Science.gov

Sample records for room crew performance

  1. FRAMEWORK AND APPLICATION FOR MODELING CONTROL ROOM CREW PERFORMANCE AT NUCLEAR POWER PLANTS

    SciTech Connect

    Ronald L Boring; David I Gertman; Tuan Q Tran; Brian F Gore

    2008-09-01

    This paper summarizes an emerging project regarding the utilization of high-fidelity MIDAS simulations for visualizing and modeling control room crew performance at nuclear power plants. The key envisioned uses for MIDAS-based control room simulations are: (i) the estimation of human error associated with advanced control room equipment and configurations, (ii) the investigative determination of contributory cognitive factors for risk significant scenarios involving control room operating crews, and (iii) the certification of reduced staffing levels in advanced control rooms. It is proposed that MIDAS serves as a key component for the effective modeling of cognition, elements of situation awareness, and risk associated with human performance in next generation control rooms.

  2. Advanced control rooms and crew performance issues: Implications for human reliability

    SciTech Connect

    O'Hara, J.M.; Hall, R.E.

    1991-01-01

    Recent trends in advanced control room (ACR) design are considered with respect to their impact on human performance. It is concluded that potentially negative influences exist, however, a variety of factors make it difficult to model, analyze, and quantify these effects for human reliability analyses (HRAs).

  3. Advanced control rooms and crew performance issues: Implications for human reliability

    SciTech Connect

    O`Hara, J.M.; Hall, R.E.

    1991-12-31

    Recent trends in advanced control room (ACR) design are considered with respect to their impact on human performance. It is concluded that potentially negative influences exist, however, a variety of factors make it difficult to model, analyze, and quantify these effects for human reliability analyses (HRAs).

  4. 51-L Challenger Crew in White Room

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Crew members of mission STS-51L stand in the White Room at Pad 39B following the end of the Terminal Countdown Demonstration Test (TCDT). From left to right they are: Teacher in Space Participant, Sharon 'Christa' McAuliffe, Payload Specialist, Gregory Jarvis, Mission Specialist, Judy Resnik, Commander Dick Scobee Mission Specialist, Ronald McNair, Pilot, Michael Smith and Mission Specialist, Ellison Onizuka

  5. Press room of the Crew reception Area, Lunar Receivng Laboratory

    NASA Technical Reports Server (NTRS)

    1967-01-01

    Room 190 of the Support and Administrative Facilities, Crew Reception Area (CRA), Lunar Receiving Laboratory, Bldg 37, Manned Spacecraft Center, Houston, Texas. The room is a debriefing room which facilitates indirect contact with the astronauts and CRA medical staff during quarantine periods. Also called the press room.

  6. STS-86 crew members Bloomfield and Chretien in white room

    NASA Technical Reports Server (NTRS)

    1997-01-01

    While a white room closeout crew member looks on, STS-86 Pilot Michael J. Bloomfield, at right, gets some assistance from fellow crew member, Mission Specialist Jean-Loup J.M. Chretien of the French Space Agency, CNES, before entering the Space Shuttle Atlantis at Launch Pad 39A.

  7. VIEW OF FLIGHT CREW SYSTEMS, FLIGHT KITS FACILITY, ROOM NO. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF FLIGHT CREW SYSTEMS, FLIGHT KITS FACILITY, ROOM NO. 1N12, FACING NORTH - Cape Canaveral Air Force Station, Launch Complex 39, Vehicle Assembly Building, VAB Road, East of Kennedy Parkway North, Cape Canaveral, Brevard County, FL

  8. VIEW OF FLIGHT CREW SYSTEMS, FLIGHT KITS FACILITY, ROOM NO. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF FLIGHT CREW SYSTEMS, FLIGHT KITS FACILITY, ROOM NO. 1N12, FACING SOUTH - Cape Canaveral Air Force Station, Launch Complex 39, Vehicle Assembly Building, VAB Road, East of Kennedy Parkway North, Cape Canaveral, Brevard County, FL

  9. 16. Topside facility, briefing room, former crew lounge. Thalheimer ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. Topside facility, briefing room, former crew lounge. Thalheimer - Whiteman Air Force Base, Oscar O-1 Minuteman Missile Alert Facility, Southeast corner of Twelfth & Vendenberg Avenues, Knob Noster, Johnson County, MO

  10. Media Event at CCP White Room/Crew Access Arm

    NASA Image and Video Library

    2016-03-21

    NASA, Boeing and United Launch Alliance officials discuss the Crew Access Arm under construction at a yard near NASA's Kennedy Space Center in Florida. The arm and white room are being built to bridge the space between the Crew Access Tower and the hatch to Boeing's CST-100 Starliner spacecraft as it stands atop a ULA Atlas V rocket at Space Launch Complex 41 before flight. Partnering with NASA's Commercial Crew Program, Boeing is one of two companies building a new, privately owned and operated space system to carry astronauts to the International Space Station. The speakers are, from left, Lisa Loucks, Launch Site Integration lead for Boeing; Steve Hirst, Launch Operations Group for ULA; Chris Ferguson, former astronaut and deputy program manager of Boeing's Crew and Mission Operations, Gary Wentz, vice president of Human Launch Services for ULA, and Mike Ravenscroft, Launch Site Integration manager for NASA's Commercial Crew Program.

  11. Media Event at CCP White Room/Crew Access Arm

    NASA Image and Video Library

    2016-03-21

    NASA, Boeing and United Launch Alliance officials discuss the Crew Access Arm under construction at a yard near NASA's Kennedy Space Center in Florida. The arm and white room are being built to bridge the space between the Crew Access Tower and the hatch to Boeing's CST-100 Starliner spacecraft as it stands atop a ULA Atlas V rocket at Space Launch Complex 41 before flight. Partnering with NASA's Commercial Crew Program, Boeing is one of two companies building a new, privately owned and operated space system to carry astronauts to the International Space Station.

  12. Media Event at CCP White Room/Crew Access Arm

    NASA Image and Video Library

    2016-03-21

    Steve Hirst, Launch Operations Group for United Launch Alliance, speaks to news media about the Crew Access Arm under construction at a yard near NASA's Kennedy Space Center in Florida. The arm and white room are being built to bridge the space between the Crew Access Tower and the hatch to Boeing's CST-100 Starliner spacecraft as it stands atop a ULA Atlas V rocket at Space Launch Complex 41 before flight. Partnering with NASA's Commercial Crew Program, Boeing is one of two companies building a new, privately owned and operated space system to carry astronauts to the International Space Station.

  13. Coordinated crew performance in commercial aircraft operations

    NASA Technical Reports Server (NTRS)

    Murphy, M. R.

    1977-01-01

    A specific methodology is proposed for an improved system of coding and analyzing crew member interaction. The complexity and lack of precision of many crew and task variables suggest the usefulness of fuzzy linguistic techniques for modeling and computer simulation of the crew performance process. Other research methodologies and concepts that have promise for increasing the effectiveness of research on crew performance are identified.

  14. Orion EM-1 Crew Module Adapter Move to Clean Room

    NASA Image and Video Library

    2016-11-29

    Inside the Neil Armstrong Operations and Checkout Building high bay at NASA's Kennedy Space Center in Florida, Lockheed Martin technicians secure a protective cover around the Orion crew module adapter (CMA) for Exploration Mission 1 (EM-1) for its move to a clean room. The CMA will undergo propellant and environmental control and life support system tube installation and welding. The adapter will connect the Orion crew module to the European Space Agency-provided service module. The Orion spacecraft will launch atop NASA’s Space Launch System rocket on EM-1, its first deep space mission, in late 2018.

  15. Orion EM-1 Crew Module Adapter Move to Clean Room

    NASA Image and Video Library

    2016-11-29

    Inside the Neil Armstrong Operations and Checkout Building high bay at NASA’s Kennedy Space Center in Florida, Lockheed Martin technicians move the Orion crew module adapter (CMA) for Exploration Mission 1 (EM-1) into a clean room. The CMA will undergo propellant and environmental control and life support system tube installation and welding. The adapter will connect the Orion crew module to the European Space Agency-provided service module. The Orion spacecraft will launch atop NASA’s Space Launch System rocket on EM-1, its first deep space mission, in late 2018.

  16. Orion EM-1 Crew Module Adapter Move to Clean Room

    NASA Image and Video Library

    2016-11-29

    Inside the Neil Armstrong Operations and Checkout Building high bay at NASA’s Kennedy Space Center in Florida, the Orion crew module adapter (CMA) for Exploration Mission 1 (EM-1) is in a clean room with protective walls secured around it. The adapter will undergo propellant and environmental control and life support system tube installation and welding. The adapter will connect the Orion crew module to the European Space Agency-provided service module. The Orion spacecraft will launch atop NASA’s Space Launch System rocket on EM-1, its first deep space mission, in late 2018.

  17. Orion EM-1 Crew Module Adapter Move to Clean Room

    NASA Image and Video Library

    2016-11-29

    Inside the Neil Armstrong Operations and Checkout Building high bay at NASA’s Kennedy Space Center in Florida, Lockheed Martin technicians move the Orion crew module adapter (CMA) for Exploration Mission 1 (EM-1) toward a clean room. The CMA will undergo propellant and environmental control and life support system tube installation and welding. The adapter will connect the Orion crew module to the European Space Agency-provided service module. The Orion spacecraft will launch atop NASA’s Space Launch System rocket on EM-1, its first deep space mission, in late 2018.

  18. Orion EM-1 Crew Module Adapter Move to Clean Room

    NASA Image and Video Library

    2016-11-29

    Inside the Neil Armstrong Operations and Checkout Building high bay at NASA’s Kennedy Space Center in Florida, a Lockheed Martin technician secures a protective cover around the Orion crew module adapter (CMA) for Exploration Mission 1 (EM-1) for its move to a clean room The CMA will undergo propellant and environmental control and life support system tube installation and welding. The adapter will connect the Orion crew module to the European Space Agency-provided service module. The Orion spacecraft will launch atop NASA’s Space Launch System rocket on EM-1, its first deep space mission, in late 2018.

  19. Orion EM-1 Crew Module Adapter Move to Clean Room

    NASA Image and Video Library

    2016-11-29

    Inside the Neil Armstrong Operations and Checkout Building high bay at NASA’s Kennedy Space Center in Florida, the Orion crew module adapter (CMA) for Exploration Mission 1 (EM-1) is being moved to a clean room. The CMA will undergo propellant and environmental control and life support system tube installation and welding. The adapter will connect the Orion crew module to the European Space Agency-provided service module. The Orion spacecraft will launch atop NASA’s Space Launch System rocket on EM-1, its first deep space mission, in late 2018.

  20. Orion EM-1 Crew Module Adapter Move to Clean Room

    NASA Image and Video Library

    2016-11-29

    Inside the Neil Armstrong Operations and Checkout Building high bay at NASA’s Kennedy Space Center in Florida, a protective cover is installed around the Orion crew module adapter (CMA) for Exploration Mission 1 (EM-1) for its move to a clean room. The CMA will undergo propellant and environmental control and life support system tube installation and welding. The adapter will connect the Orion crew module to the European Space Agency-provided service module. The Orion spacecraft will launch atop NASA’s Space Launch System rocket on EM-1, its first deep space mission, in late 2018.

  1. Orion EM-1 Crew Module Adapter Move to Clean Room

    NASA Image and Video Library

    2016-11-29

    Inside the Neil Armstrong Operations and Checkout Building high bay at NASA’s Kennedy Space Center in Florida, Lockheed Martin technicians secure a protective cover around the Orion crew module adapter (CMA) for Exploration Mission 1 (EM-1) for its move to a clean room. The CMA will undergo propellant and environmental control and life support system tube installation and welding. The adapter will connect the Orion crew module to the European Space Agency-provided service module. The Orion spacecraft will launch atop NASA’s Space Launch System rocket on EM-1, its first deep space mission, in late 2018.

  2. Orion EM-1 Crew Module Adapter Move to Clean Room

    NASA Image and Video Library

    2016-11-29

    Inside the Neil Armstrong Operations and Checkout Building high bay at NASA’s Kennedy Space Center in Florida, Lockheed Martin technicians are preparing the Orion crew module adapter (CMA) for Exploration Mission 1 (EM-1) for the move into a clean room. The CMA will undergo propellant and environmental control and life support system tube installation and welding. The adapter will connect the Orion crew module to the European Space Agency-provided service module. The Orion spacecraft will launch atop NASA’s Space Launch System rocket on EM-1, its first deep space mission, in late 2018.

  3. Orion EM-1 Crew Module Adapter Move to Clean Room

    NASA Image and Video Library

    2016-11-29

    Inside the Neil Armstrong Operations and Checkout Building high bay at NASA’s Kennedy Space Center in Florida, Lockheed Martin technicians begin to move the Orion crew module adapter (CMA) for Exploration Mission 1 (EM-1) to a clean room. The CMA will undergo propellant and environmental control and life support system tube installation and welding. The adapter will connect the Orion crew module to the European Space Agency-provided service module. The Orion spacecraft will launch atop NASA’s Space Launch System rocket on EM-1, its first deep space mission, in late 2018.

  4. STS-111 Crew in white room during TCDT

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- In the White Room, Launch Pad 39A, the STS-111 and Expedition 5 crews pose in front of the entry into Space Shuttle Endeavour. From left are Expedition 5 crew member Sergei Treschev and Commander Valeri Korzun, with the Russian Space Agency; STS-111 Mission Specialist Philippe Perrin, with the French Space Agency; Commander Kenneth Cockrell and Pilot Paul Lockhart; Expedition 5 crew member Peggy Whitson; and Mission Specialist Franklin Chang-Diaz. The crews are taking part in Terminal Countdown Demonstration Test activities at the pad, which include emergency egress training and a simulated launch countdown. The mission is Utilization Flight 2, carrying supplies and equipment to the International Space Station, the Mobile Base System, which will be installed on the Mobile Transporter to complete the Canadian Mobile Servicing System, or MSS, and a replacement wrist/roll joint for Canadarm 2. The mechanical arm will then have the capability to 'inchworm' from the U.S. Lab Destiny to the MSS and travel along the truss to work sites. Expedition 5 will travel to the Station on Endeavour as the replacement crew for Expedition 4, who will return to Earth aboard the orbiter. Launch is scheduled for May 30, 2002.

  5. STS-111 Crew in white room during TCDT

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- In the White Room, Launch Pad 39A, the STS-111 and Expedition 5 crews pose in front of the entry into Space Shuttle Endeavour. From left are Expedition 5 crew member Sergei Treschev and Commander Valeri Korzun, with the Russian Space Agency; STS-111 Mission Specialist Philippe Perrin, with the French Space Agency; Commander Kenneth Cockrell and Pilot Paul Lockhart; Expedition 5 crew member Peggy Whitson; and Mission Specialist Franklin Chang-Diaz. The crews are taking part in Terminal Countdown Demonstration Test activities at the pad, which include emergency egress training and a simulated launch countdown. The mission is Utilization Flight 2, carrying supplies and equipment to the International Space Station, the Mobile Base System, which will be installed on the Mobile Transporter to complete the Canadian Mobile Servicing System, or MSS, and a replacement wrist/roll joint for Canadarm 2. The mechanical arm will then have the capability to 'inchworm' from the U.S. Lab Destiny to the MSS and travel along the truss to work sites. Expedition 5 will travel to the Station on Endeavour as the replacement crew for Expedition 4, who will return to Earth aboard the orbiter. Launch is scheduled for May 30, 2002.

  6. Interim results of the study of control room crew staffing for advanced passive reactor plants

    SciTech Connect

    Hallbert, B.P.; Sebok, A.; Haugset, K.

    1996-03-01

    Differences in the ways in which vendors expect the operations staff to interact with advanced passive plants by vendors have led to a need for reconsideration of the minimum shift staffing requirements of licensed Reactor Operators and Senior Reactor Operators contained in current federal regulations (i.e., 10 CFR 50.54(m)). A research project is being carried out to evaluate the impact(s) of advanced passive plant design and staffing of control room crews on operator and team performance. The purpose of the project is to contribute to the understanding of potential safety issues and provide data to support the development of design review guidance. Two factors are being evaluated across a range of plant operating conditions: control room crew staffing; and characteristics of the operating facility itself, whether it employs conventional or advanced, passive features. This paper presents the results of the first phase of the study conducted at the Loviisa nuclear power station earlier this year. Loviisa served as the conventional plant in this study. Data collection from four crews were collected from a series of design basis scenarios, each crew serving in either a normal or minimum staffing configuration. Results of data analyses show that crews participating in the minimum shift staffing configuration experienced significantly higher workload, had lower situation awareness, demonstrated significantly less effective team performance, and performed more poorly as a crew than the crews participating in the normal shift staffing configuration. The baseline data on crew configurations from the conventional plant setting will be compared with similar data to be collected from the advanced plant setting, and a report prepared providing the results of the entire study.

  7. STS-101 crew get training in the White Room during TCDT at the pad

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Inside the White Room at Launch Pad 39A, the STS-101 crew take part in training during a Terminal Countdown Demonstration Test (TCDT). Activities during TCDT include emergency egress from the orbiter and a dress rehearsal for launch. Standing left to right are Pilot Scott Horowitz, Mission Specialists Mary Ellen Weber, Yuri Usachev and Jeffrey Williams, Commander James Halsell, and Mission Specialists James Voss and Susan Helms. During their mission to the International Space Station, the STS-101 crew will be delivering logistics and supplies, plus preparing the Station for the arrival of the Zvezda Service Module, expected to be launched by Russia in July 2000. Also, the crew will conduct one space walk to perform maintenance on the Space Station. This will be the third assembly flight for the Space Station. STS-101 is scheduled to launch April 24 at 4:15 p.m. from Launch Pad 39A.

  8. Group interaction and flight crew performance

    NASA Technical Reports Server (NTRS)

    Foushee, H. Clayton; Helmreich, Robert L.

    1988-01-01

    The application of human-factors analysis to the performance of aircraft-operation tasks by the crew as a group is discussed in an introductory review and illustrated with anecdotal material. Topics addressed include the function of a group in the operational environment, the classification of group performance factors (input, process, and output parameters), input variables and the flight crew process, and the effect of process variables on performance. Consideration is given to aviation safety issues, techniques for altering group norms, ways of increasing crew effort and coordination, and the optimization of group composition.

  9. Expedition 48 crew portrait with 46S crew (Jeff Williams, Oleg Skripochka, Aleksei Ovchinin) and 47S crew (Anatoli Ivanishin, Kate Rubins, Takuya Onishi). Photo Date: June 26, 2015. Location: Building 8, Room 183 - Photo Studio. Photographer: Bill Stafford.

    NASA Image and Video Library

    2016-01-14

    Expedition 48 crew portrait with 46S crew (Jeff Williams, Oleg Skripochka, Aleksei Ovchinin) and 47S crew (Anatoli Ivanishin, Kate Rubins, Takuya Onishi). Photo Date: June 26, 2015. Location: Building 8, Room 183 - Photo Studio. Photographer: Bill Stafford.

  10. STS-101 crew poses in the White Room during TCDT at the pad

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The STS-101 crew pose in the White Room outside Space Shuttle Atlantis behind them. In the front row are Pilot Scott Horowitz and Mission Specialists Yuri Usachev and Susan Helms. In the back row are Mission Specialists Mary Ellen Weber and Jeffrey Williams, Commander James Halsell, and Mission Specialist James Voss. The crew are at KSC to take part in Terminal Countdown Demonstration Test (TCDT) activities that include emergency egress training from the orbiter and a dress rehearsal for launch. During their mission to the International Space Station, the STS-101 crew will be delivering logistics and supplies, plus preparing the Station for the arrival of the Zvezda Service Module, expected to be launched by Russia in July 2000. Also, the crew will conduct one space walk to perform maintenance on the Space Station. This will be the third assembly flight for the Space Station. STS-101 is scheduled to launch April 24 at 4:15 p.m. from Launch Pad 39A.

  11. Gemini 7 backup crew seen in white room during Gemini 7 simulation activity

    NASA Image and Video Library

    1965-11-27

    S65-61837 (27 Nov. 1965) --- The Gemini-7 backup crew seen in the White Room atop Pad 19 during Gemini-7 simulation flight activity. McDonnell Aircraft Corporation technicians assist in the exercise. Astronaut Edward H. White II (in foreground) is the Gemini-7 backup crew command pilot; and astronaut Michael Collins (right background) is the backup crew pilot. Photo credit: NASA

  12. Pilot Susan L. Still chats with white room closeout crew member

    NASA Technical Reports Server (NTRS)

    1997-01-01

    KENNEDY SPACE CENTER, FLA. -- STS-83 Pilot Susan L. Still chats with white room closeout crew member Rene Arriens as she prepares to enter the Space Shuttle Columbia at Launch Pad 39A with assistance from closeout crew worker Bob Saulnier (behind Still).

  13. Orion EM-1 Crew Module Adapter Move to Clean Room

    NASA Image and Video Library

    2016-11-29

    Inside the Neil Armstrong Operations and Checkout Building high bay at NASA's Kennedy Space Center in Florida, Lockheed Martin technicians secure a protective cover around the Orion crew module adapter (CMA) for Exploration Mission 1 (EM-1) for its move to a clean. The CMA will undergo propellant and environmental control and life support system tube installation and welding. The adapter will connect the Orion crew module to the European Space Agency-provided service module. The Orion spacecraft will launch atop NASA’s Space Launch System rocket on EM-1, its first deep space mission, in late 2018.

  14. Control room crew operations research project. Final report

    SciTech Connect

    Parry, G.W.; Mosleh, A.

    1995-12-01

    This report presents an assessment of the current state of the art in human reliability analysis (HRA) and highlights the principal shortcomings of current approaches. Issues that should be addressed in an improved HRA approach as well as the constraints imposed by current methodologies used to perform Probabilistic Safety Assessment (PSAs) are identified. A generalized conceptual model for estimating the probabilities of the human failure events that are included in a PSA logic model is presented. The model is expressed as a sum over error modes and error causes. The report emphasizes the importance of understanding the causality of error and suggests one approach to the representation of error causes. An example approach to the qualitative screening of errors of commission is presented. The second part of the report describes an alternative approach to modeling accident scenarios that explicitly considers the dynamic interactions of the various elements and provides the needed environment for implementation of advanced human reliability models. This approach has been incorporated into the Accident Dynamic Simulator (ADS), a computer tool that removes the main roadblock to implementation of this methodology by handling the computational complexities of an integrated model of a large system, its physical processes, and the human behavior of the control room operators. ADS runs on a personal computer and is designed to facilitate the PSA of nuclear power plants. The application of the code to a SGTR initiating event at a Westinghouse PWR is presented.

  15. Crew Health and Performance on Mars

    NASA Technical Reports Server (NTRS)

    Stegemoeller, Charlie

    1998-01-01

    The issues surrounding the health and performance on Mars of a human crew are discussed in this presentation. The work of Human Space Life Sciences Program Office (HSLSPO) in the preparation of a crew for a Martian mission is reviewed. This includes a review of issues relating to human health and performance (HHP) in space and microgravity. The Mars design reference mission requires the most rigorous life sciences critical path of any manned mission in the forseeable future. This mission will require a 30 months round trip, with 4 different transistions to different gravities, and two episodes of high gravity load, during the Mars and Earth Aerobraking exercises. A graph is presented which shows the number of subjects with human space flight experience greater than 30 days. A chart presents the physical challenges to HHP in terms of gravity and acceleration and the length of times the crew will be exposed to the various gravity loads. Another chart presents the radiation challenges to the HHP for the duration of the trip. The human element is the most complex element of the mission design. Some challenges (i.e., human engineering and life support) must be overcome, and some issues such as bone loss, and radiation exposure must be addressed prior to making a decision for a manned Martian mission.

  16. Gemini 10 prime crew in White Room preparing for insertion

    NASA Image and Video Library

    1966-07-18

    S66-42737 (18 July 1966) --- In the White Room atop the Gemini launch vehicle, astronauts Michael Collins (left), pilot, and John W. Young (right), command pilot, prepare to enter the Gemini-10 spacecraft. Engineers and technicians stand by to assist in the insertion. Photo credit: NASA

  17. STS-102 crew poses in the White Room at Launch Pad 39B during TCDT

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- The STS-102 crew poses in the White Room outside the orbiter Discovery on Launch Pad 39B. Kneeling in front are Mission Specialists Susan Helms, Yury Usachev and James Voss. Standing behind them are Mission Specialists Paul Richards and Andrew Thomas, Commander James Wetherbee and Pilot James Kelly. The crew is taking part in Terminal Countdown Demonstration Test activities, which include emergency exit training and a simulated launch countdown. STS-102 is the eighth construction flight to the International Space Station, with Space Shuttle Discovery carrying the Multi-Purpose Logistics Module Leonardo. Voss, Helms and Usachev are the Expedition Two crew who will be the second resident crew on the International Space Station. They will replace Expedition One, who will return to Earth with Discovery. Launch on mission STS-102 is scheduled for March 8.

  18. STS-105 and Expedition Three crews in White Room at Launch Pad 39A

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- The STS-105 and Expedition Three crews pose in the White Room on Launch Pad 39A. Standing are (left to right) Pilot Rick Sturckow, Mission Specialist Patrick Forrester, Commander Scott Horowitz and Mission Specialist Daniel Barry. Kneeling are cosmonaut Mikhail Tyurin, Commander Frank Culbertson and cosmonaut Vladimir Nikolaevich Dezhurov. Tyurin and Dezhurov are with the Russian Aviation and Space Agency. Both crews are at KSC to take part in Terminal Countdown Demonstration Test activities, which include emergency egress, a simulated launch countdown and familiarization with the payload. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Discovery. The current Expedition Two crew members on the Station will return to Earth on Discovery. Launch of Discovery is scheduled no earlier than Aug. 9, 2001.

  19. Orion EM-1 Crew Module Move from Clean Room to Work Station

    NASA Image and Video Library

    2017-05-11

    Workers have moved the Orion crew module pressure vessel for NASA’s Exploration Mission 1 (EM-1) out of a clean room inside the Neil Armstrong Operations and Checkout Building high bay at NASA’s Kennedy Space Center in Florida. The crew module will be moved to a work station where it will undergo additional processing to prepare it for launch in 2019. The spacecraft is being prepared for its first integrated flight atop the Space Launch System rocket on Exploration Mission-1.

  20. Crew resource management: using aviation techniques to improve operating room safety.

    PubMed

    Ricci, Michael A; Brumsted, John R

    2012-04-01

    Since the publication of the Institute of Medicine report estimating nearly 100,000 deaths per year from medical errors, hospitals and physicians have a renewed focus upon error reduction. We implemented a surgical crew resource management (CRM) program for all operating room (OR) personnel. In our academic medical center, 19,000 procedures per year are performed in 27 operating rooms. Mandatory CRM training was implemented for all peri-operative personnel. Aviation techniques introduced included a pre-operative checklist and brief, post-operative debrief, read and initial files, and various other aviation-based techniques. Compliance with conduct of the brief/debrief was monitored as well as wrong-site surgeries and retained foreign body events. The malpractice insurance database for claims was also queried for the period prior to and after training. Initial training was accomplished for 517 people, including all anesthesiologists, surgeons, nurses, technicians, and OR assistants. Pre-operative briefing increased from 6.7 to 99% within 4 mo. Wrong site surgeries and retained foreign bodies decreased from a high of seven in 2007 to none in 2008, but, after 14 mo without additional training, these rose to five in 2009. Malpractice expenses (payouts and legal fees) totaled $793,000 (2003-2007), but have been zero since 2008. CRM training and implementation had an impact on reducing the incidence of wrong site surgery and retained foreign bodies in our operating rooms. However, constant reinforcement and refresher training is necessary for sustained results. Though no one technique can prevent all errors, CRM can effect culture change, producing a safer environment.

  1. STS-104 crew in the White Room at Launch Pad 39B

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- In the White Room at Launch Pad 39B, Commander Steven W. Lindsey places a crew patch at the entrance to Space Shuttle Atlantis while other crew members look on. At left are Mission Specialists Janet Lynn Kavandi and Michael L. Gernhardt, and at right is Mission Specialist James F. Reilly. Not seen is Pilot Charles O. Hobaugh. The crew is taking part in Terminal Countdown Demonstration Test activities, which include emergency exit training from the orbiter, opportunities to inspect their mission payloads in the orbiters payload bay and simulated countdown exercises. The launch of Atlantis on mission STS-104 is scheduled July 12 from Launch Pad 39B. The mission is the 10th flight to the International Space Station and carries the Joint Airlock Module.

  2. STS-95 crew in white room at Pad 39-B during TCDT

    NASA Technical Reports Server (NTRS)

    1998-01-01

    At Launch Pad 39-B, the STS-95 crew gather in the white room, an environmental chamber that mates with the orbiter and can provide emergency egress for the flight crew before launch. The white room is the outer end of the orbiter access arm, which is part of the fixed service structure on the pad. Pictured are (left to right) Mission Specialist Scott E. Parazynski, Mission Commander Curtis L. Brown, Payload Specialist John H. Glenn Jr. (seated), senator from Ohio, Payload Specialist Chiaki Mukai (behind Glenn), representing the National Space Development Agency of Japan (NASDA), Mission Specialist Stephen K. Robinson, Mission Specialist Pedro Duque of Spain, representing the European Space Agency (ESA), and Pilot Steven W. Lindsey. The STS-95 crew are at KSC to participate in a Terminal Countdown Demonstration Test (TCDT) which includes mission familiarization activities, emergency egress training, and a simulated main engine cut-off exercise. The STS-95 mission, targeted for liftoff on Oct. 29, includes research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process. Following the TCDT, the crew will be returning to Houston for final flight preparations.

  3. Orion EM-1 Crew Module Move from Clean Room to Work Station

    NASA Image and Video Library

    2017-05-11

    The Orion crew module pressure vessel for NASA’s Exploration Mission 1 (EM-1) is being moved from a clean room to a work station inside the Neil Armstrong Operations and Checkout Building high bay at NASA’s Kennedy Space Center in Florida. Orion will undergo additional processing to prepare it for launch in 2019. The spacecraft is being prepared for its first integrated flight atop the Space Launch System rocket on Exploration Mission-1.

  4. Orion EM-1 Crew Module Move from Clean Room to Work Station

    NASA Image and Video Library

    2017-05-11

    The Orion crew module pressure vessel for NASA’s Exploration Mission 1 (EM-1) is moved from a clean room to a work station inside the Neil Armstrong Operations and Checkout Building high bay at NASA’s Kennedy Space Center in Florida. Orion will undergo additional processing to prepare it for launch in 2019. The spacecraft is being prepared for its first integrated flight atop the Space Launch System rocket on Exploration Mission-1.

  5. Crew behavior and performance in space analog environments

    NASA Technical Reports Server (NTRS)

    Kanki, Barbara G.

    1992-01-01

    The objectives and the current status of the Crew Factors research program conducted at NASA-Ames Research Center are reviewed. The principal objectives of the program are to determine the effects of a broad class of input variables on crew performance and to provide guidance with respect to the design and management of crews assigned to future space missions. A wide range of research environments are utilized, including controlled experimental settings, high fidelity full mission simulator facilities, and fully operational field environments. Key group processes are identified, and preliminary data are presented on the effect of crew size, type, and structure on team performance.

  6. Crew behavior and performance in space analog environments

    NASA Technical Reports Server (NTRS)

    Kanki, Barbara G.

    1992-01-01

    The objectives and the current status of the Crew Factors research program conducted at NASA-Ames Research Center are reviewed. The principal objectives of the program are to determine the effects of a broad class of input variables on crew performance and to provide guidance with respect to the design and management of crews assigned to future space missions. A wide range of research environments are utilized, including controlled experimental settings, high fidelity full mission simulator facilities, and fully operational field environments. Key group processes are identified, and preliminary data are presented on the effect of crew size, type, and structure on team performance.

  7. STS-96 crew members in the white room are prepared for entry into Discovery

    NASA Technical Reports Server (NTRS)

    1999-01-01

    STS-96 Mission Specialist Ellen Ochoa chats with white room closeout crew members while being checked out for entry into the orbiter Discovery. At left are Mechanical Technicians Al Schmidt and Chris meinert; at right is Quality Assurance Specialist James Davis and Closeout Chief Travis Thompson. The white room is an environmental chamber at the end of the orbiter access arm that provides entry to the orbiter crew compartment. STS-96 is a 10- day logistics and resupply mission for the International Space Station, carrying about 4,000 pounds of supplies, to be stored aboard the station for use by future crews, including laptop computers, cameras, tools, spare parts, and clothing. The mission also includes such payloads as a Russian crane, the Strela; a U.S.-built crane; the Spacehab Oceaneering Space System Box (SHOSS), a logistics items carrier; and STARSHINE, a student- involved experiment. It will include a space walk to attach the cranes to the outside of the ISS for use in future construction. Space Shuttle Discovery is due to launch today at 6:49 a.m. EDT. Landing is expected at the SLF on June 6 about 1:58 a.m. EDT.

  8. Airport ramp safety and crew performance issues

    NASA Technical Reports Server (NTRS)

    Chamberlin, Roy; Drew, Charles; Patten, Marcia; Matchette, Robert

    1995-01-01

    This study examined 182 ramp operations incident reports from the Aviation Safety Reporting System (ASRS) database, to determine which factors influence ramp operation incidents. It was found that incidents occurred more often during aircraft arrival operations than during departure operations; incidents occurred most often at the gate stop area, less so at the gate entry/exit areas, and least on the ramp fringe areas; and reporters cited fewer incidents when more ground crew were present. The authors offer suggestions for both airline management and flight crews to reduce the rate of ramp incidents.

  9. STS-103 crew in white room at Launch Pad 39B

    NASA Technical Reports Server (NTRS)

    1999-01-01

    As part of Terminal Countdown Demonstration Test (TCDT) activities, the STS-103 crew inspect the 'white room,' an environmentally controlled chamber at the end of the orbiter access arm through which the crew enters the orbiter. Standing from left to right are Mission Specialists C. Michael Foale (Ph.D.), Claude Nicollier of Switzerland, Jean-Frangois Clervoy of France, John M. Grunsfeld (Ph.D.), Commander Curtis L. Brown Jr., Mission Specialist Steven L. Smith, and Pilot Scott J. Kelly. Clervoy and Nicollier are with the European Space Agency. The TCDT provides the crew with the emergency egress training, opportunities to inspect their mission payloads in the orbiter's payload bay, and simulated countdown exercises. STS-103 is a 'call-up' mission due to the need to replace and repair portions of the Hubble Space Telescope, including the gyroscopes that allow the telescope to point at stars, galaxies and planets. The STS-103 crew will be replacing a Fine Guidance Sensor, an older computer with a new enhanced model, an older data tape recorder with a solid-state digital recorder, a failed spare transmitter with a new one, and degraded insulation on the telescope with new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode. Four EVA's are planned to make the necessary repairs and replacements on the telescope. The mission is targeted for launch Dec. 6 at 2:37 a.m. EST.

  10. STS-55 SL-D2 crew reviews preflight CEIT procedures in KSC conference room

    NASA Technical Reports Server (NTRS)

    1993-01-01

    STS-55 Spacelab Deutsche 2 (SL-D2) crewmembers, seated at a conference table, discuss Crew Equipment Interface Test (CEIT) procedures in a briefing room at the Kennedy Space Center (KSC). From left are Mission Specialist 1 (MS1) and Payload Commander (PLC) Jerry L. Ross, German Payload Specialist 1 Ulrich Walter, Pilot Terence T. Henricks, Commander Steven R. Nagel, MS3 Bernard J. Harris, Jr, German Payload Specialist 2 Hans Schlegel, and MS2 Charles J. Precourt. Seated in the foreground are KSC technicians and payload integration officers. Walter and Schlegel are representatives from DLR. View provided by KSC with alternate KSC number KSC-93PC-212.

  11. STS-55 SL-D2 crew reviews preflight CEIT procedures in KSC conference room

    NASA Technical Reports Server (NTRS)

    1993-01-01

    STS-55 Spacelab Deutsche 2 (SL-D2) crewmembers, seated at a conference table, discuss Crew Equipment Interface Test (CEIT) procedures in a briefing room at the Kennedy Space Center (KSC). From left are Mission Specialist 1 (MS1) and Payload Commander (PLC) Jerry L. Ross, German Payload Specialist 1 Ulrich Walter, Pilot Terence T. Henricks, Commander Steven R. Nagel, MS3 Bernard J. Harris, Jr, German Payload Specialist 2 Hans Schlegel, and MS2 Charles J. Precourt. Seated in the foreground are KSC technicians and payload integration officers. Walter and Schlegel are representatives from DLR. View provided by KSC with alternate KSC number KSC-93PC-212.

  12. STS-93 crew pose in White Room at launch pad 39-B

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Inside the 'White Room' at Launch Pad 39B, the STS-93 crew poses for photo before passing through the hatch on the orbiter Columbia. In the back row are Pilot Jeffrey S. Ashby, Commander Eileen M. Collins and Mission Specialist Michel Tognini of France, who represents the Centre National d'Etudes Spatiales (CNES). Kneeling in front are Mission Specialists Steven A. Hawley (Ph.D.), and Catherine G. Coleman (Ph.D.). The White Room is an environmentally controlled chamber that abuts the orbiter hatch. In preparation for their mission, the STS-93 crew is participating in a Terminal Countdown Demonstration Test, which familiarizes them with the mission, provides training in emergency exit from the orbiter and launch pad, and includes a launch-day dress rehearsal culminating with a simulated main engine cut-off. The primary mission of STS-93 is the release of the Chandra X-ray Observatory, which will allow scientists from around the world to obtain unprecedented X-ray images of exotic environments in space to help understand the structure and evolution of the universe. The targeted launch date for STS-93 is no earlier than July 20 at 12:36 a.m. EDT from Launch Pad 39B.

  13. The Effects of Alarm Display, Processing, and Availability on Crew Performance

    DTIC Science & Technology

    2000-11-01

    memoranda; bulletins and information notices; inspection and investigative reports; licensee event reports; and Commission papers and their...Halden, Norway: OECD Halden Reactor Project. Moore, R., Popovic, J., and Pauksens, J. (1993). Alarm annunciation in CANDU 3 control room design. In...A-A NUREG/CR-6691 BNL-NUREG-52600 The Effects of Alarm Display, Processing, and Availability on Crew Performance I Brookhaven National

  14. STS-99 crew pose for photo in White Room at launch pad

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Inside the White Room attached to the Fixed Service Structure on Launch Pad 39A, the STS-99 crew pose at the entrance to the orbiter Endeavour. From left are Mission Specialists Janet Lynn Kavandi (Ph.D.), Gerhard Thiele, Janice Voss (Ph.D.) and Mamoru Mohri, Commander Kevin Kregel (standing) and Pilot Dominic Gorie (kneeling in front). Thiele is with the European Space Agency and Mohri is with the National Space Development Agency (NASDA) of Japan. The crew are taking part in Terminal Countdown Demonstration Test activities, which provide them with simulated countdown exercises, emergency egress training, and opportunities to inspect the mission payloads in the orbiter's payload bay. STS-99 is the Shuttle Radar Topography Mission, which will chart a new course, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay to produce unrivaled 3-D images of the Earth's surface. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety. Launch of Endeavour on the 11-day mission is scheduled for Jan. 31 at 12:47 p.m. EST.

  15. Crew resource management improved perception of patient safety in the operating room.

    PubMed

    Gore, Dennis C; Powell, Jennifer M; Baer, Jennifer G; Sexton, Karen H; Richardson, C Joan; Marshall, David R; Chinkes, David L; Townsend, Courtney M

    2010-01-01

    To improve safety in the operating theater, a company of aviation pilots was employed to guide implementation of preprocedural briefings. A 5-point Likert scale survey that assessed the attitudes of operating room personnel toward patient safety was distributed before and 6 months following implementation of the briefings. Using Mann-Whitney analysis, the survey showed a significant (P < .05) improvement in 2 questions (of 13) involving reporting error and 2 questions (of 11) involving patient safety climate. When analyzed by occupation, there were no significant changes for faculty physicians; for resident physicians, there was a significant improvement in 1 question (of 13) regarding error reporting. For nurses, there were significant improvements in 3 questions (of 4) involving teamwork, 1 question (of 13) involving reporting error, and 3 questions (of 11) regarding patient safety climate. These results suggest that aviation-based crew resource management initiatives lead to an improved perception of patient safety, which was largely demonstrated by nursing personnel.

  16. STS-85 crew poses in the white room at LC 39A during TCDT

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The STS-85 flight crew poses in the white room at Launch Pad 39A during a break in Terminal Countdown Demonstration Test (TCDT) activities for that mission. They are (from left): Payload Commander N. Jan Davis; Payload Specialist Bjarni V. Tryggvason; Commander Curtis L. Brown, Jr.; Mission Specialist Stephen K. Robinson; Pilot Kent V. Rominger; and Mission Specialist Robert L. Curbeam, Jr. The primary payload aboard the Space Shuttle orbiter Discovery is the Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere-2 (CRISTA-SPAS-2). Other payloads on the 11-day mission include the Manipulator Flight Demonstration (MFD), and Technology Applications and Science-1 (TAS-1) and International Extreme Ultraviolet Hitchhiker-2 (IEH- 2) experiments.

  17. Theory underlying CRM training: Psychological issues in flight crew performance and crew coordination

    NASA Technical Reports Server (NTRS)

    Helmreich, Robert L.

    1987-01-01

    What psychological theory and research can reveal about training in Cockpit Resource Management (CRM) is summarized. A framework is provided for the critical analysis of current approaches to CRM training. Background factors and definitions critical to evaluating CRM are reviewed, followed by a discussion of issues directly related to CRM training effectiveness. Some of the things not known about the optimization of crew performance and the research needed to make these efforts as effective as possible are described.

  18. Airbag Landing Impact Performance Optimization for the Orion Crew Module

    NASA Technical Reports Server (NTRS)

    Lee, Timothy J.; McKinney, John; Corliss, James M.

    2008-01-01

    This report will discuss the use of advanced simulation techniques to optimize the performance of the proposed Orion Crew Module airbag landing system design. The Boeing Company and the National Aeronautic and Space Administration s Langley Research Center collaborated in the analysis of the proposed airbag landing system for the next generation space shuttle replacement, the Orion spacecraft. Using LS-DYNA to simulate the Crew Module landing impacts, two main objectives were established and achieved: the investigation of potential methods of optimizing the airbag performance in order to reduce rebound on the anti-bottoming bags, lower overall landing loads, and increase overall Crew Module stability; and the determination of the Crew Module stability and load boundaries using the optimized airbag design, based on the potential Crew Module landing pitch angles and ground slopes in both the center of gravity forward and aft configurations. This paper describes the optimization and stability and load boundary studies and presents a summary of the results obtained and key lessons learned from this analysis.

  19. Room for Improvement: Performance Evaluations.

    ERIC Educational Resources Information Center

    Webb, Gisela

    1989-01-01

    Describes a performance management approach to library personnel management that stresses communication, clarification of goals, and reinforcement of new practices and behaviors. Each phase of the evaluation process (preparation, rating, administrative review, appraisal interview, and follow-up) and special evaluations to be used in cases of…

  20. Crew performance and communication: Performing a terrain navigation task

    NASA Technical Reports Server (NTRS)

    Battiste, Vernol; Delzell, Susanne

    1993-01-01

    A study was conducted to examine the map and route cues pilots use while navigating under controlled, but realistic, nap-of-the-earth (NOE) flight conditions. US Army helicopter flight crews were presented a map and route overlay and asked to perform normal mission planning. They then viewed a video-recording of the out-the-window scene during low-level flights, without the route overlay, and were asked periodically to locate their current position on the map. The pilots and navigators were asked to communicate normally during the planning and flight phases. During each flight the navigator's response time, accuracy, and subjective workload were assessed. Post-flight NASA-TLX workload ratings were collected. No main effect of map orientation (north-up vs. track-up) was found for errors or response times on any of the tasks evaluated. Navigators in the north-up group rated their workload lower than those in the track-up group.

  1. What ASRS incident data tell about flight crew performance during aircraft malfunctions

    NASA Technical Reports Server (NTRS)

    Sumwalt, Robert L.; Watson, Alan W.

    1995-01-01

    This research examined 230 reports in NASA's Aviation Safety Reporting System's (ASRS) database to develop a better understanding of factors that can affect flight crew performance when crew are faced with inflight aircraft malfunctions. Each report was placed into one of two categories, based on severity of the malfunction. Report analysis was then conducted to extract information regarding crew procedural issues, crew communications and situational awareness. A comparison of these crew factors across malfunction type was then performed. This comparison revealed a significant difference in ways that crews dealt with serious malfunctions compared to less serious malfunctions. The authors offer recommendations toward improving crew performance when faced with inflight aircraft malfunctions.

  2. Combat-Ready Crew Performance Measurement System.

    DTIC Science & Technology

    1974-12-01

    station, as shown in Figure 11, must permit the transformacion of data collected through the five avenues shown in Figure 9 into a digital format...Measureti\\ent System: The performance measurement system consists of the following subsystems: (1) Data Acquisition. A hybrid audio/video/photo/ digital ...processing is provided. (2) Data Processing. A general purpose digital computer with standard peripherals is required, hi addition to executive and

  3. STS-93: Columbia Flight Crew Arrival on FSS 195' Level, Walk Across OAA and Ingress into White Room

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The primary objective of the STS-93 mission was to deploy the Advanced X-ray Astrophysical Facility, which had been renamed the Chandra X-ray Observatory in honor of the late Indian-American Nobel Laureate Subrahmanyan Chandrasekhar. The mission was launched at 12:31 on July 23, 1999 onboard the space shuttle Columbia. The mission was led by Commander Eileen Collins. The crew was Pilot Jeff Ashby and Mission Specialists Cady Coleman, Steve Hawley and Michel Tognini from the Centre National d'Etudes Spatiales (CNES). This videotape opens with a view of the shuttle on the launch pad. It then shows the flight crew arrival on the 195 foot level of the fixed service structure (FSS), walks across the orbiter access arm (OAA) into the white room, where the crew is assisted in putting on the final stages of their spacesuits, and then their crawl into the orbiter.

  4. Asteroid Redirect Crewed Mission Nominal Design and Performance

    NASA Technical Reports Server (NTRS)

    Condon, Gerald; williams, Jacob

    2014-01-01

    Mission (ARCM) nominal design and performance costs associated with an Orion based crewed rendezvous mission to a captured asteroid in an Earth-Moon DRO. The ARM study includes two fundamental mission phases: 1) The Asteroid Redirect Robotic Mission (ARRM) and 2) the ARCM. The ARRM includes a solar electric propulsion based robotic asteroid return vehicle (ARV) sent to rendezvous with a selected near Earth asteroid, capture it, and return it to a DRO in the Earth-Moon vicinity. The DRO is selected over other possible asteroid parking orbits due to its achievability (by both the robotic and crewed vehicles) and by its stability (e.g., no orbit maintenance is required). After the return of the asteroid to the Earth-Moon vicinity, the ARCM is executed and carries a crew of two astronauts to a DRO to rendezvous with the awaiting ARV with the asteroid. The outbound and inbound transfers employ lunar gravity assist (LGA) flybys to reduce the Orion propellant requirement for the overall nominal mission, which provides a nominal mission with some reserve propellant for possible abort situations. The nominal mission described in this report provides a better understanding of the mission considerations as well as the feasibility of such a crewed mission, particularly with regard to spacecraft currently undergoing development, such as the Orion vehicle and the Space Launch System (SLS).

  5. A Description of the ARI Crew Performance Model

    DTIC Science & Technology

    1981-04-01

    o.19 REFERENCE ............ ............................... 21 APPENDIX A. Task Library for M109A1 Howitzer Sections ......... 23 B. Software for...the software necessary for a computer-based model which permits the simulation of crews differing in size and the assignment of tasks. Ultimately, the...task be handled by type rather than by simply applying an "average" performance decrement to all tasks. The software for this portion of the model has

  6. Review of Methods Related to Assessing Human Performance in Nuclear Power Plant Control Room Simulations

    SciTech Connect

    Katya L Le Blanc; Ronald L Boring; David I Gertman

    2001-11-01

    With the increased use of digital systems in Nuclear Power Plant (NPP) control rooms comes a need to thoroughly understand the human performance issues associated with digital systems. A common way to evaluate human performance is to test operators and crews in NPP control room simulators. However, it is often challenging to characterize human performance in meaningful ways when measuring performance in NPP control room simulations. A review of the literature in NPP simulator studies reveals a variety of ways to measure human performance in NPP control room simulations including direct observation, automated computer logging, recordings from physiological equipment, self-report techniques, protocol analysis and structured debriefs, and application of model-based evaluation. These methods and the particular measures used are summarized and evaluated.

  7. Effect of Protective Clothing Ensembles on Artillery Battery Crew Performance

    DTIC Science & Technology

    1992-07-17

    BATTERY CREW PERFORMANCE U S ARMY RESEARCH INSTITUTE OF ENVIRONMENTAL MEDICINE Natick, Massachusetts DTIC JULY 1992 • CT st 92-22880 Appioved !o? p cbl;c...eleocs dcl-t-bl. i n ;imol d UNITED. STATES ARMY MEDICAL RESEARCH & DEVELOPMENT COMMAND (Z U ; I- The findings in this report are not to be construed as...Codas Av•i5f cin,,, or Dist SpDolau S= m -- ’ TABLE OF CONTENT3 Table of Contents List of Tables iv List of Figures v Foreword vi Acknowledgeme n s vii

  8. Flight hours and flight crew performance in commercial aviation.

    PubMed

    Todd, Melanie A; Thomas, Matthew J W

    2012-08-01

    To examine the relationship between a pilot's flight hours and their performance. There is current debate in the aviation industry on the minimum hours required for first officers to gain before they can fly for an airline. Despite years of pilot training and licensing, there are very little data available to determine whether or not pilot performance varies as a function of total hours within an airline environment. Flight crew performance was measured during 287 sectors of normal operations against a set of technical and nontechnical measurements. Flightcrew were grouped into a categorical variable which defined low and high experience groups according to industry accepted thresholds. There were no statistically significant differences between experience groups for First Officers or Captains against the set of technical measures; however, there were minor differences with regard to nontechnical measures as a function of crew composition. There was also a difference in automation use, with First Officers with less than 1500 h keeping the autopilot engaged until a significantly lower altitude. Despite on-going debate that low-hour First Officers are not as capable as their more experienced colleagues, we found no evidence of this in our study.

  9. Crew familiarity: operational experience, non-technical performance, and error management.

    PubMed

    Thomas, Matthew J W; Petrilli, Renée M

    2006-01-01

    Crew familiarity, in terms of having recent operational experience together as a crew, is seen as an important safety-related variable. However, little evidence exists to unpack the underlying processes with respect to familiarity. This study investigated the relationships between crew familiarity, non-technical performance, and error management. Data were collected during normal line operations at a commercial airline by observers using a methodology based on the Line Operations Safety Audit (LOSA). A total of 154 flights were analyzed, 31% of which were operated by an unfamiliar crew, with 69% operated by a familiar crew. The rate of error occurrence was found to be higher for unfamiliar crews, and these crews were found to make different types of errors when compared with familiar crews. However, with respect to the management of error events, no significant difference was found between unfamiliar and familiar crews. No significant effect of crew familiarity was found with respect to crews' non-technical performance. However, strong correlations were found between crews' non-technical performance and the management of errors. The findings indicate that crew familiarity, in terms of whether a crew has flown together recently or not, has little operational significance with respect to the management of error events during normal line operations. Accordingly, the suggestion that unfamiliar crews operate at a higher level of safety-related risk was not supported. Non-technical performance appears to be a stronger driver of effective error management than crew familiarity, and is highlighted as a focus for further investigation and intervention.

  10. Crew Exploration Vehicle Launch Abort Controller Performance Analysis

    NASA Technical Reports Server (NTRS)

    Sparks, Dean W., Jr.; Raney, David L.

    2007-01-01

    This paper covers the simulation and evaluation of a controller design for the Crew Module (CM) Launch Abort System (LAS), to measure its ability to meet the abort performance requirements. The controller used in this study is a hybrid design, including features developed by the Government and the Contractor. Testing is done using two separate 6-degree-of-freedom (DOF) computer simulation implementations of the LAS/CM throughout the ascent trajectory: 1) executing a series of abort simulations along a nominal trajectory for the nominal LAS/CM system; and 2) using a series of Monte Carlo runs with perturbed initial flight conditions and perturbed system parameters. The performance of the controller is evaluated against a set of criteria, which is based upon the current functional requirements of the LAS. Preliminary analysis indicates that the performance of the present controller meets (with the exception of a few cases) the evaluation criteria mentioned above.

  11. Crew fatigue safety performance indicators for fatigue risk management systems.

    PubMed

    Gander, Philippa H; Mangie, Jim; Van Den Berg, Margo J; Smith, A Alexander T; Mulrine, Hannah M; Signal, T Leigh

    2014-02-01

    Implementation of Fatigue Risk Management Systems (FRMS) is gaining momentum; however, agreed safety performance indicators (SPIs) are lacking. This paper proposes an initial set of SPIs based on measures of crewmember sleep, performance, and subjective fatigue and sleepiness, together with methods for interpreting them. Data were included from 133 landing crewmembers on 2 long-range and 3 ultra-long-range trips (4-person crews, 3 airlines, 220 flights). Studies had airline, labor, and regulatory support, and underwent independent ethical review. SPIs evaluated preflight and at top of descent (TOD) were: total sleep in the prior 24 h and time awake at duty start and at TOD (actigraphy); subjective sleepiness (Karolinska Sleepiness Scale) and fatigue (Samn-Perelli scale); and psychomotor vigilance task (PVT) performance. Kruskal-Wallis nonparametric ANOVA with post hoc tests was used to identify significant differences between flights for each SPI. Visual and preliminary quantitative comparisons of SPIs between flights were made using box plots and bar graphs. Statistical analyses identified significant differences between flights across a range of SPls. In an FRMS, crew fatigue SPIs are envisaged as a decision aid alongside operational SPIs, which need to reflect the relevant causes of fatigue in different operations. We advocate comparing multiple SPIs between flights rather than defining safe/unsafe thresholds on individual SPIs. More comprehensive data sets are needed to identify the operational and biological factors contributing to the differences between flights reported here. Global sharing of an agreed core set of SPIs would greatly facilitate implementation and improvement of FRMS.

  12. STS-87 crew in LC-39B white room during TCDT

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The crew of the STS-87 mission, scheduled for launch Nov. 19 aboard the Space Shuttle Columbia from pad 39B at Kennedy Space Center (KSC), participates in the Terminal Countdown Demonstration Test (TCDT) at KSC. Standing, from left, Mission Specialist Winston Scott; Backup Payload Specialist Yaroslav Pustovyi, Ph.D., of the National Space Agency of Ukraine (NSAU); Payload Specialist Leonid Kadenyuk of NSAU; Pilot Steven Lindsey; Commander Kevin Kregel; Mission Specialist Takao Doi, Ph.D., of the National Space Development Agency of Japan; and Mission Specialist Kalpana Chawla, Ph.D. The TCDT is held at KSC prior to each Space Shuttle flight providing the crew of each mission opportunities to participate in simulated countdown activities. The TCDT ends with a mock launch countdown culminating in a simulated main engine cut-off. The crew also spends time undergoing emergency egress training exercises at the pad and has an opportunity to view and inspect the payloads in the orbiter's payload bay.

