slope, with high global and direct irradiations observed on roofs of aspect 100-250° and slopes of 0-60°, whereas diffuse irradiation on roofs is only affected by roof slope. (4) The façade of a building receives higher levels of global and direct irradiations if facing southeast, south, and southwest; however, diffuse irradiation remains constant regardless of façade orientation.
Prevention of residential roof fires by use of a class "A" fire rated roof system.
Edlich, Richard F; Winters, Kathryne L; Long, William B; Britt, L D
2004-01-01
Because residential roof fires remain a life-threatening danger to residential homeowners in the United States, we describe in detail a national fire prevention program for reducing residential roof fires by use of an Underwriters Laboratories Inc. (UL) and National Fire Protection Association Class A fire rated roof system. This Class A system should comply with the test requirements for fire resistance of roof coverings, as outlined in UL 790 or in ASTM International (ASTM) E-108. Both the Asphalt Roofing Manufacturer's Association (ARMA) and the National Roofing Contractors Association (NRCA) have set up guidelines for selecting a new roof for the homeowner. Class A, fiber-glass-based asphalt roofing shingles represent an overwhelming share of the United States residential roofing market, and, as such, the Class A rated roofing system remains an excellent alternative to wood shingles and shakes. Fortunately, the Class A fire rating is available for certain wood shingle products that incorporate a factory-applied, fire resistant treatment. However, in this circumstance, wood products labeled as Class B shakes or shingles must be installed over spaced or solid sheathing that have been covered either with one layer of 1/4 in. (6.4 mm) thick noncombustible roof board, or with one layer of minimum 72-lb. fiber-glass-based mineral surfaced cap sheet, or with another specialty roofing sheet to obtain the Class A fire rating. Clay, tile, slate, and metal have been assigned Class A fire ratings in the codes (but often without testing). These alternative roofing materials are often considerably more expensive. Proper application, ventilation, and insulation of roofing systems are required to prevent heat and moisture buildup in the attic, which can damage the roofing system, making it more susceptible to water leakage as well as ignition in the event of a fire. The NRCA has devised excellent recommendations for the homeowner to prequalify the contractor. In addition, a warranty for any new roofing material is important for the homeowner to ensure that the roofing can be repaired by the contractor or manufacturer during the specified warranty period, in case of contractor error or a manufacturing defect. In addition, the homeowner should ensure that the warranty is transferable to any future owner of the home to allow the buyer to have the same warranty benefits as the original owner. The State of California has mandated strict roofing requirements to prevent residential fires. In the absence of this legislation in other states, the homeowner must follow the guidelines outlined in this collective review to ensure that a roofing system with Class A fire protection is installed. Other fire safety precautions that should also be considered mandatory are to include smoke alarms, escape plans, and retrofit fire sprinklers.
Wan, Wei; Li, Huan; Xie, Hongjie; Hong, Yang; Long, Di; Zhao, Limin; Han, Zhongying; Cui, Yaokui; Liu, Baojian; Wang, Cunguang; Yang, Wenting
2017-01-01
Lake surface water temperature (LSWT) is sensitive to long-term changes in thermal structure of lakes and regional air temperature. In the context of global climate change, recent studies showed a significant warming trend of LSWT based on investigating 291 lakes (71% are large lakes, ≥50 km2 each) globally. However, further efforts are needed to examine variation in LSWT at finer regional spatial and temporal scales. The Tibetan Plateau (TP), known as ‘the Roof of the World’ and ‘Asia’s water towers’, exerts large influences on and is sensitive to regional and even global climates. Aiming to examine detailed changing patterns and potential driven mechanisms for temperature variations of lakes across the TP region, this paper presents the first comprehensive data set of 15-year (2001–2015) nighttime and daytime LSWT for 374 lakes (≥10 km2 each), using MODIS (Moderate Resolution Imaging Spectroradiometer) Land Surface Temperature (LST) products as well as four lake boundary shapefiles (i.e., 2002, 2005, 2009, and 2014) derived from Landsat/CBERS/GaoFen-1 satellite images. The data set itself reveals significant information on LSWT and its changes over the TP and is an indispensable variable for numerous applications related to climate change, water budget analysis (particularly lake evaporation), water storage changes, glacier melting and permafrost degradation, etc. PMID:28742066
Wan, Wei; Li, Huan; Xie, Hongjie; Hong, Yang; Long, Di; Zhao, Limin; Han, Zhongying; Cui, Yaokui; Liu, Baojian; Wang, Cunguang; Yang, Wenting
2017-07-25
Lake surface water temperature (LSWT) is sensitive to long-term changes in thermal structure of lakes and regional air temperature. In the context of global climate change, recent studies showed a significant warming trend of LSWT based on investigating 291 lakes (71% are large lakes, ≥50 km 2 each) globally. However, further efforts are needed to examine variation in LSWT at finer regional spatial and temporal scales. The Tibetan Plateau (TP), known as 'the Roof of the World' and 'Asia's water towers', exerts large influences on and is sensitive to regional and even global climates. Aiming to examine detailed changing patterns and potential driven mechanisms for temperature variations of lakes across the TP region, this paper presents the first comprehensive data set of 15-year (2001-2015) nighttime and daytime LSWT for 374 lakes (≥10 km 2 each), using MODIS (Moderate Resolution Imaging Spectroradiometer) Land Surface Temperature (LST) products as well as four lake boundary shapefiles (i.e., 2002, 2005, 2009, and 2014) derived from Landsat/CBERS/GaoFen-1 satellite images. The data set itself reveals significant information on LSWT and its changes over the TP and is an indispensable variable for numerous applications related to climate change, water budget analysis (particularly lake evaporation), water storage changes, glacier melting and permafrost degradation, etc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biswas, Kaushik; Miller, William A; Childs, Phillip W
2011-01-01
Three test attics were constructed to evaluate a new sustainable method of re-roofing utilizing photo-voltaic (PV) laminates, metal roofing panels, and PCM heat sink in the Envelope Systems Research Apparatus (ESRA) facility in the ORNL campus. Figure 1 is a picture of the three attic roofs located adjacent to each other. The leftmost roof is the conventional shingle roof, followed by the metal panel roof incorporating the cool-roof coating, and third from left is the roof with the PCM. On the PCM roof, the PV panels are seen as well; they're labelled from left-to-right as panels 5, 6 and 7.more » The metal panel roof consists of three metal panels with the cool-roof coating; in further discussion this is referred to as the infrared reflective (IRR) metal roof. The IRR metal panels reflect the incoming solar radiation and then quickly re-emit the remaining absorbed portion, thereby reducing the solar heat gain of the attic. Surface reflectance of the panels were measured using a Solar Spectrum Reflectometer. In the 0.35-2.0 {mu}m wavelength interval, which accounts for more than 94% of the solar energy, the IRR panels have an average reflectance of 0.303. In the infrared portion of the spectrum, the IRR panel reflectance is 0.633. The PCM roof consists of a layer of macro-encapsulated bio-based PCM at the bottom, followed by a 2-cm thick layer of dense fiberglass insulation with a reflective surface on top, and metal panels with pre-installed PV laminates on top. The PCM has a melting point of 29 C (84.2 F) and total enthalpy between 180 and 190 J/g. The PCM was macro-packaged in between two layers of heavy-duty plastic foil forming arrays of PCM cells. Two air cavities, between PCM cells and above the fiberglass insulation, helped the over-the-deck natural air ventilation. It is anticipated that during summer, this extra ventilation will help in reducing the attic-generated cooling loads. The extra ventilation, in conjunction with the PCM heat sink, are used to minimize thermal stresses due to the PV laminates on sunny days. In PV laminates sunlight is converted into electricity and heat simultaneous. In case of building integrated applications, a relatively high solar absorption of amorphous silicon laminates can be utilized during the winter for solar heating purposes with PCM providing necessary heat storage capacity. However, PV laminates may also generate increased building cooling loads during the summer months. Therefore, in this project, the PCM heat sink was to minimize summer heat gains as well. The PCM-fibreglass-PV assembly and the IRR metal panels are capable of being installed directly on top of existing shingle roofs during re-roofing, precluding the need for recycling or disposal of waste materials. The PV laminates installed on the PCM attic are PVL-144 models from Uni-Solar. Each laminate contains 22 triple junction amorphous silicon solar cells connected in series. The silicon cells are of dimensions 356 mm x 239 mm (14-in. x 9.4-in.). The PVL-144 laminate is encapsulated in durable ETFE (poly-ethylene-co-tetrafluoroethylene) high light-transmissive polymer. Table 1 lists the power, voltage and current ratings of the PVL-144 panel.« less
Roof sprinkling system sweats down A/C costs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
This article describes a roof spray system which enhances the energy efficiency of a building's HVAC system at a nominal cost in relationship to the benefits it yields. Roof spray cooling is based on the fact that water, when it evaporates, absorbs large amounts of heat. The evaporation of one gallon of water will dissipate about 8500 BTU's of heat; and three fallons of water evaporated over one hour's time offers the same cooling capacity as a two-ton airconditioner operated over the same period. By intermittently spraying its surface with water, a direct evaporative cooling system allows a roof tomore » sweat away the sun's radiant heat, cooling an un-airconditioned building from 10 to 12 degrees mrt and reducing summer electric costs by 25%.« less
TASK 2.5.5 NATURAL EXPOSURE TESTING IN CALIFORNIA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, William A; Cheng, Mengdawn; New, Joshua Ryan
2010-03-01
Airborne particulate matter that settles on a roof can either reflect or absorb incoming solar radiation, dependent on the chemical content and size of the particles. These light scattering and absorption processes occur within a few microns of the surface, and can affect the solar reflectance of the roof. Wilkes et al. (2000) tested 24 different roof coatings on a low-slope test stand and observed about a 25% decrease in the solar reflectance of white-coated and aluminum-coated surfaces as the time of exposure increased; however, the decrease leveled off after 2 years. SPRI Inc. and its affiliates studied the effectmore » of climatic exposure on the surface properties of white thermoplastic single-ply membranes and determined that membranes lose from 30 to 50% of their reflectance over 3 years (Miller et al. 2002). The CMRC and its affiliates AISI, NamZAC, MBMA, MCA and NCCA exposed unpainted and painted metal roofing on both steep- and low-slope test roofs and found that after 3 years, the painted polyvinylidene fluoride (PVDF) metal roofs lost less than 5% of their original reflectance (Miller et al. 2004). The results of the three different weathering studies are very interesting in terms of their solar reflectance after 3 years of exposure. The white thermoplastic membrane and white ceramic coating with white topcoat had original reflectance measures that were about 20 percentage points higher than the painted metal; however, after 3-years of field exposure the solar reflectance of the painted metal exceeds that of the thermoplastic membrane and equals that of the coating. The long-term loss of reflectance appears driven by the ability of the particulate matter to cling to the roof and resist being washed off by wind and or rain. Miller et al. (2002) discovered that aerosol deposition introduced biomass of complex microbial consortia onto the test roofs and the combination of contaminants and biomass accelerated the loss of solar reflectance for the thermoplastic membranes and the roof coatings. Airborne contaminants and biomass were also detected on the painted metal roofs; however, the loss of solar reflectance was less than 5% for the painted metal roofs. The chemistry of the PVDF paint resin system uses similar organic film bonding to that responsible for Teflon , making it extremely chemical resistant and dirt shedding. Miller and Rudolph (2003) found the PVDF painted metals maintained solar reflectance even after 30 years of climatic exposure. Therefore the reduction of roof reflectance is closely related to the composition of the roof and to the chemical profile of the contaminants soiling the roof. Contaminants collected from samples of roof products exposed at seven California weathering sites were analyzed for elements and carbons to characterize the chemical profile of the particles soiling each roof sample and to identify those elements that degrade or enhance solar reflectance. The losses in solar reflectance varied from site to site and also varied at a give site based on the color of the coupon. The least drop in reflectance was observed in the alpine climate of McArthur while the largest drop occurred in sites near urban development. Light color samples were soiled after just one year of exposure. The darker color coupons did not show the same seasonal variations in solar reflectance as observed for the lighter colors. However, after an additional year of exposure the samples at all sites regained most of their solar reflectance due to rain and/or wind washing. The loss of reflectance appears cyclical with the onset of seasons having more rainfall. Solar reflectance of the cool pigmented coupons always exceeded that of the conventional pigmented coupons. Climatic soiling did not cause the cool pigmented roof coupons to lose any more solar reflectance than their conventional pigmented counterparts. The effect of roof slope appears to have more of an effect on lighter color roofs whose solar reflectance exceeds at least 0.5 and visually shows the accumulation of airborne contaminants. The thermal emittance remained invariant with time and location and was therefore not affected by climatic soiling. A thin-film deposition model was developed based on first principles, which simulates light interaction with a soiled substrate. This model was used in combination with the measured data to determine the solar absorptance and reflectance of particulate matter at each of the sites calculated using least squares fitting routines. Principal Component Analysis was used to determine the most important combinations of chemicals correlated with changes in solar absorption. Linear regression helped extract an approximate correlation using chromium, iron and elemental carbon concentrations. It appears that chromium ranks first, iron ranks second, and elemental carbon ranks third in importance to soil absorptance in the data« less
Modelling of green roofs' hydrologic performance using EPA's SWMM.
Burszta-Adamiak, E; Mrowiec, M
2013-01-01
Green roofs significantly affect the increase in water retention and thus the management of rain water in urban areas. In Poland, as in many other European countries, excess rainwater resulting from snowmelt and heavy rainfall contributes to the development of local flooding in urban areas. Opportunities to reduce surface runoff and reduce flood risks are among the reasons why green roofs are more likely to be used also in this country. However, there are relatively few data on their in situ performance. In this study the storm water performance was simulated for the green roofs experimental plots using the Storm Water Management Model (SWMM) with Low Impact Development (LID) Controls module (version 5.0.022). The model consists of many parameters for a particular layer of green roofs but simulation results were unsatisfactory considering the hydrologic response of the green roofs. For the majority of the tested rain events, the Nash coefficient had negative values. It indicates a weak fit between observed and measured flow-rates. Therefore complexity of the LID module does not affect the increase of its accuracy. Further research at a technical scale is needed to determine the role of the green roof slope, vegetation cover and drying process during the inter-event periods.
Heusinger, Jannik; Weber, Stephan
2017-12-31
The CO 2 surface-atmosphere exchange of an unirrigated, extensive green roof in Berlin, Germany was measured by means of the eddy covariance method over a full annual cycle. The present analysis focusses on the cumulative green roof net ecosystem exchange of CO 2 (NEE), on its seasonal variation and on green roof physiological characteristics by applying a canopy (A-g s ) model. The green roof was a carbon sink with an annual cumulative NEE of -313gCO 2 m -2 year - 1 , equivalent to -85gCm -2 year - 1 . Three established CO 2 flux gap-filling methods were applied to estimate NEE and to study the performance during different meteorological situations. A best estimate NEE time series was established, which chooses the gap filling method with the highest performance. During dry periods daytime carbon uptake was shown to decline linearly with substrate moisture below a threshold of 0.05m 3 m -3 , whereas night-time respiration was unaffected by substrate moisture variation. The roof turned into a temporary C source during dry conditions in summer 2015. We conclude that the carbon uptake of the present green roof can be optimized when substrate moisture is kept above 0.05m 3 m -3 . Copyright © 2017 Elsevier B.V. All rights reserved.
2013-01-01
Background A microclimate monitoring study was conducted in 2008 aimed at assessing the conservation risks affecting the valuable wall paintings decorating Ariadne’s House (Pompeii, Italy). It was found that thermohygrometric conditions were very unfavorable for the conservation of frescoes. As a result, it was decided to implement corrective measures, and the transparent polycarbonate sheets covering three rooms (one of them delimited by four walls and the others composed of three walls) were replaced by opaque roofs. In order to examine the effectiveness of this measure, the same monitoring system comprised by 26 thermohygrometric probes was installed again in summer 2010. Data recorded in 2008 and 2010 were compared. Results Microclimate conditions were also monitored in a control room with the same roof in both years. The average temperature in this room was lower in 2010, and it was decided to consider a time frame of 18 summer days with the same mean temperature in both years. In the rooms with three walls, the statistical analysis revealed that the diurnal maximum temperature decreased about 3.5°C due to the roof change, and the minimum temperature increased 0.5°C. As a result, the daily thermohygrometric variations resulted less pronounced in 2010, with a reduction of approximately 4°C, which is favorable for the preservation of mural paintings. In the room with four walls, the daily fluctuations also decreased about 4°C. Based on the results, other alternative actions are discussed aimed at improving the conservation conditions of wall paintings. Conclusions The roof change has reduced the most unfavorable thermohygrometric conditions affecting the mural paintings, but additional actions should be adopted for a long term preservation of Pompeian frescoes. PMID:23683173
Merello, Paloma; García-Diego, Fernando-Juan; Zarzo, Manuel
2013-05-17
A microclimate monitoring study was conducted in 2008 aimed at assessing the conservation risks affecting the valuable wall paintings decorating Ariadne's House (Pompeii, Italy). It was found that thermohygrometric conditions were very unfavorable for the conservation of frescoes. As a result, it was decided to implement corrective measures, and the transparent polycarbonate sheets covering three rooms (one of them delimited by four walls and the others composed of three walls) were replaced by opaque roofs. In order to examine the effectiveness of this measure, the same monitoring system comprised by 26 thermohygrometric probes was installed again in summer 2010. Data recorded in 2008 and 2010 were compared. Microclimate conditions were also monitored in a control room with the same roof in both years. The average temperature in this room was lower in 2010, and it was decided to consider a time frame of 18 summer days with the same mean temperature in both years. In the rooms with three walls, the statistical analysis revealed that the diurnal maximum temperature decreased about 3.5°C due to the roof change, and the minimum temperature increased 0.5°C. As a result, the daily thermohygrometric variations resulted less pronounced in 2010, with a reduction of approximately 4°C, which is favorable for the preservation of mural paintings. In the room with four walls, the daily fluctuations also decreased about 4°C. Based on the results, other alternative actions are discussed aimed at improving the conservation conditions of wall paintings. The roof change has reduced the most unfavorable thermohygrometric conditions affecting the mural paintings, but additional actions should be adopted for a long term preservation of Pompeian frescoes.
Raimondo, Fabio; Trifilò, Patrizia; Lo Gullo, Maria A; Andri, Sergio; Savi, Tadeja; Nardini, Andrea
2015-01-20
Recent studies have highlighted the ecological, economic and social benefits assured by green roof technology to urban areas. However, green roofs are very hostile environments for plant growth because of shallow substrate depths, high temperatures and irradiance and wind exposure. This study provides experimental evidence for the importance of accurate selection of plant species and substrates for implementing green roofs in hot and arid regions, like the Mediterranean area. Experiments were performed on two shrub species (Arbutus unedo L. and Salvia officinalis L.) grown in green roof experimental modules with two substrates slightly differing in their water retention properties, as derived from moisture release curves. Physiological measurements were performed on both well-watered and drought-stressed plants. Gas exchange, leaf and xylem water potential and also plant hydraulic conductance were measured at different time intervals following the last irrigation. The substrate type significantly affected water status. Arbutus unedo and S. officinalis showed different hydraulic responses to drought stress, with the former species being substantially isohydric and the latter one anisohydric. Both A. unedo and S. officinalis were found to be suitable species for green roofs in the Mediterranean area. However, our data suggest that appropriate choice of substrate is key to the success of green roof installations in arid environments, especially if anisohydric species are employed. Published by Oxford University Press on behalf of the Annals of Botany Company.
Numerical analysis for temperature profile of the closed house using computational fluid dynamics
NASA Astrophysics Data System (ADS)
Setiadi, Rizki; Munadi, Tauviqirrahman, Mohammad
2018-03-01
This study aims to analyze the air temperature distribution in the closed house system for broiler using ABAQUS CFD Model. The obtained data is used for placing the temperature sensor before making the control system for the closed house. The dimesion of the experimental house was 30 m × 12 m × 2 m (length × width × height) which could be occupied by 7.500 broiler. The wall was made from expose mercy brick and curtain, ventilation system used 7 exhaust fan with diameter 1 m and 2 cooling unit, the roof was made from wood, and system used 45 of 7 watt lamp. The results of the analysis show that temperature distribution occurs on temperature 21-33.5°C and still relatively comfortable for broiler at the age of 1-21days. The air temperature distribution near the cooling unit is lower and increases to near the exhaust fan. In addition, the air temperature in the area near the roof is more high than others.
Preliminary skyshine calculations for the Poloidal Diverter Tokamak Experiment
NASA Astrophysics Data System (ADS)
Nigg, D. W.; Wheeler, F. J.
1981-01-01
A calculational model is presented to estimate the radiation dose, due to the skyshine effect, in the control room and at the site boundary of the Poloidal Diverter Experiment (PDX) facility at Princeton University which requires substantial radiation shielding. The required composition and thickness of a water-filled roof shield that would reduce this effect to an acceptable level is computed, using an efficient one-dimensional model with an Sn calculation in slab geometry. The actual neutron skyshine dose is computed using a Monte Carlo model with the neutron source at the roof surface obtained from the slab Sn calculation, and the capture gamma dose is computed using a simple point-kernel single-scatter method. It is maintained that the slab model provides the exact probability of leakage out the top surface of the roof and that it is nearly as accurate as and much less costly than multi-dimensional techniques.
Preliminary skyshine calculations for the Poloidal Diverter Tokamak Experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nigg, D.W.; Wheeler, F.J.
1981-01-01
A calculational model is presented to estimate the radiation dose, due to the skyshine effect, in the control room and at the site boundary of the Poloidal Diverter Experiment (PDX) facility at Princeton University which requires substantial radiation shielding. The required composition and thickness of a water-filled roof shield that would reduce this effect to an acceptable level is computed, using an efficient one-dimensional model with an Sn calculation in slab geometry. The actual neutron skyshine dose is computed using a Monte Carlo model with the neutron source at the roof surface obtained from the slab Sn calculation, and themore » capture gamma dose is computed using a simple point-kernel single-scatter method. It is maintained that the slab model provides the exact probability of leakage out the top surface of the roof and that it is nearly as accurate as and much less costly than multi-dimensional techniques.« less
Surface reflectance degradation by microbial communities
Cheng, Meng -Dawn; Allman, Steve L.; Graham, David E.; ...
2015-11-05
Building envelope, such as a roof, is the interface between a building structure and the environment. Understanding of the physics of microbial interactions with the building envelope is limited. In addition to the natural weathering, microorganisms and airborne particulate matter that attach to a cool roof tend to reduce the roof reflectance over time, compromising the energy efficiency advantages of the reflective coating designs. We applied microbial ecology analysis to identify the natural communities present on the exposed coatings and investigated the reduction kinetics of the surface reflectance upon the introduction of a defined mixture of both photoautotrophic and heterotrophicmore » microorganisms representing the natural communities. The result are (1) reflectance degradation by microbial communities follows a first-order kinetic relationship and (2) more than 50% of degradation from the initial reflectance value can be caused by microbial species alone in much less time than 3 years required by the current standard ENERGY STAR® test methods.« less
NASA Astrophysics Data System (ADS)
Sukanto, H.; Budiana, E. P.; Putra, B. H. H.
2016-03-01
The objective of this research is to get a comparison of the distribution of the room temperature by using three materials, namely plastic-rubber composite, clay, and asbestos. The simulation used Ansys Fluent to get the temperature distribution. There were two conditions in this simulations, first the air passing beside the room and second the air passing in front of the room. Each condition will be varied with the air speed of 1 m/s, 2 m/s, 3 m/s, 4 m/s, 5 m/s for each material used. There are three heat transfers in this simulation, namely radiation, convection, and conduction. Based on the ANSI/ ASHRAE Standard 55-2004, the results of the simulation showed that the best temperature distribution was the roof of plastic-rubber composites.
Observed and Simulated Urban Heat Island and Urban Cool Island in Las Vegas
NASA Astrophysics Data System (ADS)
Sauceda, Daniel O.
This research investigates the urban climate of Las Vegas and establishes long-term trends relative to the regional climate in an attempt to identify climate disturbances strictly related to urban growth. An experimental surface station network (DRI-UHI) of low-cost surface temperature (T2m) and relative humidity (RH) sensors were designed to cover under-sampled low-intensity residential urban areas, as well as complement the in-city and surrounding rural areas. In addition to the analysis of the surface station data, high-resolution gridded data products (GDPs) from Daymet (1km) and PRISM (800 m) and results from numerical simulations were used to further characterize the Las Vegas climate trends. The Weather Research and Forecasting (WRF) model was coupled with three different models: the Noah Land Surface Model (LSM) and a single- and multi-layer urban canopy model (UCM) to assess the urban related climate disturbances; as well as the model sensitivity and ability to characterize diurnal variability and rural/urban thermal contrasts. The simulations consisted of 1 km grid size for five, one month-long hindcast simulations during November of 2012: (i) using the Noah LSM without UCM treatment, (ii) same as (i) with a single-layer UCM (UCM1), (iii) same as (i) with a multi-layer UCM (UCM2), (iv) removing the City of Las Vegas (NC) and replacing it with predominant land cover (shrub), and (v) same as (ii) with increasing the albedo of rooftops from 0.20 to 0.65 as a potential adaptation scenario known as "white roofing". T2m long-term trends showed a regional warming of minimum temperatures (Tmin) and negligible trends in maximum temperatures (Tmax ). By isolating the regional temperature trends, an observed urban heat island (UHI) of ~1.63°C was identified as well as a daytime urban cool island (UCI) of ~0.15°C. GDPs agree with temperature trends but tend to underpredict UHI intensity by ~1.05°C. The WRF-UCM showed strong correlations with observed T2m (0.85 < rho < 0.95) and vapor pressure (ea ; 0.83 < rho < 0.88), and moderate-to-strong correlations for RH (0.64 < rho < 0.81) at the 95% confidence level. UCM1 shows the best skill and adequately simulates most of the UHI and UCI observed characteristics. Differences of LSM, UCM1, and UCM2 minus NC show simulated effects of warmer in-city Tmin for LSM and UCM2, and cooler in-city Tmax for UCM1 and UCM2. Finally, the white roofing scenario for Las Vegas was not found to significantly impact the UHI effect but has the potential to reduce daytime temperature by 1°-2°C.
NASA Technical Reports Server (NTRS)
Carroll, Mark L.; Brown, Molly E.; Wooten, Margaret R.; Donham, Joel E.; Hubbard, Alfred B.; Ridenhour, William B.
2016-01-01
As our climate changes through time there is an ever-increasing need to quantify how and where it is changing so that mitigation strategies can be implemented. Urban areas have a disproportionate amount of warming due, in part, to the conductive properties of concrete and asphalt surfaces, surface albedo, heat capacity, lack of water, etc. that make up an urban environment. The NASA Climate Adaptation Science Investigation working group at Goddard Space Flight Center in Greenbelt, MD, conducted a study to collect temperature and humidity data at 15 min intervals from 12 sites at the center. These sites represent the major surface types at the center: asphalt, building roof, grass field, forest, and rain garden. The data show a strong distinction in the thermal properties of these surfaces at the center and the difference between the average values for the center compared to a local meteorological station. The data have been submitted to Oak Ridge National Laboratory Distributed Active Archive Center (ORNL-DAAC) for archival in comma separated value (csv) file format (Carroll et al.,2016) and can be found by following this link: http:daac.ornl.govcgi-bindsviewer.pl?ds_id1319.
A field study setup of four homes having non-ventilated and semi-conditioned sealed attics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, William A.; Boudreaux, Philip R.; Pallin, Simon B.
During the 2015-2016 fiscal year and with financial support from the Florida Building Commission (FBC) and the Florida Roofing and Sheet Metal Contractors Association (FRSA ), the University of Florida (UF) and the Oak Ridge National Laboratory (ORNL) completed Phase I of a study that setup four residential home demonstrations in Florida climate zones CZ-1A and CZ-2A. UF and ORNL are evaluating the hygrothermal (heat and moisture flow) performance and durability of sealed attic construction where expanded foam insulation is applied directly to the underside of the roof deck. The four homes are instrumented for measuring temperature and relative humiditymore » of the indoor living space, the outdoor air and the attic air. In addition, the temperature, relative humidity and moisture content of the roof sheathing are being monitored and recorded by remotely-accessible data acquisition equipment. Here, air leakage tests on the whole house, on the sealed attic and in the HVAC ducts were conducted on all four homes.« less
A field study setup of four homes having non-ventilated and semi-conditioned sealed attics
Miller, William A.; Boudreaux, Philip R.; Pallin, Simon B.; ...
2016-06-01
During the 2015-2016 fiscal year and with financial support from the Florida Building Commission (FBC) and the Florida Roofing and Sheet Metal Contractors Association (FRSA ), the University of Florida (UF) and the Oak Ridge National Laboratory (ORNL) completed Phase I of a study that setup four residential home demonstrations in Florida climate zones CZ-1A and CZ-2A. UF and ORNL are evaluating the hygrothermal (heat and moisture flow) performance and durability of sealed attic construction where expanded foam insulation is applied directly to the underside of the roof deck. The four homes are instrumented for measuring temperature and relative humiditymore » of the indoor living space, the outdoor air and the attic air. In addition, the temperature, relative humidity and moisture content of the roof sheathing are being monitored and recorded by remotely-accessible data acquisition equipment. Here, air leakage tests on the whole house, on the sealed attic and in the HVAC ducts were conducted on all four homes.« less
Wang, Yanfu; Jiang, Juncheng; Zhu, Dezhi
2009-07-15
In order to research the fire characteristic under natural ventilation conditions in tunnels with roof openings, full-scale experiment of tunnel fire is designed and conducted. All the experimental data presented in this paper can be further applied for validation of numerical simulation models and reduced-scale experimental results. The physical model of tunnel with roof openings and the mathematical model of tunnel fire are presented in this paper. The tunnel fire under the same conditions as experiment is simulated using CFD software. From the results, it can be seen that most smoke is discharged directly off the tunnel through roof openings, so roof openings are favorable for exhausting smoke. But along with the decrease of smoke temperatures, some smoke may backflow and mix with the smoke-free layer below, which leads to fall in visibility and is unfavorable for personnel evacuation. So it is necessary to research more efficient ways for improving the smoke removal efficiency, such as early fire detection systems, adequate warning signs and setting tunnel cap.
NASA Astrophysics Data System (ADS)
Samsudin, Sarah Hanim; Shafri, Helmi Z. M.; Hamedianfar, Alireza
2016-04-01
Status observations of roofing material degradation are constantly evolving due to urban feature heterogeneities. Although advanced classification techniques have been introduced to improve within-class impervious surface classifications, these techniques involve complex processing and high computation times. This study integrates field spectroscopy and satellite multispectral remote sensing data to generate degradation status maps of concrete and metal roofing materials. Field spectroscopy data were used as bases for selecting suitable bands for spectral index development because of the limited number of multispectral bands. Mapping methods for roof degradation status were established for metal and concrete roofing materials by developing the normalized difference concrete condition index (NDCCI) and the normalized difference metal condition index (NDMCI). Results indicate that the accuracies achieved using the spectral indices are higher than those obtained using supervised pixel-based classification. The NDCCI generated an accuracy of 84.44%, whereas the support vector machine (SVM) approach yielded an accuracy of 73.06%. The NDMCI obtained an accuracy of 94.17% compared with 62.5% for the SVM approach. These findings support the suitability of the developed spectral index methods for determining roof degradation statuses from satellite observations in heterogeneous urban environments.
Effects of Roof-Edge Roughness on Air Temperature and Pollutant Concentration in Urban Canyons
NASA Astrophysics Data System (ADS)
Aliabadi, Amir A.; Krayenhoff, E. Scott; Nazarian, Negin; Chew, Lup Wai; Armstrong, Peter R.; Afshari, Afshin; Norford, Leslie K.
2017-08-01
The influence of roof-edge roughness elements on airflow, heat transfer, and street-level pollutant transport inside and above a two-dimensional urban canyon is analyzed using an urban energy balance model coupled to a large-eddy simulation model. Simulations are performed for cold (early morning) and hot (mid afternoon) periods during the hottest month of the year (August) for the climate of Abu Dhabi, United Arab Emirates. The analysis suggests that early in the morning, and when the tallest roughness elements are implemented, the temperature above the street level increases on average by 0.5 K, while the pollutant concentration decreases by 2% of the street-level concentration. For the same conditions in mid afternoon, the temperature decreases conservatively by 1 K, while the pollutant concentration increases by 7% of the street-level concentration. As a passive or active architectural solution, the roof roughness element shows promise for improving thermal comfort and air quality in the canyon for specific times, but this should be further verified experimentally. The results also warrant a closer look at the effects of mid-range roughness elements in the urban morphology on atmospheric dynamics so as to improve parametrizations in mesoscale modelling.
NASA Astrophysics Data System (ADS)
Ali-Toudert, F.; Mayer, H.
2007-01-01
Field-measurements were conducted in an urban street canyon with an east-west orientation, and a height-to-width ratio H/W = 1 during cloudless summer weather in 2003 in Freiburg, Germany. This experimental work adds to the knowledge available on the microclimate of an urban canyon and its impact on human comfort. Air temperature T a , air humidity VP, wind speed v and direction dd were measured continuously. All short-wave and long-wave radiation fluxes from the 3D surroundings were also measured. The degree of comfort was defined in terms of physiologically equivalent temperature (PET). Furthermore, the data gathered within the canyon were compared to data collected by a permanent urban climate station with the aim of furthering the understanding of microclimatic changes due to street geometry. Changes in the meteorological variables T a , v and dd in the canyon in comparison to an unobstructed roof level location were found to be in good agreement with previous studies, i.e., a small increase of T a in the canyon adjacent to irradiated surfaces, and a good correlation of v and dd between canyon and roof levels. The daily dynamics of canyon facet irradiances and their impacts on the heat gained by a pedestrian were strongly dependent on street geometry and orientation. Thermal stress was mostly attributable to solar exposure. Under cloudless summer weather, a standing body was found to absorb, on average, 74% of heat in the form of long-wave irradiance and 26% as short-wave irradiance. Shading the pedestrian as well as the surrounding surfaces is, hence, the first strategy in mitigating heat stress in summer under hot conditions.
Zimmerman, Marc J.; Waldron, Marcus C.; Barbaro, Jeffrey R.; Sorenson, Jason R.
2010-01-01
Low-impact-development (LID) approaches are intended to create, retain, or restore natural hydrologic and water-quality conditions that may be affected by human alterations. Wide-scale implementation of LID techniques may offer the possibility of improving conditions in river basins, such as the Ipswich River Basin in Massachusetts, that have run dry during the summer because of groundwater withdrawals and drought. From 2005 to 2008, the U.S. Geological Survey, in a cooperative funding agreement with the Massachusetts Department of Conservation and Recreation, monitored small-scale installations of LID enhancements designed to diminish the effects of storm runoff on the quantity and quality of surface water and groundwater. Funding for the studies also was contributed by the U.S. Environmental Protection Agency's Targeted Watersheds Grant Program through a financial assistance agreement with Massachusetts Department of Conservation and Recreation. The monitoring studies examined the effects of * replacing an impervious parking-lot surface with a porous surface on groundwater quality, * installing rain gardens and porous pavement in a neighborhood of 3 acres on the quantity and quality of stormwater runoff, and * installing a 3,000-ft2 (square-foot) green roof on the quantity and quality of rainfall-generated roof runoff. In addition to these small-scale installations, the U.S. Geological Survey's Ipswich River Basin model was used to simulate the basin-wide effects on streamflow of several changes: broad-scale implementation of LID techniques, reduced water-supply withdrawals, and water-conservation measures. Water-supply and conservation scenarios for application in model simulations were developed with the assistance of two technical advisory committees that included representatives of State agencies responsible for water resources, the U.S. Environmental Protection Agency, the U.S. Geological Survey, water suppliers, and non-governmental organizations. From June 2005 to June 2007, groundwater quality was monitored at the Silver Lake town beach parking lot in Wilmington, Massachusetts, prior to and following the replacement of the conventional, impervious-asphalt surface with a porous surface consisting primarily of porous asphalt and porous pavers designed to enhance rainfall infiltration into the groundwater and to minimize runoff to Silver Lake. Concentrations of phosphorus, nitrogen, cadmium, chromium, copper, lead, nickel, zinc, and total petroleum hydrocarbons in groundwater were monitored. Enhancing infiltration of precipitation did not result in discernible increases in concentrations of these potential groundwater contaminants. Concentrations of dissolved oxygen increased slightly in groundwater profiles following the removal of the impervious asphalt parking-lot surface. In Wilmington, Massachusetts, in a 3-acre neighborhood, stormwater runoff volume and quality were monitored to determine the ability of selected LID enhancements (rain gardens and porous paving stones) to reduce flows and loads of the selected constituents to Silver Lake. Water-quality samples were analyzed for nutrients, metals, total petroleum hydrocarbons, and total-coliform and E. coli bacteria. A decrease in runoff quantity was observed for storms of 0.25 inch or less of precipitation. Water-quality-monitoring results were inconclusive; there were no statistically significant differences in concentrations or loads when the pre- and post-installation-period samples were compared. In a third field study, the characteristics of runoff from a vegetated 'green' roof and a conventional, rubber-membrane roof were compared. The two primary factors affecting the green roof's water-storage capacity were the amount of precipitation and antecedent dry period. Although concentrations of many of the chemicals in roof runoff were higher from the green roof than from the conventional roof, the ability of the green roof to retain w
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sukanto, H., E-mail: masheher@uns.ac.id; Budiana, E. P., E-mail: budiana.e@gmail.com; Putra, B. H. H., E-mail: benedictus.hendy@gmail.com
The objective of this research is to get a comparison of the distribution of the room temperature by using three materials, namely plastic-rubber composite, clay, and asbestos. The simulation used Ansys Fluent to get the temperature distribution. There were two conditions in this simulations, first the air passing beside the room and second the air passing in front of the room. Each condition will be varied with the air speed of 1 m/s, 2 m/s, 3 m/s, 4 m/s, 5 m/s for each material used. There are three heat transfers in this simulation, namely radiation, convection, and conduction. Based on the ANSI/ ASHRAE Standard 55-2004,more » the results of the simulation showed that the best temperature distribution was the roof of plastic-rubber composites.« less
Stormwater quality from extensive green roofs in a subtropical region
NASA Astrophysics Data System (ADS)
Onis Pessoa, Jonas; Allasia, Daniel; Tassi, Rutineia; Vaz Viega, Juliana; Fensterseifer, Paula
2016-04-01
Green roofs have increasingly become an integral part of urban environments, mainly due to their aesthetic benefits, thermal comfort and efficiency in controlling excess runoff. However, the effects of this emerging technology in the qualitative characteristics of rainwater is still poorly understood. In this study was evaluated the effect of two different extensive green roofs (EGRs) and a traditional roof built with corrugated fiber cement sheets (control roof) in the quality of rainwater, in a subtropical climate area in the city of Santa Maria, in southern Brazil. The principal variant between the two EGRs were the type of plant species, time since construction, soil depth and the substrate characteristics. During the monitoring period of the experiment, between the months of April and December of 2015 fourteen rainfall events were selected for qualitative analysis of water from the three roofs and directly from rainfall. It was analyzed physical (turbidity, apparent color, true color, electrical conductivity, total solids, dissolved solids, suspended solids and temperature), chemical (pH, phosphate, total nitrogen, nitrate, nitrite, chloride, sulfate, BOD, iron and total hardness), heavy metals (copper, zinc, lead and chromium) and microbiological parameters (total coliforms and E. coli). It was also characterized the substrates used in both extensive green roofs. The results showed that the quality of the water drained from EGR s was directly influenced by their substrates (in turn containing significant levels of nutrients, organic matter and some metals). The passage of rainwater through green roofs and control roof resulted in the elevation of pH, allowing the conversion of the slightly acidic rainfall into basic water. Similarly, on both types of roofs occurred an increase of the values of most of the physical, chemical and microbiological parameters compared to rainwater. This same trend was observed for heavy metals, although with a much smaller degree. Thus, under the assessed conditions and time, the green roofs, in general, have not provided an improvement of water quality as indicated by some authors. However, it was found that some of the measured parameters showed a gradual improvement during the monitoring period. This suggests that the age of green roofs can affect efficiency in the qualitative control of water. In this regard, long-term research can contribute to a better understanding quality of stormwater runoff from green roofs, especially in regions such as Brazil, where the implementation of green roofs is incipient and in a phase of adaptation to the different environmental conditions of the country.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Konopacki, S.; Akbari, H.; Gartland, L.
