Science.gov

Sample records for room irradiance spectra

  1. An artificial solar spectrum substantially alters plant development compared with usual climate room irradiance spectra.

    PubMed

    Hogewoning, Sander W; Douwstra, Peter; Trouwborst, Govert; van Ieperen, Wim; Harbinson, Jeremy

    2010-03-01

    Plant responses to the light spectrum under which plants are grown affect their developmental characteristics in a complicated manner. Lamps widely used to provide growth irradiance emit spectra which are very different from natural daylight spectra. Whereas specific responses of plants to a spectrum differing from natural daylight may sometimes be predictable, the overall plant response is generally difficult to predict due to the complicated interaction of the many different responses. So far studies on plant responses to spectra either use no daylight control or, if a natural daylight control is used, it will fluctuate in intensity and spectrum. An artificial solar (AS) spectrum which closely resembles a sunlight spectrum has been engineered, and growth, morphogenesis, and photosynthetic characteristics of cucumber plants grown for 13 d under this spectrum have been compared with their performance under fluorescent tubes (FTs) and a high pressure sodium lamp (HPS). The total dry weight of the AS-grown plants was 2.3 and 1.6 times greater than that of the FT and HPS plants, respectively, and the height of the AS plants was 4-5 times greater. This striking difference appeared to be related to a more efficient light interception by the AS plants, characterized by longer petioles, a greater leaf unfolding rate, and a lower investment in leaf mass relative to leaf area. Photosynthesis per leaf area was not greater for the AS plants. The extreme differences in plant response to the AS spectrum compared with the widely used protected cultivation light sources tested highlights the importance of a more natural spectrum, such as the AS spectrum, if the aim is to produce plants representative of field conditions.

  2. An artificial solar spectrum substantially alters plant development compared with usual climate room irradiance spectra.

    PubMed

    Hogewoning, Sander W; Douwstra, Peter; Trouwborst, Govert; van Ieperen, Wim; Harbinson, Jeremy

    2010-03-01

    Plant responses to the light spectrum under which plants are grown affect their developmental characteristics in a complicated manner. Lamps widely used to provide growth irradiance emit spectra which are very different from natural daylight spectra. Whereas specific responses of plants to a spectrum differing from natural daylight may sometimes be predictable, the overall plant response is generally difficult to predict due to the complicated interaction of the many different responses. So far studies on plant responses to spectra either use no daylight control or, if a natural daylight control is used, it will fluctuate in intensity and spectrum. An artificial solar (AS) spectrum which closely resembles a sunlight spectrum has been engineered, and growth, morphogenesis, and photosynthetic characteristics of cucumber plants grown for 13 d under this spectrum have been compared with their performance under fluorescent tubes (FTs) and a high pressure sodium lamp (HPS). The total dry weight of the AS-grown plants was 2.3 and 1.6 times greater than that of the FT and HPS plants, respectively, and the height of the AS plants was 4-5 times greater. This striking difference appeared to be related to a more efficient light interception by the AS plants, characterized by longer petioles, a greater leaf unfolding rate, and a lower investment in leaf mass relative to leaf area. Photosynthesis per leaf area was not greater for the AS plants. The extreme differences in plant response to the AS spectrum compared with the widely used protected cultivation light sources tested highlights the importance of a more natural spectrum, such as the AS spectrum, if the aim is to produce plants representative of field conditions. PMID:20202994

  3. Blue photoluminescence enhancement in laser-irradiated 6H-SiC at room temperature

    SciTech Connect

    Wu, Yan; Ji, Lingfei Lin, Zhenyuan; Jiang, Yijian; Zhai, Tianrui

    2014-01-27

    Blue photoluminescence (PL) of 6H-SiC irradiated by an ultraviolet laser can be observed at room temperature in dark condition. PL spectra with Gaussian fitting curve of the irradiated SiC show that blue luminescence band (∼440 nm) is more pronounced than other bands. The blue PL enhancement is the combined result of the improved shallow N-donor energy level and the unique surface state with Si nanocrystals and graphene/Si composite due to the effect of photon energy input by the short-wavelength laser irradiation. The study can provide a promising route towards the preparation of well-controlled blue photoluminescence material for light-emitting devices.

  4. Principal Component Analysis of Arctic Solar Irradiance Spectra

    NASA Technical Reports Server (NTRS)

    Rabbette, Maura; Pilewskie, Peter; Gore, Warren J. (Technical Monitor)

    2000-01-01

    During the FIRE (First ISCPP Regional Experiment) Arctic Cloud Experiment and coincident SHEBA (Surface Heat Budget of the Arctic Ocean) campaign, detailed moderate resolution solar spectral measurements were made to study the radiative energy budget of the coupled Arctic Ocean - Atmosphere system. The NASA Ames Solar Spectral Flux Radiometers (SSFRs) were deployed on the NASA ER-2 and at the SHEBA ice camp. Using the SSFRs we acquired continuous solar spectral irradiance (380-2200 nm) throughout the atmospheric column. Principal Component Analysis (PCA) was used to characterize the several tens of thousands of retrieved SSFR spectra and to determine the number of independent pieces of information that exist in the visible to near-infrared solar irradiance spectra. It was found in both the upwelling and downwelling cases that almost 100% of the spectral information (irradiance retrieved from 1820 wavelength channels) was contained in the first six extracted principal components. The majority of the variability in the Arctic downwelling solar irradiance spectra was explained by a few fundamental components including infrared absorption, scattering, water vapor and ozone. PCA analysis of the SSFR upwelling Arctic irradiance spectra successfully separated surface ice and snow reflection from overlying cloud into distinct components.

  5. IR spectra of irradiated organic materials

    NASA Astrophysics Data System (ADS)

    Strazzulla, G.; Calcagno, L.; Foti, A. M.; Massimino, P.; Spinella, F.

    1988-05-01

    Infrared spectra of organic molecules, including frozen gases, aliphatic and aromatic polymers, complex molecules, and biological compounds are presented, and their changes due to fast ion bombardment are described. It is found that (1) the targets lose hydrogen preferentially and the stoichiometric H/C decreases; (2) the materials become more absorbing and their color changes from white to black as the ion dose increases; (3) the crystallinity, if present initially, is destroyed, and bombarded material is amorphous although microcrystallinity cannot be ruled out; (4) the skeletal vibrations are changed, indicating the occurrence of cross-lining and the formation of tridimensional networks. The astrophysical and space mission implications of these findings are addressed.

  6. Formation of rutile fasciculate zone induced by sunlight irradiation at room temperature and its hemocompatibility.

    PubMed

    Zhang, Xuan-Hui; Zheng, Xiang; Cheng, Yuan; Li, Guo-Hua; Chen, Xiao-Ping; Zheng, Jian-Hui

    2013-08-01

    The fasciculate zone of phase pure rutile was fabricated under sunlight irradiation at room temperature, using titanium tetrachloride as a sole precursor. The crystal phase, morphology and microstructure, and optical absorption behavior of the samples were characterized by X-ray Diffraction, High-Resolution Transmission Electron Microscope (HRTEM) and UV-vis Diffuse Reflectance Spectra (DRS), respectively. XRD results show that the crystal phase of the sample is composed of rutile only, and a lattice distortion displays in the crystallite of the sample. HRTEM results show that the morphology of rutile particle is fasciculate zone constituted of nanoparticles with a diameter of 4-7 nm, and these particles grow one by one and step by step. The pattern of the selected area electron diffraction of the sample is Kikuchi type, which can be attributed to the predominant orientation growth of rutile nanoparticles along [001] induced by sunlight irradiation. DRS results show that the absorption threshold of the sample is 415 nm, corresponding to the band gap energy of 2.99 eV, which is lower than the band gap energy of rutile, 3.03 eV. Blood compatibility measurement shows that the sample has no remarkable effect on hemolytic and coagulation activity. The percent hemolysis of red blood cells is less than 5% even treated with a big dosage of the fasciculate rutile and under UV irradiation, and there are no obvious changes of plasma recalcification time after the rutile treatment. Thus, the novel structure of rutile fasciculate has low potential toxicity for blood and is hemocompatibility safe.

  7. Occupant UV exposure measurements for upper-room ultraviolet germicidal irradiation.

    PubMed

    Milonova, Sonya; Rudnick, Stephen; McDevitt, James; Nardell, Edward

    2016-06-01

    The threshold limit value (TLV) guideline for ultraviolet (UV) radiation specifies that irradiance measurements to ensure occupant safety be taken over an angle of 80° at the sensor. The purpose of this study was to evaluate the effect of an 80° field of view (FOV) tube on lower room UV-C irradiation measurements. Measurements were made in an experimental chamber at a height of 1.73m with and without an FOV tube. The FOV tube reduced the lower room irradiance readings by 18-34%, a statistically significant reduction compared to the bare sensor. An 80° FOV tube should be used for lower room irradiance measurements to comply with the TLV guideline. The resulting lower readings would allow more UV-C radiation in the upper room without compromising occupant safety. More UV-C radiation in the upper room could increase efficacy of UVGI systems for reducing transmission of airborne infectious diseases. In addition, recommendations are made to standardize lower room irradiance measurement techniques.

  8. Occupant UV exposure measurements for upper-room ultraviolet germicidal irradiation.

    PubMed

    Milonova, Sonya; Rudnick, Stephen; McDevitt, James; Nardell, Edward

    2016-06-01

    The threshold limit value (TLV) guideline for ultraviolet (UV) radiation specifies that irradiance measurements to ensure occupant safety be taken over an angle of 80° at the sensor. The purpose of this study was to evaluate the effect of an 80° field of view (FOV) tube on lower room UV-C irradiation measurements. Measurements were made in an experimental chamber at a height of 1.73m with and without an FOV tube. The FOV tube reduced the lower room irradiance readings by 18-34%, a statistically significant reduction compared to the bare sensor. An 80° FOV tube should be used for lower room irradiance measurements to comply with the TLV guideline. The resulting lower readings would allow more UV-C radiation in the upper room without compromising occupant safety. More UV-C radiation in the upper room could increase efficacy of UVGI systems for reducing transmission of airborne infectious diseases. In addition, recommendations are made to standardize lower room irradiance measurement techniques. PMID:27038734

  9. Analysis of electron spin resonance spectra of irradiated gingers: Organic radical components derived from carbohydrates

    NASA Astrophysics Data System (ADS)

    Yamaoki, Rumi; Kimura, Shojiro; Ohta, Masatoshi

    2010-04-01

    Electron spin resonance (ESR) spectral characterizations of gingers irradiated with electron beam were studied. Complex asymmetrical spectra (near g=2.005) with major spectral components (line width=2.4 mT) and minor signals (at 6 mT apart) were observed in irradiated gingers. The spectral intensity decreased considerably 30 days after irradiation, and continued to decrease steadily thereafter. The spectra simulated on the basis of characteristics of free radical components derived from carbohydrates in gingers are in good agreement with the observed spectra. Analysis showed that shortly after irradiation the major radical components of gingers were composed of radical species derived from amylose and cellulose, and the amylose radicals subsequently decreased considerably. At 30 days after irradiation, the major radical components of gingers were composed of radical species derived from cellulose, glucose, fructose or sucrose.

  10. Temporal power spectra of irradiance scintillation for infrared optical waves' propagation through marine atmospheric turbulence.

    PubMed

    Cui, Linyan

    2014-09-01

    Current theoretical temporal power spectra models of an optical wave have been developed for terrestrial environments. The interactions between humidity and temperature fluctuations in the marine atmospheric environments make the marine atmospheric turbulence particularly challenging, and the optical waves' propagation through marine turbulence exhibits a different behavior with respect to terrestrial propagation. In this paper, the temporal power spectra of irradiance scintillation under weak marine atmospheric turbulence, which is one of the key temporal statistics to describe the correlation of irradiance fluctuations at different time instances, is investigated in detail both analytically and numerically. Closed-form expressions for the temporal power spectra of irradiance scintillation are derived for infrared plane and spherical waves under weak marine atmospheric turbulence, and they consider physically the influences of finite turbulence inner and outer scales. The final results indicate that the marine atmospheric turbulence brings more effects on the irradiance scintillation than the terrestrial atmospheric turbulence.

  11. Characteristics of the KUR Heavy Water Neutron Irradiation Facility as a neutron irradiation field with variable energy spectra

    NASA Astrophysics Data System (ADS)

    Sakurai, Yoshinori; Kobayashi, Tooru

    2000-10-01

    The Heavy Water Neutron Irradiation Facility (HWNIF) of the Kyoto University Research Reactor (KUR) was updated in March 1996, mainly for the improvement in neutron capture therapy (NCT). A striking feature of the updated facility is that the energy spectrum of the neutron beam can be controlled from almost pure thermal to epi-thermal, within 5 min by remote control under a continuous reactor operation. This feature is advantageous not only to medical science such as NCT, but also to the other research fields such as physics, engineering, biology, etc. The performance of the updated facility as a neutron irradiation field with variable energy spectra, was characterized. Thermal neutron flux, cadmium ratio, gamma-ray dose rate, etc., at the normal irradiation position for various irradiation modes were determined, mainly on the basis of the measurement using gold activation foils and thermo-luminescent dosimeters (TLDs). The emphasis was on the performance of the new neutron energy spectrum shifter and cadmium thermal neutron filter, that control the mixing ratio of thermal and epi-thermal neutrons, through the change in the heavy water thickness of the spectrum shifter and the aperture size of the cadmium filter. The evaluation of neutron energy spectra at the normal irradiation position was also performed for three representative irradiation modes, in which the neutron intensities are largest of all the irradiation modes. In addition, the irradiation characteristics of two irradiation devices, namely the Irradiation Rail Device and the Remote Patient Carrier, which were updated concurrently with the facility update, were evaluated.

  12. Direct Measurement of Oxygen Incorporation into Thin Film Oxides at Room Temperature Upon Ultraviolet Phton Irradiation

    SciTech Connect

    Tsuchiya, Masaru; Shutthanandan, Vaithiyalingam; Engelhard, Mark H.; Ramanathan, Shriram

    2008-12-31

    Minute changes in oxygen concentration in complex oxides even of the order of ~0.001% can significantly influence functional properties ranging from onset of superconductivity to colossal dielectric constant and ferroic response. In this letter, we report on direct experimental measurement of enhanced oxygen incorporation into ultra-thin oxide films at room temperature under gentle UV photon exposure. Oxygen concentration changes in nanoscale yttria-doped-zirconia (YDZ) films grown on Ge substrate were quantified using the 16O(d,p)17O nuclear reaction. The oxygen concentration was consistently ~ 3 % larger in UV irradiated YDZ films compared to as-grown YDZ films and can be kinetically controlled. Possible incorporation mechanisms are discussed. This suggests a novel approach to modulate oxygen concentration in complex oxides. There is tremendous interest in the science and applications of ultra-thin oxide films, such as electrolyte membranes for solid oxide fuel cells 1, high-dielectric constant (high-κ) oxides for metal-oxide-semiconductor (MOS) devices 2 and multi-ferroics 3. In addition, thin film oxides also serve as model systems to investigate space charge effects on carrier transport and strongly correlated phenomena such as phase transitions. An overarching problem of central importance is the controlled synthesis of oxide films and how they impact functional properties. Particularly, the role of oxygen vacancies or non-stoichiometry has been found to be crucial in this regard. Examples include large magneto resistance effect and metal-to-insulator transition introduced by reducing oxygen stoichiometry of poly crystalline La0.67Ba0.33MnOz 3, nonsuperconducting-to-superconducting transformation by minute amount of oxygen incorporation upon annealing YBa2Cu3O7-δ(YBCO) films 4, and blue light emission at room temperature in oxygen deficient SrTiO3 (STO) 5, 6. These studies revealed

  13. Influence of the physical structure of irradiated starches on their electron spin resonance spectra kinetics

    SciTech Connect

    Raffi, J.J.; Agnel, J.P.L.

    1983-06-23

    This study deals with the shape and kinetic changes of the ESR spectra of eight irradiated starchs, from several hours to several months after ..gamma..-irradiation. Whatever the origin and water content of the starches two major radicals or groups of radicals are observed. The kinetic law depends on the water content; two main zones are pointed out which are relative to the amorphous and crystalline parts of starches.

  14. Effect of crystalline structure on the infrared spectra of. gamma. irradiated cotton cellulose

    SciTech Connect

    Moharram, M.A.; Hakeem, N.A.

    1980-03-01

    The effect of crystalline modifications on the infrared spectra of ..gamma..-irradiated cotton cellulose is presented. The crystalline modifications were brought about by treating cotton material with an aqueous solution of NaOH of various concentrations. The infrared spectra of the irradiated samples indicate an absorption band corresponding to the absorption of C=O groups. It was found that the intensity and frequency of this band depend on the crystalline structure. Thus, it appears at 1735 cm/sup -1/ in the spectrum of cellulose I and at 1610 cm/sup -1/ in the spectrum of cellulose II.

  15. Permanent optical doping of amorphous metal oxide semiconductors by deep ultraviolet irradiation at room temperature

    SciTech Connect

    Seo, Hyungtak; Cho, Young-Je; Bobade, Santosh M.; Park, Kyoung-Youn; Choi, Duck-Kyun; Kim, Jinwoo; Lee, Jaegab

    2010-05-31

    We report an investigation of two photon ultraviolet (UV) irradiation induced permanent n-type doping of amorphous InGaZnO (a-IGZO) at room temperature. The photoinduced excess electrons were donated to change the Fermi-level to a conduction band edge under the UV irradiation, owing to the hole scavenging process at the oxide interface. The use of optically n-doped a-IGZO channel increased the carrier density to approx10{sup 18} cm{sup -3} from the background level of 10{sup 16} cm{sup -3}, as well as the comprehensive enhancement upon UV irradiation of a-IGZO thin film transistor parameters, such as an on-off current ratio at approx10{sup 8} and field-effect mobility at 22.7 cm{sup 2}/V s.

  16. Methods Development for Spectral Simplification of Room-Temperature Rotational Spectra

    NASA Astrophysics Data System (ADS)

    Kent, Erin B.; Shipman, Steven

    2014-06-01

    Room-temperature rotational spectra are dense and difficult to assign, and so we have been working to develop methods to accelerate this process. We have tested two different methods with our waveguide-based spectrometer, which operates from 8.7 to 26.5 GHz. The first method, based on previous work by Medvedev and De Lucia, was used to estimate lower state energies of transitions by performing relative intensity measurements at a range of temperatures between -20 and +50 °C. The second method employed hundreds of microwave-microwave double resonance measurements to determine level connectivity between rotational transitions. The relative intensity measurements were not particularly successful in this frequency range (the reasons for this will be discussed), but the information gleaned from the double-resonance measurements can be incorporated into other spectral search algorithms (such as autofit or genetic algorithm approaches) via scoring or penalty functions to help with the spectral assignment process. I.R. Medvedev, F.C. De Lucia, Astrophys. J. 656, 621-628 (2007).

  17. Reference solar irradiance spectra and consequences of their disparities in remote sensing of the ocean colour

    NASA Astrophysics Data System (ADS)

    Shanmugam, P.; Ahn, Y. H.

    2007-06-01

    Satellite ocean colour missions require a standard extraterrestrial solar irradiance spectrum in the visible and near-infrared (NIR) for use in the process of radiometric calibration, atmospheric correction and normalization of water-leaving radiances from in-situ measurements. There are numerous solar irradiance spectra (or models) currently in use within the ocean colour community and related domains. However, these irradiance spectra, constructed from single and/or multiple measurements sets or models, have noticeable differences - ranging from about ±1% in the NIR to ±6% in the short wavelength region (ultraviolet and blue) - caused primarily by the variation in the solar activity and uncertainties in experimental data from different instruments. Such differences between the applied solar irradiance spectra may have quite important consequences in reconciliation, comparison and validation of the products resulting from different ocean colour instruments. Thus, it is prudent to examine the model-to-model differences and ascertain an appropriate solar irradiance spectrum for use in future ocean colour research and validation purposes. This study first describes the processes which generally require the application of a solar irradiance spectrum, and then investigates the eight solar irradiance spectra (widely in use within the remote sensing community) selected on the basis of the following criteria: minimum spectral range of 350-1200 nm with adequate spectral resolution, completely or mostly based on direct measurements, minimal error range, intercomparison with other experiments and update of data. The differences in these spectra in absolute terms and in the SeaWiFS and MERIS in-band irradiances and their consequences on the retrieval algorithms of chlorophyll and suspended sediment are analyzed. Based on these detailed analyses, this study puts forward the solar irradiance spectrum most appropriate for all aspects of research, calibration and validation in

  18. Simulation of Ginger EPR Spectra Obtained by X-Irradiation:Quantum Approach

    NASA Astrophysics Data System (ADS)

    Laachir, S.; Moussetad, M.; Adhiri, R.; Fahli, A.; Aboulfatah, M.; Mikou, M.

    2005-08-01

    The ginger sample has been exposed to X-rays at cumulative doses. The foodstuffs irradiation is used in particular to improve their hygienic qualities and increase their shelf lives. This process has been approved by various international organizations: FAO -- AIEA -- WHO. In the present work, we propose to reproduce by simulation, based on a quantum approach, of the ESR (Electron Spin Resonance) spectra. The semi-classical approach is valid for a simple system, but not for a complex system such as an atom with hyperfine structure. In this case a quantum approach, based on spin Hamiltonian, is essential to interpret the ESR spectra. The main result is that the simulated spectra are in good agreement with the experimental ones obtained before and after irradiation.

  19. EPR spectra induced by gamma-irradiation of some dry medical herbs

    NASA Astrophysics Data System (ADS)

    Yordanov, N. D.; Lagunov, O.; Dimov, K.

    2009-04-01

    The radiation-induced EPR spectra in some medical herbs are reported. The samples studied are: (i) leaves of nettle, common balm, peppermint and thyme; (ii) stalks of common balm, thyme, milfoil, yarrow and marigold; (iii) blossoms of yarrow and marigold; (iv) blossoms and leaves of hawthorn and tutsan; and (v) roots of common valerian, nettle, elecampane (black and white), restharrows and carlina. Before irradiation all samples exhibit one weak anisotropic singlet EPR line with effective g-value of 2.0050±0.0002. The radiation-induced spectra fall into three groups. EPR spectra of irradiated blossoms of yarrow and marigold, stalks of common balm, thyme, tutsan and yarrow as well as roots of common valerian, nettle and elecampane (black and white) show "cellulose-like" EPR spectrum typical for irradiated plants. It is characterized by one intense central line with g=2.0050±0.0005 and two weak satellite lines situated ca. 30 G left and right to it. EPR spectra of gamma-irradiated restharrows and carlina are complex. They may be represented by one triplet corresponding to the "cellulose-like" EPR spectrum, one relatively intense singlet, situated in the center of the spectrum, and five weak additional satellite lines left and right to the center. The last spectrum was assigned as "carbohydrate-like" type. Only one intense EPR singlet with g=2.0048±0.0005 was recorded after irradiation of leaves of nettle and common balm. The lifetime of the radiation-induced EPR spectra was followed for a period of 3 months.

  20. Trapping of hydrogen atoms in X-irradiated salts at room temperature and the decay kinetics

    NASA Technical Reports Server (NTRS)

    May, C. E.; Philipp, W. H.; Marsik, S. J.

    1974-01-01

    The salts (hypophosphites, formates, a phosphite, a phosphate, and an oxalate) were X-irradiated, whereby hydrogen formed chemically by a radiolytic process becomes trapped in the solid. By room temperature vacuum extraction, the kinetics for the evolution of this trapped hydrogen was studied mass spectrometrically. All salts except two exhibited second-order kinetics. The two exceptions (NaH2PO2(H2O) and K2HPO4) showed first-order kinetics. Based on experimental results, the escape of hydrogen involves three steps: the diffusion of hydrogen atoms from the bulk to the surface, association of these atoms on the surface (rate controlling step for second-order hydrogen evolution), and the desorption of molecular hydrogen from the surface. The hydrogen does not escape if the irradiated salt is stored in air, apparently because adsorbed air molecules occupy surface sites required in the escape mechanism.

  1. Energy spectra of primary knock-on atoms under neutron irradiation

    NASA Astrophysics Data System (ADS)

    Gilbert, M. R.; Marian, J.; Sublet, J.-Ch.

    2015-12-01

    Materials subjected to neutron irradiation will suffer from a build-up of damage caused by the displacement cascades initiated by nuclear reactions. Previously, the main "measure" of this damage accumulation has been through the displacements per atom (dpa) index, which has known limitations. This paper describes a rigorous methodology to calculate the primary atomic recoil events (often called the primary knock-on atoms or PKAs) that lead to cascade damage events as a function of energy and recoiling species. A new processing code SPECTRA-PKA combines a neutron irradiation spectrum with nuclear recoil data obtained from the latest nuclear data libraries to produce PKA spectra for any material composition. Via examples of fusion relevant materials, it is shown that these PKA spectra can be complex, involving many different recoiling species, potentially differing in both proton and neutron number from the original target nuclei, including high energy recoils of light emitted particles such as α-particles and protons. The variations in PKA spectra as a function of time, neutron field, and material are explored. The application of PKA spectra to the quantification of radiation damage is exemplified using two approaches: the binary collision approximation and stochastic cluster dynamics, and the results from these different models are discussed and compared.

  2. Fluorescence spectra of blood plasma treated with ultraviolet irradiation in vivo

    NASA Astrophysics Data System (ADS)

    Zalesskaya, G. A.; Maslova, T. O.

    2010-09-01

    We have studied the fluorescence spectra of blood plasma from patients with acute coronary syndrome, and also the effect of therapeutic doses of in vivo ultraviolet blood irradiation (UBI) on the spectra. We have established that the maxima in the fluorescence spectra of the original plasma samples, obtained from unirradiated blood, are located in the wavelength interval 330-340 nm, characteristic for the fluorescence of tryptophan residues. In extracorporeal UBI ( λ = 254 nm), we observed changes in the shape and also both a blue and a red shift in the maxima of the fluorescence spectra, differing in magnitude for blood plasma samples from different patients in the test group. We show that UBI-initiated changes in the fluorescence spectra of the plasma depend on the original pathological disturbances of metabolite levels, and also on the change in the oxygen-transport function of the blood and the acid-base balance, affecting the oxidative stability of the plasma. We have concluded that UV irradiation, activating buffer systems in the blood, has an effect on the universal and specific interactions of the tryptophan residue with the amino acid residues and water surrounding it.

  3. Thermal conductivity degradation induced by heavy ion irradiation at room temperature in ceramic materials

    NASA Astrophysics Data System (ADS)

    Gomès, S.; David, L.; Roger, J.-P.; Carlot, G.; Fournier, D.; Valot, C.; Raynaud, M.

    2008-01-01

    The thermal conductivity degradation induced by irradiation with energetic heavy ions at room temperature is studied and quantified. Three semi-metallic systems: titanium and zirconium carbides, titanium nitride, as well as a covalent compound: 6H silicon carbide were irradiated by 25.8 MeV krypton ions at 1016 and 6 \\cdot 1016 ions.cm-2 doses to produce defects. During ion irradiation, inelastic collisions and elastic collisions occur at a different depth in a material. Two collision domains can be defined. Modulated thermoreflectance microscopy measurements were performed at differing frequencies to characterize the thermal conductivity degradation in these two domains for each of the investigated materials. Our results reveal a significant thermal conductivity degradation in the two collision domains for all materials. Elastic collisions are shown to degrade more strongly the thermal properties than inelastic ones. Scattering of thermal energy carriers is larger in elastic collision domain because displacement cascades produce a very high concentration of point defects: vacancies, interstitials and implanted Kr ions. The degradation coming from electronic interactions that seems to be more important in SiC can be explained by the presence of large populations of generated extended defects, facing to generated individual point defects in TiC, TiN or ZrC.

  4. Irradiation tests of ITER candidate Hall sensors using two types of neutron spectra

    SciTech Connect

    Duran, I.; Viererbl, L.; Lahodova, Z.; Sentkerestiova, J.; Bem, P.

    2010-10-15

    We report on irradiation tests of InSb based Hall sensors at two irradiation facilities with two distinct types of neutron spectra. One was a fission reactor neutron spectrum with a significant presence of thermal neutrons, while another one was purely fast neutron field. Total neutron fluence of the order of 10{sup 16} cm{sup -2} was accumulated in both cases, leading to significant drop of Hall sensor sensitivity in case of fission reactor spectrum, while stable performance was observed at purely fast neutron spectrum. This finding suggests that performance of this particular type of Hall sensors is governed dominantly by transmutation. Additionally, it further stresses the need to test ITER candidate Hall sensors under neutron flux with ITER relevant spectrum.

  5. Irradiation tests of ITER candidate Hall sensors using two types of neutron spectra.

    PubMed

    Ďuran, I; Bolshakova, I; Viererbl, L; Sentkerestiová, J; Holyaka, R; Lahodová, Z; Bém, P

    2010-10-01

    We report on irradiation tests of InSb based Hall sensors at two irradiation facilities with two distinct types of neutron spectra. One was a fission reactor neutron spectrum with a significant presence of thermal neutrons, while another one was purely fast neutron field. Total neutron fluence of the order of 10(16) cm(-2) was accumulated in both cases, leading to significant drop of Hall sensor sensitivity in case of fission reactor spectrum, while stable performance was observed at purely fast neutron spectrum. This finding suggests that performance of this particular type of Hall sensors is governed dominantly by transmutation. Additionally, it further stresses the need to test ITER candidate Hall sensors under neutron flux with ITER relevant spectrum.

  6. Minimizing the exposure of airborne pathogens by upper-room ultraviolet germicidal irradiation: an experimental and numerical study.

    PubMed

    Yang, Y; Chan, W Y; Wu, C L; Kong, R Y C; Lai, A C K

    2012-12-01

    There has been increasing interest in the use of upper-room ultraviolet germicidal irradiation (UVGI) because of its proven effectiveness in disinfecting airborne pathogens. An improved drift flux mathematical model is developed for optimizing the design of indoor upper-room UVGI systems by predicting the distribution and inactivation of bioaerosols in a ventilation room equipped with a UVGI system. The model takes into account several bacteria removal mechanisms such as convection, turbulent diffusion, deposition and UV inactivation. Before applying the model, the natural die-off rate and susceptibility constants of bioaerosols were measured experimentally. Two bacteria aerosols, Escherichia coli and Serratia marcescens, were tested for this purpose. It was found out that the general decay trend of the bioaerosol concentration predicted by the numerical model agrees well with the experimental measurements. The modelling results agree better with experimental observations for the case when the UVGI inactivation mechanism dominates at the upper-room region than for the case without UVGI. The numerical results also illustrate that the spatial distribution of airborne bacteria was influenced by both air-flow pattern and irradiance distribution. In addition to predicting the local variation of concentration, the model assesses the overall performance of an upper-room UVGI system. This model has great potential for optimizing the design of indoor an upper-room UVGI systems.

  7. Room temperature preparation of Pt-decorated MWCNTs by using proton beam irradiation

    NASA Astrophysics Data System (ADS)

    Kim, Yeong-Joon; Lee, Yoon Ji; Song, Jae Hee

    2016-09-01

    We present a facile one-pot preparation route for the production of multiwalled carbon nanotube (MWCNT)-Pt nanoparticle composites in an aqueous solution at room temperature by using proton beam irradiation process without the addition of any reducing reagents. We utilized hexade-cyltrimethylammonium bromide (CTAB)-stabilized pristine and thiol-functionalized MWCNTs for the synthesis of MWCNT-Pt nanoparticle composites and compared the deposition trends of the platinum nanoparticles onto the surfaces of pristine MWCNTs and surface-modified MWCNTs, respectively. Thiolated MWCNTs were densely and uniformly decorated with Pt nanoparticles while pristine MWCNTs were not. The Pt nanostructures on the surfaces of MWCNTs were spherical, and the average diameter was in the range of ~2 nm. Also, two different metal precursors, H2PtCl6 and Na2PtCl6, were used to find any distinguishable decoration patterns on the surface-modified MWCNTs; however, the deposition patterns were observed to be not very different.

  8. Comparative study of reflectance spectra for human Laogong acupoint and non-acupoint tissues irradiated by laser

    NASA Astrophysics Data System (ADS)

    Zhang, Zude; Guo, Zhouyi; Wei, Huajiang; Zhong, Huiqing; Yang, Hongqin; Xie, Shusen; Liu, Songhao

    2008-12-01

    Reflection spectra of human Laogong acupoint (PC8) and non-acupoint tissue which irradiated by different power were studied in the spectral range from 400 nm to 1000 nm in vivo. A wavelength of 808 nm semiconductor laser was used for irradiation at the power of 0 mw (empty irradiation), 20 mw, 50 mw and 100 mw for ten minutes. Reflection spectra were measured with an AvaSpec-2048 optical fiber spectroscopy with an integrating sphere attachment. The result shows that when empty irradiated, the shape of the reflectance spectra of Laogong acupoint and non-acupoint are similar, they have the same troughs at 423 nm, 544 nm, 577 nm and 980 nm, the reflectance at these wavelengths for Laogong acupoint are 17.1%, 26.1%, 25.9%, 35.0%, and for non-acupoint are 17.1%, 27.6%, 28.1%, 36.5%. But from 475 nm to 1000 nm, the reflectance of Laogong acupoint is smaller than that of non-acoupoint. After irradiated by laser at the power of 20 mw, 50 mw, and 100 mw, there is a very significant decrease in the reflectance spectra of Laogong acupoint comparing to that of empty irradiated, and the higher power, the lower reflectance. But there is just a small decrease in the reflectance spectra of non-acupoint comparing to that of empty irradiated. From the above results, it is clearly to see that Laogong acupoint is more sensitive than non-acupoint when irradiated by semiconductor laser.

  9. The characterization of upper-room ultraviolet germicidal irradiation in inactivating airborne microorganisms.

    PubMed

    Ko, Gwangpyo; First, Melvin W; Burge, Harriet A

    2002-01-01

    In this study, we explored the efficacy of upper-room ultraviolet germicidal irradiation (UVGI) in reducing the concentration of Serratia marcescens and Mycobacterium bovis bacille Calmette-Guérin (BCG) aerosols in enclosed places. We constructed a facility (4.5 m x 3 m x 2.9 m) in which both ceiling- and wall-mounted UV fixtures (UV output: 10W and 5W respectively) were installed. The use of ceiling- and wall-mounted UV fixtures (total UV output: 15W) without mixing fan reduced the concentration of S. marcescens aerosols by 46% (range: 22-80%) at 2 air changes per hour (ACH) and 53% (range: 40-68%) at 6 ACH. The use of ceiling- and wall-mounted UV fixtures with mixing fan increased the UV effectiveness in inactivating S. marcescens aerosols to 62% (range: 50-78%) at 2 ACH and to 86% (81-89%) at 6 ACH. For BCG aerosols, UV effectiveness in inactivating BCG aerosols at 6 ACH were 52% (range: 11-69%) by ceiling-mounted UV fixture only (total UV output: 10W) and 64% (51-83%) by both ceiling- and wall-mounted UV fixtures (total UV output: 15W). Our results indicated that the equivalent ventilation rate attributable to upper-room UVGI for BCG aerosols ranged from 1 ACH to 22 ACH for ceiling-mounted UV fixtures and from 6.4 ACH to 28.5 ACH for ceiling- and wall-mounted UV fixtures. Both generalized linear and generalized additive models were fitted to all our data. The regression results indicated that the number of UV fixtures, use of mixing fan, and air exchange rate significantly affected UV effectiveness (p < 0.01, 0.01, 0.01 respectively). However, the strain difference (S. marcescens vs. BCG) appeared less important in UV effectiveness (p = 0.26). Our results also indicated that UV effectiveness increased at higher temperature ((italic)p(/italic) < 0.01), lower dry-bulb temperature ((italic)p(/italic) = 0.21), and colder air from a supply grill located near the ceiling (p = 0.22).

  10. The characterization of upper-room ultraviolet germicidal irradiation in inactivating airborne microorganisms.

    PubMed Central

    Ko, Gwangpyo; First, Melvin W; Burge, Harriet A

    2002-01-01

    In this study, we explored the efficacy of upper-room ultraviolet germicidal irradiation (UVGI) in reducing the concentration of Serratia marcescens and Mycobacterium bovis bacille Calmette-Guérin (BCG) aerosols in enclosed places. We constructed a facility (4.5 m x 3 m x 2.9 m) in which both ceiling- and wall-mounted UV fixtures (UV output: 10W and 5W respectively) were installed. The use of ceiling- and wall-mounted UV fixtures (total UV output: 15W) without mixing fan reduced the concentration of S. marcescens aerosols by 46% (range: 22-80%) at 2 air changes per hour (ACH) and 53% (range: 40-68%) at 6 ACH. The use of ceiling- and wall-mounted UV fixtures with mixing fan increased the UV effectiveness in inactivating S. marcescens aerosols to 62% (range: 50-78%) at 2 ACH and to 86% (81-89%) at 6 ACH. For BCG aerosols, UV effectiveness in inactivating BCG aerosols at 6 ACH were 52% (range: 11-69%) by ceiling-mounted UV fixture only (total UV output: 10W) and 64% (51-83%) by both ceiling- and wall-mounted UV fixtures (total UV output: 15W). Our results indicated that the equivalent ventilation rate attributable to upper-room UVGI for BCG aerosols ranged from 1 ACH to 22 ACH for ceiling-mounted UV fixtures and from 6.4 ACH to 28.5 ACH for ceiling- and wall-mounted UV fixtures. Both generalized linear and generalized additive models were fitted to all our data. The regression results indicated that the number of UV fixtures, use of mixing fan, and air exchange rate significantly affected UV effectiveness (p < 0.01, 0.01, 0.01 respectively). However, the strain difference (S. marcescens vs. BCG) appeared less important in UV effectiveness (p = 0.26). Our results also indicated that UV effectiveness increased at higher temperature ((italic)p(/italic) < 0.01), lower dry-bulb temperature ((italic)p(/italic) = 0.21), and colder air from a supply grill located near the ceiling (p = 0.22). PMID:11781170

  11. Stratospheric mean state: modelling the sensitivity to different solar irradiance spectra

    NASA Astrophysics Data System (ADS)

    Misios, Stergios; Tourpali, Klairie; Habbereiter, Margit

    2016-04-01

    The sensitivity of the stratospheric mean state to four different reference solar irradiance spectra describing a quite Sun (year 2008) is investigated using a chemistry climate model. Simulations show that the mean thermal state of the stratosphere depends considerably on the specified spectrum given that the annual mean temperature in tropical stratopause varies by more than 3 K, in some cases. Temperature anomalies are stronger in boreal winter and the polar night westerlies strengthen by about 15%. The simulated ozone climatology is also influenced by the choice of the reference spectrum and our model simulates concentration changes up to 6-7% in the middle stratosphere. Given that net effect of the ozone response is to dump temperature anomalies, we find an amplified temperature perturbation of about 20-30% in twin simulations without interactive chemistry coupling. Using a 2-D chemistry climate model we trace the spectral regions that contribute the most to the simulated changes in the stratosphere.

  12. The synchronous fluorescence spectra character of hypocrellin B with type I collagen under irradiation

    NASA Astrophysics Data System (ADS)

    Zhang, Jucheng; Yan, Heping; Yang, Mengting; Feng, Yongzhen; Huang, Yun; Li, Lingmei; Liu, Wei

    2014-09-01

    The synchronous fluorescence (SF) technique can provide some useful information with the endogenous fluorophores in complex systems. The SF technique has been used in the characterization of the type I collagen in PBS solution (pH=7.4) and the photo-reaction of hypocrellin B (HB) with type I collagen in solution irradiation with the 475 nm light under saturated by oxygen, air and nitrogen respectively. The SF spectra show the peaks attribute to tyrosine residues (275 nm) and pyridinoline cross-link (325 nm) in collagen. The photo-induced reaction with HB causing the fluorescence quenching but no wavelength shift, this suggests the photo-reaction don't changing the microenvironment of PYD cross-link. The fluorescence quenching rate is faster than others when the solution saturated by oxygen. The results imply that the photo-induced reaction is oxygen dependence.

  13. Comparison of hospital room surface disinfection using a novel ultraviolet germicidal irradiation (UVGI) generator.

    PubMed

    Jelden, Katelyn C; Gibbs, Shawn G; Smith, Philip W; Hewlett, Angela L; Iwen, Peter C; Schmid, Kendra K; Lowe, John J

    2016-09-01

    The estimated 721,800 hospital acquired infections per year in the United States have necessitated development of novel environmental decontamination technologies such as ultraviolet germicidal irradiation (UVGI). This study evaluated the efficacy of a novel, portable UVGI generator (the TORCH, ChlorDiSys Solutions, Inc., Lebanon, NJ) to disinfect surface coupons composed of plastic from a bedrail, stainless steel, chrome-plated light switch cover, and a porcelain tile that were inoculated with methicillin-resistant Staphylococcus aureus (MRSA) or vancomycin-resistant Enterococcus faecalis (VRE). Each surface type was placed at 6 different sites within a hospital room and treated by 10-min ultraviolet-C (UVC) exposures using the TORCH with doses ranging from 0-688 mJ/cm(2) between sites. Organism reductions were compared with untreated surface coupons as controls. Overall, UVGI significantly reduced MRSA by an average of 4.6 log10 (GSD: 1.7 log10, 77% inactivation, p < 0.0001) and VRE by an average of 3.9 log10 (GSD: 1.7 log10, 65% inactivation, p < 0.0001). MRSA on bedrail was reduced significantly (p < 0.0001) less than on other surfaces, while VRE was reduced significantly less on chrome (p = 0.0004) and stainless steel (p = 0.0012) than porcelain tile. Organisms out of direct line of sight of the UVC generator were reduced significantly less (p < 0.0001) than those directly in line of sight. UVGI was found an effective method to inactivate nosocomial pathogens on surfaces evaluated within the hospital environment in direct line of sight of UVGI treatment with variation between organism and surface types. PMID:27028152

  14. Comparison of hospital room surface disinfection using a novel ultraviolet germicidal irradiation (UVGI) generator.

    PubMed

    Jelden, Katelyn C; Gibbs, Shawn G; Smith, Philip W; Hewlett, Angela L; Iwen, Peter C; Schmid, Kendra K; Lowe, John J

    2016-09-01

    The estimated 721,800 hospital acquired infections per year in the United States have necessitated development of novel environmental decontamination technologies such as ultraviolet germicidal irradiation (UVGI). This study evaluated the efficacy of a novel, portable UVGI generator (the TORCH, ChlorDiSys Solutions, Inc., Lebanon, NJ) to disinfect surface coupons composed of plastic from a bedrail, stainless steel, chrome-plated light switch cover, and a porcelain tile that were inoculated with methicillin-resistant Staphylococcus aureus (MRSA) or vancomycin-resistant Enterococcus faecalis (VRE). Each surface type was placed at 6 different sites within a hospital room and treated by 10-min ultraviolet-C (UVC) exposures using the TORCH with doses ranging from 0-688 mJ/cm(2) between sites. Organism reductions were compared with untreated surface coupons as controls. Overall, UVGI significantly reduced MRSA by an average of 4.6 log10 (GSD: 1.7 log10, 77% inactivation, p < 0.0001) and VRE by an average of 3.9 log10 (GSD: 1.7 log10, 65% inactivation, p < 0.0001). MRSA on bedrail was reduced significantly (p < 0.0001) less than on other surfaces, while VRE was reduced significantly less on chrome (p = 0.0004) and stainless steel (p = 0.0012) than porcelain tile. Organisms out of direct line of sight of the UVC generator were reduced significantly less (p < 0.0001) than those directly in line of sight. UVGI was found an effective method to inactivate nosocomial pathogens on surfaces evaluated within the hospital environment in direct line of sight of UVGI treatment with variation between organism and surface types.

  15. Microstructure chemistry and mechanical properties of Ni-based superalloy Rene N4 under irradiation at room temperature

    DOE PAGES

    Sun, C.; Kirk, M.; Li, M.; Hattar, Khalid Mikhiel; Wang, Y.; Anderoglu, O.; Valdez, J.; Uberuaga, B. P.; Dickerson, R.; Maloy, S. A.

    2015-06-14

    Nickel superalloys with cubic L12 structured γ' (Ni3(Al, Ti)) precipitates exhibit high strength at high temperatures and excellent corrosion resistance when exposed to water. Unlike prior studies on irradiation damage of other Ni-based superalloys, our study on Rene N4 involves much larger γ' precipitates, ~450 nm in size, a size regime where the irradiation-induced disordering and dissolution kinetics and the corresponding mechanical property evolution are unknown. Under heavy ion irradiation at room temperature, the submicron-sized γ' precipitates were fully disordered at ~0.3 dpa and only later partially dissolved after 75 dpa irradiation. Nanoindentation experiments indicate that the mechanical properties ofmore » the alloy change significantly, with a dramatic decrease in hardness, with irradiation dose. Three contributions to the change in hardness were examined: defect clusters, disordering and dissolution. Moreover, the generation of defect clusters in the matrix and precipitates slightly increased the indentation hardness, while disordering of the submicron-sized γ' precipitates resulted in a dramatic decrease in the total hardness, which decreased further during the early stages of the intermixing between γ' precipitates and matrix (<18 dpa). As a result, controlling the long-range-ordering and chemical intermixing can be used to tailor the mechanical properties of Ni-based superalloys under irradiation.« less

  16. Microstructure chemistry and mechanical properties of Ni-based superalloy Rene N4 under irradiation at room temperature

    SciTech Connect

    Sun, C.; Kirk, M.; Li, M.; Hattar, Khalid Mikhiel; Wang, Y.; Anderoglu, O.; Valdez, J.; Uberuaga, B. P.; Dickerson, R.; Maloy, S. A.

    2015-06-14

    Nickel superalloys with cubic L12 structured γ' (Ni3(Al, Ti)) precipitates exhibit high strength at high temperatures and excellent corrosion resistance when exposed to water. Unlike prior studies on irradiation damage of other Ni-based superalloys, our study on Rene N4 involves much larger γ' precipitates, ~450 nm in size, a size regime where the irradiation-induced disordering and dissolution kinetics and the corresponding mechanical property evolution are unknown. Under heavy ion irradiation at room temperature, the submicron-sized γ' precipitates were fully disordered at ~0.3 dpa and only later partially dissolved after 75 dpa irradiation. Nanoindentation experiments indicate that the mechanical properties of the alloy change significantly, with a dramatic decrease in hardness, with irradiation dose. Three contributions to the change in hardness were examined: defect clusters, disordering and dissolution. Moreover, the generation of defect clusters in the matrix and precipitates slightly increased the indentation hardness, while disordering of the submicron-sized γ' precipitates resulted in a dramatic decrease in the total hardness, which decreased further during the early stages of the intermixing between γ' precipitates and matrix (<18 dpa). As a result, controlling the long-range-ordering and chemical intermixing can be used to tailor the mechanical properties of Ni-based superalloys under irradiation.

  17. In-pile and post-irradiation creep of type 304 stainless steel under different neutron spectra

    NASA Astrophysics Data System (ADS)

    Kurata, Y.; Itabashi, Y.; Mimura, H.; Kikuchi, T.; Amezawa, H.; Shimakawa, S.; Tsuji, H.; Shindo, M.

    2000-12-01

    In addition to post-irradiation creep tests, in-pile creep tests were performed using newly developed technology with in situ measurement under different neutron spectra. The in-pile creep properties of type 304 stainless steel at 550°C appear to depend on neutron spectrum, but a spectral effect on post-irradiation creep properties is not clearly seen. The rupture time of in-pile creep under a high thermal neutron flux condition is the shortest. The order of the rupture time following the high thermal flux condition is post-irradiation creep, in-pile creep with a thermal neutron shield condition and finally creep of unirradiated material, all in increasing order. It is suggested that the acceleration of creep deformation and fracture observed in irradiation creep tests may be related to enhancement of thermal creep in terms of FMD increased under a high thermal neutron flux in addition to increased helium embrittlement.

  18. NO gas sensing kinetics at room temperature under UV light irradiation of In2O3 nanostructures

    NASA Astrophysics Data System (ADS)

    Chinh, Nguyen Duc; Quang, Nguyen Duc; Lee, Hyundong; Thi Hien, Truong; Hieu, Nguyen Minh; Kim, Dahye; Kim, Chunjoong; Kim, Dojin

    2016-10-01

    In2O3 nanostructure sensors were fabricated by arc-discharging a source composed of a graphite tube containing indium. The NO gas sensing properties, as well as the morphology, structure, and electrical properties, were examined at room temperature under UV light illumination. In particular, the response and recovery kinetics of the sensor at room temperature under various UV light intensities were studied. The maximum response signal was observed at an intermediate UV light intensity, which could be corroborated by a nano-size effect based on the conduction model of a resistive chemical nano sensor. The mechanism for the enhanced adsorption/desorption kinetics for NO in an air environment under UV light irradiation is discussed in detail. Furthermore, the general requirements of the sensor, including the stability, repeatability, and selectivity, are discussed.

  19. NO gas sensing kinetics at room temperature under UV light irradiation of In2O3 nanostructures

    PubMed Central

    Chinh, Nguyen Duc; Quang, Nguyen Duc; Lee, Hyundong; Thi Hien, Truong; Hieu, Nguyen Minh; Kim, Dahye; Kim, Chunjoong; Kim, Dojin

    2016-01-01

    In2O3 nanostructure sensors were fabricated by arc-discharging a source composed of a graphite tube containing indium. The NO gas sensing properties, as well as the morphology, structure, and electrical properties, were examined at room temperature under UV light illumination. In particular, the response and recovery kinetics of the sensor at room temperature under various UV light intensities were studied. The maximum response signal was observed at an intermediate UV light intensity, which could be corroborated by a nano-size effect based on the conduction model of a resistive chemical nano sensor. The mechanism for the enhanced adsorption/desorption kinetics for NO in an air environment under UV light irradiation is discussed in detail. Furthermore, the general requirements of the sensor, including the stability, repeatability, and selectivity, are discussed. PMID:27713526

  20. Influence of ageing on Raman spectra and the conductivity of monolayer graphene samples irradiated by heavy and light ions

    NASA Astrophysics Data System (ADS)

    Butenko, A.; Zion, E.; Kaganovskii, Yu.; Wolfson, L.; Richter, V.; Sharoni, A.; Kogan, E.; Kaveh, M.; Shlimak, I.

    2016-07-01

    The influence of long-term ageing (about one year) on the Raman scattering (RS) spectra and the temperature dependence of conductivity has been studied in two series of monolayer graphene samples irradiated by different doses of C+ and Xe+ ions. It is shown that the main result of ageing consists of changes in the intensity and position of D- and G- and 2D-lines in RS spectra and in an increase of the conductivity. The observed effects are explained in terms of an increase of the radius of the "activated" area around structural defects.

  1. Effects of annealing treatment and gamma irradiation on the absorption and fluorescence spectra of Cr:GSGG laser crystal

    NASA Astrophysics Data System (ADS)

    Sun, D. L.; Luo, J. Q.; Xiao, J. Z.; Zhang, Q. L.; Jiang, H. H.; Yin, S. T.; Wang, Y. F.; Ge, X. W.

    2008-09-01

    The influence of annealing treatments and gamma-ray irradiation on the absorption and fluorescence spectra of Cr:GSGG crystals grown by the Czochralski method has been investigated. Two absorption bands located near 686 nm and 1050 nm were weakened markedly after the crystal was re-annealed in H2 atmosphere, which is due to the Cr4+ ions being de-oxidized into Cr3+ ions. The other two weak additional absorption bands induced by gamma-ray irradiation appearing near 310 nm and 480 nm are ascribed to the Fe2+ ions and F-type color centers, respectively. In particular, the gamma-ray irradiation with a dose of 100 Mrad has an effect of improving slightly the luminescence properties of Cr:GSGG crystals. The improvement mechanism is analyzed and discussed.

  2. Electron spectra of xenon clusters irradiated with a laser-driven plasma soft-x-ray laser pulse

    SciTech Connect

    Namba, S.; Takiyama, K.; Hasegawa, N.; Kishimoto, M.; Nishikino, M.; Kawachi, T.

    2011-11-15

    Xenon clusters were irradiated with plasma soft-x-ray laser pulses (having a wavelength of 13.9 nm, time duration of 7 ps, and intensities of up to 10 GW/cm{sup 2}). The laser photon energy was high enough to photoionize 4d core electrons. The cross section is large due to a giant resonance. The interaction was investigated by measuring the electron energy spectra. The photoelectron spectra for small clusters indicate that the spectral width due to the 4d hole significantly broadens with increasing cluster size. For larger clusters, the electron energy spectra evolve into a Maxwell-Boltzmann distribution, as a strongly coupled cluster nanoplasma is generated.

  3. gamma-Irradiation effects on the thermal decomposition behaviour and IR absorption spectra of piperacillin

    NASA Astrophysics Data System (ADS)

    Mahfouz, R. M.; Gaffar, M. A.; Abu El-Fadl, A.; Hamad, Ar. G. K.

    2003-11-01

    The thermal decomposition behaviour of unirradiated and pre-gamma-irradiated piperacillin (pipril) as a semi-synthetic penicillin antibiotic has been studied in the temperature range of (273-1072 K). The decomposition was found to proceed through three major steps both for unirradiated and gamma-irradiated samples. Neither appearance nor disappearance of new bands in the IR spectrum of piperacillin was recorded as a result of gamma-irradiation but only a decrease in the intensity of most bands was observed. A degradation mechanism was suggested to explain the bond rupture and the decrease in the intensities of IR bands of gamma-irradiated piperacillin.

  4. Far infrared spectra of amorphous and crystalline water ice and changes in these phases as the result of proton irradiation

    NASA Technical Reports Server (NTRS)

    Hudson, Reggie L.; Moore, Marla H.

    1992-01-01

    Far infrared spectra from 20 microns (500 cm(sup -1)) to 100 microns (100 cm(sup -1)) of water ice were measured. Amorphous ice deposited at 13 K has one absorption band at 45 microns (220 cm(sup -1)). Amorphous ice evolves into a crystalline form with absorptions at 44 microns (229 cm(sup -1)) and 62 microns (162 cm(sup -1)) as the temperature is increased to 155 K. Spectra documenting this phase change are presented as well as spectra of crystalline ice at temperatures between 13 K and 155 K. Far infrared spectra of amorphous and crystalline water ice before and after proton irradiation are also presented. Changes in these two forms are discussed in relation to ices in comets, grains, and planetary satellites in various radiation environments. Observations of non-terrestrial clathrate hydrates are still lacking despite the fact that clathrates first were suggested to exist in cometary and interstellar ices over forty years ago. Spectroscopy, the most direct method of astronomical detection, has been hampered by the similarity of clathrate hydrate spectra to those of unenclathrated guest molecules and solid H2O. A methanol (CH3OH) clathrate hydrate, using a recently published procedure, was prepared and its far-IR spectrum investigated. The spectrum is quite differenct from that of either unenclathrated CH3OH or solid H2O and so should be of value in astronomical searches for this clathrate.

  5. A Comparison of Solar EUV Irradiance Reference Spectra and Their Affect on the Earth’s Thermosphere and Ionosphere

    NASA Astrophysics Data System (ADS)

    Chamberlin, P. C.; Woods, T. N.; Qian, L.

    2009-12-01

    Accurate measurements of the solar EUV irradiance at the absolute lowest minimum irradiance levels, or an EUV minimum ‘reference spectrum’ are essential for many aspects of the Heliophysics system. Some applications include quantifying the solar EUV variability as well as estimating the energy input into the Earth and Mars’ Ionosphere and Thermosphere during these solar conditions. Prior to the recent solar minimum, there were no direct observations of the a complete EUV reference spectrum due to limited spectral or spatial coverage, lack of an absolute calibration for the instrument, or timing issues from rockets or satellites not observing during these times in the solar cycle. Measurements from the Solar EUV Experiment (SEE) onboard the Thermosphere Ionosphere Mesosphere Energetics and Dynamics (TIMED) satellite have for the first time measured a solar EUV minimum reference spectrum at an accuracy of <20% and 1 nm bins throughout the solar cycle minimum. The SEE team recently released a Version 10 data product improving the long-term degradation correction, which improves the accuracy of SEE’s most recent observations of the solar minimum. This degradation correction was characterized using measurements from a sounding rocket (P.I. Tom Woods, CU/LASP) containing the rocket version of the Solar Dynamics Observatory (SDO) EUV Variability Experiment (EVE) that was launched very near solar minimum on April 14, 2008. The EVE instrument has a better spectral resolution of 0.1 nm as well as a better accuracy of <10% when compared to the SEE measurements. The SEE and EVE spectra will be presented and compared to other EUV measurements from SOHO SEM and reference spectra such as the ‘Hinterregger’ (SC21refw), the Warren 2001, and the ATLAS spectra. Reference spectra produced by empirical models such as the Flare Irradiance Spectral Model (FISM), Solar Irradiance Platform (SIP), and HEUVAC will also be discussed. New more accurate results of Earth’s neutral

  6. Io's surface composition based on reflectance spectra of sulfur/salt mixtures and proton-irradiation experiments

    NASA Technical Reports Server (NTRS)

    Nash, D. B.; Fanale, F. P.

    1977-01-01

    Available full-disk reflectance spectra of Io in the range 0.3 to 2.5 microns have been used to determine a surface compositional model for Io that is consistent with Io's other known chemical and physical properties. Results indicate that the surface of Io contains abundant dehydrated salts of high Na, Mg, and Fe(3+) content such as bloedite and ferrous iron sulfate. Experiments were performed studying the irradiation damage effects from low-energy proton bombardment, since Io is immersed in Jupiter's magnetosphere.

  7. Reflectance Spectra of CM2 Chondrite Mighei Irradiated with Pulsed Laser and Implications for Low-Albedo Asteroids and Martian Moons

    NASA Technical Reports Server (NTRS)

    Moroz, L. V.; Hiroi, T.; Shingareva, T. V.; Basilevsky, A. T.; Fisenko, A. V.; Semjonova, L. F.; Pieters, C. M.