  13. STS-87 crew in LC-39B white room during TCDT

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The crew of the STS-87 mission, scheduled for launch Nov. 19 aboard the Space Shuttle Columbia from pad 39B at Kennedy Space Center (KSC), participates in the Terminal Countdown Demonstration Test (TCDT) at KSC. Standing, from left, Mission Specialist Winston Scott; Backup Payload Specialist Yaroslav Pustovyi, Ph.D., of the National Space Agency of Ukraine (NSAU); Payload Specialist Leonid Kadenyuk of NSAU; Pilot Steven Lindsey; Commander Kevin Kregel; Mission Specialist Takao Doi, Ph.D., of the National Space Development Agency of Japan; and Mission Specialist Kalpana Chawla, Ph.D. The TCDT is held at KSC prior to each Space Shuttle flight providing the crew of each mission opportunities to participate in simulated countdown activities. The TCDT ends with a mock launch countdown culminating in a simulated main engine cut-off. The crew also spends time undergoing emergency egress training exercises at the pad and has an opportunity to view and inspect the payloads in the orbiter's payload bay.

  14. STS-104 crew in the White Room at Launch Pad 39B

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- The STS-104 crew pauses during Terminal Countdown Demonstration Test (TCDT) activities to pose for a group photo. Standing left to right are Mission Specialist Janet Lynn Kavandi, Commander Steven W. Lindsey, Mission Specialists James F. Reilly and Michael L. Gernhardt, and Pilot Charles O. Hobaugh. The TCDT includes emergency exit training from the orbiter, opportunities to inspect their mission payloads in the orbiters payload bay and simulated countdown exercises. The launch of Atlantis on mission STS-104 is scheduled July 12 from Launch Pad 39B. The mission is the 10th flight to the International Space Station and carries the Joint Airlock Module.

  15. Apollo 14 crew arrive at White Room atop Pad A, Launch Complex 39

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The three Apollo 14 astronauts arrive at the White Room atop Pad A, Launch Complex 39, during the Apollo 14 prelaunch countdown. Note identifying red bands on the sleeve and leg of Shepard. Standing in the center background is Astronaut Thomas P. Stafford, Chief of the Manned Spacecraft Center Astronaut Office.

  16. STS-98 crew poses after Commander Cockrell places mission patch in white room

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- Sitting in the entrance to the orbiter Atlantis are (left to right) STS-98 Mission Specialists Thomas Jones and Marsha Ivins and Commander Ken Cockrell. Below them is the mission patch just placed there by Cockrell. Standing at left is Mission Specialist Robert Curbeam and at right Pilot Mark Polansky. The crew is at KSC to take part in Terminal Countdown Demonstration Test activities, which include emergency egress training and a simulated launch countdown. STS-98 is the seventh construction flight to the International Space Station, carrying as payload the U.S. Lab Destiny, a key element in the construction of the ISS. Launch of STS-98 is scheduled for Jan. 19 at 2:11 a.m.

  17. Virtual Reality Training Improves Operating Room Performance

    PubMed Central

    Seymour, Neal E.; Gallagher, Anthony G.; Roman, Sanziana A.; O’Brien, Michael K.; Bansal, Vipin K.; Andersen, Dana K.; Satava, Richard M.

    2002-01-01

    Objective To demonstrate that virtual reality (VR) training transfers technical skills to the operating room (OR) environment. Summary Background Data The use of VR surgical simulation to train skills and reduce error risk in the OR has never been demonstrated in a prospective, randomized, blinded study. Methods Sixteen surgical residents (PGY 1–4) had baseline psychomotor abilities assessed, then were randomized to either VR training (MIST VR simulator diathermy task) until expert criterion levels established by experienced laparoscopists were achieved (n = 8), or control non-VR-trained (n = 8). All subjects performed laparoscopic cholecystectomy with an attending surgeon blinded to training status. Videotapes of gallbladder dissection were reviewed independently by two investigators blinded to subject identity and training, and scored for eight predefined errors for each procedure minute (interrater reliability of error assessment r > 0.80). Results No differences in baseline assessments were found between groups. Gallbladder dissection was 29% faster for VR-trained residents. Non-VR-trained residents were nine times more likely to transiently fail to make progress (P < .007, Mann-Whitney test) and five times more likely to injure the gallbladder or burn nontarget tissue (chi-square = 4.27, P < .04). Mean errors were six times less likely to occur in the VR-trained group (1.19 vs. 7.38 errors per case;P < .008, Mann-Whitney test). Conclusions The use of VR surgical simulation to reach specific target criteria significantly improved the OR performance of residents during laparoscopic cholecystectomy. This validation of transfer of training skills from VR to OR sets the stage for more sophisticated uses of VR in assessment, training, error reduction, and certification of surgeons. PMID:12368674

  18. Data link air traffic control and flight deck environments: Experiment in flight crew performance

    NASA Technical Reports Server (NTRS)

    Lozito, Sandy; Mcgann, Alison; Corker, Kevin

    1993-01-01

    This report describes an experiment undertaken in a full mission simulation environment to investigate the performance impact of, and human/system response to, data-linked Air Traffic Control (ATC) and automated flight deck operations. Subjects were twenty pilots (ten crews) from a major United States air carrier. Crews flew the Advanced Concepts Flight Simulator (ACFS), a generic 'glass cockpit' simulator at NASA Ames. The method of data link used was similar to the data link implementation plans for a next-generation aircraft, and included the capability to review ATC messages and directly enter ATC clearance information into the aircraft systems. Each crew flew experimental scenarios, in which data reflecting communication timing, errors and clarifications, and procedures were collected. Results for errors and clarifications revealed an interaction between communication modality (voice v. data link) and communication type (air/ground v. intracrew). Results also revealed that voice crews initiated ATC contact significantly more than data link crews. It was also found that data link crews performed significantly more extraneous activities during the communication task than voice crews. Descriptive data from the use of the review menu indicate the pilot-not-flying accessing the review menu most often, and also suggest diffulty in accessing the target message within the review menu structure. The overall impact of communication modality upon air/ground communication and crew procedures is discussed.

  19. Data link air traffic control and flight deck environments: Experiment in flight crew performance

    NASA Technical Reports Server (NTRS)

    Lozito, Sandy; Mcgann, Alison; Corker, Kevin

    1993-01-01

    This report describes an experiment undertaken in a full mission simulation environment to investigate the performance impact of, and human/system response to, data-linked Air Traffic Control (ATC) and automated flight deck operations. Subjects were twenty pilots (ten crews) from a major United States air carrier. Crews flew the Advanced Concepts Flight Simulator (ACFS), a generic 'glass cockpit' simulator at NASA Ames. The method of data link used was similar to the data link implementation plans for a next-generation aircraft, and included the capability to review ATC messages and directly enter ATC clearance information into the aircraft systems. Each crew flew experimental scenarios, in which data reflecting communication timing, errors and clarifications, and procedures were collected. Results for errors and clarifications revealed an interaction between communication modality (voice v. data link) and communication type (air/ground v. intracrew). Results also revealed that voice crews initiated ATC contact significantly more than data link crews. It was also found that data link crews performed significantly more extraneous activities during the communication task than voice crews. Descriptive data from the use of the review menu indicate the pilot-not-flying accessing the review menu most often, and also suggest diffulty in accessing the target message within the review menu structure. The overall impact of communication modality upon air/ground communication and crew procedures is discussed.

  20. Predicting Radiation Induced Performance Decrements of AH-1 Helicopter Crews. Volume 1. Predicted Versus Actual Performance of AH-1 Crews Induced with Symptons Simulating Radiation Sickness

    DTIC Science & Technology

    1993-07-01

    principal method under study was the Performance Decrement Questionnaire, developed as part of DNA’s Intermediate Dose Program. A secondary aspect of...3) Develop MicroSAINT models of AH-1 crew performance based on simulation data and PDQ estimates, and (4) Evaluate the relationship between Walter...48 5.2 Approach ...................................................................................................... 49 5.3 Model Development

  1. Lung cancer and mesothelioma among engine room crew--case reports with risk assessment of previous and ongoing exposure to carcinogens.

    PubMed

    Forsell, Karl; Hageberg, S; Nilsson, Ralph

    2007-01-01

    The aim of this article is to illustrate, by means of case reports on occupational exposure in four men with cancer, the hazards of previous and ongoing carcinogenic exposures in ships' engine rooms. Several cases of cancer occurred within a few years among the engine room crew of a passenger ferry. An investigation was undertaken to establish the number of cases, the types of cancers involved, and their possible relation to work. Nine cases of cancer among crew members of the ferry were reported between 2001 and 2006, six of which occurred in crew working in the engine room. During the investigated time period, 65 men had been employed in the engine room (mean age 40, range 16-65, years). Four cases were referred to our department. Medical history, personal risk factors and specific diagnoses were collected by medical examinations and from the medical files. An experienced occupational hygienist evaluated work-related exposure to carcinogens. Two engine room ratings contracted lung cancer at the age of 54 and 61, respectively. Both men had been smokers for many years (33 and 45 years, respectively). One engine room rating and one electrical engineer were diagnosed with mesothelioma at the age of 61 and 63, respectively. All four had started to work in engine rooms between 1959 and 1967. Carcinogenic exposure included asbestos, with an estimated cumulative exposure of 2-5 fibreyears/mL, as well as polycyclic aromatic hydrocarbons (PAHs) and nitroarenes from oils, soot and engine exhaust. For the lung cancer cases, smoking and asbestos exposure were considered clear risk factors, and PAHs and nitroarenes possible risk factors. For the mesothelioma cases, former asbestos exposure was considered a causal factor. Asbestos can still be present on ships. Steps should be taken to reduce the exposure to asbestos, PAHs and nitroarenes, and smoking.

  2. Auditory virtual environment with dynamic room characteristics for music performances

    NASA Astrophysics Data System (ADS)

    Choi, Daniel Dhaham

    A room-adaptive system was designed to simulate an electro-acoustic space that changes room characteristics in real-time according to the content of sound. In this specific case, the focus of the sound components is on the different styles and genres of music. This system is composed of real-time music recognition algorithms that analyze the different elements of music, determine the desired room characteristics, and output the acoustical parameters via multi-channel room simulation mechanisms. The system modifies the acoustic properties of a space and enables it to "improvise" its acoustical parameters based on the sounds of the music performances.

  3. Individual differences in airline captains' personalities, communication strategies, and crew performance

    NASA Technical Reports Server (NTRS)

    Orasanu, Judith

    1991-01-01

    Aircrew effectiveness in coping with emergencies has been linked to captain's personality profile. The present study analyzed cockpit communication during simulated flight to examine the relation between captains' discourse strategies, personality profiles, and crew performance. Positive Instrumental/Expressive captains and Instrumental-Negative captains used very similar communication strategies and their crews made few errors. Their talk was distinguished by high levels of planning and strategizing, gathering information, predicting/alerting, and explaining, especially during the emergency flight phase. Negative-Expressive captains talked less overall, and engaged in little problem solving talk, even during emergencies. Their crews made many errors. Findings support the theory that high crew performance results when captains use language to build shared mental models for problem situations.

  4. Comparison of inflight first aid performed by cabin crew members and medical volunteers.

    PubMed

    Kim, Jung Ha; Choi-Kwon, Smi; Park, Young Hwan

    2017-03-01

    Since the number of air travellers, including the elderly and passengers with an underlying disease, is increasing every year, the number of inflight emergency patients is expected to increase as well. We attempted to identify the incidence and types of reported inflight medical incidents and analyse the first aid performed by cabin crew members or medical volunteers in flights by an Asian airline. We also investigated the cases of inflight deaths and aircraft diversions. We reviewed the cabin reports and medical records submitted by cabin crew members and inflight medical volunteers from 2009 to 2013. We found that inflight medical incidents increased annually, with a total of 2818 cases reported. Fifteen cases of inflight deaths and 15 cases of aircraft diversions during this period were also reported. First aid was performed by the cabin crew alone in 52% of the cases and by medical volunteers in 47.8% of the cases. The most commonly reported causes for first aid performed by the cabin crew and medical volunteers were burns and syncope, respectively. : Since burns were one of the common reasons that first aid was provided by the cabin crew, it may be necessary to include first aid treatments for burns in the annual re-qualification training programme. Furthermore, the assessment of unconsciousness and potentially critical respiratory symptoms is very important for cabin crew members because those conditions can lead to inflight deaths and aircraft diversion.

  5. Investigation of crew performance in a multi-vehicle supervisory control task

    NASA Technical Reports Server (NTRS)

    Miller, R. A.; Plamondon, B. D.; Jagacinski, R. J.; Kirlik, A. C.

    1986-01-01

    Crew information processing and decision making in a supervisory control task which is loosely based on the mission of future generation helicopters is measured and represented. Subjects control the motion and activities of their own vehicle and direct the activities of four additional craft. The task involves searching an uncertain environment for cargo and enemies, returning cargo to home base and destroying enemies while attempting to avoid destruction of the scout and the supervised vehicles. A series of experiments with two-person crews and one-person crews were performed. Resulting crew performance was modeled with the objective of describing and understanding the information processing strategies utilized. Of particular interest are problem simplification strategies under time stress and high work load, simplification and compensation in the one-person cases, crew coordination in the two-person cases, and the relationship between strategy and errors in all cases. The results should provide some insight into the effective use of aids, particularly aids based on artificial intelligence, for similar tasks. The simulation is described which is used for the study and some preliminary results from the first two-person crew study are discussed.

  6. A Gold Standards Approach to Training Instructors to Evaluate Crew Performance

    NASA Technical Reports Server (NTRS)

    Baker, David P.; Dismukes, R. Key

    2003-01-01

    The Advanced Qualification Program requires that airlines evaluate crew performance in Line Oriented Simulation. For this evaluation to be meaningful, instructors must observe relevant crew behaviors and evaluate those behaviors consistently and accurately against standards established by the airline. The airline industry has largely settled on an approach in which instructors evaluate crew performance on a series of event sets, using standardized grade sheets on which behaviors specific to event set are listed. Typically, new instructors are given a class in which they learn to use the grade sheets and practice evaluating crew performance observed on videotapes. These classes emphasize reliability, providing detailed instruction and practice in scoring so that all instructors within a given class will give similar scores to similar performance. This approach has value but also has important limitations; (1) ratings within one class of new instructors may differ from those of other classes; (2) ratings may not be driven primarily by the specific behaviors on which the company wanted the crews to be scored; and (3) ratings may not be calibrated to company standards for level of performance skill required. In this paper we provide a method to extend the existing method of training instructors to address these three limitations. We call this method the "gold standards" approach because it uses ratings from the company's most experienced instructors as the basis for training rater accuracy. This approach ties the training to the specific behaviors on which the experienced instructors based their ratings.

  7. PHOTO DATE: 01-14-16.LOCATION: Bldg. 8, Room 183 - Photo Studio.SUBJECT: Official portrait of ESA astronaut & Expedition 50/51 crew member Thomas Pesquet in blue flight suit..PHOTOGRAPHER: BILL STAFFORD

    NASA Image and Video Library

    2016-02-16

    PHOTO DATE: 01-14-16 LOCATION: Bldg. 8, Room 183 - Photo Studio SUBJECT: Official portrait of ESA astronaut & Expedition 50/51 crew member Thomas Pesquet in blue flight suit. PHOTOGRAPHER: BILL STAFFORD

  8. KENNEDY SPACE CENTER, FLA. - STS-83 Payload Commander Janice E. Voss prepares to enter the Space Shuttle Columbia at Launch Pad 39A after getting assistance from the White Room closeout crew that included Bob Saulnier (right).

    NASA Image and Video Library

    1997-04-04

    KENNEDY SPACE CENTER, FLA. - STS-83 Payload Commander Janice E. Voss prepares to enter the Space Shuttle Columbia at Launch Pad 39A after getting assistance from the White Room closeout crew that included Bob Saulnier (right).

  9. International Space Station (ISS) Crew Quarters On-Orbit Performance and Sustaining

    NASA Technical Reports Server (NTRS)

    Schlesinger, Thilini P.; Rodriquez, Branelle R.

    2013-01-01

    The International Space Station (ISS) Crew Quarters (CQ) is a permanent personal space for crew members to sleep, perform personal recreation and communication, as well as provide on-orbit stowage of personal belongings. The CQs provide visual, light, and acoustic isolation for the crew member. Over a 2-year period, four CQs were launched to the ISS and currently reside in Node 2. Since their deployment, all CQs have been occupied and continue to be utilized. This paper will review failures that have occurred after 4 years on-orbit, and the investigations that have resulted in successful on-orbit operations. This paper documents the on-orbit performance and sustaining activities that have been performed to maintain the integrity and utilization of the CQs.

  10. Flight Crew Training: Multi-Crew Pilot License Training versus Traditional Training and Its Relationship with Job Performance

    ERIC Educational Resources Information Center

    Cushing, Thomas S.

    2013-01-01

    In 2006, the International Civil Aviation Organization promulgated requirements for a Multi-Crew Pilot License for First Officers, in which the candidate attends approximately two years of ground school and trains as part of a two-person crew in a simulator of a Boeing 737 or an Airbus 320 airliner. In the traditional method, a candidate qualifies…

  11. Flight Crew Training: Multi-Crew Pilot License Training versus Traditional Training and Its Relationship with Job Performance

    ERIC Educational Resources Information Center

    Cushing, Thomas S.

    2013-01-01

    In 2006, the International Civil Aviation Organization promulgated requirements for a Multi-Crew Pilot License for First Officers, in which the candidate attends approximately two years of ground school and trains as part of a two-person crew in a simulator of a Boeing 737 or an Airbus 320 airliner. In the traditional method, a candidate qualifies…

  12. Using micro saint to predict performance in a nuclear power plant control room

    SciTech Connect

    Lawless, M.T.; Laughery, K.R.; Persenky, J.J.

    1995-09-01

    The United States Nuclear Regulatory Commission (NRC) requires a technical basis for regulatory actions. In the area of human factors, one possible technical basis is human performance modeling technology including task network modeling. This study assessed the feasibility and validity of task network modeling to predict the performance of control room crews. Task network models were built that matched the experimental conditions of a study on computerized procedures that was conducted at North Carolina State University. The data from the {open_quotes}paper procedures{close_quotes} conditions were used to calibrate the task network models. Then, the models were manipulated to reflect expected changes when computerized procedures were used. These models` predictions were then compared to the experimental data from the {open_quotes}computerized conditions{close_quotes} of the North Carolina State University study. Analyses indicated that the models predicted some subsets of the data well, but not all. Implications for the use of task network modeling are discussed.

  13. Crew Selection and Training

    NASA Technical Reports Server (NTRS)

    Helmreich, Robert L.

    1996-01-01

    This research addressed a number of issues relevant to the performance of teams in demanding environments. Initial work, conducted in the aviation analog environment, focused on developing new measures of performance related attitudes and behaviors. The attitude measures were used to assess acceptance of concepts related to effective teamwork and personal capabilities under stress. The behavioral measures were used to evaluate the effectiveness of flight crews operating in commercial aviation. Assessment of team issues in aviation led further to the evaluation and development of training to enhance team performance. Much of the work addressed evaluation of the effectiveness of such training, which has become known as Crew Resource Management (CRM). A second line of investigation was into personality characteristics that predict performance in challenging environments such as aviation and space. A third line of investigation of team performance grew out of the study of flight crews in different organizations. This led to the development of a theoretical model of crew performance that included not only individual attributes such as personality and ability, but also organizational and national culture. A final line of investigation involved beginning to assess whether the methodologies and measures developed for the aviation analog could be applied to another domain -- the performance of medical teams working in the operating room.

  14. A Full Mission Simulator Study of Aircrew Performances: the Measurement of Crew Coordination and Decisionmaking Factors and Their Relationships to Flight Task Performances

    NASA Technical Reports Server (NTRS)

    Murphy, M. R.; Randle, R. J.; Tanner, T. A.; Frankel, R. M.; Goguen, J. A.; Linde, C.

    1984-01-01

    Sixteen three man crews flew a full mission scenario in an airline flight simulator. A high level of verbal interaction during instances of critical decision making was located. Each crew flew the scenario only once, without prior knowledge of the scenario problem. Following a simulator run and in accord with formal instructions, each of the three crew members independently viewed and commented on a videotape of their performance. Two check pilot observers rated pilot performance across all crews and, following each run, also commented on the video tape of the crew's performance. A linguistic analysis of voice transcript is made to provide assessment of crew coordination and decision making qualities. Measures of crew coordination and decision making factors are correlated with flight task performance measures.

  15. A Full Mission Simulator Study of Aircrew Performances: the Measurement of Crew Coordination and Decisionmaking Factors and Their Relationships to Flight Task Performances

    NASA Technical Reports Server (NTRS)

    Murphy, M. R.; Randle, R. J.; Tanner, T. A.; Frankel, R. M.; Goguen, J. A.; Linde, C.

    1984-01-01

    Sixteen three man crews flew a full mission scenario in an airline flight simulator. A high level of verbal interaction during instances of critical decision making was located. Each crew flew the scenario only once, without prior knowledge of the scenario problem. Following a simulator run and in accord with formal instructions, each of the three crew members independently viewed and commented on a videotape of their performance. Two check pilot observers rated pilot performance across all crews and, following each run, also commented on the video tape of the crew's performance. A linguistic analysis of voice transcript is made to provide assessment of crew coordination and decision making qualities. Measures of crew coordination and decision making factors are correlated with flight task performance measures.

  16. The Effects of a 48-Hour Period of Sustained Field Activity on Tank Crew Performance.

    ERIC Educational Resources Information Center

    Ainsworth, L. L.; Bishop, H. P.

    This report describes the effects of 48 hours of sustained operations on the performance of tank crews in communication, driving, surveillance, gunnery, and maintenance tasks. It is a continuation of research to determine the endurance of troops using combat equipment with 48-hour capability. Proficienty tests were constructed for each type of…

  17. Advanced crew procedures development techniques: Procedures and performance program description

    NASA Technical Reports Server (NTRS)

    Arbet, J. D.; Mangiaracina, A. A.

    1975-01-01

    The Procedures and Performance Program (PPP) for operation in conjunction with the Shuttle Procedures Simulator (SPS) is described. The PPP user interface, the SPS/PPP interface, and the PPP applications software are discussed.

  18. Assessment of performance of UV sterilizer for room air bacteria.

    PubMed

    Joshi, P V

    2002-02-01

    Paper presents a technique for performance of UV sterilizer for room air bacteria. Patterns of decay of room air bacteria concentration during sterilization and build-up there after as a function of time is studied. Decay process seems to follow exponential pattern. Half-lives during decay are estimated. For single sterilizer unit with a dose of 16 W the decay half-life is around 8.6 min. For the dose of 32 W (2 sterilizers), half-life is estimated to be 6.18 min. The removal rates of room air bacteria due to sterilizer are compared with the natural decay of aerosols at steady state. The importance of decay half-life in the assessment has been stated. The bacteria concentration buildup process after putting off the sterilizers seems to be sigmoidal in nature. The buildup half-life is estimated to be around 53 min for present experimental conditions.

  19. Personality factors in flight operations. Volume 1: Leader characteristics and crew performance in a full-mission air transport simulation

    NASA Technical Reports Server (NTRS)

    Chidester, Thomas R.; Kanki, Barbara G.; Foushee, H. Clayton; Dickinson, Cortlandt L.; Bowles, Stephen V.

    1990-01-01

    Crew effectiveness is a joint product of the piloting skills, attitudes, and personality characteristics of team members. As obvious as this point might seem, both traditional approaches to optimizing crew performance and more recent training development highlighting crew coordination have emphasized only the skill and attitudinal dimensions. This volume is the first in a series of papers on this simulation. A subsequent volume will focus on patterns of communication within crews. The results of a full-mission simulation research study assessing the impact of individual personality on crew performance is reported. Using a selection algorithm described in previous research, captains were classified as fitting one of three profiles along a battery of personality assessment scales. The performances of 23 crews led by captains fitting each profile were contrasted over a one-and-one-half-day simulated trip. Crews led by captains fitting a positive Instrumental-Expressive profile (high achievement motivation and interpersonal skill) were consistently effective and made fewer errors. Crews led by captains fitting a Negative Expressive profile (below average achievement motivation, negative expressive style, such as complaining) were consistently less effective and made more errors. Crews led by captains fitting a Negative Instrumental profile (high levels of competitiveness, verbal aggressiveness, and impatience and irritability) were less effective on the first day but equal to the best on the second day. These results underscore the importance of stable personality variables as predictors of team coordination and performance.

  20. The Effect of Predicted Vehicle Displacement on Ground Crew Task Performance and Hardware Design

    NASA Technical Reports Server (NTRS)

    Atencio, Laura Ashley; Reynolds, David W.

    2011-01-01

    NASA continues to explore new launch vehicle concepts that will carry astronauts to low- Earth orbit to replace the soon-to-be retired Space Transportation System (STS) shuttle. A tall vertically stacked launch vehicle (> or =300 ft) is exposed to the natural environment while positioned on the launch pad. Varying directional winds and vortex shedding cause the vehicle to sway in an oscillating motion. Ground crews working high on the tower and inside the vehicle during launch preparations will be subjected to this motion while conducting critical closeout tasks such as mating fluid and electrical connectors and carrying heavy objects. NASA has not experienced performing these tasks in such environments since the Saturn V, which was serviced from a movable (but rigid) service structure; commercial launchers are likewise attended by a service structure that moves away from the vehicle for launch. There is concern that vehicle displacement may hinder ground crew operations, impact the ground system designs, and ultimately affect launch availability. The vehicle sway assessment objective is to replicate predicted frequencies and displacements of these tall vehicles, examine typical ground crew tasks, and provide insight into potential vehicle design considerations and ground crew performance guidelines. This paper outlines the methodology, configurations, and motion testing performed while conducting the vehicle displacement assessment that will be used as a Technical Memorandum for future vertically stacked vehicle designs.

  1. Design of a Threat-Based Gunnery Performance Test: Issues and Procedures for Crew and Platoon Tank Gunnery

    DTIC Science & Technology

    1990-06-01

    the primary threat. The driver performs random evasive maneuvers while moving to the nearest covered concealed position. The gunner engages the enemy...The crew effectively avoids 1 2 3 4 5 NO anti-tank fires by evasive maneuver and/or the use of smoke. B-9 Crew CONTACT REPORTS Contact reports are...accurately reports threat by evasive maneuvers . data. ___-rew accurately reports location CONTACT REPORTS. (within 200 meters). Crew immediately reports

  2. Risk of Performance Decrement and Crew Illness Due to an Inadequate Food System

    NASA Technical Reports Server (NTRS)

    Douglas, Grace L.; Cooper, Maya; Bermudez-Aguirre, Daniela; Sirmons, Takiyah

    2016-01-01

    NASA is preparing for long duration manned missions beyond low-Earth orbit that will be challenged in several ways, including long-term exposure to the space environment, impacts to crew physiological and psychological health, limited resources, and no resupply. The food system is one of the most significant daily factors that can be altered to improve human health, and performance during space exploration. Therefore, the paramount importance of determining the methods, technologies, and requirements to provide a safe, nutritious, and acceptable food system that promotes crew health and performance cannot be underestimated. The processed and prepackaged food system is the main source of nutrition to the crew, therefore significant losses in nutrition, either through degradation of nutrients during processing and storage or inadequate food intake due to low acceptability, variety, or usability, may significantly compromise the crew's health and performance. Shelf life studies indicate that key nutrients and quality factors in many space foods degrade to concerning levels within three years, suggesting that food system will not meet the nutrition and acceptability requirements of a long duration mission beyond low-Earth orbit. Likewise, mass and volume evaluations indicate that the current food system is a significant resource burden. Alternative provisioning strategies, such as inclusion of bioregenerative foods, are challenged with resource requirements, and food safety and scarcity concerns. Ensuring provisioning of an adequate food system relies not only upon determining technologies, and requirements for nutrition, quality, and safety, but upon establishing a food system that will support nutritional adequacy, even with individual crew preference and self-selection. In short, the space food system is challenged to maintain safety, nutrition, and acceptability for all phases of an exploration mission within resource constraints. This document presents the

  3. Expedition 32 Crew Members Perform ICV Resting Echo Scan

    NASA Image and Video Library

    2012-08-01

    ISS032-E-011853 (1 Aug. 2012) --- NASA astronaut Joe Acaba (left) and Japan Aerospace Exploration Agency astronaut Aki Hoshide, both Expedition 32 flight engineers, perform an Integrated Cardiovascular (ICV) Resting Echo Scan at the Human Research Facility (HRF) rack in the Columbus laboratory of the International Space Station.

  4. Expedition Five crew perform maintenance on the TVIS

    NASA Image and Video Library

    2002-10-13

    ISS005-E-17412 (13 October 2002) --- Cosmonaut Valery G. Korzun (left), Expedition Five mission commander, and astronaut Peggy A. Whitson, Expedition Five flight engineer, perform maintenance on the Treadmill Vibration Isolation System (TVIS) in the Zvezda Service Module on the International Space Station (ISS). Korzun represents Rosaviakosmos.

  5. Crew performance monitoring: Putting some feeling into it

    NASA Astrophysics Data System (ADS)

    Pattyn, N.; Migeotte, P.-F.; Morais, J.; Soetens, E.; Cluydts, R.; Kolinsky, R.

    2009-08-01

    Two hypotheses have been invoked so far to explain performance decrements in space: the microgravity hypothesis and the multiple stressors hypothesis. Furthermore, previous investigations of cognitive performance did not specifically target executive functions. The aim of this study was to investigate the impact of operational stress on cognitive control, towards both neutral and emotionally loaded material, using both psychometric and physiological indicators (autonomic nervous system activity computed through cardio-respiratory recordings). We applied the same design in a study on student pilots (N=12) in baseline conditions and right before a major evaluation flight and on astronauts (N=3) before, during and after a short-duration spaceflight. To address the problem of scarcity of subjects, we applied analytical methods derived from neuropsychology: comparing each astronaut treated as a single subject to a group of carefully matched controls (N=13). Results from both student pilots and astronauts showed that operational stress resulted in failing cognitive control, especially on emotionally loaded material that was relevant to the subjects' current concern. This impaired cognitive control was associated with a decreased physiological reactivity during mental tasks. Furthermore, for astronauts, this performance decrement appeared on the last data-collection before launch and lasted for the two in-flight measurements. These results thus allow us to conclude that: (i) performance testing including an emotional dimension seems more sensitive to operational stress, (ii) decreased heart rate reactivity was associated with impaired cognitive control and (iii) microgravity is not the sole causal factor of potential performance decrements in space, which are more likely due to the combination of multiple stressors.

  6. Leader personality and crew effectiveness: Factors influencing performance in full-mission air transport simulation

    NASA Technical Reports Server (NTRS)

    Chidester, Thomas R.; Foushee, H. Clayton

    1989-01-01

    A full mission simulation research study was completed to assess the potential for selection along dimensions of personality. Using a selection algorithm described by Chidester (1987), captains were classified as fitting one of three profiles using a battery of personality assessment scales, and the performances of 23 crews led by captains fitting each profile were contrasted over a one and one-half day simulated trip. Crews led by captains fitting a Positive Instrumental Expressive profile (high achievement motivation and interpersonal skill) were consistently effective and made fewer errors. Crews led by captains fitting a Negative Communion profile (below average achievement motivation, negative expressive style, such as complaining) were consistently less effective and made more errors. Crews led by captains fitting a Negative Instrumental profile (high levels of Competitiveness, Verbal Aggressiveness, and Impatience and Irritability) were less effective on the first day but equal to the best on the second day. These results underscore the importance of stable personality variables as predictors of team coordination and performance.

  7. The Effects of Tank Crew Turbulence on Tank Gunnery Performance

    DTIC Science & Technology

    1978-09-01

    the tank commander and gunnur being familiar with their duties. Groups I and 4 also performed about equally well, indicating chat non-armor combac... depress the main gun. b. Manually traverse the turret. c. Prepare the Gunner’s Telescope for operation with the HEP reticle. d. Prepare the Gurner’s...from the Gunner’s Telescope when given the command. 12. Given a first round miss the gunner will sense the round, announce his sensing and apply BOT

  8. Preliminary Performance Analyses of the Constellation Program ARES 1 Crew Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Phillips, Mark; Hanson, John; Shmitt, Terri; Dukemand, Greg; Hays, Jim; Hill, Ashley; Garcia, Jessica

    2007-01-01

    By the time NASA's Exploration Systems Architecture Study (ESAS) report had been released to the public in December 2005, engineers at NASA's Marshall Space Flight Center had already initiated the first of a series of detailed design analysis cycles (DACs) for the Constellation Program Crew Launch Vehicle (CLV), which has been given the name Ares I. As a major component of the Constellation Architecture, the CLV's initial role will be to deliver crew and cargo aboard the newly conceived Crew Exploration Vehicle (CEV) to a staging orbit for eventual rendezvous with the International Space Station (ISS). However, the long-term goal and design focus of the CLV will be to provide launch services for a crewed CEV in support of lunar exploration missions. Key to the success of the CLV design effort and an integral part of each DAC is a detailed performance analysis tailored to assess nominal and dispersed performance of the vehicle, to determine performance sensitivities, and to generate design-driving dispersed trajectories. Results of these analyses provide valuable design information to the program for the current design as well as provide feedback to engineers on how to adjust the current design in order to maintain program goals. This paper presents a condensed subset of the CLV performance analyses performed during the CLV DAC-1 cycle. Deterministic studies include development of the CLV DAC-1 reference trajectories, identification of vehicle stage impact footprints, an assessment of launch window impacts to payload performance, and the computation of select CLV payload partials. Dispersion studies include definition of input uncertainties, Monte Carlo analysis of trajectory performance parameters based on input dispersions, assessment of CLV flight performance reserve (FPR), assessment of orbital insertion accuracy, and an assessment of bending load indicators due to dispersions in vehicle angle of attack and side slip angle. A short discussion of the various

  9. A simulation study of crew performance in operating an advanced transport aircraft in an automated terminal area environment

    NASA Technical Reports Server (NTRS)

    Houck, J. A.

    1983-01-01

    A simulation study assessing crew performance operating an advanced transport aircraft in an automated terminal area environment is described. The linking together of the Langley Advanced Transport Operating Systems Aft Flight Deck Simulator with the Terminal Area Air Traffic Model Simulation was required. The realism of an air traffic control (ATC) environment with audio controller instructions for the flight crews and the capability of inserting a live aircraft into the terminal area model to interact with computer generated aircraft was provided. Crew performance using the advanced displays and two separate control systems (automatic and manual) in flying area navigation routes in the automated ATC environment was assessed. Although the crews did not perform as well using the manual control system, their performances were within acceptable operational limits with little increase in workload. The crews favored using the manual control system and felt they were more alert and aware of their environment when using it.

  10. Crew Alertness Management on the Flight Deck: Cognitive and Vigilance Performance

    NASA Technical Reports Server (NTRS)

    Dinges, David F.

    1998-01-01

    This project had three broad goals: (1) to identify environmental and organismic risks to performance of long-haul cockpit crews; (2) to assess how cognitive and psychomotor vigilance performance, and subjective measures of alertness, were affected by work-rest schedules typical of long-haul cockpit crews; and (3) to determine the alertness-promoting effectiveness of behavioral and technological countermeasures to fatigue on the flight deck. During the course of the research, a number of studies were completed in cooperation with the NASA Ames Fatigue Countermeasures Program. The publications emerging from this project are listed in a bibliography in the appendix. Progress toward these goals will be summarized below according to the period in which it was accomplished.

  11. Validating Human Performance Models of the Future Orion Crew Exploration Vehicle

    NASA Technical Reports Server (NTRS)

    Wong, Douglas T.; Walters, Brett; Fairey, Lisa

    2010-01-01

    NASA's Orion Crew Exploration Vehicle (CEV) will provide transportation for crew and cargo to and from destinations in support of the Constellation Architecture Design Reference Missions. Discrete Event Simulation (DES) is one of the design methods NASA employs for crew performance of the CEV. During the early development of the CEV, NASA and its prime Orion contractor Lockheed Martin (LM) strived to seek an effective low-cost method for developing and validating human performance DES models. This paper focuses on the method developed while creating a DES model for the CEV Rendezvous, Proximity Operations, and Docking (RPOD) task to the International Space Station. Our approach to validation was to attack the problem from several fronts. First, we began the development of the model early in the CEV design stage. Second, we adhered strictly to M&S development standards. Third, we involved the stakeholders, NASA astronauts, subject matter experts, and NASA's modeling and simulation development community throughout. Fourth, we applied standard and easy-to-conduct methods to ensure the model's accuracy. Lastly, we reviewed the data from an earlier human-in-the-loop RPOD simulation that had different objectives, which provided us an additional means to estimate the model's confidence level. The results revealed that a majority of the DES model was a reasonable representation of the current CEV design.

  12. Utilizing Health Analytics in Improving Emergency Room Performance.

    PubMed

    Khalifa, Mohamed

    2016-01-01

    Emergency room performance improvement has been a major concern for healthcare professionals and researchers. ER patients' length of stay and percentage of patients leaving without treatment are two of the most important indicators for performance monitoring and improvement. The main objective of this study is to utilize health analytics methods in identifying areas of deficiency, potential improvements and recommending effective solutions to enhance ER performance. ER data of 2014 were retrospectively retrieved in January 2015 and analyzed for significant variables affecting inpatient admission rates. Patient Acuity Level was the significant variable on which the recommendations were based. A Fast-Track area was redesigned and dedicated for managing lower acuity level patients; CTAS levels 4 and 5. The performance of the ER has been monitored for the first six months of 2015 and compared to 2014. 29% improvement was achieved on shortening the total ER LOS and 30% improvement was achieved on the percentage of patients leaving ER without treatment.

  13. Operational behavioral health and performance resources for international space station crews and families

    NASA Technical Reports Server (NTRS)

    Sipes, Walter E.; Vander Ark, Stephen T.

    2005-01-01

    The Behavioral Health and Performance Section (BHP) at NASA Johnson Space Center provides direct and indirect psychological services to the International Space Station (ISS) astronauts and their families. Beginning with the NASA-Mir Program, services available to the crews and families have gradually expanded as experience is gained in long-duration flight. Enhancements to the overall BHP program have been shaped by crewmembers' personal preferences, family requests, specific events during the missions, programmatic requirements, and other lessons learned. The BHP program focuses its work on four areas: operational psychology, behavioral medicine, human-to-system interface, and sleep and circadian. Within these areas of focus are psychological and psychiatric screening for astronaut selection as well as many resources that are available to the crewmembers, families, and other groups such as crew surgeon and various levels of management within NASA. Services include: preflight, in flight, and postflight preparation; training and support; resources from a Family Support Office; in-flight monitoring; clinical care for astronauts and their families; and expertise in the workload and work/rest scheduling of crews on the ISS. Each of the four operational areas is summarized, as are future directions for the BHP program.

  14. Operational behavioral health and performance resources for international space station crews and families.

    PubMed

    Sipes, Walter E; Vander Ark, Stephen T

    2005-06-01

    The Behavioral Health and Performance Section (BHP) at NASA Johnson Space Center provides direct and indirect psychological services to the International Space Station (ISS) astronauts and their families. Beginning with the NASA-Mir Program, services available to the crews and families have gradually expanded as experience is gained in long-duration flight. Enhancements to the overall BHP program have been shaped by crewmembers' personal preferences, family requests, specific events during the missions, programmatic requirements, and other lessons learned. The BHP program focuses its work on four areas: operational psychology, behavioral medicine, human-to-system interface, and sleep and circadian. Within these areas of focus are psychological and psychiatric screening for astronaut selection as well as many resources that are available to the crewmembers, families, and other groups such as crew surgeon and various levels of management within NASA. Services include: preflight, in flight, and postflight preparation; training and support; resources from a Family Support Office; in-flight monitoring; clinical care for astronauts and their families; and expertise in the workload and work/rest scheduling of crews on the ISS. Each of the four operational areas is summarized, as are future directions for the BHP program.

  15. Operational behavioral health and performance resources for international space station crews and families

    NASA Technical Reports Server (NTRS)

    Sipes, Walter E.; Vander Ark, Stephen T.

    2005-01-01

    The Behavioral Health and Performance Section (BHP) at NASA Johnson Space Center provides direct and indirect psychological services to the International Space Station (ISS) astronauts and their families. Beginning with the NASA-Mir Program, services available to the crews and families have gradually expanded as experience is gained in long-duration flight. Enhancements to the overall BHP program have been shaped by crewmembers' personal preferences, family requests, specific events during the missions, programmatic requirements, and other lessons learned. The BHP program focuses its work on four areas: operational psychology, behavioral medicine, human-to-system interface, and sleep and circadian. Within these areas of focus are psychological and psychiatric screening for astronaut selection as well as many resources that are available to the crewmembers, families, and other groups such as crew surgeon and various levels of management within NASA. Services include: preflight, in flight, and postflight preparation; training and support; resources from a Family Support Office; in-flight monitoring; clinical care for astronauts and their families; and expertise in the workload and work/rest scheduling of crews on the ISS. Each of the four operational areas is summarized, as are future directions for the BHP program.

  16. Position-specific behaviors and their impact on crew performance: Implications for training

    NASA Technical Reports Server (NTRS)

    Law, J. Randolph

    1993-01-01

    The present study was motivated by results from a preliminary report documenting the impact of specific crewmembers on overall crew performance (Wilhelm & Law, 1992), and a cross-airline cross-fleet project investigating human factors behaviors of commercial aviation flightcrews (Helmreich, Butler, Whilhelm, & Lofaro, 1992). The purpose of the current investigation is to study how position-specific behaviors impact flightcrew performance, and how these position-specific behaviors differ between two airlines and two flying environments. Implications for training will also be addressed.

  17. Position-specific behaviors and their impact on crew performance: Implications for training

    NASA Technical Reports Server (NTRS)

    Law, J. Randolph

    1993-01-01

    The present study was motivated by results from a preliminary report documenting the impact of specific crewmembers on overall crew performance (Wilhelm & Law, 1992), and a cross-airline cross-fleet project investigating human factors behaviors of commercial aviation flightcrews (Helmreich, Butler, Whilhelm, & Lofaro, 1992). The purpose of the current investigation is to study how position-specific behaviors impact flightcrew performance, and how these position-specific behaviors differ between two airlines and two flying environments. Implications for training will also be addressed.

  18. Prior sleep, prior wake, and crew performance during normal flight operations.

    PubMed

    Thomas, Matthew J W; Ferguson, Sally A

    2010-07-01

    Industries that operate outside daytime hours are known to carry higher safety risks related to fatigue. While we are beginning to understand better the role of fatigue in increasing the risk of accidents in the workplace, relatively little is known about the manifestation of fatigue in the multicrew environment, where operational safety involves interaction between two or more crewmembers and a complex operating environment. Data were collected by trained expert observers during 302 normal flight operations of a commercial airline flying short-haul jet operations. Crewmembers were asked to provide an estimate of their total sleep in the prior 24 h, total sleep in the prior 48 h, and total wake time since their last sleep period at the commencement of cruise. Observers used the Threat and Error Management Model, developed as a standardized and highly structured method to collect operational performance data. Restricted sleep in both the 24-h and 48-h period prior to each sector were found to be associated with changes in crews' threat and error management performance. However, prior wake was not associated with any significant changes in crew performance. Restriction to less than 6 h sleep in the prior 24 h was associated with degraded operational performance and increased error rates. The findings of this study provide support to the notion that prior sleep is a critical fatigue-related variable. Moreover, the use of individual subjective assessment of prior sleep as a component of an overall fatigue risk management system is reinforced.

  19. Computerized Tests of Team Performance and Crew Coordination Suitable for Military/Aviation Settings.

    PubMed

    Lawson, Ben D; Britt, Thomas W; Kelley, Amanda M; Athy, Jeremy R; Legan, Shauna M

    2017-08-01

    The coordination of team effort on shared tasks is an area of inquiry. A number of tests of team performance in challenging environments have been developed without comparison or standardization. This article provides a systematic review of the most accessible and usable low-to-medium fidelity computerized tests of team performance and determines which are most applicable to military- and aviation-relevant research, such as studies of group command, control, communication, and crew coordination. A search was conducted to identify computerized measures of team performance. In addition to extensive literature searches (DTIC, Psychinfo, PubMed), the authors reached out to team performance researchers at conferences and through electronic communication. Identified were 57 potential tests according to 6 specific selection criteria (e.g., the requirement for automated collection of team performance and coordination processes, the use of military-relevant scenarios). The following seven tests (listed alphabetically) were considered most suitable for military needs: Agent Enabled Decision Group Environment (AEDGE), C3Conflict, the C3 (Command, Control, & Communications) Interactive Task for Identifying Emerging Situations (NeoCITIES), Distributed Dynamic Decision Making (DDD), Duo Wondrous Original Method Basic Awareness/Airmanship Test (DuoWOMBAT), the Leader Development Simulator (LDS), and the Planning Task for Teams (PLATT). Strengths and weaknesses of these tests are described and recommendations offered to help researchers identify the test most suitable for their particular needs. Adoption of a few standard computerized test batteries to study team performance would facilitate the evaluation of interventions intended to enhance group performance in multiple challenging military and aerospace operational environments.Lawson BD, Britt TW, Kelley AM, Athy JR, Legan SM. Computerized tests of team performance and crew coordination suitable for military/aviation settings

  20. Some Aspects of Psychophysiological Support of Crew Member's Performance Reliability in Space Flight

    NASA Astrophysics Data System (ADS)

    Nechaev, A. P.; Myasnikov, V. I.; Stepanova, S. I.; Isaev, G. F.; Bronnikov, S. V.

    The history of cosmonautics demonstrates many instances in which only crewmembers' intervention allowed critical situations to be resolved, or catastrophes to be prevented. However, during "crew-spacecraft" system operation human is exposed by influence of numerous flight factors, and beforehand it is very difficult to predict their effects on his functional state and work capacity. So, the incidents are known when unfavorable alterations of crewmember's psychophysiological state (PPS) provoked errors in task performance. The objective of the present investigation was to substantiate the methodological approach directed to increase reliability of a crewmember performance (human error prevention) by means of management of his/her PPS. The specific aims of the investigation were: 1) to evaluate the statistical significance of the interrelation between crew errors (CE) and crewmember's PPS, and 2) to develop the way of PPS management. At present, there is no conventional method to assess combined effect of flight conditions (microgravity, confinement, psychosocial factors, etc.) on crewmembers' PPS. For this purpose experts of the Medical Support Group (psychoneurologists and psychologists) at the Moscow Mission Control Center analyze information received during radio and TV contacts with crew. Peculiarities of behavior, motor activity, sleep, speech, mood, emotional reactions, well-being and sensory sphere, trend of dominant interests and volitional acts, signs of deprivation phenomena are considered as separate indicators of crewmember's PPS. The set of qualitative symptoms reflecting PPS alterations and corresponding to them ratings (in arbitrary units) was empirically stated for each indicator. It is important to emphasize that symptoms characterizing more powerful PPS alterations have higher ratings. Quantitative value of PPS integral parameter is calculating by adding up the ratings of all separate indicators over a day, a week, or other temporal interval (in

  1. Influence of the postion of crew members on aerodynamics performance of two-man bobsleigh.

    PubMed

    Dabnichki, Peter; Avital, Eldad

    2006-01-01

    Bobsleigh aerodynamics has long been recognised as one of the crucial performance factors. Although the published research in the area is very limited, it is well known that the leading nations in the sport devote significant resources in research and development of sleds' aerodynamics. However, the rules and regulations pose strict design constraints on the shape modifications aiming at aerodynamics improvements. The reason for that is two-fold: (i) safety of the athletes and (ii) reduction of equipment impact on competition outcome. One particular area that has not been looked at and falls outside the current rules and regulations is the influence of the crew positioning and internal modifications on the aerodynamic performance. The current study presents results on numerical simulation of the flow in the cavity underpinned with some experimental measurements including flow visualisation of the air circulation around the bobsleigh. A simplified computational model was developed to assess the trends and its results validated by windtunnel tests. The results show that crew members influence the drag level significantly and suggest that purely internal modifications can be introduced to reduce the overall resistance drag.

  2. [Performance development of a university operating room after implementation of a central operating room management].

    PubMed

    Waeschle, R M; Sliwa, B; Jipp, M; Pütz, H; Hinz, J; Bauer, M

    2016-08-01

    The difficult financial situation in German hospitals requires measures for improvement in process quality. Associated increases in revenues in the high income field "operating room (OR) area" are increasingly the responsibility of OR management but it has not been shown that the introduction of an efficiency-oriented management leads to an increase in process quality and revenues in the operating theatre. Therefore the performance in the operating theatre of the University Medical Center Göttingen was analyzed for working days in the core operating time from 7.45 a.m. to 3.30 p.m. from 2009 to 2014. The achievement of process target times for the morning surgery start time and the turnover times of anesthesia and OR-nurses were calculated as indicators of process quality. The number of operations and cumulative incision-suture time were also analyzed as aggregated performance indicators. In order to assess the development of revenues in the operating theatre, the revenues from diagnosis-related groups (DRG) in all inpatient and occupational accident cases, adjusted for the regional basic case value from 2009, were calculated for each year. The development of revenues was also analyzed after deduction of revenues resulting from altered economic case weighting. It could be shown that the achievement of process target values for the morning surgery start time could be improved by 40 %, the turnover times for anesthesia reduced by 50 % and for the OR-nurses by 36 %. Together with the introduction of central planning for reallocation, an increase in operation numbers of 21 % and cumulative incision-suture times of 12% could be realized. Due to these additional operations the DRG revenues in 2014 could be increased to 132 % compared to 2009 or 127 % if the revenues caused by economic case weighting were excluded. The personnel complement in anesthesia (-1.7 %) and OR-nurses (+2.6 %) as well as anesthetists (+6.7 %) increased less compared to the

  3. Aerospace crew station design

    NASA Technical Reports Server (NTRS)

    Carr, Gerald P. (Editor); Montemerlo, Melvin D. (Editor)

    1984-01-01

    Consideration is given to spacecraft cockpits and work stations, commercial aircraft cockpits and crew stations, high performance aircraft cockpits and crew stations, and space stations and habitat crew stations. Particular attention is given to an historical review of NASA manned spacecraft crew stations, ESA spacelab crew stations, the evolution of commercial aircraft flight station design, Boeing 757/767 flight deck, a historical review of Concorde flight deck design, trends in the cockpit design of new European fighters, and state-of-the-art applications for Space Station crew interface design.

  4. Improving Pediatric Rapid Response Team Performance Through Crew Resource Management Training of Team Leaders.

    PubMed

    Siems, Ashley; Cartron, Alexander; Watson, Anne; McCarter, Robert; Levin, Amanda

    2017-02-01

    Rapid response teams (RRTs) improve the detection of and response to deteriorating patients. Professional hierarchies and the multidisciplinary nature of RRTs hinder team performance. This study assessed whether an intervention involving crew resource management training of team leaders could improve team performance. In situ observations of RRT activations were performed pre- and post-training intervention. Team performance and dynamics were measured by observed adherence to an ideal task list and by the Team Emergency Assessment Measure tool, respectively. Multiple quartile (median) and logistic regression models were developed to evaluate change in performance scores or completion of specific tasks. Team leader and team introductions (40% to 90%, P = .004; 7% to 45%, P = .03), floor team presentations in Situation Background Assessment Recommendation format (20% to 65%, P = .01), and confirmation of the plan (7% to 70%, P = .002) improved after training in patients transferred to the ICU (n = 35). The Team Emergency Assessment Measure metric was improved in all 4 categories: leadership (2.5 to 3.5, P < .001), teamwork (2.7 to 3.7, P < .001), task management (2.9 to 3.8, P < .001), and global scores (6.0 to 9.0, P < .001) for teams caring for patients who required transfer to the ICU. Targeted crew resource management training of the team leader resulted in improved team performance and dynamics for patients requiring transfer to the ICU. The intervention demonstrated that training the team leader improved behavior in RRT members who were not trained. Copyright © 2017 by the American Academy of Pediatrics.

  5. International Space Station USOS Crew Quarters On-orbit vs Design Performance Comparison

    NASA Technical Reports Server (NTRS)

    Broyan, James Lee, Jr.; Borrego, Melissa Ann; Bahr, Juergen F.

    2008-01-01

    The International Space Station (ISS) United States Operational Segment (USOS) received the first two permanent ISS Crew Quarters (CQ) on Utility Logistics Flight Two (ULF2) in November 2008. Up to four CQs can be installed into the Node 2 element to increase the ISS crewmember size to six. The CQs provide private crewmember space with enhanced acoustic noise mitigation, integrated radiation reduction material, communication equipment, redundant electrical systems, and redundant caution and warning systems. The racksized CQ is a system with multiple crewmember restraints, adjustable lighting, controllable ventilation, and interfaces that allow each crewmember to personalize their CQ workspace. The deployment and initial operational checkout during integration of the ISS CQ to the Node is described. Additionally, the comparison of on-orbit to original design performance is outlined for the following key operational parameters: interior acoustic performance, air flow rate, temperature rise, and crewmember feedback on provisioning and restraint layout.

  6. International Space Station USOS Crew Quarters On-orbit vs Design Performance Comparison

    NASA Technical Reports Server (NTRS)

    Broyan, James Lee, Jr.; Borrego, Melissa Ann; Bahr, Juergen F.

    2008-01-01

    The International Space Station (ISS) United States Operational Segment (USOS) received the first two permanent ISS Crew Quarters (CQ) on Utility Logistics Flight Two (ULF2) in November 2008. Up to four CQs can be installed into the Node 2 element to increase the ISS crewmember size to six. The CQs provide private crewmember space with enhanced acoustic noise mitigation, integrated radiation reduction material, communication equipment, redundant electrical systems, and redundant caution and warning systems. The racksized CQ is a system with multiple crewmember restraints, adjustable lighting, controllable ventilation, and interfaces that allow each crewmember to personalize their CQ workspace. The deployment and initial operational checkout during integration of the ISS CQ to the Node is described. Additionally, the comparison of on-orbit to original design performance is outlined for the following key operational parameters: interior acoustic performance, air flow rate, temperature rise, and crewmember feedback on provisioning and restraint layout.

  7. Crew factors in flight operations 9: Effects of planned cockpit rest on crew performance and alertness in long-haul operations

    NASA Technical Reports Server (NTRS)

    Rosekind, Mark R.; Graeber, R. Curtis; Dinges, David F.; Connell, Linda J.; Rountree, Michael S.; Spinweber, Cheryl L.; Gillen, Kelly A.

    1994-01-01

    This study examined the effectiveness of a planned cockpit rest period to improve alertness and performance in long-haul flight operations. The Rest Group (12 crew members) was allowed a planned 40 minute rest period during the low workload, cruise portion of the flight, while the No-Rest Group (9 crew members) had a 40 minute planned control period when they maintained usual flight activities. Measures used in the study included continuous ambulatory recordings of brain wave and eye movement activity, a reaction time/vigilance task, a wrist activity monitor, in-flight fatigue and alertness ratings, a daily log for noting sleep periods, meals, exercise, flight and duty periods, and the NASA Background Questionnaire. The Rest Group pilots slept on 93 percent of the opportunities, falling asleep in 5.6 minutes and sleeping for 25.8 minutes. This nap was associated with improved physiological alertness and performance compared to the No-Rest Group. The benefits of the nap were observed through the critical descent and landing phases of flight. The nap did not affect layover sleep or the cumulative sleep debt. The nap procedures were implemented with minimal disruption to usual flight operations and there were no reported or identified concerns regarding safety.