The U.S. Environmental Protection Agency (EPA) sponsored this project to estimate potential energy and monetary savings resulting from the implementation of light-colored roofs on residential and commercial buildings in major U.S. metropolitan areas. Light-colored roofs reflect more sunlight than dark roofs, so they keep buildings cooler and reduce air-conditioning demand. Typically, rooftops in the United States are dark, and thus there is a potential for saving energy and money by changing to reflective roofs. Naturally, the expected savings are higher in southern, sunny, and cloudless climates. In this study, we make quantitative estimates of reduction in peak power demand andmore » annual cooling electricity use that would result from increasing the reflectivity of the roofs. Since light-colored roofs also reflect heat in the winter, the estimates of annual electricity savings are a net value corrected for the increased wintertime energy use. Savings estimates only include direct reduction in building energy use and do not account for the indirect benefit that would also occur from the reduction in ambient temperature, i.e. a reduction in the heat island effect. This analysis is based on simulations of building energy use, using the DOE-2 building energy simulation program. Our methodology starts with specifying 11 prototypical buildings: single-family residential (old and new), office (old and new), retail store (old and new), school (primary and secondary), health (hospital and nursing home), and grocery store. Most prototypes are simulated with two heating systems: gas furnace and heat pumps. We then perform DOE-2 simulations of the prototypical buildings, with light and dark roofs, in a variety of climates and obtain estimates of the energy use for air conditioning and heating.« less
Szota, Christopher; Farrell, Claire; Williams, Nicholas S G; Arndt, Stefan K; Fletcher, Tim D
2017-12-15
Green roofs are increasingly being used among the suite of tools designed to reduce the volume of surface water runoff generated by cities. Plants provide the primary mechanism for restoring the rainfall retention capacity of green roofs, but selecting plants with high water use is likely to increase drought stress. Using empirically-derived plant physiological parameters, we used a water balance model to assess the trade-off between rainfall retention and plant drought stress under a 30-year climate scenario. We compared high and low water users with either drought avoidance or drought tolerance strategies. Green roofs with low water-using, drought-avoiding species achieved high rainfall retention (66-81%) without experiencing significant drought stress. Roofs planted with other strategies showed high retention (72-90%), but they also experienced >50days of drought stress per year. However, not all species with the same strategy behaved similarly, therefore selecting plants based on water use and drought strategy alone does not guarantee survival in shallow substrates where drought stress can develop quickly. Despite this, it is more likely that green roofs will achieve high rainfall retention with minimal supplementary irrigation if planted with low water users with drought avoidance strategies. Copyright © 2017 Elsevier B.V. All rights reserved.
2012-03-01
heat and carbon dioxide. The reaction is not violent. Carbon dioxide, carbon monoxide and in high temperature (Boo· F) low oxygen atmospheres such as in... effectively than a full replacement. The projected return on investment (ROI) for these technologies ranged from 21.6 to 28.7 depending on as- sumptions...rapidly and cost- effectively rehabilitat- ing failed corroded metal roofs. One is a high-build polyurea-hybrid mem- brane-producing coating, and the other
Conduction cooled tube supports
Worley, Arthur C.; Becht, IV, Charles
1984-01-01
In boilers, process tubes are suspended by means of support studs that are in thermal contact with and attached to the metal roof casing of the boiler and the upper bend portions of the process tubes. The support studs are sufficiently short that when the boiler is in use, the support studs are cooled by conduction of heat to the process tubes and the roof casing thereby maintaining the temperature of the stud so that it does not exceed 1400.degree. F.
2014-04-01
technology described in this proposal was first commercialized in 2004. It has been installed in 35 states and 5 countries primarily on residential ...temperatures. o Rainwater harvesting systems help reduce demands on potable water systems and help crowded cities manage stormwater drainage problems...of high density polyisocyanurate rigid insulation board installed over the existing roof and between the sub-purlins with the top layer taped to
Estimating envelope thermal characteristics from single point in time thermal images
NASA Astrophysics Data System (ADS)
Alshatshati, Salahaldin Faraj
Energy efficiency programs implemented nationally in the U.S. by utilities have rendered savings which have cost on average 0.03/kWh. This cost is still well below generation costs. However, as the lowest cost energy efficiency measures are adopted, this the cost effectiveness of further investment declines. Thus there is a need to more effectively find the most opportunities for savings regionally and nationally, so that the greatest cost effectiveness in implementing energy efficiency can be achieved. Integral to this process. are at scale energy audits. However, on-site building energy audits process are expensive, in the range of US1.29/m2-$5.37/m2 and there are an insufficient number of professionals to perform the audits. Energy audits that can be conducted at-scale and at low cost are needed. Research is presented that addresses at community-wide scales characterization of building envelope thermal characteristics via drive-by and fly-over GPS linked thermal imaging. A central question drives this research: Can single point-in-time thermal images be used to infer U-values and thermal capacitances of walls and roofs? Previous efforts to use thermal images to estimate U-values have been limited to rare steady exterior weather conditions. The approaches posed here are based upon the development two models first is a dynamic model of a building envelope component with unknown U-value and thermal capacitance. The weather conditions prior to the thermal image are used as inputs to the model. The model is solved to determine the exterior surface temperature, ultimately predicted the temperature at the thermal measurement time. The model U-value and thermal capacitance are tuned in order to force the error between the predicted surface temperature and the measured surface temperature from thermal imaging to be near zero. This model is developed simply to show that such a model cannot be relied upon to accurately estimate the U-value. The second is a data-based methodology. This approach integrates the exterior surface temperature measurements, historical utility data, and easily accessible or potentially easily accessible housing data. A Random Forest model is developed from a training subset of residences for which the envelope U-value is known. This model is used to predict the envelope U-value for a validation set of houses with unknown U-value. Demonstrated is an ability to estimate the wall/roof U-value with an R-squared value in the range of 0.97 and 0.96 respectively, using as few as 9 and 24 training houses for respectively wall and ceiling U-value estimation. The implication of this research is significant, offering the possibility of auditing residences remotely at-scale via aerial and drive-by thermal imaging.
Inclusion of cool roofs in nonresidential Title 24 prescriptive requirements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Levinson, Ronnen; Akbari, Hashem; Konopacki, Steve
2002-12-15
Roofs that have high solar reflectance (high ability to reflect sunlight) and high thermal emittance (high ability to radiate heat) tend to stay cool in the sun. The same is true of low-emittance roofs with exceptionally high solar reflectance. Substituting a cool roof for a noncool roof tends to decrease cooling electricity use, cooling power demand, and cooling-equipment capacity requirements, while slightly increasing heating energy consumption. Cool roofs can also lower the ambient air temperature in summer, slowing ozone formation and increasing human comfort. DOE-2.1E building energy simulations indicate that use of a cool roofing material on a prototypical Californiamore » nonresidential building with a low-sloped roof yields average annual cooling energy savings of approximately 300 kWh/1000 ft2 [3.2 kWh/m2], average annual natural gas deficits of 4.9 therm/1000 ft2 [5.6 MJ/m2], average source energy savings of 2.6 MBTU/1000 ft2 [30 MJ/m2], and average peak power demand savings of 0. 19 kW/1000 ft2 [2.1 W/m2]. The 15-year net present value (NPV) of energy savings averages $450/1000 ft2 [$4.90/m2] with time dependent valuation (TDV), and $370/1000 ft2 [$4.00/m2] without TDV. When cost savings from downsizing cooling equipment are included, the average total savings (15-year NPV + equipment savings) rises to $550/1000 ft2 [$5.90/m2] with TDV, and to $470/1000 ft2 [$5.00/m2] without TDV. Total savings range from 0.18 to 0.77 $/ft2 [1.90 to 8.30 $/m2] with TDV, and from 0.16 to 0.66 $/ft2 [1.70 to 7.10 $/m2] without TDV, across California's 16 climate zones. The typical cost premium for a cool roof is 0.00 to 0.20 $/ft2 [0.00 to 2.20 $/m2]. Cool roofs with premiums up to $0.20/ft2 [$2.20/m2] are expected to be cost effective in climate zones 2 through 16; those with premiums not exceeding $0.18/ft2 [$1.90/m2] are expected to be also cost effective in climate zone 1. Hence, this study recommends that the year-2005 California building energy efficiency code (Title 24, Pa rt 6 of the California Code of Regulations) for nonresidential buildings with low-sloped roofs include a cool-roof prescriptive requirement in all California climate zones. Buildings with roofs that do not meet prescriptive requirements may comply with the code via an ''overall-envelope'' approach (non-metal roofs only), or via a performance approach (all roof types).« less
NASA Astrophysics Data System (ADS)
Mazon Hernandez, Rocio
The aim is to analyse the negative influence of high panel temperatures on electrical production when they are placed on steel roofs of industrial buildings and greenhouse roofs. Different configurations have been tested in order to allow cooling of photovoltaic panels to decrease panel temperature and improve electrical performance. To research this problem two experimental facilities have been built. The first facility includes two panels fixed on a structure. A panel is integrated on a parallel steel plate which does not allow sufficient cooling. Between both surfaces, there is an open air channel in which an air flow is created by the chimney effect thus cooling the panel by natural convection or inducing air, using a fan, by forced convection. The other panel has not any plate underneath it and is used as a referent. The electrical behaviour of the integrated panel has been studied for different air gaps and induced velocities, being also compared with the reference panel. An experimental model was developed to establish correlations which allow determine the panel temperature depending on the influential variables on the cooling ability. This research also analyses the data of a working solar plant, with the same panel model, obtaining the correlations between electrical variables and panel temperature. A comparison with the electrical behaviour in the experimental facility and the solar plant is also presented. The second experimental facility is a replica of a photovoltaic greenhouse. It consists of four photovoltaic panels placed on the plastic roof, providing an open and divergent channel between both surfaces thus creating an air flow by natural convection. This research studies the effect of high temperatures within the greenhouse which is transferred by the roof and thus affects the electrical production. In addition, two air gaps were used and the effect of adding insulating material to the plastic roof was studied. The electrical variables of the panels are analysed to compare and select the best configuration. The presented research provides a deep knowledge of how they work as well as information and results for an improvement in future designs of building integrated photovoltaic systems. Este estudio se centra en analizar la influencia negativa de la temperatura en la produccion electrica de paneles fotovoltaicos al estar emplazados sobre cubierta de acero, como sucede en naves industriales y sobre un invernadero. Se estudian diferentes configuraciones que permitan refrigerar los paneles, reduciendo su temperatura y mejorar su rendimiento. Para abordar este problema, se han construido dos instalaciones experimentales, fieles a plantas solares en funcionamiento. Una instalacion engloba dos paneles fotovoltaicos sobre estructura fija al suelo. Uno de los paneles esta integrado sobre una superficie paralela y metalica. Entre ambas superficies existe un espacio que posibilita circular aire, permitiendo refrigerar el panel por conveccion natural, o conveccion forzada impulsando el aire con un ventilador. El otro panel, libre por su cara posterior y se ha considerado de referencia. Se ha estudiado el comportamiento del panel integrado sobre cubierta para diferentes secciones de aire y velocidades inducidas, comparandolo con el panel de referencia. Se ha desarrollado un modelo experimental que nos permite determinar la temperatura del panel en funcion de las variables que influyen en su refrigeracion. Adicionalmente, se han analizado los datos de una planta solar en funcionamiento, con paneles de igual caracteristicas, obteniendo correlaciones entre la temperatura del panel y las variables electricas y comparandolos con las obtenidas en la instalacion experimental. La segunda instalacion experimental reproduce parte de una instalacion solar sobre un invernadero, formada por cuatro paneles fotovoltaicos colocados sobre el plastico del invernadero, existiendo un canal divergente entre ambas superficies. Se estudia la influencia de las altas temperaturas en el interior del invernadero sobre la produccion electrica de los paneles, decido a la transferencia de calor del interior del invernadero. Ademas, se han ensayado dos separaciones diferentes y para cada una se ha comparado con la misma, utilizando un aislante sobre la cubierta. El estudio realizado sobre ambas instalaciones ha proporcionado un conocimiento profundo del funcionamiento de cada una de ellas, asi como informacion valida para una mejora de futuros disenos de instalaciones fotovoltaicas sobre cubiertas.
Collazo-Ortega, Margarita; Rosas, Ulises; Reyes-Santiago, Jerónimo
2017-01-01
INTRODUCTION: In the first months of 2016, the Mexico City Metropolitan Area experienced the worst air pollution crisis in the last decade, prompting drastic short-term solutions by the Mexico City Government and neighboring States. In order to help further the search for long-term sustainable solutions, we felt obliged to immediately release the results of our research regarding the monitoring of carbon sequestration by green roofs. Large-scale naturation, such as the implementation of green roofs, provides a way to partially mitigate the increased carbon dioxide output in urban areas. METHODS: Here, we quantified the carbon sequestration capabilities of two ornamental succulent plant species, Sedum dendroideum and Sedum rubrotinctum, which require low maintenance, and little or no irrigation. To obtain a detailed picture of these plants’ carbon sequestration capabilities, we measured carbon uptake on the Sedum plants by quantifying carbon dioxide exchange and fixation as organic acids, during the day and across the year, on a green roof located in Southern Mexico City. RESULTS: The species displayed their typical CAM photosynthetic metabolism. Moreover, our quantification allowed us to conservatively estimate that a newly planted green roof of Sedum sequesters approximately 180,000,000 ppm of carbon dioxide per year in a green roof of 100 square meters in the short term. DISCUSSION: The patterns of CAM and carbon dioxide sequestration were highly robust to the fluctuations of temperature and precipitation between seasons, and therefore we speculate that carbon sequestration would be comparable in any given year of a newly planted green roof. Older green roof would require regular trimming to mantain their carbon sink properties, but their carbon sequestration capabilities remain to be quantified. Nevertheless, we propose that Sedum green roofs can be part of the long-term solutions to mitigate the air pollution crisis in the Mexico City Metropolitan area, and other “megacities” with marked seasonal drought. PMID:28480127
Collazo-Ortega, Margarita; Rosas, Ulises; Reyes-Santiago, Jerónimo
2017-03-31
In the first months of 2016, the Mexico City Metropolitan Area experienced the worst air pollution crisis in the last decade, prompting drastic short-term solutions by the Mexico City Government and neighboring States. In order to help further the search for long-term sustainable solutions, we felt obliged to immediately release the results of our research regarding the monitoring of carbon sequestration by green roofs. Large-scale naturation, such as the implementation of green roofs, provides a way to partially mitigate the increased carbon dioxide output in urban areas. Here, we quantified the carbon sequestration capabilities of two ornamental succulent plant species, Sedum dendroideum and Sedum rubrotinctum, which require low maintenance, and little or no irrigation. To obtain a detailed picture of these plants' carbon sequestration capabilities, we measured carbon uptake on the Sedum plants by quantifying carbon dioxide exchange and fixation as organic acids, during the day and across the year, on a green roof located in Southern Mexico City. The species displayed their typical CAM photosynthetic metabolism. Moreover, our quantification allowed us to conservatively estimate that a newly planted green roof of Sedum sequesters approximately 180,000,000 ppm of carbon dioxide per year in a green roof of 100 square meters in the short term. The patterns of CAM and carbon dioxide sequestration were highly robust to the fluctuations of temperature and precipitation between seasons, and therefore we speculate that carbon sequestration would be comparable in any given year of a newly planted green roof. Older green roof would require regular trimming to mantain their carbon sink properties, but their carbon sequestration capabilities remain to be quantified. Nevertheless, we propose that Sedum green roofs can be part of the long-term solutions to mitigate the air pollution crisis in the Mexico City Metropolitan area, and other "megacities" with marked seasonal drought.
Assessment of addition of biochar to filtering mixtures for potential water pollutant removal.
Piscitelli, Lea; Rivier, Pierre-Adrien; Mondelli, Donato; Miano, Teodoro; Joner, Erik J
2018-01-01
Green roofs are used increasingly to alleviate peaks of water discharge into the sewage systems in urban areas. Surface runoff from roofs contain pollutants from dry and wet deposition, and green roofs offer a possibility to reduce the amounts of pollutants in the water discharged from roofs by degradation and filtering. These pollutants would otherwise enter wastewater treatments plants and ultimately end up in sewage sludge that is spread on agricultural soils. The most common substrates used in green roofs have limited capacity for filtration and sorption. Also, more sustainable alternatives are sought, due to the high carbon footprint of these materials. Biochar is a carbon-rich material produced by pyrolysis of biomass, and several types of biochar have been described as good sorbents and filter materials. Biochar is also a light and carbon negative material, which may fulfill other desired criteria for new green roof substrates. We here report on an experiment where two types of biochar, produced from olive husks at 450 °C or from forest waste at 850 ° C were mixed with volcanic rock or peat, and tested for retention capacity of phenanthrene and six heavy metals in a column experiment with unsaturated gravimetric water flow lasting for 3 weeks. The results suggest that biochar as a component in green roof substrates perform better than traditional materials, concerning retention of the tested pollutants, and that different types of biochar have different properties in this respect.
Reliability Analysis of a Green Roof Under Different Storm Scenarios
NASA Astrophysics Data System (ADS)
William, R. K.; Stillwell, A. S.
2015-12-01
Urban environments continue to face the challenges of localized flooding and decreased water quality brought on by the increasing amount of impervious area in the built environment. Green infrastructure provides an alternative to conventional storm sewer design by using natural processes to filter and store stormwater at its source. However, there are currently few consistent standards available in North America to ensure that installed green infrastructure is performing as expected. This analysis offers a method for characterizing green roof failure using a visual aid commonly used in earthquake engineering: fragility curves. We adapted the concept of the fragility curve based on the efficiency in runoff reduction provided by a green roof compared to a conventional roof under different storm scenarios. We then used the 2D distributed surface water-groundwater coupled model MIKE SHE to model the impact that a real green roof might have on runoff in different storm events. We then employed a multiple regression analysis to generate an algebraic demand model that was input into the Matlab-based reliability analysis model FERUM, which was then used to calculate the probability of failure. The use of reliability analysis as a part of green infrastructure design code can provide insights into green roof weaknesses and areas for improvement. It also supports the design of code that is more resilient than current standards and is easily testable for failure. Finally, the understanding of reliability of a single green roof module under different scenarios can support holistic testing of system reliability.
Robust technique using an imaging plate to detect environmental radioactivity.
Isobe, Tomonori; Mori, Yutaro; Takada, Kenta; Sato, Eisuke; Sakurai, Hideyuki; Sakae, Takeji
2013-04-01
The Fukushima Daiichi Nuclear Power Plant was severely damaged by the Great East Japan Earthquake on 11 March 2011. Consequently, a large amount of radioactive material was accidentally released. Recently, the focus has been on quantification of environmental radioactive material. However, conventional techniques require complicated and expensive measurement equipment. In this research, the authors developed a simple method to detect environmental radioactive material with an imaging plate (IP). Two specific measurement subjects were targeted: measurements for the depth distribution of radioactive material in soil and surface contamination of a building roof. For the measurement of depth distribution of radioactive material in soil, the authors ascertained that the concentration of environmental radioactivity was highest at 5 cm below the surface, and it decreased with depth. For the measurement of surface contamination of the building roof, the authors created a contamination map of the building roof. The detector developed could contact the ground directly, and unlike other survey meters, it was not influenced by peripheral radioactivity. In this study, the authors verified the feasibility of measurement of environmental radioactivity with an IP. Although the measured values of the IP were relative, further work is planned to perform evaluations of absolute quantities of radioactive material.
Greb, S.F.; Weisenfluh, G.A.
1996-01-01
The benefits of geologic analysis for roof-control studies and hazard prediction in coal mines are well documented. Numerous case studies have illustrated the importance of recognizing geologic features such as paleochannels, coal riders, and kettlebottoms in mine roofs. Relatively understudied features, in terms of mining, are paleoslumps. Paleoslumps represent ancient movement and rotation of semi-consolidated sediment. Because bedding in paleoslumps is deformed or inclined, these features cause instability in mine roofs, haul roads, surface highwalls, and other excavations. Various types of paleoslumps above coals in the Eastern Kentucky Coal Field were studied in order to aid in their recognition and prediction in mines. The paleoslumps studied all showed characteristic slump-deformation features, although some differences in magnitude of deformation and overall slump size were noted. Coals beneath slumps often exhibited folding, reverse displacements, truncation, clastic dikes, and locally increased thickness. Slumps are inferred to have been triggered by a wide range of mechanisms, such as loading of water-saturated sediment on rigid substrates, synsedimentary faulting, and over-pressurization of channel margin and bar slopes. Analysis of paleoslumps in underground mines, where paleoslumps are viewed from beneath rather than in profile is difficult, since characteristic bed rotation may not be conspicuous. Sudden increases in bed-dip angle inferred from changes in rock type or bedding contacts in the roof; occurrence of bounding, polished rotation surfaces; or roof irregularity and occurrence of loading features may indicate the presence of paleoslumps. Another key to recognition may be the sudden appearance of over-thickened coal, which can occur because of slump-created paleotopography, synsedimentary faults, and slump-generated overthrusting. In addition, steeply inclined, folded, or transported coal marginal to paleoslumps can create apparent increases in coal thickness in cores. Although thick coals are obviously a target of exploration, anomalously thick coals may actually indicate adjacent paleoslumps accompanied by hazardous roof conditions and loss of seam thickness.
NASA Astrophysics Data System (ADS)
Carroll, Mark L.; Brown, Molly E.; Wooten, Margaret R.; Donham, Joel E.; Hubbard, Alfred B.; Ridenhour, William B.
2016-09-01
As our climate changes through time there is an ever-increasing need to quantify how and where it is changing so that mitigation strategies can be implemented. Urban areas have a disproportionate amount of warming due, in part, to the conductive properties of concrete and asphalt surfaces, surface albedo, heat capacity, lack of water, etc. that make up an urban environment. The NASA Climate Adaptation Science Investigation working group at Goddard Space Flight Center in Greenbelt, MD, conducted a study to collect temperature and humidity data at 15 min intervals from 12 sites at the center. These sites represent the major surface types at the center: asphalt, building roof, grass field, forest, and rain garden. The data show a strong distinction in the thermal properties of these surfaces at the center and the difference between the average values for the center compared to a local meteorological station. The data have been submitted to Oak Ridge National Laboratory Distributed Active Archive Center (ORNL-DAAC) for archival in comma separated value (csv) file format (Carroll et al., 2016) and can be found by following this link: http://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=1319.
NASA Astrophysics Data System (ADS)
Bernales, A. M.; Antolihao, J. A.; Samonte, C.; Campomanes, F.; Rojas, R. J.; dela Serna, A. M.; Silapan, J.
2016-06-01
The threat of the ailments related to urbanization like heat stress is very prevalent. There are a lot of things that can be done to lessen the effect of urbanization to the surface temperature of the area like using green roofs or planting trees in the area. So land use really matters in both increasing and decreasing surface temperature. It is known that there is a relationship between land use land cover (LULC) and land surface temperature (LST). Quantifying this relationship in terms of a mathematical model is very important so as to provide a way to predict LST based on the LULC alone. This study aims to examine the relationship between LST and LULC as well as to create a model that can predict LST using class-level spatial metrics from LULC. LST was derived from a Landsat 8 image and LULC classification was derived from LiDAR and Orthophoto datasets. Class-level spatial metrics were created in FRAGSTATS with the LULC and LST as inputs and these metrics were analysed using a statistical framework. Multi linear regression was done to create models that would predict LST for each class and it was found that the spatial metric "Effective mesh size" was a top predictor for LST in 6 out of 7 classes. The model created can still be refined by adding a temporal aspect by analysing the LST of another farming period (for rural areas) and looking for common predictors between LSTs of these two different farming periods.
NASA Astrophysics Data System (ADS)
Hénon, A.; Mestayer, P.; Lagouarde, J.-P.; Lee, J. H.
2009-09-01
Due to the morphological complexity of the urban canopy and to the variability in thermal properties of the building materials, the heterogeneity of the surface temperatures generates a strong directional anisotropy of thermal infrared remote sensing signal. Thermal infrared (TIR) data obtained with an airborne FLIR camera over Toulouse (France) city centre during the CAPITOUL experiment (feb. 2004 - feb. 2005) show brightness temperature anisotropies ranging from 3 °C by night to more than 10 °C by sunny days. These data have been analyzed in view of developing a simple approach to correct TIR satellite remote sensing from the canopy-generated anisotropy, and to further evaluate the sensible heat fluxes. The methodology is based on the identification of 6 different classes of surfaces: roofs, walls and grounds, sunlit or shaded, respectively. The thermo-radiative model SOLENE is used to simulate, with a 1 m resolution computational grid, the surface temperatures of an 18000 m² urban district, in the same meteorological conditions as during the observation. A pixel-by-pixel comparison with both hand-held temperature measurements and airborne camera images allows to assess the actual values of the radiative and thermal parameters of the scene elements. SOLENE is then used to simulate a generic street-canyon geometry, whose sizes average the morphological parameters of the actual streets in the district, for 18 different geographical orientations. The simulated temperatures are then integrated for different viewing positions, taking into account shadowing and masking, and directional temperatures are determined for the 6 surface classes. The class ratios in each viewing direction are derived from images of the district generated by using the POVRAY software, and used to weigh the temperatures of each class and to compute the resulting directional brightness temperature at the district scale for a given sun direction (time in the day). Simulated and measured anisotropies are finally compared for several flights over Toulouse in summer and winter. An inverse method is further proposed to obtain the surface temperatures from the directional brightness temperatures, which may be extended to deduce the sensible heat fluxes separately from the buildings and from the ground.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stephenson, D.E.; Dass, S.T.; Shaw, D.E.
During normal coal extraction roof collapse is controlled, thermal effects are absent and existing data is useless for the formation of numerical models of underground coal gasification(PGU). Thermal deformation occurs during PGU to the extent that rock is deformed, the roof collapses, rock settles, and changes occur in the water-bearing layers, and so forth. As PGU progresses, changes occur in the geometry, size, and other characteristics of the volume of the reaction. Data derived from plastic coal in New Mexico (USA) is used to construct a numerical model. This coal was bedded at a depth of 259 meters where itmore » was stratified throughout a mixture of rock. Core drilling was conducted and a geological column was constructed to induce a PGY combustion front with temperatures of 900 degrees. Temperatures of 600 and 300 degrees were encountered 6.1 and 12.2 meters from the front, respectively. A short distance from the front, in a direction away from the placticized material, the temperature of the rock matched the 27 degree temperature in the surrounding rock. Correlational relationships were obtained for stress in rock under different conditions and these correlations were used to appraise the effect of heat on the rock. It was suggested that the heating of rock did, at times, serve to support the roof rock. Similarly, during periods of cooling, this effect lessened. Comparative and optimal test results are appraised with the aid of the numerical model.« less
Fate of a perched crystal layer in a magma ocean
NASA Technical Reports Server (NTRS)
Morse, S. A.
1992-01-01
The pressure gradients and liquid compressibilities of deep magma oceans should sustain the internal flotation of native crystals owing to a density crossover between crystal and liquid. Olivine at upper mantle depths near 250 km is considered. The behavior of a perched crystal layer is part of the general question concerning the fate of any transient crystal carried away from a cooling surface, whether this be a planetary surface or the roof of an intrusive magma body. For magma bodies thicker than a few hundred meters at modest crustal depths, the major cooling surface is the roof even when most solidification occurs at the floor. Importation of cool surroundings must also be invoked for the generation of a perched crystal layer in a magma ocean, but in this case the perched layer is deeply embedded in the hot part of the magma body, and far away from any cooling surface. Other aspects of this study are presented.
Agricultural landscapes are being urbanized throughout the United States, resulting in the degradation of aquatic systems. Fundamental changes in watershed hydrology result from the construction of impervious surfaces (roofs, streets, sidewalks). As impervious surface area ...
Interpretation of the Seattle uplift, Washington, as a passive-roof duplex
Brocher, T.M.; Blakely, R.J.; Wells, R.E.
2004-01-01
We interpret seismic lines and a wide variety of other geological and geophysical data to suggest that the Seattle uplift is a passive-roof duplex. A passive-roof duplex is bounded top and bottom by thrust faults with opposite senses of vergence that form a triangle zone at the leading edge of the advancing thrust sheet. In passive-roof duplexes the roof thrust slips only when the floor thrust ruptures. The Seattle fault is a south-dipping reverse fault forming the leading edge of the Seattle uplift, a 40-km-wide fold-and-thrust belt. The recently discovered, north-dipping Tacoma reverse fault is interpreted as a back thrust on the trailing edge of the belt, making the belt doubly vergent. Floor thrusts in the Seattle and Tacoma fault zones, imaged as discontinuous reflections, are interpreted as blind faults that flatten updip into bedding plane thrusts. Shallow monoclines in both the Seattle and Tacoma basins are interpreted to overlie the leading edges of thrust-bounded wedge tips advancing into the basins. Across the Seattle uplift, seismic lines image several shallow, short-wavelength folds exhibiting Quaternary or late Quaternary growth. From reflector truncation, several north-dipping thrust faults (splay thrusts) are inferred to core these shallow folds and to splay upward from a shallow roof thrust. Some of these shallow splay thrusts ruptured to the surface in the late Holocene. Ages from offset soils in trenches across the fault scarps and from abruptly raised shorelines indicate that the splay, roof, and floor thrusts of the Seattle and Tacoma faults ruptured about 1100 years ago.
Urban particulate pollution reduction by four species of green roof vegetation in a UK city
NASA Astrophysics Data System (ADS)
Speak, A. F.; Rothwell, J. J.; Lindley, S. J.; Smith, C. L.
2012-12-01
Urban particulate pollution in the UK remains at levels which have the potential to cause negative impacts on human health. There is a need, therefore, for mitigation strategies within cities, especially with regards to vehicular sources. The use of vegetation as a passive filter of urban air has been previously investigated, however green roof vegetation has not been specifically considered. The present study aims to quantify the effectiveness of four green roof species - creeping bentgrass (Agrostis stolonifera), red fescue (Festuca rubra), ribwort plantain (Plantago lanceolata) and sedum (Sedum album) - at capturing particulate matter smaller than 10 μm (PM10). Plants were grown in a location away from major road sources of PM10 and transplanted onto two roofs in Manchester city centre. One roof is adjacent to a major traffic source and one roof is characterised more by urban background inputs. Significant differences in metal containing PM10 capture were found between sites and between species. Site differences were explained by proximity to major sources. Species differences arise from differences in macro and micro morphology of the above surface biomass. The study finds that the grasses, A. stolonifera and F. rubra, are more effective than P. lanceolata and S. album at PM10 capture. Quantification of the annual PM10 removal potential was calculated under a maximum sedum green roof installation scenario for an area of the city centre, which totals 325 ha. Remediation of 2.3% (±0.1%) of 9.18 tonnes PM10 inputs for this area could be achieved under this scenario.
Urban particulate pollution reduction by four species of green roof vegetation in a UK city
NASA Astrophysics Data System (ADS)
Speak, A.; Rothwell, J.; Lindley, S.; Smith, C.
2012-12-01
Urban particulate pollution in the UK remains at levels which have the potential to cause negative impacts on human health. There is a need, therefore, for mitigation strategies within cities, especially with regards to vehicular sources. The use of vegetation as a passive filter of urban air has been previously investigated, however green roof vegetation has not been specifically considered. The present study aims to quantify the effectiveness of four green roof species - creeping bentgrass (Agrostis stolonifera), red fescue (Festuca rubra), ribwort plantain (Plantago lanceolata) and sedum (Sedum album) - at capturing particulate matter smaller than 10μm (PM10). Plants were grown in a location away from major road sources of PM10 and transplanted onto two roofs in Manchester city centre. One roof is adjacent to a major traffic source and one roof is characterised more by urban background inputs. Significant differences in metal containing PM10 capture were found between sites and between species. Site differences were explained by proximity to major sources. Species differences arise from differences in macro and micro morphology of the above surface biomass. The study finds that the grasses, A. stolonifera and F. rubra, are more effective than P. lanceolata and S. album at PM10 capture. Quantification of the annual PM10 removal potential was calculated under a maximum sedum green roof installation scenario for an area of the city centre, which totals 325 ha. Remediation of 2.3% (±0.1%) of 9.18 tonnes PM10 inputs for this area could be achieved under this scenario.
Structural design of Kaohsiung Stadium, Taiwan
Watanabe, Hideyuki; Tanno, Yoshiro; Nakai, Masayoshi; Ohshima, Takashi; Suguichi, Akihiro; Lee, William H.; Wang, Jensen
2013-01-01
This paper presents an outline description of the structural design of the main stadium for the World Games held in Kaohsiung City, Taiwan, in 2009. Three new design concepts, unseen in previous stadiums, were proposed and realized: “an open stadium”, “an urban park”, and “a spiral continuous form”. Based on the open stadium concept, simple cantilever trusses in the roof structure were arranged in a delicate rhythm, and a so-called oscillating hoop of steel tubes was wound around the top and bottom surfaces of a group of cantilever trusses to form a continuous spiral form. Also, at the same time by clearly grouping the structural elements of the roof structure, the dramatic effect of the urban park was highlighted by unifying the landscape and the spectator seating area to form the stadium facade. This paper specifically reports on the overview of the building, concepts of structural design, structural analysis of the roof, roof design, foundation design, and an outline of the construction.
Producing superhydrophobic roof tiles.
Carrascosa, Luis A M; Facio, Dario S; Mosquera, Maria J
2016-03-04
Superhydrophobic materials can find promising applications in the field of building. However, their application has been very limited because the synthesis routes involve tedious processes, preventing large-scale application. A second drawback is related to their short-term life under outdoor conditions. A simple and low-cost synthesis route for producing superhydrophobic surfaces on building materials is developed and their effectiveness and their durability on clay roof tiles are evaluated. Specifically, an organic-inorganic hybrid gel containing silica nanoparticles is produced. The nanoparticles create a densely packed coating on the roof tile surface in which air is trapped. This roughness produces a Cassie-Baxter regime, promoting superhydrophobicity. A surfactant, n-octylamine, was also added to the starting sol to catalyze the sol-gel process and to coarsen the pore structure of the gel network, preventing cracking. The application of ultrasound obviates the need to use volatile organic compounds in the synthesis, thereby making a 'green' product. It was also demonstrated that a co-condensation process effective between the organic and inorganic species is crucial to obtain durable and effective coatings. After an aging test, high hydrophobicity was maintained and water absorption was completely prevented for the roof tile samples under study. However, a transition from a Cassie-Baxter to a Wenzel state regime was observed as a consequence of the increase in the distance between the roughness pitches produced by the aging of the coating.
The Photovoltaic Higher Education National Exemplar Facility (PHENEF)
NASA Astrophysics Data System (ADS)
Podbielski, V.; Shaff, D.
