Sample records for root cap cell

  1. Genetic ablation of root cap cells in Arabidopsis

    NASA Technical Reports Server (NTRS)

    Tsugeki, R.; Fedoroff, N. V.

    1999-01-01

    The root cap is increasingly appreciated as a complex and dynamic plant organ. Root caps sense and transmit environmental signals, synthesize and secrete small molecules and macromolecules, and in some species shed metabolically active cells. However, it is not known whether root caps are essential for normal shoot and root development. We report the identification of a root cap-specific promoter and describe its use to genetically ablate root caps by directing root cap-specific expression of a diphtheria toxin A-chain gene. Transgenic toxin-expressing plants are viable and have normal aerial parts but agravitropic roots, implying loss of root cap function. Several cell layers are missing from the transgenic root caps, and the remaining cells are abnormal. Although the radial organization of the roots is normal in toxin-expressing plants, the root tips have fewer cytoplasmically dense cells than do wild-type root tips, suggesting that root meristematic activity is lower in transgenic than in wild-type plants. The roots of transgenic plants have more lateral roots and these are, in turn, more highly branched than those of wild-type plants. Thus, root cap ablation alters root architecture both by inhibiting root meristematic activity and by stimulating lateral root initiation. These observations imply that the root caps contain essential components of the signaling system that determines root architecture.

  2. Defective secretion of mucilage is the cellular basis for agravitropism in primary roots of Zea mays cv. Ageotropic

    NASA Technical Reports Server (NTRS)

    Miller, I.; Moore, R.

    1990-01-01

    Root caps of primary, secondary, and seminal roots of Z. mays cv. Kys secrete large amounts of mucilage and are in close contact with the root all along the root apex. These roots are strongly graviresponsive. Secondary and seminal roots of Z. mays cv. Ageotropic are also strongly graviresponsive. Similarly, their caps secrete mucilage and closely appress the root all along the root apex. However, primary roots of Z. mays cv. Ageotropic are non-responsive to gravity. Their caps secrete negligible amounts of mucilage and contact the root only at the extreme apex of the root along the calyptrogen. These roots become graviresponsive when their tips are coated with mucilage or mucilage-like materials. Peripheral cells of root caps of roots of Z. mays cv. Kys contain many dictyosomes associated with vesicles that migrate to and fuse with the plasmalemma. Root-cap cells of secondary and seminal (i.e. graviresponsive) roots of Z. mays cv. Ageotropic are similar to those of primary roots of Z. mays cv. Kys. However, root-cap cells of primary (i.e. non-graviresponsive) roots of Z. mays cv. Ageotropic have distended dictyosomal cisternae filled with an electron-dense, granular material. Large vesicles full of this material populate the cells and apparently do not fuse with the plasmalemma. Taken together, these results suggest that non-graviresponsiveness of primary roots of Z. mays cv. Ageotropic results from the lack of apoplastic continuity between the root and the periphery of the root cap. This is a result of negligible secretion of mucilage by cells along the edge of the root cap which, in turn, appears to be due to the malfunctioning of dictyosomes in these cells.

  3. Role of pectolytic enzymes in the programmed separation of cells from the root cap of higher plants. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hawes, M.C.

    1995-03-01

    The objective of this research was to develop a model system to study border cell separation in transgenic pea roots. In addition, the hypothesis that genes encoding pectolytic enzymes in the root cap play a role in the programmed separation of root border cells from the root tip was tested. The following objectives have been accomplished: (1) the use of transgenic hairy roots to study border cell separation has been optimized for Pisum sativum; (2) a cDNA encoding a root cap pectinmethylesterase (PME) has been cloned; (3) PME and polygalacturonase activities in cell walls of the root cap have beenmore » characterized and shown to be correlated with border cell separation. A fusion gene encoding pectate lyase has also been transformed into pea hairy root cells.« less

  4. Mapping the functional roles of cap cells in the response of Arabidopsis primary roots to gravity

    NASA Technical Reports Server (NTRS)

    Blancaflor, E. B.; Fasano, J. M.; Gilroy, S.; Evans, M. L. (Principal Investigator)

    1998-01-01

    The cap is widely accepted to be the site of gravity sensing in roots because removal of the cap abolishes root curvature. Circumstantial evidence favors the columella cells as the gravisensory cells because amyloplasts (and often other cellular components) are polarized with respect to the gravity vector. However, there has been no functional confirmation of their role. To address this problem, we used laser ablation to remove defined cells in the cap of Arabidopsis primary roots and quantified the response of the roots to gravity using three parameters: time course of curvature, presentation time, and deviation from vertical growth. Ablation of the peripheral cap cells and tip cells did not alter root curvature. Ablation of the innermost columella cells caused the strongest inhibitory effect on root curvature without affecting growth rates. Many of these roots deviated significantly from vertical growth and had a presentation time 6-fold longer than the controls. Among the two inner columella stories, the central cells of story 2 contributed the most to root gravitropism. These cells also exhibited the largest amyloplast sedimentation velocities. Therefore, these results are consistent with the starch-statolith sedimentation hypothesis for gravity sensing.