  8. Optimization of armored fighting vehicle crew performance in a net-centric battlefield

    NASA Astrophysics Data System (ADS)

    McKeen, William P.; Espenant, Mark

    2002-08-01

    Traditional display, control and situational awareness technologies may not allow the fighting vehicle commander to take full advantage of the rich data environment made available in the net-centric battle field of the future. Indeed, the sheer complexity and volume of available data, if not properly managed, may actually reduce crew performance by overloading or confusing the commander with irrelevant information. New techniques must be explored to understand how to present battlefield information and provide the commander with continuous high quality situational awareness without significant cognitive overhead. Control of the vehicle's many complex systems must also be addressed the entire Soldier Machine Interface must be optimized if we are to realize the potential performance improvements. Defence Research and Development Canada (DRDC) and General Dynamics Canada Ltd. have embarked on a joint program called Future Armoured Fighting Vehicle Systems Technology Demonstrator, to explore these issues. The project is based on man-in-the-loop experimentation using virtual reality technology on a six degree-of-freedom motion platform that simulates the motion, sights and sounds inside a future armoured vehicle. The vehicle commander is provided with a virtual reality vision system to view a simulated 360 degree multi-spectrum representation of the battlespace, thus providing enhanced situational awareness. Graphic overlays with decision aid information will be added to reduce cognitive loading. Experiments will be conducted to evaluate the effectiveness of virtual control systems. The simulations are carried out in a virtual battlefield created by linking our simulation system with other simulation centers to provide a net-centric battlespace where enemy forces can be engaged in fire fights. Survivability and lethality will be measured in successive test sequences using real armoured fighting vehicle crews to optimize overall system effectiveness.

  9. The Apollo Medical Operations Project: Recommendations to Improve Crew Health and Performance for Future Exploration Missions and Lunar Surface Operations

    NASA Technical Reports Server (NTRS)

    Scheuring, Richard A.; Jones, Jeffrey A.; Polk, James D.; Gillis, David B.; Schmid, Joseph; Duncan, James M.; Davis, Jeffrey R.; Novak, Joseph D.

    2007-01-01

    Medical requirements for the future Crew Exploration Vehicle (CEV), Lunar Surface Access Module (LSAM), advanced Extravehicular Activity (EVA) suits and Lunar habitat are currently being developed. Crews returning to the lunar surface will construct the lunar habitat and conduct scientific research. Inherent in aggressive surface activities is the potential risk of injury to crewmembers. Physiological responses to and the operational environment of short forays during the Apollo lunar missions were studied and documented. Little is known about the operational environment in which crews will live and work and the hardware that will be used for long-duration lunar surface operations.Additional information is needed regarding productivity and the events that affect crew function such as a compressed timeline. The Space Medicine Division at the NASA Johnson Space Center (JSC) requested a study in December 2005 to identify Apollo mission issues relevant to medical operations that had impact to crew health and/or performance. The operationally oriented goals of this project were to develop or modify medical requirements for new exploration vehicles and habitats, create a centralized database for future access, and share relevant Apollo information with the multiple entities at NASA and abroad participating in the exploration effort.

  10. The Apollo Medical Operations Project: Recommendations to Improve Crew Health and Performance for Future Exploration Missions and Lunar Surface Operations

    NASA Technical Reports Server (NTRS)

    Scheuring, Richard A.; Jones, Jeffrey A.; Jones, Jeffrey A.; Novak, Joseph D.; Polk, James D.; Gillis, David B.; Schmid, Josef; Duncan, James M.; Davis, Jeffrey R.

    2007-01-01

    Medical requirements for the future Crew Exploration Vehicle (CEV), Lunar Surface Access Module (LSAM), advanced Extravehicular Activity (EVA) suits and Lunar habitat are currently being developed. Crews returning to the lunar surface will construct the lunar habitat and conduct scientific research. Inherent in aggressive surface activities is the potential risk of injury to crewmembers. Physiological responses and the operational environment for short forays during the Apollo lunar missions were studied and documented. Little is known about the operational environment in which crews will live and work and the hardware will be used for long-duration lunar surface operations. Additional information is needed regarding productivity and the events that affect crew function such as a compressed timeline. The Space Medicine Division at the NASA Johnson Space Center (JSC) requested a study in December 2005 to identify Apollo mission issues relevant to medical operations that had impact to crew health and/or performance. The operationally oriented goals of this project were to develop or modify medical requirements for new exploration vehicles and habitats, create a centralized database for future access, and share relevant Apollo information with the multiple entities at NASA and abroad participating in the exploration effort.

  11. Situational Awareness, Crew Resource Management and Operational Performance in Fatigued Two-Man Crews Using Three Stimulant Countermeasures

    DTIC Science & Technology

    2006-11-01

    when the dynamics of group/team interaction are injected into the research program. The DUO- WOMBAT -CS is the primary measure examined herein...placebo). The participants were repeatedly tested in pairs throughout the deprivation period. Testing included the WOMBAT , flights in the USAARL UH-60...research simulator, and various other tasks. Scores were compared over time and between drug groups, for the WOMBAT and the simulator performance

  12. Coordination strategies of crew management

    NASA Technical Reports Server (NTRS)

    Conley, Sharon; Cano, Yvonne; Bryant, Don

    1991-01-01

    An exploratory study that describes and contrasts two three-person flight crews performing in a B-727 simulator is presented. This study specifically attempts to delineate crew communication patterns accounting for measured differences in performance across routine and nonroutine flight patterns. The communication patterns in the two crews evaluated indicated different modes of coordination, i.e., standardization in the less effective crew and planning/mutual adjustment in the more effective crew.

  13. Performance of simulated laparoscopic incisional hernia repair correlates with operating room performance.

    PubMed

    Ghaderi, Iman; Vaillancourt, Marilou; Sroka, Gideon; Kaneva, Pepa A; Seagull, F Jacob; George, Ivan; Sutton, Erica; Park, Adrian E; Vassiliou, Melina C; Fried, Gerald M; Feldman, Liane S

    2011-01-01

    the role of simulation for training in procedures such as laparoscopic incisional hernia repair (LIHR) is unknown. The purpose of this study was to determine whether performance in simulated LIHR correlates with operating room (OR) performance. subjects performed LIHR in the University of Maryland Surgical Abdominal Wall (SAW) simulator and the OR. Trained observers used a LIHR-specific global rating scale (Global Operative Assessment of Laparoscopic Skills-Incisional Hernia) to assess performance. Global Operative Assessment of Laparoscopic Skills-Incisional Hernia includes 7 domains (trocar placement, adhesiolysis, mesh sizing, mesh positioning, mesh fixation, knowledge and autonomy in instrument use, and overall competence). The correlation between simulator and OR performance was assessed using the Pearson coefficient. fourteen surgeons from 2 surgical departments participated. Experienced surgeons (n = 9) were defined as attending surgeons and minimally invasive surgury (MIS) fellows, and novice surgeons (n = 5) were general surgery residents (postgraduate years 3-5). The correlation between performance in the OR and the simulator for the entire group was .87 (95% confidence interval, .63-.96; P < .001). there was an excellent correlation between LIHR performance in the simulator and clinical LIHR. This suggests that performance in the SAW simulator may predict performance in the operating room. 2011 Elsevier Inc. All rights reserved.

  14. Space Biology and Medicine. Volume 4; Health, Performance, and Safety of Space Crews

    NASA Technical Reports Server (NTRS)

    Dietlein, Lawrence F. (Editor); Pestov, Igor D. (Editor)

    2004-01-01

    Volume IV is devoted to examining the medical and associated organizational measures used to maintain the health of space crews and to support their performance before, during, and after space flight. These measures, collectively known as the medical flight support system, are important contributors to the safety and success of space flight. The contributions of space hardware and the spacecraft environment to flight safety and mission success are covered in previous volumes of the Space Biology and Medicine series. In Volume IV, we address means of improving the reliability of people who are required to function in the unfamiliar environment of space flight as well as the importance of those who support the crew. Please note that the extensive collaboration between Russian and American teams for this volume of work resulted in a timeframe of publication longer than originally anticipated. Therefore, new research or insights may have emerged since the authors composed their chapters and references. This volume includes a list of authors' names and addresses should readers seek specifics on new information. At least three groups of factors act to perturb human physiological homeostasis during space flight. All have significant influence on health, psychological, and emotional status, tolerance, and work capacity. The first and most important of these factors is weightlessness, the most specific and radical change in the ambient environment; it causes a variety of functional and structural changes in human physiology. The second group of factors precludes the constraints associated with living in the sealed, confined environment of spacecraft. Although these factors are not unique to space flight, the limitations they entail in terms of an uncomfortable environment can diminish the well-being and performance of crewmembers in space. The third group of factors includes the occupational and social factors associated with the difficult, critical nature of the

  15. [Certain principles of Mars mission crew life and the organization of the performance].

    PubMed

    Grigor'ev, A I; Demin, E P; Bystritskaia, A F; Gushchin, V I; Vinokhodova, A G

    2002-01-01

    Article is devoted to some new aspects of biomedical support and countermeasures during a manned Mars mission. Significant differences in crew--Mission control interaction in a Martian and orbital flight are described. Special attention is paid to the problem of the Martian crew autonomy and decision-making. The authors give some practical recommendations for improvement of the space flight medical support system existing in Russia to meet the needs of a Martian expedition.

  16. Crew Health and Performance Improvements with Reduced Carbon Dioxide Levels and the Resource Impact to Accomplish Those Reductions

    NASA Technical Reports Server (NTRS)

    James, John T.; Meyers, Valerie E.; Sipes, Walter; Scully, Robert R.; Matty, Christopher M.

    2011-01-01

    Carbon dioxide (CO2) removal is one of the primary functions of the International Space Station (ISS) atmosphere revitalization systems. Primary CO2 removal is via the ISS s two Carbon Dioxide Removal Assemblies (CDRAs) and the Russian carbon dioxide removal assembly (Vozdukh); both of these systems are regenerable, meaning that their CO2 removal capacity theoretically remains constant as long as the system is operating. Contingency CO2 removal capability is provided by lithium hydroxide (LiOH) canisters, which are consumable, meaning that their CO2 removal capability disappears once the resource is used. With the advent of 6 crew ISS operations, experience showing that CDRA failures are not uncommon, and anecdotal association of crew symptoms with CO2 values just above 4 mmHg, the question arises: How much lower do we keep CO2 levels to minimize the risk to crew health and performance, and what will the operational cost to the CDRAs be to do it? The primary crew health concerns center on the interaction of increased intracranial pressure from fluid shifts and the increased intracranial blood flow induced by CO2. Typical acute symptoms include headache, minor visual disturbances, and subtle behavioral changes. The historical database of CO2 exposures since the beginning of ISS operations has been compared to the incidence of crew symptoms reported in private medical conferences. We have used this database in an attempt to establish an association between the CO2 levels and the risk of crew symptoms. This comparison will answer the question of the level needed to protect the crew from acute effects. As for the second part of the question, operation of the ISS s regenerable CO2 removal capability reduces the limited life of constituent parts. It also consumes limited electrical power and thermal control resources. Operation of consumable CO2 removal capability (LiOH) uses finite consumable materials, which must be replenished in the long term. Therefore, increased CO

  17. Functions and operations of nuclear power plant crews

    SciTech Connect

    Kisner, R.A.; Frey, P.R.

    1982-04-01

    This report summarizes the results of work performed at Oak Ridge National Laboratory and its subcontractors to define the functions, operations, and organization of nuclear power plant operating crews. The primary information sources used were ANS and IEEE standards, normal and emergency operating procedures from nuclear power plants, interviews, and literature reviews. The function and organization of operating crews for several plants are discussed genericly. The report covers a wide spectrum of topics including review of standards affecting human factors in the control room, influence of automation on operator functions, classification of operator functions, function of operator at onset of emergency, crew organization, work-induced stress, and operator acceptance of his role.

  18. Commerical Crew Program (CCP) Crew Access Arm Installation

    NASA Image and Video Library

    2016-08-15

    A crane lifts the Crew Access Arm and White Room for Boeing's CST-100 Starliner spacecraft to be attached to the Crew Access Tower at Cape Canaveral Air Force Station’s Space Launch Complex 41. When attached to the 200-foot tall Crew Access Tower, the arm will serve as the connection that astronauts will walk through prior to boarding the Starliner spacecraft when stacked atop a United Launch Alliance Atlas V rocket. This installation completes the major construction of the first new Crew Access Tower to be built at the Cape since the Apollo era. Under a Commercial Crew Transportation Capability (CCtCap) contract with NASA, Boeing’s Starliner system will be certified by NASA's Commercial Crew Program to fly crews to and from the International Space Station.

  19. Commerical Crew Program (CCP) Crew Access Arm Installation

    NASA Image and Video Library

    2016-08-15

    A crane is attached to the Crew Access Arm and White Room for Boeing's CST-100 Starliner spacecraft to be attached to the Crew Access Tower at Cape Canaveral Air Force Station’s Space Launch Complex 41. When attached to the 200-foot tall Crew Access Tower, the arm will serve as the connection that astronauts will walk through prior to boarding the Starliner spacecraft when stacked atop a United Launch Alliance Atlas V rocket. This installation completes the major construction of the first new Crew Access Tower to be built at the Cape since the Apollo era. Under a Commercial Crew Transportation Capability (CCtCap) contract with NASA, Boeing’s Starliner system will be certified by NASA's Commercial Crew Program to fly crews to and from the International Space Station.

  20. Perception, Evaluation, and Performance in a Neat and Messy Room by High and Low Sensation Seekers

    ERIC Educational Resources Information Center

    Samuelson, David J.; Lindauer, Martin S.

    1976-01-01

    Summarizes two studies that investigated the relationship between the effects of room environment (neat versus messy) and high and low sensation seeker's perception, evaluation, and performance. Elapsed time estimation did not vary as a function of room condition and personality. Sex differences were not found to be critical. (BT)

  1. STS-130 crew at Marshall

    NASA Image and Video Library

    2010-01-16

    JSC2010-E-014774 (15 Jan. 2010) --- At Marshall Space Center?s building 4708 in the high-bay clean room, astronauts George Zamka (right), STS-130 commander; along with astronauts Nicholas Patrick (foreground) and Robert Behnken, both mission specialists, are seen with a 1G stand that simulates geometrically the interfaces of the ammonia hoses between node 3 and the U.S. lab on orbit. The three crew members are pulling the ammonia blanket from their EVA bag to verify how they would perform the installation procedure on orbit.

  2. The effects of bedrest on crew performance during simulated shuttle reentry. Volume 2: Control task performance

    NASA Technical Reports Server (NTRS)

    Jex, H. R.; Peters, R. A.; Dimarco, R. J.; Allen, R. W.

    1974-01-01

    A simplified space shuttle reentry simulation performed on the NASA Ames Research Center Centrifuge is described. Anticipating potentially deleterious effects of physiological deconditioning from orbital living (simulated here by 10 days of enforced bedrest) upon a shuttle pilot's ability to manually control his aircraft (should that be necessary in an emergency) a comprehensive battery of measurements was made roughly every 1/2 minute on eight military pilot subjects, over two 20-minute reentry Gz vs. time profiles, one peaking at 2 Gz and the other at 3 Gz. Alternate runs were made without and with g-suits to test the help or interference offered by such protective devices to manual control performance. A very demanding two-axis control task was employed, with a subcritical instability in the pitch axis to force a high attentional demand and a severe loss-of-control penalty. The results show that pilots experienced in high Gz flying can easily handle the shuttle manual control task during 2 Gz or 3 Gz reentry profiles, provided the degree of physiological deconditioning is no more than induced by these 10 days of enforced bedrest.

  3. Exploring flight crew behaviour

    NASA Technical Reports Server (NTRS)

    Helmreich, R. L.

    1987-01-01

    A programme of research into the determinants of flight crew performance in commercial and military aviation is described, along with limitations and advantages associated with the conduct of research in such settings. Preliminary results indicate significant relationships among personality factors, attitudes regarding flight operations, and crew performance. The potential theoretical and applied utility of the research and directions for further research are discussed.

  4. Flight Crew Workload, Acceptability, and Performance When Using Data Comm in a High-Density Terminal Area Simulation

    NASA Technical Reports Server (NTRS)

    Norman, R. Michael; Baxley, Brian T.; Adams, Cathy A.; Ellis, Kyle K. E.; Latorella, Kara A.; Comstock, James R., Jr.

    2013-01-01

    This document describes a collaborative FAA/NASA experiment using 22 commercial airline pilots to determine the effect of using Data Comm to issue messages during busy, terminal area operations. Four conditions were defined that span current day to future flight deck equipage: Voice communication only, Data Comm only, Data Comm with Moving Map Display, and Data Comm with Moving Map displaying taxi route. Each condition was used in an arrival and a departure scenario at Boston Logan Airport. Of particular interest was the flight crew response to D-TAXI, the use of Data Comm by Air Traffic Control (ATC) to send taxi instructions. Quantitative data was collected on subject reaction time, flight technical error, operational errors, and eye tracking information. Questionnaires collected subjective feedback on workload, situation awareness, and acceptability to the flight crew for using Data Comm in a busy terminal area. Results showed that 95% of the Data Comm messages were responded to by the flight crew within one minute and 97% of the messages within two minutes. However, post experiment debrief comments revealed almost unanimous consensus that two minutes was a reasonable expectation for crew response. Flight crews reported that Expected D-TAXI messages were useful, and employment of these messages acceptable at all altitude bands evaluated during arrival scenarios. Results also indicate that the use of Data Comm for all evaluated message types in the terminal area was acceptable during surface operations, and during arrivals at any altitude above the Final Approach Fix, in terms of response time, workload, situation awareness, and flight technical performance. The flight crew reported the use of Data Comm as implemented in this experiment as unacceptable in two instances: in clearances to cross an active runway, and D-TAXI messages between the Final Approach Fix and 80 knots during landing roll. Critical cockpit tasks and the urgency of out-the window scan made the

  5. Team Performance and Error Management in Chinese and American Simulated Flight Crews: The Role of Cultural and Individual Differences

    NASA Technical Reports Server (NTRS)

    Davis, Donald D.; Bryant, Janet L.; Tedrow, Lara; Liu, Ying; Selgrade, Katherine A.; Downey, Heather J.

    2005-01-01

    This report describes results of a study conducted for NASA-Langley Research Center. This study is part of a program of research conducted for NASA-LARC that has focused on identifying the influence of national culture on the performance of flight crews. We first reviewed the literature devoted to models of teamwork and team performance, crew resource management, error management, and cross-cultural psychology. Davis (1999) reported the results of this review and presented a model that depicted how national culture could influence teamwork and performance in flight crews. The second study in this research program examined accident investigations of foreign airlines in the United States conducted by the National Transportation Safety Board (NTSB). The ability of cross-cultural values to explain national differences in flight outcomes was examined. Cultural values were found to covary in a predicted way with national differences, but the absence of necessary data in the NTSB reports and limitations in the research method that was used prevented a clear understanding of the causal impact of cultural values. Moreover, individual differences such as personality traits were not examined in this study. Davis and Kuang (2001) report results of this second study. The research summarized in the current report extends this previous research by directly assessing cultural and individual differences among students from the United States and China who were trained to fly in a flight simulator using desktop computer workstations. The research design used in this study allowed delineation of the impact of national origin, cultural values, personality traits, cognitive style, shared mental model, and task workload on teamwork, error management and flight outcomes. We briefly review the literature that documents the importance of teamwork and error management and its impact on flight crew performance. We next examine teamwork and crew resource management training designed to improve

  6. [Aviation and high-altitude medicine for anaesthetists. Part 4: human performance limitations and crew resource management].

    PubMed

    Egerth, Martin; Pump, Stefan; Graf, Jürgen

    2013-06-01

    For pilots and doctors, as well as a variety of other professions the knowledge of human performance limitations is essential, especially in critical situations. Crew resource management was developed in the 1980s in the aviation industry in order to ensure systematic training and support in such instances. Just recently, the value is recognized not only in other high reliability organizations but also in medicine.

  7. Measuring Human Performance in Simulated Nuclear Power Plant Control Rooms Using Eye Tracking

    SciTech Connect

    Kovesdi, Casey Robert; Rice, Brandon Charles; Bower, Gordon Ross; Spielman, Zachary Alexander; Hill, Rachael Ann; LeBlanc, Katya Lee

    2015-11-01

    Control room modernization will be an important part of life extension for the existing light water reactor fleet. As part of modernization efforts, personnel will need to gain a full understanding of how control room technologies affect performance of human operators. Recent advances in technology enables the use of eye tracking technology to continuously measure an operator’s eye movement, which correlates with a variety of human performance constructs such as situation awareness and workload. This report describes eye tracking metrics in the context of how they will be used in nuclear power plant control room simulator studies.

  8. Science-based HRA: experimental comparison of operator performance to IDAC (Information-Decision-Action Crew) simulations

    SciTech Connect

    Shirley, Rachel; Smidts, Carol; Boring, Ronald; Li, Yuandan; Mosleh, Ali

    2015-02-01

    Information-Decision-Action Crew (IDAC) operator model simulations of a Steam Generator Tube Rupture are compared to student operator performance in studies conducted in the Ohio State University’s Nuclear Power Plant Simulator Facility. This study is presented as a prototype for conducting simulator studies to validate key aspects of Human Reliability Analysis (HRA) methods. Seven student operator crews are compared to simulation results for crews designed to demonstrate three different decision-making strategies. The IDAC model used in the simulations is modified slightly to capture novice behavior rather that expert operators. Operator actions and scenario pacing are compared. A preliminary review of available performance shaping factors (PSFs) is presented. After the scenario in the NPP Simulator Facility, student operators review a video of the scenario and evaluate six PSFs at pre-determined points in the scenario. This provides a dynamic record of the PSFs experienced by the OSU student operators. In this preliminary analysis, Time Constraint Load (TCL) calculated in the IDAC simulations is compared to TCL reported by student operators. We identify potential modifications to the IDAC model to develop an “IDAC Student Operator Model.” This analysis provides insights into how similar experiments could be conducted using expert operators to improve the fidelity of IDAC simulations.

  9. Room Acoustic Conditions of Performers in AN Old Opera House

    NASA Astrophysics Data System (ADS)

    IANNACE, GINO; IANNIELLO, CARMINE; MAFFEI, LUIGI; ROMANO, ROSARIO

    2000-04-01

    Proposed objective criteria related to the acoustic conditions for instrumentalists and singers have not received a sufficiently wide consent yet. In spite of this situation, it is the opinion of the authors that the measurement of existing criteria is useful for analysis and comparison. This paper reports the results of various acoustic measurements carried out in the Teatro di San Carlo, Naples-Italy, with the aim of obtaining objective information about its acoustics for performers. A first set of measurements was carried out when the theater was fitted for a symphonic concert and a second one when it was fitted for an opera performance.

  10. An Assessment of the CF Submarine Watch Schedule Variants for Impact on Modeled Crew Performance

    DTIC Science & Technology

    2008-03-01

    the model. The general architecture of the SAFTE model is shown in Figure 1. A circadian process influences both cognitive effectiveness and sleep ...after the fire. The results of this modeling effort (based on sleep behaviour estimates) suggested that our submariners were operating at...derived sleep data in order to more accurately model the impact of the watch schedule on crew cognitive effectiveness. Methods. Twenty-one submariners

  11. Thermal Performance of Wind Turbine Power System's Engine Room

    NASA Astrophysics Data System (ADS)

    Liu, Zhili; Jiang, Yanlong; Zhou, Nianyong; Shi, Hong; Kang, Na; Wang, Yu

    Greatly expanded use of wind energy has been proposed to reduce dependence on fossil and nuclear fuels for electricity generation. For wind turbine power generation, as a mature technology in the field of wind power utilization, its large-scale deployment is limited by the cooling technology. Therefore, the temperature distribution of the wind turbine power generation is a key issue for the design of the cooling system. It is because the characteristics of cooling system have a great effect on the performance of the wind turbine power generation. Based on some assumptions and simplifications, a thermal model is developed to describe the heat transfer behavior of wind turbine power system. The numerical calculation method is adopted to solve the governing equation. The heat generation and heat flux are investigated with a given operating boundary. The achieved results can be used to verify whether the cooling system meets the design requirements. Meanwhile, they also can reveal that among the influencing factors, the meteorological conditions, generated output and operation state as well seriously influence its thermal performance. Numerical calculation of the cooling system enables better understanding and results in performance improvement of the system.

  12. Performance Evaluation of Engineered Structured Sorbents for Atmosphere Revitalization Systems On Board Crewed Space Vehicles and Habitats

    NASA Technical Reports Server (NTRS)

    Howard, David F.; Perry, Jay L.; Knox, James C.; Junaedi, Christian; Roychoudhury, Subir

    2011-01-01

    Engineered structured (ES) sorbents are being developed to meet the technical challenges of future crewed space exploration missions. ES sorbents offer the inherent performance and safety attributes of zeolite and other physical adsorbents but with greater structural integrity and process control to improve durability and efficiency over packed beds. ES sorbent techniques that are explored include thermally linked and pressure-swing adsorption beds for water-save dehumidification and sorbent-coated metal meshes for residual drying, trace contaminant control, and carbon dioxide control. Results from sub-scale performance evaluations of a thermally linked pressure-swing adsorbent bed and an integrated sub-scale ES sorbent system are discussed.

  13. Simulation and experimental studies of operators` decision styles and crew composition while using an ecological and traditional user interface for the control room of a nuclear power plant

    SciTech Connect

    Meshkati, N.; Buller, B.J.; Azadeh, M.A.

    1995-04-01

    The goal of this research is threefold: (1) use of the Skill-, Rule-, and Knowledge-based levels of cognitive control -- the SRK framework -- to develop an integrated information processing conceptual framework (for integration of workstation, job, and team design); (2) to evaluate the user interface component of this framework -- the Ecological display; and (3) to analyze the effect of operators` individual information processing behavior and decision styles on handling plant disturbances plus their performance on, and preference for, Traditional and Ecological user interfaces. A series of studies were conducted. In Part I, a computer simulation model and a mathematical model were developed. In Part II, an experiment was designed and conducted at the EBR-II plant of the Argonne National Laboratory-West in Idaho Falls, Idaho. It is concluded that: the integrated SRK-based information processing model for control room operations is superior to the conventional rule-based model; operators` individual decision styles and the combination of their styles play a significant role in effective handling of nuclear power plant disturbances; use of the Ecological interface results in significantly more accurate event diagnosis and recall of various plant parameters, faster response to plant transients, and higher ratings of subject preference; and operators` decision styles affect on both their performance and preference for the Ecological interface.

  14. Monitoring and talking to the room: autochthonous coordination patterns in team interaction and performance.

    PubMed

    Kolbe, Michaela; Grote, Gudela; Waller, Mary J; Wacker, Johannes; Grande, Bastian; Burtscher, Michael J; Spahn, Donat R

    2014-11-01

    This paper builds on and extends theory on team functioning in high-risk environments. We examined 2 implicit coordination behaviors that tend to emerge autochthonously within high-risk teams: team member monitoring and talking to the room. Focusing on nonrandom patterns of behavior, we examined sequential patterns of team member monitoring and talking to the room in higher- and lower-performing action teams working in a high-risk health care environment. Using behavior observation methods, we coded verbal and nonverbal behaviors of 27 anesthesia teams performing an induction of general anesthesia in a natural setting and assessed team performance with a Delphi-validated checklist-based performance measure. Lag sequential analyses revealed that higher-performing teams were characterized by patterns in which team member monitoring was followed by speaking up, providing assistance, and giving instructions and by patterns in which talking to the room was followed by further talking to the room and not followed by instructions. Higher- and lower-performing teams did not differ with respect to the frequency of team member monitoring and talking to the room occurrence. The results illustrate the importance of patterns of autochthonous coordination behaviors and demonstrate that the interaction patterns, as opposed to the behavior frequencies, discriminated higher- from lower-performing teams. Implications for future research and for team training are included. (PsycINFO Database Record (c) 2014 APA, all rights reserved).

  15. Applications of Known Quantitative Techniques for Developing Airborne ASW Crew Performance Criteria,

    DTIC Science & Technology

    1967-07-01

    configuration concept . Work has been undertaken by squadron personnel to I develop a preliminary experimental approach . Todate , two discussions asto the...crew. One TACCO would be the man who turns the knobs , views the scope, and otherwise keeps the information up -to-date . A second TACCO would be 1...Such .i g r o up , u , i , m v , i i l a l i l e d u r i n g t h ’ ~~~ st ~~c rk , i s fl~ ’~~ a~ , , i l a h l e and it i s p r~ ’ -( po

  16. Selection for optimal crew performance - Relative impact of selection and training

    NASA Technical Reports Server (NTRS)

    Chidester, Thomas R.

    1987-01-01

    An empirical study supporting Helmreich's (1986) theoretical work on the distinct manner in which training and selection impact crew coordination is presented. Training is capable of changing attitudes, while selection screens for stable personality characteristics. Training appears least effective for leadership, an area strongly influenced by personality. Selection is least effective for influencing attitudes about personal vulnerability to stress, which appear to be trained in resource management programs. Because personality correlates with attitudes before and after training, it is felt that selection may be necessary even with a leadership-oriented training cirriculum.

  17. Enroute flight-path planning - Cooperative performance of flight crews and knowledge-based systems

    NASA Technical Reports Server (NTRS)

    Smith, Philip J.; Mccoy, Elaine; Layton, Chuck; Galdes, Deb

    1989-01-01

    Interface design issues associated with the introduction of knowledge-based systems into the cockpit are discussed. Such issues include not only questions about display and control design, they also include deeper system design issues such as questions about the alternative roles and responsibilities of the flight crew and the computer system. In addition, the feasibility of using enroute flight path planning as a context for exploring such research questions is considered. In particular, the development of a prototyping shell that allows rapid design and study of alternative interfaces and system designs is discussed.

  18. Crew decision making under stress

    NASA Technical Reports Server (NTRS)

    Orasanu, J.

    1992-01-01

    Flight crews must make decisions and take action when systems fail or emergencies arise during flight. These situations may involve high stress. Full-missiion flight simulation studies have shown that crews differ in how effectively they cope in these circumstances, judged by operational errors and crew coordination. The present study analyzed the problem solving and decision making strategies used by crews led by captains fitting three different personality profiles. Our goal was to identify more and less effective strategies that could serve as the basis for crew selection or training. Methods: Twelve 3-member B-727 crews flew a 5-leg mission simulated flight over 1 1/2 days. Two legs included 4 abnormal events that required decisions during high workload periods. Transcripts of videotapes were analyzed to describe decision making strategies. Crew performance (errors and coordination) was judged on-line and from videotapes by check airmen. Results: Based on a median split of crew performance errors, analyses to date indicate a difference in general strategy between crews who make more or less errors. Higher performance crews showed greater situational awareness - they responded quickly to cues and interpreted them appropriately. They requested more decision relevant information and took into account more constraints. Lower performing crews showed poorer situational awareness, planning, constraint sensitivity, and coordination. The major difference between higher and lower performing crews was that poorer crews made quick decisions and then collected information to confirm their decision. Conclusion: Differences in overall crew performance were associated with differences in situational awareness, information management, and decision strategy. Captain personality profiles were associated with these differences, a finding with implications for crew selection and training.

  19. A predictive model of nuclear power plant crew decision-making and performance in a dynamic simulation environment

    NASA Astrophysics Data System (ADS)

    Coyne, Kevin Anthony

    The safe operation of complex systems such as nuclear power plants requires close coordination between the human operators and plant systems. In order to maintain an adequate level of safety following an accident or other off-normal event, the operators often are called upon to perform complex tasks during dynamic situations with incomplete information. The safety of such complex systems can be greatly improved if the conditions that could lead operators to make poor decisions and commit erroneous actions during these situations can be predicted and mitigated. The primary goal of this research project was the development and validation of a cognitive model capable of simulating nuclear plant operator decision-making during accident conditions. Dynamic probabilistic risk assessment methods can improve the prediction of human error events by providing rich contextual information and an explicit consideration of feedback arising from man-machine interactions. The Accident Dynamics Simulator paired with the Information, Decision, and Action in a Crew context cognitive model (ADS-IDAC) shows promise for predicting situational contexts that might lead to human error events, particularly knowledge driven errors of commission. ADS-IDAC generates a discrete dynamic event tree (DDET) by applying simple branching rules that reflect variations in crew responses to plant events and system status changes. Branches can be generated to simulate slow or fast procedure execution speed, skipping of procedure steps, reliance on memorized information, activation of mental beliefs, variations in control inputs, and equipment failures. Complex operator mental models of plant behavior that guide crew actions can be represented within the ADS-IDAC mental belief framework and used to identify situational contexts that may lead to human error events. This research increased the capabilities of ADS-IDAC in several key areas. The ADS-IDAC computer code was improved to support additional

  20. Factors related to teamwork performance and stress of operating room nurses.

    PubMed

    Sonoda, Yukio; Onozuka, Daisuke; Hagihara, Akihito

    2017-07-25

    To evaluate operating room nurses' perception of teamwork performance and their level of mental stress and to identify related factors. Little is known about the factors affecting teamwork and the mental stress of surgical nurses, although the performance of the surgical team is essential for patient safety. The questionnaire survey for operation room nurses consisted of simple questions about teamwork performance and mental stress. Multivariate analyses were used to identify factors causing a sense of teamwork performance or mental stress. A large number of surgical nurses had a sense of teamwork performance, but 30-40% of operation room nurses were mentally stressed during surgery. Neither the patient nor the operation factors were related to the sense of teamwork performance in both types of nurses. Among scrub nurses, endoscopic and abdominal surgery, body mass index, blood loss and the American Society of Anesthesiologists physical status class were related to their mental stress. Conversely, circulating nurses were stressed about teamwork performance. The factors related to teamwork performance and mental stress during surgery differed between scrub and circulating nurses. Increased support for operation room nurses is necessary. The increased support leads to safer surgical procedures and better patient outcomes. © 2017 John Wiley & Sons Ltd.

  1. Effects of reduced nocturnal temperature on pig performance and energy consumption in swine nursery rooms.

    PubMed

    Johnston, L J; Brumm, M C; Moeller, S J; Pohl, S; Shannon, M C; Thaler, R C

    2013-07-01

    The objective of this investigation was to determine the effect of a reduced nocturnal temperature (RNT) regimen on performance of weaned pigs and energy consumption during the nursery phase of production. The age of weaned pigs assigned to experiments ranged from 16 to 22 d. In Exp. 1, 3 stations conducted 2 trials under a common protocol that provided data from 6 control rooms (CON; 820 pigs) and 6 RNT rooms (818 pigs). Two mirror-image nursery rooms were used at each station. Temperature in the CON room was set to 30°C for the first 7 d, then reduced by 2°C per week through the remainder of the experiment. Room temperature settings were held constant throughout the day and night. The temperature setting in the RNT room was the same as CON during the first 7 d, but beginning on the night of d 7, the room temperature setting was reduced 6°C from the daytime temperature from 1900 to 0700 h. The use of heating fuel and electricity were measured weekly in each room. Overall, ADG (0.43 kg), ADFI (0.62 kg), and G:F (0.69) were identical for CON and RNT rooms. Consumption of heating fuel [9,658 vs. 7,958 British thermal units (Btu)·pig(-1)·d(-1)] and electricity (0.138 vs. 0.125 kilowatt-hour (kWh)·pig(-1)·d(-1)] were not statistically different for CON and RNT rooms, respectively. In Exp. 2, 4 stations conducted at least 2 trials that provided data from 9 CON rooms (2,122 pigs) and 10 RNT rooms (2,176 pigs). Experimental treatments and protocols were the same as Exp. 1, except that the RNT regimen was imposed on the night of d 5 and the targeted nighttime temperature reduction was 8.3°C. Neither final pig BW (21.8 vs. 21.5 kg; SE = 0.64), ADG (0.45 vs. 0.44 kg; SE = 0.016), ADFI (0.61 vs. 0.60 kg; SE = 0.019), nor G:F (0.75 vs. 0.75; SE = 0.012) were different for pigs housed in CON or RNT rooms, respectively. Consumption of heating fuel and electricity was consistently reduced in RNT rooms for all 4 stations. Consumption of heating fuel (10,019 vs. 7,061 Btu

  2. Human Behavior and Performance Support for ISS Operations and Astronaut Selections: NASA Operational Psychology for Six-Crew Operations

    NASA Technical Reports Server (NTRS)

    VanderArk, Steve; Sipes, Walter; Holland, Albert; Cockrell, Gabrielle

    2010-01-01

    The Behavioral Health and Performance group at NASA Johnson Space Center provides psychological support services and behavioral health monitoring for ISS astronauts and their families. The ISS began as an austere outpost with minimal comforts of home and minimal communication capabilities with family, friends, and colleagues outside of the Mission Control Center. Since 1998, the work of international partners involved in the Space Flight Human Behavior and Performance Working Group has prepared high-level requirements for behavioral monitoring and support. The "buffet" of services from which crewmembers can choose has increased substantially. Through the process of development, implementation, reviewing effectiveness and modifying as needed, the NASA and Wyle team have proven successful in managing the psychological health and well being of the crews and families with which they work. Increasing the crew size from three to six brought additional challenges. For the first time, all partners had to collaborate at the planning and implementation level, and the U.S. served as mentor to extrapolate their experiences to the others. Parity in available resources, upmass, and stowage had to be worked out. Steady progress was made in improving off-hours living and making provisions for new technologies within a system that has difficulty moving quickly on certifications. In some respect, the BHP support team fell victim to its previous successes. With increasing numbers of crewmembers in training, requests to engage our services spiraled upward. With finite people and funds, a cap had to placed on many services to ensure that parity could be maintained. The evolution of NASA BHP services as the ISS progressed from three- to six-crew composition will be reviewed, and future challenges that may be encountered as the ISS matures in its assembly-complete state will be discussed.

  3. Entry, Descent, and Landing technological barriers and crewed MARS vehicle performance analysis

    NASA Astrophysics Data System (ADS)

    Subrahmanyam, Prabhakar; Rasky, Daniel

    2017-05-01

    Mars has been explored historically only by robotic crafts, but a crewed mission encompasses several new engineering challenges - high ballistic coefficient entry, hypersonic decelerators, guided entry for reaching intended destinations within acceptable margins for error in the landing ellipse, and payload mass are all critical factors for evaluation. A comprehensive EDL parametric analysis has been conducted in support of a high mass landing architecture by evaluating three types of vehicles -70° Sphere Cone, Ellipsled and SpaceX hybrid architecture called Red Dragon as potential candidate options for crewed entry vehicles. Aerocapture at the Martian orbit of about 400 km and subsequent Entry-from-orbit scenarios were investigated at velocities of 6.75 km/s and 4 km/s respectively. A study on aerocapture corridor over a range of entry velocities (6-9 km/s) suggests that a hypersonic L/D of 0.3 is sufficient for a Martian aerocapture. Parametric studies conducted by varying aeroshell diameters from 10 m to 15 m for several entry masses up to 150 mt are summarized and results reveal that vehicles with entry masses in the range of about 40-80 mt are capable of delivering cargo with a mass on the order of 5-20 mt. For vehicles with an entry mass of 20 mt to 80 mt, probabilistic Monte Carlo analysis of 5000 cases for each vehicle were run to determine the final landing ellipse and to quantify the statistical uncertainties associated with the trajectory and attitude conditions during atmospheric entry. Strategies and current technological challenges for a human rated Entry, Descent, and Landing to the Martian surface are presented in this study.

  4. Crew health

    NASA Technical Reports Server (NTRS)

    Billica, Roger D.

    1992-01-01

    Crew health concerns for Space Station Freedom are numerous due to medical hazards from isolation and confinement, internal and external environments, zero gravity effects, occupational exposures, and possible endogenous medical events. The operational crew health program will evolve from existing programs and from life sciences investigations aboard Space Station Freedom to include medical monitoring and certification, medical intervention, health maintenance and countermeasures, psychosocial support, and environmental health monitoring. The knowledge and experience gained regarding crew health issues and needs aboard Space Station Freedom will be used not only to verify requirements and programs for long duration space flight, but also in planning and preparation for Lunar and Mars exploration and colonization.

  5. Commercial Crew

    NASA Image and Video Library

    Phil McAlister delivers a presentation by the Commercial Crew (CC) study team on May 25, 2010, at the NASA Exploration Enterprise Workshop held in Galveston, TX. The purpose of this workshop was to...

  6. Crew operations

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The requirements for the activities involved, and the procedures used by the crew in the operations of the modular space station are presented. All crew-related characteristics of the station and its operations are indicated. The interior configuration and arrangement of each of the space station modules, the facilities and equipment in the module and their operation are described as related to crew habitability. The crew activities and procedures involved in the operation of the station in the accomplishment of its primary mission are defined. The operations involved in initial station buildup, and the on-orbit operation and maintenance of the station and its subsystems to support the experimental program are included. A general description of experiment operations is also given.

  7. Overview of crew member energy expenditure during Shuttle Flight 61-8 EASE/ACCESS task performance

    NASA Technical Reports Server (NTRS)

    Horrigan, D. J.; Waligora, J. W.; Stanford, J.; Edwards, B. F.

    1987-01-01

    The energy expenditure of the Shuttle Flight 61-B crewmembers during the extravehicular performance of Experimental Assembly of Structures in EVA (EASE) and Assembly Concept of Construction of Space Structures (ACCESS) construction system tasks are reported. These data consist of metabolic rate time profiles correlated with specific EASE and ACCESS tasks and crew comments. Average extravehicular activity metabolic rates are computed and compared with those reported from previous Apollo, Shylab, and Shuttle flights. These data reflect total energy expenditure and not that of individual muscle groups such as hand and forearm. When correlated with specific EVA tasks and subtasks, the metabolic profile data is expected to be useful in planning future EVA protocols. For example, after experiencing high work rates and apparent overheating during some Gemini EVAs, it was found useful to carefully monitor work rates in subsequent flights to assess the adequacy of cooling garments and as an aid to preplanning EVA procedures. This presentation is represented by graphs and charts.

  8. The Skylab Medical Operations Project: Recommendations to Improve Crew Health and Performance for Future Exploration Missions

    NASA Technical Reports Server (NTRS)

    Polk, James D.; Duncan, James M.; Davis, Jeffrey R.; Williams, Richard S.; Lindgren, Kjell N.; Mathes, Karen L.; Gillis, David B.; Scheuring, Richard A.

    2009-01-01

    From May of 1973 to February of 1974, the National Aeronautics and Space Administration conducted a series of three manned missions to the Skylab space station, a voluminous vehicle largely descendant of Apollo hardware, and America s first space station. The crewmembers of these three manned missions spent record breaking durations of time in microgravity (28 days, 59 days and 84 days, respectively) and gave the U.S. space program its first experiences with long-duration space flight. The program overcame a number of obstacles (including a significant crippling of the Skylab vehicle) to conduct a lauded scientific program that encompassed life sciences, astronomy, solar physics, materials sciences and Earth observation. Skylab has more to offer than the results of its scientific efforts. The operations conducted by the Skylab crews and ground personnel represent a rich legacy of operational experience. As we plan for our return to the moon and the subsequent manned exploration of Mars, it is essential to utilize the experiences and insights of those involved in previous programs. Skylab and SMEAT (Skylab Medical Experiments Altitude Test) personnel have unique insight into operations being planned for the Constellation Program, such as umbilical extra-vehicular activity and water landing/recovery of long-duration crewmembers. Skylab was also well known for its habitability and extensive medical suite; topics which deserve further reflection as we prepare for lunar habitation and missions beyond Earth s immediate sphere of influence. The Skylab Medical Operations Summit was held in January 2008. Crewmembers and medical personnel from the Skylab missions and SMEAT were invited to participate in a two day summit with representatives from the Constellation Program medical operations community. The purpose of the summit was to discuss issues pertinent to future Constellation operations. The purpose of this document is to formally present the recommendations of the

  9. Performance evaluation of ZnO–CuO hetero junction solid state room temperature ethanol sensor

    SciTech Connect

    Yu, Ming-Ru; Suyambrakasam, Gobalakrishnan; Wu, Ren-Jang; Chavali, Murthy

    2012-07-15

    Graphical abstract: Sensor response (resistance) curves of time were changed from 150 ppm to 250 ppm alcohol concentration of ZnO–CuO 1:1. The response and recovery times were measured to be 62 and 83 s, respectively. The sensing material ZnO–CuO is a high potential alcohol sensor which provides a simple, rapid and highly sensitive alcohol gas sensor operating at room temperature. Highlights: ► The main advantages of the ethanol sensor are as followings. ► Novel materials ZnO–CuO ethanol sensor. ► The optimized ZnO–CuO hetero contact system. ► A good sensor response and room working temperature (save energy). -- Abstract: A semiconductor ethanol sensor was developed using ZnO–CuO and its performance was evaluated at room temperature. Hetero-junction sensor was made of ZnO–CuO nanoparticles for sensing alcohol at room temperature. Nanoparticles were prepared by hydrothermal method and optimized with different weight ratios. Sensor characteristics were linear for the concentration range of 150–250 ppm. Composite materials of ZnO–CuO were characterized using X-ray diffraction (XRD), temperature-programmed reduction (TPR) and high-resolution transmission electron microscopy (HR-TEM). ZnO–CuO (1:1) material showed maximum sensor response (S = R{sub air}/R{sub alcohol}) of 3.32 ± 0.1 toward 200 ppm of alcohol vapor at room temperature. The response and recovery times were measured to be 62 and 83 s, respectively. The linearity R{sup 2} of the sensor response was 0.9026. The sensing materials ZnO–CuO (1:1) provide a simple, rapid and highly sensitive alcohol gas sensor operating at room temperature.

  10. Preliminary assessment of the impact of incorporating a detailed algorithm for the effects of nuclear irradiation on combat crew performance into the Janus combat simulation

    SciTech Connect

    Warshawsky, A.S.; Uzelac, M.J.; Pimper, J.E. )

    1989-05-01

    The Crew III algorithm for assessing time and dose dependent combat crew performance subsequent to nuclear irradiation was incorporated into the Janus combat simulation system. Battle outcomes using this algorithm were compared to outcomes based on the currently used time-independent cookie-cutter'' assessment methodology. The results illustrate quantifiable differences in battle outcome between the two assessment techniques. Results suggest that tactical nuclear weapons are more effective than currently assumed if performance degradation attributed to radiation doses between 150 to 3000 rad are taken into account. 6 refs., 9 figs.

  11. Room temperature, air crystallized perovskite film for high performance solar cells

    SciTech Connect

    Dubey, Ashish; Kantack, Nicholas; Adhikari, Nirmal; Reza, Khan Mamun; Venkatesan, Swaminathan; Kumar, Mukesh; Khatiwada, Devendra; Darling, Seth; Qiao, Qiquan

    2016-05-31

    For the first time, room temperature heating free growth and crystallization of perovskite films in ambient air without the use of thermal annealing is reported. Highly efficient perovskite nanorod-based solar cells were made using ITO/PEDOT:PSS/CH3NH3PbI3 nanorods/PC60BM/rhodamine/Ag. All the layers except PEDOT:PSS were processed at room temperature thereby eliminating the need for thermal treatment. Perovskite films were spin coated inside a N-2 filled glovebox and immediately were taken outside in air having 40% relative humidity (RH). Exposure to humid air was observed to promote the crystallization process in perovskite films even at room temperature. Perovskite films kept for 5 hours in ambient air showed nanorod-like morphology having high crystallinity, with devices exhibiting the highest PCE of 16.83%, which is much higher than the PCE of 11.94% for traditional thermally annealed perovskite film based devices. Finally, it was concluded that moisture plays an important role in room temperature crystallization of pure perovskite nanorods, showing improved optical and charge transport properties, which resulted in high performance solar cells.

  12. Room temperature, air crystallized perovskite film for high performance solar cells

    DOE PAGES

    Dubey, Ashish; Kantack, Nicholas; Adhikari, Nirmal; ...

    2016-05-31

    For the first time, room temperature heating free growth and crystallization of perovskite films in ambient air without the use of thermal annealing is reported. Highly efficient perovskite nanorod-based solar cells were made using ITO/PEDOT:PSS/CH3NH3PbI3 nanorods/PC60BM/rhodamine/Ag. All the layers except PEDOT:PSS were processed at room temperature thereby eliminating the need for thermal treatment. Perovskite films were spin coated inside a N-2 filled glovebox and immediately were taken outside in air having 40% relative humidity (RH). Exposure to humid air was observed to promote the crystallization process in perovskite films even at room temperature. Perovskite films kept for 5 hours inmore » ambient air showed nanorod-like morphology having high crystallinity, with devices exhibiting the highest PCE of 16.83%, which is much higher than the PCE of 11.94% for traditional thermally annealed perovskite film based devices. Finally, it was concluded that moisture plays an important role in room temperature crystallization of pure perovskite nanorods, showing improved optical and charge transport properties, which resulted in high performance solar cells.« less

  13. Room temperature, air crystallized perovskite film for high performance solar cells

    SciTech Connect

    Dubey, Ashish; Kantack, Nicholas; Adhikari, Nirmal; Reza, Khan Mamun; Venkatesan, Swaminathan; Kumar, Mukesh; Khatiwada, Devendra; Darling, Seth; Qiao, Qiquan

    2016-05-31

    For the first time, room temperature heating free growth and crystallization of perovskite films in ambient air without the use of thermal annealing is reported. Highly efficient perovskite nanorod-based solar cells were made using ITO/PEDOT:PSS/CH3NH3PbI3 nanorods/PC60BM/rhodamine/Ag. All the layers except PEDOT:PSS were processed at room temperature thereby eliminating the need for thermal treatment. Perovskite films were spin coated inside a N-2 filled glovebox and immediately were taken outside in air having 40% relative humidity (RH). Exposure to humid air was observed to promote the crystallization process in perovskite films even at room temperature. Perovskite films kept for 5 hours in ambient air showed nanorod-like morphology having high crystallinity, with devices exhibiting the highest PCE of 16.83%, which is much higher than the PCE of 11.94% for traditional thermally annealed perovskite film based devices. Finally, it was concluded that moisture plays an important role in room temperature crystallization of pure perovskite nanorods, showing improved optical and charge transport properties, which resulted in high performance solar cells.

  14. Integrative Review of Instruments to Measure Team Performance During Neonatal Resuscitation Simulations in the Birthing Room.

    PubMed

    Clary-Muronda, Valerie; Pope, Charlene

    2016-01-01

    To identify instruments appropriate to measure interprofessional team performance in neonatal resuscitation (NR), describe the validity and reliability of extant NR instruments, and determine instruments for use in interprofessional birthing room NR simulations. The Cumulative Index to Nursing and Allied Health Literature, Ovid MEDLINE, Proquest, ScienceDirect, PubMed, and Scopus databases were searched. We used inclusion and exclusion criteria and screened 641 abstracts from January 2000 through December 2014 for relevance to the research question. We reviewed 78 full-text primary research publications in English and excluded 37 publications not specific to pediatrics or neonatology. After in-depth review of the 41 studies that remained, we excluded additional studies if they did not have an interprofessional focus, include psychometric information, or include a measurement instrument. Ten publications met the inclusion criteria. Studies were reviewed, categorized, and scored to identify instruments to measure interprofessional team performance in simulations of birthing room NR. A social ecological model was used as a guide framework to identify multiple influencing factors at various levels that affect team performance. Ten instruments with documentation of validity and reliability for technical competence and team processes in interprofessional birthing room NR teams were identified. Extant instruments rarely address the multiple factors that may impede interprofessional team performance in birthing room NR. It is necessary for researchers to engage in rigorous psychometric testing of measurement instruments to ensure their validity and reliability for interprofessional NR teams and consider tests or updates (if necessary) of extant instruments rather than the development of new instruments. Copyright © 2016 AWHONN, the Association of Women’s Health, Obstetric and Neonatal Nurses. Published by Elsevier Inc. All rights reserved.

  15. Enhanced performance of room-temperature-grown epitaxial thin films of vanadium dioxide

    SciTech Connect

    Nag, Joyeeta; Payzant, E Andrew; More, Karren Leslie; HaglundJr., Richard F

    2011-01-01

    Stoichiometric vanadium dioxide in bulk, thin film and nanostructured forms exhibits an insulator-to-metal transition (IMT) accompanied by a structural phase transformation, induced by temperature, light, electric fields, doping or strain. We have grown epitaxial films of vanadium dioxide on c-plane (0001) of sapphire using two different procedures involving (1) room temperature growth followed by annealing and (2) direct high temperature growth. Strain at the film-substrate interface due to growth at different temperatures leads to interesting differences in morphologies and phase transition characteristics. Comparison of the morphologies and switching characteristics of the two films shows that contrary to conventional wisdom, the room-temperature grown films have smoother, more continuous morphologies and better switching performance, consistent with the behavior of epitaxially grown semiconductors.

  16. Crew workload-management strategies - A critical factor in system performance

    NASA Technical Reports Server (NTRS)

    Hart, Sandra G.

    1989-01-01

    This paper reviews the philosophy and goals of the NASA/USAF Strategic Behavior/Workload Management Program. The philosophical foundation of the program is based on the assumption that an improved understanding of pilot strategies will clarify the complex and inconsistent relationships observed among objective task demands and measures of system performance and pilot workload. The goals are to: (1) develop operationally relevant figures of merit for performance, (2) quantify the effects of strategic behaviors on system performance and pilot workload, (3) identify evaluation criteria for workload measures, and (4) develop methods of improving pilots' abilities to manage workload extremes.

  17. Pushover, Response Spectrum and Time History Analyses of Safe Rooms in a Poor Performance Masonry Building

    SciTech Connect

    Mazloom, M.

    2008-07-08

    The idea of safe room has been developed for decreasing the earthquake casualties in masonry buildings. The information obtained from the previous ground motions occurring in seismic zones expresses the lack of enough safety of these buildings against earthquakes. For this reason, an attempt has been made to create some safe areas inside the existing masonry buildings, which are called safe rooms. The practical method for making these safe areas is to install some prefabricated steel frames in some parts of the existing structure. These frames do not carry any service loads before an earthquake. However, if a devastating earthquake happens and the load bearing walls of the building are destroyed, some parts of the floors, which are in the safe areas, will fall on the roof of the installed frames and the occupants who have sheltered there will survive. This paper presents the performance of these frames located in a destroying three storey masonry building with favorable conclusions. In fact, the experimental pushover diagram of the safe room located at the ground-floor level of this building is compared with the analytical results and it is concluded that pushover analysis is a good method for seismic performance evaluation of safe rooms. For time history analysis the 1940 El Centro, the 2003 Bam, and the 1990 Manjil earthquake records with the maximum peak accelerations of 0.35g were utilized. Also the design spectrum of Iranian Standard No. 2800-05 for the ground kind 2 is used for response spectrum analysis. The results of time history, response spectrum and pushover analyses show that the strength and displacement capacity of the steel frames are adequate to accommodate the distortions generated by seismic loads and aftershocks properly.