1994-04-01
In August 1980, the US Department of Energy awarded the proposed grant to Georgetown University. The grant covered the following tasks: Task 1, The Department of Energy would participate in the building of an academic facility that would facilitate the integration of flat plate photovoltaic roof modules with an optimally oriented solar architecture. The completion of the facility to be built on the Georgetown University Campus and known as the Georgetown University Intercultural Center was to be a jointly funded endeavor with the Department of Education funding $9.2M through a grant and a loan, Department of Energy funding a maximum of $4M and Georgetown University funding the residual costs. Task 2, Georgetown University would provide the necessary skills, services, materials, equipment and facilities to design, furnish, install and make operational the Georgetown University Intercultural Center Photovoltaic System. The specific objective of this effort would be to build an exemplar flat plate electrical grid connected photovoltaic (PV) system which would demonstrate integration of PV modules into a watertight roofing surface. The system capability, measured at the input to the inverter, would be a 300 kilowatt peak power system as measured at the normal cell operating temperature and an isolation of 100 milliwatts per square centimeter at the collector surface. DOE funding under the grant for the PV system would be limited to a system cost of $20.00 per peak watt up to maximum of six million dollars.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akbari, Hashem; Rose, Leanna Shea
2001-10-30
Urban fabric data are needed in order to estimate the impactof light-colored surfaces (roofs and pavements) and urban vegetation(trees, grass, shrubs) on the meteorology and air quality of a city, andto design effective implementation programs. In this report, we discussthe result of a semi-automatic Monte-Carlo statistical approach used todevelop data on surface-type distribution and city-fabric makeup(percentage of various surface-types) using aerial colororthophotography. The digital aerial photographs for metropolitan Chicagocovered a total of about 36 km2 (14 mi2). At 0.3m resolution, there wereapproximately 3.9 x 108 pixels of data. Four major land-use types wereexamined: commercial, industrial, residential, andtransportation/communication. On average, formore » the areas studied, atground level vegetation covers about 29 percent of the area (ranging 4 80percent); roofs cover about 25 percent (ranging 8 41 percent), and pavedsurfaces about 33 percent (ranging 12 59 percent). For the most part,trees shade streets, parking lots, grass, and side-walks. In commercialareas, paved surfaces cover 50 60 percent of the area. In residentialareas, on average, paved surfaces cover about 27percent of the area.Land-use/land-cover (LULC) data from the United States Geological Surveywas used to extrapolate these results from neighborhood scales tometropolitan Chicago. In an area of roughly 2500 km2, defining most ofmetropolitan Chicago, over 53 percent is residential. The total roof areais about 680 km2, and the total paved surfaces (roads, parking areas,sidewalks) are about 880 km2. The total vegetated area is about 680km2.« less
Leaf and life history traits predict plant growth in a green roof ecosystem.
Lundholm, Jeremy; Heim, Amy; Tran, Stephanie; Smith, Tyler
2014-01-01
Green roof ecosystems are constructed to provide services such as stormwater retention and urban temperature reductions. Green roofs with shallow growing media represent stressful conditions for plant survival, thus plants that survive and grow are important for maximizing economic and ecological benefits. While field trials are essential for selecting appropriate green roof plants, we wanted to determine whether plant leaf traits could predict changes in abundance (growth) to provide a more general framework for plant selection. We quantified leaf traits and derived life-history traits (Grime's C-S-R strategies) for 13 species used in a four-year green roof experiment involving five plant life forms. Changes in canopy density in monocultures and mixtures containing one to five life forms were determined and related to plant traits using multiple regression. We expected traits related to stress-tolerance would characterize the species that best grew in this relatively harsh setting. While all species survived to the end of the experiment, canopy species diversity in mixture treatments was usually much lower than originally planted. Most species grew slower in mixture compared to monoculture, suggesting that interspecific competition reduced canopy diversity. Species dominant in mixture treatments tended to be fast-growing ruderals and included both native and non-native species. Specific leaf area was a consistently strong predictor of final biomass and the change in abundance in both monoculture and mixture treatments. Some species in contrasting life-form groups showed compensatory dynamics, suggesting that life-form mixtures can maximize resilience of cover and biomass in the face of environmental fluctuations. This study confirms that plant traits can be used to predict growth performance in green roof ecosystems. While rapid canopy growth is desirable for green roofs, maintenance of species diversity may require engineering of conditions that favor less aggressive species.
Characterizing the fabric of the urban environment: A case study of Greater Houston, Texas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rose, Leanna Shea; Akbari, Hashem; Taha, Haider
2003-01-15
In this report, the materials and various surface types that comprise a city are referred to as the ''urban fabric.'' Urban fabric data are needed in order to estimate the impact of light-colored surfaces (roofs and pavements) and urban vegetation (trees, grass, shrubs) on the meteorology and air quality of a city, and to design effective urban environmental implementation programs. We discuss the results of a semi-automatic Monte-Carlo statistical approach used to develop data on surface-type distribution and city-fabric makeup (percentage of various surface-types) using aerial color orthophotography. The digital aerial photographs for Houston covered a total of about 52more » km2 (20 mi2). At 0.30-m resolution, there were approximately 5.8 x 108 pixels of data. Four major land-use types were examined: (1) commercial, (2) industrial, (3) educational, and (4) residential. On average, for the regions studied, vegetation covers about 39 percent of the area, roofs cover about 21 percent, and paved surfaces cover about 29 percent. For the most part, trees shade streets, parking lots, grass, and sidewalks. At ground level, i.e., view from below the vegetation canopies, paved surfaces cover about 32 percent of the study area. GLOBEIS model data from University of Texas and land-use/land-cover (LULC) information from the United States Geological Survey (USGS) were used to extrapolate these results from neighborhood scales to Greater Houston. It was found that in an area of roughly 3,430 km2, defining most of Greater Houston, over 56 percent is residential. The total roof area is about 740 km2, and the total paved surface area (roads, parking areas, sidewalks) covers about 1000 km2. Vegetation covers about 1,320 km2.« less
Characterizing the fabric of the urban environment: A case study of Salt Lake City, Utah
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akbari, Hashem; Rose, L. Shea
2001-02-28
Urban fabric data are needed in order to estimate the impact of light-colored surfaces (roofs and pavements) and urban vegetation (trees, grass, shrubs) on the meteorology and air quality of a city, and to design effective implementation programs. In this report, we discuss the result of a semi-automatic Monte-Carlo statistical approach used to develop data on surface-type distribution and city-fabric makeup (percentage of various surface-types) using aerial color orthophotography. The digital aerial photographs for Salt Lake City covered a total of about 34 km2 (13 mi2). At 0.50-m resolution, there were approximately 1.4 x 108 pixels of data. Four majormore » land-use types were examined: (1) commercial, (2) industrial, (3) educational, and (4) residential. On average, for the areas studied, vegetation covers about 46 percent of the area (ranging 44-51 percent), roofs cover about 21 percent (ranging 15-24 percent), and paved surfaces about 26 percent (ranging 21-28 percent). For the most part, trees shade streets, parking lots, grass, and sidewalks. In most non-residential areas, paved surfaces cover 46-66 percent of the area. In residential areas, on average, paved surfaces cover about 32 percent of the area. Land-use/land-cover (LU/LC) data from the United States Geological Survey were used to extrapolate these results from neighborhood scales to metropolitan Salt Lake City. In an area of roughly 560 km2, defining most of metropolitan Salt Lake City, over 60 percent is residential. The total roof area is about 110 km2, and the total paved surface area (roads, parking areas, sidewalks) covers about 170 km2. The total vegetated area covers about 230 km2.« less
Tropical stormwater floods: a sustainable solution
NASA Astrophysics Data System (ADS)
Molinie, Jack; Bade, Francois; Nagau, Jimmy; Nuiro, Paul
2017-04-01
Stormwater management is one of the most difficult problem of urban and suburban area. The urban runoff volume related to rain intensity and surfaces properties can lead to flood. Thereby, urban flooding creates considerable infrastructure problem, economics and human damages. In tropical countries, burgeoning human population coupled with unplanned urbanization altered the natural drainage. Consequently, classical intense rain around 100 cm/h produces frequent street flooding. In our case, we study the management of intense tropical rain, by using a network of individual rain storage tanks. The study area is economical and industrial zone installed in a coastal plain , with seventy per cent of impermeable surface (roads, parking lots, building roof, …) and thirty per cent of wetland (mangrove, …). Our solution is to delay the routes and parking lots runoff to the roof one. We propose sustainable individual water storage and a real time dynamical management, which permit to control the roof water arrival in the stormwater culvert. During the remaining time, the stored rainwater can be used for domestic activities instead of the use of drinking water.
Reduction of zinc emissions from buildings; the policy of Amsterdam.
Gouman, E
2004-01-01
In Amsterdam zinc coming from the roofs and gutters of the buildings accounts for about 50% of the zinc emissions into the surface water (i.e. canals and rivers). This causes water and sediment pollution. Dumping strongly polluted sediment costs ten times more then dumping less polluted mud. Therefore the City of Amsterdam has developed a policy for reducing the zinc emissions from buildings based on the current environmental legislation and the current national targets for surface water quality. Zinc roofs on new and renovated buildings are not permitted. Run off water from zinc roofs of existing buildings is allowed to contain a maximum of 200 microg/l zinc. For the zinc gutters of houses, Amsterdam will promote measures to reduce zinc emissions. To investigate the feasibility of measures, research has been carried out on the zinc emissions of gutters and the effect of covering gutters with an impermeable foil. This research shows clearly that covering zinc gutters with EPDM foil reduces the zinc emissions by 90% from 8.5 to 0.88 gram per square metre per year including the atmospheric deposition.
Odnevall Wallinder, I; Hedberg, Y; Dromberg, P
2009-12-01
Release of copper from a naturally aged copper roof on a shopping centre building in a suburban site of Stockholm has been measured during different rain events after its interaction with the internal drainage system and storm drains made of cast iron and concrete. Concentrations of copper removed by means of urban storm water from a nearby parking space have been determined for comparison. Predictions and measurements of the chemical speciation of released copper are discussed compared to the total concentration, and to threshold values for freshwater and drinking water. The results clearly illustrate that the major part of the released copper from the roof is readily retained already during transport through the internal drainage system of the building, a pathway that also changes the chemical speciation of released copper and its bioavailable fraction. Most copper, not retained by cast iron and concrete surfaces, was strongly complexed to organic matter. The median concentration of free cupric ions and weak copper complexes was less than, or within the range of reported no effect concentrations, NOECs, of copper in surface waters. The parking space contributed with significantly higher and time-dependent concentrations of total copper compared to measured concentrations of copper from the roof after the interaction with the drainage system. Most copper in the surface runoff water was strongly complexed with organic matter, hence reducing the bioavailable fraction significantly to concentrations within the NOEC range. Dilution with other sources of urban storm water will reduce the released concentration of copper even further. The results illustrate that already the internal drainage system and the storm drains made of cast iron and concrete act as efficient sinks for released copper which means that any installation of additional infiltration devices is redundant.
Green Infrastructure and Watershed-Scale Hydrology in Mixed Land Cover System
Urbanization results in replacement of pervious areas (e.g., vegetation, topsoil) with impervious surfaces such as roads, roofs, and parking lots, which cause reductions in interception, evapotranspiration, and infiltration, and increases in surface runoff (overland flow) and pol...
2010-04-01
could result in higher maintenance costs. For example, a wood-frame building finished with a shingle roof might have higher maintenance costs over the...long term compared to a building finished with a steel roof because the shingles would have to be replaced periodically over the life of the...because the exterior surfaces and interior finishes for both the midrise building and separate housing units were very similar, no difference in
[Pollution Characteristics of Surface Runoff of Typical Town in Chongqing City].
Wang, Long-tao; Duan, Bing-zheng; Zhao, Jian-wei; Hua, Yu-mei; Zhu, Duan-wei
2015-08-01
Six kinds of impermeable underlying surface, cement tile roof, asbestos roof, cement flat roof, residential concrete pavement, asphalt pavement of restaurants, asphalt pavement of oil depot, and a combined sewer overflow canal in the Jiansheng town of Dadukou district in Chongqing city were chosen as sample plots to study the characteristics of nutritional pollutants and heavy metals in town runoff. The research showed that the average mass concentrations of TSS, COD, TN, TP in road runoff were (1681.2 +/- 677.2), (1154.7 +/- 415.5), (12.07 +/- 2.72), (3.32 +/- 1.15) mgL(-1), respectively. These pollutants were higher than those in roof runoff which were (13.3 +/- 6.5), (100.4 +/- 24.8), (3.58 +/- 0.70), (0.10 +/- 0.02) mg x L(-1), respectively. TDN accounted for 62.60% +/- 34.38% of TN, and TDP accounted for 42.22% +/- 33.94% of TP in the runoff of impermeable underlying surface. Compared with the central urban runoff, town runoff in our study had higher mass concentrations of these pollutants. The mass concentrations of TSS, COD, TDN, TN, TDP and TP in the combined sewer overflow were (281.57 +/- 308.38), (231.21 +/- 42.95), (8.16 +/- 2.78), (10.60 +/- 3.94), (0.38 +/- 0.23) and (1.51 +/- 0.75) mg x L(-1), respectively. The average levels of heavy metals in this kind of runoff did not exceed the class VI level of the surface water environmental quality standard. Most pollutants in the combined sewer overflow had first flush. However, this phenomenon was very rare for TSS. There was a significant positive correlation between TSS and COD, TP in the combined sewer overflow. And this correlation was significant between NH4+ -N and TP, TDP, TN, TDP. However, a negative correlation existed between NO3- -N and all other indicators.
Kis, Zoltán; Eged, Katalin; Voigt, Gabriele; Meckbach, Reinhard; Müller, Heinz
2004-02-01
External gamma exposures from radionuclides deposited on surfaces usually result in the major contribution to the total dose to the public living in urban-industrial environments. The aim of the paper is to give an example for a calculation of the collective and averted collective dose due to the contamination and decontamination of deposition surfaces in a complex environment based on the results of Monte Carlo simulations. The shielding effects of the structures in complex and realistic industrial environments (where productive and/or commercial activity is carried out) were computed by the use of Monte Carlo method. Several types of deposition areas (walls, roofs, windows, streets, lawn) were considered. Moreover, this paper gives a summary about the time dependence of the source strengths relative to a reference surface and a short overview about the mechanical and chemical intervention techniques which can be applied in this area. An exposure scenario was designed based on a survey of average German and Hungarian supermarkets. In the first part of the paper the air kermas per photon per unit area due to each specific deposition area contaminated by 137Cs were determined at several arbitrary locations in the whole environment relative to a reference value of 8.39 x 10(-4) pGy per gamma m(-2). The calculations provide the possibility to assess the whole contribution of a specific deposition area to the collective dose, separately. According to the current results, the roof and the paved area contribute the most part (approximately 92%) to the total dose in the first year taking into account the relative contamination of the deposition areas. When integrating over 10 or 50 y, these two surfaces remain the most important contributors as well but the ratio will increasingly be shifted in favor of the roof. The decontamination of the roof and the paved area results in about 80-90% of the total averted collective dose in each calculated time period (1, 10, 50 y).
2002-09-01
bitumens, EPDM , and PVC. Most heat-driven aging tests for building materials use a temperature of 70 °C. Ultraviolet radiation exposure in the...of 0.85 mm/sec. These samples generated three types of load-strain curves. A relatively straight line was generated by each EPDM rubber sample...Mathey 1974) at -18 °C. Except for the EPDM rubber membranes and Sample H, all samples tested comply with this suggested requirement. Sample H is an
On the effect of tilted roof reflectors in Martin-Puplett spectrometers
NASA Astrophysics Data System (ADS)
Schillaci, Alessandro; de Bernardis, Paolo
2012-01-01
In this paper we analyze theoretically and experimentally the effect of tilt of the roof mirrors in a double pendulum Martin-Puplett Polarizing Interferometer (MPI), focusing on the polarization of the interfering beams. In principle, the tilt affects the efficiency and polarimetric properties of the interferometer. The case of a moderate resolution spectrometer is analysed in detail. Using the Stokes formalism we recover the analytical expressions for the orientation angle and the ellipticity of the beam reflected from a metallic surface, and we compute these quantities for the roof-mirror of a MPI. We find that the polarization rotation and depolarization are small. Using the Jones formalism we propagate their effect on the measured interferogram and spectrum, and demonstrate that the performance degradation is small compared to other systematic effects.
Mitigating the surface urban heat island: Mechanism study and sensitivity analysis
NASA Astrophysics Data System (ADS)
Meng, Chunlei
2017-08-01
In a surface urban heat island (SUHI), the urban land surface temperature (LST) is usually higher than the temperature of the surrounding rural areas due to human activities and surface characteristics. Because a SUHI has many adverse impacts on urban environment and human health, SUHI mitigation strategies are very important. This paper investigates the mechanism of a SUHI based on the basic physical laws that control the formation of a SUHI; five mitigation strategies are proposed, namely: sprinkling and watering; paving a pervious surface; reducing the anthropogenic heat (AH) release; using a "white roof"; increasing the fractional vegetation cover or leaf area index (LAI). To quantify the effect of these mitigation strategies, 26 sets of experiments are designed and implemented by running the integrated urban land model (IUM). The results of the sensitivity analysis indicate that sprinkling and watering is an effective measure for mitigating a SUHI for an entire day. Decreasing the AH release is also useful for both night- and daytime SUHI mitigation; however, the cooling extent is proportional to the diurnal cycle of AH. Increasing the albedo can reduce the LST in the daytime, especially when the solar radiation is significant; the cooling extent is approximately proportional to the diurnal cycle of the net radiation. Increasing the pervious surface percentage can mitigate the SUHI especially in the daytime. Increasing the fractional vegetation cover can mitigate the SUHI in the daytime but may aggravate the SUHI at night.
Regulating urban surface runoff through nature-based solutions - An assessment at the micro-scale.
Zölch, Teresa; Henze, Lisa; Keilholz, Patrick; Pauleit, Stephan
2017-08-01
Urban development leads to changes of surface cover that disrupt the hydrological cycle in cities. In particular, impermeable surfaces and the removal of vegetation reduce the ability to intercept, store and infiltrate rainwater. Consequently, the volume of stormwater runoff and the risk of local flooding rises. This is further amplified by the anticipated effects of climate change leading to an increased frequency and intensity of heavy rain events. Hence, urban adaptation strategies are required to mitigate those impacts. A nature-based solution, more and more promoted in politics and academia, is urban green infrastructure as it contributes to the resilience of urban ecosystems by providing services to maintain or restore hydrological functions. However, this poses a challenge to urban planners in deciding upon effective adaptation measures as they often lack information on the performance of green infrastructure to moderate surface runoff. It remains unclear what type of green infrastructure (e.g. trees, green roofs), offers the highest potential to reduce discharge volumes and to what extent. Against this background, this study provides an approach to gather quantitative evidence on green infrastructure's regulation potential. We use a micro-scale scenario modelling approach of different variations of green cover under current and future climatic conditions. The scenarios are modelled with MIKE SHE, an integrated hydrological simulation tool, and applied to a high density residential area of perimeter blocks in Munich, Germany. The results reveal that both trees and green roofs increase water storage capacities and hence reduce surface runoff, although the main contribution of trees lies in increasing interception and evapotranspiration, whereas green roofs allow for more retention through water storage in their substrate. With increasing precipitation intensities as projected under climate change their regulating potential decreases due to limited water storage capacities. The performance of both types stays limited to a maximum reduction of 2.4% compared to the baseline scenario, unless the coverage of vegetation and permeable surfaces is significantly increased as a 14.8% reduction is achieved by greening all roof surfaces. We conclude that the study provides empirical support for the effectiveness of urban green infrastructure as nature-based solution to stormwater regulation and assists planners and operators of sewage systems in selecting the most effective measures for implementation and estimation of their effects. Copyright © 2017 Elsevier Inc. All rights reserved.
Comparison of Software Models for Energy Savings from Cool Roofs
DOE Office of Scientific and Technical Information (OSTI.GOV)
New, Joshua Ryan; Miller, William A; Huang, Yu
2014-01-01
A web-based Roof Savings Calculator (RSC) has been deployed for the United States Department of Energy as an industry-consensus tool to help building owners, manufacturers, distributors, contractors and researchers easily run complex roof and attic simulations. This tool employs modern web technologies, usability design, and national average defaults as an interface to annual simulations of hour-by-hour, whole-building performance using the world-class simulation tools DOE-2.1E and AtticSim in order to provide estimated annual energy and cost savings. In addition to cool reflective roofs, RSC simulates multiple roof and attic configurations including different roof slopes, above sheathing ventilation, radiant barriers, low-emittance roofmore » surfaces, duct location, duct leakage rates, multiple substrate types, and insulation levels. A base case and energy-efficient alternative can be compared side-by-side to estimate monthly energy. RSC was benchmarked against field data from demonstration homes in Ft. Irwin, California; while cooling savings were similar, heating penalty varied significantly across different simulation engines. RSC results reduce cool roofing cost-effectiveness thus mitigating expected economic incentives for this countermeasure to the urban heat island effect. This paper consolidates comparison of RSC s projected energy savings to other simulation engines including DOE-2.1E, AtticSim, Micropas, and EnergyPlus, and presents preliminary analyses. RSC s algorithms for capturing radiant heat transfer and duct interaction in the attic assembly are considered major contributing factors to increased cooling savings and heating penalties. Comparison to previous simulation-based studies, analysis on the force multiplier of RSC cooling savings and heating penalties, the role of radiative heat exchange in an attic assembly, and changes made for increased accuracy of the duct model are included.« less
Flexible roof drill for low coal. Volume 2. Phase III and Phase IV
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shoup, N.H.
1977-09-01
Design specifications were developed for a flexible drilling and bolting system. The system configuration is based on the use of the Galis dual-boom roof drill as a vehicle for the drilling/bolting system. The WSU Flex-drill drivehead is mounted on the Galis drill boom and the Galis parts are modified to accommodate the revised system. The flexible drillhead supports a bolt bender/inserter designed by Bendix Corporation and is integrated into the system operation. A supplemental bolt thruster was designed to complete insertion of the roof bolt following operation and removal of the Bendix bender from the bolt shank. The complete cyclemore » of drilling a 1-3/8-in. diameter bolt hole, bending a roof bolt into the hole, thrusting the bolt head and washer to the roof surface, and final torquing of the bolt is manually controlled by the operator located in the new position behind the bolting line. The new operating position is beneath newly bolted roof in a safer location in back of the stab jack ad roof jacks positioning the drill boom and drivehead. The Flex-drill/bolting system prototype was constructed from both purchased components and parts specially fabricated in the shops for this design. This unit was assembled and test-operated with appropriate support equipment in a laboratory test stand. Numerous test holes were drilled in blocks of concrete at feed rates of 5 ft/min with drill rotation speeds of 360 rpm. The drill feeds uniformly and cuts smoothly with no difficulty in collection of dust or clogging of the drill bit. The holes drilled were straight, as evidence by passage of a 1-1/4-in. diameter bar full depth into the hole with no binding or evidence of curvature. The flexible drill is capable of drilling 8-ft-deep roof bolt holes in low coal 36 in. in height.« less
Huang, J; Du, P; Ao, C; Ho, M; Lei, M; Zhao, D; Wang, Z
2007-12-01
Statistical analysis of stormwater runoff data enables general identification of runoff characteristics. Six catchments with different urban surface type including roofs, roadway, park, and residential/commercial in Macau were selected for sampling and study during the period from June 2005 to September 2006. Based on univariate statistical analysis of data sampled, major pollutants discharged from different urban surface type were identified. As for iron roof runoff, Zn is the most significant pollutant. The major pollutants from urban roadway runoff are TSS and COD. Stormwater runoff from commercial/residential and Park catchments show high level of COD, TN, and TP concentration. Principal component analysis was further done for identification of linkages between stormwater quality and urban surface types. Two potential pollution sources were identified for study catchments with different urban surface types. The first one is referred as nutrients losses, soil losses and organic pollutants discharges, the second is related to heavy metals losses. PCA was proved to be a viable tool to explain the type of pollution sources and its mechanism for different urban surface type catchments.
Inclusion of cool roofs in nonresidential Title 24 prescriptiverequirements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Levinson, Ronnen; Akbari, Hashem; Konopacki, Steve
2003-07-01
Roofs that have high solar reflectance (high ability toreflect sunlight) and high thermal emittance (high ability to radiateheat) tend to stay cool in the sun. The same is true of low-emittanceroofs with exceptionally high solar reflectance. Substituting a cool rooffor a non-cool roof tends to decrease cooling electricity use, coolingpower demand, and cooling-equipment capacity requirements, while slightlyincreasing heating energy consumption. Cool roofs can also lower citywideambient air temperature in summer, slowing ozone formation and increasinghuman comfort.DOE-2.1E building energy simulations indicate that use of acool roofing material on a prototypical California nonresidential (NR)building with a low-sloped roof yields average annual coolingmore » energysavings of approximately 3.2 kW h/m2 (300 kW h/1000 ft2), average annualnatural gas deficits of 5.6 MJ/m2 (4.9 therm/1000 ft2), average annualsource energy savings of 30 MJ/m2 (2.6 MBTU/1000 ft2), and average peakpower demand savings of 2.1 W/m2 (0.19 kW/1000 ft2). The 15-year netpresent value (NPV) of energy savings averages $4.90/m2 ($450/1000 ft2)with time-dependent valuation (TDV), and $4.00/m2 ($370/1000 ft2) withoutTDV. When cost savings from downsizing cooling equipment are included,the average total savings (15-year NPV+equipment savings) rises to$5.90/m2 ($550/1000 ft2) with TDV, and to $5.00/m2 ($470/1000 ft2)without TDV.Total savings range from 1.90 to 8.30 $/m2 (0.18 0.77 $/ft2)with TDV, and from 1.70 to 7.10 $/m2 (0.16 0.66 $/ft2) without TDV,across California's 16 climate zones. The typical cost premium for a coolroof is 0.00 2.20 $/m2 (0.00 0.20 $/ft2). Cool roofs with premiums up to$2.20/m2 ($0.20/ft2) are expected to be cost effective in climate zones 216; those with premiums not exceeding $1.90/m2 ($0.18/ft2) are expectedto be also cost effective in climate zone 1. Hence, this study recommendsthat the year-2005 California building energy efficiency code (Title 24,Part 6 of the California Code of Regulations) for NR buildings withlow-sloped roofs include a cool-roof prescriptive requirement in allCalifornia climate zones. Buildings with roofs that do not meetprescriptive requirements may comply with the code via an"overall-envelope" approach (non-metal roofs only), or via a performanceapproach (all roof types).« less
Gourdji, Shannon
2018-05-28
In urbanized regions with expansive impervious surfaces and often low vegetation cover, air pollution due to motor vehicles and other combustion sources, is a problem. The poor air quality days in Montreal, Quebec are mainly due to fine particulate matter and ozone. Businesses using wood ovens are a source of particulates. Careful vegetation selection and increased green roof usage can improve air quality. This paper reviews different green roofs and the capability of plants in particulate matter (PM), ozone (O 3 ) as well as nitrogen dioxide (NO 2 ) level reductions. Both the recommended green roof category and plants to reduce these pollutants in Montreal's zone 5 hardiness region are provided. Green roofs with larger vegetation including shrubs and trees, or intensive green roofs, remove air pollutants to a greater extent and are advisable to implement on existing, retrofitted or new buildings. PM is most effectively captured by pines. The small Pinus strobus 'Nana', Pinus mugho var. pumilio, Pinus mugho 'Slowmound' and Pinus pumila 'Dwarf Blue' are good candidates for intensive green roofs. Drought tolerant, deciduous broadleaved trees with low biogenic volatile organic compound emissions including Japanese Maple or Acer palmatum 'Shaina' and 'Mikawa-Yatsubusa' are options to reduce O 3 levels. Magnolias are tolerant to NO 2 and it is important in their metabolic pathways. The small cold-tolerant Magnolia 'Genie' is a good option to remove NO 2 in urban settings and to indirectly reduce O 3 formation. Given the emissions by Montreal businesses' wood ovens, calculations performed based on their respective complex roof areas obtained via Google Earth Pro indicates 88% Pinus mugho var. pumilio roof coverage can annually remove 92.37 kg of PM 10 of which 35.10 kg is PM 2.5 . The removal rates are 4.00 g/m 2 and 1.52 g/m 2 for PM 10 and PM 2.5 , respectively. This paper provides insight to addressing air pollution through urban rooftop greening. Copyright © 2018 Elsevier Ltd. All rights reserved.
Buried object remote detection technology for law enforcement
NASA Astrophysics Data System (ADS)
del Grande, Nancy K.; Clark, Gregory A.; Durbin, Philip F.; Fields, David J.; Hernandez, Jose E.; Sherwood, Robert J.
1991-08-01
A precise airborne temperature-sensing technology to detect buried objects for use by law enforcement is developed. Demonstrations have imaged the sites of buried foundations, walls and trenches; mapped underground waterways and aquifers; and been used to locate underground military objects. The methodology is incorporated in a commercially available, high signal-to-noise, dual-band infrared scanner with real-time, 12-bit digital image processing software and display. The method creates color-coded images based on surface temperature variations of 0.2 degree(s)C. Unlike other less-sensitive methods, it maps true (corrected) temperatures by removing the (decoupled) surface emissivity mask equivalent to 1 degree(s)C or 2 degree(s)C; this mask hinders interpretation of apparent (blackbody) temperatures. Once removed, it is possible to identify surface temperature patterns from small diffusivity changes at buried object sites which heat and cool differently from their surroundings. Objects made of different materials and buried at different depths are identified by their unique spectral, spatial, thermal, temporal, emissivity and diffusivity signatures. The authors have successfully located the sites of buried (inert) simulated land mines 0.1 to 0.2 m deep; sod-covered rock pathways alongside dry ditches, deeper than 0.2 m; pavement covered burial trenches and cemetery structures as deep as 0.8 m; and aquifers more than 6 m and less than 60 m deep. The technology could be adapted for drug interdiction and pollution control. For the former, buried tunnels, underground structures built beneath typical surface structures, roof-tops disguised by jungle canopies, and covered containers used for contraband would be located. For the latter, buried waste containers, sludge migration pathways from faulty containers, and the juxtaposition of groundwater channels, if present, nearby, would be depicted. The precise airborne temperature-sensing technology has a promising potential to detect underground epicenters of smuggling and pollution.
Instruments to reduce the leaching of heavy metals from building materials in the Netherlands.
van Breemen, A J H; Vermij, P H M
2007-01-01
In the Netherlands the leaching of heavy metals from metal building and constructing materials results in serious contamination problems in the water system. The most common sources of these heavy metals in construction materials are copper waterworks and roofs, zinc roofs, gutters and rain pipes, zinced steel, stainless steel, and lead sealing material. In urban waters the surface water and sediment standards are often exceeded. Although building and construction materials are certainly not the only source of heavy metals, they are an important part of the problem. This article focuses on six instruments that are in use in the Netherlands to try to reduce impact on the surface waters. In addition to this, national as well as international, a reconsideration of the risks and surface water standards for several heavy metals is considered. A balanced use of instruments can be considered as the application of a best practice.
Surface roughness effects on the solar reflectance of cool asphalt shingles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akbari, Hashem; Berdahl, Paul; Akbari, Hashem
2008-02-17
We analyze the solar reflectance of asphalt roofing shingles that are covered with pigmented mineral roofing granules. The reflecting surface is rough, with a total area approximately twice the nominal area. We introduce a simple analytical model that relates the 'micro-reflectance' of a small surface region to the 'macro-reflectance' of the shingle. This model uses a mean field approximation to account for multiple scattering effects. The model is then used to compute the reflectance of shingles with a mixture of different colored granules, when the reflectances of the corresponding mono-color shingles are known. Simple linear averaging works well, with smallmore » corrections to linear averaging derived for highly reflective materials. Reflective base granules and reflective surface coatings aid achievement of high solar reflectance. Other factors that influence the solar reflectance are the size distribution of the granules, coverage of the asphalt substrate, and orientation of the granules as affected by rollers during fabrication.« less
NASA Astrophysics Data System (ADS)
Jiménez, S. A.; Carrillo, V. M.; Rátiva, L. C.
2016-02-01
This document shows the estimate of the total solar irradiance incident for the set of solar collectors to be located on the roof of cultural and sports university centre (CSUC) of the Foundation University Los Libertadores (FULL) in Bogotá, Colombia, and they will be part of the climate control system of the pool built inside. The calculation was based on experimental data of global solar radiation on the horizontal surface on March, July, October, November and December, through the three most commonly models used to determine the total solar radiation on tilted surfaces: isotropic sky, HDKR and Perez. The results show differences of less than 5% between the values calculated by the three models for December, the month with lower irradiance. For this month, reductions up to 15% and 19% were observed in the estimated irradiance, relative to those obtained on a horizontal surface on a surface under ideal orientation and inclination, respectively.
Automated Reconstruction of Historic Roof Structures from Point Clouds - Development and Examples
NASA Astrophysics Data System (ADS)
Pöchtrager, M.; Styhler-Aydın, G.; Döring-Williams, M.; Pfeifer, N.
2017-08-01
The analysis of historic roof constructions is an important task for planning the adaptive reuse of buildings or for maintenance and restoration issues. Current approaches to modeling roof constructions consist of several consecutive operations that need to be done manually or using semi-automatic routines. To increase efficiency and allow the focus to be on analysis rather than on data processing, a set of methods was developed for the fully automated analysis of the roof constructions, including integration of architectural and structural modeling. Terrestrial laser scanning permits high-detail surveying of large-scale structures within a short time. Whereas 3-D laser scan data consist of millions of single points on the object surface, we need a geometric description of structural elements in order to obtain a structural model consisting of beam axis and connections. Preliminary results showed that the developed methods work well for beams in flawless condition with a quadratic cross section and no bending. Deformations or damages such as cracks and cuts on the wooden beams can lead to incomplete representations in the model. Overall, a high degree of automation was achieved.
Coupled Finite Volume and Finite Element Method Analysis of a Complex Large-Span Roof Structure
NASA Astrophysics Data System (ADS)
Szafran, J.; Juszczyk, K.; Kamiński, M.
2017-12-01
The main goal of this paper is to present coupled Computational Fluid Dynamics and structural analysis for the precise determination of wind impact on internal forces and deformations of structural elements of a longspan roof structure. The Finite Volume Method (FVM) serves for a solution of the fluid flow problem to model the air flow around the structure, whose results are applied in turn as the boundary tractions in the Finite Element Method problem structural solution for the linear elastostatics with small deformations. The first part is carried out with the use of ANSYS 15.0 computer system, whereas the FEM system Robot supports stress analysis in particular roof members. A comparison of the wind pressure distribution throughout the roof surface shows some differences with respect to that available in the engineering designing codes like Eurocode, which deserves separate further numerical studies. Coupling of these two separate numerical techniques appears to be promising in view of future computational models of stochastic nature in large scale structural systems due to the stochastic perturbation method.
40 CFR 63.11567 - Who implements and enforces this subpart?
Code of Federal Regulations, 2010 CFR
2010-07-01
... Processing and Asphalt Roofing Manufacturing Other Requirements and Information § 63.11567 Who implements and...). 2. A high-efficiency air filter or fiber bed filter a. Inlet gas temperature b, andb. Pressure drop... the inlet gas temperature and pressure drop, you can use a leak detection system that identifies when...
40 CFR Table 4 of Subpart Aaaaaaa... - Operating Limits
Code of Federal Regulations, 2010 CFR
2010-07-01
... Roofing Manufacturing Other Requirements and Information Who implements and enforces this subpart? Pt. 63... filter or fiber bed filter a. Inlet gas temperature b, andb. Pressure drop across device b The 3-hour... temperature and pressure drop, you can use a leak detection system that identifies when the filter media has...
40 CFR Table 4 of Subpart Aaaaaaa... - Operating Limits
Code of Federal Regulations, 2011 CFR
2011-07-01
... Roofing Manufacturing Other Requirements and Information Who implements and enforces this subpart? Pt. 63... filter or fiber bed filter a. Inlet gas temperature b, andb. Pressure drop across device b The 3-hour... temperature and pressure drop, you can use a leak detection system that identifies when the filter media has...
Regional climate model assessment of the urban land-surface forcing over central Europe
NASA Astrophysics Data System (ADS)
Huszar, P.; Halenka, T.; Belda, M.; Zak, M.; Sindelarova, K.; Miksovsky, J.
2014-07-01
For the purpose of qualifying and quantifying the climate impact of cities and urban surfaces in general on climate of central Europe, the surface parameterization in regional climate model RegCM4 has been extended with the Single Layer Urban Canopy Model (SLUCM). A set of experiments was performed over the period of 2005-2009 for central Europe, either without considering urban surfaces or with the SLUCM treatment. Results show a statistically significant impact of urbanized surfaces on temperature (up to 1.5 K increase in summer) as well as on the boundary layer height (increases up to 50 m). Urbanization further influences surface wind with a winter decrease up to -0.6 m s-1, though both increases and decreases were detected in summer depending on the location relative to the cities and daytime (changes up to 0.3 m s-1). Urban surfaces significantly reduce evaporation and thus the humidity over the surface. This impacts the simulated summer precipitation rate, showing decrease over cities up to -2 mm day-1. Significant temperature increases are simulated over higher elevations as well, not only within the urban canopy layer. With the urban parameterization, the climate model better describes the diurnal temperature variation, reducing the cold afternoon and evening bias of RegCM4. Sensitivity experiments were carried out to quantify the response of the meteorological conditions to changes in the parameters specific to the urban environment such as street width, building height, albedo of the roofs and anthropogenic heat release. The results proved to be rather robust and the choice of the key SLUCM parameters impacts them only slightly (mainly temperature, boundary layer height and wind velocity). Statistically significant impacts are modeled not only over large urbanized areas, but the influence of the cities is also evident over rural areas without major urban surfaces. It is shown that this is the result of the combined effect of the distant influence of the cities and the influence of the minor local urban surface coverage.
Regional climate model assessment of the urban land-surface forcing over central Europe
NASA Astrophysics Data System (ADS)
Huszar, P.; Halenka, T.; Belda, M.; Zak, M.; Sindelarova, K.; Miksovsky, J.
2014-11-01
For the purpose of qualifying and quantifying the climate impact of cities and urban surfaces in general on climate of central Europe, the surface parameterization in regional climate model RegCM4 has been extended with the Single-layer Urban Canopy Model (SLUCM). A set of experiments was performed over the period of 2005-2009 for central Europe, either without considering urban surfaces or with the SLUCM treatment. Results show a statistically significant impact of urbanized surfaces on temperature (up to 1.5 K increase in summer) as well as on the boundary layer height (increases up to 50 m). Urbanization further influences surface wind with a winter decrease up to -0.6 m s-1, though both increases and decreases were detected in summer depending on the location relative to the cities and daytime (changes up to 0.3 m s-1). Urban surfaces significantly reduce the humidity over the surface. This impacts the simulated summer precipitation rate, showing a decrease over cities of up to -2 mm day-1. Significant temperature increases are simulated over higher altitudes as well, not only within the urban canopy layer. With the urban parameterization, the climate model better describes the diurnal temperature variation, reducing the cold afternoon and evening bias of RegCM4. Sensitivity experiments were carried out to quantify the response of the meteorological conditions to changes in the parameters specific to the urban environment, such as street width, building height, albedo of the roofs and anthropogenic heat release. The results proved to be rather robust and the choice of the key SLUCM parameters impacts them only slightly (mainly temperature, boundary layer height and wind velocity). Statistically significant impacts are modelled not only over large urbanized areas, but the influence of the cities is also evident over rural areas without major urban surfaces. It is shown that this is the result of the combined effect of the distant influence of the cities and the influence of the minor local urban surface coverage.