  5. The involvement of glucose-6-phosphatase in mucilage secretion by root cap cells of Zea mays

    NASA Technical Reports Server (NTRS)

    Moore, R.; McClelen, C. E.

    1985-01-01

    In order to determine the involvement of glucose-6-phosphatase in mucilage secretion by root cap cells, we have cytochemically localized the enzyme in columella and peripheral cells of root caps of Zea mays. Glucose-6-phosphatase is associated with the plasmalemma and cell wall of columella cells. As columella cells differentiate into peripheral cells and begin to produce and secrete mucilage, glucose-6-phosphatase staining intensifies and becomes associated with the mucilage and, to a lesser extent, the cell wall. Cells being sloughed from the cap are characterized by glucose-6-phosphatase staining being associated with the vacuole and plasmalemma. These changes in enzyme localization during cellular differentiation in root caps suggest that glucose-6-phosphatase is involved in the production and/or secretion of mucilage by peripheral cells of Z. mays.

  6. A morphometric analysis of cellular differentiation in caps of primary and lateral roots of Helianthus annuus

    NASA Technical Reports Server (NTRS)

    Moore, R.

    1985-01-01

    In order to determine if patterns of cell differentiation are similar in primary and lateral roots, I performed a morphometric analysis of the ultrastructure of calyptrogen, columella, and peripheral cells in primary and lateral roots of Helianthus annuus. Each cell type is characterized by a unique ultrastructure, and the ultrastructural changes characteristic of cellular differentiation in root caps are organelle specific. No major structural differences exist in the structures of the composite cell types, or in patterns of cell differentiation in caps of primary vs. lateral roots.

  7. Transposon tagging and the study of root development in Arabidopsis

    NASA Technical Reports Server (NTRS)

    Tsugeki, R.; Olson, M. L.; Fedoroff, N. V.

    1998-01-01

    The maize Ac-Ds transposable element family has been used as the basis of transposon mutagenesis systems that function in a variety of plants, including Arabidopsis. We have developed modified transposons and methods which simplify the detection, cloning and analysis of insertion mutations. We have identified and are analyzing two plant lines in which genes expressed either in the root cap cells or in the quiescent cells, cortex/endodermal initial cells and columella cells of the root cap have been tagged with a transposon carrying a reporter gene. A gene expressed in root cap cells tagged with an enhancer-trap Ds was isolated and its corresponding EST cDNA was identified. Nucleotide and deduced amino acid sequences of the gene show no significant similarity to other genes in the database. Genetic ablation experiments have been done by fusing a root cap-specific promoter to the diphtheria toxin A-chain gene and introducing the fusion construct into Arabidopsis plants. We find that in addition to eliminating gravitropism, root cap ablation inhibits elongation of roots by lowering root meristematic activities.

  8. Cytochemical localization of calcium in cap cells of primary roots of Zea mays L

    NASA Technical Reports Server (NTRS)

    Moore, R.

    1985-01-01

    The cellular distribution of Ca in caps of primary roots of Zea mays was examined during the onset and early stages of gravicurvature to determine its possible role in root gravitropism. Staining becomes associated with the portion of the cell wall adjacent to the distal end of the cell after five minutes, and persists throughout the onset of gravicurvature. The outermost peripheral cells of roots oriented horizontally and vertically secrete Ca through plasmodesmata-like channels in their cell walls. Data suggest that Ca is not transported laterally through the columella tissue,but rather that the movement of Ca to the lower side of caps of horizontally-oriented roots is at least partially through and/or on the mucilage of the cap, and via an electrochemical gradient. An important role in root gravitropism is indicated for Ca secretion by peripheral cells.

  9. Characterizing pathways by which gravitropic effectors could move from the root cap to the root of primary roots of Zea mays

    NASA Technical Reports Server (NTRS)

    Moore, R.; McClelen, C. E.

    1989-01-01

    Plasmodesmata linking the root cap and root in primary roots Zea mays are restricted to approx. 400 protodermal cells bordering approx. 110000 microns2 of the calyptrogen of the root cap. This area is less than 10% of the cross-sectional area of the root-tip at the cap junction. Therefore, gravitropic effectors moving from the root cap to the root can move symplastically only through a relatively small area in the centre of the root. Decapped roots are non-responsive to gravity. However, decapped roots whose caps are replaced immediately after decapping are strongly graviresponsive. Thus, gravicurvature occurs only when the root cap contacts the root, and symplastic continuity between the cap and root is not required for gravicurvature. Completely removing mucilage from the root tip renders the root non-responsive to gravity. Taken together, these data suggest that gravitropic effectors move apoplastically through mucilage from the cap to the root.

  10. Influence of microgravity on cellular differentiation in root caps of Zea mays

    NASA Technical Reports Server (NTRS)

    Moore, R.; Fondren, W. M.; McClelen, C. E.; Wang, C. L.