  18. Li-Ion Pouch Cell Designs; Performance and Issues for Crewed Vehicle Applications

    NASA Technical Reports Server (NTRS)

    Darcy, Eric

    2011-01-01

    The purpose of this work: Are there any performance show stoppers for spinning them into spacecraft applications? (1) Are the seals compatible with extended vacuum operations? (2) How uniformly and cleanly are they made? (3) How durable are they?

  19. Crew procedures development techniques

    NASA Technical Reports Server (NTRS)

    Arbet, J. D.; Benbow, R. L.; Hawk, M. L.; Mangiaracina, A. A.; Mcgavern, J. L.; Spangler, M. C.

    1975-01-01

    The study developed requirements, designed, developed, checked out and demonstrated the Procedures Generation Program (PGP). The PGP is a digital computer program which provides a computerized means of developing flight crew procedures based on crew action in the shuttle procedures simulator. In addition, it provides a real time display of procedures, difference procedures, performance data and performance evaluation data. Reconstruction of displays is possible post-run. Data may be copied, stored on magnetic tape and transferred to the document processor for editing and documentation distribution.

  20. STS-99 Crew Activities Report/Flight Day 1 Highlights

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Live footage shows the crew, Commander Kevin R. Kregel, Pilot Dominic L. Pudwill Gorie, and Mission Specialists Janet L. Kavandi, Janice E. Voss, Mamoru Mohri and Gerhard P.J. Thiele, seated in the dining room with the traditional cake. The crew is seen performing various pre-launch activities including suit-up, walk out to the Astro-van, and strap-in into the vehicle. Also seen are the retractions of the orbiter access arm and the gaseous oxygen mint hood, main engine start, booster ignition, liftoff, and separation of the solid rocket boosters. The Red Team (first of the dual shift crew) includes Kregel, Kavandi, and Thiele, who are shown conducting jet thruster firings, activating radar instruments, and deploying the boom (mass).

  1. PPP effectiveness study. [automatic procedures recording and crew performance monitoring system

    NASA Technical Reports Server (NTRS)

    Arbet, J. D.; Benbow, R. L.

    1976-01-01

    This design note presents a study of the Procedures and Performance Program (PPP) effectiveness. The intent of the study is to determine manpower time savings and the improvements in job performance gained through PPP automated techniques. The discussion presents a synopsis of PPP capabilities and identifies potential users and associated applications, PPP effectiveness, and PPP applications to other simulation/training facilities. Appendix A provides a detailed description of each PPP capability.

  2. Crew Activity Analyzer

    NASA Technical Reports Server (NTRS)

    Murray, James; Kirillov, Alexander

    2008-01-01

    The crew activity analyzer (CAA) is a system of electronic hardware and software for automatically identifying patterns of group activity among crew members working together in an office, cockpit, workshop, laboratory, or other enclosed space. The CAA synchronously records multiple streams of data from digital video cameras, wireless microphones, and position sensors, then plays back and processes the data to identify activity patterns specified by human analysts. The processing greatly reduces the amount of time that the analysts must spend in examining large amounts of data, enabling the analysts to concentrate on subsets of data that represent activities of interest. The CAA has potential for use in a variety of governmental and commercial applications, including planning for crews for future long space flights, designing facilities wherein humans must work in proximity for long times, improving crew training and measuring crew performance in military settings, human-factors and safety assessment, development of team procedures, and behavioral and ethnographic research. The data-acquisition hardware of the CAA (see figure) includes two video cameras: an overhead one aimed upward at a paraboloidal mirror on the ceiling and one mounted on a wall aimed in a downward slant toward the crew area. As many as four wireless microphones can be worn by crew members. The audio signals received from the microphones are digitized, then compressed in preparation for storage. Approximate locations of as many as four crew members are measured by use of a Cricket indoor location system. [The Cricket indoor location system includes ultrasonic/radio beacon and listener units. A Cricket beacon (in this case, worn by a crew member) simultaneously transmits a pulse of ultrasound and a radio signal that contains identifying information. Each Cricket listener unit measures the difference between the times of reception of the ultrasound and radio signals from an identified beacon

  3. High performance hydrogen storage from Be-BTB metal-organic framework at room temperature.

    PubMed

    Lim, Wei-Xian; Thornton, Aaron W; Hill, Anita J; Cox, Barry J; Hill, James M; Hill, Matthew R

    2013-07-09

    The metal-organic framework beryllium benzene tribenzoate (Be-BTB) has recently been reported to have one of the highest gravimetric hydrogen uptakes at room temperature. Storage at room temperature is one of the key requirements for the practical viability of hydrogen-powered vehicles. Be-BTB has an exceptional 298 K storage capacity of 2.3 wt % hydrogen. This result is surprising given that the low adsorption enthalpy of 5.5 kJ mol(-1). In this work, a combination of atomistic simulation and continuum modeling reveals that the beryllium rings contribute strongly to the hydrogen interaction with the framework. These simulations are extended with a thermodynamic energy optimization (TEO) model to compare the performance of Be-BTB to a compressed H2 tank and benchmark materials MOF-5 and MOF-177 in a MOF-based fuel cell. Our investigation shows that none of the MOF-filled tanks satisfy the United States Department of Energy (DOE) storage targets within the required operating temperatures and pressures. However, the Be-BTB tank delivers the most energy per volume and mass compared to the other material-based storage tanks. The pore size and the framework mass are shown to be contributing factors responsible for the superior room temperature hydrogen adsorption of Be-BTB.

  4. A general route toward complete room temperature processing of printed and high performance oxide electronics.

    PubMed

    Baby, Tessy T; Garlapati, Suresh K; Dehm, Simone; Häming, Marc; Kruk, Robert; Hahn, Horst; Dasgupta, Subho

    2015-03-24

    Critical prerequisites for solution-processed/printed field-effect transistors (FETs) and logics are excellent electrical performance including high charge carrier mobility, reliability, high environmental stability and low/preferably room temperature processing. Oxide semiconductors can often fulfill all the above criteria, sometimes even with better promise than their organic counterparts, except for their high process temperature requirement. The need for high annealing/curing temperatures renders oxide FETs rather incompatible to inexpensive, flexible substrates, which are commonly used for high-throughput and roll-to-roll additive manufacturing techniques, such as printing. To overcome this serious limitation, here we demonstrate an alternative approach that enables completely room-temperature processing of printed oxide FETs with device mobility as large as 12.5 cm(2)/(V s). The key aspect of the present concept is a chemically controlled curing process of the printed nanoparticle ink that provides surprisingly dense thin films and excellent interparticle electrical contacts. In order to demonstrate the versatility of this approach, both n-type (In2O3) and p-type (Cu2O) oxide semiconductor nanoparticle dispersions are prepared to fabricate, inkjet printed and completely room temperature processed, all-oxide complementary metal oxide semiconductor (CMOS) invertors that can display significant signal gain (∼18) at a supply voltage of only 1.5 V.

  5. Control-room operator alertness and performance in nuclear power plants

    SciTech Connect

    Baker, T.l.; Campbell, S.C.; Linder, K.D.; Moore-Ede, M.C . )

    1990-02-01

    All industries requiring round-the-clock operation must deal with the potential problem of impaired alertness, especially among those who work night shifts. In the nuclear power industry, maintaining optimal alertness and performance of control room operators at all times of day is critical. Many of the toot causes of reduced alertness are straightforward and can be easily remedied with tangible solutions; this manual both discusses the reasons for the problem and suggests solutions. The manual surveys factors that influence operator alertness and performance, including shift schedules, caffeine and alcohol use, diet and family lifestyle factors, the control room enviornment, staffing and overtime practices, and work task design. Specific recommendations are made in each of these areas. The project team, consisting of experts on managing round-the-clock operations and scientists who study human alertness and performance, prepared this manual using the latest scientific research and direct input from shift supervisors and operators via interviews, on-site observation, and questionnaires distributed to every nuclear power station. The material contained within is relevant to shiftwork managers, shift supervisors, and operators, each of whom plays a vital role in maintaining optimal alertness and performance on the job. 90 refs., 35 figs.

  6. Motion Sickness, Crew Performance, and Reduced Manning in High-Speed Vessel Operations

    DTIC Science & Technology

    2005-12-01

    MSSS Motion Sickness Symptomology Severity NBDL National Biodynamics Laboratory xiv NSWC Naval Surface Warfare Center PAQ Performance... carbonate stones in the otoliths. When there is a linear acceleration, the stones exert a force on the hair cells that in turn send a signal to the...calculations were not degraded (Wiker & Pepper, 1978). Dobie (2000) discussed research that was conducted at the National Biodynamic Laboratory (NBDL

  7. Performance predictions for a room temperature, Ericsson cycle, magnetic heat pump

    NASA Astrophysics Data System (ADS)

    Purnell, J. G.

    1982-05-01

    The performance potential of a room temperature magnetic heat pump utilizing Gadolinium and operating on an Ericsson Cycle was investigated at magnetic flux densities of 2 and 7-Tesla which represent the upper limits of conventional and superconducting electromagnetics, respectively. At a coefficient of performance of 5, a 7-Tesla system would provide a cooling capacity of at best 1200 BTU per hour per pound of Gadolinium while a 2-Tesla system would operate at approximately 130 BTU per hour per pound of Gadolinium. Magnetic circuit efficiency was not determined but must be high (95-percent or better) in order for the magnetic heat pump performance to compete with conventional cooling systems. It is unlikely the magnetic heat pump investigated could approach the performance and compactness of the conventional cooling systems unless field strengths much greater than 7-Tesla are possible.

  8. Design of a multisystem remote maintenance control room

    SciTech Connect

    Draper, J.V.; Handel, S.J.; Kring, C.T.; Kawatsuma, S.

    1988-01-01

    The Remote Systems Development Section of the Consolidated Fuel Reprocessing Program at the Oak Ridge National Laboratory (ORNL) and Japan's Power Reactor and Nuclear Fuel Development Corporation (PNC) recently collaborated in the development of a control room concept for remote operations. This report describes design methods and the resulting control room concept. The design project included five stages. The first was compilation of a complete function list; functions are tasks performed by operators in the control room while operating equipment located in the remote area. The second step was organization of the function list into ''function groups;'' function groups are sets of functions that operate one piece of equipment. The third stage was determination of crew size and requirements for supervision. The fourth stage was development of conceptual designs of displays and controls. The fifth stage was development of plans for placement of crew stations within the control room. 5 figs., 1 tab.

  9. Effective Crew Operations: An Analysis of Technologies for Improving Crew Activities and Medical Procedures

    NASA Technical Reports Server (NTRS)

    Harvey, Craig

    2005-01-01

    NASA's vision for space exploration (February 2004) calls for development of a new crew exploration vehicle, sustained lunar operations, and human exploration of Mars. To meet the challenges of planned sustained operations as well as the limited communications between Earth and the crew (e.g., Mars exploration), many systems will require crews to operate in an autonomous environment. It has been estimated that once every 2.4 years a major medical issue will occur while in space. NASA's future travels, especially to Mars, will begin to push this timeframe. Therefore, now is the time for investigating technologies and systems that will support crews in these environments. Therefore, this summer two studies were conducted to evaluate the technology and systems that may be used by crews in future missions. The first study evaluated three commercial Indoor Positioning Systems (IPS) (Versus, Ekahau, and Radianse) that can track equipment and people within a facility. While similar to Global Positioning Systems (GPS), the specific technology used is different. Several conclusions can be drawn from the evaluation conducted, but in summary it is clear that none of the systems provides a complete solution in meeting the tracking and technology integration requirements of NASA. From a functional performance (e.g., system meets user needs) evaluation perspective, Versus performed fairly well on all performance measures as compared to Ekahau and Radianse. However, the system only provides tracking at the room level. Thus, Versus does not provide the level of fidelity required for tracking assets or people for NASA requirements. From an engineering implementation perspective, Ekahau is far simpler to implement that the other two systems because of its wi-fi design (e.g., no required runs of cable). By looking at these two perspectives, one finds there was no clear system that met NASA requirements. Thus it would be premature to suggest that any of these systems are ready for

  10. Hollow V₂O₅ Nanoassemblies for High-Performance Room-Temperature Hydrogen Sensors.

    PubMed

    Wang, Ying-Ting; Whang, Wha-Tzong; Chen, Chun-Hua

    2015-04-29

    Nanostructured oxides with characteristic morphologies are essential building blocks for high-performance gas-sensing devices. We describe the high-yield fabrication of a series of functionalized V2O5 nanoassemblies through a facile polyol approach with specific varieties of polyvinylpyrrolidone. The synthesized V2O5 nanoassemblies consisting of tiny one-dimensional nanoblocks with the absence of any extrinsic catalysts exhibit distinct hemispherical or spherical hollow morphologies and operate as room-temperature hydrogen sensors with remarkable sensitivities and responses.

  11. Anaerobic digestion in mesophilic and room temperature conditions: Digestion performance and soil-borne pathogen survival.

    PubMed

    Chen, Le; Jian, Shanshan; Bi, Jinhua; Li, Yunlong; Chang, Zhizhou; He, Jian; Ye, Xiaomei

    2016-05-01

    Tomato plant waste (TPW) was used as the feedstock of a batch anaerobic reactor to evaluate the effect of anaerobic digestion on Ralstonia solanacearum and Phytophthora capsici survival. Batch experiments were carried out for TS (total solid) concentrations of 2%, 4% and 6% respectively, at mesophilic (37±1°C) and room (20-25°C) temperatures. Results showed that higher digestion performance was achieved under mesophilic digestion temperature and lower TS concentration conditions. The biogas production ranged from 71 to 416L/kg VS (volatile solids). The inactivation of anaerobic digestion tended to increase as digestion performance improved. The maximum log copies reduction of R. solanacearum and P. capsici detected by quantitative PCR (polymerase chain reaction) were 3.80 and 4.08 respectively in reactors with 4% TS concentration at mesophilic temperatures. However, both in mesophilic and room temperature conditions, the lowest reduction of R. solanacearum was found in the reactors with 6% TS concentration, which possessed the highest VFA (volatile fatty acid) concentration. These findings indicated that simple accumulation of VFAs failed to restrain R. solanacearum effectively, although the VFAs were considered poisonous. P. capsici was nearly completely dead under all conditions. Based on the digestion performance and the pathogen survival rate, a model was established to evaluate the digestate biosafety.

  12. Dry lab practice leads to improved laparoscopic performance in the operating room.

    PubMed

    Stelzer, Marie K; Abdel, Matthew P; Sloan, Michael P; Gould, Jon C

    2009-06-01

    Research has demonstrated that practice in surgical simulators leads to improved performance in that simulator. Our hypothesis is that skills acquired in simulators are transferable to the operating room. Twenty-three laparoscopically naïve surgical interns performed two standardized tasks in a simulator: pegboard transfer and intracorporeal knot tying. Performance was measured using a validated scoring system. On the same day as this initial assessment, subjects were videotaped performing two tasks in a live porcine model: running the small bowel and intracorporeal knot tying. Performance in the porcine model was measured using a modified version of a validated skills assessment tool by two blinded experts. Following a 6-wk proficiency-based dry lab laparoscopic training course, task performance was re-evaluated. No interval live operative laparoscopic experience occurred between the first and second assessment. After training, mean pegboard transfer scores increased from 118.7 to 181.8 (theoretical maximum = 300; P < 0.01). Dry lab knot tying scores increased from 294.7 to 459.0 (theoretical maximum = 600, P < 0.01). In the porcine model, scores for the bowel running task increased from 8.5 to 13.5 (maximum score = 20 for both porcine tasks, P < 0.01). Knot tying scores increased from 7.3 to 14.3 (P < 0.01). Practice in a simulator leads to improved performance in that simulator and in a live operative model. We believe that this is evidence that laparoscopic skills developed in a dry laboratory setting are transferable to the operating room.

  13. Commercial Crew Launch America

    NASA Technical Reports Server (NTRS)

    Thon, Jeffrey S.

    2016-01-01

    This presentation is intended to discuss NASA's long term human exploration goals of our solar system. The emphasis will be on how our CCP (Commercial Crew Program) supports our space bound human exploration goals by encouraging commercial entities to perform missions to LEO (Low Earth Orbit), thus allowing NASA to focus on beyond LEO human exploration missions.

  14. Commercial Crew Launch America

    NASA Technical Reports Server (NTRS)

    Thon, Jeffrey S.

    2016-01-01

    This presentation is intended to discuss NASA's long term human exploration goals of our solar system. The emphasis will be on how our CCP (Commercial Crew Program) supports our space bound human exploration goals by encouraging commercial entities to perform missions to LEO (Low Earth Orbit), thus allowing NASA to focus on beyond LEO human exploration missions.

  15. Developing Emergency Room Key Performance Indicators: What to Measure and Why Should We Measure It?

    PubMed

    Khalifa, Mohamed; Zabani, Ibrahim

    2016-01-01

    Emergency Room (ER) performance has been a timely topic for both healthcare practitioners and researchers. King Faisal Specialist Hospital and Research Center, Saudi Arabia worked on developing a comprehensive set of KPIs to monitor, evaluate and improve the performance of the ER. A combined approach using quantitative and qualitative methods was used to collect and analyze the data. 34 KPIs were developed and sorted into the three components of the ER patient flow model; input, throughput and output. Input indicators included number and acuity of ER patients, patients leaving without being seen and revisit rates. Throughput indicators included number of active ER beds, ratio of ER patients to ER staff and the length of stay including waiting time and treatment time. The turnaround time of supportive services, such as lab, radiology and medications, were also included. Output indicators include boarding time and available hospital beds, ICU beds and patients waiting for admission.

  16. Performance Improvement of R 410A Room Air Conditioner by Vapor Injection Refrigeration Cycle Using Scroll Compressor

    NASA Astrophysics Data System (ADS)

    Nakamura, Hiroo; Daisaka, Hisashi; Yokoyama, Hidenori; Nonaka, Masayuki; Saito, Kiyoshi

    The vapor injection refrigeration cycle using the scroll compressor driven by inverter was investigated to improve the performance of room air conditioner with R 410A. One injection hole was bored on a fixed scroll plate, and through this hole the vapor refrigeration is injected into two compression rooms of a scroll compressor at different time. Then the pressure change of the compression room and the performance of vapor injection refrigeration cycle are calculated. And the performance of the room air conditioner using vapor injection refrigeration cycle was measured. As the result, the cooling/heating compressor input was decreased to 7.4/3.2 % at capacity 4.0/5.9 kW, and the heating capacity at outdoor temperature -15 °C was increased to 11.9 %.

  17. Feasibility Assessment of Performing Surgery in a Deployable Medical System Operating Room

    DTIC Science & Technology

    2002-05-01

    instance, frequent hand washing has been shown to significantly lessen the incidence of nosocomial infections . In addition, improved operating room...Room Nurse : A registered nurse who works in an operating room. Responsible for the clinical and technical knowledge of both scrub and circulating...risk management. 26 Criteria included the following: noise exposure, nosocomial infections , environmental controls, air exchanges, and electrical

  18. Benefits of Advanced Control Room Technologies: Phase One Upgrades to the HSSL, Research Plan, and Performance Measures

    SciTech Connect

    Le Blanc, Katya; Joe, Jeffrey; Rice, Brandon; Ulrich, Thomas; Boring, Ronald

    2015-05-01

    Control Room modernization is an important part of life extension for the existing light water reactor fleet. None of the 99 currently operating commercial nuclear power plants in the U.S. has completed a full-scale control room modernization to date. A full-scale modernization might, for example, entail replacement of all analog panels with digital workstations. Such modernizations have been undertaken successfully in upgrades in Europe and Asia, but the U.S. has yet to undertake a control room upgrade of this magnitude. Instead, nuclear power plant main control rooms for the existing commercial reactor fleet remain significantly analog, with only limited digital modernizations. Previous research under the U.S. Department of Energy’s Light Water Reactor Sustainability Program has helped establish a systematic process for control room upgrades that support the transition to a hybrid control room. While the guidance developed to date helps streamline the process of modernization and reduce costs and uncertainty associated with introducing digital control technologies into an existing control room, these upgrades do not achieve the full potential of newer technologies that might otherwise enhance plant and operator performance. The aim of the control room benefits research is to identify previously overlooked benefits of modernization, identify candidate technologies that may facilitate such benefits, and demonstrate these technologies through human factors research. This report describes the initial upgrades to the HSSL and outlines the methodology for a pilot test of the HSSL configuration.

  19. Risk Factors for Return to the Operating Room after Resident-Performed Cataract Surgery.

    PubMed

    Menda, Shivali A; Driver, Todd H; Neiman, Alexandra E; Blumberg, Seth; Naseri, Ayman; Stewart, Jay M

    2016-09-29

    Investigate risk factors for unplanned return to the operating room after resident-performed cataract surgery. Retrospective case-control study. Institutional. Study population: All patients with reoperation within 90 days of resident-performed phacoemulsification were matched to four control eyes which had surgery within 30 days of the reoperation at the same institution. Billing codes were used to identify all patients who underwent resident-performed intended phacoemulsification with intraocular lens placement from January 2005 to December 2010. Investigated risk factors for reoperation included cataract characteristics and preexisting ocular co-morbidities, including diabetic retinopathy, retinal detachment history, glaucoma, corneal pathology, and uveitis. Additional preoperative risk factors studied included resident training year, history of tamsulosin use, phacodonesis, pupillary dilation, presence of pseudoexfoliation, myopia, history of trauma, visual acuity, and monocular status. Intraoperative variables were the use of iris expansion devices, use of capsular stain, attending type, incision type, use of sutures, vitreous loss, anesthesia type, and phacoemulsification technique. There were 67 returns to the operating room (i.e., cases) over five years that were assigned to 268 control eyes. In preoperative multivariate analysis, phacoemulsification done by a first- or second-year resident (OR 3.2, 95% CI: 1.7-6.0, p < 0.001) was associated with an increased risk of reoperation. In postoperative multivariate analysis, only the use of the divide-and-conquer technique (OR 4.0, 95% CI:1.7-9.2, p = 0.001) was associated with an increased risk of reoperation. Phacoemulsification done by a junior resident or using the divide-and-conquer technique had the highest risk of reoperation.

  20. Performance assessment of an RFID system for automatic surgical sponge detection in a surgery room.

    PubMed

    Dinis, H; Zamith, M; Mendes, P M

    2015-01-01

    A retained surgical instrument is a frequent incident in medical surgery rooms all around the world, despite being considered an avoidable mistake. Hence, an automatic detection solution of the retained surgical instrument is desirable. In this paper, the use of millimeter waves at the 60 GHz band for surgical material RFID purposes is evaluated. An experimental procedure to assess the suitability of this frequency range for short distance communications with multiple obstacles was performed. Furthermore, an antenna suitable to be incorporated in surgical materials, such as sponges, is presented. The antenna's operation characteristics are evaluated as to determine if it is adequate for the studied application over the given frequency range, and under different operating conditions, such as varying sponge water content.

  1. Record performance of electrical injection sub-wavelength metallic-cavity semiconductor lasers at room temperature.

    PubMed

    Ding, K; Hill, M T; Liu, Z C; Yin, L J; van Veldhoven, P J; Ning, C Z

    2013-02-25

    We demonstrate a continuous wave (CW) sub-wavelength metallic-cavity semiconductor laser with electrical injection at room temperature (RT). Our metal-cavity laser with a cavity volume of 0.67λ3 (λ = 1591 nm) shows a linewidth of 0.5 nm at RT, which corresponds to a Q-value of 3182 compared to 235 of the cavity Q, the highest Q under lasing condition for RT CW operation of any sub-wavelength metallic-cavity laser. Such record performance provides convincing evidences of the feasibility of RT CW sub-wavelength metallic-cavity lasers, thus opening a wide range of practical possibilities of novel nanophotonic devices based on metal-semiconductor structures.

  2. [Failure to perform auto-test of anaesthesia machine at the opening of the operating room].

    PubMed

    Suria, S; Puizillout, J-M; Baguenard, P; Bourgain, J-L

    2010-12-01

    controls performed at the opening of the operating room include the anesthesia machine auto-test. Omitting the preoperative checklist is unsafe for the patient and increases the risk of possible breakdowns. The purpose of this study was to evaluate the incidence and the situations in which the auto-test of the machine was not performed at the opening of the operative room. from a database including 55 195 cases between 1st January 2002 and 31st July 2009, a query identified cases in which the auto-test of the anaesthesia machine was omitted and the cases in which anaesthesia was made in spite of the failure of this test. Clinical circumstances were analyzed and anaesthetist and/or nurse anaesthetist were identified from the computerized anaesthesia record. one hundred and ninety cases (1.24%) were identified. Seventy-three percent of the omissions of the auto-test occurred while on duty whereas 85% of the failures of the auto-test took place at the beginning of the scheduled program. Individual factor was identified since three anaesthesiologists out of 22 were responsible for 49% of omissions on duty and one nurse anesthetist was responsible for 18% of the use of a failed machine and 30% of the omission of the auto-test. the auto-test of the anesthesia machine was correctly made in most cases but there are still situations where the checklist wasn't carried out. Therefore, the human factor seems important and justifies to be taken into account. 2010 Elsevier Masson SAS. All rights reserved.

  3. Operating Room Performance Improves after Proficiency-Based Virtual Reality Cataract Surgery Training.

    PubMed

    Thomsen, Ann Sofia Skou; Bach-Holm, Daniella; Kjærbo, Hadi; Højgaard-Olsen, Klavs; Subhi, Yousif; Saleh, George M; Park, Yoon Soo; la Cour, Morten; Konge, Lars

    2017-04-01

    To investigate the effect of virtual reality proficiency-based training on actual cataract surgery performance. The secondary purpose of the study was to define which surgeons benefit from virtual reality training. Multicenter masked clinical trial. Eighteen cataract surgeons with different levels of experience. Cataract surgical training on a virtual reality simulator (EyeSi) until a proficiency-based test was passed. Technical performance in the operating room (OR) assessed by 3 independent, masked raters using a previously validated task-specific assessment tool for cataract surgery (Objective Structured Assessment of Cataract Surgical Skill). Three surgeries before and 3 surgeries after the virtual reality training were video-recorded, anonymized, and presented to the raters in random order. Novices (non-independently operating surgeons) and surgeons having performed fewer than 75 independent cataract surgeries showed significant improvements in the OR-32% and 38%, respectively-after virtual reality training (P = 0.008 and P = 0.018). More experienced cataract surgeons did not benefit from simulator training. The reliability of the assessments was high with a generalizability coefficient of 0.92 and 0.86 before and after the virtual reality training, respectively. Clinically relevant cataract surgical skills can be improved by proficiency-based training on a virtual reality simulator. Novices as well as surgeons with an intermediate level of experience showed improvement in OR performance score. Copyright © 2017 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.

  4. STS-61 Crew Insignia

    NASA Image and Video Library

    1993-10-01

    STS061-S-001 (1 Oct. 1993) --- Designed by the crew members, the STS-61 crew insignia depicts the astronaut symbol superimposed against the sky with the Earth underneath. Also seen are two circles representing the optical configuration of the Hubble Space Telescope (HST). Light is focused by reflections from a large primary mirror and a smaller secondary mirror. The light is analyzed by various instruments and, according to the crew members, "brings to us on Earth knowledge about planets, stars, galaxies and other celestial objects, allowing us to better understand the complex physical processes at work in the universe." The space shuttle Endeavour is also represented as the fundamental tool that allows the crew to perform the first servicing of the Hubble Space Telescope so its scientific deep space mission may be extended for several years to come. The overall design of the emblem, with lines converging to a high point, is also a symbolic representation of the large-scale Earth-based effort -- which involves space agencies, industry and the universities -- to reach goals of knowledge and perfection. The NASA insignia design for space shuttle flights is reserved for use by the astronauts and for other official use as the NASA Administrator may authorize. Public availability has been approved only in the forms of illustrations by the various news media. When and if there is any change in this policy, which is not anticipated, the change will be publicly announced. Photo credit: NASA

  5. Warm-up in a virtual reality environment improves performance in the operating room.

    PubMed

    Calatayud, Dan; Arora, Sonal; Aggarwal, Rajesh; Kruglikova, Irina; Schulze, Svend; Funch-Jensen, Peter; Grantcharov, Teodor

    2010-06-01

    To assess the impact of warm-up on laparoscopic performance in the operating room (OR). Implementation of simulation-based training into clinical practice remains limited despite evidence to show that the improvement in skills is transferred to the OR. The aim of this study was to evaluate the impact of a short virtual reality warm-up training program on laparoscopic performance in the OP. Sixteen Laparoscopic Cholecystectomies were performed by 8 surgeons in the OR. Participants were randomized to a group which received a preprocedure warm-up using a virtual reality simulator and no warm-up group. After the initial laparoscopic cholecystectomy all surgeons served as their own controls by performing another procedure with or without preoperative warm-up. All OR procedures were videotaped and assessed by 2 independent observers using the generic OSATS global rating scale (from 7 to 35). There was significantly better surgical performance on the laparoscopic Cholecystectomy following preoperative warm-up, median 28.5 (range = 18.5-32.0) versus median 19.25 (range = 15-31.5), P = 0.042. The results demonstrated excellent reliability of the assessment tool used (Cronbach's alpha = 0.92). This study showed a significant beneficial impact of warm-up on laparoscopic performance in the OP. The suggested program is short, easy to perform, and therefore realistic to implement in the daily life in a busy surgical department. This will potentially improve the procedural outcome and contribute to improved patient safety and better utilization of OR resources.

  6. STS-79 Pilot Terrence Wilcutt in White Room

    NASA Technical Reports Server (NTRS)

    1996-01-01

    STS-79 Pilot Terrence W. Wilcutt chats with white room closeout crew lead Rick Welty before climbing into the flight deck of the Space Shuttle Atlantis at Launch Pad 39A; at right is closeout crew member Jim Davis.

  7. STS-79 Pilot Terrence Wilcutt in White Room

    NASA Technical Reports Server (NTRS)

    1996-01-01

    STS-79 Pilot Terrence W. Wilcutt chats with white room closeout crew lead Rick Welty before climbing into the flight deck of the Space Shuttle Atlantis at Launch Pad 39A; at right is closeout crew member Jim Davis.

  8. Communication indices of crew coordination

    NASA Technical Reports Server (NTRS)

    Kanki, B. G.; Lozito, S.; Foushee, H. C.

    1989-01-01

    The relationship between communication patterns and performance in 10 two-person flightcrews is explored with the aim of identifying speech variations which differentiate low- and high-error full mission simulator flights. Verbal data, transcribed from the videotaped performances, are treated as interactive sequences of speech events in which statements spoken by one crewmember are considered within the context of the other crewmember's prior and subsequent speech. Specific speech patterns characterized each crew, but the overriding findings included: a) marked homogeneity of patterns characterizing low-error crews, interpreted as the adoption of a standard form of communicating, and b) heterogeneity of patterns characterizing high-error crews, interpreted as the relative absence of a conventionalized form. Because conventions are regularities which confirm the expectations of those involved, predictability of crewmember behavior should be greater when standard conventions are followed. We conclude that such a practice can facilitate the coordination process and enhance crew performance.

  9. Communication indices of crew coordination

    NASA Technical Reports Server (NTRS)

    Kanki, B. G.; Lozito, S.; Foushee, H. C.

    1989-01-01

    The relationship between communication patterns and performance in 10 two-person flightcrews is explored with the aim of identifying speech variations which differentiate low- and high-error full mission simulator flights. Verbal data, transcribed from the videotaped performances, are treated as interactive sequences of speech events in which statements spoken by one crewmember are considered within the context of the other crewmember's prior and subsequent speech. Specific speech patterns characterized each crew, but the overriding findings included: a) marked homogeneity of patterns characterizing low-error crews, interpreted as the adoption of a standard form of communicating, and b) heterogeneity of patterns characterizing high-error crews, interpreted as the relative absence of a conventionalized form. Because conventions are regularities which confirm the expectations of those involved, predictability of crewmember behavior should be greater when standard conventions are followed. We conclude that such a practice can facilitate the coordination process and enhance crew performance.

  10. Effects of Shift Work on Cognitive Performance, Sleep Quality, and Sleepiness among Petrochemical Control Room Operators

    PubMed Central

    Kazemi, Reza; Haidarimoghadam, Rashid; Golmohamadi, Rostam; Soltanian, Alireza; Zoghipaydar, Mohamad Reza

    2016-01-01

    Shift work is associated with both sleepiness and reduced performance. The aim of this study was to examine cognitive performance, sleepiness, and sleep quality among petrochemical control room shift workers. Sixty shift workers participated in this study. Cognitive performance was evaluated using a number of objective tests, including continuous performance test, n-back test, and simple reaction time test; sleepiness was measured using the subjective Karolinska Sleepiness Scale (KSS); and sleep quality was assessed using the Pittsburgh Sleep Quality Index (PSQI) questionnaire. ANCOVA, t-test, and repeated-measures ANOVA were applied for statistical analyses, and the significance level was set at p < 0.05. All variables related to cognitive performance, except for omission error, significantly decreased at the end of both day and night shifts (p < 0.0001). There were also significant differences between the day and night shifts in terms of the variables of omission error (p < 0.027) and commission error (p < 0.036). A significant difference was also observed between daily and nightly trends of sleepiness (p < 0.0001) so that sleepiness was higher for the night shift. Participants had low sleep quality on both day and night shifts, and there were significant differences between the day and night shifts in terms of subjective sleep quality and quantity (p < 0.01). Long working hours per shift result in fatigue, irregularities in the circadian rhythm and the cycle of sleep, induced cognitive performance decline at the end of both day and night shifts, and increased sleepiness in night shift. It, thus, seems necessary to take ergonomic measures such as planning for more appropriate shift work and reducing working hours. PMID:27103934

  11. Commerical Crew Astronauts Evaluate Crew Dragon Controls

    NASA Image and Video Library

    2017-01-10

    Astronaut Bob Behnken, work in a mock-up of the SpaceX Crew Dragon flight deck at the company's Hawthorne, California, headquarters as development of the crew systems continues for eventual missions to the International Space Station.

  12. KENNEDY SPACE CENTER, FLA. - In the Vehicle Assembly Building, Jim Landy, NDE specialist, performs flash thermography on flight crew lockers. He is screening the lockers for hidden damage underneath dings and dents that might occur during handling.

    NASA Image and Video Library

    2003-09-04

    KENNEDY SPACE CENTER, FLA. - In the Vehicle Assembly Building, Jim Landy, NDE specialist, performs flash thermography on flight crew lockers. He is screening the lockers for hidden damage underneath dings and dents that might occur during handling.

  13. Modeling strength data for CREW CHIEF

    NASA Technical Reports Server (NTRS)

    Mcdaniel, Joe W.

    1990-01-01

    The Air Force has developed CREW CHIEF, a computer-aided design (CAD) tool for simulating and evaluating aircraft maintenance to determine if the required activities are feasible. CREW CHIEF gives the designer the ability to simulate maintenance activities with respect to reach, accessibility, strength, hand tool operation, and materials handling. While developing the CREW CHIEF, extensive research was performed to describe workers strength capabilities for using hand tools and manual handling of objects. More than 100,000 strength measures were collected and modeled for CREW CHIEF. These measures involved both male and female subjects in the 12 maintenance postures included in CREW CHIEF. The data collection and modeling effort are described.

  14. KENNEDY SPACE CENTER, FLA. - In the Vehicle Assembly Building, Shuttle Launch Director Mike Leinbach, Center Director Jim Kennedy and NASA Vehicle Manager Scott Thurston unveil a plaque honoring “Columbia, the crew of STS-107, and their loved ones.” The site is the “Columbia room,” a permanent repository of the debris collected in the aftermath of the tragic accident Feb. 1, 2003, that claimed the orbiter and lives of the seven-member crew. The dedication of the plaque was made in front of the 40-member preservation team.

    NASA Image and Video Library

    2004-01-29

    KENNEDY SPACE CENTER, FLA. - In the Vehicle Assembly Building, Shuttle Launch Director Mike Leinbach, Center Director Jim Kennedy and NASA Vehicle Manager Scott Thurston unveil a plaque honoring “Columbia, the crew of STS-107, and their loved ones.” The site is the “Columbia room,” a permanent repository of the debris collected in the aftermath of the tragic accident Feb. 1, 2003, that claimed the orbiter and lives of the seven-member crew. The dedication of the plaque was made in front of the 40-member preservation team.

  15. 49 CFR 218.24 - One-person crew.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false One-person crew. 218.24 Section 218.24...-person crew. (a) An engineer working alone as a one-person crew shall not perform duties on, under, or... unattended, the one-member crew shall secure the locomotive as follows: (i) The throttle is in the IDLE...

  16. 49 CFR 218.24 - One-person crew.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false One-person crew. 218.24 Section 218.24...-person crew. (a) An engineer working alone as a one-person crew shall not perform duties on, under, or... unattended, the one-member crew shall secure the locomotive as follows: (i) The throttle is in the...

  17. Room temperature performance of mid-wavelength infrared InAsSb nBn detectors

    SciTech Connect

    Soibel, Alexander; Hill, Cory J.; Keo, Sam A.; Hoglund, Linda; Rosenberg, Robert; Kowalczyk, Robert; Khoshakhlagh, Arezou; Fisher, Anita; Ting, David Z.-Y.; Gunapala, Sarath D.

    2014-07-14

    In this work, we investigate the high temperature performance of mid-wavelength infrared InAsSb-AlAsSb nBn detectors with cut-off wavelengths near 4.5 μm. The quantum efficiency of these devices is 35% without antireflection coatings and does not change with temperature in the 77–325 K temperature range, indicating potential for room temperature operation. The current generation of nBn detectors shows an increase of operational bias with temperature, which is attributed to a shift in the Fermi energy level in the absorber. Analysis of the device performance shows that operational bias and quantum efficiency of these detectors can be further improved. The device dark current stays diffusion limited in the 150 K–325 K temperature range and becomes dominated by generation-recombination processes at lower temperatures. Detector detectivities are D*(λ) = 1 × 10{sup 9} (cm Hz{sup 0.5}/W) at T = 300 K and D*(λ) = 5 × 10{sup 9} (cm Hz{sup 0.5}/W) at T = 250 K, which is easily achievable with a one stage TE cooler.

  18. Orion EM-1 Crew Module Testing

    NASA Image and Video Library

    2017-01-25

    Inside the Neil Armstrong Operations and Checkout Building high bay at NASA's Kennedy Space Center in Florida, the Orion crew module adapter (CMA) for Exploration Mission 1 has been moved to a test stand inside a clean room. The adapter connects the crew module to the service module. NASA is preparing the CMA for further testing to prepare it for installation on the European Space Agency-provided service module for Orion.

  19. Performance Optimization of Alternative Lower Global Warming Potential Refrigerants in Mini-Split Room Air Conditioners

    SciTech Connect

    Shen, Bo; Abdelaziz, Omar; Shrestha, Som S

    2017-01-01

    Oak Ridge National laboratory (ORNL) recently conducted extensive laboratory, drop-in investigations for lower Global Warming Potential (GWP) refrigerants to replace R-22 and R-410A. ORNL studied propane, DR-3, ARM-20B, N-20B and R-444B as lower GWP refrigerant replacement for R-22 in a mini-split room air conditioner (RAC) originally designed for R-22; and, R-32, DR-55, ARM-71A, and L41-2, in a mini-split RAC designed for R-410A. We obtained laboratory testing results with very good energy balance and nominal measurement uncertainty. Drop-in studies are not enough to judge the overall performance of the alternative refrigerants since their thermodynamic and transport properties might favor different heat exchanger configurations, e.g. cross-flow, counter flow, etc. This study compares optimized performances of individual refrigerants using a physics-based system model tools. The DOE/ORNL Heat Pump Design Model (HPDM) was used to model the mini-split RACs by inputting detailed heat exchangers geometries, compressor displacement and efficiencies as well as other relevant system components. The RAC models were calibrated against the lab data for each individual refrigerant. The calibrated models were then used to conduct a design optimization for the cooling performance by varying the compressor displacement to match the required capacity, and changing the number of circuits, refrigerant flow direction, tube diameters, air flow rates in the condenser and evaporator at 100% and 50% cooling capacities. This paper compares the optimized performance results for all alternative refrigerants and highlights best candidates for R-22 and R-410A replacement.

  20. Relationship Between Operating Room Teamwork, Contextual Factors, and Safety Checklist Performance.

    PubMed

    Singer, Sara J; Molina, George; Li, Zhonghe; Jiang, Wei; Nurudeen, Suliat; Kite, Julia G; Edmondson, Lizabeth; Foster, Richard; Haynes, Alex B; Berry, William R

    2016-10-01

    Studies show that using surgical safety checklists (SSCs) reduces complications. Many believe SSCs accomplish this by enhancing teamwork, but evidence is limited. Our study sought to relate teamwork to checklist performance, understand how they relate, and determine conditions that affect this relationship. Using 2 validated tools for observing and coaching operating room teams, we evaluated the association between checklist performance with surgeon buy-in and 4 domains of surgical teamwork: clinical leadership, communication, coordination, and respect. Hospital staff in 10 South Carolina hospitals observed 207 procedures between April 2011 and January 2013. We calculated levels of checklist performance, buy-in, and measures of teamwork, and evaluated their relationship, controlling for patient and case characteristics. Few teams completed most or all SSC items. Teams more often completed items considered procedural "checks" than conversation "prompts." Surgeon buy-in, clinical leadership, communication, a summary measure of teamwork overall, and observers' teamwork ratings positively related to overall checklist completion (multivariable model estimates from 0.04, p < 0.05 for communication to 0.17, p < 0.01 for surgeon buy-in). All measures of teamwork and surgeon buy-in related positively to completing more conversation prompts; none related significantly to procedural checks (estimates from 0.10, p < 0.01 for communication to 0.27, p < 0.001 for surgeon buy-in). Patient age was significantly associated with completing the checklist and prompts (p < 0.05); only case duration was positively associated with performing more checks (p < 0.10). Surgeon buy-in and surgical teamwork characterized by shared clinical leadership, open communication, active coordination, and mutual respect were critical in prompting case-related conversations, but not in completing procedural checks. Findings highlight the importance of surgeon engagement and high-quality, consistent

  1. Space Shuttle Wireless Crew Communications

    NASA Technical Reports Server (NTRS)

    Armstrong, R. W.; Doe, R. A.

    1982-01-01

    The design, development, and performance characteristics of the Space Shuttle's Wireless Crew Communications System are discussed. This system allows Space Shuttle crews to interface with the onboard audio distribution system without the need for communications umbilicals, and has been designed through the adaptation of commercially available hardware in order to minimize development time. Testing aboard the Space Shuttle Orbiter Columbia has revealed no failures or design deficiencies.

  2. The loudspeaker as musical instrument: An examination of the issues surrounding loudspeaker performance of music in typical rooms

    NASA Astrophysics Data System (ADS)

    Moulton, David

    2003-04-01

    The loudspeaker is the most important and one of the most variable elements in the electroacoustic music performance process. Nonetheless, its performance is subject to a ``willing suspension of disbelief'' by listeners and its behavior and variability are usually not accounted for in assessments of the quality of music reproduction or music instrument synthesis, especially as they occur in small rooms. This paper will examine the aesthetic assumptions underlying loudspeaker usage, the general timbral qualities and sonic characteristics of loudspeakers and some of the issues and problems inherent in loudspeakers interactions with small rooms and listeners.

  3. Light Water Reactor Sustainability Program Operator Performance Metrics for Control Room Modernization: A Practical Guide for Early Design Evaluation

    SciTech Connect

    Ronald Boring; Roger Lew; Thomas Ulrich; Jeffrey Joe

    2014-03-01

    As control rooms are modernized with new digital systems at nuclear power plants, it is necessary to evaluate the operator performance using these systems as part of a verification and validation process. There are no standard, predefined metrics available for assessing what is satisfactory operator interaction with new systems, especially during the early design stages of a new system. This report identifies the process and metrics for evaluating human system interfaces as part of control room modernization. The report includes background information on design and evaluation, a thorough discussion of human performance measures, and a practical example of how the process and metrics have been used as part of a turbine control system upgrade during the formative stages of design. The process and metrics are geared toward generalizability to other applications and serve as a template for utilities undertaking their own control room modernization activities.

  4. Defense Nuclear Agency intermediate dose program: an overview (effects of total-body irradiation on the performance of personnel in Army combat crews)

    SciTech Connect

    Young, R.W.; Auton, D.L.

    1984-04-01

    The objective of this research was to provide the quantitative basis for predicting performance decrement in Army crewmen irradiated with less than 4500 rads (cGy). The data were obtained using a questionnaire derived from detailed information on radiation sickness and analysis of 15 combat crew tasks. The questionnaire, which asked for quantitative information on the impact of radiation sickness symptoms on the performance of sub-tasks, was administered to experts in the performance of the combat tasks. The results obtained in this effort clearly demonstrate that this methodology can be used to obtain meaningful estimates of the impact of very hazardous environments on performance. Comparison of the results from this study with those from studies which have directly assessed the effects of sickness on performance suggests that this questionnaire approach could successfully be applied to the evaluation of other hazardous environments in other military systems.

  5. An investigation of performance characteristics of a pixellated room-temperature semiconductor detector for medical imaging

    NASA Astrophysics Data System (ADS)

    Guerra, P.; Santos, A.; Darambara, D. G.

    2009-09-01

    The operation of any semiconductor detector depends on the movement of the charge carriers, which are created within the material when radiation passes through, as a result of energy deposition. The carrier movement in the bulk semiconductor induces charges on the metal electrodes, and therefore a current on the electrodes and the external circuit. The induced charge strongly depends on the material transport parameters as well as the geometrical dimensions of a pixellated semiconductor detector. This work focuses on the performance optimization in terms of energy resolution, detection efficiency and intrinsic spatial resolution of a room-temperature semiconductor pixellated detector based on CdTe/CdZnTe. It analyses and inter-relates these performance figures for various dimensions of CdTe and CdZnTe detectors and for an energy range spanning from x-ray (25 keV) to PET (511 keV) imaging. Monte Carlo simulations, which integrate a detailed and accurate noise model, are carried out to investigate several CdTe/CdZnTe configurations and to determine possible design specifications. Under the considered conditions, the simulations demonstrate the superiority of the CdZnTe over the CdTe in terms of energy resolution and sensitivity in the photopeak. Further, according to the results, the spatial resolution is maximized at high energies and the energy resolution at low energies, while a reasonable detection efficiency is achieved at high energies, with a 1 × 1 × 6 mm3 CdZnTe pixellated detector.

  6. 78 FR 28275 - Office of Commercial Space Transportation; Safety Approval Performance Criteria

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-14

    ... hypobaric chamber training for crew and space flight participants to experience and demonstrate knowledge of... Federal Aviation Administration Office of Commercial Space Transportation; Safety Approval Performance...), FAA Office of Commercial Space Transportation (AST), 800 Independence Avenue SW., Room 331,...

  7. Coaching Non-technical Skills Improves Surgical Residents' Performance in a Simulated Operating Room.

    PubMed

    Yule, Steven; Parker, Sarah Henrickson; Wilkinson, Jill; McKinley, Aileen; MacDonald, Jamie; Neill, Adrian; McAdam, Tim

    2015-01-01

    To investigate the effect of coaching on non-technical skills and performance during laparoscopic cholecystectomy in a simulated operating room (OR). Non-technical skills (situation awareness, decision making, teamwork, and leadership) underpin technical ability and are critical to the success of operations and the safety of patients in the OR. The rate of developing assessment tools in this area has outpaced development of workable interventions to improve non-technical skills in surgical training and beyond. A randomized trial was conducted with senior surgical residents (n = 16). Participants were randomized to receive either non-technical skills coaching (intervention) or to self-reflect (control) after each of 5 simulated operations. Coaching was based on the Non-Technical Skills For Surgeons (NOTSS) behavior observation system. Surgeon-coaches trained in this method coached participants in the intervention group for 10 minutes after each simulation. Primary outcome measure was non-technical skills, assessed from video by a surgeon using the NOTSS system. Secondary outcomes were time to call for help during bleeding, operative time, and path length of laparoscopic instruments. Non-technical skills improved in the intervention group from scenario 1 to scenario 5 compared with those in the control group (p = 0.04). The intervention group was faster to call for help when faced with unstoppable bleeding in the final scenario (no. 5; p = 0.03). Coaching improved residents' non-technical skills in the simulated OR compared with those in the control group. Important next steps are to implement non-technical skills coaching in the real OR and assess effect on clinically important process measures and patient outcomes. Copyright © 2015 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.

  8. Experimental room temperature hohlraum performance study on the National Ignition Facility [Experimental evidence for improved performance in room temperature hohlraums on the National Ignition Facility

    SciTech Connect

    Ralph, J. E.; Strozzi, D.; Ma, T.; Moody, J. D.; Hinkel, D. E.; Callahan, D. A.; MacGowan, B. J.; Michel, P.; Kline, J. L.; Glenzer, S. H.; Albert, F.; Benedetti, L. R.; Divol, L.; MacKinnon, A. J.; Pak, A.; Rygg, J. R.; Schneider, M. B.; Town, R. P. J.; Widmann, K.; Hsing, W.; Edwards, M. J.

    2016-12-29

    Room temperature or “warm” (273 K) indirect drive hohlraum experiments have been conducted on the National Ignition Facility with laser energies up to 1.26 MJ and compared to similar cryogenic or “cryo” (~20 K) experiments. Warm experiments use neopentane (C5H12) as the low pressure hohlraum fill gas instead of helium, and propane (C3H8) to replace the cryogenic DT or DHe3 capsule fill. The increased average Z of the hohlraum fill leads to increased inverse bremsstrahlung absorption and an overall hotter hohlraum plasma in simulations. The cross beam energy transfer (CBET) from outer laser beams (pointed toward the laser entrance hole) to inner beams (pointed at the equator) was inferred indirectly from measurements of Stimulated Raman Scattering (SRS). These experiments show that a similar hot spot self-emission shape can be produced with less CBET in warm hohlraums. The measured inner cone SRS reflectivity (as a fraction of incident power neglecting CBET) is ~2.5× less in warm than cryo shots with similar hot spot shapes, due to a less need for CBET. The measured outer-beam stimulated the Brillouin scattering power that was higher in the warm shots, leading to a ceiling on power to avoid the optics damage. These measurements also show that the CBET induced by the flow where the beams cross can be effectively mitigated by a 1.5 Å wavelength shift between the inner and outer beams. A smaller scale direct comparison indicates that warm shots give a more prolate implosion than cryo shots with the same wavelength shift and pulse shape. Lastly, the peak radiation temperature was found to be between 5 and 7 eV higher in the warm than the corresponding cryo experiments after accounting for differences in backscatter.

  9. Experimental room temperature hohlraum performance study on the National Ignition Facility [Experimental evidence for improved performance in room temperature hohlraums on the National Ignition Facility

    DOE PAGES

    Ralph, J. E.; Strozzi, D.; Ma, T.; ...

    2016-12-29

    Room temperature or “warm” (273 K) indirect drive hohlraum experiments have been conducted on the National Ignition Facility with laser energies up to 1.26 MJ and compared to similar cryogenic or “cryo” (~20 K) experiments. Warm experiments use neopentane (C5H12) as the low pressure hohlraum fill gas instead of helium, and propane (C3H8) to replace the cryogenic DT or DHe3 capsule fill. The increased average Z of the hohlraum fill leads to increased inverse bremsstrahlung absorption and an overall hotter hohlraum plasma in simulations. The cross beam energy transfer (CBET) from outer laser beams (pointed toward the laser entrance hole)more » to inner beams (pointed at the equator) was inferred indirectly from measurements of Stimulated Raman Scattering (SRS). These experiments show that a similar hot spot self-emission shape can be produced with less CBET in warm hohlraums. The measured inner cone SRS reflectivity (as a fraction of incident power neglecting CBET) is ~2.5× less in warm than cryo shots with similar hot spot shapes, due to a less need for CBET. The measured outer-beam stimulated the Brillouin scattering power that was higher in the warm shots, leading to a ceiling on power to avoid the optics damage. These measurements also show that the CBET induced by the flow where the beams cross can be effectively mitigated by a 1.5 Å wavelength shift between the inner and outer beams. A smaller scale direct comparison indicates that warm shots give a more prolate implosion than cryo shots with the same wavelength shift and pulse shape. Lastly, the peak radiation temperature was found to be between 5 and 7 eV higher in the warm than the corresponding cryo experiments after accounting for differences in backscatter.« less

  10. Patient warming excess heat: the effects on orthopedic operating room ventilation performance.

    PubMed

    Belani, Kumar G; Albrecht, Mark; McGovern, Paul D; Reed, Mike; Nachtsheim, Christopher

    2013-08-01

    Patient warming has become a standard of care for the prevention of unintentional hypothermia based on benefits established in general surgery. However, these benefits may not fully translate to contamination-sensitive surgery (i.e., implants), because patient warming devices release excess heat that may disrupt the intended ceiling-to-floor ventilation airflows and expose the surgical site to added contamination. Therefore, we studied the effects of 2 popular patient warming technologies, forced air and conductive fabric, versus control conditions on ventilation performance in an orthopedic operating room with a mannequin draped for total knee replacement. Ventilation performance was assessed by releasing neutrally buoyant detergent bubbles ("bubbles") into the nonsterile region under the head-side of the anesthesia drape. We then tracked whether the excess heat from upper body patient warming mobilized the "bubbles" into the surgical site. Formally, a randomized replicated design assessed the effect of device (forced air, conductive fabric, control) and anesthesia drape height (low-drape, high-drape) on the number of bubbles photographed over the surgical site. The direct mass-flow exhaust from forced air warming generated hot air convection currents that mobilized bubbles over the anesthesia drape and into the surgical site, resulting in a significant increase in bubble counts for the factor of patient warming device (P < 0.001). Forced air had an average count of 132.5 versus 0.48 for conductive fabric (P = 0.003) and 0.01 for control conditions (P = 0.008) across both drape heights. Differences in average bubble counts across both drape heights were insignificant between conductive fabric and control conditions (P = 0.87). The factor of drape height had no significant effect (P = 0.94) on bubble counts. Excess heat from forced air warming resulted in the disruption of ventilation airflows over the surgical site, whereas conductive patient warming devices had

  11. STS-69 James S. Voss photographs fellow crew

    NASA Technical Reports Server (NTRS)

    1995-01-01

    STS-69 Payload Commander James S. Voss (left) captures the moment as fellow crew members Michael L. Gernhardt, mission specialist, and Kenneth D. Cockrell, pilot,, prepare to enter the Space Shuttle Endeavour at Launch Pad 39A. Assisting the astronauts into the orbiter for flight are the white room closeout crew, led by Travis Thompson (right).

  12. APOLLO SOYUZ TEST PROJECT [ASTP] CREWS ADDRESS PERSONNEL IN LCC

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The Soviet and American crews for the July Apollo Soyuz Test Project [standing, center] addressed personnel assembled in a firing room at KSC on February 10. The crews for the joint manned space mission toured the Center during their three-day visit which also included inspection of ASTP equipment and facilities and a trip to Disney World.