    2004-01-01

    Micrometeoritic bombardment is an important space weathering process modifying surface optical properties of airless solar system bodies. We have used irradiation with a microsecond pulsed laser as an experimental method to simulate such a process on various targets. The experiment discussed here was performed on a powdered sample of CM2 carbonaceous chondrite Mighei. Shingareva et al. report the details of experimental procedure as well as the results of mineralogical and chemical studies of the irradiated material. Here we present reflectance spectra of irradiated Mighei samples and discuss their spectral properties compared to those of non-irradiated meteorite and low-albedo small solar system bodies.

  8. Monomeric C-phycocyanin at room temperature and 77 K. Resolution of the absorption and fluorescence spectra of the individual chromophores and the energy-transfer rate constants

    SciTech Connect

    Debreczeny, M.P.; Sauer, K. Univ. of California, Berkeley, CA ); Zhou, J.; Bryant, D.A. )

    1993-09-23

    At both room temperature (RT) and 77 K, the absorption and fluorescence spectra of the three individual chromophore types ([alpha][sub 84], [beta][sub 84], and [beta][sub 155]) found in monomeric C-phycocyanin ([alpha][sup PC][beta][sup PC]), isolated from the cyanobacterium Synechococcus sp. PCC 7002, were resolved along with the rates of energy transfer between the chromophores. The cpcB/C155S mutant, whose PC is missing the [beta][sub 155] chromophore, was useful in effecting this resolution. At RT, the single broad peak in the visible region of the absorption spectrum of ([alpha][sup PC][beta][sup PC]) was resolved into its three-component spectra by comparing the steady-state absorption spectra of the isolated wild-type [alpha] subunit of PC ([alpha][sup PC]) (containing only the [alpha][sub 84] chromophore) with those of the monomeric PCs isolated from the mutant strain ([alpha][sup PC][beta]*) and the wild-type strain ([alpha][sup PC][beta][sup PC]). At 77 K, the visible region of the absorption spectrum of ([alpha][sup PC][beta][sup PC]) splits into two peaks. This partial resolution at 77 K of the chromophore spectra of ([alpha][sup PC][beta][sup PC]) when compared with the 77 K absorption spectra of [alpha][sup PC], [beta][sup PC], and ([alpha][sup PC][beta]*) provided a confirmation of our RT assignments of the chromophore absorption spectra. 38 refs., 9 figs., 6 tabs.

  9. Comparison of pka energy spectra, gas-atom production and damage energy deposition in neutron irradiation at various facilities

    NASA Astrophysics Data System (ADS)

    Nishiguchi, R.; Shimomura, Y.; Hahn, P. A.; Guinan, M. W.; Kiritani, M.

    1991-03-01

    By dividing neutron-energy spectrum into four energy groups, (I) <10 eV, (II) 10 eV to 0.1 MeV, (III) 0.1 MeV to 10 MeV and (IV) > 10 MeV, contributions to damage parameters (PKA spectrum, damage energy and gas-atom production) from each of the energy group were calculated for neutron irradiations at various facilities with the SPECTER code developed by Greenwood and Smither [1]. The normalized PKA spectra and the gas-atom productions were compared to examine differences in damage parameters. Such comparisons were carried out among (1) irradiations at various positions in different fission reactors (i.e. KUR, JOYO and FFTF-MOTA), and among (2) those at various fission reactors. Damage parameters were also calculated at STARFIRE fusion reactor and RTNS-II. A possible method to correlate damages at different fission reactors is discussed. It is suggested that damages in fusion reactor can be simulated by the superposition of irradiations with fission and D-T neutrons.

  10. Line coupling effects in the isotropic Raman spectra of N{sub 2}: A quantum calculation at room temperature

    SciTech Connect

    Thibault, Franck; Boulet, Christian; Ma, Qiancheng

    2014-01-28

    We present quantum calculations of the relaxation matrix for the Q branch of N{sub 2} at room temperature using a recently proposed N{sub 2}-N{sub 2} rigid rotor potential. Close coupling calculations were complemented by coupled states studies at high energies and provide about 10 200 two-body state-to state cross sections from which the needed one-body cross-sections may be obtained. For such temperatures, convergence has to be thoroughly analyzed since such conditions are close to the limit of current computational feasibility. This has been done using complementary calculations based on the energy corrected sudden formalism. Agreement of these quantum predictions with experimental data is good, but the main goal of this work is to provide a benchmark relaxation matrix for testing more approximate methods which remain of a great utility for complex molecular systems at room (and higher) temperatures.

  11. Line Coupling Effects in the Isotropic Raman Spectra of N2: A Quantum Calculation at Room Temperature

    NASA Technical Reports Server (NTRS)

    Thibault, Franck; Boulet, Christian; Ma, Qiancheng

    2014-01-01

    We present quantum calculations of the relaxation matrix for the Q branch of N2 at room temperature using a recently proposed N2-N2 rigid rotor potential. Close coupling calculations were complemented by coupled states studies at high energies and provide about 10200 two-body state-to state cross sections from which the needed one-body cross-sections may be obtained. For such temperatures, convergence has to be thoroughly analyzed since such conditions are close to the limit of current computational feasibility. This has been done using complementary calculations based on the energy corrected sudden formalism. Agreement of these quantum predictions with experimental data is good, but the main goal of this work is to provide a benchmark relaxation matrix for testing more approximate methods which remain of a great utility for complex molecular systems at room (and higher) temperatures.

  12. Neural network radiative transfer solvers for the generation of high resolution solar irradiance spectra parameterized by cloud and aerosol parameters

    NASA Astrophysics Data System (ADS)

    Taylor, M.; Kosmopoulos, P. G.; Kazadzis, S.; Keramitsoglou, I.; Kiranoudis, C. T.

    2016-01-01

    This paper reports on the development of a neural network (NN) model for instantaneous and accurate estimation of solar radiation spectra and budgets geared toward satellite cloud data using a ≈2.4 M record, high-spectral resolution look up table (LUT) generated with the radiative transfer model libRadtran. Two NN solvers, one for clear sky conditions dominated by aerosol and one for cloudy skies, were trained on a normally-distributed and multiparametric subset of the LUT that spans a very broad class of atmospheric and meteorological conditions as inputs with corresponding high resolution solar irradiance target spectra as outputs. The NN solvers were tested by feeding them with a large (10 K record) "off-grid" random subset of the LUT spanning the training data space, and then comparing simulated outputs with target values provided by the LUT. The NN solvers demonstrated a capability to interpolate accurately over the entire multiparametric space. Once trained, the NN solvers allow for high-speed estimation of solar radiation spectra with high spectral resolution (1 nm) and for a quantification of the effect of aerosol and cloud optical parameters on the solar radiation budget without the need for a massive database. The cloudy sky NN solver was applied to high spatial resolution (54 K pixel) cloud data extracted from the Spinning Enhanced Visible and Infrared Imager (SEVIRI) onboard the geostationary Meteosat Second Generation 3 (MSG3) satellite and demonstrated that coherent maps of spectrally-integrated global horizontal irradiance at this resolution can be produced on the order of 1 min.

  13. Effect of irradiance spectra on the photoinduced toxicity of three polycyclic aromatic hydrocarbons

    SciTech Connect

    Diamond, S.A.; Mount, D.R.; Burkhard, L.P.; Ankley, G.T.; Makynen, E.A.; Leonard, E.N.

    2000-05-01

    Photoinduced toxicity of polycyclic aromatic hydrocarbons (PAHs) is dependent on the concentration of compounds present and the dose of light received. Of the light present, only those wavelengths absorbed by the compound have the potential to initiate the photochemical events underlying phototoxicity. This suggests that variation in light spectra present in natural waters, arising from variation in dissolved organic carbon composition, is an important determinant of phototoxicity risk in specific, PAH-contaminated waterbodies. To quantify the effect of environmentally realistic variation in light spectra on toxicity, brine shrimp (Artemia salina) assays were conducted under various light spectra and with three PAHs (pyrene, fluoranthene, and anthracene) of known phototoxicity potential. In these spectral assays, the total ultraviolet light present was equivalent; only the spectral characteristics varied. Based on the absorbance spectra of these PAHs, it was predicted that toxicity, quantified using immobilization as the endpoint, would vary significantly among light spectra in pyrene assays, but not in anthracene assays, and that variation in toxicity in fluoranthene assays would be intermediate. The results supported these assumptions. In the pyrene exposures, the glass filter time to 50% population immobilization (IT50) (39.5 min) was 117% longer than the KCr filter IT50 (18.2 min). In the fluoranthene exposures, the glass filter IT50 (49.5 min) was 27% longer than the KCr filter IT50 (39.1 min). In the anthracene exposures, the glass filter IT50 (62.2 min) was not statistically different from the KCr filter IT50 (63.8 min). Comparison of these results with the results of assays conducted under neutral-density filters (that change intensity but not spectral distribution) demonstrate that multiplying spectral intensity by wavelength-specific absorbance accurately predicts relative photoinduced toxicity among the experimental treatments. These results indicate

  14. Impact of Room Location on UV-C Irradiance and UV-C Dosage and Antimicrobial Effect Delivered by a Mobile UV-C Light Device.

    PubMed

    Boyce, John M; Farrel, Patricia A; Towle, Dana; Fekieta, Renee; Aniskiewicz, Michael

    2016-06-01

    OBJECTIVE To evaluate ultraviolet C (UV-C) irradiance, UV-C dosage, and antimicrobial effect achieved by a mobile continuous UV-C device. DESIGN Prospective observational study. METHODS We used 6 UV light sensors to determine UV-C irradiance (W/cm2) and UV-C dosage (µWsec/cm2) at various distances from and orientations relative to the UV-C device during 5-minute and 15-minute cycles in an ICU room and a surgical ward room. In both rooms, stainless-steel disks inoculated with methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococcus (VRE), and Clostridium difficile spores were placed next to sensors, and UV-C dosages and log10 reductions of target organisms achieved during 5-minute and 15-minute cycles were determined. Mean irradiance and dosage readings were compared using ANOVA. RESULTS Mean UV-C irradiance was nearly 1.0E-03 W/cm2 in direct sight at a distance of 1.3 m (4 ft) from the device but was 1.12E-05 W/cm2 on a horizontal surface in a shaded area 3.3 m (10 ft) from the device (P4 to 1-3 for MRSA, >4 to 1-2 for VRE and >4 to 0 log10 for C. difficile spores, depending on the distance from, and orientation relative to, the device with 5-minute and 15-minute cycles. CONCLUSION UV-C irradiance, dosage, and antimicrobial effect received from a mobile UV-C device varied substantially based on location in a room relative to the UV-C device. Infect Control Hosp Epidemiol 2016;37:667-672.

  15. Production of proton beams with narrow-band energy spectra from laser-irradiated ultrathin foils

    SciTech Connect

    Robinson, A. P. L; Gibbon, P.

    2007-01-15

    Three-dimensional gridless particle simulations of proton acceleration via irradiation of a very thin foil by a short-pulse, high-intensity laser have been performed to evaluate recently proposed microstructured target configurations. It is found that a pure proton microdot target does not by itself result in a quasimonoenergetic proton beam. Such a beam can only be produced with a very lightly doped target, in qualitative agreement with one-dimensional theory. The simulations suggest that beam quality in current experiments could be dramatically improved by choosing microdot compositions with a 5-10 times lower proton fraction.

  16. Irradiation induced ferromagnetism at room temperature in TiO{sub 2} thin films: X-ray magnetic circular dichroism characterizations

    SciTech Connect

    Thakur, Hardeep; Sharma, K. K.; Thakur, P.; Brookes, N. B.; Kumar, Ravi; Singh, A. P.; Kumar, Yogesh; Gautam, S.; Chae, K. H.

    2011-05-09

    We report on the room temperature ferromagnetism in the swift heavy ion (SHI) irradiated TiO{sub 2} thin films by x-ray absorption spectroscopy (XAS) and x-ray magnetic circular dichroism (XMCD) experiments at the O K and Ti L{sub 3,2} absorption edges. The XAS/XMCD measurements provide direct evidence of magnetic polarization of the O 2p and Ti 3d orbitals. The unquenched orbital magnetic moment within the O 2p shell is ferromagnetically coupled to the neighboring Ti moments, which illustrates the intense hybridization of the O 2p and Ti 3d orbitals induced by SHI irradiation.

  17. Plasma scale-length effects on electron energy spectra in high-irradiance laser plasmas.

    PubMed

    Culfa, O; Tallents, G J; Rossall, A K; Wagenaars, E; Ridgers, C P; Murphy, C D; Dance, R J; Gray, R J; McKenna, P; Brown, C D R; James, S F; Hoarty, D J; Booth, N; Robinson, A P L; Lancaster, K L; Pikuz, S A; Faenov, A Ya; Kampfer, T; Schulze, K S; Uschmann, I; Woolsey, N C

    2016-04-01

    An analysis of an electron spectrometer used to characterize fast electrons generated by ultraintense (10^{20}Wcm^{-2}) laser interaction with a preformed plasma of scale length measured by shadowgraphy is presented. The effects of fringing magnetic fields on the electron spectral measurements and the accuracy of density scale-length measurements are evaluated. 2D EPOCH PIC code simulations are found to be in agreement with measurements of the electron energy spectra showing that laser filamentation in plasma preformed by a prepulse is important with longer plasma scale lengths (>8 μm). PMID:27176413

  18. Characterization of neutron flux spectra in the irradiation sites of a 37 GBq 241Am-Be isotopic source

    NASA Astrophysics Data System (ADS)

    Yücel, Haluk; Budak, Mustafa Guray; Karadag, Mustafa; Yüksel, Alptuğ Özer

    2014-11-01

    For the applicability of instrumental neutron activation analysis (NAA) technique, an irradiation unit with a 37 GBq 241Am-Be neutron source was installed at Institute of Nuclear Sciences of Ankara University. Design and configuration properties of the irradiation unit are described. It has two different sample irradiation positions, one is called site #1 having a pneumatic sample transfer system and the other is site #2 having a location for manual use. In order to characterize neutron flux spectra in the irradiation sites, the measurement results were obtained for thermal (Фth) and epithermal neutron fluxes (Фepi), thermal to epithermal flux ratio (f) and epithermal spectrum shaping factors (α) by employing cadmium ratios of gold (Au) and molybdenum (Mo) monitors. The activities produced in these foils were measured by using a p-type, 44.8% relative efficiency HPGe well detector. For the measured γ-rays, self-absorption and true coincidence summing effects were taken into account. Additionally, thermal neutron self-shielding and resonance neutron self-shielding effects were taken into account in the measured results. For characterization of site #1, the required parameters were found to be Фth = (2.11 ± 0.05) × 103 n cm-2 s-1, Фepi = (3.32 ± 0.17) × 101 n cm-2 s-1, f = 63.6 ± 1.5, α = 0.045 ± 0.009, respectively. Similarly, those parameters were measured in site #2 as Фth = (1.49 ± 0.04) × 103 n cm-2 s-1, Фepi = (2.93 ± 0.15) × 101 n cm-2 s-1, f = 50.9 ± 1.3 and α = 0.038 ± 0.008. The results for f-values indicate that good thermalization of fast neutrons on the order of 98% was achieved in both sample irradiation sites. This is because an optimum combination of water and paraffin moderator is used in the present configuration. In addition, the shielding requirements are met by using natural boron oxide powder (5.5 cm) and boron loaded paraffin layers against neutrons, and a 15 cm thick lead bricks against gamma-rays from source and its

  19. Neutron irradiation of superconductors and damage energy scaling of different neutron spectra

    SciTech Connect

    Hahn, P.A.; Weber, H.W.; Guinan, M.W.; Birtcher, R.C.; Brown, B.S.; Greenwood, L.R.

    1985-08-01

    Three different neutron sources were used to irradiate identical sets of NbTi superconductors up to about half the lifetime dose of a superconducting magnet in a fusion reactor. Based on a careful source characterization of the TRIGA Mark-II reactor in Vienna, the spallation neutron source IPNS at Argonne and the 14 MeV neutron source RTNS-II at Livermore, the damage energy cross sections were calculated for four different types of NbTi alloys (42, 46.5, 49 and 54 wt % Ti). The experimental results on the variations of critical current densities j/sub c/ with neutron dose are found to scale within the experimental uncertainties with the appropriate damage energy cross sections. This first explicit proof of damage energy scaling for j/sub c/-variations in superconductors is considered to be most valuable for the evaluation of radiation damage in superconductors under fusion reactor conditions. 12 refs., 5 figs., 2 tabs.

  20. Neutron irradiation of superconductors and damage energy scaling of different neutron spectra

    NASA Astrophysics Data System (ADS)

    Hahn, P. A.; Weber, H. W.; Guinan, M. W.; Birtcher, R. C.; Brown, B. S.; Greenwood, L. R.

    1985-08-01

    Three different neutron sources were used to irradiate identical sets of NbTi superconductors up to about half the lifetime dose of a superconducting magnet in a fusion reactor. Based on a careful source characterization of the TRIGA Mark-II reactor in Vienna, the spallation neutron source IPNS at Argonne and the 14 MeV neutron source RTNS-II at Livermore, the damage energy cross sections were calculated for four different types of NbTi alloys (42, 46.5, 49 and 54 wt % Ti). The experimental results on the variations of critical current densities j sub c with neutron dose are found to scale within the experimental uncertainties with the appropriate damage energy cross sections. This first explicit proof of damage energy scaling for j sub c-variations in superconductors is considered to be most valuable for the evaluation of radiation damage in superconductors under fusion reactor conditions.

  1. Effect of high-dose irradiation on quality characteristics of ready-to-eat broiler breast fillets stored at room temperature.

    PubMed

    Baptista, R F; Teixeira, C E; Lemos, M; Monteiro, M L G; Vital, H C; Mársico, E T; Júnior, C A Conte; Mano, S B

    2014-10-01

    The effect of high-dose irradiation on the physical, chemical, and bacteriological parameters of ready-to-eat vacuum-packed broiler breast meat after 430 d of storage at room temperature was investigated. Ready-to-eat broiler breast fillets were immersed in brine with garlic powder and then drained, grilled, and vacuum-packed (primary packaging). The high-dose irradiation used was approximately 48 kGy. The treatments were designated as A (irradiated samples stored at room temperature), B (irradiated samples stored at -25°C), and C (nonirradiated samples stored at -25°C). All samples were packaged in polyethylene bags containing aluminum to exclude light (secondary packaging). Proximate composition, pH, 2-thiobarbituric acid reactive substance (TBARS), and heterotrophic aerobic mesophilic bacteria were analyzed during 430 d of storage. Results were analyzed using 1-way ANOVA and the Tukey test. Linear regression was used to analyze the correlation between the results for each parameter and storage time of the different treatments. The gamma radiation caused slight changes (P < 0.05) in the moisture and fat content, regardless of storage temperature. After storage d 110, TBARS values remained stable (P > 0.05) in all the treatments. The preservation methods used were effective in maintaining the mesophilic counts below the detection level during the entire storage period. We concluded that, among the treatments studied, high-dose irradiation with storage at room temperature showed potential for the preservation of ready-to-eat products made from poultry meat, to provide foods safe for consumption.

  2. Facile fabrication of high-performance InGaZnO thin film transistor using hydrogen ion irradiation at room temperature

    SciTech Connect

    Ahn, Byung Du; Park, Jin-Seong; Chung, K. B.

    2014-10-20

    Device performance of InGaZnO (IGZO) thin film transistors (TFTs) are investigated as a function of hydrogen ion irradiation dose at room temperature. Field effect mobility is enhanced, and subthreshold gate swing is improved with the increase of hydrogen ion irradiation dose, and there is no thermal annealing. The electrical device performance is correlated with the electronic structure of IGZO films, such as chemical bonding states, features of the conduction band, and band edge states below the conduction band. The decrease of oxygen deficient bonding and the changes in electronic structure of the conduction band leads to the improvement of device performance in IGZO TFT with an increase of the hydrogen ion irradiation dose.

  3. Triton Emission Spectra in Some Target Nuclei Irradiated by Ultra-Fast Neutrons

    NASA Astrophysics Data System (ADS)

    Tel, E.; Kaplan, A.; Aydın, A.; Büyükuslu, H.; Demirkol, İ.; Arasoğlu, A.

    2010-08-01

    High-current proton accelerator technologies make use of spallation neutrons produced in ( p,xn) and ( n,xn) nuclear reactions on high-Z targets. The produced neutrons are moderated by heavy water. These moderated neutrons are subsequently captured on 3He to produce tritium via the ( n,p) reaction. Tritium self-sufficiency must be maintained for a commercial power plant. So, working out the systematics of ( n,t) reaction cross sections and triton emission differential data are important for the given reaction taking place on various nuclei at different energies. In this study, triton emission spectra by using ultra-fast neutrons (incident neutron energy >50 MeV), the ( n,xt) reactions for some target nuclei as 16O, 27Al, 56Fe, 59Co, 208Pb and 209Bi have been investigated. In the calculations, the pre-equilibrium and equilibrium effects have been used. The calculated results have been compared with the experimental data taken from the literature.

  4. Optical and infrared absorption spectra of 3d transition metal ions-doped sodium borophosphate glasses and effect of gamma irradiation.

    PubMed

    Abdelghany, A M; ElBatal, F H; Azooz, M A; Ouis, M A; ElBatal, H A

    2012-12-01

    Undoped and transition metals (3d TM) doped sodium borophosphate glasses were prepared. UV-visible absorption spectra were measured in the region 200-900nm before and after gamma irradiation. Experimental optical data indicate that the undoped sodium borophosphate glass reveals before irradiation strong and broad UV absorption and no visible bands could be identified. Such UV absorption is related to the presence of unavoidable trace iron impurities within the raw materials used for preparation of this base borophosphate glass. The TMs-doped glasses show absorption bands within the UV and/or visible regions which are characteristic to each respective TM ion in addition to the UV absorption observed from the host base glass. Infrared absorption spectra of the undoped and TMs-doped glasses reveal complex FTIR consisting of extended characteristic vibrational bands which are specific for phosphate groups as a main constituent but with the sharing of some vibrations due to the borate groups. This criterion was investigated and approved using DAT (deconvolution analysis technique). The effects of different TMs ions on the FTIR spectra are very limited due to the low doping level (0.2%) introduced in the glass composition. Gamma irradiation causes minor effect on the FTIR spectra specifically the decrease of intensities of some bands. Such behavior is related to the change of bond angles and/or bond lengths of some structural building units upon gamma irradiation.

  5. Measurement of leakage neutron spectra from graphite cylinders irradiated with D-T neutrons for validation of evaluated nuclear data.

    PubMed

    Luo, F; Han, R; Chen, Z; Nie, Y; Shi, F; Zhang, S; Lin, W; Ren, P; Tian, G; Sun, Q; Gou, B; Ruan, X; Ren, J; Ye, M

    2016-10-01

    A benchmark experiment for validation of graphite data evaluated from nuclear data libraries was conducted for 14MeV neutrons irradiated on graphite cylinder samples. The experiments were performed using the benchmark experimental facility at the China Institute of Atomic Energy (CIAE). The leakage neutron spectra from the surface of graphite (Φ13cm×20cm) at 60° and 120° and graphite (Φ13cm×2cm) at 60° were measured by the time-of-flight (TOF) method. The obtained results were compared with the measurements made by the Monte Carlo neutron transport code MCNP-4C with the ENDF/B-VII.1, CENDL-3.1 and JENDL-4.0 libraries. The results obtained from a 20cm-thick sample revealed that the calculation results with CENDL-3.1 and JENDL-4.0 libraries showed good agreements with the experiments conducted in the whole energy region. However, a large discrepancy of approximately 40% was observed below the 3MeV energy region with the ENDF/B-VII.1 library. For the 2cm-thick sample, the calculated results obtained from the abovementioned three libraries could not reproduce the experimental data in the energy range of 5-7MeV. The graphite data in CENDL-3.1 were verified for the first time and were proved to be reliable. PMID:27620063

  6. Measurement of leakage neutron spectra from graphite cylinders irradiated with D-T neutrons for validation of evaluated nuclear data.

    PubMed

    Luo, F; Han, R; Chen, Z; Nie, Y; Shi, F; Zhang, S; Lin, W; Ren, P; Tian, G; Sun, Q; Gou, B; Ruan, X; Ren, J; Ye, M

    2016-10-01

    A benchmark experiment for validation of graphite data evaluated from nuclear data libraries was conducted for 14MeV neutrons irradiated on graphite cylinder samples. The experiments were performed using the benchmark experimental facility at the China Institute of Atomic Energy (CIAE). The leakage neutron spectra from the surface of graphite (Φ13cm×20cm) at 60° and 120° and graphite (Φ13cm×2cm) at 60° were measured by the time-of-flight (TOF) method. The obtained results were compared with the measurements made by the Monte Carlo neutron transport code MCNP-4C with the ENDF/B-VII.1, CENDL-3.1 and JENDL-4.0 libraries. The results obtained from a 20cm-thick sample revealed that the calculation results with CENDL-3.1 and JENDL-4.0 libraries showed good agreements with the experiments conducted in the whole energy region. However, a large discrepancy of approximately 40% was observed below the 3MeV energy region with the ENDF/B-VII.1 library. For the 2cm-thick sample, the calculated results obtained from the abovementioned three libraries could not reproduce the experimental data in the energy range of 5-7MeV. The graphite data in CENDL-3.1 were verified for the first time and were proved to be reliable.

  7. Structure and spectra of irradiated secondaries in close binaries. A model calculation of the pre-cataclysmic variable UU Sagittae

    NASA Astrophysics Data System (ADS)

    Wawrzyn, A. C.; Barman, T. S.; Günther, H. M.; Hauschildt, P. H.; Exter, K. M.

    2009-10-01

    Context: The standard stellar model atmosphere ignores the influence of external radiation. This assumption, while sufficient for most stars, fails for many short-period binaries. Aims: In setting up combined model atmospheres for close binaries, we want to constrain the parameters of both components, especially in the case of a hot primary component strongly influencing its cool secondary companion. This situation can be found after common envelope evolution (CEE). The status of both components today allows one to retrace the CEE itself. Methods: We used our stellar atmosphere code PHOENIX, which includes the effect of irradiation in its radiation transport equation, to investigate the close binary star UU Sge. We combined our calculated spectra of both components, weighted by their visible size, and adjusted the input parameters until reasonable agreement with observations is reached. Results: We derive a range of 80 000-85 000 K for the effective temperature of the primary (Teff, p) and give a rough estimate for the primary's abundances, particularly the nitrogen enrichment. The heated day-side of the secondary has an apparent “effective” or equilibrium temperature of 24 000-26 000 K, nearly independent of its intrinsic luminosity. It shows an enhancement in nitrogen and carbon. Conclusions: The evolution of the primary and secondary stars were strongly influenced by the other's presence. Radiation from the primary on the secondary's day-side is still an important factor in understanding the secondary's atmospheric structure.

  8. Correlations Between Variations in Solar EUV and Soft X-Ray Irradiance and Photoelectron Energy Spectra Observed on Mars and Earth

    NASA Technical Reports Server (NTRS)

    Peterson, W. K.; Brain, D. A.; Mitchell, D. L.; Bailey, S. M.; Chamberlin, P. C.

    2013-01-01

    Solar extreme ultraviolet (EUV; 10-120 nm) and soft X-ray (XUV; 0-10 nm) radiation are major heat sources for the Mars thermosphere as well as the primary source of ionization that creates the ionosphere. In investigations of Mars thermospheric chemistry and dynamics, solar irradiance models are used to account for variations in this radiation. Because of limited proxies, irradiance models do a poor job of tracking the significant variations in irradiance intensity in the EUV and XUV ranges over solar rotation time scales when the Mars-Sun-Earth angle is large. Recent results from Earth observations show that variations in photoelectron energy spectra are useful monitors of EUV and XUV irradiance variability. Here we investigate photoelectron energy spectra observed by the Mars Global Surveyor (MGS) Electron Reflectometer (ER) and the FAST satellite during the interval in 2005 when Earth, Mars, and the Sun were aligned. The Earth photoelectron data in selected bands correlate well with calculations based on 1 nm resolution observations above 27 nm supplemented by broadband observations and a solar model in the 0-27 nm range. At Mars, we find that instrumental and orbital limitations to the identifications of photoelectron energy spectra in MGS/ER data preclude their use as a monitor of solar EUV and XUV variability. However, observations with higher temporal and energy resolution obtained at lower altitudes on Mars might allow the separation of the solar wind and ionospheric components of electron energy spectra so that they could be used as reliable monitors of variations in solar EUV and XUV irradiance than the time shifted, Earth-based, F(10.7) index currently used.

  9. Ultraviolet and infrared absorption spectra of Cr2O3 doped-sodium metaphosphate, lead metaphosphate and zinc metaphosphate glasses and effects of gamma irradiation: a comparative study.

    PubMed

    Marzouk, M A; ElBatal, F H; Abdelghany, A M

    2013-10-01

    The effects of gamma irradiation on spectral properties of Cr2O3-doped phosphate glasses of three varieties, namely sodium metaphosphate, lead metaphosphate and zinc metaphosphate have been investigated. Optical spectra of the undoped samples reveal strong UV absorption bands which are attributed to the presence of trace iron impurities in both the sodium and zinc phosphate glasses while the lead phosphate glass exhibits broad UV near visible bands due to combined absorption of both trace iron impurities and divalent lead ions. The effect of chromium oxide content has been investigated. The three different Cr2O3-doped phosphate glasses reveal spectral visible bands varying in their position and intensity and splitting due to the different field strengths of the Na(+), Pb(2+), Zn(2+) cations, together with the way they are housed in the network and their effects on the polarisability of neighboring oxygens ligands. The effects of gamma irradiation on the optical spectral properties of the various glasses have been compared. The different effects for lead and zinc phosphate are related to the ability of Pb(2+), and Zn(2+) to form additional structural units causing stability of the network towards gamma irradiation. Also, the introduction of the transition metal chromium ions reveals some shielding behavior towards irradiation. Infrared absorption spectra of the three different base phosphate glasses show characteristic vibrations due to various phosphate groups depending on the type of glass and Cr2O3 is observed to slightly affect the IR spectra. Gamma irradiation causes minor variations in some of the intensities of the IR spectra but the main characteristic bands due to phosphate groups remain in their number and position. PMID:23816486

  10. UV-visible and infrared absorption spectra of gamma irradiated CuO-doped lithium phosphate, lead phosphate and zinc phosphate glasses: A comparative study

    NASA Astrophysics Data System (ADS)

    ElBatal, H. A.; Abdelghany, A. M.; ElBatal, F. H.; ElBadry, Kh. M.; Moustaffa, F. A.

    2011-10-01

    Undoped and CuO-doped lithium phosphate, lead phosphate and zinc phosphate glasses were prepared. UV-visible and infrared absorption spectra of the prepared samples were measured before and after successive gamma irradiation. Experimental optical spectra of the undoped samples reveal strong UV absorption bands, which are attributed to the presence of trace iron impurities in both the lithium and zinc phosphate glasses while the lead phosphate glass exhibits broad UV bands due to combined absorption of trace iron impurities and divalent lead ions. The CuO-doped glasses reveal an extra broad visible band due to Cu 2+ ions in octahedral coordination. The effects of gamma irradiation have been analyzed for both the sharing of all constituent components including trace iron impurities. Infrared absorption spectra of the prepared samples were investigated by the KBr disk technique. The FTIR spectra reveal main characteristic absorption bands due to different phosphate groups. The IR spectra are observed to be slightly affected by the increase of CuO in the doping level (0.2-3%) indicating the stability of the main network units.

  11. A comparative study of the neutron flux spectra in the MNSR irradiation sites for the HEU and LEU cores using the MCNP4C code.

    PubMed

    Dawahra, S; Khattab, K; Saba, G

    2015-10-01

    A comparative study for fuel conversion from the HEU to LEU in the Miniature Neutron Source Reactor (MNSR) has been performed in this paper using the MCNP4C code. The neutron energy and lethargy flux spectra in the first inner and outer irradiation sites of the MNSR reactor for the existing HEU fuel (UAl4-Al, 90% enriched) and the potential LEU fuels (U3Si2-Al, U3Si-Al, U9Mo-Al, 19.75% enriched and UO2, 12.6% enriched) were investigated using the MCNP4C code. The neutron energy flux spectra for each group was calculated by dividing the neutron flux by the width of each energy group. The neutron flux spectra per unit lethargy was calculated by multiplying the neutron energy flux spectra for each energy group by the average energy of each group. The thermal neutron flux was calculated by summing the neutron fluxes from 0.0 to 0.625 eV, the fast neutron flux was calculated by summing the neutron fluxes from 0.5 MeV to 10 MeV for the existing HEU and potential LEU fuels. Good agreements have been noticed between the flux spectra for the potential LEU fuels and the existing HEU fuels with maximum relative differences less than 10% and 8% in the inner and outer irradiation sites.

  12. Bandstructure, optical spectra, and mean free paths in the room-temperature structure of CH3NH3PbI3 from many-body perturbation theory

    NASA Astrophysics Data System (ADS)

    Vigil-Fowler, Derek; Bernardi, Marco; Louie, Steven G.

    2015-03-01

    The organometallic halide pervoskites have generated enormous interest due to the rapidly increasing efficiency of solar cells fabricated from these materials. Most research on the organometallic halide pervoskites has been experimental due to the challenges posed by these materials to theoretical study, including the size of the unit cell, the presence of many defects, the orientational disorder in of the methyammonium (MA) cation, and the heavy atoms involved with the corresponding large spin-orbit coupling (SOC). We study the room-temperature tetragonal structure of CH3NH3PbI3 using density functional theory (DFT) and a many-body Green's functions approach. We use DFT to study the effect of the dependence of the bandstructure on the orientation of the MA cation, while we perform GW and GW plus Bethe-Salpeter equation (GW-BSE) calculations to study the quasiparticle bandstructure and optical spectra, respectively, paying close attention to convergence and the effect of SOC. We particularly investigate the existence of a proposed charge-transfer state in this material. We also briefly discuss the mean free paths due to electron-phonon and electron-electron scattering in the ideal structure. This work was supported by NSF Grant No. DMR10-1006184, and U.S. DOE Contract No. DE-AC02-05CH11231 and the DOE SciDAC program. Computational resources were provided by NERSC. D.V.-F. acknowledges funding from the NSF's Blue Waters Fellowship.

  13. EPR Investigation of Irradiated Curry Powder

    SciTech Connect

    Duliu, O. G.; Ali, S. I.; Georgescu, R.

    2007-04-23

    Gamma-ray irradiated curry powder, a well priced oriental spice was investigated in order to establish the ability of EPR to detect the presence and time stability of free irradiation free-radicals. Accordingly, curry powder aliquots were irradiated with gradually increasing absorbed doses up to 11.3 kGy. The EPR spectra of all irradiated samples show the presence of al last two different species of free radicals, whose concentration increased monotonously with the absorbed doses. A 100 deg. C isothermal annealing of irradiated samples has shown a differential reduction of amplitude of various components of the initial spectra, but even after 3.6 h of thermal treatment, the remaining amplitude represents no less then 30% of the initial ones. The same peculiarities have been noticed after more than one year storage at room temperature, all of them being very useful in establishing the existence of any previous irradiation treatment.

  14. EPR Investigation of Irradiated Curry Powder

    NASA Astrophysics Data System (ADS)

    Duliu, O. G.; Ali, S. I.; Georgescu, R.

    2007-04-01

    Gamma-ray irradiated curry powder, a well priced oriental spice was investigated in order to establish the ability of EPR to detect the presence and time stability of free irradiation free-radicals. Accordingly, curry powder aliquots were irradiated with gradually increasing absorbed doses up to 11.3 kGy. The EPR spectra of all irradiated samples show the presence of al last two different species of free radicals, whose concentration increased monotonously with the absorbed doses. A 100° C isothermal annealing of irradiated samples has shown a differential reduction of amplitude of various components of the initial spectra, but even after 3.6 h of thermal treatment, the remaining amplitude represents no less then 30% of the initial ones. The same peculiarities have been noticed after more than one year storage at room temperature, all of them being very useful in establishing the existence of any previous irradiation treatment.

  15. X-ray luminescence spectra of graded-gap Al xGa 1- xAs structures irradiated by alpha particle

    NASA Astrophysics Data System (ADS)

    Šilėnas, A.; Požela, J.; Požela, K.; Jucienė, V.; Dapkus, L.

    2011-12-01

    The influence of 241Am alpha particle irradiation on X-ray luminescence spectra of the graded-gap AlxGa1-xAs structures of different thicknesses is investigated. It is observed that the integral X-ray luminescence intensity of nonirradiated thin (15 μm) structure is 1.4 times less than that in the thick (32 μm) structure, and this difference increases to 3 times after 3×1010 cm-2 dose of irradiation by alpha particle. The X-ray luminescence intensity of the energy hν<1.5 eV of thin nonirradiated structure is about 7 times less than that in thick one. The internal graded-gap electric field Fgg is responsible of that large difference, because it shifts the X-ray generated carriers to the narrow-gap surface with great nonradiative surface recombination rate. The alpha particle irradiation increases nonradiative recombination rate and causes a decrease of the X-ray luminescence intensity of all spectra lines in the thin (15 μm) detector. The most significant drop in X-ray luminescence efficiency is observed from the region at narrow-gap surface after the initial stage (109 cm-2 dose) of alpha particle irradiation. In the 32 μm thick detector, the luminescence intensity of the energy hν=1.8 eV does not change up to 2×1010 cm-2 of alpha particle irradiation dose. That means the high irradiation hardness of the thick graded-gap X-ray detector with optical response.

  16. Structural changes of polytetrafluoroethylene during irradiation in oxygen

    NASA Astrophysics Data System (ADS)

    Liu, Shuling; Fu, Congli; Gu, Aiqun; Yu, Zili

    2015-04-01

    To study the effect of irradiation on PTFE structure and prepare modified PTFE micropowder, PTFE was irradiated with dose up to 4 MGy in oxygen at room temperature. The structures of both irradiated and unirradiated PTFE samples were comparatively characterized by IR, XPS, Raman spectra and XRD measurement. The results showed that new groups of acyl fluoride (COF), carboxylic acid (COOH) and trifluoromethyl (CF3) were formed under heavy radiation exposure in oxygen. In addition, the expansion of crystallite size or crystal lattice was first reported for the irradiated PTFE. The formation of new chemical groups and the expansion of crystallite size were elucidated by structural changes occurring in irradiation.

  17. Phosphorescence induced by pressure and continuous light irradiation of benzophenone and 4,4`-bis(dimethylamino)benzophenone in solid polymers at room temperature

    SciTech Connect

    Dreger, Z.A.; Lang, J.M.; Drickamer, H.G.

    1996-03-14

    We report efficient room temperature phosphorescence induced by pressure (PIP) and/or by continuous light irradiation (light-induced phosphorescence (LIP)) in two ketones: benzophenone (BP) and its p-dimethylamino-substituted (Michler`s ketone (MK)) both dissolved in solid poly(ethyl methacrylate) (PEMA). Under pressure both BP and MK reveal a remarkable growth of the phosphorescence intensity: 2 orders of magnitude (within 5 kbar) and 1 order of magnitude (within 50 kbar) respectively for MK and BP. For MK, above 5 kbar the phosphorescence intensity significantly decreases, but for BP the decrease is negligible even above 50 kbar. A model based on the increase of the amount of {pi},{pi}{sup *} character in the predominately n,{pi}{sup *} triplet state with increasing pressure is proposed to account for the observed features of the PIP. The LIP occurs only at pressures below the maximum in the PIP. With prolonged irradiation, the overall shape of the phosphorescence intensity curve versus time depends on pressure, exciting light intensity, and concentration. A tentative explanation of the LIP effect is given that assumes a creation of the phosphorescent photoproduct via the hydrogen abstraction reaction. 36 refs., 14 figs.

  18. Spectral Irradiance Calibration in the Infrared. Part 4; 1.2-35 micrometer Spectra of Six Standard Stars

    NASA Technical Reports Server (NTRS)

    Cohen, Martin; Witteborn, Fred C.; Walker, Russell, G.; Bregman, Jesse D.; Wooden, Diane H.

    1995-01-01

    Five new absolutely calibrated continuous stellar spectra from 1.2 to 35 microns are presented. The spectra were constructed as far as possible from actual observed spectral fragments taken from the ground, the Kuiper Airborne Observatory (KAO), and the IRAS Low Resolution Spectrometer (LRS). These stars (beta Peg, alpha Boo, beta And, beta Gem, and alpha Hya) augment the author's already created complete absolutely calibrated spectrum for alpha Tau. All these spectra have a common calibration pedigree. The wavelength coverage is ideal for calibration of many existing and proposed ground-based, airborne, and satellite sensors.

  19. Enhanced room temperature oxidation in silicon and porous silicon under 10 keV x-ray irradiation

    SciTech Connect

    Ryckman, Judson D.; Reed, Robert A.; Weller, Robert A.; Fleetwood, D. M.; Weiss, S. M.

    2010-12-01

    We report the observation of enhanced oxidation on silicon and porous silicon samples exposed in air ambient to high-dose-rate 10 keV x-ray radiation at room temperature. The evolution of the radiation-induced oxide growth is monitored by ellipsometry and interferometric reflectance spectroscopy. Fourier transform infrared (FTIR) spectroscopy shows the emergence of Si-O-Si stretching modes and corresponding suppression of SiH{sub x} and Si-Si modes in the porous silicon samples. The radiation response depends strongly on initial native oxide thickness and Si-H surface species. The enhanced oxidation mechanism is attributed to photoinduced oxidation processes wherein energetic photons are used to dissociate molecular oxygen and promote the formation of more reactive oxygen species.

  20. Energy spectra of electrons and positrons produced in semi-infinite and infinite water phantoms irradiated by photons with energies up to 1 GeV.

    PubMed

    Rustgi, M L; Pandey, L N; Kassaee, A; Long, S A

    1989-04-01

    Previous Monte Carlo calculations for the energy spectra of electrons produced in water irradiated by photons are extended to 1 GeV. All of the physical processes believed to be important in the transport of electrons and positrons above 100 keV and photons starting with the ejection of L photoelectrons are considered. The results are presented in tabular form and can be conveniently used to compute kerma in water. The contributions of several physical processes, such as Compton scattering and pair-production to electron spectra, are separately tabulated. The results are compared with those of Todo et al. (1982) for the single interactions of monoenergetic photons. It is found that the inclusion of processes such as multiple Compton scattering, bremsstrahlung production, positron annihilation in flight, Møhiller and Bhabha scattering from electrons and Molière multiple scattering from atomic nuclei make a considerable difference in the inferred electron spectrum in water.

  1. Spectral Irradiance Calibration in the Infrared. Part 7; New Composite Spectra, Comparison with Model Atmospheres, and Far-Infrared Extrapolations

    NASA Technical Reports Server (NTRS)

    Cohen, Martin; Witteborn, Fred C.; Carbon, Duane F.; Davies, John K.; Wooden, Diane H.; Bregman, Jesse D.

    1996-01-01

    We present five new absolutely calibrated continuous stellar spectra constructed as far as possible from spectral fragments observed from the ground, the Kuiper Airborne Observatory (KAO), and the IRAS Low Resolution Spectrometer. These stars-alpha Boo, gamma Dra, alpha Cet, gamma Cru, and mu UMa-augment our six, published, absolutely calibrated spectra of K and early-M giants. All spectra have a common calibration pedigree. A revised composite for alpha Boo has been constructed from higher quality spectral fragments than our previously published one. The spectrum of gamma Dra was created in direct response to the needs of instruments aboard the Infrared Space Observatory (ISO); this star's location near the north ecliptic pole renders it highly visible throughout the mission. We compare all our low-resolution composite spectra with Kurucz model atmospheres and find good agreement in shape, with the obvious exception of the SiO fundamental, still lacking in current grids of model atmospheres. The CO fundamental seems slightly too deep in these models, but this could reflect our use of generic models with solar metal abundances rather than models specific to the metallicities of the individual stars. Angular diameters derived from these spectra and models are in excellent agreement with the best observed diameters. The ratio of our adopted Sirius and Vega models is vindicated by spectral observations. We compare IRAS fluxes predicted from our cool stellar spectra with those observed and conclude that, at 12 and 25 microns, flux densities measured by IRAS should be revised downwards by about 4.1% and 5.7%, respectively, for consistency with our absolute calibration. We have provided extrapolated continuum versions of these spectra to 300 microns, in direct support of ISO (PHT and LWS instruments). These spectra are consistent with IRAS flux densities at 60 and 100 microns.

  2. Facile room-temperature synthesis of carboxylated graphene oxide-copper sulfide nanocomposite with high photodegradation and disinfection activities under solar light irradiation

    NASA Astrophysics Data System (ADS)

    Yu, Shuyan; Liu, Jincheng; Zhu, Wenyu; Hu, Zhong-Ting; Lim, Teik-Thye; Yan, Xiaoli

    2015-11-01

    Carboxylic acid functionalized graphene oxide-copper (II) sulfide nanoparticle composite (GO-COOH-CuS) was prepared from carboxylated graphene oxide and copper precursor in dimethyl sulfoxide (DMSO) by a facile synthesis process at room temperature. The high-effective combination, the interaction between GO-COOH sheets and CuS nanoparticles, and the enhanced visible light absorption were confirmed by transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM), X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), thermo gravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflectance spectra (DRS) and Photoluminescence (PL) spectra. The as-synthesized GO-COOH-CuS nanocomposite exhibited excellent photocatalytic degradation performance of phenol and rhodamine B, high antibacterial activity toward E. coli and B. subtilis, and good recovery and reusability. The influence of CuS content, the synergistic reaction between CuS and GO-COOH, and the charge-transfer mechanism were systematically investigated. The facile and low-energy synthesis process combined with the excellent degradation and antibacterial performance signify that the GO-COOH-CuS has a great potential for water treatment application.

  3. Facile room-temperature synthesis of carboxylated graphene oxide-copper sulfide nanocomposite with high photodegradation and disinfection activities under solar light irradiation

    PubMed Central

    Yu, Shuyan; Liu, Jincheng; Zhu, Wenyu; Hu, Zhong-Ting; Lim, Teik-Thye; Yan, Xiaoli

    2015-01-01

    Carboxylic acid functionalized graphene oxide-copper (II) sulfide nanoparticle composite (GO-COOH-CuS) was prepared from carboxylated graphene oxide and copper precursor in dimethyl sulfoxide (DMSO) by a facile synthesis process at room temperature. The high-effective combination, the interaction between GO-COOH sheets and CuS nanoparticles, and the enhanced visible light absorption were confirmed by transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM), X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), thermo gravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflectance spectra (DRS) and Photoluminescence (PL) spectra. The as-synthesized GO-COOH-CuS nanocomposite exhibited excellent photocatalytic degradation performance of phenol and rhodamine B, high antibacterial activity toward E. coli and B. subtilis, and good recovery and reusability. The influence of CuS content, the synergistic reaction between CuS and GO-COOH, and the charge-transfer mechanism were systematically investigated. The facile and low-energy synthesis process combined with the excellent degradation and antibacterial performance signify that the GO-COOH-CuS has a great potential for water treatment application. PMID:26553709

  4. Spectral Irradiance Calibration in the Infrared. Part 6; 3-35 microns Spectra of Three Southern Standard Stars

    NASA Technical Reports Server (NTRS)

    Cohen, Martin; Witteborn, Fred C.; Bregman, Jesse D.; Wooden, Diane H.; Salama, Alberto; Metcalfe, Leo

    1996-01-01

    We present three new absolutely calibrated continuous stellar spectra from 3 to 35 microns, constructed as far as possible from actual observed spectral fragments taken from the Kuiper Airborne Observatory (KAO), and the IRAS Low Resolution Spectrometer (LRS). These stars- alpha(sup 1) Cen, alpha TrA, and epsilon Car-augment our previous archive of complete absolutely calibrated spectra for northern K and M giants. All these spectra have a common calibration pedigree. The wavelength coverage is ideal for calibration of many existing and proposed ground-based, airborne, and satellite sensors. KAO and IRAS data in the 15-30 micron range suggest that the spectra of cool giants are close to Rayleigh-Jeans slopes. Our observations of alpha(sup 1) Cen, absolutely calibrated via our adopted Sirius model, indicate an angular diameter in very good agreement with values in the literature, demonstrating 'closure' of the set of spectra within our absolute framework. We compare our observed alpha(sup 1) Cen spectrum with a published grid of theoretical models from Kurucz, and adopt a plausible theoretical shape, that fits our spectrum, as a secondary reference spectrum in the southern sky.

  5. Analysis of Electron and Antineutrino Energy Spectra from Fissile Samples under Irradiation based on Gross Theory of Beta-decay

    NASA Astrophysics Data System (ADS)

    Yoshida, T.; Tachibana, T.; Chiba, S.

    2016-06-01

    We applied the gross theory of β-decay to calculate the reactor electron and antineutrino ({{{bar ν }}{e}}) spectra emitted from 235,238U and 239,241Pu by summing up all the contributions from a large number of decaying fission-products (FPs). We make it clear what kinds of transition types and FP nuclides are important to shape the lepton spectra. After taking the ambiguity in the current data for fission yields and Qβ-values into account, we suggested a possibility that the high-energy part of the widely referred electron-spectra by Schreckenbach et al., almost only one experimental data set available now, might possibly be too low. Arguments on a special role of the odd(Z)-odd(N) nuclides and on the consistency between U-238 and other fissiles in the experimental data lead to the importance of a new and independent measurement of electron energy spectra which could be converted into the reactor {{{bar ν }}{e}} spectra.

  6. Spectral Irradiance Calibration in the Infrared. 4; 1.2-35um Spectra of Six Standard Stars

    NASA Technical Reports Server (NTRS)

    Cohen, Martin; Witteborn, Fred C.; Walker, Russell G.; Bregman, Jesse D.; Wooden, Diane H.

    1995-01-01

    We present five new absolutely calibrated continuous stellar spectra from 1.2 to 35 microns, constructed as far as possible from actual observed spectral fragments taken from the ground, the Kuiper Airborne Observatory (KAO), and the IRAS Low Resolution Spectrometer (LRS). These stars, Beta Peg, Delta Boo, Beta And, Beta Gem, and Delta Hya, augment our already created complete absolutely calibrated spectrum for a Tau. All these spectra have a common calibration pedigree. The wavelength coverage is ideal for calibration of many existing and proposed ground-based, airborne, and satellite sensors.

  7. Spectral Irradiance Calibration in the Infrared. Part 4; 1.2 - 35 microns Spectra of Six Standard Stars

    NASA Technical Reports Server (NTRS)

    Cohen, Martin; Witteborn, Fred C.; Walker, Russell G.; Bregman, Jesse D.; Wooden, Diane H.

    1995-01-01

    We present five new absolutely calibrated continuous stellar spectra from 1.2 to 35 microns, constructed as far as possible from actual observed spectral fragments taken from the ground, the Kuiper Airborne Observatory (KAO), and the IRAS Low Resolution Spectrometer (LRS). These stars- beta Peg, alpha Boo, beta And, beta Gem, and alpha Hya-augment our already created complete absolutely calibrated spectrum for alpha Tau. All these spectra have a common calibration pedigree. The wavelength coverage is ideal for calibration of many existing and proposed ground-based, airborne, and satellite sensors.

  8. Characterization by combined optical and FT infrared spectra of 3d-transition metal ions doped-bismuth silicate glasses and effects of gamma irradiation.

    PubMed

    ElBatal, F H; Abdelghany, A M; ElBatal, H A

    2014-03-25

    Optical and infrared absorption spectral measurements were carried out for binary bismuth silicate glass and other derived prepared samples with the same composition and containing additional 0.2% of one of 3d transition metal oxides. The same combined spectroscopic properties were also measured after subjecting the prepared glasses to a gamma dose of 8 Mrad. The experimental optical spectra reveal strong UV-near visible absorption bands from the base and extended to all TMs-doped samples and these specific extended and strong UV-near visible absorption bands are related to the contributions of absorption from both trace iron (Fe(3+)) ions present as contaminated impurities within the raw materials and from absorption of main constituent trivalent bismuth (Bi(3+)) ions. The strong UV-near visible absorption bands are observed to suppress any further UV bands from TM ions. The studied glasses show obvious resistant to gamma irradiation and only small changes are observed upon gamma irradiation. This observed shielding behavior is related to the presence of high Bi(3+) ions with heavy mass causing the observed stability of the optical absorption. Infrared absorption spectra of the studied glasses reveal characteristic vibrational bands due to both modes from silicate network and the sharing of Bi-O linkages and the presence of TMs in the doping level (0.2%) causes no distinct changes within the number or position of the vibrational modes. The presence of high Bi2O3 content (70 mol%) appears to cause stability of the structural building units towards gamma irradiation as revealed by FTIR measurements.

  9. Size- and intensity-dependent photoelectron spectra from gas-phase gold nanoparticles irradiated by intense femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Powell, J.; Robatjazi, S. J.; Makhija, V.; Vajdi, A.; Li, X.; Malakar, Y.; Pearson, W. L.; Rudenko, A.; Sorensen, C.; Stierle, J.; Kling, M. F.

    2016-05-01

    Nanoparticles bridge the gap between atomic/molecular and bulk matter offering unique opportunities to study light interactions with complex systems, in particular, near-field enhancements and excitation of plasmons. Here we report on a systematic study of photoelectron emission from isolated gold nanoparticles irradiated by 800 nm, 25 fs laser pulses at 10-50 TW/ cm2 peak intensities. A combination of an aerodynamic lens nanoparticle injector, high-energy velocity-map imaging spectrometer and a high-speed, single-shot camera is employed to record shot by shot photoelectron emission patterns from individual particles. By sorting the recorded images according to the number of emitted electrons, we select the events from the regions of particular laser intensities within the laser focus, thus, essentially avoiding focal volume averaging. Using this approach, we study the intensity- and size-dependence of photoelectron energy and angular distributions for particle sizes ranging from 5 nm to 400 nm. This work is supported by NSF Award No. IIA-143049. JRML operations and personal are supported by the Chemical Sciences, Geosciences, and Biosciences Division, Office of BES, Office of Science, U. S. DOE.

  10. Infrared and Ultraviolet Spectra of Methane Diluted in Solid Nitrogen and Irradiated with Electrons during Deposition at Various Temperatures

    NASA Astrophysics Data System (ADS)

    Chin, Chih-Hao; Chen, Sian-Cong; Liu, Meng-Chen; Huang, Tzu-Ping; Wu, Yu-Jong

    2016-06-01

    We recorded the infrared and ultraviolet absorption spectra of CH4:N2 matrix samples that underwent electron bombardment during deposition in the temperature range of 10-44 K. In contrast to a previous experiment on the IR spectroscopy of electron-bombarded icy samples, methyl and azide radicals became the main products upon electron bombardment during deposition; furthermore, reduced production of nitrile species was observed for deposition at 10 and 20 K. On the other hand, for deposition above 33 K, the observed bands of the radical species (such as methyl and azide) decreased, and bands of large nitriles appeared. This observation may suggest that radical species easily diffuse and recombine to form more complex molecules in solid nitrogen at higher temperatures. Further measurements of similar samples at 10-33 K in the UV region revealed the intense band of azide radicals at 272.5 nm and weak, broad, overlapping features of methyl and azide radicals in the 225-197 nm region. For deposition at 44 K, only a broad feature centered at 219.4 nm was observed, and the possible carriers of nitrile species were proposed based on the corresponding IR spectrum and theoretical predictions of excitation energy. This band is similar to the observed absorption feature of Pluto’s surface recorded by the Hubble telescope in terms of both band position and bandwidth. Our findings therefore further support the suggestion that complex nitrile species may exist on the surface of Pluto.

  11. Annealing of the defects observed by Raman spectroscopy in UO2 irradiated by 25 MeV He2+ ions

    NASA Astrophysics Data System (ADS)

    Desgranges, L.; Guimbretière, G.; Simon, P.; Duval, F.; Canizares, A.; Omnee, R.; Jégou, C.; Caraballo, R.

    2014-05-01

    Understanding the effect of irradiation in UO2 is a major issue for nuclear industry and for the design of irradiation resistant materials. We have previously evidenced irradiation induced defects in UO2 that can be characterized by Raman spectroscopy. Here we present the Raman characterization of these defects as a function of temperature. UO2 samples were irradiated with 25 MeV He2+ ions at room temperature and then heated at different temperature without irradiation. Some samples were also irradiated at high temperature. Heat treatment after irradiation evidenced one annealing temperature on Raman spectra. This annealing temperature is shifted to higher values when the samples are simultaneously heat treated and irradiated. It is compared to the annealing temperatures that are reported in literature on irradiated UO2. This indicates that Raman observed defects would be point defects on uranium sublattice. This attribution is consistent with the one we previously proposed.

  12. EPR investigation of some traditional oriental irradiated spices

    NASA Astrophysics Data System (ADS)

    Duliu, Octavian G.; Georgescu, Rodica; Ali, Shaban Ibrahim

    2007-06-01

    The 9.50 GHz electron paramagnetic resonance (EPR) spectra of unirradiated and 60Co γ-ray irradiated cardamom ( Elettaria cardamomum L. Maton, Zingiberaceae), ginger (( Zingiber officinale Rosc., Zingiberaceae), and saffron ( Crocus sativus L., Iridaceae) have been investigated at room temperature. All unirradiated spices presented a weak resonance line with g-factors around free-electron ones. After γ-ray irradiation at an absorbed dose of up to 11.3 kGy, the presence of EPR spectra whose amplitude increase monotonously with the absorbed dose has been noticed with all spices. A 100 °C isothermal annealing of 11.3 kGy irradiated samples has shown a differential reduction of amplitude of various components that compose initial spectra, but even after 3.6 h of thermal treatment, the remaining amplitude represents no less then 30% of the initial ones. The same peculiarities have been noticed after 83 days storage at room temperature but after 340 days storage at ambient conditions only irradiated ginger displays a weak signal that differs from those of unirradiated sample. All these factors could be taken into account in establishing at which extent the EPR is suitable to evidence any irradiation treatment applied to these spices.