    1987-01-01

    We launched imbibed seeds of Zea mays into outer space aboard the space shuttle Columbia to determine the influence of microgravity on cellular differentiation in root caps. The influence of microgravity varied with different stages of cellular differentiation. Overall, microgravity tended to 1) increase relative volumes of hyaloplasm and lipid bodies, 2) decrease the relative volumes of plastids, mitochondria, dictyosomes, and the vacuome, and 3) exert no influence on the relative volume of nuclei in cells comprising the root cap. The reduced allocation of dictyosomal volume in peripheral cells of flight-grown seedlings correlated positively with their secretion of significantly less mucilage than peripheral cells of Earth-grown seedlings. These results indicate that 1) microgravity alters the patterns of cellular differentiation and structures of all cell types comprising the root cap, and 2) the influence of microgravity on cellular differentiation in root caps of Zea mays is organelle specific.

  11. Effect of arabinogalactan proteins from the root caps of pea and Brassica napus on Aphanomyces euteiches zoospore chemotaxis and germination.

    PubMed

    Cannesan, Marc Antoine; Durand, Caroline; Burel, Carole; Gangneux, Christophe; Lerouge, Patrice; Ishii, Tadashi; Laval, Karine; Follet-Gueye, Marie-Laure; Driouich, Azeddine; Vicré-Gibouin, Maïté

    2012-08-01

    Root tips of many plant species release a number of border, or border-like, cells that are thought to play a major role in the protection of root meristem. However, little is currently known on the structure and function of the cell wall components of such root cells. Here, we investigate the sugar composition of the cell wall of the root cap in two species: pea (Pisum sativum), which makes border cells, and Brassica napus, which makes border-like cells. We find that the cell walls are highly enriched in arabinose and galactose, two major residues of arabinogalactan proteins. We confirm the presence of arabinogalactan protein epitopes on root cap cell walls using immunofluorescence microscopy. We then focused on these proteoglycans by analyzing their carbohydrate moieties, linkages, and electrophoretic characteristics. The data reveal (1) significant structural differences between B. napus and pea root cap arabinogalactan proteins and (2) a cross-link between these proteoglycans and pectic polysaccharides. Finally, we assessed the impact of root cap arabinogalactan proteins on the behavior of zoospores of Aphanomyces euteiches, an oomycetous pathogen of pea roots. We find that although the arabinogalactan proteins of both species induce encystment and prevent germination, the effects of both species are similar. However, the arabinogalactan protein fraction from pea attracts zoospores far more effectively than that from B. napus. This suggests that root arabinogalactan proteins are involved in the control of early infection of roots and highlights a novel role for these proteoglycans in root-microbe interactions.

  12. Effect of Arabinogalactan Proteins from the Root Caps of Pea and Brassica napus on Aphanomyces euteiches Zoospore Chemotaxis and Germination12[C][W

    PubMed Central

    Cannesan, Marc Antoine; Durand, Caroline; Burel, Carole; Gangneux, Christophe; Lerouge, Patrice; Ishii, Tadashi; Laval, Karine; Follet-Gueye, Marie-Laure; Driouich, Azeddine; Vicré-Gibouin, Maïté

    2012-01-01

    Root tips of many plant species release a number of border, or border-like, cells that are thought to play a major role in the protection of root meristem. However, little is currently known on the structure and function of the cell wall components of such root cells. Here, we investigate the sugar composition of the cell wall of the root cap in two species: pea (Pisum sativum), which makes border cells, and Brassica napus, which makes border-like cells. We find that the cell walls are highly enriched in arabinose and galactose, two major residues of arabinogalactan proteins. We confirm the presence of arabinogalactan protein epitopes on root cap cell walls using immunofluorescence microscopy. We then focused on these proteoglycans by analyzing their carbohydrate moieties, linkages, and electrophoretic characteristics. The data reveal (1) significant structural differences between B. napus and pea root cap arabinogalactan proteins and (2) a cross-link between these proteoglycans and pectic polysaccharides. Finally, we assessed the impact of root cap arabinogalactan proteins on the behavior of zoospores of Aphanomyces euteiches, an oomycetous pathogen of pea roots. We find that although the arabinogalactan proteins of both species induce encystment and prevent germination, the effects of both species are similar. However, the arabinogalactan protein fraction from pea attracts zoospores far more effectively than that from B. napus. This suggests that root arabinogalactan proteins are involved in the control of early infection of roots and highlights a novel role for these proteoglycans in root-microbe interactions. PMID:22645070

  13. Changes in root cap pH are required for the gravity response of the Arabidopsis root

    NASA Technical Reports Server (NTRS)

    Fasano, J. M.; Swanson, S. J.; Blancaflor, E. B.; Dowd, P. E.; Kao, T. H.; Gilroy, S.