  13. Performance Sustainment of Two Man Crews During 87 Hours of Extended Wakefulness With Stimulants (Dexedrine, Caffeine, Modafinil) and Napping: Analysis of Aircrew Performance During In-Flight Emergency Situations

    DTIC Science & Technology

    2008-05-01

    scored from electroencephalography to sleep scored by wrist actigraphy . Fort Rucker, AL: United States Army Aeromedical Research Laboratory. Report No...L.W., Hess, G.L., and Boley, K.O. 1993. Activity / rest patterns of instructor and rated student pilots during rapid transitions from daytime to...crew response time, and seven flight performance measures during emergencies presented at 23, 47, and 71 hours of continuous wakefulness. While some

  14. STS-133 crew visit

    NASA Image and Video Library

    2011-04-20

    Stennis Space Center Deputy Director Rick Gilbrech (far right) welcomes members of the STS-133 shuttle mission crew during an April 20 visit. The mission was the final flight for the space shuttle Discovery, which now becomes the first of the three-orbiter fleet to be retired. During the visit to Stennis, Mission Commander Steven Lindsey ( l to r), Pilot Eric Boe and mission specialists Alvin Drew, Steven Bowen, Michael Barratt and Nicole Stott recapped their historic flight and thanked site employees for providing main engines that performed 'as advertised.'

  15. Commerical Crew Astronauts Evaluate Crew Dragon Controls

    NASA Image and Video Library

    2017-01-10

    Astronauts Eric Boe, right, and Bob Behnken work in a mock-up of the SpaceX Crew Dragon flight deck at the company's Hawthorne, California, headquarters as development of the crew systems continues for eventual missions to the International Space Station.

  16. Commerical Crew Astronauts Evaluate Crew Dragon Controls

    NASA Image and Video Library

    2017-01-10

    Astronauts Bob Behnken, left, and Eric Boe work in a mock-up of the SpaceX Crew Dragon flight deck at the company's Hawthorne, California, headquarters as development of the crew systems continues for eventual missions to the International Space Station.

  17. STS-127 Firing Room

    NASA Image and Video Library

    2009-07-11

    NASA mission managers watch the latest weather radar on a monitor in Firing Room Four of the Launch Control Center at NASA's Kennedy Space Center in Cape Canaveral, Florida, Sunday, July 12, 2009. Endeavour is set to launch at 7:13p.m. EDT with the crew of STS-127 and start a 16-day mission that will feature five spacewalks and complete construction of the Japan Aerospace Exploration Agency's Kibo laboratory. Photo Credit: (NASA/Bill Ingalls)

  18. STS-127 Firing Room

    NASA Image and Video Library

    2009-07-11

    NASA Associate Administrator for Space Operations William Gerstenmaier watches the latest weather radar from Firing Room Four of the Launch Control Center at NASA's Kennedy Space Center in Cape Canaveral, Florida, Sunday, July 12, 2009. Endeavour is set to launch at 7:13p.m. EDT with the crew of STS-127 and start a 16-day mission that will feature five spacewalks and complete construction of the Japan Aerospace Exploration Agency's Kibo laboratory. Photo Credit: (NASA/Bill Ingalls)

  19. STS-127 Firing Room

    NASA Image and Video Library

    2009-07-11

    John P. Shannon, Manager, NASA Space Shuttle Program Office watches the latest weather radar in Firing Room Four of the Launch Control Center at NASA's Kennedy Space Center in Cape Canaveral, Florida, Sunday, July 12, 2009. Endeavour is set to launch at 7:13p.m. EDT with the crew of STS-127 and start a 16-day mission that will feature five spacewalks and complete construction of the Japan Aerospace Exploration Agency's Kibo laboratory. Photo Credit: (NASA/Bill Ingalls)

  20. STS-127 Firing Room

    NASA Image and Video Library

    2009-07-11

    NASA Shuttle Launch Director Michael Leinbach talks on the phone from Firing Room Four of the Launch Control Center at NASA's Kennedy Space Center in Cape Canaveral, Florida, Sunday, July 12, 2009. THe space shuttle Endeavour is set to launch at 7:13p.m. EDT with the crew of STS-127 and start a 16-day mission that will feature five spacewalks and complete construction of the Japan Aerospace Exploration Agency's Kibo laboratory. Photo Credit: (NASA/Bill Ingalls)

  1. Communications indices of crew coordination

    NASA Technical Reports Server (NTRS)

    Kanki, Barbara G.; Foushee, H. Clayton; Lozito, Sandra

    1987-01-01

    Verbal exchanges occuring during task execution during full mission two-person simulator flights are used to study the effect of the interactive communication process on crew coordination and performance. The ratio of initiator to response speech is calculated and speech variations are recorded. The results of this study are compared with the findings of Ginnett's (1986) study of leaders. It is shown that low-error crews adopt a standard form of communicating, allowing for the ability to predict one another's behavior, facilitating the coordination process. The higher performance of crews that have flown together before is believed to be due to the increased amount of time for establishing a conventional means of communication.

  2. A Simulation Study of the Effects of Operating Room Noise on the Performance of Anesthesia Providers

    DTIC Science & Technology

    1999-10-01

    has on humans. Physiologic as well as psychological effects have been examined. Anesthesia providers are exposed to operating room noise daily and...subjects to respond to different problems based on actual cases of anesthesia Noise levels 19 mishaps. The simulator successfully reproduces most aspects of...250. Moerman , N., Bonke, B. & Oosting, J. (1993). Awareness and recall during Noise levels 42 general anesthesia . Anesthesiology: 79, 454-464. Schwid

  3. An Analysis of Log Raft Open Water Performance and Crew Capability to Move Megaliths Pre-classic Olmec Used for Colossal Head Sculptures

    NASA Astrophysics Data System (ADS)

    Hazell, Leslie C.

    2013-06-01

    In Mesoamerica, Preclassic Olmec society used large stones for monumental head sculptures, some of which weighed over 20 tonnes. These megaliths were retrieved from the Tuxtla Mountains and transported a distance of at least 80 km to their principal centre at San Lorenzo. The methods and routes used are uncertain, but water-based routes using rafts have been considered the more likely strategy. Of two watercraft types proposed, a log raft configuration has been more favoured. This research examines the possibility that rafts were used and considers structural viability and as the primary motive force, human physiological capabilities. Analyses were undertaken of both raft and crew and their combined performance under these loads. Maritime and meteorological factors found in the Gulf of Mexico were also applied to technological parameters. These analyses show that a log raft configuration would not have been a viable means to move such highly valued stones upstream on rivers, nor over open water.

  4. Commercial Crew Program Crew Safety Strategy

    NASA Technical Reports Server (NTRS)

    Vassberg, Nathan; Stover, Billy

    2015-01-01

    The purpose of this presentation is to explain to our international partners (ESA and JAXA) how NASA is implementing crew safety onto our commercial partners under the Commercial Crew Program. It will show them the overall strategy of 1) how crew safety boundaries have been established; 2) how Human Rating requirements have been flown down into programmatic requirements and over into contracts and partner requirements; 3) how CCP SMA has assessed CCP Certification and CoFR strategies against Shuttle baselines; 4) Discuss how Risk Based Assessment (RBA) and Shared Assurance is used to accomplish these strategies.

  5. KENNEDY SPACE CENTER, FLA. - Posing with the plaque dedicated to Columbia Jan. 29, 2004, is astronaut Pam Melroy. The dedication ceremony included the 40-member preservation team gathered in the “Columbia room,” in the Vehicle Assembly Building. The site is a permanent repository of the debris collected in the aftermath of the tragic accident Feb. 1, 2003, that claimed the orbiter and lives of the seven-member crew. Behind Melroy is a piece of the debris.

    NASA Image and Video Library

    2004-01-29

    KENNEDY SPACE CENTER, FLA. - Posing with the plaque dedicated to Columbia Jan. 29, 2004, is astronaut Pam Melroy. The dedication ceremony included the 40-member preservation team gathered in the “Columbia room,” in the Vehicle Assembly Building. The site is a permanent repository of the debris collected in the aftermath of the tragic accident Feb. 1, 2003, that claimed the orbiter and lives of the seven-member crew. Behind Melroy is a piece of the debris.

  6. Room-temperature, solution-processable organic electron extraction layer for high-performance planar heterojunction perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Kim, Jong H.; Chueh, Chu-Chen; Williams, Spencer T.; Jen, Alex K.-Y.

    2015-10-01

    In this work, we describe a room-temperature, solution-processable organic electron extraction layer (EEL) for high-performance planar heterojunction perovskite solar cells (PHJ PVSCs). This EEL is composed of a bilayered fulleropyrrolidinium iodide (FPI)-polyethyleneimine (PEIE) and PC61BM, which yields a promising power conversion efficiency (PCE) of 15.7% with insignificant hysteresis. We reveal that PC61BM can serve as a surface modifier of FPI-PEIE to simultaneously facilitate the crystallization of perovskite and the charge extraction at FPI-PEIE/CH3NH3PbI3 interface. Furthermore, the FPI-PEIE can also tune the work function of ITO and dope PC61BM to promote the efficient electron transport between ITO and PC61BM. Based on the advantages of room-temperature processability and decent electrical property of FPI-PEIE/PC61BM EEL, a high-performance flexible PVSC with a PCE ~10% is eventually demonstrated. This study shows the potential of low-temperature processed organic EEL to replace transition metal oxide-based interlayers for highly printing compatible PVSCs with high-performance.In this work, we describe a room-temperature, solution-processable organic electron extraction layer (EEL) for high-performance planar heterojunction perovskite solar cells (PHJ PVSCs). This EEL is composed of a bilayered fulleropyrrolidinium iodide (FPI)-polyethyleneimine (PEIE) and PC61BM, which yields a promising power conversion efficiency (PCE) of 15.7% with insignificant hysteresis. We reveal that PC61BM can serve as a surface modifier of FPI-PEIE to simultaneously facilitate the crystallization of perovskite and the charge extraction at FPI-PEIE/CH3NH3PbI3 interface. Furthermore, the FPI-PEIE can also tune the work function of ITO and dope PC61BM to promote the efficient electron transport between ITO and PC61BM. Based on the advantages of room-temperature processability and decent electrical property of FPI-PEIE/PC61BM EEL, a high-performance flexible PVSC with a PCE ~10% is

  7. Shared Problem Models and Crew Decision Making

    NASA Technical Reports Server (NTRS)

    Orasanu, Judith; Statler, Irving C. (Technical Monitor)

    1994-01-01

    The importance of crew decision making to aviation safety has been well established through NTSB accident analyses: Crew judgment and decision making have been cited as causes or contributing factors in over half of all accidents in commercial air transport, general aviation, and military aviation. Yet the bulk of research on decision making has not proven helpful in improving the quality of decisions in the cockpit. One reason is that traditional analytic decision models are inappropriate to the dynamic complex nature of cockpit decision making and do not accurately describe what expert human decision makers do when they make decisions. A new model of dynamic naturalistic decision making is offered that may prove more useful for training or aiding cockpit decision making. Based on analyses of crew performance in full-mission simulation and National Transportation Safety Board accident reports, features that define effective decision strategies in abnormal or emergency situations have been identified. These include accurate situation assessment (including time and risk assessment), appreciation of the complexity of the problem, sensitivity to constraints on the decision, timeliness of the response, and use of adequate information. More effective crews also manage their workload to provide themselves with time and resources to make good decisions. In brief, good decisions are appropriate to the demands of the situation and reflect the crew's metacognitive skill. Effective crew decision making and overall performance are mediated by crew communication. Communication contributes to performance because it assures that all crew members have essential information, but it also regulates and coordinates crew actions and is the medium of collective thinking in response to a problem. This presentation will examine the relation between communication that serves to build performance. Implications of these findings for crew training will be discussed.

  8. Shared Problem Models and Crew Decision Making

    NASA Technical Reports Server (NTRS)

    Orasanu, Judith; Statler, Irving C. (Technical Monitor)

    1994-01-01

    The importance of crew decision making to aviation safety has been well established through NTSB accident analyses: Crew judgment and decision making have been cited as causes or contributing factors in over half of all accidents in commercial air transport, general aviation, and military aviation. Yet the bulk of research on decision making has not proven helpful in improving the quality of decisions in the cockpit. One reason is that traditional analytic decision models are inappropriate to the dynamic complex nature of cockpit decision making and do not accurately describe what expert human decision makers do when they make decisions. A new model of dynamic naturalistic decision making is offered that may prove more useful for training or aiding cockpit decision making. Based on analyses of crew performance in full-mission simulation and National Transportation Safety Board accident reports, features that define effective decision strategies in abnormal or emergency situations have been identified. These include accurate situation assessment (including time and risk assessment), appreciation of the complexity of the problem, sensitivity to constraints on the decision, timeliness of the response, and use of adequate information. More effective crews also manage their workload to provide themselves with time and resources to make good decisions. In brief, good decisions are appropriate to the demands of the situation and reflect the crew's metacognitive skill. Effective crew decision making and overall performance are mediated by crew communication. Communication contributes to performance because it assures that all crew members have essential information, but it also regulates and coordinates crew actions and is the medium of collective thinking in response to a problem. This presentation will examine the relation between communication that serves to build performance. Implications of these findings for crew training will be discussed.

  9. Ambient Light Intensity, Actigraphy, Sleep and Respiration, Circadian Temperature and Melatonin Rhythms and Daytime Performance of Crew Members During Space Flight on STS-90 and STS-95 Missions

    NASA Technical Reports Server (NTRS)

    Czeisler, Charles A.; Dijk, D.-J.; Neri, D. F.; Hughes, R. J.; Ronda, J. M.; Wyatt, J. K.; West, J. B.; Prisk, G. K.; Elliott, A. R.; Young, L. R.

    1999-01-01

    Sleep disruption and associated waking sleepiness and fatigue are common during space flight. A survey of 58 crew members from nine space shuttle missions revealed that most suffered from sleep disruption, and reportedly slept an average of only 6.1 hours per day of flight as compared to an average of 7.9 hours per day on the ground. Nineteen percent of crewmembers on single shift missions and 50 percent of the crewmembers in dual shift operations reported sleeping pill usage (benzodiazepines) during their missions. Benzodiazepines are effective as hypnotics, however, not without adverse side effects including carryover sedation and performance impairment, anterograde amnesia, and alterations in sleep EEG. Our preliminary ground-based data suggest that pre-sleep administration of 0.3 mg of the pineal hormone melatonin may have the acute hypnotic properties needed for treating the sleep disruption of space flight without producing the adverse side effects associated with benzodiazepines. We hypothesize that pre-sleep administration of melatonin will result in decreased sleep latency, reduced nocturnal sleep disruption, improved sleep efficiency, and enhanced next-day alertness and cognitive performance both in ground-based simulations and during the space shuttle missions. Specifically, we have carried out experiments in which: (1) ambient light intensity aboard the space shuttle is assessed during flight; (2) the impact of space flight on sleep (assessed polysomnographically and actigraphically), respiration during sleep, circadian temperature and melatonin rhythms, waking neurobehavioral alertness and performance is assessed in crew members of the Neurolab and STS-95 missions; (3) the effectiveness of melatonin as a hypnotic is assessed independently of its effects on the phase of the endogenous circadian pacemaker in ground-based studies, using a powerful experimental model of the dyssomnia of space flight; (4) the effectiveness of melatonin as a hypnotic is

  10. Halogen poisoning effect of Pt-TiO2 for formaldehyde catalytic oxidation performance at room temperature

    NASA Astrophysics Data System (ADS)

    Zhu, Xiaofeng; Cheng, Bei; Yu, Jiaguo; Ho, Wingkei

    2016-02-01

    Catalytic decomposition of formaldehyde (HCHO) at room temperature is an important method for HCHO removal. Pt-based catalysts are the optimal catalyst for HCHO decomposition at room temperature. However, the stability of this catalyst remains unexplored. In this study, Pt-TiO2 (Pt-P25) catalysts with and without adsorbed halogen ions (including F-, Cl-, Br-, and I-) were prepared through impregnation and ion modification. Pt-TiO2 samples with adsorbed halogen ions exhibited reduced catalytic activity for formaldehyde decomposition at room temperature compared with the Pt-TiO2 sample; the catalytic activity followed the order of F-Pt-P25, Cl-Pt-P25, Br-Pt-P25, and I-Pt-P25. Characterization results (including XRD, TEM, HRTEM, BET, XPS, and metal dispersion) showed that the adsorbed halogen ions can poison Pt nanoparticles (NPs), thereby reducing the HCHO oxidation activity of Pt-TiO2. The poison mechanism is due to the strong adsorption of halogen ions on the surface of Pt NPs. The adsorbed ions form coordination bonds with surface Pt atoms by transferring surplus electrons into the unoccupied 5d orbit of the Pt atom, thereby inhibiting oxygen adsorption and activation of the Pt NP surface. Moreover, deactivation rate increases with increasing diameter of halogen ions. This study provides new insights into the fabrication of high-performance Pt-based catalysts for indoor air purification.

  11. Improved spectrometer performance of cadmium selenide room temperature gamma-ray detector

    SciTech Connect

    Roth, M.; Burger, A.

    1986-02-01

    The surface preparation technology of CdSe crystals used for room temperature gamma-ray detection has been studied. X-ray fluorescense analysis of the surface of the crystal exposed to the Br-methanol etchant revealed the production of CdBr/sub 2/ compound as a result of the crystal-etchant reaction. The CdBr/sub 2/ ''poisoning'' causes high surface leakage currents increasing significantly the electronic noise of the device. A modified etching process has been developed in present work allowing to reduce greatly the surface leakage. Prominent reduction in the noise threshold with a simultaneous improvement of the energy resolution of CdSe detectors is reported.

  12. Improvement of Dehumidification Performance on Room Air Conditioner Adopting Dehumidification Method Reheated by Refrigeration Cycle

    NASA Astrophysics Data System (ADS)

    Nakamura, Hiroo; Funakoshi, Sunao; Yokoyama, Hidenori; Morimoto, Motoo; Saito, Kiyoshi

    The ways to increase dehumidification capacity during the dehumidification operation reheated by refrigeration cycle on room air conditioners using R 410A was investigated, keeping electric power consumption lower, noise level lower and outlet air temperature constant. The indoor heat exchanger is divided into a condensing part and an evaporating part by a dehumidification valve which is located between these two heat exchangers. The cooled and dehumidified indoor air is heated by the condensing part. The noise occurred from the two-phase refrigerant flow passing through this valve. So the compressor rotational speed was increased properly to increase dehumidification capacity. Moreover a new dehumidification valve was developed to reduce the refrigerant flow noise. This valve has two expansion processes and each expansion process has plural notch throttles. As the result, 1.5 times dehumidification capacity was gained, keeping lower electric power consumption, lower noise level and constant outlet air temperature.

  13. STS-92 Meal - Suit up - Depart O&C - Launch Discovery On Orbit - Landing - Crew Egress

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The video begins with the introduction of the crew of Space Shuttle Discovery on STS-92, at their customary pre-flight meal. The crew consists of Commander Brian Duffy, Pilot Pamela Melroy, and Mission Specialists Leroy Chiao, William McArthur, Peter "Jeff" Wisoff, Michael Lopez-Alegria, and Koichi Wakata. The introduction and suit-up of the astronauts, and their departure in the Astrovan are shown at a quick pace. The video shows in detail the seating of the crew and each astronaut's final preparations in the White Room prior to boarding. Views of Discovery's night launch include: SLF Convoy, Beach Tracker, VAB, Pad Perimeter, Tower-1, UCS-15, Press Site, UCS-23, OTV-61, OTV-70, OTV-71, and the In-Cabin Ascent Camera. While in orbit, the Discovery orbiter docks with the International Space Station (ISS). The docking is shown in a series of still images. The video includes clips from four extravehicular activities (EVAs). The crew members who performed the EVAs comment on them while speaking to Mission Control. During the EVAs, the Z1 Truss and an antenna are attached to the ISS. The crew members on the fourth EVA test jet packs. Views of landing include: TV-1, TV-2, TV-3, LRO-1, and HUD.

  14. STS-92 Meal - Suit up - Depart O&C - Launch Discovery On Orbit - Landing - Crew Egress

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The video begins with the introduction of the crew of Space Shuttle Discovery on STS-92, at their customary pre-flight meal. The crew consists of Commander Brian Duffy, Pilot Pamela Melroy, and Mission Specialists Leroy Chiao, William McArthur, Peter "Jeff" Wisoff, Michael Lopez-Alegria, and Koichi Wakata. The introduction and suit-up of the astronauts, and their departure in the Astrovan are shown at a quick pace. The video shows in detail the seating of the crew and each astronaut's final preparations in the White Room prior to boarding. Views of Discovery's night launch include: SLF Convoy, Beach Tracker, VAB, Pad Perimeter, Tower-1, UCS-15, Press Site, UCS-23, OTV-61, OTV-70, OTV-71, and the In-Cabin Ascent Camera. While in orbit, the Discovery orbiter docks with the International Space Station (ISS). The docking is shown in a series of still images. The video includes clips from four extravehicular activities (EVAs). The crew members who performed the EVAs comment on them while speaking to Mission Control. During the EVAs, the Z1 Truss and an antenna are attached to the ISS. The crew members on the fourth EVA test jet packs. Views of landing include: TV-1, TV-2, TV-3, LRO-1, and HUD.

  15. 26 CFR 31.3121(o)-1 - Crew leader.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 15 2010-04-01 2010-04-01 false Crew leader. 31.3121(o)-1 Section 31.3121(o)-1... Contributions Act (Chapter 21, Internal Revenue Code of 1954) General Provisions § 31.3121(o)-1 Crew leader. The term “crew leader” means an individual who furnishes individuals to perform agricultural labor for...

  16. Crew safety. [in spaceflight

    NASA Technical Reports Server (NTRS)

    Slayton, D. K.

    1976-01-01

    Crew safety in the manned spaceflight is usually associated with a small group for safety and quality assurance. Crew safety is actually an integral part of all program phases from conception through final implementation. Factors associated with improving safety at each phase of development are discussed. Topics discussed include design, manufacture, hardware/software checkout, management reviews, training and simulation, and data retrieval and analysis. Crew safety is best accomplished by flying a successful mission.

  17. STS-109 Crew Training

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Footage shows the crew of STS-109 (Commander Scott Altman, Pilot Duane Carey, Payload Commander John Grunsfeld, and Mission Specialists Nancy Currie, James Newman, Richard Linnehan, and Michael Massimino) during various parts of their training. Scenes show the crew's photo session, Post Landing Egress practice, training in Dome Simulator, Extravehicular Activity Training in the Neutral Buoyancy Laboratory (NBL), and using the Virtual Reality Laboratory Robotic Arm. The crew is also seen tasting food as they choose their menus for on-orbit meals.

  18. STS-109 Crew Training

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Footage shows the crew of STS-109 (Commander Scott Altman, Pilot Duane Carey, Payload Commander John Grunsfeld, and Mission Specialists Nancy Currie, James Newman, Richard Linnehan, and Michael Massimino) during various parts of their training. Scenes show the crew's photo session, Post Landing Egress practice, training in Dome Simulator, Extravehicular Activity Training in the Neutral Buoyancy Laboratory (NBL), and using the Virtual Reality Laboratory Robotic Arm. The crew is also seen tasting food as they choose their menus for on-orbit meals.

  19. Room-temperature, solution-processable organic electron extraction layer for high-performance planar heterojunction perovskite solar cells

    SciTech Connect

    Kim, Jong H.; Chueh, Chu-Chen; Williams, Spencer T.; Jen, Alex K. -Y.

    2015-09-24

    Here in this work, we describe a room-temperature, solution-processable organic electron extraction layer (EEL) for high-performance planar heterojunction perovskite solar cells (PHJ PVSCs). This EEL is composed of a bilayered fulleropyrrolidinium iodide (FPI)-polyethyleneimine (PEIE) and PC61BM, which yields a promising power conversion efficiency (PCE) of 15.7% with insignificant hysteresis. We reveal that PC61BM can serve as a surface modifier of FPI-PEIE to simultaneously facilitate the crystallization of perovskite and the charge extraction at FPI-PEIE/CH3NH3PbI3 interface. Furthermore, the FPI-PEIE can also tune the work function of ITO and dope PC61BM to promote the efficient electron transport between ITO and PC61BM. Based on the advantages of room-temperature processability and decent electrical property of FPI-PEIE/PC61BM EEL, a high-performance flexible PVSC with a PCE ~10% is eventually demonstrated. Lastly, this study shows the potential of low-temperature processed organic EEL to replace transition metal oxide-based interlayers for highly printing compatible PVSCs with high-performance.

  20. A systematic review of the effect of distraction on surgeon performance: directions for operating room policy and surgical training.

    PubMed

    Mentis, Helena M; Chellali, Amine; Manser, Kelly; Cao, Caroline G L; Schwaitzberg, Steven D

    2016-05-01

    Distractions during surgical procedures have been linked to medical error and team inefficiency. This systematic review identifies the most common and most significant forms of distraction in order to devise guidelines for mitigating the effects of distractions in the OR. In January 2015, a PubMed and Google Scholar search yielded 963 articles, of which 17 (2 %) either directly observed the occurrence of distractions in operating rooms or conducted a laboratory experiment to determine the effect of distraction on surgical performance. Observational studies indicated that movement and case-irrelevant conversation were the most frequently occurring distractions, but equipment and procedural distractions were the most severe. Laboratory studies indicated that (1) auditory and mental distractions can significantly impact surgical performance, but visual distractions do not incur the same level of effects; (2) task difficulty has an interaction effect with distractions; and (3) inexperienced subjects reduce their speed when faced with distractions, while experienced subjects did not. This systematic review suggests that operating room protocols should ensure that distractions from intermittent auditory and mental distractions are significantly reduced. In addition, surgical residents would benefit from training for intermittent auditory and mental distractions in order to develop automaticity and high skill performance during distractions, particularly during more difficult surgical tasks. It is unclear as to whether training should be done in the presence of distractions or distractions should only be used for post-training testing of levels of automaticity.

  1. Room-temperature, solution-processable organic electron extraction layer for high-performance planar heterojunction perovskite solar cells

    DOE PAGES

    Kim, Jong H.; Chueh, Chu-Chen; Williams, Spencer T.; ...

    2015-09-24

    Here in this work, we describe a room-temperature, solution-processable organic electron extraction layer (EEL) for high-performance planar heterojunction perovskite solar cells (PHJ PVSCs). This EEL is composed of a bilayered fulleropyrrolidinium iodide (FPI)-polyethyleneimine (PEIE) and PC61BM, which yields a promising power conversion efficiency (PCE) of 15.7% with insignificant hysteresis. We reveal that PC61BM can serve as a surface modifier of FPI-PEIE to simultaneously facilitate the crystallization of perovskite and the charge extraction at FPI-PEIE/CH3NH3PbI3 interface. Furthermore, the FPI-PEIE can also tune the work function of ITO and dope PC61BM to promote the efficient electron transport between ITO and PC61BM. Basedmore » on the advantages of room-temperature processability and decent electrical property of FPI-PEIE/PC61BM EEL, a high-performance flexible PVSC with a PCE ~10% is eventually demonstrated. Lastly, this study shows the potential of low-temperature processed organic EEL to replace transition metal oxide-based interlayers for highly printing compatible PVSCs with high-performance.« less

  2. Room-temperature, solution-processable organic electron extraction layer for high-performance planar heterojunction perovskite solar cells.

    PubMed

    Kim, Jong H; Chueh, Chu-Chen; Williams, Spencer T; Jen, Alex K-Y

    2015-11-07

    In this work, we describe a room-temperature, solution-processable organic electron extraction layer (EEL) for high-performance planar heterojunction perovskite solar cells (PHJ PVSCs). This EEL is composed of a bilayered fulleropyrrolidinium iodide (FPI)-polyethyleneimine (PEIE) and PC61BM, which yields a promising power conversion efficiency (PCE) of 15.7% with insignificant hysteresis. We reveal that PC61BM can serve as a surface modifier of FPI-PEIE to simultaneously facilitate the crystallization of perovskite and the charge extraction at FPI-PEIE/CH3NH3PbI3 interface. Furthermore, the FPI-PEIE can also tune the work function of ITO and dope PC61BM to promote the efficient electron transport between ITO and PC61BM. Based on the advantages of room-temperature processability and decent electrical property of FPI-PEIE/PC61BM EEL, a high-performance flexible PVSC with a PCE ∼10% is eventually demonstrated. This study shows the potential of low-temperature processed organic EEL to replace transition metal oxide-based interlayers for highly printing compatible PVSCs with high-performance.

  3. Crew Training STS-110

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The crewmembers are shown being suited for the STS-110 flight. The STS-110 crews are shown in training for four EVA's on the International Space Station. The crewmembers consist of: Michael J. Bloomfield, mission commander; Stephen N. Frick, pilot; and mission specialists: Ellen Ochoa, Lee M.E. Morin, Rex J. Walheim, Steven L. Smith, and Jerry Ross. Crew ascent middeck operations and Orbiter Skills Training in a fixed Based Simulator are the training areas shown. The STS-110 crew and Expedition four are seen during training at the Johnson Space Center Space Station Training Facility (SSTF). A photo session of the crew is also presented.

  4. STS-96 Crew Training

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The training for the crew members of the STS-96 Discovery Shuttle is presented. Crew members are Kent Rominger, Commander; Rick Husband, Pilot; Mission Specialists, Tamara Jernigan, Ellen Ochoa, and Daniel Barry; Julie Payette, Mission Specialist (CSA); and Valery Ivanovich Tokarev, Mission Specialist (RSA). Scenes show the crew sitting and talking about the Electrical Power System; actively taking part in virtual training in the EVA Training VR (Virtual Reality) Lab; using the Orbit Space Vision Training System; being dropped in water as a part of the Bail-Out Training Program; and taking part in the crew photo session.

  5. Apollo experience report: Crew station integration. Volume 1: Crew station design and development

    NASA Technical Reports Server (NTRS)

    Allen, L. D.; Nussman, D. A.

    1976-01-01

    An overview of the evolution of the design and development of the Apollo command module and lunar module crew stations is given, with emphasis placed on the period from 1964 to 1969. The organizational planning, engineering techniques, and documentation involved are described, and a detailed chronology of the meetings, reviews, and exercises is presented. Crew station anomalies for the Apollo 7 to 11 missions are discussed, and recommendations for the solution of recurring problems of crew station acoustics, instrument glass failure, and caution and warning system performance are presented. Photographs of the various crew station configurations are also provided.

  6. Training for endoscopic surgical procedures should be performed in the dissection room: a randomized study.

    PubMed

    Klitsie, Pieter J; Ten Brinke, Bart; Timman, Reinier; Busschbach, Jan J V; Theeuwes, Hilco P; Lange, Johan F; Kleinrensink, Gert-Jan

    2017-04-01

    Laparoscopic surgery is associated with a shallow learning curve. AnubiFiX embalming technique enables laparoscopic surgical training on supple embalmed and hence insufflatable human specimens in the dissection room. Aim of the present trial is to test whether dissection-based anatomy education is superior to classical frontal classroom education on the short and long term. A total of 112 medical students were randomized in three groups. Group I attended classroom education, group II laparoscopic dissection-based education and group III received both. All groups completed an anatomy test on human specimens before, immediately after and 3 weeks after the anatomy training. Group II and III scored significantly better compared to group I immediately after the anatomy training (p I-II < 0.001, p I-III < 0.001). This difference was still significant after 3 weeks (p I-II < 0.001, p I-III < 0.001). No significant difference was found between group II and group III immediately after the course (p = 0.86), nor at the follow-up (p = 0.054). The AnubiFiX™ embalming technique enables laparoscopic anatomy education in human specimens, with superior outcomes on the short and long term, as compared to classical frontal classroom education.

  7. Objective performance analysis of spherical microphone arrays for speech enhancement in rooms.

    PubMed

    Peled, Yotam; Rafaely, Boaz

    2012-09-01

    Reverberation and noise have a significant effect on the intelligibility of speech in rooms. The detection of clear speech in highly reverberant and noisy enclosures is an extremely difficult task. Recently, spherical microphone arrays have been studied for processing of sound fields in three-dimensions, with applications ranging from acoustic analysis to speech enhancement. This paper presents the derivation of a model that facilitates the prediction of spherical array configurations that guarantee an acceptable level of speech intelligibility in reverberant and noisy environments. A spherical microphone array is employed to generate a spatial filter that maximizes speech intelligibility according to an objective measure that combines the effects of both reverberation and noise. The spherical array beamformer is designed to enhance the speech signal while minimizing noise power and maintaining robustness over a wide frequency range. The paper includes simulation and experimental studies with a comparison to speech transmission index based analysis to provide initial validation of the model. Examples are presented in which the minimum number of microphones in a spherical array can be determined from environment conditions such as reverberation time, noise level, and distance of the array to the speech source.

  8. Considerations for Crew Rescue from the ISS

    NASA Astrophysics Data System (ADS)

    Smart, K.

    The design and development of crew emergency response systems, particularly to provide an unplanned emergency return to earth capability, requires an understanding of crew performance changes in space. The combined effects of psychological and physiological adaptation during long-duration missions will have a significant effect on crew performance in the unpredictable and potentially life threatening conditions of an emergency return to earth. It is therefore important that the systems to be developed for emergency egress address these challenges through an integrated program to produce optimum productivity and safety in times of utmost stress.

  9. Wireless Crew Communication Feasibility Assessment

    NASA Technical Reports Server (NTRS)

    Archer, Ronald D.; Romero, Andy; Juge, David

    2016-01-01

    Ongoing discussions with crew currently onboard the ISS as well as the crew debriefs from completed ISS missions indicate that issues associated with the lack of wireless crew communication results in increased crew task completion times and lower productivity, creates cable management issues, and increases crew frustration.

  10. A Simulation Study of the Effects of Operating Room Noise on the Performance of Anesthesia Providers

    DTIC Science & Technology

    1999-10-01

    cases of anesthesia Noise levels 19 mishaps. The simulator successfully reproduces most aspects of a patient undergoing general anesthesia . Some of the...that were obtained from the study gives insight into the performance of anesthesia providers in a variety of situations. Specific aspects of performance...the validity of using simulation studies to evaluate different aspects of provider performance. The frequency of using anesthesia simulators to conduct

  11. Experimental room temperature hohlraum performance study on the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Ralph, J. E.; Strozzi, D.; Ma, T.; Moody, J. D.; Hinkel, D. E.; Callahan, D. A.; MacGowan, B. J.; Michel, P.; Kline, J. L.; Glenzer, S. H.; Albert, F.; Benedetti, L. R.; Divol, L.; MacKinnon, A. J.; Pak, A.; Rygg, J. R.; Schneider, M. B.; Town, R. P. J.; Widmann, K.; Hsing, W.; Edwards, M. J.

    2016-12-01

    Room temperature or "warm" (273 K) indirect drive hohlraum experiments have been conducted on the National Ignition Facility with laser energies up to 1.26 MJ and compared to similar cryogenic or "cryo" (˜20 K) experiments. Warm experiments use neopentane (C5H12) as the low pressure hohlraum fill gas instead of helium, and propane (C3H8) to replace the cryogenic DT or DHe3 capsule fill. The increased average Z of the hohlraum fill leads to increased inverse bremsstrahlung absorption and an overall hotter hohlraum plasma in simulations. The cross beam energy transfer (CBET) from outer laser beams (pointed toward the laser entrance hole) to inner beams (pointed at the equator) was inferred indirectly from measurements of Stimulated Raman Scattering (SRS). These experiments show that a similar hot spot self-emission shape can be produced with less CBET in warm hohlraums. The measured inner cone SRS reflectivity (as a fraction of incident power neglecting CBET) is ˜2.5 × less in warm than cryo shots with similar hot spot shapes, due to a less need for CBET. The measured outer-beam stimulated the Brillouin scattering power that was higher in the warm shots, leading to a ceiling on power to avoid the optics damage. These measurements also show that the CBET induced by the flow where the beams cross can be effectively mitigated by a 1.5 Å wavelength shift between the inner and outer beams. A smaller scale direct comparison indicates that warm shots give a more prolate implosion than cryo shots with the same wavelength shift and pulse shape. Finally, the peak radiation temperature was found to be between 5 and 7 eV higher in the warm than the corresponding cryo experiments after accounting for differences in backscatter.

  12. Boost in room temperature thermoelectric performance of PbSe:Alx through band modification and low densification

    NASA Astrophysics Data System (ADS)

    Gayner, Chhatrasal; Sharma, Raghunandan; Das, Malay K.; Kar, Kamal K.

    2016-10-01

    Optimization of the transport properties of PbSe to maximize its thermoelectric performance at room temperature has been achieved through a combination of elemental doping and low densification. Al doped PbSe (PbSe:Alx; 0 ≤ x ≤ 0.06) with both lattice substitutional (Pb site) and interstitial occupation has been synthesized through solid state reaction. High Seebeck coefficient of ˜300 to 400 μV/K is noticed at 300 to 500 K. This, combined with the lower thermal conductivity of ˜1.20 W/m K, provides an improved ZT value as high as ˜0.67 at 300 K to the PbSe:Alx Also, by substituting Al in PbSe, maximum power factors of ˜20 to 26.6 μW/cm K2 at 310 K are produced. The high room temperature thermoelectric performance of PbSe:Alx has been attributed to the mix contribution of the Al impurity states and the low densification. The strategy may be utilized to cost effective development of the low working temperature thermoelectric devices.

  13. Co3O4 nanorod-supported Pt with enhanced performance for catalytic HCHO oxidation at room temperature

    NASA Astrophysics Data System (ADS)

    Yan, Zhaoxiong; Xu, Zhihua; Cheng, Bei; Jiang, Chuanjia

    2017-05-01

    Formaldehyde (HCHO) removal from air at room (ambient) temperature by effective catalysts is of significance for improving indoor air quality, and catalysts with high efficiency and good recyclability are highly desirable. In this study, platinum (Pt) supported on nanorod-shaped Co3O4 (Pt/Co3O4) was prepared by calcination of microwave-assisted synthesized Co3O4 precursor followed by NaBH4-reduction of Pt precursor. The as-prepared Co3O4 exhibited a morphology of nanorods with lengths of 400-700 nm and diameters of approximately 40-50 nm, which were self-assembled by nanoparticles. The Pt/Co3O4 catalyst exhibited a superior catalytic performance for HCHO oxidation at room temperature compared to Pt supported on commercial Co3O4 (Pt/Co3O4-c) and Pt supported on commercial TiO2 (Pt/TiO2), which is mainly due to the high oxygen mobility resulting from its distinct nanorod morphology, strong metal-support interaction between Pt and Co3O4, and the intrinsic redox nature of the Co3O4 support. This study provides new insights into the fabrication of high-performance catalysts for indoor air purification.

  14. Performance Predictions for a Room Temperature, Ericsson Cycle, Magnetic Heat Pump.

    DTIC Science & Technology

    1982-05-01

    Performance CPM Cycles Per Minute GD Gadolinium KJ Kilojoules Conversion Constants (Work was done in English units and the following provides...PAS-82-11 1AINE THERMIAL HEAT PUMP PERFORMANCE RT 7. 0 TESI 00109 04IG, *I.- 2. W PLATE W ~I 6IIII. - 0.040 TEMP. NOT Em), r - s. MIXING TDU,7. 0.0 oa

  15. The Effect of MOPP4 on M198 Howitzer Crew Performance. Volume 2. Task Times for Fire Missions

    DTIC Science & Technology

    1996-05-01

    Human Engineering Laboratory (HEL) was testing the utility of a prinier rack located about two feet from the bi cech . Another complication is that... Thomas , Reliability and Validity Assessment of a Taxonomy for Predicting Relative Stressor Effects on Human Task Performance, Technical Report 5060-1

  16. Effects of Above Real Time Training (ARTT) On Individual Skills and Contributions to Crew/Team Performance

    NASA Technical Reports Server (NTRS)

    Ali, Syed Firasat; Khan, M. Javed; Rossi, Marcia J.; Crane, Peter; Guckenberger, Dutch; Bageon, Kellye

    2001-01-01

    Above Real Time Training (ARTT) is the training acquired on a real time simulator when it is modified to present events at a faster pace than normal. The experiments on training of pilots performed by NASA engineers and others have indicated that real time training (RTT) reinforced with ARTT would offer an effective training strategy for such tasks which require significant effort at time and workload management. A study was conducted to find how ARTT and RTT complement each other for training of novice pilot-navigator teams to fly on a required route. In the experiment, each of the participating pilot-navigator teams was required to conduct simulator flights on a prescribed two-legged ground track while maintaining required air speed and altitude. At any instant in a flight, the distance between the actual spatial point location of the airplane and the required spatial point was used as a measure of deviation from the required route. A smaller deviation represented better performance. Over a segment of flight or over complete flight, an average value of the deviation represented consolidated performance. The deviations were computed from the information on latitude, longitude, and altitude. In the combined ARTT and RTT program, ARTT at intermediate training intervals was beneficial in improving the real time performance of the trainees. It was observed that the team interaction between pilot and navigator resulted in maintaining high motivation and active participation throughout the training program.

  17. NEEMO 14: Evaluation of Human Performance for Rover, Cargo Lander, Crew Lander, and Exploration Tasks in Simulated Partial Gravity

    NASA Technical Reports Server (NTRS)

    Chappell, Steven P.; Abercromby, Andrew F.; Gernhardt, Michael L.

    2011-01-01

    The ultimate success of future human space exploration missions is dependent on the ability to perform extravehicular activity (EVA) tasks effectively, efficiently, and safely, whether those tasks represent a nominal mode of operation or a contingency capability. To optimize EVA systems for the best human performance, it is critical to study the effects of varying key factors such as suit center of gravity (CG), suit mass, and gravity level. During the 2-week NASA Extreme Environment Mission Operations (NEEMO) 14 mission, four crewmembers performed a series of EVA tasks under different simulated EVA suit configurations and used full-scale mockups of a Space Exploration Vehicle (SEV) rover and lander. NEEMO is an underwater spaceflight analog that allows a true mission-like operational environment and uses buoyancy effects and added weight to simulate different gravity levels. Quantitative and qualitative data collected during NEEMO 14, as well as from spacesuit tests in parabolic flight and with overhead suspension, are being used to directly inform ongoing hardware and operations concept development of the SEV, exploration EVA systems, and future EVA suits. OBJECTIVE: To compare human performance across different weight and CG configurations. METHODS: Four subjects were weighed out to simulate reduced gravity and wore either a specially designed rig to allow adjustment of CG or a PLSS mockup. Subjects completed tasks including level ambulation, incline/decline ambulation, standing from the kneeling and prone position, picking up objects, shoveling, ladder climbing, incapacitated crewmember handling, and small and large payload transfer. Subjective compensation, exertion, task acceptability, and duration data as well as photo and video were collected. RESULTS: There appear to be interactions between CG, weight, and task. CGs nearest the subject s natural CG are the most predictable in terms of acceptable performance across tasks. Future research should focus on

  18. STS-88 crew goes through Crew Equipment Interface Testing

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Inside the payload bay of Space Shuttle orbiter Endeavour, workers and STS-88 crew members on a movable work platform or bucket move closer to the rear of the orbiter's crew compartment. While Endeavour is being prepared for flight inside Orbiter Processing Facility Bay 1, the STS-88 crew members are participating in a Crew Equipment Interface Test (CEIT) to familiarize themselves with the orbiter's midbody and crew compartments. A KSC worker (left) maneuvers the platform to give Mission Specialists Jerry L. Ross and James H. Newman (right) a closer look. Looking on is Wayne Wedlake of United Space Alliance at Johnson Space Center. Targeted for liftoff on Dec. 3, 1998, STS-88 will be the first Space Shuttle launch for assembly of the International Space Station (ISS). The primary payload is the Unity connecting module which will be mated to the Russian-built Zarya control module, expected to be already on orbit after a November launch from Russia. After the mating, Ross and Newman are scheduled to perform three spacewalks to connect power, data and utility lines and install exterior equipment. The first major U.S.-built component of ISS, Unity will serve as a connecting passageway to living and working areas of the space station. Unity has two attached pressurized mating adapters (PMAs) and one stowage rack installed inside. PMA-1 provides the permanent connection point between Unity and Zarya; PMA-2 will serve as a Space Shuttle docking port. Zarya is a self-supporting active vehicle, providing propulsive control capability and power during the early assembly stages. It also has fuel storage capability.

  19. Crew Earth Observations

    NASA Technical Reports Server (NTRS)

    Runco, Susan

    2009-01-01

    Crew Earth Observations (CEO) takes advantage of the crew in space to observe and photograph natural and human-made changes on Earth. The photographs record the Earth's surface changes over time, along with dynamic events such as storms, floods, fires and volcanic eruptions. These images provide researchers on Earth with key data to better understand the planet.

  20. STS-47 Crew Briefing

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The crew of STS-47, Commander Robert L. Gibson, Pilot Curtis L. Brown, Payload Commander Mark C. Lee, Mission Specialists N. Jan Davis, Jay Apt, and Mae C. Jemison, and Payload Specialist Mamoru Mohri answer questions from the press about the upcoming Endeavour mission and the crew's personal views of the mission.

  1. Commercial Crew Medical Ops

    NASA Technical Reports Server (NTRS)

    Heinbaugh, Randall; Cole, Richard

    2016-01-01

    Provide commercial partners with: center insight into NASA spaceflight medical experience center; information relative to both nominal and emergency care of the astronaut crew at landing site center; a basis for developing and sharing expertise in space medical factors associated with returning crew.

  2. The effects of bed rest on crew performance during simulated shuttle reentry. Volume 1: Study overview and physiological results

    NASA Technical Reports Server (NTRS)

    Chambers, A.; Vykukal, H. C.

    1974-01-01

    A centrifuge study was carried out to measure physiological stress and control task performance during simulated space shuttle orbiter reentry. Jet pilots were tested with, and without, anti-g-suit protection. The pilots were exposed to simulated space shuttle reentry acceleration profiles before, and after, ten days of complete bed rest, which produced physiological deconditioning similar to that resulting from prolonged exposure to orbital zero g. Pilot performance in selected control tasks was determined during simulated reentry, and before and after each simulation. Physiological stress during reentry was determined by monitoring heart rate, blood pressure, and respiration rate. Study results indicate: (1) heart rate increased during the simulated reentry when no g protection was given, and remained at or below pre-bed rest values when g-suits were used; (2) pilots preferred the use of g-suits to muscular contraction for control of vision tunneling and grayout during reentry; (3) prolonged bed rest did not alter blood pressure or respiration rate during reentry, but the peak reentry acceleration level did; and (4) pilot performance was not affected by prolonged bed rest or simulated reentry.

  3. STS-67 crew insignia

    NASA Image and Video Library

    1994-10-01

    STS067-S-001 (October 1994) --- Observation and remote exploration of the Universe in the ultraviolet wavelengths of light are the focus of the STS-67/ASTRO-2 mission, as depicted in the crew patch designed by the crew members. The insignia shows the ASTRO-2 telescopes in the space shuttle Endeavour's payload bay, orbiting high above Earth's atmosphere. The three sets of rays, diverging from the telescope on the patch atop the Instrument Pointing System (IPS), correspond to the three ASTRO-2 telescopes -- the Hopkins Ultraviolet Telescope (HUT), the Ultraviolet Imaging Telescope (UIT), and the Wisconsin Ultraviolet Photo-Polarimeter Experiment (WUPPE). The telescopes are co-aligned to simultaneously view the same astronomical object, as shown by the convergence of rays on the NASA symbol. This symbol also represents the excellence of the union of the NASA teams and universality's in the exploration of the universe through astronomy. The celestial targets of ASTRO-2 include the observation of planets, stars and galaxies shown in the design. The two small atoms represent the search in the ultraviolet spectrum for the signature of primordial helium in intergalactic space left over from the Big Bang. The observations performed on ASTRO-2 will contribute to man's knowledge and understanding of the vast universe, from the planets in out system to the farthest reaches of space. The NASA insignia design for space shuttle flights is reserved for use by the astronauts and for other official use as the NASA Administrator may authorize. Public availability has been approved only in the forms of illustrations by the various news media. When and if there is any change in this policy, which is not anticipated, the change will be publicly announced. Photo credit: NASA

  4. Assuring Sustainable Gains in Interdisciplinary Performance Improvement: Creating a Shared Mental Model During Operating Room to Cardiac ICU Handoff.

    PubMed

    Riley, Christine M; Merritt, Amber D; Mize, Justine M; Schuette, Jennifer J; Berger, John T

    2017-09-01

    To understand sustainability and assure long-term gains in multidisciplinary performance improvement using an operating room to cardiac ICU handoff process focused on creation of a shared mental model. Performance improvement cohort project with pre- and postintervention assessments spanning a 4-year period. Twenty-six bed pediatric cardiac ICU in a tertiary care children's hospital. Cardiac surgery patients admitted to cardiac ICU from the operating room following cardiac surgery. An interdisciplinary workgroup overhauled our handoff process in 2010. The new algorithm emphasized role delineation, standardized communication, and creation of a shared mental model. Our "I-5" mnemonic allowed validation and verification of a shared mental model between multidisciplinary teams. Staff orientation and practice guidelines were revised to incorporate the new process, visual aids were distributed and posted at each patient's bedside, and lapses/audit data were discussed in multidisciplinary forum. Audits assessing equipment and information transfer during handoff were performed 8 weeks following implementation (n = 29), repeated at 1 year (n = 37), 3 years (n = 15), and 4 years (n = 50). Staff surveys prior to implementation, at 8 weeks, and 4 years postintervention assessed satisfaction. Comprehensiveness of information transfer improved in the 4 years following implementation, and staff satisfaction was maintained. At 4 years, discussion of all elements of information transfer was 94%, increased from 85% 8 weeks following implementation and discussion of four or more information elements was 100% increased from 93%. Of the 73% of staff who completed the survey at 4 years, 91% agreed that they received all necessary information, and 87% agreed that the handoff resulted in a shared mental model. Our methods were effective in creating and sustaining high levels of staff communication and adherence to the new process, thus achieving sustainable gains. Performance improvement

  5. Awareness and performance of blood transfusion standards in operating rooms of Shiraz hospitals in 2012

    PubMed Central

    Robati, R; Mirahmadi Nejad, E

    2015-01-01

    Background Assuring safety and survival of blood in vitro depends on anti-coagulation substances, blood bag characteristics, storage conditions, and transport of blood. Besides, careful selection and screening of donors as well as blood tests can minimize the transmission risk of blood-transmissible pathogens and optimize blood health. The aim of this study was to assay the level of knowledge and practices among anesthesia technicians on blood transfusion standards. Materials and Methods This descriptive cross-sectional study was performed among 85 anesthesia technicians Shiraz, Iran throughout 2012 who were examined by census using blood transfusion questionnaires and checklists. The data were analyzed using SPSS 16 software. Results The obtained findings indicated that 32.44% of the technicians have corrected knowledge of blood transfusion standards; nevertheless, 73.84% have corrected performance. Conclusions The technicians mostly performed based on their habit and experience. However, their knowledge about blood transfusion and blood bag storage was low. PMID:26131349

  6. Using Clickers to Facilitate Interactive Engagement Activities in a Lecture Room for Improved Performance by Students

    ERIC Educational Resources Information Center

    Tlhoaele, Malefyane; Hofman, Adriaan; Naidoo, Ari; Winnips, Koos

    2014-01-01

    What impact can interactive engagement (IE) activities using clickers have on students' motivation and academic performance during lectures as compared to attending traditional types of lectures? This article positions the research on IE within the comprehensive model of educational effectiveness and Gagné's instructional events model. For the…

  7. A NASA Perspective on Maintenance Activities and Maintenance Crews

    NASA Technical Reports Server (NTRS)

    Barth Tim

    2007-01-01

    Proactive consideration of ground crew factors enhances the designs of space vehicles and vehicle safety by: (1) Reducing the risk of undetected ground crew errors and collateral damage that compromise vehicle reliability and flight safety (2) Ensuring compatibility of specific vehicle to ground system interfaces (3) Optimizing ground systems. During ground processing and launch operations, public safety, flight crew safety, ground crew safety, and the safety of high-value spacecraft are inter-related. For extended Exploration missions, surface crews perform functions that merge traditional flight and ground operations.

  8. STS-127 Firing Room

    NASA Image and Video Library

    2009-07-11

    NASA Johnson Space Center Director Michael Coats monitors the launch team discussions on his headset from Firing Room Four of the Launch Control Center at NASA's Kennedy Space Center in Cape Canaveral, Florida, Sunday, July 12, 2009. The space shuttle Endeavour is set to launch at 7:13p.m. EDT with the crew of STS-127 and start a 16-day mission that will feature five spacewalks and complete construction of the Japan Aerospace Exploration Agency's Kibo laboratory. Photo Credit: (NASA/Bill Ingalls)

  9. Decoupling effective Li+ ion conductivity from electrolyte viscosity for improved room-temperature cell performance

    NASA Astrophysics Data System (ADS)

    Giffin, Guinevere A.; Moretti, Arianna; Jeong, Sangsik; Passerini, Stefano

    2017-02-01

    Ionic liquids are attractive materials for alternative electrolytes to combat the safety issues associated with conventional organic carbonate-based electrolytes. However, the performance of ionic liquid-based cells is generally not competitive as the high viscosity and low conductivity limits the rate performance. The work presented here demonstrates that the drawbacks in terms of rate capability can be overcome through the use of the high lithium concentration Pyr12O1FTFSI0.6LiFTFSI0.4 electrolyte. Despite an order of magnitude difference in the conductivity and viscosity, this high concentration electrolyte outperforms the lithium-dilute electrolyte with the same components in terms of rate capability in Li metal/LFP cells and LTO/LFP cells. The results suggest that the effective Li ion transport in the concentrated electrolyte is higher than in the dilute solution.

  10. Reliable assessment of laparoscopic performance in the operating room using videotape analysis.

    PubMed

    Chang, Lily; Hogle, Nancy J; Moore, Brianna B; Graham, Mark J; Sinanan, Mika N; Bailey, Robert; Fowler, Dennis L

    2007-06-01

    The Global Operative Assessment of Laparoscopic Skills (GOALS) is a valid assessment tool for objectively evaluating the technical performance of laparoscopic skills in surgery residents. We hypothesized that GOALS would reliably differentiate between an experienced (expert) and an inexperienced (novice) laparoscopic surgeon (construct validity) based on a blinded videotape review of a laparoscopic cholecystectomy procedure. Ten board-certified surgeons actively engaged in the practice and teaching of laparoscopy reviewed and evaluated the videotaped operative performance of one novice and one expert laparoscopic surgeon using GOALS. Each reviewer recorded a score for both the expert and the novice videotape reviews in each of the 5 domains in GOALS (depth perception, bimanual dexterity, efficiency, tissue handling, and overall competence). The scores for the expert and the novice were compared and statistically analyzed using single-factor analysis of variance (ANOVA). The expert scored significantly higher than the novice did in the domains of depth perception (p = .005), bimanual dexterity (p = .001), efficiency (p = .001), and overall competence ( p = .001). Interrater reliability for the reviewers of the novice tape was Cronbach alpha = .93 and the expert tape was Cronbach alpha = .87. There was no difference between the two for tissue handling. The Global Operative Assessment of Laparoscopic Skills is a valid, objective assessment tool for evaluating technical surgical performance when used to blindly evaluate an intraoperative videotape recording of a laparoscopic procedure.