Utilization of ethyl cellulose polymer and waste materials for roofing tile production
NASA Astrophysics Data System (ADS)
Sam, Suubitaa Spencer; Ng, ChoonAun; Chee, Swee Yong; Habib, NoorZainab; Nadeem, Humayon; Teoh, Wei Ping
2017-05-01
The aim of this study was to utilize ethyl cellulose, mixture of waste engine oil and waste vegetable oil as a binder in the environmental friendly roofing tile production. The waste engine-vegetable oil wasmix together with ethyl cellulose, fly ash, coarse aggregates, fine aggregatesand a catalyst. The Fourier Transform Infrared (FTIR) analysis showed that the oil mixture added with ethyl cellulose has the relatively high binding effect due to the presence of strong carbonyl group especially after being heat cured at 1900C for 24 hours. The mixed proportion of materials with different amount of ethyl cellulose used was studied in the production of tile specimen. The results showed that the ethyl cellulose composed roofing tile specimens passed the transverse breaking strength, durability, permeabilityand the ultraviolet accelerated test. The shrinkage on the tile can be overcome by adding temperature resistance polymer on the exterior of the tile.
NASA Astrophysics Data System (ADS)
Cárdenas, J.; Osma, G.; Caicedo, C.; Torres, A.; Sánchez, S.; Ordóñez, G.
2016-07-01
This research shows the energy analysis of the Electrical Engineering Building, located on campus of the Industrial University of Santander in Bucaramanga - Colombia. This building is a green pilot for analysing energy saving strategies such as solar pipes, green roof, daylighting, and automation, among others. Energy analysis was performed by means of DesignBuilder software from virtual model of the building. Several variables were analysed such as air temperature, relative humidity, air velocity, daylighting, and energy consumption. According to two criteria, thermal load and energy consumption, critical areas were defined. The calibration and validation process of the virtual model was done obtaining error below 5% in comparison with measured values. The simulations show that the average indoor temperature in the critical areas of the building was 27°C, whilst relative humidity reached values near to 70% per year. The most critical discomfort conditions were found in the area of the greatest concentration of people, which has an average annual temperature of 30°C. Solar pipes can increase 33% daylight levels into the areas located on the upper floors of the building. In the case of the green roofs, the simulated results show that these reduces of nearly 31% of the internal heat gains through the roof, as well as a decrease in energy consumption related to air conditioning of 5% for some areas on the fourth and fifth floor. The estimated energy consumption of the building was 69 283 kWh per year.
On the urban land-surface impact on climate over Central Europe
NASA Astrophysics Data System (ADS)
Huszar, Peter; Halenka, Tomas; Belda, Michal; Zemankova, Katerina; Zak, Michal
2014-05-01
For the purpose of qualifying and quantifying the impact of cities and in general the urban surfaces on climate over central Europe, the surface parameterization in regional climate model RegCM4 has been extended with the Single Layer Urban Canopy Model (SLUCM) for urban and suburban land surface. This can be used both in dynamic scale within BATS scheme and in a more detailed SUBBATS scale to treat the surface processes on a higher resolution subgrid. A set of experiments was performed over the period of 2005-2009 over central Europe, either without considering urban surfaces and with the SLUCM treatment. Results show a statistically significant impact of urbanized surfaces on temperature (up to 1.5 K increase in summer), on the boundary layer height (ZPBL, increases up to 50 m). Urbanization further influences surface wind with a winter decrease up to -0,6 m s-1 and both increases and decreases in summer depending the location with respect to cities and daytime (changes up to 0.3 ms-1). Urban surfaces significantly reduce evaporation and thus the humidity over the surface. This impacts in our simulations the summer precipitation rate showing decrease over cities up to - 2 mm day-1. We further showed, that significant temperature increases are not limited to the urban canopy layer but spawn the whole boundary layer. Above that, a small but statistically significant temperature decrease is modeled. The comparison with observational data showed significant improvement in modeling the monthly surface temperatures in summer and the models better describe the diurnal temperature variation reducing the afternoon and evening bias due to the UHI development, which was not captured by the model if one does not apply the urban parameterization. Sensitivity experiments were carried out as well to quantify the response of the meteorological conditions to changes in the parameters specific to the urban environment such as street width, building height, albedo of the roofs, anthropogenic heat release etc. and showed that the results are rather robust and the choice of the key SLUCM parameters impacts the results only slightly (mainly temperature, ZPBL and wind velocity). Further, the important conclusion is that statistically significant impacts are modeled not only over large urbanized areas (cities), but the influence of cities is evident over remote rural areas as well with minor or without any urban surfaces. We show that this is the result of the combined effect of the distant influence of surrounding cities and the influence of the minor local urban surface coverage.
NASA Astrophysics Data System (ADS)
Krayenhoff, E. S.; Georgescu, M.; Moustaoui, M.
2016-12-01
Surface climates are projected to warm due to global climate change over the course of the 21st century, and demographic projections suggest urban areas in the United States will continue to expand and develop, with associated local climate outcomes. Interactions between these two drivers of urban heat have not been robustly quantified to date. Here, simulations with the Weather Research and Forecasting model (coupled to a Single-Layer Urban Canopy Model) are performed at 20 km resolution over the continental U.S. for two 10-year periods: contemporary (2000-2009) and end-of-century (2090-2099). Present and end of century urban land use are derived from the Environmental Protection Agency's Integrated Climate and Land-Use Scenarios. Modelled effects on urban climates are evaluated regionally. Sensitivity to climate projection (Community Climate System Model 4.0, RCP 4.5 vs. RCP 8.5) and associated urban development scenarios are assessed. Effects on near-surface urban air temperature of RCP8.5 climate change are greater than those attributable to the corresponding urban development in many regions. Interaction effects vary by region, and while of lesser magnitude, are not negligible. Moreover, urban development and its interactions with RCP8.5 climate change modify the distribution of convective precipitation over the eastern US. Interaction effects result from the different meteorological effects of urban areas under current and future climate. Finally, the potential for design implementations such as green roofs and high albedo roofs to offset the projected warming is considered. Impacts of these implementations on precipitation are also assessed.
[A review of green roof performance towards management of roof runoff].
Chen, Xiao-ping; Huang, Pei; Zhou, Zhi-xiang; Gao, Chi
2015-08-01
Green roof has a significant influence on reducing runoff volume, delaying runoff-yielding time, reducing the peak flow and improving runoff quality. This paper addressed the related research around the world and concluded from several aspects, i.e., the definition of green roof of different types, the mechanism how green roof manages runoff quantity and quality, the ability how green roof controls roof runoff, and the influence factors of green roof toward runoff quantity and quality. Afterwards, there was a need for more future work on research of green roof toward roof runoff, i.e., vegetation selection of green roof, efficient construction model selection of green roof, the regulating characteristics of green roof on roof runoff, the value assessment of green roof on roof runoff, analysis of source-sink function of green roof on the water pollutants of roof runoff and the research on the mitigation measures of roof runoff pollution. This paper provided a guideline to develop green roofs aiming to regulating roof runoff.
Green roof and storm water management policies: monitoring experiments on the ENPC Blue Green Wave
NASA Astrophysics Data System (ADS)
Versini, Pierre-Antoine; Gires, Auguste; Fitton, George; Tchiguirinskaia, Ioulia; Schertzer, Daniel
2015-04-01
Currently widespread in new urban projects, green roofs have shown a positive impact on urban runoff at the building/parcel scale. Nevertheless, there is no specific policy promoting their implementation neither in Europe nor in France. Moreover they are not taken into account (and usually considered as an impervious area) in the sizing of a retention basin for instance. An interesting example is located in the heart of the Paris-East Cluster for Science and Technology (Champs-sur-Marne, France). Since 2013 a large (1 ha) wavy-form vegetated roof (called bleu green wave) is implemented. Green roof area and impervious areas are connected to a large retention basin, which has been oversized. The blue green wave represents a pioneering site where an initially amenity (decorative) design project has been transformed into a research oriented one. Several measurement campaigns have been conducted to investigate and better understand the hydrological behaviour of such a structure. Rainfall, humidity, wind velocity, water content and temperature have been particularly studied. The data collected are used for several purposes: (i) characterize the spatio-temporal variability of the green roof response, (ii) calibrate and validate a specific model simulating its hydrological behavior. Based on monitoring and modeling results, green roof performances will be quantified. It will be possible to estimate how they can reduce stormwater runoff and how these performances can vary in space and in time depending on green roof configuration, rainfall event characteristics and antecedent conditions. These quantified impacts will be related to regulation rules established by stormwater managers in order to connect the parcel to the sewer network. In the particular case of the building of a retention basin, the integration of green roof in the sizing of the basin will be studied. This work is funded by the European Blue Green Dream project (http://bgd.org.uk/, funded by Climate-KIC) which aims to promote a change of paradigm for efficient planning and management of new urban developments and retrofitting of existing ones to maximize ecosystem services and increase resilience to climate change.
Leaf and Life History Traits Predict Plant Growth in a Green Roof Ecosystem
Lundholm, Jeremy; Heim, Amy; Tran, Stephanie; Smith, Tyler
2014-01-01
Green roof ecosystems are constructed to provide services such as stormwater retention and urban temperature reductions. Green roofs with shallow growing media represent stressful conditions for plant survival, thus plants that survive and grow are important for maximizing economic and ecological benefits. While field trials are essential for selecting appropriate green roof plants, we wanted to determine whether plant leaf traits could predict changes in abundance (growth) to provide a more general framework for plant selection. We quantified leaf traits and derived life-history traits (Grime’s C-S-R strategies) for 13 species used in a four-year green roof experiment involving five plant life forms. Changes in canopy density in monocultures and mixtures containing one to five life forms were determined and related to plant traits using multiple regression. We expected traits related to stress-tolerance would characterize the species that best grew in this relatively harsh setting. While all species survived to the end of the experiment, canopy species diversity in mixture treatments was usually much lower than originally planted. Most species grew slower in mixture compared to monoculture, suggesting that interspecific competition reduced canopy diversity. Species dominant in mixture treatments tended to be fast-growing ruderals and included both native and non-native species. Specific leaf area was a consistently strong predictor of final biomass and the change in abundance in both monoculture and mixture treatments. Some species in contrasting life-form groups showed compensatory dynamics, suggesting that life-form mixtures can maximize resilience of cover and biomass in the face of environmental fluctuations. This study confirms that plant traits can be used to predict growth performance in green roof ecosystems. While rapid canopy growth is desirable for green roofs, maintenance of species diversity may require engineering of conditions that favor less aggressive species. PMID:24978031
Web Growth Used to Confine Screw Dislocations to Predetermined Lateral Positions in 4H-SiC Epilayers
NASA Technical Reports Server (NTRS)
Powell, J. Anthony; Neudeck, Philip G.; Spry, David J.; Trunek, Andrew J.; Beheim, Glenn M.
2004-01-01
Silicon-carbide- (SiC-) based power devices could enable substantial aerospace electronics benefits over today's silicon-based electronics. However, present-day SiC wafers contain electrically harmful dislocations (including micropipes) that are unpredictably distributed in high densities across all commercial 4H- and 6H-SiC wafers. The NASA Glenn Research Center recently demonstrated a crystal growth process that moves SiC wafer dislocations to predetermined lateral positions in epitaxial layers so that they can be reproducibly avoided during subsequent SiC electronic device fabrication. The process starts by reactive ion etching mesa patterns with enclosed trench regions into commercial on-axis (0001) 4H- or 6H-SiC substrates. An example of a pregrowth mesa geometry with six enclosed triangular-shaped trench regions is shown. After the etch mask is stripped, homoepitaxial growth is carried out in pure stepflow conditions that enable thin cantilevers to grow laterally from the tops of mesas whose pregrowth top surfaces are not threaded by substrate screw dislocations. The image in the bottom figure shows the postgrowth structure that forms after the lateral cantilevers expand to coalesce and completely roof over each of the six triangular trench regions. Atomic force microscope (AFM) measurements of the roof revealed that three elementary screw dislocation growth spirals, each shown in the AFM insets of the bottom image on the previous page, formed in the film roof at three respective points of cantilever film coalescence. The image above shows the structure following an etch in molten potassium hydroxide (KOH) that produced surface etch pits at the dislocation defects. The larger KOH etch pits--S1, S2, and S3--shown in this image correspond to screw dislocations relocated to the final points of cantilever coalescence. The smaller KOH etch pits are consistent with epilayer threading edge dislocations from the pregrowth substrate mesa (P1, P3, and P4) and a final cantilever coalescence point (P2). No defects (i.e., no etch pits) are observed in other cantilevered portions of the film surface. On the basis of the principle of dislocation Burgers vector conservation, we hypothesize that all vertically propagating substrate dislocations in an enclosed trench region become combined into a single dislocation in the webbed film roof at the point of final roof coalescence. The point of final roof coalescence, and therefore the lateral location of a webbed roof dislocation, can be designed into the pregrowth mesa pattern. Screw dislocations with predetermined lateral positions can then be used to provide the new growth steps necessary for growing a 4H/6H-SiC epilayer with a lower dislocation density than the substrate. Devices fabricated on top of such films can be positioned to avoid the preplaced dislocations.
Critical review: Copper runoff from outdoor copper surfaces at atmospheric conditions.
Hedberg, Yolanda S; Hedberg, Jonas F; Herting, Gunilla; Goidanich, Sara; Odnevall Wallinder, Inger
2014-01-01
This review on copper runoff dispersed from unsheltered naturally patinated copper used for roofing and facades summarizes and discusses influencing factors, available literature, and predictive models, and the importance of fate and speciation for environmental risk assessment. Copper runoff from outdoor surfaces is predominantly governed by electrochemical and chemical reactions and is highly dependent on given exposure conditions (size, inclination, geometry, degree of sheltering, and orientation), surface parameters (age, patina composition, and thickness), and site-specific environmental conditions (gaseous pollutants, chlorides, rainfall characteristics (amount, intensity, pH), wind direction, temperature, time of wetness, season). The corrosion rate cannot be used to assess the runoff rate. The extent of released copper varies largely between different rain events and is related to dry and wet periods, dry deposition prior to the rain event and prevailing rain and patina characteristics. Interpretation and use of copper runoff data for environmental risk assessment and management need therefore to consider site-specific factors and focus on average data of long-term studies (several years). Risk assessments require furthermore that changes in copper speciation, bioavailability aspects, and potential irreversible retention on solid surfaces are considered, factors that determine the environmental fate of copper runoff from outdoor surfaces.
40 CFR 60.112b - Standard for volatile organic compounds (VOC).
Code of Federal Regulations, 2010 CFR
2010-07-01
... for Volatile Organic Liquid Storage Vessels (Including Petroleum Liquid Storage Vessels) for Which... specifications: (i) The internal floating roof shall rest or float on the liquid surface (but not necessarily in... be floating on the liquid surface at all times, except during initial fill and during those intervals...
40 CFR 60.112b - Standard for volatile organic compounds (VOC).
Code of Federal Regulations, 2012 CFR
2012-07-01
... for Volatile Organic Liquid Storage Vessels (Including Petroleum Liquid Storage Vessels) for Which... specifications: (i) The internal floating roof shall rest or float on the liquid surface (but not necessarily in... be floating on the liquid surface at all times, except during initial fill and during those intervals...
40 CFR 60.112b - Standard for volatile organic compounds (VOC).
Code of Federal Regulations, 2014 CFR
2014-07-01
... for Volatile Organic Liquid Storage Vessels (Including Petroleum Liquid Storage Vessels) for Which... specifications: (i) The internal floating roof shall rest or float on the liquid surface (but not necessarily in... be floating on the liquid surface at all times, except during initial fill and during those intervals...
40 CFR 60.112b - Standard for volatile organic compounds (VOC).
Code of Federal Regulations, 2013 CFR
2013-07-01
... for Volatile Organic Liquid Storage Vessels (Including Petroleum Liquid Storage Vessels) for Which... specifications: (i) The internal floating roof shall rest or float on the liquid surface (but not necessarily in... be floating on the liquid surface at all times, except during initial fill and during those intervals...
40 CFR 60.112b - Standard for volatile organic compounds (VOC).
Code of Federal Regulations, 2011 CFR
2011-07-01
... for Volatile Organic Liquid Storage Vessels (Including Petroleum Liquid Storage Vessels) for Which... specifications: (i) The internal floating roof shall rest or float on the liquid surface (but not necessarily in... be floating on the liquid surface at all times, except during initial fill and during those intervals...
Saint Joseph's University Institute for Environmental Stewardship
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCann, Micahel P.; Springer, Clint J.
Task A: Examination of the physiological, morphological, and reproductive responses of Panicum virgatum (switchgrass) cultivars identified as potential biofuel producing cultivars as well as naturally-occurring varieties of switchgrass to projected changes in climate for the central portion of the United States. This project was a multi-year project set in a field site located at the Konza Prairie Biological Station near Manhattan, KS USA. The major objective of the study was to understand the physiological and growth responses of the important biofuel grass species, Panicum virgatum (switch grass) to simulated changes in precipitation expected for the Central Plains region of themore » United States. Population level adaptation to broad-scale regional climates or within-population variation in genome size of this genetically and phenotypically diverse C4 grass species may influence the responses to future precipitation variability associated with climate change. Therefore, we investigated switchgrass responses to water variability between natural populations collected across latitudinal gradient and populations. P. virgatum plants from natural populations originating from Kansas, Oklahoma, and Texas received frequent, small precipitation events (“ambient’) or infrequent, large precipitation events (‘altered”) to simulate contrasting rainfall variability expected from this region. We measured leaf-level physiology, aboveground biomass varied significantly by population origin but did not differ by genome size. Our results suggest that trait variation in P. virgatum is primarily attributed to population-level adaptation across latitudinal gradient, not genome size, and that neither population-level adaptation nor genome size may be important predictors of P. virgatum responses to future climatic conditions. Based solely on the data presented here, the most important consideration when deciding what varieties of switchgrass to cultivate for biofuel feedstocks under future climate scenarios is local adaptation and not necessarily genome size as has been hypothesized in the literature. Task B: Installation of an extensive green roof system on the Science Center at Saint Joseph's University for research, research-training and educational outreach activities. An experimental green roof system was designed and installed by an outside contractor (Roofmeadows) on the roof of the Science Center at Saint Joseph's University. The roof system includes four test plots, each with a different drainage system, instrumentation to monitor storm water retention, roof deck temperature, heat flux into and out of the building, rain fall, wind speed and direction, relative humidity and heat emission from the roof system. The vegetative roof was planted with 26 species of plants, distributed throughout the roof area, to assess species/variety growth and coverage characteristics, both in terms of the different drain layer systems, and in terms of the different exposures along the north to south axis of the building. Analysis of the drain layer performance, in terms of storm water retention, shows that the aggregate (stone) drainage layer system performed the best, with the moisture management mat system second, and the geotextile drain layer and reservoir sheet layer systems coming in last. This information is of value in the planning and design of vegetative roof systems since the different types of drainage layer systems have different installation costs and different weights. The different drainage layer systems also seem to be having an impact on plant growth and spread with the test plot with the reservoir sheet layer actually having the poorest plant coverage and plant spread of all areas of the roof studied. Plant growth performance analysis is ongoing, but significant differences have been observed in the third growing season ('13) along the north to south axis, with most species doing better towards the northern end of the roof (in terms of percent ground coverage and plant spread and reproduction). Interestingly, plant growth in all four of the test plots was reduced relative to the lower areas of the roof (the lower area was ca. 2 inches lower than the test plots, due to the space needed for sensors under the plots. The lower roof area uses an aggregate drain layer comparable to that in the third test plot), even when accounting for the north to south differences. The reasons for these differences are not clear and studies are underway to examine the impact of wind scour, drainage rates, temperature, and other factors. This information will be of value to planners of extensive vegetative roof systems in the Philadelphia (and broader) region, since plant growth and roof system overall performance is influenced by local climate, making broad generalizations of performance difficult. Task C: Education and community outreach efforts by the IES involving conferences at SJU, presentations by faculty and students off campus, and educational signage. The Institute for Environmental Stewardship hosted three storm water management workshops on the SJU campus in Philadelphia, in collaboration with the Lower Merion Conservancy, a not-for-profit organization located in Montgomery County, PA. These workshops were free and open to the public. The three workshops (held each year in March) drew more than 200 participants total. The presenters included local and state government agencies, not for profit organizations involved in storm water and open space preservation, designers, engineers, planners and others. Feedback was uniformly positive and we plan to continue the workshops for the foreseeable future. Educational signage has been installed at four locations on campus to explain campus infrastructure related to storm water (rain gardens, vegetative roof and green facades), as well as detailed signage installed on the Science Center roof for the vegetative roof system. More than 100 people (from in and outside of SJU) have thus far participated in tours of the roof system. A digital signage system has been installed in the adjacent library and this system provides information about the vegetative roof project and other efforts. A web camera system for the roof has also been installed and the video will be simulcast to the digital signage and with web site (www.sju.edu/ies) in the near future.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, Meng -Dawn; Allman, Steve L.; Graham, David E.
Building envelope, such as a roof, is the interface between a building structure and the environment. Understanding of the physics of microbial interactions with the building envelope is limited. In addition to the natural weathering, microorganisms and airborne particulate matter that attach to a cool roof tend to reduce the roof reflectance over time, compromising the energy efficiency advantages of the reflective coating designs. We applied microbial ecology analysis to identify the natural communities present on the exposed coatings and investigated the reduction kinetics of the surface reflectance upon the introduction of a defined mixture of both photoautotrophic and heterotrophicmore » microorganisms representing the natural communities. The result are (1) reflectance degradation by microbial communities follows a first-order kinetic relationship and (2) more than 50% of degradation from the initial reflectance value can be caused by microbial species alone in much less time than 3 years required by the current standard ENERGY STAR® test methods.« less
The Lifferth Dome for Small Telescopes
NASA Astrophysics Data System (ADS)
Wilson, B. L.; Olsen, C. S.; Iverson, E. P.; Paget, A.; Lifferth, W.; Brown, P. J.; Moody, J. W.
2004-12-01
The Lifferth Dome is a pull-off roof designed for small telescopes and other observational equipment. It was specifically designed for the needs of the ROVOR project. The roof itself is completely removed from the observatory housing walls and cranked off to the side below the optical horizon. This is done using two swing arms on either side of the observatory that work in unison to lift the roof off the structure and rotate down and away into a cleared location. The torque is provided by a threaded rod connected to an electric motor at the back of the building. As the motor rotates, the threads turn through a threaded sleeve connected directly to the support arms. Advantages to this design are no lost horizon, no roller surfaces to keep clean, low power and simple limit switches. Operation is by computer control using by National Instruments LabVIEW via the internet. We present its design and construction.
Large Dew water collectors in a village of S-Morocco (Idouasskssou)
NASA Astrophysics Data System (ADS)
Lekouch, I.; Clus, O.; Durand, M.; Lanfourmi, M.; Muselli, M.; Milimouk, I.; Beysens, D.
2010-07-01
With precipitations close to 227 mm/year in average, the coastal region of south Morocco presents a chronically shortage of drinkable and fresh water. Since 1994, in the Mirleft area (150 km south of Agadir), inhabitants are facing a critically drought event. In the year 2007, only 49 mm of rain was recorded. However, measurements in Mirleft in the same year, showed that the dew yield was on order of 40 % of rain fall. In order to show to the local population the interest of recovering dew water in addition to rain water, a small nearby village (Idouasskssou, 8 km SE of Mirleft) was equipped with three pilot condensers of 136 m2 total surface area. In order to ensure a good integration of the project by the village inhabitants, a local organization (Association IMRJANE) collaborated to the project. A concrete tank at ground level with a flat horizontal surface, easily accessible for inhabitants and also a model for traditional Morocco terrace roofings, has been equipped with two lines of condensers (40.6 m²). All roofing materials were from local shops. Only the special radiative and hydrophilic coating was coming from non local resources (see www.opur.fr). The top of a second tank (aside the first one) was renovated and covered with a 21.2 m² two slopes steel roof, insulated and painted with the special dew coating as above. These roofs represent a condensation surface comparable to that of a very little house. A third condenser, with 73.8 m² surface area, was implemented directly on the ground, ensuring minimal work and very cheap implementation costs. Dew was collected and measured in one of the concrete tanks. The water production during 6 months, from 15-12-2008 to 31-07-2009 (137 dew events, 47 % of days) was more than 3800 L (more than 0.2 mm/dew day). It is important to note that, while the devices are specifically designed to condense dew water, they also harvest rain and fog as well, thus providing to the population a valuable water resource.
Merello, Paloma; García-Diego, Fernando-Juan; Zarzo, Manuel
2012-11-28
Ariadne's house, located at the city center of ancient Pompeii, is of great archaeological value due to the fresco paintings decorating several rooms. In order to assess the risks for long-term conservation affecting the valuable mural paintings, 26 temperature data-loggers and 26 relative humidity data-loggers were located in four rooms of the house for the monitoring of ambient conditions. Data recorded during 372 days were analyzed by means of graphical descriptive methods and analysis of variance (ANOVA). Results revealed an effect of the roof type and number of walls of the room. Excessive temperatures were observed during the summer in rooms covered with transparent roofs, and corrective actions were taken. Moreover, higher humidity values were recorded by sensors on the floor level. The present work provides guidelines about the type, number, calibration and position of thermohygrometric sensors recommended for the microclimate monitoring of mural paintings in outdoor or semi-confined environments.
First Prismatic Building Model Reconstruction from Tomosar Point Clouds
NASA Astrophysics Data System (ADS)
Sun, Y.; Shahzad, M.; Zhu, X.
2016-06-01
This paper demonstrates for the first time the potential of explicitly modelling the individual roof surfaces to reconstruct 3-D prismatic building models using spaceborne tomographic synthetic aperture radar (TomoSAR) point clouds. The proposed approach is modular and works as follows: it first extracts the buildings via DSM generation and cutting-off the ground terrain. The DSM is smoothed using BM3D denoising method proposed in (Dabov et al., 2007) and a gradient map of the smoothed DSM is generated based on height jumps. Watershed segmentation is then adopted to oversegment the DSM into different regions. Subsequently, height and polygon complexity constrained merging is employed to refine (i.e., to reduce) the retrieved number of roof segments. Coarse outline of each roof segment is then reconstructed and later refined using quadtree based regularization plus zig-zag line simplification scheme. Finally, height is associated to each refined roof segment to obtain the 3-D prismatic model of the building. The proposed approach is illustrated and validated over a large building (convention center) in the city of Las Vegas using TomoSAR point clouds generated from a stack of 25 images using Tomo-GENESIS software developed at DLR.
Chromatic Titanium Photoanode for Dye-Sensitized Solar Cells under Rear Illumination.
Huang, Chih-Hsiang; Chen, Yu-Wen; Chen, Chih-Ming
2018-01-24
Titanium (Ti) has high potential in many practical applications such as biomedicine, architecture, aviation, and energy. In this study, we demonstrate an innovative application of dye-sensitized solar cells (DSSCs) based on Ti photoanodes that can be integrated into the roof engineering of large-scale architectures. A chromatic Ti foil produced by anodizing oxidation (coloring) technology is an attractive roof material for large-scale architecture, showing a colorful appearance due to the formation of a reflective TiO 2 thin layer on both surfaces of Ti. The DSSC is fabricated on the backside of the chromatic Ti foil using the Ti foil as the working electrode, and this roof-DSSC hybrid configuration can be designed as an energy harvesting device for indoor artificial lighting. Our results show that the facet-textured TiO 2 layer on the chromatic Ti foil not only improves the optical reflectance for better light utilization but also effectively suppresses the charge recombination for better electron collection. The power conversion efficiency of the roof-DSSC hybrid system is improved by 30-40% with a main contribution from an improvement of short-circuit current density under standard 1 sun and dim-light (600-1000 lx) illumination.
Numerical investigation of the optimum wind turbine sitting for domestic flat roofs
NASA Astrophysics Data System (ADS)
Ishfaq, Salman Muhammad; Chaudhry, Hassam Nasarullah
2018-05-01
The power capacity of roof mounted wind turbines is dependent on several factors which influence its energy yield. In this paper, an investigation has been carried out using Computational Fluid Dynamics (CFD) to determine flow distribution and establish an optimum mounting location for a small wind turbine on a domestic flat roof. The realisable k-ɛ and SST k-ω turbulence models were compared to establish their consistency with one another with respect to the physical domain. Nine mounting locations were considered for a pole mounted wind turbine. Three windward positions on the upwind side of the flat surfaced building were considered as viable locations for mounting the small wind turbine. Out of the three windward locations, the central upwind (1,0) mounting position was seen to be producing the highest velocity of 5.3 m/s from the available ambient velocity which was 4 m/s. Therefore, this mounting location provided the highest extractable power for the wind turbine. Conclusively, wind properties along with the mounting locations can play a significant role in either enhancing or diminishing the small wind turbine's performance on a domestic flat roof.
NASA Astrophysics Data System (ADS)
Harshan, Suraj
The main objective of the present thesis is the improvement of the TEB/ISBA (SURFEX) urban land surface model (ULSM) through comprehensive evaluation, sensitivity analysis, and optimization experiments using energy balance and radiative and air temperature data observed during 11 months at a tropical sub-urban site in Singapore. Overall the performance of the model is satisfactory, with a small underestimation of net radiation and an overestimation of sensible heat flux. Weaknesses in predicting the latent heat flux are apparent with smaller model values during daytime and the model also significantly underpredicts both the daytime peak and nighttime storage heat. Surface temperatures of all facets are generally overpredicted. Significant variation exists in the model behaviour between dry and wet seasons. The vegetation parametrization used in the model is inadequate to represent the moisture dynamics, producing unrealistically low latent heat fluxes during a particularly dry period. The comprehensive evaluation of the USLM shows the need for accurate estimation of input parameter values for present site. Since obtaining many of these parameters through empirical methods is not feasible, the present study employed a two step approach aimed at providing information about the most sensitive parameters and an optimized parameter set from model calibration. Two well established sensitivity analysis methods (global: Sobol and local: Morris) and a state-of-the-art multiobjective evolutionary algorithm (Borg) were employed for sensitivity analysis and parameter estimation. Experiments were carried out for three different weather periods. The analysis indicates that roof related parameters are the most important ones in controlling the behaviour of the sensible heat flux and net radiation flux, with roof and road albedo as the most influential parameters. Soil moisture initialization parameters are important in controlling the latent heat flux. The built (town) fraction has a significant influence on all fluxes considered. Comparison between the Sobol and Morris methods shows similar sensitivities, indicating the robustness of the present analysis and that the Morris method can be employed as a computationally cheaper alternative of Sobol's method. Optimization as well as the sensitivity experiments for the three periods (dry, wet and mixed), show a noticeable difference in parameter sensitivity and parameter convergence, indicating inadequacies in model formulation. Existence of a significant proportion of less sensitive parameters might be indicating an over-parametrized model. Borg MOEA showed great promise in optimizing the input parameters set. The optimized model modified using the site specific values for thermal roughness length parametrization shows an improvement in the performances of outgoing longwave radiation flux, overall surface temperature, heat storage flux and sensible heat flux.
Characterization and first flush analysis in road and roof runoff in Shenyang, China.
Li, Chunlin; Liu, Miao; Hu, Yuanman; Gong, Jiping; Sun, Fengyun; Xu, Yanyan
2014-01-01
As urbanization increases, urban runoff is an increasingly important component of total urban non-point source pollution. In this study, the properties of urban runoff were examined in Shenyang, in northeastern China. Runoff samples from a tiled roof, a concrete roof and a main road were analyzed for key pollutants (total suspended solids (TSS), total nitrogen (TN), total phosphorus (TP), chemical oxygen demand (COD), Pb, Cd, Cr, Cu, Ni, and Zn). The event mean concentration, site mean concentration, M(V) curves (dimensionless cumulative curve of pollutant load with runoff volume), and mass first flush ratio (MFF30) were used to analyze the characteristics of pollutant discharge and first flush (FF) effect. For all events, the pollutant concentration peaks occurred in the first half-hour after the runoff appeared and preceded the flow peaks. TN is the main pollutant in roof runoff. TSS, TN, TP, Pb, and Cr are the main pollutants in road runoff in Shenyang. There was a significant correlation between TSS and other pollutants except TN in runoff, which illustrated that TSS was an important carrier of organic matter and heavy metals. TN had strong positive correlations with total rainfall (Pearson's r = 0.927), average rainfall (Pearson's r = 0.995), and maximum rainfall intensity (Pearson's r = 0.991). TP had a strong correlation with rainfall intensity (Pearson's r = 0.940). A significant positive correlation between COD and rainfall duration (Pearson's r = 0.902, significance level = 0.05) was found. The order of FF intensity in different surfaces was concrete roof > tile roof > road. Rainfall duration and the length of the antecedent dry period were positively correlated with the FF. TN tended to exhibit strong flush for some events. Heavy metals showed a substantially stronger FF than other pollutant.
2004-09-14
KENNEDY SPACE CENTER, FLA. - Repair crews clean up debris left behind after Hurricane Frances as it passed over Central Florida during the Labor Day weekend. The maximum wind at the surface from Hurricane Frances was 94 mph from the northeast at 6:40 a.m. on Sunday, September 5. It was recorded at a weather tower located on the east shore of the Mosquito Lagoon near the Cape Canaveral National Seashore. The highest sustained wind at KSC was 68 mph. Hurricane damage sustained at KSC included the south wall and roof of the Vehicle Assembly Building plus the roof of the Thermal Protection System Facility.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. Repair crews clean up debris left behind after Hurricane Frances as it passed over Central Florida during the Labor Day weekend. The maximum wind at the surface from Hurricane Frances was 94 mph from the northeast at 6:40 a.m. on Sunday, September 5. It was recorded at a weather tower located on the east shore of the Mosquito Lagoon near the Cape Canaveral National Seashore. The highest sustained wind at KSC was 68 mph. KSC sustained damage to the south wall and roof of the Vehicle Assembly Building plus the roof of the Thermal Protection System Facility.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. A repair crew replaces a light fixture damaged by Hurricane Frances as it passed over Central Florida during the Labor Day weekend. The maximum wind at the surface from Hurricane Frances was 94 mph from the northeast at 6:40 a.m. on Sunday, September 5. It was recorded at a weather tower located on the east shore of the Mosquito Lagoon near the Cape Canaveral National Seashore. The highest sustained wind at KSC was 68 mph. Hurricane damage sustained at KSC included the south wall and roof of the Vehicle Assembly Building plus the roof of the Thermal Protection System Facility.
2004-09-14
KENNEDY SPACE CENTER, FLA. - A repair crew replaces a light fixture damaged by Hurricane Frances as it passed over Central Florida during the Labor Day weekend. The maximum wind at the surface from Hurricane Frances was 94 mph from the northeast at 6:40 a.m. on Sunday, September 5. It was recorded at a weather tower located on the east shore of the Mosquito Lagoon near the Cape Canaveral National Seashore. The highest sustained wind at KSC was 68 mph. KSC sustained damage to the south wall and roof of the Vehicle Assembly Building plus the roof of the Thermal Protection System Facility.
2004-09-14
KENNEDY SPACE CENTER, FLA. - Repair crews clean up debris left behind after Hurricane Frances as it passed over Central Florida during the Labor Day weekend. The maximum wind at the surface from Hurricane Frances was 94 mph from the northeast at 6:40 a.m. on Sunday, September 5. It was recorded at a weather tower located on the east shore of the Mosquito Lagoon near the Cape Canaveral National Seashore. The highest sustained wind at KSC was 68 mph. KSC sustained damage to the south wall and roof of the Vehicle Assembly Building plus the roof of the Thermal Protection System Facility.
2004-09-14
KENNEDY SPACE CENTER, FLA. - A repair crew replaces a light fixture damaged by Hurricane Frances as it passed over Central Florida during the Labor Day weekend. The maximum wind at the surface from Hurricane Frances was 94 mph from the northeast at 6:40 a.m. on Sunday, September 5. It was recorded at a weather tower located on the east shore of the Mosquito Lagoon near the Cape Canaveral National Seashore. The highest sustained wind at KSC was 68 mph. Hurricane damage sustained at KSC included the south wall and roof of the Vehicle Assembly Building plus the roof of the Thermal Protection System Facility.
2004-09-14
KENNEDY SPACE CENTER, FLA. - Repair crews clean up debris at the railroad yard left behind after Hurricane Frances as it passed over Central Florida during the Labor Day weekend. The maximum wind at the surface from Hurricane Frances was 94 mph from the northeast at 6:40 a.m. on Sunday, September 5. It was recorded at a weather tower located on the east shore of the Mosquito Lagoon near the Cape Canaveral National Seashore. The highest sustained wind at KSC was 68 mph. KSC sustained damage to the south wall and roof of the Vehicle Assembly Building plus the roof of the Thermal Protection System Facility.
Review of in-service moisture and temperature conditions in wood-frame buildings
Samuel V. Glass; Anton TenWolde
2007-01-01
This literature review reports in-service moisture and temperature conditions of floor, wall, and roof members of wood-frame buildings and exposed wood decks and permanent wood foundations. A wide variation exists in reported wood moisture content, spanning a range from as low as 2% to well above 30%. Relevant studies are summarized, and measured values of wood...
The process of urbanization causes significant changes to the hydrologic regime of catchments through increased impervious areas (roads, roofs, etc) and alterations to the natural drainage network. Some examples of urbanization processes include: increasing surface area of road ...
Experimental data showing the thermal behavior of a flat roof with phase change material.
Tokuç, Ayça; Başaran, Tahsin; Yesügey, S Cengiz
2015-12-01
The selection and configuration of building materials for optimal energy efficiency in a building require some assumptions and models for the thermal behavior of the utilized materials. Although the models for many materials can be considered acceptable for simulation and calculation purposes, the work for modeling the real time behavior of phase change materials is still under development. The data given in this article shows the thermal behavior of a flat roof element with a phase change material (PCM) layer. The temperature and energy given to and taken from the building element are reported. In addition the solid-liquid behavior of the PCM is tracked through images. The resulting thermal behavior of the phase change material is discussed and simulated in [1] A. Tokuç, T. Başaran, S.C. Yesügey, An experimental and numerical investigation on the use of phase change materials in building elements: the case of a flat roof in Istanbul, Build. Energy, vol. 102, 2015, pp. 91-104.