    2001-01-01

    Although the columella cells of the root cap have been identified as the site of gravity perception, the cellular events that mediate gravity signaling remain poorly understood. To determine if cytoplasmic and/or wall pH mediates the initial stages of root gravitropism, we combined a novel cell wall pH sensor (a cellulose binding domain peptide-Oregon green conjugate) and a cytoplasmic pH sensor (plants expressing pH-sensitive green fluorescent protein) to monitor pH dynamics throughout the graviresponding Arabidopsis root. The root cap apoplast acidified from pH 5.5 to 4.5 within 2 min of gravistimulation. Concomitantly, cytoplasmic pH increased in columella cells from 7.2 to 7.6 but was unchanged elsewhere in the root. These changes in cap pH preceded detectable tropic growth or growth-related pH changes in the elongation zone cell wall by 10 min. Altering the gravity-related columella cytoplasmic pH shift with caged protons delayed the gravitropic response. Together, these results suggest that alterations in root cap pH likely are involved in the initial events that mediate root gravity perception or signal transduction.

  14. Involvement of Arabidopsis thaliana phospholipase Dzeta2 in root hydrotropism through the suppression of root gravitropism.

    PubMed

    Taniguchi, Yukimi Y; Taniguchi, Masatoshi; Tsuge, Tomohiko; Oka, Atsuhiro; Aoyama, Takashi

    2010-01-01

    Root hydrotropism is the phenomenon of directional root growth toward moisture under water-deficient conditions. Although physiological and genetic studies have revealed the involvement of the root cap in the sensing of moisture gradients, and those of auxin and abscisic acid (ABA) in the signal transduction for asymmetric root elongation, the overall mechanism of root hydrotropism is still unclear. We found that the promoter activity of the Arabidopsis phospholipase Dzeta2 gene (PLDzeta2) was localized to epidermal cells in the distal root elongation zone and lateral root cap cells adjacent to them, and that exogenous ABA enhanced the activity and extended its area to the entire root cap. Although pldzeta2 mutant root caps did not exhibit a morphological phenotype in either the absence or presence of exogenous ABA, the inhibitory effect of ABA on gravitropism, which was significant in wild-type roots, was not observed in pldzeta2 mutant roots. In root hydrotropism experiments, pldzeta2 mutations significantly retarded or disturbed root hydrotropic responses. A drought condition similar to that used in a hydrotropism experiment enhanced the PLDzeta2 promoter activity in the root cap, as did exogenous ABA. These results suggest that PLDzeta2 responds to drought through ABA signaling in the root cap and accelerates root hydrotropism through the suppression of root gravitropism.

  15. Influence of microgravity on root-cap regeneration and the structure of columella cells in Zea mays

    NASA Technical Reports Server (NTRS)

    Moore, R.; McClelen, C. E.; Fondren, W. M.; Wang, C. L.

    1987-01-01

    We launched imbibed seeds and seedlings of Zea mays into outer space aboard the space shuttle Columbia to determine the influence of microgravity on 1) root-cap regeneration, and 2) the distribution of amyloplasts and endoplasmic reticulum (ER) in the putative statocytes (i.e., columella cells) of roots. Decapped roots grown on Earth completely regenerated their caps within 4.8 days after decapping, while those grown in microgravity did not regenerate caps. In Earth-grown seedlings, the ER was localized primarily along the periphery of columella cells, and amyloplasts sedimented in response to gravity to the lower sides of the cells. Seeds germinated on Earth and subsequently launched into outer space had a distribution of ER in columella cells similar to that of Earth-grown controls, but amyloplasts were distributed throughout the cells. Seeds germinated in outer space were characterized by the presence of spherical and ellipsoidal masses of ER and randomly distributed amyloplasts in their columella cells. These results indicate that 1) gravity is necessary for regeneration of the root cap, 2) columella cells can maintain their characteristic distribution of ER in microgravity only if they are exposed previously to gravity, and 3) gravity is necessary to distribute the ER in columella cells of this cultivar of Z. mays.

  16. Cytochemical localization of calcium in cap cells of primary roots of Zea mays L

    NASA Technical Reports Server (NTRS)

    Moore, R.

    1986-01-01

    The distribution of calcium (Ca) in caps of vertically- and horizontally-oriented roots of Zea mays was monitored to determine its possible role in root graviresponsiveness. A modification of the antimonate precipitation procedure was used to localize Ca in situ. In vertically-oriented roots, the presumed graviperceptive (i.e., columella) cells were characterized by minimal and symmetric staining of the plasmalemma and mitochondria. No precipitate was present in plasmodesmata or cell walls. Within 5 min after horizontal reorientation, staining was associated with the portion of the cell wall adjacent to the distal end of the cell. This asymmetric staining persisted throughout the onset of gravicurvature. No staining of lateral cell walls of columella cells was observed at any stage of gravicurvature, suggesting that a lateral flow of Ca through the columella tissue of horizontally-oriented roots does not occur. The outermost peripheral cells of roots oriented horizontally and vertically secrete Ca through plasmodesmata-like structures in their cell walls. These results are discussed relative to proposed roles of root-cap Ca in root gravicurvature.

  17. Cytological and ultrastructural studies on root tissues

    NASA Technical Reports Server (NTRS)

    Slocum, R. D.; Gaynor, J. J.; Galston, A. W.