  13. Room Acoustics

    NASA Astrophysics Data System (ADS)

    Kuttruff, Heinrich; Mommertz, Eckard

    The traditional task of room acoustics is to create or formulate conditions which ensure the best possible propagation of sound in a room from a sound source to a listener. Thus, objects of room acoustics are in particular assembly halls of all kinds, such as auditoria and lecture halls, conference rooms, theaters, concert halls or churches. Already at this point, it has to be pointed out that these conditions essentially depend on the question if speech or music should be transmitted; in the first case, the criterion for transmission quality is good speech intelligibility, in the other case, however, the success of room-acoustical efforts depends on other factors that cannot be quantified that easily, not least it also depends on the hearing habits of the listeners. In any case, absolutely "good acoustics" of a room do not exist.

  14. Improved x-ray spectroscopy with room temperature CZT detectors.

    PubMed

    Fritz, Shannon G; Shikhaliev, Polad M; Matthews, Kenneth L

    2011-09-01

    Compact, room temperature x-ray spectroscopy detectors are of interest in many areas including diagnostic x-ray imaging, radiation protection and dosimetry. Room temperature cadmium zinc telluride (CZT) semiconductor detectors are promising candidates for these applications. One of the major problems for CZT detectors is low-energy tailing of the energy spectrum due to hole trapping. Spectral post-correction methods to correct the tailing effect do not work well for a number of reasons; thus it is advisable to eliminate the hole trapping effect in CZT using physical methods rather than correcting an already deteriorated energy spectrum. One method is using a CZT detector with an electrode configuration which modifies the electric field in the CZT volume to decrease low-energy tailing. Another method is to irradiate the CZT surface at a tilted angle, which modifies depth of interaction to decrease low-energy tailing. Neither method alone, however, eliminates the tailing effect. In this work, we have investigated the combination of modified electric field and tilted angle irradiation in a single detector to further decrease spectral tailing. A planar CZT detector with 10 × 10 × 3 mm³ size and CZT detector with 5 × 5 × 5 mm³ size and cap-shaped electrode were used in this study. The cap-shaped electrode (referred to as CAPture technology) modifies the electric field distribution in the CZT volume and decreases the spectral tailing effect. The detectors were investigated at 90° (normal) and 30° (tilted angle) irradiation modes. Two isotope sources with 59.6 and 122 keV photon energies were used for gamma-ray spectroscopy experiments. X-ray spectroscopy was performed using collimated beams at 60, 80 and 120 kVp tube voltages, in both normal and tilted angle irradiation. Measured x-ray spectra were corrected for K x-ray escape fractions that were calculated using Monte Carlo methods. The x-ray spectra measured with tilted angle CAPture detector at 60, 80 and 120

  15. Femtosecond and ultraviolet laser irradiation of graphitelike hexagonal boron nitride

    NASA Astrophysics Data System (ADS)

    Kanaev, Andrei V.; Petitet, Jean-Pierre; Museur, Luc; Marine, Vladimir; Solozhenko, Vladimir L.; Zafiropulos, Vassilis

    2004-10-01

    The effect of the femtosecond and nanosecond UV laser irradiation (below the ablation threshold) on graphitelike hexagonal boron nitride (hBN) has been studied. Experiments were carried out with the compacted powder under high vacuum at room temperature using the excimer KrF laser (248nm). In the nanosecond operation mode, the laser-induced fluorescence spectra are found strongly modified depending on the integrated doze, which is attributed to a progressive enrichment of the surface layer by an elemental boron. A slow sample recovery after the laser irradiation has been observed. On the other hand, in the femtosecond mode, the fluorescence spectra depend on the laser fluence, and the changes are reversible: low-energy fluorescence spectra are restored immediately when the laser energy decreases. This effect can be explained by a material bleaching, which favors a bulk centers emission. The ablation threshold has been determined as 78mJ/cm2 in the femtosecond laser operational mode.

  16. Room-temperature fracture in V-(4-5)Cr-(4-5)Ti tensile specimens irradiated in Fusion-1 BOR-60 experiment

    SciTech Connect

    Gazda, J.; Meshii, M.; Tsai, H.

    1998-09-01

    Specimens of V-(4-5)Cr-(4-5)Ti alloys were irradiated to {approx}18 dpa at 320 C in the Fusion-1 capsule inserted into the BOR-60 reactor. Tensile tests at 23 C indicated dramatic yield strength increase (>300%), lack of work hardening, and minimal (<1%) total elongations. SEM analysis of fracture and side surfaces were conducted to determine reduction in are and the mode of fracture. The reduction of area was negligible. All but one specimen failed by a combination of ductile shear deformation and cleavage crack growth. Transgranular cleavage cracks were initiated by stress concentrations at the tips of the shear bands. In side-view observations, evidence was found of slip bands typically associated with dislocation channeling. No differences due to pre-irradiation heat treatment and heat-to-heat composition variations were detected. The only deviation from this behavior was found in V-4Cr-4Ti-B alloy, which failed in the grip portion by complete cleavage cracking.

  17. The use of commercial glass as a potential gamma accidental dosimeter through the absorption spectra

    NASA Astrophysics Data System (ADS)

    Kharita, M. H.; Yousef, S.; Bakr, S.

    2012-05-01

    Various types of commercial glass (ordinary windows, cathode ray tubes, glass kitchenware) have been studied as potential accidental radiation dosimeters. The proposed method utilizes the changes in the glasses' absorption spectra as a result of irradiation. A 60Co gamma irradiation cell has been used to irradiate samples with doses ranging from 5 to 200 Gy. The transmittance was measured using a photospectrometer (UV-visible spectrometry). The results demonstrate that the transmittance spectra of most of the glass samples change in linear proportion to the exposure dose. Moreover, the study considers the fading effect on the absorption spectra of the irradiated samples for fading times up to 100 days at room temperature. The results of this work demonstrate that several widely used types of glass can be used as high-dose accidental dosimeters for doses ranging between 8 and 200 Gy. A reasonable calibration line can be established for any irradiated glass sample by heating, re-irradiating with standard doses and measuring the related absorption coefficient. Further investigations are needed to decrease the minimum detectable dose of the proposed method and to study the effect of glass composition on radiation response.

  18. Memory's Room.

    ERIC Educational Resources Information Center

    Carruthers, Mary

    1999-01-01

    Describes the Liberal Arts Studiolo from the Ducal Palace at Guibbio, Italy. Discusses how the room's design and decoration mirrors its educational uses. Notes that the object of education was to provide the young person with a kind of mental library of materials that could be drawn upon quickly. (RS)

  19. Identification of gamma-irradiated fruit juices by EPR spectroscopy

    NASA Astrophysics Data System (ADS)

    Aleksieva, K. I.; Dimov, K. G.; Yordanov, N. D.

    2014-10-01

    The results of electron paramagnetic resonance (EPR) study on commercially available juices from various fruits and different fruit contents: 25%, 40%, 50%, and 100%, homemade juices, nectars and concentrated fruit syrups, before and after gamma-irradiation are reported. In order to remove water from non- and irradiated samples all juices and nectars were filtered; the solid residue was washed with alcohol and dried at room temperature. Only concentrated fruit syrups were dried for 60 min at 40 °C in a standard laboratory oven. All samples under study show a singlet EPR line with g=2.0025 before irradiation with exception of concentrated fruit syrups, which are EPR silent. Irradiation of juice samples gives rise to complex EPR spectra which gradually transferred to “cellulose-like” EPR spectrum from 25% to 100% fruit content. Concentrated fruit syrups show typical “sugar-like“ spectra due to added saccharides. All EPR spectra are characteristic and can prove radiation treatment. The fading kinetics of radiation-induced EPR signals were studied for a period of 60 days after irradiation.

  20. BIOLOGICAL IRRADIATION FACILITY

    DOEpatents

    McCorkle, W.H.; Cern, H.S.

    1962-04-24

    A facility for irradiating biological specimens with neutrons is described. It includes a reactor wherein the core is off center in a reflector. A high-exposure room is located outside the reactor on the side nearest the core while a low-exposure room is located on the opposite side. Means for converting thermal neutrons to fast neutrons are movably disposed between the reactor core and the high and low-exposure rooms. (AEC)

  1. Correlation of radiation-induced changes in mechanical properties and microstructural development of Alloy 718 irradiated with mixed spectra of high-energy protons and spallation neutrons

    NASA Astrophysics Data System (ADS)

    Sencer, B. H.; Bond, G. M.; Garner, F. A.; Hamilton, M. L.; Maloy, S. A.; Sommer, W. F.

    2001-07-01

    Alloy 718 is a γ '(Ni 3(Al,Ti))-γ″(Ni 3Nb) hardenable superalloy with attractive strength, and corrosion resistance. This alloy is a candidate material for use in accelerator production of tritium (APT) target and blanket applications, where it would have to withstand low-temperature irradiation by high-energy protons and spallation neutrons. The existing data base, relevant to such irradiation conditions, is very limited. Alloy 718 has therefore been exposed to a particle flux and spectrum at the Los Alamos Neutron Science Center (LANSCE), closely matching those expected in the APT target and blanket applications. The yield stress of Alloy 718 increases with increasing dose up to ˜0.5 dpa, and then decreases with further increase in dose. The uniform elongation, however, drastically decreases with increasing dose at very low doses (<0.5 dpa), and does not recover when the alloy later softens somewhat. Transmission electron microscopy (TEM) investigation of Alloy 718 shows that superlattice spots corresponding to the age-hardening precipitate phases γ ' and γ″ are lost from the diffraction patterns for Alloy 718 by only 0.6 dpa, the lowest proton-induced dose level achieved in this experiment. Examination of samples that were neutron irradiated to doses of only ˜0.1 dpa showed that precipitates are faintly visible in diffraction patterns but are rapidly becoming invisible. It is proposed that the γ ' and γ″ first become disordered (by <0.6 dpa), but remain as solute-rich aggregates that still contribute to the hardness at relatively low dpa levels, and then are gradually dispersed at higher doses.

  2. Thermal annealing and UV irradiation effects on structure, morphology, photoluminescence and optical absorption spectra of EDTA-capped ZnS nanoparticles

    NASA Astrophysics Data System (ADS)

    Osman, M. A.; Othman, A. A.; El-Said, Waleed A.; Abd-Elrahim, A. G.; Abu-sehly, A. A.

    2016-02-01

    Monodispersed ZnS nanoparticles (NPs) were prepared by the chemical precipitation method. Thermally induced structural, morphological and optical changes have been investigated using x-ray diffraction, high-resolution transmission electron microscopy, optical absorption, photoluminescence (PL), and Fourier transform infrared and Raman spectroscopy. It was found that D increases with increasing annealing temperature (T a). The onset of the ZnS phase transition from cubic to hexagonal structure takes place at 400 °C, while cubic ZnS transforms into hexagonal ZnO via thermal oxidation in air at 600 °C. It is also noted that increasing T a results in the red shift of the optical band gap (E\\text{g}\\text{opt} ) and the thermal bleaching of exciton absorption. The PL spectrum of as-prepared ZnS nanopowder shows UV emission bands at 363 and 395 nm and blue and green emission at 438 and 515 nm, respectively. With increasing T a up to 500 °C, these bands were quenched and red-shifted. In addition, the UV irradiation effects on colloidal ZnS NPs were investigated. UV irradiation at a dose  <13 J cm-2 leads to a decrease in D, the blue shift of E\\text{g}\\text{opt} and the enhancement of PL intensity. This behavior was explained in terms of surface modification by photopolymerization, the formation of a ZnSO4 passivation layer, as well as the reduction of D by photocorrosion. At a UV irradiation dose  <13 J cm-2 both E\\text{g}\\text{opt} and D did not change and PL intensity was quenched, which were caused by the creation of nonradiative surface states by the photodegradation of the capping agent and photopassivated layer. The mechanism of the PL emission process in ZnS NPs was discussed and an energy band diagram was proposed.

  3. The effect of gamma irradiation on curcumin component of Curcuma domestica

    NASA Astrophysics Data System (ADS)

    Chosdu, R.; Erizal; Iriawan, T.; Hilmy, N.

    1995-02-01

    The effect of gamma irradiation on curcumin component of Curcuma domestica rhizome were investigated. Pure curcumin, sliced and powdered rhizome with 10% of moisture content were irradiated at 0, 10, 30 and 50 kGy (dose rate of 6 kGy/h). Curcumin content was analysed using HPLC method and ESR spectra. Results show that free radicals are already present in unirradiated rhizome. Gamma irradiation at the doses of 10, 30 and 50 kGy induced the free radicals formation of pure curcumin and Curcuma domestica rhizome. The ESR spectra of irradiated rhizome gave a very similar spectra to the signal of irradiated pure curcumin. The percentage of free radicals intensity from pure curcumin was very stable at room temperature up to 670 hours of storage. However, the percentage intensity of free radicals in the irradiated rhizome were decay during storage. Irradiation treatment and storage time did not give a significant change on curcumin content, water activity, pH and moisture content of rhizome investigated.

  4. Basement utility room (room 24; air handling room), near the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Basement utility room (room 24; air handling room), near the west end of the combat operations center, looking southwest towards fan system one, air ducts, and walk-in filter rooms. The exterior equipment well is visible at the left - March Air Force Base, Strategic Air Command, Combat Operations Center, 5220 Riverside Drive, Moreno Valley, Riverside County, CA

  5. Microstructural origins of radiation-induced changes in mechanical properties of 316 L and 304 L austenitic stainless steels irradiated with mixed spectra of high-energy protons and spallation neutrons

    NASA Astrophysics Data System (ADS)

    Sencer, B. H.; Bond, G. M.; Hamilton, M. L.; Garner, F. A.; Maloy, S. A.; Sommer, W. F.

    2001-07-01

    A number of candidate alloys were exposed to a particle flux and spectrum at Los Alamos Neutron Science Center (LANSCE) that closely match the mixed high-energy proton/neutron spectra expected in accelerator production of tritium (APT) window and blanket applications. Austenitic stainless steels 316 L and 304 L are two of these candidate alloys possessing attractive strength and corrosion resistance for APT applications. This paper describes the dose dependence of the irradiation-induced microstructural evolution of SS 316 L and 304 L in the temperature range 30-60°C and consequent changes in mechanical properties. It was observed that the microstructural evolution during irradiation was essentially identical in the two alloys, a behavior mirrored in their changes in mechanical properties. With one expection, it was possible to correlate all changes in mechanical properties with visible microstructural features. A late-term second abrupt decrease in uniform elongation was not associated with visible microstructure, but is postulated to be a consequence of large levels of retained hydrogen measured in the specimens. In spite of large amounts of both helium and hydrogen retained, approaching 1 at.% at the highest exposures, no visible cavities were formed, indicating that the gas atoms were either in solution or in subresolvable clusters.

  6. Secondary ion emission from CO2-H2O ice irradiated by energetic heavy ions: Part I. Measurement of the mass spectra

    NASA Astrophysics Data System (ADS)

    Farenzena, L. S.; Collado, V. M.; Ponciano, C. R.; da Silveira, E. F.; Wien, K.

    2005-05-01

    Secondary ion mass spectrometry is used to investigate ion emission from a frozen-gas mixture (T = 80-90 K) of CO2 and H2O bombarded by MeV nitrogen ions and by 252Cf fission fragments (FF). The aim of the experiments is to produce organic molecules in the highly excited material around the nuclear track and to detect them in the flux of sputtered particles. Such sputter processes are known to occur at the icy surfaces of planetary or interstellar objects. Time-of-flight (TOF) mass spectrometry is employed to identify the desorbed ions. Mass spectra of positive and negative ions were taken for several molecular H2O/CO2 ratios. In special, positive ions induced by MeV nitrogen beam were analyzed for 9 and 18% H2O concentrations of the CO2-H2O ice and negative ions for ~5% H2O. The ion peaks are separated to generate exclusive the spectra of CO2 specific ions, H2O specific ions and hybrid molecular ions, the latter ones corresponding to ions that contain mostly H and C atoms. In the mass range from 10 to 320 u, the latter exhibits 35 positive and 58 negative ions. The total yield of the positive ions is 0.35 and 0.57 ions/impact, respectively, and of negative ions 0.066 ions/impact. Unexpected effects of secondary ion sputtering yields on H2O/CO2 ratio are attributed to the influence of water molecules concentration on the ionization process.

  7. Free radical kinetics of irradiated durum wheat

    NASA Astrophysics Data System (ADS)

    Korkmaz, M.; Polat, M.

    2000-04-01

    In the present work, a detailed ESR investigation of characteristic features and kinetic behaviors at three different temperatures of free radicals produced in a species of durum wheat cultivated in Turkey and irradiated at doses of up to 5 kGy by a γ source, is reported. Unirradiated wheat samples exhibit a weak, single-line ESR signal originating from a radical of unknown structure called radical III in this work. Irradiation produces two more radicals identified as hydroxyalkyl (I) and aldehydalkyl (II) radicals beside radical III. The radicals (I, II and III) follow complicated kinetics. Species I and II initially decay very fast after the irradiation followed by slower decay. Radical half-life times depend on whether they were induced in the crystalline or amorphous fractions of the wheat starch. Activation energy values of the radicals were found to follow the order Ea(III)> Ea(II)> Ea(I). ESR parameters of the radical species were determined by simulating experimental spectra recorded following the irradiation. Room temperature dose-response curves and variations of different spectral parameters between 120 and 390 K were also studied.

  8. Positron annihilation Doppler broadening spectroscopy study on Fe-ion irradiated NHS steel

    NASA Astrophysics Data System (ADS)

    Zhu, Huiping; Wang, Zhiguang; Gao, Xing; Cui, Minghuan; Li, Bingsheng; Sun, Jianrong; Yao, Cunfeng; Wei, Kongfang; Shen, Tielong; Pang, Lilong; Zhu, Yabin; Li, Yuanfei; Wang, Ji; Song, Peng; Zhang, Peng; Cao, Xingzhong

    2015-02-01

    In order to study the evolution of irradiation-induced vacancy-type defects at different irradiation fluences and temperatures, a new type of ferritic/martensitic (F/M) steel named NHS (Novel High Silicon) was irradiated by 3.25 MeV Fe-ion at room temperature and 723 K to fluences of 4.3 × 1015 and 1.7 × 1016 ions/cm2. After irradiation, vacancy-type defects were investigated with variable-energy positron beam Doppler broadening spectra. Energetic Fe-ions produced a large number of vacancy-type defects in the NHS steel, but one single main type of vacancy-type defect was observed in both unirradiated and irradiated samples. The concentration of vacancy-type defects decreased with increasing temperature. With the increase of irradiation fluence, the concentration of vacancy-type defects increased in the sample irradiated at RT, whereas for the sample irradiated at 723 K, it decreased. The enhanced recombination between vacancies and excess interstitial Fe atoms from deeper layers, and high diffusion rate of self-interstitial atoms further improved by diffusion via grain boundary and dislocations at high temperature, are thought to be the main reasons for the reversed trend of vacancy-type defects between the samples irradiated at RT and 723 K.

  9. EPR studies of gamma-irradiated taurine single crystals

    NASA Astrophysics Data System (ADS)

    Bulut, A.; Karabulut, B.; Tapramaz, R.; Köksal, F.

    2000-04-01

    An EPR study of gamma-irradiated taurine [C 2H 7NO 3S] single crystal was carried out at room temperature. The EPR spectra were recorded in the three at mutually perpendicular planes. There are two magnetically distinct sites in monoclinic lattice. The principle values of g and hyperfine constants for both sites were calculated. The results have indicated the presence of 32ṠO -2 and 33ṠO -2 radicals. The hyperfine values of 33ṠO -2 radical were used to obtain O-S-O bond angle for both sites.

  10. Tensile and shear fracture behavior of fiber reinforced plastics at 77K irradiated by various radiation sources

    SciTech Connect

    Humer, K.; Weber, H.W.; Tschegg, E.K.; Egusa, Shigenori; Birtcher, R.C.; Gerstenberg, H.

    1993-08-01

    Influence of radiation damage (gamma, electron, neutron) on mechanical properties of fiber reinforced plastics (FRPs) has been investigated. Different types of FRPs (two or three dimensional E-, S- or T-glass fiber reinforcement, epoxy or bismaleimide resin) have been irradiated at room temperature with 2 MeV electrons and {sup 6O}Co {gamma}-rays up to 1.8 {times} 1 0{sup 8} Gy as well as with different reactor spectra up to a fast neutron fluence of 5 {times} lO{sup 22} m{sup {minus}2} (E > 0.1 MeV). Tensile and intralaminar shear tests were carried out on the irradiated samples at 77 K. Some samples were irradiated at 5 K and tested at 77 K with and without an annealing cycle to room temperature. Results on the influence of these radiation conditions and of warm-up cycles on the mechanical properties of FRPs are compared and discussed.

  11. EPR study of gamma-irradiated 2-Bromo-4'-methoxyacetophenone single crystals

    NASA Astrophysics Data System (ADS)

    Ugur Tasdemir, Halil; Türkkan, Ercan; Sayin, Ulku; Ozmen, Ayhan

    2016-03-01

    The gamma-irradiated single crystals of 2-Bromo-4‧-methoxyaceto-phenone (2B4MA) were investigated using electron paramagnetic resonance (EPR) technique. Density-functional theory calculations were employed to investigate and identify the radicals that have been assumed to be formed upon irradiation of 2B4MA single crystals. The EPR spectra of 2B4MA were recorded at different orientations in the magnetic field at room temperature. Taking into account the chemical structure and experimental spectra of irradiated single crystal of 2B4MA, it was assumed that at least two different radicals were produced in the sample. Following this assumption, six possible radicals were modeled and EPR parameters were calculated by using the DFT, B3LYP/6-311+G(d), for the modeled radicals individually. The calculated hyperfine coupling constants and g-tensors were used as initial values for simulation studies. The three crystallographic axes on the simulated spectra were well matched with experimental spectra for the two modeled radicals. Thus, we identified the R1 type radical and R4 type radical as paramagnetic species produced in gamma-irradiated 2B4MA.

  12. Investigation of irradiated 1H-Benzo[b]pyrrole by ESR, thermal methods and learning algorithm

    NASA Astrophysics Data System (ADS)

    Algul, Gulay; Ceylan, Yusuf; Usta, Keziban; Yumurtaci Aydogmus, Hacer; Usta, Ayhan; Asik, Biray

    2016-05-01

    1H-Benzo[b]pyrrole samples were irradiated in the air with gamma source at 0.969 kGy per hour at room temperature for 24, 48 and 72 h. After irradiation, electron spin resonance, thermogravimetry analysis (TGA) and differential thermal analysis (DTA) measurements were immediately carried out on the irradiated and unirradiated samples. The ESR measurements were performed between 320 and 400 K. ESR spectra were recorded from the samples irradiated for 48 and 72 h. The obtained spectra were observed to be dependent on temperature. Two radical-type centres were detected on the sample. Detected radiation-induced radicals were attributed to R-+•NH and R=•CC2H2. The g-values and hyperfine constants were calculated by means of the experimental spectra. It was also determined from TGA spectrum that both the unirradiated and irradiated samples were decomposed at one step with the rising temperature. Moreover, a theoretical study was presented. Success of the machine learning methods was tested. It was found that bagging techniques, which are widely used in the machine learning literature, could optimise prediction accuracy noticeably.

  13. Identification of irradiated sage tea ( Salvia officinalis L.) by ESR spectroscopy

    NASA Astrophysics Data System (ADS)

    Tepe Çam, Semra; Engin, Birol

    2010-04-01

    The use of electron spin resonance (ESR) spectroscopy to accurately distinguish irradiated from unirradiated sage tea was examined. Before irradiation, sage tea samples exhibit one asymmetric singlet ESR signal centered at g=2.0037. Besides this central signal, two weak satellite signals situated about 3 mT left and right to it in radiation-induced spectra. Irradiation with increasing doses caused a significant increase in radiation-induced ESR signal intensity at g=2.0265 (the left satellite signal) and this increase was found to be explained by a polynomial varying function. The stability of that radiation-induced ESR signal at room temperature was studied over a storage period of 9 months. Also, the kinetic of signal at g=2.0265 was studied in detail over a temperature range 313-353 K by annealing samples at different temperatures for various times.

  14. Locker Room Design Trends.

    ERIC Educational Resources Information Center

    Wiens, Janet

    2001-01-01

    Examines how today's college and university athletic locker rooms have become sophisticated recruiting tools that rival many professional facilities. Locker room design and location and their level of furniture, finishes, and equipment are discussed as is the trend for more environmentally friendly locker rooms. (GR)

  15. 10 CFR 36.67 - Entering and leaving the radiation room.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Entering and leaving the radiation room. 36.67 Section 36.67 Energy NUCLEAR REGULATORY COMMISSION LICENSES AND RADIATION SAFETY REQUIREMENTS FOR IRRADIATORS Operation of Irradiators § 36.67 Entering and leaving the radiation room. (a) Upon first entering...

  16. 10 CFR 36.67 - Entering and leaving the radiation room.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Entering and leaving the radiation room. 36.67 Section 36.67 Energy NUCLEAR REGULATORY COMMISSION LICENSES AND RADIATION SAFETY REQUIREMENTS FOR IRRADIATORS Operation of Irradiators § 36.67 Entering and leaving the radiation room. (a) Upon first entering...

  17. 10 CFR 36.67 - Entering and leaving the radiation room.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Entering and leaving the radiation room. 36.67 Section 36.67 Energy NUCLEAR REGULATORY COMMISSION LICENSES AND RADIATION SAFETY REQUIREMENTS FOR IRRADIATORS Operation of Irradiators § 36.67 Entering and leaving the radiation room. (a) Upon first entering...

  18. 10 CFR 36.67 - Entering and leaving the radiation room.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Entering and leaving the radiation room. 36.67 Section 36.67 Energy NUCLEAR REGULATORY COMMISSION LICENSES AND RADIATION SAFETY REQUIREMENTS FOR IRRADIATORS Operation of Irradiators § 36.67 Entering and leaving the radiation room. (a) Upon first entering...

  19. 10 CFR 36.67 - Entering and leaving the radiation room.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Entering and leaving the radiation room. 36.67 Section 36.67 Energy NUCLEAR REGULATORY COMMISSION LICENSES AND RADIATION SAFETY REQUIREMENTS FOR IRRADIATORS Operation of Irradiators § 36.67 Entering and leaving the radiation room. (a) Upon first entering...

  20. Storm Spectra

    NASA Technical Reports Server (NTRS)

    2007-01-01

    portion is defined by the day/night boundary (known as the terminator).

    These two images illustrate only a small fraction of the information contained in a single LEISA scan, highlighting just one aspect of the power of infrared spectra for atmospheric studies.

  1. The Upstairs Room - Room for Controversy?

    ERIC Educational Resources Information Center

    Poole, Mary F.

    1973-01-01

    Doubtless everyone is tired of the subject of censorship; but I do have to give vent to my feelings when they are as intense as they are over the selection of a book as full of profanity as a Newbery honor book ( The Upstairs Room''). (Author/SM)

  2. Unlocking the Locker Room.

    ERIC Educational Resources Information Center

    St. Clair, Dean

    1996-01-01

    Discusses locker-room design standards and common challenges when complying with the Americans with Disabilities Act. Accessibility and safety considerations for shower, toilet, and locker areas are addressed, as are entrance vestibules, drying and grooming areas, and private dressing rooms. (GR)

  3. Clean room wiping liquids

    SciTech Connect

    Harding, W.B.

    1991-12-01

    A water-based liquid containing isopropyl alcohol, ammonium hydroxide, and surfactants was developed to replace 1,1,2-trichlorotrifluoroethane for the dampening of clean room wiping cloths used to wipe clean benches, clean room equipment, and latex finger cots and gloves.

  4. Music practice rooms

    NASA Astrophysics Data System (ADS)

    Lamberty, D. C.

    1980-03-01

    A study of users, requirements and preferences for music practice rooms is described. Analysis of the subjective and objective information obtained provides guide lines for the design of such rooms. The study has shown that, ideally, the requirements for different users and different instruments vary, but there are broad areas of agreement so that satisfactory designs are often possible.

  5. SHMUTZ & PROTON-DIAMANT H + Irradiated/Written-Hyper/Super-conductivity(HC/SC) Precognizance/Early Experiments Connections: Wet-Graphite Room-Tc & Actualized MgB2 High-Tc: Connection to Mechanical Bulk-Moduli/Hardness: Diamond Hydrocarbon-Filaments, Disorder, Nano-Powders:C,Bi,TiB2,TiC

    NASA Astrophysics Data System (ADS)

    Wunderman, Irwin; Siegel, Edward Carl-Ludwig; Lewis, Thomas; Young, Frederic; Smith, Adolph; Dresschhoff-Zeller, Gieselle

    2013-03-01

    SHMUTZ: ``wet-graphite''Scheike-....[Adv.Mtls.(7/16/12)]hyper/super-SCHMUTZ-conductor(S!!!) = ``wet''(?)-``graphite''(?) = ``graphene''(?) = water(?) = hydrogen(?) =ultra-heavy proton-bands(???) = ...(???) claimed room/high-Tc/high-Jc superconductOR ``p''-``wave''/ BAND(!!!) superconductIVITY and actualized/ instantiated MgB2 high-Tc superconductors and their BCS- superconductivity: Tc Siegel[ICMAO(77);JMMM 7,190(78)] connection to SiegelJ.Nonxline-Sol.40,453(80)] disorder/amorphous-superconductivity in nano-powders mechanical bulk/shear(?)-moduli/hardness: proton-irradiated diamond, powders TiB2, TiC,{Siegel[Semis. & Insuls.5:39,47, 62 (79)])-...``VS''/concommitance with Siegel[Phys.Stat.Sol.(a)11,45(72)]-Dempsey [Phil.Mag. 8,86,285(63)]-Overhauser-(Little!!!)-Seitz-Smith-Zeller-Dreschoff-Antonoff-Young-...proton-``irradiated''/ implanted/ thermalized-in-(optimal: BOTH heat-capacity/heat-sink & insulator/maximal dielectric-constant) diamond: ``VS'' ``hambergite-borate-mineral transformable to Overhauser optimal-high-Tc-LiBD2 in Overhauser-(NW-periodic-table)-Land: CO2/CH4-ETERNAL-sequestration by-product: WATER!!!: physics lessons from

  6. Optical and paramagnetic properties of synthetic diamond crystals irradiated with electrons and annealed

    SciTech Connect

    Poklonski, N. A. Gusakov, G. A.; Bayev, V. G. Lapchuk, N. M.

    2009-05-15

    The optical and paramagnetic properties of single crystals of synthetic diamond grown by the temperature-gradient method in high-pressure apparatuses with the systems of catalytic solvents (Co, Fe) and (Ni, Fe) are studied at room temperature. The optical absorption spectra (in the wavelength range {lambda} = 400-800 nm) and the spectra of electron spin resonance are registered for the initial diamond crystals, the crystals irradiated with 6 MeV electrons (the fluence 1.5 x 10{sup 18} cm{sup -2}), and the irradiated diamonds subjected to isochronous thermal annealing in vacuum (for 60 min). It is shown that, with such treatment, the diamond crystals synthesized with different metal catalysts (Co or Ni) exhibit similar optical properties, but different paramagnetic properties. The data obtained by infrared spectroscopy and electron spin resonance spectroscopy are coincident for radiation defects and different for nitrogen centers (the P1 centers and exchange-coupled pairs of nitrogen atoms). The spectra of the electron spin resonance of the samples annealed at temperatures below 1273 K (in the case of the Co-containing catalyst) and 1073 K (in the case of Ni-containing catalyst) exhibited broad lines produced by residual impurities of the catalyst metal and were accompanied by a distortion of the spectrum of paramagnetic nitrogen in the form of a tilt of the ESR spectra with respect to the zero line.

  7. Irradiation of nitrogen-rich ices by swift heavy ions. Clues for the formation of ultracarbonaceous micrometeorites

    NASA Astrophysics Data System (ADS)

    Augé, B.; Dartois, E.; Engrand, C.; Duprat, J.; Godard, M.; Delauche, L.; Bardin, N.; Mejía, C.; Martinez, R.; Muniz, G.; Domaracka, A.; Boduch, P.; Rothard, H.

    2016-08-01

    Context. Extraterrestrial materials, such as meteorites and interplanetary dust particles, provide constraints on the formation and evolution of organic matter in the young solar system. Micrometeorites represent the dominant source of extraterrestrial matter at the Earth's surface, some of them originating from large heliocentric distances. Recent analyses of ultracarbonaceous micrometeorites recovered from Antarctica (UCAMMs) reveal an unusually nitrogen-rich organic matter. Such nitrogen-rich carbonaceous material could be formed in a N2-rich environment, at very low temperature, triggered by energetic processes. Aims: Several formation scenarios have been proposed for the formation of the N-rich organic matter observed in UCAMMs. We experimentally evaluate the scenario involving high energy irradiation of icy bodies subsurface orbiting at large heliocentric distances. Methods: The effect of Galactic cosmic ray (GCR) irradiation of ices containing N2 and CH4 was studied in the laboratory. The N2-CH4 (90:10 and 98:2) ice mixtures were irradiated at 14 K by 44 MeV Ni11+ and 160 MeV Ar15+ swift heavy ion beams. The evolution of the samples was monitored using in-situ Fourier transform infrared spectroscopy. The evolution of the initial ice molecules and new species formed were followed as a function of projectile fluence. After irradiation, the target was annealed to room temperature. The solid residue of the whole process left after ice sublimation was characterized in-situ by infrared spectroscopy, and the elemental composition was measured ex-situ. Results: The infrared bands that appear during irradiation allow us to identify molecules and radicals (HCN, CN-, NH3, ...). The infrared spectra of the solid residues measured at room temperature show similarities with that of UCAMMs. The results point towards the efficient production of a poly-HCN-like residue from the irradiation of N2-CH4 rich surfaces of icy bodies. The room temperature residue provides a viable

  8. Self-Irradiation Effects on 99Mo Reagents and Products

    SciTech Connect

    Carson, S.D.; Garcia, M.J.; McDonald, M.J.; Simpson, R.L.; Tallant, D.R.

    1998-10-07

    produced in 1996 and shipped to pharmaceutical houses for evaluation of compatibility with oxime solution used to precipitate `?vfo as the oxime complex is both air and light-sensitive, and containing a black precipitate that forms during shipment, presumably as a result of self- irradiation. Addition of sodium hypochlorite to the product solution prior to shipment prevents precipitate formation, indicating the precipitate is a reduced form of `%lo. to remove any precipitate. Duplicate aliquots of the filtered samples were titrated to a phenolphthalein irradiation and afler standing at room temperature for 86.4 hours. Precipitates were washed to a FTIR analysis of the white precipitate showed it to be alpha benzoin oxime. Since the basic After 86.4 hours, no precipitate had formed in bottles containing sodium hypochlorite. Black precipitate had formed in all bottles that did not contain sodium hypochlorite after 14.4 hours. The precipitate appeared to initially form on the surface of the HDPE sample bottles and Black precipitate was first noticed in sample set 1 after 28.8 hrs' irradiation. No visible sample containing precipitate was kept at room temperature in the original bottle. Precipitate in sample sets 2 and 3. Since no precipitate formed in these bottles, this was equivalent to duplicate samples. Once the precipitate in the 20-mL aliquots that had been set aside had returned to sample sets 1 through 3 and the samples with redissolved precipitate all experienced an average decrease in base strength of 0.013 meq mL-l. Sample 1-C had a decrease of 0.004 meq mL-l and sample 1-D had returned to the initial value of 0.198 meq mL-l. Raman spectra for the black precipitate from samples l-C, 1-D and supplemental sample set 1 Fig. 2. Raman spectra of the black precipitate formed in 9%40 product solutions after 28.8,43.2, 72 and 86.4 hours of `oCo irradiation in Sandia's Gamma Irradiation Facility. increase with time, as seen in the titration of 1-C and 1-D samples

  9. In-growth of an electrically active defect in high-purity silicon after proton irradiation

    SciTech Connect

    Nylandsted Larsen, A.; Juul Pedersen, H.; Christian Petersen, M.; Privitera, V.; Gurimskaya, Y.; Mesli, A.

    2013-12-14

    Defect-related energy levels in the lower half of the band gap of silicon have been studied with transient-capacitance techniques in high-purity, carbon and oxygen lean, plasma-enhanced chemical-vapor deposition grown, n-and p-type silicon layers after 2-MeV proton irradiations at temperatures at or just below room temperature. The in-growth of a distinct line in deep-level transient spectroscopy spectra, corresponding to a level in the band gap at E{sub V} + 0.357 eV where E{sub V} is the energy of the valence band edge, takes place for anneal temperatures at around room temperature with an activation energy of 0.95 ± 0.08 eV. The line disappears at an anneal temperature of around 450 K. The corresponding defect is demonstrated not to contain boron, carbon, oxygen, or phosphorus. Possible defect candidates are discussed.

  10. Interior. Balance room for chemistry laboratory. Storage room for glassware ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Interior. Balance room for chemistry laboratory. Storage room for glassware and reference room with frequently used chemistry and chemical engineering texts. - Thomas A. Edison Laboratories, Building No. 2, Main Street & Lakeside Avenue, West Orange, Essex County, NJ

  11. Central room (delivery room on plan) between the east and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Central room (delivery room on plan) between the east and west reading rooms, showing built-in card catalog drawers. View to south. - Sacramento Junior College, Library, 3835 Freeport Boulevard, Sacramento, Sacramento County, CA

  12. Men's toilet (room 207, representing rooms 306, 406, and 506; ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Men's toilet (room 207, representing rooms 306, 406, and 506; also women's toilets, rooms 102, 104, 204, 204A, 303, 403, and 503), looking north. - California State Office Building No. 1, 915 Capitol Mall, Sacramento, Sacramento County, CA

  13. Damage nucleation in Si during ion irradiation

    SciTech Connect

    Holland, O.W.; Fathy, D.; Narayan, J.

    1984-01-01

    Damage nucleation in single crystals of silicon during ion irradiation is investigated. Experimental results and mechanisms for damage nucleation during both room and liquid nitrogen temperature irradiation with different mass ions are discussed. It is shown that the accumulation of damage during room temperature irradiation depends on the rate of implantation. These dose rate effects are found to decrease in magnitude as the mass of the ions is increased. The significance of dose rate effects and their mass dependence on nucleation mechanisms is discussed.

  14. EPR study of gamma irradiated DL-methionine sulfone single crystals

    NASA Astrophysics Data System (ADS)

    Karabulut, Bünyamin; Yıldırım, İlkay

    2015-12-01

    Electron paramagnetic resonance (EPR) study of gamma irradiated dl-2-amino-4-(Methylsulfonyl) butyric acid (dl-methionine sulfone, hereafter dl-ABA) single crystals and powder was performed at room temperature. It has been found that this compound indicates the existence of C. O2- and N. H2 radicals after γ-irradiation. While g and hyperfine splitting values for the N. H2 radical were observed, for the C. O2- radical, only the g factor was measured. The EPR spectra have shown that N. H2 radical has two groups each having two distinct sites and C. O2- radical has one site. The principal g and hyperfine values for all sites were analyzed.

  15. Temperature, stress, and annealing effects on the luminescence from electron-irradiated silicon

    NASA Technical Reports Server (NTRS)

    Jones, C. E.; Johnson, E. S.; Compton, W. D.; Noonan, J. R.; Streetman, B. G.

    1973-01-01

    Low-temperature photoluminescence spectra are presented for Si crystals which have been irradiated with high-energy electrons. Studies of isochronal annealing, stress effects, and the temperature dependences of the luminescence are used to discuss the nature of the luminescent transitions and the properties of defects. Two dominant bands present after room-temperature anneal of irradiated material are discussed, and correlations of the properties of these bands are made with known Si defects. A band between 0.8 and 1.0 eV has properties which are related to those of the divacancy, and a band between 0.6 and 0.8 eV has properties related to those of the Si-G15(K) center. Additional peaks appear in the luminescence after high-temperature anneal; the influence of impurities and the effects of annealing of these lines are discussed.

  16. Design of YCF-1 mobile γ irradiator

    NASA Astrophysics Data System (ADS)

    Hehu, Zhang; Chuanzhen, Wang

    1993-07-01

    YCF-1 Mobile irradiator is designed by BINE of China. It has been put into running in YanJi city of Jilin province. It is able to be moved to border and distance places and area lumped and spreading out of agricultural products to service. It can play a important role in demonstration and extending irradiation technology in food irradiation, disinfestation, sterilization and quarantine, etc. This paper describes the features and design considerations of mobile irradiator. This irradiator adopted Cesium-137 source. The design capacity of loading source is 9.25PBq (250kCi), A half-time of Cs- 137 is 30.2 years long, exchanging source is not needed utilization rate of energy is higher, and the shielding is thinner, The Weight is lighter, The dose rate on the surface of it is 0.0025mSv/h in accordance with national standard. The internal size of irradiation room is 1800×1800×900mm (L×W×H), The sheilding of irradiation room is a steel shell filled with lead. The thickness of lead is 18cm. The irradiator is installed on a special flat truck. The size of the truck is 7000×3400×4200mm (L×W×H). The weight of irradiator is more than 80 150kw. The main components and parts of irradiator are: source, source racks and hoist, irradiation chamber, storage source chamber, the product's transport system, dose monitoring system, ventilation system and safety interlock system, etc.

  17. Novel room temperature ferromagnetic semiconductors

    SciTech Connect

    Gupta, Amita

    2004-06-01

    Today's information world, bits of data are processed by semiconductor chips, and stored in the magnetic disk drives. But tomorrow's information technology may see magnetism (spin) and semiconductivity (charge) combined in one 'spintronic' device that exploits both charge and 'spin' to carry data (the best of two worlds). Spintronic devices such as spin valve transistors, spin light emitting diodes, non-volatile memory, logic devices, optical isolators and ultra-fast optical switches are some of the areas of interest for introducing the ferromagnetic properties at room temperature in a semiconductor to make it multifunctional. The potential advantages of such spintronic devices will be higher speed, greater efficiency, and better stability at a reduced power consumption. This Thesis contains two main topics: In-depth understanding of magnetism in Mn doped ZnO, and our search and identification of at least six new above room temperature ferromagnetic semiconductors. Both complex doped ZnO based new materials, as well as a number of nonoxides like phosphides, and sulfides suitably doped with Mn or Cu are shown to give rise to ferromagnetism above room temperature. Some of the highlights of this work are discovery of room temperature ferromagnetism in: (1) ZnO:Mn (paper in Nature Materials, Oct issue, 2003); (2) ZnO doped with Cu (containing no magnetic elements in it); (3) GaP doped with Cu (again containing no magnetic elements in it); (4) Enhancement of Magnetization by Cu co-doping in ZnO:Mn; (5) CdS doped with Mn, and a few others not reported in this thesis. We discuss in detail the first observation of ferromagnetism above room temperature in the form of powder, bulk pellets, in 2-3 mu-m thick transparent pulsed laser deposited films of the Mn (<4 at. percent) doped ZnO. High-resolution transmission electron microscopy (HRTEM) and electron energy loss spectroscopy (EELS) spectra recorded from 2 to 200nm areas showed homogeneous distribution of Mn substituting

  18. Characterization of freeze dried egg melange long stored after irradiation

    NASA Astrophysics Data System (ADS)

    Bakalivanov, Stefan; Tsvetkova, Eli; Bakalivanova, Todorka; Tsvetkov, Tsvetan; Kaloyanov, Nikolay; Grigorova, Stoyanka; Alexieva, Vanja

    2008-01-01

    During the 4-year period of storage at room temperature of the freeze-dried (control group) and the freeze-dried and gamma-irradiated (2.0 and 3.5 kGy) whole hen's egg mélange, no significant changes were found into the sensory and functional characteristics till the 28th month. The change in the number of SH groups was not unidirectional up to the 28th month and then it started to decrease in all investigated samples. During the entire period of investigation the amount of malondialdehyde in all three groups of egg mélange was considerably below the allowed limit for foodstuffs. The most significant fractions of the protein spectra showed a general tendency of decrease during the storage.

  19. Secondary entrance corridor (room 120, representing room 121), looking west ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Secondary entrance corridor (room 120, representing room 121), looking west (bearing 270) from elevator lobby - California State Office Building No. 1, 915 Capitol Mall, Sacramento, Sacramento County, CA

  20. Dosimetric characterisation of aqueous solution of brilliant green for low-dose food irradiation dosimetry

    NASA Astrophysics Data System (ADS)

    Khan, Hasan M.; Anwer, Mohammad; Chaudhry, Zahid S.

    2002-03-01

    Dosimetric characterisation of aqueous solution of brilliant green has been studied spectrophotometrically for possible applications in low-dose food irradiation dosimetry. Absorption spectra of unirradiated and irradiated solutions were determined which showed two absorption bands with peaks at 427 and 626 nm and a decrease in absorption as the radiation dose is increased. Radiation-induced bleaching of the dye was measured at wavelengths of maximum absorbance (427 and 626 nm) as well as at 550 and 570 nm. At all these wavelengths, the decrease in absorbance of the dosimeter was linear with respect to the absorbed dose from 20 to 120 Gy. However, the upper dose limit was increased to 200 Gy when the negative logarithm of the absorbance ( - log A ) was plotted versus absorbed dose. The stability of dosimetric solution during post-irradiation storage in dark at room temperature showed that after some initial bleaching within the first 5 h of irradiation the response was stable for about 18 days. The effect of different light and temperature conditions to which a dosimeter may be exposed during commercial irradiation has been discussed.

  1. Effect of positron source irradiation on positronium annihilation in fine powdered alumina

    NASA Astrophysics Data System (ADS)

    Liu, Z. W.; Chen, Z. Q.

    2016-09-01

    Positron lifetime and Doppler broadening of positron annihilation radiation were measured as a function of time to study the irradiation effect by 22Na positron source in fine powdered alumina. The γ-Al2O3 samples were put in a vacuum chamber with a pressure of about 10-6 Torr and were cooled down to 10 K by a closed-cycle helium gas refrigerator. The irradiation of γ-Al2O3 samples by positron source was taken for a duration of about two days immediately after the sample was cooled down. After that, the sample was subjected to a warm up process from 10 K to 300 K with a step of 10 K. Positron lifetime and Doppler broadening spectra were measured simultaneously during these processes. Two long lifetime components corresponding to ortho-positronium annihilation were observed. A significant shortening of these long lifetime components and a large increase in S parameter is observed during irradiation. It is supposed that positron source irradiation creates a large number of paramagnetic centers on the surface of the γ-Al2O3 grains, which induce spin conversion quenching of positronium. The irradiation induced paramagnetic centers are unstable above 70 K and are nearly annealed out when the temperature rises to 190 K. After warming up of the sample to room temperature, the positron lifetime spectrum is identical to that before irradiation. It was also found that after irradiation, a medium long lifetime component of about 5 ns appears, of which the intensity increases with increasing irradiation time. This may be originated from the formation of the surface o-Ps state. This surface o-Ps state is also inhibited at elevated temperatures. Our results indicate that positronium is a very sensitive probe for the surface defects in porous materials.

  2. ESR study of free radicals in UHMW-PE fiber irradiated by gamma rays

    NASA Astrophysics Data System (ADS)

    Zhao, Yanning; Wang, Mouhua; Tang, Zhongfeng; Wu, Guozhong

    2010-04-01

    ESR spectra of the trapped radicals in an ultra-high molecular weight polyethylene (UHMW-PE) fiber irradiated by gamma rays showed well-resolved hyperfine splitting at room temperature since the c-axis of the crystallites is aligned with the fiber direction and the radicals are trapped in crystallites. The alkyl radical (-CH 2- •CH-CH 2-) was the major product after irradiation in vacuum and in air at room temperature. Some of the alkyl radicals converted to allyl radicals (-CH 2- •CH-CH=CH-) and polyenyl radicals (-CH 2- •CH-(CH=CH) n-CH 2-) during storage in vacuum. Upon storage in air atmosphere, the alkyl radicals decayed by reaction with oxygen. Of particular interest is the very slow decay rate of the alkyl radical trapped in UHMW-PE fiber, the half-life is 26 days in vacuum, and 13 days in air at room temperature, which is about 1/30 and 1/100 of that reported for high density polyethylene (HDPE), respectively. The extremely long lifetime of the alkyl radical is supposed to be caused by the large size of crystallites in UHMW-PE fiber. The rate of radical decay was accelerated by annealing at elevated temperature.

  3. Thermoluminescence study of X-ray and UV irradiated natural calcite and analysis of its trap and recombination level.

    PubMed

    Kalita, J M; Wary, G

    2014-05-01

    Thermoluminescence (TL) of natural light-orange color calcite (CaCO3) mineral in micro-grain powder form was studied at room temperature X-ray and UV irradiation under various irradiation times. TL was recorded in linear heating rate (2 K/s) from room temperature (300 K) to 523 K. Trapping parameters such as activation energy, order of kinetics, frequency factor have been evaluated by Computerized Glow Curve Deconvolution technique. Three electron trap centers had been estimated at depth 0.70, 1.30 and 1.49 eV from the conduction band. Investigation of emission spectra recorded at various temperatures showed single recombination center at depth 2.74 eV from the conduction band. Due to thermally assisted tunneling of electron and subsequent center-to-center recombination, a distinct peak of lower activation energy (0.60 eV) was observed at relatively higher temperature (~360 K) for X-ray irradiated sample. In UV excitation, there was an indication of photo-transfer phenomenon, where low TL intensity might have been observed; but due to simultaneous excitation of electrons from valence band to the trap level, TL intensity was found to increase with UV irradiation time. The results obtained within temperature range 300-523 K were explained by considering a band diagram.

  4. Test Room Stability Plan

    SciTech Connect

    Not Available

    1993-01-01

    This plan documents the combination of designs, installations, programs, and activities that ensures that the underground excavations at the Waste Isolation Pilot Plant (WIPP), in which transuranic (TRU) waste may be emplaced during the Test Phase, will remain sufficiently stable and safe during that time. The current ground support systems installed at the WIPP are the result of over ten years of data collection from hundreds of geomechanical instruments and thousands of hours of direct observation of the changing conditions of the openings. In addition, some of the world's most respected experts on salt rock mechanics have provided input in the design process and concurrence on the suitability of the final design. The general mine rockbolt pattern and the ground support system for the test rooms are designed to specifically address the fracture and deformation geometries observed today at the WIPP. After an introductory chapter, this plan describes the general underground design, then proceeds to an account of general ground support performance, and finally focuses on the details of the special test room ground support systems. One such system already installed in Room 1, Panel 1, is described in comprehensive detail. Other test rooms in Panel 1, whether full-size or smaller, will be equipped with systems that ensure stability to the same or equivalent extent. They will benefit from the experience gained in the first test room, which in turn benefitted from the data and knowledge accumulated during previous stages (e.g., the Site and Preliminary Design Validation program) of the project.

  5. Staff corridor (room 206, representing rooms 301, 305, 401, 405, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Staff corridor (room 206, representing rooms 301, 305, 401, 405, 501, and 505), looking south towards the staff corridor vestibule (room 206A, representing rooms 305A, 405A, and 505A). - California State Office Building No. 1, 915 Capitol Mall, Sacramento, Sacramento County, CA

  6. Wash room, bunkhouse, first floor interior. This room is a ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Wash room, bunkhouse, first floor interior. This room is a screened porch with the original sinks extant. Light and ventilation was borrowed from the wash room into the toilets and bathing rooms. - Sespe Ranch, Bunkhouse, 2896 Telegraph Road, Fillmore, Ventura County, CA

  7. Proton irradiation of simple gas mixtures: Influence of irradiation parameters

    NASA Technical Reports Server (NTRS)

    Sack, Norbert J.; Schuster, R.; Hofmann, A.

    1990-01-01

    In order to get information about the influence of irradiation parameters on radiolysis processes of astrophysical interest, methane gas targets were irradiated with 6.5 MeV protons at a pressure of 1 bar and room temperature. Yields of higher hydrocarbons like ethane or propane were found by analysis of irradiated gas samples using gas chromatography. The handling of the proton beam was of great experimental importance for determining the irradiation parameters. In a series of experiments current density of the proton beam and total absorbed energy were shown to have a large influence on the yields of produced hydrocarbons. Mechanistic interpretations of the results are given and conclusions are drawn with regard to the chemistry and the simulation of various astrophysical systems.

  8. EPR study on gamma-irradiated fruits dehydrated via osmosis

    NASA Astrophysics Data System (ADS)

    Yordanov, N. D.; Aleksieva, K.

    2007-06-01

    The shape and time stability of the electron paramagnetic resonance (EPR) spectra of non- and γ-irradiated papaya, melon, cherry and fig samples dehydrated via osmosis are reported. It is shown that non-irradiated samples are generally EPR silent whereas γ-irradiated exhibit "sugar-like" EPR spectra. The recorded EPR spectra are monitored for a period of 7 months after irradiation (stored at low humidity and in the dark). The results suggest longer period of unambiguous identification of the radiation processing of osmose dehydrated fruits. Therefore, the Protocol EN 13708,2001 issued by CEN is fully applicable for the studied fruit samples.

  9. Technology Equipment Rooms.

    ERIC Educational Resources Information Center

    Day, C. William

    2001-01-01

    Examines telecommunications equipment room design features that allow for growth and can accommodate numerous equipment replacements and upgrades with minimal service disruption and with minimal cost. Considerations involving the central hub, power and lighting needs, air conditioning, and fire protection are discussed. (GR)

  10. Rooms with a View

    ERIC Educational Resources Information Center

    Hourihan, Peter; Berry, Millard, III

    2006-01-01

    When well-designed and integrated into a campus living or learning space, an atrium can function as the heart and spirit of a building, connecting interior rooms and public spaces with the outside environment. However, schools and universities should seek technological and HVAC solutions that maximize energy efficiency. This article discusses how…

  11. Locker-Room Talk.

    ERIC Educational Resources Information Center

    Lowe, Jason; Noyes, Brad

    1999-01-01

    Explains how proper athletic facility locker-room design can save time and money. Design factors that address who will be using the facility are discussed as are user requirements, such as preparation areas, total storage area per user, grooming area, and security areas. Final comments address maintenance and operations issues. (GR)

  12. Making Room for One

    ERIC Educational Resources Information Center

    Silva, Peggy

    2006-01-01

    In this article, the author shares the lesson she learned from her young friend, Mirabel, whose mother was dying. By following the daily path of support taken by Mirabel, she learned that it does not matter whether schools have a hundred kids, a thousand kids, or several thousand kids. Teachers must make sure that they can make room for each one.…

  13. Night Spectra Quest.

    ERIC Educational Resources Information Center

    Jacobs, Stephen

    1995-01-01

    Presents the Night Spectra Quest, a pocket-sized chart that identifies in color the spectra of all the common night lights and has an integrally mounted, holographic diffraction grating to look through. (JRH)

  14. Test Room Stability Plan

    SciTech Connect

    Not Available

    1993-03-01

    This plan documents the combination of designs, installations, programs, and activities that ensures that the underground excavations at the Waste Isolation Pilot Plant (WIPP), in which transuranic (TRU) waste may be emplaced during the Test Phase, will remain sufficiently stable and safe during that time. The current ground support systems installed at the WIPP are the result of over ten years of data collection from hundreds of geomechanical instruments and thousands of hours of direct observation of the changing conditions of the openings. In addition, some of the world`s most respected experts on salt rock mechanics have provided input in the design process and concurrence on the suitability of the final design. The general mine rockbolt pattern and the ground support system for the test rooms are designed to specifically address the fracture and deformation geometries observed today at the WIPP. After an introductory chapter, this plan describes the general underground design, then proceeds to an account of general ground support performance, and finally focuses on the details of the special test room ground support systems. One such system already installed in Room 1, Panel 1, is described in comprehensive detail. Other test rooms in Panel 1, whether full-size or smaller, will be equipped with systems that ensure stability to the same or equivalent extent. They will benefit from the experience gained in the first test room, which in turn benefitted from the data and knowledge accumulated during previous stages (e.g., the Site and Preliminary Design Validation program) of the project.

  15. Clean room wiping cloths

    SciTech Connect

    Harding, W.B.

    1981-01-01

    The suitability of various fabrics for use as clean room wiping cloths was investigated. These fabrics included knit polyester, knit nylon, urethane foam, woven cotton, nonwoven polyester, nonwoven rayon, nonwoven polyethylene and polypropylene, and woven nylon. These materials were tested for detachable lint and fibers, deterioration, and oil content which could leave contaminating films on wiped surfaces. Well-laundered nylon and polyester cloths knitted from filamentary yarn, with hems, were found to be suitable. (LCL)

  16. Reactor irradiation effects on the ultimate tensile and the interlaminar shear strength of carbon fibre reinforced epoxies at 77 K

    NASA Astrophysics Data System (ADS)

    Spießberger, S. M.; Humer, K.; Tschegg, E. K.; Weber, H. W.; Gerstenberg, H.

    A carbon fibre reinforced plastics material (CFRP) `TORAYCA T300 3K', which was developed for various applications, including cryogenics, was irradiated at 5 K and 340 K with different reactor spectra up to a fast neutron fluence of 5×10 22 m -2 ( E>0.1 MeV). All investigations in the interlaminar shear mode as well as the tensile tests were made at 77 K, the samples subjected to 5 K irradiation were measured before and after an annealing cycle (of about one day) to room temperature. Fractographic examinations of the tensile samples were used to examine the complicated fracture process. Both the interlaminar shear strength and the ultimate tensile strength show good radiation resistance at the lowest total absorbed dose (˜5×10 6 Gy), but fail at higher dose levels (˜10 8 Gy).

  17. Neutron Spectra and H*(10) in a 15 MV Linac

    SciTech Connect

    Benites, J.; Vega-Carrillo, H. R.; Hernandez-Davila, V. M.; Rivera, T.; Carrillo, A.; Mondragon, R.

    2010-12-07

    Neutron spectra and the ambient dose equivalent were calculated inside the bunker of a 15 MV Varian linac model CLINAC iX. Calculations were carried out using Monte Carlo methods. Neutron spectra in the vicinity of isocentre show the presence of evaporation and knock-on neutrons produced by the source term, while epithermal and thermal neutron remain constant regardless the distance respect to isocentre, due to room return. Along the maze neutron spectra becomes softer as the detector moves along the maze. The ambient dose equivalent is decreased but do not follow the 1/r{sup 2} rule due to changes in the neutron spectra.

