Science.gov

Sample records for room temperature separation

  1. Separation of THF and water by room temperature ionic liquids.

    PubMed

    Hu, X; Yu, J; Liu, H

    2006-01-01

    Liquid-liquid equilibrium data are presented for mixtures of 1-(2-hydroxyethyl)-3-methylimidazolium chloride or tetrafluoroborate + tetrahydrofuran(THF) + water at 293.15 K. The data presented provides a valuable insight into how the environmentally friendly ionic liquid solvent can have the separation power of THF-water azeotropic systems. The sloping of the tie lines towards the THF vertex is investigated for mixtures of 1-(2-hydroxyethyl)-3-methylimidazolium chloride (or tetrafluoroborate) + THF + water. Selectivity values, derived from the tie line data, indicate that these two ionic liquids are suitable solvents for the liquid-liquid extraction of water from THF.

  2. A novel metal-organic framework for high storage and separation of acetylene at room temperature

    SciTech Connect

    Duan, Xing; Wang, Huizhen; Ji, Zhenguo; Cui, Yuanjing; Yang, Yu; Qian, Guodong

    2016-09-15

    A novel 3D microporous metal-organic framework with NbO topology, [Cu{sub 2}(L)(H{sub 2}O){sub 2}]∙(DMF){sub 6}·(H{sub 2}O){sub 2} (ZJU-10, ZJU = Zhejiang University; H{sub 4}L =2′-hydroxy-[1,1′:4′,1″-terphenyl]-3,3″,5,5″-tetracarboxylic acid; DMF =N,N-dimethylformamide), has been synthesized and structurally characterized. With suitable pore sizes and open Cu{sup 2+} sites, ZJU-10a exhibits high BET surface area of 2392 m{sup 2}/g, as well as moderately high C{sub 2}H{sub 2} volumetric uptake capacity of 132 cm{sup 3}/cm{sup 3}. Meanwhile, ZJU-10a is a promising porous material for separation of acetylene from methane and carbon dioxide gas mixtures at room temperature. - Graphical abstract: A new NbO-type microporous metal-organic framework ZJU-10 with suitable pore size and open Cu{sup 2+} sites was synthesized to realize the strong interaction with acetylene molecules, which can separate the acetylene from methane and carbon dioxane gas mixtures at room temperature. Display Omitted - Highlights: • A novel 3D NbO-type microporous metal-organic framework ZJU-10 was solvothermally synthesized and structurally characterized. • ZJU-10a exhibits high BET surface area of 2392 m{sup 2}/g. • ZJU-10a shows a moderately high C{sub 2}H{sub 2} gravimetric (volumetric) uptake capacity of 174 (132) cm{sup 3}/g at 298 K and 1 bar. • ZJU-10a can separate acetylene from methane and carbon dioxide gas mixtures at room temperature.

  3. A novel metal-organic framework for high storage and separation of acetylene at room temperature

    NASA Astrophysics Data System (ADS)

    Duan, Xing; Wang, Huizhen; Ji, Zhenguo; Cui, Yuanjing; Yang, Yu; Qian, Guodong

    2016-09-01

    A novel 3D microporous metal-organic framework with NbO topology, [Cu2(L)(H2O)2]•(DMF)6·(H2O)2 (ZJU-10, ZJU = Zhejiang University; H4L =2‧-hydroxy-[1,1‧:4‧,1″-terphenyl]-3,3″,5,5″-tetracarboxylic acid; DMF =N,N-dimethylformamide), has been synthesized and structurally characterized. With suitable pore sizes and open Cu2+ sites, ZJU-10a exhibits high BET surface area of 2392 m2/g, as well as moderately high C2H2 volumetric uptake capacity of 132 cm3/cm3. Meanwhile, ZJU-10a is a promising porous material for separation of acetylene from methane and carbon dioxide gas mixtures at room temperature.

  4. Benzyl-Functionalized Room Temperature Ionic Liquids for CO2/N2 Separation

    SciTech Connect

    Mahurin, Shannon Mark; Dai, Thomas N; Yeary, Joshua S; Luo, Huimin; Dai, Sheng

    2011-01-01

    In this work, three classes of room temperature ionic liquids (RTILs), including imidazolium, pyridinium, and pyrrolidinium ionic liquids with a benzyl group appended to the cation, were synthesized and tested for their performance in separating CO{sub 2} and N{sub 2}. All RTILs contained the bis(trifluoromethylsulfonyl)imide anion, permitting us to distinguish the impact of the benzyl moiety attached to the cation on gas separation performance. In general, the attachment of the benzyl group increased the viscosity of the ionic liquid compared with the unfunctionalized analogs and decreased the CO{sub 2} permeability. However, all of the benzyl-modified ionic liquids exhibited enhanced CO{sub 2}/N{sub 2} selectivities compared with alkyl-based ionic liquids, with values ranging from 22.0 to 33.1. In addition, CO{sub 2} solubilities in the form of Henry's constants were also measured and compared with unfunctionalized analogs. Results of the membrane performance tests and CO{sub 2} solubility measurements demonstrate that the benzyl-functionalized RTILs have significant potential for use in the separation of carbon dioxide from combustion products.

  5. Guide to CO{sub 2} separations in imidazolium-based room-temperature ionic liquids

    SciTech Connect

    Bara, J.E.; Carlisle, T.K.; Gabriel, C.J.; Camper, D.; Finotello, A.; Gin, D.L.; Noble, R.D.

    2009-03-18

    Room-temperature ionic liquids (RTILs) are nonvolatile, tunable solvents. The solubilities of gases, particularly CO{sub 2}, N{sub 2}, and CH{sub 4}, have been studied in a number of RTILs. Process temperature and the chemical structures of the cation and anion have significant impacts on gas solubility and gas pair selectivity. Models based on regular solution theory and group contributions are useful to predict and explain CO{sub 2} solubility and selectivity in imidazolium-based RTILs. In addition to their role as a physical solvent, RTILs might also be used in supported ionic liquid membranes (SILMs) as a highly permeable and selective transport medium. Performance data for SILMs indicates that they exhibit large permeabilities as well as CO{sub 2}/N{sub 2} selectivities that outperform many polymer membranes. Furthermore, the greatest potential of RTILs for CO{sub 2} separations might lie in their ability to chemically capture CO{sub 2} when used in combination with amines. Amines can be tethered to the cation or the anion, or dissolved in RTILs, providing a wide range of chemical solvents for CO{sub 2} capture. However, despite all of their promising features, RTILs do have drawbacks to use in CO{sub 2} separations, which have been overlooked as appropriate comparisons of RTILs to common organic solvents and polymers have not been reported. A thorough summary of the capabilities-and limitations-of imidazolium-based RTILs in CO{sub 2}-based separations with respect to a variety of materials is thus provided.

  6. Facile room-temperature solution-phase synthesis of a spherical covalent organic framework for high-resolution chromatographic separation.

    PubMed

    Yang, Cheng-Xiong; Liu, Chang; Cao, Yi-Meng; Yan, Xiu-Ping

    2015-08-07

    A simple and facile room-temperature solution-phase synthesis was developed to fabricate a spherical covalent organic framework with large surface area, good solvent stability and high thermostability for high-resolution chromatographic separation of diverse important industrial analytes including alkanes, cyclohexane and benzene, α-pinene and β-pinene, and alcohols with high column efficiency and good precision.

  7. Room temperature ionic liquids-based salting-in strategy for counter-current chromatography in the separation of arctiin.

    PubMed

    Wang, Yanyan; Zhang, Lihong; Wang, Dingding; Guo, Xiuyun; Wu, Shihua

    2016-12-23

    Counter-current chromatography (CCC) is a solid support-free liquid-liquid partition chromatography and has wide applications. However, CCC separation is still a challenging process and the selection of appropriate solvent system for separation of target compound(s) is still relatively time-consuming. In this work, we introduced a room temperature ionic liquids-based salting-in strategy for the rapid selection of suitable solvent systems for CCC separation. In the randomly selected solvent systems, such as ethyl acetate-water, n-butanol-water, n-pentanol-water, n-hexanol-water, and n-octanol-water, several ionic liquids such as [AMIM]Cl, [MAMIM]Cl, and [BMIM]Cl can increase the solubility of the solutes in the lower phase, which made a dose-dependent decreasing of partition coefficient of solute in the two-phase solvent system. Thus, it is possible to get a suitable solvent system with sweet K spot such as K=1 only by adding some ionic liquids into the systems. As an example, arctiin, a bioactive lignin component of the fruit of Arctium lappa. L. (Niubangzi in Chinese), was selected and successfully separated by CCC with room temperature ionic liquids-based n-butanol-water systems. It seems a very efficient alternative strategy for the optimization of solvent systems for CCC separation of natural products.

  8. High-Permeance Room-Temperature Ionic-Liquid-Based Membranes for CO2/N-2 Separation

    SciTech Connect

    Zhou, JS; Mok, MM; Cowan, MG; McDanel, WM; Carlisle, TK; Gin, DL; Noble, RD

    2014-12-24

    We have developed and fabricated thin-film composite (TFC) membranes with an active layer consisting of a room-temperature ionic liquid/polymerized (room-temperature ionic liquid) [i.e., (RTIL)/poly(RTIL)] composite material. The resulting membrane has a CO2 permeance of 6100 +/- 400 GPU (where 1 GPU = 10(-6) cm(3)/(cm(2) s cmHg)) and an ideal CO2/N-2 selectivity of 22 +/- 2. This represents a new membrane with state-of-the-art CO2 permeance and good CO2/N-2 selectivity. To our knowledge, this is the first example of a TFC gas separation membrane composed of an RTIL-containing active layer.

  9. Initial proof-of-principle for near room temperature Xe and Kr separation from air with MOFs

    SciTech Connect

    Thallapally, Praveen K.; Strachan, Denis M.

    2012-06-06

    Materials were developed and tested in support of the U.S. Department of Energy, Office of Nuclear Energy, Fuel Cycle Technology Separations and Waste Forms Campaign. Specifically, materials are being developed for the removal of Xenon and krypton from gaseous products of nuclear fuel reprocessing unit operations. During FY 2012, Three Metal organic framework (MOF) structures were investigated in greater detail for the removal and storage of Xe and Kr from air at room temperature. Our breakthrough measurements on Nickel based MOF could capture and separate parts per million levels of Xe from Air (40 ppm Kr, 78% N2, 21% O2, 0.9% Ar, 0.03% CO2). Similarly, the selectivity can be changed from Xe > Kr to Xe < Kr simply by changing the temperature in another MOF. Also for the first time we estimated the cost of the metal organic frameworks in bulk.

  10. Fission-Product Separation Based on Room-Temperature Ionic-Liquids

    SciTech Connect

    Hussey, Charles L.

    2005-06-01

    During the previous funding cycle for this project, we investigated the electrochemistry of Cs(I) in air and moisture-stable ionic liquids both with and without the addition of BOBCalixC6. These investigations revealed that the electrochemical windows of the dialkylimidazolium bis[(trifluoromethyl)sulfonyl]imide ionic liquids do not permit the direct electrochemical reduction of Cs(I), even when Hg electrodes are employed, because these organic cations are reduced at less negative potentials than Cs(I). However, Cs(I) coordinated by BOBCalixC6 can be electrolytically reduced to Cs(Hg) in tetraalkylammonium-based room-temperature ionic liquids such as tri-1-butylmethylammonium bis[(trifluoromethyl)sulfonyl]imide (Bu3MeN+Tf2N-) at Hg electrodes. Because this reduction process does not harm either the ionic liquid or the macrocycle, it is a promising method for recycling the cesium extraction system. The previous studies mentioned above were carried out under an inert atmosphere, i.e., in the absence of H2O and O2. However, it may not be economically feasible or even possible to carry out the recycling process in the absence of these contaminants during large-scale processing of aqueous tank waste. Thus, as described in our proposal, we have begun an investigation of the electrochemical recovery of Cs from the Bu3MeN+Tf2N- + BOBCalixC6 extraction system in an air atmosphere containing various amounts of water and oxygen. Our recent preliminary results were very surprising because they indicated that the electrochemical extraction process is relatively insensitive to the presence of small amounts of moisture even when the moisture content of the ionic liquid approaches 1000 ppm. Furthermore, we have found that the ''wet'' ionic liquid can be easily dehydrated under reduced pressure or by sparging with dry nitrogen gas without the need for heat or any other specialized treatment.

  11. Pressure-assisted synthesis of HKUST-1 thin film on polymer hollow fiber at room temperature toward gas separation.

    PubMed

    Mao, Yiyin; Li, Junwei; Cao, Wei; Ying, Yulong; Sun, Luwei; Peng, Xinsheng

    2014-03-26

    The scalable fabrication of continuous and defect-free metal-organic framework (MOF) films on the surface of polymeric hollow fibers, departing from ceramic supported or dense composite membranes, is a huge challenge. The critical way is to reduce the growth temperature of MOFs in aqueous or ethanol solvents. In the present work, a pressure-assisted room temperature growth strategy was carried out to fabricate continuous and well-intergrown HKUST-1 films on a polymer hollow fiber by using solid copper hydroxide nanostrands as the copper source within 40 min. These HKUST-1 films/polyvinylidenefluoride (PVDF) hollow fiber composite membranes exhibit good separation performance for binary gases with selectivity 116% higher than Knudsen values via both inside-out and outside-in modes. This provides a new way to enable for scale-up preparation of HKUST-1/polymer hollow fiber membranes, due to its superior economic and ecological advantages.

  12. Facile preparation of polysaccharide-coated capillaries using a room temperature ionic liquid for chiral separations.

    PubMed

    Stavrou, Ioannis J; Moore, Leonard; Fernand, Vivian E; Kapnissi-Christodoulou, Constantina P; Warner, Isiah M

    2013-05-01

    In this study, the dissolution of polysaccharides into an ionic liquid was investigated and applied as a coating onto the capillary walls of a fused-silica capillary in open-tubular CEC. The coating was evaluated by examining the chiral separation of two analytes (thiopental, sotalol) with three cellulose derivatives (cellulose acetate, cellulose acetate phthalate, and cellulose acetate butyrate). Baseline separation of thiopental enantiomers was achieved by use of each polysaccharide coating (Rs: 7.0, 8.1, 7.1), while sotalol provided partial resolution (Rs: 0.7, 1.0, 0.9). In addition, reproducibility of the cellulose-coated capillaries was evaluated by estimating the run-to-run and capillary-to-capillary RSD values of the EOF. Both stability and reproducibility were very good with RSD values of less than 7%.

  13. 81929 - Fission-Product Separation Based on Room - Temperature Ionic Liquids

    SciTech Connect

    Robin D. Rogers

    2004-12-09

    This project has demonstrated that Sr2+ and Cs+ can be selectively extracted from aqueous solutions into ionic liquids using crown ethers and that unprecedented large distribution coefficients can be achieved for these fission products. The volume of secondary wastes can be significantly minimized with this new separation technology. Through the current EMSP funding, the solvent extraction technology based on ionic liquids has been shown to be viable and can potentially provide the most efficient separation of problematic fission products from high level wastes. The key results from the current funding period are the development of highly selective extraction process for cesium ions based on crown ethers and calixarenes, optimization of selectivities of extractants via systematic change of ionic liquids, and investigation of task-specific ionic liquids incorporating both complexant and solvent characteristics.

  14. Synthesis and Characterization of Thiazolium-Based Room Temperature Ionic Liquids for Gas Separations

    SciTech Connect

    Hillesheim, Patrick C; Mahurin, Shannon Mark; Fulvio, Pasquale F; Yeary, Joshua S; Oyola, Yatsandra; Jiang, Deen; Dai, Sheng

    2012-01-01

    A series of novel thiazolium-bis(triflamide) based ionic liquids has been synthesized and characterized. Physicochemical properties of the ionic liquids such as thermal stability, phase transitions, and infrared spectra were analysed and compared to the imidazolium-based congeners. Several unique classes of ancillary substitutions are examined with respect to impacts on overall structure, in addition to their carbon dioxide absorption properties in supported ionic-liquid membranes for gas separation.

  15. Fission-Product Separation Based on Room-Temperature Ionic Liquids

    SciTech Connect

    Luo, Huimin; Hussey, Charles L.

    2005-09-30

    The objectives of this project are (a) to synthesize new ionic liquids tailored for the extractive separation of Cs + and Sr 2+; (b) to select optimum macrocyclic extractants through studies of complexation of fission products with macrocyclic extractants and transport in new extraction systems based on ionic liquids; (c) to develop efficient processes to recycle ionic liquids and crown ethers; and (d) to investigate chemical stabilities of ionic liquids under strong acid, strong base, and high-level-radiation conditions.

  16. Synthesis and Characterization of Thiazolium-Based Room Temperature Ionic Liquids for Gas Separations

    SciTech Connect

    Hillesheim, PC; Mahurin, SM; Fulvio, PF; Yeary, JS; Oyola, Y; Jiang, DE; Dai, S

    2012-09-05

    A series of novel thiazolium-bis(triflamide) based ionic liquids has been synthesized and characterized. Physicochemical properties of the ionic liquids such as thermal stability, phase transitions, and infrared spectra were analyzed and compared to the imidazolium-based congeners. Several unique classes of ancillary substitutions are examined with respect to impacts on overall structure, in addition to their carbon dioxide absorption properties in supported ionic-liquid membranes for gas separation.

  17. Novel Fission-Product Separation based on Room-Temperature Ionic Liquids

    SciTech Connect

    Rogers, Robin D.

    2004-12-31

    U.S. DOE's underground storage tanks at Hanford, SRS, and INEEL contain liquid wastes with high concentrations of radioactive cesium-137 and strontium-90. Because the primary chemical components of alkaline supernatants are sodium nitrate and sodium hydroxide, the majority of this could be disposed of as low level waste if radioactive cesium-137 and strontium- 90 could be selectively removed. The underlying goal of this project was to investigate the application of ionic liquids as novel solvents for new solvent extraction processes for separation of cesium-137 and strontium-90 from tank wastes. Ionic liquids are a distinct sub-set of liquids, comprising only of cations and anions they are proving to be increasingly interesting fluids for application in systems from electrochemistry to energetic materials, and are also rapidly establishing their promise as viable media for synthesis and separations operations. Properties including low melting points, electrochemical conductivity, wide liquid ranges, lack of vapor-pressure, and chemical tunability have encouraged researchers to explore the uses of ILs in place of volatile organic solvents. The most promising current developments arise from control of the unique combinations of chemical and physical properties characteristic of ionic liquids.

  18. Immobilization of Ag(i) into a metal-organic framework with -SO3H sites for highly selective olefin-paraffin separation at room temperature.

    PubMed

    Chang, Ganggang; Huang, Minhui; Su, Ye; Xing, Huabin; Su, Baogen; Zhang, Zhiguo; Yang, Qiwei; Yang, Yiwen; Ren, Qilong; Bao, Zongbi; Chen, Banglin

    2015-02-18

    Introduction of Ag(i) ions into a sulfonic acid functionalized MOF ((Cr)-MIL-101-SO3H) significantly enhances its interactions with olefin double bonds, leading to its much higher selectivities for the separation of C2H4-C2H6 and C3H6-C3H8 at room temperature over the original (Cr)-MIL-101-SO3H and other adsorbents at room temperature.

  19. Solvent extraction separation of Th-227 and Ac-225 in room temperature ionic liquids

    SciTech Connect

    Bell, Jason R; Boll, Rose Ann; Dai, Sheng; Luo, Huimin

    2012-01-01

    The solvent extractions of Th-227 and Ac-225 from the aqueous phase into ionic liquids (ILs) were investigated by using N,N,N ,N - tetraoctyldiglycolamide (TODGA) or di(2-ethylhexyl)phosphoric acid (HDEHP) as an extractant. Four ionic liquids, 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([C4mim][NTf2]), 1-butyl-3-methylimidazolium bis(perfluoroethanesulfonyl)imide ([C4mim][BETI]), 1-butyl-2,3-trimethyleneimidazolium (trifluoromethanesulfonyl)imide [BuI5][NTf2], and 1-benzyl pyridinium bis(trifluoromethanesulfonyl)imide ([PhCH2Py][NTf2]) were used as extraction solvents for separation of Th-227 and Ac-225 in this study. Excellent extraction efficiencies and selectivities were found for Th-227/Ac-225 when HDEHP was used as an extractant in these ionic liquids. The effects of different extractant concentrations in ionic liquids and acidities of the aqueous phase on extraction efficiencies and selectivities of Th-227/Ac-225 are also presented in this article.

  20. SEPARATION AND CHARACTERIZATION OF TETROL METABOLITES OF BENZO[A]PYRENE-DNA ADDUCTS USING HPLC AND SOLID-MATRIX ROOM TEMPERATURE LUMINESCENCE. (R824100)

    EPA Science Inventory

    Abstract

    Four tetrols of benzo[a]pyrene-DNA adducts were separated using reversed-phase high performance liquid chromatography. Chromatographic fractions containing a given tetrol were readily characterized with solid-matrix room temperature luminescence techniques. So...

  1. system at room temperature

    NASA Astrophysics Data System (ADS)

    Li, Shaoyuan; Ma, Wenhui; Zhou, Yang; Chen, Xiuhua; Xiao, Yongyin; Ma, Mingyu; Zhu, Wenjie; Wei, Feng

    2014-04-01

    In this paper, the moderately and lightly doped porous silicon nanowires (PSiNWs) were fabricated by the `one-pot procedure' metal-assisted chemical etching (MACE) method in the HF/H2O2/AgNO3 system at room temperature. The effects of H2O2 concentration on the nanostructure of silicon nanowires (SiNWs) were investigated. The experimental results indicate that porous structure can be introduced by the addition of H2O2 and the pore structure could be controlled by adjusting the concentration of H2O2. The H2O2 species replaces Ag+ as the oxidant and the Ag nanoparticles work as catalyst during the etching. And the concentration of H2O2 influences the nucleation and motility of Ag particles, which leads to formation of different porous structure within the nanowires. A mechanism based on the lateral etching which is catalyzed by Ag particles under the motivation by H2O2 reduction is proposed to explain the PSiNWs formation.

  2. Room temperature polyesterification

    SciTech Connect

    Moore, J.S.; Stupp, S.I. . Dept. of Materials Science and Engineering)

    1990-01-01

    A new room temperature polymerization method has been developed for the synthesis of high molecular weight polyesters directly from carboxylic acids and phenols. The solution polymerization reaction proceeds under mild conditions, near neutral pH, and also avoids the use of preactivated acid derivatives for esterification. The reaction is useful in the preparation of isoregic ordered chains with translational polar symmetry and also in the polymerization of functionalized or chiral monomers. The conditions required for polymerization in the carbodiimide-based reaction included catalysis by the 1:1 molecular complex formed by 4-(dimethylamino)pyridine and p-toluenesulfonic acid. These conditions were established through studies on a model system involving esterification of p-toluic acid and p-cresol. Self-condensation of several hydroxy acid monomers by this reaction has produced routinely good yields of polyesters with molecular weights greater than 15,000. It is believed that the high extents of reaction required for significant degrees of polymerization result from suppression of the side reaction leading to N-acylurea. The utility of this reaction in the formation of polar chains from sensitive monomers is demonstrated hereby the polycondensation of a chiral hydroxy acid.

  3. Separation of carbon dioxide and sulfur dioxide gases using room-temperature ionic liquid (hmim)(Tf2N)

    SciTech Connect

    A. Yokozeki; Mark B. Shiflett

    2009-09-15

    To understand capturing and/or enhanced gaseous selectivity of industrial flue gases containing CO{sub 2} and SO{sub 2} using room-temperature ionic liquids, we have developed a ternary equation of state (EOS) model for a CO{sub 2}/SO{sub 2}/1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ((hmim)(Tf2N)) system. The present model is based on a generic RK (Redlich-Kwong) EOS, with empirical binary interaction parameters of each binary system. These interaction parameters have been determined using our measured VLE (vapor-liquid-equilibrium) data for SO{sub 2}/(hmim)(Tf2N) and CO{sub 2}/(hmim)(Tf2N) and literature data for CO{sub 2}/SO{sub 2}. The validity of the present EOS has been checked by conducting ternary VLE experiments for the present system. With this EOS, isothermal ternary phase diagrams and solubility (VLE) behaviors have been calculated for various (T, P, and feed compositions) conditions. For large and equimolar CO{sub 2}/SO{sub 2} mole ratios, the gaseous selectivity is nearly independent of the amount of the ionic liquid addition. However, for small CO{sub 2}/SO{sub 2} mole ratios the addition of the ionic liquid significantly increases the selectivity. The strong absorption of CO{sub 2} and SO{sub 2} in this ionic liquid may be practical for the simultaneous capture of these acid gases. 39 refs., 8 figs., 4 tabs.

  4. Inverted Fuel Cell: Room-Temperature Hydrogen Separation from an Exhaust Gas by Using a Commercial Short-Circuited PEM Fuel Cell without Applying any Electrical Voltage.

    PubMed

    Friebe, Sebastian; Geppert, Benjamin; Caro, Jürgen

    2015-06-26

    A short-circuited PEM fuel cell with a Nafion membrane has been evaluated in the room-temperature separation of hydrogen from exhaust gas streams. The separated hydrogen can be recovered or consumed in an in situ olefin hydrogenation when the fuel cell is operated as catalytic membrane reactor. Without applying an outer electrical voltage, there is a continuous hydrogen flux from the higher to the lower hydrogen partial pressure side through the Nafion membrane. On the feed side of the Nafion membrane, hydrogen is catalytically split into protons and electrons by the Pt/C electrocatalyst. The protons diffuse through the Nafion membrane, the electrons follow the short-circuit between the two brass current collectors. On the cathode side, protons and electrons recombine, and hydrogen is released.

  5. A biotin-conjugated pyridine-based isatoic anhydride, a selective room temperature RNA-acylating agent for the nucleic acid separation.

    PubMed

    Ursuegui, S; Yougnia, R; Moutin, S; Burr, A; Fossey, C; Cailly, T; Laayoun, A; Laurent, A; Fabis, F

    2015-03-28

    Isatoic anhydride derivatives, including a biotin and a disulfide linker were specifically designed for nucleic acid separation. 2'-OH selective RNA acylation, capture of biotinylated RNA adducts by streptavidin-coated magnetic beads and disulfide chemical cleavage led to isolation of highly enriched RNA samples from an initial 9/1 DNA-RNA mixture. Starting from the parent compound N-methylisatoic anhydride A which was used at 65 °C, we improved the extraction process by designing a new generation of isatoic anhydrides that are able to react under smoother conditions. Among them, a pyridine-based isatoic anhydride derivative 15f was found to be reactive at room temperature, leading to enhance the efficiency and selectivity of the extraction process by significantly reducing DNA side extraction. The extracted and purified RNAs can then be detected by RT-PCR.

  6. Physically Gelled Room-Temperature Ionic Liquid-Based Composite Membranes for CO2/N-2 Separation: Effect of Composition and Thickness on Membrane Properties and Performance

    SciTech Connect

    Nguyen, PT; Voss, BA; Wiesenauer, EF; Gin, DL; Nobe, RD

    2013-07-03

    An aspartame-based, low molecular-weight organic gelator (LMOG) was used to form melt-infused and composite membranes with two different imidazolium-based room-temperature ionic liquids (RTILs) for CO2 separation from N-2. Previous work demonstrated that LMOGs can gel RTILs at low, loading levels, and this aspartame-based LMOG was selected because it has been reported to gel a large number of RTILs. The imidazolium-based RTILs were used because of their inherent good properties for CO2/light gas separations. Analysis of the resulting bulk RTIL/LMOG physical gels showed that these materials have high sol-gel transition temperatures (ca. 135 degrees C) suitable for flue gas applications. Gas permeabilities and burst pressure measurements of thick, melt infused membranes revealed a trade-off between high CO2 permeabilities and good mechanical stability as a function of the LMOG loading. Defect-free, composite membranes of the gelled RTILs were successfully fabricated by choosing an appropriate porous membrane support (hydrophobic PTFE) using a suitable coating technique (roller coating). The thicknesses of the applied composite gel layers ranged from 10.3 to 20.7 mu m, which represents an order of magnitude decrease in active layer thickness, compared to the original melt-infused gel RTIL membranes.

  7. Room temperature terahertz polariton emitter

    SciTech Connect

    Geiser, Markus; Scalari, Giacomo; Castellano, Fabrizio; Beck, Mattias; Faist, Jerome

    2012-10-01

    Terahertz (THz) range electroluminescence from intersubband polariton states is observed in the ultra strong coupling regime, where the interaction energy between the collective excitation of a dense electron gas and a photonic mode is a significant portion of the uncoupled excitation energy. The polariton's increased emission efficiency along with a parabolic electron confinement potential allows operation up to room temperature in a nonresonant pumping scheme. This observation of room temperature electroluminescence of an intersubband device in the THz range is a promising proof of concept for more powerful THz sources.

  8. Novel room temperature ferromagnetic semiconductors

    SciTech Connect

    Gupta, Amita

    2004-06-01

    Today's information world, bits of data are processed by semiconductor chips, and stored in the magnetic disk drives. But tomorrow's information technology may see magnetism (spin) and semiconductivity (charge) combined in one 'spintronic' device that exploits both charge and 'spin' to carry data (the best of two worlds). Spintronic devices such as spin valve transistors, spin light emitting diodes, non-volatile memory, logic devices, optical isolators and ultra-fast optical switches are some of the areas of interest for introducing the ferromagnetic properties at room temperature in a semiconductor to make it multifunctional. The potential advantages of such spintronic devices will be higher speed, greater efficiency, and better stability at a reduced power consumption. This Thesis contains two main topics: In-depth understanding of magnetism in Mn doped ZnO, and our search and identification of at least six new above room temperature ferromagnetic semiconductors. Both complex doped ZnO based new materials, as well as a number of nonoxides like phosphides, and sulfides suitably doped with Mn or Cu are shown to give rise to ferromagnetism above room temperature. Some of the highlights of this work are discovery of room temperature ferromagnetism in: (1) ZnO:Mn (paper in Nature Materials, Oct issue, 2003); (2) ZnO doped with Cu (containing no magnetic elements in it); (3) GaP doped with Cu (again containing no magnetic elements in it); (4) Enhancement of Magnetization by Cu co-doping in ZnO:Mn; (5) CdS doped with Mn, and a few others not reported in this thesis. We discuss in detail the first observation of ferromagnetism above room temperature in the form of powder, bulk pellets, in 2-3 mu-m thick transparent pulsed laser deposited films of the Mn (<4 at. percent) doped ZnO. High-resolution transmission electron microscopy (HRTEM) and electron energy loss spectroscopy (EELS) spectra recorded from 2 to 200nm areas showed homogeneous distribution of Mn substituting

  9. Polariton condensates at room temperature

    NASA Astrophysics Data System (ADS)

    Guillet, Thierry; Brimont, Christelle

    2016-10-01

    We review the recent developments of the polariton physics in microcavities featuring the exciton-photon strong coupling at room temperature, and leading to the achievement of room-temperature polariton condensates. Such cavities embed active layers with robust excitons that present a large binding energy and a large oscillator strength, i.e. wide bandgap inorganic or organic semiconductors, or organic molecules. These various systems are compared, in terms of figures of merit and of common features related to their strong oscillator strength. The various demonstrations of polariton laser are compared, as well as their condensation phase diagrams. The room-temperature operation indeed allows a detailed investigation of the thermodynamic and out-of-equilibrium regimes of the condensation process. The crucial role of the spatial dynamics of the condensate formation is discussed, as well as the debated issue of the mechanism of stimulated relaxation from the reservoir to the condensate under non-resonant excitation. Finally the prospects of polariton devices are presented.

  10. 14. Interior view of vestibule separating rehabilitation space, testing room, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. Interior view of vestibule separating rehabilitation space, testing room, and corridor to workout room looking into corridor; near center of occupied portion; view to southeast. - Ellsworth Air Force Base, Mess & Administration Building, 2279 Risner Drive, Blackhawk, Meade County, SD

  11. Topological Insulators at Room Temperature

    SciTech Connect

    Zhang, Haijun; Liu, Chao-Xing; Qi, Xiao-Liang; Dai, Xi; Fang, Zhong; Zhang, Shou-Cheng; /Stanford U., Phys. Dept.

    2010-03-25

    Topological insulators are new states of quantum matter with surface states protected by the time-reversal symmetry. In this work, we perform first-principle electronic structure calculations for Sb{sub 2}Te{sub 3}, Sb{sub 2}Se{sub 3}, Bi{sub 2}Te{sub 3} and Bi{sub 2}Se{sub 3} crystals. Our calculations predict that Sb{sub 2}Te{sub 3}, Bi{sub 2}T e{sub 3} and Bi{sub 2}Se{sub 3} are topological insulators, while Sb{sub 2}Se{sub 3} is not. In particular, Bi{sub 2}Se{sub 3} has a topologically non-trivial energy gap of 0.3eV , suitable for room temperature applications. We present a simple and unified continuum model which captures the salient topological features of this class of materials. These topological insulators have robust surface states consisting of a single Dirac cone at the {Lambda} point.

  12. IMPROVED SYNTHESIS OF ROOM TEMPERATURE IONIC LIQUIDS

    EPA Science Inventory

    Room temperature ionic liquids (RTILs), molten salts comprised of N-alkylimidazolium cations and various anions, have received significant attention due to their commercial potential in a variety of chemical applications especially as substitutes for conventional volatile organic...

  13. Room temperature creep in metals and alloys

    SciTech Connect

    Deibler, Lisa Anne

    2014-09-01

    Time dependent deformation in the form of creep and stress relaxation is not often considered a factor when designing structural alloy parts for use at room temperature. However, creep and stress relaxation do occur at room temperature (0.09-0.21 Tm for alloys in this report) in structural alloys. This report will summarize the available literature on room temperature creep, present creep data collected on various structural alloys, and finally compare the acquired data to equations used in the literature to model creep behavior. Based on evidence from the literature and fitting of various equations, the mechanism which causes room temperature creep is found to include dislocation generation as well as exhaustion.

  14. Determining Camera Gain in Room Temperature Cameras

    SciTech Connect

    Joshua Cogliati

    2010-12-01

    James R. Janesick provides a method for determining the amplification of a CCD or CMOS camera when only access to the raw images is provided. However, the equation that is provided ignores the contribution of dark current. For CCD or CMOS cameras that are cooled well below room temperature, this is not a problem, however, the technique needs adjustment for use with room temperature cameras. This article describes the adjustment made to the equation, and a test of this method.

  15. Electric control of magnetism at room temperature.

    PubMed

    Wang, Liaoyu; Wang, Dunhui; Cao, Qingqi; Zheng, Yuanxia; Xuan, Haicheng; Gao, Jinlong; Du, Youwei

    2012-01-01

    In the single-phase multiferroics, the coupling between electric polarization (P) and magnetization (M) would enable the magnetoelectric (ME) effect, namely M induced and modulated by E, and conversely P by H. Especially, the manipulation of magnetization by an electric field at room-temperature is of great importance in technological applications, such as new information storage technology, four-state logic device, magnetoelectric sensors, low-power magnetoelectric device and so on. Furthermore, it can reduce power consumption and realize device miniaturization, which is very useful for the practical applications. In an M-type hexaferrite SrCo(2)Ti(2)Fe(8)O(19), large magnetization and electric polarization were observed simultaneously at room-temperature. Moreover, large effect of electric field-controlled magnetization was observed even without magnetic bias field. These results illuminate a promising potential to apply in magnetoelectric devices at room temperature and imply plentiful physics behind them.

  16. Electric control of magnetism at room temperature

    PubMed Central

    Wang, Liaoyu; Wang, Dunhui; Cao, Qingqi; Zheng, Yuanxia; Xuan, Haicheng; Gao, Jinlong; Du, Youwei

    2012-01-01

    In the single-phase multiferroics, the coupling between electric polarization (P) and magnetization (M) would enable the magnetoelectric (ME) effect, namely M induced and modulated by E, and conversely P by H. Especially, the manipulation of magnetization by an electric field at room-temperature is of great importance in technological applications, such as new information storage technology, four-state logic device, magnetoelectric sensors, low-power magnetoelectric device and so on. Furthermore, it can reduce power consumption and realize device miniaturization, which is very useful for the practical applications. In an M-type hexaferrite SrCo2Ti2Fe8O19, large magnetization and electric polarization were observed simultaneously at room-temperature. Moreover, large effect of electric field-controlled magnetization was observed even without magnetic bias field. These results illuminate a promising potential to apply in magnetoelectric devices at room temperature and imply plentiful physics behind them. PMID:22355737

  17. Widely tunable room temperature semiconductor terahertz source

    SciTech Connect

    Lu, Q. Y.; Slivken, S.; Bandyopadhyay, N.; Bai, Y.; Razeghi, M.

    2014-11-17

    We present a widely tunable, monolithic terahertz source based on intracavity difference frequency generation within a mid-infrared quantum cascade laser at room temperature. A three-section ridge waveguide laser design with two sampled grating sections and a distributed-Bragg section is used to achieve the terahertz (THz) frequency tuning. Room temperature single mode THz emission with a wide tunable frequency range of 2.6–4.2 THz (∼47% of the central frequency) and THz power up to 0.1 mW is demonstrated, making such device an ideal candidate for THz spectroscopy and sensing.

  18. Dynamics of Glass Relaxation at Room Temperature

    NASA Astrophysics Data System (ADS)

    Welch, Roger C.; Smith, John R.; Potuzak, Marcel; Guo, Xiaoju; Bowden, Bradley F.; Kiczenski, T. J.; Allan, Douglas C.; King, Ellyn A.; Ellison, Adam J.; Mauro, John C.

    2013-06-01

    The problem of glass relaxation under ambient conditions has intrigued scientists and the general public for centuries, most notably in the legend of flowing cathedral glass windows. Here we report quantitative measurement of glass relaxation at room temperature. We find that Corning® Gorilla® Glass shows measurable and reproducible relaxation at room temperature. Remarkably, this relaxation follows a stretched exponential decay rather than simple exponential relaxation, and the value of the stretching exponent (β=3/7) follows a theoretical prediction made by Phillips for homogeneous glasses.

  19. 19. At its east end, the dining room is separated ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. At its east end, the dining room is separated from the kitchen by a service room. On the south side of this room is an entrance to a rest room (left) and a dumb waiter (right). A large hoisting pulley is seen at the top of the shaft. Most of the apparatus is missing, but that which remains appears to be of a manual (non-electric) Type. An original lighting fixture, the only one encountered in the building, is seen near the center of the view. The service entrance into the dining room is located at the far right; the door into the kitchen is at the far left (almost in the margin of the photograph). Credit GADA/MRM. - Stroud Building, 31-33 North Central Avenue, Phoenix, Maricopa County, AZ

  20. Extraction and separation of thorium(IV) from lanthanides(III) with room-temperature ionic liquids containing primary amine N{sub 1923}

    SciTech Connect

    Zuo, Y.; Chen, J.; Bai, Y.; Li, D.Q.

    2008-07-01

    The extraction behavior of Th(IV) by primary amine N{sub 1923} in imidazolium-based ionic liquid namely 1-octyl-3-methylimidazolium hexafluorophosphate (N{sub 1923}/IL) was studied in this paper. Results showed that N{sub 1923}/IL had poorer extraction ability for Th(IV) than N{sub 1923} in n-heptane (N{sub 1923}/HEP). The separation coefficients between Th(IV) and lanthanides(III) ({beta}{sub Th/Ln}) were obtained and compared with those in the N{sub 1923}/HEP system. On this basis, we made a preliminary assessment for the possibility of using ionic liquids as solvents for the separation of Th(IV) from lanthanides(III) sulfate in a clean process. (authors)

  1. Room temperature synthesis of biodiesel using sulfonated ...

    EPA Pesticide Factsheets

    Sulfonation of graphitic carbon nitride (g-CN) affords a polar and strongly acidic catalyst, Sg-CN, which displays unprecedented reactivity and selectivity in biodiesel synthesis and esterification reactions at room temperature. Prepared for submission to Royal Society of Chemistry (RSC) journal, Green Chemistry as a communication.

  2. Imprinting bulk amorphous alloy at room temperature

    PubMed Central

    Kim, Song-Yi; Park, Eun-Soo; Ott, Ryan T.; Lograsso, Thomas A.; Huh, Moo-Young; Kim, Do-Hyang; Eckert, Jürgen; Lee, Min-Ha

    2015-01-01

    We present investigations on the plastic deformation behavior of a brittle bulk amorphous alloy by simple uniaxial compressive loading at room temperature. A patterning is possible by cold-plastic forming of the typically brittle Hf-based bulk amorphous alloy through controlling homogenous flow without the need for thermal energy or shaping at elevated temperatures. The experimental evidence suggests that there is an inconsistency between macroscopic plasticity and deformability of an amorphous alloy. Moreover, imprinting of specific geometrical features on Cu foil and Zr-based metallic glass is represented by using the patterned bulk amorphous alloy as a die. These results demonstrate the ability of amorphous alloys or metallic glasses to precisely replicate patterning features onto both conventional metals and the other amorphous alloys. Our work presents an avenue for avoiding the embrittlement of amorphous alloys associated with thermoplastic forming and yields new insight the forming application of bulk amorphous alloys at room temperature without using heat treatment. PMID:26563908

  3. Imprinting bulk amorphous alloy at room temperature

    SciTech Connect

    Kim, Song-Yi; Park, Eun-Soo; Ott, Ryan T.; Lograsso, Thomas A.; Huh, Moo-Young; Kim, Do-Hyang; Eckert, Jürgen; Lee, Min-Ha

    2015-11-13

    We present investigations on the plastic deformation behavior of a brittle bulk amorphous alloy by simple uniaxial compressive loading at room temperature. A patterning is possible by cold-plastic forming of the typically brittle Hf-based bulk amorphous alloy through controlling homogenous flow without the need for thermal energy or shaping at elevated temperatures. The experimental evidence suggests that there is an inconsistency between macroscopic plasticity and deformability of an amorphous alloy. Moreover, imprinting of specific geometrical features on Cu foil and Zr-based metallic glass is represented by using the patterned bulk amorphous alloy as a die. These results demonstrate the ability of amorphous alloys or metallic glasses to precisely replicate patterning features onto both conventional metals and the other amorphous alloys. In conclusion, our work presents an avenue for avoiding the embrittlement of amorphous alloys associated with thermoplastic forming and yields new insight the forming application of bulk amorphous alloys at room temperature without using heat treatment.

  4. Separation of p-divinylbenzene by selective room-temperature adsorption inside Mg-CUK-1 prepared by aqueous microwave synthesis.

    PubMed

    Saccoccia, Beau; Bohnsack, Alisha M; Waggoner, Nolan W; Cho, Kyung Ho; Lee, Ji Sun; Hong, Do-Young; Lynch, Vincent M; Chang, Jong-San; Humphrey, Simon M

    2015-04-27

    A new Mg(II) -based version of the porous coordination polymer CUK-1 with one-dimensional pore structure was prepared by microwave synthesis in water. Mg-CUK-1 is moisture-stable, thermally stable up to 500 °C, and shows unusual reversible soft-crystal behavior: dehydrated single crystals of the material selectively adsorb a range of organic molecules at ambient temperature and pressure. Both polar and apolar aromatic compounds, including pyridine, benzene, p-xylene, and p-divinylbenzene (p-DVB), are all readily adsorbed, while other isomers from complex mixtures of xylenes or DVBs are selectively excluded. The solvent-loaded structures have been studied by single-crystal X-ray diffraction. Time-dependent liquid sorption experiments using commercially available DVB demonstrate a high and rapid selective adsorption of p-DVB and exclusion of m-DVB and ethylvinylbenzene isomers.

  5. Magnetic heat pumping near room temperature

    NASA Technical Reports Server (NTRS)

    Brown, G. V.

    1976-01-01

    It is shown that magnetic heat pumping can be made practical at room temperature by using a ferromagnetic material with a Curie point at or near operating temperature and an appropriate regenerative thermodynamic cycle. Measurements are performed which show that gadolinium is a resonable working material and it is found that the application of a 7-T magnetic field to gadolinium at the Curie point (293 K) causes a heat release of 4 kJ/kg under isothermal conditions or a temperature rise of 14 K under adiabatic conditions. A regeneration technique can be used to lift the load of the lattice and electronic heat capacities off the magnetic system in order to span a reasonable temperature difference and to pump as much entropy per cycle as possible

  6. Physical understanding of negative bias temperature instability below room temperature

    NASA Astrophysics Data System (ADS)

    Ji, Xiaoli; Liao, Yiming; Yan, Feng; Zhu, Chenxin; Shi, Yi; Guo, Qiang

    2012-11-01

    The physical mechanism of VT degradations under negative bias temperature stress below room temperature has been studied for SiO2 and plasma nitrided oxide (PNO-based) pMOSFETs. It is found that VT degradations in both devices exhibit strong dependence on the electric field and temperature. The analysis shows that this strong dependence follows multi-phonon field-assisted tunneling theory, which indicates the inelastic hole trapping mechanism in the low temperature negative bias temperature instability (NBTI). On the other hand, by applying a low temperature sweeping technique, the energy distribution of these NBTI-induced hole traps below room temperature is indentified. The energy distribution of hole traps has two obvious peaks, one in the lower and one in the upper half of the silicon band gap. Both peaks gradually develop with increasing the stress time and temperature. We attempt to compare the energy profile for SiO2 and PNO devices to identify the trap precursors in NBTI below room temperature.

  7. Imprinting bulk amorphous alloy at room temperature

    DOE PAGES

    Kim, Song-Yi; Park, Eun-Soo; Ott, Ryan T.; ...

    2015-11-13

    We present investigations on the plastic deformation behavior of a brittle bulk amorphous alloy by simple uniaxial compressive loading at room temperature. A patterning is possible by cold-plastic forming of the typically brittle Hf-based bulk amorphous alloy through controlling homogenous flow without the need for thermal energy or shaping at elevated temperatures. The experimental evidence suggests that there is an inconsistency between macroscopic plasticity and deformability of an amorphous alloy. Moreover, imprinting of specific geometrical features on Cu foil and Zr-based metallic glass is represented by using the patterned bulk amorphous alloy as a die. These results demonstrate the abilitymore » of amorphous alloys or metallic glasses to precisely replicate patterning features onto both conventional metals and the other amorphous alloys. In conclusion, our work presents an avenue for avoiding the embrittlement of amorphous alloys associated with thermoplastic forming and yields new insight the forming application of bulk amorphous alloys at room temperature without using heat treatment.« less

  8. Aging of ceramic carbonized hydroxyapatite at room temperature

    NASA Astrophysics Data System (ADS)

    Tkachenko, M. V.; Kamzin, A. S.

    2016-08-01

    The process of aging of ceramic carbonized hydroxyapatite (CHA) produced in a dry carbon dioxide atmosphere at temperatures of 800-1200°C has been studied by chemical and X-ray structural analysis, infrared spectroscopy, and scanning electron microscopy methods. The phase composition and structure of initial prepared ceramics samples and those aged for a year have been compared. It has been shown that relaxation of internal stresses occurring during pressed sample sintering causes plastic deformation of crystallites at room temperature, accompanied by redistribution of carbonate ions between A1, A2, B1, and B2 sites and CHA decomposition with the formation of CaO separations.

  9. Absorber Materials at Room and Cryogenic Temperatures

    SciTech Connect

    F. Marhauser, T.S. Elliott, A.T. Wu, E.P. Chojnacki, E. Savrun

    2011-09-01

    We recently reported on investigations of RF absorber materials at cryogenic temperatures conducted at Jefferson Laboratory (JLab). The work was initiated to find a replacement material for the 2 Kelvin low power waveguide Higher Order Mode (HOM) absorbers employed within the original cavity cryomodules of the Continuous Electron Beam Accelerator Facility (CEBAF). This effort eventually led to suitable candidates as reported in this paper. Furthermore, though constrained by small funds for labor and resources, we have analyzed a variety of lossy ceramic materials, several of which could be usable as HOM absorbers for both normal conducting and superconducting RF structures, e.g. as loads in cavity waveguides and beam tubes either at room or cryogenic temperatures and, depending on cooling measures, low to high operational power levels.

  10. Room-temperature solid-state maser.

    PubMed

    Oxborrow, Mark; Breeze, Jonathan D; Alford, Neil M

    2012-08-16

    The invention of the laser has resulted in many innovations, and the device has become ubiquitous. However, the maser, which amplifies microwave radiation rather than visible light, has not had as large an impact, despite being instrumental in the laser's birth. The maser's relative obscurity has mainly been due to the inconvenience of the operating conditions needed for its various realizations: atomic and free-electron masers require vacuum chambers and pumping; and solid-state masers, although they excel as low-noise amplifiers and are occasionally incorporated in ultrastable oscillators, typically require cryogenic refrigeration. Most realizations of masers also require strong magnets, magnetic shielding or both. Overcoming these various obstacles would pave the way for improvements such as more-sensitive chemical assays, more-precise determinations of biomolecular structure and function, and more-accurate medical diagnostics (including tomography) based on enhanced magnetic resonance spectrometers incorporating maser amplifiers and oscillators. Here we report the experimental demonstration of a solid-state maser operating at room temperature in pulsed mode. It works on a laboratory bench, in air, in the terrestrial magnetic field and amplifies at around 1.45 gigahertz. In contrast to the cryogenic ruby maser, in our maser the gain medium is an organic mixed molecular crystal, p-terphenyl doped with pentacene, the latter being photo-excited by yellow light. The maser's pumping mechanism exploits spin-selective molecular intersystem crossing into pentacene's triplet ground state. When configured as an oscillator, the solid-state maser's measured output power of around -10 decibel milliwatts is approximately 100 million times greater than that of an atomic hydrogen maser, which oscillates at a similar frequency (about 1.42 gigahertz). By exploiting the high levels of spin polarization readily generated by intersystem crossing in photo-excited pentacene and other

  11. Structure of room temperature ionic liquids

    NASA Astrophysics Data System (ADS)

    Yethiraj, Arun

    2016-10-01

    The structure of room temperature ionic liquids is studied using molecular dynamics simulations and integral equation theory. Three ionic liquids 1-alkyl-3-methylimidazolium hexfluorophosphate, [C n MIM] [PF6], for n  =  1, 4, and 8, are studied using a united atom model of the ions. The primary interest is a study of the pair correlation functions and a test of the reference interaction site model theory. There is liquid-like ordering in the liquid that arises from electrostatic attractions and steric packing considerations. The theory is not in quantitative agreement with the simulation results and underestimates the degree of liquid-like order. A pre-peak in the static structure factor is seen in both simulations and theory, suggesting that this is a geometric effect arising from a packing of the alkyl chains.

  12. Room-temperature ionic liquid battery electrolytes

    SciTech Connect

    Carlin, R.T.; Fuller, J.

    1997-12-01

    The room-temperature molten salts possess a number of unique properties that make them ideal battery electrolytes. In particular, they are nonflammable, nonvolatile, and chemically inert, and they display wide electrochemical windows, high inherent conductivities, and wide thermal operating ranges. Although the ionic liquids have excellent characteristics, the chemical and electrochemical properties of desirable battery electrode materials are not well understood in these electrolytes. The research has focused on rechargeable electrodes and has included work on metallic lithium and sodium anodes in buffered neutral chloroaluminate melts, graphite-intercalation electrodes in neutral chloroaluminate and non-chloroaluminate melts, and silane-imidazole polymeric cathodes in acidic chloroaluminate melts. This paper will provide an overview of the research in these areas.

  13. Atomically resolved force microscopy at room temperature

    SciTech Connect

    Morita, Seizo

    2014-04-24

    Atomic force microscopy (AFM) can now not only image individual atoms but also construct atom letters using atom manipulation method even at room temperature (RT). Therefore, the AFM is the second generation atomic tool following the scanning tunneling microscopy (STM). However the AFM can image even insulating atoms, and also directly measure/map the atomic force and potential at the atomic scale. Noting these advantages, we have been developing a bottom-up nanostructuring system at RT based on the AFM. It can identify chemical species of individual atoms and then manipulate selected atom species to the predesigned site one-by-one to assemble complex nanostructures consisted of multi atom species at RT. Here we introduce our results toward atom-by-atom assembly of composite nanostructures based on the AFM at RT including the latest result on atom gating of nano-space for atom-by-atom creation of atom clusters at RT for semiconductor surfaces.

  14. Remote control of magnetostriction-based nanocontacts at room temperature.

    PubMed

    Jammalamadaka, S Narayana; Kuntz, Sebastian; Berg, Oliver; Kittler, Wolfram; Kannan, U Mohanan; Chelvane, J Arout; Sürgers, Christoph

    2015-09-01

    The remote control of the electrical conductance through nanosized junctions at room temperature will play an important role in future nano-electromechanical systems and electronic devices. This can be achieved by exploiting the magnetostriction effects of ferromagnetic materials. Here we report on the electrical conductance of magnetic nanocontacts obtained from wires of the giant magnetostrictive compound Tb0.3Dy0.7Fe1.95 as an active element in a mechanically controlled break-junction device. The nanocontacts are reproducibly switched at room temperature between "open" (zero conductance) and "closed" (nonzero conductance) states by variation of a magnetic field applied perpendicularly to the long wire axis. Conductance measurements in a magnetic field oriented parallel to the long wire axis exhibit a different behaviour where the conductance switches between both states only in a limited field range close to the coercive field. Investigating the conductance in the regime of electron tunneling by mechanical or magnetostrictive control of the electrode separation enables an estimation of the magnetostriction. The present results pave the way to utilize the material in devices based on nano-electromechanical systems operating at room temperature.

  15. Remote control of magnetostriction-based nanocontacts at room temperature

    PubMed Central

    Jammalamadaka, S. Narayana; Kuntz, Sebastian; Berg, Oliver; Kittler, Wolfram; Kannan, U. Mohanan; Chelvane, J. Arout; Sürgers, Christoph

    2015-01-01

    The remote control of the electrical conductance through nanosized junctions at room temperature will play an important role in future nano-electromechanical systems and electronic devices. This can be achieved by exploiting the magnetostriction effects of ferromagnetic materials. Here we report on the electrical conductance of magnetic nanocontacts obtained from wires of the giant magnetostrictive compound Tb0.3Dy0.7Fe1.95 as an active element in a mechanically controlled break-junction device. The nanocontacts are reproducibly switched at room temperature between “open” (zero conductance) and “closed” (nonzero conductance) states by variation of a magnetic field applied perpendicularly to the long wire axis. Conductance measurements in a magnetic field oriented parallel to the long wire axis exhibit a different behaviour where the conductance switches between both states only in a limited field range close to the coercive field. Investigating the conductance in the regime of electron tunneling by mechanical or magnetostrictive control of the electrode separation enables an estimation of the magnetostriction. The present results pave the way to utilize the material in devices based on nano-electromechanical systems operating at room temperature. PMID:26323326

  16. Electrorecovery of actinides at room temperature

    SciTech Connect

    Stoll, Michael E; Oldham, Warren J; Costa, David A

    2008-01-01

    There are a large number of purification and processing operations involving actinide species that rely on high-temperature molten salts as the solvent medium. One such application is the electrorefining of impure actinide metals to provide high purity material for subsequent applications. There are some drawbacks to the electrodeposition of actinides in molten salts including relatively low yields, lack of accurate potential control, maintaining efficiency in a highly corrosive environment, and failed runs. With these issues in mind we have been investigating the electrodeposition of actinide metals, mainly uranium, from room temperature ionic liquids (RTILs) and relatively high-boiling organic solvents. The RTILs we have focused on are comprised of 1,3-dialkylimidazolium or quaternary ammonium cations and mainly the {sup -}N(SO{sub 2}CF{sub 3}){sub 2} anion [bis(trif1uoromethylsulfonyl)imide {equivalent_to} {sup -}NTf{sub 2}]. These materials represent a class of solvents that possess great potential for use in applications employing electrochemical procedures. In order to ascertain the feasibility of using RTILs for bulk electrodeposition of actinide metals our research team has been exploring the electron transfer behavior of simple coordination complexes of uranium dissolved in the RTIL solutions. More recently we have begun some fundamental electrochemical studies on the behavior of uranium and plutonium complexes in the organic solvents N-methylpyrrolidone (NMP) and dimethylsulfoxide (DMSO). Our most recent results concerning electrodeposition will be presented in this account. The electrochemical behavior of U(IV) and U(III) species in RTILs and the relatively low vapor pressure solvents NMP and DMSO is described. These studies have been ongoing in our laboratory to uncover conditions that will lead to the successful bulk electrodeposition of actinide metals at a working electrode surface at room temperature or slightly elevated temperatures. The RTILs we

  17. High temperature inorganic membranes for separating hydrogen

    SciTech Connect

    Fain, D.E.; Roettger, G.E.

    1995-08-01

    Effort has continued to accumulate data on the transport of gases over the temperature range from room temperature to 275{degrees}C with inorganic membranes having a range of pore radii from approximately 0.25 nm to 3 mn. An experimental alumina membrane having an estimated mean pore radius of 0.25 nm has been fabricated and tested. Extensive testing of this membrane indicated that the separation factor for helium and carbon tetrafluoride at 250{degrees}C was 59 and the extrapolated high temperature separation factor was 1,193. For safety reasons, earlier flow measurements concentrated on helium, carbon dioxide, and carbon tetrafluoride. New data have been acquired with hydrogen to verify the agreement with the other gases. During the measurements with hydrogen, it was noted that a considerable amount of moisture was present in the test gas. The source of this moisture and its effect on permeance was examined. Improvements were implemented to the flow test system to minimize the water content of the hydrogen test gas, and subsequent flow measurements have shown excellent results with hydrogen. The extrapolation of separation factors as a function of temperature continues to show promise as a means of using the hard sphere model to determine the pore size of membranes. The temperature dependence of helium transport through membranes appears to be considerably greater than other gases for the smallest pore sizes. The effort to extend temperature dependence to the hard sphere model continues to be delayed, primarily because of a lack of adequate adsorption data.

  18. Room temperature molecular up conversion in solution

    PubMed Central

    Nonat, Aline; Chan, Chi Fai; Liu, Tao; Platas-Iglesias, Carlos; Liu, Zhenyu; Wong, Wing-Tak; Wong, Wai-Kwok; Wong, Ka-Leung; Charbonnière, Loïc J.

    2016-01-01

    Up conversion is an Anti-Stokes luminescent process by which photons of low energy are piled up to generate light at a higher energy. Here we show that the addition of fluoride anions to a D2O solution of a macrocyclic erbium complex leads to the formation of a supramolecular [(ErL)2F]+ assembly in which fluoride is sandwiched between two complexes, held together by the synergistic interactions of the Er-F-Er bridging bond, four intercomplex hydrogen bonds and two aromatic stacking interactions. Room temperature excitation into the Er absorption bands at 980 nm of a solution of the complex in D2O results in the observation of up converted emission at 525, 550 and 650 nm attributed to Er centred transitions via a two-step excitation. The up conversion signal is dramatically increased upon formation of the [(ErL)2F]+ dimer in the presence of 0.5 equivalents of fluoride anions. PMID:27302144

  19. Airtight metallic sealing at room temperature under small mechanical pressure

    NASA Astrophysics Data System (ADS)

    Stagon, Stephen P.; Huang, Hanchen

    2013-10-01

    Metallic seals can be resistant to air leakage, resistant to degradation under heat, and capable of carrying mechanical loads. Various technologies - such as organic solar cells and organic light emitting diodes - need, at least benefit from, such metallic seals. However, these technologies involve polymeric materials and can tolerate neither the high-temperature nor the high-pressure processes of conventional metallic sealing. Recent progress in nanorod growth opens the door to metallic sealing for these technologies. Here, we report a process of metallic sealing using small well-separated Ag nanorods; the process is at room temperature, under a small mechanical pressure of 9.0 MPa, and also in ambient. The metallic seals have an air leak rate of 1.1 × 10-3 cm3atm/m2/day, and a mechanical shear strength higher than 8.9 MPa. This leak rate meets the requirements of organic solar cells and organic light emitting diodes.

  20. Compton imager using room temperature silicon detectors

    NASA Astrophysics Data System (ADS)

    Kurfess, James D.; Novikova, Elena I.; Phlips, Bernard F.; Wulf, Eric A.

    2007-08-01

    We have been developing a multi-layer Compton Gamma Ray Imager using position-sensitive, intrinsic silicon detectors. Advantages of this approach include room temperature operation, reduced Doppler broadening, and use of conventional silicon fabrication technologies. We have obtained results on the imaging performance of a multi-layer instrument where each layer consists of a 2×2 array of double-sided strip detectors. Each detector is 63 mm×63 mm×2 mm thick and has 64 strips providing a strip pitch of approximately 0.9 mm. The detectors were fabricated by SINTEF ICT (Oslo Norway) from 100 mm diameter wafers. The use of large arrays of silicon detectors appears especially advantageous for applications that require excellent sensitivity, spectral resolution and imaging such as gamma ray astrophysics, detection of special nuclear materials, and medical imaging. The multiple Compton interactions (three or more) in the low-Z silicon enable the energy and direction of the incident gamma ray to be determined without full deposition of the incident gamma-ray energy in the detector. The performance of large volume instruments for various applications are presented, including an instrument under consideration for NASA's Advanced Compton Telescope (ACT) mission and applications to Homeland Security. Technology developments that could further extend the sensitivity and performance of silicon Compton Imagers are presented, including the use of low-energy (few hundred keV) electron tracking within novel silicon detectors and the potential for a wafer-bonding approach to produce thicker, position-sensitive silicon detectors with an associated reduction of required electronics and instrument cost.

  1. Extraction of organic compounds with room temperature ionic liquids.

    PubMed

    Poole, Colin F; Poole, Salwa K

    2010-04-16

    Room temperature ionic liquids are novel solvents with a rather specific blend of physical and solution properties that makes them of interest for applications in separation science. They are good solvents for a wide range of compounds in which they behave as polar solvents. Their physical properties of note that distinguish them from conventional organic solvents are a negligible vapor pressure, high thermal stability, and relatively high viscosity. They can form biphasic systems with water or low polarity organic solvents and gases suitable for use in liquid-liquid and gas-liquid partition systems. An analysis of partition coefficients for varied compounds in these systems allows characterization of solvent selectivity using the solvation parameter model, which together with spectroscopic studies of solvent effects on probe substances, results in a detailed picture of solvent behavior. These studies indicate that the solution properties of ionic liquids are similar to those of polar organic solvents. Practical applications of ionic liquids in sample preparation include extractive distillation, aqueous biphasic systems, liquid-liquid extraction, liquid-phase microextraction, supported liquid membrane extraction, matrix solvents for headspace analysis, and micellar extraction. The specific advantages and limitations of ionic liquids in these studies is discussed with a view to defining future uses and the need not to neglect the identification of new room temperature ionic liquids with physical and solution properties tailored to the needs of specific sample preparation techniques. The defining feature of the special nature of ionic liquids is not their solution or physical properties viewed separately but their unique combinations when taken together compared with traditional organic solvents.

  2. Green synthesis of the Cu/Fe3O4 nanoparticles using Morinda morindoides leaf aqueous extract: A highly efficient magnetically separable catalyst for the reduction of organic dyes in aqueous medium at room temperature

    NASA Astrophysics Data System (ADS)

    Nasrollahzadeh, Mahmoud; Atarod, Monireh; Sajadi, S. Mohammad

    2016-02-01

    This paper reports the green and in-situ preparation of the Cu/Fe3O4 magnetic nanocatalyst synthesized using Morinda morindoides leaf extract without stabilizers or surfactants. The catalyst was characterized by XRD, SEM, EDS, UV-visible, TEM, VSM and TGA-DTA. The catalytic performance of the resulting nanocatalyst was examined for the reduction of 4-nitrophenol (4-NP), Congo red (CR) and Rhodamine B (RhB) in an environmental friendly medium at room temperature. The catalyst was recovered using an external magnet and reused several times without appreciable loss of its catalytic activity. In addition, the stability of the recycled catalyst has been proved by SEM and EDS techniques.

  3. Room temperature operation of GaSb-based resonant tunneling diodes by prewell injection

    NASA Astrophysics Data System (ADS)

    Pfenning, Andreas; Knebl, Georg; Hartmann, Fabian; Weih, Robert; Bader, Andreas; Emmerling, Monika; Kamp, Martin; Höfling, Sven; Worschech, Lukas

    2017-01-01

    We present room temperature resonant tunneling of GaSb/AlAsSb double barrier resonant tunneling diodes with pseudomorphically grown prewell emitter structures comprising the ternary compound semiconductors GaInSb and GaAsSb. At room temperature, resonant tunneling is absent for diode structures without prewell emitters. The incorporation of Ga0.84In0.16Sb and GaAs0.05Sb0.95 prewell emitters leads to room temperature resonant tunneling with peak-to-valley current ratios of 1.45 and 1.36 , respectively. The room temperature operation is attributed to the enhanced Γ-L-valley energy separation and consequently depopulation of L-valley states in the conduction band of the ternary compound emitter prewell with respect to bulk GaSb.

  4. Room temperature and productivity in office work

    SciTech Connect

    Seppanen, O.; Fisk, W.J.; Lei, Q.H.