  11. Advanced crew procedures development techniques

    NASA Technical Reports Server (NTRS)

    Arbet, J. D.; Benbow, R. L.; Mangiaracina, A. A.; Mcgavern, J. L.; Spangler, M. C.; Tatum, I. C.

    1975-01-01

    The development of an operational computer program, the Procedures and Performance Program (PPP), is reported which provides a procedures recording and crew/vehicle performance monitoring capability. The PPP provides real time CRT displays and postrun hardcopy of procedures, difference procedures, performance, performance evaluation, and training script/training status data. During post-run, the program is designed to support evaluation through the reconstruction of displays to any point in time. A permanent record of the simulation exercise can be obtained via hardcopy output of the display data, and via magnetic tape transfer to the Generalized Documentation Processor (GDP). Reference procedures data may be transferred from the GDP to the PPP.

  12. STS-83 Crew TCDT emergency egress training at LC-39A

    NASA Technical Reports Server (NTRS)

    1997-01-01

    STS-83 Payload Specialist Roger K. Crouch enters the crew hatch of the Space Shuttle Columbia with the help of the white room crew during Terminal Countdown Demonstration Test (TCDT) exercises for that mission. Members of the white room crew are (from left): Steve Crosbie, Rene Arriens and Bob Saulnier. Other crew members on the 16-day Microgravity Science Laboratory-1 (MSL-1) mission are: Mission Commander James D. Halsell, Jr.; Pilot Susan L. Still; Payload Commander Janice E. Voss; Mission Specialists Michael L. Gernhardt and Donald A. Thomas; and Payload Specialist Gregory T. Linteris.

  13. Habitability Designs for Crew Exploration Vehicle

    NASA Technical Reports Server (NTRS)

    Woolford, Barbara

    2006-01-01

    NASA's space human factors team is contributing to the habitability of the Crew Exploration Vehicle (CEV), which will take crews to low Earth orbit, and dock there with additional vehicles to go on to the moon's surface. They developed a task analysis for operations and for self-sustenance (sleeping, eating, hygiene), and estimated the volumes required for performing the various tasks and for the associated equipment, tools and supplies. Rough volumetric mockups were built for crew evaluations. Trade studies were performed to determine the size and location of windows. The habitability analysis also contributes to developing concepts of operations by identifying constraints on crew time. Recently completed studies provided stowage concepts, tools for assessing lighting constraints, and approaches to medical procedure development compatible with the tight space and absence of gravity. New work will be initiated to analyze design concepts and verify that equipment and layouts do meet requirements.

  14. VR to OR: a review of the evidence that virtual reality simulation improves operating room performance.

    PubMed

    Seymour, Neal E

    2008-02-01

    The use of virtual reality (VR) simulation to train surgeons has been supported by a body of experimental data derived from randomized trials of VR simulation training versus no such training. These investigations have focused on the use of VR devices to train surgeons in laparoscopic and flexible endoscopic skills, and the studies have generally demonstrated that skills acquired through courses of training in VR transfer to the clinical or animal laboratory setting, where assessments of various types have been used to measure performance. These studies, as well as the study model that describes them, and the future of randomized trials of this type are reviewed.

  15. Ophthalmic surgery simulator training improves resident performance of capsulorhexis in the operating room.

    PubMed

    McCannel, Colin A; Reed, David C; Goldman, Darin R

    2013-12-01

    To assess the effect of a Capsulorhexis Intensive Training Curriculum (CITC) on the rates of errant, continuous, curvilinear capsulorhexes (CCCs) during cataract surgery among resident surgeons at a teaching hospital. Retrospective educational interventional case series. A total of 1037 consecutive cataract surgeries performed at Harbor-UCLA Medical Center during 4 consecutive academic years were considered. The baseline cohort consists of 434 cataract surgeries performed during the 2 academic years before the intervention. The postintervention cohort consists of 603 cataract surgeries performed during the following 2 consecutive academic years. The principal intervention was the introduction of the CITC for residents on the Eyesi (VRmagic, Mannheim, Germany) ophthalmic virtual reality surgical simulator. The main outcome measure was the rate of errant CCCs among the capsulorhexes performed during resident surgical cases. Errant CCCs were defined as attempted CCCs that resulted in the attending physician taking over, radialization of the CCC, conversion to can-opener capsulorhexis, or any combination of the 3 aforementioned conditions. Secondary measures included the use of trypan blue during CCC and correlating errant CCC and surgeons' level of training (postgraduate year [PGY]). There were 68 errant CCCs (15.7%) in the baseline cohort and 30 errant CCCs (5.0%; P<0.0001) in the postintervention cohort, a 3.2-fold or 68% reduction. The use of trypan blue increased from 55.3% in the baseline cohort to 76.0% in the postintervention cohort (P<0.00001), but within each cohort there was no significant difference in the rate of errant CCCs whether trypan blue was used or not. In the baseline cohort, there was a statistical trend toward fewer errant CCCs among PGY 4 (14.6%) compared with PGY 3 (22.8%) surgeons (P = 0.12). The postintervention cohort showed no significant difference in errant CCC rates between PGY 3 (4.4%) and PGY 4 (5.1%) surgeons (P = 1.00). This study

  16. Contamination control of the space shuttle Orbiter crew compartment

    NASA Technical Reports Server (NTRS)

    Bartelson, Donald W.

    1986-01-01

    Effective contamination control as applied to manned space flight environments is a discipline characterized and controlled by many parameters. An introduction is given to issues involving Orbiter crew compartment contamination control. An effective ground processing contamination control program is an essential building block to a successful shuttle mission. Personnel are required to don cleanroom-grade clothing ensembles before entering the crew compartment and follow cleanroom rules and regulations. Prior to crew compartment entry, materials and equipment must be checked by an orbiter integrity clerk stationed outside the white-room entrance for compliance to program requirements. Analysis and source identification of crew compartment debris studies have been going on for two years. The objective of these studies is to determine and identify particulate generating materials and activities in the crew compartment. Results show a wide spectrum of many different types of materials. When source identification is made, corrective action is implemented to minimize or curtail further contaminate generation.

  17. Performance Evaluation of Conventional Sb-based Multiquantum Well Lasers operating above 3μm at Room Temperature

    NASA Astrophysics Data System (ADS)

    Kadri, A.; Zitouni, K.; Rouillard, Y.; Christol, P.

    We present the results of a theoretical performance evaluation of conventional type I Sb-based Quinary Multiple Quantum Well Lasers operating in cw at λ>3μm at Room Temperature. In this purpose, we use a k.P band structure model to calculate the optical properties of these new Quinary Sb-based heterostructures. Our calculations show that for optimized laser structures emitting near 3.3μm, modal gain value GmodalM =50cm-1 and threshold current densities Jth = 2-3 kA/cm2 are expected. Thanks to the valence band offset enhancement, hole lifetime are shown to increase by one order of magnitude in Quinary laser with respect to Quaternary counterpart. Our results show that this kind of Quinary Sb-based type I laser structures are quite convenient for cw RT Laser operation at λ>3μm.

  18. Achieving High-Performance Room-Temperature Sodium-Sulfur Batteries With S@Interconnected Mesoporous Carbon Hollow Nanospheres.

    PubMed

    Wang, Yun-Xiao; Yang, Jianping; Lai, Weihong; Chou, Shu-Lei; Gu, Qin-Fen; Liu, Hua Kun; Zhao, Dongyuan; Dou, Shi Xue

    2016-12-28

    Despite the high theoretical capacity of the sodium-sulfur battery, its application is seriously restrained by the challenges due to its low sulfur electroactivity and accelerated shuttle effect, which lead to low accessible capacity and fast decay. Herein, an elaborate carbon framework, interconnected mesoporous hollow carbon nanospheres, is reported as an effective sulfur host to achieve excellent electrochemical performance. Based on in situ synchrotron X-ray diffraction, the mechanism of the room temperature Na/S battery is proposed to be reversible reactions between S8 and Na2S4, corresponding to a theoretical capacity of 418 mAh g(-1). The cell is capable of achieving high capacity retention of ∼88.8% over 200 cycles, and superior rate capability with reversible capacity of ∼390 and 127 mAh g(-1) at 0.1 and 5 A g(-1), respectively.

  19. Crew Transportation Plan

    NASA Technical Reports Server (NTRS)

    Zeitler, Pamela S. (Compiler); Mango, Edward J.

    2013-01-01

    The National Aeronautics and Space Administration (NASA) Commercial Crew Program (CCP) has been chartered to facilitate the development of a United States (U.S.) commercial crew space transportation capability with the goal of achieving safe, reliable, and cost effective access to and from low Earth orbit (LEO) and the International Space Station (ISS) as soon as possible. Once the capability is matured and is available to the Government and other customers, NASA expects to purchase commercial services to meet its ISS crew rotation and emergency return objectives.

  20. STS-111 Crew Portrait

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Launched aboard the Space Shuttle Endeavor on June 6, 2002, these four astronauts comprised the prime crew for NASA's STS-111 mission. Astronaut Kenneth D. Cockrell (front right) was mission commander, and astronaut Paul S. Lockhart (front left) was pilot. Astronauts Philippe Perrin (rear left), representing the French Space Agency, and Franklin R. Chang-Diaz were mission specialists assigned to extravehicular activity (EVA) work on the International Space Station (ISS). In addition to the delivery and installation of the Mobile Base System (MBS), this crew dropped off the Expedition Five crew members at the orbital outpost, and brought back the Expedition Four trio at mission's end.

  1. STS-63 crew insignia

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Designed by the crew members, the crew patch depicts the Orbiter maneuving to rendezvous with Russia's Space Station Mir. The name is printed in Cyrillic on the side of the station. Visible in the Orbiter's payload bay are the commercial space laboratory Spacehab and the Shuttle Pointed Autonomous Research Tool for Astronomy (SPARTAN) satellite which are major payloads on the flight. The six points on the rising sun and the three stars are symbolic of the mission's Space Transportation System (STS) numerical designation. Flags of the United States and Russia at the bottom of the patch symbolize the cooperative operations of this mission. The crew will be flying aboard the space shuttle Discovery.

  2. STS-121 Crew Portrait

    NASA Technical Reports Server (NTRS)

    2006-01-01

    These seven astronauts take a break from training to pose for the STS-121 crew portrait. From the left are mission specialists Stephanie D. Wilson, and Michael E. Fossum, Commander Steven W. Lindsey, mission specialist Piers J. Sellers, pilot Mark E. Kelly; European Space Agency (ESA) astronaut and mission specialist Thomas Reiter of Germany; and mission specialist Lisa M. Nowak. The crew members are attired in training versions of their shuttle launch and entry suit. The crew, first ever to launch on Independence Day, tested new equipment and procedures to improve shuttle safety, as well as delivered supplies and made repairs to the space station.

  3. The composition of surgical teams in the operating room and its impact on surgical team performance in China.

    PubMed

    He, Wenjing; Ni, Shenghao; Chen, Gengzhen; Jiang, Xuewu; Zheng, Bin

    2014-05-01

    Previous studies on surgical team composition have shown that surgical team size had an independent impact on surgical performance in US and Canadian hospitals. We aimed to investigate the impact of team composition on surgical performance in two Chinese hospitals. General surgery procedures performed from April 2011 to June 2012 were retrospectively reviewed to record the number of attendees in the operating room (OR) and the procedure time (PT). A total of 1,900 valid procedures, mostly laparoscopic, were performed during the study period. The mean PT was 90.5 min. On average, there were a total of 6 (range = 3-8) team members per procedure: 3 (range = 1-5) surgeons, 2 nurses, and 1 anesthesiologist. Unlike the data reported for the US and Canada, the number of nurses and anesthesiologists remained stable in most cases, whereas the number of surgeons differed by procedure. Multiple-regression analysis revealed that both the complexity of the operation and the team size significantly affected PT. When procedure complexity and patient condition were kept constant, adding one team member in our data analysis predicted an increase of 34.7 min in the PT. The surgical team size has a measurable effect on PT. Aside from surgical complexity, the team composition and member stability affected PT in the OR. Optimizing surgical teams and developing a strategy to maintain team stability are of great importance for improving OR efficiency.

  4. Crew factors in the aerospace workplace

    NASA Technical Reports Server (NTRS)

    Kanki, Barbara G.; Foushee, H. C.

    1990-01-01

    The effects of technological change in the aerospace workplace on pilot performance are discussed. Attention is given to individual and physiological problems, crew and interpersonal problems, environmental and task problems, organization and management problems, training and intervention problems. A philosophy and conceptual framework for conducting research on these problems are presented and two aerospace studies are examined which investigated: (1) the effect of leader personality on crew effectiveness and (2) the working undersea habitat known as Aquarius.

  5. Crew Transportation Operations Standards

    NASA Technical Reports Server (NTRS)

    Mango, Edward J.; Pearson, Don J. (Compiler)

    2013-01-01

    The Crew Transportation Operations Standards contains descriptions of ground and flight operations processes and specifications and the criteria which will be used to evaluate the acceptability of Commercial Providers' proposed processes and specifications.

  6. Commercial Crew Transportation Capability

    NASA Image and Video Library

    2014-09-16

    Kathy Lueders, program manager of NASA's Commercial Crew Program, speaks during a news conference where it was announced that Boeing and SpaceX have been selected to transport U.S. crews to and from the International Space Station using the Boeing CST-100 and the SpaceX Crew Dragon spacecraft, at NASA’s Kennedy Space Center in Cape Canaveral, Fla. on Tuesday, Sept. 16, 2014. These Commercial Crew Transportation Capability (CCtCap) contracts are designed to complete the NASA certification for a human space transportation system capable of carrying people into orbit. Once certification is complete, NASA plans to use these systems to transport astronauts to the space station and return them safely to Earth. Photo Credit: (NASA/Bill Ingalls)

  7. Commercial Crew Transportation Capability

    NASA Image and Video Library

    2014-09-16

    Kathy Lueders, program manager of NASA's Commercial Crew Program, speaks, as Former astronaut Bob Cabana, director of NASA's Kennedy Space Center in Florida, left, and Astronaut Mike Fincke, a former commander of the International Space Station look on during a news conference where it was announced that Boeing and SpaceX have been selected to transport U.S. crews to and from the International Space Station using the Boeing CST-100 and the SpaceX Crew Dragon spacecraft, at NASA’s Kennedy Space Center in Cape Canaveral, Fla. on Tuesday, Sept. 16, 2014. These Commercial Crew Transportation Capability (CCtCap) contracts are designed to complete the NASA certification for a human space transportation system capable of carrying people into orbit. Once certification is complete, NASA plans to use these systems to transport astronauts to the space station and return them safely to Earth. Photo Credit: (NASA/Bill Ingalls)

  8. Commercial Crew Transportation Capability

    NASA Image and Video Library

    2014-09-16

    From left, NASA Public Affairs Officer Stephanie Schierholz, NASA Administrator Charles Bolden, Former astronaut Bob Cabana, director of NASA's Kennedy Space Center in Florida, Kathy Lueders, program manager of NASA's Commercial Crew Program, and Astronaut Mike Fincke, a former commander of the International Space Station, are seen during a news conference where it was announced that Boeing and SpaceX have been selected to transport U.S. crews to and from the International Space Station using the Boeing CST-100 and the SpaceX Crew Dragon spacecraft, at NASA’s Kennedy Space Center in Cape Canaveral, Fla. on Tuesday, Sept. 16, 2014. These Commercial Crew Transportation Capability (CCtCap) contracts are designed to complete the NASA certification for a human space transportation system capable of carrying people into orbit. Once certification is complete, NASA plans to use these systems to transport astronauts to the space station and return them safely to Earth. Photo Credit: (NASA/Bill Ingalls)

  9. STS-87 Crew Breakfast

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The STS-87 flight crew enjoys the traditional pre-liftoff breakfast in the crew quarters of the Operations and Checkout Building. They are, from left, Mission Specialist Winston Scott; Mission Specialist Takao Doi, Ph.D., of the National Space Development Agency of Japan; Commander Kevin Kregel; Payload Specialist Leonid Kadenyuk of the National Space Agency of Ukraine; Mission Specialist Kalpana Chawla, Ph.D.; and Pilot Steven Lindsey. After a weather briefing, the flight crew will be fitted with their launch and entry suits and depart for Launch Pad 39B. Once there, they will take their positions in the crew cabin of the Space Shuttle Columbia to await liftoff during a two-and-a-half-hour window that will open at 2:46 p.m. EDT, Nov. 19.

  10. STS-102 Crew Training

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Footage shows the crew of STS-102, Commander James D. Wetherbee, Pilot James M. Kelly, and Mission Specialists Andrew S. W. Thomas and Paul Richards, during various parts of their training. Scenes include: (1) neutral buoyancy lab training; (2) undocking/fly-around training in the GNS (Navigation Simulator); (3) crew equipment interface test; (4) Remote Manipulator System (RMS) training in the GNS; and (5) docking training in the GNS.

  11. STS-53 Crew Portrait

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The STS-53 crew portrait included astronauts (front left to right): Guion S. Bluford, and James S. Voss, mission specialists. On the back row, left to right, are David M. Walker, commander; Robert D. Cabana, Pilot; and Michael R. (Rick) Clifford, mission specialist. The crew launched aboard the Space Shuttle Discovery on December 2, 1992 at 8:24:00 am (EST). This mission marked the final classified shuttle flight for the Department of Defense (DOD).

  12. Expedition Seven Crew Members

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This crew portrait of Expedition Seven, Cosmonaut Yuri I. Malenchenko, Expedition Seven mission commander (left), and Astronaut Edward T. Lu, Expedition Seven NASA ISS science officer and flight engineer (right) was taken while in training at the Gagarin Cosmonaut Training Center in Star City, Russia. Destined for the International Space Station (ISS), the two-man crew launched from the Baikonur Cosmodrome, Kazakhstan on April 26, 2003. aboard a Soyez TMA-1 spacecraft.

  13. Orion Crew Module Adapter

    NASA Image and Video Library

    2015-11-12

    Offloading of the Orion Crew Module Adapter, CMA, at Plum Brook Station. The adapter will connect Orion’s crew module to a service module provided by ESA (European Space Agency). NASA is preparing for a series of tests that will check out the Orion European Service Module, a critical part of the spacecraft that will be launched on future missions to an asteroid and on toward Mars.

  14. Expedition Seven Crew Members

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This crew portrait of Expedition Seven, Cosmonaut Yuri I. Malenchenko, Expedition Seven mission commander (left), and Astronaut Edward T. Lu, Expedition Seven NASA ISS science officer and flight engineer (right) was taken while in training at the Gagarin Cosmonaut Training Center in Star City, Russia. Destined for the International Space Station (ISS), the two-man crew launched from the Baikonur Cosmodrome, Kazakhstan on April 26, 2003. aboard a Soyez TMA-1 spacecraft.

  15. Expedition 5 Crew Insignia

    NASA Technical Reports Server (NTRS)

    2002-01-01

    JOHNSON SPACE CENTER, HOUSTON, TEXAS -- EXPEDITION FIVE CREW INSIGNIA (ISS05-S-001) -- The International Space Station (ISS) Expedition Five patch depicts the Station in its completed configuration and represents the vision of mankind's first step as a permanent human presence in space. The United States and Russian flags are joined together in a Roman numeral V to represent both the nationalities of the crew and the fifth crew to live aboard the ISS. Crew members' names are shown in the border of this patch. This increment encompasses a new phase in growth for the Station, with three Shuttle crews delivering critical components and building blocks to the ISS. To signify the participation of each crew member, the Shuttle is docked to the Station beneath a constellation of 17 stars symbolizing all those visiting and living aboard Station during this increment. The NASA insignia design for Shuttle flights is reserved for use by the astronauts and for other official use as the NASA Administrator may authorize. Public availability has been approved only in the forms of illustrations by the various news media. When and if there is any change in this policy, which is not anticipated, the change will be publicly announced.

  16. STS-88 crew goes through Crew Equipment Interface Testing

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Inside the payload bay of orbiter Endeavour in the Orbiter Processing Facility Bay 1, STS-88 Mission Specialists Jerry L. Ross (left) and James H. Newman (right foreground) get a close look at the Orbiter Docking System. The STS-88 crew members are participating in a Crew Equipment Interface Test (CEIT), familiarizing themselves with the orbiter's midbody and crew compartments. Targeted for liftoff on Dec. 3, 1998, STS-88 will be the first Space Shuttle launch for assembly of the International Space Station (ISS). The primary payload is the Unity connecting module which will be mated to the Russian-built Zarya control module, expected to be already on orbit after a November launch from Russia. While on orbit during STS-88, Unity will be latched atop the Orbiter Docking System in the forward section of Endeavour's payload bay for the mating of the two modules. After the mating, Ross and Newman are scheduled to perform three spacewalks to connect power, data and utility lines and install exterior equipment. The first major U.S.-built component of ISS, Unity will serve as a connecting passageway to living and working areas of the space station. Unity has two attached pressurized mating adapters (PMAs) and one stowage rack installed inside. PMA-1 provides the permanent connection point between Unity and Zarya; PMA-2 will serve as a Space Shuttle docking port. Zarya is a self-supporting active vehicle, providing propulsive control capability and power during the early assembly stages. It also has fuel storage capability.

  17. STS-88 crew goes through Crew Equipment Interface Testing

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Inside the payload bay of Space Shuttle orbiter Endeavour in Orbiter Processing Facility Bay 1, STS-88 Mission Specialists Jerry L. Ross (crouching at left) and James H. Newman (far right) get a close look at equipment. Looking on is Wayne Wedlake (far left), with United Space Alliance at Johnson Space Center, and a KSC worker (behind Newman) who is operating the movable work platform or bucket. The STS-88 crew members are participating in a Crew Equipment Interface Test (CEIT), familiarizing themselves with the orbiter's midbody and crew compartments. Targeted for liftoff on Dec. 3, 1998, STS-88 will be the first Space Shuttle launch for assembly of the International Space Station (ISS). The primary payload is the Unity connecting module which will be mated to the Russian-built Zarya control module, expected to be already on orbit after a November launch from Russia. After the mating, Ross and Newman are scheduled to perform three spacewalks to connect power, data and utility lines and install exterior equipment. The first major U.S.-built component of ISS, Unity will serve as a connecting passageway to living and working areas of the space station. Unity has two attached pressurized mating adapters (PMAs) and one stowage rack installed inside. PMA-1 provides the permanent connection point between Unity and Zarya; PMA-2 will serve as a Space Shuttle docking port. Zarya is a self-supporting active vehicle, providing propulsive control capability and power during the early assembly stages. It also has fuel storage capability.

  18. Cabin crew stress factors examined.

    PubMed

    Barayan, O S

    1991-05-01

    The impact of reduced cockpit crew on the cabin crew in commercial airlines is examined. One hundred cabin crew members participated in a study to determine what stressors are present in contemporary transport aircraft, the extent of differences in rating context-related and task-related stressors, and the effect of peak versus normal periods of duty time on stress factors. Results indicate that under peak period conditions, context-related factors are more stressful than task-related factors. Recommendations to alleviate cabin crew stress factors include training to maximize crew knowledge and abilities, elevate cabin crew to the same status as cockpit crew, improve the cabin crew certification program, and expose cabin crew to cockpit crew procedures to foster better communication and enhance safety.

  19. Hubble Space Telescope Crew Rescue Analysis

    NASA Technical Reports Server (NTRS)

    Hamlin, Teri L.; Canga, Michael A.; Cates, Grant R.

    2010-01-01

    In the aftermath of the 2003 Columbia accident, NASA removed the Hubble Space Telescope (HST) Servicing Mission 4 (SM4) from the Space Shuttle manifest. Reasons cited included concerns that the risk of flying the mission would be too high. The HST SM4 was subsequently reinstated and flown as Space Transportation System (STS)-125 because of improvements in the ascent debris environment, the development of techniques for astronauts to perform on orbit repairs to damaged thermal protection, and the development of a strategy to provide a viable crew rescue capability. However, leading up to the launch of STS-125, the viability of the HST crew rescue capability was a recurring topic. For STS-125, there was a limited amount of time available to perform a crew rescue due to limited consumables (power, oxygen, etc.) available on the Orbiter. The success of crew rescue depended upon several factors, including when a problem was identified; when and what actions, such as powering down, were begun to conserve consumables; and where the Launch on Need (LON) vehicle was in its ground processing cycle. Crew rescue success also needed to be weighed against preserving the Orbiter s ability to have a landing option in case there was a problem with the LON vehicle. This paper focuses on quantifying the HST mission loss of crew rescue capability using Shuttle historical data and various power down strategies. Results from this effort supported NASA s decision to proceed with STS-125, which was successfully completed on May 24th 2009.

  20. LOFT Debriefings: An Analysis of Instructor Techniques and Crew Participation

    NASA Technical Reports Server (NTRS)

    Dismukes, R. Key; Jobe, Kimberly K.; McDonnell, Lori K.

    1997-01-01

    This study analyzes techniques instructors use to facilitate crew analysis and evaluation of their Line-Oriented Flight Training (LOFT) performance. A rating instrument called the Debriefing Assessment Battery (DAB) was developed which enables raters to reliably assess instructor facilitation techniques and characterize crew participation. Thirty-six debriefing sessions conducted at five U.S. airlines were analyzed to determine the nature of instructor facilitation and crew participation. Ratings obtained using the DAB corresponded closely with descriptive measures of instructor and crew performance. The data provide empirical evidence that facilitation can be an effective tool for increasing the depth of crew participation and self-analysis of CRM performance. Instructor facilitation skill varied dramatically, suggesting a need for more concrete hands-on training in facilitation techniques. Crews were responsive but fell short of actively leading their own debriefings. Ways to improve debriefing effectiveness are suggested.

  1. Hubble Space Telescope Crew Rescue Analysis

    NASA Technical Reports Server (NTRS)

    Hamlin, Teri L.; Canga, Michael; Boyer, Roger; Thigpen, Eric

    2009-01-01

    In the aftermath of the 2003 Columbia accident NASA removed the Hubble Space Telescope (HST) Servicing Mission 4 (SM4) from the Space Shuttle manifest. Reasons cited included concerns that the risk of flying the mission would be too high. There was at the time no viable technique to repair the orbiter s thermal protection system if it were to be damaged by debris during ascent. Furthermore in the event of damage, since the mission was not to the International Space Station, there was no safe haven for the crew to wait for an extended period of time for a rescue. The HST servicing mission was reconsidered because of improvements in the ascent debris environment, the development of techniques for the astronauts to perform on orbit repairs to damage thermal protection, and the development of a strategy to provide a crew rescue capability. However, leading up to the launch of servicing mission, the HST crew rescue capability was a recurring topic. For HST there was a limited amount of time available to perform a crew rescue because of the limited consumables available on the Orbiter. The success of crew rescue depends upon several factors including when a problem is identified, when and to what extent power down procedures are begun, and where the rescue vehicle is in its ground processing cycle. Severe power downs maximize crew rescue success but would eliminate the option for the orbiter servicing the HST to attempt a landing. Therefore, crew rescue success needed to be weighed against preserving the ability of the orbiter to have landing option in case there was a problem with the rescue vehicle. This paper focuses on quantification of the HST mission loss of crew rescue capability using Shuttle historical data and various power down capabilities. That work supported NASA s decision to proceed with the HST service mission, which was successfully completed on May 24th 2009.

  2. Room temperature synthesis of cobalt-manganese-nickel oxalates micropolyhedrons for high-performance flexible electrochemical energy storage device

    PubMed Central

    Zhang, Yi-Zhou; Zhao, Junhong; Xia, Jing; Wang, Lulu; Lai, Wen-Yong; Pang, Huan; Huang, Wei

    2015-01-01

    Cobalt-manganese-nickel oxalates micropolyhedrons were successfully fabricated by a room temperature chemical co-precipitation method. Interestingly, the Co0.5Mn0.4Ni0.1C2O4*nH2O micropolyhedrons and graphene nanosheets have been successfully applied as the positive and negative electrode materials (a battery type Faradaic electrode and a capacitive electrode, respectively) for flexible solid-state asymmetric supercapacitors. More importantly, the as-assembled device achieved a maximum energy density of 0.46 mWh·cm−3, a decent result among devices with similar structures. The as-assembled device showed good flexibility, functioning well under both normal and bent conditions (0°–180°). The resulting device showed little performance decay even after 6000 cycles, which rendered the Co0.5Mn0.4Ni0.1C2O4*nH2O//Graphene device configuration a promising candidate for high-performance flexible solid-state asymmetric supercapacitors in the field of high-energy-density energy storage devices. PMID:25705048

  3. Quantitative analysis of the size effect of room temperature nanoimprinted P3HT nanopillar arrays on the photovoltaic performance.

    PubMed

    Ding, Guangzhu; Li, Chao; Li, Xiaohui; Wu, Yangjiang; Liu, Jieping; Li, Yaowen; Hu, Zhijun; Li, Yongfang

    2015-07-07

    We develop a solvent-assisted room temperature nanoimprint lithography (SART-NIL) technique to fabricate an ideal active layer consisting of poly(3-hexylthiophene) nanopillar arrays surrounded by [6,6]-phenyl-C61-butyric acid methyl ester. Characterization by scanning electron microscopy, two-dimensional grazing incidence wide angle X-rays diffraction, and conducting atomic force microscopy reveals that the SART-NIL technique can precisely control the size of P3HT nanopillar arrays. With the decrease in diameters of P3HT nanopillar arrays, the P3HT nanopillar arrays exhibit a more preferable face-on molecular orientation, enhanced UV-vis absorption and higher conducting ability along the direction perpendicular to the substrate. The ordered bulk heterojunction film consisting of P3HT nanopillar arrays with a diameter of ∼45 nm (OBHJ-45) gives face-on orientation, a high interfacial area of 2.87, a high conducting ability of ∼130 pA and efficient exciton diffusion and dissociation. The polymer solar cell (PSC) based on an OBHJ-45 film exhibits a significantly improved device performance compared with those of PSCs based on the P3HT nanoapillar arrays with diameters ∼100 nm and ∼60 nm. We believe that the SART-NIL technique is a powerful tool for fabricating an ideal active layer for high performance PSCs.

  4. Evaluating well-mixed room and near-field-far-field model performance under highly controlled conditions.

    PubMed

    Arnold, Susan F; Shao, Yuan; Ramachandran, Gurumurthy

    2017-06-01

    Exposure judgments made without personal exposure data and based instead on subjective inputs tend to underestimate exposure, with exposure judgment accuracy not significantly more accurate than random chance. Therefore, objective inputs that contribute to more accurate decision making are needed. Models have been shown anecdotally to be useful in accurately predicting exposure but their use in occupational hygiene has been limited. This may be attributable to a general lack of guidance on model selection and use and scant model input data. The lack of systematic evaluation of the models is also an important factor. This research addresses the need to systematically evaluate two widely applicable models, the Well-Mixed Room (WMR) and Near-Field-Far-Field (NF-FF) models. The evaluation, conducted under highly controlled conditions in an exposure chamber, allowed for model inputs to be accurately measured and controlled, generating over 800 pairs of high quality measured and modeled exposure estimates. By varying conditions in the chamber one at a time, model performance across a range of conditions was evaluated using two sets of criteria: the ASTM Standard 5157 and the AIHA Exposure Assessment categorical criteria. Model performance for the WMR model was excellent, with ASTM performance criteria met for 88-97% of the pairs across the three chemicals used in the study, and 96% categorical agreement observed. Model performance for the NF-FF model, impacted somewhat by the size of the chamber was nevertheless good to excellent. NF modeled estimates met modified ASTM criteria for 67-84% of the pairs while 69-91% of FF modeled estimates met these criteria. Categorical agreement was observed for 72% and 96% of NF and FF pairs, respectively. These results support the use of the WMR and NF-FF models in guiding decision making towards improving exposure judgment accuracy.

  5. STS-74 MS Jerry L. Ross in white room

    NASA Technical Reports Server (NTRS)

    1995-01-01

    At Launch Pad 39A, Mission Specialist Jerry L. Ross is nearly ready to enter the Space Shuttle Atlantis, scheduled for liftoff at about 7:30 a.m. EST, Nov. 12. Johnson Space Center Lockheed suit technician Ray Villalobos (left) is one member of the white room closeout crew that helps Shuttle crews into the orbiter.

  6. STS-69 Mission Commander David M. Walker in white room

    NASA Technical Reports Server (NTRS)

    1995-01-01

    STS-69 Mission Commander David M. Walker chats with white room closeout crew members Bob Saulnier (left), Regulo Villalobos and closeout crew leader Travis Thompson prior to entering the flight deck of the Space Shuttle Endeavour at Launch Pad 39A.

  7. STS-74 MS Jerry L. Ross in white room

    NASA Technical Reports Server (NTRS)

    1995-01-01

    At Launch Pad 39A, Mission Specialist Jerry L. Ross is nearly ready to enter the Space Shuttle Atlantis, scheduled for liftoff at about 7:30 a.m. EST, Nov. 12. Johnson Space Center Lockheed suit technician Ray Villalobos (left) is one member of the white room closeout crew that helps Shuttle crews into the orbiter.

  8. STS-102 Crew Patch

    NASA Image and Video Library

    2001-04-24

    STS102-S-001 (January 2001) --- The central image on the STS-102 crew patch depicts the International Space Station (ISS) in the build configuration that it will have at the time of the arrival and docking of Discovery during the STS-102 mission, the first crew exchange flight to the space station. The station is shown along the direction of the flight as will be seen by the shuttle crew during their final approach and docking, the so-called V-bar approach. The names of the shuttle crew members are depicted in gold around the top of the patch, and surnames of the Expedition crew members being exchanged are shown in the lower banner. The three ribbons swirling up to and around the station signify the rotation of these ISS crew members. The number two is for the Expedition Two crew who fly up to the station, and the number one is for the Expedition One crew who then return down to Earth. In conjunction with the face of the Lab module of the station, these Expedition numbers create the shuttle mission number 102. Shown mated below the ISS is the Italian-built Multi-Purpose Logistics Module, Leonardo, that will fly for the first time on this flight, and which will be attached to the station by the shuttle crew during the docked phase of the mission. The flags of the countries that are the major contributors to this effort, the United States, Russia, and Italy are also shown in the lower part of the patch. The build-sequence number of this flight in the overall station assembly sequence, 5A.1, is captured by the constellations in the background. The NASA insignia design for space shuttle flights is reserved for use by the astronauts and for other official use as the NASA Administrator may authorize. Public availability has been approved only in the forms of illustrations by the various news media. When and if there is any change in this policy, which is not anticipated, the change will be publicly announced. Photo credit: NASA

  9. STS-80 Mission Specialist Story Musgrave in White Room

    NASA Technical Reports Server (NTRS)

    1996-01-01

    STS-80 Mission Specialist Story Musgrave prepares to enter the Space Shuttle Columbia at Launch Pad 39B, with assistance from white room closeout crew members (from left) Rick Welty, Troy Stewart, Ray Villalobos and Bob Saulnier.

  10. STS-79 Mission Specialist Thomas Akers in White Room

    NASA Technical Reports Server (NTRS)

    1996-01-01

    STS-79 Mission Specialist Thomas D. Akers shares a light moment with white room closeout crew members Rick Welty (left) and Travis Thompson, before entering the Space Shuttle Atlantis at Launch Pad 39A.

  11. STS-80 Mission Specialist Thomas Jones in White Room

    NASA Technical Reports Server (NTRS)

    1996-01-01

    STS-80 Mission Specialist Thomas D. Jones prepares to enter the Space Shuttle Columbia at Launch Pad 39B, with assistance from white room closeout crew members (from left) Rick Welty and Bob Saulnier.

  12. STS-75 Pilot Scott Horowitz in white room

    NASA Technical Reports Server (NTRS)

    1996-01-01

    STS-75 Pilot Scott J. 'Doc' Horowitz (center) prepares to enter the Space Shuttle Columbia at Launch Pad 39B with assistance from white room closeout crew members Paul Arnold (left), Dave Law and Bob Saulnier.

  13. STS-80 Commander Kenneth D. Cockrell in White Room

    NASA Technical Reports Server (NTRS)

    1996-01-01

    STS-80 Commander Kenneth D. Cockrell prepares to enter the Space Shuttle Columbia at Launch Pad 39B, with assistance from white room closeout crew members (from left) Ray Villalobos, Troy Stewart and Jim Martin.

  14. STS-69 Pilot Kenneth D. Cockrell in white room

    NASA Technical Reports Server (NTRS)

    1995-01-01

    At Launch Pad 39A, STS-69 Pilot Kenneth D. Cockrell is assisted into the Space Shuttle Endeavour by white room closeout crew members Regulo Villalobos (left), Travis Thompson and Bob Saulnier (right).

  15. STS-79 Mission Specialist John Blaha in White Room

    NASA Technical Reports Server (NTRS)

    1996-01-01

    STS-79 Mission Specialist John E. Blaha shares a light moment with white room closeout crew members Rick Welty (No. 1) and Jim Davis (right), before entering the Space Shuttle Atlantis at Launch Pad 39A.

  16. STS-80 Mission Specialist Thomas Jones in White Room

    NASA Technical Reports Server (NTRS)

    1996-01-01

    STS-80 Mission Specialist Thomas D. Jones prepares to enter the Space Shuttle Columbia at Launch Pad 39B, with assistance from white room closeout crew members (from left) Rick Welty and Bob Saulnier.

  17. STS-82 M.S. Steven Smith in White Room

    NASA Technical Reports Server (NTRS)

    1997-01-01

    STS-82 Mission Specialist Steven L. Smith prepares to enter the Space Shuttle Discovery at Launch Pad 39A, with the assistance of white room closeout crew members Dave Law, in front; Carlous Gillis, at left; and James Davis.

  18. STS-75 Mission Commander Andrew M. Allen in White Room

    NASA Technical Reports Server (NTRS)

    1996-01-01

    STS-75 Mission Commander Andrew M. Allen (center) prepares to enter the Space Shuttle Columbia at Launch Pad 39B with assistance from white room closeout crew members Paul Arnold (left), Dave Law and Bob Saulnier.

  19. STS-82 M.S. Steven Hawley in White Room

    NASA Technical Reports Server (NTRS)

    1997-01-01

    STS-82 Mission Specialist Steven A. Hawley prepares to enter the Space Shuttle Discovery at Launch Pad 39A, with the assistance of white room closeout crew members James Davis, at left, and George Schramm.

  20. STS-80 Mission Specialist Story Musgrave in White Room

    NASA Technical Reports Server (NTRS)

    1996-01-01

    STS-80 Mission Specialist Story Musgrave prepares to enter the Space Shuttle Columbia at Launch Pad 39B, with assistance from white room closeout crew members (from left) Rick Welty, Troy Stewart, Ray Villalobos and Bob Saulnier.

  1. STS-79 Mission Specialist Thomas Akers in White Room

    NASA Technical Reports Server (NTRS)

    1996-01-01

    STS-79 Mission Specialist Thomas D. Akers shares a light moment with white room closeout crew members Rick Welty (left) and Travis Thompson, before entering the Space Shuttle Atlantis at Launch Pad 39A.

  2. STS-75 MS Jeffrey A. Hoffman in White Room

    NASA Technical Reports Server (NTRS)

    1996-01-01

    STS-75 Mission Specialist Jeffrey A. Hoffman prepares to enter the Space Shuttle Columbia at Launch Pad 39B with assistance from white room closeout crew members Rene Arriens (No. 5) and Bob Saulnier (No. 6).

  3. STS-82 M.S. Steven Smith in White Room

    NASA Technical Reports Server (NTRS)

    1997-01-01

    STS-82 Mission Specialist Steven L. Smith prepares to enter the Space Shuttle Discovery at Launch Pad 39A, with the assistance of white room closeout crew members Dave Law, in front; Carlous Gillis, at left; and James Davis.

  4. STS-69 Mission Specialist James H. Newman in white room

    NASA Technical Reports Server (NTRS)

    1995-01-01

    At Launch Pad 39A, STS-69 Mission Specialist James H. Newman chats with white room closeout crew members Rene Arriens (far left), Travis Thompson and Bob Saulnier (right) prior to entering the Space Shuttle Endeavour.

  5. NASA Crew Launch Vehicle Overview

    NASA Technical Reports Server (NTRS)

    Dumbacher, Daniel L.

    2006-01-01

    The US. Vision for Space Exploration, announced January 2004, outlines the National Aeronautics and Space Administration s (NASA) strategic goals and objectives. These include: 1) Flying the Shuttle as safely as possible until its retirement, not later than 2010. 2) Bringing a new Crew Exploration Vehicle (CEV) into service as soon as possible after Shuttle retirement. 3) Developing a balanced overall program of science, exploration, and aeronautics at NASA, consistent with the redirection of the human spaceflight program to focus on exploration. 4) Completing the International Space Station (ISS) in a manner consistent with international partner commitments and the needs of human exploration. 5) Encouraging the pursuit of appropriate partnerships with the emerging commercial space sector. 6) Establishing a lunar return program having the maximum possible utility for later missions to Mars and other destinations. Following the confirmation of the new NASA Administrator in April 2005, the Agency commissioned a team of aerospace subject matter experts from government and industry to perform the Exploration Systems Architecture Study (ESAS), which provided in-depth information for selecting the follow-on launch vehicle designs to enable these goals, The ESAS team analyzed a number of potential launch systems, with a focus on: (1) a human-rated launch vehicle for crew transport and (2) a heavy lift launch vehicle (HLLV) to carry cargo. After several months of intense study utilizing technical performance, budget, and schedule objectives, the results showed that the optimum architecture to meet the challenge of safe, reliable crew transport is a two-stage variant of the Space Shuttle propulsion system - utilizing the reusable Solid Rocket Booster (SRB) as the first stage, along with a new upper stage that uses a derivative of the RS-25 Space Shuttle Main Engine to deliver 25 metric tons to low-Earth orbit. The CEV that this new Crew Launch Vehicle (CLV) lofts into space

  6. Crew productivity issues in long-duration space flight

    NASA Technical Reports Server (NTRS)

    Nicholas, John M.; Foushee, H. Clayton; Ulschak, Francis L.

    1988-01-01

    Considerable evidence suggests the importance of teamwork, coordination, and conflict resolution to the performance and survival of isolated, confined groups in high-technology environments. With the advent of long-duration space flight, group-related issues of crew functioning will take on added significance. This paper discusses the influence of crew roles, status, leadership, and norms on the performance of small, confined groups, and offers guidelines and suggestions regarding organizational design, crew selection, training, and team building for crew productivity and social well-being in long-duration spaceflight.

  7. Crew productivity issues in long-duration space flight

    NASA Technical Reports Server (NTRS)

    Nicholas, John M.; Foushee, H. Clayton; Ulschak, Francis L.

    1988-01-01

    Considerable evidence suggests the importance of teamwork, coordination, and conflict resolution to the performance and survival of isolated, confined groups in high-technology environments. With the advent of long-duration space flight, group-related issues of crew functioning will take on added significance. This paper discusses the influence of crew roles, status, leadership, and norms on the performance of small, confined groups, and offers guidelines and suggestions regarding organizational design, crew selection, training, and team building for crew productivity and social well-being in long-duration spaceflight.

  8. Room Acoustics

    NASA Astrophysics Data System (ADS)

    Kuttruff, Heinrich; Mommertz, Eckard

    The traditional task of room acoustics is to create or formulate conditions which ensure the best possible propagation of sound in a room from a sound source to a listener. Thus, objects of room acoustics are in particular assembly halls of all kinds, such as auditoria and lecture halls, conference rooms, theaters, concert halls or churches. Already at this point, it has to be pointed out that these conditions essentially depend on the question if speech or music should be transmitted; in the first case, the criterion for transmission quality is good speech intelligibility, in the other case, however, the success of room-acoustical efforts depends on other factors that cannot be quantified that easily, not least it also depends on the hearing habits of the listeners. In any case, absolutely "good acoustics" of a room do not exist.

  9. STS-99 crew conducts a bench review in USA building 1

    NASA Image and Video Library

    1999-08-11

    S99-09457 (11 August 1999) --- Wearing clean room suits, members of the STS-99 crew inspect some of the gear they will be using on their upcoming space mission. From the left (in blue lab coats) are astronauts Dominic L. Gorie, pilot; Gerhard P.J. Thiele, mission specialist representing the European Space Agency (ESA); Janice Voss, mission specialist; and Kevin R. Kregel, mission commander. This type flight crew equipment (FCE) bench review is routine preflight procedure for all shuttle crews.

  10. Performance of room temperature mercuric iodide /HgI2/ detectors in the ultralow-energy X-ray region

    NASA Technical Reports Server (NTRS)

    Dabrowski, A. J.; Barton, J. B.; Huth, G. C.; Whited, R.; Ortale, C.; Economou, T. E.; Turkevich, A. L.; Iwanczyk, J. S.

    1981-01-01

    Experiments have been done to study the performance of mercuric iodide (HgI2) detectors in the ultralow-energy X-ray region. Energy resolution values of 245 eV (FWHM) for the Mg K-alpha X-ray line at 1.25 keV and 225 eV (FWHM) for the electronic noise linewidth have been obtained for an HgI2 detector with painted carbon contacts using a pulsed-light feedback preamplifier; the whole system was operated at room temperature. The resolution values in the ultralow-energy region are still limited by electronic noise of the system. In an attempt to minimize X-ray attenuation in the front contact, detectors were prepared with thin evaporated Pd contacts. These detectors show a pronounced low-energy tailing of the photopeak below a few keV, in contrast to the spectra obtained by detectors with carbon contact. An attempt has been made to explain the tailing effect starting with models wich have been proposed to describe similar effects in Ge detectors.

  11. Performance of room temperature mercuric iodide /HgI2/ detectors in the ultralow-energy X-ray region

    NASA Technical Reports Server (NTRS)

    Dabrowski, A. J.; Barton, J. B.; Huth, G. C.; Whited, R.; Ortale, C.; Economou, T. E.; Turkevich, A. L.; Iwanczyk, J. S.

    1981-01-01

    Experiments have been done to study the performance of mercuric iodide (HgI2) detectors in the ultralow-energy X-ray region. Energy resolution values of 245 eV (FWHM) for the Mg K-alpha X-ray line at 1.25 keV and 225 eV (FWHM) for the electronic noise linewidth have been obtained for an HgI2 detector with painted carbon contacts using a pulsed-light feedback preamplifier; the whole system was operated at room temperature. The resolution values in the ultralow-energy region are still limited by electronic noise of the system. In an attempt to minimize X-ray attenuation in the front contact, detectors were prepared with thin evaporated Pd contacts. These detectors show a pronounced low-energy tailing of the photopeak below a few keV, in contrast to the spectra obtained by detectors with carbon contact. An attempt has been made to explain the tailing effect starting with models wich have been proposed to describe similar effects in Ge detectors.

  12. Performance of room temperature mercuric iodide /HgI2/ detectors in the ultralow-energy X-ray region

    NASA Astrophysics Data System (ADS)

    Dabrowski, A. J.; Barton, J. B.; Huth, G. C.; Whited, R.; Ortale, C.; Economou, T. E.; Turkevich, A. L.; Iwanczyk, J. S.

    1981-02-01

    Experiments have been done to study the performance of mercuric iodide (HgI2) detectors in the ultralow-energy X-ray region. Energy resolution values of 245 eV (FWHM) for the Mg K-alpha X-ray line at 1.25 keV and 225 eV (FWHM) for the electronic noise linewidth have been obtained for an HgI2 detector with painted carbon contacts using a pulsed-light feedback preamplifier; the whole system was operated at room temperature. The resolution values in the ultralow-energy region are still limited by electronic noise of the system. In an attempt to minimize X-ray attenuation in the front contact, detectors were prepared with thin evaporated Pd contacts. These detectors show a pronounced low-energy tailing of the photopeak below a few keV, in contrast to the spectra obtained by detectors with carbon contact. An attempt has been made to explain the tailing effect starting with models wich have been proposed to describe similar effects in Ge detectors.

  13. Airline Crew Training

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The discovery that human error has caused many more airline crashes than mechanical malfunctions led to an increased emphasis on teamwork and coordination in airline flight training programs. Human factors research at Ames Research Center has produced two crew training programs directed toward more effective operations. Cockpit Resource Management (CRM) defines areas like decision making, workload distribution, communication skills, etc. as essential in addressing human error problems. In 1979, a workshop led to the implementation of the CRM program by United Airlines, and later other airlines. In Line Oriented Flight Training (LOFT), crews fly missions in realistic simulators while instructors induce emergency situations requiring crew coordination. This is followed by a self critique. Ames Research Center continues its involvement with these programs.

  14. Commercial Crew Transportation Capability

    NASA Image and Video Library

    2014-09-16

    Former astronaut Bob Cabana, director of NASA's Kennedy Space Center in Florida, speaks during a news conference where it was announced that Boeing and SpaceX have been selected to transport U.S. crews to and from the International Space Station using the Boeing CST-100 and the SpaceX Crew Dragon spacecraft, at NASA’s Kennedy Space Center in Cape Canaveral, Fla. on Tuesday, Sept. 16, 2014. These Commercial Crew Transportation Capability (CCtCap) contracts are designed to complete the NASA certification for a human space transportation system capable of carrying people into orbit. Once certification is complete, NASA plans to use these systems to transport astronauts to the space station and return them safely to Earth. Photo Credit: (NASA/Bill Ingalls)

  15. Commercial Crew Transportation Capability

    NASA Image and Video Library

    2014-09-16

    Astronaut Mike Fincke, a former commander of the International Space Station, speaks during a news conference where it was announced that Boeing and SpaceX have been selected to transport U.S. crews to and from the International Space Station using the Boeing CST-100 and the SpaceX Crew Dragon spacecraft, at NASA’s Kennedy Space Center in Cape Canaveral, Fla. on Tuesday, Sept. 16, 2014. These Commercial Crew Transportation Capability (CCtCap) contracts are designed to complete the NASA certification for a human space transportation system capable of carrying people into orbit. Once certification is complete, NASA plans to use these systems to transport astronauts to the space station and return them safely to Earth. Photo Credit: (NASA/Bill Ingalls)

  16. Commercial Crew Transportation Capability

    NASA Image and Video Library

    2014-09-16

    NASA Administrator Charles Bolden, left, announces the agency’s selection of Boeing and SpaceX to transport U.S. crews to and from the International Space Station using the Boeing CST-100 and the SpaceX Crew Dragon spacecraft as Former astronaut Bob Cabana, director of NASA's Kennedy Space Center in Florida looks on at NASA’s Kennedy Space Center in Cape Canaveral, Fla. on Tuesday, Sept. 16, 2014. These Commercial Crew Transportation Capability (CCtCap) contracts are designed to complete the NASA certification for a human space transportation system capable of carrying people into orbit. Once certification is complete, NASA plans to use these systems to transport astronauts to the space station and return them safely to Earth. Photo Credit: (NASA/Bill Ingalls)

  17. Commercial Crew Transportation Capability

    NASA Image and Video Library

    2014-09-16

    NASA Administrator Charles Bolden listens to a reporter’s question after he announced the agency’s selection of Boeing and SpaceX to transport U.S. crews to and from the International Space Station using the Boeing CST-100 and the SpaceX Crew Dragon spacecraft, at NASA’s Kennedy Space Center in Cape Canaveral, Fla. on Tuesday, Sept. 16, 2014. These Commercial Crew Transportation Capability (CCtCap) contracts are designed to complete the NASA certification for a human space transportation system capable of carrying people into orbit. Once certification is complete, NASA plans to use these systems to transport astronauts to the space station and return them safely to Earth. Photo Credit: (NASA/Bill Ingalls)

  18. Assured Crew Return Vehicle

    NASA Technical Reports Server (NTRS)

    Stone, D. A.; Craig, J. W.; Drone, B.; Gerlach, R. H.; Williams, R. J.

    1991-01-01

    The developmental status is discussed regarding the 'lifeboat' vehicle to enhance the safety of the crew on the Space Station Freedom (SSF). NASA's Assured Crew Return Vehicle (ACRV) is intended to provide a means for returning the SSF crew to earth at all times. The 'lifeboat' philosophy is the key to managing the development of the ACRV which further depends on matrixed support and total quality management for implementation. The risk of SSF mission scenarios are related to selected ACRV mission requirements, and the system and vehicle designs are related to these precepts. Four possible ACRV configurations are mentioned including the lifting-body, Apollo shape, Discoverer shape, and a new lift-to-drag concept. The SCRAM design concept is discussed in detail with attention to the 'lifeboat' philosophy and requirements for implementation.

  19. 41G crew activities

    NASA Image and Video Library

    2009-06-25

    41G-101-039 (5-13 Oct 1984) --- Two members of a record seven-person crew are pictured during Intravehicular Activity (IVA) aboard the Earth-orbiting Space Shuttle Challenger. Hold picture with open hand at right center edge. Astronaut David C. Leestma, mission specialist, is at right observing a test by payload specialist Marc Garneau, representing the National Research Council (NRC) of Canada. Garneau spent much of his on-duty time conducting a series of experiments for the NRC. The crew consisted of astronauts Robert L. Crippen, commander; Jon A. McBride, pilot; mission specialist's Kathryn D. Sullivan, Sally K. Ride, and David D. Leestma; Canadian astronaut Marc Garneau, and Paul D. Scully-Power, payload specialist's. EDITOR'S NOTE: The STS-41G mission had the first American female EVA (Sullivan); first seven-person crew; first orbital fuel transfer; and the first Canadian (Garneau).

  20. 24 CFR 3286.407 - Supervising work of crew.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 24 Housing and Urban Development 5 2011-04-01 2011-04-01 false Supervising work of crew. 3286.407... HUD-Administered States § 3286.407 Supervising work of crew. The installer will be responsible for the work performed by each person engaged to perform installation tasks on a manufactured home, in...

  1. Quantitative analysis of the size effect of room temperature nanoimprinted P3HT nanopillar arrays on the photovoltaic performance

    NASA Astrophysics Data System (ADS)

    Ding, Guangzhu; Li, Chao; Li, Xiaohui; Wu, Yangjiang; Liu, Jieping; Li, Yaowen; Hu, Zhijun; Li, Yongfang

    2015-06-01

    We develop a solvent-assisted room temperature nanoimprint lithography (SART-NIL) technique to fabricate an ideal active layer consisting of poly(3-hexylthiophene) nanopillar arrays surrounded by [6,6]-phenyl-C61-butyric acid methyl ester. Characterization by scanning electron microscopy, two-dimensional grazing incidence wide angle X-rays diffraction, and conducting atomic force microscopy reveals that the SART-NIL technique can precisely control the size of P3HT nanopillar arrays. With the decrease in diameters of P3HT nanopillar arrays, the P3HT nanopillar arrays exhibit a more preferable face-on molecular orientation, enhanced UV-vis absorption and higher conducting ability along the direction perpendicular to the substrate. The ordered bulk heterojunction film consisting of P3HT nanopillar arrays with a diameter of ~45 nm (OBHJ-45) gives face-on orientation, a high interfacial area of 2.87, a high conducting ability of ~130 pA and efficient exciton diffusion and dissociation. The polymer solar cell (PSC) based on an OBHJ-45 film exhibits a significantly improved device performance compared with those of PSCs based on the P3HT nanoapillar arrays with diameters ~100 nm and ~60 nm. We believe that the SART-NIL technique is a powerful tool for fabricating an ideal active layer for high performance PSCs.We develop a solvent-assisted room temperature nanoimprint lithography (SART-NIL) technique to fabricate an ideal active layer consisting of poly(3-hexylthiophene) nanopillar arrays surrounded by [6,6]-phenyl-C61-butyric acid methyl ester. Characterization by scanning electron microscopy, two-dimensional grazing incidence wide angle X-rays diffraction, and conducting atomic force microscopy reveals that the SART-NIL technique can precisely control the size of P3HT nanopillar arrays. With the decrease in diameters of P3HT nanopillar arrays, the P3HT nanopillar arrays exhibit a more preferable face-on molecular orientation, enhanced UV-vis absorption and higher

  2. ZnO Nanoparticles/Reduced Graphene Oxide Bilayer Thin Films for Improved NH3-Sensing Performances at Room Temperature.