  18. Neutron Spectra and H*(10) in a 15 MV Linac

    NASA Astrophysics Data System (ADS)

    Benites, J.; Vega-Carrillo, H. R.; Hernandez-Davila, V. M.; Rivera, T.; Carrillo, A.; Mondragon, R.

    2010-12-01

    Neutron spectra and the ambient dose equivalent were calculated inside the bunker of a 15 MV Varian linac model CLINAC iX. Calculations were carried out using Monte Carlo methods. Neutron spectra in the vicinity of isocentre show the presence of evaporation and knock-on neutrons produced by the source term, while epithermal and thermal neutron remain constant regardless the distance respect to isocentre, due to room return. Along the maze neutron spectra becomes softer as the detector moves along the maze. The ambient dose equivalent is decreased but do not follow the 1/r2 rule due to changes in the neutron spectra.

  19. DETAIL VIEW OF OPERATIONS MANAGEMENT ROOM, FIRING ROOM NO. 3, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL VIEW OF OPERATIONS MANAGEMENT ROOM, FIRING ROOM NO. 3, FACING SOUTHEAST - Cape Canaveral Air Force Station, Launch Complex 39, Launch Control Center, LCC Road, East of Kennedy Parkway North, Cape Canaveral, Brevard County, FL

  20. DETAIL VIEW OF OPERATIONS MANAGEMENT ROOM, FIRING ROOM NO. 3, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL VIEW OF OPERATIONS MANAGEMENT ROOM, FIRING ROOM NO. 3, FACING EAST - Cape Canaveral Air Force Station, Launch Complex 39, Launch Control Center, LCC Road, East of Kennedy Parkway North, Cape Canaveral, Brevard County, FL

  1. DETAIL VIEW OF OPERATIONS MANAGEMENT ROOM, FIRING ROOM NO. 3, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL VIEW OF OPERATIONS MANAGEMENT ROOM, FIRING ROOM NO. 3, FACING NORTH - Cape Canaveral Air Force Station, Launch Complex 39, Launch Control Center, LCC Road, East of Kennedy Parkway North, Cape Canaveral, Brevard County, FL

  2. DETAIL VIEW OF OPERATIONS MANAGEMENT ROOM, FIRING ROOM NO. 4, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL VIEW OF OPERATIONS MANAGEMENT ROOM, FIRING ROOM NO. 4, FACING WEST - Cape Canaveral Air Force Station, Launch Complex 39, Launch Control Center, LCC Road, East of Kennedy Parkway North, Cape Canaveral, Brevard County, FL

  3. 23. Perimeter acquisition radar building room #202, mechanical equipment room ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    23. Perimeter acquisition radar building room #202, mechanical equipment room no. 2 - Stanley R. Mickelsen Safeguard Complex, Perimeter Acquisition Radar Building, Limited Access Area, between Limited Access Patrol Road & Service Road A, Nekoma, Cavalier County, ND

  4. 8. VIEW OF ROOM 101 (ASSEMBLY ROOM) FROM NORTHEAST CORNER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. VIEW OF ROOM 101 (ASSEMBLY ROOM) FROM NORTHEAST CORNER SHOWING FLEXIBLE AIR-CONDITIONING DUCT - Vandenberg Air Force Base, Space Launch Complex 3, Vehicle Support Building, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  5. INTERIOR VIEW OF A TYPICAL ROOM (ROOM NO. 209), FACING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR VIEW OF A TYPICAL ROOM (ROOM NO. 209), FACING NORTH. THE SINK AND MIRROR MAY HAVE BEEN FROM THE ORIGINAL CONSTRUCTION. - U.S. Naval Base, Pearl Harbor, Bachelor Officer Quarters, Dealy Circle, Pearl City, Honolulu County, HI

  6. MACHINE ROOM FROM DOORWAY TO COMMUNICATIONS ROOM, VIEW FACING SOUTHWEST. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    MACHINE ROOM FROM DOORWAY TO COMMUNICATIONS ROOM, VIEW FACING SOUTHWEST. - Naval Air Station Barbers Point, World War II Command Center, Midway Street east of Lexington Avenue, Ewa, Honolulu County, HI

  7. 24. Perimeter acquisition radar building room #203, communications room ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    24. Perimeter acquisition radar building room #203, communications room - Stanley R. Mickelsen Safeguard Complex, Perimeter Acquisition Radar Building, Limited Access Area, between Limited Access Patrol Road & Service Road A, Nekoma, Cavalier County, ND

  8. Supreme Court Room (room 573), looking westsouthwest (bearing 250). Not ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Supreme Court Room (room 573), looking west-southwest (bearing 250). Not that missing scones are to be returned and presently obscured ceiling is proposed for restoration. - California State Library & Courts Building, 914 Capitol Mall, Sacramento, Sacramento County, CA

  9. Console Room, looking southwesterly into Highbay Generator Room Beale ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Console Room, looking southwesterly into Highbay Generator Room - Beale Air Force Base, Perimeter Acquisition Vehicle Entry Phased-Array Warning System, Power Plant, End of Spencer Paul Road, north of Warren Shingle Road (14th Street), Marysville, Yuba County, CA

  10. 175. STORAGE ROOM, SOUTH WALL OF STORAGE ROOM, ADDED WITH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    175. STORAGE ROOM, SOUTH WALL OF STORAGE ROOM, ADDED WITH ELEVATOR ADDITION OF 1905. WALL IS EXTERIOR OF ORIGINAL WAGON WORKS OF 1883. - Gruber Wagon Works, Pennsylvania Route 183 & State Hill Road at Red Bridge Park, Bernville, Berks County, PA

  11. 13. Interior view of conference room looking into break room ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. Interior view of conference room looking into break room beyond; along west side of upper level; view to southwest. - Ellsworth Air Force Base, Mess Hall & Administration Building, 1301 Ellsworth Street, Blackhawk, Meade County, SD

  12. LOOKING NORTHWEST FROM LIVING ROOM TOWARD DINING ROOM AT LEFT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    LOOKING NORTHWEST FROM LIVING ROOM TOWARD DINING ROOM AT LEFT AND FOYER AT RIGHT - Hamilton Field, Double Non-Commmissioned Officers' Quarters Type C, San Jose & Crescent Drives, Novato, Marin County, CA

  13. FACILITY 809, DINING ROOM WITH LIVING ROOM ON RIGHT, VIEW ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    FACILITY 809, DINING ROOM WITH LIVING ROOM ON RIGHT, VIEW FACING NORTH-NORTHWEST. - Schofield Barracks Military Reservation, Corner-Entry Single-Family Housing Type, Between Hamilton & Tidball Streets, & between Williston & Ayres Avenues, Wahiawa, Honolulu County, HI

  14. FACILITY 713, DINING ROOM WITH LIVING ROOM IN LEFT BACKGROUND, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    FACILITY 713, DINING ROOM WITH LIVING ROOM IN LEFT BACKGROUND, VIEW FACING EAST. - Schofield Barracks Military Reservation, Central-Entry Single-Family Housing Type, Between Bragg & Grime Streets near Ayres Avenue, Wahiawa, Honolulu County, HI

  15. FACILITY 728, LIVING ROOM FROM DINING ROOM, OBLIQUE VIEW FACING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    FACILITY 728, LIVING ROOM FROM DINING ROOM, OBLIQUE VIEW FACING SOUTH. - Schofield Barracks Military Reservation, Corner-Entry Single-Family Housing Type, Between Bragg & Grime Streets near Williston Avenue, Wahiawa, Honolulu County, HI

  16. View from window of southeast room (bed room no. 1), ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View from window of southeast room (bed room no. 1), second floor, commandant's house, looking east across parade ground. - Fort Simcoe, Commandant's House & Blockhouse, Fort Simcoe Road, White Swan, Yakima County, WA

  17. Interior. Storage room for glassware and reference room with frequentlyused ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Interior. Storage room for glassware and reference room with frequently-used chemistry and chemical engineering texts. - Thomas A. Edison Laboratories, Building No. 2, Main Street & Lakeside Avenue, West Orange, Essex County, NJ

  18. Living room toward dining room, bath, and bedroom of south ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Living room toward dining room, bath, and bedroom of south unit - Fitzsimons General Hospital, Civilian Employees' Quarters, North Hickey Street, West side, 150 feet North of intersection of North Hickey Street & West Loosley Avenue, Aurora, Adams County, CO

  19. 7. October 1969 SOUTHWEST ROOM, FIRST FLOOR, 'CAPTAINS' ROOM' (Note: ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. October 1969 SOUTHWEST ROOM, FIRST FLOOR, 'CAPTAINS' ROOM' (Note: Furnace has replaced pot-bellied stove, cribbage board on table) - William Rotch Warehouse, Main & South Water Streets, Nantucket, Nantucket County, MA

  20. [Virtual room of gastroenterology].

    PubMed

    Spinelli, Osvaldo Mateo; Fittipaldi, Mónica Elsa; Henderson, Eduardo; Krabshuis, Justus Hendrik

    2010-12-01

    The amount of published information and its continuing growth can no longer be managed by an individual searcher. One of today's great challenges for the academic researcher and clinician is to find a relevant scientific article using bibliographic search strategies. We aimed to design and build a Virtual Room of Gastroenterology (VRG) generating real-time automated search strategies and producing bibliographic and full text search results. These results update and complement with the latest evidence the Clinical Guideline Program of the World Gastroenterology Organisation. The HTML driven interface provides a series of pre-formulated MeSH based search strategies for each Aula. For each topic between 10 and 20 specific terms, qualifiers and subheadings are identified. The functionality of the VRG is based on the PubMed's characteristic that allows a search strategy to be captured as a web address. The VRG is available in Spanish and English, and the access is free. There are 28 rooms currently available. All together these rooms provide an advanced bibliographic access using more than 900 pre-programmed MeSH driven strategies. In a further very recent development some of the topics of VRG now allow cascade based searches. These searches look at resource sensitive options and possible ethnic difference per topic. The VRG allows significant reductions in time required to design and carry out complex bibliographic searches in the areas of gastroenterology, hepatology and endoscopy. The system updates automatically in real-time thus ensuring the currency of the results. PMID:21381412

  1. [Virtual room of gastroenterology].

    PubMed

    Spinelli, Osvaldo Mateo; Fittipaldi, Mónica Elsa; Henderson, Eduardo; Krabshuis, Justus Hendrik

    2010-12-01

    The amount of published information and its continuing growth can no longer be managed by an individual searcher. One of today's great challenges for the academic researcher and clinician is to find a relevant scientific article using bibliographic search strategies. We aimed to design and build a Virtual Room of Gastroenterology (VRG) generating real-time automated search strategies and producing bibliographic and full text search results. These results update and complement with the latest evidence the Clinical Guideline Program of the World Gastroenterology Organisation. The HTML driven interface provides a series of pre-formulated MeSH based search strategies for each Aula. For each topic between 10 and 20 specific terms, qualifiers and subheadings are identified. The functionality of the VRG is based on the PubMed's characteristic that allows a search strategy to be captured as a web address. The VRG is available in Spanish and English, and the access is free. There are 28 rooms currently available. All together these rooms provide an advanced bibliographic access using more than 900 pre-programmed MeSH driven strategies. In a further very recent development some of the topics of VRG now allow cascade based searches. These searches look at resource sensitive options and possible ethnic difference per topic. The VRG allows significant reductions in time required to design and carry out complex bibliographic searches in the areas of gastroenterology, hepatology and endoscopy. The system updates automatically in real-time thus ensuring the currency of the results.

  2. Free radical kinetics on irradiated fennel

    NASA Astrophysics Data System (ADS)

    Yamaoki, Rumi; Kimura, Shojiro; Ohta, Masatoshi

    2008-09-01

    Herein, an electron spin resonance study on the behavior of organic radicals in fennel before and after irradiation is reported. The spectrum of irradiated fennel composed of the spectrum component derived from the un-irradiated sample (near g=2.005) and the spectra components derived from carbohydrates. The time decay of intensity spectral components was well explained by first-order kinetics with a variety of rate constants. Especially, the signal at near g=2.02 ascribed to stable cellulose-derivative components is expected to be a good indicator in the identification of irradiated plant samples.

  3. Room with a View: Ethical Encounters in Room 13

    ERIC Educational Resources Information Center

    Grube, Vicky

    2012-01-01

    In this article, the author describes ethical encounters in Room 13, a schoolroom where children made what they wanted, posed their own questions, and ran an art room like a small business. In Room 13 children had the responsibility to maintain all aspects of the art studio. Specific decisions fell to an annually elected management team, a small…

  4. Commander's conference room (room 202), closet and hallway to bathroom ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Commander's conference room (room 202), closet and hallway to bathroom and bedroom, leading to conference room 211. Viewing windows look down on the display area. View to north - March Air Force Base, Strategic Air Command, Combat Operations Center, 5220 Riverside Drive, Moreno Valley, Riverside County, CA

  5. Red photoluminescence of living systems at the room temperature : measurements and results

    NASA Astrophysics Data System (ADS)

    Kudryashova, I. S.; Rud, V. Yu; Shpunt, V. Ch; Rud, Yu V.; Glinushkin, A. P.

    2016-08-01

    Presents results of a study of the red luminescence of living plants at room temperature. The analysis of obtained results allows to conclude that the photoluminescence spectra for green leaves in all cases represent the two closely spaced bands.

  6. One Room Schools in Iowa.

    ERIC Educational Resources Information Center

    Ruth, Amy, Ed.

    1994-01-01

    This issue focuses on one-room school houses in Iowa. At one time, almost 14,000 one-room schools dotted Iowa's rural landscape. Articles explore Native American schools of the past and present, segregation of black students, and Amish schools. An article remembering one-room schools describes the early schools from 1830 to 1858, township schools…

  7. Tissue irradiator

    DOEpatents

    Hungate, F.P.; Riemath, W.F.; Bunnell, L.R.

    1975-12-16

    A tissue irradiator is provided for the in-vivo irradiation of body tissue. The irradiator comprises a radiation source material contained and completely encapsulated within vitreous carbon. An embodiment for use as an in- vivo blood irradiator comprises a cylindrical body having an axial bore therethrough. A radioisotope is contained within a first portion of vitreous carbon cylindrically surrounding the axial bore, and a containment portion of vitreous carbon surrounds the radioisotope containing portion, the two portions of vitreous carbon being integrally formed as a single unit. Connecting means are provided at each end of the cylindrical body to permit connections to blood- carrying vessels and to provide for passage of blood through the bore. In a preferred embodiment, the radioisotope is thulium-170 which is present in the irradiator in the form of thulium oxide. A method of producing the preferred blood irradiator is also provided, whereby nonradioactive thulium-169 is dispersed within a polyfurfuryl alcohol resin which is carbonized and fired to form the integral vitreous carbon body and the device is activated by neutron bombardment of the thulium-169 to produce the beta-emitting thulium-170.

  8. Photographic spectra of fireballs

    NASA Astrophysics Data System (ADS)

    Borovička, J.

    2016-01-01

    Two methods of spectroscopy of meteors using image intensified video cameras and classical photographic film cameras are compared. Video cameras provide large number of low resolution spectra of meteors of normal brightness, which can be used for statistical studies. Large format film cameras have been used through the history and provide high resolution spectra, which can be used to derive temperature, density and absolute abundances of various elements in the radiating plasma. The sensitivity of films is, however, low and only spectra of bright meteors (fireballs) can be studied. Examples of photographic fireball spectra are provided.

  9. Spectra of stable sonoluminescence

    NASA Astrophysics Data System (ADS)

    Lewis, Stephen D.

    1992-12-01

    The continuous emission of picosecond pulses of light has been observed to originate from a bubble trapped at the pressure antinode of a resonant sound field in water and in water/glycerin mixtures. The spectra of this light in several solutions has been measured with a scanning monochrometer/photomultiplier detector system. The spectra are broadband and show strong emission in the UV region. A comparison of this measurement to two other independently produced spectra is made. The spectra are also modeled by a blackbody radiation distribution to determine an effective blackbody temperature and a size is deduced as if Sonoluminescence were characterized by blackbody radiation.

  10. Crack spectra analysis

    SciTech Connect

    Tiernan, M.

    1980-09-01

    Crack spectra derived from velocity data have been shown to exhibit systematics which reflect microstructural and textural differences between samples (Warren and Tiernan, 1980). Further research into both properties and information content of crack spectra have yielded the following: Spectral features are reproducible even at low pressures; certain observed spectral features may correspond to non-in-situ crack populations created during sample retrieval; the functional form of a crack spectra may be diagnostic of the sample's grain texture; hysteresis is observed in crack spectra between up and down pressure runs - it may be due to friction between the faces of closed crack populations.

  11. The effect of irradiation temperature on the non-enzymatic browning reaction in cooked rice

    NASA Astrophysics Data System (ADS)

    Lee, Ju-Woon; Oh, Sang-Hee; Kim, Jae-Hun; Byun, Eui-Hong; Ree Kim, Mee; Baek, Min; Byun, Myung-Woo

    2007-05-01

    The effect of irradiation temperature on the non-enzymatic browning reaction in a sugar-glycine solution and cooked rice generated by gamma irradiation was evaluated in the present study. When the sugar-glycine solution and cooked rice were irradiated at room temperature, the browning reaction was dramatically increased during the post-irradiation period. In the case of irradiation at below the freezing point, the browning by irradiation was retarded during not only irradiation but also a post-irradiation period. The changes of the sugar profile, such as a sugar loss or reducing power of the irradiated sugar-glycine solution and the electron spin resonance signal intensity of the irradiated cooked rice were also decreased with lower irradiation temperature. The present results may suggest that the production of free radicals and a radiolysis product is inhibited during gamma irradiation in the frozen state and it may prevent the browning reaction generated by gamma irradiation from occurring.

  12. Effects of irradiation at low temperature on V-4Cr-4Ti

    SciTech Connect

    Alexander, D.J.; Snead, L.L.; Zinkle, S.J.

    1996-10-01

    Irradiation at low temperatures (100 to 275{degrees}C) to 0.5 dpa causes significant embrittlement and changes in the subsequent room temperature tensile properties of V-4Cr-4Ti. The yield strength and microhardness at room temperature increase with increasing irradiation temperature. The tensile flow properties at room temperature show large increases in strength and a complete loss of work hardening capacity with no uniform ductility. Embrittlement, as measured by an increase in the ductile-to-brittle transition temperature, increases with increasing irradiation temperature, at least up to 275{degrees}C. This embrittlement is not due to pickup of O or other interstitial solutes during the irradiation.

  13. Electron spin resonance study of γ-irradiated Anatolian chickpea (Cicer arietinum L.)

    NASA Astrophysics Data System (ADS)

    Ayda, Canan; Engin, B. I. R. O. L.; Polat, Mustafa; Aydin, Talat

    In this study, an electron spin resonance (ESR) investigation on γ-irradiated chickpea cultivated in Turkey is reported in detail. ESR spectra of unirradiated (control) chickpea were composed of an equally spaced sextet originating from the presence of Mn2+ ions and a single weak resonance signal both centered at gD2.0054±0.0006. Although irradiation was found to have no effect on the Mn2+ signals, it caused a noteworthy increase in free radical signal intensity of chickpea in the studied dose range of (0.1-4.5 kGy). In addition, the ESR spectrum of irradiated chickpea recorded at low scan range (10 mT) showed that there were more than one radical species, having different spectral features, contributing to the central resonance signal. From this point of view, we focussed on the free radical signal in the present study. The area under the ESR absorption curve which is related to the free radical concentration was determined from the experimental spectra recorded throughout the study, and its variation with microwave power, radiation dose, storage time and temperature was investigated in detail. Free radical concentration was observed to decay very fast within the first 15 days after the irradiation cessation and little thereafter. At the end of the storage period (60 days), the free radical concentration is still higher than that of the control (unirradiated) sample. The decay of free radical concentration at room and high temperatures were described well by the sum of three second-order decay functions representing three different radical species (A, B and C). The activation energies of these radicals, evaluated by Arrhenius analysis, are in the order EC>EB>EA. Simulation calculations have shown that three radical species (A, B and C) of different spectral parameters were found to best explain the experimental values.

  14. The study of optical property of sapphire irradiated with 73 MeV Ca ions

    NASA Astrophysics Data System (ADS)

    Yang, Yitao; Zhang, Chonghong; Song, Yin; Gou, Jie; Liu, Juan; Xian, Yongqiang

    2015-12-01

    Single crystals of sapphire were irradiated with 73 MeV Ca ions at room temperature to the fluences of 0.1, 0.5 and 1.0 × 1014 ions/cm2. Optical properties of these samples were characterized by ultraviolet-visible spectrometry (UV-VIS) and fluorescence spectrometer (PL). In UV-VIS spectra, it is observed the absorbance bands from oxygen single vacancy (F and F+ color centers) and vacancy pair (F2+ and F22+ color centers). The oxygen single vacancy initially increases rapidly and then does not increase in the fluence range from 0.1 to 0.5 × 1014 ions/cm2. When the fluence is higher than 0.5 × 1014 ions/cm2, oxygen single vacancy starts to increase again. Oxygen vacancy pair increases monotonically with fluence for all irradiated samples. The variation of oxygen single vacancy with fluence is probably associated with the recombination of oxygen vacancies with Al interstitials and complex defect formation (such as vacancy clusters). From PL spectra, two emission bands around 3.1 and 2.34 eV are observed. The PL intensity of the emission band around 3.1 eV decreases for all the irradiated samples. For the emission band around 2.34 eV, the PL intensity initially decreases, and then increases with fluence. Meanwhile, the peak position of the emission band around 2.34 eV gradually shifts to high energy direction with increase of fluence. The decrease of the intensity of the emission bands around 3.1 and 2.34 eV could be induced by stress from the damage layer in the irradiated samples. The shift of peak position for the emission band around 2.34 eV is induced by the appearance of emission band from Al interstitials.

  15. CEBAF Control Room Renovation

    SciTech Connect

    Michael Spata; Thomas Oren

    2005-05-01

    The Machine Control Center at Jefferson Lab's Continuous Electron Beam Accelerator Facility was initially constructed in the early 1990s and based on proven technology of that era. Through our experience over the last 15 years and in our planning for the facilities 12 GeV upgrade we reevaluated the control room environment to capitalize on emerging visualization and display technologies and improve on workflow processes and ergonomic attributes. This effort also sets the foundation for the redevelopment of the accelerator's control system to deliver high reliability performance with improvements in beam specifications management and information flow. The complete renovation was performed over a three-week period with no interruption to beam operations. We present the results of this effort.

  16. CEBAF Control Room Renovation

    SciTech Connect

    Michael Spata; Anthony Cuffe; Thomas Oren

    2005-03-22

    The Machine Control Center (MCC) at Jefferson Lab's Continuous Electron Beam Accelerator Facility (CEBAF) was constructed in the early 1990s and based on proven technology of that era. Through our experience over the last 15 years and in our planning for the facilities 12 GeV upgrade we reevaluated the control room environment to capitalize on emerging visualization and display technologies and improve on work-flow processes and ergonomic attributes. The renovation was performed in two phases during the summer of 2004, with one phase occurring during machine operations and the latter, more extensive phase, occurring during our semi-annual shutdown period. The new facility takes advantage of advances in display technology, analog and video signal management, server technology, ergonomic workspace design, lighting engineering, acoustic ceilings and raised flooring solutions to provide a marked improvement in the overall environment of machine operations.

  17. CEBAF Control Room Renovation

    SciTech Connect

    Michael Spata; Thomas Oren

    2005-05-01

    The Machine Control Center (MCC) at Jefferson Lab's Continuous Electron Beam Accelerator Facility (CEBAF) was initially constructed in the early 1990s and based on proven technology of that era. Through our experience over the last 15 years and in our planning for the facility's 12 GeV upgrade we reevaluated the control room environment to capitalize on emerging visualization and display technologies and improve workflow processes and ergonomic attributes. This effort also sets the foundation for the redevelopment of the accelerator's control system to deliver high reliability performance with improvements in beam specifications management and information flow. The complete renovation was performed over a three-week maintenance period with no interruption to beam operations. We present the results of this effort.

  18. [Pollution of room air].

    PubMed

    Schlatter, J

    1986-01-01

    In the last decade the significance of indoor air pollution to human health has increased because of improved thermal insulation of buildings to save energy: air turnover is reduced and air quality is impaired. The most frequent air pollutants are tobacco smoke, radioactive radon gas emanating from the soil, formaldehyde from furniture and insulation material, nitrogen oxides from gas stoves, as well as solvents from cleaning agents. The most important pollutants leading to health hazards are tobacco smoke and air pollutants which are emitted continuously from building materials and furniture. Such pollutants have to be eliminated by reducing the emission rate. A fresh air supply is necessary to reduce the pollutants resulting from the inhabitants and their activities, the amount depending on the number of inhabitants and the usage of the room. The carbon dioxide level should not exceed 1500 ppm.

  19. Irradiation subassembly

    DOEpatents

    Seim, O.S.; Filewicz, E.C.; Hutter, E.

    1973-10-23

    An irradiation subassembly for use in a nuclear reactor is described which includes a bundle of slender elongated irradiation -capsules or fuel elements enclosed by a coolant tube and having yieldable retaining liner between the irradiation capsules and the coolant tube. For a hexagonal bundle surrounded by a hexagonal tube the yieldable retaining liner may consist either of six segments corresponding to the six sides of the tube or three angular segments each corresponding in two adjacent sides of the tube. The sides of adjacent segments abut and are so cut that metal-tometal contact is retained when the volume enclosed by the retaining liner is varied and Springs are provided for urging the segments toward the center of the tube to hold the capsules in a closely packed configuration. (Official Gazette)

  20. Stochastic annealing simulation of copper under neutron irradiation

    SciTech Connect

    Heinisch, H.L.; Singh, B.N.

    1998-03-01

    This report is a summary of a presentation made at ICFRM-8 on computer simulations of defect accumulation during irradiation of copper to low doses at room temperature. The simulation results are in good agreement with experimental data on defect cluster densities in copper irradiated in RTNS-II.

  1. Action spectra again?

    PubMed

    Coohill, T P

    1991-11-01

    Action spectroscopy has a long history and is of central importance to photobiological studies. Action spectra were among the first assays to point to chlorophyll as the molecule most responsible for plant growth and to DNA as the genetic material. It is useful to construct action spectra early in the investigation of new areas of photobiological research in an attempt to determine the wavelength limits of the radiation region causing the studied response. But due to the severe absorption of ultraviolet (UV) radiation by biological samples, UV action spectra were first limited to small cells (bacteria and fungi). Advances in techniques (e.g. single cell culture) and analysis allowed accurate action spectra to be reported even for mammalian cells. But precise analytical action spectra are often difficult to obtain when large, pigmented, or groups of cells are investigated. Here some action spectra are limited in interpretation and merely supply a wavelength vs effect curve. When polychromatic sources are employed, the interpretation of action spectra is even more complex and formidable. But such polychromatic action spectra can be more directly related to ambient responses. Since precise action spectra usually require the completion of a relatively large number of careful experiments using somewhat sophisticated equipment over a range of at least six wavelengths, they are often not pursued. But they remain central to the elucidation of the effect being studied. The worldwide community has agreed that stratospheric ozone is depleting, with the possibility of a consequent rise in the amount of UV-B (290-320 nm) reaching the earth's surface. It is therefore essential that new action spectra be completed for UV-B effects on a large variety of responses of human, animal, and aquatic plant systems. Combining these action spectra with the known amounts of UV-B reaching the biosphere can give rise to solar UV effectiveness spectra that, in turn, can give rise to estimates

  2. Binaural room simulation

    NASA Technical Reports Server (NTRS)

    Lehnert, H.; Blauert, Jens; Pompetzki, W.

    1991-01-01

    In every-day listening the auditory event perceived by a listener is determined not only by the sound signal that a sound emits but also by a variety of environmental parameters. These parameters are the position, orientation and directional characteristics of the sound source, the listener's position and orientation, the geometrical and acoustical properties of surfaces which affect the sound field and the sound propagation properties of the surrounding fluid. A complete set of these parameters can be called an Acoustic Environment. If the auditory event perceived by a listener is manipulated in such a way that the listener is shifted acoustically into a different acoustic environment without moving himself physically, a Virtual Acoustic Environment has been created. Here, we deal with a special technique to set up nearly arbitrary Virtual Acoustic Environments, the Binaural Room Simulation. The purpose of the Binaural Room Simulation is to compute the binaural impulse response related to a virtual acoustic environment taking into account all parameters mentioned above. One possible way to describe a Virtual Acoustic Environment is the concept of the virtual sound sources. Each of the virtual sources emits a certain signal which is correlated but not necessarily identical with the signal emitted by the direct sound source. If source and receiver are non moving, the acoustic environment becomes a linear time-invariant system. Then, the Binaural Impulse Response from the source to a listener' s eardrums contains all relevant auditory information related to the Virtual Acoustic Environment. Listening into the simulated environment can easily be achieved by convolving the Binaural Impulse Response with dry signals and representing the results via headphones.

  3. Lily Pad Spectra

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The color image on the lower left from the panoramic camera on the Mars Exploration Rover Opportunity shows the 'Lily Pad' bounce-mark area at Meridiani Planum, Mars. This image was acquired on the 3rd sol, or martian day, of Opportunity's mission (Jan.26, 2004). The upper left image is a monochrome (single filter) image from the rover's panoramic camera, showing regions from which spectra were extracted from the 'Lily Pad' area. As noted by the line graph on the right, the green spectra is from the undisturbed surface and the red spectra is from the airbag bounce mark.

  4. ESR detection procedure of irradiated papaya containing high water content

    NASA Astrophysics Data System (ADS)

    Kikuchi, Masahiro; Shimoyama, Yuhei; Ukai, Mitsuko; Kobayashi, Yasuhiko

    2011-05-01

    ESR signals were recorded from irradiated papaya at liquid nitrogen temperature (77 K), and freeze-dried irradiated papaya at room temperature (295 K). Two side peaks from the flesh at the liquid nitrogen temperature indicated a linear dose response for 3-14 days after the γ-irradiation. The line shapes recorded from the freeze-dried specimens were sharper than those at liquid nitrogen temperature.

  5. Irradiated foods

    MedlinePlus

    ... it reduces the risk of food poisoning . Food irradiation is used in many countries. It was first approved in the U.S. to prevent sprouts on white potatoes, and to control insects on wheat and in certain spices and seasonings.

  6. Neutron Spectrum Measurements from Irradiations at NCERC

    SciTech Connect

    Jackman, Kevin Richard; Mosby, Michelle A.; Bredeweg, Todd Allen; Hutchens, Gregory Joe; White, Morgan Curtis

    2015-04-15

    Several irradiations have been conducted on assemblies (COMET/ZEUS and Flattop) at the National Criticality Experiments Research Center (NCERC) located at the Nevada National Security Site (NNSS). Configurations of the assemblies and irradiated materials changed between experiments. Different metallic foils were analyzed using the radioactivation method by gamma-ray spectrometry to understand/characterize the neutron spectra. Results of MCNP calculations are shown. It was concluded that MCNP simulated spectra agree with experimental measurements, with the caveats that some data are limited by statistics at low-energies and some activation foils have low activities.

  7. Thermodynamic analysis of spectra

    SciTech Connect

    Mitchell, G. E.; Shriner, J. F. Jr.

    2008-04-04

    Although random matrix theory had its initial application to neutron resonances, there is a relative scarcity of suitable nuclear data. The primary reason for this is the sensitivity of the standard measures used to evaluate spectra--the spectra must be essential pure (no state with a different symmetry) and complete (no states missing). Additional measures that are less sensitive to these experimental limitations are of significant value. The standard measure for long range order is the {delta}{sub 3} statistic. In the original paper that introduced this statistic, Dyson and Mehta also attempted to evaluate spectra with thermodynamic variables obtained from the circular orthogonal ensemble. We consider the thermodynamic 'internal energy' and evaluate its sensitivity to experimental limitations such as missing and spurious levels. Monte Carlo simulations suggest that the internal energy is less sensitive to mistakes than is {delta}{sub 3}, and thus the internal energy can serve as a addition to the tool kit for evaluating experimental spectra.

  8. 16. Perimeter acquisition radar building room #102, electrical equipment room; ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. Perimeter acquisition radar building room #102, electrical equipment room; the prime power distribution system. Excellent example of endulum-types shock isolation. The grey cabinet and barrel assemble is part of the polychlorinated biphenyl (PCB) retrofill project - Stanley R. Mickelsen Safeguard Complex, Perimeter Acquisition Radar Building, Limited Access Area, between Limited Access Patrol Road & Service Road A, Nekoma, Cavalier County, ND

  9. 37. DINING ROOM FROM BALCONY. THE DINING ROOM ROOF IS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    37. DINING ROOM FROM BALCONY. THE DINING ROOM ROOF IS SUPPORTED BY A SCISSOR TRUSS SYSTEM REINFORCED WITH TURNBUCKLE IRON RODS AND GUSSET PLATES (NOTE: THIS SYSTEM DIFFERS FROM THE LOBBY). - Old Faithful Inn, 900' northeast of Snowlodge & 1050' west of Old Faithful Lodge, Lake, Teton County, WY

  10. 10. CONTROL ROOM INTERIOR. Looking into southwest corner. CONTROL ROOM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. CONTROL ROOM INTERIOR. Looking into southwest corner. CONTROL ROOM INTERIOR, SHOWING ESCAPE HATCH. Looking north along east wall. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Instrumentation & Control Building, Test Area 1-115, northwest end of Saturn Boulevard, Boron, Kern County, CA

  11. 2. ENGINE ROOM AND CHIPPY ENGINE ROOM OF THE DIAMOND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. ENGINE ROOM AND CHIPPY ENGINE ROOM OF THE DIAMOND MINE, LOOKING NORTH. THE MAIN HOIST USED A FLAT CABLE, WHICH WAS SCRAPPED IN THE 1950s. THE ORIGINAL DIXON CABLE STILL EXISTS IN THE CHIPPY HOIST HOUSE. - Butte Mineyards, Diamond Mine, Butte, Silver Bow County, MT

  12. From living room through french doors toward room in southeast ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    From living room through french doors toward room in southeast corner of south unit - Fitzsimons General Hospital, Civilian Employees' Quarters, North Hickey Street, West side, 150 feet North of intersection of North Hickey Street & West Loosley Avenue, Aurora, Adams County, CO

  13. 38. NORTHEAST ROOM, SECOND FLOOR, SOUTH WALL. ROOM COMPLETELY WALLED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    38. NORTHEAST ROOM, SECOND FLOOR, SOUTH WALL. ROOM COMPLETELY WALLED WITH RANDOM WIDTH BOARDS WHICH WERE PAPERED OR PLASTERED OVER. THIS WAS TYPICAL THROUGHOUT HOUSE EXCEPT FOR WOOD PANELED WALLS - John Mark Verdier House, 801 Bay & Scott Streets, Beaufort, Beaufort County, SC

  14. 16. Bus Room (also known as Switch Gear Room), view ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. Bus Room (also known as Switch Gear Room), view to the southeast. An air circuit breaker compressor (visible in photograph number 2) was once attached to the main bus relay visible in the background of the photograph. - Washington Water Power Clark Fork River Cabinet Gorge Hydroelectric Development, Powerhouse, North Bank of Clark Fork River at Cabinet Gorge, Cabinet, Bonner County, ID

  15. 49. Machinery rooms on north tower. Facing north. Machinery rooms ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    49. Machinery rooms on north tower. Facing north. Machinery rooms contain all motors, motor controllers, and gears for operating one span, in this case, the north span. Note bell with continuous operating clapper for use as fog signals. - Henry Ford Bridge, Spanning Cerritos Channel, Los Angeles-Long Beach Harbor, Los Angeles, Los Angeles County, CA

  16. LIVING ROOM WITH THE SLIDING DOORS TO DINING ROOM ON ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    LIVING ROOM WITH THE SLIDING DOORS TO DINING ROOM ON THE LEFT. SHOWING THE WOOD GRILLE TO THE FOYER. VIEW FACING SOUTHEAST - Camp H.M. Smith and Navy Public Works Center Manana Title VII (Capehart) Housing, U-Shaped Two-Bedroom Duplex Type 1, Acacia Road, Birch Circle, and Cedar Drive, Pearl City, Honolulu County, HI

  17. 17. Perimeter acquisition radar building room #105, mechanical equipment room ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. Perimeter acquisition radar building room #105, mechanical equipment room no. 1; sign reads: Heat exchangers (shell and tube type). Provide precise temperature control of water for cooling critical electronic equipment - Stanley R. Mickelsen Safeguard Complex, Perimeter Acquisition Radar Building, Limited Access Area, between Limited Access Patrol Road & Service Road A, Nekoma, Cavalier County, ND

  18. The local environment of Cr3+ impurities in normal and x-rays irradiated carbon doped ruby: An electron paramagnetic resonance (EPR) study

    NASA Astrophysics Data System (ADS)

    Kazan, S.; Açıkgöz, M.; Yalçın, O.

    2015-01-01

    Local environment of substitutional paramagnetic point defect (impurity) in normal and x-ray irradiated commercially available α-Al2O3:C samples (commercial product of Landauer, Inc.) has been studied by using the electron paramagnetic resonance (EPR) technique at room temperature. In both samples the EPR spectra showed strongly angular dependent behavior. The zero-field splitting (ZFS) parameters (ZFSPs) have been determined for substitutional Cr3+ centers. The observed additional EPR signals for x-ray irradiated sample were attributed to another center with different spin Hamiltonian (SH) parameters. In addition to the experimental findings, the ZFSPs and the local structure of the Cr3+ ions were theoretically determined using superposition model (SPM) calculations.

  19. Optical waveguide properties of Ca0.4Ba0.6Nb2O6 crystal formed by oxygen ion irradiation

    NASA Astrophysics Data System (ADS)

    Wang, Tie-Jun; Zhou, Yu-Fan; Yu, Xiao-Fei; Liu, Tao; Zhang, Lian; Song, Hong-Lian; Qiao, Mei; Wang, Xue-Lin

    2015-07-01

    We report the fabrication of a planar optical waveguide in a Ca0.4Ba0.6Nb2O6 crystal by irradiation with 6.0 MeV oxygen ions. We measured the guiding mode by the prism-coupling method at 633 nm and 1539 nm. The near-field intensity distributions were measured by the end-face coupling setup at a wavelength of 633 nm. The reflectivity calculation method (RCM) was used for reconstructing refractive index profiles. SRIM was used to simulate the electronic and nuclear stopping power caused by oxygen ion irradiation, and the finite-difference beam propagation method (FD-BPM) was used to simulate the near-field intensity distributions. Micro-Raman spectra were measured at room temperature in air to study the differences between the substrate and waveguide region.

  20. The effects of high energy electron beam irradiation on the thermal and structural properties of low density polyethylene

    NASA Astrophysics Data System (ADS)

    Murray, Kieran A.; Kennedy, James E.; McEvoy, Brian; Vrain, Olivier; Ryan, Damien; Higginbotham, Clement L.

    2012-08-01

    Radiation is currently being exploited to modify polyethylene in order to improve properties for various applications such as hip replacements. This paper thoroughly examines the effects of high energy electron beam irradiation (10 MeV) on low density polyethylene (LDPE) material. ASTM (American Society for Testing and Materials) testing specimens were manufactured from LDPE and subjected to a broad range of doses ranging between 25 and 400 kGy at room temperature in an air atmosphere. Extensive characterisation techniques such as modulated differential scanning calorimetry (MDSC) and the Fourier transform infrared spectroscopy (FTIR) were conducted on the non-irradiated and irradiated samples. While considering the semicrystalline nature of LDPE during the MDSC experiment, the melting temperature (Tm) and the temperature crystallinity (Tc) were calculated. This revealed that the Tm and the Tc decreased in temperature as the irradiation dose increased. The FTIR analysis was implemented to evaluate the presence of polar species such as carbonyl groups and trans-vinylene double bond groups. The IR spectra illustrated that the concentration of characteristic bands for trans-vinylene bonds increased with increasing radiation dose indicating the formation of carbonyl bond groups. Furthermore, the results demonstrated an occurrence of oxidative degradation due to the formation of carbonyl groups at 1718 cm-1.

  1. Room temperature polyesterification

    SciTech Connect

    Moore, J.S.; Stupp, S.I. . Dept. of Materials Science and Engineering)

    1990-01-01

    A new room temperature polymerization method has been developed for the synthesis of high molecular weight polyesters directly from carboxylic acids and phenols. The solution polymerization reaction proceeds under mild conditions, near neutral pH, and also avoids the use of preactivated acid derivatives for esterification. The reaction is useful in the preparation of isoregic ordered chains with translational polar symmetry and also in the polymerization of functionalized or chiral monomers. The conditions required for polymerization in the carbodiimide-based reaction included catalysis by the 1:1 molecular complex formed by 4-(dimethylamino)pyridine and p-toluenesulfonic acid. These conditions were established through studies on a model system involving esterification of p-toluic acid and p-cresol. Self-condensation of several hydroxy acid monomers by this reaction has produced routinely good yields of polyesters with molecular weights greater than 15,000. It is believed that the high extents of reaction required for significant degrees of polymerization result from suppression of the side reaction leading to N-acylurea. The utility of this reaction in the formation of polar chains from sensitive monomers is demonstrated hereby the polycondensation of a chiral hydroxy acid.

  2. Metallic Li colloids studied by Li-7 MAS NMR in electron-irradiated LiF

    NASA Astrophysics Data System (ADS)

    Zogal, O. J.; Beuneu, F.; Vajda, P.; Florian, P.; Massiot, D.

    Li-7 MAS NMR spectra of 2.5 MeV electron-irradiated LiF crystals have been measured in a field of 9.4 T. Besides the resonance line of the ionic compound, a second well-separated spectrum is observed in the region of the Knight shift value for metallic lithium. At room temperature, the latter can be decomposed into two components with different Knight shift and linewidth values. When the temperature is increased, line narrowing takes place at first, indicating shortening of correlation times for self-diffusion, independently in both components. Above 370 K, both lines broaden and approach each other before collapsing into a single line. The high ppm component disappears after crossing the melting temperature of metallic lithium (454 K). The two lines are attributed to different types of metallic Li: one to bulk-like metal, the other to Li present initially under pressure and relaxing to the former under thermal treatment.

  3. Optical properties of gamma irradiated soda-lime silicate glasses exchanged with copper

    NASA Astrophysics Data System (ADS)

    Macalik, B.

    2003-01-01

    The effect of copper ion exchange upon the optical absorption and room temperature gamma colouration of soda lime silicate glasses has been investigated. After ion exchange performed at 720 K, copper ions substitute mainly the alkali ions and do modify the optical absorption spectra of the specimens. It has been shown that gamma irradiation does not induce the formation of colloidal copper. Moreover, the colouration process itself is independent of the presence of copper ions. The generated colour centres are rather related to the presence of sodium and potassium ions. The optical bleaching by the UV light occurs in two stages. First disappear centres related to the Na-type defects and next those related to the K-type defects.

  4. EMR Study and DFT-Assisted Identification of Transient Radicals in X-Irradiated Crystalline Sucrose.

    PubMed

    Kusakovskij, Jevgenij; Callens, Freddy; Vrielinck, Henk

    2015-06-01

    Solid-state sucrose is a well-known dosimetric system, which is capable of reliable dose estimates only at a considerable time after exposure. Immediately after irradiation at room temperature, its electron paramagnetic resonance (EPR) spectrum is dominated by contributions from unstable radicals, which are studied here using continuous-wave EPR and electron-nuclear double resonance (ENDOR) spectroscopy. Four hyperfine tensors of proton couplings were determined, associated with two radical species, and subsequently compared to density functional theory calculation results, which led to the identification of the species with lower abundance (U2) as a radical formed by a H abstraction from C4. The more abundant center (U1) has not been definitively identified yet, but we present compelling evidence that it should be a C6 centered radical. Comparison of the simulated EPR spectra with all available data to the experimental ones suggests that the EPR spectrum of X-irradiated sucrose immediately after irradiation can now be almost entirely understood. PMID:25973579

  5. Infrared spectroscopy study of irradiated PVDF

    SciTech Connect

    Chappa, Veronica; Grosso, Mariela del; Garcia Bermudez, Gerardo; Behar, Moni

    2007-10-26

    The effects induced by 1 MeV/amu ion irradiations were compared to those induced by 4-12 MeV/amu irradiations. Structural analysis with infrared spectroscopy (FTIR) was carried out on PVDF irradiated using C and He beams with different fluences. From these spectra it was observed, as a function of fluence, an overall destruction of the polymer, amorphization of the crystalline regions and the creation of in-chain unsaturations. The track dimensions were determined using a previously developed Monte Carlo simulation code and these results were compared to a semiempirical model.

  6. Infrared spectra of FHF - in alkali halides

    NASA Astrophysics Data System (ADS)

    Chunnilall, C. J.; Sherman, W. F.

    1982-03-01

    The bifluoride ion, FHF -, has been substitutionally isolated within single crystal samples of several different alkali halides. Infrared spectra of these crystals have been studied for sample temperatures down to 8K when half-bandwidths of less than 1 cm -1 have been observed. (Note that at room temperature ν 3 is observed to have a half-bandwidth of about 40 cm -1). The frequency shifts and half-bandwidth changes caused by cooling are considered together with the frequency shifts caused by pressures up to 10 k bar. The low temperature spectra clearly indicate that FHF - is a linear symmetrical ion when substitutionally isolated within alkali halides of either the NaCl or CsCl structure.

  7. Neutron Spectra in a 15 MV LINAC

    SciTech Connect

    Vega-Carrillo, H. R.; Chu, Wei-Han; Tung, Chuan-Jong; Lan, Jen-Hong

    2010-12-07

    Neutron spectra were calculated inside the treatment hall of a 15 MV LINAC, calculations were carried out using Monte Carlo methods. With a Bonner sphere spectrometer with pairs of thermoluminiscent dosimeters the neutron spectrum at 100 cm from the isocenter was measured and compared with the calculated spectrum. All the spectra in the treatment hall show the presence of evaporation and knock-on neutrons; also the room-return due to the hall features is shown. In the maze the large contribution are due to epithermal and thermal neutrons. A good agreement between the calculated and measured spectrum at 100 cm was noticed, from this comparison the differences are attributed to the water content in the concrete of the hall.

  8. Microstructure evolution during helium irradiation and post-irradiation annealing in a nanostructured reduced activation steel

    NASA Astrophysics Data System (ADS)

    Liu, W. B.; Ji, Y. Z.; Tan, P. K.; Zhang, C.; He, C. H.; Yang, Z. G.

    2016-10-01

    Severe plastic deformation, intense single-beam He-ion irradiation and post-irradiation annealing were performed on a nanostructured reduced activation ferritic/martensitic (RAFM) steel to investigate the effect of grain boundaries (GBs) on its microstructure evolution during these processes. A surface layer with a depth-dependent nanocrystalline (NC) microstructure was prepared in the RAFM steel using surface mechanical attrition treatment (SMAT). Microstructure evolution after helium (He) irradiation (24.8 dpa) at room temperature and after post-irradiation annealing was investigated using Transmission Electron Microscopy (TEM). Experimental observation shows that GBs play an important role during both the irradiation and the post-irradiation annealing process. He bubbles are preferentially trapped at GBs/interfaces during irradiation and cavities with large sizes are also preferentially trapped at GBs/interfaces during post-irradiation annealing, but void denuded zones (VDZs) near GBs could not be unambiguously observed. Compared with cavities at GBs and within larger grains, cavities with smaller size and higher density are found in smaller grains. The average size of cavities increases rapidly with the increase of time during post-irradiation annealing at 823 K. Cavities with a large size are observed just after annealing for 5 min, although many of the cavities with small sizes also exist after annealing for 240 min. The potential mechanism of cavity growth behavior during post-irradiation annealing is also discussed.

  9. Multivariate classification of infrared spectra of cell and tissue samples

    DOEpatents

    Haaland, David M.; Jones, Howland D. T.; Thomas, Edward V.

    1997-01-01

    Multivariate classification techniques are applied to spectra from cell and tissue samples irradiated with infrared radiation to determine if the samples are normal or abnormal (cancerous). Mid and near infrared radiation can be used for in vivo and in vitro classifications using at least different wavelengths.

  10. Investigations of Cadmium Manganese Telluride Crystals for Room-Temperature Radiation Detection

    SciTech Connect

    Yang, G.; Bolotnikov, A.; Camarda, G.; Cui, Y.; Hossain, A.; Kim, K.; Carcelen, V.; Gul, R.; James, R.

    2009-10-06

    Cadmium manganese telluride (CMT) has high potential as a material for room-temperature nuclear-radiation detectors. We investigated indium-doped CMT crystals taken from the stable growth region of the ingot, and compared its characteristics with that from the last-to-freeze region. We employed different techniques, including synchrotron white-beam X-ray topography (SWBXT), current-voltage (I-V) measurements, and low-temperature photoluminescence spectra, and we also assessed their responses as detectors to irradiation exposure. The crystal from the stable growth region proved superior to that from the last-to-freeze region; it is a single-grain crystal, free of twins, and displayed a resistivity higher by two orders-of-magnitude. The segregation of indium dopant in the ingot might be responsible for its better resistivity. Furthermore, we recorded a good response in the detector fabricated from the crystal taken from the stable growth region; its ({mu}{tau}){sub e} value was 2.6 x 10{sup -3} cm{sup 2}/V, which is acceptable for thin detectors, including for applications in medicine.

  11. Mechanical properties of acellular mouse lungs after sterilization by gamma irradiation.

    PubMed

    Uriarte, Juan J; Nonaka, Paula N; Campillo, Noelia; Palma, Renata K; Melo, Esther; de Oliveira, Luis V F; Navajas, Daniel; Farré, Ramon

    2014-12-01

    Lung bioengineering using decellularized organ scaffolds is a potential alternative for lung transplantation. Clinical application will require donor scaffold sterilization. As gamma-irradiation is a conventional method for sterilizing tissue preparations for clinical application, the aim of this study was to evaluate the effects of lung scaffold sterilization by gamma irradiation on the mechanical properties of the acellular lung when subjected to the artificial ventilation maneuvers typical within bioreactors. Twenty-six mouse lungs were decellularized by a sodium dodecyl sulfate detergent protocol. Eight lungs were used as controls and 18 of them were submitted to a 31kGy gamma irradiation sterilization process (9 kept frozen in dry ice and 9 at room temperature). Mechanical properties of acellular lungs were measured before and after irradiation. Lung resistance (RL) and elastance (EL) were computed by linear regression fitting of recorded signals during mechanical ventilation (tracheal pressure, flow and volume). Static (Est) and dynamic (Edyn) elastances were obtained by the end-inspiratory occlusion method. After irradiation lungs presented higher values of resistance and elastance than before irradiation: RL increased by 41.1% (room temperature irradiation) and 32.8% (frozen irradiation) and EL increased by 41.8% (room temperature irradiation) and 31.8% (frozen irradiation). Similar increases were induced by irradiation in Est and Edyn. Scanning electron microscopy showed slight structural changes after irradiation, particularly those kept frozen. Sterilization by gamma irradiation at a conventional dose to ensure sterilization modifies acellular lung mechanics, with potential implications for lung bioengineering. PMID:25241281

  12. In situ ion irradiation of zirconium carbide

    NASA Astrophysics Data System (ADS)

    Ulmer, Christopher J.; Motta, Arthur T.; Kirk, Mark A.

    2015-11-01

    Zirconium carbide (ZrC) is a candidate material for use in one of the layers of TRISO coated fuel particles to be used in the Generation IV high-temperature, gas-cooled reactor, and thus it is necessary to study the effects of radiation damage on its structure. The microstructural evolution of ZrCx under irradiation was studied in situ using the Intermediate Voltage Electron Microscope (IVEM) at Argonne National Laboratory. Samples of nominal stoichiometries ZrC0.8 and ZrC0.9 were irradiated in situ using 1 MeV Kr2+ ions at various irradiation temperatures (T = 20 K-1073 K). In situ experiments made it possible to continuously follow the evolution of the microstructure during irradiation using diffraction contrast imaging. Images and diffraction patterns were systematically recorded at selected dose points. After a threshold dose during irradiations conducted at room temperature and below, black-dot defects were observed which accumulated until saturation. Once created, the defect clusters did not move or get destroyed during irradiation so that at the final dose the low temperature microstructure consisted only of a saturation density of small defect clusters. No long-range migration of the visible defects or dynamic defect creation and elimination were observed during irradiation, but some coarsening of the microstructure with the formation of dislocation loops was observed at higher temperatures. The irradiated microstructure was found to be only weakly dependent on the stoichiometry.

  13. Amorphization and dynamic annealing of hexagonal SiC upon heavy-ion irradiation: Effects on swelling and mechanical properties

    NASA Astrophysics Data System (ADS)

    Kerbiriou, Xavier; Costantini, Jean-Marc; Sauzay, Maxime; Sorieul, Stéphanie; Thomé, Lionel; Jagielski, Jacek; Grob, Jean-Jacques

    2009-04-01

    Structural, mechanical, and dimensional evolutions of silicon carbide (SiC) induced by heavy-ion irradiations are studied by means of Rutherford backscattering spectrometry and channeling (RBS/C), nanoindentation, and surface profilometry measurements. 4H- and 6H-SiC single crystals were irradiated with 4 MeV Au2+ and 4 MeV Xe+ ions at room temperature (RT) or 400 °C. Using a Monte Carlo program to simulate the RBS/C spectra (MCCHASY code), we find that Au ion irradiation at RT induces a total silicon sublattice disorder related to full amorphization at a dose of about 0.4 displacement per atom (dpa). A two-step damage process is found on the basis of the disordered fractions deduced from RBS/C data. Complete amorphization cannot be reached upon both Au and Xe ion irradiations at 400 °C up to about 26 dpa because of the dynamic annealing of defects. When complete amorphization is reached at RT, the Young's modulus and Berkovich hardness of irradiated 6H-SiC samples are lower by, respectively, 40% and 45% than those of the virgin crystals. The out-of-plane expansion measured by surface profilometry increases versus irradiation dose and the saturation value measured in the completely amorphous layer (normalized to the ion projected range) is close to 25%. We show that the modifications of the macroscopic properties are mainly due to the amorphization of the material. The macroscopic elasticity constants and dimensional properties are predicted for a composite material made of crystalline matrix containing dispersed amorphous inclusions using simple analytical homogenization models. Voigt's model seems to give the best approximation for disordered fractions larger than 20% in the second step of the damage process.

  14. Amorphization and dynamic annealing of hexagonal SiC upon heavy-ion irradiation: Effects on swelling and mechanical properties

    SciTech Connect

    Kerbiriou, Xavier; Costantini, Jean-Marc; Sauzay, Maxime; Sorieul, Stephanie; Thome, Lionel

    2009-04-01

    Structural, mechanical, and dimensional evolutions of silicon carbide (SiC) induced by heavy-ion irradiations are studied by means of Rutherford backscattering spectrometry and channeling (RBS/C), nanoindentation, and surface profilometry measurements. 4H- and 6H-SiC single crystals were irradiated with 4 MeV Au{sup 2+} and 4 MeV Xe{sup +} ions at room temperature (RT) or 400 deg. C. Using a Monte Carlo program to simulate the RBS/C spectra (MCCHASY code), we find that Au ion irradiation at RT induces a total silicon sublattice disorder related to full amorphization at a dose of about 0.4 displacement per atom (dpa). A two-step damage process is found on the basis of the disordered fractions deduced from RBS/C data. Complete amorphization cannot be reached upon both Au and Xe ion irradiations at 400 deg. C up to about 26 dpa because of the dynamic annealing of defects. When complete amorphization is reached at RT, the Young's modulus and Berkovich hardness of irradiated 6H-SiC samples are lower by, respectively, 40% and 45% than those of the virgin crystals. The out-of-plane expansion measured by surface profilometry increases versus irradiation dose and the saturation value measured in the completely amorphous layer (normalized to the ion projected range) is close to 25%. We show that the modifications of the macroscopic properties are mainly due to the amorphization of the material. The macroscopic elasticity constants and dimensional properties are predicted for a composite material made of crystalline matrix containing dispersed amorphous inclusions using simple analytical homogenization models. Voigt's model seems to give the best approximation for disordered fractions larger than 20% in the second step of the damage process.

  15. Atomic Spectra Database (ASD)

    National Institute of Standards and Technology Data Gateway

    SRD 78 NIST Atomic Spectra Database (ASD) (Web, free access)   This database provides access and search capability for NIST critically evaluated data on atomic energy levels, wavelengths, and transition probabilities that are reasonably up-to-date. The NIST Atomic Spectroscopy Data Center has carried out these critical compilations.

  16. 32 CFR 518.9 - Reading room.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 3 2012-07-01 2009-07-01 true Reading room. 518.9 Section 518.9 National... RELATIONS THE FREEDOM OF INFORMATION ACT PROGRAM FOIA Reading Rooms § 518.9 Reading room. (a) Reading room... the records described, DA may elect to place other records in their reading room, and also make...

  17. 32 CFR 518.9 - Reading room.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 3 2014-07-01 2014-07-01 false Reading room. 518.9 Section 518.9 National... RELATIONS THE FREEDOM OF INFORMATION ACT PROGRAM FOIA Reading Rooms § 518.9 Reading room. (a) Reading room... the records described, DA may elect to place other records in their reading room, and also make...

  18. 32 CFR 518.9 - Reading room.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 3 2013-07-01 2013-07-01 false Reading room. 518.9 Section 518.9 National... RELATIONS THE FREEDOM OF INFORMATION ACT PROGRAM FOIA Reading Rooms § 518.9 Reading room. (a) Reading room... the records described, DA may elect to place other records in their reading room, and also make...

  19. 32 CFR 518.9 - Reading room.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 3 2011-07-01 2009-07-01 true Reading room. 518.9 Section 518.9 National... RELATIONS THE FREEDOM OF INFORMATION ACT PROGRAM FOIA Reading Rooms § 518.9 Reading room. (a) Reading room... the records described, DA may elect to place other records in their reading room, and also make...