NASA Astrophysics Data System (ADS)
Hutchison, W.; Finch, A.; Boyce, A.; Friis, H.; Borst, A. M.; Horsburgh, N. J.
2017-12-01
Some of the world's best alkaline rare earth element (REE) deposits are formed in magmatic systems that are sealed (i.e., those that are autometasomatised and maintain reducing conditions). Conversely, in open systems where oxidizing fluids infiltrate, it is commonly assumed that REE are redistributed over a wider (less concentrated) zone. Sulphur isotope fractionation is sensitive to variations in temperature and redox, and, although sulphide minerals are relatively abundant in alkaline systems, there have been few attempts to test these hypotheses and develop a sulphur isotope proxy for alkaline metasomatism and formation of associated REE deposits. The Gardar Rift Province in southern Greenland was volcanically active in two periods between 1300 and 1100 Ma and is an ideal natural laboratory to explore sulphur isotope systematics because a near-complete alkaline magmatic lineage is exposed. We present new δ34S from across the province with a particular focus on three alkaline systems (Ilímaussaq, Motzfeldt and Ivigtût) that also host major REE deposits. Primitive mafic rocks from regional Gardar dykes and lavas have a restricted range of δ34S between 0 and 3 ‰ and fractional crystallization imparts no observable change in δ34S. In a few cases high-δ34S rocks (>15 ‰) occur when intrusive units have assimilated local sedimentary crust (δ34S = 25 ‰). Most δ34S variation takes place in the roof zones of alkaline intrusions during late-magmatic and hydrothermal stages, and we identify clear differences between the complexes. At Ilímaussaq, where the magmatic series is exceptionally reduced (below QFM buffer), roof zone δ34S remains narrow (0-3 ‰). At Motzfeldt, a more open oxidizing roof zone (MH buffer), δ34S ranges from -12 ‰ in late-stage fluorite veins to +12 ‰ where local crust has been assimilated. Ivigtût is intermediate between these end-members varying between -5 to +5 ‰. The δ34S variations primarily relate to temperature and redox variations between the systems and highlight important contrasts in roof zone sealing. This work provides new constraints on the varying origins of magmatic fluids in alkaline roof zones, and demonstrates the potential of sulphur isotopes as a redox and temperature proxy. Future work will focus on whether δ34S can be used as an exploration tool to identify REE mineralization at depth.
Turbulence Measurements in a Tropical Zoo Hall
NASA Astrophysics Data System (ADS)
Eugster, Werner; Denzler, Basil; Bogdal, Christian
2017-04-01
The Masoala rainforest hall of the Zurich Zoo, Switzerland, covers a ground surface area of 10,856 m2 and reaches 30 m in height. With its transparent ETFE foiled roof it provides a tropical climate for a large diversity of plants and animals. In combination with an effort to estimate dry deposition of elemental mercury, we made an attempt to measure turbulent transfer velocity with an ultrasonic anemometer inside the hall. Not surprising, the largest turbulence elements were on the order of the hall dimension. Although the dimensions of the hall seem to be small (200,000 m3) for eddy covariance flux measurements and the air circulation inside the hall was extremely weak, the spectra of wind velocity components and virtual (sonic) temperature obeyed the general statistical description expected under unconstrained outdoor measurement conditions. We will present results from a two-week measurement campaign in the Masoala rainforest hall and make a suggestion for the deposition velocity to be used to estimate dry deposition of atmospheric components to the tropical vegetation surface.
30 CFR 75.205 - Installation of roof support using mining machines with integral roof bolters.
Code of Federal Regulations, 2011 CFR
2011-07-01
... machines with integral roof bolters. 75.205 Section 75.205 Mineral Resources MINE SAFETY AND HEALTH... Roof Support § 75.205 Installation of roof support using mining machines with integral roof bolters. When roof bolts are installed by a continuous mining machine with intregal roof bolting equipment: (a...
Advanced Energy Efficient Roof System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jane Davidson
2008-09-30
Energy consumption in buildings represents 40 percent of primary U.S. energy consumption, split almost equally between residential (22%) and commercial (18%) buildings.1 Space heating (31%) and cooling (12%) account for approximately 9 quadrillion Btu. Improvements in the building envelope can have a significant impact on reducing energy consumption. Thermal losses (or gains) from the roof make up 14 percent of the building component energy load. Infiltration through the building envelope, including the roof, accounts for an additional 28 percent of the heating loads and 16 percent of the cooling loads. These figures provide a strong incentive to develop and implementmore » more energy efficient roof systems. The roof is perhaps the most challenging component of the building envelope to change for many reasons. The engineered roof truss, which has been around since 1956, is relatively low cost and is the industry standard. The roof has multiple functions. A typical wood frame home lasts a long time. Building codes vary across the country. Customer and trade acceptance of new building products and materials may impede market penetration. The energy savings of a new roof system must be balanced with other requirements such as first and life-cycle costs, durability, appearance, and ease of construction. Conventional residential roof construction utilizes closely spaced roof trusses supporting a layer of sheathing and roofing materials. Gypsum board is typically attached to the lower chord of the trusses forming the finished ceiling for the occupied space. Often in warmer climates, the HVAC system and ducts are placed in the unconditioned and otherwise unusable attic. High temperature differentials and leaky ducts result in thermal losses. Penetrations through the ceilings are notoriously difficult to seal and lead to moisture and air infiltration. These issues all contribute to greater energy use and have led builders to consider construction of a conditioned attic. The options considered to date are not ideal. One approach is to insulate between the trusses at the roof plane. The construction process is time consuming and costs more than conventional attic construction. Moreover, the problems of air infiltration and thermal bridges across the insulation remain. Another approach is to use structurally insulated panels (SIPs), but conventional SIPs are unlikely to be the ultimate solution because an additional underlying support structure is required except for short spans. In addition, wood spline and metal locking joints can result in thermal bridges and gaps in the foam. This study undertook a more innovative approach to roof construction. The goal was to design and evaluate a modular energy efficient panelized roof system with the following attributes: (1) a conditioned and clear attic space for HVAC equipment and additional finished area in the attic; (2) manufactured panels that provide structure, insulation, and accommodate a variety of roofing materials; (3) panels that require support only at the ends; (4) optimal energy performance by minimizing thermal bridging and air infiltration; (5) minimal risk of moisture problems; (6) minimum 50-year life; (7) applicable to a range of house styles, climates and conditions; (8) easy erection in the field; (9) the option to incorporate factory-installed solar systems into the panel; and (10) lowest possible cost. A nationwide market study shows there is a defined market opportunity for such a panelized roof system with production and semi-custom builders in the United States. Senior personnel at top builders expressed interest in the performance attributes and indicate long-term opportunity exists if the system can deliver a clear value proposition. Specifically, builders are interested in (1) reducing construction cycle time (cost) and (2) offering increased energy efficiency to the homebuyer. Additional living space under the roof panels is another low-cost asset identified as part of the study. The market potential is enhanced through construction activity levels in target markets. Southern markets, from Florida to Texas account for 50 percent of the total new construction angled-roof volume. California contributes an additional 13 percent share of market volume. These states account for 28 to 30 million squares (2.8 to 3 billion square feet) of new construction angled roof opportunity. The major risk to implementation is the uncertainty of incorporating new design and construction elements into the construction process. By coordinating efforts to enhance the drivers for adoption and minimize the barriers, the panelized roof system stands to capitalize on a growing market demand for energy efficient building alternatives and create a compelling case for market adoption.« less
NASA Astrophysics Data System (ADS)
Chui, T. F. M.; Liu, X.; Zhan, W.
2015-12-01
Green infrastructures (GI) are becoming more important for urban stormwater control worldwide. However, relatively few studies focus on researching the specific designs of GI at household scale. This study assesses the hydrological performance and cost-effectiveness of different GI designs, namely green roofs, bioretention systems and porous pavements. It aims to generate generic insights by comparing the optimal designs of each GI in 2-year and 50-year storms of Hong Kong, China and Seattle, US. EPA SWMM is first used to simulate the hydrologic performance, in particular, the peak runoff reduction of thousands of GI designs. Then, life cycle costs of the designs are computed and their effectiveness, in terms of peak runoff reduction percentage per thousand dollars, is compared. The peak runoff reduction increases almost linearly with costs for green roofs. However, for bioretention systems and porous pavements, peak runoff reduction only increases significantly with costs in the mid values. For achieving the same peak runoff reduction percentage, the optimal soil depth of green roofs increases with the design storm, while surface area does not change significantly. On the other hand, for bioretention systems and porous pavements, the optimal surface area increases with the design storm, while thickness does not change significantly. In general, the cost effectiveness of porous pavements is highest, followed by bioretention systems and then green roofs. The cost effectiveness is higher for a smaller storm, and is thus higher for 2-year storm than 50-year storm, and is also higher for Seattle when compared to Hong Kong. This study allows us to better understand the hydrological performance and cost-effectiveness of different GI designs. It facilitates the implementation of optimal choice and design of each specific GI for stormwater mitigation.
Merging Digital Surface Models Implementing Bayesian Approaches
NASA Astrophysics Data System (ADS)
Sadeq, H.; Drummond, J.; Li, Z.
2016-06-01
In this research different DSMs from different sources have been merged. The merging is based on a probabilistic model using a Bayesian Approach. The implemented data have been sourced from very high resolution satellite imagery sensors (e.g. WorldView-1 and Pleiades). It is deemed preferable to use a Bayesian Approach when the data obtained from the sensors are limited and it is difficult to obtain many measurements or it would be very costly, thus the problem of the lack of data can be solved by introducing a priori estimations of data. To infer the prior data, it is assumed that the roofs of the buildings are specified as smooth, and for that purpose local entropy has been implemented. In addition to the a priori estimations, GNSS RTK measurements have been collected in the field which are used as check points to assess the quality of the DSMs and to validate the merging result. The model has been applied in the West-End of Glasgow containing different kinds of buildings, such as flat roofed and hipped roofed buildings. Both quantitative and qualitative methods have been employed to validate the merged DSM. The validation results have shown that the model was successfully able to improve the quality of the DSMs and improving some characteristics such as the roof surfaces, which consequently led to better representations. In addition to that, the developed model has been compared with the well established Maximum Likelihood model and showed similar quantitative statistical results and better qualitative results. Although the proposed model has been applied on DSMs that were derived from satellite imagery, it can be applied to any other sourced DSMs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Levinson, Ronnen; Akbari, Hashem; Berdahl, Paul
The widespread use of solar-reflective roofing materials can save energy, mitigate urban heat islands and slow global warming by cooling the roughly 20% of the urban surface that is roofed. In this study we created prototype solar-reflective nonwhite concrete tile and asphalt shingle roofing materials using a two-layer spray coating process intended to maximize both solar reflectance and factory-line throughput. Each layer is a thin, quick-drying, pigmented latex paint based on either acrylic or a poly(vinylidene fluoride)/acrylic blend. The first layer is a titanium dioxide rutile white basecoat that increases the solar reflectance of a gray-cement concrete tile from 0.18more » to 0.79, and that of a shingle surfaced with bare granules from 0.06 to 0.62. The second layer is a 'cool' color topcoat with weak near-infrared (NIR) absorption and/or strong NIR backscattering. Each layer dries within seconds, potentially allowing a factory line to pass first under the white spray, then under the color spray. We combined a white basecoat with monocolor topcoats in various shades of red, brown, green and blue to prepare 24 cool color prototype tiles and 24 cool color prototypes shingles. The solar reflectances of the tiles ranged from 0.26 (dark brown; CIELAB lightness value L* = 29) to 0.57 (light green; L* = 76); those of the shingles ranged from 0.18 (dark brown; L* = 26) to 0.34 (light green; L* = 68). Over half of the tiles had a solar reflectance of at least 0.40, and over half of the shingles had a solar reflectance of at least 0.25.« less
U.S. Constructed Area Approaches the Size of Ohio
NASA Astrophysics Data System (ADS)
Elvidge, Christopher D.; Milesi, Cristina; Dietz, John B.; Tuttle, Benjamin T.; Sutton, Paul C.; Nemani, Ramakrishna; Vogelmann, James E.
2004-06-01
The construction and maintenance of impervious surfaces-buildings, roads, parking lots, roofs, etc.-constitutes a major human alteration of the land surface, changing the local hydrology, climate, and carbon cycling. Three types of national coverage data were used to model the spatial distribution and density of impervious surface area (ISA) for the conterminous U.S.A. The results (Figure 1) indicate that total ISA of the 48 states and Washington, D.C., is 112,610 km2 (+/- 12,725 km2), which is slightly smaller than the state of Ohio (116,534 km2) and slightly larger than the area of herbaceous wetlands (98,460 km2) of the conterminous United States. The same characteristics that make impervious surfaces ideal for use in construction produce a series of effects on the environment. Impervious surfaces alter sensible and latent heat fluxes, causing urban heat islands. In heavily vegetated areas, the proliferation of ISA reduces the sequestration of carbon from the atmosphere. ISA alters the character of watersheds by increasing the frequency and magnitude of surface runoff pulses. Watershed effects of ISA begin to be detectable once 10% of the surface is covered by impervious surfaces, altering the shape of stream channels, raising water temperatures, and sweeping urban debris and pollutants into aquatic environments. Consequences of ISA include reduced numbers and diversity of species in fish and aquatic insects, and degradation of wetlands and riparian zones.
Solar-heated and cooled savings and loan building-1-Leavenworth, Kanasas
NASA Technical Reports Server (NTRS)
1981-01-01
Report describes heating and cooling system which furnishes 90 percent of annual heating load, 70 percent of cooling load, and all hot water for two-story building. Roof-mounted flat-plate collectors allow three distinct flow rates and are oriented south for optimum energy collection. Building contains fully automated temperature controls is divided into five temperature-load zones, each with independent heat pump.
Roof Plans: Section "CC", Roof Plan; Roof Framing Plans: Section ...
Roof Plans: Section "C-C", Roof Plan; Roof Framing Plans: Section "C-C", Section "D-D"; Roof Framing Sections: Cross Section "G-G", Cross Section "H-H" - Fort Washington, Fort Washington Light, Northeast side of Potomac River at Fort Washington Park, Fort Washington, Prince George's County, MD
Green Construction in Building Renovation
NASA Astrophysics Data System (ADS)
Ksit, Barbara; Majcherek, Michał
2016-06-01
Modern materials and construction solutions draw more and more attention to ecology and building certification. Among the criteria appearing in revitalization, an important element is bringing plants back into heavily urbanized areas. In its natural form, this is not possible to carry out everywhere, often requiring large amounts of space. Nowadays, however, there are a number of green roofs and green wall systems, allowing "greener" construction without making significant changes in the urban environment. The article includes a presentation and analysis of selected solutions of biological surfaces known as green roofs and green walls, specifying various solutions and their most important features. The case study focuses primarily on material and design solutions, as well as the potential benefits, risks and limitations in their use. Plants structures on the surfaces of vertical and horizontal partitions continue to be a very interesting alternative to take into account when applying for grants, such as LEED or BREEAM certificates.
Influence of local climate and climate change on aeroterrestrial phototrophic biofilms.
Gladis-Schmacka, Franziska; Glatzel, Stephan; Karsten, Ulf; Böttcher, Heidrun; Schumann, Rhena
2014-01-01
Aeroterrestrial phototrophic biofilms colonize natural and man-made surfaces and may damage the material they settle on. The occurrence of biofilms varies between regions with different climatic conditions. The aim of this study was to evaluate the influence of meteorological factors on the growth of aeroterrestrial phototrophs. Phototrophic biomass was recorded on roof tiles at six sites within Germany five times over a period of five years and compared to climatic parameters from neighboring weather stations. All correlating meteorological factors influenced water availability on the surface of the roof tiles. The results indicate that the frequency of rainy days and not the mean precipitation per season is more important for biofilm proliferation. It is also inferred that the macroclimate is more important than the microclimate. In conclusion, changed (regional) climatic conditions may determine where in central Europe global change will promote or inhibit phototrophic growth in the future.
Next-Generation Factory-Produced Cool Asphalt Shingles: Phase 1 Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Levinson, Ronnen M.; Chen, Sharon S.; Ban-Weiss, George A.
As the least expensive category of high-slope roofing in the U.S., shingles are found on the roofs of about 80% of U.S. homes, and constitute about 80% (by product area) of this market. Shingles are also among the least reflective high-slope roofing products, with few cool options on the market. The widespread use of cool roofs in the two warmest U.S. climate zones could reduce annual residential cooling energy use in these zones by over 7%. This project targets the development of high-performance cool shingles with initial solar reflectance at least 0.40 and a cost premium not exceeding US$0.50/ft². Phasemore » 1 of the current study explored three approaches to increasing shingle reflectance. Method A replaces dark bare granules by white bare granules to enhance the near-infrared reflectance attained with cool pigments. Method B applies a white basecoat and a cool-color topcoat to a shingle surfaced with dark bare granules. Method C applies a visually clear, NIR-reflecting surface treatment to a conventionally colored shingle. Method A was the most successful, but our investigation of Method B identified roller coating as a promising top-coating technique, and our study of Method C developed a novel approach based on a nanowire mesh. Method A yielded red, green, brown, and black faux shingles with solar reflectance up to 0.39 with volumetric coloration. Since the base material is white, these reflectances can readily be increased by using less pigment. The expected cost premium for Method A shingles is less than our target limit of $0.50/ft², and would represent less than a 10% increase in the installed cost of a shingle roof. Using inexpensive but cool (spectrally selective) iron oxide pigments to volumetrically color white limestone synthesized from sequestered carbon and seawater appears to offer high albedo at low cost. In Phase 2, we plan to refine the cool shingle prototypes, manufacture cool granules, and manufacture and market high-performance cool shingles.« less
Green roof systems: a study of public attitudes and preferences in southern Spain.
Fernandez-Cañero, Rafael; Emilsson, Tobias; Fernandez-Barba, Carolina; Herrera Machuca, Miguel Ángel
2013-10-15
This study investigates people's preconceptions of green roofs and their visual preference for different green roof design alternatives in relation to behavioral, social and demographical variables. The investigation was performed as a visual preference study using digital images created to represent eight different alternatives: gravel roof, extensive green roof with Sedums not in flower, extensive green roof with sedums in bloom, semi-intensive green roof with sedums and ornamental grasses, semi-intensive green roof with shrubs, intensive green roof planted with a lawn, intensive green roof with succulent and trees and intensive green roof with shrubs and trees. Using a Likert-type scale, 450 respondents were asked to indicate their preference for each digital image. Results indicated that respondents' sociodemographic characteristics and childhood environmental background influenced their preferences toward different green roof types. Results also showed that green roofs with a more careful design, greater variety of vegetation structure, and more variety of colors were preferred over alternatives. Copyright © 2013 Elsevier Ltd. All rights reserved.
[Influence of the substrate composition in extensive green roof on the effluent quality].
Chen, Yu-Lin; Li, Tian; Gu, Jun-Qing
2014-11-01
By monitoring the effluent quality from different green roof assemblies during several artificial rain events, the main pollutant characteristics and the influence of substrate composition in extensive green roof on the effluent quality were studied. Results showed that the main pollutants in the effluent were N, P and COD; with the increase of cumulative rain, the concentrations of pollutants in the effluent decreased, which had obvious leaching effect; The average concentrations of heavy metals in the early effluent from all assemblies reached drinking water standard, including the assemblies using crushed bricks; When garden soil and compost were used as organic matter, the assemblies had serious leaching of nutrient substance. After the accumulated rainfall reached 150 mm, the TN, TP and COD concentrations of effluent were 2.93, 0.73 and 78 mg x L(-1), respectively, which exceeded the Surface water V class limit. By means of application of the Water Treatment Residual, the leaching of TP from green planting soil was decreased by about 60%. The inorganic compound soil had better effluent quality, however we also need to judge whether the substrate could be applied in extensive green roof or not, by analyzing its ability of water quantity reduction and the plant growth situation.
Roofing Materials Assessment: Investigation of Five Metals in Runoff from Roofing Materials.
Winters, Nancy; Granuke, Kyle; McCall, Melissa
2015-09-01
To assess the contribution of five toxic metals from new roofing materials to stormwater, runoff was collected from 14 types of roofing materials and controls during 20 rain events and analyzed for metals. Many of the new roofing materials evaluated did not show elevated metals concentrations in the runoff. Runoff from several other roofing materials was significantly higher than the controls for arsenic, copper, and zinc. Notably, treated wood shakes released arsenic and copper, copper roofing released copper, PVC roofing released arsenic, and Zincalume® and EPDM roofing released zinc. For the runoff from some of the roofing materials, metals concentrations decreased significantly over an approximately one-year period of aging. Metals concentrations in runoff were demonstrated to depend on a number of factors, such as roofing materials, age of the materials, and climatic conditions. Thus, application of runoff concentrations from roofing materials to estimate basin-wide releases should be undertaken cautiously.
Spectral response data for development of cool coloured tile coverings
NASA Astrophysics Data System (ADS)
Libbra, Antonio; Tarozzi, Luca; Muscio, Alberto; Corticelli, Mauro A.
2011-03-01
Most ancient or traditional buildings in Italy show steep-slope roofs covered by red clay tiles. As the rooms immediately below the roof are often inhabited in historical or densely urbanized centres, the combination of low solar reflectance of tile coverings and low thermal inertia of either wooden roof structures or sub-tile insulation panels makes summer overheating a major problem. The problem can be mitigated by using tiles coated with cool colours, that is colours with the same spectral response of clay tiles in the visible, but highly reflecting in the near infrared range, which includes more than half of solar radiation. Cool colours can yield the same visible aspect of common building surfaces, but higher solar reflectance. Studies aimed at developing cool colour tile coverings for traditional Italian buildings have been started. A few coating solutions with the typical red terracotta colour have been produced and tested in the laboratory, using easily available materials. The spectral response and the solar reflectance have been measured and compared with that of standard tiles.
The evolution of cave systems from the surface to subsurface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loucks, R.G.; Handford, C.R.
1996-01-01
Many carbonate reservoirs are the result of cave-forming processes. The origin and recognition of fractures, breccias, and sediment fills associated with paleocaves were determined through the study of modern and paleocaves systems. Cave formation and destruction are the products of near-surface processes. Near-surface processes include solutional excavation, clastic and chemical sedimentation, and collapse of cave walls and ceilings. Cave sediment is derived from inside and/or outside the system. Depositional mechanisms include suspension, tractional, mass-flow and rock-fall. Collapse of ceilings and walls from chaotic breakdown breccias. These piles can be tens of meters thick and contain large voids and variable amountsmore » of matrix. Cave-roof crackle breccia forms from stress-and tension-related fractures in cave-roof strata. As the cave-bearing strata subside into the subsurface, mechanical compaction increases and restructures the existing breccias and remaining cavities. Fracture porosity increases and breccia and vug porosity decreases. Large cavities collapse forming burial chaotic breakdown breccias. Differentially compacted strata over the collapsed chamber fracture and form burial cave-roof crackle breccias. Continued burial leads to more extensive mechanical compaction causing previously formed clasts to fracture and pack closer together. The resulting product is a rebrecciated chaotic breakdown breccia composed predominantly of small clasts. Rebrecciated blocks are often overprinted by crackling. Subsurface paleocave systems commonly have a complex history with several episodes of fracturing and brecciation. The resulting collapsed-paleocave reservoir targets are not single collapsed passages of tens of feet across, but are homogenized collapsed-cave systems hundreds to several thousand feet across.« less
The evolution of cave systems from the surface to subsurface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loucks, R.G.; Handford, C.R.
1996-12-31
Many carbonate reservoirs are the result of cave-forming processes. The origin and recognition of fractures, breccias, and sediment fills associated with paleocaves were determined through the study of modern and paleocaves systems. Cave formation and destruction are the products of near-surface processes. Near-surface processes include solutional excavation, clastic and chemical sedimentation, and collapse of cave walls and ceilings. Cave sediment is derived from inside and/or outside the system. Depositional mechanisms include suspension, tractional, mass-flow and rock-fall. Collapse of ceilings and walls from chaotic breakdown breccias. These piles can be tens of meters thick and contain large voids and variable amountsmore » of matrix. Cave-roof crackle breccia forms from stress-and tension-related fractures in cave-roof strata. As the cave-bearing strata subside into the subsurface, mechanical compaction increases and restructures the existing breccias and remaining cavities. Fracture porosity increases and breccia and vug porosity decreases. Large cavities collapse forming burial chaotic breakdown breccias. Differentially compacted strata over the collapsed chamber fracture and form burial cave-roof crackle breccias. Continued burial leads to more extensive mechanical compaction causing previously formed clasts to fracture and pack closer together. The resulting product is a rebrecciated chaotic breakdown breccia composed predominantly of small clasts. Rebrecciated blocks are often overprinted by crackling. Subsurface paleocave systems commonly have a complex history with several episodes of fracturing and brecciation. The resulting collapsed-paleocave reservoir targets are not single collapsed passages of tens of feet across, but are homogenized collapsed-cave systems hundreds to several thousand feet across.« less
Use of fly-ash slurry in backfill grouting in coal mines.
Jiang, Ning; Zhao, Jinhai; Sun, Xizhen; Bai, Liyang; Wang, Changxiang
2017-11-01
Cave backfill grouting implies grouting of the caving rock mass prior to it being compacted. The filling materials strengthen the caving rock and support the overlying strata to achieve the purpose of slowing down the surface subsidence. The broken roof will fail and collapse during mining operations performed without appropriate supporting measures being taken. It is difficult to perform continuous backfill mining on the working face of such roofs using the existing mining technology. In order to solve the above problems, fly ash and mine water are considered as filling materials, and flow characteristics of fly-ash slurry are investigated through laboratory experiments and theoretical analyses. Laws governing the diffusion of fly-ash slurry in the void of caving rock masses and in the void between a caving rock mass and a basic roof are obtained and verified. Based on the results obtained from the above analyses and actual conditions at the Zhaoguan coal mine, Shandong Province, China, a cave backfill grouting system of the hauling pipeline is developed and successfully tested at the 1703 working face in the Zhaoguan coal mine. The results demonstrate that a filling rate of 43.46% is achieved, and the surface subsidence coefficient of the grouting process is found to be 0.475. Compared to the total caving method, the proposed system is found to achieve a reduction rate of 40.63%. This effectively helps in lowering the value of the surface subsidence coefficient. Fly ash and mine water, considered as primary materials in this study, also play a significant role in improving the air quality and water environment.
Composition and Diversity of Avian Communities Using a New Urban Habitat: Green Roofs
NASA Astrophysics Data System (ADS)
Washburn, Brian E.; Swearingin, Ryan M.; Pullins, Craig K.; Rice, Matthew E.
2016-06-01
Green roofs on buildings are becoming popular and represent a new component of the urban landscape. Public benefits of green roof projects include reduced stormwater runoff, improved air quality, reduced urban heat island effects, and aesthetic values. As part of a city-wide plan, several green roofs have been constructed at Chicago's O'Hare International Airport (ORD). Like some other landscaping features, green roofs on or near an airport might attract wildlife and thus increase the risk of bird-aircraft collisions. During 2007-2011, we conducted a series of studies to evaluate wildlife use of newly constructed green roofs and traditional (gravel) roofs on buildings at ORD. These green roofs were 0.04-1.62 ha in area and consisted of primarily stonecrop species for vegetation. A total of 188 birds were observed using roofs during this research. Of the birds using green roofs, 66, 23, and 4 % were Killdeer, European Starlings, and Mourning Doves, respectively. Killdeer nested on green roofs, whereas the other species perched, foraged, or loafed. Birds used green roofs almost exclusively between May and October. Overall, avian use of the green roofs was minimal and similar to that of buildings with traditional roofs. Although green roofs with other vegetation types might offer forage or cover to birds and thus attract potentially hazardous wildlife, the stonecrop-vegetated green roofs in this study did not increase the risk of bird-aircraft collisions.
Impact of height and shape of building roof on air quality in urban street canyons
NASA Astrophysics Data System (ADS)
Yassin, Mohamed F.
2011-09-01
A building's roof shape and roof height play an important role in determining pollutant concentrations from vehicle emissions and its complex flow patterns within urban street canyons. The impact of the roof shape and height on wind flow and dispersion of gaseous pollutants from vehicle exhaust within urban canyons were investigated numerically using a Computational Fluid Dynamics (CFD) model. Two-dimensional flow and dispersion of gaseous pollutants were analyzed using standard κ- ɛ turbulence model, which was numerically solved based on Reynolds Averaged Navier-Stokes (RANS) equations. The diffusion fields in the urban canyons were examined with three roof heights ( Z H/ H = 0.17, 0.33 and 0.5) and five roof shapes: (1) flat-shaped roof, (2) slanted-shaped roof, (3) downwind wedge-shaped roof, (4) upwind wedge-shaped roof, and (5) trapezoid-shaped roof. The numerical model was validated against the wind tunnels results in order to optimize the turbulence model. The numerical simulations agreed reasonably with the wind tunnel results. The results obtained indicated that the pollutant concentration increased as the roof height decreases. It also decreased with the slanted and trapezoid-shaped roofs but increased with the flat-shaped roof. The pollutant concentration distributions simulated in the present work, indicated that the variability of the roof shapes and roof heights of the buildings are important factors for estimating air quality within urban canyons.
Efficiency of a closed-coupled solar pasteurization system in treating roof harvested rainwater.
Dobrowsky, P H; Carstens, M; De Villiers, J; Cloete, T E; Khan, W
2015-12-01
Many studies have concluded that roof harvested rainwater is susceptible to chemical and microbial contamination. The aim of the study was thus to conduct a preliminary investigation into the efficiency of a closed-coupled solar pasteurization system in reducing the microbiological load in harvested rainwater and to determine the change in chemical components after pasteurization. The temperature of the pasteurized tank water samples collected ranged from 55 to 57°C, 64 to 66°C, 72 to 74°C, 78 to 81°C and 90 to 91°C. Cations analyzed were within drinking water guidelines, with the exception of iron [195.59 μg/L (55°C)-170.1 μg/L (91°C)], aluminum [130.98 μg/L (78°C)], lead [12.81 μg/L (55°C)-13.2 μg/L (91°C)] and nickel [46.43 μg/L (55°C)-32.82 μg/L (78°C)], which were detected at levels above the respective guidelines in the pasteurized tank water samples. Indicator bacteria including, heterotrophic bacteria, Escherichia coli and total coliforms were reduced to below the detection limit at pasteurization temperatures of 72°C and above. However, with the use of molecular techniques Yersinia spp., Legionella spp. and Pseudomonas spp. were detected in tank water samples pasteurized at temperatures greater than 72°C. The viability of the bacteria detected in this study at the higher temperature ranges should thus be assessed before pasteurized harvested rainwater is used as a potable water source. In addition, it is recommended that the storage tank of the pasteurization system be constructed from an alternative material, other than stainless steel, in order for a closed-coupled pasteurization system to be implemented and produce large quantities of potable water from roof harvested rainwater. Copyright © 2015 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
American School & University, 1994
1994-01-01
Presents a resource guide for identifying, selecting, and specifying educational roofing systems. Explores the various types of roofing systems considered for most schools and describes how to select a roofing contractor and consultant. A roofing retrofit check list and roofing specification chart are provided. (GR)
Investigation of subsidence along segment of Missouri Route 65, Springfield, Missouri.
DOT National Transportation Integrated Search
2010-02-01
Electrical Resistivity Tomography (ERT) data were acquired on the ground surface across an underground limestone mine access tunnel in an effort to characterize the roof rock. This investigation was conducted because simultaneous localized failure oc...
2012-01-01
Background Ariadne’s house, located at the city center of ancient Pompeii, is of great archaeological value due to the fresco paintings decorating several rooms. In order to assess the risks for long-term conservation affecting the valuable mural paintings, 26 temperature data-loggers and 26 relative humidity data-loggers were located in four rooms of the house for the monitoring of ambient conditions. Results Data recorded during 372 days were analyzed by means of graphical descriptive methods and analysis of variance (ANOVA). Results revealed an effect of the roof type and number of walls of the room. Excessive temperatures were observed during the summer in rooms covered with transparent roofs, and corrective actions were taken. Moreover, higher humidity values were recorded by sensors on the floor level. Conclusions The present work provides guidelines about the type, number, calibration and position of thermohygrometric sensors recommended for the microclimate monitoring of mural paintings in outdoor or semi-confined environments. PMID:23190798
Sangodoyin, A. Y.
2015-01-01
A box-type solar heater was designed, constructed, and used to determine the effect of solar heating on quality of domestic roof-harvested rainwater (DRHRW). During testing, naturally contaminated DRHRW was harvested in Ibadan, Nigeria, and released into the system at 93.96 Lh−1 (2.61 × 10−5 m3 s−1) in a continuous flow process. Water temperatures at inlet, within the heating chamber, and at outlet from the heating chamber and solar radiation were monitored at 10 min interval. Samples were collected at both inlet to and outlet from the heating chamber at 10 min interval for microbiological analysis. The highest plate stagnation temperature, under no-load condition, was 100°C. The solar water heater attained a maximum operational temperature of 75°C with 89.6 and 94.4% reduction in total viable count and total coliform count, respectively, while Escherichia coli and Staphylococcus aureus were completely eradicated at this temperature. The solar heater developed proved to be effective in enhancing potability of DRHRW in Ibadan, Nigeria. This may be an appropriate household water treatment technology for developing countries, hence, a way of resolving problem of low quality water for potable uses. PMID:27347529
Akintola, O A; Sangodoyin, A Y
2015-01-01
A box-type solar heater was designed, constructed, and used to determine the effect of solar heating on quality of domestic roof-harvested rainwater (DRHRW). During testing, naturally contaminated DRHRW was harvested in Ibadan, Nigeria, and released into the system at 93.96 Lh(-1) (2.61 × 10(-5) m(3) s(-1)) in a continuous flow process. Water temperatures at inlet, within the heating chamber, and at outlet from the heating chamber and solar radiation were monitored at 10 min interval. Samples were collected at both inlet to and outlet from the heating chamber at 10 min interval for microbiological analysis. The highest plate stagnation temperature, under no-load condition, was 100°C. The solar water heater attained a maximum operational temperature of 75°C with 89.6 and 94.4% reduction in total viable count and total coliform count, respectively, while Escherichia coli and Staphylococcus aureus were completely eradicated at this temperature. The solar heater developed proved to be effective in enhancing potability of DRHRW in Ibadan, Nigeria. This may be an appropriate household water treatment technology for developing countries, hence, a way of resolving problem of low quality water for potable uses.
NASA Astrophysics Data System (ADS)
Serrano, S.; de Gracia, A.; Pérez, G.; Cabeza, L. F.
2017-10-01
The building envelope has high potential to reduce the energy consumption of buildings according to the International Energy Agency (IEA) because it is involved along all the building process: design, construction, use, and end-of-life. The present study compares the thermal behavior of seven different building prototypes tested under Mediterranean climate: two of them were built with sustainable earth-based construction systems and the other five, with conventional brick construction systems. The tested earth-based construction systems consist of rammed earth walls and wooden green roofs, which have been adapted to contemporary requirements by reducing their thickness. In order to balance the thermal response, wooden insulation panels were placed in one of the earth prototypes. All building prototypes have the same inner dimensions and orientation, and they are fully monitored to register inner temperature and humidity, surface walls temperatures and temperatures inside walls. Furthermore, all building prototypes are equipped with a heat pump and an electricity meter to measure the electrical energy consumed to maintain a certain level of comfort. The experimentation was performed along a whole year by carrying out several experiments in free floating and controlled temperature conditions. This study aims at demonstrating that sustainable construction systems can behave similarly or even better than conventional ones under summer and winter conditions. Results show that thermal behavior is strongly penalized when rammed earth wall thickness is reduced. However, the addition of 6 cm of wooden insulation panels in the outer surface of the building prototype successfully improves the thermal response.
Surface subsidence and collapse in relation to extraction of salt and other soluble evaporites
Ege, John R.
1979-01-01
Extraction of soluble minerals, whether by natural or man-induced processes, can result in localized land-surface subsidence and more rarely sinkhole formation. One process cited by many investigators is that uncontrolled dissolving of salt or other soluble evaporites can create or enlarge underground cavities, thereby increasing the span of the unsupported roof to the strength limit of the overlying rocks. Downwarping results when spans are exceeded, or collapse of the undermined roof leads to upward sloping or chimneying of the overburden rocks. If underground space is available for rock debris to collect, the void can migrate to the surface with the end result being surface subsidence or collapse. In North America natural solution subsidence and collapse features in rocks ranging in age from Silurian to the present are found in evaporite terranes in the Great Plains from Saskatchewan in the north to Texas and New Mexico in the south, in the Great Lakes area, and in the southeastern States. Man-induced subsidence and collapse in evaporites are generally associated with conventional or solution mining, oilfield operations, and reservoir and dam construction, and can be especially hazardous in populated or built-up areas.
The Creation of Space Vector Models of Buildings From RPAS Photogrammetry Data
NASA Astrophysics Data System (ADS)
Trhan, Ondrej
2017-06-01
The results of Remote Piloted Aircraft System (RPAS) photogrammetry are digital surface models and orthophotos. The main problem of the digital surface models obtained is that buildings are not perpendicular and the shape of roofs is deformed. The task of this paper is to obtain a more accurate digital surface model using building reconstructions. The paper discusses the problem of obtaining and approximating building footprints, reconstructing the final spatial vector digital building model, and modifying the buildings on the digital surface model.
Understanding Roofing Systems.