    2006-07-01

    Indoor temperature is one of the fundamental characteristics of the indoor environment. It can be controlled with a degree of accuracy dependent on the building and its HVAC system. The indoor temperature affects several human responses, including thermal comfort, perceived air quality, sick building syndrome symptoms and performance at work. In this study, we focused on the effects of temperature on performance at office work. We included those studies that had used objective indicators of performance that are likely to be relevant in office type work, such as text processing, simple calculations (addition, multiplication), length of telephone customer service time, and total handling time per customer for call-center workers. We excluded data from studies of industrial work performance. We calculated from all studies the percentage of performance change per degree increase in temperature, and statistically analyzed measured work performance with temperature. The results show that performance increases with temperature up to 21-22 C, and decreases with temperature above 23-24 C. The highest productivity is at temperature of around 22 C. For example, at the temperature of 30 C, the performance is only 91.1% of the maximum i.e. the reduction in performance is 8.9%.

  5. Room temperature synthesis of biodiesel using sulfonated graphitic carbon nitride

    EPA Science Inventory

    Sulfonation of graphitic carbon nitride (g-CN) affords a polar and strongly acidic catalyst, Sg-CN, which displays unprecedented reactivity and selectivity in biodiesel synthesis and esterification reactions at room temperature.

  6. Fabrication method for a room temperature hydrogen sensor

    NASA Technical Reports Server (NTRS)

    Seal, Sudipta (Inventor); Shukla, Satyajit V. (Inventor); Ludwig, Lawrence (Inventor); Cho, Hyoung (Inventor)

    2011-01-01

    A sensor for selectively determining the presence and measuring the amount of hydrogen in the vicinity of the sensor. The sensor comprises a MEMS device coated with a nanostructured thin film of indium oxide doped tin oxide with an over layer of nanostructured barium cerate with platinum catalyst nanoparticles. Initial exposure to a UV light source, at room temperature, causes burning of organic residues present on the sensor surface and provides a clean surface for sensing hydrogen at room temperature. A giant room temperature hydrogen sensitivity is observed after making the UV source off. The hydrogen sensor of the invention can be usefully employed for the detection of hydrogen in an environment susceptible to the incursion or generation of hydrogen and may be conveniently used at room temperature.

  7. Room temperature synthesis of biodiesel using sulfonated graphitic carbon nitride

    PubMed Central

    Baig, R. B. Nasir; Verma, Sanny; Nadagouda, Mallikarjuna N.; Varma, Rajender S.

    2016-01-01

    Sulfonation of graphitic carbon nitride (g-CN) affords a polar and strongly acidic catalyst, Sg-CN, which displays unprecedented reactivity and selectivity in biodiesel synthesis and esterification reactions at room temperature. PMID:27991593

  8. Room temperature synthesis of biodiesel using sulfonated graphitic carbon nitride.

    PubMed

    Baig, R B Nasir; Verma, Sanny; Nadagouda, Mallikarjuna N; Varma, Rajender S

    2016-12-19

    Sulfonation of graphitic carbon nitride (g-CN) affords a polar and strongly acidic catalyst, Sg-CN, which displays unprecedented reactivity and selectivity in biodiesel synthesis and esterification reactions at room temperature.

  9. Room temperature synthesis of biodiesel using sulfonated graphitic carbon nitride

    NASA Astrophysics Data System (ADS)

    Baig, R. B. Nasir; Verma, Sanny; Nadagouda, Mallikarjuna N.; Varma, Rajender S.

    2016-12-01

    Sulfonation of graphitic carbon nitride (g-CN) affords a polar and strongly acidic catalyst, Sg-CN, which displays unprecedented reactivity and selectivity in biodiesel synthesis and esterification reactions at room temperature.

  10. A glass microfluidic chip adhesive bonding method at room temperature

    NASA Astrophysics Data System (ADS)

    Pan, Yu-Jen; Yang, Ruey-Jen

    2006-12-01

    This paper presents a novel method using UV epoxy resin for the bonding of glass blanks and patterned plates at room temperature. There is no need to use a high-temperature thermal fusion process and therefore avoid damaging temperature-sensitive metals in a microchip. The proposed technique has the further advantage that the sealed glass blanks and patterned plates can be separated by the application of adequate heat. In this way, the microchip can be opened, the fouling microchannels may be easily cleaned-up and the plates then re-bonded to recycle the microchip. The proposed sealing method is used to bond a microfluidic device, and the bonding strength is then investigated in a series of chemical resistance tests conducted in various chemicals. Leakage of solution was evaluated in a microfluidic chip using pressure testing to 1.792 × 102 kPa (26 psi), and the microchannel had no observable leak. Electrical leakage between channels was tested by comparing the resistances of two bonding methods, and the result shows no significant electrical leakage. The performance of the device obtained from the proposed bonding method is compared with that of the thermal fusion bonding technique for an identical microfluidic device. It is found that identical results are obtained under the same operating conditions. The proposed method provides a simple, quick and inexpensive method for sealing glass microfluidic chips.

  11. Neutron absorbing room temperature vulcanizable silicone rubber compositions

    DOEpatents

    Zoch, Harold L.

    1979-11-27

    A neutron absorbing composition comprising a one-component room temperature vulcanizable silicone rubber composition or a two-component room temperature vulcanizable silicone rubber composition in which the composition contains from 25 to 300 parts by weight based on the base silanol or vinyl containing diorganopolysiloxane polymer of a boron compound or boron powder as the neutron absorbing ingredient. An especially useful boron compound in this application is boron carbide.

  12. Control and Room Temperature Optimization of Energy Efficient Buildings

    SciTech Connect

    Djouadi, Seddik M; Kuruganti, Phani Teja

    2012-01-01

    The building sector consumes a large part of the energy used in the United States and is responsible for nearly 40% of greenhouse gas emissions. It is therefore economically and environmentally important to reduce the building energy consumption to realize massive energy savings. In this paper, a method to control room temperature in buildings is proposed. The approach is based on a distributed parameter model represented by a three dimensional (3D) heat equation in a room with heater/cooler located at ceiling. The latter is resolved using finite element methods, and results in a model for room temperature with thousands of states. The latter is not amenable to control design. A reduced order model of only few states is then derived using Proper Orthogonal Decomposition (POD). A Linear Quadratic Regulator (LQR) is computed based on the reduced model, and applied to the full order model to control room temperature.

  13. Nature of room-temperature photoluminescence in ZnO

    SciTech Connect

    Shan, W.; Walukiewicz, W.; Ager III, J.W.; Yu, K.M.; Yuan, H.B.; Xin, H.P.; Cantwell, G.; Song, J.J.

    2004-11-11

    The temperature dependence of the photoluminescence (PL) transitions associated with various excitons and their phonon replicas in high-purity bulk ZnO has been studied at temperatures from 12 K to above room temperature (320 K). Several strong PL emission lines associated with LO phonon replicas of free and bound excitons are clearly observed. The room temperature PL spectrum is dominated by the phonon replicas of the free exciton transition with the maximum at the first LO phonon replica. The results explain the discrepancy between the transition energy of free exciton determined by reflection measurement and the peak position obtained by the PL measurement.

  14. Enabling room temperature sodium metal batteries

    SciTech Connect

    Cao, Ruiguo; Mishra, Kuber; Li, Xiaolin; Qian, Jiangfeng; Engelhard, Mark H.; Bowden, Mark E.; Han, Kee Sung; Mueller, Karl T.; Henderson, Wesley A.; Zhang, Ji-Guang

    2016-12-01

    Rechargeable batteries based upon sodium (Na+) cations are at the core of many new battery chemistries beyond Li-ion batteries. Rather than using carbon or alloy-based anodes, the direct utilization of solid sodium metal as an anode would be highly advantageous, but its use has been highly problematic due to its high reactivity. In this work, however, it is demonstrated that, by tailoring the electrolyte formulation, solid Na metal can be electrochemically plated/stripped at ambient temperature with high efficiency (> 99%) on both copper and inexpensive aluminum current collectors thereby enabling a shift in focus to new battery chemical couples based upon Na metal operating at ambient temperature. These highly concentrated electrolytes has enabled stable cycling of Na metal batteries based on a Na metal anode and Na3V2(PO4)3 cathode at high rates with very high efficiency.

  15. Room temperature organic magnets derived from sp3 functionalized graphene

    PubMed Central

    Tuček, Jiří; Holá, Kateřina; Bourlinos, Athanasios B.; Błoński, Piotr; Bakandritsos, Aristides; Ugolotti, Juri; Dubecký, Matúš; Karlický, František; Ranc, Václav; Čépe, Klára; Otyepka, Michal; Zbořil, Radek

    2017-01-01

    Materials based on metallic elements that have d orbitals and exhibit room temperature magnetism have been known for centuries and applied in a huge range of technologies. Development of room temperature carbon magnets containing exclusively sp orbitals is viewed as great challenge in chemistry, physics, spintronics and materials science. Here we describe a series of room temperature organic magnets prepared by a simple and controllable route based on the substitution of fluorine atoms in fluorographene with hydroxyl groups. Depending on the chemical composition (an F/OH ratio) and sp3 coverage, these new graphene derivatives show room temperature antiferromagnetic ordering, which has never been observed for any sp-based materials. Such 2D magnets undergo a transition to a ferromagnetic state at low temperatures, showing an extraordinarily high magnetic moment. The developed theoretical model addresses the origin of the room temperature magnetism in terms of sp2-conjugated diradical motifs embedded in an sp3 matrix and superexchange interactions via –OH functionalization. PMID:28216636

  16. Room temperature organic magnets derived from sp(3) functionalized graphene.

    PubMed

    Tuček, Jiří; Holá, Kateřina; Bourlinos, Athanasios B; Błoński, Piotr; Bakandritsos, Aristides; Ugolotti, Juri; Dubecký, Matúš; Karlický, František; Ranc, Václav; Čépe, Klára; Otyepka, Michal; Zbořil, Radek

    2017-02-20

    Materials based on metallic elements that have d orbitals and exhibit room temperature magnetism have been known for centuries and applied in a huge range of technologies. Development of room temperature carbon magnets containing exclusively sp orbitals is viewed as great challenge in chemistry, physics, spintronics and materials science. Here we describe a series of room temperature organic magnets prepared by a simple and controllable route based on the substitution of fluorine atoms in fluorographene with hydroxyl groups. Depending on the chemical composition (an F/OH ratio) and sp(3) coverage, these new graphene derivatives show room temperature antiferromagnetic ordering, which has never been observed for any sp-based materials. Such 2D magnets undergo a transition to a ferromagnetic state at low temperatures, showing an extraordinarily high magnetic moment. The developed theoretical model addresses the origin of the room temperature magnetism in terms of sp(2)-conjugated diradical motifs embedded in an sp(3) matrix and superexchange interactions via -OH functionalization.

  17. Proposal for a room-temperature diamond maser

    PubMed Central

    Jin, Liang; Pfender, Matthias; Aslam, Nabeel; Neumann, Philipp; Yang, Sen; Wrachtrup, Jörg; Liu, Ren-Bao

    2015-01-01

    The application of masers is limited by its demanding working conditions (high vacuum or low temperature). A room-temperature solid-state maser is highly desirable, but the lifetimes of emitters (electron spins) in solids at room temperature are usually too short (∼ns) for population inversion. Masing from pentacene spins in p-terphenyl crystals, which have a long spin lifetime (∼0.1 ms), has been demonstrated. This maser, however, operates only in the pulsed mode. Here we propose a room-temperature maser based on nitrogen-vacancy centres in diamond, which features the longest known solid-state spin lifetime (∼5 ms) at room temperature, high optical pumping efficiency (∼106 s−1) and material stability. Our numerical simulation demonstrates that a maser with a coherence time of approximately minutes is feasible under readily accessible conditions (cavity Q-factor ∼5 × 104, diamond size ∼3 × 3 × 0.5 mm3 and pump power <10 W). A room-temperature diamond maser may facilitate a broad range of microwave technologies. PMID:26394758

  18. Room temperature organic magnets derived from sp3 functionalized graphene

    NASA Astrophysics Data System (ADS)

    Tuček, Jiří; Holá, Kateřina; Bourlinos, Athanasios B.; Błoński, Piotr; Bakandritsos, Aristides; Ugolotti, Juri; Dubecký, Matúš; Karlický, František; Ranc, Václav; Čépe, Klára; Otyepka, Michal; Zbořil, Radek

    2017-02-01

    Materials based on metallic elements that have d orbitals and exhibit room temperature magnetism have been known for centuries and applied in a huge range of technologies. Development of room temperature carbon magnets containing exclusively sp orbitals is viewed as great challenge in chemistry, physics, spintronics and materials science. Here we describe a series of room temperature organic magnets prepared by a simple and controllable route based on the substitution of fluorine atoms in fluorographene with hydroxyl groups. Depending on the chemical composition (an F/OH ratio) and sp3 coverage, these new graphene derivatives show room temperature antiferromagnetic ordering, which has never been observed for any sp-based materials. Such 2D magnets undergo a transition to a ferromagnetic state at low temperatures, showing an extraordinarily high magnetic moment. The developed theoretical model addresses the origin of the room temperature magnetism in terms of sp2-conjugated diradical motifs embedded in an sp3 matrix and superexchange interactions via -OH functionalization.

  19. Proposal for a room-temperature diamond maser.

    PubMed

    Jin, Liang; Pfender, Matthias; Aslam, Nabeel; Neumann, Philipp; Yang, Sen; Wrachtrup, Jörg; Liu, Ren-Bao

    2015-09-23

    The application of masers is limited by its demanding working conditions (high vacuum or low temperature). A room-temperature solid-state maser is highly desirable, but the lifetimes of emitters (electron spins) in solids at room temperature are usually too short (∼ns) for population inversion. Masing from pentacene spins in p-terphenyl crystals, which have a long spin lifetime (∼0.1 ms), has been demonstrated. This maser, however, operates only in the pulsed mode. Here we propose a room-temperature maser based on nitrogen-vacancy centres in diamond, which features the longest known solid-state spin lifetime (∼5 ms) at room temperature, high optical pumping efficiency (∼10(6) s(-1)) and material stability. Our numerical simulation demonstrates that a maser with a coherence time of approximately minutes is feasible under readily accessible conditions (cavity Q-factor ∼5 × 10(4), diamond size ∼3 × 3 × 0.5 mm(3) and pump power <10 W). A room-temperature diamond maser may facilitate a broad range of microwave technologies.

  20. Giant electrocaloric effect in ferroelectric nanotubes near room temperature.

    PubMed

    Liu, Man; Wang, Jie

    2015-01-12

    Ferroelectric perovskite oxides possess large electrocaloric effect, but only at high temperature, which limits their potential as next generation solid state cooling devices. Here, we demonstrate from phase field simulations that a giant adiabatic temperature change exhibits near room temperature in the strained ferroelectric PbTiO₃ nanotubes, which is several times in magnitude larger than that of PbTiO₃ thin films. Such giant adiabatic temperature change is attributed to the extrinsic contribution of unusual domain transition, which involves a dedicated interplay among the electric field, strain, temperature and polarization. Careful selection of external strain allows one to harness the extrinsic contribution to obtain large adiabatic temperature change in ferroelectric nanotubes near room temperature. Our finding provides a novel insight into the electrocaloric response of ferroelectric nanostructures and leads to a new strategy to tailor and improve the electrocaloric properties of ferroelectric materials through domain engineering.

  1. Giant electrocaloric effect in ferroelectric nanotubes near room temperature

    PubMed Central

    Liu, Man; Wang, Jie

    2015-01-01

    Ferroelectric perovskite oxides possess large electrocaloric effect, but only at high temperature, which limits their potential as next generation solid state cooling devices. Here, we demonstrate from phase field simulations that a giant adiabatic temperature change exhibits near room temperature in the strained ferroelectric PbTiO3 nanotubes, which is several times in magnitude larger than that of PbTiO3 thin films. Such giant adiabatic temperature change is attributed to the extrinsic contribution of unusual domain transition, which involves a dedicated interplay among the electric field, strain, temperature and polarization. Careful selection of external strain allows one to harness the extrinsic contribution to obtain large adiabatic temperature change in ferroelectric nanotubes near room temperature. Our finding provides a novel insight into the electrocaloric response of ferroelectric nanostructures and leads to a new strategy to tailor and improve the electrocaloric properties of ferroelectric materials through domain engineering. PMID:25578434

  2. Air separation with temperature and pressure swing

    DOEpatents

    Cassano, Anthony A.

    1986-01-01

    A chemical absorbent air separation process is set forth which uses a temperature swing absorption-desorption cycle in combination with a pressure swing wherein the pressure is elevated in the desorption stage of the process.

  3. Room-Temperature Determination of Two-Dimensional Electron Gas Concentration and Mobility in Heterostructures

    NASA Technical Reports Server (NTRS)

    Schacham, S. E.; Mena, R. A.; Haugland, E. J.; Alterovitz, S. A.

    1993-01-01

    A technique for determination of room-temperature two-dimensional electron gas (2DEG) concentration and mobility in heterostructures is presented. Using simultaneous fits of the longitudinal and transverse voltages as a function of applied magnetic field, we were able to separate the parameters associated with the 2DEG from those of the parallel layer. Comparison with the Shubnikov-de Haas data derived from measurements at liquid helium temperatures proves that the analysis of the room-temperature data provides an excellent estimate of the 2DEG concentration. In addition we were able to obtain for the first time the room-temperature mobility of the 2DEG, an important parameter to device application. Both results are significantly different from those derived from conventional Hall analysis.

  4. Room Temperature Crystallization of Hydroxyapatite in Porous Silicon Structures.

    PubMed

    Santana, M; Estevez, J O; Agarwal, V; Herrera-Becerra, R

    2016-12-01

    Porous silicon (PS) substrates, with different pore sizes and morphology, have been used to crystallize hydroxyapatite (HA) nano-fibers by an easy and economical procedure using a co-precipitation method at room temperature. In situ formation of HA nanoparticles, within the meso- and macroporous silicon structure, resulted in the formation of nanometer-sized hydroxyapatite crystals on/within the porous structure. The X-ray diffraction technique was used to determine the tetragonal structure of the crystals. Analysis/characterization demonstrates that under certain synthesis conditions, growth and crystallization of hydroxyapatite layer on/inside PS can be achieved at room temperature. Such composite structures expand the possibility of designing a new bio-composite material based on the hydroxyapatite and silicon synthesized at room temperature.

  5. Room temperature ferromagnetism in Teflon due to carbon dangling bonds.

    PubMed

    Ma, Y W; Lu, Y H; Yi, J B; Feng, Y P; Herng, T S; Liu, X; Gao, D Q; Xue, D S; Xue, J M; Ouyang, J Y; Ding, J

    2012-03-06

    The ferromagnetism in many carbon nanostructures is attributed to carbon dangling bonds or vacancies. This provides opportunities to develop new functional materials, such as molecular and polymeric ferromagnets and organic spintronic materials, without magnetic elements (for example, 3d and 4f metals). Here we report the observation of room temperature ferromagnetism in Teflon tape (polytetrafluoroethylene) subjected to simple mechanical stretching, cutting or heating. First-principles calculations indicate that the room temperature ferromagnetism originates from carbon dangling bonds and strong ferromagnetic coupling between them. Room temperature ferromagnetism has also been successfully realized in another polymer, polyethylene, through cutting and stretching. Our findings suggest that ferromagnetism due to networks of carbon dangling bonds can arise in polymers and carbon-based molecular materials.

  6. Giant room-temperature elastocaloric effect in ferroelectric ultrathin films.

    PubMed

    Liu, Yang; Infante, Ingrid C; Lou, Xiaojie; Bellaiche, Laurent; Scott, James F; Dkhil, Brahim

    2014-09-17

    Environmentally friendly ultrathin BaTiO3 capacitors can exhibit a giant stress-induced elastocaloric effect without hysteresis loss or Joule heating. By combining this novel elastocaloric effect with the intrinsic electrocaloric effect, an ideal refrigeration cycle with high performance (temperature change over 10 K with a wide working-temperature window of 60 K) at room temperature is proposed for future cooling applications.

  7. Nanostructured Materials for Room-Temperature Gas Sensors.

    PubMed

    Zhang, Jun; Liu, Xianghong; Neri, Giovanni; Pinna, Nicola

    2016-02-03

    Sensor technology has an important effect on many aspects in our society, and has gained much progress, propelled by the development of nanoscience and nanotechnology. Current research efforts are directed toward developing high-performance gas sensors with low operating temperature at low fabrication costs. A gas sensor working at room temperature is very appealing as it provides very low power consumption and does not require a heater for high-temperature operation, and hence simplifies the fabrication of sensor devices and reduces the operating cost. Nanostructured materials are at the core of the development of any room-temperature sensing platform. The most important advances with regard to fundamental research, sensing mechanisms, and application of nanostructured materials for room-temperature conductometric sensor devices are reviewed here. Particular emphasis is given to the relation between the nanostructure and sensor properties in an attempt to address structure-property correlations. Finally, some future research perspectives and new challenges that the field of room-temperature sensors will have to address are also discussed.

  8. Ceramic membranes for high temperature hydrogen separation

    SciTech Connect

    Adcock, K.D.; Fain, D.E.; James, D.L.; Powell, L.E.; Raj, T.; Roettger, G.E.; Sutton, T.G.

    1997-12-01

    The separative performance of the authors` ceramic membranes has been determined in the past using a permeance test system that measured flows of pure gases through a membrane at temperatures up to 275 C. From these data, the separation factor was determined for a particular gas pair from the ratio of the pure gas specific flows. An important project goal this year has been to build a Mixed Gas Separation System (MGSS) for measuring the separation efficiencies of membranes at higher temperatures and using mixed gases. The MGSS test system has been built, and initial operation has been achieved. The MGSS is capable of measuring the separation efficiency of membranes at temperatures up to 600 C and pressures up to 100 psi using a binary gas mixture such as hydrogen/methane. The mixed gas is fed into a tubular membrane at pressures up to 100 psi, and the membrane separates the feed gas mixture into a permeate stream and a raffinate stream. The test membrane is sealed in a stainless steel holder that is mounted in a split tube furnace to permit membrane separations to be evaluated at temperatures up to 600 C. The compositions of the three gas streams are measured by a gas chromatograph equipped with thermal conductivity detectors. The test system also measures the temperatures and pressures of all three gas streams as well as the flow rate of the feed stream. These data taken over a range of flows and pressures permit the separation efficiency to be determined as a function of the operating conditions. A mathematical model of the separation has been developed that permits the data to be reduced and the separation factor for the membrane to be determined.

  9. Room-Temperature-Cured Copolymers for Lithium Battery Gel Electrolytes

    NASA Technical Reports Server (NTRS)

    Meador, Mary Ann B.; Tigelaar, Dean M.

    2009-01-01

    Polyimide-PEO copolymers (PEO signifies polyethylene oxide) that have branched rod-coil molecular structures and that can be cured into film form at room temperature have been invented for use as gel electrolytes for lithium-ion electric-power cells. These copolymers offer an alternative to previously patented branched rod-coil polyimides that have been considered for use as polymer electrolytes and that must be cured at a temperature of 200 C. In order to obtain sufficient conductivity for lithium ions in practical applications at and below room temperature, it is necessary to imbibe such a polymer with a suitable carbonate solvent or ionic liquid, but the high-temperature cure makes it impossible to incorporate and retain such a liquid within the polymer molecular framework. By eliminating the high-temperature cure, the present invention makes it possible to incorporate the required liquid.

  10. Ceramic membranes for high temperature hydrogen separation

    SciTech Connect

    Fain, D.E.; Roettger, G.E.

    1996-08-01

    Ceramic gas separation membranes can provide very high separation factors if the pore size is sufficiently small to separate gas molecules by molecular sieving and if oversized pores are adequately limited. Ceramic membranes typically have some pores that are substantially larger than the mean pore size and that should be regarded as defects. To assess the effects of such defects on the performance of ceramic membranes, a simple mathematical model has been developed to describe flow through a gas separation membrane that has a primary mode of flow through very small pores but that has a secondary mode of flow through undesirably large pores. This model permits separation factors to be calculated for a specified gas pair as a function of the molecular weights and molecular diameters of the gases, the membrane pore diameter, and the diameter and number of defects. This model will be described, and key results from the model will be presented. The separation factors of the authors membranes continue to be determined using a permeance test system that measures flows of pure gases through a membrane at temperatures up to 275{degrees}C. A primary goal of this project for FY 1996 is to develop a mixed gas separation system for measuring the separation efficiency of membranes at higher temperatures. Performance criteria have been established for the planned mixed gas separation system and design of the system has been completed. The test system is designed to measure the separation efficiency of membranes at temperatures up to 600{degrees}C and pressures up to 100 psi by separating the constituents of a gas mixture containing hydrogen. The system will accommodate the authors typical experimental membrane that is tubular and has a diameter of about 9 mm and a length of about 23 cm. The design of the new test system and its expected performance will be discussed.

  11. High temperature thermoplastic elastomers synthesized by living anionic polymerization in hydrocarbon solvent at room temperature

    DOE PAGES

    Schlegel, Ralf; Williams, Katherine; Voyloy, Dimitry; ...

    2016-03-30

    We present the synthesis and characterization of a new class of high temperature thermoplastic elastomers composed of polybenzofulvene–polyisoprene–polybenzofulvene (FIF) triblock copolymers. All copolymers were prepared by living anionic polymerization in benzene at room temperature. Homopolymerization and effects of additives on the glass transition temperature (Tg) of polybenzofulvene (PBF) were also investigated. Among all triblock copolymers studied, FIF with 14 vol % of PBF exhibited a maximum stress of 14.3 ± 1.3 MPa and strain at break of 1390 ± 66% from tensile tests. The stress–strain curves of FIF-10 and 14 were analyzed by a statistical molecular approach using a nonaffinemore » tube model to estimate the thermoplastic elastomer behavior. Dynamic mechanical analysis showed that the softening temperature of PBF in FIF was 145 °C, much higher than that of thermoplastic elastomers with polystyrene hard blocks. Microphase separation of FIF triblock copolymers was observed by small-angle X-ray scattering, even though long-range order was not achieved under the annealing conditions employed. Additionally, the microphase separation of the resulting triblock copolymers was examined by atomic force microscopy.« less

  12. High temperature thermoplastic elastomers synthesized by living anionic polymerization in hydrocarbon solvent at room temperature

    SciTech Connect

    Schlegel, Ralf; Williams, Katherine; Voyloy, Dimitry; Steren, Carlos A.; Goodwin, Andrew; Coughlin, E. Bryan; Gido, Samuel; Beiner, Mario; Hong, Kunlun; Kang, Nam -Goo; Mays, Jimmy; Wang, Weiyu; White, Benjamin T.

    2016-03-30

    We present the synthesis and characterization of a new class of high temperature thermoplastic elastomers composed of polybenzofulvene–polyisoprene–polybenzofulvene (FIF) triblock copolymers. All copolymers were prepared by living anionic polymerization in benzene at room temperature. Homopolymerization and effects of additives on the glass transition temperature (Tg) of polybenzofulvene (PBF) were also investigated. Among all triblock copolymers studied, FIF with 14 vol % of PBF exhibited a maximum stress of 14.3 ± 1.3 MPa and strain at break of 1390 ± 66% from tensile tests. The stress–strain curves of FIF-10 and 14 were analyzed by a statistical molecular approach using a nonaffine tube model to estimate the thermoplastic elastomer behavior. Dynamic mechanical analysis showed that the softening temperature of PBF in FIF was 145 °C, much higher than that of thermoplastic elastomers with polystyrene hard blocks. Microphase separation of FIF triblock copolymers was observed by small-angle X-ray scattering, even though long-range order was not achieved under the annealing conditions employed. Additionally, the microphase separation of the resulting triblock copolymers was examined by atomic force microscopy.

  13. Coulomb blockade and Coulomb staircase behavior observed at room temperature

    NASA Astrophysics Data System (ADS)

    Uky Vivitasari, Pipit; Azuma, Yasuo; Sakamoto, Masanori; Teranishi, Toshiharu; Majima, Yutaka

    2017-02-01

    A single-electron transistor (SET) consists of source, drain, Coulomb island, and gate to modulate the number of electrons and control the current. For practical applications, it is important to operate a SET at room temperature. One proposal towards the ability to operate at room temperature is to decrease Coulomb island size down to a few nanometres. We investigate a SET using Sn-porphyrin (Sn-por) protected gold nanoparticles (AuNPs) with 1.4 nm in core diameter as a Coulomb island. The fabrication method of nanogap electrodes uses the combination of a top-down technique by electron beam lithography (EBL) and a bottom-up process through electroless gold plating (ELGP) as our group have described before. The electrical measurement was conducted at room temperature (300 K). From current–voltage (I d–V d) characteristics, we obtained clear Coulomb blockade phenomena together with a Coulomb staircase due to a Sn-por protected gold NP as a Coulomb island. Experimental results of I d–V d characteristics agree with a theoretical curve based on using the orthodox model. Clear dI d/dV d peaks are observed in the Coulomb staircase at 9 K which suggest the electron transports through excited energy levels of Au NPs. These results are a big step for obtaining SETs that can operate at room temperature.

  14. Experimental epikeratophakia using tissue lathed at room temperature.

    PubMed Central

    Rostron, C. K.; Sandford-Smith, J. H.; Morton, D. B.

    1988-01-01

    This report presents for the first time the results of carrying out epikeratophakia with tissue lathed at room temperature. Using an experimental model of epikeratophakia in the rabbit, we evaluated tissue handling techniques for the preparation of donor lenticules. Details of the technique are described and the in-vivo and histopathological findings reported. Images PMID:3293653

  15. Required Be Capsule Strength For Room Temperature Transport

    SciTech Connect

    Cook, B

    2005-03-21

    The purpose of this memo is to lay out the criteria for the Be capsule strength necessary for room temperature transport. Ultimately we will test full thickness capsules by sealing high pressures inside, but currently we are limited to both thinner capsules and alternative measures of capsule material strength.

  16. Room-Temperature Ionic Liquids for Electrochemical Capacitors

    NASA Technical Reports Server (NTRS)

    Fireman, Heather; Yowell, Leonard; Moloney, Padraig G.; Arepalli, Sivaram; Nikolaev, P.; Huffman, C.; Ready, Jud; Higgins, C.D.; Turano, S. P.; Kohl, P.A.; Kim, K.

    2009-01-01

    A document discusses room-temperature ionic liquids (RTILs) used as electrolytes in carbon-nanotube-based, electrochemical, double-layer capacitors. Unlike the previous electrolyte (EtNB4 in acetonitrile), the RTIL used here does not produce cyanide upon thermal decomposition and does not have a moisture sensitivity.

  17. Amination of allylic alcohols in water at room temperature.

    PubMed

    Nishikata, Takashi; Lipshutz, Bruce H

    2009-06-04

    The "trick" to carrying out regiocontrolled aminations of allylic alcohols in water as the only medium is use of a nanomicelle's interior as the organic reaction solvent. When HCO(2)Me is present, along with the proper base and source of catalytic Pd, allylic amines are cleanly formed at room temperature.

  18. Evaluation of Ceramic Honeycomb Core Compression Behavior at Room Temperature

    NASA Technical Reports Server (NTRS)

    Bird, Richard K.; Lapointe, Thomas S.

    2013-01-01

    Room temperature flatwise compression tests were conducted on two varieties of ceramic honeycomb core specimens that have potential for high-temperature structural applications. One set of specimens was fabricated using strips of a commercially-available thin-gage "ceramic paper" sheet molded into a hexagonal core configuration. The other set was fabricated by machining honeycomb core directly from a commercially available rigid insulation tile material. This paper summarizes the results from these tests.

  19. The deformation and fracture characteristics of inconel X-750 at room temperature and elevated temperatures

    NASA Astrophysics Data System (ADS)

    Mills, W. J.

    1980-06-01

    Electron fractographic and thin foil electron metallographic techniques were used to evaluate the deformation and fracture characteristics of Inconel X-750 at temperatures ranging from 24 to 816 °C. Operative dislocation mechanisms and fracture surface morphologies were related to the overall tensile response of this nickel-base superalloy. At room temperature, failure occurred primarily by an intergranular dimple rupture mechanism associated with microvoid coalescence along grain boundary denuded regions. A fairly high density of dislocations throughout the matrix resulted in relatively high ductility levels even though failure occurred by an intergranular mechanism. Under intermediate temperature conditions (316 to 427 °C), increased transgranular fracture coupled with extensive dislocation activity within the Inconel X-750 matrix caused a slight increase in ductility. At progressively higher temperatures, 538 to 704 °C, all dislocation activity was channeled through narrow slip bands which subsequently initiated localized separation and resulted in a very faceted fracture surface appearance. The absence of a homogeneous dislocation substructure in this temperature regime resulted in a severe degradation in ductility levels. At the highest test temperature (816 °C), a uniform dislocation network throughout the Inconel X-750 matrix coupled with intense dislocation activity in the grain boundary denuded zone resulted in a marked improvement in ductility. Furthermore, the extensive dislocation activity along grain boundary regions ultimately resulted in an intergranular fracture morphology.

  20. Thermomechanical analysis of Natural Rubber behaviour stressed at room temperature.

    NASA Astrophysics Data System (ADS)

    Caborgan, R.; Muracciole, J. M.; Wattrisse, B.; Chrysochoos, A.

    2010-06-01

    Owing to their high molecular mobility, stressed rubber chains can easily change their conformations and get orientated. This phenomena leads to so high reversible draw ratio that this behaviour is called rubber elasticity [1-3]. The analogy with ideal gases leads to an internal energy independent of elongation, the stress being attributed to a so-called configuration entropy. However, this analysis cannot take thermal expansion into account and moreover prohibits predicting standard thermo-elastic effect noticed at small elongations and the thermoelastic inversion effects [4]. This paper aims at : observing and quantifying dissipative and coupling effects associated with deformation energy, generated when Natural Rubber is stretched. re-examine the thermomechanical behaviour model of rubberlike materials, under the generalised standard material concept. From an experimental viewpoint, energy balance is created using infrared and quantitative imaging techniques. Digital Image Correlation (DIC) provides in-the-plane displacement fields and, after derivation, strain and strain-rate fields. We have used those techniques to evidence the thermoelastic inversion effect as shown on Figure 1 where different weights have been fixed to warmed specimen and we monitored the sample deformation while it recovers room temperature. But we have also used those techniques to perform energy balance : analysis of the mechanical equilibrium allows estimates of the stress pattern and computation of deformation energy rates under a plane stress hypothesis [5]. Infrared Thermography (IRT) gives the surface temperature of the sample. To estimate the distribution of heat sources, image processing with a local heat equation and a minimal set of approximation functions (image filtering) was used. The time courses of deformation energy and heat associated with cyclic process are plotted in

  1. Room-temperature magnetoelectric multiferroic thin films and applications thereof

    SciTech Connect

    Katiyar, Ram S; Kuman, Ashok; Scott, James F.

    2014-08-12

    The invention provides a novel class of room-temperature, single-phase, magnetoelectric multiferroic (PbFe.sub.0.67W.sub.0.33O.sub.3).sub.x (PbZr.sub.0.53Ti.sub.0.47O.sub.3).sub.1-x (0.2.ltoreq.x.ltoreq.0.8) (PFW.sub.x-PZT.sub.1-x) thin films that exhibit high dielectric constants, high polarization, weak saturation magnetization, broad dielectric temperature peak, high-frequency dispersion, low dielectric loss and low leakage current. These properties render them to be suitable candidates for room-temperature multiferroic devices. Methods of preparation are also provided.

  2. Room-temperature chiral charge pumping in Dirac semimetals

    PubMed Central

    Zhang, Cheng; Zhang, Enze; Wang, Weiyi; Liu, Yanwen; Chen, Zhi-Gang; Lu, Shiheng; Liang, Sihang; Cao, Junzhi; Yuan, Xiang; Tang, Lei; Li, Qian; Zhou, Chao; Gu, Teng; Wu, Yizheng; Zou, Jin; Xiu, Faxian

    2017-01-01

    Chiral anomaly, a non-conservation of chiral charge pumped by the topological nontrivial gauge fields, has been predicted to exist in Weyl semimetals. However, until now, the experimental signature of this effect exclusively relies on the observation of negative longitudinal magnetoresistance at low temperatures. Here, we report the field-modulated chiral charge pumping process and valley diffusion in Cd3As2. Apart from the conventional negative magnetoresistance, we observe an unusual nonlocal response with negative field dependence up to room temperature, originating from the diffusion of valley polarization. Furthermore, a large magneto-optic Kerr effect generated by parallel electric and magnetic fields is detected. These new experimental approaches provide a quantitative analysis of the chiral anomaly phenomenon which was inaccessible previously. The ability to manipulate the valley polarization in topological semimetal at room temperature opens up a route towards understanding its fundamental properties and utilizing the chiral fermions. PMID:28067234

  3. Micromachined room-temperature microbolometers for millimeter-wave detection

    NASA Astrophysics Data System (ADS)

    Rahman, Arifur; de Lange, Gert; Hu, Qing

    1996-04-01

    We have combined silicon micromachining technology with planar circuits to fabricate room-temperature niobium microbolometers for millimeter-wave detection. In this type of detector, a thin niobium film, with a dimension much smaller than the wavelength and fabricated on a 1 μm thick Si3N4 membrane, acts both as a radiation absorber and temperature sensor. Incident radiation is coupled into the microbolometer by a 0.37λ dipole antenna of center frequency 95 GHz with a 3 dB bandwidth of 15%, which is impedance matched with the Nb film. An electrical noise equivalent power (NEP) of 4.5×10-10 W/√Hz has been achieved. This is comparable to the best commercial room-temperature millimeter-wave detectors.

  4. Room-temperature chiral charge pumping in Dirac semimetals

    NASA Astrophysics Data System (ADS)

    Zhang, Cheng; Zhang, Enze; Wang, Weiyi; Liu, Yanwen; Chen, Zhi-Gang; Lu, Shiheng; Liang, Sihang; Cao, Junzhi; Yuan, Xiang; Tang, Lei; Li, Qian; Zhou, Chao; Gu, Teng; Wu, Yizheng; Zou, Jin; Xiu, Faxian

    2017-01-01

    Chiral anomaly, a non-conservation of chiral charge pumped by the topological nontrivial gauge fields, has been predicted to exist in Weyl semimetals. However, until now, the experimental signature of this effect exclusively relies on the observation of negative longitudinal magnetoresistance at low temperatures. Here, we report the field-modulated chiral charge pumping process and valley diffusion in Cd3As2. Apart from the conventional negative magnetoresistance, we observe an unusual nonlocal response with negative field dependence up to room temperature, originating from the diffusion of valley polarization. Furthermore, a large magneto-optic Kerr effect generated by parallel electric and magnetic fields is detected. These new experimental approaches provide a quantitative analysis of the chiral anomaly phenomenon which was inaccessible previously. The ability to manipulate the valley polarization in topological semimetal at room temperature opens up a route towards understanding its fundamental properties and utilizing the chiral fermions.

  5. Room-temperature helimagnetism in FeGe thin films.

    PubMed

    Zhang, S L; Stasinopoulos, I; Lancaster, T; Xiao, F; Bauer, A; Rucker, F; Baker, A A; Figueroa, A I; Salman, Z; Pratt, F L; Blundell, S J; Prokscha, T; Suter, A; Waizner, J; Garst, M; Grundler, D; van der Laan, G; Pfleiderer, C; Hesjedal, T

    2017-12-01

    Chiral magnets are promising materials for the realisation of high-density and low-power spintronic memory devices. For these future applications, a key requirement is the synthesis of appropriate materials in the form of thin films ordering well above room temperature. Driven by the Dzyaloshinskii-Moriya interaction, the cubic compound FeGe exhibits helimagnetism with a relatively high transition temperature of 278 K in bulk crystals. We demonstrate that this temperature can be enhanced significantly in thin films. Using x-ray scattering and ferromagnetic resonance techniques, we provide unambiguous experimental evidence for long-wavelength helimagnetic order at room temperature and magnetic properties similar to the bulk material. We obtain α intr = 0.0036 ± 0.0003 at 310 K for the intrinsic damping parameter. We probe the dynamics of the system by means of muon-spin rotation, indicating that the ground state is reached via a freezing out of slow dynamics. Our work paves the way towards the fabrication of thin films of chiral magnets that host certain spin whirls, so-called skyrmions, at room temperature and potentially offer integrability into modern electronics.

  6. Room Temperature Characterization of a Magnetic Bearing for Turbomachinery

    NASA Technical Reports Server (NTRS)

    Montague, Gerald; Jansen, Mark; Provenza, Andrew; Jansen, Ralph; Ebihara, Ben; Palazzolo, Alan

    2002-01-01

    Open loop, experimental force and power measurements of a three-axis, radial, heteropolar magnetic bearing at room temperature for rotor speeds up to 20,000 RPM are presented in this paper. The bearing, NASA Glenn Research Center's and Texas A&M's third generation high temperature magnetic bearing, was designed to operate in a 1000 F (540 C) environment and was primarily optimized for maximum load capacity. The experimentally measured force produced by one C-core of this bearing was 630 lb. (2.8 kN) at 16 A, while a load of 650 lbs (2.89 kN) was predicted at 16 A using 1D circuit analysis. The maximum predicted radial load for one of the three axes is 1,440 lbs (6.41 kN) at room temperature. The maximum measured load of an axis was 1050 lbs. (4.73 kN). Results of test under rotating conditions showed that rotor speed has a negligible effect on the bearing's load capacity. A single C-core required approximately 70 W of power to generate 300 lb (1.34 kN) of magnetic force. The room temperature data presented was measured after three thermal cycles up to 1000 F (540 C), totaling six hours at elevated temperatures.

  7. Membrane Separation Processes at Low Temperatures

    NASA Technical Reports Server (NTRS)

    Parrish, Clyde

    2002-01-01

    The primary focus of Kennedy Space Center's gas separation activities has been for carbon dioxide, nitrogen, and argon used in oxygen production technologies for Martian in-situ resource utilization (ISRU) projects. Recently, these studies were expanded to include oxygen for regenerative life support systems. Since commercial membrane systems have been developed for separation of carbon dioxide, nitrogen, and oxygen, initially the studies focused on these membrane systems, but at lower operating temperatures and pressures. Current investigations art examining immobilized liquids and solid sorbents that have the potential for higher selectivity and lower operating temperatures. The gas separation studies reported here use hollow fiber membranes to separate carbon dioxide, nitrogen, and argon in the temperature range from 230 to 300 K. Four commercial membrane materials were used to obtain data at low feed and permeate pressures. These data were used with a commercial solution-diffusion modeling tool to design a system to prepare a buffer gas from the byproduct of a process to capture Martian carbon dioxide. The system was designed to operate, at 230 K with a production rate 0.1 sLpm; Feed composition 30% CO2, 44% N2, and 26% Ar; Feed pressure 104 kPa (780); and Permeate pressure 1 kPa (6 torr); Product concentration 600 ppm CO2. This new system was compared with a similar system designed to operate at ambient temperatures (298 K). The systems described above, along with data, test apparatus, and models are presented.

  8. Tribochemical Decomposition of Light Ionic Hydrides at Room Temperature.

    PubMed

    Nevshupa, Roman; Ares, Jose Ramón; Fernández, Jose Francisco; Del Campo, Adolfo; Roman, Elisa

    2015-07-16

    Tribochemical decomposition of magnesium hydride (MgH2) induced by deformation at room temperature was studied on a micrometric scale, in situ and in real time. During deformation, a near-full depletion of hydrogen in the micrometric affected zone is observed through an instantaneous (t < 1 s) and huge release of hydrogen (3-50 nmol/s). H release is related to a nonthermal decomposition process. After deformation, the remaining hydride is thermally decomposed at room temperature, exhibiting a much slower rate than during deformation. Confocal-microRaman spectroscopy of the mechanically affected zone was used to characterize the decomposition products. Decomposition was enhanced through the formation of the distorted structure of MgH2 with reduced crystal size by mechanical deformation.

  9. Room Temperature Creep Of SiC/SiC Composites

    NASA Technical Reports Server (NTRS)

    Morscher, Gregory N.; Gyekenyesi, Andrew; Levine, Stanley (Technical Monitor)

    2001-01-01

    During a recent experimental study, time dependent deformation was observed for a damaged Hi-Nicalon reinforced, BN interphase, chemically vapor infiltrated SiC matrix composites subjected to static loading at room temperature. The static load curves resembled primary creep curves. In addition, acoustic emission was monitored during the test and significant AE activity was recorded while maintaining a constant load, which suggested matrix cracking or interfacial sliding. For similar composites with carbon interphases, little or no time dependent deformation was observed. Evidently, exposure of the BN interphase to the ambient environment resulted in a reduction in the interfacial mechanical properties, i.e. interfacial shear strength and/or debond energy. These results were in qualitative agreement with observations made by Eldridge of a reduction in interfacial shear stress with time at room temperature as measured by fiber push-in experiments.

  10. Primary and secondary room temperature molten salt electrochemical cells

    NASA Astrophysics Data System (ADS)

    Reynolds, G. F.; Dymek, C. J., Jr.

    1985-07-01

    Three novel primary cells which use room temperature molten salt electrolytes are examined and found to have high open circuit potentials in the 1.75-2.19 V range, by comparison with the Al/AlCl3-MEICl concentration cell; their cathodes were of FeCl3-MEICl, WCl6-MEICl, and Br2/reticulated vitreous carbon together with Pt. Also, secondary electrochemical cell candidates were examined which combined the reversible Al/AlCl3-MEICl electrode with reversible zinc and cadmium molten salt electrodes to yield open circuit potentials of about 0.7 and 1.0 V, respectively. Room temperature molten salts' half-cell reduction potentials are given.

  11. Outrunning free radicals in room-temperature macromolecular crystallography

    PubMed Central

    Owen, Robin L.; Axford, Danny; Nettleship, Joanne E.; Owens, Raymond J.; Robinson, James I.; Morgan, Ann W.; Doré, Andrew S.; Lebon, Guillaume; Tate, Christopher G.; Fry, Elizabeth E.; Ren, Jingshan; Stuart, David I.; Evans, Gwyndaf

    2012-01-01

    A significant increase in the lifetime of room-temperature macromolecular crystals is reported through the use of a high-brilliance X-ray beam, reduced exposure times and a fast-readout detector. This is attributed to the ability to collect diffraction data before hydroxyl radicals can propagate through the crystal, fatally disrupting the lattice. Hydroxyl radicals are shown to be trapped in amorphous solutions at 100 K. The trend in crystal lifetime was observed in crystals of a soluble protein (immunoglobulin γ Fc receptor IIIa), a virus (bovine enterovirus serotype 2) and a membrane protein (human A2A adenosine G-protein coupled receptor). The observation of a similar effect in all three systems provides clear evidence for a common optimal strategy for room-temperature data collection and will inform the design of future synchrotron beamlines and detectors for macro­molecular crystallography. PMID:22751666

  12. Nanostructured ZnO Films for Room Temperature Ammonia Sensing

    NASA Astrophysics Data System (ADS)

    Dhivya Ponnusamy; Sridharan Madanagurusamy

    2014-09-01

    Zinc oxide (ZnO) thin films have been deposited by a reactive dc magnetron sputtering technique onto a thoroughly cleaned glass substrate at room temperature. X-ray diffraction revealed that the deposited film was polycrystalline in nature. The field emission scanning electron micrograph (FE-SEM) showed the uniform formation of a rugby ball-shaped ZnO nanostructure. Energy dispersive x-ray analysis (EDX) confirmed that the film was stoichiometric and the direct band gap of the film, determined using UV-Vis spectroscopy, was 3.29 eV. The ZnO nanostructured film exhibited better sensing towards ammonia (NH3) at room temperature (˜30°C). The fabricated ZnO film based sensor was capable of detecting NH3 at as low as 5 ppm, and its parameters, such as response, selectivity, stability, and response/recovery time, were also investigated.

  13. Room-temperature direct alkynylation of arenes with copper acetylides.

    PubMed

    Theunissen, Cédric; Evano, Gwilherm

    2014-09-05

    C-H bond in azoles and polyhalogenated arenes can be smoothly activated by copper acetylides to give the corresponding alkynylated (hetero)arenes by simple reaction at room temperature in the presence of phenanthroline and lithium tert-butoxide under an oxygen atmosphere. These stable, unreactive, and readily available polymers act as especially efficient and practical reagents for the introduction of an alkyne group to a wide number of arenes under remarkably mild conditions.

  14. Silicon photodiodes with high photoconductive gain at room temperature.

    PubMed

    Li, X; Carey, J E; Sickler, J W; Pralle, M U; Palsule, C; Vineis, C J

    2012-02-27

    Silicon photodiodes with high photoconductive gain are demonstrated. The photodiodes are fabricated in a complementary metal-oxide-semiconductor (CMOS)-compatible process. The typical room temperature responsivity at 940 nm is >20 A/W and the dark current density is ≈ 100 nA/cm2 at 5 V reverse bias, yielding a detectivity of ≈ 10(14) Jones. These photodiodes are good candidates for applications that require high detection sensitivity and low bias operation.

  15. Mercuric iodine room temperature gamma-ray detectors

    NASA Technical Reports Server (NTRS)

    Patt, Bradley E.; Markakis, Jeffrey M.; Gerrish, Vernon M.; Haymes, Robert C.; Trombka, Jacob I.

    1990-01-01

    high resolution mercuric iodide room temperature gamma-ray detectors have excellent potential as an essential component of space instruments to be used for high energy astrophysics. Mercuric iodide detectors are being developed both as photodetectors used in combination with scintillation crystals to detect gamma-rays, and as direct gamma-ray detectors. These detectors are highly radiation damage resistant. The list of applications includes gamma-ray burst detection, gamma-ray line astronomy, solar flare studies, and elemental analysis.

  16. Room Temperature Source of Single Photons of Definite Polarization

    SciTech Connect

    Lukishova, S.G.; Schmid, A.W.; Knox, R.; Freivald, P.; Bissel, L.J.; Boyd, R.W.; Stroud, Jr., C.R.; Marshall, K.L.

    2007-02-12

    A definite polarization in fluorescence from single emitters (dye molecules) at room temperature is demonstrated. A planar-aligned, nematic liquid-crystal host provides definite alignment of single dye molecules in a preferred direction. Well-defined polarized fluorescence from single-emitters (single photon source) is important for applications in photonic quantum information. Polarized single-photon sources based on single-emitters, for example, are key hardware elements both for absolutely secure quantum communication and quantum computation systems.

  17. Experimental observation of negative capacitance in ferroelectrics at room temperature.

    PubMed

    Appleby, Daniel J R; Ponon, Nikhil K; Kwa, Kelvin S K; Zou, Bin; Petrov, Peter K; Wang, Tianle; Alford, Neil M; O'Neill, Anthony

    2014-07-09

    Effective negative capacitance has been postulated in ferroelectrics because there is a hysteresis in plots of polarization-electric field. Compelling experimental evidence of effective negative capacitance is presented here at room temperature in engineered devices, where it is stabilized by the presence of a paraelectric material. In future integrated circuits, the incorporation of such negative capacitance into MOSFET gate stacks would reduce the subthreshold slope, enabling low power operation and reduced self-heating.

  18. Spontaneous Polarization Buildup in a Room-Temperature Polariton Laser

    SciTech Connect

    Baumberg, J. J.; Christopoulos, S.; Kavokin, A. V.; Grundy, A. J. D.; Baldassarri Hoeger von Hoegersthal, G.; Butte, R.; Christmann, G.; Feltin, E.; Carlin, J.-F.; Grandjean, N.; Solnyshkov, D. D.; Malpuech, G.

    2008-09-26

    We observe the buildup of strong ({approx}50%) spontaneous vector polarization in emission from a GaN-based polariton laser excited by short optical pulses at room temperature. The Stokes vector of emitted light changes its orientation randomly from one excitation pulse to another, so that the time-integrated polarization remains zero. This behavior is completely different from any previous laser. We interpret this observation in terms of the spontaneous symmetry breaking in a Bose-Einstein condensate of exciton polaritons.

  19. Room-temperature Formation of Hollow Cu2O Nanoparticles

    SciTech Connect

    Hung, Ling-I; Tsung, Chia-Kuang; Huang, Wenyu; Yang, Peidong

    2010-01-18

    Monodisperse Cu and Cu2O nanoparticles (NPs) are synthesized using tetradecylphosphonic acid as a capping agent. Dispersing the NPs in chloroform and hexane at room temperature results in the formation of hollow Cu2O NPs and Cu@Cu2O core/shell NPs, respectively. The monodisperse Cu2O NPs are used to fabricate hybrid solar cells with efficiency of 0.14percent under AM 1.5 and 1 Sun illumination.

  20. A Na+ Superionic Conductor for Room-Temperature Sodium Batteries

    PubMed Central

    Song, Shufeng; Duong, Hai M.; Korsunsky, Alexander M.; Hu, Ning; Lu, Li

    2016-01-01

    Rechargeable lithium ion batteries have ruled the consumer electronics market for the past 20 years and have great significance in the growing number of electric vehicles and stationary energy storage applications. However, in addition to concerns about electrochemical performance, the limited availability of lithium is gradually becoming an important issue for further continued use and development of lithium ion batteries. Therefore, a significant shift in attention has been taking place towards new types of rechargeable batteries such as sodium-based systems that have low cost. Another important aspect of sodium battery is its potential compatibility with the all-solid-state design where solid electrolyte is used to replace liquid one, leading to simple battery design, long life span, and excellent safety. The key to the success of all-solid-state battery design is the challenge of finding solid electrolytes possessing acceptable high ionic conductivities at room temperature. Herein, we report a novel sodium superionic conductor with NASICON structure, Na3.1Zr1.95Mg0.05Si2PO12 that shows high room-temperature ionic conductivity of 3.5 × 10−3 S cm−1. We also report successful fabrication of a room-temperature solid-state Na-S cell using this conductor. PMID:27572915

  1. Outrunning free radicals in room-temperature macromolecular crystallography

    SciTech Connect

    Owen, Robin L. Axford, Danny; Nettleship, Joanne E.; Owens, Raymond J.; Robinson, James I.; Morgan, Ann W.; Doré, Andrew S.; Lebon, Guillaume; Tate, Christopher G.; Fry, Elizabeth E.; Ren, Jingshan; Stuart, David I.; Evans, Gwyndaf

    2012-06-15

    A systematic increase in lifetime is observed in room-temperature protein and virus crystals through the use of reduced exposure times and a fast detector. A significant increase in the lifetime of room-temperature macromolecular crystals is reported through the use of a high-brilliance X-ray beam, reduced exposure times and a fast-readout detector. This is attributed to the ability to collect diffraction data before hydroxyl radicals can propagate through the crystal, fatally disrupting the lattice. Hydroxyl radicals are shown to be trapped in amorphous solutions at 100 K. The trend in crystal lifetime was observed in crystals of a soluble protein (immunoglobulin γ Fc receptor IIIa), a virus (bovine enterovirus serotype 2) and a membrane protein (human A{sub 2A} adenosine G-protein coupled receptor). The observation of a similar effect in all three systems provides clear evidence for a common optimal strategy for room-temperature data collection and will inform the design of future synchrotron beamlines and detectors for macromolecular crystallography.

  2. A Highly Reversible Room-Temperature Sodium Metal Anode

    PubMed Central

    2015-01-01

    Owing to its low cost and high natural abundance, sodium metal is among the most promising anode materials for energy storage technologies beyond lithium ion batteries. However, room-temperature sodium metal anodes suffer from poor reversibility during long-term plating and stripping, mainly due to formation of nonuniform solid electrolyte interphase as well as dendritic growth of sodium metal. Herein we report for the first time that a simple liquid electrolyte, sodium hexafluorophosphate in glymes (mono-, di-, and tetraglyme), can enable highly reversible and nondendritic plating–stripping of sodium metal anodes at room temperature. High average Coulombic efficiencies of 99.9% were achieved over 300 plating–stripping cycles at 0.5 mA cm–2. The long-term reversibility was found to arise from the formation of a uniform, inorganic solid electrolyte interphase made of sodium oxide and sodium fluoride, which is highly impermeable to electrolyte solvent and conducive to nondendritic growth. As a proof of concept, we also demonstrate a room-temperature sodium–sulfur battery using this class of electrolytes, paving the way for the development of next-generation, sodium-based energy storage technologies. PMID:27163006

  3. A Na+ Superionic Conductor for Room-Temperature Sodium Batteries

    NASA Astrophysics Data System (ADS)

    Song, Shufeng; Duong, Hai M.; Korsunsky, Alexander M.; Hu, Ning; Lu, Li

    2016-08-01

    Rechargeable lithium ion batteries have ruled the consumer electronics market for the past 20 years and have great significance in the growing number of electric vehicles and stationary energy storage applications. However, in addition to concerns about electrochemical performance, the limited availability of lithium is gradually becoming an important issue for further continued use and development of lithium ion batteries. Therefore, a significant shift in attention has been taking place towards new types of rechargeable batteries such as sodium-based systems that have low cost. Another important aspect of sodium battery is its potential compatibility with the all-solid-state design where solid electrolyte is used to replace liquid one, leading to simple battery design, long life span, and excellent safety. The key to the success of all-solid-state battery design is the challenge of finding solid electrolytes possessing acceptable high ionic conductivities at room temperature. Herein, we report a novel sodium superionic conductor with NASICON structure, Na3.1Zr1.95Mg0.05Si2PO12 that shows high room-temperature ionic conductivity of 3.5 × 10‑3 S cm‑1. We also report successful fabrication of a room-temperature solid-state Na-S cell using this conductor.

  4. Room Temperature Ferromagnetic Polymer and the Correlated Anomalous Magnetoresistance Phenomenon

    NASA Astrophysics Data System (ADS)

    Huang, Jinsong; Yang, Bin; Shield, Jeffrey

    2011-03-01

    Organic magnetoresistance (OMAR) has been observed in organic semiconductor devices where resistance can change in a relatively small external magnetic field at room temperature. Since a weak magnetic field is involved, the hyperfine interaction (HFI) is employed to explain OMAR in the reported literatures. None of these issues consider the magnetic properties of the organic semiconductors themselves. However, the we recently discovered that polymer semiconductors, such as poly(3-hexylthiophene) P3HT, can have room temperature (RT) ferromagnetic properties in their crystalline phase and when mixed with phenyl-C61-butyric acid methyl ester (PCBM). Here, we will report the possible correlation between the ferromagnetic property of the P3HT:PCBM and anomalous OMAR phenomenon including the anisotropic and hysteretic OMAR behavior. The magnetic property of the polymer including the anisotropic and photo induced change of magnetism will be also discussed to explore the possible mechanism of the room temperature ferromagnetism.~ This work is partially supported by the NSF MRSEC program at University.

  5. Room Temperature Chemical Oxidation of Delafossite-Type Oxides

    NASA Astrophysics Data System (ADS)

    Trari, M.; Töpfer, J.; Doumerc, J. P.; Pouchard, M.; Ammar, A.; Hagenmuller, P.

    1994-07-01

    Examination of the delafossite-type structure of CuLaO 2 and CuYO 2 suggests that there is room enough to accomodate intercalated oxide ions and the charge compensation resulting simply from the oxidation of an equivalent amount of Cu + into Cu 2+. Reaction with hypohalites in an aqueous solution leads to color change. Evidence of the formation of Cu 2+ is given by TGA, iodometric titration, and magnetic (static and EPR) measurements. The obtained La and Y compounds seem to behave in a different way: whereas CuLaO 2+ x appears as a single phase, CuYO 2+ x corresponds to a two-phase mixture, with respectively low and high x values, the latter being isostructural with the thermally oxidized compound recently reported by Cava et al. Comparison is stressed between the oxides obtained by oxidation at room and those obtained at higher temperatures.

  6. Room-temperature resonant quantum tunneling transport of macroscopic systems.

    PubMed

    Xiong, Zhengwei; Wang, Xuemin; Yan, Dawei; Wu, Weidong; Peng, Liping; Li, Weihua; Zhao, Yan; Wang, Xinmin; An, Xinyou; Xiao, Tingting; Zhan, Zhiqiang; Wang, Zhuo; Chen, Xiangrong

    2014-11-21

    A self-assembled quantum dots array (QDA) is a low dimensional electron system applied to various quantum devices. This QDA, if embedded in a single crystal matrix, could be advantageous for quantum information science and technology. However, the quantum tunneling effect has been difficult to observe around room temperature thus far, because it occurs in a microcosmic and low temperature condition. Herein, we show a designed a quasi-periodic Ni QDA embedded in a single crystal BaTiO3 matrix and demonstrate novel quantum resonant tunneling transport properties around room-temperature according to theoretical calculation and experiments. The quantum tunneling process could be effectively modulated by changing the Ni QDA concentration. The major reason was that an applied weak electric field (∼10(2) V cm(-1)) could be enhanced by three orders of magnitude (∼10(5) V cm(-1)) between the Ni QDA because of the higher permittivity of BaTiO3 and the 'hot spots' of the Ni QDA. Compared with the pure BaTiO3 films, the samples with embedded Ni QDA displayed a stepped conductivity and temperature (σ-T curves) construction.

  7. Single-molecule spectroscopy and dynamics at room temperature

    SciTech Connect

    Xie, X.S.

    1996-12-01

    The spirit of studying single-molecule behaviors dates back to the turn of the century. In addition to Einstein`s well-known work on Brownian motion, there has been a tradition for studying single {open_quotes}macromolecules{close_quotes} or a small number of molecules either by light scattering or by fluorescence using an optical microscope. Modern computers have allowed detailed studies of single-molecule behaviors in condensed media through molecular dynamics simulations. Optical spectroscopy offers a wealth of information on the structure, interaction, and dynamics of molecular species. With the motivation of removing {open_quotes}inhomogeneous broadening{close_quotes}, spectroscopic techniques have evolved from spectral hole burning, fluorescence line narrowing, and photo-echo to the recent pioneering work on single-molecule spectroscopy in solids at cryogenic temperatures. High-resolution spectroscopic work on single molecules relies on zero phonon lines which appear at cryogenic temperatures, and have narrow line widths and large absorption cross sections. Recent advances in near-field and confocal fluorescence have allowed not only fluorescence imaging of single molecules with high spatial resolutions but also single-molecule spectroscopy at room temperature. In this Account, the author provides a physical chemist`s perspective on experimental and theoretical developments on room-temperature single-molecule spectroscopy and dynamics, with the emphasis on the information obtainable from single-molecule experiments. 61 refs., 9 figs.

  8. Terahertz pulsed photogenerated current in microdiodes at room temperature

    SciTech Connect

    Ilkov, Marjan; Torfason, Kristinn; Manolescu, Andrei Valfells, Ágúst

    2015-11-16

    Space-charge modulation of the current in a vacuum diode under photoemission leads to the formation of beamlets with time periodicity corresponding to THz frequencies. We investigate the effect of the emitter temperature and internal space-charge forces on the formation and persistence of the beamlets. We find that temperature effects are most important for beam degradation at low values of the applied electric field, whereas at higher fields, intra-beamlet space-charge forces are dominant. The current modulation is most robust when there is only one beamlet present in the diode gap at a time, corresponding to a macroscopic version of the Coulomb blockade. It is shown that a vacuum microdiode can operate quite well as a tunable THz oscillator at room temperature with an applied electric field above 10 MV/m and a diode gap of the order of 100 nm.

  9. Above room temperature ferromagnetism in Mn-ion implanted Si

    NASA Astrophysics Data System (ADS)

    Bolduc, M.; Awo-Affouda, C.; Stollenwerk, A.; Huang, M. B.; Ramos, F. G.; Agnello, G.; Labella, V. P.

    2005-01-01

    Above room temperature ferromagnetic behavior is achieved in Si through Mn ion implantation. Three-hundred-keV Mn+ ions were implanted to 0.1% and 0.8% peak atomic concentrations, yielding a saturation magnetization of 0.3emu/g at 300K for the highest concentration as measured using a SQUID magnetometer. The saturation magnetization increased by ˜2× after annealing at 800°C for 5min . The Curie temperature for all samples was found to be greater than 400K . A significant difference in the temperature-dependent remnant magnetization between the implanted p-type and n-type Si is observed, giving strong evidence that a Si-based diluted magnetic semiconductor can be achieved.

  10. Large electrocaloric effect in ferroelectric polymers near room temperature.

    PubMed

    Neese, Bret; Chu, Baojin; Lu, Sheng-Guo; Wang, Yong; Furman, E; Zhang, Q M

    2008-08-08

    Applying an electrical field to a polar polymer may induce a large change in the dipolar ordering, and if the associated entropy changes are large, they can be explored in cooling applications. With the use of the Maxwell relation between the pyroelectric coefficient and the electrocaloric effect (ECE), it was determined that a large ECE can be realized in the ferroelectric poly(vinylidene fluoride-trifluoroethylene) [P(VDF-TrFE)] copolymer at temperatures above the ferroelectric-paraelectric transition (above 70 degrees C), where an isothermal entropy change of more than 55 joules per kilogram per kelvin degree and adiabatic temperature change of more than 12 degrees C were observed. We further showed that a similar level of ECE near room temperature can be achieved by working with the relaxor ferroelectric polymer of P(VDF-TrFE-chlorofluoroethylene).