  20. Thermoluminescence properties of irradiated chickpea and corn

    NASA Astrophysics Data System (ADS)

    Necmeddin Yazici, A.; Bedir, Metin; Bozkurt, Halil; Bozkurt, Hüseyin

    2008-02-01

    A study was carried out to establish a detection method for irradiated chickpea and corn by thermoluminescence (TL) method. The leguminous were packed in polyethylene bags and then the packets were irradiated at room temperature at different doses by 60Co gamma source at 1, 4, 8 and 10 kGy. Minerals extracted from the leguminous were deposited onto a clean aluminum disc and TL intensities of the minerals were measured by TL. It was observed that the extracted samples from both leguminous exhibit good TL Intensity and the TL intensity of glow curves of them increased proportionally to irradiation doses. The TL glow curve of both irradiated leguminous presents a single broad peak below 400 °C. The TL trapping parameters glow peaks were estimated by the additive dose (AD), Tm(Ea)-Tstop and computerized glow curve deconvolution (CGCD) methods. The fading characteristics of glow curves were also recorded up to 6 months.

  1. Nuclear reactor control room construction

    DOEpatents

    Lamuro, Robert C.; Orr, Richard

    1993-01-01

    A control room 10 for a nuclear plant is disclosed. In the control room, objects 12, 20, 22, 26, 30 are no less than four inches from walls 10.2. A ceiling 32 contains cooling fins 35 that extend downwards toward the floor from metal plates 34. A concrete slab 33 is poured over the plates. Studs 36 are welded to the plates and are encased in the concrete.

  2. Nuclear reactor control room construction

    DOEpatents

    Lamuro, R.C.; Orr, R.

    1993-11-16

    A control room for a nuclear plant is disclosed. In the control room, objects labelled 12, 20, 22, 26, 30 in the drawing are no less than four inches from walls labelled 10.2. A ceiling contains cooling fins that extend downwards toward the floor from metal plates. A concrete slab is poured over the plates. Studs are welded to the plates and are encased in the concrete. 6 figures.

  3. Early Damage Mechanisms in Nuclear Grade Graphite under Irradiation

    SciTech Connect

    Eapen, Dr. Jacob; Krishna, Dr Ram; Burchell, Timothy D; Murty, Prof K.L.

    2014-01-01

    Using Raman and X-ray photoelectron spectroscopy,we delineate the bond and defect structures in nuclear block graphite (NBG-18) under neutron and ion irradiation. The strengthening of the defect (D) peak in the Raman spectra under irradiation is attributed to an increase in the topological, sp2-hybridized defects. Using transmission electron microscopy, we provide evidence for prismatic dislocations as well as a number of basal dislocations dissociating into Shockley partials. The non-vanishing D peak in the Raman spectra, together with a generous number of dislocations, even at low irradiation doses, indicates a dislocation-mediated amorphization process in graphite.

  4. Comparison of Deuterium Retention for Ion-irradiated and Neutron-irradiated Tungsten

    SciTech Connect

    Yasuhisa Oya; Masashi Shimada; Makoto Kobayashi; Takuji Oda; Masanori Hara; Hideo Watanabe; Yuji Hatano; Pattrick Calderoni; Kenji Okuno

    2011-12-01

    The behavior of D retention for Fe{sup 2+}-irradiated tungsten with a damage of 0.025-3 dpa was compared with that for neutron-irradiated tungsten with 0.025 dpa. The D{sub 2} thermal desorption spectroscopy (TDS) spectra for Fe{sup 2+}-irradiated tungsten consisted of two desorption stages at 450 and 550 K, while that for neutron-irradiated tungsten was composed of three stages and an addition desorption stage was found at 750 K. The desorption rate of the major desorption stage at 550K increased as the displacement damage increased due to Fe{sup 2+} irradiation increasing. In addition, the first desorption stage at 450K was found only for damaged samples. Therefore, the second stage would be based on intrinsic defects or vacancy produced by Fe{sup 2+} irradiation, and the first stage should be the accumulation of D in mono-vacancy and the activation energy would be relatively reduced, where the dislocation loop and vacancy is produced. The third one was found only for neutron irradiation, showing the D trapping by a void or vacancy cluster, and the diffusion effect is also contributed to by the high full-width at half-maximum of the TDS spectrum. Therefore, it can be said that the D{sub 2} TDS spectra for Fe{sup 2+}-irradiated tungsten cannot represent that for the neutron-irradiated one, indicating that the deuterium trapping and desorption mechanism for neutron-irradiated tungsten is different from that for the ion-irradiated one.

  5. The 'Room within a Room' Concept for Monitored Warhead Dismantlement

    SciTech Connect

    Tanner, Jennifer E.; Benz, Jacob M.; White, Helen; McOmish, Sarah; Allen, Keir; Tolk, Keith; Weeks, George E.

    2014-12-01

    Over the past 10 years, US and UK experts have engaged in a technical collaboration with the aim of improving scientific and technological abilities in support of potential future nuclear arms control and non-proliferation agreements. In 2011 a monitored dismantlement exercise provided an opportunity to develop and test potential monitoring technologies and approaches. The exercise followed a simulated nuclear object through a dismantlement process and looked to explore, with a level of realism, issues surrounding device and material monitoring, chain of custody, authentication and certification of equipment, data management and managed access. This paper focuses on the development and deployment of the ‘room-within-a-room’ system, which was designed to maintain chain of custody during disassembly operations. A key challenge for any verification regime operating within a nuclear weapon complex is to provide the monitoring party with the opportunity to gather sufficient evidence, whilst protecting sensitive or proliferative information held by the host. The requirement to address both monitoring and host party concerns led to a dual function design which: • Created a controlled boundary around the disassembly process area which could provide evidence of unauthorised diversion activities. • Shielded sensitive disassembly operations from monitoring party observation. The deployed room-within-a-room was an integrated system which combined a number of chain of custody technologies (i.e. cameras, tamper indicating panels and enclosures, seals, unique identifiers and radiation portals) and supporting deployment procedures. This paper discusses the bounding aims and constraints identified by the monitoring and host parties with respect to the disassembly phase, the design of the room-within-a-room system, lessons learned during deployment, conclusions and potential areas of future work. Overall it was agreed that the room-within-a-room approach was effective but

  6. Spectral measurements of asymmetrically irradiated capsule backlighters

    NASA Astrophysics Data System (ADS)

    Keiter, P. A.; Drake, R. P.

    2016-11-01

    Capsule backlighters provide a quasi-continuum x-ray spectrum over a wide range of photon energies [J. F. Hansen et al., Rev. Sci. Instrum. 79, 013504 (2008)]. Ideally one irradiates the capsule backlighter symmetrically, however, in complex experimental geometries, this is not always possible. In recent experiments we irradiated capsule backlighters asymmetrically and measured the x-ray spectrum from multiple directions. We will present time-integrated spectra over the photon energy range of 2-13 keV and time-resolved spectra over the photon energy range of 2-3 keV. We will compare the spectra from different lines of sight to determine if the laser asymmetry results in an angular dependence in the x-ray emission.

  7. In Situ Irradiation and Measurement of Triple Junction Solar Cells at Low Intensity, Low Temperature (LILT) Conditions

    NASA Technical Reports Server (NTRS)

    Harris, R.D.; Imaizumi, M.; Walters, R.J.; Lorentzen, J.R.; Messenger, S.R.; Tischler, J.G.; Ohshima, T.; Sato, S.; Sharps, P.R.; Fatemi, N.S.

    2008-01-01

    The performance of triple junction InGaP/(In)GaAs/Ge space solar cells was studied following high energy electron irradiation at low temperature. Cell characterization was carried out in situ at the irradiation temperature while using low intensity illumination, and, as such, these conditions reflect those found for deep space, solar powered missions that are far from the sun. Cell characterization consisted of I-V measurements and quantum efficiency measurements. The low temperature irradiations caused substantial degradation that differs in some ways from that seen after room temperature irradiations. The short circuit current degrades more at low temperature while the open circuit voltage degrades more at room temperature. A room temperature anneal after the low temperature irradiation produced a substantial recovery in the degradation. Following irradiation at both temperatures and an extended room temperature anneal, quantum efficiency measurement suggests that the bulk of the remaining damage is in the (In)GaAs sub-cell

  8. Parmeterization of spectra

    NASA Technical Reports Server (NTRS)

    Cornish, C. R.

    1983-01-01

    Following reception and analog to digital conversion (A/D) conversion, atmospheric radar backscatter echoes need to be processed so as to obtain desired information about atmospheric processes and to eliminate or minimize contaminating contributions from other sources. Various signal processing techniques have been implemented at mesosphere-stratosphere-troposphere (MST) radar facilities to estimate parameters of interest from received spectra. Such estimation techniques need to be both accurate and sufficiently efficient to be within the capabilities of the particular data-processing system. The various techniques used to parameterize the spectra of received signals are reviewed herein. Noise estimation, electromagnetic interference, data smoothing, correlation, and the Doppler effect are among the specific points addressed.

  9. Rock Outcrop Spectra

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The color image on the lower left shows a rock outcrop at Meridiani Planum, Mars. This image was taken by the panoramic camera on the Mars Exploration Rover Opportunity, looking north, and was acquired on the 4th sol, or martian day, of the rover's mission (Jan. 27, 2004). The yellow box outlines an area detailed in the top left image, which is a monochrome (single filter) image from the rover's panoramic camera. The top image uses solid colors to show several regions on or near the rock outcrop from which spectra were extracted: the dark soil above the outcrop (yellow), the distant horizon surface (aqua), a bright rock in the outcrop (green), a darker rock in the outcrop (red), and a small dark cobblestone (blue). Spectra from these regions are shown in the plot to the right.

  10. Barnacle Bill Spectra

    NASA Technical Reports Server (NTRS)

    1997-01-01

    These IMP spectra show the characteristics of the rock surface measured by the Alpha Proton X-Ray Spectrometer (blue), the soil trapped in pits on the rock surface (red), and the deposit of bright drift on the top of the rock. The area measured by the APXS has the properties expected for nearly unweathered igneous rock, and the soil trapped in the pits is intermediate to the unweathered rock and the highly weathered drift material.

  11. Updates to ISO 21348 (determining solar irradiances)

    NASA Astrophysics Data System (ADS)

    Tobiska, W. Kent

    2012-07-01

    The ISO 21348 (Determining Solar Irradiances) International Standard is going through a document update. A consensus solar spectrum, solar indices/proxies descriptions, solar model descriptions, and solar measurement descriptions are among the Annexes that are proposed to the standard. These topics will be reviewed and described. The International Standards Organization (ISO) published IS 21348 in 2007 after 7 years of development by the international scientific community. In ISO, documents are reviewed on a regular basis and reaffirmed, updated, or deleted according to the votes of national delegations represented in ISO. IS 21348 provides guidelines for specifying the process of determining solar irradiances. Solar irradiances are reported through products such as measurement sets, reference spectra, empirical models, theoretical models and solar irradiance proxies or indices. These products are used in scientific and engineering applications to characterize within the natural space environment solar irradiances that are relevant to space systems and materials. Examples of applications using input solar irradiance energy include the determination of atmospheric densities for spacecraft orbit determination, attitude control and re-entry calculations, as well as for debris mitigation and collision avoidance activity. Direct and indirect pressure from solar irradiance upon spacecraft surfaces also affects attitude control separately from atmospheric density effects. Solar irradiances are used to provide inputs for a) calculations of ionospheric parameters, b) photon-induced radiation effects, and c) radiative transfer modeling of planetary atmospheres. Input solar irradiance energy is used to characterize material properties related to spacecraft thermal control, including surface temperatures, reflectivity, absorption and degradation. Solar energy applications requiring a standard process for determining solar irradiance energy include i) solar cell power

  12. Structural change of graphite during electron irradiation

    SciTech Connect

    Koike, J. . Dept. of Mechanical Engineering); Pedraza, D.F. )

    1992-01-01

    Highly oriented pyrolytic graphite was irradiated at room temperature with 300-keV electrons. High resolution transmission electron microscopy and electron energy loss spectroscopy were employed to study the structure of electron-irradiated graphite. Results consistently indicated absence of long-range order periodicity in the basal plane, and loose retention of the c-axis periodicity. Structure was modeled based on a mixture of sixfold and non-sixfold atom rings. Formation of non-sixfold atom rings was related to the observed buckling and discontinuity of the original graphite basal plane.

  13. Structural change of graphite during electron irradiation

    SciTech Connect

    Koike, J.; Pedraza, D.F.

    1992-12-31

    Highly oriented pyrolytic graphite was irradiated at room temperature with 300-keV electrons. High resolution transmission electron microscopy and electron energy loss spectroscopy were employed to study the structure of electron-irradiated graphite. Results consistently indicated absence of long-range order periodicity in the basal plane, and loose retention of the c-axis periodicity. Structure was modeled based on a mixture of sixfold and non-sixfold atom rings. Formation of non-sixfold atom rings was related to the observed buckling and discontinuity of the original graphite basal plane.

  14. Color formation in irradiated polymers

    NASA Astrophysics Data System (ADS)

    Clough, R. L.; Gillen, K. T.; Malone, G. M.; Wallace, J. S.

    1996-11-01

    Discoloration is a problem in the radiation processing of polymers (such as radiation sterilization), and also in emerging applications in which optical-property materials are used in radiation environments (such as scintillation detectors). We have completed a survey of 17 different types of optical polymers, in which it is found that these materials form both permanent and annealable color centers, but in very different magnitudes and ratios. Optical absorption spectra of irradiated polymers both immediately after irradiation and following different time periods of annealing are provided. Also provided are tables showing rank ordering of the relative resistance of different polymer types to induced discoloration. It is found that the extent of radiation-induced discoloration of polymers has little or no dependence on whether the macromolecule is aromatic or aliphatic, and shows no correlation with the relative extent of radiation-induced mechanical property change. Examples of the influence of stabilizer additives on the extent of discoloration are discussed.

  15. 31. ROOM A (WEST ROOM), SOUTH SIDE, LOOKING EAST. The ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    31. ROOM A (WEST ROOM), SOUTH SIDE, LOOKING EAST. The two benches in the foreground were constructed with rose head hand wrought nails and are therefore likely to have come from the 1755 Greater Meeting House, which stood at Second and Market Streets until 1812. Similar benches are to be found at the Arch Street Meeting House. The light buff brick fireplace at left was added in 1892 along with the overdoor paneling - Twelfth Street Meeting House, 20 South Twelfth Street, Philadelphia, Philadelphia County, PA

  16. 26. A typical outer rod room, or rack room, showing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    26. A typical outer rod room, or rack room, showing the racks for the nine horizontal control rods (HCRs) that would be inserted or withdrawn from the pile to control the rate of reaction. In this case, it is the 105-F Reactor in February 1945. The view is looking away from the pile, which is out of the picture on the left. Several of the cooling water hose reels for the rods can be seen at the end of the racks near the wall. D-8323 - B Reactor, Richland, Benton County, WA

  17. Low Temperature Reflectance Spectra of Titan Tholins

    NASA Technical Reports Server (NTRS)

    Roush, T. L.; Dalton, J. B.; Fonda, Mark (Technical Monitor)

    2001-01-01

    Compositional interpretation of remotely obtained reflectance spectra of outer solar system surfaces is achieved by a variety of methods. These include matching spectral curves, matching spectral features, quantitative spectral interpretation, and theoretical modeling of spectra. All of these approaches rely upon laboratory measurements of one kind or another. The bulk of these laboratory measurements are obtained with the sample of interest at ambient temperatures and pressures. However, surface temperatures of planets, satellites, and asteroids in the outer solar system are significantly cooler than ambient laboratory conditions on Earth. The infrared spectra of many materials change as a function of temperature. As has been recently demonstrated it is important to assess what effects colder temperatures have on spectral properties and hence, compositional interpretations. Titan tholin is a solid residue created by energetic processing of H-, C-, and N-bearing gases. Such residues can also be created by energetic processing if the gases are condensed into ices. Titan tholin has been suggested as a coloring agent for several surfaces in the outer solar system. Here we report laboratory measurements of Titan tholin at a temperature of 100 K and compare these to measurements of the same sample near room temperature. At low temperature the absorption features beyond 1 micrometer narrow slightly. At wavelengths greater than approx. 0.8 micrometer the overall reflectance of the sample decreases slightly making the sample less red at low temperatures. We will discuss the implications of the laboratory measurements for interpretation of cold outer solar system surfaces.

  18. EPR investigation of some gamma-irradiated excipients

    NASA Astrophysics Data System (ADS)

    Aleksieva, Katerina; Yordanov, Nicola D.

    2012-09-01

    The results of electron paramagnetic resonance (EPR) studies on some excipients: lactose, microcrystalline cellulose (avicel), starch, dioxosilane (aerosil), talc and magnesium stearate before and after gamma-irradiation are reported. Before irradiation, all samples are EPR silent except talc. After gamma-irradiation, they show complex spectra except magnesium stearate, which is EPR silent. Studies show the influence of gamma-irradiation on EPR spectra and stability of gamma-induced radicals. Analysis of the EPR spectrum of gamma-irradiated talc shows that this material is radiation insensitive. Only lactose forms stable-free radicals upon gamma sterilization and can be used for identification of radiation processing for a long time period thereafter.

  19. Polymer Morphological Change Induced by Terahertz Irradiation.

    PubMed

    Hoshina, Hiromichi; Suzuki, Hal; Otani, Chiko; Nagai, Masaya; Kawase, Keigo; Irizawa, Akinori; Isoyama, Goro

    2016-01-01

    As terahertz (THz) frequencies correspond to those of the intermolecular vibrational modes in a polymer, intense THz wave irradiation affects the macromolecular polymorph, which determines the polymer properties and functions. THz photon energy is quite low compared to the covalent bond energy; therefore, conformational changes can be induced "softly," without damaging the chemical structures. Here, we irradiate a poly(3-hydroxybutylate) (PHB) / chloroform solution during solvent casting crystallization using a THz wave generated by a free electron laser (FEL). Morphological observation shows the formation of micrometer-sized crystals in response to the THz wave irradiation. Further, a 10-20% increase in crystallinity is observed through analysis of the infrared (IR) absorption spectra. The peak power density of the irradiating THz wave is 40 MW/cm(2), which is significantly lower than the typical laser intensities used for material manipulation. We demonstrate for the first time that the THz wave effectively induces the intermolecular rearrangement of polymer macromolecules. PMID:27272984

  20. Direct Observation of Defect Range and Evolution in Ion-Irradiated Single Crystalline Ni and Ni Binary Alloys

    DOE PAGES

    Lu, Chenyang; Jin, Ke; Béland, Laurent K.; Zhang, Feifei; Yang, Taini; Qiao, Liang; Zhang, Yanwen; Bei, Hongbin; Christen, Hans M.; Stoller, Roger E.; et al

    2016-02-01

    We report that energetic ions have been widely used to evaluate the irradiation tolerance of structural materials for nuclear power applications and to modify material properties. It is important to understand the defect production, annihilation and migration mechanisms during and after collision cascades. In this study, single crystalline pure nickel metal and single-phase concentrated solid solution alloys of 50%Ni50%Co (NiCo) and 50%Ni50%Fe (NiFe) without apparent preexisting defect sinks were employed to study defect dynamics under ion irradiation. Both cross-sectional transmission electron microscopy characterization (TEM) and Rutherford backscattering spectrometry channeling (RBS-C) spectra show that the range of radiation-induced defect clusters farmore » exceed the theoretically predicted depth in all materials after high-dose irradiation. Defects in nickel migrate faster than in NiCo and NiFe. Both vacancy-type stacking fault tetrahedra (SFT) and interstitial loops coexist in the same region, which is consistent with molecular dynamics simulations. Kinetic activation relaxation technique (k-ART) simulations for nickel showed that small vacancy clusters, such as di-vacancies and tri-vacancies, created by collision cascades are highly mobile, even at room temperature. The slower migration of defects in the alloy along with more localized energy dissipation of the displacement cascade may lead to enhanced radiation tolerance.« less

  1. Direct Observation of Defect Range and Evolution in Ion-Irradiated Single Crystalline Ni and Ni Binary Alloys.

    PubMed

    Lu, Chenyang; Jin, Ke; Béland, Laurent K; Zhang, Feifei; Yang, Taini; Qiao, Liang; Zhang, Yanwen; Bei, Hongbin; Christen, Hans M; Stoller, Roger E; Wang, Lumin

    2016-01-01

    Energetic ions have been widely used to evaluate the irradiation tolerance of structural materials for nuclear power applications and to modify material properties. It is important to understand the defect production, annihilation and migration mechanisms during and after collision cascades. In this study, single crystalline pure nickel metal and single-phase concentrated solid solution alloys of 50%Ni50%Co (NiCo) and 50%Ni50%Fe (NiFe) without apparent preexisting defect sinks were employed to study defect dynamics under ion irradiation. Both cross-sectional transmission electron microscopy characterization (TEM) and Rutherford backscattering spectrometry channeling (RBS-C) spectra show that the range of radiation-induced defect clusters far exceed the theoretically predicted depth in all materials after high-dose irradiation. Defects in nickel migrate faster than in NiCo and NiFe. Both vacancy-type stacking fault tetrahedra (SFT) and interstitial loops coexist in the same region, which is consistent with molecular dynamics simulations. Kinetic activation relaxation technique (k-ART) simulations for nickel showed that small vacancy clusters, such as di-vacancies and tri-vacancies, created by collision cascades are highly mobile, even at room temperature. The slower migration of defects in the alloy along with more localized energy dissipation of the displacement cascade may lead to enhanced radiation tolerance.

  2. Direct Observation of Defect Range and Evolution in Ion-Irradiated Single Crystalline Ni and Ni Binary Alloys.

    PubMed

    Lu, Chenyang; Jin, Ke; Béland, Laurent K; Zhang, Feifei; Yang, Taini; Qiao, Liang; Zhang, Yanwen; Bei, Hongbin; Christen, Hans M; Stoller, Roger E; Wang, Lumin

    2016-01-01

    Energetic ions have been widely used to evaluate the irradiation tolerance of structural materials for nuclear power applications and to modify material properties. It is important to understand the defect production, annihilation and migration mechanisms during and after collision cascades. In this study, single crystalline pure nickel metal and single-phase concentrated solid solution alloys of 50%Ni50%Co (NiCo) and 50%Ni50%Fe (NiFe) without apparent preexisting defect sinks were employed to study defect dynamics under ion irradiation. Both cross-sectional transmission electron microscopy characterization (TEM) and Rutherford backscattering spectrometry channeling (RBS-C) spectra show that the range of radiation-induced defect clusters far exceed the theoretically predicted depth in all materials after high-dose irradiation. Defects in nickel migrate faster than in NiCo and NiFe. Both vacancy-type stacking fault tetrahedra (SFT) and interstitial loops coexist in the same region, which is consistent with molecular dynamics simulations. Kinetic activation relaxation technique (k-ART) simulations for nickel showed that small vacancy clusters, such as di-vacancies and tri-vacancies, created by collision cascades are highly mobile, even at room temperature. The slower migration of defects in the alloy along with more localized energy dissipation of the displacement cascade may lead to enhanced radiation tolerance. PMID:26829570

  3. Direct Observation of Defect Range and Evolution in Ion-Irradiated Single Crystalline Ni and Ni Binary Alloys

    NASA Astrophysics Data System (ADS)

    Lu, Chenyang; Jin, Ke; Béland, Laurent K.; Zhang, Feifei; Yang, Taini; Qiao, Liang; Zhang, Yanwen; Bei, Hongbin; Christen, Hans M.; Stoller, Roger E.; Wang, Lumin

    2016-02-01

    Energetic ions have been widely used to evaluate the irradiation tolerance of structural materials for nuclear power applications and to modify material properties. It is important to understand the defect production, annihilation and migration mechanisms during and after collision cascades. In this study, single crystalline pure nickel metal and single-phase concentrated solid solution alloys of 50%Ni50%Co (NiCo) and 50%Ni50%Fe (NiFe) without apparent preexisting defect sinks were employed to study defect dynamics under ion irradiation. Both cross-sectional transmission electron microscopy characterization (TEM) and Rutherford backscattering spectrometry channeling (RBS-C) spectra show that the range of radiation-induced defect clusters far exceed the theoretically predicted depth in all materials after high-dose irradiation. Defects in nickel migrate faster than in NiCo and NiFe. Both vacancy-type stacking fault tetrahedra (SFT) and interstitial loops coexist in the same region, which is consistent with molecular dynamics simulations. Kinetic activation relaxation technique (k-ART) simulations for nickel showed that small vacancy clusters, such as di-vacancies and tri-vacancies, created by collision cascades are highly mobile, even at room temperature. The slower migration of defects in the alloy along with more localized energy dissipation of the displacement cascade may lead to enhanced radiation tolerance.

  4. Raman spectroscopic analysis of iron chromium oxide microspheres generated by nanosecond pulsed laser irradiation on stainless steel.

    PubMed

    Ortiz-Morales, M; Soto-Bernal, J J; Frausto-Reyes, C; Acosta-Ortiz, S E; Gonzalez-Mota, R; Rosales-Candelas, I

    2015-06-15

    Iron chromium oxide microspheres were generated by pulsed laser irradiation on the surface of two commercial samples of stainless steel at room temperature. An Ytterbium pulsed fiber laser was used for this purpose. Raman spectroscopy was used for the characterization of the microspheres, whose size was found to be about 0.2-1.7 μm, as revealed by SEM analysis. The laser irradiation on the surface of the stainless steel modified the composition of the microspheres generated, affecting the concentration of the main elemental components when laser power was increased. Furthermore, the peak ratio of the main bands in the Raman spectra has been associated to the concentration percentage of the main components of the samples, as revealed by Energy-Dispersive X-ray Spectroscopy (EDS) analysis. These experiments showed that it is possible to generate iron chromium oxide microspheres on stainless steel by laser irradiation and that the concentration percentage of their main components is associated with the laser power applied.

  5. Direct Observation of Defect Range and Evolution in Ion-Irradiated Single Crystalline Ni and Ni Binary Alloys

    PubMed Central

    Lu, Chenyang; Jin, Ke; Béland, Laurent K.; Zhang, Feifei; Yang, Taini; Qiao, Liang; Zhang, Yanwen; Bei, Hongbin; Christen, Hans M.; Stoller, Roger E.; Wang, Lumin

    2016-01-01

    Energetic ions have been widely used to evaluate the irradiation tolerance of structural materials for nuclear power applications and to modify material properties. It is important to understand the defect production, annihilation and migration mechanisms during and after collision cascades. In this study, single crystalline pure nickel metal and single-phase concentrated solid solution alloys of 50%Ni50%Co (NiCo) and 50%Ni50%Fe (NiFe) without apparent preexisting defect sinks were employed to study defect dynamics under ion irradiation. Both cross-sectional transmission electron microscopy characterization (TEM) and Rutherford backscattering spectrometry channeling (RBS-C) spectra show that the range of radiation-induced defect clusters far exceed the theoretically predicted depth in all materials after high-dose irradiation. Defects in nickel migrate faster than in NiCo and NiFe. Both vacancy-type stacking fault tetrahedra (SFT) and interstitial loops coexist in the same region, which is consistent with molecular dynamics simulations. Kinetic activation relaxation technique (k-ART) simulations for nickel showed that small vacancy clusters, such as di-vacancies and tri-vacancies, created by collision cascades are highly mobile, even at room temperature. The slower migration of defects in the alloy along with more localized energy dissipation of the displacement cascade may lead to enhanced radiation tolerance. PMID:26829570

  6. Corneal storage at room temperature.

    PubMed

    Sachs, U; Goldman, K; Valenti, J; Kaufman, H E

    1978-06-01

    Short-term eye banking is based mainly on moist chamber and McCarey-Kaufman medium (M-K medium) preservation. Both involve a controlled 4 C temperature for storage. Warming the cornea to room temperature, however, drastically affects the endothelial viability. On enzymatic staining and histological study, the M-K medium-stored rabbit corneas had more normal endothelium than did "moist chamber" eyes when storage was prolonged for seven days at room temperature. In human corneas that were kept at 4 C for 24 hours and then exposed to a temperature of 25 C, destruction of organelles had occurred by six hours and was increased by 12 hours. Corneas that were kept in M-K medium had relatively intact endothelium after four days, but cell disruption and vacuolation was present by the seventh day. The M-K medium, therefore, affords protection to tissue warmed to room temperature, where metabolic activity is resumed. PMID:350203

  7. Large modification in insulator-metal transition of VO2 films grown on Al2O3 (001) by high energy ion irradiation in biased reactive sputtering

    NASA Astrophysics Data System (ADS)

    Azhan, Nurul Hanis; Okimura, Kunio; Ohtsubo, Yoshiyuki; Kimura, Shin-ichi; Zaghrioui, Mustapha; Sakai, Joe

    2016-02-01

    High energy ion irradiation in biased reactive sputtering enabled significant modification of insulator-metal transition (IMT) properties of VO2 films grown on Al2O3 (001). Even at a high biasing voltage with mean ion energy of around 325 eV induced by the rf substrate biasing power of 40 W, VO2 film revealed low IMT temperature (TIMT) at 309 K (36 °C) together with nearly two orders magnitude of resistance change. Raman measurements from -193 °C evidenced that the monoclinic VO2 lattice begins to transform to rutile-tetragonal lattice near room temperature. Raman spectra showed the in-plane compressive stress in biased VO2 films, which results in shortening of V-V distance along a-axis of monoclinic structure, aM-axis (cR-axis) and thus lowering the TIMT. In respect to that matter, significant effects in shortening the in-plane axis were observed through transmission electron microscopy observations. V2p3/2 spectra from XPS measurements suggested that high energy ion irradiation also induced oxygen vacancies and resulted for an early transition onset and rather broader transition properties. Earlier band gap closing against the temperature in VO2 film with higher biasing power was also probed by ultraviolet photoelectron spectroscopy. Present results with significant modification of IMT behavior of films deposited at high-energy ion irradiation with TIMT near the room temperature could be a newly and effective approach to both exploring mechanisms of IMT and further applications of this material, due to the fixed deposition conditions and rather thicker VO2 films.

  8. Modeling the solar irradiance background via numerical simulation

    NASA Astrophysics Data System (ADS)

    Viticchié, B.; Vantaggiato, M.; Berrilli, F.; Del Moro, D.; Penza, V.; Pietropaolo, E.; Rast, M.

    2010-07-01

    Various small scale photospheric processes are responsible for spatial and temporal variations of solar emergent intensity. The contribution to total irradiance fluctuations of such small scale features is the solar irradiance background. Here we examine the statistical properties of irradiance background computed via a n-body numerical scheme mimicking photospheric space-time correlations and calibrated by means of IBIS/DST spectro-polarimetric data. Such computed properties are compared with experimental results derived from the analysis of a VIRGO/SPM data. A future application of the model here presented could be the interpretation of stellar irradiance power spectra observed by new missions such as Kepler.

  9. LET effects following neutron irradiation of lithium formate EPR dosimeters.

    PubMed

    Malinen, Eirik; Waldeland, Einar; Hole, Eli Olaug; Sagstuen, Einar

    2006-03-13

    Lithium formate electron paramagnetic resonance (EPR) dosimeters were irradiated using 60Co gamma-rays or fast neutrons to doses ranging from 5 to 20 Gy and investigated by EPR spectroscopy. Using a polynomial fitting procedure in order to accurately analyze peak-to-peak line widths of first derivative EPR spectra, dosimeters irradiated with neutrons had on average 4.4+/-0.9% broader EPR resonance lines than gamma-irradiated dosimeters. The increase in line width was slightly asymmetrical. Computer simulated first derivative polycrystalline EPR spectra of a *CO2- radical gave very good reconstructions of experimental spectra of irradiated dosimeters. The spectrum simulations could then be used as a tool to investigate the line broadening observed following neutron irradiation. It was shown that an increase in the simulated Lorentzian line width could explain both the observed line broadening and the asymmetrical effect. The ratio of the peak-to-peak amplitude of first derivative EPR spectra obtained at two different microwave powers (20 and 0.5 mW) was 7.8+/-1.2% higher for dosimeters irradiated with neutrons. The dependence of the spectrum amplitude on the microwave power was extensively investigated by fitting observations to an analytical non-linear model incorporating, among others, the spin-lattice (T1) and spin-spin (T2) relaxation times as fitting parameters. Neutron irradiation resulted in a reduction in T(2) in comparison with gamma-irradiation, while a smaller difference in T1 was found. The effects observed indicate increased local radical density following irradiation using high linear energy transfer (LET) neutrons as compared to low LET gamma-irradiation. A fingerprint of the LET may thus be found either by an analysis of the line width or of the dependence of the spectrum amplitude on the microwave power. Lithium formate is therefore a promising material for EPR dosimetry of high LET radiation.

  10. Raman spectra of solid benzene under high pressure

    NASA Technical Reports Server (NTRS)

    Thiery, M.-M.; Kobashi, K.; Spain, I. L.

    1985-01-01

    Raman spectra of solid benzene have been measured at room temperature up to about 140 kbar, using the diamond anvil cell. Effort has been focused upon the lattice vibration spectra at pressures above that of phase II. It is found that a change in slopes occurs in the frequency-pressure curves at about 40 kbar. Furthermore, a new band appears above 90 kbar. These features probably correspond respectively to the II-III phase transition, which has been reported previously, and a III-IV phase transition, reported here for the first time.

  11. Effect of pressure on infrared spectra of ice 7

    NASA Technical Reports Server (NTRS)

    Holzapfel, W. B.; Seiler, B.; Nicol, M.

    1983-01-01

    The effect of pressure on the infrared spectra of H2O and D2O ice VII was studied at room temperature and pressures between 2 and 15 GPa with a Fourier transform infrared spectrometer and a diamond anvil high pressure cell. Two librational modes, one bending mode, and various overtone bands are well resolved. The stretching modes, nu sub 1 and nu sub 3 are poorly resolved due to overlap with diamond window absorption. Differences between the spectra of H2O and D2O are discussed.

  12. Room temperature terahertz polariton emitter

    SciTech Connect

    Geiser, Markus; Scalari, Giacomo; Castellano, Fabrizio; Beck, Mattias; Faist, Jerome

    2012-10-01

    Terahertz (THz) range electroluminescence from intersubband polariton states is observed in the ultra strong coupling regime, where the interaction energy between the collective excitation of a dense electron gas and a photonic mode is a significant portion of the uncoupled excitation energy. The polariton's increased emission efficiency along with a parabolic electron confinement potential allows operation up to room temperature in a nonresonant pumping scheme. This observation of room temperature electroluminescence of an intersubband device in the THz range is a promising proof of concept for more powerful THz sources.

  13. Complex soundproofing of industrial rooms

    NASA Technical Reports Server (NTRS)

    Pocsa, V.; Veres, A.; Biborosch, L.

    1974-01-01

    Some structures treated for sound absorption are described that are used to soundproof industrial rooms with a very high noise level. Soundproofing treatments for the walls and coilings or only for the ceilings are considered. In the case of relatively small rooms having a noise source with a high level, complex treatments involve, in addition to soundproofing of the walls and ceiling, suspended panels specially oriented with respect to the noise source. The efficiency of the adopted solutions is compared with calculated damping values.

  14. IUE archived spectra

    NASA Technical Reports Server (NTRS)

    Sullivan, Edward C.; Bohlin, Ralph C.; Heap, Sara R.; West, Donald K.; Schmitz, Marion

    1988-01-01

    The International Ultraviolet Explorer (IUE) Satellite has been in continuous operation since January 26, 1978. To date, approximately 65,000 spectra have been stored in an archive at Goddard Space Flight Center in Greenbelt, MD. A number of procedures have been generated to facilitate access to the data in the IUE spectral archive. This document describes the procedures which include on-line quick look of the displays, search of an observation data base for selected observations, and several methods for ordering data from the archive.

  15. Ion irradiation damage in n-type GaAs in comparison with its electron irradiation damage

    NASA Astrophysics Data System (ADS)

    Eisen, F. H.; Bachem, K.; Klausman, E.; Koehler, K.; Haddad, R.

    1992-12-01

    In an effort to attain a better understanding of the nature of the defects introduced in GaAs by irradiating it with energetic light ions; electron or proton irradiated n-type GaAs samples, cut from the same layer grown by molecular-beam epitaxy, have been studied by deep level transient spectroscopy. By comparing the spectra, including the effects of high electric fields, and by using results for annealed samples, it is possible to determine which of the traps reported in electron irradiated GaAs, most of which are believed to be arsenic interstitial-vacancy pairs, are present in the proton irradiated material. The traps identified in proton irradiated GaAs include most of those found in electron irradiated material, either after irradiation or after irradiation and annealing. The results indicate that two of these traps are associated with defects which are more complex than simple interstitial-vacancy pairs. Two traps were found in proton irradiated material which have not been observed in electron irradiated GaAs. One of these is nearly as abundant as the prominent E3 center observed in electron irradiated GaAs and is probably also not a simple pair. The deep level transient spectroscopy peak for this trap is not clearly separated from that of E3 in proton irradiated GaAs. The other trap is probably associated with a particular impurity present in the MBE grown sample layers.

  16. 32 CFR 296.6 - Reading room.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 2 2010-07-01 2010-07-01 false Reading room. 296.6 Section 296.6 National... Reading room. (a) The NRO shall provide a reading room equipped with hard copy and electronic records as required in the “Electronic Freedom of Information Act Amendments of 1996”. The NRO Reading Room is...

  17. 32 CFR 296.6 - Reading room.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 2 2013-07-01 2013-07-01 false Reading room. 296.6 Section 296.6 National... Reading room. (a) The NRO shall provide a reading room equipped with hard copy and electronic records as required in the “Electronic Freedom of Information Act Amendments of 1996”. The NRO Reading Room is...

  18. 39 CFR 3004.12 - Reading room.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 39 Postal Service 1 2011-07-01 2011-07-01 false Reading room. 3004.12 Section 3004.12 Postal... Reading room. (a) The Commission maintains a public reading room at its offices (901 New York Avenue, NW., Suite 200, Washington, DC 20268-0001) and an electronic reading room at http://www.prc.gov. The...

  19. 32 CFR 296.6 - Reading room.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 2 2014-07-01 2014-07-01 false Reading room. 296.6 Section 296.6 National... Reading room. (a) The NRO shall provide a reading room equipped with hard copy and electronic records as required in the “Electronic Freedom of Information Act Amendments of 1996”. The NRO Reading Room is...

  20. 32 CFR 296.6 - Reading room.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 2 2011-07-01 2011-07-01 false Reading room. 296.6 Section 296.6 National... Reading room. (a) The NRO shall provide a reading room equipped with hard copy and electronic records as required in the “Electronic Freedom of Information Act Amendments of 1996”. The NRO Reading Room is...

  1. 32 CFR 296.6 - Reading room.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 2 2012-07-01 2012-07-01 false Reading room. 296.6 Section 296.6 National... Reading room. (a) The NRO shall provide a reading room equipped with hard copy and electronic records as required in the “Electronic Freedom of Information Act Amendments of 1996”. The NRO Reading Room is...

  2. 39 CFR 3004.12 - Reading room.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 39 Postal Service 1 2013-07-01 2013-07-01 false Reading room. 3004.12 Section 3004.12 Postal... Reading room. (a) The Commission maintains a public reading room at its offices (901 New York Avenue, NW., Suite 200, Washington, DC 20268-0001) and an electronic reading room at http://www.prc.gov. The...

  3. 39 CFR 3004.12 - Reading room.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 39 Postal Service 1 2014-07-01 2014-07-01 false Reading room. 3004.12 Section 3004.12 Postal... Reading room. (a) The Commission maintains a public reading room at its offices (901 New York Avenue, NW., Suite 200, Washington, DC 20268-0001) and an electronic reading room at http://www.prc.gov. The...

  4. 39 CFR 3004.12 - Reading room.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 39 Postal Service 1 2012-07-01 2012-07-01 false Reading room. 3004.12 Section 3004.12 Postal... Reading room. (a) The Commission maintains a public reading room at its offices (901 New York Avenue, NW., Suite 200, Washington, DC 20268-0001) and an electronic reading room at http://www.prc.gov. The...

  5. 39 CFR 3004.12 - Reading room.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 39 Postal Service 1 2010-07-01 2010-07-01 false Reading room. 3004.12 Section 3004.12 Postal... Reading room. (a) The Commission maintains a public reading room at its offices (901 New York Avenue, NW., Suite 200, Washington, DC 20268-0001) and an electronic reading room at http://www.prc.gov. The...

  6. Meteors and meteorites spectra

    NASA Astrophysics Data System (ADS)

    Koukal, J.; Srba, J.; Gorková, S.; Lenža, L.; Ferus, M.; Civiš, S.; Knížek, A.; Kubelík, P.; Kaiserová, T.; Váňa, P.

    2016-01-01

    The main goal of our meteor spectroscopy project is to better understand the physical and chemical properties of meteoroids. Astrometric and spectral observations of real meteors are obtained via spectroscopic CCD video systems. Processed meteor data are inserted to the EDMOND database (European viDeo MeteOr Network Database) together with spectral information. The fully analyzed atmospheric trajectory, orbit and also spectra of a Leonid meteor/meteoroid captured in November 2015 are presented as an example. At the same time, our target is the systematization of spectroscopic emission lines for the comparative analysis of meteor spectra. Meteoroid plasma was simulated in a laboratory by laser ablation of meteorites samples using an (ArF) excimer laser and the LIDB (Laser Induced Dielectric Breakdown) in a low pressure atmosphere and various gases. The induced plasma emissions were simultaneously observed with the Echelle Spectrograph and the same CCD video spectral camera as used for real meteor registration. Measurements and analysis results for few selected meteorite samples are presented and discussed.

  7. Red Phosphorescence from Benzo[2,1,3]thiadiazoles at Room Temperature.

    PubMed

    Gutierrez, Gregory D; Sazama, Graham T; Wu, Tony; Baldo, Marc A; Swager, Timothy M

    2016-06-01

    We describe the red phosphorescence exhibited by a class of structurally simple benzo[2,1,3]thiadiazoles at room temperature. The photophysical properties of these molecules in deoxygenated cyclohexane, including their absorption spectra, steady-state photoluminescence and excitation spectra, and phosphorescence lifetimes, are presented. Time-dependent density functional theory calculations were carried out to better understand the electronic excited states of these benzo[2,1,3]thiadiazoles and why they are capable of phosphorescence.

  8. Use of Irradiated Foods

    NASA Technical Reports Server (NTRS)

    Brynjolfsson, A.

    1985-01-01

    The safety of irradiated foods is reviewed. Guidelines and regulations for processing irradiated foods are considered. The radiolytic products formed in food when it is irradiated and its wholesomeness is discussed. It is concluded that food irradiation processing is not a panacea for all problems in food processing but when properly used will serve the space station well.

  9. Graphitic carbon nanospheres: A Raman spectroscopic investigation of thermal conductivity and morphological evolution by pulsed laser irradiation

    NASA Astrophysics Data System (ADS)

    Agarwal, Radhe; Sahoo, Satyaprakash; Chitturi, Venkateswara Rao; Katiyar, Ram S.

    2015-12-01

    Graphitic carbon nanospheres (GCNSs) were prepared by a unique acidic treatment of multi-walled nanotubes. Spherical morphology with a narrow size distribution was confirmed by transmission electron microscopy studies. The room temperature Raman spectra showed a clear signature of D- and G-peaks at around 1350 and 1591 cm-1, respectively. Temperature dependent Raman scattering measurements were performed to understand the phonon dynamics and first order temperature coefficients related to the D- and G-peaks. The temperature dependent Raman spectra in a range of 83-473 K were analysed, where the D-peak was observed to show a red-shift with increasing temperature. The relative intensity ratio of D- to G-peaks also showed a significant rise with increasing temperature. Such a temperature dependent behaviour can be attributed to lengthening of the C-C bond due to thermal expansion in material. The estimated value of the thermal conductivity of GCNSs ˜0.97 W m-1 K-1 was calculated using Raman spectroscopy. In addition, the effect of pulsed laser treatment on the GCNSs was demonstrated by analyzing the Raman spectra of post irradiated samples.

  10. Graphitic carbon nanospheres: A Raman spectroscopic investigation of thermal conductivity and morphological evolution by pulsed laser irradiation

    SciTech Connect

    Agarwal, Radhe; Sahoo, Satyaprakash E-mail: rkatiyar@hpcf.upr.edu; Chitturi, Venkateswara Rao; Katiyar, Ram S. E-mail: rkatiyar@hpcf.upr.edu

    2015-12-07

    Graphitic carbon nanospheres (GCNSs) were prepared by a unique acidic treatment of multi-walled nanotubes. Spherical morphology with a narrow size distribution was confirmed by transmission electron microscopy studies. The room temperature Raman spectra showed a clear signature of D- and G-peaks at around 1350 and 1591 cm{sup −1}, respectively. Temperature dependent Raman scattering measurements were performed to understand the phonon dynamics and first order temperature coefficients related to the D- and G-peaks. The temperature dependent Raman spectra in a range of 83–473 K were analysed, where the D-peak was observed to show a red-shift with increasing temperature. The relative intensity ratio of D- to G-peaks also showed a significant rise with increasing temperature. Such a temperature dependent behaviour can be attributed to lengthening of the C-C bond due to thermal expansion in material. The estimated value of the thermal conductivity of GCNSs ∼0.97 W m{sup −1} K{sup −1} was calculated using Raman spectroscopy. In addition, the effect of pulsed laser treatment on the GCNSs was demonstrated by analyzing the Raman spectra of post irradiated samples.

  11. The LASP Interactive Solar IRradiance Datacenter (LISIRD)

    NASA Astrophysics Data System (ADS)

    Snow, M.; Woods, T. N.; Eparvier, F. G.; Fontenla, J.; Harder, J.; McClintock, W. E.; Pankratz, C.; Richard, E.; Windnagel, A.; Woodraska, D.

    2005-12-01

    LASP has created an online resource for combined solar irradiance datasets from the SORCE, TIMED, UARS, and SME missions. The LASP Interactive Solar IRradiance Datacenter (LISIRD) not only provides unified access to the individual datasets, but also combines them for ease of use by scientists, educators, and the general public. In particular, LISIRD makes available composite spectra and time series. The TIMED SEE, SORCE SOLSTICE, and SORCE SIM instruments produce spectra that together cover the solar spectrum from 1 to 2700 nm. Through the LISIRD interface, the user can get data that bridges the various missions in both wavelength and time. LISIRD also hosts data products of interest to the space weather community. They have slightly different needs than the atmospheric modelers that are the typical users of irradiance data. For space weather applications, high time cadence and near real-time data delivery are key. For these users, we make our observations available shortly after spacecraft contact, and append the observations to a single data file which they can retrieve using anonymous ftp every few hours. The third component of LISIRD is the Solar Physical Radiation Model (SPRM) results of Fontenla et al. It provides a model of current solar activity, the synthetic spectral irradiance, and tools that permit one to model the solar activity source of the spectral irradiance variations.

  12. Radiation stability of some room temperature ionic liquids

    NASA Astrophysics Data System (ADS)

    Jagadeeswara Rao, Ch.; Venkatesan, K. A.; Tata, B. V. R.; Nagarajan, K.; Srinivasan, T. G.; Vasudeva Rao, P. R.

    2011-05-01

    Radiation stability of some room temperature ionic liquids (RTILs) that find useful electrochemical applications in nuclear fuel cycle has been evaluated. The ionic liquids such as protonated betaine bis(trifluoromethylsulfonyl)imide (HbetNTf 2), aliquat 336 (tri-n-octlymethylammonium chloride), 1-butyl-3-methylimidazolium chloride (bmimCl), 1-hexyl-3-methylimidazolium chloride (hmimCl), N-butyl-N-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide (BMPyNTf 2) and N-methyl-N-propylpiperidinium bis(trifluoromethylsulfonyl)imide (MPPiNTf 2) have been irradiated to various absorbed dose levels, up to 700 kGy. The effect of gamma radiation on these ionic liquids has been evaluated by determining the variations in the physical properties such as color, density, viscosity, refractive index and electrochemical window. The changes in density, viscosity and refractive index of these ionic liquids upon irradiation were insignificant; however, the color and electrochemical window varied significantly with increase of absorbed dose.

  13. Locker Rooms: The Durable Design.

    ERIC Educational Resources Information Center

    Viklund, Roy; Coons, John

    1997-01-01

    Offers advice on heavy-use locker-room design that provides easier maintenance and vandal resistance. Design features and materials used for flooring, ceilings, and walls are addressed as are built-in systems and equipment, toilet and shower fixtures and partitions, lockers, and mechanical and electrical systems. (GR)

  14. Transition Room Program, 1967 Report.

    ERIC Educational Resources Information Center

    Glassner, Leonard E.

    The Transition Room Program of the Pittsburgh Schools was defined and evaluated by the staff, the administration, and a program evaluator from the Office of Research. The definition included general objectives, anticipated outcomes, student criteria and characteristics, staff qualifications and functions, media, student activities, and staff…

  15. Hotels Make Room for Fitness.

    ERIC Educational Resources Information Center

    Koszuta, Laurie Einstein

    1986-01-01

    Hotels, in hopes of gaining a competitive edge, are offering workout rooms, exercise equipment, fitness trails, and jogging tracks, but no standards have been set for safety of the facilities or staff preparedness in exercise screening, equipment use, injury prevention, or first aid. (MT)

  16. Locker Room Maintenance Made Easy.

    ERIC Educational Resources Information Center

    Theel, James

    1998-01-01

    Provides examples on ways to make locker room maintenance easier and their use more student-friendly. Improvements include use of indoor-outdoor carpeting with numerous floor drains to cut mildew buildup, adequate ventilation to reduce musty smells, better hot water management, ceramic tiles to reduce water-damage repair and painting needs, and…

  17. XANES Analysis of Organic Residues Produced from the UV Irradiation of Astrophysical Ice Analogs

    NASA Technical Reports Server (NTRS)

    Nuevo, M.; Milam, S N.; Sandford, S A.; De Gregorio, B T.; Cody, G D.; Kilcoyne, A L.

    2011-01-01

    Organic residues formed in the laboratory from the ultraviolet (UV) photo-irradiation or ion bombardment of astrophysical ice analogs have been extensively studied for the last 15 years with a broad suite of techniques, including infrared (IR) and UV spectroscopies, as well as mass spectrometry. Analyses of these materials show that they consist of complex mixtures of organic compounds stable at room temperature, mostly soluble, that have not been fully characterized. However, the hydrolysis products of these residues have been partly identified using chromatography techniques, which indicate that they contain molecular precursors of prebiotic interest such as amino acids, nitrile-bearing compounds, and amphiphilic compounds. In this study, we present the first X-ray absorption near-edge structure (XANES) spectroscopy measurements of three organic residues made from the UV irradiation of ices having different starting compositions. XANES spectra confirm the presence of different chemical functions in these residues, and indicate that they are rich in nitrogenand oxygen-bearing species. These data can be compared with XANES measurements of extraterrestrial materials. Finally, this study also shows how soft X rays can alter the chemical composition of samples.

  18. Effect of 120 MeV Ag9+ ion irradiation of YCOB single crystals

    NASA Astrophysics Data System (ADS)

    Arun Kumar, R.; Dhanasekaran, R.

    2012-09-01

    Single crystals of yttrium calcium oxy borate (YCOB) grown from boron-tri-oxide flux were subjected to swift heavy ion irradiation using silver Ag9+ ions from the 15 UD Pelletron facility at Inter University Accelerator Center, New Delhi. The crystals were irradiated at 1 × 1013, 5 × 1013 and 1 × 1014 ions/cm2 fluences at room temperature and with 5 × 1013 ions/cm2 fluence at liquid nitrogen temperature. The pristine and the irradiated samples were characterized by glancing angle X-ray diffraction, UV-Vis-NIR and photoluminescence studies. From the characterization studies performed on the samples, it is inferred that the crystals irradiated at liquid nitrogen temperature had fewer defects compared to the crystals irradiated at room temperature and the defects increased when the ion fluence was increased at room temperature.

  19. Effect of gamma irradiation on microbiological, chemical and sensory characteristics of licorice root product

    NASA Astrophysics Data System (ADS)

    Al-Bachir, M.; Al-Adawi, M. A.; Al-Kaid, A.

    2004-03-01

    Licorice root products were irradiated at doses of 0, 5, 10, 15 and 20 kGy in a 60Co package irradiator. Irradiated and unirradiated samples were stored at room temperatures. Microbial population on product, chemical changes and sensory properties of produced solution of licorice root products were evaluated after 0 and 12 months of storage. The results indicated that gamma irradiation reduced the counts of microorganisms on licorice root products. D10 of total count and klebsiella spp. were about 1.4 and 0.7 kGy, respectively. The mineral ions (Na, Ca and K) concentration in solution produced from irradiated products were lower than non-irradiated ones. Glycyrrhezinic acid and maltose concentration in solution produced from irradiated products were higher than non-irradiated ones. Sensory evaluation indicated that no significant differences ( P<0.05) were found between solution produced from irradiated and unirradiated products in color, flavor, texture, or taste.

  20. Spikes in Brewer spectroradiometer UV spectra

    NASA Astrophysics Data System (ADS)

    Meinander, O.; Josefsson, W.; Kaurola, J.; Koskela, T.; Lakkala, K.

    2003-04-01

    The occurrence of spikes in Brewer UV spectra has been studied. By a spike we mean an anomalous number of counts recorded in one wavelength channel causing an abrupt upwards or downwards change in value that does not originate from the true radiation signal. We have recorded downward spikes in lamp scans measured in the darkroom, and spikes occur in sky measurements as well. We analyzed continuous measurement data over several years, with more than 90 000 spectra, from one single monochromator and two double monochromator Brewers. We found that especially the double monochromators may suffer from more than 200 spikes per ~5000 annual spectra. The spikes were not always randomly distributed over the wavelength range. The single monochromator was found to have a significant number of spikes at wavelengths below 300 nm, indicating possible bias in the stray light correction unless taken into consideration. The error caused by non-corrected spikes varied greatly from case to case. For example, the effect of one moderate-size spiked was found to be more than 5 % on a DNA action dose rate and close to 1 % on a DNA action daily dose. When high accuracy of the in situ UV measurements is required, our results suggest a need to remove spikes from the spectra. We used a simple statistical approach. Other slightly different approaches exist as well. Our data showed that ancillary radiation measurements may be necessary to interpret the data correctly. Under rapidly-changing cloudiness it can be difficult to distinguish between noise spikes and the variation in irradiance due to changes in the state of the sky.

  1. Detection of irradiated liquor

    NASA Astrophysics Data System (ADS)

    Shengchu, Qi; Jilan, Wu; Rongyao, Yuan

    D-2,3-butanediol is formed by irradiation processes in irradiated liquors. This radiolytic product is not formed in unirradiated liquors and its presence can therefore be used to identify whether a liquor has been irradiated or not. The relation meso/dl≈1 for 2,3-butanediol and the amount present in irradiated liquors may therefore be used as an indication of the dose used in the irradiation.

  2. Continuum Fitting HST QSO Spectra

    NASA Technical Reports Server (NTRS)

    Tytler, David; Oliversen, Ronald J. (Technical Monitor)

    2002-01-01

    The Principal Component Analysis (PCA) method which we are using to fit and describe QSO spectra relies upon the fact that QSO continuum are generally very smooth and simple except for emission and absorption lines. To see this we need high signal-to-noise (S/N) spectra of QSOs at low redshift which have relatively few absorption lines in the Lyman-a forest. We need a large number of such spectra to use as the basis set for the PCA analysis which will find the set of principal component spectra which describe the QSO family as a whole. We have found that too few HST spectra have the required S/N and hence we need to supplement them with ground based spectra of QSOs at higher redshift. We have many such spectra and we have been working to make them suitable for this analysis. We have concentrated on this topic since 12/15/01.

  3. A code to simulate nuclear reactor inventories and associated gamma-ray spectra.

    PubMed

    Cresswell, A J; Allyson, J D; Sanderson, D C

    2001-01-01

    A computer code has been developed to simulate the gamma-ray spectra that would be measured by airborne gamma spectrometry (AGS) systems from sources containing short-lived fission products. The code uses simple numerical methods to simulate the production and decay of fission products and generates spectra for sodium iodide (NaI) detectors using Monte Carlo codes. A new Monte Carlo code using a virtual array of detectors to reduce simulation times for airborne geometries is described. Spectra generated for a short irradiation and laboratory geometry have been compared with an experimental data set. The agreement is good. Spectra have also been generated for airborne geometries and longer irradiation periods. The application of this code to generate AGS spectra for accident scenarios and their uses in the development and evaluation of spectral analysis methods for such situations are discussed.

  4. Interstellar Electron Density Spectra

    NASA Astrophysics Data System (ADS)

    Lambert, Hendrick Clark

    This study concerns the investigation of the form of the wavenumber spectrum of the Galactic electron density fluctuations through an examination of the scattering of the radio pulses emitted by pulsars as they propagate through the diffuse ionized interstellar gas. A widely used model for the electron density spectrum is based on the simple power-law: Pne(q)∝ q-β, where β = 11/3 is usually assumed, corresponding to Kolmogorov's turbulence spectrum. The simple Kolmogorov model provides satisfactory agreement for observations along many lines of sight; however, major inconsistencies remain. The inconsistencies suggest that an increase in the ratio of the power between the high (10-8[ m]-1≤ q<=10-7[ m]-1) and low (10-13[ m]-1≤ q<=10-12[ m]-1) wavenumbers is needed. This enhancement in the ratio can in turn be achieved by either including an inner scale, corresponding to a dissipation scale for the turbulent cascade, in the Kolmogorov spectrum or by considering steeper spectra. Spectra with spectral exponents β > 4 have been in general rejected based on observations of pulsar refractive scintillations. The special case of β = 4 has been given little attention and is analyzed in detail. Physically, this 'β = 4' model corresponds to the random distribution, both in location and orientation, of discrete objects with relatively sharp boundaries across the line of sight. An outer scale is included in the model to account for the average size of such objects. We compare the predictions of the inner-scale and β = 4 models both with published observations and observations we made as part of this investigation. We conclude that the form of the wavenumber spectrum is dependent on the line of sight. We propose a composite spectrum featuring a uniform background turbulence in presence of randomly distributed discrete objects, as modeled by the β = model.