    PubMed

    Tai, Huiling; Yuan, Zhen; Zheng, Weijian; Ye, Zongbiao; Liu, Chunhua; Du, Xiaosong

    2016-12-01

    ZnO nanoparticles and graphene oxide (GO) thin film were deposited on gold interdigital electrodes (IDEs) in sequence via simple spraying process, which was further restored to ZnO/reduced graphene oxide (rGO) bilayer thin film by the thermal reduction treatment and employed for ammonia (NH3) detection at room temperature. rGO was identified by UV-vis absorption spectra and X-ray photoelectron spectroscope (XPS) analyses, and the adhesion between ZnO nanoparticles and rGO nanosheets might also be formed. The NH3-sensing performances of pure rGO film and ZnO/rGO bilayer films with different sprayed GO amounts were compared. The results showed that ZnO/rGO film sensors exhibited enhanced response properties, and the optimal GO amount of 1.5 ml was achieved. Furthermore, the optimal ZnO/rGO film sensor showed an excellent reversibility and fast response/recovery rate within the detection range of 10-50 ppm. Meanwhile, the sensor also displayed good repeatability and selectivity to NH3. However, the interference of water molecules on the prepared sensor is non-ignorable; some techniques should be researched to eliminate the effect of moisture in the further work. The remarkably enhanced NH3-sensing characteristics were speculated to be attributed to both the supporting role of ZnO nanoparticles film and accumulation heterojunction at the interface between ZnO and rGO. Thus, the proposed ZnO/rGO bilayer thin film sensor might give a promise for high-performance NH3-sensing applications.

  3. ZnO Nanoparticles/Reduced Graphene Oxide Bilayer Thin Films for Improved NH3-Sensing Performances at Room Temperature

    NASA Astrophysics Data System (ADS)

    Tai, Huiling; Yuan, Zhen; Zheng, Weijian; Ye, Zongbiao; Liu, Chunhua; Du, Xiaosong

    2016-03-01

    ZnO nanoparticles and graphene oxide (GO) thin film were deposited on gold interdigital electrodes (IDEs) in sequence via simple spraying process, which was further restored to ZnO/reduced graphene oxide (rGO) bilayer thin film by the thermal reduction treatment and employed for ammonia (NH3) detection at room temperature. rGO was identified by UV-vis absorption spectra and X-ray photoelectron spectroscope (XPS) analyses, and the adhesion between ZnO nanoparticles and rGO nanosheets might also be formed. The NH3-sensing performances of pure rGO film and ZnO/rGO bilayer films with different sprayed GO amounts were compared. The results showed that ZnO/rGO film sensors exhibited enhanced response properties, and the optimal GO amount of 1.5 ml was achieved. Furthermore, the optimal ZnO/rGO film sensor showed an excellent reversibility and fast response/recovery rate within the detection range of 10-50 ppm. Meanwhile, the sensor also displayed good repeatability and selectivity to NH3. However, the interference of water molecules on the prepared sensor is non-ignorable; some techniques should be researched to eliminate the effect of moisture in the further work. The remarkably enhanced NH3-sensing characteristics were speculated to be attributed to both the supporting role of ZnO nanoparticles film and accumulation heterojunction at the interface between ZnO and rGO. Thus, the proposed ZnO/rGO bilayer thin film sensor might give a promise for high-performance NH3-sensing applications.

  4. Expeditio 28 Crew Portrait

    NASA Image and Video Library

    2011-06-24

    ISS028-E-009726 (24 June 2011) --- Expedition 28 crew members pose for an in-flight crew portrait in the Kibo laboratory of the International Space Station. Pictured on the front row are Russian cosmonaut Andrey Borisenko (center), commander; along with NASA astronaut Ron Garan (left) and Russian cosmonaut Alexander Samokutyaev, both flight engineers. Pictured from the left (back row) are Russian cosmonaut Sergei Volkov, NASA astronaut Mike Fossum and Japan Aerospace Exploration Agency astronaut Satoshi Furukawa, all flight engineers. Fresh fruit floats freely in the foreground.

  5. STS-110 Crew Portrait

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This is the official STS-110 crew portrait. In front, from the left, are astronauts Stephen N. Frick, pilot; Ellen Ochoa, flight engineer; and Michael J. Bloomfield, mission commander; In the back, from left, are astronauts Steven L. Smith, Rex J. Walheim, Jerry L. Ross and Lee M.E. Morin, all mission specialists. Launched aboard the Space Shuttle Orbiter Atlantis on April 8, 2002, the STS-110 mission crew prepared the International Space Station (ISS) for future space walks by installing and outfitting a 43-foot-long Starboard side S0 truss and preparing the Mobile Transporter. The mission served as the 8th ISS assembly flight.

  6. Expedition 34 Crew Landing

    NASA Image and Video Library

    2013-03-16

    A helicopter crew member waits for weather to clear outside his Search and Rescue helicopter that was grounded by low visibility at the Arkalyk Airport in Kazakhstan on Saturday, March 16, 2013. The Soyuz TMA-06M spacecraft landed with Expedition 34 Commander Kevin Ford of NASA, Russian Soyuz Commander Oleg Novitskiy and Russian Flight Engineer Evgeny Tarelkin near the town of Arkalyk, Kazakhstan on Saturday, March 16, 2013. Ford, Novitskiy, and Tarelkin returned from 142 days onboard the International Space Station where they served as members of the Expedition 33 and 34 crews. Photo Credit: (NASA/Bill Ingalls)

  7. Expedition 34 Crew Lands

    NASA Image and Video Library

    2013-03-16

    Cars carrying Expedition 34 Commander Kevin Ford of NASA, Russian Soyuz Commander Oleg Novitskiy and Russian Flight Engineer Evgeny Tarelkin pull up to the terminal at the Kustanay Airport a few hours after the crew landed their Soyuz TMA-06M spacecraft near the town of Arkalyk, Kazakhstan on Saturday, March 16, 2013. Ford, Novitskiy, and, Tarelkin returned from 142 days onboard the International Space Station where they served as members of the Expedition 33 and 34 crews. Photo Credit: (NASA/Bill Ingalls)

  8. STS-118 Crew Portrait

    NASA Technical Reports Server (NTRS)

    2007-01-01

    These seven astronauts take a break from training to pose for the STS-118 crew portrait. Pictured from the left are astronauts Richard A. 'Rick' Mastracchio, mission specialist; Barbara R. Morgan, mission specialist; Charles O. Hobaugh, pilot; Scott J. Kelly, commander; Tracy E. Caldwell, Canadian Space Agency's Dafydd R. 'Dave' Williams, and Alvin Drew Jr., all mission specialists. The crew members are attired in training versions of their shuttle launch and entry suits. The main objective of the STS-118 mission was to install the fifth Starboard (S5) truss segment on the International Space Station (ISS).

  9. Assured crew return vehicle

    NASA Technical Reports Server (NTRS)

    Cerimele, Christopher J. (Inventor); Ried, Robert C. (Inventor); Peterson, Wayne L. (Inventor); Zupp, George A., Jr. (Inventor); Stagnaro, Michael J. (Inventor); Ross, Brian P. (Inventor)

    1991-01-01

    A return vehicle is disclosed for use in returning a crew to Earth from low earth orbit in a safe and relatively cost effective manner. The return vehicle comprises a cylindrically-shaped crew compartment attached to the large diameter of a conical heat shield having a spherically rounded nose. On-board inertial navigation and cold gas control systems are used together with a de-orbit propulsion system to effect a landing near a preferred site on the surface of the Earth. State vectors and attitude data are loaded from the attached orbiting craft just prior to separation of the return vehicle.

  10. Predicting Radiation Induced Performance Decrements of AH-1 Helicopter Crews. Volume 2. Evaluation of Modeling and Simulation Techniques for Predicting Radiation Induced Performance Decrements

    DTIC Science & Technology

    1993-03-01

    X E-2 jerk joule 1J) 1.000 0 XOOX E#9 jouleikilogram IJ/Kgl (radiation dose absorbed) Gray IGyv 1.000000 kilotons teraJoules 4.183 kip 11000 Ibfl...newton (N) 4.448 222 X E*3 kip /tnch 2 (ksti kilo pascal tkPa) 6.894 757 X E+3 ktap newton-secondim 2 IN-s/M 2) 1.000 000 X E-2 micron meter (mI 1.000 000...designed as a research tool for following performance changes over time, treatments, dosages or levels ( Thorne , Genser, Sing & Hegge, 1985). The WRPAB

  11. Expedition 41 Crew Door Signing

    NASA Image and Video Library

    2014-09-25

    Expedition 41 Flight Engineer Barry Wilmore of NASA performs the traditional door signing at the Cosmonaut Hotel prior to departing the hotel for launch in a Soyuz rocket with fellow crew mates, Soyuz Commander Alexander Samokutyaev and Flight Engineer Elena Serova of the Russian Federal Space Agency (Roscosmos), Thursday, Sept. 25, 2014 in Baikonur, Kazakhstan. Launch of the Soyuz rocket is scheduled for the early hours of Sept. 26 Kazakhstan time and will carry Wilmore, Samokutyaev, and Serova into orbit to begin their five and a half month mission on the International Space Station. Photo Credit: (NASA/Aubrey Gemignani)

  12. True Cost of Amateur Clean rooms

    NASA Technical Reports Server (NTRS)

    Ramsey, W. Lawrence

    2005-01-01

    This viewgraph document reviews the cost factors for clean rooms that are not professionally built, monitored or maintained. These amateur clean rooms are built because scientist and engineers desire to create a clean room to build a part of an experiment that requires a clean room, and the program manager is looking to save money. However, in the long run these clean rooms may not save money, as the cost of maintenance may be higher due to the cost of transporting the crews, and if the materials were of lesser quality, the cost of modifications may diminish any savings, and the product may not be of the same quality. Several examples are shown of the clean rooms that show some of the problems that can arise from amateur clean rooms.

  13. Portrait - Gemini 11 - Prime Crew

    NASA Image and Video Library

    1965-01-01

    S65-58504 (4 Nov. 1965) --- Astronauts Charles Conrad Jr., (right) prime crew command pilot, and Richard F. Gordon Jr., prime crew pilot, for the Gemini-Titan XI (GT-11) Earth-orbital mission. Photo credit: NASA

  14. Gemini 11 prime crew prepare to enter Gemini 11 spacecraft

    NASA Image and Video Library

    1966-09-10

    S66-57967 (10 Sept. 1966) --- Gemini-11 prime crew, astronauts Charles Conrad Jr. (right), command pilot, and Richard F. Gordon Jr. (left), pilot, prepare to enter the Gemini-11 spacecraft in the White Room atop Pad 19. Photo credit: NASA

  15. Gemini 10 prime crew participate in Simultaneous Launch Demonstration

    NASA Image and Video Library

    1966-07-12

    S66-42702 (12 July 1966) --- Gemini-10 prime crew, astronauts John W. Young (left), command pilot, and Michael Collins (right), pilot, check equipment in the White Room atop Pad 19 where they participated in a Simultaneous Launch Demonstration. Photo credit: NASA

  16. Cristoforetti in Crew quarters

    NASA Image and Video Library

    2014-12-06

    iss042e023422 (12/6/14) --- Expedition 42 Flight Engineer Samantha Cristoforetti of the European Space Agency (ESA) on 6 December 2014 is seen inside of a sleeping bag in her personal crew quarters on the International Space Station. Astronauts will strap the bag to the wall to prevent from free floating and potentially bumping into equipment while sleeping.

  17. STS-81 crew insignia

    NASA Image and Video Library

    1998-06-15

    STS081-S-001 (June 1996) --- The STS-81 crew patch for the fifth Shuttle-Mir docking mission, is shaped to represent the Roman numeral V. The space shuttle Atlantis, OV-104, is launching toward a rendezvous with Russia?s Mir Space Station, silhouetted in the background. Atlantis and the STS-81 crew will spend several days docked to Mir during which time astronaut Jerry M. Linenger (NASA-Mir 4) will replace astronaut John E. Blaha (NASA-Mir 3) as the United States crew member onboard Mir. Scientific experiments and logistics will also be transferred between Atlantis and Mir. The United States and Russian flags are depicted along with the names of the shuttle crew members: Michael A. Baker, commander; Brent W. Jett, pilot; Peter J. K.(Jeff) Wisoff, mission specialist 1; John W. Grunsfeld, mission specialist 2; Marsha S. Ivins, mission specialist 3; Linenger; mission specialist 4; and Blaha, mission specialist 5. The NASA insignia design for space shuttle flights is reserved for use by the astronauts and for other official use as the NASA Administrator may authorize. Public availability has been approved only in the forms of illustrations by the various news media. When and if there is any change in this policy, which is not anticipated, the change will be publicly announced. Photo credit: NASA

  18. STS-71 crew insignia

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The STS-71 crew patch design depicts the orbiter Atlantis in the process of the first international docking mission with the Russian Space Station Mir. The names of the 10 astronauts and cosmonauts who will fly aboard the orbiter are shown along the outer

  19. Crew Module Overview

    NASA Technical Reports Server (NTRS)

    Redifer, Matthew E.

    2011-01-01

    The presentation presents an overview of the Crew Module development for the Pad Abort 1 flight test. The presentation describes the integration activity from the initial delivery of the primary structure through the installation of vehicle subsystems, then to flight test. A brief overview of flight test results is given.

  20. STS-119 crew visit

    NASA Image and Video Library

    2009-05-05

    Stennis Space Center Director Gene Goldman (r to l) presents a commemorative photo of a space shuttle main engine test firing to STS-119 Mission Commander Lee Archambault, Pilot Tony Antonelli and Mission Specialists Steve Swanson and Richard Arnold during the crew's May 5 visit to the facility.

  1. Crew Training- Apollo 9

    NASA Image and Video Library

    1969-02-24

    S69-19858 (December 1968) --- Two members of the Apollo 9 prime crew participate in simulation training in the Apollo Lunar Module Mission Simulator (LMMS) at the Kennedy Space Center (KSC). On the left is astronaut James A. McDivitt, commander; and on the right is astronaut Russell L. Schweickart, lunar module pilot.

  2. Crew Exploration Vehicle Service Module Ascent Abort Coverage

    NASA Technical Reports Server (NTRS)

    Tedesco, Mark B.; Evans, Bryan M.; Merritt, Deborah S.; Falck, Robert D.

    2007-01-01

    The Crew Exploration Vehicle (CEV) is required to maintain continuous abort capability from lift off through destination arrival. This requirement is driven by the desire to provide the capability to safely return the crew to Earth after failure scenarios during the various phases of the mission. This paper addresses abort trajectory design considerations, concept of operations and guidance algorithm prototypes for the portion of the ascent trajectory following nominal jettison of the Launch Abort System (LAS) until safe orbit insertion. Factors such as abort system performance, crew load limits, natural environments, crew recovery, and vehicle element disposal were investigated to determine how to achieve continuous vehicle abort capability.

  3. Room temperature performance of 4 V aqueous hybrid supercapacitor using multi-layered lithium-doped carbon negative electrode

    NASA Astrophysics Data System (ADS)

    Makino, Sho; Yamamoto, Rie; Sugimoto, Shigeyuki; Sugimoto, Wataru

    2016-09-01

    Water-stable multi-layered lithium-doped carbon (LixC6) negative electrode using poly(ethylene oxide) (PEO)-lithium bis(trifluoromethansulfonyl)imide (LiTFSI) polymer electrolyte containing N-methyl-N-propylpiperidinium bis(trifluoromethansulfonyl)imide (PP13TFSI) ionic liquid was developed. Electrochemical properties at 60 °C of the aqueous hybrid supercapacitor using activated carbon positive electrode and a multi-layered LixC6 negative electrode (LixC6 | PEO-LiTFSI | LTAP) without PP13TFSI exhibited performance similar to that using Li anode (Li | PEO-LiTFSI | LTAP). A drastic decrease in ESR was achieved by the addition of PP13TFSI to PEO-LiTFSI, allowing room temperature operation. The ESR of the multi-layered LixC6 negative electrode with PEO-LiTFSI-PP13TFSI at 25 °C was 801 Ω cm2, which is 1/6 the value of the multi-layered Li negative electrode with PEO-LiTFSI (5014 Ω cm2). Charge/discharge test of the aqueous hybrid supercapacitor using multi-layered LixC6 negative electrode with PEO-LiTFSI-PP13TFSI at 25 °C afforded specific capacity of 20.6 mAh (g-activated carbon)-1 with a working voltage of 2.7-3.7 V, and good long-term capability up to 3000 cycles. Furthermore, an aqueous hybrid supercapacitor consisting of a high capacitance RuO2 nanosheet positive electrode and multi-layered LixC6 negative electrode with PEO-LiTFSI-PP13TFSI showed specific capacity of 196 mAh (g-RuO2)-1 and specific energy of 625 Wh (kg-RuO2)-1 in 2.0 M acetic acid-lithium acetate buffered solution at 25 °C.

  4. New software for room acoustics simulation: A study of its performance and validation by an international comparison

    NASA Astrophysics Data System (ADS)

    Camilo, Thiago S.; Medrado, Ludimila O.; Tenenbaum, Roberto A.

    2002-11-01

    Nowadays, with the increasing capacity of personal computers, software in room acoustics simulation is being developed all over the world by strong architectural acoustic groups, as a practical and reliable way to evaluate the sound quality of a room. However, software must be exaustively tested in order to be recognized as a trustworthy tool for modern acoustical design. In this paper, a new software tool in room acoustics simulation, RAIOS, is presented. A hybrid technique, which uses the ray-tracing method to simulate the first part of the impulse response and an energy transition algorithm to compute its reverberant tail, for a room with arbitrary geometry is described. All the parameters for room acoustics quality, following ISO 3382 standard, are also computed. The effects of filtering, reflection, and absorption on the walls and in the air are considered in the model. The software has participated in Round Robin 3, promoted by PTB, Germany. The results of phase three of RR3 (the most complex one) are presented in this paper. Comparison with other software is given. If the experimental data of the PTB studio are available before the end of this year, then comparisons will be made.

  5. STS-88 crew goes through Crew Equipment Interface Testing

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Lowered on a movable work platform or bucket inside the payload bay of orbiter Endeavour, STS-88 Mission Specialists Jerry L. Ross (far right) and James H. Newman (second from right) get a close look at the Orbiter Docking System. At left is the bucket operator and Wayne Wedlake, with United Space Alliance at Johnson Space Center. The STS-88 crew members are in Orbiter Processing Facility Bay 1 to participate in a Crew Equipment Interface Test (CEIT) to familiarize themselves with the orbiter's midbody and crew compartments. Targeted for liftoff on Dec. 3, 1998, STS-88 will be the first Space Shuttle launch for assembly of the International Space Station (ISS). The primary payload is the Unity connecting module which will be mated to the Russian-built Zarya control module, expected to be already on orbit after a November launch from Russia. While on orbit during STS-88, Unity will be latched atop the Orbiter Docking System in the forward section of Endeavour's payload bay for the mating of the two modules. After the mating, Ross and Newman are scheduled to perform three spacewalks to connect power, data and utility lines and install exterior equipment. The first major U.S.-built component of ISS, Unity will serve as a connecting passageway to living and working areas of the space station. Unity has two attached pressurized mating adapters (PMAs) and one stowage rack installed inside. PMA-1 provides the permanent connection point between Unity and Zarya; PMA-2 will serve as a Space Shuttle docking port. Zarya is a self-supporting active vehicle, providing propulsive control capability and power during the early assembly stages. It also has fuel storage capability.

  6. STS-88 crew goes through Crew Equipment Interface Testing

    NASA Technical Reports Server (NTRS)

    1998-01-01

    As the bucket operator (left) lowers them into the open payload bay of the orbiter Endeavour, STS-88 Mission Specialists Jerry L. Ross (second from left) and James H. Newman (second from right) do a sharp-edge inspection. At their right is Wayne Wedlake, with United Space Alliance at Johnson Space Center. Below them is the Orbiter Docking System, the remote manipulator system arm and a tunnel into the payload bay. The STS-88 crew members are participating in a Crew Equipment Interface Test (CEIT), familiarizing themselves with the orbiter's midbody and crew compartments. Targeted for liftoff on Dec. 3, 1998, STS-88 will be the first Space Shuttle launch for assembly of the International Space Station (ISS). The primary payload is the Unity connecting module which will be mated to the Russian-built Zarya control module, expected to be already on orbit after a November launch from Russia. After the mating, Ross and Newman are scheduled to perform three spacewalks to connect power, data and utility lines and install exterior equipment. The first major U.S.-built component of ISS, Unity will serve as a connecting passageway to living and working areas of the space station. Unity has two attached pressurized mating adapters (PMAs) and one stowage rack installed inside. PMA-1 provides the permanent connection point between Unity and Zarya; PMA-2 will serve as a Space Shuttle docking port. Zarya is a self-supporting active vehicle, providing propulsive control capability and power during the early assembly stages. It also has fuel storage capability.

  7. Getting a Crew into Orbit

    ERIC Educational Resources Information Center

    Riddle, Bob

    2011-01-01

    Despite the temporary setback in our country's crewed space exploration program, there will continue to be missions requiring crews to orbit Earth and beyond. Under the NASA Authorization Act of 2010, NASA should have its own heavy launch rocket and crew vehicle developed by 2016. Private companies will continue to explore space, as well. At the…

  8. Getting a Crew into Orbit

    ERIC Educational Resources Information Center

    Riddle, Bob

    2011-01-01

    Despite the temporary setback in our country's crewed space exploration program, there will continue to be missions requiring crews to orbit Earth and beyond. Under the NASA Authorization Act of 2010, NASA should have its own heavy launch rocket and crew vehicle developed by 2016. Private companies will continue to explore space, as well. At the…

  9. Working conditions in the engine department - A qualitative study among engine room personnel on board Swedish merchant ships.

    PubMed

    Lundh, Monica; Lützhöft, Margareta; Rydstedt, Leif; Dahlman, Joakim

    2011-01-01

    The specific problems associated with the work on board within the merchant fleet are well known and have over the years been a topic of discussion. The work conditions in the engine room (ER) are demanding due to, e.g. the thermal climate, noise and awkward working postures. The work in the engine control room (ECR) has over recent years undergone major changes, mainly due to the introduction of computers on board. In order to capture the impact these changes had implied, and also to investigate how the work situation has developed, a total of 20 engine officers and engine ratings were interviewed. The interviews were semi-structured and Grounded Theory was used for the data analysis. The aim of the present study was to describe how the engine crew perceive their work situation and working environment on board. Further, the aim was to identify areas for improvements which the engine crew consider especially important for a safe and effective work environment. The result of the study shows that the design of the ECR and ER is crucial for how different tasks are performed. Design which does not support operational procedures and how tasks are performed risk inducing inappropriate behaviour as the crew members' are compelled to find alternative ways to perform their tasks in order to get the job done. These types of behaviour can induce an increased risk of exposure to hazardous substances and the engine crew members becoming injured. Copyright © 2010 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  10. STS-93: Crew Arrival and PR Location

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The primary objective of the STS-93 mission was to deploy the Advanced X-ray Astrophysical Facility, which had been renamed the Chandra X-ray Observatory in honor of the late Indian-American Nobel Laureate Subrahmanyan Chandrasekhar. The mission was launched at 12:31 on July 23, 1999 onboard the space shuttle Columbia. The mission was led by Commander Eileen Collins. The crew was Pilot Jeff Ashby and Mission Specialists Cady Coleman, Steve Hawley and Michel Tognini from the Centre National d'Etudes Spatiales (CNES). This videotape shows the astronauts arriving at Kennedy and an inspection in the clean room.

  11. Crew Management Processes Revitalize Patient Care

    NASA Technical Reports Server (NTRS)

    2009-01-01

    In 2005, two physicians, former NASA astronauts, created LifeWings Partners LLC in Memphis, Tennessee and began using Crew Resource Management (CRM) techniques developed at Ames Research Center in the 1970s to help improve safety and efficiency at hospitals. According to the company, when hospitals follow LifeWings? training, they can see major improvements in a number of areas, including efficiency, employee satisfaction, operating room turnaround, patient advocacy, and overall patient outcomes. LifeWings has brought its CRM training to over 90 health care organizations and annual sales have remained close to $3 million since 2007.

  12. A Crew Exposure Study. Volume I. Offshore.

    DTIC Science & Technology

    1982-03-15

    AD-Alil 178 A CREW EXPOSURE STUDY VOLUME I OFFSNORE(U) SOUTHWEST- 1/4 RESEARCH INST SAN ANTONIO TX ENGINEERING SCIENCES DIV U J ASTLEFORD ET AL. 5...Research Institute Division of Engineering Sciences 11. Contract or Grant No. P. 0. Drawer 28510 DOT-CG23-80-C-20015 San Antonio, Texas 78284 13. Type of...accumulated gas in gas compressor rooms as a result of fugitive emissions from the compressor and fuel gas engine . The accumulated information from this

  13. STS-93: Crew Arrival and PR Location

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The primary objective of the STS-93 mission was to deploy the Advanced X-ray Astrophysical Facility, which had been renamed the Chandra X-ray Observatory in honor of the late Indian-American Nobel Laureate Subrahmanyan Chandrasekhar. The mission was launched at 12:31 on July 23, 1999 onboard the space shuttle Columbia. The mission was led by Commander Eileen Collins. The crew was Pilot Jeff Ashby and Mission Specialists Cady Coleman, Steve Hawley and Michel Tognini from the Centre National d'Etudes Spatiales (CNES). This videotape shows the astronauts arriving at Kennedy and an inspection in the clean room.

  14. Efficacy of surgical simulator training versus traditional wet-lab training on operating room performance of ophthalmology residents during the capsulorhexis in cataract surgery.

    PubMed

    Daly, Mary K; Gonzalez, Efren; Siracuse-Lee, Donna; Legutko, Paul A

    2013-11-01

    To compare the operating room performance of ophthalmology residents trained by traditional wet-lab versus surgical simulation on the continuous curvilinear capsulorhexis (CCC) portion of cataract surgery. Academic tertiary referral center. Prospective randomized study. Residents who chose to participate and provided informed consent were randomized to preoperative CCC training in the wet lab or on a simulator. Residents completed pre-practice demographic questionnaires including habits of daily living. After completion of their preoperative training (wet lab versus simulator), residents performed their first CCC of the clinical rotation under the direct supervision of an attending physician as part of their standard training at the facility. Residents then completed satisfaction questionnaires regarding their preoperative training. Two attending surgeons reviewed and graded each video of operating room performance. The mean score between the 2 attending physicians was used as the individual performance score for each of the 12 performance criteria. The overall score was calculated as the sum of these 12 individual performance scores (standardized). Ten residents trained in the wet lab and 11 on the simulator. There was no significant difference in overall score between the 2 groups (P=.608). There was no significant difference in any individual score except time (wet-lab group faster than simulator group) (P=.038). Preoperative simulator training prepared residents for the operating room as effectively as the wet lab. The time to pass the simulator curriculum was predictive of the time and overall performance in the operating room. No author has a financial or proprietary interest in any material or method mentioned. Published by Elsevier Inc.

  15. Sonic Boom Assessment for the Crew Exploration Vehicle

    NASA Technical Reports Server (NTRS)

    Herron, Marissa

    2007-01-01

    The Constellation Environmental Impact Statement (Cx EIS) requires that an assessment be performed on the environmental impact of sonic booms during the reentry of the Crew Exploration Vehicle (CEV). This included an analysis of current planned vehicle trajectories for the Crew Module (CM) and the Service Module (SM) debris and the determination of the potential impact to the overflown environment.

  16. STS-111 Crew Training Clip

    NASA Astrophysics Data System (ADS)

    2002-05-01

    The STS-111 Crew is in training for space flight. The crew consists of Commander Ken Cockrell, Pilot Paul Lockhart, Mission Specialists Franklin Chang-Diaz and Philippe Perrin. The crew training begins with Post Insertion Operations with the Full Fuselage Trainer (FFT). Franklin Chang-Diaz, Philippe Perrin and Paul Lockhart are shown in training for airlock and Neutral Buoyancy Lab (NBL) activities. Bailout in Crew Compartment Training (CCT) with Expedition Five is also shown. The crew also gets experience with photography, television, and habitation equipment.

  17. STS-112 Crew Interviews - Wolf

    NASA Technical Reports Server (NTRS)

    2002-01-01

    STS-112 Mission Specialist David Wolf is seen during this preflight interview, where he first answers questions on his career path and role models. Other questions cover mission goals, ISS (International Space Station) Expedition 5 spacecrew, crew training, the S1 Truss and its radiators, the MBS (Mobile Base Structure), his experience onboard Mir, and his EVAs (extravehicular activities) on the coming mission. The EVAs are the subject of several questions. Wolf discusses his crew members, and elsewhere discusses Pilot Pamela Melroy's role as an IV crew member during EVAs. In addition, Wolf answers questions on transfer operations, the SHIMMER experiment, and his thoughts on multinational crews and crew bonding.

  18. STS-112 Crew Interviews - Wolf

    NASA Technical Reports Server (NTRS)

    2002-01-01

    STS-112 Mission Specialist David Wolf is seen during this preflight interview, where he first answers questions on his career path and role models. Other questions cover mission goals, ISS (International Space Station) Expedition 5 spacecrew, crew training, the S1 Truss and its radiators, the MBS (Mobile Base Structure), his experience onboard Mir, and his EVAs (extravehicular activities) on the coming mission. The EVAs are the subject of several questions. Wolf discusses his crew members, and elsewhere discusses Pilot Pamela Melroy's role as an IV crew member during EVAs. In addition, Wolf answers questions on transfer operations, the SHIMMER experiment, and his thoughts on multinational crews and crew bonding.

  19. Continuous Reliability Enhancement for Wind (CREW) database :

    SciTech Connect

    Hines, Valerie Ann-Peters; Ogilvie, Alistair B.; Bond, Cody R.

    2013-09-01

    To benchmark the current U.S. wind turbine fleet reliability performance and identify the major contributors to component-level failures and other downtime events, the Department of Energy funded the development of the Continuous Reliability Enhancement for Wind (CREW) database by Sandia National Laboratories. This report is the third annual Wind Plant Reliability Benchmark, to publically report on CREW findings for the wind industry. The CREW database uses both high resolution Supervisory Control and Data Acquisition (SCADA) data from operating plants and Strategic Power Systems ORAPWindª (Operational Reliability Analysis Program for Wind) data, which consist of downtime and reserve event records and daily summaries of various time categories for each turbine. Together, these data are used as inputs into CREWs reliability modeling. The results presented here include: the primary CREW Benchmark statistics (operational availability, utilization, capacity factor, mean time between events, and mean downtime); time accounting from an availability perspective; time accounting in terms of the combination of wind speed and generation levels; power curve analysis; and top system and component contributors to unavailability.

  20. Crew Exploration Vehicle Ascent Abort Coverage Analysis

    NASA Technical Reports Server (NTRS)

    Abadie, Marc J.; Berndt, Jon S.; Burke, Laura M.; Falck, Robert D.; Gowan, John W., Jr.; Madsen, Jennifer M.

    2007-01-01

    An important element in the design of NASA's Crew Exploration Vehicle (CEV) is the consideration given to crew safety during various ascent phase failure scenarios. To help ensure crew safety during this critical and dynamic flight phase, the CEV requirements specify that an abort capability must be continuously available from lift-off through orbit insertion. To address this requirement, various CEV ascent abort modes are analyzed using 3-DOF (Degree Of Freedom) and 6-DOF simulations. The analysis involves an evaluation of the feasibility and survivability of each abort mode and an assessment of the abort mode coverage using the current baseline vehicle design. Factors such as abort system performance, crew load limits, thermal environments, crew recovery, and vehicle element disposal are investigated to determine if the current vehicle requirements are appropriate and achievable. Sensitivity studies and design trades are also completed so that more informed decisions can be made regarding the vehicle design. An overview of the CEV ascent abort modes is presented along with the driving requirements for abort scenarios. The results of the analysis completed as part of the requirements validation process are then discussed. Finally, the conclusions of the study are presented, and future analysis tasks are recommended.

  1. Design Considerations for a Crewed Mars Ascent Vehicle

    NASA Technical Reports Server (NTRS)

    Rucker, Michelle A.

    2015-01-01

    Exploration architecture studies identified the Mars Ascent Vehicle (MAV) as one of the largest "gear ratio" items in a crewed Mars mission. Because every kilogram of mass ascended from the Martian surface requires seven kilograms or more of ascent propellant, it is desirable for the MAV to be as small and lightweight as possible. Analysis identified four key factors that drive MAV sizing: 1) Number of crew: more crew members require more equipment-and a larger cabin diameter to hold that equipment-with direct implications to structural, thermal, propulsion, and power subsystem mass. 2) Which suit is worn during ascent: Extravehicular Activity (EVA) type suits are physically larger and heavier than Intravehicular Activity (IVA) type suits and because they are less flexible, EVA suits require more elbow-room to maneuver in and out of. An empty EVA suit takes up about as much cabin volume as a crew member. 3) How much time crew spends in the MAV: less than about 12 hours and the MAV can be considered a "taxi" with few provisions for crew comfort. However, if the crew spends more than 12 consecutive hours in the MAV, it begins to look like a Habitat requiring more crew comfort items. 4) How crew get into/out of the MAV: ingress/egress method drives structural mass (for example, EVA hatch vs. pressurized tunnel vs. suit port) as well as consumables mass for lost cabin atmosphere, and has profound impacts on surface element architecture. To minimize MAV cabin mass, the following is recommended: Limit MAV usage to 24 consecutive hours or less; discard EVA suits on the surface and ascend wearing IVA suits; Limit MAV functionality to ascent only, rather than dual-use ascent/habitat functions; and ingress/egress the MAV via a detachable tunnel to another pressurized surface asset.

  2. STS-120 Crew Portrait

    NASA Technical Reports Server (NTRS)

    2007-01-01

    These seven astronauts took a break from training to pose for the STS-120 crew portrait. Pictured from the left are astronauts Scott E. Parazynski, Douglas H. Wheelock, Stephanie D. Wilson, all mission specialists; George D. Zamka, pilot; Pamela A. Melroy, commander; Daniel M. Tani, Expedition 16 flight engineer; and Paolo A. Nespoli, mission specialist representing the European Space Agency (ESA). The crew members were attired in training versions of their shuttle launch and entry suits. Tani joined Expedition 16 as flight engineer after launching to the International Space Station (ISS) and is scheduled to return home on mission STS-122. STS-120 launched October 23, 2007 with the main objectives of installing the U.S. Node 2, Harmony, and the relocation and deployment of the P6 truss to its permanent location.

  3. STS-67 crew insignia

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Observation and remote exploration of the Universe in the ultraviolet wavelengths of light are the focus of the STS-67/ASTRO-2 mission, as depicted in the crew patch designed by the crew members. The insignia shows the ASTRO-2 telescopes in the Space Shuttle Endeavour's payload bay, orbiting high above Earth's atmosphere. The three sets of rays, diverging from the telescope on the patch atop the Instrument Pointing System (IPS), correspond to the three ASTRO-2 telescopes - the Hopkins Ultraviolet Telescope (HUT), The Ultraviolet Imaging Telescope (UIT), and the Wisconsin Ultraviolet Photo-Polarimeter Experiment (WUPPE). The telescopes are coaligned to simultaneously view the same astronomical object, as shown by the convergence of rays on the NASA symbol. This symbol also represents the excellence of the union of the NASA teams and the universality's in the exploration of the universe through astronomy. The celestial targets of ASTRO-2 include the observation of planets, stars and gala

  4. Skylab 4 - Television (Crew)

    NASA Image and Video Library

    1973-12-28

    S73-38962 (28 Dec. 1973) --- The three members of the Skylab 4 crew confer via television communication with Dr. Lubos Kohoutek, discoverer of the Comet Kohoutek. This picture of the three astronauts was reproduced from a TV transmission made by a TV camera aboard the space station in Earth orbit. They are, left to right, Gerald P. Carr, commander; Edward G. Gibson, science pilot; and William R. Pogue, pilot. They are seated in the crew quarters wardroom of the Orbital Workshop. Professor Kohoutek, who is employed at the Hamburg Observatory in West Germany, was visiting the Johnson Space Center in Houston when he conferred with the Skylab 4 crewmen. Photo credit: NASA

  5. Expedition One crew insignia

    NASA Image and Video Library

    2000-11-29

    ISS001-S-001 (October 2000) --- The first International Space Station (ISS) crew patch is a simplified graphic of the station complex when fully completed. The station is seen with solar arrays turned forward. The last names of the Expedition One crew, Soyuz pilot Yuri Gidzenko, flight engineer Sergei Krikalev, and expedition commander William (Bill) Shepherd, appear under the station symbol. The insignia design for ISS flights is reserved for use by the astronauts and cosmonauts and for other official use as the NASA Administrator and NASA's international partners may authorize. Public availability has been approved only in the form of illustrations by the various news media. When and if there is any change in this policy, which we do not anticipate, it will be publicly announced.

  6. Selecting pilots with crew resource management skills.

    PubMed

    Hedge, J W; Bruskiewicz, K T; Borman, W C; Hanson, M A; Logan, K K; Siem, F M

    2000-10-01

    For years, pilot selection has focused primarily on the identification of individuals with superior flying skills and abilities. More recently, the aviation community has become increasingly aware that successful completion of a flight or mission requires not only flying skills but the ability to work well in a crew situation. This project involved development and validation of a crew resource management (CRM) skills test for Air Force transport pilots. A significant relation was found between the CRM skills test and behavior-based ratings of aircraft commander CRM performance, and the implications of these findings for CRM-based selection and training are discussed.

  7. Expedition 3 Crew Interview: Frank Culbertson, Jr.

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Expedition 3 Commander Frank Culbertson is seen being interviewed before leaving to become part of the third resident crew on the International Space Station (ISS). He answers questions about his inspiration to become an astronaut and his career path. He discusses his expectations for life on the ISS and the experiments he will be performing while on board. Culbertson gives details on the spacewalks that will take place during the STS-105 mission (the mission carrying the Expedition 3 crew up to the ISS) and the unloading operations for the Multipurpose Logistics Module.

  8. Expedition 3 Crew Interview: Vladimir Dezhurov

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Expedition 3 Pilot Vladimir Dezhurov is seen being interviewed before leaving to become part of the third resident crew on the International Space Station (ISS). He answers questions about his inspiration to become an astronaut and his career path. He discusses his expectations for life on the ISS and the experiments he will be performing while on board. Dezhurov gives details on the spacewalks that will take place during the STS-105 mission (the mission carrying the Expedition 3 crew up to the ISS) and the unloading operations for the Multipurpose Logistics Module.

  9. Expedition 3 Crew Interview: Mikhail Turin

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Expedition 3 Flight Engineer Mikhail Turin is seen being interviewed before leaving to become part of the third resident crew on the International Space Station (ISS). He answers questions about his inspiration to become an astronaut and his career path. He discusses his expectations for life on the ISS and the experiments he will be performing while on board. Turin gives details on the spacewalks that will take place during the STS-105 mission (the mission carrying the Expedition 3 crew up to the ISS) and the unloading operations for the Multipurpose Logistics Module.

  10. Behavioral characteristics of effective crew leaders

    NASA Technical Reports Server (NTRS)

    Ginnett, Robert C.

    1989-01-01

    The behaviors of effective versus less effective captains as they form and lead their crews in line operations are analyzed. The research examines real work groups in an actual organization with a specific and consequential task to perform and is based on a normative model of work group effectiveness. Selection of captains is outlined, as well as data collection over the course of six months of crew and cockpit observations including over 300 hours of direct crew observations and 110 hours of actual flight time. Common characteristics of the effective leaders as well as the deviations of the less effective are described, and organizational implications are assessed. The concept of 'shells' depicted as a series of concentric circles moving outward from the group's task execution at the center is introduced and discussed.

  11. Behavioral characteristics of effective crew leaders

    NASA Technical Reports Server (NTRS)

    Ginnett, Robert C.

    1989-01-01

    The behaviors of effective versus less effective captains as they form and lead their crews in line operations are analyzed. The research examines real work groups in an actual organization with a specific and consequential task to perform and is based on a normative model of work group effectiveness. Selection of captains is outlined, as well as data collection over the course of six months of crew and cockpit observations including over 300 hours of direct crew observations and 110 hours of actual flight time. Common characteristics of the effective leaders as well as the deviations of the less effective are described, and organizational implications are assessed. The concept of 'shells' depicted as a series of concentric circles moving outward from the group's task execution at the center is introduced and discussed.

  12. Crew Skills and Training

    NASA Technical Reports Server (NTRS)

    Jones, Thomas; Burbank, Daniel C.; Eppler, Dean; Garrison, Robert; Harvey, Ralph; Hoffman, Paul; Schmitt, Harrison

    1998-01-01

    One of the major focus points for the workshop was the topic of crew skills and training necessary for the Mars surface mission. Discussions centered on the mix of scientific skills necessary to accomplish the proposed scientific goals, and the training environment that can bring the ground and flight teams to readiness. Subsequent discussion resulted in recommendations for specific steps to begin the process of training an experienced Mars exploration team.

  13. Flight Crew Health Maintenance

    NASA Technical Reports Server (NTRS)

    Gullett, C. C.

    1970-01-01

    The health maintenance program for commercial flight crew personnel includes diet, weight control, and exercise to prevent heart disease development and disability grounding. The very high correlation between hypertension and overweight in cardiovascular diseases significantly influences the prognosis for a coronary prone individual and results in a high rejection rate of active military pilots applying for civilian jobs. In addition to physical fitness the major items stressed in pilot selection are: emotional maturity, glucose tolerance, and family health history.

  14. Flight Crew Health Maintenance

    NASA Technical Reports Server (NTRS)

    Gullett, C. C.

    1970-01-01

    The health maintenance program for commercial flight crew personnel includes diet, weight control, and exercise to prevent heart disease development and disability grounding. The very high correlation between hypertension and overweight in cardiovascular diseases significantly influences the prognosis for a coronary prone individual and results in a high rejection rate of active military pilots applying for civilian jobs. In addition to physical fitness the major items stressed in pilot selection are: emotional maturity, glucose tolerance, and family health history.

  15. Expedition 34 Crew Lands

    NASA Image and Video Library

    2013-03-16

    Expedition 34 Russian Flight Engineer Evgeny Tarelkin, left with flowers, Commander Kevin Ford of NASA, center with flowers, and Russian Soyuz Commander Oleg Novitskiy are greeted at the Kustanay Airport a few hours after they landed near the town of Arkalyk, Kazakhstan on Saturday, March 16, 2013. Ford, Novitskiy, and Tarelkin are returning from 142 days onboard the International Space Station where they served as members of the Expedition 33 and 34 crews. Photo Credit: (NASA/Bill Ingalls)

  16. STS-112 Crew Portrait

    NASA Technical Reports Server (NTRS)

    2002-01-01

    JOHNSON SPACE CENTER, HOUSTON, TEXAS -- (STS112-S-002) These five astronauts and cosmonaut take a break from training to pose for the STS-112 crew portrait. Astronauts Pamela A. Melroy and Jeffrey S. Ashby, pilot and commander respectively, are in the cen ter of the photo. The mission specialists are from left to right, astronauts Sandra H. Magnus, David A. Wolf and Piers J. Sellers, and cosmonaut Fyodor Yurchikhin, who represents Rosaviakosmos.

  17. Expedition 13 crew portrait

    NASA Image and Video Library

    2006-01-01

    ISS013-S-002 (12 Jan. 2006) --- Cosmonaut Pavel V. Vinogradov (left), Expedition 13 commander representing Russia's Federal Space Agency, and astronaut Jeffrey N. Williams, NASA space station science officer and flight engineer, pause from their training schedule to pose for their official crew portrait. The two are scheduled to be launched to the International Space Station in early spring of this year in a Soyuz TMA-8 spacecraft. Photo credit: Gagarin Cosmonaut Training Center/NASA

  18. Expedition 34 Crew Lands

    NASA Image and Video Library

    2013-03-16

    Women in ceremonial Kazakh dress prepare to welcome home Expedition 34 Russian Flight Engineer Evgeny Tarelkin, Commander Kevin Ford of NASA, and Russian Soyuz Commander Oleg Novitskiy at the Kustanay Airport a few hours after they landed near the town of Arkalyk, Kazakhstan on Saturday, March 16, 2013. Tarelkin, Ford, and Novitskiy, returned from 142 days onboard the International Space Station where they served as members of the Expedition 33 and 34 crews. Photo Credit: (NASA/Bill Ingalls)

  19. Expedition 34 Crew Lands

    NASA Image and Video Library

    2013-03-16

    Expedition 34 Russian Flight Engineer Evgeny Tarelkin, left, Russian Soyuz Commander Oleg Novitskiy, center, and Commander Kevin Ford of NASA sit together at the Kustanay Airport a few hours after they landed near the town of Arkalyk, Kazakhstan on Saturday, March 16, 2013. Ford, Novitskiy, and Tarelkin are returning from 142 days onboard the International Space Station where they served as members of the Expedition 33 and 34 crews. Photo Credit: (NASA/Bill Ingalls)

  20. STS-126 crew visit

    NASA Image and Video Library

    2009-01-13

    Stennis Space Center Director Gene Goldman (center) stands with astronauts Christopher Ferguson (right) and Heidemarie Stefanyshyn-Piper in front of the A-2 Test Stand during the space shuttle crew members' visit to NASA's rocket engine testing facility Jan. 13. During their visit, Ferguson and Stefanyshyn-Piper reported on the STS-126 space shuttle delivery and servicing mission to the International Space Station. Ferguson served as commander of the mission. Stefanyshyn-Piper served as a mission specialist.

  1. Expedition 34 Crew Lands

    NASA Image and Video Library

    2013-03-16

    Expedition 34 Commander Kevin Ford of NASA is helped out a Russian Search and Rescue helicopter after flying from his Soyuz TMA-06M spacecraft landing site outside the town of Arkalyk to Kustanay, Kazakhstan on Saturday, March 16, 2013. Ford, along with Russian Soyuz Commander Oleg Novitskiy and Flight Engineer Evgeny Tarelkin of Russia returned from 142 days onboard the International Space Station where they served as members of the Expedition 33 and 34 crews. Photo Credit: (NASA/Bill Ingalls)

  2. Expedition 34 Crew Lands

    NASA Image and Video Library

    2013-03-16

    Expedition 34 Flight Engineer Evgeny Tarelkin of Russia is helped out a Russian Search and Rescue helicopter after flying from his Soyuz TMA-06M spacecraft landing site outside the town of Arkalyk to Kustanay, Kazakhstan on Saturday, March 16, 2013. Tarelkin, along with Commander Kevin Ford of NASA and Russian Soyuz Commander Oleg Novitskiy returned from 142 days onboard the International Space Station where they served as members of the Expedition 33 and 34 crews. Photo Credit: (NASA/Bill Ingalls)

  3. STS-120 Crew Return

    NASA Image and Video Library

    2007-11-08

    JSC2007-E-098010 (8 Nov. 2007) --- "Look, I'm seeing double," European Space Agency astronaut Paolo Nespoli appears to be saying as he points toward a life size photo cutout (out of frame) of astronaut Clay Anderson, seated to his right, during the Discovery crew's Nov. 8 welcome home ceremony at Houston's Ellington Field. The two mission specialists were joined by their five STS-120 crewmates on the stage of Ellington's hangars.

  4. 41G crew activities

    NASA Image and Video Library

    2009-06-25

    41G-102-003 (5-13 Oct 1984) ---- Astronaut Kathryn D. Sullivan, 41-G mission specialist, floats into a middeck scene to join a more stationary pair of crewmembers---Astronauts Robert L. Crippen, crew commander; and Jon A. McBride, pilot. The protruding article near the stowage lockers is a Krimsky rule, part of the near vision acuity experiment in which recent NASA space travelers have participated.

  5. STS-126 crew visit

    NASA Technical Reports Server (NTRS)

    2009-01-01

    Stennis Space Center Director Gene Goldman (center) stands with astronauts Christopher Ferguson (right) and Heidemarie Stefanyshyn-Piper in front of the A-2 Test Stand during the space shuttle crew members' visit to NASA's rocket engine testing facility Jan. 13. During their visit, Ferguson and Stefanyshyn-Piper reported on the STS-126 space shuttle delivery and servicing mission to the International Space Station. Ferguson served as commander of the mission. Stefanyshyn-Piper served as a mission specialist.

  6. A sociotechnical model of the flight crew task.

    PubMed

    Cahill, Joan; McDonald, Nick; Losa, Gabriel

    2014-12-01

    The objective of this research was to advance an improved model of Flight Crew task performance. Existing task models present a "local" description of Flight Crew task performance. Process mapping workshops, interviews, and observations were conducted with both pilots and flight operations personnel from five airlines, as part of the Human Integration into the Lifecycle of Aviation Systems (HILAS) project. The functional logic of the process dictates Flight Crew task requirements and specific task workflows. The Flight Crew task involves managing different levels of operational and environmental complexity, associated with the particular flight context. In so doing, the Flight Crew act as a coordinating interface between different human agents involved in the Active Flight Operations process and other processes that interface with this process. This article presents a new sociotechnical model of the Flight Crew task. The proposed model reflects a shift from a local explanation of Flight Crew task activity to a broader process-centric explanation. In so doing, it illuminates the complex role of procedures in commercial operations. The task model suggests specific requirements for pilot task support tools, procedures design, performance evaluation and crew resource management (CRM) training. Also, this model might be used to assess future operational concepts and associated technology requirements. Lastly, this model provides the basis for the operational validation of both existing and future cockpit technologies.

  7. Expedition 2 crew insignia

    NASA Image and Video Library

    2001-01-01

    ISS002-S-001 (January 2001) --- The International Space Station Expedition Two patch depicts the Space Station as it appears during the time the second crew will be on board. The Station flying over the Earth represents the overall reason for having a space station: to benefit the world through scientific research and international cooperation in space. The number 2 is for the second expedition and is enclosed in the Cyrillic MKS and Latin ISS which are the respective Russian and English abbreviations for the International Space Station. The United States and Russian flags show the nationalities of the crew indicating the joint nature of the program. When asked about the stars in the background, a crew spokesman said they "...represent the thousands of space workers throughout the ISS partnership who have contributed to the successful construction of our International Space Station." The insignia design for ISS flights is reserved for use by the astronauts and cosmonauts and for other official use as the NASA Administrator and NASA's international partners may authorize. Public availability has been approved only in the form of illustrations by the various news media. When and if there is any change in this policy, which we do not anticipate, it will be publicly announced.

  8. STS-70 Crew Insignia

    NASA Image and Video Library

    1995-03-01

    STS070-S-001 (March 1995) --- Designed by the crew members, the STS-70 crew patch depicts the space shuttle Discovery orbiting Earth in the vast blackness of space. The primary mission of deploying a NASA Tracking and Data Relay Satellite (TDRS) is depicted by three gold stars. They represent the triad composed of spacecraft transmitting data to Earth through the Tracking and Data Relay Satellite System (TDRSS). The stylized red, white and blue ribbon represents the American goal of linking space exploration to the advancement of all humankind. Surnames of the five astronaut crew members are spaced around the periphery of the patch. The NASA insignia design for space shuttle flights is reserved for use by the astronauts and for other official use as the NASA Administrator may authorize. Public availability has been approved only in the forms of illustrations by the various news media. When and if there is any change in this policy, which is not anticipated, the change will be publicly announced. Photo credit: NASA

  9. STS-99 Crew Insignia

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The STS-99 crew members designed the flight insignia for the Shuttle Radar Topography Mission (SRTM), the most ambitious Earth mapping mission to date. Two radar anternas, one located in the Shuttle bay and the other located on the end of a 60-meter deployable mast, was used during the mission to map Earth's features. The goal was to provide a 3-dimensional topographic map of the world's surface up to the Arctic and Antarctic Circles. In the patch, the clear portion of Earth illustrates the radar beams penetrating its cloudy atmosphere and the unique understanding of the home planet that is provided by space travel. The grid on Earth reflects the mapping character of the SRTM mission. The patch depicts the Space Shuttle Endeavour orbiting Earth in a star spangled universe. The rainbow along Earth's horizon resembles an orbital sunrise. The crew deems the bright colors of the rainbow as symbolic of the bright future ahead because of human beings' venturing into space. The crew of six launched aboard the Space Shuttle Endeavor on February 11, 2000 and completed 222 hours of around the clock radar mapping gathering enough information to fill more than 20,000 CDs.

  10. Expedition 4 crew insignia

    NASA Image and Video Library

    2001-08-01

    ISS004-S-001 (August 2001) --- The International Space Station (ISS) Expedition 4 crew patch has an overall diamond shape, showing the “diamond in the rough” configuration of the Station during expedition 4. The red hexagonal shape with stylized American and Russian flags represents the cross-sectional view of the S0 truss segment, which the crew will attach to the U.S. Lab Destiny. The persistent Sun shining on the Earth and Station represents the constant challenges that the crew and ground support team will face every day while operating the International Space Station, while shedding new light through daily research. The green portion of the Earth represents the fourth color in the visible spectrum and the black void of space represents humankind’s constant quest to explore the unknown. The NASA insignia design for Shuttle flights is reserved for use by the astronauts and for other official use as the NASA Administrator may authorize. Public availability has been approved only in the forms of illustrations by the various news media. When and if there is any change in this policy, which is not anticipated, the change will be publicly announced.

  11. STS-71 crew insignia

    NASA Image and Video Library

    1995-04-01

    STS071-S-001 (April 1995) --- The STS-71 crew patch design depicts the orbiter Atlantis in the process of the first international docking mission of the space shuttle Atlantis with the Russian Mir Space Station. The names of the 10 astronauts and cosmonauts who will fly aboard the orbiter as shown along the outer border of the patch. The rising sun symbolizes the dawn of a new era of cooperation between the two countries. The vehicles Atlantis and Mir are shown in separate circles converging at the center of the emblem symbolizing the merger of the space programs of the two space faring nations. The flags of the United States and Russia emphasize the equal partnership of the mission. The joint program symbol at the lower center of the patch acknowledges the extensive contributions made by the Mission Control Centers (MCC) of both countries. The crew insignia was designed by aviation and space artist, Bob McCall, who also designed the crew patch for the Apollo-Soyuz Test Project (ASTP) in 1975, the first international space docking mission. The NASA insignia design for space shuttle flights is reserved for use by the astronauts and for other official use as the NASA Administrator may authorize. Public availability has been approved only in the forms of illustrations by the various news media. When and if there is any change in this policy, which is not anticipated, the change will be publicly announced. Photo credit: NASA

  12. Endeavour's Crew Wakes to Song Contest Winner

    NASA Image and Video Library

    The STS-134 crew members were awakened on the final day of their mission with the song “Sunrise Number 1,” performed by the band Stormy Mondays. This song was chosen in an online vote of the ge...