  11. Does the electric power grid need a room temperature superconductor?

    NASA Astrophysics Data System (ADS)

    Malozemoff, A. P.

    2013-11-01

    Superconductivity can revolutionize electric power grids, for example with high power underground cables to open urban power bottlenecks and fault current limiters to solve growing fault currents problems. Technology based on high temperature superconductor (HTS) wire is beginning to meet these critical needs. Wire performance is continually improving. For example, American Superconductor has recently demonstrated long wires with up to 500 A/cm-width at 77 K, almost doubling its previous production performance. But refrigeration, even at 77 K, is a complication, driving interest in discovering room temperature superconductors (RTS). Unfortunately, short coherence lengths and accelerated flux creep will make RTS applications unlikely. Existing HTS technology, in fact, offers a good compromise of relatively high operating temperature but not so high as to incur coherence-length and flux-creep limitations. So - no, power grids do not need RTS; existing HTS wire is proving to be what grids really need.

  12. Magnetic properties of stainless steels at room and cryogenic temperatures

    NASA Astrophysics Data System (ADS)

    Oxley, Paul; Goodell, Jennifer; Molt, Robert

    2009-07-01

    The magnetic properties of ten types of ferritic and martensitic stainless steels have been measured at room temperature and at 77 K. The steel samples studied were in the annealed state as received from the manufacturer. Our room temperature measurements indicate significantly harder magnetic properties than those quoted in the ASM International Handbook, which studied fully annealed stainless steel samples. Despite having harder magnetic properties than fully annealed steels some of the as-received steels still display soft magnetic properties adequate for magnetic applications. The carbon content of the steels was found to affect the permeability and coercive force, with lower-carbon steels displaying significantly higher permeability and lower coercive force. The decrease in coercive force with reduced carbon content is attributed to fewer carbide inclusions which inhibit domain wall motion. Cooling to 77 K resulted in harder magnetic properties. Averaged over the ten steels tested the maximum permeability decreased by 8%, the coercive force increased by 14%, and the residual and saturation flux densities increased by 4% and 3%, respectively. The change in coercive force when cooled is comparable to the theoretical prediction for iron, based on a model of domain wall motion inhibited by inclusions. The modest changes of the magnetic properties indicate that the stainless steels can still be used in magnetic applications at very low temperatures.

  13. Conformation of protonated glutamic acid at room and cryogenic temperatures.

    PubMed

    Bouchet, Aude; Klyne, Johanna; Ishiuchi, Shun-Ichi; Fujii, Masaaki; Dopfer, Otto

    2017-01-27

    Recognition properties of biologically relevant molecules depend on their conformation. Herein, the conformation of protonated glutamic acid (H(+)Glu) isolated in quadruple ion traps is characterized by vibrational spectroscopy at room and cryogenic temperatures and dispersion-corrected density functional theory calculations at the B3LYP-D3/aug-cc-pVTZ level. The infrared multiple photon dissociation (IRMPD) spectrum recorded in the fingerprint range at room temperature using an IR free electron laser is attributed to the two most stable and nearly isoenergetic conformations (1-cc and 2-cc) with roughly equal population (ΔG298 = 0.0 kJ mol(-1)). Both have bridging C[double bond, length as m-dash]O(HNH)(+)O[double bond, length as m-dash]C ionic H-bonds of rather different strengths but cannot be distinguished by their similar IRMPD spectra. In contrast, the higher-resolution single-photon IRPD spectrum of H2-tagged H(+)Glu recorded in the conformation-sensitive X-H stretch range in a trap held at 10 K distinguishes both conformers. At low temperature, 1-cc is roughly twice more abundant than 2-cc, in line with its slightly lower calculated energy (ΔE0 = 0.5 kJ mol(-1)). This example illustrates the importance of cryogenic cooling, single-photon absorption conditions, and the consideration of the X-H stretch range for the identification of biomolecular conformations involving hydrogen bonds.

  14. Spin-valley caloritronics in silicene near room temperature

    NASA Astrophysics Data System (ADS)

    Zhai, Xuechao; Gao, Wenwen; Cai, Xinlong; Fan, Ding; Yang, Zhihong; Meng, Lan

    2016-12-01

    Two-dimensional silicene, with an observable intrinsic spin-orbit coupling, has a great potential to perform fascinating physics and new types of applications in spintronics and valleytronics. By introducing an electromotive force from a temperature difference in ferromagnetic silicene, we discover that a longitudinal spin Seebeck effect can be driven even near room temperature, with spin-up and spin-down currents flowing in opposite directions, originating from the asymmetric electron-hole spin band structures. We further propose a silicene field-effect transistor constructed of two ferromagnetic electrodes and a central dual-gated region, and find that a valley Seebeck effect appears, with currents from two different valleys flowing in opposite directions. The forbidden transport channels are determined by either spin-valley dependent band gaps or spin mismatch. By tuning the electric field in the central region, the transport gaps depending on spin and valley vary correspondingly, and a transition from valley Seebeck effect to spin Seebeck effect is observed. These spin-valley caloritronic results near room temperature are robust against many real perturbations, and thus suggest silicene to be an excellent candidate for future energy-saving technologies and bidirectional information processing in solid-state circuits.

  15. Directional molecular sliding at room temperature on a silicon runway.

    PubMed

    Bouju, Xavier; Chérioux, Frédéric; Coget, Sébastien; Rapenne, Gwénaël; Palmino, Frank

    2013-08-07

    The design of working nanovehicles is a key challenge for the development of new devices. In this context, 1D controlled sliding of molecules on a silicon-based surface is successfully achieved by using an optimized molecule-substrate pair. Even though the molecule and surface are compatible, the molecule-substrate interaction provides a 1D template effect to guide molecular sliding along a preferential surface orientation. Molecular motion is monitored by STM experiments under ultra-high vacuum at room temperature. Molecule-surface interactions are elucidated by semi-empirical calculations.

  16. Room-temperature ferromagnetism observed in alumina films

    NASA Astrophysics Data System (ADS)

    Zheng, Y. L.; Zhen, C. M.; Wang, X. Q.; Ma, L.; Li, X. L.; Hou, D. L.

    2011-08-01

    We have prepared alumina thin films on Si substrates using a radio frequency (RF) sputtering method, and have observed room-temperature ferromagnetism (RTFM) in the thin films. When the thin films were annealed in vacuum, the saturation magnetization (Ms) increased, while annealing the sample in the air contributed to a decrease in the value of Ms. The Ms of the thin film also decreased as the thickness increased. We confirm that the unpaired electron spins responsible for ferromagnetism (FM) in Al 2O 3-δ thin films have their origin in the oxygen vacancies, especially at the interface of the Al 2O 3-δ thin film and the Si substrate.

  17. Laser phosphoroscope and applications to room-temperature phosphorescence.

    PubMed

    Payne, Sarah J; Zhang, Guoqing; Demas, James N; Fraser, Cassandra L; Degraff, Ben A

    2011-11-01

    A simple phosphoroscope with no moving parts is described. In one scan the total luminescence, the long-lived phosphorescence, and the short-lived fluorescence can be determined. A 50% duty cycle excitation from a diode laser is used to excite the sample, and from the digitized waveform the phosphorescence is extracted from the off period, the total emission from the full cycle, and the fluorescence from the on period corrected for the phosphorescence contribution. The performance of the system is demonstrated using room-temperature phosphorescence of organic dyes in boric acid glasses, a multi-emissive boron-polymer dye, and a europium chelate.

  18. Development of bulk GaAs room temperature radiation detectors

    SciTech Connect

    McGregor, D.S.; Knoll, G.F. . Dept. of Nuclear Engineering); Eisen, Y. . Soreq Nuclear Research Center); Brake, R. )

    1992-10-01

    This paper reports on GaAs, a wide band gap semiconductor with potential use as a room temperature radiation detector. Various configurations of Schottky diode detectors were fabricated with bulk crystals of liquid encapsulated Czochralski (LEC) semi-insulating undoped GaAs material. Basic detector construction utilized one Ti/Au Schottky contact and one Au/Ge/Ni alloyed ohmic contact. Pulsed X-ray analysis indicated pulse decay times dependent on bias voltage. Pulse height analysis disclosed non-uniform electric field distributions across the detectors tentatively explained as a consequence of native deep level donors (EL2) in the crystal.

  19. Ultrafast excitonic room temperature nonlinearity in neutron irradiated quantum wells

    SciTech Connect

    Ten, S.; Williams, J.G.; Guerreiro, P.T.; Khitrova, G.; Peyghambarian, N.

    1997-01-01

    Sharp room temperature exciton features and complete recovery of the excitonic absorption with 21 ps time constant are demonstrated in neutron irradiated (Ga,Al)As/GaAs multiple quantum wells. Carrier lifetime reduction is consistent with the EL2 midgap defect which is efficiently generated by fast neutrons. Influence of gamma rays accompanying neutron irradiation is discussed. Neutron irradiation provides a straightforward way to control carrier lifetime in semiconductor heterostructures with minor deterioration of their excitonic properties. {copyright} {ital 1997 American Institute of Physics.}

  20. Dynamics and Interactions in Room Temperature Ionic Liquids, Surfaces and Interfaces

    DTIC Science & Technology

    2016-01-13

    AFRL-AFOSR-VA-TR-2016-0067 Dynamics and Interactions in Room Temperature Ionic Liquids, Surfaces and Interfaces Michael Fayer LELAND STANFORD JUNIOR...2016 4. TITLE AND SUBTITLE Dynamics and Interactions in Room Temperature Ionic Liquids, Surfaces and Interfaces 5a. CONTRACT NUMBER 5b. GRANT...were performed. Room temperature ionic liquids were also investigated. Room temperature ionic liquids (RTIL) are intrinsically interesting because

  1. Quantum dot made in metal oxide silicon-nanowire field effect transistor working at room temperature.

    PubMed

    Lavieville, Romain; Triozon, François; Barraud, Sylvain; Corna, Andrea; Jehl, Xavier; Sanquer, Marc; Li, Jing; Abisset, Antoine; Duchemin, Ivan; Niquet, Yann-Michel

    2015-05-13

    We report the observation of an atomic like behavior from T = 4.2 K up to room temperature in n- and p-type Ω-gate silicon nanowire (NW) transistors. For that purpose, we modified the design of a NW transistor and introduced long spacers between the source/drain and the channel in order to separate the channel from the electrodes. The channel was made extremely small (3.4 nm in diameter with 10 nm gate length) with a thick gate oxide (7 nm) in order to enhance the Coulomb repulsion between carriers, which can be as large as 200 meV when surface roughness promotes charge confinement. Parasitic stochastic Coulomb blockade effect can be eliminated in our devices by choosing proper control voltages. Moreover, the quantum dot can be tuned so that the resonant current at T = 4.2 K exceeds that at room temperature.

  2. Room-Temperature Equation of State for CO2-I

    NASA Astrophysics Data System (ADS)

    Scott, H. P.; Kinney, T. W.; Frank, M. R.; Lin, J.

    2010-12-01

    We have measured the room-temperature bulk modulus (K0T) and its pressure derivative (K') for solid carbon dioxide in its relatively low-pressure phase I (space group: Pa3; CO2-I) between 0.9 and 9 GPa. This pressure range closely matches the actual room-temperature stability field for this phase. The motivation for our investigation is to address an apparent discrepancy in two earlier publications and provide a complete and internally consistent set of equation of state (EoS) parameters for future investigators to conveniently predict the diffraction peak positions for CO2-I at elevated pressures. We note that there is much interest in the chemical reactivity of CO2 at elevated pressures and temperatures and anticipate that this will be a useful addition to the literature. Because the solid phase is unquenchable at room temperature, we used the estimated zero-pressure volume extrapolated to 300 K from lower temperatures by Olinger (1982) and held this value fixed: V0 = 197.9 Å3/unit cell. We performed fits with both the Vinet (K0T = 3.1 ± 0.1 GPa, K' = 9.1 ± 0.2) and Birch-Murnaghan (K0T = 2.5 ± 0.2 GPa, K' = 13.0 ± 0.9) EoS models. The observed difference is not surprising given the very high compressibility of this phase and the inherent covariance between K0T and K'. Although we note that both sets of EoS parameters produce acceptable fits to our data, we favor the Vinet values, especially in terms of determining a realistic value for K', because the phase is so compressible. However, many workers utilize software with built-in routines for calculating peak positions at high pressures, and these often assume a Birch Murnaghan EoS. To facilitate the usage of our results with such programs, we have also performed a Birch-Murnaghan fit for which the K' value from the Vinet fit was held fixed and K0T was the only fit parameter. Accordingly, we present the following EoS parameters for the convenient calculation of expected peak positions for CO2-I at high

  3. Optically pumped room-temperature GaAs nanowire lasers

    NASA Astrophysics Data System (ADS)

    Saxena, Dhruv; Mokkapati, Sudha; Parkinson, Patrick; Jiang, Nian; Gao, Qiang; Tan, Hark Hoe; Jagadish, Chennupati

    2013-12-01

    Near-infrared lasers are important for optical data communication, spectroscopy and medical diagnosis. Semiconductor nanowires offer the possibility of reducing the footprint of devices for three-dimensional device integration and hence are being extensively studied in the context of optoelectronic devices. Although visible and ultraviolet nanowire lasers have been demonstrated widely, progress towards room-temperature infrared nanowire lasers has been limited because of material quality issues and Auger recombination. (Al)GaAs is an important material system for infrared lasers that is extensively used for conventional lasers. GaAs has a very large surface recombination velocity, which is a serious issue for nanowire devices because of their large surface-to-volume ratio. Here, we demonstrate room-temperature lasing in core-shell-cap GaAs/AlGaAs/GaAs nanowires by properly designing the Fabry-Pérot cavity, optimizing the material quality and minimizing surface recombination. Our demonstration is a major step towards incorporating (Al)GaAs nanowire lasers into the design of nanoscale optoelectronic devices operating at near-infrared wavelengths.

  4. Experiments on room temperature optical fiber-fiber direct bonding

    NASA Astrophysics Data System (ADS)

    Hao, Jinping; Yan, Ping; Xiao, Qirong; Wang, Yaping; Gong, Mali

    2012-08-01

    High quality permanent connection between optical fibers is a significant issue in optics and communication. Studies on room temperature optical large diameter fiber-fiber direct bonding, which is essentially surface interactions of glass material, are presented here. Bonded fiber pairs are obtained for the first time through the bonding technics illustrated here. Two different kinds of bonding technics are provided-fresh surface (freshly grinded and polished) bonding and hydrophobic surface (activated by H2SO4 and HF) bonding. By means of fresh surface bonding, a bonded fiber pair with light transmitting efficiency of 98.1% and bond strength of 21.2 N is obtained. Besides, in the bonding process, chemical surface treatment of fibers' end surfaces is an important step. Therefore, various ways of surface treatment are analyzed and compared, based on atomic force microscopy force curves of differently disposed surfaces. According to the comparison, fresh surfaces are suggested as the prior choice in room temperature optical fiber-fiber bonding, owing to their larger adhesive force, attractive force, attractive distance, and adhesive range.

  5. Exfoliated black phosphorus gas sensing properties at room temperature

    NASA Astrophysics Data System (ADS)

    Donarelli, M.; Ottaviano, L.; Giancaterini, L.; Fioravanti, G.; Perrozzi, F.; Cantalini, C.

    2016-06-01

    Room temperature gas sensing properties of chemically exfoliated black phosphorus (BP) to oxidizing (NO2, CO2) and reducing (NH3, H2, CO) gases in a dry air carrier have been reported. To study the gas sensing properties of BP, chemically exfoliated BP flakes have been drop casted on Si3N4 substrates provided with Pt comb-type interdigitated electrodes in N2 atmosphere. Scanning electron microscopy and x-ray photoelectron spectroscopy characterizations show respectively the occurrence of a mixed structure, composed of BP coarse aggregates dispersed on BP exfoliated few layer flakes bridging the electrodes, and a clear 2p doublet belonging to BP, which excludes the occurrence of surface oxidation. Room temperature electrical tests in dry air show a p-type response of multilayer BP with measured detection limits of 20 ppb and 10 ppm to NO2 and NH3 respectively. No response to CO and CO2 has been detected, while a slight but steady sensitivity to H2 has been recorded. The reported results confirm, on an experimental basis, what was previously theoretically predicted, demonstrating the promising sensing properties of exfoliated BP.

  6. A stable room-temperature sodium–sulfur battery

    PubMed Central

    Wei, Shuya; Xu, Shaomao; Agrawral, Akanksha; Choudhury, Snehashis; Lu, Yingying; Tu, Zhengyuan; Ma, Lin; Archer, Lynden A.

    2016-01-01

    High-energy rechargeable batteries based on earth-abundant materials are important for mobile and stationary storage technologies. Rechargeable sodium–sulfur batteries able to operate stably at room temperature are among the most sought-after platforms because such cells take advantage of a two-electron-redox process to achieve high storage capacity from inexpensive electrode materials. Here we report a room-temperature sodium–sulfur battery that uses a microporous carbon–sulfur composite cathode, and a liquid carbonate electrolyte containing the ionic liquid 1-methyl-3-propylimidazolium-chlorate tethered to SiO2 nanoparticles. We show that these cells can cycle stably at a rate of 0.5 C (1 C=1675, mAh g−1) with 600 mAh g−1 reversible capacity and nearly 100% Coulombic efficiency. By means of spectroscopic and electrochemical analysis, we find that the particles form a sodium-ion conductive film on the anode, which stabilizes deposition of sodium. We also find that sulfur remains interred in the carbon pores and undergo solid-state electrochemical reactions with sodium ions. PMID:27277345

  7. Room-temperature Magnetic Ordering in Functionalized Graphene

    PubMed Central

    Hong, Jeongmin; Bekyarova, Elena; Liang, Ping; de Heer, Walt A.; Haddon, Robert C.; Khizroev, Sakhrat

    2012-01-01

    Despite theoretical predictions, the question of room-temperature magnetic order in graphene must be conclusively resolved before graphene can fully achieve its potential as a spintronic medium. Through scanning tunneling microscopy (STM) and point I-V measurements, the current study reveals that unlike pristine samples, graphene nanostructures, when functionalized with aryl radicals, can sustain magnetic order. STM images show 1-D and 2-D periodic super-lattices originating from the functionalization of a single sub-lattice of the bipartite graphene structure. Field-dependent super-lattices in 3-nm wide “zigzag” nanoribbons indicate local moments with parallel and anti-parallel ordering along and across the edges, respectively. Anti-parallel ordering is observed in 2-D segments with sizes of over 20 nm. The field dependence of STM images and point I-V curves indicates a spin polarized local density of states (LDOS), an out-of-plane anisotropy field of less than 10 Oe, and an exchange coupling field of 100 Oe at room temperature. PMID:22953045

  8. Identifying multiexcitons in Mo S2 monolayers at room temperature

    NASA Astrophysics Data System (ADS)

    Lee, Hyun Seok; Kim, Min Su; Kim, Hyun; Lee, Young Hee

    2016-04-01

    One of the unique features of atomically thin two-dimensional materials is strong Coulomb interactions due to the reduced dielectric screening effect; this feature enables the study of many-body phenomena such as excitons, trions, and biexcitons. However, identification of biexcitons remains unresolved owing to their broad peak feature at room temperature. Here, we investigate multiexcitons in monolayer Mo S2 using both electrical and optical doping and identify the transition energies for each exciton. The binding energy of the assigned biexciton is twice that of the trion, in quantitative agreement with theoretical predictions. The biexciton population is predominant under optical doping but negligible under electrical doping. The biexciton population is quadratically proportional to the exciton population, obeying the mass-action theory. Our results illustrate the stable formation of not only trions but also biexcitons due to strong Coulomb interaction even at room temperature; therefore, these results provide a deeper understanding of the complex excitonic behaviors in two-dimensional semiconductors.

  9. [Preservation and stability of corn tortillas at room temperature].

    PubMed

    Higuera-Ciapara, I; Nieblas, J M

    1995-06-01

    Three treatments with chemical preservative (sodium propionate, potassium sorbate-methylparaben and hydrogen peroxidemethyl paraben) were tested to delay microbial spoilage and extend shelf-life of corn tortillas at room temperature (25 degrees C). The treatment with the best results was selected for further studies using two types of packaging: Paper and high density polyethylene. Quality of corn tortillas during storage was assessed by measuring water content, microbial analysis (Total Plate Count, molds and yeast) and throguh sensory evaluation. Results were analyzed by covariance analysis and slope contrast between packaging materials at p<0.05. Spoilage of tortilla without preservative occurred within 24 hours due to a large number of gram negative bacteria, molds and yeasts, which were responsible for offensive odors. Only the combination of hydrogen peroxide-methyl paraben had a significant effect on retarding bacterial yeast spoilage. In addition, hydrogen peroxide residues could not [correction of no] be chemically detected after 2 days of storage. Results from this study show that tortilla can be kept for up to six days at room temperature with acceptable sensory properties with proper preservative treatment and packaging.

  10. Self-transducing silicon nanowire electromechanical systems at room temperature.

    PubMed

    He, Rongrui; Feng, X L; Roukes, M L; Yang, Peidong

    2008-06-01

    Electronic readout of the motions of genuinely nanoscale mechanical devices at room temperature imposes an important challenge for the integration and application of nanoelectromechanical systems (NEMS). Here, we report the first experiments on piezoresistively transduced very high frequency Si nanowire (SiNW) resonators with on-chip electronic actuation at room temperature. We have demonstrated that, for very thin (~90 nm down to ~30 nm) SiNWs, their time-varying strain can be exploited for self-transducing the devices' resonant motions at frequencies as high as approximately 100 MHz. The strain of wire elongation, which is only second-order in doubly clamped structures, enables efficient displacement transducer because of the enhanced piezoresistance effect in these SiNWs. This intrinsically integrated transducer is uniquely suited for a class of very thin wires and beams where metallization and multilayer complex patterning on devices become impractical. The 30 nm thin SiNW NEMS offer exceptional mass sensitivities in the subzeptogram range. This demonstration makes it promising to advance toward NEMS sensors based on ultrathin and even molecular-scale SiNWs, and their monolithic integration with microelectronics on the same chip.

  11. A stable room-temperature sodium-sulfur battery

    NASA Astrophysics Data System (ADS)

    Wei, Shuya; Xu, Shaomao; Agrawral, Akanksha; Choudhury, Snehashis; Lu, Yingying; Tu, Zhengyuan; Ma, Lin; Archer, Lynden A.

    2016-06-01

    High-energy rechargeable batteries based on earth-abundant materials are important for mobile and stationary storage technologies. Rechargeable sodium-sulfur batteries able to operate stably at room temperature are among the most sought-after platforms because such cells take advantage of a two-electron-redox process to achieve high storage capacity from inexpensive electrode materials. Here we report a room-temperature sodium-sulfur battery that uses a microporous carbon-sulfur composite cathode, and a liquid carbonate electrolyte containing the ionic liquid 1-methyl-3-propylimidazolium-chlorate tethered to SiO2 nanoparticles. We show that these cells can cycle stably at a rate of 0.5 C (1 C=1675, mAh g-1) with 600 mAh g-1 reversible capacity and nearly 100% Coulombic efficiency. By means of spectroscopic and electrochemical analysis, we find that the particles form a sodium-ion conductive film on the anode, which stabilizes deposition of sodium. We also find that sulfur remains interred in the carbon pores and undergo solid-state electrochemical reactions with sodium ions.

  12. Unconditional polarization qubit quantum memory at room temperature

    NASA Astrophysics Data System (ADS)

    Namazi, Mehdi; Kupchak, Connor; Jordaan, Bertus; Shahrokhshahi, Reihaneh; Figueroa, Eden

    2016-05-01

    The creation of global quantum key distribution and quantum communication networks requires multiple operational quantum memories. Achieving a considerable reduction in experimental and cost overhead in these implementations is thus a major challenge. Here we present a polarization qubit quantum memory fully-operational at 330K, an unheard frontier in the development of useful qubit quantum technology. This result is achieved through extensive study of how optical response of cold atomic medium is transformed by the motion of atoms at room temperature leading to an optimal characterization of room temperature quantum light-matter interfaces. Our quantum memory shows an average fidelity of 86.6 +/- 0.6% for optical pulses containing on average 1 photon per pulse, thereby defeating any classical strategy exploiting the non-unitary character of the memory efficiency. Our system significantly decreases the technological overhead required to achieve quantum memory operation and will serve as a building block for scalable and technologically simpler many-memory quantum machines. The work was supported by the US-Navy Office of Naval Research, Grant Number N00141410801 and the Simons Foundation, Grant Number SBF241180. B. J. acknowledges financial assistance of the National Research Foundation (NRF) of South Africa.

  13. A stable room-temperature sodium-sulfur battery.

    PubMed

    Wei, Shuya; Xu, Shaomao; Agrawral, Akanksha; Choudhury, Snehashis; Lu, Yingying; Tu, Zhengyuan; Ma, Lin; Archer, Lynden A

    2016-06-09

    High-energy rechargeable batteries based on earth-abundant materials are important for mobile and stationary storage technologies. Rechargeable sodium-sulfur batteries able to operate stably at room temperature are among the most sought-after platforms because such cells take advantage of a two-electron-redox process to achieve high storage capacity from inexpensive electrode materials. Here we report a room-temperature sodium-sulfur battery that uses a microporous carbon-sulfur composite cathode, and a liquid carbonate electrolyte containing the ionic liquid 1-methyl-3-propylimidazolium-chlorate tethered to SiO2 nanoparticles. We show that these cells can cycle stably at a rate of 0.5 C (1 C=1675, mAh g(-1)) with 600 mAh g(-1) reversible capacity and nearly 100% Coulombic efficiency. By means of spectroscopic and electrochemical analysis, we find that the particles form a sodium-ion conductive film on the anode, which stabilizes deposition of sodium. We also find that sulfur remains interred in the carbon pores and undergo solid-state electrochemical reactions with sodium ions.

  14. Room temperature homogeneous flow in a bulk metallic glass with low glass transition temperature

    SciTech Connect

    Zhao, K.; Xia, X. X.; Bai, H. Y.; Zhao, D. Q.; Wang, W. H.

    2011-04-04

    We report a high entropy metallic glass of Zn{sub 20}Ca{sub 20}Sr{sub 20}Yb{sub 20}(Li{sub 0.55}Mg{sub 0.45}){sub 20} via composition design that exhibiting remarkable homogeneous deformation without shear banding under stress at room temperature. The glass also shows properties such as low glass transition temperature (323 K) approaching room temperature, low density and high specific strength, good conductivity, polymerlike thermoplastic manufacturability, and ultralow elastic moduli comparable to that of bones. The alloy is thermally and chemically stable.

  15. New Flexible Channels for Room Temperature Tunneling Field Effect Transistors

    SciTech Connect

    Hao, Boyi; Asthana, Anjana; Hazaveh, Paniz Khanmohammadi; Bergstrom, Paul L.; Banyai, Douglas; Savaikar, Madhusudan A.; Jaszczak, John A.; Yap, Yoke Khin

    2016-02-05

    Tunneling field effect transistors (TFETs) have been proposed to overcome the fundamental issues of Si based transistors, such as short channel effect, finite leakage current, and high contact resistance. Unfortunately, most if not all TFETs are operational only at cryogenic temperatures. Here we report that iron (Fe) quantum dots functionalized boron nitride nanotubes (QDs-BNNTs) can be used as the flexible tunneling channels of TFETs at room temperatures. The electrical insulating BNNTs are used as the one-dimensional (1D) substrates to confine the uniform formation of Fe QDs on their surface as the flexible tunneling channel. Consistent semiconductor-like transport behaviors under various bending conditions are detected by scanning tunneling spectroscopy in a transmission electron microscopy system (insitu STM-TEM). Ultimately, as suggested by computer simulation, the uniform distribution of Fe QDs enable an averaging effect on the possible electron tunneling pathways, which is responsible for the consistent transport properties that are not sensitive to bending.

  16. Room temperature quantum coherence in a potential molecular qubit.

    PubMed

    Bader, Katharina; Dengler, Dominik; Lenz, Samuel; Endeward, Burkhard; Jiang, Shang-Da; Neugebauer, Petr; van Slageren, Joris

    2014-10-20

    The successful development of a quantum computer would change the world, and current internet encryption methods would cease to function. However, no working quantum computer that even begins to rival conventional computers has been developed yet, which is due to the lack of suitable quantum bits. A key characteristic of a quantum bit is the coherence time. Transition metal complexes are very promising quantum bits, owing to their facile surface deposition and their chemical tunability. However, reported quantum coherence times have been unimpressive. Here we report very long quantum coherence times for a transition metal complex of 68 μs at low temperature (qubit figure of merit QM=3,400) and 1 μs at room temperature, much higher than previously reported values for such systems. We show that this achievement is because of the rigidity of the lattice as well as removal of nuclear spins from the vicinity of the magnetic ion.

  17. Room temperature quantum coherence in a potential molecular qubit

    NASA Astrophysics Data System (ADS)

    Bader, Katharina; Dengler, Dominik; Lenz, Samuel; Endeward, Burkhard; Jiang, Shang-Da; Neugebauer, Petr; van Slageren, Joris

    2014-10-01

    The successful development of a quantum computer would change the world, and current internet encryption methods would cease to function. However, no working quantum computer that even begins to rival conventional computers has been developed yet, which is due to the lack of suitable quantum bits. A key characteristic of a quantum bit is the coherence time. Transition metal complexes are very promising quantum bits, owing to their facile surface deposition and their chemical tunability. However, reported quantum coherence times have been unimpressive. Here we report very long quantum coherence times for a transition metal complex of 68 μs at low temperature (qubit figure of merit QM=3,400) and 1 μs at room temperature, much higher than previously reported values for such systems. We show that this achievement is because of the rigidity of the lattice as well as removal of nuclear spins from the vicinity of the magnetic ion.

  18. Room temperature skyrmion ground state stabilized through interlayer exchange coupling

    SciTech Connect

    Chen, Gong Schmid, Andreas K.; Mascaraque, Arantzazu; N'Diaye, Alpha T.

    2015-06-15

    Possible magnetic skyrmion device applications motivate the search for structures that extend the stability of skyrmion spin textures to ambient temperature. Here, we demonstrate an experimental approach to stabilize a room temperature skyrmion ground state in chiral magnetic films via exchange coupling across non-magnetic spacer layers. Using spin polarized low-energy electron microscopy to measure all three Cartesian components of the magnetization vector, we image the spin textures in Fe/Ni films. We show how tuning the thickness of a copper spacer layer between chiral Fe/Ni films and perpendicularly magnetized Ni layers permits stabilization of a chiral stripe phase, a skyrmion phase, and a single domain phase. This strategy to stabilize skyrmion ground states can be extended to other magnetic thin film systems and may be useful for designing skyrmion based spintronics devices.

  19. Generation of coherent terahertz pulses in ruby at room temperature

    SciTech Connect

    Kuznetsova, Elena; Rostovtsev, Yuri; Kalugin, Nikolai G.; Kolesov, Roman; Kocharovskaya, Olga; Scully, Marlan O.

    2006-08-15

    We have shown that a coherently driven solid state medium can potentially produce strong controllable short pulses of THz radiation. The high efficiency of the technique is based on excitation of maximal THz coherence by applying resonant optical pulses to the medium. The excited coherence in the medium is connected to macroscopic polarization coupled to THz radiation. We have performed detailed simulations by solving the coupled density matrix and Maxwell equations. By using a simple V-type energy scheme for ruby, we have demonstrated that the energy of generated THz pulses ranges from hundreds of pico-Joules to nano-Joules at room temperature and micro-Joules at liquid helium temperature, with pulse durations from picoseconds to tens of nanoseconds. We have also suggested a coherent ruby source that lases on two optical wavelengths and simultaneously generates THz radiation. We discussed also possibilities of extension of the technique to different solid-state materials.

  20. Silicon Nanowires Light Emitting Devices at Room Temperature

    NASA Astrophysics Data System (ADS)

    Artoni, Pietro; Irrera, A.; Franzò', G.; Fazio, B.; Galli, M.; Pecora, E.; Iacona, F.; Priolo, F.

    Group-IV semiconductor nanowires (NWs) are attracting interest among the scientific community as building blocks for a wide range of future nanoscaled devices. Vapor-liquid-Solid (VLS) is the most used technique for semiconductor NWs growth. Si NWs are promising as building blocks for photovoltaic elements, sensors and high-performance batteries; however, Si NWs are less explored for photonic applications, probably since there are many drawbacks due to the NW structure obtained by VLS. In fact, there is a minimum obtainable size which reduces the possibility to have quantum confinement effects without high temperature oxidation processes; metal used as a catalyst may be incorporated inside the NW thus affecting its electrical and optical properties. Moreover, by VLS method the doping is no easily controllable because of the segregation of the dopants at the NWs interface. Indeed, the possibility of obtaining light from silicon at room temperature under optical and electrical pumping is strategic for the communication technology.

  1. Investigation of the room temperature annealing peak in ionomers

    SciTech Connect

    Goddard, R.J.; Grady, B.P.; Cooper, S.L.

    1993-12-31

    A number of studies appearing in the literature have documented an endothermic peak in differential scanning calorimetry (DSC) scans for ethylene-methacrylic acid copolymer ionomers which appears only upon annealing at room temperature. This peak has been attributed to either polyethylene crystallites, ionic crystallite, or water absorption. In a novel polyurethane cationomer with a quarternized amine contained in hard segment, the same phenomena has been found in DSC scans when the neutralizing anion is bromine or iodine. Since this material does not crystallize, the authors were able to conclusively eliminate crystallization as the cause of the endotherm. The extended x-ray absorption fine structure (EXAFS) of bromine has been measured to differentiate between water absorption and ionic crystallites. Spectra were collected above and below the temperature corresponding to the endothermic peak. The results of the EXAFS analysis will be presented.

  2. Cadmium selenide: a promising novel room temperature radiation detector

    SciTech Connect

    Burger, A.; Schieber, M.; Shilo, I.

    1983-02-01

    Large single crystals of CdSe weighing about 30g were grown by the vertical unseeded vapor growth technique at a linear growth rate of 5mm/day and a temperature gradient of 10/sup 0/C/cm. Crystal perfection and homogeneity were evaluated by Laue X-ray diffraction, etch pit density, SEM and microprobe analysis methods. The dark resistivity of the as-grown and the heat treated crystal was about 1..cap omega..cm and 10/sup 12/..cap omega..cm respectively. Slices were used to fabricate room temperature detectors for nuclear radiation energy. The detectors showed high efficiency and stability as a function of time for radiation sources from 10KeV to 660KeV.

  3. Room temperature ferromagnetism in a phthalocyanine based carbon material

    SciTech Connect

    Honda, Z. Sato, K.; Sakai, M.; Fukuda, T.; Kamata, N.; Hagiwara, M.; Kida, T.

    2014-02-07

    We report on a simple method to fabricate a magnetic carbon material that contains nitrogen-coordinated transition metals and has a large magnetic moment. Highly chlorinated iron phthalocyanine was used as building blocks and potassium as a coupling reagent to uniformly disperse nitrogen-coordinated iron atoms on the phthalocyanine based carbon material. The iron phthalocyanine based carbon material exhibits ferromagnetic properties at room temperature and the ferromagnetic phase transition occurs at T{sub c} = 490 ± 10 K. Transmission electron microscopy observation, X-ray diffraction analysis, and the temperature dependence of magnetization suggest that the phthalocyanine molecules form three-dimensional random networks in the iron phthalocyanine based carbon material.

  4. Enhanced room temperature ferromagnetism in antiferromagnetic NiO nanoparticles

    SciTech Connect

    Ravikumar, Patta; Kisan, Bhagaban; Perumal, A.

    2015-08-15

    We report systematic investigations of structural, vibrational, resonance and magnetic properties of nanoscale NiO powders prepared by ball milling process under different milling speeds for 30 hours of milling. Structural properties revealed that both pure NiO and as-milled NiO powders exhibit face centered cubic structure, but average crystallite size decreases to around 11 nm along with significant increase in strain with increasing milling speed. Vibrational properties show the enhancement in the intensity of one-phonon longitudinal optical (LO) band and disappearance of two-magnon band due to size reduction. In addition, two-phonon LO band exhibits red shift due to size-induced phonon confinement effect and surface relaxation. Pure NiO powder exhibit antiferromagnetic nature, which transforms into induced ferromagnetic after size reduction. The average magnetization at room temperature increases with decreasing the crystallite size and a maximum moment of 0.016 μ{sub B}/f.u. at 12 kOe applied field and coercivity of 170 Oe were obtained for 30 hours milled NiO powders at 600 rotation per minute milling speed. The change in the magnetic properties is also supported by the vibrational properties. Thermomagnetization measurements at high temperature reveal a well-defined magnetic phase transition at high temperature (T{sub C}) around 780 K due to induced ferromagnetic phase. Electron paramagnetic resonance (EPR) studies reveal a good agreement between the EPR results and magnetic properties. The observed results are described on the basis of crystallite size variation, defect density, large strain, oxidation/reduction of Ni and interaction between uncompensated surfaces and particle core with lattice expansion. The obtained results suggest that nanoscale NiO powders with high T{sub C} and moderate magnetic moment at room temperature with cubic structure would be useful to expedite for spintronic devices.

  5. Advances in materials for room temperature hydrogen sensors.

    PubMed

    Arya, Sunil K; Krishnan, Subramanian; Silva, Hayde; Jean, Sheila; Bhansali, Shekhar

    2012-06-21

    Hydrogen (H(2)), as a source of energy, continues to be a compelling choice in applications ranging from fuel cells and propulsion systems to feedstock for chemical, metallurgical and other industrial processes. H(2), being a clean, reliable, and affordable source, is finding ever increasing use in distributed electric power generation and H(2) fuelled cars. Although still under 0.1%, the distributed use of H(2) is the fastest growing area. In distributed H(2) storage, distribution, and consumption, safety continues to be a critical aspect. Affordable safety systems for distributed H(2) applications are critical for the H(2) economy to take hold. Advances in H(2) sensors are driven by specificity, reliability, repeatability, stability, cost, size, response time, recovery time, operating temperature, humidity range, and power consumption. Ambient temperature sensors for H(2) detection are increasingly being explored as they offer specificity, stability and robustness of high temperature sensors with lower operational costs and significantly longer operational lifetimes. This review summarizes and highlights recent developments in room temperature H(2) sensors.

  6. Room temperature ferromagnetism in Mn-doped NiO nanoparticles

    NASA Astrophysics Data System (ADS)

    Layek, Samar; Verma, H. C.

    2016-01-01

    Mn-doped NiO nanoparticles of the series Ni1-xMnxO (x=0.00, 0.02, 0.04 and 0.06) are successfully synthesized using a low temperature hydrothermal method. Samples up to 6% Mn-doping are single phase in nature as observed from powder x-ray diffraction (XRD) studies. Rietveld refinement of the XRD data shows that all the single phase samples crystallize in the NaCl like fcc structure with space group Fm-3m. Unit cell volume decreases with increasing Mn-doping. Pure NiO nanoparticles show weak ferromagnetism, may be due to nanosize nature. Introduction of Mn within NiO lattice improves the magnetic properties significantly. Room temperature ferromagnetism is found in all the doped samples whereas the magnetization is highest for 2% Mn-doping and then decreases with further doping. The ZFC and FC branches in the temperature dependent magnetization separate well above 350 K indicating transition temperature well above room temperature for 2% Mn-doped NiO Nanoparticle. The ferromagnetic Curie temperature is found to be 653 K for the same sample as measured by temperature dependent magnetization study using vibrating sample magnetometer (VSM) in high vacuum.

  7. Ratcheting fatigue behavior of Zircaloy-2 at room temperature

    NASA Astrophysics Data System (ADS)

    Rajpurohit, R. S.; Sudhakar Rao, G.; Chattopadhyay, K.; Santhi Srinivas, N. C.; Singh, Vakil

    2016-08-01

    Nuclear core components of zirconium alloys experience asymmetric stress or strain cycling during service which leads to plastic strain accumulation and drastic reduction in fatigue life as well as dimensional instability of the component. Variables like loading rate, mean stress, and stress amplitude affect the influence of asymmetric loading. In the present investigation asymmetric stress controlled fatigue tests were conducted with mean stress from 80 to 150 MPa, stress amplitude from 270 to 340 MPa and stress rate from 30 to 750 MPa/s to study the process of plastic strain accumulation and its effect on fatigue life of Zircaloy-2 at room temperature. It was observed that with increase in mean stress and stress amplitude accumulation of ratcheting strain was increased and fatigue life was reduced. However, increase in stress rate led to improvement in fatigue life due to less accumulation of ratcheting strain.

  8. Tailoring room temperature photoluminescence of antireflective silicon nanofacets

    SciTech Connect

    Basu, Tanmoy; Kumar, M.; Ghatak, J.; Som, T.; Kanjilal, A.; Sahoo, P. K.

    2014-09-21

    In this paper, a fluence-dependent antireflection performance is presented from ion-beam fabricated nanofaceted-Si surfaces. It is also demonstrated that these nanofacets are capable of producing room temperature ultra-violet and blue photoluminescence which can be attributed to inter-band transitions of the localized excitonic states of different Si-O bonds at the Si/SiO{sub x} interface. Time-resolved photoluminescence measurements further confirm defect-induced radiative emission from the surface of silicon nanofacets. It is observed that the spectral characteristics remain unchanged, except an enhancement in the photoluminescence intensity with increasing ion-fluence. The increase in photoluminescence intensity by orders of magnitude stronger than that of a planar Si substrate is due to higher absorption of incident photons by nanofaceted structures.

  9. Thermoelectricity in atom-sized junctions at room temperatures

    PubMed Central

    Tsutsui, Makusu; Morikawa, Takanori; Arima, Akihide; Taniguchi, Masateru

    2013-01-01

    Atomic and molecular junctions are an emerging class of thermoelectric materials that exploit quantum confinement effects to obtain an enhanced figure of merit. An important feature in such nanoscale systems is that the electron and heat transport become highly sensitive to the atomic configurations. Here we report the characterization of geometry-sensitive thermoelectricity in atom-sized junctions at room temperatures. We measured the electrical conductance and thermoelectric power of gold nanocontacts simultaneously down to the single atom size. We found junction conductance dependent thermoelectric voltage oscillations with period 2e2/h. We also observed quantum suppression of thermovoltage fluctuations in fully-transparent contacts. These quantum confinement effects appeared only statistically due to the geometry-sensitive nature of thermoelectricity in the atom-sized junctions. The present method can be applied to various nanomaterials including single-molecules or nanoparticles and thus may be used as a useful platform for developing low-dimensional thermoelectric building blocks. PMID:24270238

  10. Thermoelectricity in atom-sized junctions at room temperatures.

    PubMed

    Tsutsui, Makusu; Morikawa, Takanori; Arima, Akihide; Taniguchi, Masateru

    2013-11-25

    Atomic and molecular junctions are an emerging class of thermoelectric materials that exploit quantum confinement effects to obtain an enhanced figure of merit. An important feature in such nanoscale systems is that the electron and heat transport become highly sensitive to the atomic configurations. Here we report the characterization of geometry-sensitive thermoelectricity in atom-sized junctions at room temperatures. We measured the electrical conductance and thermoelectric power of gold nanocontacts simultaneously down to the single atom size. We found junction conductance dependent thermoelectric voltage oscillations with period 2e(2)/h. We also observed quantum suppression of thermovoltage fluctuations in fully-transparent contacts. These quantum confinement effects appeared only statistically due to the geometry-sensitive nature of thermoelectricity in the atom-sized junctions. The present method can be applied to various nanomaterials including single-molecules or nanoparticles and thus may be used as a useful platform for developing low-dimensional thermoelectric building blocks.

  11. Microstructure of room temperature ionic liquids at stepped graphite electrodes

    SciTech Connect

    Feng, Guang; Li, Song; Zhao, Wei; Cummings, Peter T.

    2015-07-14

    Molecular dynamics simulations of room temperature ionic liquid (RTIL) [emim][TFSI] at stepped graphite electrodes were performed to investigate the influence of the thickness of the electrode surface step on the microstructure of interfacial RTILs. A strong correlation was observed between the interfacial RTIL structure and the step thickness in electrode surface as well as the ion size. Specifically, when the step thickness is commensurate with ion size, the interfacial layering of cation/anion is more evident; whereas, the layering tends to be less defined when the step thickness is close to the half of ion size. Furthermore, two-dimensional microstructure of ion layers exhibits different patterns and alignments of counter-ion/co-ion lattice at neutral and charged electrodes. As the cation/anion layering could impose considerable effects on ion diffusion, the detailed information of interfacial RTILs at stepped graphite presented here would help to understand the molecular mechanism of RTIL-electrode interfaces in supercapacitors.

  12. Room-temperature spin-photon interface for quantum networks

    NASA Astrophysics Data System (ADS)

    Hong, Fang-Yu; Fu, Jing-Li; Wu, Yan; Zhu, Zhi-Yan

    2017-02-01

    Although remarkable progress has been achieved recently, to construct an optical cavity where a nitrogen-vacancy (NV) colour centre in diamond is coupled to an optical field in the strong coupling regime is rather difficult. We propose an architecture for a scalable quantum interface capable of interconverting photonic and NV spin qubits, which can work well without the strong coupling requirement. The dynamics of the interface applies an adiabatic passage to sufficiently reduce the decoherence from an excited state of a NV colour centre in diamond. This quantum interface can accomplish many quantum network operations like state transfer and entanglement distribution between qubits at distant nodes. Exact numerical simulations show that high-fidelity quantum interface operations can be achieved under room-temperature and realistic experimental conditions.

  13. Cavity-Enhanced Room-Temperature Broadband Raman Memory

    NASA Astrophysics Data System (ADS)

    Saunders, D. J.; Munns, J. H. D.; Champion, T. F. M.; Qiu, C.; Kaczmarek, K. T.; Poem, E.; Ledingham, P. M.; Walmsley, I. A.; Nunn, J.

    2016-03-01

    Broadband quantum memories hold great promise as multiplexing elements in future photonic quantum information protocols. Alkali-vapor Raman memories combine high-bandwidth storage, on-demand readout, and operation at room temperature without collisional fluorescence noise. However, previous implementations have required large control pulse energies and have suffered from four-wave-mixing noise. Here, we present a Raman memory where the storage interaction is enhanced by a low-finesse birefringent cavity tuned into simultaneous resonance with the signal and control fields, dramatically reducing the energy required to drive the memory. By engineering antiresonance for the anti-Stokes field, we also suppress the four-wave-mixing noise and report the lowest unconditional noise floor yet achieved in a Raman-type warm vapor memory, (15 ±2 )×10-3 photons per pulse, with a total efficiency of (9.5 ±0.5 )%.

  14. Room-temperature ferromagnetism in cerium dioxide powders

    SciTech Connect

    Rakhmatullin, R. M. Pavlov, V. V.; Semashko, V. V.; Korableva, S. L.

    2015-08-15

    Room-temperature ferromagnetism is detected in a CeO{sub 2} powder with a grain size of about 35 nm and a low (<0.1 at %) manganese and iron content. The ferromagnetism in a CeO{sub 2} sample with a submicron crystallite size and the same manganese and iron impurity content is lower than in the nanocrystalline sample by an order of magnitude. Apart from ferromagnetism, both samples exhibit EPR spectra of localized paramagnetic centers, the concentration of which is lower than 0.01 at %. A comparative analysis of these results shows that the F-center exchange (FCE) mechanism cannot cause ferromagnetism. This conclusion agrees with the charge-transfer ferromagnetism model proposed recently.

  15. Room temperature quantum emission from cubic silicon carbide nanoparticles.

    PubMed

    Castelletto, Stefania; Johnson, Brett C; Zachreson, Cameron; Beke, David; Balogh, István; Ohshima, Takeshi; Aharonovich, Igor; Gali, Adam

    2014-08-26

    The photoluminescence (PL) arising from silicon carbide nanoparticles has so far been associated with the quantum confinement effect or to radiative transitions between electronically active surface states. In this work we show that cubic phase silicon carbide nanoparticles with diameters in the range 45-500 nm can host other point defects responsible for photoinduced intrabandgap PL. We demonstrate that these nanoparticles exhibit single photon emission at room temperature with record saturation count rates of 7 × 10(6) counts/s. The realization of nonclassical emission from SiC nanoparticles extends their potential use from fluorescence biomarker beads to optically active quantum elements for next generation quantum sensing and nanophotonics. The single photon emission is related to single isolated SiC defects that give rise to states within the bandgap.

  16. Using room temperature current noise to characterize single molecular spectra.

    PubMed

    Vasudevan, Smitha; Ghosh, Avik W

    2014-03-25

    We propose a way to use room temperature random telegraph noise to characterize single molecules adsorbed on a backgated silicon field-effect transistor. The overlap of molecule and silicon electronic wave functions generates a set of trap levels that impose their unique scattering signatures on the voltage-dependent current noise spectrum. Our results are based on numerical modeling of the current noise, obtained by coupling a density functional treatment of the trap placement within the silicon band gap, a quantum kinetic treatment of the output current, and a Monte Carlo evaluation of the trap occupancy under resonance. As an illustrative example, we show how we can extract molecule-specific "fingerprints" of four benzene-based molecules directly from a frequency-voltage colormap of the noise statistics. We argue that such a colormap carries detailed information about the trap dynamics at the Fermi energy, including the presence of correlated interactions, observed experimentally in backgated carbon nanotubes.

  17. Experimental evidence for ice formation at room temperature.

    PubMed

    Jinesh, K B; Frenken, J W M

    2008-07-18

    The behavior of water under extreme confinement and, in particular, the lubrication properties under such conditions are subjects of long-standing controversy. Using a dedicated, high-resolution friction force microscope, scanning a sharp tungsten tip over a graphite surface, we demonstrate that water nucleating between the tip and the surface due to capillary condensation rapidly transforms into crystalline ice at room temperature. At ultralow scan speeds and modest relative humidities, we observe that the tip exhibits stick-slip motion with a period of 0.38+/-0.03 nm, very different from the graphite lattice. We interpret this as the consequence of the repeated sequence of shear-induced fracture and healing of the crystalline condensate. This phenomenon causes a significant increase of the friction force and introduces relaxation time scales of seconds for the rearrangements after shearing.

  18. Theory of room temperature ferromagnetism in Cr modified DNA nanowire

    NASA Astrophysics Data System (ADS)

    Paruğ Duru, Izzet; Değer, Caner; Eldem, Vahap; Kalayci, Taner; Aktaş, Şahin

    2016-04-01

    We investigated the magnetic properties of Cr3+ (J  <  0) ion-modified DNA (M-DNA) nanowire (1000 base) at room temperature under a uniform magnetic field (˜100 Oe) for different doping concentrations. A Monte Carlo simulation method-based Metropolis algorithm is used to figure out the thermodynamic quantities of nanowire formed by Cr M-DNA followed by analysing the dependency of the ferromagnetic behaviour of the M-DNA to dopant concentration. It is understood that ion density/base and ion density/helical of Cr3+ ions can be a tuning parameter, herewith the dopant ratio has an actual importance on the magnetic characterization of M-DNA nanowire (3%-20%). We propose the source of magnetism as an exchange interaction between Cr and DNA helical atoms indicated in the Heisenberg Hamiltonian.

  19. Dissolution of cellulose in room temperature ionic liquids: anion dependence.

    PubMed

    Payal, Rajdeep Singh; Bejagam, Karteek K; Mondal, Anirban; Balasubramanian, Sundaram

    2015-01-29

    The dissolution of cellulosic biomass in room temperature ionic liquids (RTILs) is studied through free energy calculations of its monomer, viz., cellobiose, within a molecular dynamics simulation approach. The solvation free energy (SFE) of cellobiose in ionic liquids containing any of seven different anions has been calculated. The ranking of these liquids based on SFE compares well with experimental data on the solubility of cellulose. The dissolution is shown to be enthalpically dominated, which is correlated with the strength of intermolecular hydrogen bonding between cellobiose and the anions of the IL. Large entropic changes upon solvation in [CF3SO3](-) and [OAc](-) based ionic liquids have been explained in terms of the solvent-aided conformational flexibility of cellobiose.

  20. Quantum memory, entanglement and sensing with room temperature atoms

    NASA Astrophysics Data System (ADS)

    Jensen, K.; Wasilewski, W.; Krauter, H.; Fernholz, T.; Nielsen, B. M.; Petersen, J. M.; Renema, J. J.; Balabas, M. V.; Owari, M.; Plenio, M. B.; Serafini, A.; Wolf, M. M.; Muschik, C. A.; Cirac, J. I.; Müller, J. H.; Polzik, E. S.

    2011-01-01

    Room temperature atomic ensembles in a spin-protected environment are useful systems both for quantum information science and metrology. Here we utilize a setup consisting of two atomic ensembles as a memory for quantum information initially encoded in the polarization state of two entangled light modes. We also use the ensembles as a radio frequency entanglement-assisted magnetometer with projection noise limited sensitivity below femtoTesla/. The performance of the quantum memory as well as the magnetometer was improved by spin-squeezed or entangled atomic states generated by quantum non demolition measurements. Finally, we present preliminary results of long lived entangled atomic states generated by dissipation. With the method presented, one should be able to generate an entangled steady state.

  1. Realization of a flux-driven memtranstor at room temperature

    NASA Astrophysics Data System (ADS)

    Shi-Peng, Shen; Da-Shan, Shang; Yi-Sheng, Chai; Young, Sun

    2016-02-01

    The memtranstor has been proposed to be the fourth fundamental circuit memelement in addition to the memristor, memcapacitor, and meminductor. Here, we demonstrate the memtranstor behavior at room temperature in a device made of the magnetoelectric hexaferrite (Ba0.5Sr1.5Co2Fe11AlO22) where the electric polarization is tunable by external magnetic field. This device shows a nonlinear q-φ relationship with a butterfly-shaped hysteresis loop, in agreement with the anticipated memtranstor behavior. The memtranstor, like other memelements, has a great potential in developing more advanced circuit functionalities. Project supported by the National Natural Science Foundation of China (Grants Nos. 11227405, 11534015, 11274363, and 11374347) and the Natural Science Foundation from the Chinese Academy of Sciences (Grant No. XDB07030200).

  2. Room-temperature effects of UV radiation in KBr:? crystals

    NASA Astrophysics Data System (ADS)

    Pérez-Salas, R.; Meléndrez, R.; Aceves, R.; Rodriguez, R.; Barboza-Flores, M.

    1996-07-01

    Thermoluminescence and optical absorption measurements have been carried out in KBr:0953-8984/8/27/009/img9 crystals irradiated with monochromatic UV light (200 - 300 nm) and x-rays at room temperature. For UV- and x-irradiated crystals strong similarities between the thermoluminescence glow curves have been found, suggesting that the low-energy UV radiation produces the same defects as produced by x-irradiation in this material. The thermoluminescence glow curves are composed of six glow peaks located at 337, 383, 403, 435, 475 and 509 K. Thermal annealing experiments in previously irradiated crystals show clearly a correlation between the glow peak located at 383 K and the F-centre thermal bleaching process. Also, the excitation spectrum for each thermoluminescence glow peak has been investigated, showing that the low-energy radiation induces the formation of F centres.

  3. Radiation stability of some room temperature ionic liquids

    NASA Astrophysics Data System (ADS)

    Jagadeeswara Rao, Ch.; Venkatesan, K. A.; Tata, B. V. R.; Nagarajan, K.; Srinivasan, T. G.; Vasudeva Rao, P. R.

    2011-05-01

    Radiation stability of some room temperature ionic liquids (RTILs) that find useful electrochemical applications in nuclear fuel cycle has been evaluated. The ionic liquids such as protonated betaine bis(trifluoromethylsulfonyl)imide (HbetNTf 2), aliquat 336 (tri-n-octlymethylammonium chloride), 1-butyl-3-methylimidazolium chloride (bmimCl), 1-hexyl-3-methylimidazolium chloride (hmimCl), N-butyl-N-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide (BMPyNTf 2) and N-methyl-N-propylpiperidinium bis(trifluoromethylsulfonyl)imide (MPPiNTf 2) have been irradiated to various absorbed dose levels, up to 700 kGy. The effect of gamma radiation on these ionic liquids has been evaluated by determining the variations in the physical properties such as color, density, viscosity, refractive index and electrochemical window. The changes in density, viscosity and refractive index of these ionic liquids upon irradiation were insignificant; however, the color and electrochemical window varied significantly with increase of absorbed dose.

  4. Room-temperature ferromagnetism in pure ZnO nanoflowers

    NASA Astrophysics Data System (ADS)

    Bie, Xiaofei; Wang, Chunzhong; Ehrenberg, H.; Wei, Yingjin; Chen, Gang; Meng, Xing; Zou, Guangtian; Du, Fei

    2010-08-01

    ZnO nanoflowers are synthesized by hydrothermal method. The morphology of ZnO is captured by SEM, TEM and HRTEM, which is composed of closely packed nanorods of about 100 nm in diameter and 1 μm in length. The ZFC/FC curves show superparamagnetic features. The abnormal increase in magnetization curves below 14 K comes from the isolated vacancy clusters with no interaction. The magnetic hysteresis at 300 K displays saturation state and confirms room-temperature ferromagnetism. While the magnetic hysteresis at 5 K shows nonsaturation state due to the enhanced effects of vacancy clusters. The O 1s XPS results can be fitted to three Gaussian peaks. The existence of medium-binding energy located at 531.16 eV confirms the deficiency of O ions at the surface of ZnO nanoflowers.

  5. Room temperature magnesium electrorefining by using non-aqueous electrolyte

    NASA Astrophysics Data System (ADS)

    Park, Jesik; Jung, Yeojin; Kusumah, Priyandi; Dilasari, Bonita; Ku, Heesuk; Kim, Hansu; Kwon, Kyungjung; Lee, Churl Kyoung

    2016-09-01

    The increasing usage of magnesium inevitably leads to a fast increase in magnesium scrap, and magnesium recycling appears extremely beneficial for cost reduction, preservation of natural resources and protection of the environment. Magnesium refining for the recovery of high purity magnesium from metal scrap alloy (AZ31B composed of magnesium, aluminum, zinc, manganese and copper) at room temperature is investigated with a non-aqueous electrolyte (tetrahydrofuran with ethyl magnesium bromide). A high purity (99.999%) of electrorefined magneisum with a smooth and dense surface is obtained after potentiostatic electrolysis with an applied voltage of 2 V. The selective dissolution of magnesium from magnesium alloy is possible by applying an adequate potential considering the tolerable impurity level in electrorefined magnesium and processing time. The purity estimation method suggested in this study can be useful in evaluating the maximum content of impurity elements.

  6. Calculation of the room-temperature shapes of unsymmetric laminates

    NASA Technical Reports Server (NTRS)

    Hyer, M. W.

    1981-01-01

    A theory explaining the characteristics of the cured shapes of unsymmetric laminates is presented. The theory is based on an extension of classical lamination theory which accounts for geometric nonlinearities. A Rayleigh-Ritz approach to minimizing the total potential energy is used to obtain quantitative information regarding the room temperature shapes of square T300/5208 (0(2)/90(2))T and (0(4)/90(4))T graphite-epoxy laminates. It is shown that, depending on the thickness of the laminate and the length of the side the square, the saddle shape configuration is actually unstable. For values of length and thickness that render the saddle shape unstable, it is shown that two stable cylindrical shapes exist. The predictions of the theory are compared with existing experimental data.

  7. Tuning magnetic spirals beyond room temperature with chemical disorder

    PubMed Central

    Morin, Mickaël; Canévet, Emmanuel; Raynaud, Adrien; Bartkowiak, Marek; Sheptyakov, Denis; Ban, Voraksmy; Kenzelmann, Michel; Pomjakushina, Ekaterina; Conder, Kazimierz; Medarde, Marisa

    2016-01-01

    In the past years, magnetism-driven ferroelectricity and gigantic magnetoelectric effects have been reported for a number of frustrated magnets featuring ordered spiral magnetic phases. Such materials are of high-current interest due to their potential for spintronics and low-power magnetoelectric devices. However, their low-magnetic ordering temperatures (typically <100 K) greatly restrict their fields of application. Here we demonstrate that the onset temperature of the spiral phase in the perovskite YBaCuFeO5 can be increased by more than 150 K through a controlled manipulation of the Fe/Cu chemical disorder. Moreover, we show that this novel mechanism can stabilize the magnetic spiral state of YBaCuFeO5 above the symbolic value of 25 °C at zero magnetic field. Our findings demonstrate that the properties of magnetic spirals, including its wavelength and stability range, can be engineered through the control of chemical disorder, offering a great potential for the design of materials with magnetoelectric properties beyond room temperature. PMID:27982127

  8. Tuning magnetic spirals beyond room temperature with chemical disorder

    NASA Astrophysics Data System (ADS)

    Morin, Mickaël; Canévet, Emmanuel; Raynaud, Adrien; Bartkowiak, Marek; Sheptyakov, Denis; Ban, Voraksmy; Kenzelmann, Michel; Pomjakushina, Ekaterina; Conder, Kazimierz; Medarde, Marisa

    2016-12-01

    In the past years, magnetism-driven ferroelectricity and gigantic magnetoelectric effects have been reported for a number of frustrated magnets featuring ordered spiral magnetic phases. Such materials are of high-current interest due to their potential for spintronics and low-power magnetoelectric devices. However, their low-magnetic ordering temperatures (typically <100 K) greatly restrict their fields of application. Here we demonstrate that the onset temperature of the spiral phase in the perovskite YBaCuFeO5 can be increased by more than 150 K through a controlled manipulation of the Fe/Cu chemical disorder. Moreover, we show that this novel mechanism can stabilize the magnetic spiral state of YBaCuFeO5 above the symbolic value of 25 °C at zero magnetic field. Our findings demonstrate that the properties of magnetic spirals, including its wavelength and stability range, can be engineered through the control of chemical disorder, offering a great potential for the design of materials with magnetoelectric properties beyond room temperature.

  9. Structure of photosystem II and substrate binding at room temperature.

    PubMed

    Young, Iris D; Ibrahim, Mohamed; Chatterjee, Ruchira; Gul, Sheraz; Fuller, Franklin D; Koroidov, Sergey; Brewster, Aaron S; Tran, Rosalie; Alonso-Mori, Roberto; Kroll, Thomas; Michels-Clark, Tara; Laksmono, Hartawan; Sierra, Raymond G; Stan, Claudiu A; Hussein, Rana; Zhang, Miao; Douthit, Lacey; Kubin, Markus; de Lichtenberg, Casper; Vo Pham, Long; Nilsson, Håkan; Cheah, Mun Hon; Shevela, Dmitriy; Saracini, Claudio; Bean, Mackenzie A; Seuffert, Ina; Sokaras, Dimosthenis; Weng, Tsu-Chien; Pastor, Ernest; Weninger, Clemens; Fransson, Thomas; Lassalle, Louise; Bräuer, Philipp; Aller, Pierre; Docker, Peter T; Andi, Babak; Orville, Allen M; Glownia, James M; Nelson, Silke; Sikorski, Marcin; Zhu, Diling; Hunter, Mark S; Lane, Thomas J; Aquila, Andy; Koglin, Jason E; Robinson, Joseph; Liang, Mengning; Boutet, Sébastien; Lyubimov, Artem Y; Uervirojnangkoorn, Monarin; Moriarty, Nigel W; Liebschner, Dorothee; Afonine, Pavel V; Waterman, David G; Evans, Gwyndaf; Wernet, Philippe; Dobbek, Holger; Weis, William I; Brunger, Axel T; Zwart, Petrus H; Adams, Paul D; Zouni, Athina; Messinger, Johannes; Bergmann, Uwe; Sauter, Nicholas K; Kern, Jan; Yachandra, Vittal K; Yano, Junko

    2016-12-15

    Light-induced oxidation of water by photosystem II (PS II) in plants, algae and cyanobacteria has generated most of the dioxygen in the atmosphere. PS II, a membrane-bound multi-subunit pigment protein complex, couples the one-electron photochemistry at the reaction centre with the four-electron redox chemistry of water oxidation at the Mn4CaO5 cluster in the oxygen-evolving complex (OEC). Under illumination, the OEC cycles through five intermediate S-states (S0 to S4), in which S1 is the dark-stable state and S3 is the last semi-stable state before O-O bond formation and O2 evolution. A detailed understanding of the O-O bond formation mechanism remains a challenge, and will require elucidation of both the structures of the OEC in the different S-states and the binding of the two substrate waters to the catalytic site. Here we report the use of femtosecond pulses from an X-ray free electron laser (XFEL) to obtain damage-free, room temperature structures of dark-adapted (S1), two-flash illuminated (2F; S3-enriched), and ammonia-bound two-flash illuminated (2F-NH3; S3-enriched) PS II. Although the recent 1.95 Å resolution structure of PS II at cryogenic temperature using an XFEL provided a damage-free view of the S1 state, measurements at room temperature are required to study the structural landscape of proteins under functional conditions, and also for in situ advancement of the S-states. To investigate the water-binding site(s), ammonia, a water analogue, has been used as a marker, as it binds to the Mn4CaO5 cluster in the S2 and S3 states. Since the ammonia-bound OEC is active, the ammonia-binding Mn site is not a substrate water site. This approach, together with a comparison of the native dark and 2F states, is used to discriminate between proposed O-O bond formation mechanisms.