  5. Quantifying sound-field diffuseness in small rooms using multifractals.

    PubMed

    Loutridis, S J

    2009-03-01

    With the aim of quantifying sound-field uniformity in spaces of relatively low volume, four different configurations in terms of acoustic treatment and sound-field diffuseness were constructed and tested. In a diffuse sound field, reflections are not strongly correlated both to the original sound and to earlier reflections. The degree of correlation is embedded in the impulse response structure, but is not trivial to identify. The room impulse responses exhibit self-similarity and therefore may be treated as multifractal signals characterized by a singularity spectrum. The singularity spectrum contains a wealth of information about the acoustic field established in the room. The width of the singularity spectrum, in particular, is directly related to the complexity of the impulse response structure. The uniformity of the sound field in the room can be evaluated by examining the variation of the singularity spectra with position. A new definition for sound field diffuseness is given that is not based on the concept of the energy density. The proposed method is simple to apply, statistically robust, and provides a measure of diffusion independent of the room reverberation. PMID:19275308

  6. Magnetic Resonance Studies of Irradiated 1,3-DIMETHYLXANTHINE.

    NASA Astrophysics Data System (ADS)

    Majid, Ekramul

    ESR and ENDOR techniques were used to study the x-ray induced damage in single crystals of the organic molecule theophylline (1,3 dimethylxanthine). A K-band spectrometer operating at 25GHz was used for ESR and ENDOR measurements. X-irradiation was carried out at 25K, 80K, and at room temperature, and spectra were observed as the temperature was varied. The low temperature experiments were achieved by using a closed cycle helium refrigeration system. A detailed analysis was made of the spectra, and four different radicals (R1, R2, R3, and R4) were identified after irradiation. Radical R1 was identified as a hydrogen atom radical, stable from 20 to 60K; radical R2 was identified as an anion radical stable from 20 to 80K; radical R3 was formed by hydrogen abstraction from the methyl group at C(10); and radical R4 was found to be a hydrogen-adduct species. Radical R3 was characterized by the following parameters: (1) Methylene hydrogen hyperfine tensor values of 28.8, 17.8, 13.2 G, and 27.7, 18.9, 8.8 G; (2) g-tensor values of 2.0012, 2.0019, and 2.0036; (3) Isotropic methyl group coupling of 4 G; (4) A spin density of 0.68 on C(10). Radical R4 was characterized by (1) an isotropic methelene hydrogen coupling of 37.1 G; (2) a maximum nitrogen coupling at N(9) of 21 G; (3) hydrogen coupling tensor values, due to protonation at N(9), of 12.0, 8.5, and 3.0 G; (4) rotating methyl group tensor values, at N(1), of 2.38, 2.71, and 5.19 MHz; (5) g-tensor values of 2.0012, 2.0033, and 2.0049; (6) spin density of 0.38 on N(9). A kinetics study indicated that radical R3 converts to radical R4 at about 160 K.

  7. Magnetic resonance studies of irradiated 1,3-dimethylxanthine

    SciTech Connect

    Majid, E.

    1989-01-01

    ESR and ENDOR techniques were used to study the x-ray induced damage in single crystals of the organic molecule theophylline (1,3 dimethylxanthine). A K-band spectrometer operating at 25GHz was used for ESR and ENDOR measurements. X-irradiation was carried out at 25K, 80K, and at room temperature, and spectra were observed as the temperature was varied. The low temperature experiments were achieved by using a closed cycle helium refrigeration system. A detailed analysis was made of the spectra, and four different radicals (R1, R2, R3, and R4) were identified after irradiation. Radical R1 was identified as a hydrogen atom radical, stable from 20 to 6OK; radical R2 was identified as an anion radical stable from 20 to 8OK; radical R3 was formed by hydrogen abstraction from the methyl group at C(10); and radical R4 was found to be a hydrogen-adduct species. Radical R3 was characterized by the following parameters: (1) Methylene hydrogen hyperfine tensor values of 28.8, 17.8, 13.2 G, and 27.7, 18.9, 8.8 G; (2) g-tensor values of 2.0012, 2.0019, and 2.0036; (3) Isotropic methyl group coupling of 4 G; (4) A spin density of 0.68 on C(10). Radical R4 was characterized by (1) an isotropic methelene hydrogen coupling of 37.1 G; (2) a maximum nitrogen coupling at N(9) of 21 G; (3) hydrogen coupling tensor values, due to protonation at N(g), of 12.0, 8.5, and 3.0 G; (4) rotating methyl group tensor values, at N(l), of 2.38, 2.71, and 5.19 MHz; (5) g-tensor values of 2.0012, 2.0033, and 2.0049; (6) spin density of 0.38 on N(9). A kinetics study indicated that radical R3 converts to radical R4 at about 160 K.

  8. Raman spectroscopy of C-irradiated graphite

    SciTech Connect

    Hembree, D.M. Jr.; Pedraza, D.F.; Romanoski, G.R.; Withrow, S.P.; Annis, B.K.

    1994-09-01

    Highly oriented pyrolytic graphite samples were irradiated with C{sup +} ions at 35 keV in a direction normal to the basal plane and subsequently annealed up to 1373 K. Substantial surface topography changes were observed at fluences of 5 {times} 10{sup 18} ions/m{sup 2} and higher using scanning electron and atomic force microscopies. Intricate networks of surface cracks and ridges developed after high dose implantation. A systematic study of the irradiation effects was conducted using Raman spectroscopy. Microstructural changes in irradiated regions were first detected at a dose of 1 {times} 10{sup 17} ions/m{sup 2} through the appearance of the Raman D-line at {approx}1360 cm{sup {minus}1}. The intensity of this line increases while that of the Raman G-line at 1580 cm{sup {minus}1} decreases as the irradiation dose is increased or the irradiation temperature is decreased. After irradiation at 280K to a fluence of 5 {times} 10{sup 19} ions/m{sup 2} or higher the first order spectrum exhibits one single line at a wavelength intermediate between the D- and G-lines. Damage recovery upon thermal annealing depends not only on the initial damage state but also on the annealing temperature sequence. Samples irradiated to a damage level where two distinct Raman peaks are no longer resolvable exhibited upon direct annealing at a high temperature two distinct Raman lines. By contrast, pre-annealing these highly irradiated specimens at lower temperatures produced less pronounced changes in the Raman spectra. Pre-annealing appears to stabilize damage structures that are more resistant to high-temperature annealing than those induced by irradiation.

  9. Spectra of particulate backscattering in natural waters.

    PubMed

    Gordon, Howard R; Lewis, Marlon R; McLean, Scott D; Twardowski, Michael S; Freeman, Scott A; Voss, Kenneth J; Boynton, G Chris

    2009-08-31

    Hyperspectral profiles of downwelling irradiance and upwelling radiance in natural waters (oligotrophic and mesotrophic) are combined with inverse radiative transfer to obtain high resolution spectra of the absorption coefficient (a) and the backscattering coefficient (b(b)) of the water and its constituents. The absorption coefficient at the mesotrophic station clearly shows spectral absorption features attributable to several phytoplankton pigments (Chlorophyll a, b, c, and Carotenoids). The backscattering shows only weak spectral features and can be well represented by a power-law variation with wavelength (lambda): b(b) approximately lambda(-n), where n is a constant between 0.4 and 1.0. However, the weak spectral features in b(b)b suggest that it is depressed in spectral regions of strong particle absorption. The applicability of the present inverse radiative transfer algorithm, which omits the influence of Raman scattering, is limited to lambda < 490 nm in oligotrophic waters and lambda < 575 nm in mesotrophic waters. PMID:19724619

  10. Spectra as windows into exoplanet atmospheres.

    PubMed

    Burrows, Adam S

    2014-09-01

    Understanding a planet's atmosphere is a necessary condition for understanding not only the planet itself, but also its formation, structure, evolution, and habitability. This requirement puts a premium on obtaining spectra and developing credible interpretative tools with which to retrieve vital planetary information. However, for exoplanets, these twin goals are far from being realized. In this paper, I provide a personal perspective on exoplanet theory and remote sensing via photometry and low-resolution spectroscopy. Although not a review in any sense, this paper highlights the limitations in our knowledge of compositions, thermal profiles, and the effects of stellar irradiation, focusing on, but not restricted to, transiting giant planets. I suggest that the true function of the recent past of exoplanet atmospheric research has been not to constrain planet properties for all time, but to train a new generation of scientists who, by rapid trial and error, are fast establishing a solid future foundation for a robust science of exoplanets.

  11. Spectra as windows into exoplanet atmospheres

    NASA Astrophysics Data System (ADS)

    Burrows, Adam S.

    2014-09-01

    Understanding a planet's atmosphere is a necessary condition for understanding not only the planet itself, but also its formation, structure, evolution, and habitability. This requirement puts a premium on obtaining spectra and developing credible interpretative tools with which to retrieve vital planetary information. However, for exoplanets, these twin goals are far from being realized. In this paper, I provide a personal perspective on exoplanet theory and remote sensing via photometry and low-resolution spectroscopy. Although not a review in any sense, this paper highlights the limitations in our knowledge of compositions, thermal profiles, and the effects of stellar irradiation, focusing on, but not restricted to, transiting giant planets. I suggest that the true function of the recent past of exoplanet atmospheric research has been not to constrain planet properties for all time, but to train a new generation of scientists who, by rapid trial and error, are fast establishing a solid future foundation for a robust science of exoplanets.

  12. Spectra as windows into exoplanet atmospheres.

    PubMed

    Burrows, Adam S

    2014-09-01

    Understanding a planet's atmosphere is a necessary condition for understanding not only the planet itself, but also its formation, structure, evolution, and habitability. This requirement puts a premium on obtaining spectra and developing credible interpretative tools with which to retrieve vital planetary information. However, for exoplanets, these twin goals are far from being realized. In this paper, I provide a personal perspective on exoplanet theory and remote sensing via photometry and low-resolution spectroscopy. Although not a review in any sense, this paper highlights the limitations in our knowledge of compositions, thermal profiles, and the effects of stellar irradiation, focusing on, but not restricted to, transiting giant planets. I suggest that the true function of the recent past of exoplanet atmospheric research has been not to constrain planet properties for all time, but to train a new generation of scientists who, by rapid trial and error, are fast establishing a solid future foundation for a robust science of exoplanets. PMID:24613929

  13. Spectra of Particulate Backscattering in Natural Waters

    NASA Technical Reports Server (NTRS)

    Gordon, Howard, R.; Lewis, Marlon R.; McLean, Scott D.; Twardowski, Michael S.; Freeman, Scott A.; Voss, Kenneth J.; Boynton, Chris G.

    2009-01-01

    Hyperspectral profiles of downwelling irradiance and upwelling radiance in natural waters (oligotrophic and mesotrophic) are combined with inverse radiative transfer to obtain high resolution spectra of the absorption coefficient (a) and the backscattering coefficient (bb) of the water and its constituents. The absorption coefficient at the mesotrophic station clearly shows spectral absorption features attributable to several phytoplankton pigments (Chlorophyll a, b, c, and Carotenoids). The backscattering shows only weak spectral features and can be well represented by a power-law variation with wavelength (lambda): b(sub b) approx. Lambda(sup -n), where n is a constant between 0.4 and 1.0. However, the weak spectral features in b(sub b), suggest that it is depressed in spectral regions of strong particle absorption. The applicability of the present inverse radiative transfer algorithm, which omits the influence of Raman scattering, is limited to lambda < 490 nm in oligotrophic waters and lambda < 575 nm in mesotrophic waters.

  14. Icelike water monolayer adsorbed on mica at room temperature

    SciTech Connect

    Miranda, P.B.; Xu, L.; Shen, Y.R.; Salmeron, M.

    1998-10-01

    The structure of a water film formed on mica at room temperature, in equilibrium with water vapor at various relative humidities (RH), was studied using sum-frequency-generation (SFG) vibrational spectroscopy and scanning polarization force microscopy (SPFM). Analysis of the O-D stretch modes in the SFG spectra of D{sub 2}O on mica indicates that as RH increases, the submonolayer water structure evolves into a more ordered hydrogen-bonding network. At full monolayer coverage ({approximately} 90% RH), the SFG spectrum suggests an icelike film with no dangling O-D groups, in agreement with a recent molecular dynamics simulation.

  15. The methodology study of time accelerated irradiation of elastomers

    NASA Astrophysics Data System (ADS)

    Ito, Masayuki

    2005-07-01

    The article studied the methods how to shorten the irradiation time by increasing dose rate without changing the relationship between dose versus properties of degraded samples. The samples used were nine kinds of EPDM which have different compounding formula. The different dose of Co-γ ray was exposed to the samples. The maximum dose was 2 MGy. The reference condition to be compared with two short time test conditions is irradiation of 0.33 kGy/h at room temperature. Two methods shown below were studied as the time-accelerate irradiation conditions.

  16. Polariton condensates at room temperature

    NASA Astrophysics Data System (ADS)

    Guillet, Thierry; Brimont, Christelle

    2016-10-01

    We review the recent developments of the polariton physics in microcavities featuring the exciton-photon strong coupling at room temperature, and leading to the achievement of room-temperature polariton condensates. Such cavities embed active layers with robust excitons that present a large binding energy and a large oscillator strength, i.e. wide bandgap inorganic or organic semiconductors, or organic molecules. These various systems are compared, in terms of figures of merit and of common features related to their strong oscillator strength. The various demonstrations of polariton laser are compared, as well as their condensation phase diagrams. The room-temperature operation indeed allows a detailed investigation of the thermodynamic and out-of-equilibrium regimes of the condensation process. The crucial role of the spatial dynamics of the condensate formation is discussed, as well as the debated issue of the mechanism of stimulated relaxation from the reservoir to the condensate under non-resonant excitation. Finally the prospects of polariton devices are presented.

  17. 'How To' Clean Room Video

    NASA Technical Reports Server (NTRS)

    McCarty, Kaley Corinne

    2013-01-01

    One of the projects that I am completing this summer is a Launch Services Program intern 'How to' set up a clean room informational video. The purpose of this video is to go along with a clean room kit that can be checked out by employees at the Kennedy Space Center and to be taken to classrooms to help educate students and intrigue them about NASA. The video will include 'how to' set up and operate a clean room at NASA. This is a group project so we will be acting as a team and contributing our own input and ideas. We will include various activities for children in classrooms to complete, while learning and having fun. Activities that we will explain and film include: helping children understand the proper way to wear a bunny suit, a brief background on cleanrooms, and the importance of maintaining the cleanliness of a space craft. This project will be shown to LSP management and co-workers; we will be presenting the video once it is completed.

  18. 7. VIEW OF SLC3W CONTROL ROOM (ROOM 105) FROM ITS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. VIEW OF SLC-3W CONTROL ROOM (ROOM 105) FROM ITS SOUTHWEST CORNER. NOTE RAISED FLATFORM IN CENTER OF ROOM. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Operations Building, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  19. Comparative Study of Two Different TiO₂ Film Sensors on Response to H₂ under UV Light and Room Temperature.

    PubMed

    Peng, Xiaoying; Wang, Zhongming; Huang, Pan; Chen, Xun; Fu, Xianzhi; Dai, Wenxin

    2016-01-01

    An anatase TiO₂ film sensor was prepared by a facile in-situ method on the interdigitated Au electrode deposited on the alumina substrate. The structure, morphology and the optical properties of the in-situ TiO₂ film sensor were characterized by X-ray diffraction, Scanning Electron Microscopy, and UV-vis diffuse reflectance spectra. The photo-assisted gas sensitivities of the prepared film towards H₂ gas were evaluated at room temperature in N₂ and synthetic air atmospheres. As compared to TiO₂ film sensor prepared by drop-coating method, this in-situ TiO₂ film sensor exhibited a more compact structure composed of uniform TiO₂ microspheres as well as a better gas sensitivity towards H₂ under UV irradiation, especially in synthetic air. The photo-electrochemical measurements suggest that these improvements may be associated with the efficient charge transfer in the TiO₂ interface induced by the TiO₂ microsphere structure. This study might offer a feasible approach to develop photo-assisted gas sensors at ambient temperature. PMID:27509502

  20. Effects of electron beam irradiation on binary polyamide-6 blends with metallocene copolymers

    NASA Astrophysics Data System (ADS)

    Rosales, C.; López-Quintana, S.; Gobernado-Mitre, I.; Merino, J. C.; Pastor, J. M.

    2007-12-01

    The effect of electron beam irradiation on thermal and mechanical properties, and SEM morphology of polyamide-6 (PA-6) blends with grafted copolymers was investigated. High toughness materials were obtained with ethylene-polypropylene-diene grafted copolymers without significant variations in their thermal properties and Izod impact strength at room temperature and -30 °C with the irradiation doses used.

  1. Features of the uniaxial elastic deformation of X-ray-irradiated p-Si crystals

    SciTech Connect

    Pavlyk, B. V.; Lys, R. M. Didyk, R. I.; Shykorjak, J. A.

    2015-05-15

    Changes in the conductivity of p-Si single-crystals irradiated at room temperature during their mechanical compression and stress relief are studied. It is shown that irradiation is accompanied by the generation of point defects in silicon, which play the role of stoppers for dislocation motion. The effect of “radiation memory” in “electronic” silicon crystals is detected.

  2. Highly efficient degradation of dye pollutants by Ce-doped MoO₃ catalyst at room temperature.

    PubMed

    Jin, Yujian; Li, Na; Liu, Haiqiu; Hua, Xia; Zhang, Qiuying; Chen, Mindong; Teng, Fei

    2014-09-14

    In order to efficiently degrade organic pollutants via an easily operated method, Ce-doped MoO3 (Ce(x)/MoO3) samples are synthesized by a simple impregnation method. The samples are characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED), nitrogen sorption isotherms and UV-vis diffused reflectance spectra (UV-DRS), total organic carbon (TOC), infrared spectroscopy (IR) and mass spectrometry (MS) analyses. Furthermore, we have mainly investigated the degradation of different dye pollutants by the Ce(x)/MoO3 samples, including cationic methylene blue (MB), anionic methyl orange (MO), neutral phenol, and a MB-MO mixture dye. For the single-component MB and MO dyes, the highest degradation efficiencies are achieved by Ce(5)/MoO3 and Ce(10)/MoO3 samples. For the MB-MO mixture dyes, the highest degradation efficiency for MB is achieved by a Ce(10)/MoO3 sample. It is surprising that the degradation efficiency of MB in the MB-MO mixture dye solution is higher than that in the single-component MB dye solution, which has been mainly ascribed to the promoting effect of MO. Moreover, a plausible degradation mechanism of the dyes has been proposed and discussed. It should be noted that the degradation reaction is carried out at room temperature and normal atmospheric pressure, and without light irradiation. As a result, this degradation reaction is obviously different from the conventional thermally activated heterogeneous catalysis (or photocatalysis), in which thermal energy (or light irradiation) is indispensable; also different from a sorption technology, in which the pollutants cannot be degraded, but only transformed from one phase to another one. Thus, the reported degradation reaction is a quite promising environmental cleaning technology, which could be widely practically applied.

  3. Interpreting Chromosome Aberration Spectra

    NASA Technical Reports Server (NTRS)

    Levy, Dan; Reeder, Christopher; Loucas, Bradford; Hlatky, Lynn; Chen, Allen; Cornforth, Michael; Sachs, Rainer

    2007-01-01

    Ionizing radiation can damage cells by breaking both strands of DNA in multiple locations, essentially cutting chromosomes into pieces. The cell has enzymatic mechanisms to repair such breaks; however, these mechanisms are imperfect and, in an exchange process, may produce a large-scale rearrangement of the genome, called a chromosome aberration. Chromosome aberrations are important in killing cells, during carcinogenesis, in characterizing repair/misrepair pathways, in retrospective radiation biodosimetry, and in a number of other ways. DNA staining techniques such as mFISH ( multicolor fluorescent in situ hybridization) provide a means for analyzing aberration spectra by examining observed final patterns. Unfortunately, an mFISH observed final pattern often does not uniquely determine the underlying exchange process. Further, resolution limitations in the painting protocol sometimes lead to apparently incomplete final patterns. We here describe an algorithm for systematically finding exchange processes consistent with any observed final pattern. This algorithm uses aberration multigraphs, a mathematical formalism that links the various aspects of aberration formation. By applying a measure to the space of consistent multigraphs, we will show how to generate model-specific distributions of aberration processes from mFISH experimental data. The approach is implemented by software freely available over the internet. As a sample application, we apply these algorithms to an aberration data set, obtaining a distribution of exchange cycle sizes, which serves to measure aberration complexity. Estimating complexity, in turn, helps indicate how damaging the aberrations are and may facilitate identification of radiation type in retrospective biodosimetry.

  4. Sequencing BPS spectra

    DOE PAGES

    Gukov, Sergei; Nawata, Satoshi; Saberi, Ingmar; Stošić, Marko; Sułkowski, Piotr

    2016-03-02

    In this article, we provide both a detailed study of color-dependence of link homologies, as realized in physics as certain spaces of BPS states, and a broad study of the behavior of BPS states in general. We consider how the spectrum of BPS states varies as continuous parameters of a theory are perturbed. This question can be posed in a wide variety of physical contexts, and we answer it by proposing that the relationship between unperturbed and perturbed BPS spectra is described by a spectral sequence. These general considerations unify previous applications of spectral sequence techniques to physics, and explainmore » from a physical standpoint the appearance of many spectral sequences relating various link homology theories to one another. We also study structural properties of colored HOMFLY homology for links and evaluate Poincar e polynomials in numerous examples. Among these structural properties is a novel "sliding" property, which can be explained by using (re fined) modular S-matrix. This leads to the identi fication of modular transformations in Chern-Simons theory and 3d N = 2 theory via the 3d/3d correspondence. In conclusion, we introduce the notion of associated varieties as classical limits of recursion relations of colored superpolynomials of links, and study their properties.« less

  5. Sequencing BPS spectra

    NASA Astrophysics Data System (ADS)

    Gukov, Sergei; Nawata, Satoshi; Saberi, Ingmar; Stošić, Marko; Sułkowski, Piotr

    2016-03-01

    This paper provides both a detailed study of color-dependence of link homologies, as realized in physics as certain spaces of BPS states, and a broad study of the behavior of BPS states in general. We consider how the spectrum of BPS states varies as continuous parameters of a theory are perturbed. This question can be posed in a wide variety of physical contexts, and we answer it by proposing that the relationship between unperturbed and perturbed BPS spectra is described by a spectral sequence. These general considerations unify previous applications of spectral sequence techniques to physics, and explain from a physical standpoint the appearance of many spectral sequences relating various link homology theories to one another. We also study structural properties of colored HOMFLY homology for links and evaluate Poincaré polynomials in numerous examples. Among these structural properties is a novel "sliding" property, which can be explained by using (refined) modular S-matrix. This leads to the identification of modular transformations in Chern-Simons theory and 3d {N}=2 theory via the 3d/3d correspondence. Lastly, we introduce the notion of associated varieties as classical limits of recursion relations of colored superpolynomials of links, and study their properties.

  6. Improvement of colour strength and colourfastness properties of gamma irradiated cotton using reactive black-5

    NASA Astrophysics Data System (ADS)

    Ahmad Bhatti, Ijaz; Adeel, Shahid; Nadeem, Raziya; Asghar, Toheed

    2012-03-01

    The dyeing behaviour of gamma irradiated cotton fabric using Reactive Black-5 dye powder has been investigated. The mercerized, bleached and plain weaved cotton fabric was irradiated to different absorbed doses of 100, 200, 300, 400, 500 and 600 Gy using Co-60 gamma irradiator. Dyeing was performed using irradiated and un-irradiated cotton with dye solutions. The dyeing parameters such as temperature of dyeing, time of dyeing and pH of dyeing solutions were optimised. The colour strength values of dyed fabrics were evaluated by comparing irradiated and un-irradiated cotton in CIE Lab system using Spectra flash SF650. Methods suggested by International Standard Organisation (ISO) were employed to study the effect of gamma irradiation on the colourfastness properties of dyed fabric. It is found that gamma irradiated cotton dyed with Reactive Black-5 has not only improved the colour strength but also enhanced the rating of fastness properties.

  7. The Theory of Exoplanet Atmospheres and Spectra

    NASA Astrophysics Data System (ADS)

    Burrows, Adam S.

    2008-09-01

    Approximately 300 exoplanets, mostly giant planets (EGPs) in the Jovian mass range, have been detected orbiting stars in the solar neighborhood. More than 15% of them are transiting their primaries and these have collectively yielded a wealth of structural and physical information which theorists are scrambling to interpret. In this talk. I will present the current theory of the their atmospheres, compositions, and spectra. Due to stellar irradiation effects and heat redistribution by super-rotational jet streams, we must eventually construct with some fidelity 3D general circulation models (GCMs), with multi-D radiative transfer. However, simpler planar models with average irradiation boundary conditions and crude day-night heat transport algorithms do a reasonable 1st-order job of reproducing what is observed directly by the Spitzer infrared space telescope. In particular, thermal inversions and stratospheres are inferred for many close-in EGPs. I will discuss the confrontation of theory with data and summarize what has been learned to date.

  8. Optical Properties of Irradiated Topaz Crystals

    NASA Astrophysics Data System (ADS)

    Skvortsova, V.; Mironova-Ulmane, N.; Trinkler, L.

    2015-04-01

    The results of an investigation of UV-Visible absorption and photoluminescence spectra of colorless topaz before and after neutron irradiation, natural blue topaz from Ukraine, and yellow topaz are presented. We assume that the absorption band ∼ 620 nm and broad emission band 300-700 nm in topaz crystals are associated with exchange interaction between a radiation defect (anion vacancies, which capture one or two electrons) and impurity ions Cr3+, Fe3+ and Mn2+.

  9. Ionoluminescence of fused silica under swift ion irradiation

    NASA Astrophysics Data System (ADS)

    Saavedra, R.; Jiménez-Rey, D.; Martin, P.; Vila, R.

    2016-09-01

    Ion beam induced luminescence spectra have been in-situ recorded during He+ (2.5 MeV), O4+ (13.5 MeV) and Si4+ (24.4 MeV) irradiations for three vitreous silica grades with different OH content (KU1, KS-4V and Infrasil 301). Remarkable changes in the ionoluminescence spectra of the three silica grades were observed for low ion fluences. He+ irradiated samples exhibited higher luminescence than equivalent ones irradiated with heavier O4+ and Si4+ ions. KU1 samples with the highest OH content showed the lowest blue luminescence. Blue luminescence maximum during ion irradiations with O4+ and Si4+ ions is correlated with structural changes.

  10. [EPR spectra of silkworm eggs].

    PubMed

    Korkhova, E D; Chepel', L M; Nikolov, O T; Komar', I N; Shakhbazov, V G

    1976-01-01

    ESR spectra of the native grain of the silkworm have been studied in the course of embryo formation, during a diapause, and during embryo development after the diapause. It is shown that the nature of ESR spectra of the grain is not determined by the metabolic processes, but by the presence of pigments in it and other stationary biological structures having developed pi-systems and unpaired electrones. The latter are mainly found in the envelope and may give the ESR spectra, with various g-factors. A dependence of the ESR spectra integral intensity of the grain on the denotype is discovered.

  11. Room temperature optical and magnetic properties of polyvinylpyrrolidone capped ZnO nanoparticles

    SciTech Connect

    Chakrabarti, Mahuya; Chakrabarti, Keka R.; Sanyal, D.; Chakrabarti, A.

    2009-09-15

    Defect induced room temperature ferromagnetic properties of polyvinylpyrrolidone (PVP) capped nanocrystalline ZnO samples have been studied. Crystal phase and the lattice parameter of the synthesized nanocrystalline samples have been determined from X-ray diffraction spectra (XRD) and high-resolution transmission electron micrographs (HR-TEM). Room temperature photoluminescence (PL) spectrum for the bare ZnO sample shows a strong band at {approx} 379 nm and another band at {approx} 525 nm. The PL spectra also revealed that the number of oxygen vacancies in the uncapped sample is more than the PVP capped sample. Both sample exhibit ferromagnetic property at room temperature when annealed at 500 deg. C for 3 h, due to the formation of adequate oxygen vacancy related defects. The saturation magnetization for the annealed PVP capped sample is found to be larger compared to that for the uncapped sample.

  12. Thermal conductivity degradation of graphites irradiated at low temperature

    SciTech Connect

    Snead, L.L.; Burchell, T.D.

    1995-04-01

    The objective of this work is to study the thermal conductivity degradation of new, high thermal conductivity graphites and to compare these results to more standard graphites irradiated at low temperatures. Several graphites and graphite composites (C/C`s) have been irradiated near 150{degree}C and at fluences up to a displacement level of 0.24 dpa. The materials ranged in unirradiated room temperature thermal conductivity of these materials varied from 114 W/m-K for H-451 isotropic graphite, to 670 W/m-K for unidirectional FMI-1D C/C composite. At the irradiation temperature a saturation reduction in thermal conductivity was seen to occur at displacement levels of approximately 0.1 dpa. All materials were seen to degrade to approximately 10 to 14 % of their original thermal conductivity after irradiation. The effect of post irradiation annealing on the thermal conductivity was also studied.

  13. Ferromagnetism in proton irradiated 4H-SiC single crystal

    SciTech Connect

    Zhou, Ren-Wei; Wang, Hua-Jie; Chen, Wei-Bin; Li, Fei; Liu, Xue-Chao Zhuo, Shi-Yi; Shi, Er-Wei

    2015-04-15

    Room-temperature ferromagnetism is observed in proton irradiated 4H-SiC single crystal. An initial increase in proton dose leads to pronounced ferromagnetism, accompanying with obvious increase in vacancy concentration. Further increase in irradiation dose lowers the saturation magnetization with the decrease in total vacancy defects due to the defects recombination. It is found that divacancies are the mainly defects in proton irradiated 4H-SiC and responsible for the observed ferromagnetism.

  14. 24 CFR 3280.109 - Room requirements.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... gross floor area. (b) Rooms designed for sleeping purposes shall have a minimum gross square foot floor... of two. (c) Every room designed for sleeping purposes shall have accessible clothes hanging...

  15. 24 CFR 3280.109 - Room requirements.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... gross floor area. (b) Rooms designed for sleeping purposes shall have a minimum gross square foot floor... of two. (c) Every room designed for sleeping purposes shall have accessible clothes hanging...

  16. 24 CFR 3280.109 - Room requirements.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... gross floor area. (b) Rooms designed for sleeping purposes shall have a minimum gross square foot floor... of two. (c) Every room designed for sleeping purposes shall have accessible clothes hanging...

  17. 24 CFR 3280.109 - Room requirements.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... gross floor area. (b) Rooms designed for sleeping purposes shall have a minimum gross square foot floor... of two. (c) Every room designed for sleeping purposes shall have accessible clothes hanging...

  18. Irradiation chemistry in the outer solar system

    NASA Astrophysics Data System (ADS)

    Brown, Michael E.

    2014-11-01

    The dark, reddish tinged surfaces of icy bodies in the outer solar are usually attributed to the long term irradiation of simple hydrocarbons such as methane leading to the loss of hydrogen and the production of long carbon chains. While methane is stable and detected on the most massive bodies in the Kuiper belt, evidence of active irradiation chemistry is scant except for the presence of ethane on methane-rich Makemake and possible detections of ethane on more methane-poor Pluto and Quaoar. We have obtained deep high signal-to-noise spectra of Makemake from 1.5 to 2.5 microns in an attempt to trace the radiation chemistry in the outer solar system beyond the initial ethane formation. We present the first astrophysical detections of solid ethylene, acetylene, and possibly propane -- all expected products of the continued irradiation of methane, and use these species to map the chemical pathway from methane to long-chain hydrocarbons.

  19. Tensile properties of CLAM steel irradiated up to 20.1 dpa in STIP-V

    NASA Astrophysics Data System (ADS)

    Ge, Hongen; Peng, Lei; Dai, Yong; Huang, Qunying; Ye, Minyou

    2016-01-01

    Specimens of China low activation martensitic steel (CLAM) were irradiated in the fifth experiment of SINQ Target Irradiation Program (STIP-V) up to 20.1 dpa/1499 appm He/440 °C. Tensile tests were performed at room temperature (R.T) and irradiation temperatures (Tirr) in the range of 25-450 °C. The tensile results demonstrated strong effect of irradiation dose and irradiation temperature on hardening and embrittlement. With Tirr below ˜314 °C, CLAM steel specimens tested at R.T and Tirr showed similar evolution trend with irradiation dose, compared to other reduced activation ferritic/martensitic (RAFM) steels in similar irradiation conditions. At higher Tirr above ˜314 °C, it is interesting that the hardening effect decreases and the ductility seems to recover, probably due to a strong effect of high irradiation temperature.

  20. The new standard: single family room design.

    PubMed

    Stichler, Jaynelle F

    2012-10-01

    Nurse leaders influence decisions related to single patient rooms or multioccupancy room designs. The purpose of this facility design article is to expand nurse leaders' knowledge and competency in health facility design enabling them to lead design efforts and the transition to new facilities and models of care. This article describes the new standard of all-private rooms for adult and neonatal ICU care and defines the benefits of the single family room design on patients, families, and providers.

  1. Commercial food irradiation

    SciTech Connect

    Black, E.F.; Libby, L.M.

    1983-06-01

    Food irradiation is discussed. Irradiation exposes food to gamma rays from a cobalt-60 or a cesium-137 source, or to high-energy electrons emitted by an electron accelerator. A major advantage is that food can be packaged either before or after treatment. FDA regulations with regard to irradiation are discussed. Comments on an 'Advance Notice' on irradiation, published by the FDA in 1981 are summarized.

  2. 32 CFR 701.6 - Reading rooms.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 5 2014-07-01 2014-07-01 false Reading rooms. 701.6 Section 701.6 National... Reading rooms. The FOIA requires that (a)(2) records created on or after 1 November 1996, be made available electronically (starting 1 November 1997) as well as in hard copy, in the FOIA reading room...

  3. 7 CFR 58.409 - Drying room.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Drying room. 58.409 Section 58.409 Agriculture....409 Drying room. When applicable, a drying room of adequate size shall be provided to accommodate the... provided for proper drying. Temperature and humidity control facilities should be provided which...

  4. 7 CFR 58.409 - Drying room.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false Drying room. 58.409 Section 58.409 Agriculture....409 Drying room. When applicable, a drying room of adequate size shall be provided to accommodate the... provided for proper drying. Temperature and humidity control facilities should be provided which...

  5. 7 CFR 58.409 - Drying room.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Drying room. 58.409 Section 58.409 Agriculture....409 Drying room. When applicable, a drying room of adequate size shall be provided to accommodate the... provided for proper drying. Temperature and humidity control facilities should be provided which...

  6. 7 CFR 58.409 - Drying room.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 3 2014-01-01 2014-01-01 false Drying room. 58.409 Section 58.409 Agriculture....409 Drying room. When applicable, a drying room of adequate size shall be provided to accommodate the... provided for proper drying. Temperature and humidity control facilities should be provided which...

  7. 7 CFR 58.409 - Drying room.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Drying room. 58.409 Section 58.409 Agriculture....409 Drying room. When applicable, a drying room of adequate size shall be provided to accommodate the... provided for proper drying. Temperature and humidity control facilities should be provided which...

  8. 32 CFR 701.6 - Reading rooms.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 5 2012-07-01 2012-07-01 false Reading rooms. 701.6 Section 701.6 National... Reading rooms. The FOIA requires that (a)(2) records created on or after 1 November 1996, be made available electronically (starting 1 November 1997) as well as in hard copy, in the FOIA reading room...

  9. 32 CFR 701.6 - Reading rooms.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 5 2013-07-01 2013-07-01 false Reading rooms. 701.6 Section 701.6 National... Reading rooms. The FOIA requires that (a)(2) records created on or after 1 November 1996, be made available electronically (starting 1 November 1997) as well as in hard copy, in the FOIA reading room...

  10. Changes in the properties of Lexan polycarbonate by UV irradiation

    NASA Astrophysics Data System (ADS)

    Hareesh, K.; Pandey, A. K.; Sangappa, Y.; Bhat, Ravishankar; Venkataraman, A.; Sanjeev, Ganesh

    2013-01-01

    The changes in the microstructural parameters of Lexan polycarbonate films irradiated with UV radiation at a wavelength of λ = 250 nm were investigated using wide-angle X-ray scattering measurements. The crystal imperfection parameters, such as the crystallite size, lattice strain, and enthalpy, were determined by line profile analysis using the Fourier method of Warren. An exponential function for the column length distribution was used to determine these parameters. UV-Visible spectroscopy study revealed the formation of photo-stabilizers after irradiation. Thermogravimetric analysis revealed that the thermal decomposition temperature increased after the films were irradiated. In the photoluminescence spectrum, the intensities of the peaks at 426 nm in the emission spectra and at 375 nm in the excitation spectra were observed to decrease with an increase in the exposure time. Raman spectra exhibit only minor shifts in some of the bands after the films were irradiated. Atomic force microscopic measurements revealed that the average roughness of the film increased after irradiation. Infrared spectroscopic study revealed that the carbonate linkage was the radiation-sensitive linkage and that the benzene ring does not undergo any changes after being irradiated.

  11. Catalogue of representative meteor spectra

    NASA Astrophysics Data System (ADS)

    Vojáček, V.; Borovička, J.; Koten, P.; Spurný, P.; Štork, R.

    2016-01-01

    We present a library of low-resolution meteor spectra that includes sporadic meteors, members of minor meteor showers, and major meteor showers. These meteors are in the magnitude range from +2 to ‑3, corresponding to meteoroid sizes from 1 mm to10 mm. This catalogue is available online at the CDS for those interested in video meteor spectra.

  12. Projecting Spectra for Classroom Investigations.

    ERIC Educational Resources Information Center

    Sadler, Philip

    1991-01-01

    Describes an inexpensive spectrum projector that makes high-dispersion, high-efficiency diffraction gratings using a holographic process. Discusses classroom applications such as transmission spectra, absorption spectra, reflection characteristics of materials, color mixing, florescence and phosphorescence, and break up spectral colors. (MDH)

  13. Catalogue of representative meteor spectra

    NASA Astrophysics Data System (ADS)

    Vojáček, V.; Borovička, J.; Koten, P.; Spurný, P.; Štork, R.

    2016-01-01

    We present a library of low-resolution meteor spectra that includes sporadic meteors, members of minor meteor showers, and major meteor showers. These meteors are in the magnitude range from +2 to -3, corresponding to meteoroid sizes from 1 mm to10 mm. This catalogue is available online at the CDS for those interested in video meteor spectra.

  14. Some folded issues related to over-shielded and unplanned rooms for medical linear accelerators - A case study

    NASA Astrophysics Data System (ADS)

    Muhammad, Wazir; Ullah, Asad; Hussain, Amjad; Ali, Nawab; Alam, Khan; Khan, Gulzar; Matiullah; Maeng, Seongjin; Lee, Sang Hoon

    2015-08-01

    A medical linear accelerator (LINAC) room must be properly shielded to limit the outside radiation exposure to an acceptable safe level defined by individual state and international regulations. However, along with this prime objective, some additional issues are also important. The current case-study was designed to unfold the issues related to over-shielded and unplanned treatment rooms for LINACs. In this connection, an apparently unplanned and over-shielded treatment room of 610 × 610 cm2 in size was compared with a properly designed treatment room of 762 × 762 cm2 in size ( i.e., by following the procedures and recommendations of the IAEA Safety Reports Series No. 47 and NCRP 151). Evaluation of the unplanned room indicated that it was over-shielded and that its size was not suitable for total body irradiation (TBI), although the license for such a treatment facility had been acquired for the installed machine. An overall 14.96% reduction in the total shielding volume ( i.e., concrete) for an optimally planned room as compared to a non-planned room was estimated. Furthermore, the inner room's dimensions were increased by 25%, in order to accommodate TBI patients. These results show that planning and design of the treatment rooms are imperative to avoid extra financial burden to the hospitals and to provide enough space for easy and safe handling of the patients. A spacious room is ideal for storing treatment accessories and facilitates TBI treatment.

  15. Thermoluminescence and photoluminescence studies on γ-ray-irradiated Ce³⁺,Tb³⁺-doped potassium chloride single crystals.

    PubMed

    Bangaru, S; Saradha, K; Muralidharan, G

    2016-05-01

    Single crystals of KCl doped with Ce(3+),Tb(3+) were grown using the Bridgeman-Stockbarger technique. Thermoluminescence (TL), optical absorption, photoluminescence (PL), photo-stimulated luminescence (PSL), and thermal-stimulated luminescence (TSL) properties were studied after γ-ray irradiation at room temperature. The glow curve of the γ-ray-irradiated crystal exhibits three peaks at 420, 470 and 525 K. F-Light bleaching (560 nm) leads to a drastic change in the TL glow curve. The optical absorption measurements indicate that F- and V-centres are formed in the crystal during γ-ray irradiation. It was attempted to incorporate a broad band of cerium activator into the narrow band of terbium in the KCl host without a reduction in the emission intensity. Cerium co-doped KCl:Tb crystals showed broad band emission due to the d-f transition of cerium and a reduction in the intensity of the emission peak due to (5)D3 -(7)F(j) (j = 3, 4) transition of terbium, when excited at 330 nm. These results support that energy transfer occurs from cerium to terbium in the KCl host. Co-doping Ce(3+) ions greatly intensified the excitation peak at 339 nm for the emission at 400 nm of Tb(3+). The emission due to Tb(3+) ions was confirmed by PSL and TSL spectra. PMID:26381612

  16. Thermoluminescence and photoluminescence studies on γ-ray-irradiated Ce³⁺,Tb³⁺-doped potassium chloride single crystals.

    PubMed

    Bangaru, S; Saradha, K; Muralidharan, G

    2016-05-01

    Single crystals of KCl doped with Ce(3+),Tb(3+) were grown using the Bridgeman-Stockbarger technique. Thermoluminescence (TL), optical absorption, photoluminescence (PL), photo-stimulated luminescence (PSL), and thermal-stimulated luminescence (TSL) properties were studied after γ-ray irradiation at room temperature. The glow curve of the γ-ray-irradiated crystal exhibits three peaks at 420, 470 and 525 K. F-Light bleaching (560 nm) leads to a drastic change in the TL glow curve. The optical absorption measurements indicate that F- and V-centres are formed in the crystal during γ-ray irradiation. It was attempted to incorporate a broad band of cerium activator into the narrow band of terbium in the KCl host without a reduction in the emission intensity. Cerium co-doped KCl:Tb crystals showed broad band emission due to the d-f transition of cerium and a reduction in the intensity of the emission peak due to (5)D3 -(7)F(j) (j = 3, 4) transition of terbium, when excited at 330 nm. These results support that energy transfer occurs from cerium to terbium in the KCl host. Co-doping Ce(3+) ions greatly intensified the excitation peak at 339 nm for the emission at 400 nm of Tb(3+). The emission due to Tb(3+) ions was confirmed by PSL and TSL spectra.

  17. ESR identification of gamma-irradiated albendazole

    NASA Astrophysics Data System (ADS)

    Çolak, Seyda

    2010-01-01

    The use of ionizing radiation for sterilization of pharmaceuticals is a well-established technology. In the present work, the spectroscopic and kinetic features of the radicals induced in gamma-irradiated solid albendazole samples is investigated at different temperatures in the dose range of 3-34 kGy by electron spin resonance (ESR) spectroscopy. Irradiation with gamma radiation produced two different radical species in albendazole. They were fairly stable at room temperature but relatively unstable above room temperature, giving rise to an unresolved ESR spectrum consisting of three resonance peaks centered at g=2.0057. Decay activation energies of the contributing radical species were calculated to be 47.8 (±13.5) and 50.5 (±9.7) kJ/mol using the signal intensity decay data derived from annealing studies performed at high temperatures. A linear function of the applied dose was found to best describe the experimental dose-response data. Albendazole does not present the characteristics of good dosimetric materials. However, the discrimination of irradiated albendazole from its unirradiated form was possible even 6 months after storage in normal conditions. Based on these findings, it is concluded that albendazole and albendazole-containing drugs can be safely sterilized by gamma radiation and that ESR spectroscopy could be successfully used as a potential technique for monitoring their radiosterilization.

  18. True Cost of Amateur Clean rooms

    NASA Technical Reports Server (NTRS)

    Ramsey, W. Lawrence

    2005-01-01

    This viewgraph document reviews the cost factors for clean rooms that are not professionally built, monitored or maintained. These amateur clean rooms are built because scientist and engineers desire to create a clean room to build a part of an experiment that requires a clean room, and the program manager is looking to save money. However, in the long run these clean rooms may not save money, as the cost of maintenance may be higher due to the cost of transporting the crews, and if the materials were of lesser quality, the cost of modifications may diminish any savings, and the product may not be of the same quality. Several examples are shown of the clean rooms that show some of the problems that can arise from amateur clean rooms.

  19. Properties of simulated cosmic matters after gamma-ray and neutron irradiation

    NASA Astrophysics Data System (ADS)

    Koike, K.; Nakagawa, M.; Koike, C.; Chihara, H.; Okada, M.; Matsumura, M.; Awata, T.; Atobe, K.; Takada, J.

    2006-04-01

    Interstellar and circumstellar matter is known to be strongly irradiated by cosmic radiation and several types of cosmic ray particles. The effects of irradiation on simulated interstellar and circumstellar matter such as CaCO3, MgCO3, SiO2 and Al2O3 are investigated. Especially, thermoluminescence (TL) spectra after γ-ray and neutron irradiation are compared carefully. It is shown that the thermoluminescence after neutron irradiation appears significantly in the wavelength of blue region. On the reflectance in infrared region, the irradiation effect appears scarcely.

  20. Water in Room Temperature Ionic Liquids

    NASA Astrophysics Data System (ADS)

    Fayer, Michael

    2014-03-01

    Room temperature ionic liquids (or RTILs, salts with a melting point below 25 °C) have become a subject of intense study over the last several decades. Currently, RTIL application research includes synthesis, batteries, solar cells, crystallization, drug delivery, and optics. RTILs are often composed of an inorganic anion paired with an asymmetric organic cation which contains one or more pendant alkyl chains. The asymmetry of the cation frustrates crystallization, causing the salt's melting point to drop significantly. In general, RTILs are very hygroscopic, and therefore, it is of interest to examine the influence of water on RTIL structure and dynamics. In addition, in contrast to normal aqueous salt solutions, which crystallize at low water concentration, in an RTIL it is possible to examine isolated water molecules interacting with ions but not with other water molecules. Here, optical heterodyne-detected optical Kerr effect (OHD-OKE) measurements of orientational relaxation on a series of 1-alkyl-3-methylimidazolium tetrafluoroborate RTILs as a function of chain length and water concentration are presented. The addition of water to the longer alkyl chain RTILs causes the emergence of a long time bi-exponential orientational anisotropy decay. Such decays have not been seen previously in OHD-OKE experiments on any type of liquid and are analyzed here using a wobbling-in-a-cone model. The orientational relaxation is not hydrodynamic, with the slowest relaxation component becoming slower as the viscosity decreases for the longest chain, highest water content samples. The dynamics of isolated D2O molecules in 1-butyl-3-methylimidazolium hexafluorophosphate (BmImPF6) were examined using two dimensional infrared (2D IR) vibrational echo spectroscopy. Spectral diffusion and incoherent and coherent transfer of excitation between the symmetric and antisymmetric modes are examined. The coherent transfer experiments are used to address the nature of inhomogeneous

  1. Effects of electron-beam irradiation on conducting polypyrrole nanowires

    SciTech Connect

    Hong, Young Ki; Park, Dong Hyuk; Park, Se Hee; Park, Soung Kyu; Joo, Jinsoo

    2009-02-02

    Conducting polypyrrole (PPy) nanowires (NWs) were irradiated by a relatively high energy (300 keV-2 MeV) electron-beam (e-beam) generated from a linear electron accelerator in an atmospheric environment. From the current-voltage characteristics of pristine and 2 MeV e-beam irradiated PPy NWs, we observed a dramatic variation in resistance from 8.0x10{sup 2} to 1.45x10{sup 8} {omega}, that is, we observed a transition from conducting states to nonconducting states through the e-beam irradiation. To discern conformational changes and the doping states of PPy NWs through the e-beam irradiation, we measured Raman and ultraviolet-visible absorption spectra for the PPy NWs. As the energy of the e-beam irradiation increased, we observed that the PPy NWs were changed from doping states to dedoping states with conformational modification including the variation in {pi}-conjugation length.

  2. The laser desorption/laser ionization mass spectra of some anti-inflammatory drugs

    NASA Astrophysics Data System (ADS)

    Milnes, John; Rogers, Kevin; Jones, Sian; Gormally, John

    1994-03-01

    The IR laser desorption/ultraviolet laser ionization time-of-flight mass spectra are reported for the anti-inflammatory drugs indomethacin, acemetacin, ibuprofen, flurbiprofen, diflunisal and mefenamic acid. It is found that the six compounds can be readily ionized by two photon absorption at a fixed wavelength of 266 nm. Mass spectra have been obtained under conditions of high ionizing irradiance and the observed fragmentation behaviour is discussed.

  3. The role of hydrogen in room-temperature ferromagnetism at graphite surfaces

    SciTech Connect

    Ohldag, Hendrik

    2011-08-12

    We present a x-ray dichroism study of graphite surfaces that addresses the origin and magnitude of ferromagnetism in metal-free carbon. We find that, in addition to carbon {pi} states, also hydrogen-mediated electronic states exhibit a net spin polarization with significant magnetic remanence at room temperature. The observed magnetism is restricted to the top {approx}10 nm of the irradiated sample where the actual magnetization reaches {approx_equal} 15 emu/g at room temperature. We prove that the ferromagnetism found in metal-free untreated graphite is intrinsic and has a similar origin as the one found in proton bombarded graphite.

  4. Rapid synthesis of single-crystalline TbF{sub 3} with novel nanostructure via ultrasound irradiation

    SciTech Connect

    Zhu, Ling; Liu, Yangjia; Fan, Xizhi; Yang, Daowu; Cao, Xueqiang

    2011-02-15

    Graphical abstract: Terbium fluoride (TbF{sub 3}) nanopeanut has been successfully synthesized via a mild sonochemical route from an aqueous solution of terbium nitrate and fluoroborate without any template or organic additive. Research highlights: {yields} Research highlights {yields} TbF3 nanopeanut was prepared via sonochemical method. {yields} The morphologies of TbF3 can be tuned by ultrasound irradiation and fluoride source. {yields} The TbF3 nanopeanut shows high photoluminescence intensity. -- Abstract: Terbium fluoride (TbF{sub 3}) nanopeanut has been successfully synthesized via a mild sonochemical route from an aqueous solution of terbium nitrate and fluoroborate without any template or organic additive. X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and photoluminescence (PL) spectra were utilized to characterize the synthesized samples. The morphologies and optical properties of the obtained TbF{sub 3} nanopeanut can be tuned by ultrasound irradiation as well as the fluoride source. The prepared TbF{sub 3} nanopeanut shows extraordinarily high room temperature photoluminescence intensity comparing to the products prepared by stirring. The possible formation mechanism is proposed in this paper.

  5. Room acoustics for the aged.

    PubMed

    Plomp, R; Duquesnoy, A J

    1980-12-01

    This article deals with the combined effects of noise and reverberation on the speech-reception threshold for sentences. It is based on a series of current investigations on: (1) the modulation-transfer function as a measure of speech intelligibility in rooms, (2) the applicability of this concept to hearing-impaired persons, and (3) hearing loss for speech in quiet and in noise as a function of age. It is shown that, generally, in auditoria, classrooms, etc. the reverberation time T, acceptable for normal-hearing listeners, has to be reduced to (0.75)DT in order to be acceptable for elderly subjects with a hearing loss of D dB for speech in noise; for listening conditions as in lounges, restaurants, etc. the corresponding value is (0.82)DT. PMID:7462459

  6. Operating room of the future.

    PubMed

    Bharathan, Rasiah; Aggarwal, Rajesh; Darzi, Ara

    2013-06-01

    Development of surgical care in the 21st century is increasingly dependent on demonstrating safety, efficacy and cost effectiveness. Over the past 2 decades, the potential role of simulation in surgery has been explored with encouraging results; this can now be linked to direct improvement in the quality of care provision. Computer-assisted surgical platforms, such as robotic surgery, offer us the versatility to embrace a host of technical and technological developments. Rapid development in nanomedicine will expand the limits of operative performance through improved navigation and surgical precision. Integration of the multiple functions of the future operating room will be essential in optimising resource management. The key to bringing about the necessary paradigm shift in the design and delivery of modern surgical care is to appreciate that we now function in an information age, where the integrity of processes is driven by apt data management.

  7. Oxygen in the delivery room.

    PubMed

    Cernada, María; Cubells, Elena; Torres-Cuevas, Isabel; Kuligowski, Julia; Escobar, Javier; Aguar, Marta; Escrig, Raquel; Vento, Maximo

    2013-06-01

    Immediately after birth the newly born infant aerates the lungs, diminishes pulmonary vascular resistance, and initiates gas exchange. However, under certain circumstances this process will not be adequately accomplished. Asphyxia is characterized by periods of hypoxia and ischemia leading frequently to hypoxic ischemic encephalopathy. The mainstay of newborn resuscitation resides in the establishment of a functional residual capacity and an adequate oxygenation. Recent guidelines have established guidelines which provide counsel on the use of oxygen in term infants. However, preterm oxygenation in the delivery room (DR) has only been defined very vaguely. Herewith, we will address available information regarding the use of oxygen supplementation in the DR both in term and preterm babies for a satisfactory postnatal adaptation. PMID:23809339

  8. Room acoustics for the aged.

    PubMed

    Plomp, R; Duquesnoy, A J

    1980-12-01

    This article deals with the combined effects of noise and reverberation on the speech-reception threshold for sentences. It is based on a series of current investigations on: (1) the modulation-transfer function as a measure of speech intelligibility in rooms, (2) the applicability of this concept to hearing-impaired persons, and (3) hearing loss for speech in quiet and in noise as a function of age. It is shown that, generally, in auditoria, classrooms, etc. the reverberation time T, acceptable for normal-hearing listeners, has to be reduced to (0.75)DT in order to be acceptable for elderly subjects with a hearing loss of D dB for speech in noise; for listening conditions as in lounges, restaurants, etc. the corresponding value is (0.82)DT.

  9. In-situ high temperature irradiation setup for temperature dependent structural studies of materials under swift heavy ion irradiation

    NASA Astrophysics Data System (ADS)

    Kulriya, P. K.; Kumari, Renu; Kumar, Rajesh; Grover, V.; Shukla, R.; Tyagi, A. K.; Avasthi, D. K.

    2015-01-01

    An in-situ high temperature (1000 K) setup is designed and installed in the materials science beam line of superconducting linear accelerator at the Inter-University Accelerator Centre (IUAC) for temperature dependent ion irradiation studies on the materials exposed with swift heavy ion (SHI) irradiation. The Gd2Ti2O7 pyrochlore is irradiated using 120 MeV Au ion at 1000 K using the high temperature irradiation facility and characterized by ex-situ X-ray diffraction (XRD). Another set of Gd2Ti2O7 samples are irradiated with the same ion beam parameter at 300 K and simultaneously characterized using in-situ XRD available in same beam line. The XRD studies along with the Raman spectroscopic investigations reveal that the structural modification induced by the ion irradiation is strongly dependent on the temperature of the sample. The Gd2Ti2O7 is readily amorphized at an ion fluence 6 × 1012 ions/cm2 on irradiation at 300 K, whereas it is transformed to a radiation-resistant anion-deficient fluorite structure on high temperature irradiation, that amorphized at ion fluence higher than 1 × 1013 ions/cm2. The temperature dependent ion irradiation studies showed that the ion fluence required to cause amorphization at 1000 K irradiation is significantly higher than that required at room temperature irradiation. In addition to testing the efficiency of the in-situ high temperature irradiation facility, the present study establishes that the radiation stability of the pyrochlore is enhanced at higher temperatures.

  10. Pyrolytic carbon free-radical evolution and irradiation damage of polyimide under low-energy proton irradiation

    SciTech Connect

    Sun Chengyue; Wu Yiyong; Xiao Jingdong; Li Ruifeng; Yang Dezhuang; He Shiyu

    2011-12-15

    Ionization and displacement effects are basic phenomena in damage processes of materials under space-particle irradiation. In this paper, the damage behaviors were investigated on the polyimide under proton irradiation using electron paramagnetic resonance (EPR) spectra analysis and optical absorbance valuation. The results indicate that the proton irradiation induces the formation of pyrolytic carbon free-radical with a g value of 2.0025, and the population of free radicals increases with the irradiation fluence. The most important finding is that the irradiation-induced free-radical population increases linearly with the displacement damage dose, as does the optical degradation, whereas the ionization effect alone, during the irradiation, cannot induce the formation of pyrolytic carbon free radical. Furthermore, during the post storage, after irradiation, the free-radical population decreases following a sum of an exponential and a linear mode with the storage time. It is interesting that, during the post storage, the recovery of the degraded optical absorbance of the polyimide follows a similar mode to that of free radicals, and the characteristic time constant changes with the wavelength of the optical spectra.

  11. The infrared spectra of spiropentane methylenecyclobutane and 2-methyl-1-butene

    NASA Technical Reports Server (NTRS)

    Cleaves, Alden P; Sherrick, Mildred E

    1946-01-01

    The infrared spectra of spiropentane, methylenecyclobutane, and 2-methyl-1-butene were measured in the region from 3 to 14 microns with a rock salt prism spectrometer of medium dispersion. The pure samples were prepared at the NACA Cleveland Laboratory. The vapors of these three C5 hydrocarbons were investigated at room temperature and at pressures in the range from 80 to 300 millimeters of mercury absolute in a 10-centimeter cell. The spectra were compared with each other and with Ramon spectra for the same compounds.