    1984-01-01

    The anatomy and fine structure of roots from oat and mung bean seedlings, grown under microgravity conditions for 8 days aboard the Space Shuttle, was examined and compared to that of roots from ground control plants grown under similar conditions. Roots from both sets of oat seedlings exhibited characteristic monocotyledonous tissue organization and normal ultrastructural features, except for cortex cell mitochondria, which exhibited a 'swollen' morphology. Various stages of cell division were observed in the meristematic tissues of oat roots. Ground control and flight-grown mung bean roots also showed normal tissue organization, but root cap cells in the flight-grown roots were collapsed and degraded in appearance, especially at the cap periphery. At the ultrastructural level, these cells exhibited a loss of organelle integrity and a highly-condensed cytoplasm. This latter observation perhaps suggests a differing tissue sensitivity for the two species to growth conditions employed in space flight. The basis for abnormal root cap cell development is not understood, but the loss of these putative gravity-sensing cells holds potential significance for long term plant growth orientation during space flight.

  18. How roots perceive and respond to gravity

    NASA Technical Reports Server (NTRS)

    Moore, R.; Evans, M. L.

    1986-01-01

    Graviperception by plant roots is believed to occur via the sedimentation of amyloplasts in columella cells of the root cap. This physical stimulus results in an accumulation of calcium on the lower side of the cap, which in turn induces gravicurvature. In this paper we present a model for root gravitropism integrating gravity-induced changes in electrical potential, cytochemical localization of calcium in cells of gravistimulated roots, and the interdependence of calcium and auxin movement. Key features of the model are that 1) gravity-induced redistribution of calcium is an early event in the transduction mechanism, and 2) apoplastic movement of calcium through the root-cap mucilage may be an important component of the pathway for calcium movement.

  19. Ultrastructure of the root cap of Arabidopsis Thaliana L. Heynh under spaceflight conditions

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Peculiarities of the ultrastructural organization of Arabidopsis root cap cells grown from the stage of two cotyledonous leaves in the Svetoblok-1 apparatus aboard the Salyut 6 research orbital station and in the laboratory are assessed. It is established that under conditions of real space flight vacuolization of the root cap cells increses considerably compared to the control variant. Changes in the topography and ulstrastructure of amyloplasts as well as lysis of cell walls are observed in the material under study. An assumption is advanced on analogous cell responses observed at the ultrastructural level to weightlessness and clinostatic conditions.

  20. Organization of cortical microtubules in graviresponding maize roots

    NASA Technical Reports Server (NTRS)

    Blancaflor, E. B.; Hasenstein, K. H.

    1993-01-01

    Immunofluorescence labeling of cortical microtubules (MTs) was used to investigate the relationship between MT arrangement and changes in growth rate of the upper and lower sides of horizontally placed roots of maize (Zea mays L. cv. Merit). Cap cells and cells of the elongation zone of roots grown vertically in light or darkness showed MT arrangements that were transverse (perpendicular) to the growth direction. Microtubules of cells basal to the elongation zone typically showed oblique orientation. Two hours after horizontal reorientation, cap cells of gravicompetent, light-grown and curving roots contained MTs parallel to the gravity vector. The MT arrangement on the upper side of the elongation zone remained transverse but the MTs of the outer four to five layers of cortical cells along the lower side of the elongation zone showed reorientation parallel to the axis of the root. The MTs of the lower epidermis retained their transverse orientation. Dark-grown roots did not curve and did not show reorientation of MTs in cells of the root cap or elongation zone. The data indicate that MT depolymerization and reorientation is correlated with reduction in growth rate, and that MT reorientation is one of the steps of growth control of graviresponding roots.

  1. How Roots Perceive and Respond to Gravity.

    ERIC Educational Resources Information Center

    Moore, Randy

    1984-01-01

    Discusses graviperception and gravitropism by plant roots. Indicates that graviperception occurs via sedimentation of amyloplasts in columella cells of the root cap and that the minimal graviresponsiveness of lateral roots may be due to the intensity of their caps to establish a concentration gradient of inhibitor(s) sufficient to affect…

  2. Touch modulates gravity sensing to regulate the growth of primary roots of Arabidopsis thaliana

    NASA Technical Reports Server (NTRS)

    Massa, Gioia D.; Gilroy, Simon

    2003-01-01

    Plants must sense and respond to diverse stimuli to optimize the architecture of their root system for water and nutrient scavenging and anchorage. We have therefore analyzed how information from two of these stimuli, touch and gravity, are integrated to direct root growth. In Arabidopsis thaliana, touch stimulation provided by a glass barrier placed across the direction of growth caused the root to form a step-like growth habit with bends forming in the central and later the distal elongation zones. This response led to the main root axis growing parallel to, but not touching the obstacle, whilst the root cap maintained contact with the barrier. Removal of the graviperceptive columella cells of the root cap using laser ablation reduced the bending response of the distal elongation zone. Similarly, although the roots of the gravisensing impaired pgm1-1 mutant grew along the barrier at the same average angle as wild-type, this angle became more variable with time. These observations imply a constant gravitropic re-setting of the root tip response to touch stimulation from the barrier. In wild-type plants, transient touch stimulation of root cap cells, but not other regions of the root, inhibited both subsequent gravitropic growth and amyloplast sedimentation in the columella. Taken together, these results suggest that the cells of the root cap sense touch stimuli and their subsequent signaling acts on the columella cells to modulate their graviresponse. This interaction of touch and gravity signaling would then direct root growth to avoid obstacles in the soil while generally maintaining downward growth.