  10. New Flexible Channels for Room Temperature Tunneling Field Effect Transistors

    DOE PAGES

    Hao, Boyi; Asthana, Anjana; Hazaveh, Paniz Khanmohammadi; ...

    2016-02-05

    Tunneling field effect transistors (TFETs) have been proposed to overcome the fundamental issues of Si based transistors, such as short channel effect, finite leakage current, and high contact resistance. Unfortunately, most if not all TFETs are operational only at cryogenic temperatures. Here we report that iron (Fe) quantum dots functionalized boron nitride nanotubes (QDs-BNNTs) can be used as the flexible tunneling channels of TFETs at room temperatures. The electrical insulating BNNTs are used as the one-dimensional (1D) substrates to confine the uniform formation of Fe QDs on their surface as the flexible tunneling channel. Consistent semiconductor-like transport behaviors under variousmore » bending conditions are detected by scanning tunneling spectroscopy in a transmission electron microscopy system (insitu STM-TEM). Ultimately, as suggested by computer simulation, the uniform distribution of Fe QDs enable an averaging effect on the possible electron tunneling pathways, which is responsible for the consistent transport properties that are not sensitive to bending.« less

  11. Robust isothermal electric control of exchange bias at room temperature.

    PubMed

    He, Xi; Wang, Yi; Wu, Ning; Caruso, Anthony N; Vescovo, Elio; Belashchenko, Kirill D; Dowben, Peter A; Binek, Christian

    2010-07-01

    Voltage-controlled spin electronics is crucial for continued progress in information technology. It aims at reduced power consumption, increased integration density and enhanced functionality where non-volatile memory is combined with high-speed logical processing. Promising spintronic device concepts use the electric control of interface and surface magnetization. From the combination of magnetometry, spin-polarized photoemission spectroscopy, symmetry arguments and first-principles calculations, we show that the (0001) surface of magnetoelectric Cr(2)O(3) has a roughness-insensitive, electrically switchable magnetization. Using a ferromagnetic Pd/Co multilayer deposited on the (0001) surface of a Cr(2)O(3) single crystal, we achieve reversible, room-temperature isothermal switching of the exchange-bias field between positive and negative values by reversing the electric field while maintaining a permanent magnetic field. This effect reflects the switching of the bulk antiferromagnetic domain state and the interface magnetization coupled to it. The switchable exchange bias sets in exactly at the bulk Néel temperature.

  12. Robust isothermal electric control of exchange bias at room temperature

    SciTech Connect

    He, X.; Vescovo, E.; Wang, Y.; Caruso, A.N.; Belashchenko, K.D.; Dowben, P.A.; Binek, C.

    2010-06-20

    Voltage-controlled spin electronics is crucial for continued progress in information technology. It aims at reduced power consumption, increased integration density and enhanced functionality where non-volatile memory is combined with high-speed logical processing. Promising spintronic device concepts use the electric control of interface and surface magnetization. From the combination of magnetometry, spin-polarized photoemission spectroscopy, symmetry arguments and first-principles calculations, we show that the (0001) surface of magnetoelectric Cr{sub 2}O{sub 3} has a roughness-insensitive, electrically switchable magnetization. Using a ferromagnetic Pd/Co multilayer deposited on the (0001) surface of a Cr{sub 2}O{sub 3} single crystal, we achieve reversible, room-temperature isothermal switching of the exchange-bias field between positive and negative values by reversing the electric field while maintaining a permanent magnetic field. This effect reflects the switching of the bulk antiferromagnetic domain state and the interface magnetization coupled to it. The switchable exchange bias sets in exactly at the bulk Neel temperature.

  13. Room temperature triplet state spectroscopy of organic semiconductors.

    PubMed

    Reineke, Sebastian; Baldo, Marc A

    2014-01-21

    Organic light-emitting devices and solar cells are devices that create, manipulate, and convert excited states in organic semiconductors. It is crucial to characterize these excited states, or excitons, to optimize device performance in applications like displays and solar energy harvesting. This is complicated if the excited state is a triplet because the electronic transition is 'dark' with a vanishing oscillator strength. As a consequence, triplet state spectroscopy must usually be performed at cryogenic temperatures to reduce competition from non-radiative rates. Here, we control non-radiative rates by engineering a solid-state host matrix containing the target molecule, allowing the observation of phosphorescence at room temperature and alleviating constraints of cryogenic experiments. We test these techniques on a wide range of materials with functionalities spanning multi-exciton generation (singlet exciton fission), organic light emitting device host materials, and thermally activated delayed fluorescence type emitters. Control of non-radiative modes in the matrix surrounding a target molecule may also have broader applications in light-emitting and photovoltaic devices.

  14. Investigation of Room temperature Ferromagnetism in Mn doped Ge

    NASA Astrophysics Data System (ADS)

    Colakerol Arslan, Leyla; Toydemir, Burcu; Onel, Aykut Can; Ertas, Merve; Doganay, Hatice; Gebze Inst of Tech Collaboration; Research Center Julich Collaboration

    2014-03-01

    We present a systematic investigation of structural, magnetic and electronic properties of MnxGe1 -x single crystals. MnxGe1-x films were grown by sequential deposition of Ge and Mn by molecular-beam epitaxy at low substrate temperatures in order to avoid precipitation of ferromagnetic Ge-Mn intermetallic compounds. Reflected high energy electron diffraction and x-ray diffraction observations revealed that films are epitaxially grown on Si (001) substrates from the initial stage without any other phase formation. Magnetic measurements carried out using a physical property measurement system showed that all samples exhibited ferromagnetism at room temperature. Electron spin resonance indicates the presence of magnetically ordered localized spins of divalent Mn ions. X-ray absorption measurements at the Mn L-edge confirm significant substitutional doping of Mn into Ge-sites. The ferromagnetism was mainly induced by Mn substitution for Ge site, and indirect exchange interaction of these magnetic ions with the intrinsic charge carriers is the origin of ferromagnetism. The magnetic interactions were better understood by codoping with nonmagnetic impurities. This work was supported by Marie-Curie Reintegration Grant (PIRG08-GA-2010-276973).

  15. Electrodrift purification of materials for room temperature radiation detectors

    DOEpatents

    James, Ralph B.; Van Scyoc, III, John M.; Schlesinger, Tuviah E.

    1997-06-24

    A method of purifying nonmetallic, crystalline semiconducting materials useful for room temperature radiation detecting devices by applying an electric field across the material. The present invention discloses a simple technology for producing purified ionic semiconducting materials, in particular PbI.sub.2 and preferably HgI.sub.2, which produces high yields of purified product, requires minimal handling of the material thereby reducing the possibility of introducing or reintroducing impurities into the material, is easy to control, is highly selective for impurities, retains the stoichiometry of the material and employs neither high temperatures nor hazardous materials such as solvents or liquid metals. An electric field is applied to a bulk sample of the material causing impurities present in the sample to drift in a preferred direction. After all of the impurities have been transported to the ends of the sample the current flowing through the sample, a measure of the rate of transport of mobile impurities, falls to a low, steady state value, at which time the end sections of the sample where the impurities have concentrated are removed leaving a bulk sample of higher purity material. Because the method disclosed here only acts on the electrically active impurities, the stoichiometry of the host material remains substantially unaffected.

  16. Electrodrift purification of materials for room temperature radiation detectors

    DOEpatents

    James, R.B.; Van Scyoc, J.M. III; Schlesinger, T.E.

    1997-06-24

    A method of purifying nonmetallic, crystalline semiconducting materials useful for room temperature radiation detecting devices by applying an electric field across the material is disclosed. The present invention discloses a simple technology for producing purified ionic semiconducting materials, in particular PbI{sub 2} and preferably HgI{sub 2}, which produces high yields of purified product, requires minimal handling of the material thereby reducing the possibility of introducing or reintroducing impurities into the material, is easy to control, is highly selective for impurities, retains the stoichiometry of the material and employs neither high temperatures nor hazardous materials such as solvents or liquid metals. An electric field is applied to a bulk sample of the material causing impurities present in the sample to drift in a preferred direction. After all of the impurities have been transported to the ends of the sample the current flowing through the sample, a measure of the rate of transport of mobile impurities, falls to a low, steady state value, at which time the end sections of the sample where the impurities have concentrated are removed leaving a bulk sample of higher purity material. Because the method disclosed here only acts on the electrically active impurities, the stoichiometry of the host material remains substantially unaffected. 4 figs.

  17. Dielectric Behavior of Biomaterials at Different Frequencies on Room Temperature

    NASA Astrophysics Data System (ADS)

    Shrivastava, B. D.; Barde, Ravindra; Mishra, A.; Phadke, S.

    2014-09-01

    Propagation of electromagnetic (EM) waves in radiofrequency (RF) and microwave systems is described mathematically by Maxwell's equations with corresponding boundary conditions. Dielectric properties of lossless and lossy materials influence EM field distribution. For a better understanding of the physical processes associated with various RF and microwave devices, it is necessary to know the dielectric properties of media that interact with EM waves. For telecommunication and radar devices, variations of complex dielectric permittivity (referring to the dielectric property) over a wide frequency range are important. For RF and microwave applicators intended for thermal treatments of different materials at ISM (industrial, scientific, medical) frequencies, one needs to study temperature and moisture content dependencies of the Permittivity of the treated materials. Many techniques have been developed for the measurement of materials. In the present paper authors used Bones and scales of Fish taken from Narmada River (Rajghat Dist. Barwani) as biomaterials. Dielectric properties of Biomaterials with the frequency range from 1Hz to 10 MHz at room temperature with low water content were measured by in-situ performance dielectric kit. Analysis has been done by Alpha high performance impedance analyzer and LCR meters. The experimental work were carried out in Inter University Consortium UGC-DAE, CSR center Indore MP. Measured value indicates the dielectric constant (ɛ') dielectric loss (ɛ") decreases with increasing frequency while conductivity (σ) increases with frequency increased.

  18. New Flexible Channels for Room Temperature Tunneling Field Effect Transistors

    PubMed Central

    Hao, Boyi; Asthana, Anjana; Hazaveh, Paniz Khanmohammadi; Bergstrom, Paul L.; Banyai, Douglas; Savaikar, Madhusudan A.; Jaszczak, John A.; Yap, Yoke Khin

    2016-01-01

    Tunneling field effect transistors (TFETs) have been proposed to overcome the fundamental issues of Si based transistors, such as short channel effect, finite leakage current, and high contact resistance. Unfortunately, most if not all TFETs are operational only at cryogenic temperatures. Here we report that iron (Fe) quantum dots functionalized boron nitride nanotubes (QDs-BNNTs) can be used as the flexible tunneling channels of TFETs at room temperatures. The electrical insulating BNNTs are used as the one-dimensional (1D) substrates to confine the uniform formation of Fe QDs on their surface as the flexible tunneling channel. Consistent semiconductor-like transport behaviors under various bending conditions are detected by scanning tunneling spectroscopy in a transmission electron microscopy system (in-situ STM-TEM). As suggested by computer simulation, the uniform distribution of Fe QDs enable an averaging effect on the possible electron tunneling pathways, which is responsible for the consistent transport properties that are not sensitive to bending. PMID:26846587

  19. Properties of High-Temperature Ceramics and Cermets. Elasticity and Density at Room Temperature

    DTIC Science & Technology

    1958-01-01

    property character- r. Molybdenum Disilicide -MoSi2 (Tables 24 and 24a) istics; the uniformity of bulk density ap)pea’s to Coode 39: Six groups) of hot...SEP .NBS MONOGAPH 6 AD-A285 483 0 DTIC, I’IELECTE 00 Properties of High-Temperature Ceramics and Cermets Elasticity and Density at Room Temperature...measurements consistent with these standards; the determination of physical constants and properties of materials; the development of methods and

  20. Improved x-ray spectroscopy with room temperature CZT detectors.

    PubMed

    Fritz, Shannon G; Shikhaliev, Polad M; Matthews, Kenneth L

    2011-09-07

    Compact, room temperature x-ray spectroscopy detectors are of interest in many areas including diagnostic x-ray imaging, radiation protection and dosimetry. Room temperature cadmium zinc telluride (CZT) semiconductor detectors are promising candidates for these applications. One of the major problems for CZT detectors is low-energy tailing of the energy spectrum due to hole trapping. Spectral post-correction methods to correct the tailing effect do not work well for a number of reasons; thus it is advisable to eliminate the hole trapping effect in CZT using physical methods rather than correcting an already deteriorated energy spectrum. One method is using a CZT detector with an electrode configuration which modifies the electric field in the CZT volume to decrease low-energy tailing. Another method is to irradiate the CZT surface at a tilted angle, which modifies depth of interaction to decrease low-energy tailing. Neither method alone, however, eliminates the tailing effect. In this work, we have investigated the combination of modified electric field and tilted angle irradiation in a single detector to further decrease spectral tailing. A planar CZT detector with 10 × 10 × 3 mm³ size and CZT detector with 5 × 5 × 5 mm³ size and cap-shaped electrode were used in this study. The cap-shaped electrode (referred to as CAPture technology) modifies the electric field distribution in the CZT volume and decreases the spectral tailing effect. The detectors were investigated at 90° (normal) and 30° (tilted angle) irradiation modes. Two isotope sources with 59.6 and 122 keV photon energies were used for gamma-ray spectroscopy experiments. X-ray spectroscopy was performed using collimated beams at 60, 80 and 120 kVp tube voltages, in both normal and tilted angle irradiation. Measured x-ray spectra were corrected for K x-ray escape fractions that were calculated using Monte Carlo methods. The x-ray spectra measured with tilted angle CAPture detector at 60, 80 and 120

  1. Multi-color tunneling quantum dot infrared photodetectors operating at room temperature

    NASA Astrophysics Data System (ADS)

    Ariyawansa, G.; Perera, A. G. U.; Su, X. H.; Chakrabarti, S.; Bhattacharya, P.

    2007-04-01

    Quantum dot structures designed for multi-color infrared detection and high temperature (or room temperature) operation are demonstrated. A novel approach, tunneling quantum dot (T-QD), was successfully demonstrated with a detector that can be operated at room temperature due to the reduction of the dark current by blocking barriers incorporated into the structure. Photoexcited carriers are selectively collected from InGaAs quantum dots by resonant tunneling, while the dark current is blocked by AlGaAs/InGaAs tunneling barriers placed in the structure. A two-color tunneling-quantum dot infrared photodetector (T-QDIP) with photoresponse peaks at 6 μm and 17 μm operating at room temperature will be discussed. Furthermore, the idea can be used to develop terahertz T-QD detectors operating at high temperatures. Successful results obtained for a T-QDIP designed for THz operations are presented. Another approach, bi-layer quantum dot, uses two layers of InAs quantum dots (QDs) with different sizes separated by a thin GaAs layer. The detector response was observed at three distinct wavelengths in short-, mid-, and far-infrared regions (5.6, 8.0, and 23.0 μm). Based on theoretical calculations, photoluminescence and infrared spectral measurements, the 5.6 and 23.0 μm peaks are connected to the states in smaller QDs in the structure. The narrow peaks emphasize the uniform size distribution of QDs grown by molecular beam epitaxy. These detectors can be employed in numerous applications such as environmental monitoring, spectroscopy, medical diagnosis, battlefield-imaging, space astronomy applications, mine detection, and remote-sensing.

  2. Reversible oxygen scavenging at room temperature using electrochemically reduced titanium oxide nanotubes

    NASA Astrophysics Data System (ADS)

    Close, Thomas; Tulsyan, Gaurav; Diaz, Carlos A.; Weinstein, Steven J.; Richter, Christiaan

    2015-05-01

    A material capable of rapid, reversible molecular oxygen uptake at room temperature is desirable for gas separation and sensing, for technologies that require oxygen storage and oxygen splitting such as fuel cells (solid-oxide fuel cells in particular) and for catalytic applications that require reduced oxygen species (such as removal of organic pollutants in water and oil-spill remediation). To date, however, the lowest reported temperature for a reversible oxygen uptake material is in the range of 200-300 °C, achieved in the transition metal oxides SrCoOx (ref. 1) and LuFe2O4+x (ref. 2) via thermal cycling. Here, we report rapid and reversible oxygen scavenging by TiO2-x nanotubes at room temperature. The uptake and release of oxygen is accomplished by an electrochemical rather than a standard thermal approach. We measure an oxygen uptake rate as high as 14 mmol O2 g-1 min-1, ˜2,400 times greater than commercial, irreversible oxygen scavengers. Such a fast oxygen uptake at a remarkably low temperature suggests a non-typical mechanistic pathway for the re-oxidation of TiO2-x. Modelling the diffusion of oxygen, we show that a likely pathway involves ‘exceptionally mobile’ interstitial oxygen produced by the oxygen adsorption and decomposition dynamics, recently observed on the surface of anatase.

  3. Room-temperature short-wavelength infrared Si photodetector

    PubMed Central

    Berencén, Yonder; Prucnal, Slawomir; Liu, Fang; Skorupa, Ilona; Hübner, René; Rebohle, Lars; Zhou, Shengqiang; Schneider, Harald; Helm, Manfred; Skorupa, Wolfgang

    2017-01-01

    The optoelectronic applications of Si are restricted to the visible and near-infrared spectral range due to its 1.12 eV-indirect band gap. Sub-band gap light detection in Si, for instance, has been a long-standing scientific challenge for many decades since most photons with sub-band gap energies pass through Si unabsorbed. This fundamental shortcoming, however, can be overcome by introducing non-equilibrium deep-level dopant concentrations into Si, which results in the formation of an impurity band allowing for strong sub-band gap absorption. Here, we present steady-state room-temperature short-wavelength infrared p-n photodiodes from single-crystalline Si hyperdoped with Se concentrations as high as 9 × 1020 cm−3, which are introduced by a robust and reliable non-equilibrium processing consisting of ion implantation followed by millisecond-range flash lamp annealing. We provide a detailed description of the material properties, working principle and performance of the photodiodes as well as the main features in the studied wavelength region. This work fundamentally contributes to establish the short-wavelength infrared detection by hyperdoped Si in the forefront of the state-of-the-art of short-IR Si photonics. PMID:28262746

  4. Proactive aquatic ecotoxicological assessment of room-temperature ionic liquids

    USGS Publications Warehouse

    Kulacki, K.J.; Chaloner, D.T.; Larson, J.H.; Costello, D.M.; Evans-White, M. A.; Docherty, K.M.; Bernot, R.J.; Brueseke, M.A.; Kulpa, C.F.; Lamberti, G.A.

    2011-01-01

    Aquatic environments are being contaminated with a myriad of anthropogenic chemicals, a problem likely to continue due to both unintentional and intentional releases. To protect valuable natural resources, novel chemicals should be shown to be environmentally safe prior to use and potential release into the environment. Such proactive assessment is currently being applied to room-temperature ionic liquids (ILs). Because most ILs are water-soluble, their effects are likely to manifest in aquatic ecosystems. Information on the impacts of ILs on numerous aquatic organisms, focused primarily on acute LC50 and EC50 endpoints, is now available, and trends in toxicity are emerging. Cation structure tends to influence IL toxicity more so than anion structure, and within a cation class, the length of alkyl chain substituents is positively correlated with toxicity. While the effects of ILs on several aquatic organisms have been studied, the challenge for aquatic toxicology is now to predict the effects of ILs in complex natural environments that often include diverse mixtures of organisms, abiotic conditions, and additional stressors. To make robust predictions about ILs will require coupling of ecologically realistic laboratory and field experiments with standard toxicity bioassays and models. Such assessments would likely discourage the development of especially toxic ILs while shifting focus to those that are more environmentally benign. Understanding the broader ecological effects of emerging chemicals, incorporating that information into predictive models, and conveying the conclusions to those who develop, regulate, and use those chemicals, should help avoid future environmental degradation. ?? 2011 Bentham Science Publishers Ltd.

  5. A silicon carbide room-temperature single-photon source

    NASA Astrophysics Data System (ADS)

    Castelletto, S.; Johnson, B. C.; Ivády, V.; Stavrias, N.; Umeda, T.; Gali, A.; Ohshima, T.

    2014-02-01

    Over the past few years, single-photon generation has been realized in numerous systems: single molecules, quantum dots, diamond colour centres and others. The generation and detection of single photons play a central role in the experimental foundation of quantum mechanics and measurement theory. An efficient and high-quality single-photon source is needed to implement quantum key distribution, quantum repeaters and photonic quantum information processing. Here we report the identification and formation of ultrabright, room-temperature, photostable single-photon sources in a device-friendly material, silicon carbide (SiC). The source is composed of an intrinsic defect, known as the carbon antisite-vacancy pair, created by carefully optimized electron irradiation and annealing of ultrapure SiC. An extreme brightness (2×106 counts s-1) resulting from polarization rules and a high quantum efficiency is obtained in the bulk without resorting to the use of a cavity or plasmonic structure. This may benefit future integrated quantum photonic devices.

  6. Room-temperature luminescence from kaolin induced by organic amines

    NASA Technical Reports Server (NTRS)

    Coyne, L. M.; Kloepping, R.; Pollack, G.

    1984-01-01

    Several new, room-temperature luminescent phenomena, resulting from the interaction of kaolin and various amino compounds, have been observed. The emission of light from kaolin pastes (treated with quinoline, pyridine, hydrazine, monoethanolamine, n-butylamine, and piperidine) was shown to decay monotonically over a period of hours to days. More light was released by a given amino compound after it was dried and purified. Hydrazine, in addition to the monotonically decaying photon release, produces delayed pulses of light with peak emission wavelength of 365 nm which last between several hours and several days. These photon bursts are acutely sensitive to the initial dryness of the hydrazine, both in the number of bursts and the integrated photon output. The amount of light and the capacity of the kaolin to produce the delayed burst appeared to be strongly dependent on preliminary heating and on gamma-irradiation, analogous to the dehydration-induced light pulse previously reported from the Ames Research Center. A small, delayed burst of photons occurred when piperidine and n-butylamine were removed by evaporation into an H2SO4 reservoir.

  7. Room-temperature ferromagnetism in hydrogenated ZnO nanoparticles

    SciTech Connect

    Xue, Xudong; Liu, Liangliang; Wang, Zhu; Wu, Yichu

    2014-01-21

    The effect of hydrogen doping on the magnetic properties of ZnO nanoparticles was investigated. Hydrogen was incorporated by annealing under 5% H{sub 2} in Ar ambient at 700 °C. Room-temperature ferromagnetism was induced in hydrogenated ZnO nanoparticles, and the observed ferromagnetism could be switched between “on” and “off” states through hydrogen annealing and oxygen annealing process, respectively. It was found that Zn vacancy and OH bonding complex (V{sub Zn} + OH) was crucial to the observed ferromagnetism by using the X-ray photoelectron spectroscopy and positron annihilation spectroscopy analysis. Based on first-principles calculations, V{sub Zn} + OH was favorable to be presented due to the low formation energy. Meanwhile, this configuration could lead to a magnetic moment of 0.57 μ{sub B}. The Raman and photoluminescence measurements excluded the possibility of oxygen vacancy as the origin of the ferromagnetism.

  8. Microstructure of room temperature ionic liquids at stepped graphite electrodes

    DOE PAGES

    Feng, Guang; Li, Song; Zhao, Wei; ...

    2015-07-14

    Molecular dynamics simulations of room temperature ionic liquid (RTIL) [emim][TFSI] at stepped graphite electrodes were performed to investigate the influence of the thickness of the electrode surface step on the microstructure of interfacial RTILs. A strong correlation was observed between the interfacial RTIL structure and the step thickness in electrode surface as well as the ion size. Specifically, when the step thickness is commensurate with ion size, the interfacial layering of cation/anion is more evident; whereas, the layering tends to be less defined when the step thickness is close to the half of ion size. Furthermore, two-dimensional microstructure of ionmore » layers exhibits different patterns and alignments of counter-ion/co-ion lattice at neutral and charged electrodes. As the cation/anion layering could impose considerable effects on ion diffusion, the detailed information of interfacial RTILs at stepped graphite presented here would help to understand the molecular mechanism of RTIL-electrode interfaces in supercapacitors.« less

  9. Room temperature syntheses of entirely diverse substituted β-fluorofurans.

    PubMed

    Li, Yan; Wheeler, Kraig A; Dembinski, Roman

    2012-03-28

    Synthesis of highly substituted 3-fluorofurans is reported. The sequence began with preparation of tert-butyldimethylsilyl alk-1-en-3-yn-1-yl ethers from 1,4-disubstituted alk-3-yn-1-ones. Subsequent fluorination of alkenynyl silyl ethers with Selectfluor gave 2-fluoroalk-3-yn-1-ones in almost quantitative yield. Subsequent 5-endo-dig cyclizations using chlorotriphenylphosphine gold(I)/silver trifluoromethanesulfonate (5/5 mol%), N-bromo- or N-iodosuccinimide and gold(I) chloride/zinc bromide (5/20 mol%), all at room temperature, provided a facile method for the generation of substituted 3-fluoro-, 3-bromo-4-fluoro-, and 3-fluoro-4-iodofurans in good yields. Also, 2,2-difluoroalk-3-yn-1-ones were prepared by fluorination of alk-3-yn-1-ones under organocatalytic conditions. The structures of (Z)-tert-butyldimethylsilyl but-1-en-3-yn-1-yl ether, 3-bromo-4-fluorofuran, and 3-fluoro-4-(phenylethynyl)furan were confirmed by X-ray crystallography.

  10. Laser desorption from a room temperature ionic liquid

    NASA Astrophysics Data System (ADS)

    Harris, Peter Ronald

    We report laser desorption from a Room Temperature Ionic Liquid (RTIL) as a novel source for time of flight mass spectrometry. We use the 2nd harmonic of an Nd:YAG laser to deposit intensities of 1-50 MW/cm2 via backside illumination onto our RTIL desorption sample. A microstructured metal grid situated on top of a glass microscope slide coated with RTIL serves as our desorption sample. The RTIL we use, 1-Butyl, 3-Methylimidazolium Hexafluorophosphate, remains liquid at pressures below 10-8 torr. The use of liquid desorption sample allows for improved surface conditions, homogeneity and sample life as compared to Matrix Assisted Laser Desorption Ionization (MALDI) techniques. Our desorption technique is also unique as it allows the study of both multiphoton and acoustic desorption processes within the same time of flight spectra. Our technique yields intrinsically high resolution, low noise data. We observe differences between ion species in their preference for desorption by a particular desorption method. Specifically, we observe desorption solely by acoustic means of an entire RTIL molecule adducted with an RTIL cation. Finally, we report the applicability of this technique for the desorption of biomolecules.

  11. Room-temperature terahertz detection based on CVD graphene transistor

    NASA Astrophysics Data System (ADS)

    Yang, Xin-Xin; Sun, Jian-Dong; Qin, Hua; Lv, Li; Su, Li-Na; Yan, Bo; Li, Xin-Xing; Zhang, Zhi-Peng; Fang, Jing-Yue

    2015-04-01

    We report the fabrication and characterization of a single-layer graphene field-effect terahertz detector, which is coupled with dipole-like antennas based on the self-mixing detector model. The graphene is grown by chemical vapor deposition and then transferred onto an SiO2/Si substrate. We demonstrate room-temperature detection at 237 GHz. The detector could offer a voltage responsivity of 0.1 V/W and a noise equivalent power of 207 nW/Hz1/2. Our modeling indicates that the observed photovoltage in the p-type gated channel can be well fit by the self-mixing theory. A different photoresponse other than self-mixing may apply for the n-type gated channel. Project supported by the National Natural Science Foundation of China (Grant Nos. 61271157, 61401456, and 11403084), Jiangsu Provincial Planned Projects for Postdoctoral Research Funds (Grant No. 1301054B), the Fund from Suzhou Industry Technology Bureau (Grant No. ZXG2012024), China Postdoctoral Science Foundation (Grant No. 2014M551678), the Graduate Student Innovation Program for Universities of Jiangsu Province (Grant No. CXLX12_0724), the Fundamental Research Funds for the Central Universities (Grant No. JUDCF 12032), and the Fund from National University of Defense Technology (Grant No. JC13-02-14).

  12. Room temperature molten salt as medium for lithium battery

    NASA Astrophysics Data System (ADS)

    Fung, Y. S.; Zhou, R. Q.

    Due to the wide electrochemical window and high ionic conductivity, the 1-methyl-3-ethylimidazolium chloride (MeEtImCl) room temperature molten salt (RTMS) was investigated as the medium for lithium battery in the present work. The addition of C 6H 5SO 2Cl to the RTMS was shown to improve its chemical stability and the reversibility of the lithium electrode because of the removal of Al 2Cl 7- from the melt. Electrochemical reaction which occurred at the LiCoO 2 was studied and the carbon current collector was found to interact with the melt. Out of the various carbon materials studied, graphite was found to be the best material. A LiAl/LiCoO 2 battery using RTMS as the electrolyte was assembled for battery test. Satisfactory results were obtained in preliminary cycling, showing a cell voltage of 3.45 V with better than 90% coulombic efficiency and a discharging capacity of 112 mA h/g LiCoO 2 at current density of 1 mA/cm 2.

  13. Chemically reduced graphene oxide for ammonia detection at room temperature.

    PubMed

    Ghosh, Ruma; Midya, Anupam; Santra, Sumita; Ray, Samit K; Guha, Prasanta K

    2013-08-14

    Chemically reduced graphene oxide (RGO) has recently attracted growing interest in the area of chemical sensors because of its high electrical conductivity and chemically active defect sites. This paper reports the synthesis of chemically reduced GO using NaBH4 and its performance for ammonia detection at room temperature. The sensing layer was synthesized on a ceramic substrate containing platinum electrodes. The effect of the reduction time of graphene oxide (GO) was explored to optimize the response, recovery, and response time. The RGO film was characterized electrically and also with atomic force microscopy and X-ray photoelectron spectroscopy. The sensor response was found to lie between 5.5% at 200 ppm (parts per million) and 23% at 2800 ppm of ammonia, and also resistance recovered quickly without any application of heat (for lower concentrations of ammonia). The sensor was exposed to different vapors and found to be selective toward ammonia. We believe such chemically reduced GO could potentially be used to manufacture a new generation of low-power portable ammonia sensors.

  14. Gradient Limitations in Room Temperature and Superconducting Acceleration Structures

    SciTech Connect

    Solyak, N. A.

    2009-01-22

    Accelerating gradient is a key parameter of the accelerating structure in large linac facilities, like future Linear Collider. In room temperature accelerating structures the gradient is limited mostly by breakdown phenomena, caused by high surface electric fields or pulse surface heating. High power processing is a necessary procedure to clean surface and improve the gradient. In the best tested X-band structures the achieved gradient is exceed 100 MV/m in of {approx}200 ns pulses for breakdown rate of {approx}10{sup -7}. Gradient limit depends on number of factors and no one theory which can explain all sets of experimental results and predict gradient in new accelerating structure. In paper we briefly overview the recent experimental results of breakdown studies, progress in understanding of gradient limitations and scaling laws. Although superconducting rf technology has been adopted throughout the world for ILC, it has frequently been difficult to reach the predicted performance in these structures due to a number of factors: multipactoring, field emission, Q-slope, thermal breakdown. In paper we are discussing all these phenomena and the ways to increase accelerating gradient in SC cavity, which are a part of worldwide R and D program.

  15. Surface activation-based nanobonding and interconnection at room temperature

    NASA Astrophysics Data System (ADS)

    Howlader, M. M. R.; Yamauchi, A.; Suga, T.

    2011-02-01

    Flip chip nanobonding and interconnect system (NBIS) equipment with high precision alignment has been developed based on the surface activated bonding method for high-density interconnection and MEMS packaging. The 3σ alignment accuracy in the IR transmission system was approximately ±0.2 µm. The performance of the NBIS has been preliminarily investigated through bonding between relatively rough surfaces of copper through silicon vias (Cu-TSVs) and gold-stud bumps (Au-SBs), and smooth surfaces of silicon wafers. The Cu-TSVs of 55 µm diameter and the Au-SBs of 35 µm diameter with ~6-10 nm surface roughness (RMS) were bonded at room temperature after surface activation using an argon fast atom beam (Ar-FAB) under 0.16 N per bump. Silicon wafers of 50 mm diameter with ~0.2 nm RMS surface roughness were bonded without heating after surface activation. Void-free interfaces both in Cu-TSV/Au-SB and silicon/silicon with bonding strength equivalent to bulk fracture of Au and silicon, respectively, were achieved. A few nm thick amorphous layers were observed across the silicon/silicon interface that was fabricated by the Ar-FAB. This study in the interconnection and bonding facilitates the required three-dimensional integration on the same surface for high-density electronic and biomedical systems.

  16. Room temperature lithium polymer batteries based on ionic liquids

    NASA Astrophysics Data System (ADS)

    Appetecchi, G. B.; Kim, G. T.; Montanino, M.; Alessandrini, F.; Passerini, S.

    In this manuscript are reported the results of an investigation performed on rechargeable, all-solid-state, solvent-free, Li/LiFePO 4 polymer batteries incorporating N-butyl- N-methyl-pyrrolidinium bis(trifluoromethanesulfonyl)imide, PYR 14TFSI, ionic liquid (IL). The tests show clearly the beneficial effect due to the incorporation of ionic liquids on room temperature battery performance that, conversely, results extremely poor in IL-free lithium polymer batteries. The theoretical capacity is delivered at 30 °C whereas about 115 mA h g -1 are discharged at 20 °C with excellent capacity retention and high coulombic efficiency. At 40 °C large capacities (125 mA h g -1) are discharged even at medium rates (C/3). Impedance measurements revealed that the overall battery resistance is almost fully located (e.g., above 93%) at the lithium anode/polymer electrolyte interface, which plays a key role in determining the battery performance.

  17. Gradient limitations in room temperature and superconducting acceleration structures

    SciTech Connect

    Solyak, N.A.; /Fermilab

    2008-10-01

    Accelerating gradient is a key parameter of the accelerating structure in large linac facilities, like future Linear Collider. In room temperature accelerating structures the gradient is limited mostly by breakdown phenomena, caused by high surface electric fields or pulse surface heating. High power processing is a necessary procedure to clean surface and improve the gradient. In the best tested X-band structures the achieved gradient is exceed 100 MV/m in of {approx}200 ns pulses for breakdown rate of {approx} 10{sup -7}. Gradient limit depends on number of factors and no one theory which can explain all sets of experimental results and predict gradient in new accelerating structure. In paper we briefly overview the recent experimental results of breakdown studies, progress in understanding of gradient limitations and scaling laws. Although superconducting rf technology has been adopted throughout the world for ILC, it has frequently been difficult to reach the predicted performance in these structures due to a number of factors: multipactoring, field emission, Q-slope, thermal breakdown. In paper we are discussing all these phenomena and the ways to increase accelerating gradient in SC cavity, which are a part of worldwide R&D program.

  18. Room-temperature short-wavelength infrared Si photodetector

    NASA Astrophysics Data System (ADS)

    Berencén, Yonder; Prucnal, Slawomir; Liu, Fang; Skorupa, Ilona; Hübner, René; Rebohle, Lars; Zhou, Shengqiang; Schneider, Harald; Helm, Manfred; Skorupa, Wolfgang

    2017-03-01

    The optoelectronic applications of Si are restricted to the visible and near-infrared spectral range due to its 1.12 eV-indirect band gap. Sub-band gap light detection in Si, for instance, has been a long-standing scientific challenge for many decades since most photons with sub-band gap energies pass through Si unabsorbed. This fundamental shortcoming, however, can be overcome by introducing non-equilibrium deep-level dopant concentrations into Si, which results in the formation of an impurity band allowing for strong sub-band gap absorption. Here, we present steady-state room-temperature short-wavelength infrared p-n photodiodes from single-crystalline Si hyperdoped with Se concentrations as high as 9 × 1020 cm‑3, which are introduced by a robust and reliable non-equilibrium processing consisting of ion implantation followed by millisecond-range flash lamp annealing. We provide a detailed description of the material properties, working principle and performance of the photodiodes as well as the main features in the studied wavelength region. This work fundamentally contributes to establish the short-wavelength infrared detection by hyperdoped Si in the forefront of the state-of-the-art of short-IR Si photonics.

  19. Room-Temperature Formation of Highly Crystalline Multication Perovskites for Efficient, Low-Cost Solar Cells.

    PubMed

    Matsui, Taisuke; Seo, Ji-Youn; Saliba, Michael; Zakeeruddin, Shaik M; Grätzel, Michael

    2017-01-20

    A room-temperature perovskite material yielding a power conversion efficiency of 18.1% (stabilized at 17.7%) is demonstrated by judicious selection of cations. Both cesium and methylammonium are necessary for room-temperature formamidinium-based perovskite to obtain the photoactive crystalline perovskite phase and high-quality crystals. This room-temperature-made perovskite material shows great potential for low-cost, large-scale manufacturing such as roll-to-roll process.

  20. Instantaneous radioiodination of rose bengal at room temperature and a cold kit therefor

    DOEpatents

    O'Brien, Jr., Harold A.; Hupf, Homer B.; Wanek, Philip M.

    1981-01-01

    The disclosure relates to the radioiodination of rose bengal at room temperature and a cold-kit therefor. A purified rose bengal tablet is stirred into acidified ethanol at or near room temperature, until a suspension forms. Reductant-free .sup.125 I.sup.- is added and the resulting mixture stands until the exchange label reaction occurs at room temperature. A solution of sterile isotonic phosphate buffer and sodium hydroxide is added and the final resulting mixture is sterilized by filtration.

  1. Single Molecule Quantum-Confined Stark Effect Measurements of Semiconductor Nanoparticles at Room Temperature

    PubMed Central

    2012-01-01

    We measured the quantum-confined Stark effect (QCSE) of several types of fluorescent colloidal semiconductor quantum dots and nanorods at the single molecule level at room temperature. These measurements demonstrate the possible utility of these nanoparticles for local electric field (voltage) sensing on the nanoscale. Here we show that charge separation across one (or more) heterostructure interface(s) with type-II band alignment (and the associated induced dipole) is crucial for an enhanced QCSE. To further gain insight into the experimental results, we numerically solved the Schrödinger and Poisson equations under self-consistent field approximation, including dielectric inhomogeneities. Both calculations and experiments suggest that the degree of initial charge separation (and the associated exciton binding energy) determines the magnitude of the QCSE in these structures. PMID:23075136

  2. Microchip electrophoresis at elevated temperatures and high separation field strengths.

    PubMed

    Mitra, Indranil; Marczak, Steven P; Jacobson, Stephen C

    2014-02-01

    We report free-solution microchip electrophoresis performed at elevated temperatures and high separation field strengths. We used microfluidic devices with 11 cm long separation channels to conduct separations at temperatures between 22 (ambient) and 45°C and field strengths from 100 to 1000 V/cm. To evaluate separation performance, N-glycans were used as a model system and labeled with 8-aminopyrene-1,3,6-trisulfonic acid to impart charge for electrophoresis and render them fluorescent. Typically, increased diffusivity at higher temperatures leads to increased axial dispersion and poor separation performance; however, we demonstrate that sufficiently high separation field strengths offset the impact of increased diffusivity in order to maintain separation efficiency. Efficiencies for these free-solution separations are the same at temperatures of 25, 35, and 45°C with separation field strengths ≥ 500 V/cm.

  3. Room temperature single-photon detectors for high bit rate quantum key distribution

    SciTech Connect

    Comandar, L. C.; Patel, K. A.; Fröhlich, B. Lucamarini, M.; Sharpe, A. W.; Dynes, J. F.; Yuan, Z. L.; Shields, A. J.; Penty, R. V.

    2014-01-13

    We report room temperature operation of telecom wavelength single-photon detectors for high bit rate quantum key distribution (QKD). Room temperature operation is achieved using InGaAs avalanche photodiodes integrated with electronics based on the self-differencing technique that increases avalanche discrimination sensitivity. Despite using room temperature detectors, we demonstrate QKD with record secure bit rates over a range of fiber lengths (e.g., 1.26 Mbit/s over 50 km). Furthermore, our results indicate that operating the detectors at room temperature increases the secure bit rate for short distances.

  4. The design of an embedded system for controlling humidity and temperature room

    NASA Astrophysics Data System (ADS)

    Dwi Teguh, R.; Didik Eko, S.; Laksono, Pringgo D.; Jamaluddin, Anif

    2016-11-01

    The aim of the system is to design an embedded system for maintenance confortable room. The confortable room was design by controlling temperature (on range 18 - 34 °C) and humidity (on range 40% - 70%.) of room condition. Temperature and humidity of room were maintained using four variable such as lamp for warm, water pump for distributing water vapour, a fan for air circullation and an exhaust-fan for air cleaner. The system was constucted both hardware (humidity sensor, microcontroller, pump, lamp, fan) and software (arduino IDE). The result shows that the system was perfectly performed to control room condition.

  5. Room-temperature near-infrared silicon carbide nanocrystalline emitters based on optically aligned spin defects

    SciTech Connect

    Muzha, A.; Fuchs, F.; Simin, D.; Astakhov, G. V.; Tarakina, N. V.; Trupke, M.; Soltamov, V. A.; Mokhov, E. N.; Baranov, P. G.; Dyakonov, V.; and others

    2014-12-15

    Bulk silicon carbide (SiC) is a very promising material system for bio-applications and quantum sensing. However, its optical activity lies beyond the near infrared spectral window for in-vivo imaging and fiber communications due to a large forbidden energy gap. Here, we report the fabrication of SiC nanocrystals and isolation of different nanocrystal fractions ranged from 600 nm down to 60 nm in size. The structural analysis reveals further fragmentation of the smallest nanocrystals into ca. 10-nm-size clusters of high crystalline quality, separated by amorphization areas. We use neutron irradiation to create silicon vacancies, demonstrating near infrared photoluminescence. Finally, we detect room-temperature spin resonances of these silicon vacancies hosted in SiC nanocrystals. This opens intriguing perspectives to use them not only as in-vivo luminescent markers but also as magnetic field and temperature sensors, allowing for monitoring various physical, chemical, and biological processes.

  6. Synthesis of tin nanocrystals in room temperature ionic liquids.

    PubMed

    Le Vot, Steven; Dambournet, Damien; Groult, Henri; Ngo, Anh-tu; Petit, Christophe; Rizzi, Cécile; Salzemann, Caroline; Sirieix-Plenet, Juliette; Borkiewicz, Olaf J; Raymundo-Piñero, Encarnación; Gaillon, Laurent

    2014-12-28

    The aim of this work was to investigate the synthesis of tin nanoparticles (NPs) or tin/carbon composites, in room temperature ionic liquids (RTILs), that could be used as structured anode materials for Li-ion batteries. An innovative route for the synthesis of Sn nanoparticles in such media is successfully developed. Compositions, structures, sizes and morphologies of NPs were characterized by high-energy X-ray diffraction (HEXRD), X-ray photoelectron spectroscopy (XPS) and high-resolution transmission electron microscopy (HRTEM). Our findings indicated that (i) metallic tetragonal β-Sn was obtained and (ii) the particle size could be tailored by tuning the nature of the RTILs, leading to nano-sized spherical particles with a diameter ranging from 3 to 10 nm depending on synthesis conditions. In order to investigate carbon composite materials for Li-ion batteries, Sn nanoparticles were successfully deposited on the surface of multi-wall carbon nanotubes (MWCNT). Moreover, electrochemical properties have been studied in relation to a structural study of the nanocomposites. The poor electrochemical performances as a negative electrode in Li-ion batteries is due to a significant amount of RTIL trapped within the pores of the nanotubes as revealed by XPS investigations. This dramatically affected the gravimetric capacity of the composites and limited the diffusion of lithium. The findings of this work however offer valuable insights into the exciting possibilities for synthesis of novel nano-sized particles and/or alloys (e.g. Sn-Cu, Sn-Co, Sn-Ni, etc.) and the importance of carbon morphology in metal pulverization during the alloying/dealloying process as well as prevention of ionic liquid trapping.

  7. Robust isothermal electric control of exchange bias at room temperature

    NASA Astrophysics Data System (ADS)

    Binek, Christian

    2011-03-01

    Voltage-controlled spintronics is of particular importance to continue progress in information technology through reduced power consumption, enhanced processing speed, integration density, and functionality in comparison with present day CMOS electronics. Almost all existing and prototypical solid-state spintronic devices rely on tailored interface magnetism, enabling spin-selective transmission or scattering of electrons. Controlling magnetism at thin-film interfaces, preferably by purely electrical means, is a key challenge to better spintronics. Currently, most attempts to electrically control magnetism focus on potentially large magnetoelectric effects of multiferroics. We report on our interest in magnetoelectric Cr 2 O3 (chromia). Robust isothermal electric control of exchange bias is achieved at room temperature in perpendicular anisotropic Cr 2 O3 (0001)/CoPd exchange bias heterostructures. This discovery promises significant implications for potential spintronics. From the perspective of basic science, our finding serves as macroscopic evidence for roughness-insensitive and electrically controllable equilibrium boundary magnetization in magnetoelectric antiferromagnets. The latter evolves at chromia (0001) surfaces and interfaces when chromia is in one of its two degenerate antiferromagnetic single domain states selected via magnetoelectric annealing. Theoretical insight into the boundary magnetization and its role in electrically controlled exchange bias is gained from first-principles calculations and general symmetry arguments. Measurements of spin-resolved ultraviolet photoemission, magnetometry at Cr 2 O3 (0001) surfaces, and detailed investigations of the unique exchange bias properties of Cr 2 O3 (0001)/CoPd including its electric controllability provide macroscopically averaged information about the boundary magnetization of chromia. Laterally resolved X-ray PEEM and temperature dependent MFM reveal detailed microscopic information of the chromia

  8. Room-temperature ferromagnetism in (Zn,Cr)Te

    NASA Astrophysics Data System (ADS)

    Saito, Hidekazu

    2006-03-01

    Ferromagnetic diluted magnetic semiconductors (DMSs) are the key material to developing semiconductor spintronic devices. One of the most characteristics physical phenomena in DMS is a strong interaction between sp-carriers and localized d-spins (sp-d exchange interaction) [1]. Confirmation of this interaction is essential to prove a synthesis of real DMS, and can be done directly by the magneto-optical studies such as a magnetic circular dichroism (MCD) measurement [2]. Here, we report room-temperature (RT) ferromagnetism with the sp-d exchange interaction in Zn1-xCrxTe (x=0.20) [3]. Zn1-xCrxTe films with x.3ex<=x 0.20 were grown on GaAs (001) substrates by a molecular beam epitaxy method. No sign of a secondary phase was detected in any films by the reflection high-energy electron and X-ray diffractions. MCD spectra were measured in a transmission mode. Magnetization (M) measurements were carried out using a SQUID. The M-H curves of Zn1-xCrxTe (x=0.20) showed a ferromagnetic behavior up to about RT. Curie temperature TC was estimated to be 300±10 K by the Arrott plot analysis. A strong enhancement of the MCD signal at the optical transition energies of critical points of host ZnTe was observed in Zn1-xCrxTe, indicating a strong sp-d exchange interaction. The MCD spectra of Zn1-xCrxTe at any magnetic field could be superposed upon a single spectrum, indicating that the observed MCD signals come from a single material, that is, Zn1-xCrxTe. The magnetic field dependence of MCD intensity showed the ferromagnetic feature, which coincides with the M-H curves measured using a SQUID. Furthermore, the MCD data showed the same TC as that obtained from magnetization data. These results indicate that Zn1-xCrxTe (x=0.20) is an intrinsic DMS with RT ferromagnetism. References [1] J. K. Furdyna, J. Appl. Phys. 64, R29 (1988). [2] K. Ando, in Magneto-Optics, Springer Series in Solid-State Science, edited by S. Sugano and N. Kojima (Springer, Berlin, 2000), Vol.128, p. 211. [3

  9. Structure of photosystem II and substrate binding at room temperature

    PubMed Central

    Gul, Sheraz; Fuller, Franklin; Koroidov, Sergey; Brewster, Aaron S.; Tran, Rosalie; Alonso-Mori, Roberto; Kroll, Thomas; Michels-Clark, Tara; Laksmono, Hartawan; Sierra, Raymond G.; Stan, Claudiu A.; Hussein, Rana; Zhang, Miao; Douthit, Lacey; Kubin, Markus; de Lichtenberg, Casper; Long Vo, Pham; Nilsson, Håkan; Cheah, Mun Hon; Shevela, Dmitriy; Saracini, Claudio; Bean, Mackenzie A.; Seuffert, Ina; Sokaras, Dimosthenis; Weng, Tsu-Chien; Pastor, Ernest; Weninger, Clemens; Fransson, Thomas; Lassalle, Louise; Bräuer, Philipp; Aller, Pierre; Docker, Peter T.; Andi, Babak; Orville, Allen M.; Glownia, James M.; Nelson, Silke; Sikorski, Marcin; Zhu, Diling; Hunter, Mark S.; Lane, Thomas J.; Aquila, Andy; Koglin, Jason E.; Robinson, Joseph; Liang, Mengning; Boutet, Sébastien; Lyubimov, Artem Y.; Uervirojnangkoorn, Monarin; Moriarty, Nigel W.; Liebschner, Dorothee; Afonine, Pavel V.; Waterman, David G.; Evans, Gwyndaf; Wernet, Philippe; Dobbek, Holger; Weis, William I.; Brunger, Axel T.; Zwart, Petrus H.; Adams, Paul D.; Zouni, Athina; Messinger, Johannes; Bergmann, Uwe; Sauter, Nicholas K.; Kern, Jan; Yachandra, Vittal K.; Yano, Junko

    2016-01-01

    Light-induced oxidation of water by photosystem II (PS II) in plants, algae and cyanobacteria has generated most of the dioxygen in the atmosphere. PS II, a membrane-bound multi-subunit pigment-protein complex, couples the one-electron photochemistry at the reaction center with the four-electron redox chemistry of water oxidation at the Mn4CaO5 cluster in the oxygen-evolving complex (OEC) (Fig. 1a, Extended Data Fig. 1). Under illumination, the OEC cycles through five intermediate S-states (S0 to S4)1, where S1 is the dark stable state and S3 is the last semi-stable state before O-O bond formation and O2 evolution2,3. A detailed understanding of the O-O bond formation mechanism remains a challenge, and elucidating the structures of the OEC in the different S-states, as well as the binding of the two substrate waters to the catalytic site4-6, is a prerequisite for this purpose. Here we report the use of femtosecond pulses from an X-ray free electron laser (XFEL) to obtain damage free, room temperature (RT) structures of dark-adapted (S1), two-flash illuminated (2F; S3-enriched), and ammonia-bound two-flash illuminated (2F-NH3; S3-enriched) PS II. Although the recent 1.95 Å structure of PS II7 at cryogenic temperature using an XFEL provided a damage-free view of the S1 state, RT measurements are required to study the structural landscape of proteins under functional conditions8,9, and also for in situ advancement of the S-states. To investigate the water-binding site(s), ammonia, a water analog, has been used as a marker, as it binds to the Mn4CaO5 cluster in the S2 and S3 states10. Since the ammonia-bound OEC is active, the ammonia-binding Mn site is not a substrate water site10-13. Thus, this approach, together with a comparison of the native dark and 2F states, is used to discriminate between proposed O-O bond formation mechanisms. PMID:27871088

  10. Stability of headspace volatiles in a ‘Fallglo’ tangerine juice matrix system at room temperature

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Gas chromatography systems are usually equipped with autosamplers. Samples held in the autosampler tray can stay up to one day or longer at room temperature, if the tray is not equipped with a cooling mechanism. The objective of this research was to determine if holding samples at room temperature i...

  11. Sensitive Infrared Photodetectors: Optimized Electron Kinetics for Room-Temperature Operation

    DTIC Science & Technology

    2010-12-20

    photoelectron lifetime (the capture time of photoelectrons) and improve the device responsivity, photoconductive gain, and sensitivity. Combining QD...parameter for improving the efficiency of room-temperature semiconductor optoelectronic devices, such as mid- and far infrared detectors, solar cells... improving the room- temperature optoelectronic devices due to expected slow relaxation between discrete QD levels. These expectations were based on the

  12. Tomographic reconstruction of indoor spatial temperature distributions using room impulse responses

    NASA Astrophysics Data System (ADS)

    Bleisteiner, M.; Barth, M.; Raabe, A.

    2016-03-01

    Temperature can be estimated by acoustic travel time measurements along known sound paths. By using a multitude of known sound paths in combination with a tomographic reconstruction technique a spatial and temporal resolution of the temperature field can be achieved. Based on it, this article focuses on an experimental method in order to determine the spatially differentiated development of room temperature with only one loudspeaker and one microphone. The theory of geometrical room acoustics is being used to identify sound paths under consideration of reflections. The travel time along a specific sound path is derived from the room impulse response. Temporal variances in room impulse response can be attributed primarily to a change in air temperature and airflow. It is shown that in the absence of airflow a 3D acoustic monitoring of the room temperature can be realized with a fairly limited use of hardware.

  13. Low and room temperature photoabsorption cross sections of NH3 in the UV region

    NASA Astrophysics Data System (ADS)

    Chen, F. Z.; Judge, D. L.; Wu, C. Y. R.; Caldwell, J.

    1998-12-01

    Using synchrotron radiation as a continuum light source, we have measured the absolute absorption cross sections of NH3 with a spectral bandwidth (FWHM) of 0.5 Å. The photoabsorption cross sections of NH3 have been measured from 1750 to 2250 Å under temperature conditions of 295, 195, and 175 K. Significant temperature effects in the absorption threshold region which are mainly due to the presence of hot band absorption are observed. The cross section value at peaks and valleys for the vibrational progressions of the (0,0) to (4,0) bands vary between -80% and +40% as the temperature of NH3 changes from 295 to 175 K. In contrast to this, the changes of cross section values, Pc,T, are found to vary less than 20% for the (v', 0) vibrational progressions with v' >= 5. The measured separations between the doublet features of the (0,0), (1,0), and (2,0) bands are found to decrease as the temperature of NH3 decreases. The shifts of peak positions of Pc,T with respect to the corresponding room temperature absorption peaks show a sudden change at v' = 3 which appears to agree with the trend observed in the homogeneous line widths of the vibrational bands of NH3 ([Vaida et al., 1987]; [Ziegler, 1985]; [Ziegler, 1986]). The unusual behavior of the line widths has been attributed to the A~ state potential surface which has a dissociation barrier.

  14. Ordered iron aluminide alloys having an improved room-temperature ductility and method thereof

    DOEpatents

    Sikka, Vinod K.

    1992-01-01

    A process is disclosed for improving the room temperature ductility and strength of iron aluminide intermetallic alloys. The process involves thermomechanically working an iron aluminide alloy by means which produce an elongated grain structure. The worked alloy is then heated at a temperature in the range of about 650.degree. C. to about 800.degree. C. to produce a B2-type crystal structure. The alloy is rapidly cooled in a moisture free atmosphere to retain the B2-type crystal structure at room temperature, thus providing an alloy having improved room temperature ductility and strength.

  15. Positronium bubble oscillation in room temperature ionic liquids-Temperature dependence

    NASA Astrophysics Data System (ADS)

    Hirade, T.

    2015-06-01

    The temperature dependent oscillation of the ortho-positronium pick-off annihilation rate was successfully observed for a room temperature ionic liquid (IL), N,N,N-trimethyl-N- propylammonium bis(trifluoromethanesulfonyl)imide (TMPA-TFSI). The fundamental frequencies at 25C and 30C were 5.85GHz and 4.00GHz, respectively. The decay of the oscillation was faster at higher temperature, 30C. Moreover, the higher harmonic frequencies could explain the change of ortho-positronium pick-off annihilation rate successfully. The macroscopic viscosity of the IL could not explain the appearance of the oscillation. It indicated that the positron annihilation methods were very strong tools to study the properties of IL's in sub-nanometer scale that must be very different from the macroscopic properties.

  16. Room-temperature ballistic energy transport in molecules with repeating units

    SciTech Connect

    Rubtsova, Natalia I.; Nyby, Clara M.; Zhang, Hong; Zhang, Boyu; Zhou, Xiao; Jayawickramarajah, Janarthanan; Burin, Alexander L.; Rubtsov, Igor V.

    2015-06-07

    In materials, energy can propagate by means of two limiting regimes: diffusive and ballistic. Ballistic energy transport can be fast and efficient and often occurs with a constant speed. Using two-dimensional infrared spectroscopy methods, we discovered ballistic energy transport via individual polyethylene chains with a remarkably high speed of 1440 m/s and the mean free path length of 14.6 Å in solution at room temperature. Whereas the transport via the chains occurs ballistically, the mechanism switches to diffusive with the effective transport speed of 130 m/s at the end-groups attached to the chains. A unifying model of the transport in molecules is presented with clear time separation and additivity among the transport along oligomeric fragments, which occurs ballistically, and the transport within the disordered fragments, occurring diffusively. The results open new avenues for making novel elements for molecular electronics, including ultrafast energy transporters, controlled chemical reactors, and sub-wavelength quantum nanoseparators.

  17. An aluminum/chlorine rechargeable cell employing a room temperature molten salt electrolyte

    NASA Astrophysics Data System (ADS)

    Gifford, P. R.; Palmisano, J. B.

    1988-03-01

    A novel Al/Cl2 rechargeable electrochemical cell is decribed which employs an Al negative and graphtie positive electrode in a room temperature molten salt electrolyte of 1.5:1 AlCl3:1,2-dimethyl-3-propylimidazolium chloride. The graphite positive electrode functions as a reversible intercalation electrode for chlorine, eliminating the need for separate anolyte and catholyte compartments. The cell possesses an average discharge voltage of 1.7V for currents of 1-10 mA/g graphite, and over 150 cycles at 100 percent depth-of-discharge for positive electrode limited cells have been demonstrated. Improvements in the chlorine storage capacity of the positive electrode are needed to obtain satisfactory energy densities.

  18. Entangling macroscopic diamonds at room temperature: Bounds on the continuous-spontaneous-localization parameters

    NASA Astrophysics Data System (ADS)

    Belli, Sebastiano; Bonsignori, Riccarda; D'Auria, Giuseppe; Fant, Lorenzo; Martini, Mirco; Peirone, Simone; Donadi, Sandro; Bassi, Angelo

    2016-07-01

    A recent experiment [K. C. Lee et al., Science 334, 1253 (2011)], 10.1126/science.1211914 succeeded in detecting entanglement between two macroscopic specks of diamonds, separated by a macroscopic distance, at room temperature. This impressive result is a further confirmation of the validity of quantum theory in (at least parts of) the mesoscopic and macroscopic domain, and poses a challenge to collapse models, which predict a violation of the quantum superposition principle, which is bigger the larger the system. We analyze the experiment in the light of such models. We will show that the bounds placed by experimental data are weaker than those coming from matter-wave interferometry and noninterferometric tests of collapse models.

  19. EXAFS investigations of the mechanism of facilitated ion transfer into a room-temperature ionic liquid.

    SciTech Connect

    Jensen, M. P.; Dzielawa, J. A.; Rickert, P.; Dietz, M. L.; Chemistry

    2002-09-11

    The Sr(II)-crown ether complexes formed in a room-temperature ionic liquid (RTIL), 1-methyl-3-pentylimidazolium bis[(trifluoromethyl)sulfonyl]amide, have been studied by X-ray absorption fine structure measurements at the Sr K-edge. When a Sr(NO{sub 3}){sub 2}-crown ether complex is directly dissolved in a water-saturated RTIL, both nitrate ligands and the crown ether coordinate the Sr, as observed in a conventional two-phase water-octanol system. When the cationic Sr-crown ether complex is created in a two-phase water-RTIL system, however, only cationic Sr-crown ether complexes are observed in the RTIL phase. This difference in the coordination complexes arises from differences in the mechanism of cation extraction between the RTIL and conventional molecular organic solvents, a finding with important implications for synthesis, catalysis, and ion separations using two-phase water-RTIL systems.

  20. Room-temperature mercuric iodide spectrometry for low-energy X-rays

    NASA Technical Reports Server (NTRS)

    Kusmiss, J. H.; Barton, J. B.; Huth, G. C.; Economou, T. E.; Turkevich, A. L.; Iwanczyk, J. S.; Dabrowski, A. J.

    1982-01-01

    A discussion of the limits of energy resolution in different energy ranges is given. The energy resolution of a spectrometer is analyzed in terms of the parameters characterizing the crystal, the detector, and the amplification electronics. A high-resolution room-temperature HgI2 spectrometry system was used to measure low-energy X-ray fluorescence spectra. For the MgK-alpha X-ray line the measured resolution was 245 eV (fwhm); the electronic noise linewidth of the system was 225 eV. Alpha-particles were used to excite X-ray fluorescence from low-Z elements separately or in combination. The shape of the photopeaks in the spectra is discussed.

  1. Room-temperature ballistic energy transport in molecules with repeating units

    NASA Astrophysics Data System (ADS)

    Rubtsova, Natalia I.; Nyby, Clara M.; Zhang, Hong; Zhang, Boyu; Zhou, Xiao; Jayawickramarajah, Janarthanan; Burin, Alexander L.; Rubtsov, Igor V.

    2015-06-01

    In materials, energy can propagate by means of two limiting regimes: diffusive and ballistic. Ballistic energy transport can be fast and efficient and often occurs with a constant speed. Using two-dimensional infrared spectroscopy methods, we discovered ballistic energy transport via individual polyethylene chains with a remarkably high speed of 1440 m/s and the mean free path length of 14.6 Å in solution at room temperature. Whereas the transport via the chains occurs ballistically, the mechanism switches to diffusive with the effective transport speed of 130 m/s at the end-groups attached to the chains. A unifying model of the transport in molecules is presented with clear time separation and additivity among the transport along oligomeric fragments, which occurs ballistically, and the transport within the disordered fragments, occurring diffusively. The results open new avenues for making novel elements for molecular electronics, including ultrafast energy transporters, controlled chemical reactors, and sub-wavelength quantum nanoseparators.

  2. Electronic structure and room temperature ferromagnetism of C doped TiO2

    NASA Astrophysics Data System (ADS)

    Ablat, Abduleziz; Wu, Rong; Mamat, Mamatrishat; Ghupur, Yasin; Aimidula, Aimierding; Bake, Muhammad Ali; Gholam, Turghunjan; Wang, Jiaou; Qian, Haijie; Wu, Rui; Ibrahim, Kurash

    2016-10-01

    C-doped TiO2 nanoparticles were successfully synthesized using a simple hydrothermal synthesis method. After this preparation, a portion of the samples were annealed separately in air on the one hand, and in argon on the other, and another portion remained untreated. The results of X-ray diffraction show that the untreated samples primarily display anatase and rutile structures. However, after annealing, the samples displayed the rutile structure only. The Ti K-edge and L-edge Near Edge X-ray Absorption Fine Structure analyses clearly show that C atoms were successfully incorporated into the TiO2 host lattice. All doped samples exhibit ferromagnetism at room temperature. The saturation magnetization (Ms) and coercive fields (Hc) tend to decrease after the samples are annealed in argon and in air. The maximum Ms of the untreated samples was approximately 0.038 emu/g.

  3. Primary and secondary room temperature molten salt electrochemical cells. Rept. for Jun 84-Mar 85

    SciTech Connect

    Reynolds, G.F.; Dymek, C.J.

    1985-01-01

    Three primary cells (a, b, and c) and two secondary cell candidates (d and e) were examined using room-temperature molten salts as electrolytes in each case: (a) A1 anode / A1Cl3-MEIC1 (N=0.37) // FeCl3-MEIC1 (N=0.33) / W cathode (b) A1 anode / A1Cl3-MEIC1 (N=0.37) // WCL6-MEIC1 (N=0.33) / W cathode (c) A1 anode / A1Br3-MEIBr (N=0.33) / BR2 / RVC, Pt cathode (d) Zn anode / A1Cl3-MEIC1 (N=0.33) // A1Cl3-MEIC1 (N=0.60) / A1 cathode (e) Cd anode / A1Cl3-MEIC1 (N=0.33) // A1Cl3-MEIC1 (N=0.60) / A1 cathode. All cells except (c) used electrolytes containing 1-methyl-3-ethylimidazolium chloride (MEIC1), where N is the mole fraction of aluminum halide in the melt. Cell (c) used electrolytes containing 1-methyl-3-ethylimidazolium bromide (MEIBr). An IONAC anion exchange membrane separated the anolyte and catholyte solutions in cells (a) and (b), while in cells (d) and (e) a NAFION cation exchange membrane separated the anolyte and catholyte solutions. In cell (c) a phase boundary separated the anolyte and catholyte solutions, with reticulated vitreous carbon (RVC) acting as the anode current carrier.