ERIC Educational Resources Information Center
Michelsen, Ted
2001-01-01
Reviews the various types of multi- and single-ply roofing commonly used today in educational facilities. Roofing types described involve built-up systems, modified bitumen systems; ethylene propylene diene terpolymer roofs; and roofs of thermoplastic, metal, and foam. A description of the Roofing Industry Educational Institute is included. (GR)
NASA Astrophysics Data System (ADS)
Wang, Mingna; Yan, Xiaodong; Liu, Jiyuan; Zhang, Xuezhen
2013-11-01
This paper addresses the contribution of urban land use change to near-surface air temperature during the summer extreme heat events of the early twenty-first century in the Beijing-Tianjin-Hebei metropolitan area. This study uses the Weather Research Forecasting model with a single urban canopy model and the newest actual urban cover datasets. The results show that urban land use characteristics that have evolved over the past ~20 years in the Beijing-Tianjin-Hebei metropolitan area have had a significant impact on the extreme temperatures occurring during extreme heat events. Simulations show that new urban development has caused an intensification and expansion of the areas experiencing extreme heat waves with an average increase in temperature of approximately 0.60 °C. This change is most obvious at night with an increase up to 0.95 °C, for which the total contribution of anthropogenic heat is 34 %. We also simulate the effects of geo-engineering strategies increasing the albedo of urban roofs, an effective way of reducing urban heat island, which can reduce the urban mean temperature by approximately 0.51 °C and counter approximately 80 % of the heat wave results from urban sprawl during the last 20 years.
Composition and Diversity of Avian Communities Using a New Urban Habitat: Green Roofs.
Washburn, Brian E; Swearingin, Ryan M; Pullins, Craig K; Rice, Matthew E
2016-06-01
Green roofs on buildings are becoming popular and represent a new component of the urban landscape. Public benefits of green roof projects include reduced stormwater runoff, improved air quality, reduced urban heat island effects, and aesthetic values. As part of a city-wide plan, several green roofs have been constructed at Chicago's O'Hare International Airport (ORD). Like some other landscaping features, green roofs on or near an airport might attract wildlife and thus increase the risk of bird-aircraft collisions. During 2007-2011, we conducted a series of studies to evaluate wildlife use of newly constructed green roofs and traditional (gravel) roofs on buildings at ORD. These green roofs were 0.04-1.62 ha in area and consisted of primarily stonecrop species for vegetation. A total of 188 birds were observed using roofs during this research. Of the birds using green roofs, 66, 23, and 4 % were Killdeer, European Starlings, and Mourning Doves, respectively. Killdeer nested on green roofs, whereas the other species perched, foraged, or loafed. Birds used green roofs almost exclusively between May and October. Overall, avian use of the green roofs was minimal and similar to that of buildings with traditional roofs. Although green roofs with other vegetation types might offer forage or cover to birds and thus attract potentially hazardous wildlife, the stonecrop-vegetated green roofs in this study did not increase the risk of bird-aircraft collisions.
Roofing as a source of nonpoint water pollution.
Chang, Mingteh; McBroom, Matthew W; Scott Beasley, R
2004-12-01
Sixteen wooden structures with two roofs each were installed to study runoff quality for four commonly used roofing materials (wood shingle, composition shingle, painted aluminum, and galvanized iron) at Nacogdoches, Texas. Each roof, either facing NW or SE, was 1.22 m wide x 3.66 m long with a 25.8% roof slope. Thus, there were 32 alternatively arranged roofs, consisting of four roof types x two aspects x four replicates, in the study. Runoff from the roofs was collected through galvanized gutters, downspouts, and splitters. The roof runoff was compared to rainwater collected by a wet/dry acid rain collector for the concentrations of eight water quality variables, i.e. Cu(2+), Mn(2+), Pb(2+), Zn(2+), Mg(2+), Al(3+), EC and pH. Based on 31 storms collected between October 1997 and December 1998, the results showed: (1) concentrations of pH, Cu, and Zn in rainwater already exceed the EPA freshwater quality standards even without pollutant inputs from roofs, (2) Zn and Cu, the two most serious pollutants in roof runoff, exceeded the EPA national freshwater water quality standards in virtually 100% and more than 60% of the samples, respectively, (3) pH, EC, and Zn were the only three variables significantly affected by roofing materials, (4) differences in Zn concentrations were significant among all roof types and between all roof runoff and rainwater samples, (5) although there were no differences in Cu concentrations among all roof types and between roof runoff and rainwater, all means and medians of runoff and rainwater exceeded the national water quality standards, (6) water quality from wood shingles was the worst among the roof types studied, and (7) although SE is the most frequent and NW the least frequent direction for incoming storms, only EC, Mg, Mn, and Zn in wood shingle runoff from the SE were significantly higher than those from the NW; the two aspects affected no other elements in runoff from the other three roof types. Also, Zn concentrations from new wood-shingle roofs were significantly higher than those from aged roofs of a previous study. The study demonstrated that roofs could be a serious source of nonpoint water pollution. Since Zn is the most serious water pollutant and wood shingle is the worst of the four roof types, using less compounds and materials associated with Zn along with good care and maintenance of roofs are critical in reducing Zn pollution in roof runoff.
Green roof valuation: a probabilistic economic analysis of environmental benefits.
Clark, Corrie; Adriaens, Peter; Talbot, F Brian
2008-03-15
Green (vegetated) roofs have gained global acceptance as a technologythat has the potential to help mitigate the multifaceted, complex environmental problems of urban centers. While policies that encourage green roofs exist atthe local and regional level, installation costs remain at a premium and deter investment in this technology. The objective of this paper is to quantitatively integrate the range of stormwater, energy, and air pollution benefits of green roofs into an economic model that captures the building-specific scale. Currently, green roofs are primarily valued on increased roof longevity, reduced stormwater runoff, and decreased building energy consumption. Proper valuation of these benefits can reduce the present value of a green roof if investors look beyond the upfront capital costs. Net present value (NPV) analysis comparing a conventional roof system to an extensive green roof system demonstrates that at the end of the green roof lifetime the NPV for the green roof is between 20.3 and 25.2% less than the NPV for the conventional roof over 40 years. The additional upfront investment is recovered at the time when a conventional roof would be replaced. Increasing evidence suggests that green roofs may play a significant role in urban air quality improvement For example, uptake of N0x is estimated to range from $1683 to $6383 per metric ton of NOx reduction. These benefits were included in this study, and results translate to an annual benefit of $895-3392 for a 2000 square meter vegetated roof. Improved air quality leads to a mean NPV for the green roof that is 24.5-40.2% less than the mean conventional roof NPV. Through innovative policies, the inclusion of air pollution mitigation and the reduction of municipal stormwater infrastructure costs in economic valuation of environmental benefits of green roofs can reduce the cost gap that currently hinders U.S. investment in green roof technology.
Green roofs'retention performances in different climates
NASA Astrophysics Data System (ADS)
Viola, Francesco; Hellies, Matteo; Deidda, Roberto
2017-04-01
The ongoing process of global urbanization contributes to increasing stormwater runoff from impervious surfaces, threatening also water quality. Green roofs have been proved to be an innovative stormwater management tool to partially restore natural state, enhancing interception, infiltration and evapotranspiration fluxes. The amount of water that is retained within green roofs depends mainly on both soil properties and climate. The evaluation of the retained water is not trivial since it depends on the stochastic soil moisture dynamics. The aim of this work is to explore performances of green roofs, in terms of water retention, as a function of their depth considering different climate regimes. The role of climate in driving water retention has been mainly represented by rainfall and potential evapotranspiration dynamics, which are simulated by a simple conceptual weather generator at daily time scale. The model is able to describe seasonal (in-phase and counter-phase) and stationary behaviors of climatic forcings. Model parameters have been estimated on more than 20,000 historical time series retrieved worldwide. Exemplifying cases are discussed for five different climate scenarios, changing the amplitude and/or the phase of daily mean rainfall and evapotranspiration forcings. The first scenario represents stationary climates, in two other cases the daily mean rainfall or the potential evapotranspiration evolve sinusoidally. In the latter two cases, we simulated the in-phase or in counter-phase conditions. Stochastic forcings have been then used as an input to a simple conceptual hydrological model which simulate soil moisture dynamics, evapotranspiration fluxes, runoff and leakage from soil pack at daily time scale. For several combinations of annual rainfall and potential evapotranspiration, the analysis allowed assessing green roofs' retaining capabilities, at annual time scale. Provided abacus allows a first approximation of possible hydrological benefits deriving from the implementation of intensive or extensive green roofs in different world areas, i.e. less input to sewer systems.
NASA Astrophysics Data System (ADS)
van Straaten, O.; Veldkamp, E.; Köhler, M.; Anas, I.
2010-04-01
Climate change induced droughts pose a serious threat to ecosystems across the tropics and sub-tropics, particularly to those areas not adapted to natural dry periods. In order to study the vulnerability of cacao (Theobroma cacao) - Gliricidia sepium agroforestry plantations to droughts a large scale throughfall displacement roof was built in Central Sulawesi, Indonesia. In this 19-month experiment, we compared soil surface CO2 efflux (soil respiration) from three roof plots with three adjacent control plots. Soil respiration rates peaked at intermediate soil moisture conditions and decreased under increasingly dry conditions (drought induced), or increasingly wet conditions (as evidenced in control plots). The roof plots exhibited a slight decrease in soil respiration compared to the control plots (average 13% decrease). The strength of the drought effect was spatially variable - while some measurement chamber sites reacted strongly (responsive) to the decrease in soil water content (up to R2=0.70) (n=11), others did not react at all (non-responsive) (n=7). A significant correlation was measured between responsive soil respiration chamber sites and sap flux density ratios of cacao (R=0.61) and Gliricidia (R=0.65). Leaf litter CO2 respiration decreased as conditions became drier. The litter layer contributed approximately 3-4% of the total CO2 efflux during dry periods and up to 40% during wet periods. Within days of roof opening soil CO2 efflux rose to control plot levels. Thereafter, CO2 efflux remained comparable between roof and control plots. The cumulative effect on soil CO2 emissions over the duration of the experiment was not significantly different: the control plots respired 11.1±0.5 Mg C ha-1 yr-1, while roof plots respired 10.5±0.5 Mg C ha-1 yr-1. The relatively mild decrease measured in soil CO2 efflux indicates that this agroforestry ecosystem is capable of mitigating droughts with only minor stress symptoms.
NASA Astrophysics Data System (ADS)
Buyalich, G. D.; Buyalich, K. G.; Umrikhina, V. Yu
2016-08-01
One of the main reasons of roof support failures in production faces is mismatch of their parameters and parameters of dynamic impact on the metal structure from the falling roof during its secondary convergences. To assess the parameters of vibrational interaction of roof support with the roof, it was suggested to use computational models of forces application and a partial differential equation of fourth order describing this process, its numerical solution allowed to assess frequency, amplitude and speed of roof strata movement depending on physical and mechanical properties of the roof strata as well as on load bearing and geometry parameters of the roof support. To simplify solving of the differential equation, roof support response was taken as the concentrated force.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paroli, R.M.; Penn, J.
1994-09-01
Two ethylene-propylene-diene monomer (EPDM) roofing membranes were aged at 100 C for 7 and 28 days. The T{sub g} of these membranes was then determined by dynamic mechanical analysis (DMA), thermomechanical analysis (TMA), and differential scanning calorimetry (DSC) and the results compared. It was found that: (1) T{sub g} data can be obtained easily using the DMA and TMA techniques. The DSC method requires greater care due to the broad step change in the baseline which is associated with heavily plasticized materials. (2) The closest correspondence between techniques was for TMA and DSC (half-height). The latter, within experimental error, yieldedmore » the same glass transition temperature before and after heat-aging. (3) The peak maxima associated with tan{delta} and E{double_prime} measurements should be cited with T{sub g} values as significant differences can exist. (4) The T{sub g}(E{double_prime}) values were closer to the T{sub g}(TMA) and T{sub g}(DSC) data than were the T{sub g}(tan{delta}) values. Data obtained at 1 Hz (or possibly less) should be used when making comparisons based on various techniques. An assessment of T{sub g} values indicated that EPDM 112 roofing membrane is more stable than the EPDM 111 membrane. The T{sub g} for EPDM 112 did not change significantly with heat-aging for 28 days at 130 C.« less
Rain Garden Research of EPA's Urban Watershed Research Facility (Poster)
Rain gardens are vegetated depressions designed to capture and infiltrate stormwater runoff from impervious surfaces such as roofs, parking lots, and roads. The potential benefits compared to traditional curb and gutter drainage systems include peak flow attenuation in receiving ...
Rain Garden Research at EPA's Urban Watershed Research Facility
Rain gardens are vegetated depressions designed to capture and infiltrate stormwater runoff from impervious surfaces such as roofs, parking lots, and roads. The potential benefits compared to traditional curb and gutter drainage systems include peak flow attenuation in receiving...
Promoting nitrate removal in rain gardens
Rain gardens are vegetated surface depressions, often located at low points in landscapes, designed to receive stormwater runoff from roads, roofs, and parking lots. The gardens’ sandy soils allow stormwater to drain quickly to the native soils below and eventually to groundwate...
CONTAMINATION OF URBAN SURFACE WATER BY VEHICLE EMISSIONS
DOT National Transportation Integrated Search
2017-10-01
Combined sewer overflows (CSOs) are a water management issue for Onondaga County and the city of Syracuse, NY. To reduce them, the County is investing in green infrastructure (GI). GI technologies such as green roofs, rain gardens, and bioswales are ...
Potential benefits of plant diversity on vegetated roofs: a literature review.
Cook-Patton, Susan C; Bauerle, Taryn L
2012-09-15
Although vegetated green roofs can be difficult to establish and maintain, they are an increasingly popular method for mitigating the negative environmental impacts of urbanization. Most green roof development has focused on maximizing green roof performance by planting one or a few drought-tolerant species. We present an alternative approach, which recognizes green roofs as dynamic ecosystems and employs a diversity of species. We draw links between the ecological and green roof literature to generate testable predictions about how increasing plant diversity could improve short- and long-term green roof functioning. Although we found few papers that experimentally manipulated diversity on green roofs, those that did revealed ecological dynamics similar to those in more natural systems. However, there are many unresolved issues. To improve overall green roof performance, we should (1) elucidate the links among plant diversity, structural complexity, and green roof performance, (2) describe feedback mechanisms between plant and animal diversity on green roofs, (3) identify species with complementary traits, and (4) determine whether diverse green roof communities are more resilient to disturbance and environmental change than less diverse green roofs. Copyright © 2012 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Kennedy, Mike
2000-01-01
Discusses the importance of knowing the type of climate a school is likely to endure as a decision element for selecting a school roofing system. The influence of extreme temperature shifts, wind, and excessive heat in the decision making process are discussed as are ways of improving maintenance and monitoring practices. (GR)
Field Testing Unvented Roofs with Asphalt Shingles in Cold and Hot-Humid Climates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ueno, Kohta; Lstiburek, Joseph W.
2015-09-01
Insulating roofs with dense-pack cellulose (instead of spray foam) has moisture risks, but is a lower cost approach. If moisture risks could be addressed, buildings could benefit from retrofit options, and the ability to bring HVAC systems within the conditioned space. Test houses with unvented roof assemblies were built to measure long-term moisture performance, in the Chicago area (5A) and the Houston area (2A). The Chicago-area test bed had seven experimental rafter bays, including a control vented compact roof, and six unvented roof variants with cellulose or fiberglass insulation. The interior was run at 50% RH. All roofs except themore » vented cathedral assembly experienced wood moisture contents and RH levels high enough to constitute failure. Disassembly at the end of the experiment showed that the unvented fiberglass roofs had wet sheathing and mold growth. In contrast, the cellulose roofs only had slight issues, such as rusted fasteners and sheathing grain raise. The Houston-area roof was an unvented attic insulated with spray-applied fiberglass. Most ridges and hips were built with a diffusion vent detail, capped with vapor permeable roof membrane. Some ridge sections were built as a conventional unvented roof, as a control. In the control unvented roofs, roof peak RHs reached high levels in the first winter; as exterior conditions warmed, RHs quickly fell. In contrast, the diffusion vent roofs had drier conditions at the roof peak in wintertime, but during the summer, RHs and MCs were higher than the unvented roof (albeit in the safe range).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
2015-09-01
Insulating roofs with dense-pack cellulose (instead of spray foam) has moisture risks, but is a lower cost approach. If moisture risks could be addressed, buildings could benefit from retrofit options, and the ability to bring HVAC systems within the conditioned space. Test houses with unvented roof assemblies were built to measure long-term moisture performance, in the Chicago area (5A) and the Houston area (2A). The Chicago-area test bed had seven experimental rafter bays, including a 'control' vented compact roof, and six unvented roof variants with cellulose or fiberglass insulation. The interior was run at 50% RH. All roofs except themore » vented cathedral assembly experienced wood moisture contents and RH levels high enough to constitute failure. Disassembly at the end of the experiment showed that the unvented fiberglass roofs had wet sheathing and mold growth. In contrast, the cellulose roofs only had slight issues, such as rusted fasteners and sheathing grain raise. The Houston-area roof was an unvented attic insulated with spray-applied fiberglass. Most ridges and hips were built with a 'diffusion vent' detail, capped with vapor permeable roof membrane. Some ridge sections were built as a conventional unvented roof, as a control. In the control unvented roofs, roof peak RHs reached high levels in the first winter; as exterior conditions warmed, RHs quickly fell. In contrast, the diffusion vent roofs had drier conditions at the roof peak in wintertime, but during the summer, RHs and MCs were higher than the unvented roof (albeit in the safe range).« less
40 CFR 65.45 - External floating roof converted into an internal floating roof.
Code of Federal Regulations, 2010 CFR
2010-07-01
... External floating roof converted into an internal floating roof. The owner or operator who elects to... 40 Protection of Environment 15 2010-07-01 2010-07-01 false External floating roof converted into an internal floating roof. 65.45 Section 65.45 Protection of Environment ENVIRONMENTAL PROTECTION...
Roofing: Workbook and Tests. Common Roofing and Waterproofing Materials and Equipment.
ERIC Educational Resources Information Center
California State Dept. of Education, Sacramento. Bureau of Publications.
This workbook on materials and equipment is one of a series of nine individual units of instruction for roofing apprenticeship classes in California. The workbook covers eight topics: production of bitumens and asphaltic roofing materials; built-up roofing materials and adhesives; asphaltic products and rigid roofing materials; elastomeric and…
Common Roofing and Waterproofing Materials and Equipment. Roofing Workbook and Tests.
ERIC Educational Resources Information Center
California State Dept. of Education, Sacramento. Bureau of Publications.
This publication on common roofing and waterproofing materials and equipment is one of a series of units of instruction for roofing apprenticeship classes. The workbook portion is divided into eight topics: production of bitumens and asphalt roofing materials, built-up materials and adhesives, asphalt products and rigid roofing materials,…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Desjarlais, Andre Omer; Kriner, Scott; Miller, William A
An alternative to white and cool-color roofs that meets prescriptive requirements for steep-slope (residential and non-residential) and low-slope (non-residential) roofing has been documented. Roofs fitted with an inclined air space above the sheathing (herein termed above-sheathing ventilation, or ASV), performed as well as if not better than high-reflectance, high-emittance roofs fastened directly to the deck. Field measurements demonstrated the benefit of roofs designed with ASV. A computer tool was benchmarked against the field data. Testing and benchmarks were conducted at roofs inclined at 18.34 ; the roof span from soffit to ridge was 18.7 ft (5.7 m). The tool wasmore » then exercised to compute the solar reflectance needed by a roof equipped with ASV to exhibit the same annual cooling load as that for a direct-to-deck cool-color roof. A painted metal roof with an air space height of 0.75 in. (0.019 m) and spanning 18.7 ft (5.7 m) up the roof incline of 18.34 needed only a 0.10 solar reflectance to exhibit the same annual cooling load as a direct-to-deck cool-color metal roof (solar reflectance of 0.25). This held for all eight ASHRAE climate zones complying with ASHRAE 90.1 (2007a). A dark heat-absorbing roof fitted with 1.5 in. (0.038 m) air space spanning 18.7 ft (5.7 m) and inclined at 18.34 was shown to have a seasonal cooling load equivalent to that of a conventional direct-to-deck cool-color metal roof. Computations for retrofit application based on ASHRAE 90.1 (1980) showed that ASV air spaces of either 0.75 or 1.5 in. (0.019 and 0.038 m) would permit black roofs to have annual cooling loads equivalent to the direct-to-deck cool roof. Results are encouraging, and a parametric study of roof slope and ASV aspect ratio is needed for developing guidelines applicable to all steep- and low-slope roof applications.« less
Frames, Chris; Soangra, Rahul; Lockhart, Thurmon E
2013-01-01
Fatal and nonfatal falls in the construction domain remain a significant issue in todays workforce. The roofing industry in particular, annually ranks amongst the highest in all industries. Exposure to an inclined surface, such as an inclined roof surface, has been reported to have adverse effects on postural stability. The purpose of this preliminary study was to investigate the intra-individual differences in stability parameters on both inclined and level surfaces. Postural Stability (PS) and Limit of Stability (LOS) were assessed in seven healthy subjects (aged 25-35 years) on inclined and level surfaces using embedded force plates and an Inertial Measurement Unit (IMU). Four 90-second trials were collected on the inclined surface in distinctive positions: (1) Toes raised 20o above heel; (2) Heels raised 20o above toes (3); Transverse direction with dominant foot inverted at a lower height; (4) Transverse direction with non-dominant foot inverted at a lower height. Limit of Stability was evaluated by the two measurement devices in all four directions and margin of safety was quantified for each individual on both surfaces. The results reveal significant differences in postural stability between the flat surface condition and the inclined surface condition when subject was positioned perpendicular to the surface slope with one foot descended below the other; specifically, a significant increase was identified when visual support was interrupted. The findings lend support to the literature and will assist in future research regarding early detection of postural imbalance and preventative measures to reduce fall risks in professions where workers are consistently exposed to inclined surfaces.
Frames, Chris; Soangra, Rahul; Lockhart, Thurmon E.
2013-01-01
Fatal and nonfatal falls in the construction domain remain a significant issue in today’s workforce. The roofing industry in particular, annually ranks amongst the highest in all industries. Exposure to an inclined surface, such as an inclined roof surface, has been reported to have adverse effects on postural stability. The purpose of this preliminary study was to investigate the intra-individual differences in stability parameters on both inclined and level surfaces. Postural Stability (PS) and Limit of Stability (LOS) were assessed in seven healthy subjects (aged 25-35 years) on inclined and level surfaces using embedded force plates and an Inertial Measurement Unit (IMU). Four 90-second trials were collected on the inclined surface in distinctive positions: (1) Toes raised 20° above heel; (2) Heels raised 20° above toes (3); Transverse direction with dominant foot inverted at a lower height; (4) Transverse direction with non-dominant foot inverted at a lower height. Limit of Stability was evaluated by the two measurement devices in all four directions and margin of safety was quantified for each individual on both surfaces. The results reveal significant differences in postural stability between the flat surface condition and the inclined surface condition when subject was positioned perpendicular to the surface slope with one foot descended below the other; specifically, a significant increase was identified when visual support was interrupted. The findings lend support to the literature and will assist in future research regarding early detection of postural imbalance and preventative measures to reduce fall risks in professions where workers are consistently exposed to inclined surfaces. PMID:23686205
Development and Testing of Shingle-type Solar Cell Modules
NASA Technical Reports Server (NTRS)
Shepard, N. F., Jr.
1979-01-01
The design, development, fabrication and testing of a shingle-type terrestrial solar cell module which produces 98 watts/sq m of exposed module area at 1 kW/sq m insolation and 61 C are reported. These modules make it possible to easily incorporate photovoltaic power generation into the sloping roofs of residential or commercial buildings by simply nailing the modules to the plywood roof sheathing. This design consists of nineteen series-connected 53 mm diameter solar cells arranged in a closely packed hexagon configuration. These cells are individually bonded to the embossed surface of a 3 mm thick thermally tempered hexagon-shaped piece of glass. Polyvinyl butyral is used as the laminating adhesive.
Corrosion-Resistant Roof with Integrated Photovoltaic Power System
2014-02-01
Figure 9. The panels are coated with a PVDF organic coating on the external facing surface and polyester enamel on the interior-facing surface. The high...1 no scribe No evidence of blistering, cracking , peeling or delaminating #2 scribe No evidence of blistering, cracking , peeling or delaminating...3 scribe No evidence of blistering, cracking , peeling or delaminating #4 scribe No evidence of blistering, cracking , peeling or delaminating
Energy analysis of cool, medium, and dark roofs on residential buildings in the U.S
NASA Astrophysics Data System (ADS)
Dunbar, Michael A.
This study reports an energy analysis of cool, medium, and dark roofs on residential buildings in the U.S. Three analyses were undertaken in this study: energy consumption, economic analysis, and an environmental analysis. The energy consumption reports the electricity and natural gas consumption of the simulations. The economic analysis uses tools such as simple payback period (SPP) and net present value (NPV) to determine the profitability of the cool roof and the medium roof. The variable change for each simulation model was the roof color. The default color was a dark roof and the results were focused on the changes produced by the cool roof and the medium roof. The environmental analysis uses CO2 emissions to assess the environmental impact of the cool roof and the medium roof. The analysis uses the U.S. Department of Energy (DOE) EnergyPlus software to produce simulations of a typical, two-story residential home in the U.S. The building details of the typical, two-story U.S. residential home and the International Energy Conservation Code (IECC) building code standards used are discussed in this study. This study indicates that, when material and labor costs are. assessed, the cool roof and the medium roof do not yield a SPP less than 10 years. Furthermore, the NPV results assess that neither the cool roof nor the medium roof are a profitable investment in any climate zone in the U.S. The environmental analysis demonstrates that both the cool roof and the medium roof have a positive impact in warmer climates by reducing the CO2 emissions as much as 264 kg and 129 kg, respectively.
Mine roof driller-bolter apparatus and method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hibbard, G.A.; Lumbra, R.C.; Morrison, W.D.
1983-12-13
An apparatus for bolting the roof of an underground mine is disclosed comprising a mobile frame, a boom extending from the frame and a housing provided at the end of the frame. The housing supports an upwardly extending stinger, a drilling mechanism including a drill centralizer having a central bore therethrough and a passageway in communication with the central bore, a device for delivering a container of roof bolting anchoring media through the passageway and through the drill centralizer and into a drilled hole, a device for indexing a roof bolt into alignment with the drilled hole and a spinnermore » for driving the roof bolt into the drilled hole. The present invention also provides a method for bolting the roof of an underground mine comprising the steps of stinging a housing against the roof of the mine, moving a drill centralizer into communication with the roof and drilling a hole in the roof. Without retracting the drill centralizer from communication with the roof, a container of roof bolt anchoring media is delivered through the centralizer and into the drilled hole. The drill centralizer is thereafter retracted and the housing is moved to align a roof bolt with a drilled hole. Then the roof bolt is driven into the drilled hole and the bolt anchoring media sets around the bolt.« less
5. Roof Truss Above Service Area, Roof Truss Above Ward, ...
5. Roof Truss Above Service Area, Roof Truss Above Ward, Roof Framing Axonometric - National Home for Disabled Volunteer Soldiers - Battle Mountain Sanitarium, Ward 4, 500 North Fifth Street, Hot Springs, Fall River County, SD
A MULTIDISCIPLINARY APPROACH TO MANAGING STORMWATER RUNOFF IN AN URBAN WATERSHED
Increased impervious surface (e.g., roofs, pavement) due to urbanization can lead to excess runoff throughout a watershed, overwhelming the existing stormwater infrastructure. High volumes of runoff, delivered to receiving streams over short durations at high flow rates, negative...
Code of Federal Regulations, 2014 CFR
2014-07-01
... introduced and that uses electrical energy to heat the reverberatory furnace slag to such a temperature... removal of ground, pavement, concrete, or asphalt. Materials storage and handling area means any area of a.... Reverberatory furnace means a refractory-lined furnace that uses one or more flames to heat the walls and roof...
Code of Federal Regulations, 2013 CFR
2013-07-01
... introduced and that uses electrical energy to heat the reverberatory furnace slag to such a temperature... removal of ground, pavement, concrete, or asphalt. Materials storage and handling area means any area of a.... Reverberatory furnace means a refractory-lined furnace that uses one or more flames to heat the walls and roof...
Code of Federal Regulations, 2012 CFR
2012-07-01
... introduced and that uses electrical energy to heat the reverberatory furnace slag to such a temperature... removal of ground, pavement, concrete, or asphalt. Materials storage and handling area means any area of a.... Reverberatory furnace means a refractory-lined furnace that uses one or more flames to heat the walls and roof...
[Monitoring and analysis on evolution process of rainfall runoff water quality in urban area].
Dong, Wen; Li, Huai-En; Li, Jia-Ke
2013-02-01
In order to find the water quality evolution law and pollution characteristics of the rainfall runoff from undisturbed to the neighborhood exit, 6 times evolution process of rainfall runoff water quality were monitored and analyzed from July to October in 2011, and contrasted the clarification efficiency of the grassland to the roof runoff rudimentarily at the same time. The research showed: 1. the results of the comparison from "undisturbed, rainfall-roof, rainfall runoff-road, rainfall-runoff the neighborhood exit runoff " showed that the water quality of the undisturbed rain was better than that from the roof and the neighborhood exist, but the road rainfall runoff water quality was the worst; 2. the average concentrations of the parameters such as COD, ammonia nitrogen and total nitrogen all exceeded the Fifth Class of the Surface Water Quality Standard except for the soluble total phosphorus from undisturbed rainfall to the neighborhood exit; 3. the runoff water quality of the short early fine days was better than that of long early fine days, and the last runoff water quality was better than that of the initial runoff in the same rainfall process; 4. the concentration reduction of the grassland was notable, and the reduction rate of the grassland which is 1.0 meter wide of the roof runoff pollutants such as COD and nitrogen reached 30%.
Green Roofs for Stormwater Runoff Control - Abstract
This project evaluated green roofs as a stormwater management tool. Specifically, runoff quantity and quality from green and flat asphalt roofs were compared. Evapotranspiration from planted green roofs and evaporation from unplanted media roofs were also compared. The influence...
Green Roofs for Stormwater Management
This project evaluated green roofs as a stormwater management tool. Results indicate that the green roofs are capable of removing 40% of the annual rainfall volume from a roof through retention and evapotranspiration. Rainfall not retained by green roofs is detained, effectively...
Green Roofs for Stormwater Runoff Control
This project evaluated green roofs as a stormwater management tool. Specifically, runoff quantity and quality from green and flat asphalt roofs were compared. Evapotranspiration from planted green roofs and evaporation from unplanted media roofs were also compared. The influence...
Huang, Yuan-Dong; He, Wen-Rong; Kim, Chang-Nyung
2015-02-01
A two-dimensional numerical model for simulating flow and pollutant dispersion in an urban street canyon is firstly developed using the FLUENT code and then validated against the wind tunnel results. After this, the flow field and pollutant dispersion inside an urban street canyon with aspect ratio W/H = 1 are examined numerically considering five different shapes (vaulted, trapezoidal, slanted, upward wedged, and downward wedged roofs) as well as three different roof height to building height ratios (Z H /H = 1/6, 1/3, and 1/2) for the upstream building roof. The results obtained reveal that the shape and height of an upstream roof have significant influences on flow pattern and pollutant distribution in an urban canyon. A large single clockwise vortex is generated in the canyon for the vaulted upstream roof at Z H /H = 1/6, 1/3, and 1/2, the trapezoidal and downward wedged roofs at Z H /H = 1/6 and 1/3, and the slanted and upward wedged roofs at Z H /H = 1/6, while a main clockwise vortex and a secondary counterclockwise vortex are established for the trapezoidal and downward wedged roofs at Z H /H = 1/2 and the slanted and upward wedged roofs at Z H /H = 1/3 and 1/2. In the one-vortex flow regime, the clockwise vortex moves upward and grows in size with increasing upstream roof height for the vaulted, trapezoidal, and downward wedged roofs. In the two-vortex flow regime, the size and rotational velocity of both upper clockwise and lower counterclockwise vortices increase with the upstream roof height for the slanted and upward wedged roofs. At Z H /H = 1/6, the pollution levels in the canyon are close among all the upstream roof shapes studied. At Z H /H = 1/3, the pollution levels in the canyon for the upward wedged roof and slanted roof are much higher than those for the vaulted, trapezoidal, and downward wedged roofs. At Z H /H = 1/2, the lowest pollution level appears in the canyon for the vaulted upstream roof, while the highest pollution level occurs in the canyon for the upward wedged roof.
Development and testing of shingle-type solar cell modules. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shepard, N.F.
1979-02-28
The design, development, fabrication and testing of a shingle-type terrestrial solar cell module which produces 98 watts/m/sup 2/ of exposed module area at 1 kW/m/sup 2/ insolation and 61/sup 0/C are reported. These modules make it possible to easily incorporate photovoltaic power generation into the sloping roofs of residential or commercial buildings by simply nailing the modules to the plywood roof sheathing. This design consists of nineteen series-connected 53 mm diameter solar cells arranged in a closely packaged hexagon configuration. These cells are individually bonded to the embossed surface of a 3 mm thick thermally tempered hexagon-shaped piece of ASGmore » SUNADEX glass. Monsanto SAFLEX polyvinyl butyral is used as the laminating adhesive. RTVII functions as the encapsulant between the underside of the glass superstrate and a rear protective sheet of 0.8 mm thick TEXTOLITE. The semi-flexible portion of each shingle module is a composite laminate construction consisting of outer layers of B.F. Goodrich FLEXSEAL and an epichlorohydrin closed cell foam core. The module design has satisfactorily survived the JPL-defined qualification testing program which includes 50 thermal cycles between -40 and +90/sup 0/C, a seven-day temperature-humidity exposure test and a mechanical integrity test consisting of a bidirectional cyclic loading at 2390 Pa (50 lb/ft/sup 2/) which is intended to simulate loads due to a 45 m/s (100 mph) wind.« less
NASA Astrophysics Data System (ADS)
Prahara, E.; Meilani
2014-03-01
Pervious concrete was introduced in America in 2003, popularized by Dan Brown and used as a rigid pavement in the open parking lot. Rigid pavement using pervious concrete can absorb water in the surface to go straight through the concrete to the ground below.This water flow is one of the benefit of using the pervious concrete. Using of wastes such as broken roof and ceramics tiles are not commonly used in Indonesia. Utilization these kind of wastes is predicted lower the compressive strength of pervious concrete as they are used as a substitute for coarse aggregate.In this research, pervious concrete is made using a mixture of the fragment of ceramics and roof tiles.This research using broken ceramics and roof tiles with a grain size that loose from 38 mm sieve, retained on 19 mm sieve and the coarse aggregate from crushed stone that loose 12.5 mm sieve, retained on 9.5 mm sieve. The water cement ratio is 0.3 and to assist the mixing process, the addition of addictive in pervious concrete is used.The size of coarse aggregate used in the mixture affects the strength of pervious concrete. The larger the size of aggregate, the obtained compressive strength becomes smaller. It also affects the density of pervious concrete. The using of mixture of ceramics and roof tiles only reduce 2 MPa of pervious concrete compressive strength so this mixture can be used as a substitute for coarse aggregate with a maximum portion of 30 %. The high porosity of the specimens causes the reduction of pervious concrete density that affect the compressive strength. This high level of porosity can be seen from the high level of water absorption that exceed the required limit of water infiltration.
Experiences from full-scale rockfall testing of protection gallery
NASA Astrophysics Data System (ADS)
Volkwein, Axel; Fergg, Daniel; Hess, Reto; Schellenberg, Kristian
2017-04-01
Vertical drop tests have been performed at the Swiss Oberalppass road. The planned deconstruction of two avalanche protection galleries enabled a precedent evaluation of one gallery (Parde 1} regarding its capacity against rockfall. The background for this evaluation was also to evaluate an existing model for predicting the protection capacity of a rockfall gallery. Based on this model existing galleries can be evaluated whether their residual capacity is sufficient or if it is necessary to strengthen the structureaccording to the current guidelines. This contribution focusses the conduction of the experiments and the experiences obtained from. The presentation gives details on experimental setup, impact characterization, gallery performance, weather implications, data retrieval and data analysis.According to the limited time span for testing and the resources available, a compact testing series has been setup. Three fields of the gallery were tested with drop weights of 800, 1600 and 3200 kg falling from up to 25 m height. The blocks were lifted by a mobil crane. The concrete roof is supported by columns on the valley side and on the mountainside simply supported on the retention wall. The roof slabspans approximately 6x5 m with a thickness of about 0.60 m and is covered by a soil cushion, which has been unified to 0.40 m thickness previous to the test. Additional wooden columns have been installed at the roof's valleyside to avoid a failure of the concrete columns and to favorize a failure of the roof itself due to bending or punching. The measurements performed consist of high speed video records, accelerations within the impactors and on the bottom surface of the gallery roof.
Digging the New York City Skyline: Soil Fungal Communities in Green Roofs and City Parks
McGuire, Krista L.; Payne, Sara G.; Palmer, Matthew I.; Gillikin, Caitlyn M.; Keefe, Dominique; Kim, Su Jin; Gedallovich, Seren M.; Discenza, Julia; Rangamannar, Ramya; Koshner, Jennifer A.; Massmann, Audrey L.; Orazi, Giulia; Essene, Adam; Leff, Jonathan W.; Fierer, Noah
2013-01-01
In urban environments, green roofs provide a number of benefits, including decreased urban heat island effects and reduced energy costs for buildings. However, little research has been done on the non-plant biota associated with green roofs, which likely affect their functionality. For the current study, we evaluated whether or not green roofs planted with two native plant communities in New York City functioned as habitats for soil fungal communities, and compared fungal communities in green roof growing media to soil microbial composition in five city parks, including Central Park and the High Line. Ten replicate roofs were sampled one year after planting; three of these roofs were more intensively sampled and compared to nearby city parks. Using Illumina sequencing of the fungal ITS region we found that green roofs supported a diverse fungal community, with numerous taxa belonging to fungal groups capable of surviving in disturbed and polluted habitats. Across roofs, there was significant biogeographical clustering of fungal communities, indicating that community assembly of roof microbes across the greater New York City area is locally variable. Green roof fungal communities were compositionally distinct from city parks and only 54% of the green roof taxa were also found in the park soils. Phospholipid fatty acid analysis revealed that park soils had greater microbial biomass and higher bacterial to fungal ratios than green roof substrates. City park soils were also more enriched with heavy metals, had lower pH, and lower quantities of total bases (Ca, K, and Mg) compared to green roof substrates. While fungal communities were compositionally distinct across green roofs, they did not differentiate by plant community. Together, these results suggest that fungi living in the growing medium of green roofs may be an underestimated component of these biotic systems functioning to support some of the valued ecological services of green roofs. PMID:23469260
Digging the New York City Skyline: soil fungal communities in green roofs and city parks.