  3. The locations and amounts of endogenous ions and elements in the cap and elongating zone of horizontally oriented roots of Zea mays L.: an electron-probe EDS study

    NASA Technical Reports Server (NTRS)

    Moore, R.; Cameron, I. L.; Hunter, K. E.; Olmos, D.; Smith, N. K.

    1987-01-01

    We used quantitative electron-probe energy-dispersive x-ray microanalysis to localize endogenous Na, Cl, K, P, S, Mg and Ca in cryofixed and freeze-dried cryosections of the cap (i.e. the putative site of graviperception) and elongating zone (i.e. site of gravicurvature) of horizontally oriented roots of Zea mays. Ca, Na, Cl, K and Mg accumulate along the lower side of caps of horizontally oriented roots. The most dramatic asymmetries of these ions occur in the apoplast, especially the mucilage. We could not detect any significant differences in the concentrations of these ions in the central cytoplasm of columella cells along the upper and lower sides of caps of horizontally-oriented roots. However, the increased amounts of Na, Cl, K and Mg in the longitudinal walls of columella cells along the lower side of the cap suggest that these ions may move down through the columella tissue of horizontally-oriented roots. Ca also accumulates (largely in the mucilage) along the lower side of the elongating zone of horizontally-oriented roots, while Na, P, Cl and K tend to accumulate along the upper side of the elongating zone. Of these ions, only K increases in concentration in the cytoplasm and longitudinal walls of cortical cells in the upper vs lower sides of the elongating zone. These results indicate that (1) gravity-induced asymmetries of ions differ significantly in the cap and elongating zone of graviresponding roots, (2) Ca accumulates along the lower side of the cap and elongating zone of graviresponding roots, (3) increased growth of the upper side of the elongating zone of horizontally-oriented roots correlates positively with increased amounts of K in the cytoplasm and longitudinal walls of cortical cells, and (4) the apoplast (especially the mucilage) may be an important component of the pathway via which ions move in graviresponding rots of Zea mays. These results are discussed relative to mechanisms for graviperception and gravicurvature of roots.

  4. Semaphorin6A acts as a gate keeper between the central and the peripheral nervous system

    PubMed Central

    Mauti, Olivier; Domanitskaya, Elena; Andermatt, Irwin; Sadhu, Rejina; Stoeckli, Esther T

    2007-01-01

    Background During spinal cord development, expression of chicken SEMAPHORIN6A (SEMA6A) is almost exclusively found in the boundary caps at the ventral motor axon exit point and at the dorsal root entry site. The boundary cap cells are derived from a population of late migrating neural crest cells. They form a transient structure at the transition zone between the peripheral nervous system (PNS) and the central nervous system (CNS). Ablation of the boundary cap resulted in emigration of motoneurons from the ventral spinal cord along the ventral roots. Based on its very restricted expression in boundary cap cells, we tested for a role of Sema6A as a gate keeper between the CNS and the PNS. Results Downregulation of Sema6A in boundary cap cells by in ovo RNA interference resulted in motoneurons streaming out of the spinal cord along the ventral roots, and in the failure of dorsal roots to form and segregate properly. PlexinAs interact with class 6 semaphorins and are expressed by both motoneurons and sensory neurons. Knockdown of PlexinA1 reproduced the phenotype seen after loss of Sema6A function both at the ventral motor exit point and at the dorsal root entry site of the lumbosacral spinal cord. Loss of either PlexinA4 or Sema6D function had an effect only at the dorsal root entry site but not at the ventral motor axon exit point. Conclusion Sema6A acts as a gate keeper between the PNS and the CNS both ventrally and dorsally. It is required for the clustering of boundary cap cells at the PNS/CNS interface and, thus, prevents motoneurons from streaming out of the ventral spinal cord. At the dorsal root entry site it organizes the segregation of dorsal roots. PMID:18088409