  4. A new class of room-temperature multiferroic thin films with bismuth-based supercell structure.

    PubMed

    Chen, Aiping; Zhou, Honghui; Bi, Zhenxing; Zhu, Yuanyuan; Luo, Zhiping; Bayraktaroglu, Adrian; Phillips, Jamie; Choi, Eun-Mi; Macmanus-Driscoll, Judith L; Pennycook, Stephen J; Narayan, Jagdish; Jia, Quanxi; Zhang, Xinghang; Wang, Haiyan

    2013-02-20

    Intergrowth of two partially miscible phases of BiFeO(3) and BiMnO(3) gives a new class of room-temperature multiferroic phase, Bi(3) Fe(2) Mn(2) O(10+δ) , which has a unique supercell (SC) structure. The SC heterostructures exhibit simultaneously room-temperature ferrimagnetism and remanent polarization. These results open up a new avenue for exploring room-temperature single-phase multiferroic thin films by controlling the phase mixing of two perovskite BiRO(3) (R = Cr, Mn, Fe, Co, Ni) materials.

  5. Existence of the multiferroic property at room temperature in Ti doped CoFeO

    NASA Astrophysics Data System (ADS)

    Dwivedi, G. D.; Joshi, Amish G.; Kevin, H.; Shahi, P.; Kumar, A.; Ghosh, A. K.; Yang, H. D.; Chatterjee, Sandip

    2012-03-01

    The appearance of ferroelectricity has been observed in magnetically ordered Co(Fe1-xTix)2O4 at room temperature. Magnetization and dielectric constant is found to increase with Ti doping. It is observed from an X-ray Photoemission Spectroscopy study that Ti goes to the octahedral site with (+4) ionic state. An M-H hysteresis curve at room temperature shows the ferrimagnetic ordering and a P-E loop at room temperature clearly indicates the existence of ferroelectricity.

  6. Efficient room-temperature nuclear spin hyperpolarization of a defect atom in a semiconductor.

    PubMed

    Puttisong, Y; Wang, X J; Buyanova, I A; Geelhaar, L; Riechert, H; Ptak, A J; Tu, C W; Chen, W M

    2013-01-01

    Nuclear spin hyperpolarization is essential to future solid-state quantum computation using nuclear spin qubits and in highly sensitive magnetic resonance imaging. Though efficient dynamic nuclear polarization in semiconductors has been demonstrated at low temperatures for decades, its realization at room temperature is largely lacking. Here we demonstrate that a combined effect of efficient spin-dependent recombination and hyperfine coupling can facilitate strong dynamic nuclear polarization of a defect atom in a semiconductor at room temperature. We provide direct evidence that a sizeable nuclear field (~150 Gauss) and nuclear spin polarization (~15%) sensed by conduction electrons in GaNAs originates from dynamic nuclear polarization of a Ga interstitial defect. We further show that the dynamic nuclear polarization process is remarkably fast and is completed in <5 μs at room temperature. The proposed new concept could pave a way to overcome a major obstacle in achieving strong dynamic nuclear polarization at room temperature, desirable for practical device applications.

  7. The room-temperature shapes of four-layer unsymmetric cross-ply laminates

    NASA Technical Reports Server (NTRS)

    Hyer, M. W.

    1982-01-01

    A geometrically nonlinear extension of classical lamination theory developed by Hyer (1981) for predicting the room-temperature shapes of unsymmetric laminates is reformulated using relaxed restrictions regarding the inplane strains. The inplane residual strains of unsymmetric laminates which have cooled from curing into a cylindrical room-temperature shape are examined numerically. Results show that the residual strains are compressive and practically independent of spatial location on the laminate. In addition, the room temperature shapes of the four-layer unsymmetric cross-ply laminates are predicted, and it is shown that the temperature shapes are a strong function of their size and their stacking arrangement. It is demonstrated that, depending on the parameters selected, the room-temperature shape of a four-layer cross-ply unsymmetric laminate can be a unique saddle shape, a unique cylindrical shape, or a cylindrical shape that can be snapped through to another cylindrical shape.

  8. Near-infrared electroluminescence at room temperature from neodymium-doped gallium nitride thin films

    SciTech Connect

    Kim, Joo Han; Holloway, Paul H.

    2004-09-06

    Strong near-infrared (NIR) electroluminescence (EL) at room temperature from neodymium (Nd)-doped gallium nitride (GaN) thin films is reported. The Nd-doped GaN films were grown by radio-frequency planar magnetron cosputtering of separate GaN and metallic Nd targets in a pure nitrogen ambient. X-ray diffraction data did not identify the presence of any secondary phases and revealed that the Nd-doped GaN films had a highly textured wurtzite crystal structure with the c-axis normal to the surface of the film. The EL devices were fabricated with a thin-film multilayered structure of Al/Nd-doped GaN/Al{sub 2}O{sub 3}-TiO{sub 2}/indium-tin oxide and tested at room temperate. Three distinct NIR EL emission peaks were observed from the devices at 905, 1082, and 1364 nm, arising from the radiative relaxation of the {sup 4}F{sub 3sol2} excited-state energy level to the {sup 4}I{sub 9sol2}, {sup 4}I{sub 11sol2}, and {sup 4}I{sub 13sol2} levels of the Nd{sup 3+} ion, respectively. The threshold voltage for all the three emission peaks was {approx}150 V. The external power efficiency of the fabricated EL devices was {approx}1x10{sup -5} measured at 40 V above the threshold voltage.

  9. Branched quaternary ammonium amphiphiles: nematic ionic liquid crystals near room temperature.

    PubMed

    Li, Wen; Zhang, Jing; Li, Bao; Zhang, Mingliang; Wu, Lixin

    2009-09-21

    Branched quaternary ammonium molecules were synthesized and characterized by calorimetric, optical and X-ray diffraction studies; two of the molecules exhibited interesting nematic liquid crystalline behavior close to room temperature.

  10. Red photoluminescence of living systems at the room temperature : measurements and results

    NASA Astrophysics Data System (ADS)

    Kudryashova, I. S.; Rud, V. Yu; Shpunt, V. Ch; Rud, Yu V.; Glinushkin, A. P.

    2016-08-01

    Presents results of a study of the red luminescence of living plants at room temperature. The analysis of obtained results allows to conclude that the photoluminescence spectra for green leaves in all cases represent the two closely spaced bands.

  11. ROOM TEMPERATURE BULK AND TEMPLATE-FREE SYNTHESIS OF LEUCOEMARLDINE POLYANILINE NANOFIBERS

    EPA Science Inventory

    Herein, we describe a simple strategy for the bulk and template-free synthesis of reduced leucoemarldine polyaniline nanofibers size ranging from as low as 10 nm to 50 nm without the use of any reducing agents at room temperature.

  12. Qualification of room-temperature-curing structural adhesives for use on JPL spacecraft

    NASA Technical Reports Server (NTRS)

    Carpenter, Alain; O'Donnell, Tim

    1989-01-01

    An evaluation is made of the comparative advantages of numerous room temperature-cure structural primers and adhesives applicable to spacecraft structures. The EA 9394 adhesive and BR 127 primer were chosen for use in all primary structure bonding on the Galileo spacecraft, in virtue of adequate room-temperature lap shear and peel strengths and superior mechanical properties above 200 F. EA 9394 also offers superior work life, shelf-life, and storage properties, by comparison with the EA 934 alternative.

  13. Ultra-Low-Cost Room Temperature SiC Thin Films

    NASA Technical Reports Server (NTRS)

    Faur, Maria

    1997-01-01

    The research group at CSU has conducted theoretical and experimental research on 'Ultra-Low-Cost Room Temperature SiC Thin Films. The effectiveness of a ultra-low-cost room temperature thin film SiC growth technique on Silicon and Germanium substrates and structures with applications to space solar sells, ThermoPhotoVoltaic (TPV) cells and microelectronic and optoelectronic devices was investigated and the main result of this effort are summarized.

  14. [Temperature and humidity monitoring system of imaging equipment room based on wireless network].

    PubMed

    Zhou, Xuejun; Yu, Kaijun

    2011-05-01

    This paper presents a wireless temperature and humidity control system for hospital's video room. The system realizes one to multiple communication using wireless communication module CC1020 and SHT11 as sensors, and then sets up the communication between system and the central station with serial communication controller MSCOMM. The system uses VISUAL C++ programming to realize the video room temperature and humidity alarm control. It is wireless, efficacious and manpower-efficient.

  15. Microemulsions with an ionic liquid surfactant and room temperature ionic liquids as polar pseudo-phase.

    PubMed

    Zech, Oliver; Thomaier, Stefan; Bauduin, Pierre; Rück, Thomas; Touraud, Didier; Kunz, Werner

    2009-01-15

    In this investigation we present for the first time microemulsions comprising an ionic liquid as surfactant and a room-temperature ionic liquid as polar pseudo-phase. Microemulsions containing the long- chain ionic liquid1-hexadecyl-3-methyl-imidazolium chloride ([C16mim][Cl]) as surfactant, decanol as cosurfactant, dodecaneas continuous phase and room temperature ionic liquids (ethylammonium nitrate (EAN) and 1-butyl-3-methylimidazolium tetrafluoroborate ([bmim

  16. Graphene-based room-temperature implementation of a modified Deutsch-Jozsa quantum algorithm.

    PubMed

    Dragoman, Daniela; Dragoman, Mircea

    2015-12-04

    We present an implementation of a one-qubit and two-qubit modified Deutsch-Jozsa quantum algorithm based on graphene ballistic devices working at room temperature. The modified Deutsch-Jozsa algorithm decides whether a function, equivalent to the effect of an energy potential distribution on the wave function of ballistic charge carriers, is constant or not, without measuring the output wave function. The function need not be Boolean. Simulations confirm that the algorithm works properly, opening the way toward quantum computing at room temperature based on the same clean-room technologies as those used for fabrication of very-large-scale integrated circuits.

  17. Room-temperature calorimeter for x-ray free-electron lasers

    SciTech Connect

    Tanaka, T. Kato, M.; Saito, N.; Tono, K.; Yabashi, M.; Ishikawa, T.

    2015-09-15

    We have developed a room-temperature calorimeter for absolute radiant power measurements of x-ray free-electron lasers. This room-temperature calorimeter is an electrical substitution device based on the equivalence of electrical and radiant heating. Consequently, the measured radiant powers are traceable to electrical standards, i.e., the International System Units (SI). We demonstrated the performance of the room-temperature calorimeter by electrical power measurements (offline tests). In the offline tests, the room-temperature calorimeter was proven to be able to measure external powers up to at least 6.9 mW, which exceeds the upper limit (∼4 mW) of a cryogenic radiometer (the primary standard detector in Japan). In addition, measurement uncertainties of the room-temperature calorimeter were evaluated to be less than 1.0%, which is adequate for the radiant power measurements of x-ray free-electron lasers. An indirect comparison with the cryogenic radiometer was performed using a synchrotron radiation source to confirm the validity of the absolute radiant powers measured with the room-temperature calorimeter. The absolute radiant powers measured by the calorimeter agreed with those measured by the cryogenic radiometer within 0.6%, which is less than the relative standard uncertainty of the comparison (1.0%)

  18. Room-temperature calorimeter for x-ray free-electron lasers.

    PubMed

    Tanaka, T; Kato, M; Saito, N; Tono, K; Yabashi, M; Ishikawa, T

    2015-09-01

    We have developed a room-temperature calorimeter for absolute radiant power measurements of x-ray free-electron lasers. This room-temperature calorimeter is an electrical substitution device based on the equivalence of electrical and radiant heating. Consequently, the measured radiant powers are traceable to electrical standards, i.e., the International System Units (SI). We demonstrated the performance of the room-temperature calorimeter by electrical power measurements (offline tests). In the offline tests, the room-temperature calorimeter was proven to be able to measure external powers up to at least 6.9 mW, which exceeds the upper limit (∼4 mW) of a cryogenic radiometer (the primary standard detector in Japan). In addition, measurement uncertainties of the room-temperature calorimeter were evaluated to be less than 1.0%, which is adequate for the radiant power measurements of x-ray free-electron lasers. An indirect comparison with the cryogenic radiometer was performed using a synchrotron radiation source to confirm the validity of the absolute radiant powers measured with the room-temperature calorimeter. The absolute radiant powers measured by the calorimeter agreed with those measured by the cryogenic radiometer within 0.6%, which is less than the relative standard uncertainty of the comparison (1.0%).

  19. Room-temperature calorimeter for x-ray free-electron lasers

    NASA Astrophysics Data System (ADS)

    Tanaka, T.; Kato, M.; Saito, N.; Tono, K.; Yabashi, M.; Ishikawa, T.

    2015-09-01

    We have developed a room-temperature calorimeter for absolute radiant power measurements of x-ray free-electron lasers. This room-temperature calorimeter is an electrical substitution device based on the equivalence of electrical and radiant heating. Consequently, the measured radiant powers are traceable to electrical standards, i.e., the International System Units (SI). We demonstrated the performance of the room-temperature calorimeter by electrical power measurements (offline tests). In the offline tests, the room-temperature calorimeter was proven to be able to measure external powers up to at least 6.9 mW, which exceeds the upper limit (˜4 mW) of a cryogenic radiometer (the primary standard detector in Japan). In addition, measurement uncertainties of the room-temperature calorimeter were evaluated to be less than 1.0%, which is adequate for the radiant power measurements of x-ray free-electron lasers. An indirect comparison with the cryogenic radiometer was performed using a synchrotron radiation source to confirm the validity of the absolute radiant powers measured with the room-temperature calorimeter. The absolute radiant powers measured by the calorimeter agreed with those measured by the cryogenic radiometer within 0.6%, which is less than the relative standard uncertainty of the comparison (1.0%).

  20. Effects of ambient room temperature on cold air cooling during laser hair removal.

    PubMed

    Ram, Ramin; Rosenbach, Alan

    2007-09-01

    Forced air cooling is a well-established technique that protects the epidermis during laser heating of deeper structures, thereby allowing for increased laser fluences. The goal of this prospective study was to identify whether an elevation in ambient room temperature influences the efficacy of forced air cooling. Skin surface temperatures were measured on 24 sites (12 subjects) during cold air exposure in examination rooms with ambient temperatures of 72 degrees F (22.2 degrees C) and 82 degrees F (27.8 degrees C), respectively. Before cooling, mean skin surface temperature was 9 degrees F (5 degrees C) higher in the warmer room (P < 0.01). Immediately after exposure to forced air cooling (within 1 s), the skin surface temperature remained considerably higher (10.75 degrees F, or 5.8 degrees C, P < 0.01) in the warmer room. We conclude that forced air cooling in a room with an ambient temperature of 82 degrees F (27.8 degrees C) is not as effective as in a room that is at 72 degrees F (22.2 degrees C).

  1. Fatigue mechanisms in graphite/SiC composites at room and high temperature

    SciTech Connect

    Morris, W.L.; Cox, B.N.; Marshall, D.B.; Inman, R.V.; James, M.R. )

    1994-03-01

    Some deductions have been made from fractographic evidence about mechanisms of low-cycle mechanical fatigue in plain woven graphite/SiC composites at room and high temperature in vacuum. At both room temperature and 830 C, fatigue appears to be confined to the crack wake, where attrition reduces the efficacy of bridging fibers. It is inferred that the crack tip advances at some critical value of the crack tip stress intensity factor, as in monotonic growth, rather than by any intrinsic fatigue mechanism in the matrix. However, the manifestations of attrition are very different at room and high temperatures. At high temperature, wear is greatly accelerated by the action of SiC debris within the crack. This distinction is rationalized in terms of the temperature dependence expected in the opening displacement of a bridged crack. This argument leads in turn to plausible explanations of trends in load-life curves and the morphology of cracks as the temperature rises.

  2. Evolution of Dust Structures from Room to Cryogenic Temperatures

    SciTech Connect

    Antipov, S. N.; Asinovskii, E. I.; Kirillin, A. V.; Markovets, V. V.; Petrov, O. F.; Fortov, V. E.

    2008-09-07

    In this work dusty plasma of dc glow discharge at the temperatures in the range of 4.2-300 K was experimentally and numerically investigated. As it was shown in the experiments, the deep cooling of discharge tube walls leads to dramatic change of dusty plasma properties. In particular, sufficient increase of dust particle kinetic temperature (by about an order) and dust density (by several orders) was observed at low (cryogenic) temperatures. At 4.2 K, this can lead to the forming of a super dense dust structures with novel properties. Numerical simulations of charging process, dust charge fluctuation and screening of dust particle charge in plasma were made in dependence with the neutral gas temperature and dust density. The main attention was given to proper ion-atom collision analysis that allows us to investigate mechanisms of dust structure transformation observed in the cryogenic experiments.

  3. High-efficiency resonant amplification of weak magnetic fields for single spin magnetometry at room temperature

    NASA Astrophysics Data System (ADS)

    Trifunovic, Luka; Pedrocchi, Fabio L.; Hoffman, Silas; Maletinsky, Patrick; Yacoby, Amir; Loss, Daniel

    2015-06-01

    Magnetic resonance techniques not only provide powerful imaging tools that have revolutionized medicine, but they have a wide spectrum of applications in other fields of science such as biology, chemistry, neuroscience and physics. However, current state-of-the-art magnetometers are unable to detect a single nuclear spin unless the tip-to-sample separation is made sufficiently small. Here, we demonstrate theoretically that by placing a ferromagnetic particle between a nitrogen-vacancy magnetometer and a target spin, the magnetometer sensitivity is improved dramatically. Using materials and techniques that are already experimentally available, our proposed set-up is sensitive enough to detect a single nuclear spin within ten milliseconds of data acquisition at room temperature. The sensitivity is practically unchanged when the ferromagnet surface to the target spin separation is smaller than the ferromagnet lateral dimensions; typically about a tenth of a micrometre. This scheme further benefits when used for nitrogen-vacancy ensemble measurements, enhancing sensitivity by an additional three orders of magnitude.

  4. Room temperature synthesis and high temperature frictional study of silver vanadate nanorods.

    PubMed

    Singh, D P; Polychronopoulou, K; Rebholz, C; Aouadi, S M

    2010-08-13

    We report the room temperature (RT) synthesis of silver vanadate nanorods (consisting of mainly beta-AgV O(3)) by a simple wet chemical route and their frictional study at high temperatures (HT). The sudden mixing of ammonium vanadate with silver nitrate solution under constant magnetic stirring resulted in a pale yellow coloured precipitate. Structural/microstructural characterization of the precipitate through x-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) revealed the high yield and homogeneous formation of silver vanadate nanorods. The length of the nanorods was 20-40 microm and the thickness 100-600 nm. The pH variation with respect to time was thoroughly studied to understand the formation mechanism of the silver vanadate nanorods. This synthesis process neither demands HT, surfactants nor long reaction time. The silver vanadate nanomaterial showed good lubrication behaviour at HT (700 degrees C) and the friction coefficient was between 0.2 and 0.3. HT-XRD revealed that AgV O(3) completely transformed into silver vanadium oxide (Ag(2)V(4)O(11)) and silver with an increase in temperature from RT to 700 degrees C.

  5. Entanglement and Bell's inequality violation above room temperature in metal carboxylates.

    SciTech Connect

    Souza, A M; Soares-Pinto, D O; Sarthour, R S; Oliveira, I S; Reis, Mario S; Brandao, Paula; Moreira Dos Santos, Antonio F

    2009-01-01

    In the present work we show that a particular family of materials, the metal carboxylates, may have entangled states up to very high temperatures. From magnetic-susceptibility measurements, we have estimated the critical temperature below which entanglement exists in the copper carboxylate {Cu-2(O2CH)(4)}{Cu(O2CH)(2)(2-methylpyridine)(2)}, and we have found this to be above room temperature (T-e similar to 630 K). Furthermore, the results show that the system remains maximally entangled until close to similar to 100 K and the Bell's inequality is violated up to nearly room temperature (similar to 290 K).

  6. Room temperature texturing of austenite/ferrite steel by electropulsing

    PubMed Central

    Rahnama, Alireza; Qin, Rongshan

    2017-01-01

    The work reports an experimental observation on crystal rotation in a duplex (austenite + ferrite) steel induced by the electropulsing treatment at ambient temperature, while the temperature rising due to ohmic heating in the treatment was negligible. The results demonstrate that electric current pulses are able to dissolve the initial material’s texture that has been formed in prior thermomechanical processing and to produce an alternative texture. The results were explained in terms of the instability of an interface under perturbation during pulsed electromigation. PMID:28195181

  7. Room temperature texturing of austenite/ferrite steel by electropulsing

    NASA Astrophysics Data System (ADS)

    Rahnama, Alireza; Qin, Rongshan

    2017-02-01

    The work reports an experimental observation on crystal rotation in a duplex (austenite + ferrite) steel induced by the electropulsing treatment at ambient temperature, while the temperature rising due to ohmic heating in the treatment was negligible. The results demonstrate that electric current pulses are able to dissolve the initial material’s texture that has been formed in prior thermomechanical processing and to produce an alternative texture. The results were explained in terms of the instability of an interface under perturbation during pulsed electromigation.

  8. A Promising New Method to Estimate Drug-Polymer Solubility at Room Temperature.

    PubMed

    Knopp, Matthias Manne; Gannon, Natasha; Porsch, Ilona; Rask, Malte Bille; Olesen, Niels Erik; Langguth, Peter; Holm, René; Rades, Thomas

    2016-09-01

    The established methods to predict drug-polymer solubility at room temperature either rely on extrapolation over a long temperature range or are limited by the availability of a liquid analogue of the polymer. To overcome these issues, this work investigated a new methodology where the drug-polymer solubility is estimated from the solubility of the drug in a solution of the polymer at room temperature using the shake-flask method. Thus, the new polymer in solution method does not rely on temperature extrapolations and only requires the polymer and a solvent, in which the polymer is soluble, that does not affect the molecular structure of the drug and polymer relative to that in the solid state. Consequently, as this method has the potential to provide fast and precise estimates of drug-polymer solubility at room temperature, we encourage the scientific community to further investigate this principle both fundamentally and practically.

  9. Tunable room-temperature ferromagnet using an iron-oxide and graphene oxide nanocomposite

    NASA Astrophysics Data System (ADS)

    Lin, Aigu L.; Rodrigues, J. N. B.; Su, Chenliang; Milletari, M.; Loh, Kian Ping; Wu, Tom; Chen, Wei; Neto, A. H. Castro; Adam, Shaffique; Wee, Andrew T. S.

    2015-06-01

    Magnetic materials have found wide application ranging from electronics and memories to medicine. Essential to these advances is the control of the magnetic order. To date, most room-temperature applications have a fixed magnetic moment whose orientation is manipulated for functionality. Here we demonstrate an iron-oxide and graphene oxide nanocomposite based device that acts as a tunable ferromagnet at room temperature. Not only can we tune its transition temperature in a wide range of temperatures around room temperature, but the magnetization can also be tuned from zero to 0.011 A m2/kg through an initialization process with two readily accessible knobs (magnetic field and electric current), after which the system retains its magnetic properties semi-permanently until the next initialization process. We construct a theoretical model to illustrate that this tunability originates from an indirect exchange interaction mediated by spin-imbalanced electrons inside the nanocomposite.

  10. Low threshold interband cascade lasers operating above room temperature

    NASA Technical Reports Server (NTRS)

    Hill, C. J.; Yang, B.; Yang, R. Q.

    2003-01-01

    Mid-IR type-II interband cascade lasers were demonstrated in pulsed mode at temperatures up to 325 K and in continuous mode up to 200 K. At 80 K, the threshold current density was 8.9 A/cm2 and a cw outpout power of 140 mW/facet was obtained.

  11. Ferroelectric polymer nanocomposites for room-temperature electrocaloric refrigeration.

    PubMed

    Zhang, Guangzu; Li, Qi; Gu, Haiming; Jiang, Shenglin; Han, Kuo; Gadinski, Matthew R; Haque, Md Amanul; Zhang, Qiming; Wang, Qing

    2015-02-25

    Solution-processable ferroelectric polymer nanocomposites are developed as a new form of electrocaloric materials that can be effectively operated under both modest and high electric fields at ambient temperature. By integrating the complementary properties of the constituents, the nanocomposites exhibit state-of-the-art cooling energy densities. Greatly improved thermal conductivity also yields superior cooling power densities validated by finite volume simulations.

  12. III-V compound semiconductor multi-junction solar cells fabricated by room-temperature wafer-bonding technique

    NASA Astrophysics Data System (ADS)

    Arimochi, Masayuki; Watanabe, Tomomasa; Yoshida, Hiroshi; Tange, Takashi; Nomachi, Ichiro; Ikeda, Masao; Dai, Pan; He, Wei; Ji, Lian; Lu, Shulong; Yang, Hui; Uchida, Shiro

    2015-05-01

    We have developed III-V compound semiconductor multi-junction solar cells by a room-temperature wafer-bonding technique to avoid the formation of dislocations and voids due to lattice mismatch and thermal damage during a conventional high-temperature wafer-bonding process. First, we separately grew an (Al)GaAs top cell on a GaAs substrate and an InGaAs bottom cell on an InP substrate by metal solid source molecular beam epitaxy. Thereafter, we successfully bonded these sub-cells by the room-temperature wafer-bonding technique and fabricated (Al)GaAs ∥ InGaAs wafer-bonded solar cells. To the best of our knowledge, the obtained GaAs ∥ InGaAs and AlGaAs ∥ InGaAs wafer-bonded solar cells exhibited the lowest electrical and optical losses ever reported. The AlGaAs ∥ InGaAs solar cells reached the maximum efficiency of 27.7% at 120 suns. These results suggest that the room-temperature wafer-bonding technique has high potential for achieving higher conversion efficiencies.

  13. Local electrical control of magnetic order and orientation by ferroelastic domain arrangements just above room temperature

    PubMed Central

    Phillips, L. C.; Cherifi, R. O.; Ivanovskaya, V.; Zobelli, A.; Infante, I. C.; Jacquet, E.; Guiblin, N.; Ünal, A. A.; Kronast, F.; Dkhil, B.; Barthélémy, A.; Bibes, M.; Valencia, S.

    2015-01-01

    Ferroic materials (ferromagnetic, ferroelectric, ferroelastic) usually divide into domains with different orientations of their order parameter. Coupling between different ferroic systems creates new functionalities, for instance the electrical control of macroscopic magnetic properties including magnetization and coercive field. Here we show that ferroelastic domains can be used to control both magnetic order and magnetization direction at the nanoscale with a voltage. We use element-specific X-ray imaging to map the magnetic domains as a function of temperature and voltage in epitaxial FeRh on ferroelastic BaTiO3. Exploiting the nanoscale phase-separation of FeRh, we locally interconvert between ferromagnetic and antiferromagnetic states with a small electric field just above room temperature. Imaging and ab initio calculations show the antiferromagnetic phase of FeRh is favoured by compressive strain on c-oriented BaTiO3 domains, and the resultant magnetoelectric coupling is larger and more reversible than previously reported from macroscopic measurements. Our results emphasize the importance of nanoscale ferroic domain structure and the promise of first-order transition materials to achieve enhanced coupling in artificial multiferroics. PMID:25969926

  14. Spreading of lithium on a stainless steel surface at room temperature

    SciTech Connect

    Skinner, C. H.; Capece, A. M.; Roszell, J. P.; Koel, B. E.

    2015-11-10

    Lithium conditioned plasma facing surfaces have lowered recycling and enhanced plasma performance on many fusion devices and liquid lithium plasma facing components are under consideration for future machines. A key factor in the performance of liquid lithium components is the wetting by lithium of its container. We have observed the surface spreading of lithium from a mm-scale particle to adjacent stainless steel surfaces using a scanning Auger microprobe that has elemental discrimination. Here, the spreading of lithium occurred at room temperature (when lithium is a solid) from one location at a speed of 0.62 μm/day under ultrahigh vacuum conditions. Separate experiments using temperature programmed desorption (TPD) investigated bonding energetics between monolayer-scale films of lithium and stainless steel. While multilayer lithium desorption from stainless steel begins to occur just above 500 K (Edes = 1.54 eV), sub-monolayer Li desorption occurred in a TPD peak at 942 K (Edes = 2.52 eV) indicating more energetically favorable lithium-stainless steel bonding (in the absence of an oxidation layer) than lithium lithium bonding.

  15. Room temperature ferrimagnetism and low temperature disorder effects in zinc ferrite thin films

    NASA Astrophysics Data System (ADS)

    Raghavan, Lisha; Pookat, Geetha; Thomas, Hysen; Ojha, Sunil; Avasthi, D. K.; Anantharaman, M. R.

    2015-07-01

    Zinc ferrite is a normal spinel and antiferromagnetic in nature with a Neel temperature of 10 K in the micron regime. It exhibits interesting features like superparamagnetism, spin glass and ferrimagnetism in the nano-regime. These anomalies make zinc ferrite striking among various other spinels. Further, in the thin film form, the magnetic properties are dependent on preparative techniques, annealing and deposition parameters. In the present work, zinc ferrite thin films were prepared by RF sputtering. The films were annealed at 400° C and 600° C. The thickness and composition of films were estimated by employing Rutherford Backscattering Spectrometry (RBS). The structural and microstructural studies conducted using Glancing X Ray Diffractometer (GXRD) and Transmission Electron Microscope (TEM) indicates the formation of a spinel phase and grain growth was observed with annealing. Magnetic measurements were carried out using a Superconducting Quantum Interferometer Device-Vibrating Sample Magnetometry (SQUID VSM). The films were found to be ferrimagnetic at room temperature and Field Cooling-Zero Field Cooling (FC-ZFC) studies indicate the presence of disorders.

  16. Can doping graphite trigger room temperature superconductivity? Evidence for granular high-temperature superconductivity in water-treated graphite powder.

    PubMed

    Scheike, T; Böhlmann, W; Esquinazi, P; Barzola-Quiquia, J; Ballestar, A; Setzer, A

    2012-11-14

    Granular superconductivity in powders of small graphite grains (several tens of micrometers) is demonstrated after treatment with pure water. The temperature, magnetic field and time dependence of the magnetic moment of the treated graphite powder provides evidence for the existence of superconducting vortices with some similarities to high-temperature granular superconducting oxides but even at temperatures above 300 K. Room temperature superconductivity in doped graphite or at its interfaces appears to be possible.

  17. Temperature-responsive chromatography for the separation of biomolecules.

    PubMed

    Kanazawa, Hideko; Okano, Teruo

    2011-12-09

    Temperature-responsive chromatography for the separation of biomolecules utilizing poly(N-isopropylacrylamide) (PNIPAAm) and its copolymer-modified stationary phase is performed with an aqueous mobile phase without using organic solvent. The surface properties and function of the stationary phase are controlled by external temperature changes without changing the mobile-phase composition. This analytical system is based on nonspecific adsorption by the reversible transition of a hydrophilic-hydrophobic PNIPAAm-grafted surface. The driving force for retention is hydrophobic interaction between the solute molecules and the hydrophobized polymer chains on the stationary phase surface. The separation of the biomolecules, such as nucleotides and proteins was achieved by a dual temperature- and pH-responsive chromatography system. The electrostatic and hydrophobic interactions could be modulated simultaneously with the temperature in an aqueous mobile phase, thus the separation system would have potential applications in the separation of biomolecules. Additionally, chromatographic matrices prepared by a surface-initiated atom transfer radical polymerization (ATRP) exhibit a strong interaction with analytes, because the polymerization procedure forms a densely packed polymer, called a polymer brush, on the surfaces. The copolymer brush grafted surfaces prepared by ATRP was an effective tool for separating basic biomolecules by modulating the electrostatic and hydrophobic interactions. Applications of thermally responsive columns for the separations of biomolecules are reviewed here.

  18. Hydrogen-incorporation stabilization of metallic VO2(R) phase to room temperature, displaying promising low-temperature thermoelectric effect.

    PubMed

    Wu, Changzheng; Feng, Feng; Feng, Jun; Dai, Jun; Peng, Lele; Zhao, Jiyin; Yang, Jinlong; Si, Cheng; Wu, Ziyu; Xie, Yi

    2011-09-07

    Regulation of electron-electron correlation has been found to be a new effective way to selectively control carrier concentration, which is a crucial step toward improving thermoelectric properties. The pure electronic behavior successfully stabilized the nonambient metallic VO(2)(R) to room temperature, giving excellent thermoelectric performance among the simple oxides with wider working temperature ranges.

  19. Microplastic Deformation of Submicrocrystalline Copper at Room and Elevated Temperatures

    NASA Astrophysics Data System (ADS)

    Dudarev, E. F.; Pochivalova, G. P.; Tabachenko, A. N.; Maletkina, T. Yu.; Skosyrskii, A. B.; Osipov, D. A.

    2017-02-01

    of investigations of submicrocrystalline copper subjected to cold rolling after abc pressing by methods of backscatter electron diffraction and x-ray diffraction analysis are presented. It is demonstrated that after such combined intensive plastic deformation, the submicrocrystalline structure with average grain-subgrain structure elements having sizes of 0.63 μm is formed with relative fraction of high-angle grain boundaries of 70% with texture typical for rolled copper. Results of investigation of microplastic deformation of copper with such structure at temperatures in the interval 295-473 K and with submicrocrystalline structure formed by cold rolling of coarse-grained copper are presented.

  20. Room-temperature ferroelectricity of SrTiO{sub 3} films modulated by cation concentration

    SciTech Connect

    Yang, Fang; Zhang, Qinghua; Yang, Zhenzhong; Gu, Junxing; Liang, Yan; Li, Wentao; Wang, Weihua; Jin, Kuijuan; Gu, Lin; Guo, Jiandong

    2015-08-24

    The room-temperature ferroelectricity of SrTiO{sub 3} is promising for oxide electronic devices controlled by multiple fields. An effective way to control the ferroelectricity is highly demanded. Here, we show that the off-centered antisite-like defects in SrTiO{sub 3} films epitaxially grown on Si (001) play the determinative role in the emergence of room-temperature ferroelectricity. The density of these defects changes with the film cation concentration sensitively, resulting in a varied coercive field of the ferroelectric behavior. Consequently, the room-temperature ferroelectricity of SrTiO{sub 3} films can be effectively modulated by tuning the temperature of metal sources during the molecular beam epitaxy growth. Such an easy and reliable modulation of the ferroelectricity enables the flexible engineering of multifunctional oxide electronic devices.

  1. A new class of room temperature molten salts for battery applications

    NASA Astrophysics Data System (ADS)

    Wilkes, J. S.; Levisky, J. A.; Landers, J. S.; Vaughn, R. L.; Hussey, C. L.; Floreani, D. A.; Stech, D. J.

    1981-10-01

    Salts that are liquid at room temperature would provide a completely ionic electrolyte for rechargeable batteries without the penalty of high operating temperatures. We have discovered and characterized a new class of molten salts that are liquids considerably below room temperature. The new materials are mixtures of dialkyimidazolium chlorides and aluminum chloride. The solid-liquid phase diagram of one member of the class shows that the material is liquid below room temperature over its entire composition range. A proof of concept battery cell using the new electrolyte was demonstrated. Electrochemical tests show that battery anodes and cathodes will operate in the new electrolytes. By varying the ratio of the components of the new melts, the chemical and physical properties can be changed over a very wide range.

  2. Experimental Demonstration of Room-Temperature Spin Transport in n -Type Germanium Epilayers

    NASA Astrophysics Data System (ADS)

    Dushenko, S.; Koike, M.; Ando, Y.; Shinjo, T.; Myronov, M.; Shiraishi, M.

    2015-05-01

    We report an experimental demonstration of room-temperature spin transport in n -type Ge epilayers grown on a Si(001) substrate. By utilizing spin pumping under ferromagnetic resonance, which inherently endows a spin battery function for semiconductors connected with a ferromagnet, a pure spin current is generated in the n -Ge at room temperature. The pure spin current is detected by using the inverse spin-Hall effect of either a Pt or Pd electrode on n -Ge . From a theoretical model that includes a geometrical contribution, the spin diffusion length in n -Ge at room temperature is estimated to be 660 nm. Moreover, the spin relaxation time decreases with increasing temperature, in agreement with a recently proposed theory of donor-driven spin relaxation in multivalley semiconductors.

  3. Direct observation of a highly spin-polarized organic spinterface at room temperature

    PubMed Central

    Djeghloul, F.; Ibrahim, F.; Cantoni, M.; Bowen, M.; Joly, L.; Boukari, S.; Ohresser, P.; Bertran, F.; Le Fèvre, P.; Thakur, P.; Scheurer, F.; Miyamachi, T.; Mattana, R.; Seneor, P.; Jaafar, A.; Rinaldi, C.; Javaid, S.; Arabski, J.; Kappler, J. -P; Wulfhekel, W.; Brookes, N. B.; Bertacco, R.; Taleb-Ibrahimi, A.; Alouani, M.; Beaurepaire, E.; Weber, W.

    2013-01-01

    Organic semiconductors constitute promising candidates toward large-scale electronic circuits that are entirely spintronics-driven. Toward this goal, tunneling magnetoresistance values above 300% at low temperature suggested the presence of highly spin-polarized device interfaces. However, such spinterfaces have not been observed directly, let alone at room temperature. Thanks to experiments and theory on the model spinterface between phthalocyanine molecules and a Co single crystal surface, we clearly evidence a highly efficient spinterface. Spin-polarised direct and inverse photoemission experiments reveal a high degree of spin polarisation at room temperature at this interface. We measured a magnetic moment on the molecule's nitrogen π orbitals, which substantiates an ab-initio theoretical description of highly spin-polarised charge conduction across the interface due to differing spinterface formation mechanisms in each spin channel. We propose, through this example, a recipe to engineer simple organic-inorganic interfaces with remarkable spintronic properties that can endure well above room temperature. PMID:23412079

  4. Thermopower and resistivity in ferromagnetic thin films near room temperature

    NASA Astrophysics Data System (ADS)

    Avery, A. D.; Sultan, Rubina; Bassett, D.; Wei, D.; Zink, B. L.

    2011-03-01

    We present measurements of thermopower (Seebeck coefficient) and electrical resistivity of a wide selection of polycrystalline ferromagnetic films with thicknesses ranging from 60-167 nm. For comparison, a copper film of similar thickness was measured with the same techniques. Both the thermal and electrical measurements, made as a function of temperature from 77-325 K, are made using a micromachined thermal isolation platform consisting of a suspended, patterned silicon-nitride membrane. We observe a strong correlation between the resistivity of the films and the thermopower. Films with higher resistivity and residual resistivity ratios, indicating a higher concentration of static defects such as impurities or grain boundaries, with rare exception show thermopower of the same sign, but with absolute magnitude reduced from the thermopower of the corresponding bulk material. In addition, iron films exhibit the pronounced low-temperature peak in thermopower associated with magnon drag, with a magnitude similar to that seen in bulk iron alloys. These results provide important groundwork for ongoing studies of related thermoelectric effects in nanomagnetic systems, such as the spin Seebeck effect.

  5. Room Temperature Curing Resin Systems for Graphite/Epoxy Composite Repair.

    DTIC Science & Technology

    1979-12-01

    peroxides , such as methyl ethyl ketone peroxide (MEKP), cumene hydroperoxide (CHP), and benzoyl peroxide (BPO), which are activated at room temperature...temperature curing adhesives. A typical system composed of Dow’s fe. .ane resin cured with methyl ethyl ketone peroxide had a glass transition

  6. Effects of reduced nocturnal temperature on pig performance and energy consumption in swine nursery rooms.

    PubMed

    Johnston, L J; Brumm, M C; Moeller, S J; Pohl, S; Shannon, M C; Thaler, R C

    2013-07-01

    The objective of this investigation was to determine the effect of a reduced nocturnal temperature (RNT) regimen on performance of weaned pigs and energy consumption during the nursery phase of production. The age of weaned pigs assigned to experiments ranged from 16 to 22 d. In Exp. 1, 3 stations conducted 2 trials under a common protocol that provided data from 6 control rooms (CON; 820 pigs) and 6 RNT rooms (818 pigs). Two mirror-image nursery rooms were used at each station. Temperature in the CON room was set to 30°C for the first 7 d, then reduced by 2°C per week through the remainder of the experiment. Room temperature settings were held constant throughout the day and night. The temperature setting in the RNT room was the same as CON during the first 7 d, but beginning on the night of d 7, the room temperature setting was reduced 6°C from the daytime temperature from 1900 to 0700 h. The use of heating fuel and electricity were measured weekly in each room. Overall, ADG (0.43 kg), ADFI (0.62 kg), and G:F (0.69) were identical for CON and RNT rooms. Consumption of heating fuel [9,658 vs. 7,958 British thermal units (Btu)·pig(-1)·d(-1)] and electricity (0.138 vs. 0.125 kilowatt-hour (kWh)·pig(-1)·d(-1)] were not statistically different for CON and RNT rooms, respectively. In Exp. 2, 4 stations conducted at least 2 trials that provided data from 9 CON rooms (2,122 pigs) and 10 RNT rooms (2,176 pigs). Experimental treatments and protocols were the same as Exp. 1, except that the RNT regimen was imposed on the night of d 5 and the targeted nighttime temperature reduction was 8.3°C. Neither final pig BW (21.8 vs. 21.5 kg; SE = 0.64), ADG (0.45 vs. 0.44 kg; SE = 0.016), ADFI (0.61 vs. 0.60 kg; SE = 0.019), nor G:F (0.75 vs. 0.75; SE = 0.012) were different for pigs housed in CON or RNT rooms, respectively. Consumption of heating fuel and electricity was consistently reduced in RNT rooms for all 4 stations. Consumption of heating fuel (10,019 vs. 7,061 Btu

  7. Failure modes at room and elevated temperatures. Technical report

    SciTech Connect

    Braun, L.M.

    1995-04-01

    Successful development of reliable ceramic composites will depend on an understanding of matrix cracking and damage mechanisms in these materials. Therefore, the objective of the Failure Models subtask is to investigate failure and damage mechanisms in fiber reinforced ceramic composites. Issues such as how fiber coatings, the fiber/matrix interface, residual stresses, and fiber volume fraction affect frictional stresses, fiber debonding, fiber pull-out and failure modes will be examined. The effect of these microstructural parameters on matrix crack initiation, propagation and damage will also be determined. The resulting observations and measurements data will be used to develop theoretical models for damage mechanisms in fiber reinforced composites. This report presents results concerning the effect of temperature on the failure modes of continuous fiber ceramic composites performed during the last quarter of FY 1993 and FY 1994. The Raman stress measurements and calculations were performed during the last quarter of FY 1994 and the first quarter of FY 1995.

  8. Room Temperature Aging Study of Butyl O-rings

    SciTech Connect

    Mark Wilson

    2009-08-07

    During testing under the Enhanced Surveillance Campaign in 2001, preliminary data detected a previously unknown and potentially serious concern with recently procured butyl o-rings. All butyl o-rings molded from a proprietary formulation throughout the period circa 1999 through 2001 had less than a full cure. Tests showed that sealing force values for these suspect o-rings were much lower than expected and their physical properties were very sensitive to further post curing at elevated temperatures. Further testing confirmed that these o-rings were approximately 50% cured versus the typical industry standard of > 90% cured. Despite this condition, all suspect o-rings fully conformed to their QC acceptance requirements, including their individual product drawing requirements.

  9. Geopolymer - room-temperature ceramic matrix for composites

    SciTech Connect

    Davidovits, J.; Davidovics, M.

    1988-08-01

    The semiamorphous three-dimensional networks of polymeric Na, K, Li, and Mg aluminosilicates of both poly(sialate) and poly(sialate-siloxo) type, collectively known as geopolymers, harden at 20-120 C and are similar to thermoset resins, but are stable at up to 1200-1400 C without shrinkage. A wide variety of alkaline-resistant inorganic reinforcements, notably SiC fibers, have been combined with geopolymer matrices to yield nonburning, nonsmoking high-temperature composites. An SiC fiber-reinforced K-poly(sialate-siloxo) matrix, shaped and hardened at 70 C for 1.5 hr, develops flexural mean strengths of the order of 380 MPa that are retained after firing at up to 900 C. 16 references.

  10. Dual Phase Membrane for High temperature CO2 Separation

    SciTech Connect

    Jerry Y.S. Lin; Matthew Anderson

    2005-12-01

    Research in the previous years in this project found that stainless steel supports are oxidized during high temperature, dual phase membrane separation of carbon dioxide (with oxygen). Consequently, a new material has been sought to alleviate the problems with oxidation. Lanthanum cobaltite oxide is a suitable candidate for the support material in the dual phase membrane due to its oxidation resistance and electronic conductivity. Porous lanthanum cobaltite membranes were prepared via the citrate method, using nitrate metal precursors as the source of La, Sr, Co and Fe. The material was prepared and ground into a powder, which was subsequently pressed into disks for sintering at 900 C. Conductivity measurements were evaluated using the four-probe DC method. Support pore size was determined by helium permeation. Conductivity of the lanthanum cobaltite material was found to be at a maximum of 0.1856 S/cm at 550 C. The helium permeance of the lanthanum cobaltite membranes for this research was on the order of 10{sup -6} moles/m{sup 2} {center_dot} Pa {center_dot} s, proving that the membranes are porous after sintering at 900 C. The average pore size based on steady state helium permeance measurements was found to be between 0.37 and 0.57 {micro}m. The lanthanum cobaltite membranes have shown to have desired porosity, pore size and electric conductivity as the support for the dual-phase membranes. Molten carbonate was infiltrated to the pores of lanthanum cobaltite membranes support. After infiltration with molten carbonate, the helium permeance of the membranes decreased by three orders of magnitude to 10{sup -9} moles/m{sup 2} {center_dot} Pa {center_dot} s. This number, however, is one order of magnitude larger than the room temperate permeance of the stainless steel supports after infiltration with molten carbonate. Optimization of the dip coating process with molten carbonate will be evaluated to determine if lower permeance values can be obtained with the

  11. Conformational variation of proteins at room temperature is not dominated by radiation damage.

    PubMed

    Russi, Silvia; González, Ana; Kenner, Lillian R; Keedy, Daniel A; Fraser, James S; van den Bedem, Henry

    2017-01-01

    Protein crystallography data collection at synchrotrons is routinely carried out at cryogenic temperatures to mitigate radiation damage. Although damage still takes place at 100 K and below, the immobilization of free radicals increases the lifetime of the crystals by approximately 100-fold. Recent studies have shown that flash-cooling decreases the heterogeneity of the conformational ensemble and can hide important functional mechanisms from observation. These discoveries have motivated increasing numbers of experiments to be carried out at room temperature. However, the trade-offs between increased risk of radiation damage and increased observation of alternative conformations at room temperature relative to cryogenic temperature have not been examined. A considerable amount of effort has previously been spent studying radiation damage at cryo-temperatures, but the relevance of these studies to room temperature diffraction is not well understood. Here, the effects of radiation damage on the conformational landscapes of three different proteins (T. danielli thaumatin, hen egg-white lysozyme and human cyclophilin A) at room (278 K) and cryogenic (100 K) temperatures are investigated. Increasingly damaged datasets were collected at each temperature, up to a maximum dose of the order of 10(7) Gy at 100 K and 10(5) Gy at 278 K. Although it was not possible to discern a clear trend between damage and multiple conformations at either temperature, it was observed that disorder, monitored by B-factor-dependent crystallographic order parameters, increased with higher absorbed dose for the three proteins at 100 K. At 278 K, however, the total increase in this disorder was only statistically significant for thaumatin. A correlation between specific radiation damage affecting side chains and the amount of disorder was not observed. This analysis suggests that elevated conformational heterogeneity in crystal structures at room temperature is observed despite

  12. Conformational variation of proteins at room temperature is not dominated by radiation damage

    DOE PAGES

    Russi, Silvia; González, Ana; Kenner, Lillian R.; ...

    2017-01-01

    Protein crystallography data collection at synchrotrons is routinely carried out at cryogenic temperatures to mitigate radiation damage. Although damage still takes place at 100 K and below, the immobilization of free radicals increases the lifetime of the crystals by approximately 100-fold. Recent studies have shown that flash-cooling decreases the heterogeneity of the conformational ensemble and can hide important functional mechanisms from observation. These discoveries have motivated increasing numbers of experiments to be carried out at room temperature. However, the trade-offs between increased risk of radiation damage and increased observation of alternative conformations at room temperature relative to cryogenic temperature havemore » not been examined. A considerable amount of effort has previously been spent studying radiation damage at cryo-temperatures, but the relevance of these studies to room temperature diffraction is not well understood. Here, the effects of radiation damage on the conformational landscapes of three different proteins (T. danielli thaumatin, hen egg-white lysozyme and human cyclophilin A) at room (278 K) and cryogenic (100 K) temperatures are investigated. Increasingly damaged datasets were collected at each temperature, up to a maximum dose of the order of 107 Gy at 100 K and 105 Gy at 278 K. Although it was not possible to discern a clear trend between damage and multiple conformations at either temperature, it was observed that disorder, monitored by B-factor-dependent crystallographic order parameters, increased with higher absorbed dose for the three proteins at 100 K. At 278 K, however, the total increase in this disorder was only statistically significant for thaumatin. A correlation between specific radiation damage affecting side chains and the amount of disorder was not observed. Lastly, this analysis suggests that elevated conformational heterogeneity in crystal structures at room temperature is observed despite

  13. Conformational variation of proteins at room temperature is not dominated by radiation damage

    SciTech Connect

    Russi, Silvia; González, Ana; Kenner, Lillian R.; Keedy, Daniel A.; Fraser, James S.; van den Bedem, Henry

    2017-01-01

    Protein crystallography data collection at synchrotrons is routinely carried out at cryogenic temperatures to mitigate radiation damage. Although damage still takes place at 100 K and below, the immobilization of free radicals increases the lifetime of the crystals by approximately 100-fold. Recent studies have shown that flash-cooling decreases the heterogeneity of the conformational ensemble and can hide important functional mechanisms from observation. These discoveries have motivated increasing numbers of experiments to be carried out at room temperature. However, the trade-offs between increased risk of radiation damage and increased observation of alternative conformations at room temperature relative to cryogenic temperature have not been examined. A considerable amount of effort has previously been spent studying radiation damage at cryo-temperatures, but the relevance of these studies to room temperature diffraction is not well understood. Here, the effects of radiation damage on the conformational landscapes of three different proteins (T. danielli thaumatin, hen egg-white lysozyme and human cyclophilin A) at room (278 K) and cryogenic (100 K) temperatures are investigated. Increasingly damaged datasets were collected at each temperature, up to a maximum dose of the order of 107 Gy at 100 K and 105 Gy at 278 K. Although it was not possible to discern a clear trend between damage and multiple conformations at either temperature, it was observed that disorder, monitored by B-factor-dependent crystallographic order parameters, increased with higher absorbed dose for the three proteins at 100 K. At 278 K, however, the total increase in this disorder was only statistically significant for thaumatin. A correlation between specific radiation damage affecting side chains and the amount of disorder was not observed. Lastly, this analysis suggests that elevated conformational heterogeneity in crystal structures at room

  14. Conformational variation of proteins at room temperature is not dominated by radiation damage

    PubMed Central

    Russi, Silvia; González, Ana; Kenner, Lillian R.; Keedy, Daniel A.; Fraser, James S.; van den Bedem, Henry

    2017-01-01

    Protein crystallography data collection at synchrotrons is routinely carried out at cryogenic temperatures to mitigate radiation damage. Although damage still takes place at 100 K and below, the immobilization of free radicals increases the lifetime of the crystals by approximately 100-fold. Recent studies have shown that flash-cooling decreases the heterogeneity of the conformational ensemble and can hide important functional mechanisms from observation. These discoveries have motivated increasing numbers of experiments to be carried out at room temperature. However, the trade-offs between increased risk of radiation damage and increased observation of alternative conformations at room temperature relative to cryogenic temperature have not been examined. A considerable amount of effort has previously been spent studying radiation damage at cryo-temperatures, but the relevance of these studies to room temperature diffraction is not well understood. Here, the effects of radiation damage on the conformational landscapes of three different proteins (T. danielli thaumatin, hen egg-white lysozyme and human cyclo­philin A) at room (278 K) and cryogenic (100 K) temperatures are investigated. Increasingly damaged datasets were collected at each temperature, up to a maximum dose of the order of 107 Gy at 100 K and 105 Gy at 278 K. Although it was not possible to discern a clear trend between damage and multiple conformations at either temperature, it was observed that disorder, monitored by B-factor-dependent crystallographic order parameters, increased with higher absorbed dose for the three proteins at 100 K. At 278 K, however, the total increase in this disorder was only statistically significant for thaumatin. A correlation between specific radiation damage affecting side chains and the amount of disorder was not observed. This analysis suggests that elevated conformational heterogeneity in crystal structures at room temperature is observed despite

  15. Performance evaluation of ZnO–CuO hetero junction solid state room temperature ethanol sensor

    SciTech Connect

    Yu, Ming-Ru; Suyambrakasam, Gobalakrishnan; Wu, Ren-Jang; Chavali, Murthy

    2012-07-15

    Graphical abstract: Sensor response (resistance) curves of time were changed from 150 ppm to 250 ppm alcohol concentration of ZnO–CuO 1:1. The response and recovery times were measured to be 62 and 83 s, respectively. The sensing material ZnO–CuO is a high potential alcohol sensor which provides a simple, rapid and highly sensitive alcohol gas sensor operating at room temperature. Highlights: ► The main advantages of the ethanol sensor are as followings. ► Novel materials ZnO–CuO ethanol sensor. ► The optimized ZnO–CuO hetero contact system. ► A good sensor response and room working temperature (save energy). -- Abstract: A semiconductor ethanol sensor was developed using ZnO–CuO and its performance was evaluated at room temperature. Hetero-junction sensor was made of ZnO–CuO nanoparticles for sensing alcohol at room temperature. Nanoparticles were prepared by hydrothermal method and optimized with different weight ratios. Sensor characteristics were linear for the concentration range of 150–250 ppm. Composite materials of ZnO–CuO were characterized using X-ray diffraction (XRD), temperature-programmed reduction (TPR) and high-resolution transmission electron microscopy (HR-TEM). ZnO–CuO (1:1) material showed maximum sensor response (S = R{sub air}/R{sub alcohol}) of 3.32 ± 0.1 toward 200 ppm of alcohol vapor at room temperature. The response and recovery times were measured to be 62 and 83 s, respectively. The linearity R{sup 2} of the sensor response was 0.9026. The sensing materials ZnO–CuO (1:1) provide a simple, rapid and highly sensitive alcohol gas sensor operating at room temperature.

  16. Hydrogen reduction of molybdenum oxide at room temperature

    PubMed Central

    Borgschulte, Andreas; Sambalova, Olga; Delmelle, Renaud; Jenatsch, Sandra; Hany, Roland; Nüesch, Frank

    2017-01-01

    The color changes in chemo- and photochromic MoO3 used in sensors and in organic photovoltaic (OPV) cells can be traced back to intercalated hydrogen atoms stemming either from gaseous hydrogen dissociated at catalytic surfaces or from photocatalytically split water. In applications, the reversibility of the process is of utmost importance, and deterioration of the layer functionality due to side reactions is a critical challenge. Using the membrane approach for high-pressure XPS, we are able to follow the hydrogen reduction of MoO3 thin films using atomic hydrogen in a water free environment. Hydrogen intercalates into MoO3 forming HxMoO3, which slowly decomposes into MoO2 +1/2 H2O as evidenced by the fast reduction of Mo6+ into Mo5+ states and slow but simultaneous formation of Mo4+ states. We measure the decrease in oxygen/metal ratio in the thin film explaining the limited reversibility of hydrogen sensors based on transition metal oxides. The results also enlighten the recent debate on the mechanism of the high temperature hydrogen reduction of bulk molybdenum oxide. The specific mechanism is a result of the balance between the reduction by hydrogen and water formation, desorption of water as well as nucleation and growth of new phases. PMID:28094318

  17. Hydrogen reduction of molybdenum oxide at room temperature

    NASA Astrophysics Data System (ADS)

    Borgschulte, Andreas; Sambalova, Olga; Delmelle, Renaud; Jenatsch, Sandra; Hany, Roland; Nüesch, Frank

    2017-01-01

    The color changes in chemo- and photochromic MoO3 used in sensors and in organic photovoltaic (OPV) cells can be traced back to intercalated hydrogen atoms stemming either from gaseous hydrogen dissociated at catalytic surfaces or from photocatalytically split water. In applications, the reversibility of the process is of utmost importance, and deterioration of the layer functionality due to side reactions is a critical challenge. Using the membrane approach for high-pressure XPS, we are able to follow the hydrogen reduction of MoO3 thin films using atomic hydrogen in a water free environment. Hydrogen intercalates into MoO3 forming HxMoO3, which slowly decomposes into MoO2 +1/2 H2O as evidenced by the fast reduction of Mo6+ into Mo5+ states and slow but simultaneous formation of Mo4+ states. We measure the decrease in oxygen/metal ratio in the thin film explaining the limited reversibility of hydrogen sensors based on transition metal oxides. The results also enlighten the recent debate on the mechanism of the high temperature hydrogen reduction of bulk molybdenum oxide. The specific mechanism is a result of the balance between the reduction by hydrogen and water formation, desorption of water as well as nucleation and growth of new phases.

  18. Room temperature aluminum antimonide radiation detector and methods thereof

    DOEpatents

    Lordi, Vincenzo; Wu, Kuang Jen J.; Aberg, Daniel; Erhart, Paul; Coombs, III, Arthur W; Sturm, Benjamin W

    2015-03-03

    In one embodiment, a method for producing a high-purity single crystal of aluminum antimonide (AlSb) includes providing a growing environment with which to grow a crystal, growing a single crystal of AlSb in the growing environment which comprises hydrogen (H.sub.2) gas to reduce oxide formation and subsequent incorporation of oxygen impurities in the crystal, and adding a controlled amount of at least one impurity to the growing environment to effectively incorporate at least one dopant into the crystal. In another embodiment, a high energy radiation detector includes a single high-purity crystal of AlSb, a supporting structure for the crystal, and logic for interpreting signals obtained from the crystal which is operable as a radiation detector at a temperature of about 25.degree. C. In one embodiment, a high-purity single crystal of AlSb includes AlSb and at least one dopant selected from a group consisting of selenium (Se), tellurium (Te), and tin (Sn).

  19. A moment model for phonon transport at room temperature

    NASA Astrophysics Data System (ADS)

    Mohammadzadeh, Alireza; Struchtrup, Henning

    2017-01-01

    Heat transfer in solids is modeled by deriving the macroscopic equations for phonon transport from the phonon-Boltzmann equation. In these equations, the Callaway model with frequency-dependent relaxation time is considered to describe the Resistive and Normal processes in the phonon interactions. Also, the Brillouin zone is considered to be a sphere, and its diameter depends on the temperature of the system. A simple model to describe phonon interaction with crystal boundary is employed to obtain macroscopic boundary conditions, where the reflection kernel is the superposition of diffusive reflection, specular reflection and isotropic scattering. Macroscopic moments are defined using a polynomial of the frequency and wave vector of phonons. As an example, a system of moment equations, consisting of three directional and seven frequency moments, i.e., 63 moments in total, is used to study one-dimensional heat transfer, as well as Poiseuille flow of phonons. Our results show the importance of frequency dependency in relaxation times and macroscopic moments to predict rarefaction effects. Good agreement with data reported in the literature is obtained.

  20. Ceramic membranes for gas separation at high temperatures. Final report

    SciTech Connect

    Wang, C.J.

    1994-03-01

    Superior heat, wear, erosion, and corrosion resistance of ceramic materials have motivated the studies of processing-structure-performance interrelationships of ceramic membranes for high temperature gas separations. A literature review on pore transport mechanisms, physical structure of membranes, and module configuration of industrial membrane processes has been made to obtain a better understanding of membrane performance in gas separations. The research experience in decomposing polymer resins for ablative composites has stimulated a research interest in developing a dynamic model for membrane processes, incorporating a temperature effects on material and fluid properties. Brief summaries of the reviewed literature, permeability experiments, and process modeling are presented in this report.

  1. Magnetic switching of ferroelectric domains at room temperature in multiferroic PZTFT

    PubMed Central

    Evans, D.M.; Schilling, A.; Kumar, Ashok; Sanchez, D.; Ortega, N.; Arredondo, M.; Katiyar, R.S.; Gregg, J.M.; Scott, J.F.

    2013-01-01

    Single-phase magnetoelectric multiferroics are ferroelectric materials that display some form of magnetism. In addition, magnetic and ferroelectric order parameters are not independent of one another. Thus, the application of either an electric or magnetic field simultaneously alters both the electrical dipole configuration and the magnetic state of the material. The technological possibilities that could arise from magnetoelectric multiferroics are considerable and a range of functional devices has already been envisioned. Realising these devices, however, requires coupling effects to be significant and to occur at room temperature. Although such characteristics can be created in piezoelectric-magnetostrictive composites, to date they have only been weakly evident in single-phase multiferroics. Here in a newly discovered room temperature multiferroic, we demonstrate significant room temperature coupling by monitoring changes in ferroelectric domain patterns induced by magnetic fields. An order of magnitude estimate of the effective coupling coefficient suggests a value of ~1 × 10−7 sm−1. PMID:23443562

  2. Evaluation of room-temperature chloroaluminate molten salts as electrolytes for high energy density batteries

    NASA Astrophysics Data System (ADS)

    Vaughn, R. L.

    1990-04-01

    This report reviews past battery studies using room-temperature chloroaluminate electrolytes, pointing out problems experienced. The report then summarizes attempts to circumvent these problems. A cell is described that uses a sodium anode, a copper (II) chloride cathode, and room-temperature chloroaluminate electrolyte buffered to the neutral composition. Cells give an open circuit voltage greater than 2.75 volts and discharge near 1 milliAmperes per centimeters squared at voltages greater than 2 volts for more than 20 hours. Cell failure is attributed to the formation of a nonconductive coating on the sodium electrode. Suggestions for future studies are presented. While the room-temperature chloroaluminates appear suitable for high-voltage, low-current batteries, their physical properties may limit their potential for high energy density batteries.

  3. Ferromagnetism at room temperature in Cr-doped anodic titanium dioxide nanotubes

    SciTech Connect

    Liao, Yulong E-mail: hwzhang@uestc.edu.cn; Zhang, Huaiwu E-mail: hwzhang@uestc.edu.cn; Li, Jie; Yu, Guoliang; Zhong, Zhiyong; Bai, Feiming; Jia, Lijun; Zhang, Shihong; Zhong, Peng

    2014-05-07

    This study reports the room-temperature ferromagnetism in Cr-doped TiO{sub 2} nanotubes (NTs) synthesized via the electrochemical method followed by a novel Cr-doping process. Scanning electron microscopy and transmission electron microscopy showed that the TiO{sub 2} NTs were highly ordered with length up to 26 μm, outer diameter about 110 nm, and inner diameter about 100 nm. X-ray diffraction results indicated there were no magnetic contaminations of metallic Cr clusters or any other phases except anatase TiO{sub 2}. The Cr-doped TiO{sub 2} NTs were further annealed in oxygen, air and argon, and room-temperature ferromagnetism was observed in all Cr-doped samples. Moreover, saturation magnetizations and coercivities of the Cr-doped under various annealing atmosphere were further analyzed, and results indicate that oxygen content played a critical role in the room-temperature ferromagnetism.

  4. Structure determination of an integral membrane protein at room temperature from crystals in situ.

    PubMed

    Axford, Danny; Foadi, James; Hu, Nien Jen; Choudhury, Hassanul Ghani; Iwata, So; Beis, Konstantinos; Evans, Gwyndaf; Alguel, Yilmaz

    2015-06-01

    The structure determination of an integral membrane protein using synchrotron X-ray diffraction data collected at room temperature directly in vapour-diffusion crystallization plates (in situ) is demonstrated. Exposing the crystals in situ eliminates manual sample handling and, since it is performed at room temperature, removes the complication of cryoprotection and potential structural anomalies induced by sample cryocooling. Essential to the method is the ability to limit radiation damage by recording a small amount of data per sample from many samples and subsequently assembling the resulting data sets using specialized software. The validity of this procedure is established by the structure determination of Haemophilus influenza TehA at 2.3 Å resolution. The method presented offers an effective protocol for the fast and efficient determination of membrane-protein structures at room temperature using third-generation synchrotron beamlines.