McGuire, Krista L; Payne, Sara G; Palmer, Matthew I; Gillikin, Caitlyn M; Keefe, Dominique; Kim, Su Jin; Gedallovich, Seren M; Discenza, Julia; Rangamannar, Ramya; Koshner, Jennifer A; Massmann, Audrey L; Orazi, Giulia; Essene, Adam; Leff, Jonathan W; Fierer, Noah
2013-01-01
In urban environments, green roofs provide a number of benefits, including decreased urban heat island effects and reduced energy costs for buildings. However, little research has been done on the non-plant biota associated with green roofs, which likely affect their functionality. For the current study, we evaluated whether or not green roofs planted with two native plant communities in New York City functioned as habitats for soil fungal communities, and compared fungal communities in green roof growing media to soil microbial composition in five city parks, including Central Park and the High Line. Ten replicate roofs were sampled one year after planting; three of these roofs were more intensively sampled and compared to nearby city parks. Using Illumina sequencing of the fungal ITS region we found that green roofs supported a diverse fungal community, with numerous taxa belonging to fungal groups capable of surviving in disturbed and polluted habitats. Across roofs, there was significant biogeographical clustering of fungal communities, indicating that community assembly of roof microbes across the greater New York City area is locally variable. Green roof fungal communities were compositionally distinct from city parks and only 54% of the green roof taxa were also found in the park soils. Phospholipid fatty acid analysis revealed that park soils had greater microbial biomass and higher bacterial to fungal ratios than green roof substrates. City park soils were also more enriched with heavy metals, had lower pH, and lower quantities of total bases (Ca, K, and Mg) compared to green roof substrates. While fungal communities were compositionally distinct across green roofs, they did not differentiate by plant community. Together, these results suggest that fungi living in the growing medium of green roofs may be an underestimated component of these biotic systems functioning to support some of the valued ecological services of green roofs.
Field Testing Unvented Roofs with Asphalt Shingles in Cold and Hot-Humid Climates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ueno, Kohta; Lstiburek, Joseph W.
2015-09-01
Test houses with unvented roof assemblies were built to measure long-term moisture performance, in the Chicago area (5A) and the Houston area (2A). The Chicago-area test bed had seven experimental rafter bays, including a control vented compact roof, and six unvented roof variants with cellulose or fiberglass insulation. The interior was run at 50% RH. The Houston-area roof was an unvented attic insulated with spray-applied fiberglass. Most ridges and hips were built with a diffusion vent detail, capped with vapor permeable roof membrane. In contrast, the diffusion vent roofs had drier conditions at the roof peak in wintertime, but duringmore » the summer, RHs and MCs were higher than the unvented roof (albeit in the safe range).« less
Vehicle Assembly Building Fire Mishap Investigation Report. Volume I of V
NASA Technical Reports Server (NTRS)
Kight, Ira; Luciano, Steven; Stevens, Michael B.; Farley, W. Max; Collins, Bryce D.; Potterger, William C.; Levesque, Jodi
2005-01-01
On January 13, 2005, at approximately 1355, smoke was noticed on the 4th floor of D Tower in the Vehicle Assembly Building (VAB). Subsequently, a 911 call was made, a fire alarm pull station was activated, and the VAB was evacuated. The source of the smoke was determined to be a fire on the Low Bay M/N section roof near the Launch Control Center (LCC) Crossover. Due to the high visibility of the mishap, the KSC Center Director appointed a Mishap Investigation Board. Damage to government property was limited to the roof and a small number of ceiling tiles that were damaged by the fire fighters during the response. At the time of the mishap, there were hazardous commodities in the VAB including Solid Rocket Motors (SRMs) with open grain due to Solid Rocket Booster (SRB) igniter inspections. The Board agrees with the SGS Fire Services' theory that large amounts of smoke concentrated in the VAB D Tower and moved downward into the cable tunnel. The Board determined the proximate cause of this incident to be torching. HRI was installing a torch applied roof membrane which resulted in the ignition of combustible materials under the membrane near a wooden roof expansion joint. The torch applied roofing method is a universally accepted safe industry practice when applied to non-combustible surfaces. The combination of an open flame torch and combustible materiaLs presents an increased level of risk even with skilled applicators. The addition of high winds to this combination results in a risk the Board thinks can not be adequately mitigated. An appropriate risk assessment and analysis must be performed on the proposed roofing method to be used on high visibility facilities which represent unique national assets even when using common industry practices for repair and modification. The Board identified three root causes which contributed to or created the proximate cause and, if eliminated or modified, would have prevented the mishap: 1. Combustible materials in existing roof system 2. Wind speed and direction 3. Inadequate fire watch technique. Two contributing factors were identified which may have contributed to the occurrence but, if eliminated or modified, would not have prevented the occurrence: 1. HRI rushed to dry in and seal the roof on January 13 because heavy rain was predicted for the next day 2. No guidance on torching in windy conditions A total of 17 significant observations were noted during this investigation, which could lead to another mishap, or increase the severity of a mishap, but were not contributing factors in this mishap.
Convective melting in a magma chamber: theory and numerical experiment.
NASA Astrophysics Data System (ADS)
Simakin, A.
2012-04-01
We present results of the numerical modeling of convective melting in a magma chamber in 2D. Model was pointed on the silicic system approximated with Qz-Fsp binary undersaturated with water. Viscosity was calculated as a function of the melt composition, temperature and crystal content and comprises for the pure melt 104.5-105.5 Pas. Lower boundary was taken thermally insulated in majority of the runs. Size of FEM (bilinear elements) grid for velocity is 25x25 cm and for the integration of the density term 8x8 cm. Melting of the chamber roof proceeds with the heat supply due to the chaotic thermo-compositional convection and conductive heat loose into melted substrate. We compare our numerical data with existing semi-analytical models. Theoretical studies of the assimilation rates in the magma chambers usually use theoretical semi-analytical model by Huppert and Sparks (1988) (e.g., Snyder, 2000). We find that this model has strong points: 1) Independence of the melting rate on the sill thickness (Ra>>Rac) 2) Independence of the convective heat transfer on the roof temperature 3) Determination of the exponential thermal boundary layer ahead of the melting front and weak points: 1) Ignoring the possibility of the crystallization without melting regime for narrow sills and dykes. 2)Neglecting of two-phase character of convection. 3)Ignoring of the strong viscosity variation near the melting front. Independence of convective flux from the sill size (at Ra>>Rac) allows reducing of computational domain to the geologically small size (10-15 m). Concept of exponential thermal boundary layer is also rather important. Length scale (L0) of this layer is related to the melting rate and thermal diffusivity coefficient kT as L0=kT/um and at the melting rate 10 m/yr becomes about 2 m. Such small scale implies that convective melting is very effective (small conductive heat loss) and part of the numerical domain filled with roof rocks can be taken small. In the H&S model conditions for the intruded magma to crystallize first and then switch to the roof melting or only crystallize were not defined. We did this in our numerical experiments in terms of the initial magma and roof rocks temperatures for particular sill size. Neglecting strong viscosity variation in the boundary layer at the melting front leads to the overestimation of the melting rate by H&S model on approximately 70% at Tm=940oC. At Tm =800oC effect of the crystals present in descending plumes compensates viscosity increase and numerical Um practically coincides with theoretical one (difference 8%). Some researchers (Huber et al., 2010) use empirical and scaling results obtained from stagnant-lid convection (Davaille and Jaupart, 1993). We find that the later model is not applicable to the melting problem since super-exponential dependence of the viscosity from temperature is valid providing full solidification below eutectic temperature Ts. "Melting temperature" at the stagnant-lid style of convection is defined by Arhenius rheological parameters and bulk melt temperature and can be less than Ts. Our numerical study was applied to the estimation of the possible time frame and efficiency of the remelting of the silicic pyroclastics by superheated rhyolites in the caldera environment (Simakin and Bindeman, 2012). Literature. 1)Davaille, A. and Jaupart, C. (1993) J. Fluid. Mech., 253: 141-166. 2) Huppert, H.E. and Sparks, R.S.J. (1988) J. Petrol., 29: 599-624. 3)Huber, C., Bachmann, O., Dufek, J. (2010) J. Volcanol. Geotherm. Res., 195: 97-105. 4)Jaupart, C. and Brandeis, G. (1986) Earth Planet. Sci. Lett. 80: 183-199. 5)Simakin, A.G. and Bindeman, I.N. (2012) Remelting in caldera and rift environments and the genesis of hot, "recycled" rhyolites. Earth Planet. Sci. Lett. (in review). 6) Snyder, D. (2000) Earth Planet. Sci. Lett. 175: 257-273.
29 CFR 570.67 - Occupations in roofing operations and on or about a roof (Order 16).
Code of Federal Regulations, 2010 CFR
2010-07-01
..., including painting and coating of existing roofs; the construction of the sheathing or base of roofs (wood..., and shingles of asbestos, asphalt, wood or other materials) to roofs of buildings or other structures...
ERIC Educational Resources Information Center
Seeley, James
1997-01-01
Describes how schools are investigating single-ply roofing systems for new and retrofit construction. Discusses some of the considerations in seaming together a single-ply roof, steps in choosing roofing material and a roofing contractor, warranty advice, and the importance of keeping records on roof maintenance. (RJM)
Zhang, Qianqian; Wang, Xiaoke; Hou, Peiqiang; Wan, Wuxing; Li, Ruida; Ren, Yufen; Ouyang, Zhiyun
2014-01-01
There is an urgent requirement to examine the quality of harvested rainwater for potable and non-potable purposes, based on the type of roofing material. In this study, we examined the effect on the quality of harvested rainwater of conventional roofing materials (concrete, asphalt and ceramic tile roofs) compared with alternative roofing materials (green roof). The results showed that the ceramic tile roof was the most suitable for rainwater-harvesting applications because of the lower concentrations of leachable pollutants. However, in this study, the green roof was not suitable for rainwater harvesting applications. In addition, seasonal trends in water quality parameters showed that pollutants in roof runoff in summer and autumn were lower than those in winter and spring. This study revealed that the quality of harvested rainwater was significantly affected by the roofing material; therefore, local government and urban planners should develop stricter testing programs and produce more weathering resistant roofing materials to allow the harvesting of rainwater for domestic and public uses. Copyright © 2013 Elsevier Ltd. All rights reserved.
Establishing green roof infrastructure through environmental policy instruments.
Carter, Timothy; Fowler, Laurie
2008-07-01
Traditional construction practices provide little opportunity for environmental remediation to occur in urban areas. As concerns for environmental improvement in urban areas become more prevalent, innovative practices which create ecosystem services and ecologically functional land cover in cities will be in higher demand. Green roofs are a prime example of one of these practices. The past decade has seen the North American green roof industry rapidly expand through international green roof conferences, demonstration sites, case studies, and scientific research. This study evaluates existing international and North American green roof policies at the federal, municipal, and community levels. Green roof policies fall into a number of general categories, including direct and indirect regulation, direct and indirect financial incentives, and funding of demonstration or research projects. Advantages and disadvantages of each category are discussed. Salient features and a list of prompting standards common to successfully implemented green roof strategies are then distilled from these existing policies. By combining these features with data collected from an experimental green roof site in Athens, Georgia, the planning and regulatory framework for widespread green roof infrastructure can be developed. The authors propose policy instruments be multi-faceted and spatially focused, and also propose the following recommendations: (1) Identification of green roof overlay zones with specifications for green roofs built in these zones. This spatial analysis is important for prioritizing areas of the jurisdiction where green roofs will most efficiently function; (2) Offer financial incentives in the form of density credits and stormwater utility fee credits to help overcome the barriers to entry of the new technology; (3) Construct demonstration projects and institutionalize a commitment greening roofs on publicly-owned buildings as an effective way of establishing an educated roofing industry and experienced installers for future green roof construction.
Establishing Green Roof Infrastructure Through Environmental Policy Instruments
NASA Astrophysics Data System (ADS)
Carter, Timothy; Fowler, Laurie
2008-07-01
Traditional construction practices provide little opportunity for environmental remediation to occur in urban areas. As concerns for environmental improvement in urban areas become more prevalent, innovative practices which create ecosystem services and ecologically functional land cover in cities will be in higher demand. Green roofs are a prime example of one of these practices. The past decade has seen the North American green roof industry rapidly expand through international green roof conferences, demonstration sites, case studies, and scientific research. This study evaluates existing international and North American green roof policies at the federal, municipal, and community levels. Green roof policies fall into a number of general categories, including direct and indirect regulation, direct and indirect financial incentives, and funding of demonstration or research projects. Advantages and disadvantages of each category are discussed. Salient features and a list of prompting standards common to successfully implemented green roof strategies are then distilled from these existing policies. By combining these features with data collected from an experimental green roof site in Athens, Georgia, the planning and regulatory framework for widespread green roof infrastructure can be developed. The authors propose policy instruments be multi-faceted and spatially focused, and also propose the following recommendations: (1) Identification of green roof overlay zones with specifications for green roofs built in these zones. This spatial analysis is important for prioritizing areas of the jurisdiction where green roofs will most efficiently function; (2) Offer financial incentives in the form of density credits and stormwater utility fee credits to help overcome the barriers to entry of the new technology; (3) Construct demonstration projects and institutionalize a commitment greening roofs on publicly-owned buildings as an effective way of establishing an educated roofing industry and experienced installers for future green roof construction.
The effect of roofing material on the quality of harvested rainwater.
Mendez, Carolina B; Klenzendorf, J Brandon; Afshar, Brigit R; Simmons, Mark T; Barrett, Michael E; Kinney, Kerry A; Kirisits, Mary Jo
2011-02-01
Due to decreases in the availability and quality of traditional water resources, harvested rainwater is increasingly used for potable and non-potable purposes. In this study, we examined the effect of conventional roofing materials (i.e., asphalt fiberglass shingle, Galvalume(®) metal, and concrete tile) and alternative roofing materials (i.e., cool and green) on the quality of harvested rainwater. Results from pilot-scale and full-scale roofs demonstrated that rainwater harvested from any of these roofing materials would require treatment if the consumer wanted to meet United States Environmental Protection Agency primary and secondary drinking water standards or non-potable water reuse guidelines; at a minimum, first-flush diversion, filtration, and disinfection are recommended. Metal roofs are commonly recommended for rainwater harvesting applications, and this study showed that rainwater harvested from metal roofs tends to have lower concentrations of fecal indicator bacteria as compared to other roofing materials. However, concrete tile and cool roofs produced harvested rainwater quality similar to that from the metal roofs, indicating that these roofing materials also are suitable for rainwater harvesting applications. Although the shingle and green roofs produced water quality comparable in many respects to that from the other roofing materials, their dissolved organic carbon concentrations were very high (approximately one order of magnitude higher than what is typical for a finished drinking water in the United States), which might lead to high concentrations of disinfection byproducts after chlorination. Furthermore the concentrations of some metals (e.g., arsenic) in rainwater harvested from the green roof suggest that the quality of commercial growing media should be carefully examined if the harvested rainwater is being considered for domestic use. Hence, roofing material is an important consideration when designing a rainwater catchment. Copyright © 2011 Elsevier Ltd. All rights reserved.
The Role of Ecologists in Designing Rain Gardens: Enhancing Nitrate removal Performance
Rain gardens are vegetated surface depressions designed to receive stormwater runoff from roads, roofs, and parking lots. Stormwater infiltration through rain gardens’ sandy soils is intended to have both water quantity and quality benefits, through stream peak flow reduction and...
The role of ecologists in designing rain gardens: Enhancing nitrate removal performance
Rain gardens are vegetated surface depressions designed to receive stormwater runoff from roads, roofs, and parking lots. Stormwater infiltration through rain gardens’ sandy soils is intended to have both water quantity and quality benefits, through stream peak flow reduction an...
Remote optoelectronic sensors for monitoring of nonlinear surfaces
NASA Astrophysics Data System (ADS)
Petrochenko, Andrew V.; Konyakhin, Igor A.
2015-05-01
Actually during construction of the high building actively are used objects of various nonlinear surface, for example, sinuous (parabolic or hyperbolic) roofs of the sport complexes that require automatic deformation control [1]. This type of deformation has character of deflection that is impossible to monitor objectively with just one optoelectronic sensor (which is fixed on this surface). In this article is described structure of remote optoelectronic sensor, which is part of the optoelectronic monitoring system of nonlinear surface, and mathematical transformation of exterior orientation sensor elements in the coordinates of control points.
40 CFR 443.30 - Applicability; description of the asphalt roofing subcategory.
Code of Federal Regulations, 2013 CFR
2013-07-01
... asphalt roofing subcategory. 443.30 Section 443.30 Protection of Environment ENVIRONMENTAL PROTECTION... ROOFING MATERIALS (TARS AND ASPHALT) POINT SOURCE CATEGORY Asphalt Roofing Subcategory § 443.30 Applicability; description of the asphalt roofing subcategory. The provisions of this subpart are applicable to...
40 CFR 443.30 - Applicability; description of the asphalt roofing subcategory.
Code of Federal Regulations, 2012 CFR
2012-07-01
... asphalt roofing subcategory. 443.30 Section 443.30 Protection of Environment ENVIRONMENTAL PROTECTION... ROOFING MATERIALS (TARS AND ASPHALT) POINT SOURCE CATEGORY Asphalt Roofing Subcategory § 443.30 Applicability; description of the asphalt roofing subcategory. The provisions of this subpart are applicable to...
40 CFR 443.30 - Applicability; description of the asphalt roofing subcategory.
Code of Federal Regulations, 2014 CFR
2014-07-01
... asphalt roofing subcategory. 443.30 Section 443.30 Protection of Environment ENVIRONMENTAL PROTECTION... ROOFING MATERIALS (TARS AND ASPHALT) POINT SOURCE CATEGORY Asphalt Roofing Subcategory § 443.30 Applicability; description of the asphalt roofing subcategory. The provisions of this subpart are applicable to...
Eco-Environmental Factors in Green Roof Application in Indian Cities
NASA Astrophysics Data System (ADS)
Mukherjee, M.
2014-09-01
Green-roof is the cost-effective environmental mitigation strategy for urban areas [1]. Its application is limited in India primarily due to inadequate understanding about its cost-benefit analysis and technicalities of its maintenance. Increasing awareness about green roof can alter conservative attitude towards its application. So, this work presents a quantified study on green-roof types, cost and environmental benefits while considering different geo-urban climate scenarios for cities of Kolkata, Mumbai, Chennai and New Delhi. Cost estimation for extensive and intensive green-roof with reference to commonly used roof in urban India is also worked out. Attributes considered for environmental discussion are energy savings related to thermal heat gain through roof, roof-top storm-water drainage and sound attenuation. The comparative study confirms that further focused study on individual cities would identify city-specific objectives for green-roof application; strategies like awareness, capacity building programmes, incentives, demonstration projects etc. can be worked out accordingly for wider application of green-roof in Indian cities.
Power Generation Potential and Cost of a Roof Top Solar PV System in Kathmandu, Nepal
NASA Astrophysics Data System (ADS)
Sanjel, N.; Zhand, A.
2017-12-01
The paper presents a comparative study of the 3 most used solar PV module technologies in Nepal, which are Si-mono-crystalline, Si-poly-crystalline and Si-amorphous. The aim of the paper is to present and discuss the recorded Global Solar Radiation, received in the Kathmandu valley by three different, Si-mono-crystalline, Si-poly-crystalline and Si-amorphous calibrated solar cell pyranometers and to propose the best-suited solar PV module technology for roof top solar PV systems inside the Kathmandu valley. Data recorded over the course of seven months, thus covering most of the seasonal meteorological conditions determining Kathmandu valley's global solar radiation reception are presented. The results indicate that the Si-amorphous pyranometer captured 1.56% more global solar radiation than the Si-mono-crystalline and 18.4% more than Si-poly-crystalline pyranometer over the course of seven months. Among the three pyranometer technologies the maximum and minimum cell temperature was measured by the Si-mono-crystalline pyranometer. Following the technical data and discussion, an economical analysis, using the versatile software tool PVSYST V5.01is used to calculate the life cycle costs of a 1kW roof top solar PV RAPS system, with battery storage, and a 1kW roof top solar PV grid connected system with no energy storage facility, through simulations, using average recorded global solar radiation data for the KTM valley and investigated market values for each solar PV module and peripheral equipment costs.
ERIC Educational Resources Information Center
Poindexter, Dave
1996-01-01
Offers ideas for locating a roof leak. Discusses why many leaks originate in the roof's base flashings and the importance of knowing the roof's material makeup. Advocates keeping a roof-leak history and gives advice on performing inspections to check for leaks. Discusses how to find small holes in roofs. (RJM)
Diagnosing the Internal Architecture of Zeolite Ferrierite
Schmidt, Joel E.; Hendriks, Frank C.; Lutz, Martin; Post, L. Christiaan; Fu, Donglong
2017-01-01
Abstract Large crystals of zeolite ferrierite (FER) are important model systems for spatially resolved catalysis and diffusion studies, though there is considerable variation in crystal habit depending on the chemical composition and employed synthesis conditions. A synergistic combination of techniques has been applied, including single crystal X‐ray diffraction, high‐temperature in situ confocal fluorescence microscopy, fluorescent probe molecules, wide‐field microscopy and atomic force microscopy to unravel the internal architecture of three distinct FER zeolites. Pyrolyzed template species can be used as markers for the 8‐membered ring direction as they are trapped in the terraced roof of the FER crystals. This happens as the materials grow in a layer‐by‐layer, defect‐free manner normal to the large crystal surface, and leads to a facile method to diagnose the pore system orientation, which avoids tedious single crystal X‐ray diffraction experiments. PMID:28809081
Prelaunch Performance of the 118 GHz Polarcube 3U Cubesat Temperature Sounding Radiometer
NASA Astrophysics Data System (ADS)
Periasamy, L.; Gasiewski, A. J.; Gallaher, D. W.; Sanders, B. T.; Belter, R.; Kraft, D.; Castillo, J.; Gordon, J. A.; Hurowitz, M.
2017-12-01
The low cost PolarCube 3U CubeSat supports a 118.75 GHz imaging spectrometer for temperature profiling of the troposphere and surface temperature. It is a demonstrator for a constellation of LEO passive microwave sensors at V-band and other frequencies using 3U/6U CubeSats. Such a satellite constellation for weather forecasting will provide data at high spatial and temporal resolution to observe rapidly evolving mesoscale weather. The satellite's payload is an eight channel, double sideband passive microwave temperature sounder with cross-track scanning and will provide 18 km surface resolution from a 400 km orbit. The radiometer implements a two-point calibration using an internal PIN switch and view of cold space. Although the instrument is based on a well established classical design, the challenges lie in developing a sensitive spectrometer that fits in a 1.5U volume, is low cost, consumes 4 W power and satisfies the CubeSat weight and envelope constraints. PolarCube is scheduled for launch on a Virgin Galactic flight in summer, 2018. The estimated radiometer sensitivity, ΔTrms varies from 0.3 to 2 K across the eight channels. The 50 MHz to 7 GHz 8-channel filter bank (designed with surface mount capacitors and inductors) fits on a 9x5 cm2 RO4350B PCB and includes 2-stage amplification and detector circuitry. The scanning reflector with an 8 cm2 main aperture uses a 3D printed corrugated feed that includes a WR8 to WC8 waveguide transition with a 17° bend. Initial performance results from the instrument using the 3D printed feed and IF/VA board obtained from airborne measurements over Antarctica on the NASA DC8 in early November 2016 indicate a well-functioning radiometer. The end-to-end characterization of the payload with the satellite bus, performance results from vibration and thermal-vacuum tests and roof-top measurements will be presented.
25. Detail, roof at junction of main roof and tower ...
25. Detail, roof at junction of main roof and tower skirt roof; note condition of slates, subroof, missing gutter, lead pipe gutter outlet; view to northwest from lift-bed truck, 135mm lens. - Southern Pacific Depot, 559 El Camino Real, San Carlos, San Mateo County, CA
29 CFR 570.67 - Occupations in roofing operations and on or about a roof (Order 16).
Code of Federal Regulations, 2014 CFR
2014-07-01
... proximity to a roof, including carpentry and metal work, alterations, additions, maintenance and repair... or metal), including roof trusses or joists; gutter and downspout work; the installation and... work performed in connection with the installation of roofs, including related metal work such as...
24. Roof detail from liftbed truck, showing pan roof above ...
24. Roof detail from lift-bed truck, showing pan roof above breezeway, with sawn redwood trim, tube-type drains; note missing rain gutter at roof edge, deteriorated condition of slates; view to south, 90mm lens. - Southern Pacific Depot, 559 El Camino Real, San Carlos, San Mateo County, CA
NASA Astrophysics Data System (ADS)
Yang, Huiming; Hu, Liangping
2017-05-01
In order to study the coalbed gas drainage effect and economy of long directional roof borehole, 2 boreholes were laid out in Xinji No. 2 mine to analyze its gas drainage and investment costs comparing with high position roof borehole and high position roof roadway. The result indicates that the long directional roof borehole save investment by 44.8% and shorten the construction period by 30%, comparing with high position roof roadway for controlling gas in the working face. Investment slightly less and shorten the construction period by 47.5%, comparing with the roof high position borehole. Therefore, the method of the long directional roof borehole to drain coalbed gas in working face is the most cost-effective.
Zhang, Wei; Zhong, Xing; Che, Wu
2018-02-01
To investigate nutrient leaching from extensive green roofs, green roof platforms were established to investigate the effluent quantity and quality during artificial rainfall. When the influent volume reached three times the empty bed volume, for which the cumulative rainfall was around 300 mm, the effluent TP and COD concentrations of green roof platforms filled with peat soil did not tend to stabilize. For a long-term operation, the substrate depths had little significant influence on TN, TP and COD concentrations of the green roof effluents. A normalized cumulative emission process method was proposed to discuss the difference in various pollutant leaching processes. Obvious differences in the leaching process of different contaminants for green roof platforms filled with various substrates were observed. For the green roof filled with modified substrates, the nitrogen and phosphorus pollutant leaching rates were relatively high in the initial stage of green roof operation and the phosphorus leaching rate was higher than that of nitrogen. The green roof is a sink for TN, but not for TP and COD in this study. The outcomes are critical for the selection of green roof substrates and also contribute to green roof maintenance.
NASA Astrophysics Data System (ADS)
Kumar, Ashok; Deoliya, Rajesh; Chani, P. S.
2015-12-01
Green roofs not only provide cooling by shading, but also by transpiration of water through the stomata. However, the evidence for green roofs providing significant air cooling remains limited. No literature investigates the thermal performance of prefab brick panel roofing technology with green roof. Hence, the aim of this research is to investigate the thermal behavior of an experimental room, built at CSIR-Central Building Research Institute (CBRI) campus, Roorkee, India using such roofing technology during May 2013. The study also explores the feasibility of green roof with grass carpets that require minimum irrigation, to assess the expected indoor thermal comfort improvements by doing real-time experimental studies. The results show that the proposed green roof system is suitable for reducing the energy demand for space cooling during hot summer, without worsening the winter energy performance. The cost of proposed retrofit system is about Rs. 1075 per m2. Therefore, green roofs can be used efficiently in retrofitting existing buildings in India to improve the micro-climate on building roofs and roof insulation, where the additional load carrying capacity of buildings is about 100-130 kg/m2.
High resolution urban morphology data for urban wind flow modeling
NASA Astrophysics Data System (ADS)
Cionco, Ronald M.; Ellefsen, Richard
The application of urban forestry methods and technologies to a number of practical problems can be further enhanced by the use and incorporation of localized, high resolution wind and temperature fields into their analysis methods. The numerical simulation of these micrometeorological fields will represent the interactions and influences of urban structures, vegetation elements, and variable terrain as an integral part of the dynamics of an urban domain. Detailed information of the natural and man-made components that make up the urban area is needed to more realistically model meteorological fields in urban domains. Simulating high resolution wind and temperatures over and through an urban domain utilizing detailed morphology data can also define and quantify local areas where urban forestry applications can contribute to better solutions. Applications such as the benefits of planting trees for shade purposes can be considered, planned, and evaluated for their impact on conserving energy and cooling costs as well as the possible reconfiguration or removal of trees and other barriers for improved airflow ventilation and similar processes. To generate these fields, a wind model must be provided, as a minimum, the location, type, height, structural silhouette, and surface roughness of these components, in order to account for the presence and effects of these land morphology features upon the ambient airflow. The morphology of Sacramento, CA has been characterized and quantified in considerable detail primarily for wind flow modeling, simulation, and analyses, but can also be used for improved meteorological analyses, urban forestry, urban planning, and other urban related activities. Morphology methods previously developed by Ellefsen are applied to the Sacramento scenario with a high resolution grid of 100 m × 100 m. The Urban Morphology Scheme defines Urban Terrain Zones (UTZ) according to how buildings and other urban elements are structured and placed with respect to each other. The urban elements within the 100 m × 100 m cells (one hectare) are further described and digitized as building height, building footprint (in percent), reflectivity of its roof, pitched roof or flat, building's long axis orientation, footprint of impervious surface and its reflectivity, footprint of canopy elements, footprint of woodlots, footprint of grass area, and footprint of water surface. A variety of maps, satellite images, low level aerial photographs, and street level photographs are the raw data used to quantify these urban properties. The final digitized morphology database resides in a spreadsheet ready for use on ordinary personal computers.
40 CFR 61.275 - Periodic report.
Code of Federal Regulations, 2013 CFR
2013-07-01
... EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standard for Benzene Emissions From Benzene Storage Vessels § 61.275 Periodic report. (a) The owner or operator of each storage vessel to... storage vessel in which: (i) The internal floating roof is not resting on the surface of the benzene...
40 CFR 61.275 - Periodic report.
Code of Federal Regulations, 2012 CFR
2012-07-01
... EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standard for Benzene Emissions From Benzene Storage Vessels § 61.275 Periodic report. (a) The owner or operator of each storage vessel to... storage vessel in which: (i) The internal floating roof is not resting on the surface of the benzene...
40 CFR 61.275 - Periodic report.
Code of Federal Regulations, 2014 CFR
2014-07-01
... EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standard for Benzene Emissions From Benzene Storage Vessels § 61.275 Periodic report. (a) The owner or operator of each storage vessel to... storage vessel in which: (i) The internal floating roof is not resting on the surface of the benzene...
40 CFR 61.275 - Periodic report.
Code of Federal Regulations, 2011 CFR
2011-07-01
... EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standard for Benzene Emissions From Benzene Storage Vessels § 61.275 Periodic report. (a) The owner or operator of each storage vessel to... storage vessel in which: (i) The internal floating roof is not resting on the surface of the benzene...
ERIC Educational Resources Information Center
Arasmith, E. E.
This lesson is the second of a two-part series on anaerobic digestion. Topics discussed include classification of digester by function, roof design, and temperature range, mixing systems, gas system components, operational control basics, and general safety considerations. The lesson includes an instructor's guide and student workbook. The…
Manure management and temperature impacts on gas concentrations in monoslope cattle facilities
USDA-ARS?s Scientific Manuscript database
Roofed and confined cattle feeding facilities are increasingly popular in the Northern Great Plains, but little is known about the impact this housing system and associated manure management methods have on the air quality inside and outside the barn. The objective of this study was to determine ga...
Large-Eddy Simulation of Flow and Pollutant Transport in Urban Street Canyons with Ground Heating
NASA Astrophysics Data System (ADS)
Li, Xian-Xiang; Britter, Rex E.; Koh, Tieh Yong; Norford, Leslie K.; Liu, Chun-Ho; Entekhabi, Dara; Leung, Dennis Y. C.
2010-11-01
Our study employed large-eddy simulation (LES) based on a one-equation subgrid-scale model to investigate the flow field and pollutant dispersion characteristics inside urban street canyons. Unstable thermal stratification was produced by heating the ground of the street canyon. Using the Boussinesq approximation, thermal buoyancy forces were taken into account in both the Navier-Stokes equations and the transport equation for subgrid-scale turbulent kinetic energy (TKE). The LESs were validated against experimental data obtained in wind-tunnel studies before the model was applied to study the detailed turbulence, temperature, and pollutant dispersion characteristics in the street canyon of aspect ratio 1. The effects of different Richardson numbers ( Ri) were investigated. The ground heating significantly enhanced mean flow, turbulence, and pollutant flux inside the street canyon, but weakened the shear at the roof level. The mean flow was observed to be no longer isolated from the free stream and fresh air could be entrained into the street canyon at the roof-level leeward corner. Weighed against higher temperature, the ground heating facilitated pollutant removal from the street canyon.
Garfí, Marianna; Ferrer-Martí, Laia; Villegas, Vidal; Ferrer, Ivet
2011-05-01
Guinea pig is one of the most common livestock in rural communities of the Andes. The aim of this research was to study the anaerobic digestion of guinea pig manure in low-cost unheated tubular digesters at high altitude. To this end, the performance of two pilot digesters was monitored during 7 months; and two greenhouse designs were compared. In the dome roof digester the temperature and biogas production were significantly higher than in the shed roof digester. However, the biogas production rate was low (0.04 m(biogas)(3)m(digester)(-3) d(-1)), which is attributed to the low organic loading rate (0.6 kg(VS)m(digester)(-3)d(-1)) and temperature (23°C) of the system, among other factors. In a preliminary fertilization study, the potato yield per hectare was increased by 100% using the effluent as biofertilizer. Improving manure management techniques, increasing the organic loading rate and co digesting other substrates may be considered to enhance the process. Copyright © 2011 Elsevier Ltd. All rights reserved.
Roofer: An Engineered Management System (EMS) for Bituminous Built-Up Roofs
1989-12-01
individual roof projects. Figure 1 shows an example of a filing sequence for a typical recordkceping system. The file should contain a Building Folder ...for each building and a Roof Section Foldcr for each roof section on the building. Building Folder The Building Folder should contain a completed...should also be kept in the building folder , or if they are kept elsewhere, their location should be stated in the folder . Roof Section Folder A Roof
Nguyen, Daniel; Chang, Kwang; Hedayatollahnajafi, Saba; Staninec, Michal; Chan, Kenneth; Lee, Robert; Fried, Daniel
2011-01-01
CO2 lasers can be operated at high laser pulse repetition rates for the rapid and precise removal of dental decay. Excessive heat accumulation and peripheral thermal damage is a concern when using high pulse repetition rates. Peripheral thermal damage can adversely impact the mechanical strength of the irradiated tissue, particularly for dentin, and reduce the adhesion characteristics of the modified surfaces. The interpulpal temperature rise was recorded using microthermocouples situated at the roof of the pulp chamber on teeth that were occlusally ablated using a rapidly-scanned CO2 laser operating at 9.3 μm with a pulse duration of 10 to 15 μs and repetition rate of 300 Hz over a 2 min time course. The adhesion strength of laser treated enamel and dentin surfaces was measured for various laser scanning parameters with and without post-ablation acid etching using the single-plane shear test. The mechanical strength of laser-ablated dentin surfaces were determined via the four-point bend test and compared to control samples prepared with 320 grit wet sand paper to simulate conventional preparations. Thermocouple measurements indicated that the temperature remained below ambient temperature if water-cooling was used. There was no discoloration of either dentin or enamel laser treated surfaces, the surfaces were uniformly ablated, and there were no cracks visible. Four-point bend tests yielded mean mechanical strengths of 18.2 N (s.d. = 4.6) for ablated dentin and 18.1 N (s.d. = 2.7) for control (p > 0.05). Shear tests yielded mean bond strengths approaching 30 MPa for both enamel and dentin under certain irradiation conditions. These values were slightly lower than nonirradiated acid-etched control samples. Additional studies are needed to determine if the slightly lower bond strength than the acid-etched control samples is clinically significant. These measurements demonstrate that enamel and dentin surfaces can be rapidly ablated by CO2 lasers with minimal peripheral thermal and mechanical damage and without excessive heat accumulation. PMID:21806256
NASA Astrophysics Data System (ADS)
Nguyen, Daniel; Chang, Kwang; Hedayatollahnajafi, Saba; Staninec, Michal; Chan, Kenneth; Lee, Robert; Fried, Daniel
2011-07-01
CO2 lasers can be operated at high laser pulse repetition rates for the rapid and precise removal of dental decay. Excessive heat accumulation and peripheral thermal damage is a concern when using high pulse repetition rates. Peripheral thermal damage can adversely impact the mechanical strength of the irradiated tissue, particularly for dentin, and reduce the adhesion characteristics of the modified surfaces. The interpulpal temperature rise was recorded using microthermocouples situated at the roof of the pulp chamber on teeth that were occlusally ablated using a rapidly-scanned CO2 laser operating at 9.3 μm with a pulse duration of 10 to 15 μs and repetition rate of 300 Hz over a 2 min time course. The adhesion strength of laser treated enamel and dentin surfaces was measured for various laser scanning parameters with and without post-ablation acid etching using the single-plane shear test. The mechanical strength of laser-ablated dentin surfaces were determined via the four-point bend test and compared to control samples prepared with 320 grit wet sand paper to simulate conventional preparations. Thermocouple measurements indicated that the temperature remained below ambient temperature if water-cooling was used. There was no discoloration of either dentin or enamel laser treated surfaces, the surfaces were uniformly ablated, and there were no cracks visible. Four-point bend tests yielded mean mechanical strengths of 18.2 N (s.d. = 4.6) for ablated dentin and 18.1 N (s.d. = 2.7) for control (p > 0.05). Shear tests yielded mean bond strengths approaching 30 MPa for both enamel and dentin under certain irradiation conditions. These values were slightly lower than nonirradiated acid-etched control samples. Additional studies are needed to determine if the slightly lower bond strength than the acid-etched control samples is clinically significant. These measurements demonstrate that enamel and dentin surfaces can be rapidly ablated by CO2 lasers with minimal peripheral thermal and mechanical damage and without excessive heat accumulation.