  5. Cytogenetic evaluation of gold nanorods using Allium cepa test.

    PubMed

    Rajeshwari, A; Roy, Barsha; Chandrasekaran, Natarajan; Mukherjee, Amitava

    2016-12-01

    The current study reveals the impact of gold nanorods (NRs) capped with CTAB (cetyltrimethylammonium bromide) or PEG (polyethylene glycol) on Allium cepa. The morphology and surface charge of CTAB- and PEG-capped gold NRs were characterized by electron microscopic and zeta potential analyses. The chromosomal aberrations like clumped chromosome, chromosomal break, chromosomal bridge, diagonal anaphase, disturbed metaphase, laggard chromosome, and sticky chromosome were observed in the root tip cells exposed to different concentrations (0.1, 1, and 10 μg/mL) of CTAB- and PEG-capped gold NRs. We found that both CTAB- and PEG-capped gold NRs were able to induce toxicity in the plant system after 4-h interaction. At a maximum concentration of 10 μg/mL, the mitotic index reduction induced by CTAB-capped gold NRs was 40-fold higher than that induced by PEG-capped gold NRs. The toxicity of gold NRs was further confirmed by lipid peroxidation and oxidative stress analyses. The unbound CTAB also contributed to the toxicity in root tip cells, while PEG alone shows less toxicity to the cells. The vehicle control CTAB contributed to the toxic effects in root tip cells, while PEG alone did not show any toxicity to the cells. The results revealed that even though both the particles have adverse effects on A. cepa, there was a significant difference in the mitotic index and oxidative stress generation in root cells exposed to CTAB-capped gold NRs. Thus, this study concludes that the surface polymerization of gold NRs by PEG can reduce the toxicity of CTAB-capped gold NRs. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  6. Actin microfilaments in presumptive statocytes of root caps and coleoptiles

    NASA Technical Reports Server (NTRS)

    White, R. G.; Sack, F. D.

    1990-01-01

    Rhodamine-phalloidin was used to determine the distribution of actin microfilament bundles (mfb) in cells thought to be the site of gravity perception (statocytes) in coleoptiles and root caps of Zea mays and Hordeum vulgare. In coleoptile cells, amyloplasts were usually observed in close proximity to thick mfb, which often appeared to divide into finer mfb adjacent to individual amyloplasts. The nucleus in these cells was surrounded by an extensive network of mfb, which were connected to thicker transvacuolar mfb. Columella cells of the root cap contained an extensive reticulum of fine mfb throughout the protoplast, but lacked the much thicker mfb seen in coleoptile cells. The distribution and extent of mfb observed in fixed cells correlates with patterns of streaming and amyloplast movement seen in living cells. A possible role for actin mfb in the perception of gravity is discussed.

  7. Synergistic Effects of a Calcium Phosphate/Fibronectin Coating on the Adhesion of Periodontal Ligament Stem Cells Onto Decellularized Dental Root Surfaces.

    PubMed

    Lee, Jung-Seok; Kim, Hyun-Suk; Park, So-Yon; Kim, Tae-Wan; Jung, Jae-Suk; Lee, Jong-Bin; Kim, Chang-Sung

    2015-01-01

    This study aimed to enhance the attachment of periodontal ligament stem cells (PDLSCs) onto the decellularized dental root surface using surface coating with fibronectin and/or calcium phosphate (CaP) and to evaluate the activity of PDLSCs attached to a coated dental root surface following tooth replantation. PDLSCs were isolated from five dogs, and the other dental roots were used as a scaffold for carrying PDLSCs and then assigned to one of four groups according to whether their surface was coated with CaP, fibronectin, CaP/fibronectin, or left uncoated (control). Fibronectin increased the adhesion of PDLSCs onto dental root surfaces compared to both the control and CaP-coated groups, and simultaneous surface coating with CaP and fibronectin significantly accelerated and increased PDLSC adhesion compared to the fibronectin-only group. On in vivo tooth replantation, functionally oriented periodontal new attachment was observed on the CaP/fibronectin-coated dental roots to which autologous PDLSCs had adhered, while in the control condition, dental root replantation was associated only with root resorption and ankylosis along the entire root length. CaP and fibronectin synergistically enhanced the attachment of PDLSCs onto dental root surfaces, and autologous PDLSCs could produce de novo periodontal new attachment in an experimental in vivo model.

  8. Early root cap development and graviresponse in white clover (Trifolium repens) grown in space and on a two-axis clinostat

    NASA Technical Reports Server (NTRS)

    Smith, J. D.; Staehelin, L. A.; Todd, P.

    1999-01-01

    White clover (Trifolium repens) was germinated and grown in microgravity aboard the Space Shuttle (STS-60, 1994; STS-63, 1995), on Earth in stationary racks and in a slow-rotating two-axis clinostat. The objective of this study was to determine if normal root cap development and early plant gravity responses were dependent on gravitational cues. Seedlings were germinated in space and chemically fixed in orbit after 21, 40, and 72 h. Seedlings 96 h old were returned viable to earth. Germination and total seedling length were not dependent on gravity treatment. In space-flown seedlings, the number of cell stories in the root cap and the geometry of central columella cells did not differ from those of the Earth-grown seedlings. The root cap structure of clinorotated plants appeared similar to that of seedlings from microgravity, with the exception of three-day rotated plants, which displayed significant cellular damage in the columella region. Nuclear polarity did not depend on gravity; however, the positions of amyloplasts in the central columella cells were dependent on both the gravity treatment and the age of the seedlings. Seedlings from space, returned viable to earth, responded to horizontal stimulation as did 1 g controls, but seedlings rotated on the clinostat for the same duration had a reduced curvature response. This study demonstrates that initial root cap development is insensitive to either chronic clinorotation or microgravity. Soon after differentiation, however, clinorotation leads to loss of normal root cap structure and plant graviresponse while microgravity does not.