  5. Quality of Red Blood Cells Isolated from Umbilical Cord Blood Stored at Room Temperature

    PubMed Central

    Zhurova, Mariia; Akabutu, John; Acker, Jason

    2012-01-01

    Red blood cells (RBCs) from cord blood contain fetal hemoglobin that is predominant in newborns and, therefore, may be more appropriate for neonatal transfusions than currently transfused adult RBCs. Post-collection, cord blood can be stored at room temperature for several days before it is processed for stem cells isolation, with little known about how these conditions affect currently discarded RBCs. The present study examined the effect of the duration cord blood spent at room temperature and other cord blood characteristics on cord RBC quality. RBCs were tested immediately after their isolation from cord blood using a broad panel of quality assays. No significant decrease in cord RBC quality was observed during the first 65 hours of storage at room temperature. The ratio of cord blood to anticoagulant was associated with RBC quality and needs to be optimized in future. This knowledge will assist in future development of cord RBC transfusion product. PMID:24089645

  6. Polymer functionalized nanostructured porous silicon for selective water vapor sensing at room temperature

    NASA Astrophysics Data System (ADS)

    Dwivedi, Priyanka; Das, Samaresh; Dhanekar, Saakshi

    2017-04-01

    This paper highlights the surface treatment of porous silicon (PSi) for enhancing the sensitivity of water vapors at room temperature. A simple and low cost technique was used for fabrication and functionalization of PSi. Spin coated polyvinyl alcohol (PVA) was used for functionalizing PSi surface. Morphological and structural studies were conducted to analyze samples using SEM and XRD/Raman spectroscopy respectively. Contact angle measurements were performed for assessing the wettability of the surfaces. PSi and functionalized PSi samples were tested as sensors in presence of different analytes like ethanol, acetone, isopropyl alcohol (IPA) and water vapors in the range of 50-500 ppm. Electrical measurements were taken from parallel aluminium electrodes fabricated on the functionalized surface, using metal mask and thermal evaporation. Functionalized PSi sensors in comparison to non-functionalized sensors depicted selective and enhanced response to water vapor at room temperature. The results portray an efficient and selective water vapor detection at room temperature.

  7. A novel NO2 gas sensor based on Hall effect operating at room temperature

    NASA Astrophysics Data System (ADS)

    Lin, J. Y.; Xie, W. M.; He, X. L.; Wang, H. C.

    2016-09-01

    Tungsten trioxide nanoparticles were obtained by a simple thermal oxidation approach. The structural and morphological properties of these nanoparticles are investigated using XRD, SEM and TEM. A WO3 thick film was deposited on the four Au electrodes to be a WO3 Hall effect sensor. The sensor was tested between magnetic field in a plastic test chamber. Room-temperature nitrogen dioxide sensing characteristics of Hall effect sensor were studied for various concentration levels of nitrogen dioxide at dry air and humidity conditions. A typical room-temperature response of 3.27 was achieved at 40 ppm of NO2 with a response and recovery times of 36 and 45 s, respectively. NO2 gas sensing mechanism of Hall effect sensor was also studied. The room-temperature operation, with the low deposition cost of the sensor, suggests suitability for developing a low-power cost-effective nitrogen dioxide sensor.

  8. Thermoacoustic mixture separation with an axial temperature gradient

    SciTech Connect

    Geller, Drew W; Swift, Gregory A

    2008-01-01

    The theory of thermoacoustic mixture separation is extended to include the effect of a nonzero axial temperature gradient. The analysis yields a new term in the second-order mole flux that is proportional to the temperature gradient and to the square of the volumetric velocity and is independent of the phasing of the wave. Because of this new term, thermoacoustic separation stops at a critical temperature gradient and changes direction above that gradient. For a traveling wave, this gradient is somewhat higher than that predicted by a simple four-step model. An experiment tests the theory for temperature gradients from 0 to 416 K/m in 50-50 He-Ar mixtures.

  9. Stage for texture measurements above room temperature in a Philips X'Pert Pro MPD diffractometer

    SciTech Connect

    Sobrero, Cesar E.; Castellani, Daniel; Bolmaro, Raul E.; Malarria, Jorge A.

    2009-11-15

    A special stage for texture measurements above room temperature was designed with the proper size and weight to be fitted onto the Eulerean cradle of the Philips X'Pert Pro MPD diffractometer. With such device, flat samples of 2x2 cm{sup 2} area can be analyzed at a nearly constant temperature with variations below {+-}4 deg. C in the range between ambient temperature and 200 deg. C.

  10. Stage for texture measurements above room temperature in a Philips X'Pert Pro MPD diffractometer

    NASA Astrophysics Data System (ADS)

    Sobrero, César E.; Castellani, Daniel; Bolmaro, Raúl E.; Malarría, Jorge A.

    2009-11-01

    A special stage for texture measurements above room temperature was designed with the proper size and weight to be fitted onto the Eulerean cradle of the Philips X'Pert Pro MPD diffractometer. With such device, flat samples of 2×2 cm2 area can be analyzed at a nearly constant temperature with variations below ±4 °C in the range between ambient temperature and 200 °C.

  11. Study on the paper substrate room temperature phosphorescence of theobromine, caffeine and theophylline and analytical application

    NASA Astrophysics Data System (ADS)

    Chuan, Dong; Yan-Li, Wei; Shao-Min, Shuang

    2003-05-01

    Paper substrate room temperature phosphorescence (RTP) of theobromine (TB), caffeine (CF) and theophylline (TP) were investigated. The method is based on fast speed quantitative filter paper as substrate and KI-NaAc as heavy atom perturber. Various factors affecting their RTP were discussed in detail. Under the optimum experimental conditions, the linear dynamic range, limit of detection (LOD), and relative standard deviation (R.S.D.) were 14.41˜576.54 ng per spot, 1.14 ng per spot, 4.8% for TB, 5.44˜699.08 ng per spot, 0.78 ng per spot, 1.56% for CF, 7.21˜360.34 ng per spot, 1.80 ng per spot, 3.80% for TP, respectively. The first analytical application for the determination of these compounds was developed. The recovery of standard samples added to commercial products chocolate, tea, coffee and aminophylline is in the range 92.80-106.08%. The proposed method was successfully applied to real sample analysis without separation.

  12. Layered structure of room-temperature ionic liquids in microemulsions by multinuclear NMR spectroscopic studies.

    PubMed

    Falcone, R Dario; Baruah, Bharat; Gaidamauskas, Ernestas; Rithner, Christopher D; Correa, N Mariano; Silber, Juana J; Crans, Debbie C; Levinger, Nancy E

    2011-06-06

    Microemulsions form in mixtures of polar, nonpolar, and amphiphilic molecules. Typical microemulsions employ water as the polar phase. However, microemulsions can form with a polar phase other than water, which hold promise to diversify the range of properties, and hence utility, of microemulsions. Here microemulsions formed by using a room-temperature ionic liquid (RTIL) as the polar phase were created and characterized by using multinuclear NMR spectroscopy. (1)H, (11)B, and (19)F NMR spectroscopy was applied to explore differences between microemulsions formed by using 1-butyl-3-methylimidazolium tetrafluoroborate ([bmim][BF(4)]) as the polar phase with a cationic surfactant, benzylhexadecyldimethylammonium chloride (BHDC), and a nonionic surfactant, Triton X-100 (TX-100). NMR spectroscopy showed distinct differences in the behavior of the RTIL as the charge of the surfactant head group varies in the different microemulsion environments. Minor changes in the chemical shifts were observed for [bmim](+) and [BF(4)](-) in the presence of TX-100 suggesting that the surfactant and the ionic liquid are separated in the microemulsion. The large changes in spectroscopic parameters observed are consistent with microstructure formation with layering of [bmim](+) and [BF(4)](-) and migration of Cl(-) within the BHDC microemulsions. Comparisons with NMR results for related ionic compounds in organic and aqueous environments as well as literature studies assisted the development of a simple organizational model for these microstructures.

  13. Assessment of DNA Encapsulation, a New Room-Temperature DNA Storage Method

    PubMed Central

    Santoni, Sylvain; Saker, Safa; Gomard, Maite; Gardais, Eliane; Bizet, Chantal

    2014-01-01

    A new procedure for room-temperature storage of DNA was evaluated whereby DNA samples from human tissue, bacteria, and plants were stored under an anoxic and anhydrous atmosphere in small glass vials fitted in stainless-steel, laser-sealed capsules (DNAshells®). Samples were stored in DNAshells® at room temperature for various periods of time to assess any degradation and compare it to frozen control samples and those stored in GenTegra™ tubes. The study included analysis of the effect of accelerated aging by using a high temperature (76°C) at 50% relative humidity. No detectable DNA degradation was seen in samples stored in DNAshells® at room temperature for 18 months. Polymerase chain reaction experiments, pulsed field gel electrophoresis, and amplified fragment length polymorphism analyses also demonstrated that the protective properties of DNAshells® are not affected by storage under extreme conditions (76°C, 50% humidity) for 30 hours, guaranteeing 100 years without DNA sample degradation. However, after 30 hours of storage at 76°C, it was necessary to include adjustments to the process in order to avoid DNA loss. Successful protection of DNA was obtained for 1 week and even 1 month of storage at high temperature by adding trehalose, which provides a protective matrix. This study demonstrates the many advantages of using DNAshells® for room-temperature storage, particularly in terms of long-term stability, safety, transport, and applications for molecular biology research. PMID:24955733

  14. Room-temperature defect tolerance of band-engineered InAs quantum dot heterostructures

    NASA Astrophysics Data System (ADS)

    Oktyabrsky, S.; Lamberti, M.; Tokranov, V.; Agnello, G.; Yakimov, M.

    2005-09-01

    Using photoluminescence (PL) at 77-420 K and high-energy proton implantation (1.5 MeV, dose up to 3×1014 cm-2) we have studied the thermal quenching of PL and defect tolerance of self-assembled shape-engineered InAs quantum dots (QDs) embedded into GaAs quantum wells (QWs). At room temperature, QDs appeared to withstand two orders of magnitude higher proton doses than QWs without PL degradation. A simple dynamic model was used to account for both dose and temperature dependence of PL efficiency. At low temperatures, the defect-related quenching is mainly controlled by a reduction in the density of defect-free QDs. At and above room temperature, both thermal and defect-related quenching of PL are due to the escape of carriers from dots to wells that act as barriers with low damage constants. A relatively large barrier for escape (450 meV) as well as low nonradiative recombination rate in QDs is shown to account for unsurpassed room-temperature defect tolerance and high PL efficiency at room and elevated temperatures.

  15. Room temperature nanostructured graphene transistor with high on/off ratio

    NASA Astrophysics Data System (ADS)

    Dragoman, Mircea; Dinescu, Adrian; Dragoman, Daniela

    2017-01-01

    We report the batch fabrication of graphene field-effect-transistors (GFETs) with nanoperforated graphene as channel. The transistors were cut and encapsulated. The encapsulated GFETs display saturation regions that can be tuned by modifying the top gate voltage, and have on/off ratios of at least 2 × 103 at room temperature and at small drain and gate voltages. In addition, the nanoperforated GFETs display orders of magnitude higher photoresponses than any room-temperature graphene detector configurations that do not involve heterostructures with bandgap materials.

  16. A thermochromic europium(iii) room temperature ionic liquid with thermally activated anion-cation interactions.

    PubMed

    Monteiro, Bernardo; Outis, Mani; Cruz, Hugo; Leal, João Paulo; Laia, César A T; Pereira, Cláudia C L

    2017-01-10

    We report the first example of an observable and reversible case of thermochromism due to the interaction of an alkylphosphonium (P6,6,6,14)(+) with a β-diketonate (1,1,1,2,2,3,3-heptafluoro-7,7-dimethyloctane-4,6-dionate-fod) of an europium(iii) tetrakis-β-diketonate room temperature ionic liquid. This thermochromism is characterized by the conversion of a light yellow viscous liquid, at room temperature, to a reddish substance close to 80 °C. The reversibility of this optical effect was highlighted by the thermal stability of the Eu(iii) complex.

  17. Quantum confinement of zero-dimensional hybrid organic-inorganic polaritons at room temperature

    SciTech Connect

    Nguyen, H. S.; Lafosse, X.; Amo, A.; Bouchoule, S.; Bloch, J.; Abdel-Baki, K.; Lauret, J.-S.; Deleporte, E.

    2014-02-24

    We report on the quantum confinement of zero-dimensional polaritons in perovskite-based microcavity at room temperature. Photoluminescence of discrete polaritonic states is observed for polaritons localized in symmetric sphere-like defects which are spontaneously nucleated on the top dielectric Bragg mirror. The linewidth of these confined states is found much sharper (almost one order of magnitude) than that of photonic modes in the perovskite planar microcavity. Our results show the possibility to study organic-inorganic cavity polaritons in confined microstructure and suggest a fabrication method to realize integrated polaritonic devices operating at room temperature.

  18. Testing Room-Temperature Ionic Liquid Solutions for Depot Repair of Aluminum Coatings

    DTIC Science & Technology

    2011-05-01

    Liquid : Definition Table Salt (NaCl) Crystal Melting Point = 801 C Ionic Liquid (BMIM-PF6) Melting Point = 11 C An “ionic liquid ” (IL) is a salt in...Testing Room-Temperature Ionic Liquid Solutions for Depot Repair of Aluminum Coatings Elizabeth Berman, Ph.D., AFRL/RXSCP Natasha Voevodin, Ph.D...TYPE 3. DATES COVERED 00-00-2011 to 00-00-2011 4. TITLE AND SUBTITLE Testing Room-Temperature Ionic Liquid Solutions for Depot Repair of

  19. Room-temperature fabrication of light-emitting thin films based on amorphous oxide semiconductor

    SciTech Connect

    Kim, Junghwan Miyokawa, Norihiko; Ide, Keisuke; Toda, Yoshitake; Hiramatsu, Hidenori; Hosono, Hideo; Kamiya, Toshio

    2016-01-15

    We propose a light-emitting thin film using an amorphous oxide semiconductor (AOS) because AOS has low defect density even fabricated at room temperature. Eu-doped amorphous In-Ga-Zn-O thin films fabricated at room temperature emitted intense red emission at 614 nm. It is achieved by precise control of oxygen pressure so as to suppress oxygen-deficiency/excess-related defects and free carriers. An electronic structure model is proposed, suggesting that non-radiative process is enhanced mainly by defects near the excited states. AOS would be a promising host for a thin film phosphor applicable to flexible displays as well as to light-emitting transistors.

  20. Highly selective room-temperature copper-catalyzed C-N coupling reactions.

    PubMed

    Shafir, Alexandr; Buchwald, Stephen L

    2006-07-12

    Through the use of cyclic beta-diketones as supporting ligands, the copper-catalyzed coupling of aryl iodides with aliphatic amines occurs at room temperature in as little as 1 h. These high reaction rates allow for the coupling of a wide range of aryl and heteroaryl iodides at room temperature. This method is highly tolerant of a number of reactive functional groups, including -Br and aromatic -NH2 as well as phenolic and aliphatic -OH. The high selectivity of the CuI-beta-diketone catalyst for aliphatic amines represents a useful complement to the palladium-based methods.

  1. Photoexcited Individual Nanowires: Key Elements in Room Temperature Detection of Oxidizing Gases

    SciTech Connect

    Prades, J. D.; Jimenez-Diaz, R.; Manzanares, M.; Andreu, T.; Cirera, A.; Romano-Rodriguez, A.; Morante, J. R.

    2009-05-23

    Illuminating metal oxide semiconductors with ultra-violet light is a feasible alternative to activate chemical reactions at their surface and thus, using them as gas sensors without the necessity of heating them. Here, the response at room temperature of individual single-crystalline SnO{sub 2} nanowires towards NO{sub 2} is studied in detail. The results reveal that similar responses to those obtained with thermally activated sensors can be achieved by choosing the optimal illumination conditions. This finding paves the way to the development of conductometric gas sensors operated at room temperature. The power consumption in these devices is in range with conventional micromachined sensors.

  2. Multiwalled carbon nanotubes sensor for organic liquid detection at room temperature

    NASA Astrophysics Data System (ADS)

    Chaudhary, Deepti; Khare, Neeraj; Vankar, V. D.

    2016-04-01

    We have explored the possibility of using multiwalled carbon nanotubes (MWCNTs) as room temperature chemical sensor for the detection of organic liquids such as ethanol, propanol, methanol and toluene. MWCNTs were synthesized by thermal chemical vapor deposition (TCVD) technique. The interdigitated electrodes were fabricated by conventional photolithography technique. The sensor was fabricated by drop depositing MWCNT suspension onto the interdigitated electrodes. The sensing properties of MWCNTs sensor was studied for organic liquids detection. The resistance of sensor was found to increase upon exposure to these liquids. Sensor shows good reversibility and fast response at room temperature. Charge transfer between the organic liquid and sensing element is the dominant sensing mechanism.

  3. A 2.5-2.7 THz Room Temperature Electronic Source

    NASA Technical Reports Server (NTRS)

    Maestrini, Alain; Mehdi, Imran; Lin, Robert; Siles, Jose Vicente; Lee, Choonsup; Gill, John; Chattopadhyay, Goutam; Schlecht, Erich; Bertrand, Thomas; Ward, John

    2011-01-01

    We report on a room temperature 2.5 to 2.7 THz electronic source based on frequency multipliers. The source utilizes a cascade of three frequency multipliers with W-band power amplifiers driving the first stage multiplier. Multiple-chip multipliers are utilized for the two initial stages to improve the power handling capability and a sub-micron anode is utilized for the final stage tripler. Room temperature measurements indicate that the source can put out a peak power of about 14 microwatts with more than 4 microwatts in the 2.5 to 2.7 THz range.

  4. Heterogeneously integrated 2.0 μm CW hybrid silicon lasers at room temperature.

    PubMed

    Spott, Alexander; Davenport, Michael; Peters, Jon; Bovington, Jock; Heck, Martijn J R; Stanton, Eric J; Vurgaftman, Igor; Meyer, Jerry; Bowers, John

    2015-04-01

    Here we experimentally demonstrate room temperature, continuous-wave (CW), 2.0 μm wavelength lasers heterogeneously integrated on silicon. Molecular wafer bonding of InP to Si is employed. These hybrid silicon lasers operate CW up to 35°C and emit up to 4.2 mW of single-facet CW power at room temperature. III-V tapers transfer light from a hybrid III-V/silicon optical mode into a Si waveguide mode. These lasers enable the realization of a number of sensing and detection applications in compact silicon photonic systems.

  5. A comparison of chilled and room temperature cabbage leaves in treating breast engorgement.

    PubMed

    Roberts, K L; Reiter, M; Schuster, D

    1995-09-01

    This study compared the effectiveness of chilled and room temperature green cabbage leaves in reducing the discomfort of breast engorgement in postpartum mothers. Twenty-eight lactating women with breast engorgement used chilled cabbage leaves on one breast and room-temperature cabbage leaves on the other for a two-hour period. Pre-treatment pain levels were compared with post-treatment levels for both conditions. There was no difference in the post-treatment ratings for the two treatments; mothers reported significantly less pain with both treatments. We concluded that it is not necessary to chill cabbage leaves before use.

  6. The role of hydrogen in room-temperature ferromagnetism at graphite surfaces

    SciTech Connect

    Ohldag, Hendrik

    2011-08-12

    We present a x-ray dichroism study of graphite surfaces that addresses the origin and magnitude of ferromagnetism in metal-free carbon. We find that, in addition to carbon {pi} states, also hydrogen-mediated electronic states exhibit a net spin polarization with significant magnetic remanence at room temperature. The observed magnetism is restricted to the top {approx}10 nm of the irradiated sample where the actual magnetization reaches {approx_equal} 15 emu/g at room temperature. We prove that the ferromagnetism found in metal-free untreated graphite is intrinsic and has a similar origin as the one found in proton bombarded graphite.

  7. CeBr3 as a Room-Temperature, High-Resolution Gamma-Ray Detector

    SciTech Connect

    Paul Guss, Michael Reed, Ding Yuan, Alexis Reed, and Sanjoy Mukhopadhyay

    2009-09-01

    Cerium bromide (CeBr3) has become a material of interest in the race for high-resolution gamma-ray spectroscopy at room temperature. This investigation quantified the potential of CeBr3 as a room temperature, high-resolution gamma-ray detector. The performance of CeBr3 crystals was compared to other scintillation crystals of similar dimensions and detection environments. Comparison of self-activity of CeBr3 to cerium-doped lanthanum tribromide (LaBr3:Ce) was performed. Energy resolution and relative intrinsic efficiency were measured and are presented.

  8. Direct On-Surface Patterning of a Crystalline Laminar Covalent Organic Framework Synthesized at Room Temperature.

    PubMed

    de la Peña Ruigómez, Alejandro; Rodríguez-San-Miguel, David; Stylianou, Kyriakos C; Cavallini, Massimiliano; Gentili, Denis; Liscio, Fabiola; Milita, Silvia; Roscioni, Otello Maria; Ruiz-González, Maria Luisa; Carbonell, Carlos; Maspoch, Daniel; Mas-Ballesté, Rubén; Segura, José Luis; Zamora, Félix

    2015-07-20

    We report herein an efficient, fast, and simple synthesis of an imine-based covalent organic framework (COF) at room temperature (hereafter, RT-COF-1). RT-COF-1 shows a layered hexagonal structure exhibiting channels, is robust, and is porous to N2 and CO2 . The room-temperature synthesis has enabled us to fabricate and position low-cost micro- and submicropatterns of RT-COF-1 on several surfaces, including solid SiO2 substrates and flexible acetate paper, by using lithographically controlled wetting and conventional ink-jet printing.

  9. Room temperature operational single electron transistor fabricated by focused ion beam deposition

    NASA Astrophysics Data System (ADS)

    Karre, P. Santosh Kumar; Bergstrom, Paul L.; Mallick, Govind; Karna, Shashi P.

    2007-07-01

    We present the fabrication and room temperature operation of single electron transistors using 8nm tungsten islands deposited by focused ion beam deposition technique. The tunnel junctions are fabricated using oxidation of tungsten in peracetic acid. Clear Coulomb oscillations, showing charging and discharging of the nanoislands, are seen at room temperature. The device consists of an array of tunnel junctions; the tunnel resistance of individual tunnel junction of the device is calculated to be as high as 25.13GΩ. The effective capacitance of the array of tunnel junctions was found to be 0.499aF, giving a charging energy of 160.6meV.

  10. Cholesteric liquid crystalline materials with a dual circularly polarized light reflection band fixed at room temperature.

    PubMed

    Agez, Gonzague; Mitov, Michel

    2011-05-26

    An unpolarized normal-incidence light beam reflected by a cholesteric liquid crystal is left- or right-circularly polarized, in the cholesteric temperature range. In this article, we present a novel approach for fabricating a cholesteric liquid crystalline material that exhibits reflection bands with both senses of polarization at room temperature. A cholesteric liquid crystal that presents a twist inversion at a critical temperature T(c) is blended with a small quantity of photopolymerizable monomers. Upon ultraviolet irradiation above T(c), the liquid crystal becomes a polymer-stabilized liquid crystal. Below T(c), the material reflects a dual circularly polarized band in the infrared. By quenching the experimental cell at a temperature below the blend's melting point, the optical properties of the material in an undercooled state are conserved for months at room temperature, which is critical to potential applications such as heat-repelling windows and polarization-independent photonic devices.

  11. Enhanced performance of room-temperature-grown epitaxial thin films of vanadium dioxide

    SciTech Connect

    Nag, Joyeeta; Payzant, E Andrew; More, Karren Leslie; HaglundJr., Richard F

    2011-01-01

    Stoichiometric vanadium dioxide in bulk, thin film and nanostructured forms exhibits an insulator-to-metal transition (IMT) accompanied by a structural phase transformation, induced by temperature, light, electric fields, doping or strain. We have grown epitaxial films of vanadium dioxide on c-plane (0001) of sapphire using two different procedures involving (1) room temperature growth followed by annealing and (2) direct high temperature growth. Strain at the film-substrate interface due to growth at different temperatures leads to interesting differences in morphologies and phase transition characteristics. Comparison of the morphologies and switching characteristics of the two films shows that contrary to conventional wisdom, the room-temperature grown films have smoother, more continuous morphologies and better switching performance, consistent with the behavior of epitaxially grown semiconductors.

  12. Superior room-temperature ductility of typically brittle quasicrystals at small sizes

    NASA Astrophysics Data System (ADS)

    Zou, Yu; Kuczera, Pawel; Sologubenko, Alla; Sumigawa, Takashi; Kitamura, Takayuki; Steurer, Walter; Spolenak, Ralph

    2016-08-01

    The discovery of quasicrystals three decades ago unveiled a class of matter that exhibits long-range order but lacks translational periodicity. Owing to their unique structures, quasicrystals possess many unusual properties. However, a well-known bottleneck that impedes their widespread application is their intrinsic brittleness: plastic deformation has been found to only be possible at high temperatures or under hydrostatic pressures, and their deformation mechanism at low temperatures is still unclear. Here, we report that typically brittle quasicrystals can exhibit remarkable ductility of over 50% strains and high strengths of ~4.5 GPa at room temperature and sub-micrometer scales. In contrast to the generally accepted dominant deformation mechanism in quasicrystals--dislocation climb, our observation suggests that dislocation glide may govern plasticity under high-stress and low-temperature conditions. The ability to plastically deform quasicrystals at room temperature should lead to an improved understanding of their deformation mechanism and application in small-scale devices.

  13. Self-generated local heating induced nanojoining for room temperature pressureless flexible electronic packaging.

    PubMed

    Peng, Peng; Hu, Anming; Gerlich, Adrian P; Liu, Yangai; Zhou, Y Norman

    2015-03-19

    Metallic bonding at an interface is determined by the application of heat and/or pressure. The means by which these are applied are the most critical for joining nanoscale structures. The present study considers the feasibility of room-temperature pressureless joining of copper wires using water-based silver nanowire paste. A novel mechanism of self-generated local heating within the silver nanowire paste and copper substrate system promotes the joining of silver-to-silver and silver-to-copper without any external energy input. The localized heat energy was delivered in-situ to the interfaces to promote atomic diffusion and metallic bond formation with the bulk component temperature stays near room-temperature. This local heating effect has been detected experimentally and confirmed by calculation. The joints formed at room-temperature without pressure achieve a tensile strength of 5.7 MPa and exhibit ultra-low resistivity in the range of 101.3 nOhm · m. The good conductivity of the joint is attributed to the removal of organic compounds in the paste and metallic bonding of silver-to-copper and silver-to-silver. The water-based silver nanowire paste filler material is successfully applied to various flexible substrates for room temperature bonding. The use of chemically generated local heating may become a potential method for energy in-situ delivery at micro/nanoscale.

  14. Self-generated Local Heating Induced Nanojoining for Room Temperature Pressureless Flexible Electronic Packaging

    PubMed Central

    Peng, Peng; Hu, Anming; Gerlich, Adrian P.; Liu, Yangai; Zhou, Y. Norman

    2015-01-01

    Metallic bonding at an interface is determined by the application of heat and/or pressure. The means by which these are applied are the most critical for joining nanoscale structures. The present study considers the feasibility of room-temperature pressureless joining of copper wires using water-based silver nanowire paste. A novel mechanism of self-generated local heating within the silver nanowire paste and copper substrate system promotes the joining of silver-to-silver and silver-to-copper without any external energy input. The localized heat energy was delivered in-situ to the interfaces to promote atomic diffusion and metallic bond formation with the bulk component temperature stays near room-temperature. This local heating effect has been detected experimentally and confirmed by calculation. The joints formed at room-temperature without pressure achieve a tensile strength of 5.7 MPa and exhibit ultra-low resistivity in the range of 101.3 nOhm·m. The good conductivity of the joint is attributed to the removal of organic compounds in the paste and metallic bonding of silver-to-copper and silver-to-silver. The water-based silver nanowire paste filler material is successfully applied to various flexible substrates for room temperature bonding. The use of chemically generated local heating may become a potential method for energy in-situ delivery at micro/nanoscale. PMID:25788019

  15. A simple atmospheric pressure room-temperature air plasma needle device for biomedical applications

    NASA Astrophysics Data System (ADS)

    Lu, X.; Xiong, Z.; Zhao, F.; Xian, Y.; Xiong, Q.; Gong, W.; Zou, C.; Jiang, Z.; Pan, Y.

    2009-11-01

    Rather than using noble gas, room air is used as the working gas for an atmospheric pressure room-temperature plasma. The plasma is driven by submicrosecond pulsed directed current voltages. Several current spikes appear periodically for each voltage pulse. The first current spike has a peak value of more than 1.5 A with a pulse width of about 10 ns. Emission spectra show that besides excited OH, O, N2(C-B), and N2+(B-X) emission, excited NO, N2(B-A), H, and even N emission are also observed in the plasma, which indicates that the plasma may be more reactive than that generated by other plasma jet devices. Utilizing the room-temperature plasma, preliminary inactivation experiments show that Enterococcus faecalis can be killed with a treatment time of only several seconds.

  16. Investigation of room-temperature wafer bonded GaInP/GaAs/InGaAsP triple-junction solar cells

    NASA Astrophysics Data System (ADS)

    Yang, Wen-xian; Dai, Pan; Ji, Lian; Tan, Ming; Wu, Yuan-yuan; Uchida, Shiro; Lu, Shu-long; Yang, Hui

    2016-12-01

    We report on the fabrication of III-V compound semiconductor multi-junction solar cells using the room-temperature wafer bonding technique. GaInP/GaAs dual-junction solar cells on GaAs substrate and InGaAsP single junction solar cell on InP substrate were separately grown by all-solid state molecular beam epitaxy (MBE). The two cells were then bonded to a triple-junction solar cell at room-temperature. A conversion efficiency of 30.3% of GaInP/GaAs/InGaAsP wafer-bonded solar cell was obtained at 1-sun condition under the AM1.5G solar simulator. The result suggests that the room-temperature wafer bonding technique and MBE technique have a great potential to improve the performance of multi-junction solar cell.

  17. Green synthesis of mesoporous molecular sieve incorporated monoliths using room temperature ionic liquid and deep eutectic solvents.

    PubMed

    Zhang, Li-Shun; Zhao, Qing-Li; Li, Xin-Xin; Li, Xi-Xi; Huang, Yan-Ping; Liu, Zhao-Sheng

    2016-12-01

    A hybrid monolith incorporated with mesoporous molecular sieve MCM-41 of uniform pore structure and high surface area was prepared with binary green porogens in the first time. With a mixture of room temperature ionic liquids and deep eutectic solvents as porogens, MCM-41 was modified with 3-(trimethoxysilyl) propyl methacrylate (γ-MPS) and the resulting MCM-41-MPS was incorporated into poly (BMA-co-EDMA) monoliths covalently. Because of good dispersibility of MCM-41-MPS in the green solvent-based polymerization system, high permeability and homogeneity for the resultant hybrid monolithic columns was achieved. The MCM-41-MPS grafted monolith was characterized by scanning electron microscopy, energy dispersive spectrometer area scanning, transmission electron microscopy, FT-IR spectra and nitrogen adsorption tests. Chromatographic performance of MCM-41-MPS grafted monolith was characterized by separating small molecules in capillary electrochromatography, including phenol series, naphthyl substitutes, aniline series and alkyl benzenes. The maximum column efficiency of MCM-41-MPS grafted monolith reached 209,000 plates/m, which was twice higher than the corresponding MCM-41-MPS free monolith. Moreover, successful separation of non-steroidal anti-inflammatory drugs and polycyclic aromatic hydrocarbons demonstrated the capacity in broad-spectrum application of the MCM-41-MPS incorporated monolith. The results indicated that green synthesis using room temperature ionic liquid and deep eutectic solvents is an effective method to prepare molecular sieve-incorporated monolithic column.

  18. Instantaneous radioiodination of rose bengal at room temperature and a cold-kit therefor. [DOE patent application

    DOEpatents

    O'Brien, H. Jr.; Hupf, H.B.; Wanek, P.M.

    The disclosure relates to the radioiodination of rose bengal at room temperature and a cold-kit therefor. A purified rose bengal tablet is stirred into acidified ethanol at or near room temperature, until a suspension forms. Reductant-free /sup 125/I/sup -/ is added and the resulting mixture stands until the exchange label reaction occurs at room temperature. A solution of sterile isotonic phosphate buffer and sodium hydroxide is added and the final resulting mixture is sterilized by filtration.

  19. Adhesive for polyester films cures at room temperature, has high initial tack

    NASA Technical Reports Server (NTRS)

    Christian, C. M.; Fust, G. W.; Welchel, C. J.

    1966-01-01

    Quick room-temperature-cure adhesive bonds polyester-insulated flat electrical cables to metal surfaces and various other substrates. The bond strength of the adhesive may be considerably increased by first applying a commercially available polyamide primer to the polyester film.

  20. Room-temperature electron spin amplifier based on Ga(In)NAs alloys.

    PubMed

    Puttisong, Yuttapoom; Buyanova, Irina A; Ptak, Aaron J; Tu, Charles W; Geelhaar, Lutz; Riechert, Henning; Chen, Weimin M

    2013-02-06

    The first experimental demonstration of a spin amplifier at room temperature is presented. An efficient, defect-enabled spin amplifier based on a non-magnetic semiconductor, Ga(In)NAs, is proposed and demonstrated, with a large spin gain (up to 2700% at zero field) for conduction electrons and a high cut-off frequency of up to 1 GHz.

  1. Reduced graphene oxide as a catalyst for hydrogenation of nitrobenzene at room temperature.

    PubMed

    Gao, Yongjun; Ma, Ding; Wang, Chunlei; Guan, Jing; Bao, Xinhe

    2011-02-28

    Reduced graphene oxide was used as a catalyst for reduction of nitrobenzene at room temperature. High catalytic activity and stability were exhibited in circular experiments. The catalytic procedure was in situ monitored by NMR and N-phenylhydroxylamine was proved to be the intermediate in this catalytic reaction.

  2. 40 CFR Table B-4 to Subpart B of... - Line Voltage and Room Temperature Test Conditions

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Conditions B Table B-4 to Subpart B of Part 53 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Testing Performance Characteristics of Automated Methods for SO2, CO, O3, and NO2 Pt. 53, Subpt. B, Table B-4 Table B-4 to Subpart B of Part 53—Line Voltage and Room Temperature Test Conditions Test...

  3. 40 CFR Table B-4 to Subpart B of... - Line Voltage and Room Temperature Test Conditions

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Conditions B Table B-4 to Subpart B of Part 53 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Testing Performance Characteristics of Automated Methods for SO2, CO, O3, and NO2 Pt. 53, Subpt. B, Table B-4 Table B-4 to Subpart B of Part 53—Line Voltage and Room Temperature Test Conditions Test...

  4. Aqueous room temperature synthesis of cobalt and zinc sodalite zeolitic imidizolate frameworks.

    PubMed

    Gross, Adam F; Sherman, Elena; Vajo, John J

    2012-05-14

    Sodalite zeolitic imidazolate frameworks containing Co (ZIF-67) and Zn (ZIF-8) were synthesized at room temperature under aqueous conditions in 10 min. A trialkylamine deprotonated the 2-methylimidazole ligand and nucleated the frameworks. Furthermore, the ligand acted as a structure directing agent in place of an organic solvent.

  5. Multiferroic Nanopatterned Hybrid Material with Room-Temperature Magnetic Switching of the Electric Polarization.

    PubMed

    Cai, Ronggang; Antohe, Vlad-Andrei; Hu, Zhijun; Nysten, Bernard; Piraux, Luc; Jonas, Alain M

    2017-02-01

    A nanopatterned hybrid layer is designed, wherein the electric polarization can be flipped at room temperature by a magnetic field aided by an electrical field. This is achieved by embedding ferromagnetic nanopillars in a continuous organic ferroelectric layer, and amplifying the magnetostriction-generated stress gradients by scaling down the supracrystalline cell of the material.

  6. Room-temperature synthesis of soluble, fluorescent carbon nanoparticles from organogel precursors.

    PubMed

    Néabo, Jules Roméo; Vigier-Carrière, Cécile; Rondeau-Gagné, Simon; Morin, Jean-François

    2012-10-18

    Carbon nanoparticles were obtained at room temperature by irradiating an organogel made from a 1,8-diaryloctatetrayne derivative in chloroform. During the topochemical polymerization, the morphology of the gel changes from fibers to soluble, yellow fluorescent nanoparticles in high yield. Analyses suggest that the resulting nanoparticles are made of amorphous graphitic carbon.

  7. Room-temperature 1.2-J Fe{sup 2+}:ZnSe laser

    SciTech Connect

    Velikanov, S D; Zaretsky, N A; Zotov, E A; Maneshkin, A A; Yutkin, I M; Kazantsev, S Yu; Kononov, I G; Firsov, K N; Korostelin, Yu V; Frolov, M P

    2016-01-31

    The characteristics of a laser based on a Fe{sup 2+}:ZnSe single crystal pumped by an electric-discharge HF laser at room temperature are studied. The HF laser beam diameter on the crystal surface was 17 mm. The achieved laser energy was 1.2 J with an efficiency of ∼ 25% with respect to the pump energy. (letters)

  8. Room-temperature tunneling behavior of boron nitride nanotubes functionalized with gold quantum dots.

    PubMed

    Lee, Chee Huei; Qin, Shengyong; Savaikar, Madhusudan A; Wang, Jiesheng; Hao, Boyi; Zhang, Dongyan; Banyai, Douglas; Jaszczak, John A; Clark, Kendal W; Idrobo, Juan-Carlos; Li, An-Ping; Yap, Yoke Khin

    2013-09-06

    One-dimensional arrays of gold quantum dots (QDs) on insulating boron nitride nanotubes (BNNTs) can form conduction channels of tunneling field-effect transistors. We demonstrate that tunneling currents can be modulated at room temperature by tuning the lengths of QD-BNNTs and the gate potentials. Our discovery will inspire the creative use of nanostructured metals and insulators for future electronic devices.

  9. Cytotoxicity associated with prolonged room temperature storage of serum and proposed methods for reduction of cytotoxicity.

    PubMed

    Shiraishi, Rikiya; Hirayama, Norio

    2015-12-01

    Canine serum preserved at room temperature (25°C) for longer than 24h is known to exhibit significant cytotoxicity. This phenomenon is one of the major reasons for the failure of virus neutralization tests. In this study, a method for reducing this cytotoxicity was investigated by applying several treatments to dog, cat and human serum prior to room temperature storage. Additionally, the identity of the cytotoxic factor generated during room temperature storage was investigated. Heat-inactivation at 56°C or 65°C and the addition of protease inhibitor prior to storage were found to be effective for reducing cytotoxicity in the serum. Furthermore, heat-inactivation at 65°C reduced the cytotoxicity that was induced under room temperature storage. Several protein factors in serum were suspected to play a role in the observed cytotoxicity. According to this study, the membrane-attack-complex in serum was not involved in the cytotoxicity. This study provides useful information for development and improvement of cell culture and virus neutralization tests.

  10. Room-temperature broadband emission of an InGaAs/GaAs quantum dots laser.

    PubMed

    Djie, H S; Ooi, B S; Fang, X-M; Wu, Y; Fastenau, J M; Liu, W K; Hopkinson, M

    2007-01-01

    We report the first demonstration to our knowledge of an ultrabroad emission laser using InGaAs/GaAs quantum dots by cycled monolayer deposition. The device exhibits a lasing wavelength coverage of approximately 40 nm at an approximately 1160 nm center wavelength at room temperature. The broadband signature results from the superposition of quantized lasing states from highly inhomogeneous dots.

  11. GREEN SYNTHESIS OF SILVER AND PALLADIUM NANOPARTICLES AT ROOM TEMPERATURE USING COFFEE AND TEA EXTRACT

    EPA Science Inventory

    An extremely simple green approach that generates bulk quantities of nanocrystals of noble metals such as silver (Ag) and palladium (Pd) using coffee and tea extract at room temperature is described. The single-pot method uses no surfactant, capping agent, and/or template. The ob...

  12. Crystal induced phosphorescence from Benz(a)anthracene microcrystals at room temperature.

    PubMed

    Maity, Samir; Mazumdar, Prativa; Shyamal, Milan; Sahoo, Gobinda Prasad; Misra, Ajay

    2016-03-15

    Pure organic compounds that are also phosphorescent at room temperature are very rare in literature. Here, we report efficient phosphorescence emission from aggregated hydrosol of Benz(a)anthracene (BaA) at room temperature. Aggregated hydrosol of BaA has been synthesized by re-precipitation method and SDS is used as morphology directing agent. Morphology of the particles is characterized using optical and scanning electronic microcopy (SEM). Photophysical properties of the aggregated hydrosol are carried out using UV-vis, steady state and time resolved fluorescence study. The large stoke shifted structured emission from aggregated hydrosol of BaA has been explained due to phosphorescence emission of BaA at room temperature. In the crystalline state, the restricted intermolecular motions (RIM) such as rotations and vibrations are activated by crystal lattice. This rigidification effect makes the chromophore phosphorescent at room temperature. The possible stacking arrangement of the neighboring BaA within the aggregates has been substantiated by computing second order Fukui parameter as local reactivity descriptors. Computational study also reveals that the neighboring BaA molecules are present in parallel slipped conformation in its aggregated crystalline form.

  13. Crystal induced phosphorescence from Benz(a)anthracene microcrystals at room temperature

    NASA Astrophysics Data System (ADS)

    Maity, Samir; Mazumdar, Prativa; Shyamal, Milan; Sahoo, Gobinda Prasad; Misra, Ajay

    2016-03-01

    Pure organic compounds that are also phosphorescent at room temperature are very rare in literature. Here, we report efficient phosphorescence emission from aggregated hydrosol of Benz(a)anthracene (BaA) at room temperature. Aggregated hydrosol of BaA has been synthesized by re-precipitation method and SDS is used as morphology directing agent. Morphology of the particles is characterized using optical and scanning electronic microcopy (SEM). Photophysical properties of the aggregated hydrosol are carried out using UV-vis, steady state and time resolved fluorescence study. The large stoke shifted structured emission from aggregated hydrosol of BaA has been explained due to phosphorescence emission of BaA at room temperature. In the crystalline state, the restricted intermolecular motions (RIM) such as rotations and vibrations are activated by crystal lattice. This rigidification effect makes the chromophore phosphorescent at room temperature. The possible stacking arrangement of the neighboring BaA within the aggregates has been substantiated by computing second order Fukui parameter as local reactivity descriptors. Computational study also reveals that the neighboring BaA molecules are present in parallel slipped conformation in its aggregated crystalline form.

  14. Electrical Resistivity of Natural Diamond and Diamond Films Between Room Temperature and 1200 C: Status Update

    NASA Technical Reports Server (NTRS)

    Vandersande, Jan W.; Zoltan, L. D.

    1993-01-01

    The electrical resistivity of diamond films has been measured between room temperature and 1200 C. The films were grown by either microwave Plasma CVD or combustion flame at three different places. The resistivities of the current films are compared to those measured for both natural IIa diamond and films grown only one to two years ago.

  15. The First Room-Temperature Ferroelectric Sn Insulator and Its Polarization Switching Kinetics.

    PubMed

    Wang, Yazhong; Huang, Fei-Ting; Luo, Xuan; Gao, Bin; Cheong, Sang-Wook

    2017-01-01

    Sr3 Sn2 O7 is the first room-temperature ferroelectric Sn insulator with switchable electric polarization. The ferroelastic twin domains are observed using a polarized optical microscope. The polarization hysteresis loop clearly demonstrates the ferroelectric property. Intriguing polarization switching kinetics are observed through an in situ poling process using a dark-field transmission electron microscopy technique.

  16. Kinetic studies at room temperature of the cyanide anion CN - with cyanoacetylene (HC 3N) reaction

    NASA Astrophysics Data System (ADS)

    Carles, S.; Adjali, F.; Monnerie, C.; Guillemin, J.-C.; Le Garrec, J.-L.

    2011-01-01

    Rate coefficient of the cyanide anion (CN -) with cyanoacetylene (HC 3N) reaction, has been studied in gas phase at room temperature using a Flowing Afterglow Langmuir Probe - Mass Spectrometer (FALP-MS) apparatus. The rate constant for the CN - + HC 3N reaction is k = 4.8 × 10 -9 cm 3/s with an uncertainty of 30%.

  17. Electron attachment to anthracene. A FALP measurement of the rate coefficient at room temperature

    NASA Astrophysics Data System (ADS)

    Canosa, A.; Parent, D. C.; Pasquerault, D.; Au; Gomet, J. C.; Laubé, S.; Rowe, B. R.

    1994-09-01

    The rate coefficient β for electron attachment to anthracene has been measured at room temperature using a flowing afterglow Langmuir probe mass spectrometer. A value of 1 × 10 -9 cm 3 s -1 (30% uncertainty) was found, indicating that an activation energy barrier might exist.

  18. Structure determination of an integral membrane protein at room temperature from crystals in situ

    SciTech Connect

    Axford, Danny; Foadi, James; Hu, Nien-Jen; Choudhury, Hassanul Ghani; Iwata, So; Beis, Konstantinos; Evans, Gwyndaf; Alguel, Yilmaz

    2015-05-14

    The X-ray structure determination of an integral membrane protein using synchrotron diffraction data measured in situ at room temperature is demonstrated. The structure determination of an integral membrane protein using synchrotron X-ray diffraction data collected at room temperature directly in vapour-diffusion crystallization plates (in situ) is demonstrated. Exposing the crystals in situ eliminates manual sample handling and, since it is performed at room temperature, removes the complication of cryoprotection and potential structural anomalies induced by sample cryocooling. Essential to the method is the ability to limit radiation damage by recording a small amount of data per sample from many samples and subsequently assembling the resulting data sets using specialized software. The validity of this procedure is established by the structure determination of Haemophilus influenza TehA at 2.3 Å resolution. The method presented offers an effective protocol for the fast and efficient determination of membrane-protein structures at room temperature using third-generation synchrotron beamlines.

  19. Laser action from a terbium beta-ketoenolate at room temperature

    NASA Technical Reports Server (NTRS)

    Bjorklund, S.; Filipescu, N.; Hurt, C. R.; Kellermeyer, G.; Mc Avoy, N.

    1969-01-01

    Laser activity is achieved in a solution of terbium tris at room temperature in a liquid solvent of acetonitrile or p-dioxane. After precipitation, the microcrystals of hydrated tris chelate are filtered, washed in distilled water, and dried. They show no signs of deterioration after storage.

  20. A Knoevenagel Initiated Annulation Reaction Using Room Temperature or Microwave Conditions

    ERIC Educational Resources Information Center

    Cook, A. Gilbert

    2007-01-01

    An experiment is presented that has the student execute a Knoevenagel initiated annulation reaction. The reaction can be carried out either through use of a microwave reactor or by allowing the mixture to stand at room temperature for two days. The student is then challenged to identify the reaction product through a guided prelab exercise of the…

  1. Superluminal and Ultra-Slow Light Propagation in Room-Temperature Solids

    NASA Astrophysics Data System (ADS)

    Boyd, Robert W.; Bigelow, Matthew S.; Lepeshkin, Nick N.

    2004-12-01

    We have observed ultra-slow light propagation (57 m s-1) in ruby and superluminal (-800 m s-1) light propagation in alexandrite at room temperature. The modified light speed results from the rapid variation in refractive index associated with spectral holes and antiholes produced by the process of coherent population oscillations.

  2. Room temperature, air crystallized perovskite film for high performance solar cells

    SciTech Connect

    Dubey, Ashish; Kantack, Nicholas; Adhikari, Nirmal; Reza, Khan Mamun; Venkatesan, Swaminathan; Kumar, Mukesh; Khatiwada, Devendra; Darling, Seth; Qiao, Qiquan

    2016-05-31

    For the first time, room temperature heating free growth and crystallization of perovskite films in ambient air without the use of thermal annealing is reported. Highly efficient perovskite nanorod-based solar cells were made using ITO/PEDOT:PSS/CH3NH3PbI3 nanorods/PC60BM/rhodamine/Ag. All the layers except PEDOT:PSS were processed at room temperature thereby eliminating the need for thermal treatment. Perovskite films were spin coated inside a N-2 filled glovebox and immediately were taken outside in air having 40% relative humidity (RH). Exposure to humid air was observed to promote the crystallization process in perovskite films even at room temperature. Perovskite films kept for 5 hours in ambient air showed nanorod-like morphology having high crystallinity, with devices exhibiting the highest PCE of 16.83%, which is much higher than the PCE of 11.94% for traditional thermally annealed perovskite film based devices. Finally, it was concluded that moisture plays an important role in room temperature crystallization of pure perovskite nanorods, showing improved optical and charge transport properties, which resulted in high performance solar cells.

  3. Room temperature, air crystallized perovskite film for high performance solar cells

    DOE PAGES

    Dubey, Ashish; Kantack, Nicholas; Adhikari, Nirmal; ...

    2016-05-31

    For the first time, room temperature heating free growth and crystallization of perovskite films in ambient air without the use of thermal annealing is reported. Highly efficient perovskite nanorod-based solar cells were made using ITO/PEDOT:PSS/CH3NH3PbI3 nanorods/PC60BM/rhodamine/Ag. All the layers except PEDOT:PSS were processed at room temperature thereby eliminating the need for thermal treatment. Perovskite films were spin coated inside a N-2 filled glovebox and immediately were taken outside in air having 40% relative humidity (RH). Exposure to humid air was observed to promote the crystallization process in perovskite films even at room temperature. Perovskite films kept for 5 hours inmore » ambient air showed nanorod-like morphology having high crystallinity, with devices exhibiting the highest PCE of 16.83%, which is much higher than the PCE of 11.94% for traditional thermally annealed perovskite film based devices. Finally, it was concluded that moisture plays an important role in room temperature crystallization of pure perovskite nanorods, showing improved optical and charge transport properties, which resulted in high performance solar cells.« less

  4. Mechanochemical synthesis of maghemite/silica nanocomposites: advanced materials for aqueous room-temperature catalysis.

    PubMed

    Ojeda, Manuel; Pineda, Antonio; Romero, Antonio A; Barrón, Vidal; Luque, Rafael

    2014-07-01

    A simple, environmentally friendly, and highly reproducible protocol has been developed for the mechanochemical preparation of advanced nanocatalytic materials in a one-pot process. The materials proved to have unprecedented activities in aqueous Suzuki couplings at room temperature, paving the way for a new generation of highly active and stable advanced nanocatalysts.

  5. 40 CFR Table B-4 to Subpart B of... - Line Voltage and Room Temperature Test Conditions

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Conditions B Table B-4 to Subpart B of Part 53 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Testing Performance Characteristics of Automated Methods for SO2, CO, O3, and NO2 Pt. 53, Subpt. B, Table B-4 Table B-4 to Subpart B of Part 53—Line Voltage and Room Temperature Test Conditions Test...

  6. Extreme Sensitivity of Room-Temperature Photoelectric Effect for Terahertz Detection.

    PubMed

    Huang, Zhiming; Zhou, Wei; Tong, Jinchao; Huang, Jingguo; Ouyang, Cheng; Qu, Yue; Wu, Jing; Gao, Yanqing; Chu, Junhao

    2016-01-06

    Extreme sensitivity of room-temperature photoelectric effect for terahertz (THz) detection is demonstrated by generating extra carriers in an electromagnetic induced well located at the semiconductor, using a wrapped metal-semiconductor-metal configuration. The excellent performance achieved with THz detectors shows great potential to open avenues for THz detection.

  7. High resolution InSb quantum well ballistic nanosensors for room temperature applications

    SciTech Connect

    Gilbertson, Adam; Cohen, L. F.; Lambert, C. J.; Solin, S. A.

    2013-12-04

    We report the room temperature operation of a quasi-ballistic InSb quantum well Hall sensor that exhibits a high frequency sensitivity of 560nT/√Hz at 20uA bias current. The device utilizes a partitioned buffer layer design that suppresses leakage currents through the mesa floor and can sustain large current densities.

  8. Bright Room-Temperature Single-Photon Emission from Defects in Gallium Nitride.

    PubMed

    Berhane, Amanuel M; Jeong, Kwang-Yong; Bodrog, Zoltán; Fiedler, Saskia; Schröder, Tim; Triviño, Noelia Vico; Palacios, Tomás; Gali, Adam; Toth, Milos; Englund, Dirk; Aharonovich, Igor

    2017-02-09

    Room-temperature quantum emitters in gallium nitride (GaN) are reported. The emitters originate from cubic inclusions in hexagonal lattice and exhibit narrowband luminescence in the red spectral range. The sources are found in different GaN substrates, and therefore are promising for scalable quantum technologies.

  9. High-temperature vacuum distillation separation of plutonium waste salts

    SciTech Connect

    Garcia, E.

    1996-10-01

    In this task, high-temperature vacuum distillation separation is being developed for residue sodium chloride-potassium chloride salts resulting from past pyrochemical processing of plutonium. This process has the potential of providing clean separation of the salt and the actinides with minimal amounts of secondary waste generation. The process could produce chloride salt that could be discarded as low-level waste (LLW) or low actinide content transuranic (TRU) waste, and a concentrated actinide oxide powder that would meet long-term storage standards (DOE-DTD-3013-94) until a final disposition option for all surplus plutonium is chosen.

  10. NOVEL CERAMIC MEMBRANE FOR HIGH TEMPERATURE CARBON DIOXIDE SEPARATION

    SciTech Connect

    Jerry Y.S. Lin; Jun-ichi Ida

    2001-03-01

    This project is aimed at demonstrating technical feasibility for a lithium zirconate based dense ceramic membrane for separation of carbon dioxide from flue gas at high temperature. The research work conducted in this reporting period was focused on several fundamental issues of lithium zirconate important to the development of the dense inorganic membrane. These fundamental issues include material synthesis of lithium zirconate, phases and microstructure of lithium zirconate and structure change of lithium zirconate during sorption/desorption process. The results show difficulty to prepare the dense ceramic membrane from pure lithium zirconate, but indicate a possibility to prepare the dense inorganic membrane for carbon dioxide separation from a composite lithium zirconate.

  11. Topologically protected quantum transport in locally exfoliated bismuth at room temperature.

    PubMed

    Sabater, C; Gosálbez-Martínez, D; Fernández-Rossier, J; Rodrigo, J G; Untiedt, C; Palacios, J J

    2013-04-26

    We report electrical conductance measurements of Bi nanocontacts created by repeated tip-surface indentation using a scanning tunneling microscope at temperatures of 4 and 300 K. As a function of the elongation of the nanocontact, we measure robust, tens of nanometers long plateaus of conductance G0 = 2e2/h at room temperature. This observation can be accounted for by the mechanical exfoliation of a Bi(111) bilayer, a predicted quantum spin Hall (QSH) insulator, in the retracing process following a tip-surface contact. The formation of the bilayer is further supported by the additional observation of conductance steps below G0 before breakup at both temperatures. Our finding provides the first experimental evidence of the possibility of mechanical exfoliation of Bi bilayers, the existence of the QSH phase in a two-dimensional crystal, and, most importantly, the observation of the QSH phase at room temperature.

  12. Geologically-inspired strong bulk ceramics made with water at room temperature

    NASA Astrophysics Data System (ADS)

    Bouville, Florian; Studart, André R.

    2017-03-01

    Dense ceramic materials can form in nature under mild temperatures in water. By contrast, man-made ceramics often require sintering temperatures in excess of 1,400 °C for densification. Chemical strategies inspired by biomineralization processes have been demonstrated but remain limited to the fabrication of thin films and particles. Besides biomineralization, the formation of dense ceramic-like materials such as limestone also occurs in nature through large-scale geological processes. Inspired by the geological compaction of mineral sediments in nature, we report a room-temperature method to produce dense and strong ceramics within timescales comparable to those of conventional manufacturing processes. Using nanoscale powders and high compaction pressures, we show that such cold sintering process can be realized with water at room temperature to result in centimetre-sized bulk parts with specific strength that is comparable to, and occasionally even higher than, that of traditional structural materials like concrete.

  13. Room-temperature steady-state optomechanical entanglement on a chip

    SciTech Connect

    Zou Changling; Zou Xubo; Sun Fangwen; Han Zhengfu; Guo Guangcan

    2011-09-15

    A potential experimental system, based on high-stress stoichiometric silicon nitride (Si{sub 3}N{sub 4}), is proposed to generate steady-state optomechanical entanglement at room temperature. In the proposed structure, a nanostring interacts dispersively and reactively with a microdisk cavity via the evanescent field. We study the role of both dispersive and reactive couplings in generating optomechanical entanglement, and show that the room-temperature entanglement can be effectively obtained through the dispersive couplings under the reasonable experimental parameters. In particular, in the limits of high temperature (T) and high mechanical quality factor (Q{sub m}), we find that the logarithmic entanglement depends only on the ratio T/Q{sub m}. This indicates that improvements of the material quantity and structure design may lead to more efficient generation of stationary high-temperature entanglement.

  14. Geologically-inspired strong bulk ceramics made with water at room temperature

    PubMed Central

    Bouville, Florian; Studart, André R.

    2017-01-01

    Dense ceramic materials can form in nature under mild temperatures in water. By contrast, man-made ceramics often require sintering temperatures in excess of 1,400 °C for densification. Chemical strategies inspired by biomineralization processes have been demonstrated but remain limited to the fabrication of thin films and particles. Besides biomineralization, the formation of dense ceramic-like materials such as limestone also occurs in nature through large-scale geological processes. Inspired by the geological compaction of mineral sediments in nature, we report a room-temperature method to produce dense and strong ceramics within timescales comparable to those of conventional manufacturing processes. Using nanoscale powders and high compaction pressures, we show that such cold sintering process can be realized with water at room temperature to result in centimetre-sized bulk parts with specific strength that is comparable to, and occasionally even higher than, that of traditional structural materials like concrete. PMID:28262760

  15. Geologically-inspired strong bulk ceramics made with water at room temperature.

    PubMed

    Bouville, Florian; Studart, André R

    2017-03-06

    Dense ceramic materials can form in nature under mild temperatures in water. By contrast, man-made ceramics often require sintering temperatures in excess of 1,400 °C for densification. Chemical strategies inspired by biomineralization processes have been demonstrated but remain limited to the fabrication of thin films and particles. Besides biomineralization, the formation of dense ceramic-like materials such as limestone also occurs in nature through large-scale geological processes. Inspired by the geological compaction of mineral sediments in nature, we report a room-temperature method to produce dense and strong ceramics within timescales comparable to those of conventional manufacturing processes. Using nanoscale powders and high compaction pressures, we show that such cold sintering process can be realized with water at room temperature to result in centimetre-sized bulk parts with specific strength that is comparable to, and occasionally even higher than, that of traditional structural materials like concrete.

  16. Room-temperature steady-state optomechanical entanglement on a chip

    NASA Astrophysics Data System (ADS)

    Zou, Chang-Ling; Zou, Xu-Bo; Sun, Fang-Wen; Han, Zheng-Fu; Guo, Guang-Can

    2011-09-01

    A potential experimental system, based on high-stress stoichiometric silicon nitride (Si3N4), is proposed to generate steady-state optomechanical entanglement at room temperature. In the proposed structure, a nanostring interacts dispersively and reactively with a microdisk cavity via the evanescent field. We study the role of both dispersive and reactive couplings in generating optomechanical entanglement, and show that the room-temperature entanglement can be effectively obtained through the dispersive couplings under the reasonable experimental parameters. In particular, in the limits of high temperature (T) and high mechanical quality factor (Qm), we find that the logarithmic entanglement depends only on the ratio T/Qm. This indicates that improvements of the material quantity and structure design may lead to more efficient generation of stationary high-temperature entanglement.

  17. Can a functionalized phosphine ligand promote room temperature luminescence of the [Ru(bpy)(tpy)]2+ core?

    PubMed

    Lebon, Emilie; Bastin, Stéphanie; Sutra, Pierre; Vendier, Laure; Piau, Rémi E; Dixon, Isabelle M; Boggio-Pasqua, Martial; Alary, Fabienne; Heully, Jean-Louis; Igau, Alain; Juris, Alberto

    2012-01-18

    Unexpected room temperature luminescence is observed and rationalized by highly challenging excited state calculations for a functionalized phosphine ligand coordinated on the [Ru(bpy)(tpy)](2+) core.

  18. Qualification of room-temperature-curing epoxy adhesives for spacecraft structural applications

    NASA Technical Reports Server (NTRS)

    Carpenter, Alain; O'Donnell, Tim

    1988-01-01

    An adhesive-bonding test program is being conducted in order to develop structural adhesives applicable to JPL spacecraft. A noteworthy application for such an adhesive will be JPL's Galileo mission, whose trajectory will involve the circumnavigation of the planet Venus prior to Jupiter rendezvous, and will accordingly require stringent temperature and radiation environment requirements. The baseline adhesive for the test program is the EA 934 room temperature-cure epoxy, which has been widely used as a 'space-qualified' material.

  19. Composite properties for S-2 glass in a room-temperature-curable epoxy matrix

    NASA Technical Reports Server (NTRS)

    Clements, L. L.; Moore, R. L.

    1979-01-01

    The authors have measured thermal and mechanical properties of several composites of S-2 glass fiber in a room-temperature-curable epoxy matrix. The filament-wound composites ranged from 50 to 70 vol% fiber. The composites had generally good to excellent mechanical properties, particularly in view of the moderate cost of the material. However, the composites showed rapid increases in transverse thermal expansion above 50 C, and this property must be carefully considered if any use above that temperature is contemplated.

  20. Experimental data of the static behavior of reinforced concrete beams at room and low temperature

    PubMed Central

    Mirzazadeh, M. Mehdi; Noël, Martin; Green, Mark F.

    2016-01-01

    This article provides data on the static behavior of reinforced concrete at room and low temperature including, strength, ductility, and crack widths of the reinforced concrete. The experimental data on the application of digital image correlation (DIC) or particle image velocimetry (PIV) in measuring crack widths and the accuracy and precision of DIC/PIV method with temperature variations when is used for measuring strains is provided as well. PMID:27158650

  1. Experimental data of the static behavior of reinforced concrete beams at room and low temperature.

    PubMed

    Mirzazadeh, M Mehdi; Noël, Martin; Green, Mark F

    2016-06-01

    This article provides data on the static behavior of reinforced concrete at room and low temperature including, strength, ductility, and crack widths of the reinforced concrete. The experimental data on the application of digital image correlation (DIC) or particle image velocimetry (PIV) in measuring crack widths and the accuracy and precision of DIC/PIV method with temperature variations when is used for measuring strains is provided as well.

  2. Certification of NIST Room Temperature Low-Energy and High-Energy Charpy Verification Specimens

    PubMed Central

    Lucon, Enrico; McCowan, Chris N.; Santoyo, Ray L.

    2015-01-01

    The possibility for NIST to certify Charpy reference specimens for testing at room temperature (21 °C ± 1 °C) instead of −40 °C was investigated by performing 130 room-temperature tests from five low-energy and four high-energy lots of steel on the three master Charpy machines located in Boulder, CO. The statistical analyses performed show that in most cases the variability of results (i.e., the experimental scatter) is reduced when testing at room temperature. For eight out of the nine lots considered, the observed variability was lower at 21 °C than at −40 °C. The results of this study will allow NIST to satisfy requests for room-temperature Charpy verification specimens that have been received from customers for several years: testing at 21 °C removes from the verification process the operator’s skill in transferring the specimen in a timely fashion from the cooling bath to the impact position, and puts the focus back on the machine performance. For NIST, it also reduces the time and cost for certifying new verification lots. For one of the low-energy lots tested with a C-shaped hammer, we experienced two specimens jamming, which yielded unusually high values of absorbed energy. For both specimens, the signs of jamming were clearly visible. For all the low-energy lots investigated, jamming is slightly more likely to occur at 21 °C than at −40 °C, since at room temperature low-energy samples tend to remain in the test area after impact rather than exiting in the opposite direction of the pendulum swing. In the evaluation of a verification set, any jammed specimen should be removed from the analyses. PMID:26958453

  3. Certification of NIST Room Temperature Low-Energy and High-Energy Charpy Verification Specimens.

    PubMed

    Lucon, Enrico; McCowan, Chris N; Santoyo, Ray L

    2015-01-01

    The possibility for NIST to certify Charpy reference specimens for testing at room temperature (21 °C ± 1 °C) instead of -40 °C was investigated by performing 130 room-temperature tests from five low-energy and four high-energy lots of steel on the three master Charpy machines located in Boulder, CO. The statistical analyses performed show that in most cases the variability of results (i.e., the experimental scatter) is reduced when testing at room temperature. For eight out of the nine lots considered, the observed variability was lower at 21 °C than at -40 °C. The results of this study will allow NIST to satisfy requests for room-temperature Charpy verification specimens that have been received from customers for several years: testing at 21 °C removes from the verification process the operator's skill in transferring the specimen in a timely fashion from the cooling bath to the impact position, and puts the focus back on the machine performance. For NIST, it also reduces the time and cost for certifying new verification lots. For one of the low-energy lots tested with a C-shaped hammer, we experienced two specimens jamming, which yielded unusually high values of absorbed energy. For both specimens, the signs of jamming were clearly visible. For all the low-energy lots investigated, jamming is slightly more likely to occur at 21 °C than at -40 °C, since at room temperature low-energy samples tend to remain in the test area after impact rather than exiting in the opposite direction of the pendulum swing. In the evaluation of a verification set, any jammed specimen should be removed from the analyses.

  4. Low and room temperature magnetic features of the traffic related urban airborne PM

    NASA Astrophysics Data System (ADS)

    Winkler, A.; Sagnotti, L.