  13. Stott signs crew patch in Joint Airlock

    NASA Image and Video Library

    2009-09-07

    S128-E-007938 (7 Sept. 2009) --- NASA astronaut Nicole Stott, Expedition 20 flight engineer, poses for a photo after signing the STS-128 patch, which was added to the growing collection of insignias representing crews who performed spacewalks from the Quest airlock of the International Space Station.

  14. Worldwide Spacecraft Crew Hatch History

    NASA Technical Reports Server (NTRS)

    Johnson, Gary

    2009-01-01

    The JSC Flight Safety Office has developed this compilation of historical information on spacecraft crew hatches to assist the Safety Tech Authority in the evaluation and analysis of worldwide spacecraft crew hatch design and performance. The document is prepared by SAIC s Gary Johnson, former NASA JSC S&MA Associate Director for Technical. Mr. Johnson s previous experience brings expert knowledge to assess the relevancy of data presented. He has experience with six (6) of the NASA spacecraft programs that are covered in this document: Apollo; Skylab; Apollo Soyuz Test Project (ASTP), Space Shuttle, ISS and the Shuttle/Mir Program. Mr. Johnson is also intimately familiar with the JSC Design and Procedures Standard, JPR 8080.5, having been one of its original developers. The observations and findings are presented first by country and organized within each country section by program in chronological order of emergence. A host of reference sources used to augment the personal observations and comments of the author are named within the text and/or listed in the reference section of this document. Careful attention to the selection and inclusion of photos, drawings and diagrams is used to give visual association and clarity to the topic areas examined.

  15. 37. ENGINE ROOM, FROM PORT SIDE OF CONTROL CONSOLE, LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    37. ENGINE ROOM, FROM PORT SIDE OF CONTROL CONSOLE, LOOKING TOWARDS STERN, PORT ENGINE AT RIGHT, STARBOARD ENGINE AT LEFT, BOTH ARE DIESEL ENGINES, IN BACKGROUND IS STAIRS UP TO CREWS' BERTHING, BEYONE THE STAIRS IS THE DOOR TO AFT ENGINE ROOM & MACHINE SHOP. - U.S. Coast Guard Cutter WHITE HEATH, USGS Integrated Support Command Boston, 427 Commercial Street, Boston, Suffolk County, MA

  16. 46 CFR 72.20-25 - Washrooms and toilet rooms.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... who do not occupy sleeping accommodations to which private or semi-private facilities are attached. (b) The toilet rooms and washrooms shall be located convenient to the sleeping quarters of the crew to... semi-private facilities are provided and washbasins are installed in the sleeping rooms. (e) Where...

  17. 46 CFR 72.20-25 - Washrooms and toilet rooms.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... who do not occupy sleeping accommodations to which private or semi-private facilities are attached. (b) The toilet rooms and washrooms shall be located convenient to the sleeping quarters of the crew to... semi-private facilities are provided and washbasins are installed in the sleeping rooms. (e) Where...

  18. 46 CFR 72.20-25 - Washrooms and toilet rooms.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... who do not occupy sleeping accommodations to which private or semi-private facilities are attached. (b) The toilet rooms and washrooms shall be located convenient to the sleeping quarters of the crew to... semi-private facilities are provided and washbasins are installed in the sleeping rooms. (e) Where...

  19. 46 CFR 72.20-25 - Washrooms and toilet rooms.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... who do not occupy sleeping accommodations to which private or semi-private facilities are attached. (b) The toilet rooms and washrooms shall be located convenient to the sleeping quarters of the crew to... semi-private facilities are provided and washbasins are installed in the sleeping rooms. (e) Where...

  20. 46 CFR 72.20-25 - Washrooms and toilet rooms.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... who do not occupy sleeping accommodations to which private or semi-private facilities are attached. (b) The toilet rooms and washrooms shall be located convenient to the sleeping quarters of the crew to... semi-private facilities are provided and washbasins are installed in the sleeping rooms. (e) Where...

  1. Reaction-to-Fire of Wood Products and Other Building Materials: Part 1, Room/Corner Test Performance

    Treesearch

    Ondrej Grexa; Mark A. Dietenberger; Robert H. White

    2012-01-01

    This project researched the assessment of reaction-to-fire of common materials using the full-scale room/corner test (ISO 9705) protocol and the predictions of time to flashover using results from the bench-scale cone calorimeter test (ISO 5660-1). Using a burner protocol of 100 kW for 10 min, followed by 300 kW for 10 min and the test materials on the walls only, we...

  2. STS-96 Crew Training, Mission Animation, Crew Interviews, STARSHINE, Discovery Rollout and Repair of Hail Damage

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Live footage shows the crewmembers of STS-96, Commander Kent V. Rominger, Pilot Rick D. Husband, Mission Specialists Ellen Ochoa, Tamara E. Jernigan, Daniel T. Barry, Julie Payette and Valery Ivanovich Tokarev during various training activities. Scenes include astronaut suit-up, EVA training in the Virtual Reality Lab, Orbiter space vision training, bailout training, and crew photo session. Footage also shows individual crew interviews, repair activities to the external fuel tank, and Discovery's return to the launch pad. The engineers are seen sanding, bending, and painting the foam used in repairing the tank. An animation of the deployment of the STARSHINE satellite, International Space Station, and the STS-96 Mission is presented. Footage shows the students from Edgar Allen Poe Middle School sanding, polishing, and inspecting the mirrors for the STARSHINE satellite. Live footage also includes students from St. Michael the Archangel School wearing bunny suits and entering the clean room at Goddard Space Flight Center.

  3. Memory's Room.

    ERIC Educational Resources Information Center

    Carruthers, Mary

    1999-01-01

    Describes the Liberal Arts Studiolo from the Ducal Palace at Guibbio, Italy. Discusses how the room's design and decoration mirrors its educational uses. Notes that the object of education was to provide the young person with a kind of mental library of materials that could be drawn upon quickly. (RS)

  4. Memory's Room.

    ERIC Educational Resources Information Center

    Carruthers, Mary

    1999-01-01

    Describes the Liberal Arts Studiolo from the Ducal Palace at Guibbio, Italy. Discusses how the room's design and decoration mirrors its educational uses. Notes that the object of education was to provide the young person with a kind of mental library of materials that could be drawn upon quickly. (RS)

  5. Asteroid Crewed Segment Mission Lean Development

    NASA Technical Reports Server (NTRS)

    Gard, Joe; McDonald, Mark; Jermstad, Wayne

    2014-01-01

    The next generation of human spaceflight missions presents numerous challenges to designers that must be addressed to produce a feasible concept. The specific challenges of designing an exploration mission utilizing the Space Launch System and the Orion spacecraft to carry astronauts beyond earth orbit to explore an asteroid stored in a distant retrograde orbit around the moon will be addressed. Mission designers must carefully balance competing constraints including cost, schedule, risk, and numerous spacecraft performance metrics including launch mass, nominal landed mass, abort landed mass, mission duration, consumable limits and many others. The Asteroid Redirect Crewed Mission will be described along with results from the concurrent mission design trades that led to its formulation. While the trades presented are specific to this mission, the integrated process is applicable to any potential future mission. The following trades were critical in the mission formulation and will be described in detail: 1) crew size, 2) mission duration, 3) trajectory design, 4) docking vs grapple, 5) extravehicular activity tasks, 6) launch mass and integrated vehicle performance, 7) contingency performance, 8) crew consumables including food, clothing, oxygen, nitrogen and water, and 9) mission risk. The additional Orion functionality required to perform the Asteroid Redirect Crewed Mission and how it is incorporated while minimizing cost, schedule and mass impacts will be identified. Existing investments in the NASA technology portfolio were leveraged to provide the added functionality that will be beneficial to future exploration missions. Mission kits are utilized to augment Orion with the necessary functionality without introducing costly new requirements to the mature Orion spacecraft design effort. The Asteroid Redirect Crewed Mission provides an exciting early mission for the Orion and SLS while providing a stepping stone to even more ambitious missions in the future.

  6. STS-79 crew insignia

    NASA Image and Video Library

    1998-09-09

    STS79-S-001 (April 1996) --- STS-79 is the fourth in a series of NASA docking missions to the Russian Mir Space Station, leading up to the construction and operation of the International Space Station (ISS). As the first flight of the Spacehab Double Module, STS-79 encompasses research, test and evaluation of ISS, as well as logistics resupply for the Mir Space Station. STS-79 is also the first NASA-Mir American crew member exchange mission, with John E. Blaha (NASA-Mir-3) replacing Shannon W. Lucid (NASA-Mir-2) aboard the Mir Space Station. The lettering of their names either up or down denotes transport up to the Mir Space Station or return to Earth on STS-79. The patch is in the shape of the space shuttle?s airlock hatch, symbolizing the gateway to international cooperation in space. The patch illustrates the historic cooperation between the United States and Russia in space. With the flags of Russia and the United States as a backdrop, the handshake of Extravehicular Mobility Unit (EMU) - suited crew members symbolizes mission teamwork, not only of the crew members but also the teamwork between both countries? space personnel in science, engineering, medicine and logistics. The NASA insignia design for space shuttle flights is reserved for use by the astronauts and for other official use as the NASA Administrator may authorize. Public availability has been approved only in the forms of illustrations by the various news media. When and if there is any change in this policy, which is not anticipated, the change will be publicly announced. Photo credit: NASA

  7. Crew Exercise Fact Sheet

    NASA Technical Reports Server (NTRS)

    Rafalik, Kerrie

    2017-01-01

    Johnson Space Center (JSC) provides research, engineering, development, integration, and testing of hardware and software technologies for exercise systems applications in support of human spaceflight. This includes sustaining the current suite of on-orbit exercise devices by reducing maintenance, addressing obsolescence, and increasing reliability through creative engineering solutions. Advanced exercise systems technology development efforts focus on the sustainment of crew's physical condition beyond Low Earth Orbit for extended mission durations with significantly reduced mass, volume, and power consumption when compared to the ISS.

  8. Skylab 4 - Television (Crew)

    NASA Image and Video Library

    1973-11-29

    S73-37650 (28 Nov. 1973) --- Astronaut Gerald P. Carr, right, Skylab 4 commander, enjoys a meal aboard the orbiting Skylab space station in this photographic reproduction from a television of Nov. 28, 1973. Scientist-astronaut Edward G. Gibson, science pilot for the third manned Skylab flight, demonstrates the zero-gravity environment by turning upside. The two crewmen were joined by astronaut William R. Pogue, pilot, for the evening meal. The food station is in the wardroom of the Crew Quarters in the Orbital Workshop (OWS). Photo credit: NASA

  9. Expedition 34 Crew Landing

    NASA Image and Video Library

    2013-03-16

    A view of a Russian Search and Rescue helicopter that was grounded by low visibility at the Arkalyk Airport in Kazakhstan on Saturday, March 16, 2013. The Soyuz TMA-06M spacecraft landed with Expedition 34 Commander Kevin Ford of NASA, Russian Soyuz Commander Oleg Novitskiy and Russian Flight Engineer Evgeny Tarelkin near the town of Arkalyk, Kazakhstan on Saturday, March 16, 2013. Ford, Novitskiy, and Tarelkin returned from 142 days onboard the International Space Station where they served as members of the Expedition 33 and 34 crews. Photo Credit: (NASA/Bill Ingalls)

  10. Expedition 34 Crew Landing

    NASA Image and Video Library

    2013-03-16

    A heavily frosted rotor of a Search and Rescue helicopter is seen as it is grounded by low visibility at the Arkalyk Airport in Kazakhstan on Saturday, March 16, 2013. The Soyuz TMA-06M spacecraft landed with Expedition 34 Commander Kevin Ford of NASA, Russian Soyuz Commander Oleg Novitskiy and Russian Flight Engineer Evgeny Tarelkin near the town of Arkalyk, Kazakhstan on Saturday, March 16, 2013. Ford, Novitskiy, and Tarelkin returned from 142 days onboard the International Space Station where they served as members of the Expedition 33 and 34 crews. Photo Credit: (NASA/Bill Ingalls)

  11. Expedition 34 Crew Lands

    NASA Image and Video Library

    2013-03-16

    Expedition 34 Russian Soyuz Commander Oleg Novitskiy, left, and Russian Flight Engineer Evgeny Tarelkin pose for a photograph with women in ceremonial Kazakh dress at the Kustanay Airport in Kazakhstan a few hours after they, along with Expedition 34 Commander Kevin Ford of NASA, landed their Soyuz TMA-06M spacecraft near the town of Arkalyk on Saturday, March 16, 2013. Novitskiy, Tarelkin, and Ford returned from 142 days onboard the International Space Station where they served as members of the Expedition 33 and 34 crews. Photo Credit: (NASA/Bill Ingalls)

  12. Expedition 34 Crew Landing

    NASA Image and Video Library

    2013-03-16

    NASA Astronauts Eric Boe, left, and Bob Behnken are seen making contact with other team members outside a Search and Rescue helicopter that was grounded by low visibility at the Arkalyk Airport in Kazakhstan on Saturday, March 16, 2013. The Soyuz TMA-06M spacecraft landed with Expedition 34 Commander Kevin Ford of NASA, Russian Soyuz Commander Oleg Novitskiy and Russian Flight Engineer Evgeny Tarelkin near the town of Arkalyk, Kazakhstan on Saturday, March 16, 2013. Ford, Novitskiy, and Tarelkin returned from 142 days onboard the International Space Station where they served as members of the Expedition 33 and 34 crews. Photo Credit: (NASA/Bill Ingalls)

  13. Expedition 34 Crew Lands

    NASA Image and Video Library

    2013-03-16

    Expedition 34 Commander Kevin Ford of NASA poses for a photograph after receiving welcome home gifts at the Kustanay Airport in Kazakhstan a few hours after he, along with Expedition 34 Russian Soyuz Commander Oleg Novitskiy, and Russian Flight Engineer Evgeny Tarelkin, landed their Soyuz TMA-06M spacecraft near the town of Arkalyk on Saturday, March 16, 2013. Ford, Novitskiy, and, Tarelkin returned from 142 days onboard the International Space Station where they served as members of the Expedition 33 and 34 crews. Photo Credit: (NASA/Bill Ingalls)

  14. Expedition 34 Crew Landing

    NASA Image and Video Library

    2013-03-16

    Search and Rescue helicopters are seen grounded by low visibility at the Arkalyk Airport in Kazakhstan on Saturday, March 16, 2013. The Soyuz TMA-06M spacecraft landed with Expedition 34 Commander Kevin Ford of NASA, Russian Soyuz Commander Oleg Novitskiy and Russian Flight Engineer Evgeny Tarelkin near the town of Arkalyk, Kazakhstan on Saturday, March 16, 2013. Ford, Novitskiy, and Tarelkin returned from 142 days onboard the International Space Station where they served as members of the Expedition 33 and 34 crews. Photo Credit: (NASA/Bill Ingalls)

  15. Expedition 34 Crew Lands

    NASA Image and Video Library

    2013-03-16

    Expedition 34 Commander Kevin Ford of NASA poses for a photograph with women in ceremonial Kazakh dress at the Kustanay Airport in Kazakhstan a few hours after he, along with Expedition 34 Russian Soyuz Commander Oleg Novitskiy, and Russian Flight Engineer Evgeny Tarelkin, landed their Soyuz TMA-06M spacecraft near the town of Arkalyk on Saturday, March 16, 2013. Ford, Novitskiy, and, Tarelkin returned from 142 days onboard the International Space Station where they served as members of the Expedition 33 and 34 crews. Photo Credit: (NASA/Bill Ingalls)

  16. Expedition 34 Crew Landing

    NASA Image and Video Library

    2013-03-16

    A Search and Rescue helicopter is seen grounded by low visibility at the Arkalyk Airport in Kazakhstan on Saturday, March 16, 2013. The Soyuz TMA-06M spacecraft landed with Expedition 34 Commander Kevin Ford of NASA, Russian Soyuz Commander Oleg Novitskiy and Russian Flight Engineer Evgeny Tarelkin near the town of Arkalyk, Kazakhstan on Saturday, March 16, 2013. Ford, Novitskiy, and Tarelkin returned from 142 days onboard the International Space Station where they served as members of the Expedition 33 and 34 crews. Photo Credit: (NASA/Bill Ingalls)

  17. Expedition 34 Crew Landing

    NASA Image and Video Library

    2013-03-16

    A Russian helicopter commander waits inside his Search and Rescue helicopter that was grounded by low visibility at the Arkalyk Airport in Kazakhstan on Saturday, March 16, 2013. The Soyuz TMA-06M spacecraft landed with Expedition 34 Commander Kevin Ford of NASA, Russian Soyuz Commander Oleg Novitskiy and Russian Flight Engineer Evgeny Tarelkin near the town of Arkalyk, Kazakhstan on Saturday, March 16, 2013. Ford, Novitskiy, and Tarelkin returned from 142 days onboard the International Space Station where they served as members of the Expedition 33 and 34 crews. Photo Credit: (NASA/Bill Ingalls)

  18. STS-63 crew portrait

    NASA Technical Reports Server (NTRS)

    1994-01-01

    With the United States and Russian flags in the background, five NASA astronauts and a Russian cosmonaut named to fly aboard the Space Shuttle Discovery for the the STS-63 mission pose for the flight crew portrait at JSC. Left to right (front row) are Janice E. Voss, mission specialist, Eileen M. Collins, pilot; James D. Wetherbee, mission commander; and Vladimir Titov of the Russian Space Agency, mission specialist. In the rear are Bernard A. Harris Jr., payload commander; and C. Michael Foale, mission specialist.

  19. Apollo 1 Prime Crew

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Portrait of the Apollo 1 prime crew for first manned Apollo space flight. From left to right are: Edward H. White II, Virgil I. 'Gus' Grissom, and Roger B. Chaffee. On January 27, 1967 at 5:31 p.m. CST (6:31 local time) during a routine simulated launch test onboard the Apollo Saturn V Moon rocket, an electrical short circuit inside the Apollo Command Module ignited the pure oxygen environment and within a matter of seconds all three Apollo 1 crewmembers perished.

  20. Crew appliance study

    NASA Technical Reports Server (NTRS)

    Proctor, B. W.; Reysa, R. P.; Russell, D. J.

    1975-01-01

    Viable crew appliance concepts were identified by means of a thorough literature search. Studies were made of the food management, personal hygiene, housekeeping, and off-duty habitability functions to determine which concepts best satisfy the Space Shuttle Orbiter and Modular Space Station mission requirements. Models of selected appliance concepts not currently included in the generalized environmental-thermal control and life support systems computer program were developed and validated. Development plans of selected concepts were generated for future reference. A shuttle freezer conceptual design was developed and a test support activity was provided for regenerative environmental control life support subsystems.

  1. STS-63 Crew Portrait

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Crew members assigned to the STS-63 mission included (front left to right) Janice E. Voss, mission specialist; Eileen M. Collins, pilot; (the first woman to pilot a Space Shuttle), James D. Wetherbee, commander; and Vladmir G. Titov (Cosmonaut). Standing in the rear are mission specialists Bernard A. Harris, and C. Michael Foale. Launched aboard the Space Shuttle Discovery on February 3, 1995 at 12:22:04 am (EST), the primary payload for the mission was the SPACEHAB-3. STS-63 marked the first approach and fly around by the Shuttle with the Russian space station Mir.

  2. STS-115 Crew Portrait

    NASA Technical Reports Server (NTRS)

    2002-01-01

    These six astronauts take a break from training to pose for the STS-115 crew portrait. Astronauts Brent W. Jett, Jr. (right) and Christopher J. Ferguson, commander and pilot, respectively, flank the mission insignia. The mission specialists are, from left to right, astronauts Heidemarie M. Stefanyshyn-Piper, Joseph R. (Joe) Tanner, Daniel C. Burbank, and Steven G. MacLean, who represents the Canadian Space Agency. This mission continued the assembly of the International Space Station (ISS) with the installation of the truss segments P3 and P4.

  3. STS-115 Crew Portrait

    NASA Technical Reports Server (NTRS)

    2002-01-01

    These six astronauts take a break from training to pose for the STS-115 crew portrait. Astronauts Brent W. Jett, Jr. (right) and Christopher J. Ferguson, commander and pilot, respectively, flank the mission insignia. The mission specialists are, from left to right, astronauts Heidemarie M. Stefanyshyn-Piper, Joseph R. (Joe) Tanner, Daniel C. Burbank, and Steven G. MacLean, who represents the Canadian Space Agency. This mission continued the assembly of the International Space Station (ISS) with the installation of the truss segments P3 and P4.

  4. STS-39 Crew Portrait

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The STS-39 crew portrait includes 7 astronauts. Pictured are Charles L. Veach, mission specialist 5; Michael L. Coats, commander; Gregory J. Harbaugh, mission specialist 2; Donald R. McMonagle, mission specialist 4; L. Blaine Hammond, pilot; Richard J. Hieb, mission specialist 3; and Guion S. Buford, Jr., mission specialist 1. Launched aboard the Space Shuttle Discovery on April 28, 1991 at 7:33:14 am (EDT), STS-39 was a Department of Defense (DOD) mission. The primary unclassified payload included the Air Force Program 675 (AFP-675), the Infrared Background Signature Survey (IBSS), and the Shuttle Pallet Satellite II (SPAS II).

  5. Facilitation techniques as predictors of crew participation in LOFT debriefings

    NASA Technical Reports Server (NTRS)

    McDonnell, L. K.

    1996-01-01

    Based on theories of adult learning and airline industry guidelines for Crew Resource Management (CRM), the stated objective during Line Oriented Flight Training (LOFT) debriefings is for instructor pilots (IP's) to facilitate crew self-analysis of performance. This study reviews 19 LOFT debriefings from two major U.S. airlines to examine the relationship between IP efforts at facilitation and associated characteristics of crew participation. A subjective rating scale called the Debriefing Assessment Battery was developed and utilized to evaluate the effectiveness of IP facilitation and the quality of crew participation. The results indicate that IP content, encouragement, and questioning techniques are highly and significantly correlated with, and can therefore predict, the degree and depth of crew participation.

  6. Confined Formation of Ultrathin ZnO Nanorods/Reduced Graphene Oxide Mesoporous Nanocomposites for High-Performance Room-Temperature NO2 Sensors.

    PubMed

    Xia, Yi; Wang, Jing; Xu, Jian-Long; Li, Xian; Xie, Dan; Xiang, Lan; Komarneni, Sridhar

    2016-12-28

    Here we demonstrate high-performance room-temperature NO2 sensors based on ultrathin ZnO nanorods/reduced graphene oxide (rGO) mesoporous nanocomposites. Ultrathin ZnO nanorods were loaded on rGO nanosheets by a facile two-step additive-free solution synthesis involving anchored seeding followed by oriented growth. The ZnO nanorod diameters were simply controlled by the seed diameters associated with the spatial confinement effects of graphene oxide (GO) nanosheets. Compared to the solely ZnO nanorods and rGO-based sensors, the optimal sensor based on ultrathin ZnO nanorods/rGO nanocomposites exhibited higher sensitivity and quicker p-type response to parts per million level of NO2 at room temperature, and the sensitivity to 1 ppm of NO2 was 119% with the response and recovery time being 75 and 132 s. Moreover, the sensor exhibited full reversibility, excellent selectivity, and a low detection limit (50 ppb) to NO2 at room temperature. In addition to the high transport capability of rGO as well as excellent NO2 adsorption ability derived from ultrathin ZnO nanorods and mesoporous structures, the superior sensing performance of the nanocomposites was attributed to the synergetic effect of ZnO and rGO, which was realized by the electron transfer across the ZnO-rGO interfaces through band energy alignment.

  7. Space Station Freedom crew training

    NASA Technical Reports Server (NTRS)

    Bobko, K. J.; Gibson, E. G.; Maroney, S. A.; Muccio, J. D.

    1990-01-01

    The nature of the Space Station Freedom Program presents an array of new and enhanced challenges which need to be addressed en route to developing an effective and affordable infrastructure for crew training. Such an infrastructure is essential for the safety and success of the program. The three major challenges that affect crew training are the long lifetime of the program (thirty years), the interdependence of successive increments, and the participation of the three International Partners (Canada, European Space Agency, and Japan) and a myriad of experimenters. This paper addresses these major challenges as they drive the development of a crew training capability and the actual conduct of crew training.

  8. Space Station Freedom crew training

    NASA Technical Reports Server (NTRS)

    Bobko, Karol J.; Gibson, Edward G.; Maroney, Susan A.; Muccio, James D.

    1989-01-01

    The nature of the Space Station Freedom Program presents an array of new and enhanced challenges which need to be addressed en route to developing an effective and affordable infrastructure for crew training. Such an infrastructure is essential for the safety and success of the program. The three major challenges that affect crew training are the long lifetime of the program (thirty years), the interdependence of successive increments, and the participation of the three International Partners (Canada, European Space Agency, and Japan) and a myriad of experimenters. This paper addresses these major challenges as they drive the development of a crew training capability and the actual conduct of crew training.

  9. Space Station Freedom crew training.

    PubMed

    Bobko, K J; Gibson, E G; Maroney, S A; Muccio, J D

    1990-01-01

    The nature of the Space Station Freedom Program presents an array of new and enhanced challenges which need to be addressed en route to developing an effective and affordable infrastructure for crew training. Such an infrastructure is essential for the safety and success of the program. The three major challenges that affect crew training are the long lifetime of the program (thirty years), the interdependence of successive increments, and the participation of the three International Partners (Canada, European Space Agency, and Japan) and a myriad of experimenters. This paper addresses these major challenges as they drive the development of a crew training capability and the actual conduct of crew training.

  10. STS-112 Crew Interviews: Yurchikhin

    NASA Technical Reports Server (NTRS)

    2002-01-01

    A preflight interview with mission specialist Fyodor Yurchikhin is presented. He worked for a long time in Energia in the Russian Mission Control Center (MCC). Yurchikhin discusses the main goal of the STS-112 flight, which is to install the Integrated Truss Assembly S1 (Starboard Side Thermal Radiator Truss) on the International Space Station. He also talks about the three space walks required to install the S1. After the installation of S1, work with the bolts and cameras are performed. Yurchikhin is involved in working with nitrogen and ammonia jumpers. He expresses the complexity of his work, but says that he and the other crew members are ready for the challenge.

  11. Expedition 41 Crew Door Signing

    NASA Image and Video Library

    2014-09-25

    Expedition 41 Flight Engineer Elena Serova of the Russian Federal Space Agency (Roscosmos), performs the traditional door signing at the Cosmonaut Hotel prior to departing the hotel for launch in a Soyuz rocket with fellow crew mates, Soyuz Commander Alexander Samokutyaev of Roscosmos and Flight Engineer Barry Wilmore of NASA, Thursday, Sept. 25, 2014 in Baikonur, Kazakhstan. Launch of the Soyuz rocket is scheduled for the early hours of Sept. 26 Kazakhstan time and will carry Serova, Wilmore, and Samokutyaev into orbit to begin their five and a half month mission on the International Space Station. Serova will become the fourth Russian woman to fly in space and the first Russian woman to live and work on the station. Photo Credit (NASA/Aubrey Gemignani)

  12. STS-112 Crew Interviews: Yurchikhin

    NASA Technical Reports Server (NTRS)

    2002-01-01

    A preflight interview with mission specialist Fyodor Yurchikhin is presented. He worked for a long time in Energia in the Russian Mission Control Center (MCC). Yurchikhin discusses the main goal of the STS-112 flight, which is to install the Integrated Truss Assembly S1 (Starboard Side Thermal Radiator Truss) on the International Space Station. He also talks about the three space walks required to install the S1. After the installation of S1, work with the bolts and cameras are performed. Yurchikhin is involved in working with nitrogen and ammonia jumpers. He expresses the complexity of his work, but says that he and the other crew members are ready for the challenge.

  13. Room temperature formaldehyde sensors with enhanced performance, fast response and recovery based on zinc oxide quantum dots/graphene nanocomposites.

    PubMed

    Huang, Qingwu; Zeng, Dawen; Li, Huayao; Xie, Changsheng

    2012-09-21

    Novel zinc oxide quantum dots (ZnO QDs) decorated graphene nanocomposites were fabricated by a facile solution-processed method. ZnO QDs with a size ca. 5 nm are nucleated and grown on the surface of the graphene template, and its distribution density can be easily controlled by the reaction time and precursor concentration. The ZnO QDs/graphene nanocomposite materials enhance formaldehyde sensing properties by 4 times compared to pure graphene at room temperature. Moreover, the sensors based on the nanocomposites have fast response (ca. 30 seconds) and recovery (ca. 40 seconds) behavior, excellent room temperature selectivity and stability. The gas sensing enhancement is attributed to the synergistic effect of graphene and ZnO QDs. The electron transfer between the ZnO QDs and the graphene is due to oxidation process of the analyzed gas on the ZnO QDs' surface. This proposed gas sensing mechanism is experimentally proved by DRIFT spectra results. The ZnO QDs/graphene nanocomposites sensors have potential applications for monitoring air pollution, especially for harmful and toxic VOCs (volatile organic compounds).

  14. Room temperature formaldehyde sensors with enhanced performance, fast response and recovery based on zinc oxide quantum dots/graphene nanocomposites

    NASA Astrophysics Data System (ADS)

    Huang, Qingwu; Zeng, Dawen; Li, Huayao; Xie, Changsheng

    2012-08-01

    Novel zinc oxide quantum dots (ZnO QDs) decorated graphene nanocomposites were fabricated by a facile solution-processed method. ZnO QDs with a size ca. 5 nm are nucleated and grown on the surface of the graphene template, and its distribution density can be easily controlled by the reaction time and precursor concentration. The ZnO QDs/graphene nanocomposite materials enhance formaldehyde sensing properties by 4 times compared to pure graphene at room temperature. Moreover, the sensors based on the nanocomposites have fast response (ca. 30 seconds) and recovery (ca. 40 seconds) behavior, excellent room temperature selectivity and stability. The gas sensing enhancement is attributed to the synergistic effect of graphene and ZnO QDs. The electron transfer between the ZnO QDs and the graphene is due to oxidation process of the analyzed gas on the ZnO QDs' surface. This proposed gas sensing mechanism is experimentally proved by DRIFT spectra results. The ZnO QDs/graphene nanocomposites sensors have potential applications for monitoring air pollution, especially for harmful and toxic VOCs (volatile organic compounds).

  15. Effect of calcination temperature on formaldehyde oxidation performance of Pt/TiO2 nanofiber composite at room temperature

    NASA Astrophysics Data System (ADS)

    Xu, Feiyan; Le, Yao; Cheng, Bei; Jiang, Chuanjia

    2017-12-01

    Catalytic oxidation at room temperature over well-designed catalysts is an environmentally friendly method for the abatement of indoor formaldehyde (HCHO) pollution. Herein, nanocomposites of platinum (Pt) and titanium dioxide (TiO2) nanofibers with various phase compositions were prepared by calcining the electrospun TiO2 precursors at different temperatures and subsequently depositing Pt nanoparticles (NPs) on the TiO2 through a NaBH4-reduction process. The phase compositions and structures of Pt/TiO2 can be easily controlled by varying the calcination temperature. The Pt/TiO2 nanocomposites showed a phase-dependent activity towards the catalytic HCHO oxidation. Pt/TiO2 containing pure rutile phase showed enhanced activity with a turnover frequency (TOF) of 16.6 min-1 (for a calcination temperature of 800 °C) as compared to those containing the anatase phase or mixed phases. Density functional theory calculation shows that TiO2 nanofibers with pure rutile phase have stronger adsorption ability to Pt atoms than anatase phase, which favors the reduction of Pt over rutile phase TiO2, leading to higher contents of metallic Pt in the nanocomposite. In addition, the Pt/TiO2 with rutile phase possesses more abundant oxygen vacancies, which is conducive to the activation of adsorbed oxygen. Consequently, the Pt/rutile-TiO2 nanocomposite exhibited better catalytic activity towards HCHO oxidation at room temperature.

  16. Deployable Crew Quarters

    NASA Technical Reports Server (NTRS)

    Izenson, Michael G.; Chen, Weibo

    2008-01-01

    The deployable crew quarters (DCQ) have been designed for the International Space Station (ISS). Each DCQ would be a relatively inexpensive, deployable boxlike structure that is designed to fit in a rack bay. It is to be occupied by one crewmember to provide privacy and sleeping functions for the crew. A DCQ comprises mostly hard panels, made of a lightweight honeycomb or matrix/fiber material, attached to each other by cloth hinges. Both faces of each panel are covered with a layer of Nomex cloth and noise-suppression material to provide noise isolation from ISS. On Earth, the unit is folded flat and attached to a rigid pallet for transport to the ISS. On the ISS, crewmembers unfold the unit and install it in place, attaching it to ISS structural members by use of soft cords (which also help to isolate noise and vibration). A few hard pieces of equipment (principally, a ventilator and a smoke detector) are shipped separately and installed in the DCQ unit by use of a system of holes, slots, and quarter-turn fasteners. Full-scale tests showed that the time required to install a DCQ unit amounts to tens of minutes. The basic DCQ design could be adapted to terrestrial applications to satisfy requirements for rapid deployable emergency shelters that would be lightweight, portable, and quickly erected. The Temporary Early Sleep Station (TeSS) currently on-orbit is a spin-off of the DCQ.

  17. STS-59 crew insignia

    NASA Image and Video Library

    1993-11-01

    STS059-S-001 (November 1993) --- Designed by the crew members, the STS-59 insignia is dominated by Earth, reflecting the focus of the first Space Radar Laboratory (SRL-1) mission upon our planet's surface and atmosphere. The golden symbol of the astronaut corps emblem sweeps over Earth's surface from the space shuttle Endeavour, representing the operation of the SIR-C/Synthetic Aperture Radar (X-SAR) and the Measurement of Air Pollution from Space (MAPS) sensors. The astronaut emblem also signals the importance of the human element in space exploration and in the study of our planet. Using the unique vantage point of space, Endeavour and its crew -- along with scientists from around the world -- will study Earth and its environment. The starfield visible below Earth represents the many talents and skills of the international (SRL-1) team in working to make this "Mission to Planet Earth" (MTPE) a scientific and operational success. The NASA insignia design for space shuttle flights is reserved for use by the astronauts and for other official use as the NASA Administrator may authorize. Public availability has been approved only in the forms of illustrations by the various news media. When and if there is any change in this policy, which is not anticipated, the change will be publicly announced. Photo credit: NASA

  18. STS-84 Crew Breakfast

    NASA Technical Reports Server (NTRS)

    1997-01-01

    STS-84 crew members pose for a photograph during the traditional prelaunch meal together -- in this case, lunch -- in the Operations and Checkout Building. From left, are Mission Specialist Jean-Francois Clervoy of the European Space Agency, Mission Specialist C. Michael Foale, Mission Specialist Elena V. Kondakova of the Russian Space Agency, Commander Charles J. Precourt, Pilot Eileen Marie Collins, Mission Specialist Carlos I. Noriega and Mission Specialist Edward Tsang Lu. After a weather briefing, they will don their orange launch and entry suits and proceed to Launch Pad 39A for liftoff of the Space Shuttle Atlantis. STS-84 will be the sixth docking of the Space Shuttle with the Russian Space Station Mir. The planned nine-day mission also will include the exchange of Foale for U.S. astronaut and Mir 23 crew member Jerry M. Linenger, who has been on Mir since Jan. 15. Linenger transferred to Mir during the last docking mission, STS-81. He will return to Earth on Atlantis. Foale is scheduled to remain on Mir for about four months until he is replaced by STS-86 Mission Specialist Wendy B. Lawrence.

  19. STS-75 crew insignia

    NASA Image and Video Library

    1997-10-01

    STS075-S-001 (September 1995) --- The STS-75 crew patch depicts the space shuttle Columbia and the Tethered Satellite connected by a 21-kilometer electronically conducting tether. The orbiter/satellite system is passing through Earth?s magnetic field which, like an electronic generator, will produce thousands of volts of electricity. Columbia is carrying the United States Microgravity pallet to conduct microgravity research in material science and thermodynamics. The tether is crossing Earth?s terminator signifying the dawn of a new era for space tether applications and in mankind?s knowledge of Earth?s ionosphere, material science, and thermodynamics. The patch was designed for the STS-75 crew members by Mike Sanni. The NASA insignia design for space shuttle flights is reserved for use by the astronauts and for other official use as the NASA Administrator may authorize. Public availability has been approved only in the forms of illustrations by the various news media. When and if there is any change in this policy, which is not anticipated, the change will be publicly announced. Photo credit: NASA

  20. Expedition 13 crew patch

    NASA Image and Video Library

    2006-01-01

    ISS013-S-001 (January 2006) --- This patch commemorates the thirteenth expeditionary mission to the International Space Station (ISS) which continues the permanent human presence in space. The ISS is depicted in its configuration at the start of the six-month expedition with trailing elements from the country flags representing both of the crew members--cosmonaut Pavel V. Vinogradov and astronaut Jeffrey N. Williams. The crew members made the following statement about their patch: "The dynamic trajectory of the space station against the background of the Earth, Mars, and the Moon symbolizes the vision for human space exploration beyond Earth orbit and the critical role that the ISS plays in the fulfillment of that vision." The NASA insignia design for shuttle flights and station increments is reserved for use by the astronauts and for other official use as the NASA Administrator may authorize. Public availability has been approved only in the forms of illustrations by the various news media. When and if there is any change in this policy, which is not anticipated, the change will be publicly announced.

  1. 19 CFR 122.45 - Crew list.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 19 Customs Duties 1 2011-04-01 2011-04-01 false Crew list. 122.45 Section 122.45 Customs Duties U..., Crew Members, and Non-Crew Members Onboard Commercial Aircraft Arriving In, Continuing Within, and Overflying the United States § 122.45 Crew list. (a) When required. A crew list shall be filed by all...

  2. Crew Field Notes: A New Tool for Planetary Surface Exploration

    NASA Technical Reports Server (NTRS)

    Horz, Friedrich; Evans, Cynthia; Eppler, Dean; Gernhardt, Michael; Bluethmann, William; Graf, Jodi; Bleisath, Scott

    2011-01-01

    The Desert Research and Technology Studies (DRATS) field tests of 2010 focused on the simultaneous operation of two rovers, a historical first. The complexity and data volume of two rovers operating simultaneously presented significant operational challenges for the on-site Mission Control Center, including the real time science support function. The latter was split into two "tactical" back rooms, one for each rover, that supported the real time traverse activities; in addition, a "strategic" science team convened overnight to synthesize the day's findings, and to conduct the strategic forward planning of the next day or days as detailed in [1, 2]. Current DRATS simulations and operations differ dramatically from those of Apollo, including the most evolved Apollo 15-17 missions, due to the advent of digital technologies. Modern digital still and video cameras, combined with the capability for real time transmission of large volumes of data, including multiple video streams, offer the prospect for the ground based science support room(s) in Mission Control to witness all crew activities in unprecedented detail and in real time. It was not uncommon during DRATS 2010 that each tactical science back room simultaneously received some 4-6 video streams from cameras mounted on the rover or the crews' backpacks. Some of the rover cameras are controllable PZT (pan, zoom, tilt) devices that can be operated by the crews (during extensive drives) or remotely by the back room (during EVAs). Typically, a dedicated "expert" and professional geologist in the tactical back room(s) controls, monitors and analyses a single video stream and provides the findings to the team, commonly supported by screen-saved images. It seems obvious, that the real time comprehension and synthesis of the verbal descriptions, extensive imagery, and other information (e.g. navigation data; time lines etc) flowing into the science support room(s) constitute a fundamental challenge to future mission

  3. Potential Mission Scenarios Post Asteroid Crewed Mission

    NASA Technical Reports Server (NTRS)

    Lopez, Pedro, Jr.; McDonald, Mark A.

    2015-01-01

    A deep-space mission has been proposed to identify and redirect an asteroid to a distant retrograde orbit around the moon, and explore it by sending a crew using the Space Launch System and the Orion spacecraft. The Asteroid Redirect Crewed Mission (ARCM), which represents the third segment of the Asteroid Redirect Mission (ARM), could be performed on EM-3 or EM-4 depending on asteroid return date. Recent NASA studies have raised questions on how we could progress from current Human Space Flight (HSF) efforts to longer term human exploration of Mars. This paper will describe the benefits of execution of the ARM as the initial stepping stone towards Mars exploration, and how the capabilities required to send humans to Mars could be built upon those developed for the asteroid mission. A series of potential interim missions aimed at developing such capabilities will be described, and the feasibility of such mission manifest will be discussed. Options for the asteroid crewed mission will also be addressed, including crew size and mission duration.

  4. A Room Temperature H2 Sensor Fabricated Using High Performance Pt-Loaded SnO2 Nanoparticles

    PubMed Central

    Wang, Sheng-Chang; Shaikh, Muhammad Omar

    2015-01-01

    Highly sensitive H2 gas sensors were prepared using pure and Pt-loaded SnO2 nanoparticles. Thick film sensors (~35 μm) were fabricated that showed a highly porous interconnected structure made of high density small grained nanoparticles. Using Pt as catalyst improved sensor response and reduced the operating temperature for achieving high sensitivity because of the negative temperature coefficient observed in Pt-loaded SnO2. The highest sensor response to 1000 ppm H2 was 10,500 at room temperature with a response time of 20 s. The morphology of the SnO2 nanoparticles, the surface loading concentration and dispersion of the Pt catalyst and the microstructure of the sensing layer all play a key role in the development of an effective gas sensing device. PMID:26091394

  5. High-performance laser mode-locker with glass-hosted SWNTs realized by room-temperature aerosol deposition.

    PubMed

    Kim, Hyung-Jun; Choi, Ho-Jun; Nam, Song-Min; Song, Yong-Won

    2011-02-28

    We preserve optical nonlinear properties of single-walled carbon nanotubes (SWNTs) within SiO2-host employing aerosol deposition (AD) that guarantees the formation of dense ceramic thick films at room temperature without combustion and solubility limitation of the SWNTs. The intact nonlinearity is verified with transmittance check, Raman spectrometry and electron microscopes. As a saturable absorption device, the SiO2-SWNT composite film successfully mode-locks fiber lasers inducing high-quality output pulses with the measured pulse duration and repetition rate of 890 fs and 9.52 MHz, respectively. After experiencing the intracavity power higher than 20 dBm, the hosted SWNTs are survived to function as the pulse formers.

  6. Crew interface with a telerobotic control station

    NASA Technical Reports Server (NTRS)

    Mok, Eva

    1987-01-01

    A method for apportioning crew-telerobot tasks has been derived to facilitate the design of a crew-friendly telerobot control station. To identify the most appropriate state-of-the-art hardware for the control station, task apportionment must first be conducted to identify if an astronaut or a telerobot is best to execute the task and which displays and controls are required for monitoring and performance. Basic steps that comprise the task analysis process are: (1) identify space station tasks; (2) define tasks; (3) define task performance criteria and perform task apportionment; (4) verify task apportionment; (5) generate control station requirements; (6) develop design concepts to meet requirements; and (7) test and verify design concepts.

  7. STS-77 crew insignia

    NASA Image and Video Library

    1996-05-09

    STS077-S-001 (February 1996) --- The STS-77 crew patch, designed by the crew members, displays the space shuttle Endeavour the lower left and its reflection within the tripod and concave parabolic mirror of the Shuttle Pointed Autonomous Research Tool for Astronomy (SPARTAN) Inflatable Antenna Experiment (IAE). The center leg of the tripod also delineates the top of the Spacehab?s shape, the rest of which is outlined in gold just inside the red perimeter. The Spacehab is carried in the payload bay and houses the Commercial Float Zone Furnace (CFZF) and Space Experiment Facility (SEF) experiments. Also depicted within the confines the IAE mirror are the mission?s rendezvous operations with the Passive Aerodynamically Stabilized Magnetically Damped Satellite/Satellite Test Unit (PAM/STU) satellite and a reflection of Earth. The PAM/STU satellite appears as a bright six-pointed star-like reflection of the sun on the edge of the mirror with the space shuttle Endeavour in position to track it. The sunglint on the mirror?s edge, which also appears as an orbital sunset, is located over Goddard Space Flight Center (GSFC), the development facility for the SPARTAN/IAE and Technology Experiments Advancing Missions in Space (TEAMS) experiments. The reflection of Earth is oriented to show the individual countries of the crew as well as the ocean which Captain Cook explored in the original Endeavour. The mission number ?77? is featured as twin stylized chevrons and an orbiting satellite as adapted from NASA?s logo. The stars at the top are arranged as seen in the northern sky in the vicinity of the constellation Ursa Minor. The field of 11 stars represents both the TEAMS cluster of experiments (the four antennae of Global Positioning System Attitude and Navigation Experiment (GANE), the single canister of Liquid Metal Thermal Experiment (LMTE), the three canisters of Vented Tank Resupply Experiment (VTRE), and the canisters of PAM/STU, and the 11th flight of the Endeavour. The

  8. Flight crew health stabilization program

    NASA Technical Reports Server (NTRS)

    Wooley, B. C.; Mccollum, G. W.

    1975-01-01

    The flight crew health stabilization program was developed to minimize or eliminate the possibility of adverse alterations in the health of flight crews during immediate preflight, flight, and postflight periods. The elements of the program, which include clinical medicine, immunology, exposure prevention, and epidemiological surveillance, are discussed briefly. No crewmember illness was reported for the missions for which the program was in effect.

  9. Flight Crew Health Stabilization Program

    NASA Technical Reports Server (NTRS)

    Johnston, Smith L.

    2010-01-01

    This document establishes the policy and procedures for the HSP and is authorized through the Director, Johnson Space Center (JSC). This document delineates the medical operations requirements for the HSP. The HSP goals are accomplished through an awareness campaign and procedures such as limiting access to flight crewmembers, medical screening, and controlling flight crewmember activities. NASA's Human Space Flight Program uses strategic risk mitigation to achieve mission success while protecting crew health and safety. Infectious diseases can compromise crew health and mission success, especially in the immediate preflight period. The primary purpose of the Flight Crew Health Stabilization Program (HSP) is to mitigate the risk of occurrence of infectious disease among astronaut flight crews in the immediate preflight period. Infectious diseases are contracted through direct person-to-person contact, and through contact with infectious material in the environment. The HSP establishes several controls to minimize crew exposure to infectious agents. The HSP provides a quarantine environment for the crew that minimizes contact with potentially infectious material. The HSP also limits the number of individuals who come in close contact with the crew. The infection-carrying potential of these primary contacts (PCs) is minimized by educating them in ways to avoid infections and avoiding contact with the crew if they are or may be sick. The transmission of some infectious diseases can be greatly curtailed by vaccinations. PCs are strongly encouraged to maintain updated vaccinations.

  10. STS-71 preflight crew portrait

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Crew members for the STS-71 mission and the related Mir missions assembled for a crew portrait at JSC. In front are, left to right, Vladimir N. Dezhurov, Robert L. Gibson and Anatoliy Y. Solovyev, mission commanders for Mir-18, STS-71 and Mir-19, respecti

  11. STS-124 crew visits Stennis

    NASA Image and Video Library

    2008-07-23

    NASA's John C. Stennis Space Center Deputy Director Gene Goldman (center) welcomed members of the STS-124 Discovery space shuttle crew during their July 23 visit to the center. Crew members who visited Stennis were (l to r) Pilot Ken Ham, Mission Specialist Karen Nyberg, Kelly, and Mission Specialists Ron Garan and Mike Fossum.

  12. Casual crew and individual photos

    NASA Image and Video Library

    1997-08-28

    STS085-326-016 (7 - 19 August 1997) --- An impromptu in-flight crew portrait was snapped while the crew members were setting up for a more balanced portrait on the Space Shuttle Discovery's mid-deck. Left to right are astronauts Kent V. Rominger, Robert L. Curbeam, Stephen K. Robinson, Curtis L. Brown, Jr., N. Jan Davis and Bjarni V. Tryggvason.

  13. Crew Transportation Technical Management Processes

    NASA Technical Reports Server (NTRS)

    Mckinnie, John M. (Compiler); Lueders, Kathryn L. (Compiler)

    2013-01-01

    Under the guidance of processes provided by Crew Transportation Plan (CCT-PLN-1100), this document, with its sister documents, International Space Station (ISS) Crew Transportation and Services Requirements Document (CCT-REQ-1130), Crew Transportation Technical Standards and Design Evaluation Criteria (CCT-STD-1140), Crew Transportation Operations Standards (CCT STD-1150), and ISS to Commercial Orbital Transportation Services Interface Requirements Document (SSP 50808), provides the basis for a National Aeronautics and Space Administration (NASA) certification for services to the ISS for the Commercial Provider. When NASA Crew Transportation System (CTS) certification is achieved for ISS transportation, the Commercial Provider will be eligible to provide services to and from the ISS during the services phase.

  14. Real-Time Teleguidance of a Non-Surgeon Crew Medical Officer Performing Orthopedic Surgery at the Amundsen-Scott South Pole Station During Winter-Over

    NASA Technical Reports Server (NTRS)

    Otto, Christian

    2010-01-01

    The Amundsen-Scott South Pole Research station located at the geographic South Pole, is the most isolated, permanently inhabited human outpost on Earth. Medical care is provided to station personnel by a non-surgeon crew medical officer (CMO). During the winter-over period from February to October, the station is isolated, with no incoming or outgoing flights due to severe weather conditions. In late June, four months after the station had closed for the austral winter, a 31 year old meteorologist suffered a complete rupture of his patellar tendon while sliding done an embankment. An evacuation was deemed to be too risky to aircrews due to the extreme cold and darkness. A panel of physicians from Massachusetts General Hospital, Johns Hopkins University and the University of Texas Medical Branch were able to assess the patient remotely via telemedicine and agreed that surgery was the only means to restore mobility and prevent long term disability. The lack of a surgical facility and a trained surgical team were overcome by conversion of the clinic treatment area, and intensive preparation of medical laypersons as surgical assistants. The non-surgeon CMO and CMO assistant at South Pole, were guided through the administration of spinal anesthetic, and the two-hour operative repair by medical consultants at Massachusetts General Hospital. Real-time video of the operative field, directions from the remote consultants and audio communication were provided by videoconferencing equipment, operative cameras, and high bandwidth satellite communications. In real-time, opening incision/exposure, tendon relocation, hemostatsis, and operative closure by the CMO was closely monitored and guided and by the remote consultants. The patient s subsequent physical rehabilitation over the ensuing months of isolation was also monitored remotely via telemedicine. This was the first time in South Pole s history that remote teleguidance had been used for surgery and represents a model for

  15. STS-58 Crew Insignia

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The STS-58 crew insignia depicts the Space Shuttle Columbia with a Spacelab module in its payload bay in orbit around Earth. The Spacelab and the lettering 'Spacelab Life Sciences II' highlight its primary mission. An Extended Duration Orbiter (EDO) support pallet is shown in the aft payload bay, stressing the length of the mission. The hexagonal shape of the patch depicts the carbon ring. Encircling the inner border of the patch is the double helix of DNA. Its yellow background represents the sun. Both medical and veterinary caducei are shown to represent the STS-58 life sciences experiments. The position of the spacecraft in orbit about Earth with the United States in the background symbolizes the ongoing support of the American people for scientific research.

  16. Crew Interviews: Treschev

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Sergei Treschev is a Cosmonaut of the Rocket Space Corporation Energia, (RSC), from Volynsky District, Lipetsk Region (Russia). He graduated from Moscow Energy Institute. After years of intense training with RSC Energia, he was selected as International Space Station (ISS) Increment 5 flight engineer. The Expedition-Five crew (two Russian cosmonauts and one American astronaut) will stay on the station for approximately 5 months. The Multipurpose Logistics Module, or MPLM, will carry experiment racks and three stowage and resupply racks to the station. The mission will also install a component of the Canadian Arm called the Mobile Base System (MBS) to the Mobile Transporter (MT) installed during STS-110. This completes the Canadian Mobile Servicing System, or MSS. The mechanical arm will now have the capability to "inchworm" from the U.S. Lab fixture to the MSS and travel along the Truss to work sites.

  17. STS-58 Crew Insignia

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The STS-58 crew insignia depicts the Space Shuttle Columbia with a Spacelab module in its payload bay in orbit around Earth. The Spacelab and the lettering 'Spacelab Life Sciences II' highlight its primary mission. An Extended Duration Orbiter (EDO) support pallet is shown in the aft payload bay, stressing the length of the mission. The hexagonal shape of the patch depicts the carbon ring. Encircling the inner border of the patch is the double helix of DNA. Its yellow background represents the sun. Both medical and veterinary caducei are shown to represent the STS-58 life sciences experiments. The position of the spacecraft in orbit about Earth with the United States in the background symbolizes the ongoing support of the American people for scientific research.

  18. Crew Interviews: Treschev

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Sergei Treschev is a Cosmonaut of the Rocket Space Corporation Energia, (RSC), from Volynsky District, Lipetsk Region (Russia). He graduated from Moscow Energy Institute. After years of intense training with RSC Energia, he was selected as International Space Station (ISS) Increment 5 flight engineer. The Expedition-Five crew (two Russian cosmonauts and one American astronaut) will stay on the station for approximately 5 months. The Multipurpose Logistics Module, or MPLM, will carry experiment racks and three stowage and resupply racks to the station. The mission will also install a component of the Canadian Arm called the Mobile Base System (MBS) to the Mobile Transporter (MT) installed during STS-110. This completes the Canadian Mobile Servicing System, or MSS. The mechanical arm will now have the capability to "inchworm" from the U.S. Lab fixture to the MSS and travel along the Truss to work sites.

  19. STS-119 Crew Walkout

    NASA Image and Video Library

    2009-03-15

    STS119-S-008 (15 March 2009) --- After suiting up, the STS-119 crewmembers pause alongside the Astrovan to wave farewell to onlookers before heading for launch pad 39A for the launch of Space Shuttle Discovery on the STS-119 mission. From the right are astronauts Lee Archambault, commander; Tony Antonelli, pilot; Joseph Acaba, Steve Swanson, Richard Arnold, John Phillips and Japan Aerospace Exploration Agency’s Koichi Wakata, all mission specialists. Wakata will join Expedition 18 in progress to serve as a flight engineer aboard the International Space Station. Discovery will deliver the final pair of power-generating solar array wings and the S6 truss segment. Installation of S6 will signal the station's readiness to house a six-member crew for conducting increased science.

  20. STS-116 crew portrait

    NASA Image and Video Library

    2006-07-21

    STS116-S-002 (21 July 2006) --- These seven astronauts take a break from training to pose for the STS-116 crew portrait. Scheduled to launch aboard the Space Shuttle Discovery are, front row (from the left), astronauts William A. Oefelein, pilot; Joan E. Higginbotham, mission specialist; and Mark L. Polansky, commander. On the back row (from the left) are astronauts Robert L. Curbeam, Nicholas J.M. Patrick, Sunita L. Williams and the European Space Agency's Christer Fuglesang, all mission specialists. Williams will join Expedition 14 in progress to serve as a flight engineer aboard the International Space Station. The crewmembers are attired in training versions of their shuttle launch and entry suits.