  12. Vibrational spectra, NMR and theoretical studies of the enantiomers and rotamers of alpha-cypermethrin.

    PubMed

    Jubert, Alicia H; Alegre, María L; Diez, Reinaldo Pis; Pomilio, Alicia B; Szewczuk, Víctor D

    2007-04-01

    NMR, infrared and Raman vibrational spectra of alpha-cypermethrin have been measured at room temperature. Infrared spectra were also recorded to low temperature. The spectra were analyzed by means of ab initio calculations. The conformational space of both enantiomers and some rotamers A, B and C of alpha-cypermethrin has been scanned using molecular dynamics and complemented with functional density calculations that optimize the geometry of the lowest-energy conformers of each species as obtained in the simulations. The vibrational frequencies and the 1H and 13C NMR chemical shifts were assigned using functional density calculations. The molecular electrostatic potential maps were obtained and analyzed.

  13. Vibrational spectra, NMR and theoretical studies of the enantiomers and rotamers of alpha-cypermethrin

    NASA Astrophysics Data System (ADS)

    Jubert, Alicia H.; Alegre, María L.; Diez, Reinaldo Pis; Pomilio, Alicia B.; Szewczuk, Víctor D.

    2007-04-01

    NMR, infrared and Raman vibrational spectra of alpha-cypermethrin have been measured at room temperature. Infrared spectra were also recorded to low temperature. The spectra were analyzed by means of ab initio calculations. The conformational space of both enantiomers and some rotamers A, B and C of alpha-cypermethrin has been scanned using molecular dynamics and complemented with functional density calculations that optimize the geometry of the lowest-energy conformers of each species as obtained in the simulations. The vibrational frequencies and the 1H and 13C NMR chemical shifts were assigned using functional density calculations. The molecular electrostatic potential maps were obtained and analyzed.

  14. Micro-Biocidal Activity of Yeast Cells by Needle Plasma Irradiation at Atmospheric Pressure

    NASA Astrophysics Data System (ADS)

    Kurumi, Satoshi; Takahashi, Hideyuki; Taima, Tomohito; Suzuki, Kaoru; Hirose, Hideharu; Masutani, Shigeyuki

    In this study, we report on the biocidal activity technique by needle helium plasma irradiation at atmospheric pressure using borosilicate capillary nozzle to apply for the oral surgery. The diameter of needle plasma was less than 50 µm, and temperature of plasma irradiated area was less than body temperature. Needle plasma showed emission due to OH and O radical. Raman spectra and methylene blue stain showed yeast cells were inactivated by needle plasma irradiation.

  15. Radiation-induced intermediates in irradiated glassy ionic liquids at low temperature

    NASA Astrophysics Data System (ADS)

    Saenko, Elizaveta V.; Lukianova, Mariia A.; Shiryaeva, Ekaterina S.; Takahashi, Kenji; Feldman, Vladimir I.

    2016-07-01

    The primary radiation-induced processes in irradiated low-temperature pyrrolidinium- and piperidinium-type ionic liquids were investigated by EPR and optical absorption spectroscopy. A narrow singlet signal in the EPR spectra of irradiated ionic liquids was attributed to the physically stabilized electron. Broad absorption band in visible region was ascribed to "hole" species. Aromatic scavengers react with "hole" species in glassy irradiated ionic liquids at 77 K.

  16. Alpha particle spectra and microdosimetry of radon daughters

    SciTech Connect

    Caswell, R.S.; Coyne, J.J.

    1992-12-31

    We are interested in understanding the physics of the process by which radon-daughter alpha particles irradiate cells, leading to the induction of cancer. We are focusing initially on two aspects: the alpha spectra incident upon cells, which are needed for input to biophysical models of cancer induction; and microdosimetric spectra and parameters which give information on radiation quality. Adapting an analytical method previously developed for neutron radiation, we have calculated the alpha-particle slowing-down spectra (the spectra incident upon cells) and, subsequently, the microdosimetric spectra and parameters for various cell nuclei or site diameters. Results will be presented from three modes of program operation. MODE 1 is for the thin, plane source of radon-daughter activity adjacent to the epithelium. MODE 2 is for the thick source layer (the mucous-serous layer) adjacent to the epithelium. MODE4 is for cylindrical airways of various radii, lined by the mucous-serous layer. MODE 1 is most useful for understanding the problem; MODE 4 is most anatomically relevant. MODE 3 is not discussed in this paper. Alpha-particle spectra and microdosimetric spectra and parameters are studied as a function of cell depth, {sup 218}Po/{sup 214}Po ratio, airway radius, and cell nucleus or the site size. Also available from the calculation is mean dose as a function of depth below the airway surface. The results described here are available on personal computer diskettes. We are beginning to compare our studies with the calculations of other workers and plan to extend the calculations to the nanometer target level.

  17. From Baltic rooms to conference rooms: my jouney with data

    NASA Astrophysics Data System (ADS)

    Kozlowski, W. A.

    2015-12-01

    From time spent in murky, mosquito-filled mangrove swamps searching for fiddler crabs, to being transported off ships in webbed "man-baskets" on inky-black winter mornings to sample sea ice, to teaching rooms full of students the benefits of information organization, the wonders of science have long shaped my career path. Regardless of surroundings, the driving factor has always been a desire to learn new skills, then try to figure out how to use them to make work easier or more efficient for myself and hopefully others. Somewhere along the way, I've switched from doing it primarily for my "own" research projects, to a focus on helping others with theirs. Like many in this field, my route to a career in data science has influenced how I do my work. Along the way I've carried skills with me but also learned a few things that have made my journey both practical and fun. In this presentation, I'll discuss a few key factors that contribute to my current efforts as a data curation specialist in a research library, including communication (translation of "library" concepts to "science" concepts and vice versa), flexibility (ability to accomodate ideas, pace and values of those I'm working with), and prioritization (learning to balance what's valuable to researchers with principles important to libraries, curators, repositories, archives and other groups with which I interact).

  18. Absorption spectra of crystalline limestones experimentally deformed or tectonised

    NASA Astrophysics Data System (ADS)

    Cervelle, B.; ChayéD'Albissin, M.; Gouet, G.; Visocekas, R.

    1982-11-01

    Diffuse-reflectance spectra have been measured for a series of samples of Carrara marble experimentally deformed under different cylindrical stress ( P = 0, 100, 250, 500, 980 bars). The creation of point defects that results has been shown up classically by irradiation with β rays (40 krads), thus producing a typical blue coloration linked with the formation of colour centres. The diffuse-reflectance spectra, measured on powders with a microscope-spectrometer in the visible range (400-800 nm), allow the determination of the absorption spectra by means of the Kubelka-Munk function. These absorption spectra have been measured for each of the deformed samples, as well as for different fractions of a very deformed specimen subsequently heated at temperatures between 100 and 500° C for a fixed time. In the same way, tectonised crystalline limestones, of various origins, were studied without any other treatment than the irradiation with β rays. From this study the following preliminary conclusions have been drawn: (1) The absorption spectrum of an undeformed but merely irradiated specimen of crystalline limestone is practically monotonous, but in the deformed specimens a broad band of absorption appears, having a maximum at 620 nm with several shoulders, the chief of which is at 520 nm. (2) This absorption band shows the existence of colour centres, the density of which can be estimated relatively by means of the chromaticity coordinates x and y of the C.I.E. obtained from the diffuse-reflectance spectra (C.I.E. = Commission Internationale de l'Éclairage). (3) An overgrinding of calcite generates defects that have the same spectra as those produced during the experimental deformation. Consequently, in obtaining the powders of grain size 50-80 μm needed for the diffuse spectrometry, great care must be exercised. (4) For a given confining pressure, the defect density is proportional to the deformation rate. (5) One can calibrate the effect of the annealing of

  19. 9 CFR 354.241 - Cleaning of rooms and compartments.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Sanitary Conditions and Precautions Against Contamination of Products § 354.241 Cleaning of rooms and..., water, and dirt. (i) All equipment in the toilet room and locker room, as well as the room itself,...

  20. Raman measurements in silica glasses irradiated with energetic ions

    SciTech Connect

    Saavedra, R. Martin, P.; Vila, R.; León, M.; Jiménez-Rey, D.; Girard, S.; Boukenter, A.; Ouerdane, Y.

    2014-10-21

    Ion irradiation with energetic He{sup +} (2.5 MeV), O{sup 4+} (13.5 MeV), Si{sup 4+} (24.4 MeV) and Cu{sup 7+} (32.6 MeV) species at several fluences (from 5 × 10{sup 12} to 1.65 × 10{sup 15} ion/cm{sup 2}) were performed in three types of SiO{sub 2} glasses with different OH content (KU1, KS-4V and Infrasil 301). After ion implantation the Raman spectra were measured and compared with the spectra of unirradiated samples. Irradiated samples of the three fused silica grades exhibit changes in the broad and asymmetric R-band (ω{sub 1} around 445 cm{sup −1}), in D{sub 1} (490 cm−1) and D{sub 2} (605 cm{sup −1}) bands associated to small-membered rings. The D{sub 2} band shows an increase with increasing fluences for different ions, indicating structural changes. Raman spectra of ion-irradiated samples were compared with the spectra of neutron irradiated samples at fluences 10{sup 17} n/cm{sup 2} and 1018 n/cm{sup 2}. Macroscopic surface cracking was detected, mainly at fluences corresponding to deposited energies between 10{sup 23} eV/cm{sup 3} and 10{sup 24} eV/cm{sup 3} (after ion beam shutdown)

  1. ESR study of gamma irradiated Nylon3

    NASA Astrophysics Data System (ADS)

    Çatiker, Efkan; Güven, Olgun; Özarslan, Özdemir; Chipara, Mircea

    2013-03-01

    Nylon3 (poly-β-alanine) gamma irradiated in nitrogen was investigated by Electron Spin Resonance Spectroscopy to elucidate the type of radicals generated, their relative abundance, conversion into other radicalic species and their room temperature stability. Two types of radiation induced primary radicals have been detected. One of them (R1) occurs by hydrogen abstraction from methylene group next to the carbonyl group, while the other (R2) by hydrogen abstraction from methylene group next to amide group. R1 is observed to be converted into an alkoxy radical (R3). Decay kinetics of the radicals in nitrogen was also examined and decay mechanisms have been proposed for each radical.

  2. Robin Room and cannabis policy: dangerous comparisons.

    PubMed

    Hall, Wayne

    2014-11-01

    This paper describes Robin Room's contribution to cannabis policy debates over the period 1993-2010. It focuses on a controversy that erupted over a review that Room and the author undertook for the World Health Organization in the mid-1990s on the comparative harms of cannabis, alcohol, opiates and tobacco. It also briefly describes Room's recent work on global cannabis policy and ends with a brief appreciation of the character of his scholarly contributions to this field.

  3. Robin Room and cannabis policy: dangerous comparisons.

    PubMed

    Hall, Wayne

    2014-11-01

    This paper describes Robin Room's contribution to cannabis policy debates over the period 1993-2010. It focuses on a controversy that erupted over a review that Room and the author undertook for the World Health Organization in the mid-1990s on the comparative harms of cannabis, alcohol, opiates and tobacco. It also briefly describes Room's recent work on global cannabis policy and ends with a brief appreciation of the character of his scholarly contributions to this field. PMID:25395172

  4. Light propagation in a Penrose unilluminable room.

    PubMed

    Fukushima, Takehiro; Sakaguchi, Koichiro; Tokuda, Yasunori

    2015-06-29

    Using the finite-difference time-domain method, propagation of light waves is studied in a Penrose unilluminable room. Such a room always has dark (unilluminated) regions, regardless of the position of a point source in it. However, in contrast to the predictions of ray dynamical simulations, a small amount of light propagates into the unilluminated regions via diffraction. We conjecture that this diffraction effect becomes more prominent as the size of the room decreases.

  5. BPX insulation irradiation program test results

    SciTech Connect

    McManamy, T.J. ); Kanemoto, G. ); Snook, P.G. . Plasma Physics Lab.)

    1991-01-01

    The toroidal field coil insulation for the Burning Plasma Experiment (BPX) is expected to receive a radiation dose of nearly 10{sup 10} rad and to withstand significant mechanical stresses. An irradiation test program was performed at the Idaho National Engineering Laboratory (INEL) using the Advanced Technology Reactor (ATR) for irradiations to doses on the order of 3 {times} 10{sup 10} rad. The flexure and shear strength with compression of commercially procured sheet material were reported earlier. A second series of tests has been performed to slightly higher dose levels with vacuum impregnated materials, glass strand material, and Spaulrad-S sheet samples. Vacuum impregnation with a Shell 9405 resin and 9470 hardener was used to produce bonded copper squares and flexure samples of both pure resin and resin with S-glass. A new test fixture was developed to test the bonded samples in shear without applied compression. The Spaulrad-S flexure samples demonstrated a loss of strength with irradiation, similar to previous results. The pure resin lost nearly all flexibility, while the S-glass-reinforced samples retained between 30% and 40% of the initial flexure strength. The S-glass strands showed a 30% loss of strength at the higher dose level when tested in tension. The bonded copper squares had a low room-temperature shear strength of approximately 17 MPa before irradiation, which was unchanged in the irradiated samples. Shear testing of unirradiated bonded copper squares with ten different types of surface treatment revealed that the low shear strength resulted from the polyurethane primer used. In the later series of test, the epoxy-based primers and DZ-80 from Ciba-Geigy did much better, with shear strengths on the order of 40 MPa. These samples also demonstrated a resistance to cryogenic shock. One irradiated bonded sample was tested up 10 210 MPa in compression, the limit of the test fixture, without failure.

  6. Impulsive nonconformity in female chat room users.

    PubMed

    Fullwood, Chris; Galbraith, Niall; Morris, Neil

    2006-10-01

    Heavy chat room use has been associated with social isolation, introversion, impulse control problems, and risk taking. Such characteristics form part of the cluster of traits associated with schizotypy. This study used multiple regression to examine the relationship between age, sex, four dimensions of schizotypy, and frequency of reported chat room use. The only significant association with schizotypy was between frequency of chat room use and impulsive nonconformity (IN) in females. These findings may be explained by the increased risk associated with female chat room use.

  7. Spectra and Diffusion in a Round Turbulent Jet

    NASA Technical Reports Server (NTRS)

    Corrsin, Stanley; Uberoi, Mahinder S

    1951-01-01

    In a round turbulent jet at room temperature, measurement of the shear correlation coefficient as a function of frequency (through band-pass filters) has given a rather direct verification of Kolmogoroff's local-isotropy hypothesis. One-dimensional power spectra of velocity and temperature fluctuations, measured in unheated and heated jets, respectively, have been contrasted. Under the same conditions, the two corresponding transverse correlation functions have been measured and compared. Finally, measurements have been made of the mean thermal wakes behind local (line) heat sources in the unheated turbulent jet, and the order of magnitude of the temperature fluctuations has been determined.

  8. Influence of electron irradiation on the structural and thermal properties of silk fibroin films

    SciTech Connect

    Asha, S.; Sangappa,; Sanjeev, Ganesh

    2015-06-24

    Radiation-induced changes in Bombyx mori silk fibroin (SF) films under electron irradiation were investigated and correlated with dose. SF films were irradiated in air at room temperature using 8 MeV electron beam in the range 0-150 kGy. Various properties of the irradiated SF films were studied using X-ray diffraction (XRD), Differential Scanning Calorimetry (DSC) and Thermogravimetric Analysis (TGA). Electron irradiation was found to induce changes in the physical and thermal properties, depending on the radiation dose.

  9. Kinetic features of the radical species produced in gamma-irradiated dl-tartaric acid and the dosimetric potential of this acid.

    PubMed

    Tuner, H; Korkmaz, M

    2009-07-01

    The room-temperature and high-temperature kinetic features of the radical species produced in solid dl-tartaric acid (dl-TA) gamma-irradiated at room temperature and the dosimetric potential of this acid were investigated in a detailed ESR study. Irradiated dl-TA presents an ESR spectrum with many unresolved resonance lines even at the lowest radiation dose applied (100 Gy). The evolution of the signal intensities associated with induced radical species with microwave power, applied dose and temperature was followed. Three groups of resonance intensities originating from three different radicals exhibiting different spectroscopic features, stabilities at room and high temperatures, and radiation yields were found to take part in the formation of experimental ESR spectrum. These three species were calculated to exhibit spectroscopic features similar to those already reported for X- or gamma-irradiated deuterated single crystals of dl-TA and assigned as I, II and III. The same radical notation was adopted in the present work, and the intensities related to these species were denoted with the names of their corresponding species. Species III, which had the lowest radiation yield and the lowest stability, was observed as a species of four resonance lines. The two inner constituents of these four lines were partially obscured by the two central doublets originating from species I and II. The latter were relatively stable and had activation energies around 35 kJ/mol. The percentage concentrations of the involved species were estimated by comparing experimental and calculated spectra. The reasonably high radical yields of the dl-TA in the dose range of interest, the fairly good stabilities of the species produced (I and II) at room temperature, and the almost linear features of the constructed dose-response curves led us to conclude that the intensities associated with the stable species (I and II) could be used to estimate the applied dose in the dose range of 100 Gy-34

  10. High-energy electron-induced damage production at room temperature in aluminum-doped silicon

    NASA Technical Reports Server (NTRS)

    Corbett, J. W.; Cheng, L. J.; Jaworowski, A.; Karins, J. P.; Lee, Y. H.; Lindstroem, L.; Mooney, P. M.; Oehrlen, G.; Wang, K. L.

    1979-01-01

    DLTS and EPR measurements are reported on aluminum-doped silicon that was irradiated at room temperature with high-energy electrons. Comparisons are made to comparable experiments on boron-doped silicon. Many of the same defects observed in boron-doped silicon are also observed in aluminum-doped silicon, but several others were not observed, including the aluminum interstitial and aluminum-associated defects. Damage production modeling, including the dependence on aluminum concentration, is presented.

  11. Neutron and photon fields in the BNCT room with closed beam shutters.

    PubMed

    Marek, Milan; Viererbl, Ladislav

    2005-01-01

    The epithermal neutron beam at the LVR-15 reactor was designed for the Boron Neutron Capture Therapy (BNCT) of cancers, but it has also been used for material testing. In the case where the beam is closed with two designed shutters, there is still an indispensable background in the irradiation room, which limits the movement of persons during patient positioning before exposure or during the preparation of the samples. Because the epithermal filter of the beam was designed in a former thermal column, as a multi-layer system, it was suspected that both fast neutrons and photons penetrated the filter shielding into the room. The purpose of this study was to determine the causes of potential faulty shielding and to estimate the doses to persons who perform the irradiation experiments and/or exposure of patients. The quality of the shielding was evaluated from two-dimensional measurements of both neutron and photon distribution on the surface of the beam shutter. During the measurement both the shutters of the epithermal beam were closed and the reactor was operated at the nominal power of 9 MW. This experimental arrangement is similar to the conditions that exist when either the irradiation experiments or the exposure of patients is performed in this room. The neutron space distribution was measured using a Bonner sphere of phi 76.2 mm diameter with an LiI(TI) scintillation detector of phi 4 x 8 mm. A small Geiger-Muller tube was used for the measurement of photon distribution. The detectors were placed on a three-dimensional positioning equipment controlled by a computer, which enabled automatic measurement with 1 cm mesh step. Results of the measurement show that the background profile in the irradiation room has reasonable maximum only at the beam aperture.

  12. Neutron spectra due (13)N production in a PET cyclotron.

    PubMed

    Benavente, J A; Vega-Carrillo, H R; Lacerda, M A S; Fonseca, T C F; Faria, F P; da Silva, T A

    2015-05-01

    Monte Carlo and experimental methods have been used to characterize the neutron radiation field around PET (Positron Emission Tomography) cyclotrons. In this work, the Monte Carlo code MCNPX was used to estimate the neutron spectra, the neutron fluence rates and the ambient dose equivalent (H*(10)) in seven locations around a PET cyclotron during (13)N production. In order to validate these calculations, H*(10) was measured in three sites and were compared with the calculated doses. All the spectra have two peaks, one above 0.1MeV due to the evaporation neutrons and another in the thermal region due to the room-return effects. Despite the relatively large difference between the measured and calculated H*(10) for one point, the agreement was considered good, compared with that obtained for (18)F production in a previous work.

  13. Far-infrared spectra of mesoporous ZnS nanoparticles

    NASA Astrophysics Data System (ADS)

    Trajić, J.; Romčević, M.; Romčević, N.; Babić, B.; Matović, B.; Baláž, P.

    2016-07-01

    ZnS nanoparticles were synthesized mechanochemically by high-energy milling, with three different milling times (5 min, 10 min and 20 min). Nitrogen adsorption method was used for examining specific surface area and texture of obtained powders. It was found that all samples are completely mesoporous. The optical properties were studied by far-infrared spectroscopy at room temperature in spectral region of 50-600 cm-1. The analysis of the far-infrared reflectivity spectra was made by the fitting procedure. The dielectric function of ZnS nanoparticles is modeled as a mixture of homogenous spherical inclusions in air by the Maxwell-Garnet formula. In the analysis of the far-infrared reflection spectra, appearance of combined plasmon-LO phonon modes (CPPMs) with high phonon damping are observed, which causes decrease of coupled plasmon-phonon frequencies.

  14. EPR and electronic absorption spectra of copper bearing turquoise mineral

    NASA Astrophysics Data System (ADS)

    Sharma, K. B. N.; Moorthy, L. R.; Reddy, B. J.; Vedanand, S.

    1988-10-01

    Electron paramagnetic resonance and optical absorption spectra of turquoise have been studied both at room and low temperatures. It is concluded from the EPR spectra that the ground state of Cu 2+ ion in turquoise is 2A g(d x2- y2) and it is sited in an elongated rhombic octahedron (D 2π). The observed absorption bands at 14970 and 18354 cm -1 are assigned at 2A g→ 2B 1 g( dx2- y2→ xy) and 2A g→[ su2B 3g(d x 2-y 2→d yz) respectively assuming D 2π symmetry which are inconsistent with EPR studies. The three bands in the NIR region are attributed to combinations of fundamental modes of the H 2O molecule present in the sample.

  15. Examination of gamma-irradiated fruits and vegetables by electron spin resonance spectroscopy

    NASA Astrophysics Data System (ADS)

    Desrosiers, Marc F.; McLaughlin, William L.

    The ESR spectra of the seeds, pits, shells, and skins of a variety of irradiated fruits and vegetables were measured. All spectra, control and irradiated, contained a single resonance with a g-factor of 2.00. Additional resonances due to Mn 2+ were observed for the drupelets of blackberries and red raspberries. An unusual radiation-induced radical was observed for irradiated mango seed; however, the signal decayed completely within a few days. It was concluded that only in a few specialized cases could the ESR resonances observed be suitable for postirradiation monitoring or dosimetry.

  16. Effect of Room Ventilation Rates in Rodent Rooms with Direct-Exhaust IVC Systems

    PubMed Central

    Geertsema, Roger S; Lindsell, Claire E

    2015-01-01

    When IVC are directly exhausted from a rodent housing room, the air quality of the room can become independent of the intracage air quality and may reduce the need for high room ventilation rates. This study assessed the effect of decreasing the ventilation rate in rodent rooms using direct-exhaust IVC systems. The study was conducted over 16 wk and compared conditions in 8 rodent rooms that had ventilation rates of 5 to 6 air changes per hour (ACH) with those in rooms at 10 to 12 ACH. At the low ventilation rate, rooms had higher CO2 concentrations, higher dew point temperature, and lower particulate levels and spent a greater percentage of time above the temperature set point than did rooms at the high rate. The levels of allergens and endotoxins in room air were the same regardless of the ventilation rate. Differences seen in parameters within cages at the 2 ventilation rates were operationally irrelevant. We detected no total volatile organic compounds in the room that were attributable to ammonia, regardless of the ventilation rate. Clearing the air of ethanol after a spill took longer at the low compared with high rate. However, ethanol clearance was faster at the low rate when the demand-control system was activated than at the high ventilation rate alone. Air quality in the room and in the cages were acceptable with room ventilation rates of 5 to 6 ACH in rodent rooms that use direct-exhaust IVC systems. PMID:26424250

  17. [Management for the operating room].

    PubMed

    Tschudi, O; Schüpfer, G

    2015-03-01

    Business companies, which in the current times also includes hospitals, must create customer benefits and as a prerequisite for this must sustainably generate profits. Management in the world of business means the formation and directing of a company or parts of a company on a permanent basis, whereby management in this context is not exercising power but function. This concept of management is exemplary developed in this article for the important services sector of the operating room (OR) and individual functions, such as resource control, capacity planning and materials administration are presented in detail. Some OR-specific management challenges are worked out. From this it becomes clear that the economic logic of the most efficient implementation possible is not a contradiction of medical ethics, enabling the most effective treatment possible for patients while safeguarding the highest possible levels of safety and quality. The article aims to build a bridge for medical specialists to the language and world of commerce, emphasizing the profession-based competence and hopefully to arouse interest to go into more detail. PMID:25782780

  18. Topological Insulators at Room Temperature

    SciTech Connect

    Zhang, Haijun; Liu, Chao-Xing; Qi, Xiao-Liang; Dai, Xi; Fang, Zhong; Zhang, Shou-Cheng; /Stanford U., Phys. Dept.

    2010-03-25

    Topological insulators are new states of quantum matter with surface states protected by the time-reversal symmetry. In this work, we perform first-principle electronic structure calculations for Sb{sub 2}Te{sub 3}, Sb{sub 2}Se{sub 3}, Bi{sub 2}Te{sub 3} and Bi{sub 2}Se{sub 3} crystals. Our calculations predict that Sb{sub 2}Te{sub 3}, Bi{sub 2}T e{sub 3} and Bi{sub 2}Se{sub 3} are topological insulators, while Sb{sub 2}Se{sub 3} is not. In particular, Bi{sub 2}Se{sub 3} has a topologically non-trivial energy gap of 0.3eV , suitable for room temperature applications. We present a simple and unified continuum model which captures the salient topological features of this class of materials. These topological insulators have robust surface states consisting of a single Dirac cone at the {Lambda} point.

  19. [Management for the operating room].

    PubMed

    Tschudi, O; Schüpfer, G

    2015-03-01

    Business companies, which in the current times also includes hospitals, must create customer benefits and as a prerequisite for this must sustainably generate profits. Management in the world of business means the formation and directing of a company or parts of a company on a permanent basis, whereby management in this context is not exercising power but function. This concept of management is exemplary developed in this article for the important services sector of the operating room (OR) and individual functions, such as resource control, capacity planning and materials administration are presented in detail. Some OR-specific management challenges are worked out. From this it becomes clear that the economic logic of the most efficient implementation possible is not a contradiction of medical ethics, enabling the most effective treatment possible for patients while safeguarding the highest possible levels of safety and quality. The article aims to build a bridge for medical specialists to the language and world of commerce, emphasizing the profession-based competence and hopefully to arouse interest to go into more detail.

  20. UV optical absorption spectra analysis of spodumene crystals from Brazil

    NASA Astrophysics Data System (ADS)

    Isotani, Sadao; Watari, Kazunori; Mizukami, Akiyoshi; Bonventi, Waldemar; Ito, Amando Siuiti

    2007-04-01

    The spectral decomposition analysis was applied to the optical absorption spectra of spodumene crystals from the Brazilian eastern pegmatitic province. The analyzed samples were natural, treated at 400 °C for 24 h and those irradiated with γ rays of 60Co with doses up to 5 MGy. The attributions of the lines were made taking in account highly accurate quantum mechanical calculations. The heated sample had only three lines, which were not affected by irradiation. One of them at 7.58 eV was attributed to an oxygen vacancy defect and the other two at 5.07 and 4.64 eV to a peroxy-type defect. The analysis of the growth of the lines with the irradiation showed that they belong to two groups of defects. The first group of lines at 4.2, 5.3 and 5.9 eV was attributed to a silanone-type defect. The other group of lines at 1.36, 2.0, 2.6, 3.6 and 5.0 eV was attributed to a type of Mn 3+ defect. The natural and irradiated samples also showed a line at 2.3 eV, which was attributed to another type of diamagnetic Mn 3+ defect.

  1. Complex Spectra in Fusion Plasmas

    NASA Astrophysics Data System (ADS)

    von Hellermann, M. G.; Bertschinger, G.; Biel, W.; Giroud, C.; Jaspers, R.; Jupen, C.; Marchuk, O.; O'Mullane, M.; Summers, H. P.; Whiteford, A.; Zastrow, K.-D.

    2005-01-01

    The need for quantitative evaluation of complex line emission spectra as observed in hot fusion plasmas initiated a challenging development of sophisticated interpretation tools based on integrating advanced atomic modelling with detailed treatment of the plasma environment. The successful merging of the two worlds has led to routine diagnostic procedures which have contributed enormously to the understanding of underlying plasma processes and also to a wide acceptance of spectroscopy as a reliable diagnostic method. In this paper three characteristic types of spectra of current and continuing interest are presented. The first is that of medium/heavy species with many ionisation stages revealed in survey VUV and XUV spectra. Such species occur as control gases, as wall materials, as ablated heavy species and possible as layered wall dopants for monitoring erosion. The spectra are complex with line-like and quasi-continuum regions and are amenable to advanced `pattern recognition' methods. The second type is of few electron, highly ionised systems observed as line-of-sight integrated passive emission spectra in the soft x-ray region. They are analysed successfully in terms of plasma parameters through matching of observation with predicted synthetic spectra. Examples used here include highly resolved helium-like emission spectra of argon, iron and titanium observed on the tokamaks TEXTOR and Tore Supra. The third type, and the emphasis of this work, comprises spectra linked to active beam spectroscopy, that is, charge exchange recombination spectroscopy (CXRS) and beam emission spectroscopy (BES). In this case, a complex spectrum is again composed of a (usually) dominating active spectrum and an underlying passive emission spectrum. Its analysis requires modelling of both active and passive features. Examples used here are from the CXRS diagnostic at JET and TEXTOR. They display characteristic features of the main light impurity ions (C+6, He+2, N+7, Ne+10 and Ar+18

  2. Irradiation dose and temperature dependence of fracture toughness in high dose HT9 steel from the fuel duct of FFTF

    SciTech Connect

    Byun, Thak Sang; Toloczko, Mychailo B.; Saleh, Tarik A.; Maloy, Stuart A.

    2013-01-14

    To expand the knowledge base for fast reactor core materials, fracture toughness has been evaluated for high dose HT9 steel using miniature disk compact tension (DCT) specimens. The HT9 steel DCT specimens were machined from the ACO-3 fuel duct of the Fast Flux Test Facility (FFTF), which achieved high doses in the range of 3–148 dpa at 378–504 C. The static fracture resistance (J-R) tests have been performed in a servohydraulic testing machine in vacuum at selected temperatures including room temperature, 200 C, and each irradiation temperature. Brittle fracture with a low toughness less than 50 MPa pm occurred in room temperature tests when irradiation temperature was below 400 C, while ductile fracture with stable crack growth was observed when irradiation temperature was higher. No fracture toughness less than 100 MPa pm was measured when the irradiation temperature was above 430 C. It was shown that the influence of irradiation temperature was dominant in fracture toughness while the irradiation dose has only limited influence over the wide dose range 3–148 dpa. A slow decrease of fracture toughness with test temperature above room temperature was observed for the nonirradiated and high temperature (>430 *C) irradiation cases, which indicates that the ductile–brittle transition temperatures (DBTTs) in those conditions are lower than room temperature. A comparison with the collection of existing data confirmed the dominance of irradiation temperature in the fracture toughness of HT9 steels.

  3. Phase transformations and defect clusters in single crystal SrTiO3 irradiated at different temperatures

    NASA Astrophysics Data System (ADS)

    Zhuo, M. J.; Yan, L.; Fu, E. G.; Wang, Y. Q.; Misra, A.; Nastasi, M.; Uberuaga, B. P.; Jia, Q. X.

    2013-11-01

    Radiation damage mechanisms in single crystal SrTiO3 irradiated with 250 keV Ne ions to a fluence of 1.11 × 1020 ions/m2 at both room temperature and 773 K were systematically investigated. The irradiation-induced microstructural evolution was characterized using transmission electron microscopy. Ion irradiation at room temperature results in amorphization of crystalline SrTiO3 near the peak damage region at this fluence. On the other hand, ion irradiation at high temperature leads to less irradiation-induced damage in SrTiO3 due to the higher recovery rate of defects. Nevertheless, the formation of dislocation loops has been observed in the SrTiO3 crystals irradiated at high temperature. These dislocation loops were determined to be unfaulted loops with Burgers vector along <0 1 1>.

  4. Measuring neutron spectra in radiotherapy using the nested neutron spectrometer

    SciTech Connect

    Maglieri, Robert Evans, Michael; Seuntjens, Jan; Kildea, John; Licea, Angel

    2015-11-15

    Purpose: Out-of-field neutron doses resulting from photonuclear interactions in the head of a linear accelerator pose an iatrogenic risk to patients and an occupational risk to personnel during radiotherapy. To quantify neutron production, in-room measurements have traditionally been carried out using Bonner sphere systems (BSS) with activation foils and TLDs. In this work, a recently developed active detector, the nested neutron spectrometer (NNS), was tested in radiotherapy bunkers. Methods: The NNS is designed for easy handling and is more practical than the traditional BSS. Operated in current-mode, the problem of pulse pileup due to high dose-rates is overcome by measuring current, similar to an ionization chamber. In a bunker housing a Varian Clinac 21EX, the performance of the NNS was evaluated in terms of reproducibility, linearity, and dose-rate effects. Using a custom maximum-likelihood expectation–maximization algorithm, measured neutron spectra at various locations inside the bunker were then compared to Monte Carlo simulations of an identical setup. In terms of dose, neutron ambient dose equivalents were calculated from the measured spectra and compared to bubble detector neutron dose equivalent measurements. Results: The NNS-measured spectra for neutrons at various locations in a treatment room were found to be consistent with expectations for both relative shape and absolute magnitude. Neutron fluence-rate decreased with distance from the source and the shape of the spectrum changed from a dominant fast neutron peak near the Linac head to a dominant thermal neutron peak in the moderating conditions of the maze. Monte Carlo data and NNS-measured spectra agreed within 30% at all locations except in the maze where the deviation was a maximum of 40%. Neutron ambient dose equivalents calculated from the authors’ measured spectra were consistent (one standard deviation) with bubble detector measurements in the treatment room. Conclusions: The NNS may

  5. Luminescence properties after X-ray irradiation for dosimetry

    NASA Astrophysics Data System (ADS)

    Hong, Duk-Geun; Kim, Myung-Jin

    2016-05-01

    To investigate the luminescence characteristics after exposure to X-ray radiation, we developed an independent, small X-ray irradiation system comprising a Varian VF-50J mini X-ray generator, a Pb collimator, a delay shutter, and an Al absorber. With this system, the apparent dose rate increased linearly to 0.8 Gy/s against the emission current for a 50 kV anode potential when the shutter was delayed for an initial 4 s and the Al absorber was 300 µm thick. In addition, an approximately 20 mm diameter sample area was irradiated homogeneously with X rays. Based on three-dimensional (3D) thermoluminescence (TL) spectra, the small X-ray irradiator was considered comparable to the conventional 90Sr/90Y beta source even though the TL intensity from beta irradiation was higher than that from X-ray irradiation. The single aliquot regenerative (SAR) growth curve for the small X-ray irradiator was identical to that for the beta source. Therefore, we concluded that the characteristics of the small X-ray irradiator and the conventional 90Sr/90Y beta source were similar and that X ray irradiation had the potential for being suitable for use in luminescence dosimetry.

  6. Effect of mercerization and gamma irradiation on the dyeing behaviour of cotton using stilbene based direct dye

    NASA Astrophysics Data System (ADS)

    Bhatti, Ijaz Ahmad; Adeel, Shahid; Fazal-ur-Rehman; Irshad, Misbah; Abbas, Muhammad

    2012-07-01

    The dyeing behaviour of mercerized and gamma irradiated cotton fabric using stilbene based direct dye has been investigated. The fabric was treated with different concentrations of alkali to optimize the mercerization. The optimum mercerized cotton fabric was irradiated to absorbed doses of 2, 4, 6, 8 and 10 kGy using Cs-137 gamma irradiator. Dyeing was performed using irradiated and un-irradiated cotton with dye solutions. The dyeing parameters such as temperature, time of dyeing, pH of dyeing solutions and salt concentration were optimized. The colour strength values of dyed fabrics were evaluated by comparing irradiated and un-irradiated cotton in CIE Lab system using Spectra flash SF650. Methods suggested by International Standard Organization (ISO) were employed to study the effect of gamma irradiation on the colourfastness properties of dyed fabric. It was found that mercerized and irradiated cotton have not only improved the colour strength but enhanced the rating of fastness properties also.

  7. Analysis of photometric spectra of 17 meteors

    NASA Technical Reports Server (NTRS)

    Millman, P. M.

    1982-01-01

    The initial phase of the photometry which involved 17 meteor spectra consisting of eight Geminid spectra, six Orionid spectra and three Eta Aquarid spectra is discussed. Among these 17 spectra it is found that the Geminid spectra are of the best quality and are used for the identification of the atomic lines and molecular bands that normally appear on video tape spectra. The data from the Geminid records are used for developing calibration techniques in photometry. The Orionid and Eta Aquarid spectra are chosen for early analysis because of the current interest in all physical and chemical data relating to Comet Halley.

  8. Interior building details of Building C, Room C203 to Room ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Interior building details of Building C, Room C-203 to Room C-204: historical partition track with folding doors, east painted wall; easterly view - San Quentin State Prison, Building 22, Point San Quentin, San Quentin, Marin County, CA

  9. VIEW OF ICE/INSP TEAM ROOM, FIRING ROOM NO. 2, FACING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF ICE/INSP TEAM ROOM, FIRING ROOM NO. 2, FACING SOUTHEAST - Cape Canaveral Air Force Station, Launch Complex 39, Launch Control Center, LCC Road, East of Kennedy Parkway North, Cape Canaveral, Brevard County, FL

  10. 6. VIEW OF SLC3W CONTROL ROOM (ROOM 105) FROM ITS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. VIEW OF SLC-3W CONTROL ROOM (ROOM 105) FROM ITS SOUTHEAST CORNER - Vandenberg Air Force Base, Space Launch Complex 3, Launch Operations Building, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  11. 55. VIEW OF SLC3E CONTROL ROOM (ROOM 107) FROM ITS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    55. VIEW OF SLC-3E CONTROL ROOM (ROOM 107) FROM ITS NORTHEAST CORNER - Vandenberg Air Force Base, Space Launch Complex 3, Launch Operations Building, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  12. Interior building details of Building D, Room D101 to Room ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Interior building details of Building D, Room D-101 to Room D-101c partition wall with multi-pane wood sash; westerly view - San Quentin State Prison, Building 22, Point San Quentin, San Quentin, Marin County, CA

  13. Field Test of Room-to-Room Uniformity of Ventilation Air Distribution in Two New Houses

    SciTech Connect

    Hendron, Robert; Anderson, Ren; Barley, Dennis; Rudd, Armin; Townsend, Aaron; Hancock, Ed

    2006-12-01

    This report describes a field test to characterize the uniformity of room-to-room ventilation air distribution under various operating conditions by examining multi-zone tracer gas decay curves and calculating local age-of-air.

  14. Comparison of Microbial Contamination Levels Among Hospital Operating Rooms and Industrial Clean Rooms

    PubMed Central

    Favero, Martin S.; Puleo, John R.; Marshall, James H.; Oxborrow, Gordon S.

    1968-01-01

    Microbial contamination in industrial clean rooms was compared quantitatively and qualitatively with that of hospital operating rooms. The number of aerobic mesophilic microorganisms which accumulated on stainless-steel strips exposed for periods up to 21 weeks to the intramural air of four operating rooms was at least 1 log higher than the accumulation on strips exposed in four clean rooms, and was essentially the same as that found in two factory areas. Volumetric air samplings showed that there were significantly higher numbers of airborne viable particles per cubic foot of air in operating rooms than in industrial clean rooms. In contrast to clean rooms, where most of the airborne contaminants were those associated with human hair, skin, and respiratory tract, the hospital operating rooms showed a very high level of microorganisms associated with dust and soil. Images Fig. 4 PMID:5649862

  15. Quantum-mechanical analysis of the intensity distribution in spectra of resonant Raman scattering spectra of aqueous solutions of tyrosine

    NASA Astrophysics Data System (ADS)

    Burova, T. G.; Shcherbakov, R. S.

    2016-05-01

    Quantum-mechanical calculations of the intensity distribution in the resonant Raman scattering spectra of aqueous solutions of tyrosine excited by laser radiation with wavelengths of 244, 229, 218, 200, and 193 nm, as well as in the nonresonant Raman scattering spectrum excited at a wavelength of 488 nm, are performed. Satisfactory agreement is achieved between the calculation results and the experimental data. It is shown that the changes in the intensity distribution observed in the spectra with a change in the excitation wavelength from 244 to 193 nm correlate with the determined changes in the contribution made by excited electronic states into the scattering tensor components. It is noted that it is necessary to take into account the Herzberg-Teller effect and that the number of excited electronic states taken into account considerably affects the calculated relative intensities of lines. The possibility of existence of several tyrosine conformers in aqueous solution at room temperature is shown.

  16. Reduction of multielement mass spectra

    SciTech Connect

    Russ, G.P. III; Caffee, M.W.; Hudson, G.B.; Storch, N.A.

    1990-06-29

    Even though the spectra obtained by inductively coupled plasma source spectrometry (ICP-MS) are relatively simple, their interpretation can be complicated by the presence of molecular and isobaric interferants. To the extent that isotopic abundances are known and constant, one can treat observed spectra as sums of known components. A linear decomposition approach for determining the concentrations of the components in a spectrum and correctly propagating uncertainties is presented. This technique differs from linear regression in that an exact fit is made to a subset of isotopes and goodness-of-fit is evaluated from the deviations between the predicted and measured intensities of the other, unfit isotopes. This technique can be applied to a wide range of spectral fitting problems. In this paper, its applicability to ICP-MS spectra is used to demonstrate the use and utility of the technique. 2 refs., 9 figs.

  17. Photon spectra from WIMP annihilation

    SciTech Connect

    Cembranos, J. A. R.; Cruz-Dombriz, A. de la; Dobado, A.; Maroto, A. L.; Lineros, R. A.

    2011-04-15

    If the present dark matter in the Universe annihilates into standard model particles, it must contribute to the fluxes of cosmic rays that are detected on the Earth and, in particular, to the observed gamma-ray fluxes. The magnitude of such a contribution depends on the particular dark matter candidate, but certain features of the produced photon spectra may be analyzed in a rather model-independent fashion. In this work we provide the complete photon spectra coming from WIMP annihilation into standard model particle-antiparticle pairs obtained by extensive Monte Carlo simulations. We present results for each individual annihilation channel and provide analytical fitting formulas for the different spectra for a wide range of WIMP masses.

  18. New thinking for the boiler room.

    PubMed

    Rose, Wayne

    2008-09-01

    Wayne Rose, marketing manager at integrated plant room manufacturer Armstrong Integrated Systems, explains how increasing use of off-site manufacture, the latest 3D modelling technology, and advances in control technology, are revolutionising boiler room design and construction. PMID:18822819

  19. Operating Room Technology. Post Secondary Curriculum Guide.

    ERIC Educational Resources Information Center

    Simpson, Bruce; And Others

    This curriculum guide was designed for use in postsecondary operating room technology education programs in Georgia. Its purpose is to provide for development of entry level skills in operating room technology in the areas of knowledge, theoretical structure, tool usage, diagnostic ability, related supportive skills, and occupational survival…

  20. The Mini Dark Room from Holywell High

    ERIC Educational Resources Information Center

    Lane, Frank

    2011-01-01

    The mini dark room from Holywell High School costs nothing to make and has a construction time of 10 min. In spite of progress, or perhaps because of it, light experiments often have to be performed without blackout. Put this idea into practice and each pupil can have a dark room--and best of all, it's free. In this article, the author describes…

  1. 32 CFR 701.35 - Reading room.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 5 2014-07-01 2014-07-01 false Reading room. 701.35 Section 701.35 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY UNITED STATES NAVY REGULATIONS AND... DOCUMENTS AFFECTING THE PUBLIC FOIA Definitions and Terms § 701.35 Reading room. Location where...

  2. 32 CFR 701.35 - Reading room.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 5 2010-07-01 2010-07-01 false Reading room. 701.35 Section 701.35 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY UNITED STATES NAVY REGULATIONS AND... DOCUMENTS AFFECTING THE PUBLIC FOIA Definitions and Terms § 701.35 Reading room. Location where...

  3. 32 CFR 701.35 - Reading room.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 5 2011-07-01 2011-07-01 false Reading room. 701.35 Section 701.35 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY UNITED STATES NAVY REGULATIONS AND... DOCUMENTS AFFECTING THE PUBLIC FOIA Definitions and Terms § 701.35 Reading room. Location where...

  4. 32 CFR 701.35 - Reading room.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 5 2013-07-01 2013-07-01 false Reading room. 701.35 Section 701.35 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY UNITED STATES NAVY REGULATIONS AND... DOCUMENTS AFFECTING THE PUBLIC FOIA Definitions and Terms § 701.35 Reading room. Location where...

  5. 32 CFR 701.35 - Reading room.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 5 2012-07-01 2012-07-01 false Reading room. 701.35 Section 701.35 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY UNITED STATES NAVY REGULATIONS AND... DOCUMENTS AFFECTING THE PUBLIC FOIA Definitions and Terms § 701.35 Reading room. Location where...

  6. Room 13: The Movement and International Network

    ERIC Educational Resources Information Center

    Gibb, Claire

    2012-01-01

    Room 13 is a global uprising of creative and entrepreneurial children who are responsible for a growing international network of student-organised art studios. Each Room 13 studio facilitates the work of young artists alongside a professional adult artist in residence, providing an exchange of ideas, skills and experience across the ages. The…

  7. QUALITATIVE INTERPRETATION OF GALAXY SPECTRA

    SciTech Connect

    Sanchez Almeida, J.; Morales-Luis, A. B.; Terlevich, R.; Terlevich, E.; Cid Fernandes, R. E-mail: abml@iac.es E-mail: eterlevi@inaoep.mx

    2012-09-10

    We describe a simple step-by-step guide to qualitative interpretation of galaxy spectra. Rather than an alternative to existing automated tools, it is put forward as an instrument for quick-look analysis and for gaining physical insight when interpreting the outputs provided by automated tools. Though the recipe is for general application, it was developed for understanding the nature of the Automatic Spectroscopic K-means-based (ASK) template spectra. They resulted from the classification of all the galaxy spectra in the Sloan Digital Sky Survey data release 7, thus being a comprehensive representation of the galaxy spectra in the local universe. Using the recipe, we give a description of the properties of the gas and the stars that characterize the ASK classes, from those corresponding to passively evolving galaxies, to H II galaxies undergoing a galaxy-wide starburst. The qualitative analysis is found to be in excellent agreement with quantitative analyses of the same spectra. We compare the mean ages of the stellar populations with those inferred using the code STARLIGHT. We also examine the estimated gas-phase metallicity with the metallicities obtained using electron-temperature-based methods. A number of byproducts follow from the analysis. There is a tight correlation between the age of the stellar population and the metallicity of the gas, which is stronger than the correlations between galaxy mass and stellar age, and galaxy mass and gas metallicity. The galaxy spectra are known to follow a one-dimensional sequence, and we identify the luminosity-weighted mean stellar age as the affine parameter that describes the sequence. All ASK classes happen to have a significant fraction of old stars, although spectrum-wise they are outshined by the youngest populations. Old stars are metal-rich or metal-poor depending on whether they reside in passive galaxies or in star-forming galaxies.

  8. Comminuting irradiated ferritic steel

    DOEpatents

    Bauer, Roger E.; Straalsund, Jerry L.; Chin, Bryan A.

    1985-01-01

    Disclosed is a method of comminuting irradiated ferritic steel by placing the steel in a solution of a compound selected from the group consisting of sulfamic acid, bisulfate, and mixtures thereof. The ferritic steel is used as cladding on nuclear fuel rods or other irradiated components.

  9. MASSIVE LEAKAGE IRRADIATOR

    DOEpatents

    Wigner, E.P.; Szilard, L.; Christy, R.F.; Friedman, F.L.

    1961-05-30

    An irradiator designed to utilize the neutrons that leak out of a reactor around its periphery is described. It avoids wasting neutron energy and reduces interference with the core flux to a minimum. This is done by surrounding all or most of the core with removable segments of the material to be irradiated within a matrix of reflecting material.

  10. Perspective on food irradiation

    SciTech Connect

    Not Available

    1987-02-01

    Recent US Food and Drug Administration approval of irradiation treatment for fruit, vegetables and pork has stimulated considerable discussion in the popular press on the safety and efficacy of irradiation processing of food. This perspective is designed to summarize the current scientific information available on this issue.

  11. Preliminary low temperature electron irradiation of triple junction solar cells

    NASA Technical Reports Server (NTRS)

    Stella, Paul M.; Mueller, Robert L.; Scrivner, Roy L.; Helizon, Roger S.

    2005-01-01

    JPL has routinely performed radiation testing on commercial solar cells and has also performed LILT testing to characterize cell performance under far sun operating conditions. This research activity was intended to combine the features of both capabilities to investigate the possibility of any room temperature annealing that might influence the measured radiation damage. Although it was not possible to maintain the test cells at a constant low temperature between irradiation and electrical measurements, it was possible to obtain measurements with the cell temperature kept well below room temperature.

  12. Spectra as windows into exoplanet atmospheres

    PubMed Central

    Burrows, Adam S.

    2014-01-01

    Understanding a planet’s atmosphere is a necessary condition for understanding not only the planet itself, but also its formation, structure, evolution, and habitability. This requirement puts a premium on obtaining spectra and developing credible interpretative tools with which to retrieve vital planetary information. However, for exoplanets, these twin goals are far from being realized. In this paper, I provide a personal perspective on exoplanet theory and remote sensing via photometry and low-resolution spectroscopy. Although not a review in any sense, this paper highlights the limitations in our knowledge of compositions, thermal profiles, and the effects of stellar irradiation, focusing on, but not restricted to, transiting giant planets. I suggest that the true function of the recent past of exoplanet atmospheric research has been not to constrain planet properties for all time, but to train a new generation of scientists who, by rapid trial and error, are fast establishing a solid future foundation for a robust science of exoplanets. PMID:24613929

  13. High Efficiency Room Air Conditioner

    SciTech Connect

    Bansal, Pradeep

    2015-01-01

    This project was undertaken as a CRADA project between UT-Battelle and Geberal Electric Company and was funded by Department of Energy to design and develop of a high efficiency room air conditioner. A number of novel elements were investigated to improve the energy efficiency of a state-of-the-art WAC with base capacity of 10,000 BTU/h. One of the major modifications was made by downgrading its capacity from 10,000 BTU/hr to 8,000 BTU/hr by replacing the original compressor with a lower capacity (8,000 BTU/hr) but high efficiency compressor having an EER of 9.7 as compared with 9.3 of the original compressor. However, all heat exchangers from the original unit were retained to provide higher EER. The other subsequent major modifications included- (i) the AC fan motor was replaced by a brushless high efficiency ECM motor along with its fan housing, (ii) the capillary tube was replaced with a needle valve to better control the refrigerant flow and refrigerant set points, and (iii) the unit was tested with a drop-in environmentally friendly binary mixture of R32 (90% molar concentration)/R125 (10% molar concentration). The WAC was tested in the environmental chambers at ORNL as per the design rating conditions of AHAM/ASHRAE (Outdoor- 95F and 40%RH, Indoor- 80F, 51.5%RH). All these modifications resulted in enhancing the EER of the WAC by up to 25%.

  14. An algorithm to evaluate solar irradiance and effective dose rates using spectral UV irradiance at four selected wavelengths.

    PubMed

    Anav, A; Rafanelli, C; Di Menno, I; Di Menno, M

    2004-01-01

    The paper shows a semi-analytical method for environmental and dosimetric applications to evaluate, in clear sky conditions, the solar irradiance and the effective dose rates for some action spectra using only four spectral irradiance values at selected wavelengths in the UV-B and UV-A regions (305, 320, 340 and 380 nm). The method, named WL4UV, is based on the reconstruction of an approximated spectral irradiance that can be integrated, to obtain the solar irradiance, or convoluted with an action spectrum to obtain an effective dose rate. The parameters required in the algorithm are deduced from archived solar spectral irradiance data. This database contains measurements carried out by some Brewer spectrophotometers located in various geographical positions, at similar altitudes, with very different environmental characteristics: Rome (Italy), Ny Alesund (Svalbard Islands, Norway) and Ushuaia (Tierra del Fuego, Argentina). To evaluate the precision of the method, a double test was performed with data not used in developing the model. Archived Brewer measurement data, in clear sky conditions, from Rome and from the National Science Foundation UV data set in San Diego (CA, USA) and Ushuaia, where SUV 100 spectroradiometers operate, were drawn randomly. The comparison of measured and computed irradiance has a relative deviation of about +/-2%. The effective dose rates for action spectra of Erythema, DNA and non-Melanoma skin cancer have a relative deviation of less than approximately 20% for solar zenith angles <50 degrees . PMID:15266087

  15. AVIRIS spectra of California wetlands

    NASA Technical Reports Server (NTRS)

    Gross, Michael F.; Ustin, Susan L.; Klemas, Vytautas

    1988-01-01

    Spectral data gathered by the AVIRIS from wetlands in the Suisun Bay area of California on 13 October 1987 were analyzed. Spectra representing stands of numerous vegetation types (including Sesuvium verrucosum, Scirpus acutus and Scirpus californicus, Xanthium strumarium, Cynadon dactylon, and Distichlis spicata) and soil were isolated. Despite some defects in the data, it was possible to detect vegetation features such as differences in the location of the chlorophyll red absorption maximum. Also, differences in cover type spectra were evident in other spectral regions. It was not possible to determine if the observed features represent noise, variability in canopy architecture, or chemical constituents of leaves.

  16. The structure of BPS spectra

    NASA Astrophysics Data System (ADS)

    Longhi, Pietro

    In this thesis we develop and apply novel techniques for analyzing BPS spectra of supersymmetric quantum field theories of class S. By a combination of wall-crossing, spectral networks and quiver methods we explore the BPS spectra of higher rank four-dimensional N = 2 super Yang-Mills, uncovering surprising new phenomena. Focusing on the SU(3) case, we prove the existence of wild BPS spectra in field theory, featuring BPS states of higher spin whose degeneracies grow exponentially with the energy. The occurrence of wild BPS states is surprising because it appears to be in tension with physical expectations on the behavior of the entropy as a function of the energy scale. The solution to this puzzle comes from realizing that the size of wild BPS states grows rapidly with their mass, and carefully analyzing the volume-dependence of the entropy of BPS states. We also find some interesting structures underlying wild BPS spectra, such as a Regge-like relation between the maximal spin of a BPS multiplet and the square of its mass, and the existence of a universal asymptotic distribution of spin-j irreps within a multiplet of given charge. We also extend the spectral networks construction by introducing a refinement in the topological classification of 2d-4d BPS states, and identifying their spin with a topological invariant known as the "writhe of soliton paths". A careful analysis of the 2d-4d wall-crossing behavior of this refined data reveals that it is described by motivic Kontsevich-Soibelman transformations, controlled by the Protected Spin Character, a protected deformation of the BPS index encoding the spin of BPS states. Our construction opens the way for the systematic study of refined BPS spectra in class S theories. We apply it to several examples, including ones featuring wild BPS spectra, where we find an interesting relation between spectral networks and certain functional equations. For class S theories of A 1 type, we derive an alternative technique for

  17. 146. View of oil filter room in basement (Room B1) ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    146. View of oil filter room in basement (Room B-1) where oil used in lubrication in generator room is cleaned and recycled. The two tanks in the foreground each have capacities of 2,100 gallons. Photo by Jet Lowe, HAER, 1989. - Puget Sound Power & Light Company, White River Hydroelectric Project, 600 North River Avenue, Dieringer, Pierce County, WA

  18. 149. Interior of Room B3, Air Compressor Room, showing a ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    149. Interior of Room B-3, Air Compressor Room, showing a ca. 1960s Worthington air compressor used to provide compressed air for powerhouse; air compressor powered by an electric motor; stairway (far left) leads to the generator room. Looking south. Photo by Jet Lowe, HAER, 1989. - Puget Sound Power & Light Company, White River Hydroelectric Project, 600 North River Avenue, Dieringer, Pierce County, WA

  19. 8. VIEW OF SLC3W CONTROL ROOM (ROOM 105) FROM ITS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. VIEW OF SLC-3W CONTROL ROOM (ROOM 105) FROM ITS NORTHEAST CORNER. TELEMETRY ROOM VISIBLE THROUGH WINDOWS IN SOUTH WALL. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Operations Building, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  20. Perceptual effects in auralization of virtual rooms

    NASA Astrophysics Data System (ADS)

    Kleiner, Mendel; Larsson, Pontus; Vastfjall, Daniel; Torres, Rendell R.

    2002-05-01

    By using various types of binaural simulation (or ``auralization'') of physical environments, it is now possible to study basic perceptual issues relevant to room acoustics, as well to simulate the acoustic conditions found in concert halls and other auditoria. Binaural simulation of physical spaces in general is also important to virtual reality systems. This presentation will begin with an overview of the issues encountered in the auralization of room and other environments. We will then discuss the influence of various approximations in room modeling, in particular, edge- and surface scattering, on the perceived room response. Finally, we will discuss cross-modal effects, such as the influence of visual cues on the perception of auditory cues, and the influence of cross-modal effects on the judgement of ``perceived presence'' and the rating of room acoustic quality.

  1. Irradiation Creep in Graphite

    SciTech Connect

    Ubic, Rick; Butt, Darryl; Windes, William

    2014-03-13

    An understanding of the underlying mechanisms of irradiation creep in graphite material is required to correctly interpret experimental data, explain micromechanical modeling results, and predict whole-core behavior. This project will focus on experimental microscopic data to demonstrate the mechanism of irradiation creep. High-resolution transmission electron microscopy should be able to image both the dislocations in graphite and the irradiation-induced interstitial clusters that pin those dislocations. The team will first prepare and characterize nanoscale samples of virgin nuclear graphite in a transmission electron microscope. Additional samples will be irradiated to varying degrees at the Advanced Test Reactor (ATR) facility and similarly characterized. Researchers will record microstructures and crystal defects and suggest a mechanism for irradiation creep based on the results. In addition, the purchase of a tensile holder for a transmission electron microscope will allow, for the first time, in situ observation of creep behavior on the microstructure and crystallographic defects.