    2012-04-01

    We used magnetic measurements and analyses - such as hysteresis loops and FORCs both at room temperature and at 10K, isothermal remanent magnetization (IRM) vs temperature curves (from 10K to 293K) and IRM vs time decay curves - to characterize the magnetic properties of the traffic related airborne particulate matter (PM) in Rome. This study was specifically addressed to the identification of the ultrafine superparamagnetic (SP) particles, which are particularly sensitive to thermal relaxation effects, and on the eventual detection of low temperature phase transitions which may affect various magnetic minerals. We compared the magnetic properties at 10K and at room temperature of Quercus ilex leaves, disk brakes, diesel and gasoline exhaust pipes powders collected from vehicles circulating in Rome. The magnetic properties of the investigated powders significantly change upon cooling, and no clear phase transition occurs, suggesting that the thermal dependence is mainly triggered by the widespread presence of ultrafine SP particles. The contribution of the SP fraction to the total remanence of traffic related PM samples was quantified at room temperature measuring the decay of a IRM 100 s after the application of a saturation magnetic field. This same method has been also tested at 10K to investigate the temperature dependence of the observed time decay.

  5. FAST TRACK COMMUNICATION: Reproducible room temperature giant magnetocaloric effect in Fe-Rh

    NASA Astrophysics Data System (ADS)

    Manekar, Meghmalhar; Roy, S. B.

    2008-10-01

    We present the results of magnetocaloric effect (MCE) studies in polycrystalline Fe-Rh alloy over a temperature range of 250-345 K across the first order antiferromagnetic to ferromagnetic transition. By measuring the MCE under various thermomagnetic histories, contrary to the long held belief, we show here explicitly that the giant MCE in Fe-Rh near room temperature does not vanish after the first field cycle. In spite of the fact that the virgin magnetization curve is lost after the first field cycle near room temperature, reproducibility in the MCE under multiple field cycles can be achieved by properly choosing a combination of isothermal and adiabatic field variation cycles in the field-temperature phase space. This reproducible MCE leads to a large effective refrigerant capacity of 324.42 J kg-1, which is larger than that of the well-known magnetocaloric material Gd5Si2Ge2. This information could be important as Fe-Rh has the advantage of having a working temperature of around 300 K, which can be used for room temperature magnetic refrigeration.

  6. Effects of room temperature on physiological and subjective responses during whole-body bathing, half-body bathing and showering.

    PubMed

    Hashiguchi, Nobuko; Ni, Furong; Tochihara, Yutaka

    2002-11-01

    The effects of bathroom thermal conditions on physiological and subjective responses were evaluated before, during, and after whole-body bath (W-bath), half-body bath (H-bath) and showering. The air temperature of the dressing room and bathroom was controlled at 10 degrees C, 17.5 degrees C, and 25 degrees C. Eight healthy males bathed for 10 min under nine conditions on separate days. The water temperature of the bathtub and shower was controlled at 40 degrees C and 41 degrees C, respectively. Rectal temperature (Tre), mean skin temperature (Tsk), blood pressure (BP), heart rate (HR), body weight loss and blood characteristics (hematocrit: Hct, hemoglobin: Hb) were evaluated. Also, thermal sensation (TS), thermal comfort (TC) and thermal acceptability (TA) were recorded. BP decreased rapidly during W-bath and H-bath compared to showering. HR during W-bath was significantly higher than for H-bath and showering (p < 0.01). The double products due to W-bath during bathing were also greater than for H-bath and showering (p < 0.05). There were no distinct differences in Hct and Hb among the nine conditions. However, significant differences in body weight loss were observed among the bathing methods: W-bath > H-bath > showering (p < 0.001). W-bath showed the largest increase in Tre and Tsk, followed by H-bath, and showering. Significant differences in Tre after bathing among the room temperatures were found only at H-bath. The changes in Tre after bathing for H-bath at 25 degrees C were similar to those for W-bath at 17.5 degrees C and 10 degrees C. TS and TC after bathing significantly differed for the three bathing methods at 17.5 degrees C and 10 degrees C (TS: p < 0.01 TC: p < 0.001). Especially, for showering, the largest number of subjects felt "cold" and "uncomfortable". Even though all of the subjects could accept the 10 degrees C condition after W-bath, such conditions were intolerable to half of them after showering. These results suggested that the

  7. Impact of Seasonal Variant Temperatures and Laboratory Room Ambient Temperature on Mortality of Rats with Ischemic Brain Injury

    PubMed Central

    Gopalakrishanan, Sivakumar; Babu, Mg. Ramesh; Thangarajan, Rajesh; Punja, Dhiren; Jaganath, Vidyadhara Devarunda; Kanth, Akriti B.; Rao, Mohandas

    2016-01-01

    Introduction A popular rat model for hypoperfusion ischemic brain injury is bilateral common carotid artery occlusion (BCCAO). BCCAO surgery when performed in varying geographical locations and during different seasons of the year is reported to have variable mortality rates. Studies have also documented the diminishing influence of Ketamine-Xylazine (KT-XY) on thermoregulatory functions in rodents. Aim To explore the impact of seasonal variant temperatures and laboratory room ambient temperatures on mortality of rats following BCCAO surgery. Materials and Methods The study has two parts: 1 The first part is an analysis of a three year retrospective data to explore the association between the geographical season (hot summer and cold winter) induced laboratory room ambient temperature variations and the mortality rate in KT-XY anaesthetized BCCAO rats. 2. The second part investigated the effect of conditioned laboratory room ambient temperature (CAT) (23-250C) in KT-XY anaesthetized BCCAO group of rats. Rats were divided into 4 groups(n =8/group) as-Normal control, BCCAO and Sham BCCAO where they were all exposed to unconditioned ambient temperature (UCAT) during their surgery and postoperative care. And finally fourth group rats exposed to CAT during the BCCAO surgery and postoperative care. Results Pearson’s chi-square test indicates a significantly high association (p<0.006) between post-BCCAO mortality and hot season of the year. CAT during the hot season reduced the mortality rate (24% less) in post- BCCAO rats compared to the rats of UCAT. Conclusion Despite seasonal variations in temperature, conditioning the laboratory room ambient temperatures to 23–250C, induces hypothermia in KT-XY anaesthetized ischemic brain injured rodents and improves their survival rate. PMID:27190796

  8. Low-Temperature Photochemically Activated Amorphous Indium-Gallium-Zinc Oxide for Highly Stable Room-Temperature Gas Sensors.

    PubMed

    Jaisutti, Rawat; Kim, Jaeyoung; Park, Sung Kyu; Kim, Yong-Hoon

    2016-08-10

    We report on highly stable amorphous indium-gallium-zinc oxide (IGZO) gas sensors for ultraviolet (UV)-activated room-temperature detection of volatile organic compounds (VOCs). The IGZO sensors fabricated by a low-temperature photochemical activation process and exhibiting two orders higher photocurrent compared to conventional zinc oxide sensors, allowed high gas sensitivity against various VOCs even at room temperature. From a systematic analysis, it was found that by increasing the UV intensity, the gas sensitivity, response time, and recovery behavior of an IGZO sensor were strongly enhanced. In particular, under an UV intensity of 30 mW cm(-2), the IGZO sensor exhibited gas sensitivity, response time and recovery time of 37%, 37 and 53 s, respectively, against 750 ppm concentration of acetone gas. Moreover, the IGZO gas sensor had an excellent long-term stability showing around 6% variation in gas sensitivity over 70 days. These results strongly support a conclusion that a low-temperature solution-processed amorphous IGZO film can serve as a good candidate for room-temperature VOCs sensors for emerging wearable electronics.

  9. Stable room-temperature ferromagnetic phase at the FeRh(100) surface

    SciTech Connect

    Pressacco, Federico; Uhlir, Vojtech; Gatti, Matteo; Bendounan, Azzedine; Fullerton, Eric E.; Sirotti, Fausto

    2016-03-03

    Interfaces and low dimensionality are sources of strong modifications of electronic, structural, and magnetic properties of materials. FeRh alloys are an excellent example because of the first-order phase transition taking place at ~400 K from an antiferromagnetic phase at room temperature to a high temperature ferromagnetic one. It is accompanied by a resistance change and volume expansion of about 1%. We have investigated the electronic and magnetic properties of FeRh(100) epitaxially grown on MgO by combining spectroscopies characterized by different probing depths, namely X-ray magnetic circular dichroism and photoelectron spectroscopy. Furthermore, we find that the symmetry breaking induced at the Rh-terminated surface stabilizes a surface ferromagnetic layer involving five planes of Fe and Rh atoms in the nominally antiferromagnetic phase at room temperature. First-principles calculations provide a microscopic description of the structural relaxation and the electron spin-density distribution that support the experimental findings.

  10. Noise-enhanced spontaneous chaos in semiconductor superlattices at room temperature

    NASA Astrophysics Data System (ADS)

    Alvaro, M.; Carretero, M.; Bonilla, L. L.

    2014-08-01

    Physical systems exhibiting fast spontaneous chaotic oscillations are used to generate high-quality true random sequences in random number generators. The concept of using fast practical entropy sources to produce true random sequences is crucial to make storage and transfer of data more secure at very high speeds. While the first high-speed devices were chaotic semiconductor lasers, the discovery of spontaneous chaos in semiconductor superlattices at room temperature provides a valuable nanotechnology alternative. Spontaneous chaos was observed in 1996 experiments at temperatures below liquid nitrogen. Here we show spontaneous chaos at room temperature appears in idealized superlattices for voltage ranges where sharp transitions between different oscillation modes occur. Internal and external noises broaden these voltage ranges and enhance the sensitivity to initial conditions in the superlattice snail-shaped chaotic attractor thereby rendering spontaneous chaos more robust.

  11. Room temperature spin valve effect in NiFe/WS2/Co junctions

    PubMed Central

    Iqbal, Muhammad Zahir; Iqbal, Muhammad Waqas; Siddique, Salma; Khan, Muhammad Farooq; Ramay, Shahid Mahmood

    2016-01-01

    The two-dimensional (2D) layered electronic materials of transition metal dichalcogenides (TMDCs) have been recently proposed as an emerging canddiate for spintronic applications. Here, we report the exfoliated single layer WS2-intelayer based spin valve effect in NiFe/WS2/Co junction from room temperature to 4.2 K. The ratio of relative magnetoresistance in spin valve effect increases from 0.18% at room temperature to 0.47% at 4.2 K. We observed that the junction resistance decreases monotonically as temperature is lowered. These results revealed that semiconducting WS2 thin film works as a metallic conducting interlayer between NiFe and Co electrodes. PMID:26868638

  12. Optically induced strong intermodal coupling in mechanical resonators at room temperature

    SciTech Connect

    Ohta, R.; Okamoto, H.; Yamaguchi, H.; Hey, R.; Friedland, K. J.

    2015-08-31

    Strong parametric mode coupling in mechanical resonators is demonstrated at room temperature by using the photothermal effect in thin membrane structures. Thanks to the large stress modulation by laser irradiation, the coupling rate of the mechanical modes, defined as half of the mode splitting, reaches 2.94 kHz, which is an order of magnitude larger than electrically induced mode coupling. This large coupling rate exceeds the damping rates of the mechanical resonators and results in the strong coupling regime, which is a signature of coherent mode interaction. Room-temperature coherent mode coupling will enable us to manipulate mechanical motion at practical operation temperatures and provides a wide variety of applications of integrated mechanical systems.

  13. Cu-Cu direct bonding achieved by surface method at room temperature

    SciTech Connect

    Utsumi, Jun; Ichiyanagi, Yuko

    2014-02-20

    The metal bonding is a key technology in the processes for the microelectromechanical systems (MEMS) devices and the semiconductor devices to improve functionality and higher density integration. Strong adhesion between surfaces at the atomic level is crucial; however, it is difficult to achieve close bonding in such a system. Cu films were deposited on Si substrates by vacuum deposition, and then, two Cu films were bonded directly by means of surface activated bonding (SAB) at room temperature. The two Cu films, with the surface roughness Ra about 1.3nm, were bonded by using SAB at room temperature, however, the bonding strength was very weak in this method. In order to improve the bonding strength between the Cu films, samples were annealed at low temperatures, between 323 and 473 K, in air. As the result, the Cu-Cu bonding strength was 10 times higher than that of the original samples without annealing.

  14. Giant electrocaloric effect in asymmetric ferroelectric tunnel junctions at room temperature

    SciTech Connect

    Liu, Yang Infante, Ingrid C.; Dkhil, Brahim; Lou, Xiaojie

    2014-02-24

    Room-temperature electrocaloric properties of Pt/BaTiO{sub 3}/SrRuO{sub 3} ferroelectric tunnel junctions (FTJs) are studied by using a multiscale thermodynamic model. It is found that there is a divergence in the adiabatic temperature change ΔT for the two opposite polarization orientations. This difference under a typical writing voltage of 3 V can reach over 1 K as the barrier thickness decreases. Thanks to the ultrahigh external stimulus, a giant electrocaloric effect (1.53 K/V) with ΔT being over 4.5 K can be achieved at room temperature, which demonstrates the perspective of FTJs as a promising solid-state refrigeration.

  15. Iron-aluminum alloys having high room-temperature and method for making same

    DOEpatents

    Sikka, Vinod K.; McKamey, Claudette G.

    1993-01-01

    Iron-aluminum alloys having selectable room-temperature ductilities of greater than 20%, high resistance to oxidation and sulfidation, resistant pitting and corrosion in aqueous solutions, and possessing relatively high yield and ultimate tensile strengths are described. These alloys comprise 8 to 9.5% aluminum, up to 7% chromium, up to 4% molybdenum, up to 0.05% carbon, up to 0.5% of a carbide former such as zirconium, up to 0.1 yttrium, and the balance iron. These alloys in wrought form are annealed at a selected temperature in the range of 700.degree. C. to about 1100.degree. C. for providing the alloys with selected room-temperature ductilities in the range of 20 to about 29%.

  16. Room-temperature oxidation of silicon catalyzed by Cu3Si

    NASA Astrophysics Data System (ADS)

    Harper, J. M. E.; Charai, A.; Stolt, L.; d'Heurle, F. M.; Fryer, P. M.

    1990-06-01

    We demonstrate remarkably rapid oxidation of (100) silicon at room temperature catalyzed by the presence of Cu3Si. Thermal oxidation of Si is normally carried out at temperatures above 700 °C. Oxidation of many metal silicides occurs more rapidly than that of Si, but under controlled conditions results in a surface layer of SiO2. In contrast, the oxidation process described here produces a thick layer of SiO2 underneath the copper-rich surface layer. The SiO2 layer grows spontaneously to over 1 μm in thickness in several weeks in air at room temperature. Analysis by Rutherford backscattering, Auger electron spectroscopy, cross-sectional transmission electron microscopy, and scanning electron microscopy reveals the presence of Cu3Si at the buried SiO2/Si interface, epitaxially related to the underlying Si substrate. Catalytic action by this silicide phase appears responsible for the unusual oxidation process.

  17. Stable room-temperature ferromagnetic phase at the FeRh(100) surface

    PubMed Central

    Pressacco, Federico; Uhlίř, Vojtěch; Gatti, Matteo; Bendounan, Azzedine; Fullerton, Eric E.; Sirotti, Fausto

    2016-01-01

    Interfaces and low dimensionality are sources of strong modifications of electronic, structural, and magnetic properties of materials. FeRh alloys are an excellent example because of the first-order phase transition taking place at ~400 K from an antiferromagnetic phase at room temperature to a high temperature ferromagnetic one. It is accompanied by a resistance change and volume expansion of about 1%. We have investigated the electronic and magnetic properties of FeRh(100) epitaxially grown on MgO by combining spectroscopies characterized by different probing depths, namely X-ray magnetic circular dichroism and photoelectron spectroscopy. We find that the symmetry breaking induced at the Rh-terminated surface stabilizes a surface ferromagnetic layer involving five planes of Fe and Rh atoms in the nominally antiferromagnetic phase at room temperature. First-principles calculations provide a microscopic description of the structural relaxation and the electron spin-density distribution that support the experimental findings. PMID:26935274

  18. Supercurrent in a room-temperature Bose-Einstein magnon condensate

    NASA Astrophysics Data System (ADS)

    Bozhko, Dmytro A.; Serga, Alexander A.; Clausen, Peter; Vasyuchka, Vitaliy I.; Heussner, Frank; Melkov, Gennadii A.; Pomyalov, Anna; L'Vov, Victor S.; Hillebrands, Burkard

    2016-11-01

    A supercurrent is a macroscopic effect of a phase-induced collective motion of a quantum condensate. So far, experimentally observed supercurrent phenomena such as superconductivity and superfluidity have been restricted to cryogenic temperatures. Here, we report on the discovery of a supercurrent in a Bose-Einstein magnon condensate prepared in a room-temperature ferrimagnetic film. The magnon condensate is formed in a parametrically pumped magnon gas and is subject to a thermal gradient created by local laser heating of the film. The appearance of the supercurrent, which is driven by a thermally induced phase shift in the condensate wavefunction, is evidenced by analysis of the temporal evolution of the magnon density measured by means of Brillouin light scattering spectroscopy. Our findings offer opportunities for the investigation of room-temperature macroscopic quantum phenomena and their potential applications at ambient conditions.

  19. Toward realizing high power semiconductor terahertz laser sources at room temperature

    NASA Astrophysics Data System (ADS)

    Razeghi, Manijeh

    2011-05-01

    The terahertz (THz) spectral range offers promising applications in science, industry, and military. THz penetration through nonconductors (fabrics, wood, plastic) enables a more efficient way of performing security checks (for example at airports), as illegal drugs and explosives could be detected. Being a non-ionizing radiation, THz radiation is environment-friendly enabling a safer analysis environment than conventional X-ray based techniques. However, the lack of a compact room temperature THz laser source greatly hinders mass deployment of THz systems in security check points and medical centers. In the past decade, tremendous development has been made in GaAs/AlGaAs based THz Quantum Cascade Laser (QCLs), with maximum operating temperatures close to 200 K (without magnetic field). However, higher temperature operation is severely limited by a small LO-phonon energy (~ 36 meV) in this material system. With a much larger LO-phonon energy of ~ 90 meV, III-Nitrides are promising candidates for room temperature THz lasers. However, realizing high quality material for GaN-based intersubband devices presents a significant challenge. Advances with this approach will be presented. Alternatively, recent demonstration of InP based mid-infrared QCLs with extremely high peak power of 120 W at room temperature opens up the possibility of producing high power THz emission with difference frequency generation through two mid-infrared wavelengths.

  20. A general route toward complete room temperature processing of printed and high performance oxide electronics.

    PubMed

    Baby, Tessy T; Garlapati, Suresh K; Dehm, Simone; Häming, Marc; Kruk, Robert; Hahn, Horst; Dasgupta, Subho

    2015-03-24

    Critical prerequisites for solution-processed/printed field-effect transistors (FETs) and logics are excellent electrical performance including high charge carrier mobility, reliability, high environmental stability and low/preferably room temperature processing. Oxide semiconductors can often fulfill all the above criteria, sometimes even with better promise than their organic counterparts, except for their high process temperature requirement. The need for high annealing/curing temperatures renders oxide FETs rather incompatible to inexpensive, flexible substrates, which are commonly used for high-throughput and roll-to-roll additive manufacturing techniques, such as printing. To overcome this serious limitation, here we demonstrate an alternative approach that enables completely room-temperature processing of printed oxide FETs with device mobility as large as 12.5 cm(2)/(V s). The key aspect of the present concept is a chemically controlled curing process of the printed nanoparticle ink that provides surprisingly dense thin films and excellent interparticle electrical contacts. In order to demonstrate the versatility of this approach, both n-type (In2O3) and p-type (Cu2O) oxide semiconductor nanoparticle dispersions are prepared to fabricate, inkjet printed and completely room temperature processed, all-oxide complementary metal oxide semiconductor (CMOS) invertors that can display significant signal gain (∼18) at a supply voltage of only 1.5 V.

  1. Room Temperature Electrical Detection of Spin Polarized Currents in Topological Insulators.

    PubMed

    Dankert, André; Geurs, Johannes; Kamalakar, M Venkata; Charpentier, Sophie; Dash, Saroj P

    2015-12-09

    Topological insulators (TIs) are a new class of quantum materials that exhibit a current-induced spin polarization due to spin-momentum locking of massless Dirac Fermions in their surface states. This helical spin polarization in three-dimensional (3D) TIs has been observed using photoemission spectroscopy up to room temperatures. Recently, spin polarized surface currents in 3D TIs were detected electrically by potentiometric measurements using ferromagnetic detector contacts. However, these electric measurements are so far limited to cryogenic temperatures. Here we report the room temperature electrical detection of the spin polarization on the surface of Bi2Se3 by employing spin sensitive ferromagnetic tunnel contacts. The current-induced spin polarization on the Bi2Se3 surface is probed by measuring the magnetoresistance while switching the magnetization direction of the ferromagnetic detector. A spin resistance of up to 70 mΩ is measured at room temperature, which increases linearly with current bias, reverses sign with current direction, and decreases with higher TI thickness. The magnitude of the spin signal, its sign, and control experiments, using different measurement geometries and interface conditions, rule out other known physical effects. These findings provide further information about the electrical detection of current-induced spin polarizations in 3D TIs at ambient temperatures and could lead to innovative spin-based technologies.

  2. Ratchetting behavior of type 304 stainless steel at room and elevated temperatures

    SciTech Connect

    Ruggles, M.; Krempl, E.

    1988-01-01

    The zero-to-tension ratchetting behavior was investigated under uniaxial loading at room temperature and at 550, 600 and 650/degree/ C. In History I the maximum stress level of ratchetting was equal to the stress reached in a tensile test at one percent strain. For History II the maximum stress level was established as the stress reached after a 2100 s relaxation at one percent strain. Significant ratchetting was observed for History I at room temperature but not at the elevated temperatures. The accumulated ratchet strain increases with decreasing stress rate. Independent of the stress rates used insignificant ratchet strain was observed at room temperature for History II. This observation is explained in the context of the viscoplasticity theory based on overstress by the exhaustion of the viscous contribution to the stress during relaxation. The viscous part of the stress is the driving force for the ratchetting in History I. Strain aging is presumably responsible for the lack of short-time inelastic deformation resulting in a nearly rate-independent behavior at the elevated temperatures. 26 refs., 7 figs., 1 tab.

  3. Thermoelectric Power Generation from Lanthanum Strontium Titanium Oxide at Room Temperature through the Addition of Graphene.

    PubMed

    Lin, Yue; Norman, Colin; Srivastava, Deepanshu; Azough, Feridoon; Wang, Li; Robbins, Mark; Simpson, Kevin; Freer, Robert; Kinloch, Ian A

    2015-07-29

    The applications of strontium titanium oxide based thermoelectric materials are currently limited by their high operating temperatures of >700 °C. Herein, we show that the thermal operating window of lanthanum strontium titanium oxide (LSTO) can be reduced to room temperature by the addition of a small amount of graphene. This increase in operating performance will enable future applications such as generators in vehicles and other sectors. The LSTO composites incorporated one percent or less of graphene and were sintered under an argon/hydrogen atmosphere. The resultant materials were reduced and possessed a multiphase structure with nanosized grains. The thermal conductivity of the nanocomposites decreased upon the addition of graphene, whereas the electrical conductivity and power factor both increased significantly. These factors, together with a moderate Seebeck coefficient, meant that a high power factor of ∼2500 μWm(-1)K(-2) was reached at room temperature at a loading of 0.6 wt % graphene. The highest thermoelectric figure of merit (ZT) was achieved when 0.6 wt % graphene was added (ZT = 0.42 at room temperature and 0.36 at 750 °C), with >280% enhancement compared to that of pure LSTO. A preliminary 7-couple device was produced using bismuth strontium cobalt oxide/graphene-LSTO pucks. This device had a Seebeck coefficient of ∼1500 μV/K and an open voltage of 600 mV at a mean temperature of 219 °C.

  4. Room temperature table-like magnetocaloric effect in amorphous Gd50Co45Fe5 ribbon

    NASA Astrophysics Data System (ADS)

    Liu, G. L.; Zhao, D. Q.; Bai, H. Y.; Wang, W. H.; Pan, M. X.

    2016-02-01

    Gd50Co45Fe5 amorphous alloy ribbon with a table-like magnetocaloric effect (MCE) suitable for the ideal Ericsson cycle at room temperature has been developed. In addition to a high magnetic transition temperature of 289 K very close to that of Gd (294 K), a relatively large value of refrigerant capacity (~521 J kg-1) has been achieved under a field change of 5 T. This value of refrigerant capacity (RC) is about 27% and 70% larger than those of Gd (~410 J kg-1) and Gd5Si2Ge2 (~306 J kg-1). More importantly, the peak value of magnetic entropy change (-Δ S\\text{M}\\max ) approaches a nearly constant value of ~3.8 J  ṡ  kg-1  ṡ  K-1 under an applied field change of 0~5 T in a wide temperature span over 40 K around room temperature, which could be used as the candidate working material in the Ericsson-cycle magnetic regenerative refrigerator around room temperature.

  5. Room-temperature monoclinic and low-temperature triclinic phase-transition structures of meso-octamethylcalix[4]pyrrole-dimethyl sulfoxide (1/1).

    PubMed

    Lynch, V M; Gale, P A; Sessler, J L; Madeiros, D

    2001-12-01

    Crystals of the title complex, C28H36N4*C2H6OS, undergo a phase transition between room temperature and 198 K, as determined by X-ray diffraction techniques. A monoclinic form is observed at room temperature, while a triclinic modification is found at 198 K, with Z' changing from 1 to 2. Differential scanning calorimetry (DSC) of the calixpyrrole-dimethyl sulfoxide complex revealed a series of phase changes between 273 and 243 K. The transition from the room-temperature monoclinic form to the low-temperature triclinic form is reversible, as determined by changes in the cell dimensions from remeasuring selected reflections at room temperature and at temperatures below 223 K. The uncomplexed calix[4]pyrrole molecule shows no phase changes occurring between room temperature and 233 K, the low-temperature limit of the DSC.

  6. Molecular dynamics investigations of mechanical behaviours in monocrystalline silicon due to nanoindentation at cryogenic temperatures and room temperature

    PubMed Central

    Du, Xiancheng; Zhao, Hongwei; Zhang, Lin; Yang, Yihan; Xu, Hailong; Fu, Haishuang; Li, Lijia

    2015-01-01

    Molecular dynamics simulations of nanoindentation tests on monocrystalline silicon (010) surface were conducted to investigate the mechanical properties and deformation mechanism from cryogenic temperature being 10 K to room temperature being 300 K. Furthermore, the load-displacement curves were obtained and the phase transformation was investigated at different temperatures. The results show that the phase transformation occurs both at cryogenic temperatures and at room temperature. By searching for the presence of the unique non-bonded fifth neighbour atom, the metastable phases (Si-III and Si-XII) with fourfold coordination could be distinguished from Si-I phase during the loading stage of nanoindentation process. The Si-II, Si-XIII, and amorphous phase were also found in the region beneath the indenter. Moreover, through the degree of alignment of the metastable phases along specific crystal orientation at different temperatures, it was found that the temperature had effect on the anisotropy of the monocrystalline silicon, and the simulation results indicate that the anisotropy of monocrystalline silicon is strengthened at low temperatures. PMID:26537978

  7. Molecular dynamics investigations of mechanical behaviours in monocrystalline silicon due to nanoindentation at cryogenic temperatures and room temperature.

    PubMed

    Du, Xiancheng; Zhao, Hongwei; Zhang, Lin; Yang, Yihan; Xu, Hailong; Fu, Haishuang; Li, Lijia

    2015-11-05

    Molecular dynamics simulations of nanoindentation tests on monocrystalline silicon (010) surface were conducted to investigate the mechanical properties and deformation mechanism from cryogenic temperature being 10 K to room temperature being 300 K. Furthermore, the load-displacement curves were obtained and the phase transformation was investigated at different temperatures. The results show that the phase transformation occurs both at cryogenic temperatures and at room temperature. By searching for the presence of the unique non-bonded fifth neighbour atom, the metastable phases (Si-III and Si-XII) with fourfold coordination could be distinguished from Si-I phase during the loading stage of nanoindentation process. The Si-II, Si-XIII, and amorphous phase were also found in the region beneath the indenter. Moreover, through the degree of alignment of the metastable phases along specific crystal orientation at different temperatures, it was found that the temperature had effect on the anisotropy of the monocrystalline silicon, and the simulation results indicate that the anisotropy of monocrystalline silicon is strengthened at low temperatures.

  8. Avoiding hypothermia in neonatal pigs: effect of duration of floor heating at different room temperatures.

    PubMed

    Pedersen, L J; Malmkvist, J; Kammersgaard, T; Jørgensen, E

    2013-01-01

    The effect of different farrowing room temperatures (15, 20, or 25°C), combined with floor heating (FH) at the birth site, on the postnatal rectal temperature of pigs, use of creep area, and latency to first colostrum uptake was investigated with 61 litters born by loose-housed sows. Pig rectal temperature was measured at birth, as well as at 0.25, 0.5, 1, 1.5, 2, 3, 4, 12, 24, and 48 h after birth. The drop in rectal temperature from birth to 0.5 h postpartum was less (P<0.05) at room temperature of 25°C compared with 20 and 15°C. Minimum rectal temperature was less (P<0.001) at 15°C than either 20 or 25°C, and the time it took for rectal temperature to increase above 37°C was longer (P<0.05) when room temperature was 15°C than 20 and 25°C. Rectal temperatures at 24 (P<0.001) and 48 h (P<0.05) postpartum were also lower at room temperature of 15°C than 20 and 25°C. Duration of FH (12 or 48 h) did not influence (P>0.28) the rectal temperature at 24 or 48 h after birth. More pigs used the creep area 12 to 60 h after birth of the first pig at a room temperature of 15°C with 12 h FH compared with all other treatments. During the latter part of this period, more pigs stayed in the creep area also at 20°C with 12 h FH. After 60 h, more pigs (P<0.01) used the creep area at low compared with high room temperatures (15°C>20°C>25°C). Odds ratio of pigs dying before they had suckled was 6.8 times greater (P=0.03) at 15 than 25°C (95% CI of 1.3 to 35.5), whereas the odds ratio of dying during the first 7 d was 1.6 greater (P=0.05) for 48 vs. 12 h of FH (95% CI of 1.0 to 2.57), mainly due to more pigs being crushed. In conclusion, FH for 48 h was no more favorable than 12 h for pigs because the risk of hypothermia was equal in the 2 treatments, and the risk of dying increased with the longer FH duration. Increasing the room temperature to 25°C reduced hypothermia and the risk of pigs dying before colostrum intake.

  9. Room temperature nanoscale ferroelectricity in magnetoelectric GaFeO3 epitaxial thin films.

    PubMed

    Mukherjee, Somdutta; Roy, Amritendu; Auluck, Sushil; Prasad, Rajendra; Gupta, Rajeev; Garg, Ashish

    2013-08-23

    We demonstrate room temperature ferroelectricity in the epitaxial thin films of magnetoelectric gallium ferrite. Piezoforce measurements show a 180° phase shift of piezoresponse upon switching the electric field indicating nanoscale ferroelectricity in the thin films. Further, temperature-dependent impedance analysis with and without the presence of an external magnetic field clearly reveals a pronounced magnetodielectric effect across the magnetic transition temperature. In addition, our first principles calculations show that Fe ions are not only responsible for ferrimagnetism as observed earlier but also give rise to the observed ferroelectricity, making gallium ferrite a unique single phase multiferroic.

  10. Epitaxy of nanocrystalline silicon carbide on Si(111) at room temperature.

    PubMed

    Verucchi, Roberto; Aversa, Lucrezia; Nardi, Marco V; Taioli, Simone; a Beccara, Silvio; Alfè, Dario; Nasi, Lucia; Rossi, Francesca; Salviati, Giancarlo; Iannotta, Salvatore

    2012-10-24

    Silicon carbide (SiC) has unique chemical, physical, and mechanical properties. A factor strongly limiting SiC-based technologies is the high-temperature synthesis. In this work, we provide unprecedented experimental and theoretical evidence of 3C-SiC epitaxy on silicon at room temperature by using a buckminsterfullerene (C(60)) supersonic beam. Chemical processes, such as C(60) rupture, are activated at a precursor kinetic energy of 30-35 eV, far from thermodynamic equilibrium. This result paves the way for SiC synthesis on polymers or plastics that cannot withstand high temperatures.

  11. Dielectric permittivity of room temperature ionic liquids: a relation to the polar and nonpolar domain structures.

    PubMed

    Mizoshiri, Makoto; Nagao, Takena; Mizoguchi, Yuri; Yao, Makoto

    2010-04-28

    We measured microwave transmission and reflection spectra for typical room temperature ionic liquids, [C(4)min][TFSA], [C(4)min][PF(6)], [C(6)min][PF(6)], and [C(8)min][PF(6)], at frequencies between 40 MHz and 40 GHz in the temperature range up to 100 degrees C. The transmission spectra were analyzed using complex dielectric functions, and the static permittivity epsilon(S) was determined as a function of temperature. Applying the effective medium approximation to epsilon(S), we have estimated that the static permittivity of the polar domain is around 20, and that of the nonpolar domain around 2.5.

  12. Correcting for Microbial Blooms in Fecal Samples during Room-Temperature Shipping

    PubMed Central

    Amir, Amnon; McDonald, Daniel; Navas-Molina, Jose A.; Debelius, Justine; Morton, James T.; Hyde, Embriette; Robbins-Pianka, Adam

    2017-01-01

    ABSTRACT The use of sterile swabs is a convenient and common way to collect microbiome samples, and many studies have shown that the effects of room-temperature storage are smaller than physiologically relevant differences between subjects. However, several bacterial taxa, notably members of the class Gammaproteobacteria, grow at room temperature, sometimes confusing microbiome results, particularly when stability is assumed. Although comparative benchmarking has shown that several preservation methods, including the use of 95% ethanol, fecal occult blood test (FOBT) and FTA cards, and Omnigene-GUT kits, reduce changes in taxon abundance during room-temperature storage, these techniques all have drawbacks and cannot be applied retrospectively to samples that have already been collected. Here we performed a meta-analysis using several different microbiome sample storage condition studies, showing consistent trends in which specific bacteria grew (i.e., “bloomed”) at room temperature, and introduce a procedure for removing the sequences that most distort analyses. In contrast to similarity-based clustering using operational taxonomic units (OTUs), we use a new technique called “Deblur” to identify the exact sequences corresponding to blooming taxa, greatly reducing false positives and also dramatically decreasing runtime. We show that applying this technique to samples collected for the American Gut Project (AGP), for which participants simply mail samples back without the use of ice packs or other preservatives, yields results consistent with published microbiome studies performed with frozen or otherwise preserved samples. IMPORTANCE In many microbiome studies, the necessity to store samples at room temperature (i.e., remote fieldwork) and the ability to ship samples without hazardous materials that require special handling training, such as ethanol (i.e., citizen science efforts), is paramount. However, although room-temperature storage for a few days has

  13. Correcting for Microbial Blooms in Fecal Samples during Room-Temperature Shipping.

    PubMed

    Amir, Amnon; McDonald, Daniel; Navas-Molina, Jose A; Debelius, Justine; Morton, James T; Hyde, Embriette; Robbins-Pianka, Adam; Knight, Rob

    2017-01-01

    The use of sterile swabs is a convenient and common way to collect microbiome samples, and many studies have shown that the effects of room-temperature storage are smaller than physiologically relevant differences between subjects. However, several bacterial taxa, notably members of the class Gammaproteobacteria, grow at room temperature, sometimes confusing microbiome results, particularly when stability is assumed. Although comparative benchmarking has shown that several preservation methods, including the use of 95% ethanol, fecal occult blood test (FOBT) and FTA cards, and Omnigene-GUT kits, reduce changes in taxon abundance during room-temperature storage, these techniques all have drawbacks and cannot be applied retrospectively to samples that have already been collected. Here we performed a meta-analysis using several different microbiome sample storage condition studies, showing consistent trends in which specific bacteria grew (i.e., "bloomed") at room temperature, and introduce a procedure for removing the sequences that most distort analyses. In contrast to similarity-based clustering using operational taxonomic units (OTUs), we use a new technique called "Deblur" to identify the exact sequences corresponding to blooming taxa, greatly reducing false positives and also dramatically decreasing runtime. We show that applying this technique to samples collected for the American Gut Project (AGP), for which participants simply mail samples back without the use of ice packs or other preservatives, yields results consistent with published microbiome studies performed with frozen or otherwise preserved samples. IMPORTANCE In many microbiome studies, the necessity to store samples at room temperature (i.e., remote fieldwork) and the ability to ship samples without hazardous materials that require special handling training, such as ethanol (i.e., citizen science efforts), is paramount. However, although room-temperature storage for a few days has been shown not to

  14. DNS of the Velocity and Temperature Fields in a Model of a Small Room

    NASA Astrophysics Data System (ADS)

    McLaughlin, John; Jia, Xinli; Ahmadi, Goodarz; Derksen, Jos

    2010-03-01

    This talk presents the results of a numerical study of the velocity and temperature fields in a model of a small room containing a seated mannequin. Results are also presented for the trajectories and ultimate fate of small particles that are introduced through the air inlet as well as particles that are entrained by the mannequin's thermal plume. The study was motivated by an experimental study performed at Syracuse University. In the experimental study, air entered the room through a floor vent and exited through a ceiling vent on the other side of the room. A mannequin was seated facing the floor vent. The mannequin could be electrically heated so that its surface temperature was 31C. The objective of the simulations was to obtain a more detailed understanding of the flow in the room. Of specific interest were the effects of the mannequin on the ultimate fates of small particles. The importance of the thermal plume around the mannequin was of particular interest since the thermal plume plays a role in transporting particles from near the floor to the breathing zone. The simulations were performed with a single phase version of a lattice Boltzmann method (LBM) that was originally developed for two-phase flows by Inamuro et al.

  15. High performance hydrogen storage from Be-BTB metal-organic framework at room temperature.

    PubMed

    Lim, Wei-Xian; Thornton, Aaron W; Hill, Anita J; Cox, Barry J; Hill, James M; Hill, Matthew R

    2013-07-09

    The metal-organic framework beryllium benzene tribenzoate (Be-BTB) has recently been reported to have one of the highest gravimetric hydrogen uptakes at room temperature. Storage at room temperature is one of the key requirements for the practical viability of hydrogen-powered vehicles. Be-BTB has an exceptional 298 K storage capacity of 2.3 wt % hydrogen. This result is surprising given that the low adsorption enthalpy of 5.5 kJ mol(-1). In this work, a combination of atomistic simulation and continuum modeling reveals that the beryllium rings contribute strongly to the hydrogen interaction with the framework. These simulations are extended with a thermodynamic energy optimization (TEO) model to compare the performance of Be-BTB to a compressed H2 tank and benchmark materials MOF-5 and MOF-177 in a MOF-based fuel cell. Our investigation shows that none of the MOF-filled tanks satisfy the United States Department of Energy (DOE) storage targets within the required operating temperatures and pressures. However, the Be-BTB tank delivers the most energy per volume and mass compared to the other material-based storage tanks. The pore size and the framework mass are shown to be contributing factors responsible for the superior room temperature hydrogen adsorption of Be-BTB.

  16. Protolytic decomposition of n-octane on graphite at near room temperature

    PubMed Central

    Kawashima, Yasushi; Iwamoto, Mitsumasa

    2016-01-01

    Graphite basal surface is inert, and decomposition of n-alkanes on the graphite surface has not been discovered. We here report the evidence of decomposition of n-octanes on highly oriented pyrolytic graphite (HOPG) surface, heat-treated up to 1200 °C under high vacuum (10−7 Pa), at near room temperatures. Using a temperature programmed desorption apparatus equipped with a quadrupole mass spectrometer showed the production of hydrogen molecules, methane, and ethane, suggesting that the protonation of n-octane takes place on graphite surface at near room temperature. It is known that acidic functional groups are terminated at edges on the air-cleaved HOPG surface and they increase their acidity via reactions with water. However, it is most unlikely that they protonate n-alkanes at near room temperature such as superacids. We anticipate that superacidic protons, which can protonate n-octanes, are produced on the graphite surface through a novel reaction mechanism. PMID:27335263

  17. Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene

    NASA Astrophysics Data System (ADS)

    Cai, Xinghan; Sushkov, Andrei B.; Suess, Ryan J.; Jadidi, Mohammad M.; Jenkins, Gregory S.; Nyakiti, Luke O.; Myers-Ward, Rachael L.; Li, Shanshan; Yan, Jun; Gaskill, D. Kurt; Murphy, Thomas E.; Drew, H. Dennis; Fuhrer, Michael S.

    2014-10-01

    Terahertz radiation has uses in applications ranging from security to medicine. However, sensitive room-temperature detection of terahertz radiation is notoriously difficult. The hot-electron photothermoelectric effect in graphene is a promising detection mechanism; photoexcited carriers rapidly thermalize due to strong electron-electron interactions, but lose energy to the lattice more slowly. The electron temperature gradient drives electron diffusion, and asymmetry due to local gating or dissimilar contact metals produces a net current via the thermoelectric effect. Here, we demonstrate a graphene thermoelectric terahertz photodetector with sensitivity exceeding 10 V W-1 (700 V W-1) at room temperature and noise-equivalent power less than 1,100 pW Hz-1/2 (20 pW Hz-1/2), referenced to the incident (absorbed) power. This implies a performance that is competitive with the best room-temperature terahertz detectors for an optimally coupled device, and time-resolved measurements indicate that our graphene detector is eight to nine orders of magnitude faster than those. A simple model of the response, including contact asymmetries (resistance, work function and Fermi-energy pinning) reproduces the qualitative features of the data, and indicates that orders-of-magnitude sensitivity improvements are possible.

  18. Low radiation level detection with room temperature InAs detector

    NASA Astrophysics Data System (ADS)

    Makai, Janos P.; Makai, Tamas

    2014-08-01

    Recently, room temperature or near room temperature InAs detectors are widely used in laser warning receivers, process control monitors, temperature sensors, etc. requiring linear operation over many decades of the sensitivity range. The linearity of zero biased Si, InGaAs and Ge detectors is thoroughly discussed in the literature, contrary to InAs detectors. In an earlier work of the authors it has been demonstrated that applying a bootstrap circuit to a Ge detector - depending on the frequency of the operation - will virtually increase the shunt resistance of the detector by 3-6 decades compared to the detector alone. In the present work, a similar circuitry was applied to a room temperature InAs detector, the differences between the bootstrapped Ge and bootstrapped InAs detector are underlined. It is shown, how the bootstrap circuit channels the photogenerated current to the feedback impedance decreasing with many decades the detectable low level limit of the detector - I/V converter unit. The linearity improvement results are discussed as a function of the chopping frequency, calculated and measured values are compared, the noise sources are analyzed and noise measurement results are presented.

  19. Ultra-High Sensitivity Zinc Oxide Nanocombs for On-Chip Room Temperature Carbon Monoxide Sensing

    PubMed Central

    Pan, Xiaofang; Zhao, Xiaojin

    2015-01-01

    In this paper, we report an on-chip gas sensor based on novel zinc oxide (ZnO) nanocombs for carbon monoxide (CO) sensing. With ZnO gas sensing nanocombs fully integrated on a single silicon chip, the concept of low cost complementary-metal-oxide-semiconductor (CMOS) microsensor capable of on-chip gas sensing and processing is enabled. Compared with all previous implementations, the proposed ZnO nanocombs feature much larger effective sensing area and exhibit ultra-high sensitivity even at the room temperature. Specifically, at room temperature, we demonstrate peak sensitivities as high as 7.22 and 8.93 for CO concentrations of 250 ppm and 500 ppm, respectively. As a result, by operating the proposed ZnO-nanocomb-based gas sensor at the room temperature, the widely adopted power consuming heating components are completely removed. This leads to not only great power saving, but also full compatibility between the gas sensor and the on-chip circuitry in term of acceptable operating temperature. In addition, the reported fast response/recovery time of ~200 s/~50 s (250 ppm CO) makes it well suited to real-life applications. PMID:25894935

  20. Synthesis and characterization of nano crystalline nickel zinc ferrite for chlorine gas sensor at room temperature

    SciTech Connect

    Pawar, C. S.; Gujar, M. P.; Mathe, V. L.

    2015-06-24

    Nano crystalline Nickel Zinc ferrite (Ni{sub 0.25}Zn{sub 0.75}Fe{sub 2}O{sub 4}) thin films were synthesized by Sol Gel method for gas response. The phase and microstructure of the obtained Ni{sub 0.25}Zn{sub 0.75}Fe{sub 2}O{sub 4} thin films were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM). The nanostructured Ni{sub 0.25}Zn{sub 0.75}Fe{sub 2}O{sub 4} thin film shows single spinel phase. Magnetic study was obtained with the help of VSM. The effects of working temperature on the gas response were studied. The results reveal that the Ni{sub 0.25}Zn{sub 0.75}Fe{sub 2}O{sub 4} thin film gas sensor shows good selectivity to chlorine gas at room temperature. The sensor shows highest sensitivity (∼50%) at room temperature, indicating its application in detecting chlorine gas at room temperature in the future.

  1. Effect of nanoscale confinement on freezing of modified water at room temperature and ambient pressure.

    PubMed

    Deshmukh, Sanket; Kamath, Ganesh; Sankaranarayanan, Subramanian K R S

    2014-06-06

    Understanding the phase behavior of confined water is central to fields as diverse as heterogeneous catalysis, corrosion, nanofluidics, and to emerging energy technologies. Altering the state points (temperature, pressure, etc.) or introduction of a foreign surface can result in the phase transformation of water. At room temperature, ice nucleation is a very rare event and extremely high pressures in the GPa-TPa range are required to freeze water. Here, we perform computer experiments to artificially alter the balance between electrostatic and dispersion interactions between water molecules, and demonstrate nucleation and growth of ice at room temperature in a nanoconfined environment. Local perturbations in dispersive and electrostatic interactions near the surface are shown to provide the seed for nucleation (nucleation sites), which lead to room temperature liquid-solid phase transition of confined water. Crystallization of water occurs over several tens of nanometers and is shown to be independent of the nature of the substrate (hydrophilic oxide vs. hydrophobic graphene and crystalline oxide vs. amorphous diamond-like carbon). Our results lead us to hypothesize that the freezing transition of confined water can be controlled by tuning the relative dispersive and electrostatic interaction.

  2. The effect of procedure room temperature and humidity on LASIK outcomes

    PubMed Central

    Seider, Michael I.; McLeod, Stephen D.; Porco, Travis C.; Schallhorn, Steven C.

    2013-01-01

    Objective To determine if procedure room temperature and humidity during LASIK affects refractive outcomes in a very large patient sample. Design Retrospective cohort study. Participants 202,394 eyes of 105,712 patients aged 18 to 75 years old who underwent LASIK at an Optical Express, Inc. location in their United Kingdom and Ireland centers from January 1, 2008 to June 30, 2011 who met inclusion criteria. Methods Patient age, gender, pre- and one month post-LASIK manifest refraction and flap creation technique were recorded as well as the ambient temperature and humidity during LASIK. Effect size determination, in addition to univariate and multivariate analysis was performed to characterize the relationships between LASIK procedure room temperature and humidity and post-operative refractive outcome. Main Outcome Measures One month post-LASIK manifest refraction. Results No clinically significant effect of procedure room temperature or humidity was found on LASIK refractive outcomes. When considering all eyes in our population, an increase of one degree Celsius during LASIK was associated with a 0.003 diopter more hyperopic refraction one month post-operatively and an increase in one percent humidity was associated with a 0.0004 more myopic refraction. These effect sizes were the same or similar when considering only myopic eyes, only hyperopic eyes and subgroups of eyes stratified by age and pre-operative refractive error. Conclusions Procedure room temperature or humidity during LASIK was found to have no clinically significant relationship with post-operative manifest refraction in our population. PMID:23769199

  3. Room temperature photoluminescence from [Pt(4'-C[triple bond]CR-tpy)Cl]+ complexes.

    PubMed

    Muro, Maria L; Castellano, Felix N

    2007-11-07

    The synthesis, photophysics, electronic structure, and electrochemical characterization of 4'-tert-butylacetylene-2,2':6',2''-terpyridineplatinum(II) chloride (1), 4'-phenylacetylene-2,2':6',2''-terpyridineplatinum(II) chloride (2), and their Zn(II) analogs are described. The Pt(II) complexes display interesting photophysical properties, showing vibronically resolved emission spectra at room temperature in CH(2)Cl(2), resembling a ligand localized emission profile. The photophysics and (1)O2 sensitization experiments support a triplet state assignment for these emissions which are best described as an admixture of charge transfer and ligand localized components, which decay symmetrically with time as evidenced by time resolved emission spectra. Room temperature ligand-localized fluorescence emission is observed from the zinc complexes whereas phosphorescence emission from the (3)pi-pi* manifold was obtained at 77 K in 4 : 1 EtOH/MeOH matrices doped with 10% ethyliodide. Compounds 1 and 2 display long-lived emission at room temperature, the latter possessing a longer lifetime, higher quantum yield, and longer wavelength emission. Lowering the temperature from 298 K to 77 K induces an increase in the excited state lifetime of both platinum systems together with a blue shift in their respective emission maxima, concomitant with more pronounced vibronic structure. The data are consistent with configurationally mixed triplet excited states at room temperature which persists in 77 K glasses. The corresponding Zn(II) complexes display significantly higher energy ligand-localized phosphorescence at 77 K. This latter result suggests that the nature of the metal and/or coordination environment imparts a significant electronic pertubation into the ligand-localized triplet states of these conjugated terpyridyl structures.

  4. Room temperature femtosecond X-ray diffraction of photosystem II microcrystals.

    PubMed

    Kern, Jan; Alonso-Mori, Roberto; Hellmich, Julia; Tran, Rosalie; Hattne, Johan; Laksmono, Hartawan; Glöckner, Carina; Echols, Nathaniel; Sierra, Raymond G; Sellberg, Jonas; Lassalle-Kaiser, Benedikt; Gildea, Richard J; Glatzel, Pieter; Grosse-Kunstleve, Ralf W; Latimer, Matthew J; McQueen, Trevor A; DiFiore, Dörte; Fry, Alan R; Messerschmidt, Marc; Miahnahri, Alan; Schafer, Donald W; Seibert, M Marvin; Sokaras, Dimosthenis; Weng, Tsu-Chien; Zwart, Petrus H; White, William E; Adams, Paul D; Bogan, Michael J; Boutet, Sébastien; Williams, Garth J; Messinger, Johannes; Sauter, Nicholas K; Zouni, Athina; Bergmann, Uwe; Yano, Junko; Yachandra, Vittal K

    2012-06-19

    Most of the dioxygen on earth is generated by the oxidation of water by photosystem II (PS II) using light from the sun. This light-driven, four-photon reaction is catalyzed by the Mn(4)CaO(5) cluster located at the lumenal side of PS II. Various X-ray studies have been carried out at cryogenic temperatures to understand the intermediate steps involved in the water oxidation mechanism. However, the necessity for collecting data at room temperature, especially for studying the transient steps during the O-O bond formation, requires the development of new methodologies. In this paper we report room temperature X-ray diffraction data of PS II microcrystals obtained using ultrashort (< 50 fs) 9 keV X-ray pulses from a hard X-ray free electron laser, namely the Linac Coherent Light Source. The results presented here demonstrate that the "probe before destroy" approach using an X-ray free electron laser works even for the highly-sensitive Mn(4)CaO(5) cluster in PS II at room temperature. We show that these data are comparable to those obtained in synchrotron radiation studies as seen by the similarities in the overall structure of the helices, the protein subunits and the location of the various cofactors. This work is, therefore, an important step toward future studies for resolving the structure of the Mn(4)CaO(5) cluster without any damage at room temperature, and of the reaction intermediates of PS II during O-O bond formation.

  5. Differential solubility of ethylene and acetylene in room-temperature ionic liquids: a theoretical study.

    PubMed

    Zhao, Xu; Xing, Huabin; Yang, Qiwei; Li, Rulong; Su, Baogen; Bao, Zongbi; Yang, Yiwen; Ren, Qilong

    2012-04-05

    The room-temperature ionic liquids (RTILs) have potential in realizing the ethylene (C(2)H(4)) and acetylene (C(2)H(2)) separation and avoiding solvent loss and environmental pollution compared with traditional solvents. The interaction mechanisms between gases and RTILs are important for the exploration of new RTILs for gas separation; thus, they were studied by quantum chemical calculation and molecular dynamics simulation in this work. The optimized geometries were obtained for the complexes of C(2)H(4)/C(2)H(2) with anions (Tf(2)N(-), BF(4)(-), and OAc(-)), cation (bmim(+)), and their ion pairs, and the analysis for geometry, interaction energy, natural bond orbital (NBO), and atoms in molecules (AIM) was performed. The quantum chemical calculation results show that the hydrogen-bonding interaction between the gas molecule and anion is the dominant factor in determining the solubility of C(2)H(2) in RTILs. However, the hydrogen-bonding interaction, the p-π interaction in C(2)H(4)-anion, and the π-π interaction in C(2)H(4)-cation are weak and comparable, which all affect the solubility of C(2)H(4) in RTILs with comparable contribution. The calculated results for the distance of H(gas)···X (X = O or F in anions), the BSSE-corrected interaction energy, the electron density of H(gas)···X at the bond critical point (ρ(BCP)), and the relative second-order perturbation stabilization energy (E(2)) are consistent with the experimental data that C(2)H(2) is more soluble than C(2)H(4) in the same RTILs and the solubility of C(2)H(4) in RTILs has the following order: [bmim][Tf(2)N] > [bmim][OAc] > [bmim][BF(4)]. The calculated results also agree with the order of C(2)H(2) solubility in different RTILs that [bmim][OAc] > [bmim][BF(4)] > [bmim][Tf(2)N]. Furthermore, the calculation results indicate that there is strong C(2)H(2)-RTIL interaction, which cannot be negligible compared to the RTIL-RTIL interaction; thus, the regular solution theory is probably not

  6. Cavity-enhanced room-temperature high sensitivity optical Faraday magnetometry

    NASA Astrophysics Data System (ADS)

    Sun, Hui; Lei, Yaohua; Fan, Shuangli; Zhang, Qiaolin; Guo, Hong

    2017-01-01

    We propose a cavity QED system with two-photon Doppler-free configuration for weak magnetic field detection with high sensitivity at room temperature based on cavity electromagnetically induced transparency. Owing to the destructive interference induced by the control and driving fields, two transparency channels are opened. The Faraday rotation within two transparency channels can be used to detect weak magnetic field with high sensitivity at room temperature. The sensitivity with single photon and multiphoton probe inputs is analyzed. With single photon measurement, our numerical calculations demonstrate that the sensitivity with 3.8nT/√{Hz} and 6.4nT/√{Hz} could be achieved. When we measure the magnetic field with multiphoton input, the sensitivity can be improved to 7.7fT/√{Hz} and 25.6fT/√{Hz} under the realistic experimental conditions.

  7. Observation of Dielectrically Confined Excitons in Ultrathin GaN Nanowires up to Room Temperature.

    PubMed

    Zettler, Johannes K; Corfdir, Pierre; Hauswald, Christian; Luna, Esperanza; Jahn, Uwe; Flissikowski, Timur; Schmidt, Emanuel; Ronning, Carsten; Trampert, Achim; Geelhaar, Lutz; Grahn, Holger T; Brandt, Oliver; Fernández-Garrido, Sergio

    2016-02-10

    The realization of semiconductor structures with stable excitons at room temperature is crucial for the development of excitonics and polaritonics. Quantum confinement has commonly been employed for enhancing excitonic effects in semiconductor heterostructures. Dielectric confinement, which gives rises to much stronger enhancement, has proven to be more difficult to achieve because of the rapid nonradiative surface/interface recombination in hybrid dielectric-semiconductor structures. Here, we demonstrate intense excitonic emission from bare GaN nanowires with diameters down to 6 nm. The large dielectric mismatch between the nanowires and vacuum greatly enhances the Coulomb interaction, with the thinnest nanowires showing the strongest dielectric confinement and the highest radiative efficiency at room temperature. In situ monitoring of the fabrication of these structures allows one to accurately control the degree of dielectric enhancement. These ultrathin nanowires may constitute the basis for the fabrication of advanced low-dimensional structures with an unprecedented degree of confinement.

  8. Realization of ground-state artificial skyrmion lattices at room temperature

    SciTech Connect

    Gilbert, Dustin A.; Maranville, Brian B.; Balk, Andrew L.; Kirby, Brian J.; Fischer, Peter; Pierce, Daniel T.; Unguris, John; Borchers, Julie A.; Liu, Kai

    2015-10-08

    We report that the topological nature of magnetic skyrmions leads to extraordinary properties that provide new insights into fundamental problems of magnetism and exciting potentials for novel magnetic technologies. Prerequisite are systems exhibiting skyrmion lattices at ambient conditions, which have been elusive so far. We demonstrate the realization of artificial Bloch skyrmion lattices over extended areas in their ground state at room temperature by patterning asymmetric magnetic nanodots with controlled circularity on an underlayer with perpendicular magnetic anisotropy (PMA). Polarity is controlled by a tailored magnetic field sequence and demonstrated in magnetometry measurements. The vortex structure is imprinted from the dots into the interfacial region of the underlayer via suppression of the PMA by a critical ion-irradiation step. In conclusion, the imprinted skyrmion lattices are identified directly with polarized neutron reflectometry and confirmed by magnetoresistance measurements. Our results demonstrate an exciting platform to explore room-temperature ground-state skyrmion lattices.

  9. Realization of ground-state artificial skyrmion lattices at room temperature

    DOE PAGES

    Gilbert, Dustin A.; Maranville, Brian B.; Balk, Andrew L.; ...

    2015-10-08

    We report that the topological nature of magnetic skyrmions leads to extraordinary properties that provide new insights into fundamental problems of magnetism and exciting potentials for novel magnetic technologies. Prerequisite are systems exhibiting skyrmion lattices at ambient conditions, which have been elusive so far. We demonstrate the realization of artificial Bloch skyrmion lattices over extended areas in their ground state at room temperature by patterning asymmetric magnetic nanodots with controlled circularity on an underlayer with perpendicular magnetic anisotropy (PMA). Polarity is controlled by a tailored magnetic field sequence and demonstrated in magnetometry measurements. The vortex structure is imprinted from themore » dots into the interfacial region of the underlayer via suppression of the PMA by a critical ion-irradiation step. In conclusion, the imprinted skyrmion lattices are identified directly with polarized neutron reflectometry and confirmed by magnetoresistance measurements. Our results demonstrate an exciting platform to explore room-temperature ground-state skyrmion lattices.« less

  10. Large low-field magnetoresistance of Fe3O4 nanocrystal at room temperature

    NASA Astrophysics Data System (ADS)

    Mi, Shu; Liu, Rui; Li, Yuanyuan; Xie, Yong; Chen, Ziyu

    2017-04-01

    Superparamagnetic magnetite (Fe3O4) nanoparticles with an average size of 6.5 nm and good monodispersion were synthesized and investigated by X-ray diffraction, Raman spectrometer, transmission electron microscopy and vibrating sample magnetometer. Corresponding low-field magnetoresistance (LFMR) was tested by physical property measurement system. A quite high LFMR has been observed at room temperature. For examples, at a field of 3000 Oe, the LFMR is -3.5%, and when the field increases to 6000 Oe, the LFMR is up to -5.1%. The electron spin polarization was estimated at 25%. This result is superior to the previous reports showing the LFMR of no more than 2% at room temperature. The conduction mechanism is proposed to be the tunneling of conduction electrons between adjacent grains considering that the monodisperse nanocrystals may supply more grain boundaries increasing the tunneling probability, and consequently enhancing the overall magnetoresistance.

  11. The role of hydrogen in room-temperature ferromagnetism at graphite surfaces

    SciTech Connect

    Ohldag, H.; Esquinazi, P.; Arenholz, E.; Spemann, D.; Rothermel, M.; Setzer, A.; Butz, T.

    2010-05-01

    We present a x-ray dichroism study of graphite surfaces that addresses the origin and magnitude of ferromagnetism in metal-free carbon. We find that, in addition to carbon {pi} states, also hydrogen-mediated electronic states exhibit a net spin polarization with significant magnetic remanence at room temperature. The observed magnetism is restricted to the top {approx}10 nm of the irradiated sample where the average magnetization reaches {approx_equal} 15 emu/g at room temperature. We prove that the ferromagnetism found in metal-free untreated graphite is intrinsic and has a similar origin as the one found in proton bombarded graphite. Also, our findings show that the magnetic properties of graphite surfaces, thin films or two dimensional graphene samples can be reliably studied using soft x-ray dichroism. Fundamental new insight into the magnetic properties of carbon based systems can thus be obtained.

  12. Realization of ground-state artificial skyrmion lattices at room temperature.

    PubMed

    Gilbert, Dustin A; Maranville, Brian B; Balk, Andrew L; Kirby, Brian J; Fischer, Peter; Pierce, Daniel T; Unguris, John; Borchers, Julie A; Liu, Kai

    2015-10-08

    The topological nature of magnetic skyrmions leads to extraordinary properties that provide new insights into fundamental problems of magnetism and exciting potentials for novel magnetic technologies. Prerequisite are systems exhibiting skyrmion lattices at ambient conditions, which have been elusive so far. Here, we demonstrate the realization of artificial Bloch skyrmion lattices over extended areas in their ground state at room temperature by patterning asymmetric magnetic nanodots with controlled circularity on an underlayer with perpendicular magnetic anisotropy (PMA). Polarity is controlled by a tailored magnetic field sequence and demonstrated in magnetometry measurements. The vortex structure is imprinted from the dots into the interfacial region of the underlayer via suppression of the PMA by a critical ion-irradiation step. The imprinted skyrmion lattices are identified directly with polarized neutron reflectometry and confirmed by magnetoresistance measurements. Our results demonstrate an exciting platform to explore room-temperature ground-state skyrmion lattices.

  13. Advances in methods to obtain and characterise room temperature magnetic ZnO

    SciTech Connect

    Lorite, I.; Kumar, P.; Esquinazi, P.; Straube, B.; Villafuerte, M.; Ohldag, H.; Rodríguez Torres, C. E.; Perez de Heluani, S.; Antonov, V. N.; Bekenov, L. V.; Ernst, A.; and others

    2015-02-23

    We report the existence of magnetic order at room temperature in Li-doped ZnO microwires after low energy H{sup +} implantation. The microwires with diameters between 0.3 and 10 μm were prepared by a carbothermal process. We combine spectroscopy techniques to elucidate the influence of the electronic structure and local environment of Zn, O, and Li and their vacancies on the magnetic response. Ferromagnetism at room temperature is obtained only after implanting H{sup +} in Li-doped ZnO. The overall results indicate that low-energy proton implantation is an effective method to produce the necessary amount of stable Zn vacancies near the Li ions to trigger the magnetic order.

  14. Room-temperature ferromagnetism in Cu-implanted 6H-SiC single crystal

    NASA Astrophysics Data System (ADS)

    Zheng, H. W.; Yan, Y. L.; Lv, Z. C.; Yang, S. W.; Li, X. G.; Liu, J. D.; Ye, B. J.; Peng, C. X.; Diao, C. L.; Zhang, W. F.

    2013-04-01

    200 keV Cu+ ions were implanted into 6H-SiC single crystal at room temperature with fluence of 8 × 1015 cm-2. No ferromagnetism (FM)-related secondary phase was found by the results of high-resolution x-ray diffraction and x-ray photoelectron spectroscopy. Positron annihilation lifetime spectroscopy results indicated that the main defect type was silicon vacancy and the concentration of it increased after Cu implantation. The room-temperature ferromagnetism was detected by superconducting quantum interference device. First-principles calculations revealed that the magnetic moments mainly come from the 2p orbitals of C atoms and 3d orbitals of Cu dopant. The origin of the FM has been discussed in detail.

  15. Scalable photonic network architecture based on motional averaging in room temperature gas

    PubMed Central

    Borregaard, J.; Zugenmaier, M.; Petersen, J. M.; Shen, H.; Vasilakis, G.; Jensen, K.; Polzik, E. S.; Sørensen, A. S.

    2016-01-01

    Quantum interfaces between photons and atomic ensembles have emerged as powerful tools for quantum technologies. Efficient storage and retrieval of single photons requires long-lived collective atomic states, which is typically achieved with immobilized atoms. Thermal atomic vapours, which present a simple and scalable resource, have only been used for continuous variable processing or for discrete variable processing on short timescales where atomic motion is negligible. Here we develop a theory based on motional averaging to enable room temperature discrete variable quantum memories and coherent single-photon sources. We demonstrate the feasibility of this approach to scalable quantum memories with a proof-of-principle experiment with room temperature atoms contained in microcells with spin-protecting coating, placed inside an optical cavity. The experimental conditions correspond to a few photons per pulse and a long coherence time of the forward scattered photons is demonstrated, which is the essential feature of the motional averaging. PMID:27076381

  16. Heavy metal ternary halides for room-temperature x-ray and gamma-ray detection

    NASA Astrophysics Data System (ADS)

    Liu, Zhifu; Peters, John A.; Stoumpos, Constantinos C.; Sebastian, Maria; Wessels, Bruce W.; Im, Jino; Freeman, Arthur J.; Kanatzidis, Mercouri G.