Nguyen, Daniel; Chang, Kwang; Hedayatollahnajafi, Saba; Staninec, Michal; Chan, Kenneth; Lee, Robert; Fried, Daniel
2011-07-01
CO(2) lasers can be operated at high laser pulse repetition rates for the rapid and precise removal of dental decay. Excessive heat accumulation and peripheral thermal damage is a concern when using high pulse repetition rates. Peripheral thermal damage can adversely impact the mechanical strength of the irradiated tissue, particularly for dentin, and reduce the adhesion characteristics of the modified surfaces. The interpulpal temperature rise was recorded using microthermocouples situated at the roof of the pulp chamber on teeth that were occlusally ablated using a rapidly-scanned CO(2) laser operating at 9.3 μm with a pulse duration of 10 to 15 μs and repetition rate of 300 Hz over a 2 min time course. The adhesion strength of laser treated enamel and dentin surfaces was measured for various laser scanning parameters with and without post-ablation acid etching using the single-plane shear test. The mechanical strength of laser-ablated dentin surfaces were determined via the four-point bend test and compared to control samples prepared with 320 grit wet sand paper to simulate conventional preparations. Thermocouple measurements indicated that the temperature remained below ambient temperature if water-cooling was used. There was no discoloration of either dentin or enamel laser treated surfaces, the surfaces were uniformly ablated, and there were no cracks visible. Four-point bend tests yielded mean mechanical strengths of 18.2 N (s.d. = 4.6) for ablated dentin and 18.1 N (s.d. = 2.7) for control (p > 0.05). Shear tests yielded mean bond strengths approaching 30 MPa for both enamel and dentin under certain irradiation conditions. These values were slightly lower than nonirradiated acid-etched control samples. Additional studies are needed to determine if the slightly lower bond strength than the acid-etched control samples is clinically significant. These measurements demonstrate that enamel and dentin surfaces can be rapidly ablated by CO(2) lasers with minimal peripheral thermal and mechanical damage and without excessive heat accumulation.
Specifying, Installing and Maintaining Built-Up and Modified Bitumen Roofing Systems.
ERIC Educational Resources Information Center
Hobson, Joseph W.
2000-01-01
Examines built-up, modified bitumen, and hybrid combinations of the two roofing systems and offers advise on how to assure high- quality performance and durability when using them. Included is a glossary of commercial roofing terms and asphalt roofing resources to aid in making decisions on roofing and systems product selection. (GR)
49 CFR 571.118 - Standard No. 118; Power-operated window, partition, and roof panel systems.
Code of Federal Regulations, 2011 CFR
2011-10-01
...-operated window, partition, and roof panel systems. S1. Purpose and scope. This standard specifies requirements for power operated window, partition, and roof panel systems to minimize the likelihood of death... Figure 2. Power operated roof panel systems mean moveable panels in the vehicle roof which close by...
49 CFR 571.118 - Standard No. 118; Power-operated window, partition, and roof panel systems.
Code of Federal Regulations, 2014 CFR
2014-10-01
...-operated window, partition, and roof panel systems. S1. Purpose and scope. This standard specifies requirements for power operated window, partition, and roof panel systems to minimize the likelihood of death... Figure 2. Power operated roof panel systems mean moveable panels in the vehicle roof which close by...
49 CFR 571.118 - Standard No. 118; Power-operated window, partition, and roof panel systems.
Code of Federal Regulations, 2012 CFR
2012-10-01
...-operated window, partition, and roof panel systems. S1. Purpose and scope. This standard specifies requirements for power operated window, partition, and roof panel systems to minimize the likelihood of death... Figure 2. Power operated roof panel systems mean moveable panels in the vehicle roof which close by...
49 CFR 571.118 - Standard No. 118; Power-operated window, partition, and roof panel systems.
Code of Federal Regulations, 2013 CFR
2013-10-01
...-operated window, partition, and roof panel systems. S1. Purpose and scope. This standard specifies requirements for power operated window, partition, and roof panel systems to minimize the likelihood of death... Figure 2. Power operated roof panel systems mean moveable panels in the vehicle roof which close by...
49 CFR 571.118 - Standard No. 118; Power-operated window, partition, and roof panel systems.
Code of Federal Regulations, 2010 CFR
2010-10-01
...-operated window, partition, and roof panel systems. S1. Purpose and scope. This standard specifies requirements for power operated window, partition, and roof panel systems to minimize the likelihood of death... Figure 2. Power operated roof panel systems mean moveable panels in the vehicle roof which close by...
Impact of aerial infrared roof moisture scans on the U.S. Army's ROOFER program
NASA Astrophysics Data System (ADS)
Knehans, Al; Ledford, Jim
1993-04-01
The ROOFER program is being used by the U.S. Army to inspect and evaluate its built-up and single-ply membrane roofs. The results of the inspection effort are used to develop an overall roof condition index. The condition of the roof insulation can greatly alter the final condition index. By using an aerial infrared (IR) roof moisture scan, all the insulated roofs at most Army installations can be effectively surveyed in a very short time. The aerial scans have detected numerous areas of wet roof insulation, which has had a profound impact on the results of the ROOFER program. The scans have also provided management personnel with more accurate analysis as to the actual condition of the installation's insulated roofs.
NASA Astrophysics Data System (ADS)
Engström, Rebecka; Destouni, Georgia; Howells, Mark
2017-04-01
Green Roofs have the potential to provide multiple services in cities. Besides acting as carbon sinks, providing noise reduction and decreasing air pollution - without requiring any additional "land-use" in a city (only roof-use), green roofs have a quantifiable potential to reduce direct and indirect energy and water use. They enhance the insulating capacity of a conventional residential roof and thereby decrease both cooling demands in summer and heating demands in winter. The former is further mitigated by the cooling effect of evapotranspiration from the roofs In New York City green roofs are additionally a valuable component of reducing "combined sewer overflows", as these roofs can retain storm water. This can improve water quality in the city's rivers as well as decrease the total volume of water treated in the city's wastewater treatment plants, thereby indirectly reduce energy demands. The impacts of green roofs on NYC's water-energy nexus has been initially studied (Engström et. al, forthcoming). The present study expands that work to more comprehensively investigate the potential of this type of nature-based solution in a dense city. By employing Geographical Information Systems analysis, the roof top area of New York City is analysed and roof space suitable for green roofs of varying types (ranging from extensive to intensive) are mapped and quantified. The total green roof area is then connected with estimates of potential water-energy benefits (and costs) of each type of green roof. The results indicate where green roofs can be beneficially installed throughout the city, and quantifies the related impacts on both water and energy use. These outputs can provide policy makers with valuable support when facing investment decisions in green infrastructure, in a city where there is great interest for these types of nature-based solutions.
Performance evaluation on cool roofs for green remodeling
NASA Astrophysics Data System (ADS)
Yun, Yosun; Cho, Dongwoo; Cho, Kyungjoo
2018-06-01
Cool roofs refer that maximize heat emission, and minimize the absorption of solar radiation energy, by applying high solar reflectance paints, or materials to roofs or rooftops. The application of cool roofs to existing buildings does not need to take structural issues into consideration, as rooftop greening, is an alternative that can be applied to existing buildings easily. This study installed a cool roofs on existing buildings, and evaluated the performances, using the results to propose certification standards for green remodeling, considering the cool roof-related standards.
Roof instability characteristics and pre-grouting of the roof caving zone in residual coal mining
NASA Astrophysics Data System (ADS)
Zhao, Tong; Liu, Changyou
2017-12-01
Abandoned roadways and roof caving zones are commonly found in residual coal, and can destroy the integrity of the coal seam and roof. Resulting from mining-induced stress, continuous collapse and fracture instability in roof caving zones (RCZs) jeopardize the safety and efficiency of residual coal mining. Based on the engineering geology conditions of remining face 3101 in Shenghua Mine, the roof fracture and instability features of the RCZ were analyzed through physical simulation, theoretical analysis, and field measurements. In this case, influenced by the RCZ, the main roof across the RCZ fractured and rotated towards the goaf, greatly increasing the working resistance, and crushing the supports. The sudden instability of the coal pillars weakened its support of the main roof, thus resulting in long-key blocks across the RCZ and hinged roof structures, which significantly decreased the stability of the underlying immediate roof. This study establishes a mechanical model for the interactions between the surrounding rock and the supports in the RCZ, determines the reasonable working resistance, and examines the use of pre-grouting solidification restoration technology (PSRT) to solidify the RCZ and reinforce the coal pillars—thus increasing their bearing capacity. Field measurements revealed no roof flaking, inhomogeneous loading or support crushing, indicating that the PSRT effectively controlled the surrounding rock of the RCZ.
NASA Astrophysics Data System (ADS)
Mukherjee, Sananda
In recent years, there has been great interest in the potential of green roofs as an alternative roofing option to reduce the energy consumed by individual buildings as well as mitigate large scale urban environmental problems such as the heat island effect. There is a widespread recognition and a growing literature of measured data that suggest green roofs can reduce building energy consumption. This thesis investigates the potential of green roofs in reducing the building energy loads and focuses on how the different parameters of a green roof assembly affect the thermal performance of a building. A green roof assembly is modeled in Design Builder- a 3D graphical design modeling and energy use simulation program (interface) that uses the EnergyPlus simulation engine, and the simulated data set thus obtained is compared to field experiment data to validate the roof assembly model on the basis of how accurately it simulates the behavior of a green roof. Then the software is used to evaluate the thermal performance of several green roof assemblies under three different climate types, looking at the whole building energy consumption. For the purpose of this parametric simulation study, a prototypical single story small office building is considered and one parameter of the green roof is altered for each simulation run in order to understand its effect on building's energy loads. These parameters include different insulation thicknesses, leaf area indices (LAI) and growing medium or soil depth, each of which are tested under the three different climate types. The energy use intensities (EUIs), the peak and annual heating and cooling loads resulting from the use of these green roof assemblies are compared with each other and to a cool roof base case to determine the energy load reductions, if any. The heat flux through the roof is also evaluated and compared. The simulation results are then organized and finally presented as a decision support tool that would facilitate the adoption and appropriate utilization of green roof technologies and make it possible to account for green roof benefits in energy codes and related energy efficiency standards and rating systems such as LEED.
Yu, Xiang; Yang, Yi; Yang, Zeng-Qiang
2018-01-01
Underground coal mining activities are prone to cause movement and breakage in geological strata and also lead to mining subsidence and even ground fissures. Along the direction working panel advancing, ground fissures may occur in roof in front and/or behind working panel. However, the investigations of previous similarity tests in lab only emphasize on the region behind working panel. By improving strata material property in construction and mounting artificial pressure devices, two physical simulation tests were conducted and successfully investigated the simulated results. Then, the mechanical model of “cantilever beam and elastic foundation beam” was proposed to calculate the stress distribution and the crack initiation angle in overlying strata and it well explains the mechanisms of ground fissures generation and propagation. Results show that, the maximum internal force in roof always occurred in front of working panel. However, because the void space in gob due to excavation is large enough to cause the bend and rotation of roof strata, compare to the triaxially compressed region in front of working panel, the roof always broke off at some positions above gob since the stress concentration resulting from such bend and rotation of strata could easily reach the limit strength of strata rocks. Also, the length of cantilever beam changed dynamically as respect to the panel advancing and the breakage intervals. Thus, the breakage position where the internal force first reached the limit tensile strength is not fixed and there will be two different kinds of relative positions between the crack initiation point and the working panel. The crack initiation direction is always perpendicular to the internal force, and the crack propagation direction is affected by the initiation angle, overburden-separation degree and the position of the hydraulic shields. If there is no overburden-separation or less, the roofs will break off as a composite beam and the propagation direction will be roughly along the central line between the initial broken point and the support position. Otherwise, the roof strata will bend with the support shields moving forward, then the fracture angle will be close to the initiation angle and the fault surface will be stepped. PMID:29513703
Yang, Jing-Hu; Yu, Xiang; Yang, Yi; Yang, Zeng-Qiang
2018-01-01
Underground coal mining activities are prone to cause movement and breakage in geological strata and also lead to mining subsidence and even ground fissures. Along the direction working panel advancing, ground fissures may occur in roof in front and/or behind working panel. However, the investigations of previous similarity tests in lab only emphasize on the region behind working panel. By improving strata material property in construction and mounting artificial pressure devices, two physical simulation tests were conducted and successfully investigated the simulated results. Then, the mechanical model of "cantilever beam and elastic foundation beam" was proposed to calculate the stress distribution and the crack initiation angle in overlying strata and it well explains the mechanisms of ground fissures generation and propagation. Results show that, the maximum internal force in roof always occurred in front of working panel. However, because the void space in gob due to excavation is large enough to cause the bend and rotation of roof strata, compare to the triaxially compressed region in front of working panel, the roof always broke off at some positions above gob since the stress concentration resulting from such bend and rotation of strata could easily reach the limit strength of strata rocks. Also, the length of cantilever beam changed dynamically as respect to the panel advancing and the breakage intervals. Thus, the breakage position where the internal force first reached the limit tensile strength is not fixed and there will be two different kinds of relative positions between the crack initiation point and the working panel. The crack initiation direction is always perpendicular to the internal force, and the crack propagation direction is affected by the initiation angle, overburden-separation degree and the position of the hydraulic shields. If there is no overburden-separation or less, the roofs will break off as a composite beam and the propagation direction will be roughly along the central line between the initial broken point and the support position. Otherwise, the roof strata will bend with the support shields moving forward, then the fracture angle will be close to the initiation angle and the fault surface will be stepped.
Lightweight, self-ballasting photovoltaic roofing assembly
Dinwoodie, T.L.
1998-05-05
A photovoltaic roofing assembly comprises a roofing membrane (102), a plurality of photovoltaic modules (104, 106, 108) disposed as a layer on top of the roofing membrane (102), and a plurality of pre-formed spacers, pedestals or supports (112, 114, 116, 118, 120, 122) which are respectively disposed below the plurality of photovoltaic modules (104, 106, 108) and integral therewith, or fixed thereto. Spacers (112, 114, 116, 118, 120, 122) are disposed on top of roofing membrane (102). Membrane (102) is supported on conventional roof framing, and attached thereto by conventional methods. In an alternative embodiment, the roofing assembly may have insulation block (322) below the spacers (314, 314', 315, 315'). The geometry of the preformed spacers (112, 114, 116, 118, 120, 122, 314, 314', 315, 315') is such that wind tunnel testing has shown its maximum effectiveness in reducing net forces of wind uplift on the overall assembly. Such construction results in a simple, lightweight, self-ballasting, readily assembled roofing assembly which resists the forces of wind uplift using no roofing penetrations.
Lightweight, self-ballasting photovoltaic roofing assembly
Dinwoodie, Thomas L.
1998-01-01
A photovoltaic roofing assembly comprises a roofing membrane (102), a plurality of photovoltaic modules (104, 106, 108) disposed as a layer on top of the roofing membrane (102), and a plurality of pre-formed spacers, pedestals or supports (112, 114, 116, 118, 120, 122) which are respectively disposed below the plurality of photovoltaic modules (104, 106, 108) and integral therewith, or fixed thereto. Spacers (112, 114, 116, 118, 120, 122) are disposed on top of roofing membrane (102). Membrane (102) is supported on conventional roof framing, and attached thereto by conventional methods. In an alternative embodiment, the roofing assembly may have insulation block (322) below the spacers (314, 314', 315, 315'). The geometry of the preformed spacers (112, 114, 116, 118, 120, 122, 314, 314', 315, 315') is such that wind tunnel testing has shown its maximum effectiveness in reducing net forces of wind uplift on the overall assembly. Such construction results in a simple, lightweight, self-ballasting, readily assembled roofing assembly which resists the forces of wind uplift using no roofing penetrations.
Lightweight, self-ballasting photovoltaic roofing assembly
Dinwoodie, Thomas L.
2006-02-28
A photovoltaic roofing assembly comprises a roofing membrane (102), a plurality of photovoltaic modules (104, 106, 108) disposed as a layer on top of the roofing membrane (102), and a plurality of pre-formed spacers, pedestals or supports (112, 114, 116, 118, 120, 122) which are respectively disposed below the plurality of photovoltaic modules (104, 106, 108) and integral therewith, or fixed thereto. Spacers (112, 114, 116, 118, 120, 122) are disposed on top of roofing membrane (102). Membrane (102) is supported on conventional roof framing, and attached thereto by conventional methods. In an alternative embodiment, the roofing assembly may have insulation block (322) below the spacers (314, 314', 315, 315'). The geometry of the pre-formed spacers (112, 114, 116, 118, 120, 122, 314, 314', 315, 315') is such that wind tunnel testing has shown its maximum effectiveness in reducing net forces of wind uplift on the overall assembly. Such construction results in a simple, lightweight, self-ballasting, readily assembled roofing assembly which resists the forces of wind uplift using no roofing penetrations.
Vijayaraghavan, K; Joshi, Umid Man
2014-11-01
The present study examines whether green roofs act as a sink or source of contaminants based on various physico-chemical parameters (pH, conductivity and total dissolved solids) and metals (Na, K, Ca, Mg, Al, Fe, Cr, Cu, Ni, Zn, Cd and Pb). The performance of green roof substrate prepared using perlite, vermiculite, sand, crushed brick, and coco-peat, was compared with local garden soil based on improvement of runoff quality. Portulaca grandiflora was used as green roof vegetation. Four different green roof configurations, with vegetated and non-vegetated systems, were examined for several artificial rain events (un-spiked and metal-spiked). In general, the vegetated green roof assemblies generated better-quality runoff with less conductivity and total metal ion concentration compared to un-vegetated assemblies. Of the different green roof configurations examined, P. grandiflora planted on green roof substrate acted as sink for various metals and showed the potential to generate better runoff. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Vahmani, P.; Jones, A. D.
2016-12-01
California has experienced progressive drought since 2012, with 2012-2014 constituting a nearly 10,000-year drought event, resulting in a suite of policies with the goal of reducing water consumption. At the same time, climate warming effects of accelerated urbanization along with projected global climate change raise an urgent need for sustainable mitigation and adaptation strategies to cool urban climates. In this study, for the first time, we assess the overarching benefits of cooling strategies on urban water consumption. We employ a satellite-supported regional climate-modeling framework over the San Francisco Bay Area to assess the effects of cool roofs on urban irrigation, a topic of increasing importance as it accounts for a significant fraction of urban water use particularly in arid and semi-arid regions. We use a suit of climatological simulations at high (1.5 km) spatial resolution, based on a Weather Research and Forecasting (WRF)-Urban Canopy Model (UCM) modeling framework, reinforced with remotely sensed observations of Green Vegetation Fraction (GVF), leaf area index (LAI), and albedo. Our analysis shows that widespread incorporation of cool roofs would result in a mean daytime cooling of about 0.7° C, which in turn results in roughly 4% reduction in irrigation water, largely due to decreases in surface evapotranspiration rates. We further investigate the critical interactions between cool roofs, wind, and sea-breeze patterns as well as fog formation, a dominant weather pattern in San Francisco Bay area.
34. Roof vent detail from roof of Bwing, looking west ...
34. Roof vent detail from roof of B-wing, looking west - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Headquarters Building, 901 SAC Boulevard, Bellevue, Sarpy County, NE
Building-integrated photovoltaics: A case study
NASA Astrophysics Data System (ADS)
Kiss, G.; Kinkead, J.; Raman, M.
1995-03-01
In 1992, Kiss Cathcart Anders Architects performed a study for NREL on Building-Integrated Photovoltaics (BIPV) issues as seen from the perspective of the building community. In general, the purpose of the study was to list major issues and potential applications; by it's nature it asked more questions than it answered. This second phase study was to produce quantitative data on the performance of specific BIPV systems. Only roof systems are evaluated. The energy performance, construction cost and simple payback for five different BIPV roof options are evaluated in six different locations: Oakland, New York, Miami, Phoenix, Chicago, and Cincinnati. The roof options evaluated include the following: single-glazed PV roof using glass-substrate PVs; double-glazed PV roof with insulating PV modules; ballasted roof-mounted system; sawtooth light monitor roof with indirect north daylighting; sawtooth roof with north light and active heat recovery.
A Review of Methods for the Manufacture of Residential Roofing Materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akbari, Hashem; Levinson, Ronnen; Berdahl, Paul
2003-06-01
Shingles, tiles, and metal products comprise over 80% (by roof area) of the California roofing market (54-58% fiberglass shingle, 8-10% concrete tile, 8-10% clay tile, 7% metal, 3% wood shake, and 3% slate). In climates with significant demand for cooling energy, increasing roof solar reflectance reduces energy consumption in mechanically cooled buildings, and improves occupant comfort in non-conditioned buildings. This report examines methods for manufacturing fiberglass shingles, concrete tiles, clay tiles, and metal roofing. The report also discusses innovative methods for increasing the solar reflectance of these roofing materials. We have focused on these four roofing products because they aremore » typically colored with pigmented coatings or additives. A better understanding of the current practices for manufacturing colored roofing materials would allow us to develop cool colored materials creatively and more effectively.« less
8. Credit PSR. Interior of Building 4305, looking west under ...
8. Credit PSR. Interior of Building 4305, looking west under elliptical laminated wooden roof arches. Lower surfaces are ceilings of offices built within structure; cylindrical and rectangular ducts are for air conditioning. - Edwards Air Force Base, North Base, Unicon Portable Hangar, First & C Streets, Boron, Kern County, CA
40 CFR 60.472 - Standards for particulate matter.
Code of Federal Regulations, 2012 CFR
2012-07-01
... (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Asphalt Processing and Asphalt Roofing Manufacture § 60.472 Standards for particulate matter. (a) On and after the...) Particulate matter in excess of: (i) 0.04 kg/Mg (0.08 lb/ton) of asphalt shingle or mineral-surfaced roll...
Decentralized stormwater management approaches (e.g., biofiltration swales, pervious pavement, green roofs, rain gardens) that capture, detain, infiltrate, and filter runoff are now commonly used to minimize the impacts of stormwater runoff from impervious surfaces on aquatic eco...
Construction of Experimental Polyvinyl Chloride (PVC) Roofing.
1984-04-01
in. War II vintage; squash and handball courts were (13-mm) fiberboard, to comply with Sarnafil re- added in 1966. The entire structure is of wood con...squash and handball courts had a gravel surface. pendently, avoiding difficulties of trying to handle Figure 23 shows the building arrangements. two
40 CFR 60.112a - Standard for volatile organic compounds (VOC).
Code of Federal Regulations, 2010 CFR
2010-07-01
... space vents is to provide a projection below the liquid surface. Each opening in the roof except for... for automatic bleeder vents and the rim space vents is to provide a projection below the liquid... for Storage Vessels for Petroleum Liquids for Which Construction, Reconstruction, or Modification...
40 CFR 60.112a - Standard for volatile organic compounds (VOC).
Code of Federal Regulations, 2013 CFR
2013-07-01
... space vents is to provide a projection below the liquid surface. Each opening in the roof except for... for automatic bleeder vents and the rim space vents is to provide a projection below the liquid... for Storage Vessels for Petroleum Liquids for Which Construction, Reconstruction, or Modification...
40 CFR 60.112a - Standard for volatile organic compounds (VOC).
Code of Federal Regulations, 2012 CFR
2012-07-01
... space vents is to provide a projection below the liquid surface. Each opening in the roof except for... for automatic bleeder vents and the rim space vents is to provide a projection below the liquid... for Storage Vessels for Petroleum Liquids for Which Construction, Reconstruction, or Modification...
40 CFR 60.112a - Standard for volatile organic compounds (VOC).
Code of Federal Regulations, 2011 CFR
2011-07-01
... space vents is to provide a projection below the liquid surface. Each opening in the roof except for... for automatic bleeder vents and the rim space vents is to provide a projection below the liquid... for Storage Vessels for Petroleum Liquids for Which Construction, Reconstruction, or Modification...
40 CFR 60.112a - Standard for volatile organic compounds (VOC).
Code of Federal Regulations, 2014 CFR
2014-07-01
... space vents is to provide a projection below the liquid surface. Each opening in the roof except for... for automatic bleeder vents and the rim space vents is to provide a projection below the liquid... for Storage Vessels for Petroleum Liquids for Which Construction, Reconstruction, or Modification...
24 CFR 3280.306 - Windstorm protection.
Code of Federal Regulations, 2014 CFR
2014-04-01
... vertical building projection, as horizontal wind load, and across the surface of the full roof structure... applied in the design of the tiedown system. The dead load of the structure may be used to resist these... manufacturer's installation instructions provide for the main frame structure to be used as the points for...
ERIC Educational Resources Information Center
Savage, John
2000-01-01
Discusses how the use of metal standing-seam roofs can help conserve energy, and with proper maintenance, be long-lasting. An example is given of one high school's replacement of their leaking roof with a metal standing-seam roof. (GR)
Development of lava tubes in the light of observations at Mauna Ulu, Kilauea Volcano, Hawaii
Peterson, D.W.; Holcomb, R.T.; Tilling, R.I.; Christiansen, R.L.
1994-01-01
During the 1969-1974 Mauna Ulu eruption on Kilauea's upper east rift zone, lava tubes were observed to develop by four principal processes: (1) flat, rooted crusts grew across streams within confined channels; (2) overflows and spatter accreted to levees to build arched roofs across streams; (3) plates of solidified crust floating downstream coalesced to form a roof; and (4) pahoehoe lobes progressively extended, fed by networks of distributaries beneath a solidified crust. Still another tube-forming process operated when pahoehoe entered the ocean; large waves would abruptly chill a crust across the entire surface of a molten stream crossing through the surf zone. These littoral lava tubes formed abruptly, in contrast to subaerial tubes, which formed gradually. All tube-forming processes were favored by low to moderate volume-rates of flow for sustained periods of time. Tubes thereby became ubiquitous within the pahoehoe flows and distributed a very large proportionof the lava that was produced during this prolonged eruption. Tubes transport lava efficiently. Once formed, the roofs of tubes insulate the active streams within, allowing the lava to retain its fluidity for a longer time than if exposed directly to ambient air temperature. Thus the flows can travel greater distances and spread over wider areas. Even though supply rates during most of 1970-1974 were moderate, ranging from 1 to 5 m3/s, large tube systems conducted lava as far as the coast, 12-13 km distant, where they fed extensive pahoehoe fields on the coastal flats. Some flows entered the sea to build lava deltas and add new land to the island. The largest and most efficient tubes developed during periods of sustained extrusion, when new lava was being supplied at nearly constant rates. Tubes can play a major role in building volcanic edifices with gentle slopes because they can deliver a substantial fraction of lava erupted at low to moderate rates to sites far down the flank of a volcano. We conclude, therefore, that the tendency of active pahoehoe flows to form lava tubes is a significant factor in producing the common shield morphology of basaltic volcanoes. ?? 1994 Springer-Verlag.
NASA Astrophysics Data System (ADS)
Huang, Bingxiang; Wang, Youzhuang
2016-09-01
The occurence of hanging roof commonly arises in the face end of longwall coal mining under hard roof conditions. The sudden break and subsequent caving of a hanging roof could result in the extrusion of gas in the gob to the face, causing gas concentrations to rise sharply and to increase to over a safety-limited value. A series of linear fracturing-holes of 32 mm diameter were drilled into the roof of the entries with an anchor rig. According to the theory that the gob should be fully filled with the fragmentized falling roof rock, the drilling depth is determined as being 3 5 times the mining height if the broken expansion coefficient takes an empirical value. Considering the general extension range of cracks and the supporting form of the entryway, the spacing distance between two drilling holes is determined as being 1 2 times the crack's range of extension. Using a mounting pipe, a high pressure resistant sealing device of a small diameter-size was sent to the designated location for the high-pressure hydraulic fracturing of the roof rock. The hydraulic fracturing created the main hydro-fracturing crack and airfoil branch cracks in the interior of the roof-rock, transforming the roof structure and weakening the strength of the roof to form a weak plane which accelerated roof caving, and eventually induced the full caving in of the roof in time with the help of ground pressure. For holes deeper than 4 m, retreating hydraulic fracturing could ensure the uniformity of crack extension. Tested and applied at several mines in Shengdong Mining District, the highest ruptured water pressure was found to be 55 MPa, and the hanging roof at the face end was reduced in length from 12 m to less than 1 2 m. This technology has eliminated the risk of the extrusion of gas which has accumulated in the gob.
Shaik, Saboor; Talanki, Ashok Babu Puttranga Setty
2016-05-01
Building roofs are responsible for the huge heat gain in buildings. In the present work, an analysis of the influence of insulation location inside a flat roof exposed directly to the sun's radiation was performed to reduce heat gain in buildings. The unsteady thermal response parameters of the building roof such as admittance, transmittance, decrement factor, and time lags have been investigated by solving a one-dimensional diffusion equation under convective periodic boundary conditions. Theoretical results of four types of walls were compared with the experimental results available in literature. The results reveal that the roof with insulation placed at the outer side and at the center plane of the roof is the most energy efficient from the lower decrement factor point of view and the roof with insulation placed at the center plane and the inner side of the roof is the best from the highest time lag point of view among the seven studied configurations. The composite roof with expanded polystyrene insulation located at the outer side and at the center plane of the roof is found to be the best roof from the lowest decrement factor (0.130) point of view, and the composite roof with resin-bonded mineral wool insulation located at the center plane and at the inner side of the roof is found to be energy efficient from the highest time lag point (9.33 h) of view among the seven configurations with five different insulation materials studied. The optimum fabric energy storage thicknesses of reinforced cement concrete, expanded polystyrene, foam glass, rock wool, rice husk, resin-bonded mineral wool, and cement plaster were computed. From the results, it is concluded that rock wool has the least optimum fabric energy storage thickness (0.114 m) among the seven studied building roof materials.
29 CFR 570.67 - Occupations in roofing operations and on or about a roof (Order 16).
Code of Federal Regulations, 2011 CFR
2011-07-01
... pitch, asphalt prepared paper, tile, composite roofing materials, slate, metal, translucent materials, and shingles of asbestos, asphalt, wood or other materials) to roofs of buildings or other structures...
29 CFR 570.67 - Occupations in roofing operations and on or about a roof (Order 16).
Code of Federal Regulations, 2013 CFR
2013-07-01
... pitch, asphalt prepared paper, tile, composite roofing materials, slate, metal, translucent materials, and shingles of asbestos, asphalt, wood or other materials) to roofs of buildings or other structures...
29 CFR 570.67 - Occupations in roofing operations and on or about a roof (Order 16).
Code of Federal Regulations, 2012 CFR
2012-07-01
... pitch, asphalt prepared paper, tile, composite roofing materials, slate, metal, translucent materials, and shingles of asbestos, asphalt, wood or other materials) to roofs of buildings or other structures...
GREENROOF RUNOFF WATER QUALITY
This project evaluated green roofs as a stormwater management tool. Specifically, runoff quantity and quality from green and flat asphalt roofs was compared. Evapotranspiration from planted green roofs and evaporation unplanted media roofs was also compared, and the influence of ...
Field Testing of an Unvented Roof with Fibrous Insulation, Tiles, and Vapor Diffusion Venting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ueno, K.; Lstiburek, J. W.
This research is a test implementation of an unvented tile roof assembly in a hot-humid climate (Orlando, FL; Zone 2A), insulated with air permeable insulation (netted and blown fiberglass). Given the localized moisture accumulation and failures seen in previous unvented roof field work, it was theorized that a 'diffusion vent' (water vapor open, but air barrier 'closed') at the highest points in the roof assembly might allow for the wintertime release of moisture, to safe levels. The 'diffusion vent' is an open slot at the ridge and hips, covered with a water-resistant but vapor open (500+ perm) air barrier membrane.more » As a control comparison, one portion of the roof was constructed as a typical unvented roof (self-adhered membrane at ridge). The data collected to date indicate that the diffusion vent roof shows greater moisture safety than the conventional, unvented roof design.« less
Building-integrated photovoltaics: A case study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kiss, G.; Kinkead, J.; Raman, M.
1995-03-01
In 1992, Kiss Cathcart Anders Architects performed a study for NREL on Building-Integrated Photovoltaics (BIPV) issues as seen from the perspective of the building community. In general, the purpose of the study was to list major issues and potential applications; by it`s nature it asked more questions than it answered. This second phase study was to produce quantitative data on the performance of specific BIPV systems. Only roof systems are evaluated. The energy performance, construction cost and simple payback for five different BIPV roof options are evaluated in six different locations: Oakland, New York, Miami, Phoenix, Chicago, and Cincinnati. Themore » roof options evaluated include the following: single-glazed PV roof using glass-substrate PVs; double-glazed PV roof with insulating PV modules; ballasted roof-mounted system; sawtooth light monitor roof with indirect north daylighting; sawtooth roof with north light and active heat recovery.« less
NASA Astrophysics Data System (ADS)
Banks, C. J.; Warburton, J.
Exploration for hydrocarbons over the past few years has greatly improved our understanding of the geometry of frontal mountain belt structures. In this study we introduce and discuss the concept of the 'Passive-roof duplex', using as the main example the Kirthar and Sulaiman Ranges in the Baluchistan Province of Pakistan. Structures similar to those described here have been recognized previously in other mountain belts, and they appear to exist as a common feature in many more frontal regions of mountain belts. Our example of a Passive-roof duplex which we describe from Pakistan is compared briefly with similar structures reported by others. The Passive-roof duplex is here defined as a duplex whose roof thrust has backthrust sense ( Passive-roof thrust) and whose roof sequence (those rocks lying above the roof thrust) remains relatively 'stationary' during foreland directed piggy-back style propagation of horses within the duplex.
NASA Astrophysics Data System (ADS)
Petrochenko, Andrew V.; Konyakhin, Igor A.
2015-06-01
Actually during construction of the high building actively are used objects of various nonlinear surface, for example, sinuous (parabolic or hyperbolic) roofs of the sport complexes that require automatic deformation control [1,2,3,4]. This type of deformation has character of deflection that is impossible to monitor objectively with just one optoelectronic sensor (which is fixed on this surface). In this article is described structure of remote optoelectronic sensor, which is part of the optoelectronic monitoring system of nonlinear surface, and mathematical transformation of exterior orientation sensor elements in the coordinates of control points.
Wang, Xiaoou; Tian, Yimei; Zhao, Xinhua
2017-08-15
This study investigates the ability of dual-substrate-layer extensive green roofs to retain rainwater and reduce pollutant leaching. The substrates in dual-substrate-layer green roofs consist of an upper organic nutrition layer for plant growth and a lower inorganic adsorption layer for water retention and pollutant reduction. One traditional single-substrate-layer extensive green roof was built for comparison with dual-substrate-layer green roofs. During the experimental period, dual-substrate-layer green roofs supported better natural vegetation growth, with coverage exceeding 90%, while the coverage in single-substrate-layer green roof was over 80%. Based on the average retention value of the total rainfall for four types of simulated rains (the total rainfall depth (mm) was 43.2, 54.6, 76.2 and 86.4, respectively), the dual-substrate-layer green roofs, which used the mixture of activated charcoal with perlite and vermiculite as the adsorption substrate, possessed better rainfall retention performance (65.9% and 55.4%) than the single-substrate-layer green roof (52.5%). All of the dual-substrate-layer green roofs appeared to be sinks for organics, heavy metals and all forms of nitrogen in all cases, while acted as sources of phosphorus contaminants in the case of heavy rains. In consideration of the factors of water retention, pollution reduction and service life of the green roof, a mixture of activated charcoal and/or pumice with perlite and vermiculite is recommended as the adsorption substrate. The green roofs were able to mitigate mild acid rain, raising the pH from approximately 5.6 in rainfall to 6.5-7.6 in green roof runoff. No signs of a first flush effect for phosphate, total phosphorus, ammonia nitrogen, nitrate nitrogen, total nitrogen, organics, zinc, lead, chromium, manganese, copper, pH or turbidity were found in the green roof runoff. Cost analysis further proved the practicability of dual-substrate-layer green roofs in retaining rainwater, and their long-term rainwater runoff quantity and quality performance in urban environments merit further investigation. Copyright © 2017 Elsevier B.V. All rights reserved.
Solar hot water system installed at Mobile, Alabama
NASA Technical Reports Server (NTRS)
1980-01-01
The system consists of six rows of ten collectors and three rows of eleven collectors (1990 square feet) mounted on the roof. Griswald flow control valves were installed to regulate the flow to each row. Two Heliotrope electronic thermometers with a combined capability of measuring the temperatures of 22 different locations were installed for monitoring purposes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
K. Ueno and J. Lstiburek
2015-09-01
Test houses with unvented roof assemblies were built to measure long-term moisture performance, in the Chicago area (5A) and the Houston area (2A). The Chicago-area test bed had seven experimental rafter bays, including a "control" vented compact roof, and six unvented roof variants with cellulose or fiberglass insulation. The interior was run at 50% RH. All roofs except the vented cathedral assembly experienced wood moisture contents and RH levels high enough to constitute failure. Disassembly at the end of the experiment showed that the unvented fiberglass roofs had wet sheathing and mold growth. In contrast, the cellulose roofs only hadmore » slight issues, such as rusted fasteners and sheathing grain raise.« less
Guidelines for Inspecting Your Roof Systems.
ERIC Educational Resources Information Center
Watkins, Daniel L.
2003-01-01
Provides guidelines for inspecting the roof of a facility. Suggests that periodic roof inspections should be performed on a quarterly or semi-annual basis and after severe storms. Proactively identifying potential problem areas is the best defense against roof leaks. (SLD)
ERIC Educational Resources Information Center
Waldron, Larry W.
1990-01-01
Offers a brief synopsis of the unique characteristics of the following roof membranes: (1) built-up roofing; (2) elastoplastic membranes; (3) modified bitumen membranes; (4) liquid applied membranes; and (5) metal roofing. A chart compares the characteristics of the raw membranes only. (MLF)
40 CFR 427.60 - Applicability; description of the asbestos roofing subcategory.
Code of Federal Regulations, 2010 CFR
2010-07-01
... asbestos roofing subcategory. 427.60 Section 427.60 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ASBESTOS MANUFACTURING POINT SOURCE CATEGORY Asbestos Roofing Subcategory § 427.60 Applicability; description of the asbestos roofing subcategory. The...
40 CFR 427.60 - Applicability; description of the asbestos roofing subcategory.
Code of Federal Regulations, 2012 CFR
2012-07-01
... asbestos roofing subcategory. 427.60 Section 427.60 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ASBESTOS MANUFACTURING POINT SOURCE CATEGORY Asbestos Roofing Subcategory § 427.60 Applicability; description of the asbestos roofing...