  2. Helium effects on irradiation dmage in V alloys

    SciTech Connect

    Doraiswamy, N.; Alexander, D.

    1996-10-01

    Preliminary investigations were performed on V-4Cr-4Ti samples to observe the effects of He on the irradiation induced microstructural changes by subjecting 3 mm electropolished V-4Cr-4Ti TEM disks, with and without prior He implantation, to 200 keV He irradiation at room temperature and monitoring, in-situ, the microstructural evolution as a function of total dose with an intermediate voltage electron microscope directly connected to an ion implanter. A high density of black dot defects were formed at very low doses in both He pre-implanted and unimplanted samples.

  3. Structural and luminescent properties of electron-irradiated silicon

    SciTech Connect

    Sobolev, N. A.; Loshachenko, A. S.; Aruev, P. N.; Kalyadin, A. E.; Shek, E. I.; Zabrodskiy, V. V.; Shtel'makh, K. F.; Vdovin, V. I.; Xiang, Luelue; Yang, Deren

    2014-02-21

    Structural defects induced by electron irradiation of p-Cz-Si wafers were identified. The influence of the annealing conditions in a chlorine-containing atmosphere on the structural and luminescent properties of the samples was examined. Light-emitting diodes based on electron-irradiated and high-temperature-annealed wafers were fabricated by a vapour-phase epitaxy technique and their luminescence properties were studied. A high-intensity dislocation-related D1 line was observed at 1.6 μm in the room-temperature electroluminescence spectrum.

  4. Sputtering of HOPG under high-dose ion irradiation

    NASA Astrophysics Data System (ADS)

    Borisov, A. M.; Mashkova, E. S.; Nemov, A. S.; Virgiliev, Yu. S.

    2007-03-01

    The dependences of sputtering yield Y of highly oriented pyrolytic graphite under high fluences (1018-1019 ion/cm2) 30 keV N2+ irradiation at ion incidence angles from θ = 0 (normal incidence) to θ = 80° at room temperature (RT) and T = 400 °C have been measured to trace the radiation damage influence on angular behavior of sputtering yield. A difference has been found between angular dependences of sputtering yields at RT, when the irradiation leads to a high degree of disorder, and at temperatures, larger than the temperature Ta responsible for annealing the radiation damage at continuous ion bombardment.

  5. Self-irradiation of Pu, its alloys and compounds

    NASA Astrophysics Data System (ADS)

    Timofeeva, L. F.

    2000-07-01

    Self-irradiation of Pu, its alloys and compounds by products of known α-decomposition is a continuous complicated process, which includes numerous different phenomena. The accumulation of Pu decomposition products causes material structure and properties change. This problem is the subject of many works, most of them concerned with the behavior of Pu and its alloys at low (liquid He and N) temperatures. The survey is given of the results of our experiments connected with radiogenic helium behavior, crystal structure and properties of Pu metallic compounds and Pu oxide ceramics in a self-irradiation process at room temperature under isochronal heat treatments.

  6. The growth and Raman scattering studies of TGSP crystal as the IR room temperature infrared detector

    NASA Astrophysics Data System (ADS)

    Malekfar, R.; Abbasi, B.

    2005-09-01

    The partial substitution of sulphate (SO42-) by phosphate (PO43-) in triglycine sulfate (TGS) single crystal can improve the properties of the TGS family crystal as room temperature infrared (IR) detector. Phosphoric acid (H3PO4)-doped triglycine sulfate (TGSP) single crystal has strong pyroelectric properties due to its high pyroelectric coefficient and reasonably low dielectric constant. This family of single crystals can grow easily and rapidly and are reasonably good uniform detectors in the electromagnetic region from UV to IR at room temperature and without using cryogenic cooling. TGSP single crystals were grown by saturated solution method. In order to investigate the detection sensitivity of the TGSP crystal, single crystals with different dopant concentration of phosphate (PO43-) ion were grown. A rather complete back-scattering Raman scattering spectra and hysteresis loops of the grown crystals were recorded and compared with each other. The Raman spectra and their assignments only will be reported here.

  7. A variationally calculated room temperature line-list for H2O2

    NASA Astrophysics Data System (ADS)

    Al-Refaie, Ahmed F.; Ovsyannikov, Roman I.; Polyansky, Oleg L.; Yurchenko, Sergei N.; Tennyson, Jonathan

    2015-12-01

    A room temperature line list for hydrogen peroxide is computed using a high level ab initio potential energy surface by Małyszek and Koput (2013) with a small adjustment of the equilibrium geometry and height of the torsional barrier and a new ab initio dipole moment surface (CCSD(T)-f12b/aug-cc-pv(T+d)Z). In order to improve further the ab initio accuracy, the vibrational band centers were shifted to match experimental values when available. The line list covers the wavenumber region up to 8000 cm-1 with the rotational excitations J ⩽ 40 . Room temperatures synthetic spectra of H2O2 are generated and compared to the spectra from the HITRAN and PNNL-IR databases showing good agrement.

  8. Polymer Morphological Change Induced by Terahertz Irradiation

    NASA Astrophysics Data System (ADS)

    Hoshina, Hiromichi; Suzuki, Hal; Otani, Chiko; Nagai, Masaya; Kawase, Keigo; Irizawa, Akinori; Isoyama, Goro

    2016-06-01

    As terahertz (THz) frequencies correspond to those of the intermolecular vibrational modes in a polymer, intense THz wave irradiation affects the macromolecular polymorph, which determines the polymer properties and functions. THz photon energy is quite low compared to the covalent bond energy; therefore, conformational changes can be induced “softly,” without damaging the chemical structures. Here, we irradiate a poly(3-hydroxybutylate) (PHB) / chloroform solution during solvent casting crystallization using a THz wave generated by a free electron laser (FEL). Morphological observation shows the formation of micrometer-sized crystals in response to the THz wave irradiation. Further, a 10-20% increase in crystallinity is observed through analysis of the infrared (IR) absorption spectra. The peak power density of the irradiating THz wave is 40 MW/cm2, which is significantly lower than the typical laser intensities used for material manipulation. We demonstrate for the first time that the THz wave effectively induces the intermolecular rearrangement of polymer macromolecules.

  9. Polymer Morphological Change Induced by Terahertz Irradiation

    PubMed Central

    Hoshina, Hiromichi; Suzuki, Hal; Otani, Chiko; Nagai, Masaya; Kawase, Keigo; Irizawa, Akinori; Isoyama, Goro

    2016-01-01

    As terahertz (THz) frequencies correspond to those of the intermolecular vibrational modes in a polymer, intense THz wave irradiation affects the macromolecular polymorph, which determines the polymer properties and functions. THz photon energy is quite low compared to the covalent bond energy; therefore, conformational changes can be induced “softly,” without damaging the chemical structures. Here, we irradiate a poly(3-hydroxybutylate) (PHB) / chloroform solution during solvent casting crystallization using a THz wave generated by a free electron laser (FEL). Morphological observation shows the formation of micrometer-sized crystals in response to the THz wave irradiation. Further, a 10−20% increase in crystallinity is observed through analysis of the infrared (IR) absorption spectra. The peak power density of the irradiating THz wave is 40 MW/cm2, which is significantly lower than the typical laser intensities used for material manipulation. We demonstrate for the first time that the THz wave effectively induces the intermolecular rearrangement of polymer macromolecules. PMID:27272984

  10. Polymer Morphological Change Induced by Terahertz Irradiation

    NASA Astrophysics Data System (ADS)

    Hoshina, Hiromichi; Suzuki, Hal; Otani, Chiko; Nagai, Masaya; Kawase, Keigo; Irizawa, Akinori; Isoyama, Goro

    2016-06-01

    As terahertz (THz) frequencies correspond to those of the intermolecular vibrational modes in a polymer, intense THz wave irradiation affects the macromolecular polymorph, which determines the polymer properties and functions. THz photon energy is quite low compared to the covalent bond energy; therefore, conformational changes can be induced “softly,” without damaging the chemical structures. Here, we irradiate a poly(3-hydroxybutylate) (PHB) / chloroform solution during solvent casting crystallization using a THz wave generated by a free electron laser (FEL). Morphological observation shows the formation of micrometer-sized crystals in response to the THz wave irradiation. Further, a 10‑20% increase in crystallinity is observed through analysis of the infrared (IR) absorption spectra. The peak power density of the irradiating THz wave is 40 MW/cm2, which is significantly lower than the typical laser intensities used for material manipulation. We demonstrate for the first time that the THz wave effectively induces the intermolecular rearrangement of polymer macromolecules.

  11. Room-temperature ferromagnetism in cerium dioxide powders

    SciTech Connect

    Rakhmatullin, R. M. Pavlov, V. V.; Semashko, V. V.; Korableva, S. L.

    2015-08-15

    Room-temperature ferromagnetism is detected in a CeO{sub 2} powder with a grain size of about 35 nm and a low (<0.1 at %) manganese and iron content. The ferromagnetism in a CeO{sub 2} sample with a submicron crystallite size and the same manganese and iron impurity content is lower than in the nanocrystalline sample by an order of magnitude. Apart from ferromagnetism, both samples exhibit EPR spectra of localized paramagnetic centers, the concentration of which is lower than 0.01 at %. A comparative analysis of these results shows that the F-center exchange (FCE) mechanism cannot cause ferromagnetism. This conclusion agrees with the charge-transfer ferromagnetism model proposed recently.

  12. Icelike Water Monolayer Adsorbed on Mica at Room Temperature

    SciTech Connect

    Miranda, P.B.; Xu, L.; Shen, Y.R.; Salmeron, M.

    1998-12-01

    The structure of a water film formed on mica at room temperature, in equilibrium with water vapor at various relative humidities (RH), was studied using sum-frequency-generation (SFG) vibrational spectroscopy and scanning polarization force microscopy (SPFM). Analysis of the O-D stretch modes in the SFG spectra of D{sub 2}O on mica indicates that as RH increases, the submonolayer water structure evolves into a more ordered hydrogen-bonding network. At full monolayer coverage ({approximately} 90{percent} RH) , the SFG spectrum suggests an icelike film with no dangling O-D groups, in agreement with a recent molecular dynamics simulation. {copyright} {ital 1998} {ital The American Physical Society}

  13. Study on CM-chitosan/activated carbon hybrid gel films formed with EB irradiation

    NASA Astrophysics Data System (ADS)

    Zhao, Long; Luo, Fang; Zhai, Maolin; Mitomo, Hiroshi; Yoshii, Fumio

    2008-05-01

    A series of novel hybrid gel films were prepared from carboxymethylated chitosan (CM-chitosan) and activated carbon (AC) by irradiation of compression-molded CM-chitosan/AC mixture in physical gel state with electron beam (EB) at room temperature. The formation, properties and structure of CM-chitosan/AC hybrid gel films were discussed in terms of gel fraction, swelling, mechanical property, SEM image and XPS spectra. Compared with pure crosslinked CM-chitosan gel, the gel fraction and mechanical property of the hybrid sample were obviously improved after adding AC into CM-chitosan film. The morphology analyses indicated that the hybrid gel films exhibited a rough and folded surface and a relatively interior uniform structure was sustained between CM-chitosan and AC. XPS revealed that the content of protonated amino groups of CM-chitosan macromolecule was promoted by AC. In addition, the adsorptive property of the gel films against humic acid was investigated by batch adsorption method. It was found that the adsorption efficiency of CM-chitosan is significantly improved by adding AC. These preliminary evaluations suggest that the CM-chitosan/AC gel films have great potential for applications in industrial field and biomedical field.

  14. All-weather ultraviolet solar spectra retrieved at a 0.5-Hz sampling rate.

    PubMed

    Thorseth, T M; Kjeldstad, B

    1999-10-20

    A measurement scheme and an algorithm have been developed to retrieve global irradiance ultraviolet solar spectra (290-400 nm) at a sampling rate of 0.5 Hz. The algorithm combines spectral irradiance measurements performed with a slow (a few minutes) scanning spectroradiometer (Optronic Model OL752) and a moderate bandwidth multichannel radiometer (Biospherical ground-based ultraviolet radiometer Model 541). The filter radiometer instrument allows for continuous observations of global UV radiation at five channels (approximately 10-nm bandwidth), performed simultaneously with spectral measurements. Information about changing cloud conditions during a spectral scan was retrieved from filter measurements and applied to spectral data, hence estimated spectra without cloud variations could be constructed. The quality of the estimated spectra depends on data quality from both instruments. The method works well in all kinds of weather conditions, as long as the Sun is above the horizon and none of the instruments are hampered by measurement errors. PMID:18324148

  15. Leaf color is fine-tuned on the solar spectra to avoid strand direct solar radiation.

    PubMed

    Kume, Atsushi; Akitsu, Tomoko; Nasahara, Kenlo Nishida

    2016-07-01

    The spectral distributions of light absorption rates by intact leaves are notably different from the incident solar radiation spectra, for reasons that remain elusive. Incident global radiation comprises two main components; direct radiation from the direction of the sun, and diffuse radiation, which is sunlight scattered by molecules, aerosols and clouds. Both irradiance and photon flux density spectra differ between direct and diffuse radiation in their magnitude and profile. However, most research has assumed that the spectra of photosynthetically active radiation (PAR) can be averaged, without considering the radiation classes. We used paired spectroradiometers to sample direct and diffuse solar radiation, and obtained relationships between the PAR spectra and the absorption spectra of photosynthetic pigments and organs. As monomers in solvent, the spectral absorbance of Chl a decreased with the increased spectral irradiance (W m(-2) nm(-1)) of global PAR at noon (R(2) = 0.76), and was suitable to avoid strong spectral irradiance (λmax = 480 nm) rather than absorb photon flux density (μmol m(-2) s(-1) nm(-1)) efficiently. The spectral absorption of photosystems and the intact thallus and leaves decreased linearly with the increased spectral irradiance of direct PAR at noon (I dir-max), where the wavelength was within the 450-650 nm range (R(2) = 0.81). The higher-order structure of photosystems systematically avoided the strong spectral irradiance of I dir-max. However, when whole leaves were considered, leaf anatomical structure and light scattering in leaf tissues made the leaves grey bodies for PAR and enabled high PAR use efficiency. Terrestrial green plants are fine-tuned to spectral dynamics of incident solar radiation and PAR absorption is increased in various structural hierarchies. PMID:26943164

  16. Leaf color is fine-tuned on the solar spectra to avoid strand direct solar radiation.

    PubMed

    Kume, Atsushi; Akitsu, Tomoko; Nasahara, Kenlo Nishida

    2016-07-01

    The spectral distributions of light absorption rates by intact leaves are notably different from the incident solar radiation spectra, for reasons that remain elusive. Incident global radiation comprises two main components; direct radiation from the direction of the sun, and diffuse radiation, which is sunlight scattered by molecules, aerosols and clouds. Both irradiance and photon flux density spectra differ between direct and diffuse radiation in their magnitude and profile. However, most research has assumed that the spectra of photosynthetically active radiation (PAR) can be averaged, without considering the radiation classes. We used paired spectroradiometers to sample direct and diffuse solar radiation, and obtained relationships between the PAR spectra and the absorption spectra of photosynthetic pigments and organs. As monomers in solvent, the spectral absorbance of Chl a decreased with the increased spectral irradiance (W m(-2) nm(-1)) of global PAR at noon (R(2) = 0.76), and was suitable to avoid strong spectral irradiance (λmax = 480 nm) rather than absorb photon flux density (μmol m(-2) s(-1) nm(-1)) efficiently. The spectral absorption of photosystems and the intact thallus and leaves decreased linearly with the increased spectral irradiance of direct PAR at noon (I dir-max), where the wavelength was within the 450-650 nm range (R(2) = 0.81). The higher-order structure of photosystems systematically avoided the strong spectral irradiance of I dir-max. However, when whole leaves were considered, leaf anatomical structure and light scattering in leaf tissues made the leaves grey bodies for PAR and enabled high PAR use efficiency. Terrestrial green plants are fine-tuned to spectral dynamics of incident solar radiation and PAR absorption is increased in various structural hierarchies.

  17. Infrared irradiation of skin for the development of non-invasive health monitoring technologies

    NASA Astrophysics Data System (ADS)

    Abdussamad Abbas, Hisham; Triplett, Gregory

    2015-06-01

    Infrared radiation was employed to study the optical transmission properties of pigskin and the factors that influence transmission at room temperature. The skin samples from the forehead of piglets were irradiated using an infrared-pulsed source by varying the beam properties such as optical power, power density, duty cycle, as well as sample thickness. Because infrared radiation in select instances can penetrate through thick-fleshy skin more easily than visible radiation, temperature fluctuations observed within the skin samples stemming from exposure-dependent absorption revealed interesting transmission properties and the limits of optical exposure. Pigskin was selected for this study since its structure most closely resembles that of human skin. Furthermore, the pulsed beam technique compared to continuous operation offers more precise control of heat generation within the skin. Through this effort, the correlated pulsed-beam parameters that influence infrared transmission were identified and varied to minimize the internal absorption losses through the dermis layers. The two most significant parameters that reduce absorption losses were frequency and duty cycle of the pulsed beam. Using the Bouger-Beer-Lambert Law, the absorption coefficient from empirical data is approximated, while accepting that the absorption coefficient is neither uniform nor linear. Given that the optical source used in this study was single mode, the infrared spectra obtained from irradiated samples also reveal characteristics of the skin structure. Realization of appropriate sample conditions and exposure parameters that reduce light attenuation within the skin and sample degradation could give way to novel non-invasive measuring techniques for health monitoring purposes.

  18. cloud supersaturations and CCN spectra

    NASA Astrophysics Data System (ADS)

    Hudson, James; Noble, Stephen

    2014-05-01

    Multiple regression analysis predictions of low altitude cloud droplet concentrations based on measured CCN spectra compared much better with measured low altitude droplet concentrations than various CCN concentrations at single supersaturations (S) in two aircraft cumulus cloud projects, RICO and ICE-T. The addition of vertical velocity (W) to the single and multiple regressions showed small improvements. For RICO the multiple regression correlations were also superior to previous adiabatic model predictions of droplet concentrations also based on CCN spectra and mean W. More adiabatic cloud parcels showed only slightly better correlations than flight-averaged droplet concentrations. Results show the value of more extensive CCN spectra and the relative unimportance of W variations for determining droplet concentrations in these Caribbean cumuli. The fact that flight-averaged droplet concentrations of all low cloud data was almost as well correlated with CCN spectra as were droplet concentrations of more adiabatic cloud parcels indicates that entrainment did not significantly perturb CCN-droplet concentration relationships. As should be expected higher cloud S were determined for the cumulus clouds than for stratus clouds. Suppression of cloud S by higher CCN concentrations that had previously been observed in stratus was observed in ICE-T but not in RICO where the CCN range may have been too low for cloud S suppression. But ICE-T and a stratus project, POST, even showed this S suppression over the same limited maritime CCN range as RICO.

  19. Classical Trajectories and Quantum Spectra

    NASA Technical Reports Server (NTRS)

    Mielnik, Bogdan; Reyes, Marco A.

    1996-01-01

    A classical model of the Schrodinger's wave packet is considered. The problem of finding the energy levels corresponds to a classical manipulation game. It leads to an approximate but non-perturbative method of finding the eigenvalues, exploring the bifurcations of classical trajectories. The role of squeezing turns out decisive in the generation of the discrete spectra.

  20. Numerical study of carbon nanotubes under circularly polarized irradiation

    NASA Astrophysics Data System (ADS)

    Liu, Feng; Nakajima, Yudai; Wakabayashi, Katsunori

    2016-08-01

    We numerically study the energy band structures and the corresponding wavefunctions of carbon nanotubes under circularly polarized irradiation perpendicular to the tube axis on the basis of the Floquet-Bloch theory. We focus on two typical irradiation frequencies, ħΩ ≪ γ and ħΩ ˜ γ, where γ ≈ 3 eV is the hopping energy of graphene. Circularly polarized irradiation is found to open gaps for metallic zigzag nanotubes near the Fermi energy and shift the degenerate points of armchair nanotubes in the energy spectra away from the K and K‧ points. Furthermore, high-frequency irradiation localizes the wavefunctions on either side of the nanotubes; in particular, the localized wavefunctions have different valley indices on each side of the nanotubes.

  1. Proton and neutron irradiation effect of Ti: Sapphires

    SciTech Connect

    Wang, G.; Zhang, J.; Yang, J.

    1999-07-01

    Various effects of proton and neutron irradiated Ti: sapphires were studied. Proton irradiation induced F, F{sup +} and V center in Ti: sapphires and 3310 cm{sup -1} infrared absorption, and made ultraviolet absorption edge shift to short wave. Neutron irradiation produced a number of F, F{sup +} and F{sub 2} centers and larger defects in Ti: sapphires, and changed Ti{sup 4+}into Ti{sup 3+} ions. Such valence state variation enhanced characteristic luminescence of Ti: sapphires, and no singular variances of intrinsic fluorescence spectra of Ti: sapphires took place with neutron flux of 1 x 10{sup 17}n/cm{sup 2}, but the fluorescence vanished with neutron flux of 1 x 10{sup 18}n/cm{sup 2} which means the threshold for the concentration of improving Ti{sup 3+} ions by neutron irradiation.

  2. Effects of Electron Beam Irradiation on the Electrospinning of Polyacrylonitrile.

    PubMed

    Jeun, Joon-Pyo; Kim, Hyun-Bin; Oh, Seung-Hwan; Park, Jung-Ki; Kang, Phil-Hyun

    2015-08-01

    Electron beam (e-beam) irradiation of polyacrylonitrile (PAN) was performed to investigate the effects of radiation on the electrospinning process. For this study, polyacrylonitrile powder was subjected to e-beam irradiation with different doses of up to 100 kGy under an N2 atmosphere. Polymer solutions were prepared by dissolving PAN in N,N-dimethyl-formamide (DMF) at a 1:9 ratio by weight. The prepared PAN/DMF solutions showed different colors with different e-beam doses. The resulting structures in solutions contained conjugated C=N bonds, which caused the observed color formation. In addition, the conductivity of the PAN/DMF solution increased with an increase in e-beam irradiation dose. In the DSC spectra of electrospun PAN fibers, the peak temperature of the exothermic reactions was observed to decrease with an increase in the e-beam irradiation strength. PMID:26369176

  3. Comparative Study of Two Different TiO2 Film Sensors on Response to H2 under UV Light and Room Temperature

    PubMed Central

    Peng, Xiaoying; Wang, Zhongming; Huang, Pan; Chen, Xun; Fu, Xianzhi; Dai, Wenxin

    2016-01-01

    An anatase TiO2 film sensor was prepared by a facile in-situ method on the interdigitated Au electrode deposited on the alumina substrate. The structure, morphology and the optical properties of the in-situ TiO2 film sensor were characterized by X-ray diffraction, Scanning Electron Microscopy, and UV-vis diffuse reflectance spectra. The photo-assisted gas sensitivities of the prepared film towards H2 gas were evaluated at room temperature in N2 and synthetic air atmospheres. As compared to TiO2 film sensor prepared by drop-coating method, this in-situ TiO2 film sensor exhibited a more compact structure composed of uniform TiO2 microspheres as well as a better gas sensitivity towards H2 under UV irradiation, especially in synthetic air. The photo-electrochemical measurements suggest that these improvements may be associated with the efficient charge transfer in the TiO2 interface induced by the TiO2 microsphere structure. This study might offer a feasible approach to develop photo-assisted gas sensors at ambient temperature. PMID:27509502

  4. Shape effects on asteroid spectra

    NASA Astrophysics Data System (ADS)

    Davalos, J.; Carvano, J.

    2014-07-01

    The objective of this work is to probe how the shape of a body like an asteroid could be modifying its observed spectra and the derived mineralogical interfaces based on spectral modeling. To model this effect, we construct an oblate ellipsoid with triangular facets, where each facet contributes to the overall reflectance. The synthetic spectra is generated by the isotropic multiple-scattering approximation (IMSA) reflectance model of Hapke (1993). First, we obtained optical constants by inverting the spectra of meteorites, obtained from the RELAB spectral database. These optical constants were found inverting the reflectance bidirectional equation of Hapke; this is made in two steps: (i) The first inversion is to find the single-scattering albedo π (ii) in the model of Hapke, this albedo is found under the regime of the geometric optics, where the particle size is much larger than the wavelength of the incident radiation. Here we assumed a constant value for the real part of the optical constant n=1.5. With these optical constants, we can construct synthetic spectra for any particle size. The phase function used is the double Henyey-Greenstein phase function and an accurate expression for the H-functions. We started with the ellipsoidal shape a=1.0, b=c=0.5 for two particle size 50 and 250 μ m, in this part, we found good differences in the BAR parameter between the two geometric models, this was done for 100 Eucrite meteorites spectra. In this first study, we found that the BAR parameter between the two models is bigger when the particle size increases. In the second part, we started with different ellipsoidal shapes and produced synthetic spectra for material with eucrite and diogenite composition with a phase angle of 20 degrees, incidence and emission angles of 10 degrees, and particle size at 250 μ m. All spectra was generated for four parameters of phase angle b=[0.2,0.4,0.6,0.8] taking the empirical relation between the phase constants of Hapke (2012

  5. EPR study of gamma irradiated N-methyl taurine (C 3H 9NO 3S) and sodium hydrogen sulphate monohydrate (NaHSO 3·H 2O) single crystals

    NASA Astrophysics Data System (ADS)

    Yıldırım, İlkay; Karabulut, Bünyamin

    2011-03-01

    EPR study of gamma irradiated C 3H 9NO 3S and NaHSO 3.H 2O single crystals have been carried out at room temperature. There is one site for the radicals in C 3H 9NO 3S and two magnetically distinct sites for the radicals in NaHSO 3. The observed lines in the EPR spectra have been attributed to the species of SO3- and RH radicals for N-methyl taurine, and to the SO3- and OH radicals for sodium hydrogen sulfate monohydrate single crystals. The principal values of the g for SO3-, the hyperfine values of RH and OH proton splitting have been calculated and discussed.

  6. Atlas of high resolution infrared spectra of carbon dioxide

    NASA Technical Reports Server (NTRS)

    Rinsland, C. P.; Benner, D. C.; Devi, V. M.; Ferry, P. S.; Sutton, C. H.; Richardson, D. J.

    1984-01-01

    An atlas of long-path room-temperature absorption spectra of carbon dioxide is presented for the spectral intervals 1830-2100 cm, 2395-2680 cm, and 3140-3235 cm. The spectral data were recorded at high signal to noise with the 0.01 cm resolution Fourier transform interferometer. The spectra were obtained with pressures between 1 and 10 Torr of CO2 and with total paths between 24 and 384 meters. A compilation of the measured line positions and the assignments derived from the analysis are presented. Of the 3336 lines in the atlas, 94 percent were identified as CO2 lines or as residual lines H2O and CO. Calculated positions are presented for the carbon dioxide lines; a total of 52 bands of C-12O2-16, C-13O2-16, C-12O-16O-18, C-12O-16O-17, and C-13O-16O18 were identified. The weakest carbon dioxide lines marked in the atlas have intensities of approximately 0.5 x 10 to the negative 26th power cm/molecule at room temperature.

  7. Source spectra of seismic hum

    NASA Astrophysics Data System (ADS)

    Nishida, Kiwamu

    2014-10-01

    The observation of seismic hum from 2 to 20 mHz, also known as Earth's background free oscillations, has been established. Recent observations by broad-band seismometers show simultaneous excitation of Love waves (fundamental toroidal modes) and Rayleigh waves (fundamental spheroidal modes). The excitation amplitudes above 10 mHz can be explained by random shear traction sources on Earth's surface. With estimated source distributions, the most likely excitation mechanism is a linear coupling between ocean infragravity waves and seismic surface waves through seafloor topography. Observed Love and Rayleigh wave amplitudes below 5 mHz suggest that surface pressure sources could also contribute to their excitations, although the amplitudes have large uncertainties due to the high noise levels of the horizontal components. To quantify the observation, we develop a new method for estimation of the source spectra of random tractions on Earth's surface by modelling cross-spectra between pairs of stations. The method is to calculate synthetic cross-spectra for spatially isotropic and homogeneous excitations by random shear traction and pressure sources, and invert them with the observed cross-spectra to obtain the source spectra. We applied this method to the IRIS, ORFEUS, and F-net records from 618 stations with three components of broad-band seismometers for 2004-2011. The results show the dominance of shear traction above 5 mHz, which is consistent with past studies. Below 5 mHz, however, the spectral amplitudes of the pressure sources are comparable to those of shear traction. Observed acoustic resonance between the atmosphere and the solid Earth at 3.7 and 4.4 mHz suggests that atmospheric disturbances are responsible for the surface pressure sources, although non-linear ocean wave processes are also candidates for the pressure sources. Excitation mechanisms of seismic hum should be considered as a superposition of the processes of the solid Earth, atmosphere and ocean

  8. A simple atmospheric pressure room-temperature air plasma needle device for biomedical applications

    NASA Astrophysics Data System (ADS)

    Lu, X.; Xiong, Z.; Zhao, F.; Xian, Y.; Xiong, Q.; Gong, W.; Zou, C.; Jiang, Z.; Pan, Y.

    2009-11-01

    Rather than using noble gas, room air is used as the working gas for an atmospheric pressure room-temperature plasma. The plasma is driven by submicrosecond pulsed directed current voltages. Several current spikes appear periodically for each voltage pulse. The first current spike has a peak value of more than 1.5 A with a pulse width of about 10 ns. Emission spectra show that besides excited OH, O, N2(C-B), and N2+(B-X) emission, excited NO, N2(B-A), H, and even N emission are also observed in the plasma, which indicates that the plasma may be more reactive than that generated by other plasma jet devices. Utilizing the room-temperature plasma, preliminary inactivation experiments show that Enterococcus faecalis can be killed with a treatment time of only several seconds.

  9. Stability of disposal rooms during waste retrieval

    SciTech Connect

    Brandshaug, T.

    1989-03-01

    This report presents the results of a numerical analysis to determine the stability of waste disposal rooms for vertical and horizontal emplacement during the period of waste retrieval. It is assumed that waste retrieval starts 50 years after the initial emplacement of the waste, and that access to and retrieval of the waste containers take place through the disposal rooms. It is further assumed that the disposal rooms are not back-filled. Convective cooling of the disposal rooms in preparation for waste retrieval is included in the analysis. Conditions and parameters used were taken from the Nevada Nuclear Waste Storage Investigation (NNWSI) Project Site Characterization Plan Conceptual Design Report (MacDougall et al., 1987). Thermal results are presented which illustrate the heat transfer response of the rock adjacent to the disposal rooms. Mechanical results are presented which illustrate the predicted distribution of stress, joint slip, and room deformations for the period of time investigated. Under the assumption that the host rock can be classified as ``fair to good`` using the Geomechanics Classification System (Bieniawski, 1974), only light ground support would appear to be necessary for the disposal rooms to remain stable. 23 refs., 28 figs., 2 tabs.

  10. Optical and positron annihilation spectroscopic studies on PMMA polymer doped by rhodamine B/chloranilic acid charge transfer complex: Special relevance to the effect of γ-ray irradiation

    NASA Astrophysics Data System (ADS)

    Hassan, H. E.; Refat, Moamen S.; Sharshar, T.

    2016-04-01

    Polymeric sheets of poly (methylmethaclyerate) (PMMA) containing charge transfer (CT) complex of rhodamine B/chloranilic acid (Rho B/CHA) were synthesized in methanol solvent at room temperature. The systematic analysis done on the Rho B and its CT complex in the form of powder or polymeric sheets confirmed their structure and thermal stability. The IR spectra interpreted the charge transfer mode of interaction between the CHA central positions and the terminal carboxylic group. The polymer sheets were irradiated with 70 kGy of γ radiation using 60Co source to study the enhanced changes in the structure and optical parameters. The microstructure changes of the PMMA sheets caused by γ-ray irradiation were analyzed using positron annihilation lifetime (PAL) and positron annihilation Doppler broadening (PADB) techniques. The positron life time components (τi) and their corresponding intensities (Ii) as well as PADB line-shape parameters (S and W) were found to be highly sensitive to the enhanced disorder occurred in the organic chains of the polymeric sheets due to γ-irradiation.

  11. Irradiation creep and swelling of various austenitic alloys irradiated in PFR and FFTF

    SciTech Connect

    Garner, F.A.; Toloczko, M.B.

    1996-10-01

    In order to use data from surrogate neutron spectra for fusion applications, it is necessary to analyze the impact of environmental differences on property development. This is of particular importance in the study of irradiation creep and its interactions with void swelling, especially with respect to the difficulty of separation of creep strains from various non-creep strains. As part of an on-going creep data rescue and analysis effort, the current study focuses on comparative irradiations conducted on identical gas-pressurized tubes produced and constructed in the United States from austenitic steels (20% CW 316 and 20% CW D9), but irradiated in either the Prototype Fast Reactor (PFR) in the United Kingdom or the Fast Flux Test Facility in the United States. In PFR, Demountable Subassemblies (DMSA) serving as heat pipes were used without active temperature control. In FFTF the specimens were irradiated with active ({+-}{degrees}5C) temperature control. Whereas the FFTF irradiations involved a series of successive side-by-side irradiation, measurement and reinsertion of the same series of tubes, the PFR experiment utilized simultaneous irradiation at two axial positions in the heat pipe to achieve different fluences at different flux levels. The smaller size of the DMSA also necessitated a separation of the tubes at a given flux level into two groups (low-stress and high-stress) at slightly different axial positions, where the flux between the two groups varied {le}10%. Of particular interest in this study was the potential impact of the two types of separation on the derivation of creep coefficients.

  12. Detection of prior irradiation of dried fruits by electron spin resonance (ESR)

    NASA Astrophysics Data System (ADS)

    Esteves, M. P.; Andrade, M. E.; Empis, J.

    1999-08-01

    Dried almonds, raisins, dates and pistachio were irradiated using either gamma radiation or electron beam, at an average absorbed dose of 5 kGy. To detect the previous irradiation different parts of the dried fruits were analyzed by ESR spectroscopy: almonds: skin; raisins: dried pulp; dates: dried pulp and stone; pistachio: nutshell. Analyses were carried out 2-3 months and 6 months after irradiation. A series of signals tentatively described as "cellulose-like", "sugar-like" and "complex" radical were observed, and some slight differences between spectra from samples irradiated with gamma rays and electrons were evident.

  13. Effect of surface waves on the irradiance distribution in the upper ocean.

    PubMed

    Wijesekera, Hemantha; Pegau, W Scott; Boyd, Timothy

    2005-11-14

    The distribution of irradiance in the upper ocean was examined from sensors mounted on an Autonomous Underwater Vehicle (AUV). Apparent and inherent optical properties along with physical variability ranging from scales O(10 cm) to O(1 km) were collected off the coast of Oregon during the summer of 2004. Horizontal wavenumber spectra of downwelling irradiance showed that irradiance varied as a function of wavenumber and depth. The analysis indicates that irradiance variability between 1 and 20 m spatial scales was attributed to the focusing effects of surface wave geometry. The dominant wavelength of focusing at depths of 2 - 6 m was about 2 m for ~6 m s-1 wind speeds.

  14. Test reactor irradiation coordination

    SciTech Connect

    Heartherly, D.W.; Siman Tov, I.I.; Sparks, D.W.

    1995-10-01

    This task was established to supply and coordinate irradiation services needed by NRC contractors other than ORNL. These services include the design and assembly of irradiation capsules as well as arranging for their exposure, disassembly, and return of specimens. During this period, the final design of the facility and specimen baskets was determined through an iterative process involving the designers and thermal analysts. The resulting design should permit the irradiation of all test specimens to within 5{degrees}C of their desired temperature. Detailing of all parts is ongoing and should be completed during the next reporting period. Procurement of the facility will also be initiated during the next review period.

  15. Alaskan Commodities Irradiation Project

    SciTech Connect

    Zarling, J.P.; Swanson, R.B.; Logan, R.R.; Das, D.K.; Lewis, C.E.; Workman, W.G.; Tumeo, M.A.; Hok, C.I.; Birklid, C.A.; Bennett, F.L.

    1988-12-01

    The ninety-ninth US Congress commissioned a six-state food irradiation research and development program to evaluate the commercial potential of this technology. Hawaii, Washington, Iowa, Oklahoma and Florida as well as Alaska have participated in the national program; various food products including fishery products, red meats, tropical and citrus fruits and vegetables have been studied. The purpose of the Alaskan study was to review and evaluate those factors related to the technical and economic feasibility of an irradiator in Alaska. This options analysis study will serve as a basis for determining the state's further involvement in the development of food irradiation technology. 40 refs., 50 figs., 53 tabs.

  16. The effect of oxygen on void stability in ion-irradiated steel

    NASA Astrophysics Data System (ADS)

    Seitzman, Larry E.; Dodd, R. Arthur; Kulcinski, Gerald L.

    1990-07-01

    The effect of oxygen on void stability in an Fe-17Ni-13Cr austenitic ternary alloy has been investigated using 15 MeV nickel-ion irradiation at elevated temperatures and preimplantation of 6 MeV oxygen at room temperature. The nickel irradiation was performed over a temperature range of 550 °C to 650 °C. Utilizing transverse specimen preparation techniques, the irradiated steel was examined by transmission electron microscopy (TEM). As little as 10 appm preimplanted oxygen caused a significant increase in the void number density when the steel was irradiated at 550 °C. A near-surface void-denuded zone occurs in the irradiated steel, while a region depleted of visible voids also occurs in the steel injected with 300 appm oxygen or greater and irradiated at 550 °C.

  17. Investigation of microstructure and mechanical properties of proton irradiated Zircaloy 2

    NASA Astrophysics Data System (ADS)

    Sarkar, Apu; Kumar, Ajay; Mukherjee, S.; Sharma, S. K.; Dutta, D.; Pujari, P. K.; Agarwal, A.; Gupta, S. K.; Singh, P.; Chakravartty, J. K.

    2016-10-01

    Samples of Zircaloy 2 have been irradiated with 4 MeV protons to two different doses. Microstructures of the unirradiated and irradiated samples have been characterized by Electron Back Scatter Diffraction (EBSD), X-ray diffraction line profile analysis (XRDLPA), Positron Annihilation Lifetime Spectroscopy (PALS) and Coincident Doppler Broadening (CDB) Spectroscopy. Tensile tests and micro hardness measurements have been carried out at room temperature to assess the changes in mechanical properties of Zircaloy 2 due to proton irradiation. The correlation of dislocation density, grain size and yield stress of the irradiated samples indicated that an increase in dislocation density due to irradiation is responsible for the change in mechanical behavior of irradiated Zircaloy.

  18. Irradiation application for color removal and purification of green tea leaves extract

    NASA Astrophysics Data System (ADS)

    Jo, Cheorun; Son, Jun Ho; Lee, Hyun Ja; Byun, Myung Woo

    2003-02-01

    Gamma irradiation was introduced to develop a new processing method for brighter-colored green tea leaves extract without changes of physiological activities. Dried green tea leaves were purchased and extracted by 70% ethanol solution and irradiated at 0, 5, 10, and 20 kGy with gamma rays. Hunter color L-value increased and a- and b-value decreased by irradiation, resulting in bright yellow from dark brown. There was no difference in radical scavenging and tyrosinase inhibition effect by irradiation. The irradiation effect in the solution disappeared during storage for 3 weeks at room temperature but vitamin C addition was effective in reducing the color change. Results indicated that irradiation may be a good technology to remove undesirable color in green tea leaves extract.

  19. Shear strength of irradiated insulation under combined shear/compression loading

    SciTech Connect

    Reed, R.; Fabian, P.; Hazelton, C.

    1997-06-01

    The shear strengths of irradiated insulation systems were measured at 4 K under combined shear and compression loads. Sandwich-type (316LN/bonded insulation/316LN) specimens were irradiated at 4 K and tested at 4 K after storage at room temperature. Some specimens were stored at room temperature; others, at 77 K. Insulation systems included diglycidylether of bisphenol-A and tetraglycidyl diaminodiphenyl methane epoxies and polyimide resins reinforced with S-2 glass. Some contained polyimide film or mica electrical barriers. All specimens were irradiated to a fast neutron fluence of 1.8 X 10{sup 22} n/m{sup 2}. Insulation systems are compared on the basis of their irradiated and unirradiated shear strengths.

  20. Phobos surface spectra mineralogical modeling

    NASA Astrophysics Data System (ADS)

    Pajola, M.; Lazzarin, M.; Dalle Ore, C. M.; Cruikshank, D. P.; Roush, T. L.; Pendleton, Y.; Bertini, I.; Magrin, S.; Carli, C.; La Forgia, F.; Barbieri, C.

    2014-04-01

    A mineralogical model composed of a mixture of Tagish Lake meteorite (TL) and Pyroxene Glass (PM80) was presented in [1] to explain the surface reflectance of Phobos from 0.25 to 4.0 μm. The positive results we obtained, when comparing the OSIRIS data [2] extended in wavelength to include the [3,4] spectra, forced us to perform a wider comparison between our TL-PM80 model and the CRISM and OMEGA Phobos spectra presented in [5]. Such spectra cover three different regions of interest (ROIs) situated in the Phobos sub-Mars hemisphere: the interior of the Stickney crater, its eastern rim, and its proximity terrain southeast of the Reldresal crater. We decided to vary the percentage mixture of the components of our model (80% TL, 20% PM80), between pure TL and pure PM80, by means of the radiative transfer code based on the [6] formulation of the slab approximation. Once this spectral range was derived, see Fig. 1, we attempted to compare it with the [5] spectra between 0.4 and 2.6 μm, i.e. below the thermal emitted radiation, to see if any spectral match was possible. We observed that CRISM scaled spectra above 1.10 μm fall within pure Tagish Lake composition and the [1] model. The CRISM data below 1.10 μm present more discrepancies with our models, in particular for the Stickney's rim spectrum. Nevertheless the TL and PM80 components seem to be good mineralogical candidates on Phobos. We performed the same analysis with the OMEGA data and, again, we found out that the Stickney's rim spectrum lies out of our model range, while the two remaining spectra still lie between pure TL and 80% TL - 20% PM80, but indicating that a different, more complicated mixture is expected in order to explain properly both the spectral trend and the possible absorption bands located above 2.0 μm. Within this analysis, we point out that a big fraction of TL material (modeled pure or present with a minimum percentage of 80% mixed together with 20% PM80) seems to explain Phobos spectral

  1. 7 CFR 58.211 - Packaging room for bulk products.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Packaging room for bulk products. 58.211 Section 58... Service 1 Rooms and Compartments § 58.211 Packaging room for bulk products. A separate room or area shall... dust within the packaging room and where needed, a dust collector shall be provided and...

  2. Economics of food irradiation

    SciTech Connect

    Deitch, J.

    1982-01-01

    This article examines the cost competitiveness of the food irradiation process. An analysis of the principal factors--the product, physical plant, irradiation source, and financing--that impact on cost is made. Equations are developed and used to calculate the size of the source for planned product throughput, efficiency factors, power requirements, and operating costs of sources, radionuclides, and accelerators. Methods of financing and capital investment are discussed. A series of tables show cost breakdowns of sources, buildings, equipment, and essential support facilities for both a cobalt-60 and a 10-MeV electron accelerator facility. Additional tables present irradiation costs as functions of a number of parameters--power input, source size, dose, and hours of annual operation. The use of the numbers in the tables are explained by examples of calculations of the irradiation costs for disinfestation of grains and radicidation of feed.

  3. Fe and O EELS Studies of Ion Irradiated Murchison CM2 Carbonaceous Chondrite Matrix

    NASA Technical Reports Server (NTRS)

    Keller, L. P.; Christofferson, R.; Dukes, C. A.; Baragiola, R. A.; Rahman, Z.

    2015-01-01

    Introduction: The physical and chemical response of hydrated carbonaceous chondrite materials to space weathering processes is poorly understood. Improving this understanding is a key part of establishing how regoliths on primitive carbonaceous asteroids respond to space weathering processes, knowledge that supports future sample return missions (Hayabusa 2 and OSIRISREx) that are targeting objects of this type. We previously reported on He+ irradiation of Murchison matrix and showed that the irradiation resulted in amorphization of the matrix phyllosilicates, loss of OH, and surface vesiculation. Here, we report electron energy-loss spectroscopy (EELS) measurements of the irradiated material with emphasis on the Fe and O speciation. Sample and Methods: A polished thin section of the Murchison CM2 carbonaceous chondrite was irradiated with 4 kilovolts He(+) (normal incidence) to a total dose of 1 x 10(exp 18) He(+) per square centimeter. We extracted thin sections from both irradiated and unirradiated regions in matrix using focused ion beam (FIB) techniques with electron beam deposition for the protective carbon strap to minimize surface damage artifacts from the FIB milling. The FIB sections were analyzed using a JEOL 2500SE scanning and transmission electron microscope (STEM) equipped with a Gatan Tridiem imaging filter. EELS spectra were collected from 50 nanometer diameter regions with an energy resolution of 0.7 electronvolts FWHM at the zero loss. EELS spectra were collected at low electron doses to minimize possible artifacts from electron-beam irradiation damage. Results and Discussion: Fe L (sub 2,3) EELS spectra from matrix phyllosilicates in CM chondrites show mixed Fe(2+)/Fe(3+) oxidation states with Fe(3+)/Sigma Fe approximately 0.5. Fe L(sub 2,3) spectra from the irradiated/ amorphized matrix phyllosilicates show higher Fe(2+)/Fe(3+) ratios compared to spectra obtained from pristine material at depths beyond the implantation/amorphization layer. We

  4. Smokey Visits Station Flight Control Room

    NASA Video Gallery

    Smokey Bear celebrated his 68th birthday with a special visit to the International Space Station Flight Control Room at Johnson Space Center in Houston. On May 14, Smokey went where no bear had gon...

  5. The Portable War Room Research Project

    NASA Technical Reports Server (NTRS)

    Govers, Francis X., III; Fry, Mark

    1997-01-01

    The Portable War Room is an internal TASC project to research and develop a visualization and simulation environment to provide for decision makers the power to review the past, understand the present, and peer into the future.

  6. What Happens in the Emergency Room?

    MedlinePlus

    ... Quizzes Kids' Dictionary of Medical Words En Español What Other Kids Are Reading Back-to-School Butterflies? ... Got Homework? Here's Help White House Lunch Recipes What Happens in the Emergency Room? KidsHealth > For Kids > ...

  7. What Happens in the Operating Room?

    MedlinePlus

    ... Quizzes Kids' Dictionary of Medical Words En Español What Other Kids Are Reading Back-to-School Butterflies? ... Got Homework? Here's Help White House Lunch Recipes What Happens in the Operating Room? KidsHealth > For Kids > ...

  8. Room temperature creep in metals and alloys

    SciTech Connect

    Deibler, Lisa Anne

    2014-09-01

    Time dependent deformation in the form of creep and stress relaxation is not often considered a factor when designing structural alloy parts for use at room temperature. However, creep and stress relaxation do occur at room temperature (0.09-0.21 Tm for alloys in this report) in structural alloys. This report will summarize the available literature on room temperature creep, present creep data collected on various structural alloys, and finally compare the acquired data to equations used in the literature to model creep behavior. Based on evidence from the literature and fitting of various equations, the mechanism which causes room temperature creep is found to include dislocation generation as well as exhaustion.

  9. 7 CFR 58.213 - Repackaging room.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ..., GENERAL SPECIFICATIONS FOR APPROVED PLANTS AND STANDARDS FOR GRADES OF DAIRY PRODUCTS 1 General Specifications for Dairy Plants Approved for USDA Inspection and Grading Service 1 Rooms and Compartments §...

  10. IMPROVED SYNTHESIS OF ROOM TEMPERATURE IONIC LIQUIDS

    EPA Science Inventory

    Room temperature ionic liquids (RTILs), molten salts comprised of N-alkylimidazolium cations and various anions, have received significant attention due to their commercial potential in a variety of chemical applications especially as substitutes for conventional volatile organic...

  11. The Whys and Hows of Training Rooms.

    ERIC Educational Resources Information Center

    Sturgeon, Julie

    2000-01-01

    Offers advice on building and equipping a college athletic training room that can serve in preventing and treating athletic injuries. Issues concerning space utilization, protecting confidentiality, and making accommodations for amenities such as hydrotherapy pools are addressed. (GR)

  12. Eigenvectors of optimal color spectra.

    PubMed

    Flinkman, Mika; Laamanen, Hannu; Tuomela, Jukka; Vahimaa, Pasi; Hauta-Kasari, Markku

    2013-09-01

    Principal component analysis (PCA) and weighted PCA were applied to spectra of optimal colors belonging to the outer surface of the object-color solid or to so-called MacAdam limits. The correlation matrix formed from this data is a circulant matrix whose biggest eigenvalue is simple and the corresponding eigenvector is constant. All other eigenvalues are double, and the eigenvectors can be expressed with trigonometric functions. Found trigonometric functions can be used as a general basis to reconstruct all possible smooth reflectance spectra. When the spectral data are weighted with an appropriate weight function, the essential part of the color information is compressed to the first three components and the shapes of the first three eigenvectors correspond to one achromatic response function and to two chromatic response functions, the latter corresponding approximately to Munsell opponent-hue directions 9YR-9B and 2BG-2R.

  13. Hierarchical analysis of molecular spectra

    SciTech Connect

    Davis, M.J.

    1996-03-01

    A novel representation of molecular spectra in terms of hierarchical trees has proven to be an important aid for the study of many significant problems in gas-phase chemical dynamics. Trees are generated from molecular spectra by monitoring the changes that occur in a spectrum as resolution is changed in a continuous manner. A tree defines a genealogy among all lines of a spectrum. This allows for a detailed understanding of the assignment of features of a spectrum that may be difficult to obtain any other way as well as an understanding of intramolecular energy transfer time scales, mechanisms, and pathways. The methodology has been applied to several problems: transition state spectroscopy, intramolecular energy transfer in highly excited molecules, high-resolution overtone spectroscopy, and the nature of the classical-quantum correspondence when there is classical chaos (``quantum chaos``).

  14. Hydrogen retention in ion irradiated steels

    SciTech Connect

    Hunn, J.D.; Lewis, M.B.; Lee, E.H.

    1998-11-01

    In the future 1--5 MW Spallation Neutron Source, target radiation damage will be accompanied by high levels of hydrogen and helium transmutation products. The authors have recently carried out investigations using simultaneous Fe/He,H multiple-ion implantations into 316 LN stainless steel between 50 and 350 C to simulate the type of radiation damage expected in spallation neutron sources. Hydrogen and helium were injected at appropriate energy and rate, while displacement damage was introduced by nuclear stopping of 3.5 MeV Fe{sup +}, 1 {micro}m below the surface. Nanoindentation measurements showed a cumulative increase in hardness as a result of hydrogen and helium injection over and above the hardness increase due to the displacement damage alone. TEM investigation indicated the presence of small bubbles of the injected gases in the irradiated area. In the current experiment, the retention of hydrogen in irradiated steel was studied in order to better understand its contribution to the observed hardening. To achieve this, the deuterium isotope ({sup 2}H) was injected in place of natural hydrogen ({sup 1}H) during the implantation. Trapped deuterium was then profiled, at room temperature, using the high cross-section nuclear resonance reaction with {sup 3}He. Results showed a surprisingly high concentration of deuterium to be retained in the irradiated steel at low temperature, especially in the presence of helium. There is indication that hydrogen retention at spallation neutron source relevant target temperatures may reach as high as 10%.

  15. Catalogue of representative meteor spectra

    NASA Astrophysics Data System (ADS)

    Vojáček, V.; Borovička, J.; Koten, P.; Spurný, P.; Štork, R.

    2015-08-01

    Aims: We present a library of low-resolution meteor spectra that includes sporadic meteors, members of minor meteor showers, and major meteor showers. These meteors are in the magnitude range from +2 to -3, corresponding to meteoroid sizes from 1 mm to 10 mm. Methods: Parallel double-station video observations allowed us to compute heliocentric orbits for all meteors. Most observations were performed during the periods of activity of major meteor showers in the years between 2006 and 2012. Spectra are classified according to relative intensities of the low-temperature emission lines of Mg, Na, and Fe. Results: Shower meteors were found to be of normal composition, except for Southern δ Aquariids and some members of the Geminid shower, neither of which have Na in the meteor spectra. Variations in Na content are typical for the Geminid shower. Three populations of Na-free mereoroids were identified. The first population are iron meteorites, which have an asteroidal-chondritic origin, but one meteoroid with low perihelion (0.11 AU) was found among the iron meteorites. The second population were Sun-approaching meteoroids in which sodium is depleted by thermal desorption. The third population were Na-free meteoroids of cometary origin. Long exposure to cosmic rays on the surface of comets in the Oort cloud and disintegration of this crust might be the origin of this population of meteoroids. Spectra (Figs. 17-30) are only, Tables 4-6 are also available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/580/A67

  16. Accelerated Fitting of Stellar Spectra

    NASA Astrophysics Data System (ADS)

    Ting, Yuan-Sen; Conroy, Charlie; Rix, Hans-Walter

    2016-07-01

    Stellar spectra are often modeled and fitted by interpolating within a rectilinear grid of synthetic spectra to derive the stars’ labels: stellar parameters and elemental abundances. However, the number of synthetic spectra needed for a rectilinear grid grows exponentially with the label space dimensions, precluding the simultaneous and self-consistent fitting of more than a few elemental abundances. Shortcuts such as fitting subsets of labels separately can introduce unknown systematics and do not produce correct error covariances in the derived labels. In this paper we present a new approach—Convex Hull Adaptive Tessellation (chat)—which includes several new ideas for inexpensively generating a sufficient stellar synthetic library, using linear algebra and the concept of an adaptive, data-driven grid. A convex hull approximates the region where the data lie in the label space. A variety of tests with mock data sets demonstrate that chat can reduce the number of required synthetic model calculations by three orders of magnitude in an eight-dimensional label space. The reduction will be even larger for higher dimensional label spaces. In chat the computational effort increases only linearly with the number of labels that are fit simultaneously. Around each of these grid points in the label space an approximate synthetic spectrum can be generated through linear expansion using a set of “gradient spectra” that represent flux derivatives at every wavelength point with respect to all labels. These techniques provide new opportunities to fit the full stellar spectra from large surveys with 15–30 labels simultaneously.

  17. Accelerated Fitting of Stellar Spectra

    NASA Astrophysics Data System (ADS)

    Ting, Yuan-Sen; Conroy, Charlie; Rix, Hans-Walter

    2016-07-01

    Stellar spectra are often modeled and fitted by interpolating within a rectilinear grid of synthetic spectra to derive the stars’ labels: stellar parameters and elemental abundances. However, the number of synthetic spectra needed for a rectilinear grid grows exponentially with the label space dimensions, precluding the simultaneous and self-consistent fitting of more than a few elemental abundances. Shortcuts such as fitting subsets of labels separately can introduce unknown systematics and do not produce correct error covariances in the derived labels. In this paper we present a new approach—Convex Hull Adaptive Tessellation (chat)—which includes several new ideas for inexpensively generating a sufficient stellar synthetic library, using linear algebra and the concept of an adaptive, data-driven grid. A convex hull approximates the region where the data lie in the label space. A variety of tests with mock data sets demonstrate that chat can reduce the number of required synthetic model calculations by three orders of magnitude in an eight-dimensional label space. The reduction will be even larger for higher dimensional label spaces. In chat the computational effort increases only linearly with the number of labels that are fit simultaneously. Around each of these grid points in the label space an approximate synthetic spectrum can be generated through linear expansion using a set of “gradient spectra” that represent flux derivatives at every wavelength point with respect to all labels. These techniques provide new opportunities to fit the full stellar spectra from large surveys with 15-30 labels simultaneously.

  18. Variable spectra of active galaxies

    NASA Technical Reports Server (NTRS)

    Halpern, Jules P.

    1988-01-01

    The analysis of EXOSAT spectra of active galaxies are presented. The objects examined for X-ray spectral variability were MR 2251-178 and 3C 120. The results of these investigations are described, as well as additional results on X-ray spectral variability related to EXOSAT observations of active galaxies. Additionally, the dipping X-ray source 4U1624-49 was also investigated.

  19. Determining Camera Gain in Room Temperature Cameras

    SciTech Connect

    Joshua Cogliati

    2010-12-01

    James R. Janesick provides a method for determining the amplification of a CCD or CMOS camera when only access to the raw images is provided. However, the equation that is provided ignores the contribution of dark current. For CCD or CMOS cameras that are cooled well below room temperature, this is not a problem, however, the technique needs adjustment for use with room temperature cameras. This article describes the adjustment made to the equation, and a test of this method.

  20. Tailoring the properties of copper nanowires by ion beam irradiation

    NASA Astrophysics Data System (ADS)

    Kumar, Narinder; Kumar, Rajesh; Kumar, Sushil; Chakarvarti, S. K.

    2016-02-01

    In the present paper, we investigated the change in the properties of copper nanowires under the irradiance of 80 MeV Si7+ ion beam. The nanowires were electrodeposited in the cylindrical pores of the track-etched polycarbonate membranes. The phase, morphology and optical absorbance of the fabricated nanowires were characterized by powder X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and UV-visible spectroscopy, respectively. The XRD study showed a face centered cubic crystal structure of copper nanowires. Further measurements with FESEM revealed that nanowires were continuous, aligned with uniform diameter having high aspect ratio. The XRD spectra of irradiated nanowires indicated an improved crystalinity at low ion fluences while it declines at higher ion fluences. The optical absorbance properties of the irradiated copper nanowires were also examined. The absorption spectra exhibited a peak at 568 nm which was attributed to the surface plasmon resonance. A significant increase in absorbance after irradiation accounts for the possibility of defects formation. The electrical properties measured from I-V characteristics showed an increase in resistivity of irradiated nanowires.