    2013-09-01

    We report our recent progress on wide bandgap ternary halide compounds CsPbBr3 and CsPbCl3 for room temperature x-ray and gamma-ray detectors. Their bandgaps are measured to be 2.24 eV and 2.86 eV, respectively. The measured mobility-lifetime products of CsPbBr3 are 1.7×10-3, 1.3×10-3 cm2/V, for electron and hole carriers, respectively, comparable to those of CdTe. We measured the room temperature spectral response of CsPbBr3 sample to Ag x-ray radiation. It has a well-resolved spectral response to the 22.4 keV Kα radiation peak and detector efficiency comparable to that of CdZnTe detector at 295 K.

  17. Platinum nanoparticles on electrospun titania nanofibers as hydrogen sensing materials working at room temperature.

    PubMed

    Fratoddi, Ilaria; Macagnano, Antonella; Battocchio, Chiara; Zampetti, Emiliano; Venditti, Iole; Russo, Maria V; Bearzotti, Andrea

    2014-08-07

    Platinum nanoparticles (PtNPs), with diameters of 3-10 nm, were synthesized by water phase reduction, using 3-mercapto-1-propanesulfonate (3MPS) as a hydrophilic capping agent. PtNPs were deposited by a dipcoating technique on titania nanofibers (TiO2NFs), obtained by electrospinning. The investigated properties of the Pt-TiO2 hybrid at room temperature show that this material combines the properties of photoconduction of titania and the photocatalytic activity of the hybrid. To assess the best performance of Pt-TiO2, different measurements were performed at room temperature, comparing hydrogen response under UV of the uncoated TiO2NFs, compared with the Pt-TiO2 system prepared with two different amounts of PtNPs. During the sensing tests toward hydrogen an enhancement of photoconductivity (150%), an increase in response (400%) and an overall improvement of their dynamic behaviour were observed.

  18. Room temperature synthesis of needle-shaped ZnO nanorods via sonochemical method

    NASA Astrophysics Data System (ADS)

    Wahab, Rizwan; Ansari, S. G.; Kim, Young-Soon; Seo, Hyung-Kee; Shin, Hyung-Shik

    2007-07-01

    Single crystalline needle-shaped zinc oxide nanorods were synthesized via sonochemical methods using zinc acetate dihydrate and sodium hydroxide at room temperature. Morphological investigation revealed that the nanoneedles are of hexagonal surfaces along the length. The typical diameter and length vary from 120 to 160 nm and 3 to 5 μm, respectively. Sonication time appears to be a critical parameter for the shape determination. Detailed structural characterization confirmed that the nanorods are single crystalline with wurtzite hexagonal phase. A standard peak of zinc oxide was observed at 520 cm -1 from the Fourier transform infrared spectroscopy. The ultra-violet visible and room temperature photoluminescence (PL) spectroscopic results demonstrate that the synthesized material has good optical properties.

  19. Room temperature diamond-like carbon coatings produced by low energy ion implantation

    NASA Astrophysics Data System (ADS)

    Markwitz, A.; Mohr, B.; Leveneur, J.

    2014-07-01

    Nanometre-smooth diamond-like carbon coatings (DLC) were produced at room temperature with ion implantation using 6 kV C3Hy+ ion beams. Ion beam analysis measurements showed that the coatings contain no heavy Z impurities at the level of 100 ppm, have a homogeneous stoichiometry in depth and a hydrogen concentration of typically 25 at.%. High resolution TEM analysis showed high quality and atomically flat amorphous coatings on wafer silicon. Combined TEM and RBS analysis gave a coating density of 3.25 g cm-3. Raman spectroscopy was performed to probe for sp2/sp3 bonds in the coatings. The results indicate that low energy ion implantation with 6 kV produces hydrogenated amorphous carbon coatings with a sp3 content of about 20%. Results highlight the opportunity of developing room temperature DLC coatings with ion beam technology for industrial applications.

  20. Sensitive Room-Temperature Terahertz Detection via Photothermoelectric Effect in Graphene

    NASA Astrophysics Data System (ADS)

    Cai, Xinghan; Sushkov, Andrei; Suess, Ryan; Jadidi, Mohammad; Jenkins, Gregory; Nyakiti, Luke; Myers-Ward, Rachael; Wheeler, Virginia; Eddy, Charles, Jr.; Yan, Jun; Gaskill, D. Kurt; Murphy, Thomas; Drew, H. Dennis; Fuhrer, Michael

    2014-03-01

    Due to the weak electron-phonon coupling and strong electron-electron interaction in graphene, the thermoelectric effect provides a highly sensitive detection mechanism for heat absorbed in the electronic system. We present here a bi-metal contacted graphene thermoelectric THz photodetector with sensitivity exceeding 100 V/W at room temperature and noise equivalent power less than 100 pW/Hz1/2, competitive with the best room-temperature THz detectors, while time-resolved measurements indicate our graphene detector is eight to nine orders of magnitude faster. We also measured the thermoelectric response to Joule heating, and compare to the thermoelectric response due to optical excitation in the near infrared and at THz frequencies. A simple model of the response, including contact asymmetries reproduces the qualitative features of the data. We also suggest that orders-of-magnitude sensitivity improvements are possible by using local gates to define graphene pn-junctions.

  1. Cobalt-doped anatase TiO2: A room temperature dilute magnetic dielectric material

    NASA Astrophysics Data System (ADS)

    Griffin, K. A.; Pakhomov, A. B.; Wang, C. M.; Heald, S. M.; Krishnan, Kannan M.

    2005-05-01

    We experimentally investigate the room temperature ferromagnetism observed in insulating Co doped anatase TiO2 thin films grown by sputter deposition. The Co was uniformly incorporated in the lattice as Co(II) with no evidence of Co metal. A series of annealing treatments were carried out to optimize the ferromagnetic ordering and a saturation moment of 1.1μB/Co atom at 300 K was obtained with UHV annealing at 450 °C. Both as-deposited and annealed films were highly insulating at room temperature. Results show that the ferromagnetism is strongly dependent on the number and distribution of oxygen vacancies in the Co:TiO2 lattice.

  2. Deposition of silicon oxynitride films by low energy ion beam assisted nitridation at room temperature

    NASA Astrophysics Data System (ADS)

    Youroukov, S.; Kitova, S.; Danev, G.

    2008-05-01

    The possibility is studied of growing thin silicon oxynitride films by e-gun evaporation of SiO and SiO2 together with concurrent bombardment with low energy N2+ ions from a cyclotron resonance (ECR) source at room temperature of substrates. The degree of nitridation and oxidation of the films is investigated by means of X-ray spectroscopy. The optical characteristics of the films, their environmental stability and adhesion to different substrates are examined. The results obtained show than the films deposited are transparent. It is found that in the case of SiO evaporation with concurrent N2+ ion bombardment, reactive implantation of nitrogen within the films takes place at room temperature of the substrate with the formation of a new silicon oxynitride compound even at low ion energy (150-200 eV).

  3. Shot-noise-limited magnetometer with sub-picotesla sensitivity at room temperature

    SciTech Connect

    Lucivero, Vito Giovanni; Anielski, Pawel; Gawlik, Wojciech; Mitchell, Morgan W.

    2014-11-15

    We report a photon shot-noise-limited (SNL) optical magnetometer based on amplitude modulated optical rotation using a room-temperature {sup 85}Rb vapor in a cell with anti-relaxation coating. The instrument achieves a room-temperature sensitivity of 70 fT/√(Hz) at 7.6 μT. Experimental scaling of noise with optical power, in agreement with theoretical predictions, confirms the SNL behaviour from 5 μT to 75 μT. The combination of best-in-class sensitivity and SNL operation makes the system a promising candidate for application of squeezed light to a state-of-the-art atomic sensor.

  4. Quantum-confined single photon emission at room temperature from SiC tetrapods.

    PubMed

    Castelletto, Stefania; Bodrog, Zoltán; Magyar, Andrew P; Gentle, Angus; Gali, Adam; Aharonovich, Igor

    2014-09-07

    Controlled engineering of isolated solid state quantum systems is one of the most prominent goals in modern nanotechnology. In this letter we demonstrate a previously unknown quantum system namely silicon carbide tetrapods. The tetrapods have a cubic polytype core (3C) and hexagonal polytype legs (4H)--a geometry that creates spontaneous polarization within a single tetrapod. Modeling of the tetrapod structures predicts that a bound exciton should exist at the 3C-4H interface. The simulations are confirmed by the observation of fully polarized and narrowband single photon emission from the tetrapods at room temperature. The single photon emission provides important insights into understanding the quantum confinement effects in non-spherical nanostructures. Our results pave the way to a new class of crystal phase nanomaterials that exhibit single photon emission at room temperature and therefore are suitable for sensing, quantum information and nanophotonics.

  5. Implication of potassium trimolybdate nanowires as highly sensitive and selective ammonia sensor at room temperature

    NASA Astrophysics Data System (ADS)

    Joshi, Aditee C.; Gangal, S. A.

    2016-09-01

    Potassium trimolybdate nanowires are demonstrated as unique and highly selective NH3 sensing materials at room temperature. The nanowires were synthesized by using chemical route under normal ambient conditions and subsequently characterized by scanning electron microscopy (SEM) and x-ray diffraction (XRD). Gas sensors based on nanowires were fabricated by isolating and aligning nanowires between microspaced electrodes using dielectrophoresis. Room temperature gas sensing studies for different vapors indicated excellent selectivity for NH3 and capability to detect NH3 at concentrations down to ppb level. The sensors exhibited higher sensitivity for concentration range much below toxic limit of NH3 from 500 ppb up to 25 ppm. Since nanowires are isolated and aligned, the gas sensing reaction is rapid, and the availability of abundant oxide and hydroxyl surface groups on nanowires surface makes the reaction significantly prominent and selective with highly reducing nature of NH3.

  6. Observation of sub-100 nm Néel skyrmions at room temperature

    NASA Astrophysics Data System (ADS)

    Te Velthuis, S. G. E.; Jiang, W.; Zhang, S.; Phatak, C.; Zhang, W.; Jungfleisch, M. B.; Pearson, J. E.; Petford-Long, A.; Hoffmann, A.

    Magnetic skyrmions are topologically stable spin textures that have attracted tremendous attention in the field of spintronics. As compared to Bloch skyrmions, which are typical for only few bulk chiral magnets, Néel skyrmions in magnetic multilayers [1, 2, 3] may be more ubiquitous and have the advantage that included layers of heavy metals provide efficient current induced spin-orbit torques. By optimizing the stacking structure, we present an experimental strategy towards nanometer-scale skyrmions at room temperature in the absence of a magnetic field. Furthermore, we discuss the experimental challenge of identifying the chiral nature of Néel skyrmions by using Lorentz transmission electron microscopy. Our results constitute an important step for enabling skyrmion based ultra-high density data storage, and for probing topological physics at room temperature Work supported by the Department of Energy, Office of Science, Basic Energy Science, Materials Sciences and Engineering Division.

  7. Densification and strain hardening of a metallic glass under tension at room temperature.

    PubMed

    Wang, Z T; Pan, J; Li, Y; Schuh, C A

    2013-09-27

    The deformation of metallic glasses involves two competing processes: a disordering process involving dilatation, free volume accumulation, and softening, and a relaxation process involving diffusional ordering and densification. For metallic glasses at room temperature and under uniaxial loading, disordering usually dominates, and the glass can fail catastrophically as the softening process runs away in a localized mode. Here we demonstrate conditions where the opposite, unexpected, situation occurs: the densifying process dominates, resulting in stable plastic deformation and work hardening at room temperature. We report densification and hardening during deformation in a Zr-based glass under multiaxial loading, in a notched tensile geometry. The effect is driven by stress-enhanced diffusional relaxation, and is attended by a reduction in exothermic heat and hardening signatures similar to those observed in the classical thermal relaxation of glasses. The result is significant, stable, plastic, extensional flow in metallic glasses, which suggest a possibility of designing tough glasses based on their flow properties.

  8. Room-temperature direct band-gap electroluminescence from germanium (111)-fin light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Tani, Kazuki; Saito, Shin-ichi; Oda, Katsuya; Miura, Makoto; Wakayama, Yuki; Okumura, Tadashi; Mine, Toshiyuki; Ido, Tatemi

    2017-03-01

    Germanium (Ge) (111) fins of 320 nm in height were successfully fabricated using a combination of flattening sidewalls of a silicon (Si) fin structure by anisotropic wet etching with tetramethylammonium hydroxide, formation of thin Ge fins by selective Si oxidation in SiGe layers, and enlargement of Ge fins by Ge homogeneous epitaxial growth. The excellent electrical characteristics of Ge(111) fin light-emitting diodes, such as an ideality factor of 1.1 and low dark current density of 7.1 × 10‑5 A cm‑2 at reverse bias of ‑2 V, indicate their good crystalline quality. A tensile strain of 0.2% in the Ge fins, which originated from the mismatch of the thermal expansion coefficients between Ge and the covering SiO2 layers, was expected from the room-temperature photoluminescence spectra, and room-temperature electroluminescence corresponding to the direct band-gap transition was observed from the Ge fins.

  9. High-density magnetoresistive random access memory operating at ultralow voltage at room temperature

    PubMed Central

    Hu, Jia-Mian; Li, Zheng; Chen, Long-Qing; Nan, Ce-Wen

    2011-01-01

    The main bottlenecks limiting the practical applications of current magnetoresistive random access memory (MRAM) technology are its low storage density and high writing energy consumption. Although a number of proposals have been reported for voltage-controlled memory device in recent years, none of them simultaneously satisfy the important device attributes: high storage capacity, low power consumption and room temperature operation. Here we present, using phase-field simulations, a simple and new pathway towards high-performance MRAMs that display significant improvements over existing MRAM technologies or proposed concepts. The proposed nanoscale MRAM device simultaneously exhibits ultrahigh storage capacity of up to 88 Gb inch−2, ultralow power dissipation as low as 0.16 fJ per bit and room temperature high-speed operation below 10 ns. PMID:22109527

  10. Thirty Years of Near Room Temperature Magnetic Cooling: Where we are Today and Future Prospects

    SciTech Connect

    K.A. Gschneidner, Jr; V.K. Pecharsky'

    2008-05-01

    The seminal study by Brown in 1976 showed that it was possible to use the magnetocaloric effect to produce a substantial cooling effect near room temperature. About 15 years later Green et al. built a device which actually cooled a load other than the magnetocaloric material itself and the heat exchange fluid. The major breakthrough, however, occurred in 1997 when the Ames Laboratory/Astronautics proof-of-principle refrigerator showed that magnetic refrigeration was competitive with conventional gas compression cooling. Since then, over 25 magnetic cooling units have been built and tested throughout the world. The current status of near room temperature magnetic cooling is reviewed, including a discussion of the major problems facing commercialization and potential solutions thereof. The future outlook for this revolutionary technology is discussed.

  11. Room temperature manipulation of long lifetime spins in metallic-like carbon nanospheres

    NASA Astrophysics Data System (ADS)

    Náfrádi, Bálint; Choucair, Mohammad; Dinse, Klaus-Peter; Forró, László

    2016-07-01

    The time-window for processing electron spin information (spintronics) in solid-state quantum electronic devices is determined by the spin-lattice and spin-spin relaxation times of electrons. Minimizing the effects of spin-orbit coupling and the local magnetic contributions of neighbouring atoms on spin-lattice and spin-spin relaxation times at room temperature remain substantial challenges to practical spintronics. Here we report conduction electron spin-lattice and spin-spin relaxation times of 175 ns at 300 K in 37+/-7 nm carbon spheres, which is remarkably long for any conducting solid-state material of comparable size. Following the observation of spin polarization by electron spin resonance, we control the quantum state of the electron spin by applying short bursts of an oscillating magnetic field and observe coherent oscillations of the spin state. These results demonstrate the feasibility of operating electron spins in conducting carbon nanospheres as quantum bits at room temperature.

  12. Shot-noise-limited magnetometer with sub-picotesla sensitivity at room temperature.

    PubMed

    Lucivero, Vito Giovanni; Anielski, Pawel; Gawlik, Wojciech; Mitchell, Morgan W

    2014-11-01

    We report a photon shot-noise-limited (SNL) optical magnetometer based on amplitude modulated optical rotation using a room-temperature (85)Rb vapor in a cell with anti-relaxation coating. The instrument achieves a room-temperature sensitivity of 70 fT / √Hz at 7.6 μT. Experimental scaling of noise with optical power, in agreement with theoretical predictions, confirms the SNL behaviour from 5 μT to 75 μT. The combination of best-in-class sensitivity and SNL operation makes the system a promising candidate for application of squeezed light to a state-of-the-art atomic sensor.

  13. Tannic acid assisted synthesis of flake-like hydroxyapatite nanostructures at room temperature

    NASA Astrophysics Data System (ADS)

    Vázquez, Maricela Santana; Estevez, O.; Ascencio-Aguirre, F.; Mendoza-Cruz, R.; Bazán-Díaz, L.; Zorrila, C.; Herrera-Becerra, R.

    2016-09-01

    A simple and non-expensive procedure was performed to synthesize hydroxyapatite (HAp) flake-like nanostructures, by using a co-precipitation method with tannic acid as stabilizing agent at room temperature and freeze drying. Samples were synthesized with two different salts, Ca(NO3)2 and CaCl2. X-ray diffraction analysis, Raman spectroscopy, scanning and transmission electron microscopy characterizations reveal Ca10(PO4)6(OH)2 HAp particles with hexagonal structure and P63/m space group in both cases. In addition, the particle size was smaller than 20 nm. The advantage of this method over the works reported to date lies in the ease for obtaining HAp particles with a single morphology (flakes), in high yield. This opens the possibility of expanding the view to the designing of new composite materials based on the HAp synthesized at room temperature.

  14. A simple method to obtain Fe-doped CeO2 nanocrystals at room temperature

    NASA Astrophysics Data System (ADS)

    Almeida, J. M. A.; Santos, P. E. C.; Cardoso, L. P.; Meneses, C. T.

    2013-02-01

    Ce1-xFexO2 nanocrystals (0room temperature using the coprecipitation method. The samples were characterized by X-ray powder diffraction (XRD), transmission electron microscopy (TEM) and magnetization measurements as a function of field. The XRD results and Rietveld refinement analysis show that all particles have a crystalline structure isomorphous to the host structure (CeO2), with average size of 9 nm. This information was also confirmed by TEM images in which it is shown that the particles present spherical-like shape. The magnetic measurements indicated that the Fe-doped samples exhibit a weak ferromagnetism at room temperature, which increases with the increasing of the Fe content.

  15. Thermal transport in phononic crystals and the observation of coherent phonon scattering at room temperature.

    PubMed

    Alaie, Seyedhamidreza; Goettler, Drew F; Su, Mehmet; Leseman, Zayd C; Reinke, Charles M; El-Kady, Ihab

    2015-06-24

    Large reductions in the thermal conductivity of thin silicon membranes have been demonstrated in various porous structures. However, the role of coherent boundary scattering in such structures has become a matter of some debate. Here we report on the first experimental observation of coherent phonon boundary scattering at room temperature in 2D phononic crystals formed by the introduction of air holes in a silicon matrix with minimum feature sizes >100 nm. To delaminate incoherent from coherent boundary scattering, phononic crystals with a fixed minimum feature size, differing only in unit cell geometry, were fabricated. A suspended island technique was used to measure the thermal conductivity. We introduce a hybrid thermal conductivity model that accounts for partially coherent and partially incoherent phonon boundary scattering. We observe excellent agreement between this model and experimental data, and the results suggest that significant room temperature coherent phonon boundary scattering occurs.

  16. A highly reversible room-temperature lithium metal battery based on crosslinked hairy nanoparticles.

    PubMed

    Choudhury, Snehashis; Mangal, Rahul; Agrawal, Akanksha; Archer, Lynden A

    2015-12-04

    Rough electrodeposition, uncontrolled parasitic side-reactions with electrolytes and dendrite-induced short-circuits have hindered development of advanced energy storage technologies based on metallic lithium, sodium and aluminium electrodes. Solid polymer electrolytes and nanoparticle-polymer composites have shown promise as candidates to suppress lithium dendrite growth, but the challenge of simultaneously maintaining high mechanical strength and high ionic conductivity at room temperature has so far been unmet in these materials. Here we report a facile and scalable method of fabricating tough, freestanding membranes that combine the best attributes of solid polymers, nanocomposites and gel-polymer electrolytes. Hairy nanoparticles are employed as multifunctional nodes for polymer crosslinking, which produces mechanically robust membranes that are exceptionally effective in inhibiting dendrite growth in a lithium metal battery. The membranes are also reported to enable stable cycling of lithium batteries paired with conventional intercalating cathodes. Our findings appear to provide an important step towards room-temperature dendrite-free batteries.

  17. Realization of ground-state artificial skyrmion lattices at room temperature

    PubMed Central

    Gilbert, Dustin A.; Maranville, Brian B.; Balk, Andrew L.; Kirby, Brian J.; Fischer, Peter; Pierce, Daniel T.; Unguris, John; Borchers, Julie A.; Liu, Kai

    2015-01-01

    The topological nature of magnetic skyrmions leads to extraordinary properties that provide new insights into fundamental problems of magnetism and exciting potentials for novel magnetic technologies. Prerequisite are systems exhibiting skyrmion lattices at ambient conditions, which have been elusive so far. Here, we demonstrate the realization of artificial Bloch skyrmion lattices over extended areas in their ground state at room temperature by patterning asymmetric magnetic nanodots with controlled circularity on an underlayer with perpendicular magnetic anisotropy (PMA). Polarity is controlled by a tailored magnetic field sequence and demonstrated in magnetometry measurements. The vortex structure is imprinted from the dots into the interfacial region of the underlayer via suppression of the PMA by a critical ion-irradiation step. The imprinted skyrmion lattices are identified directly with polarized neutron reflectometry and confirmed by magnetoresistance measurements. Our results demonstrate an exciting platform to explore room-temperature ground-state skyrmion lattices. PMID:26446515

  18. Catalytic oxidation of (001)Si in the presence of Cu3Si at room temperature

    NASA Astrophysics Data System (ADS)

    Liu, C. S.; Chen, L. J.

    1993-09-01

    Room temperature oxidation of (001)Si catalyzed by Cu3Si has been investigated by transmission electron microscopy (TEM) and x-ray diffractometry (XRD). For η`-Cu3Si thin layer on (001)Si, XRD analysis showed that volume fractions η`-Cu3Si and Cu decrease and increase with the exposure time in air, respectively. TEM revealed the presence of a high density of Cu precipitates in the SiO2 layer. After prolonged exposure in air, the Cu precipitates were observed to form an irregular network. The thickness of starting Cu, hence Cu3Si, layer on silicon was found to be a critical factor in determining the oxidation behavior. Based on the microstructural evolution data, a partial reconstitution of catalytic Cu3Si mechanism is proposed to be the dominant process for the room-temperature oxidation of silicon catalyzed by Cu3Si.

  19. Room temperature synthesis of covalent-organic framework films through vapor-assisted conversion.

    PubMed

    Medina, Dana D; Rotter, Julian M; Hu, Yinghong; Dogru, Mirjam; Werner, Veronika; Auras, Florian; Markiewicz, John T; Knochel, Paul; Bein, Thomas

    2015-01-28

    We describe the facile synthesis of several two-dimensional covalent-organic frameworks (2D COFs) as films by vapor-assisted conversion at room temperature. High-quality films of benzodithiophene-containing BDT-COF and COF-5 with tunable thickness were synthesized under different conditions on various substrates. BDT-COF films of several micrometer thickness exhibit mesoporosity as well as textural porosity, whereas thinner BDT-COF films materialize as a cohesive dense layer. In addition, we studied the formation of COF-5 films with different solvent mixture compositions serving as vapor source. Room temperature vapor-assisted conversion is an excellent method to form COF films of fragile precursors and on sensitive substrates.

  20. Robust room temperature ferromagnetism and band gap tuning in nonmagnetic Mg doped ZnO films

    NASA Astrophysics Data System (ADS)

    Quan, Zhiyong; Liu, Xia; Qi, Yan; Song, Zhilin; Qi, Shifei; Zhou, Guowei; Xu, Xiaohong

    2017-03-01

    Mg doped ZnO films with hexagonal wurtzite structure were deposited on c-cut sapphire Al2O3 substrates by pulsed laser deposition. Both room temperature ferromagnetism and band gap of the films simultaneously tuned by the concentration of oxygen vacancies were performed. Our results further reveal that the singly occupied oxygen vacancies should be responsible for the room temperature ferromagnetism and band gap narrowing. Singly occupied oxygen vacancies having the localized magnetic moments form bound magnetic polarons, which results in a long-range ferromagnetic ordering due to Mg doping. Moreover, band gap narrowing of the films is probably due to the formation of impurity band in the vicinity of valence band, originating from singly occupied oxygen vacancies. These results may build a bridge to understand the relationship between the magnetic and optical properties in oxide semiconductor, and are promising to integrate multiple functions in one system.

  1. Separation of finite electron temperature effect on plasma polarimetry.

    PubMed

    Imazawa, Ryota; Kawano, Yasunori; Kusama, Yoshinori

    2012-12-01

    This study demonstrates the separation of the finite electron temperature on the plasma polarimetry in the magnetic confined fusion plasma for the first time. Approximate solutions of the transformed Stokes equation, including the relativistic effect, suggest that the orientation angle, θ, and ellipticity angle, ε, of polarization state have different dependency on the electron density, n(e), and the electron temperature, T(e), and that the separation of n(e) and T(e) from θ and ε is possible in principle. We carry out the equilibrium and kinetic reconstruction of tokamak plasma when the central electron density was 10(20) m(-3), and the central electron temperatures were 5, 10, 20, and 30 keV. For both cases when a total plasma current, I(p), is known and when I(p) is unknown, the profiles of plasma current density, j(φ), n(e), and T(e) are successfully reconstructed. The reconstruction of j(φ) without the information of I(p) indicates the new method of I(p) measurement applicable to steady state operation of tokamak.

  2. Separation of finite electron temperature effect on plasma polarimetry

    SciTech Connect

    Imazawa, Ryota; Kawano, Yasunori; Kusama, Yoshinori

    2012-12-15

    This study demonstrates the separation of the finite electron temperature on the plasma polarimetry in the magnetic confined fusion plasma for the first time. Approximate solutions of the transformed Stokes equation, including the relativistic effect, suggest that the orientation angle, {theta}, and ellipticity angle, {epsilon}, of polarization state have different dependency on the electron density, n{sub e}, and the electron temperature, T{sub e}, and that the separation of n{sub e} and T{sub e} from {theta} and {epsilon} is possible in principle. We carry out the equilibrium and kinetic reconstruction of tokamak plasma when the central electron density was 10{sup 20} m{sup -3}, and the central electron temperatures were 5, 10, 20, and 30 keV. For both cases when a total plasma current, I{sub p}, is known and when I{sub p} is unknown, the profiles of plasma current density, j{sub {phi}}, n{sub e}, and T{sub e} are successfully reconstructed. The reconstruction of j{sub {phi}} without the information of I{sub p} indicates the new method of I{sub p} measurement applicable to steady state operation of tokamak.

  3. Room-temperature optical manipulation of nuclear spin polarization in GaAsN

    NASA Astrophysics Data System (ADS)

    Sandoval-Santana, C.; Balocchi, A.; Amand, T.; Harmand, J. C.; Kunold, A.; Marie, X.

    2014-09-01

    The effect of hyperfine interaction on the room-temperature defect-enabled spin filtering effect in GaAsN alloys is experimentally investigated and theoretically interpreted through a master equation approach based on the hyperfine and Zeeman interaction between electron and nuclear spin of the Gai2+ interstitial spin filtering defect. We show that the nuclear spin polarization of the gallium defect can be tuned through the optically induced spin polarization of conduction band electrons.

  4. Humidity-induced room-temperature decomposition of Au contacted indium phosphide

    NASA Technical Reports Server (NTRS)

    Fatemi, Navid S.; Weizer, Victor G.

    1990-01-01

    It has been found that Au-contacted InP is chemically unstable at room temperature in a humid ambient due to the leaching action of indium nitrate islands that continually remove In from the contact metallization and thus, in effect, from the Inp substrate. While similar appearing islands form on Au-contacted GaAs, that system appears to be stable since leaching of the group III element does not take place.

  5. Platinum nanoparticles on electrospun titania nanofibers as hydrogen sensing materials working at room temperature

    NASA Astrophysics Data System (ADS)

    Fratoddi, Ilaria; Macagnano, Antonella; Battocchio, Chiara; Zampetti, Emiliano; Venditti, Iole; Russo, Maria V.; Bearzotti, Andrea

    2014-07-01

    Platinum nanoparticles (PtNPs), with diameters of 3-10 nm, were synthesized by water phase reduction, using 3-mercapto-1-propanesulfonate (3MPS) as a hydrophilic capping agent. PtNPs were deposited by a dipcoating technique on titania nanofibers (TiO2NFs), obtained by electrospinning. The investigated properties of the Pt-TiO2 hybrid at room temperature show that this material combines the properties of photoconduction of titania and the photocatalytic activity of the hybrid. To assess the best performance of Pt-TiO2, different measurements were performed at room temperature, comparing hydrogen response under UV of the uncoated TiO2NFs, compared with the Pt-TiO2 system prepared with two different amounts of PtNPs. During the sensing tests toward hydrogen an enhancement of photoconductivity (150%), an increase in response (400%) and an overall improvement of their dynamic behaviour were observed.Platinum nanoparticles (PtNPs), with diameters of 3-10 nm, were synthesized by water phase reduction, using 3-mercapto-1-propanesulfonate (3MPS) as a hydrophilic capping agent. PtNPs were deposited by a dipcoating technique on titania nanofibers (TiO2NFs), obtained by electrospinning. The investigated properties of the Pt-TiO2 hybrid at room temperature show that this material combines the properties of photoconduction of titania and the photocatalytic activity of the hybrid. To assess the best performance of Pt-TiO2, different measurements were performed at room temperature, comparing hydrogen response under UV of the uncoated TiO2NFs, compared with the Pt-TiO2 system prepared with two different amounts of PtNPs. During the sensing tests toward hydrogen an enhancement of photoconductivity (150%), an increase in response (400%) and an overall improvement of their dynamic behaviour were observed. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr01400f

  6. Room temperature spin diffusion in (110) GaAs/AlGaAs quantum wells

    PubMed Central

    2011-01-01

    Transient spin grating experiments are used to investigate the electron spin diffusion in intrinsic (110) GaAs/AlGaAs multiple quantum well at room temperature. The measured spin diffusion length of optically excited electrons is about 4 μm at low spin density. Increasing the carrier density yields both a decrease of the spin relaxation time and the spin diffusion coefficient Ds. PMID:21711662

  7. Optical multichannel room temperature magnetic field imaging system for clinical application

    PubMed Central

    Lembke, G.; Erné, S. N.; Nowak, H.; Menhorn, B.; Pasquarelli, A.

    2014-01-01

    Optically pumped magnetometers (OPM) are a very promising alternative to the superconducting quantum interference devices (SQUIDs) used nowadays for Magnetic Field Imaging (MFI), a new method of diagnosis based on the measurement of the magnetic field of the human heart. We present a first measurement combining a multichannel OPM-sensor with an existing MFI-system resulting in a fully functional room temperature MFI-system. PMID:24688820

  8. A room-temperature X-ray-induced photochromic material for X-ray detection.

    PubMed

    Wang, Ming-Sheng; Yang, Chen; Wang, Guan-E; Xu, Gang; Lv, Xiang-Ying; Xu, Zhong-Ning; Lin, Rong-Guang; Cai, Li-Zhen; Guo, Guo-Cong

    2012-04-02

    A color change: X-ray-induced photochromic species are rare and can be used for detection of X-rays. A highly robust X-ray-sensitive material with the discrete structure of a metal-organic complex has been found to show both soft and hard X-ray-induced photochromism at room temperature. A new ligand-to-ligand electron-transfer mechanism was proposed to elucidate this photochromic phenomenon.

  9. Synthesis of silicon carbide at room temperature from colloidal suspensions of silicon dioxide and carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Zhukalin, D. A.; Tuchin, A. V.; Kulikova, T. V.; Bityutskaya, L. A.

    2015-11-01

    Experimental and theoretical approaches were used for the investigation of mechanisms and conditions of self-organized nanostructures formation in the drying drop of the mixture of colloidal suspensions of nanoscale amorphous silicon dioxide and carbon nanotubes. The formation of rodlike structures with diameter 250-300nm and length ∼4pm was revealed. The diffraction analysis of the obtained nanostructures showed the formation of the silicon carbide phase at room temperature.

  10. Characterization of corrosion products on a copper-containing intrauterine device during storage at room temperature.

    PubMed

    Bastidas, J M; Simancas, J

    1997-02-01

    This paper studies the characterization of corrosion products formed on corroded and uncorroded copper-containing intrauterine devices stored at room temperature for a period of 30 months. The experimental techniques used were X-ray photo-electron spectroscopy and Auger electron spectroscopy. The compounds found were cuprite (Cu2O) and tenorite (CuO). The latter was the main compound formed on corroded samples, forming thin tarnish films.

  11. Quantum-confined single photon emission at room temperature from SiC tetrapods

    NASA Astrophysics Data System (ADS)

    Castelletto, Stefania; Bodrog, Zoltán; Magyar, Andrew P.; Gentle, Angus; Gali, Adam; Aharonovich, Igor

    2014-08-01

    Controlled engineering of isolated solid state quantum systems is one of the most prominent goals in modern nanotechnology. In this letter we demonstrate a previously unknown quantum system namely silicon carbide tetrapods. The tetrapods have a cubic polytype core (3C) and hexagonal polytype legs (4H) - a geometry that creates spontaneous polarization within a single tetrapod. Modeling of the tetrapod structures predicts that a bound exciton should exist at the 3C-4H interface. The simulations are confirmed by the observation of fully polarized and narrowband single photon emission from the tetrapods at room temperature. The single photon emission provides important insights into understanding the quantum confinement effects in non-spherical nanostructures. Our results pave the way to a new class of crystal phase nanomaterials that exhibit single photon emission at room temperature and therefore are suitable for sensing, quantum information and nanophotonics.Controlled engineering of isolated solid state quantum systems is one of the most prominent goals in modern nanotechnology. In this letter we demonstrate a previously unknown quantum system namely silicon carbide tetrapods. The tetrapods have a cubic polytype core (3C) and hexagonal polytype legs (4H) - a geometry that creates spontaneous polarization within a single tetrapod. Modeling of the tetrapod structures predicts that a bound exciton should exist at the 3C-4H interface. The simulations are confirmed by the observation of fully polarized and narrowband single photon emission from the tetrapods at room temperature. The single photon emission provides important insights into understanding the quantum confinement effects in non-spherical nanostructures. Our results pave the way to a new class of crystal phase nanomaterials that exhibit single photon emission at room temperature and therefore are suitable for sensing, quantum information and nanophotonics. Electronic supplementary information (ESI) available

  12. [Bacterial contamination of breast milk collected through manual expression and stored at room temperature

    PubMed

    Moulin, Z S; Lamounier, J A; Vieira, M B; Baêta, M; Silva, M A; Araújo, R S

    1998-01-01

    OBJECTIVES: To the determine the bacterial contamination profile of unheated expressed breast milk, collected without rigid hygienic precautions and stored at room temperature for nine hours. The purpose was to give poor lactating mothers the alternative of storing their own milk out of refrigerator. A research on cultural, social and economical aspects as well as on donatorś knowledge about breastfeeding was considered necessary. METHODS: 35 donators were interviewed and an experimental investigation was performed with 33 samples of breast milk stored at room temperature (17 masculine C to 30.5 masculine C) and bacteriologically analyzed at zero, three, six and nine hours after collection. The same breast milk was stored at refrigerator (2 masculine C to 6 masculine C) as a control procedure. Total count of bacterial contents and identification of Staphylococcus aureus and Escherichia coli were evaluated.RESULTS: The enterviews revealed the low socio-economical and cultural level of lactating mothers and their little experience in expressing, collecting and using their own milk. Bacteriological data analysis showed mesophyllous average of 7.1x10(3)UFC/mL, acceptable outline of bacterial contamination, despite the use of a simplified hygiene technique. After nine hours, samples stored at room temperature showed final average of bacterial contents similar to the first ones (7.3x10(3)UFC/mL) and without relevant statistic differences from the ones kept under refrigeration (p=0.05) for studied bacterias.CONCLUSION: This study shows that it is possible to use unprocessed breast milk for babýs consumption if it is stored at room temperatures until nine hours after it has been collected. However, mothers have to be told about the possibility of storing breast milk for babies later consumption.

  13. Room-Temperature Electron Spin Relaxation of Triarylmethyl Radicals at X- and Q-bands

    PubMed Central

    Krumkacheva, Olesya A.; Strizhakov, Rodion K.; Rogozhnikova, Olga Yu.; Troitskaya, Tatiana I.

    2016-01-01

    Triarylmethyl radicals (trityls, TAMs) represent a relatively new class of spin labels. The long relaxation of trityls at room temperature in liquid solutions makes them a promising alternative for traditional nitroxides. In this work we have synthesized a series of TAMs including perdeuterated Finland trityl (D36 form) , mono-, di-, and tri-ester derivatives of Finland-D36 trityl, deuterated form of OX63, dodeca-n-butyl homologue of Finland trityl, and triamide derivatives of Finland trityl with primary and secondary amines attached. We have studied room-temperature relaxation properties of these TAMs in liquids using pulsed Electron Paramagnetic Resonance (EPR) at two microwave frequency bands. We have found the clear dependence of phase memory time (Tm~T2) on magnetic field: room-temperature Tm values are ~1.5-2.5 times smaller at Q-band (34 GHz, 1.2 T) compared to X-band (9 GHz, 0.3 T). This trend is ascribed to the contribution from g-anisotropy that is negligible at lower magnetic fields but comes into play at Q-band. In agreement with this, while T1~Tm at X-band, we observe T1>Tm at Q-band due to increased contributions from incomplete motional averaging of g-anisotropy. In addition, the viscosity dependence shows that (1/Tm-1/T1) is proportional to the tumbling correlation time of trityls. Based on the analysis of previous data and results of the present work, we conclude that in general situation where spin label is at least partly mobile, X-band is most suitable for application of trityls for room-temperature pulsed EPR distance measurements. PMID:26001103

  14. The Magnetocaloric Effect and Magnetic Refrigeration Near Room Temperature: Materials and Models

    NASA Astrophysics Data System (ADS)

    Franco, V.; Blázquez, J. S.; Ingale, B.; Conde, A.

    2012-08-01

    In the past 20 years, there has been a surge in research on the magnetocaloric response of materials, due mainly to the possibility of applying this effect for magnetic refrigeration close to room temperature. This review is devoted to the main families of materials suitable for this application and to the procedures proposed to predict their response. Apart from the possible technological applications, we also discuss the use of magnetocaloric characterization to gain fundamental insight into the nature of the underlying phase transition.

  15. Tribological reactions of perfluoroalkyl polyether oils with stainless steel under ultrahigh vacuum conditions at room temperature

    NASA Technical Reports Server (NTRS)

    Mori, Shigeyuki; Morales, Wilfredo

    1989-01-01

    The reaction between three types of commercial perfluoroalkyl polyether (PFPE) oils and stainless steel 440C was investigated experimentally during sliding under ultrahigh vacuum conditions at room temperature. It is found that the tribological reaction of PFPE is mainly affected by the activity of the mechanically formed fresh surfaces of metals rather than the heat generated at the sliding contacts. The fluorides formed on the wear track act as a boundary layer, reducing the friction coefficient.

  16. Red phosphorescence from benzo[2,1,3]thiadiazoles at room temperature

    DOE PAGES

    Gutierrez, Gregory D.; Sazama, Graham T.; Wu, Tony; ...

    2016-05-23

    In this paper, we describe the red phosphorescence exhibited by a class of structurally simple benzo[2,1,3]thiadiazoles at room temperature. The photophysical properties of these molecules in deoxygenated cyclohexane, including their absorption spectra, steady-state photoluminescence and excitation spectra, and phosphorescence lifetimes, are presented. Finally, time-dependent density functional theory calculations were carried out to better understand the electronic excited states of these benzo[2,1,3]thiadiazoles and why they are capable of phosphorescence.

  17. On the Room-Temperature Annealing of Cryogenically-Rolled Copper (Preprint)

    DTIC Science & Technology

    2011-07-01

    Institute for Metals Superplasticity Problems, Russian Academy of Science, 39 Khalturin Str., Ufa , 450001, Russia 2 Department of Materials...a circle (i.e., the so-called grain reconstruction method [11]). For the deformed phase, the grain thickness was measured using the linear-intercept... method . 3. EBSD DATA-ANALYSIS PROCEDURES Room-temperature annealing of cryogenically rolled copper occurs relatively slowly. When the present

  18. Research on CdZnTe and Other Novel Room Temperature Gamma Ray Spectrometer Materials

    SciTech Connect

    Arnold Burger; Michael gGoza; Yunlong Cui; Utpal N. Roy; M. Guo

    2007-05-05

    Room temperature gamma-ray spectrometers are being developed for a number of years for national security applications where high sensitivity, low operating power and compactness are indispensable. The technology has matured now to the point where large volume (several cubic centimeters) and high energy resolution (approximately 1% at 660 eV) of gamma photons, are becoming available for their incorporation into portable systems for remote sensing of signatures from nuclear materials.

  19. High-energy electron-induced damage production at room temperature in aluminum-doped silicon

    NASA Technical Reports Server (NTRS)

    Corbett, J. W.; Cheng, L. J.; Jaworowski, A.; Karins, J. P.; Lee, Y. H.; Lindstroem, L.; Mooney, P. M.; Oehrlen, G.; Wang, K. L.

    1979-01-01

    DLTS and EPR measurements are reported on aluminum-doped silicon that was irradiated at room temperature with high-energy electrons. Comparisons are made to comparable experiments on boron-doped silicon. Many of the same defects observed in boron-doped silicon are also observed in aluminum-doped silicon, but several others were not observed, including the aluminum interstitial and aluminum-associated defects. Damage production modeling, including the dependence on aluminum concentration, is presented.

  20. Anion pairs in room temperature ionic liquids predicted by molecular dynamics simulation, verified by spectroscopic characterization

    SciTech Connect

    Schwenzer, Birgit; Kerisit, Sebastien N.; Vijayakumar, M.

    2014-01-01

    Molecular-level spectroscopic analyses of an aprotic and a protic room-temperature ionic liquid, BMIM OTf and BMIM HSO4, respectively, have been carried out with the aim of verifying molecular dynamics simulations that predict anion pair formation in these fluid structures. Fourier-transform infrared spectroscopy, Raman spectroscopy and nuclear magnetic resonance spectroscopy of various nuclei support the theoretically-determined average molecular arrangements.

  1. Temperature-emissivity separation for LWIR sensing using MCMC

    NASA Astrophysics Data System (ADS)

    Ash, Joshua N.; Meola, Joseph

    2016-05-01

    Signal processing for long-wave infrared (LWIR) sensing is made complicated by unknown surface temperatures in a scene which impact measured radiance through temperature-dependent black-body radiation of in-scene objects. The unknown radiation levels give rise to the temperature-emissivity separation (TES) problem describing the intrinsic ambiguity between an object's temperature and emissivity. In this paper we present a novel Bayesian TES algorithm that produces a probabilistic posterior estimate of a material's unknown temperature and emissivity. The statistical uncertainty characterization provided by the algorithm is important for subsequent signal processing tasks such as classification and sensor fusion. The algorithm is based on Markov chain Monte Carlo (MCMC) methods and exploits conditional linearity to achieve efficient block-wise Gibbs sampling for rapid inference. In contrast to existing work, the algorithm optimally incorporates prior knowledge about inscene materials via Bayesian priors which may optionally be learned using training data and a material database. Examples demonstrate up to an order of magnitude reduction in error compared to classical filter-based TES methods.

  2. DUAL PHASE MEMBRANE FOR HIGH TEMPERATURE CO2 SEPARATION

    SciTech Connect

    Jerry Y.S. Lin

    2002-12-01

    This project is aimed at synthesis of a new inorganic dual-phase carbonate membrane for high temperature CO{sub 2} separation. Metal-carbonate dual-phase membranes were prepared by the direct infiltration method and the synthesis conditions were optimized. The dual-phase membranes are gas-tight with helium permeance about six orders of magnitude lower than that for the metal support. Efforts were made to test seals for permeation and separation experiments for dual-phase membrane at the intermediate temperature range (about 500 C) under oxidizing atmosphere. An effective new permeation cell with a metal seal was designed, fabricated and tested. The permeation setup provided leak-free sealing for the dual-phase membranes under the desired operation conditions. Though the reliable data showing high permeance for carbon dioxide with oxygen for the prepared metal-carbonate dual phase membrane has not been measured, the research efforts in improving membrane synthesis and setting up a new permeation cell with suitable seal have made it closer for one to demonstrate good dual-phase membranes for high temperature carbon dioxide separation. Research efforts were also directed towards preparation of a new ceramic-carbonate dual-phase membrane. Porous lanthanum cobaltite (LC) perovskite type oxide ceramic support with oxidation resistance better than the metal support and high electronic conductivity (1300-1500 S/cm in 400-600 C), was prepared and studied as an alternative support for the dual-phase carbonate membranes. The LC powder was found not reactive with the carbonate at 600 C. The porous LC disks have helium permeance and pore diameter smaller than the metal support but larger than the common {alpha}-alumina support. These results show promise to use the LC support for preparation of oxidation resistant dual-phase carbonate membranes.

  3. Room temperature phosphorescence of metal-free organic materials in amorphous polymer matrices.

    PubMed

    Lee, Dongwook; Bolton, Onas; Kim, Byoung Choul; Youk, Ji Ho; Takayama, Shuichi; Kim, Jinsang

    2013-04-24

    Developing metal-free organic phosphorescent materials is promising but challenging because achieving emissive triplet relaxation that outcompetes the vibrational loss of triplets, a key process to achieving phosphorescence, is difficult without heavy metal atoms. While recent studies reveal that bright room temperature phosphorescence can be realized in purely organic crystalline materials through directed halogen bonding, these organic phosphors still have limitations to practical applications due to the stringent requirement of high quality crystal formation. Here we report bright room temperature phosphorescence by embedding a purely organic phosphor into an amorphous glassy polymer matrix. Our study implies that the reduced beta (β)-relaxation of isotactic PMMA most efficiently suppresses vibrational triplet decay and allows the embedded organic phosphors to achieve a bright 7.5% phosphorescence quantum yield. We also demonstrate a microfluidic device integrated with a novel temperature sensor based on the metal-free purely organic phosphors in the temperature-sensitive polymer matrix. This unique system has many advantages: (i) simple device structures without feeding additional temperature sensing agents, (ii) bright phosphorescence emission, (iii) a reversible thermal response, and (iv) tunable temperature sensing ranges by using different polymers.

  4. Giant magnetocaloric effect near room temperature in the off-stoichiometric Mn-Co-Ge alloy

    NASA Astrophysics Data System (ADS)

    Sharma, V. K.; Manekar, M. A.; Srivastava, Himanshu; Roy, S. B.

    2016-12-01

    We report a giant magnetocaloric effect near room temperature in an off-stoichiometric Mn-Co-Ge alloy, across the magnetostructural transition. The isothermal entropy change accompanying this transition has a peak value of nearly 40 J kg-1 K-1 near 297 K for a field excursion of 70 kOe, and a refrigerant capacity of 270 J kg-1 with the hot end at 302.5 K and cold end at 293.5 K. We also present an experimental protocol to avoid spurious peaks in the magnetocaloric effect across a sharp first order magnetostructural transition, not confined to Mn-Co-Ge alone, where metastability during the transition could influence the measured magnetization and thus the estimated entropy change. The estimated entropy change in the present off-stoichiometric Mn-Co-Ge alloy is possibly the highest reported value near room temperature in undoped Mn-Co-Ge alloys and underlines the potential of the alloy for technological applications in room temperature magnetic refrigeration.

  5. Influence of non-resonant effects on the dynamics of quantum logic gates at room temperature

    NASA Astrophysics Data System (ADS)

    Berman, G. P.; Bishop, A. R.; Doolen, G. D.; López, G. V.; Tsifrinovich, V. I.

    2001-01-01

    We study numerically the influence of non-resonant effects on the dynamics of a single- π-pulse quantum CONTROL-NOT (CN) gate in a macroscopic ensemble of four-spin molecules at room temperature. The four nuclear spins in each molecule represent a four-qubit register. The qubits are “labeled” by the characteristic frequencies, ωk, ( k=0-3) due to the Zeeman interaction of the nuclear spins with the magnetic field. The qubits interact with each other through an Ising interaction of strength J. The paper examines the feasibility of implementing a single-pulse quantum CN gate in an ensemble of quantum molecules at room temperature. We determine a parameter region, ωk and J, in which a single-pulse quantum CN gate can be implemented at room temperature. We also show that there exist characteristic critical values of parameters, Δ ωcr≡| ωk‧ - ωk| cr and Jcr, such that for J< Jcr and Δ ωk≡| ωk‧ - ωk|<Δ ωcr, non-resonant effects are sufficient to destroy the dynamics required for quantum logic operations.

  6. Evidence for room temperature delignification of wood using hydrogen peroxide and manganese acetate as a catalyst.

    PubMed

    Lucas, Marcel; Hanson, Susan K; Wagner, Gregory L; Kimball, David B; Rector, Kirk D

    2012-09-01

    Manganese acetate was found to catalyze the oxidative delignification of wood with hydrogen peroxide at room temperature. The delignification reaction was monitored by optical and Raman microscopy, and liquid chromatography/mass spectrometry. When exposed to H(2)O(2) and Mn(OAc)(3) in aqueous solution, poplar wood sections were converted into a fine powder-like material which consisted of individual wood cells within 4 days at room temperature and without agitation. Optical and Raman microscopy provided the spatial distribution of cellulose and lignin in the wood structure, and showed the preferential oxidation of lignin-rich middle lamellae. Raman spectra from the solid residue revealed a delignified and cellulose-rich material. Glucose yields following enzymatic hydrolysis were 20-40% higher in poplar sawdust pretreated with Mn(OAc)(3) for 2, 4, and 7 days at room temperature than those in sawdust exposed to water only for identical durations, suggesting the viability of this mild, inexpensive method for pretreatment of lignocellulosic biomass.

  7. Ultrafast Room-Temperature Single Photon Emission from Quantum Dots Coupled to Plasmonic Nanocavities.

    PubMed

    Hoang, Thang B; Akselrod, Gleb M; Mikkelsen, Maiken H

    2016-01-13

    Efficient and bright single photon sources at room temperature are critical components for quantum information systems such as quantum key distribution, quantum state teleportation, and quantum computation. However, the intrinsic radiative lifetime of quantum emitters is typically ∼10 ns, which severely limits the maximum single photon emission rate and thus entanglement rates. Here, we demonstrate the regime of ultrafast spontaneous emission (∼10 ps) from a single quantum emitter coupled to a plasmonic nanocavity at room temperature. The nanocavity integrated with a single colloidal semiconductor quantum dot produces a 540-fold decrease in the emission lifetime and a simultaneous 1900-fold increase in the total emission intensity. At the same time, the nanocavity acts as a highly efficient optical antenna directing the emission into a single lobe normal to the surface. This plasmonic platform is a versatile geometry into which a variety of other quantum emitters, such as crystal color centers, can be integrated for directional, room-temperature single photon emission rates exceeding 80 GHz.

  8. On the cyclic stress-strain behaviour of a Ni-base superalloy at room temperature

    NASA Technical Reports Server (NTRS)

    Singh, Vakil; Wahi, R. P.; Chen, W.; Yun, H. M.

    1988-01-01

    The cyclic stress-strain behavior of Nimonic alloy PE16 was studied at room temperature and at different aging conditions to determine whether the plateau in the cyclic stress-strain curve (CSSC) reported by Arbuthnot (1982) is typical of the room temperature behavior and/or some specific initial microstructural states. Specimen blanks were heat-treated in batches in Ar/H2 (98/2) atmosphere to produce gamma-prime precipitates of different average sizes, but with the volume fraction of gamma-prime precipitates kept constant at about 7 percent at all the heat-treatment conditions. Total axial strain controlled LCF tests were conducted under fully reversed loading (R = -1) at a constant strain rate of 0.004/s, using a servohydraulic machine. The load response in tension and compression was recorded continually, and stress-strain hysteresis loops were recorded at frequent intervals. In the present investigation, the CSSCs of the P16 alloy at room temperature did not display the plateaus reported by Arbuthnot.

  9. Room temperature ferromagnetism of tin oxide nanocrystal based on synthesis methods

    NASA Astrophysics Data System (ADS)

    Sakthiraj, K.; Hema, M.; Balachandrakumar, K.

    2016-04-01

    The experimental conditions used in the preparation of nanocrystalline oxide materials play an important role in the room temperature ferromagnetism of the product. In the present work, a comparison was made between sol-gel, microwave assisted sol-gel and hydrothermal methods for preparing tin oxide nanocrystal. X-ray diffraction analysis indicates the formation of tetragonal rutile phase structure for all the samples. The crystallite size was estimated from the HRTEM images and it is around 6-12 nm. Using optical absorbance measurement, the band gap energy value of the samples has been calculated. It reveals the existence of quantum confinement effect in all the prepared samples. Photoluminescence (PL) spectra confirms that the luminescence process originates from the structural defects such as oxygen vacancies present in the samples. Room temperature hysteresis loop was clearly observed in M-H curve of all the samples. But the sol-gel derived sample shows the higher values of saturation magnetization (Ms) and remanence (Mr) than other two samples. This study reveals that the sol-gel method is superior to the other two methods for producing room temperature ferromagnetism in tin oxide nanocrystal.

  10. Quantum Process Tomography of a Room Temperature Optically-Controlled Phase Shift

    NASA Astrophysics Data System (ADS)

    Kupchak, Connor; Rind, Samuel; Figueroa, Eden; Stony Brook University Team

    2015-05-01

    We have developed a room temperature setup capable of optically controlled phase shifts on a weak probe field. Our system is realized in a vapor of 87Rb atoms under the conditions of electromagnetically induced transparency utilizing a N-type energy level scheme coupled by three optical fields. By varying the power of the signal field, we can control the size of an optical phase shift experienced by weak coherent state pulses of < n > ~ 1 , propagating through the vapor. We quantify the optical phase shift by measuring the process output via balanced homodyne tomography which provides us with the complete quadrature and phase information of the output states. Furthermore, we measure the output for a set of states over a subspace of the coherent state basis and gain the information to completely reconstruct our phase shift procedure by coherent state quantum process tomography. The reconstruction yields a rank-4 process superoperator which grants the ability to predict how our phase shift process will behave on an arbitrary quantum optical state in the mode of the reconstruction. Our results demonstrate progress towards room temperature systems for possible quantum gates; a key component of a future quantum processor designed to operate at room temperature. US-Navy Office of Naval Research N00141410801, National Science Foundation PHY-1404398, Natural Sciences and Engineering Research Council of Canada.

  11. Efficiency of a novel forensic room-temperature DNA storage medium.

    PubMed

    Frippiat, Christophe; Noel, Fabrice

    2014-03-01

    The success of forensic genetics has led to considerable numbers of DNA samples that must be stored. Thus, the ability to preserve the integrity of forensic samples is essential. The possibility of retesting these samples after many years should be guaranteed. DNA storage typically requires the use of freezers. Recently, a new method that enables DNA to be stored at room temperature was developed. This technology is based on the principles of anhydrobiosis and thus permits room-temperature storage of DNA. This study evaluates the ability of this technology to preserve DNA samples mimicking true mixture casework samples for long periods of time. Mixed human DNA from 2 or 3 persons and at low concentrations was dried and stored for a period ranging from 6 months to 2 years in the presence of a desiccant. The quality of the stored DNA was evaluated based on quantitative peak height results from Short Tandem Repeat (STR) genotyping and the number of observed alleles. Furthermore, we determined whether this matrix has a potential inhibitory or enhancing effect on the PCR genotyping reactions. In our previous work, we demonstrated the considerable potential of this new technology. The present study complements our previous work. Our results show that after 2 years of aging at room temperature, there is a decrease in the number of observed alleles and in the peak height of these alleles.

  12. Room-Temperature Chemical Welding and Sintering of Metallic Nanostructures by Capillary Condensation.

    PubMed

    Yoon, Sung-Soo; Khang, Dahl-Young

    2016-06-08

    Room-temperature welding and sintering of metal nanostructures, nanoparticles and nanowires, by capillary condensation of chemical vapors have successfully been demonstrated. Nanoscale gaps or capillaries that are abundant in layers of metal nanostructures have been found to be the preferred sites for the condensation of chemically oxidizing vapor, H2O2 in this work. The partial dissolution and resolidification at such nanogaps completes the welding/sintering of metal nanostructures within ∼10 min at room-temperature, while other parts of nanostructures remain almost intact due to negligible amount of condensation on there. The welded networks of Ag nanowires have shown much improved performances, such as high electrical conductivity, mechanical flexibility, optical transparency, and chemical stability. Chemically sintered layers of metal nanoparticles, such as Ag, Cu, Fe, Ni, and Co, have also shown orders of magnitude increase in electrical conductivity and improved environmental stability, compared to nontreated ones. Pertinent mechanisms involved in the chemical welding/sintering process have been discussed. Room-temperature welding and sintering of metal nanostructures demonstrated here may find widespread application in diverse fields, such as displays, deformable electronics, wearable heaters, and so forth.

  13. Superconductivity well above room temperature in compressed MgH6

    NASA Astrophysics Data System (ADS)

    Szczęśniak, R.; Durajski, A. P.

    2016-12-01

    It has been suggested that hydrogen-rich systems at high pressure may exhibit notably high super-conducting transition temperatures. One of the more interesting theoretical predictions was that hydrogen sulfide can be metallized and the high-temperature superconducting state can be induced. A record critical temperature (203 K) was later confirmed for H3S in an experiment. In this paper, we investigated, within the framework of the Eliashberg formalism, the properties of compressed MgH6, which is expected to be a very good candidate for room-temperature superconductivity. This applies particularly to the pressure range from 300 to 400 GPa, where the transition temperature is close to 400 K. Moreover, the estimated thermodynamic properties and the resulting dimensionless ratios exceed the predictions of the Bardeen-Cooper-Schrieffer theory. This behavior is attributed to the strong electron-phonon coupling and retardation effects existing in hydrogen-dominated materials under high pressure.

  14. Room Temperature Magnetically Ordered Polar Corundum GaFeO3 Displaying Magnetoelectric Coupling.

    PubMed

    Niu, Hongjun; Pitcher, Michael J; Corkett, Alex J; Ling, Sanliang; Mandal, Pranab; Zanella, Marco; Dawson, Karl; Stamenov, Plamen; Batuk, Dmitry; Abakumov, Artem M; Bull, Craig L; Smith, Ronald I; Murray, Claire A; Day, Sarah J; Slater, Ben; Cora, Furio; Claridge, John B; Rosseinsky, Matthew J

    2017-02-01

    The polar corundum structure type offers a route to new room temperature multiferroic materials, as the partial LiNbO3-type cation ordering that breaks inversion symmetry may be combined with long-range magnetic ordering of high spin d(5) cations above room temperature in the AFeO3 system. We report the synthesis of a polar corundum GaFeO3 by a high-pressure, high-temperature route and demonstrate that its polarity arises from partial LiNbO3-type cation ordering by complementary use of neutron, X-ray, and electron diffraction methods. In situ neutron diffraction shows that the polar corundum forms directly from AlFeO3-type GaFeO3 under the synthesis conditions. The A(3+)/Fe(3+) cations are shown to be more ordered in polar corundum GaFeO3 than in isostructural ScFeO3. This is explained by DFT calculations which indicate that the extent of ordering is dependent on the configurational entropy available to each system at the very different synthesis temperatures required to form their corundum structures. Polar corundum GaFeO3 exhibits weak ferromagnetism at room temperature that arises from its Fe2O3-like magnetic ordering, which persists to a temperature of 408 K. We demonstrate that the polarity and magnetization are coupled in this system with a measured linear magnetoelectric coupling coefficient of 0.057 ps/m. Such coupling is a prerequisite for potential applications of polar corundum materials in multiferroic/magnetoelectric devices.

  15. Analyte separation utilizing temperature programmed desorption of a preconcentrator mesh

    DOEpatents

    Linker, Kevin L.; Bouchier, Frank A.; Theisen, Lisa; Arakaki, Lester H.

    2007-11-27

    A method and system for controllably releasing contaminants from a contaminated porous metallic mesh by thermally desorbing and releasing a selected subset of contaminants from a contaminated mesh by rapidly raising the mesh to a pre-determined temperature step or plateau that has been chosen beforehand to preferentially desorb a particular chemical specie of interest, but not others. By providing a sufficiently long delay or dwell period in-between heating pulses, and by selecting the optimum plateau temperatures, then different contaminant species can be controllably released in well-defined batches at different times to a chemical detector in gaseous communication with the mesh. For some detectors, such as an Ion Mobility Spectrometer (IMS), separating different species in time before they enter the IMS allows the detector to have an enhanced selectivity.

  16. Irreversibility of the Aluminum Electrode in Basic Room-Temperature Chloroaluminate Molten Salts.

    DTIC Science & Technology

    1987-06-18

    TEMPERATURE o CHLOROALUMINATE MOLTEN SALTS 00 K. FL DIETER C. J. DYMEK . S. W. LANDER ~l H. A. OYE ELECTS J. W. ROVANG -u. i4i-.LS. s’. s ,’:! 4 S. WILKES...AUTHOR(S) 0olten Salts X. M. Dieter, C. J. ek, Jr., S. W. Lanir. Jr., H.A. 0e.JR.Suf9J._ ita 13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT...Continue on roevre if neconery and Identify by block number) ELO IGROUP -Sue. GA. Aluminum electrode) 10 02 Room temperature molten salts 7 104 hoolmnt 1

  17. Catalytic chemical amide synthesis at room temperature: one more step toward peptide synthesis.

    PubMed

    Mohy El Dine, Tharwat; Erb, William; Berhault, Yohann; Rouden, Jacques; Blanchet, Jérôme

    2015-05-01

    An efficient method has been developed for direct amide bond synthesis between carboxylic acids and amines via (2-(thiophen-2-ylmethyl)phenyl)boronic acid as a highly active bench-stable catalyst. This catalyst was found to be very effective at room temperature for a large range of substrates with slightly higher temperatures required for challenging ones. This methodology can be applied to aliphatic, α-hydroxyl, aromatic, and heteroaromatic acids as well as primary, secondary, heterocyclic, and even functionalized amines. Notably, N-Boc-protected amino acids were successfully coupled in good yields with very little racemization. An example of catalytic dipeptide synthesis is reported.

  18. Hillock formation on copper at room temperature by cleaning in ammonia vapor

    NASA Astrophysics Data System (ADS)

    Herley, P. J.; Greer, A. L.; Jones, W.

    2001-10-01

    Rapidly solidified copper particles are formed by electron-beam decomposition of copper hydride. When exposed to aqueous ammonia vapor at room temperature, the surface of the particles is cleaned and etched, and it develops hillocks and incipient whiskers. Damage of this kind is associated with compressive stress in integrated-circuit metallization. The development of such damage without any elevated temperature appears facilitated by the surface cleaning, and may have implications for device processing. Some links with surface diffusivity and its proposed role in device reliability are also explored.

  19. Photoluminescence observation from zinc oxide formed by magnetron sputtering at room temperature

    NASA Astrophysics Data System (ADS)

    Kudryashov, D.; Babichev, A.; Nikitina, E.; Gudovskikh, A.; Kladko, P.

    2015-11-01

    The photoluminescence (PL) of ZnO thin films grown by magnetron sputtering at room temperature has been observed. The PL spectra were measured using an instrument from Accent Optical Technologies with a solid state UV laser (λ = 266 nm) as the pumping source and at the temperature of 300 K. Samples grown at sputtering power of 100-200 W show a strong photoluminescence (PL) at wavelength of 377 nm and its intensity shows non-linear dependence with magnetron power. At values of sputtering power less then 100 W PL signal was not observed. A correlation between PL, XRD intensity and ZnO grain size was shown.

  20. Iron-catalyzed cycloaddition reaction of diynes and cyanamides at room temperature.

    PubMed

    Wang, Chunxiang; Wang, Dongping; Xu, Fen; Pan, Bin; Wan, Boshun

    2013-04-05

    An iron-catalyzed [2 + 2 + 2] cycloaddition reaction of diynes and cyanamides at room temperature is reported. Highly substituted 2-aminopyridines were obtained in good to excellent yields with high regioselectivity. Insights toward the reaction process were investigated through in situ IR spectra and control experiments. In this iron-catalyzed cycloaddition reaction, the active iron species was generated only in the presence of both alkynes and nitriles. The lower reaction temperature, broad substrates scope, and inversed regioselectivity make it a complementary method to the previously developed iron catalytic system.