  9. Root graviresponsiveness and cellular differentiation in wild-type and a starchless mutant of Arabidopsis thaliana

    NASA Technical Reports Server (NTRS)

    Moore, R.

    1989-01-01

    Primary roots of a starchless mutant of Arabidopsis thaliana L. are strongly graviresponsive despite lacking amyloplasts in their columella cells. The ultrastructures of calyptrogen and peripheral cells in wild-type as compared to mutant seedlings are not significantly different. The largest difference in cellular differentiation in caps of mutant and wild-type roots is the relative volume of plastids in columella cells. Plastids occupy 12.3% of the volume of columella cells in wild-type seedlings, but only 3.69% of columella cells in mutant seedlings. These results indicate that: (1) amyloplasts and starch are not necessary for root graviresponsiveness; (2) the increase in relative volume of plastids that usually accompanies differentiation of columella cells is not necessary for root graviresponsiveness; and (3) the absence of starch and amyloplasts does not affect the structure of calyptrogen (i.e. meristematic) and secretory (i.e. peripheral) cells in root caps. These results are discussed relative to proposed models for root gravitropism.

  10. Regulation of phytochrome message abundance in root caps of maize

    NASA Technical Reports Server (NTRS)

    Johnson, E. M.; Pao, L. I.; Feldman, L. J.

    1991-01-01

    In many cultivars of maize (Zea mays L.) red light affects root development via the photomorphogenetic pigment phytochrome. The site of perception for the light is the root cap. In the maize cultivar Merit, we investigated phytochrome-mediated events in the cap. We established that the message encoded by the phyA1 gene was most abundant in dark-grown tissue and was asymmetrically distributed in the root cap, with greatest expression in the cells which make up the central columella core of the cap. Phytochrome message was negatively autoregulated in a specific region within the root cap. This autoregulation was sensitive to very-low-fluence red light, and thus was characterized as a phytochrome-mediated, very-low-fluence event. The kinetics of message reaccumulation in the dark were also examined and compared to the kinetics of the light requirement for root gravitropism in this cultivar. Similarly, the degree of autoregulation present in two other maize cultivars with different light requirements for gravitropic sensitivity was investigated. It appears that the Merit cultivar expresses a condition of hypersensitivity to phytochrome-mediated light regulation in root tissues. We conclude that phytochrome regulates many activities within the cap, but the degree to which these activities share common phytochrome-mediated steps is not known.

  11. Gravity-regulated differential auxin transport from columella to lateral root cap cells

    NASA Technical Reports Server (NTRS)

    Ottenschlager, Iris; Wolff, Patricia; Wolverton, Chris; Bhalerao, Rishikesh P.; Sandberg, Goran; Ishikawa, Hideo; Evans, Mike; Palme, Klaus

    2003-01-01

    Gravity-induced root curvature has long been considered to be regulated by differential distribution of the plant hormone auxin. However, the cells establishing these gradients, and the transport mechanisms involved, remain to be identified. Here, we describe a GFP-based auxin biosensor to monitor auxin during Arabidopsis root gravitropism at cellular resolution. We identify elevated auxin levels at the root apex in columella cells, the site of gravity perception, and an asymmetric auxin flux from these cells to the lateral root cap (LRC) and toward the elongation zone after gravistimulation. We differentiate between an efflux-dependent lateral auxin transport from columella to LRC cells, and an efflux- and influx-dependent basipetal transport from the LRC to the elongation zone. We further demonstrate that endogenous gravitropic auxin gradients develop even in the presence of an exogenous source of auxin. Live-cell auxin imaging provides unprecedented insights into gravity-regulated auxin flux at cellular resolution, and strongly suggests that this flux is a prerequisite for root gravitropism.

  12. ``Rhizogenesis in vitro'' - as a model to study microgravity biological effects

    NASA Astrophysics Data System (ADS)

    Bulavin, Iliya

    Functioning organisms is based on the physiological and biochemical processes in different tissues and cells. Numerous spaceflight biological experiments have shown the essential changes in cell behavior of multicellular and unicellular organisms in comparison with that on Earth. In our investigations, we used the model “Rhizogenesis in vitro” to study cell differentiation in the root cap and growth zones under clinorotation. Advantage of this model is the possibility to study the influence of clinorotation at the beginning of root initiation de novo and next morphogenetic processes unlike experiments in vivo with embryonal seedling roots formed in seeds. Arabidopsis thaliana plants of wild type and scr mutant (3999 by NASC database) were used. For rhizogenesis induction, rosette leaves with petioles were cut and transferred in Petri dishes on MS medium contained 1/10 of MS mineral salt, without vitamins and hormones. One half of Petri dishes were placed vertically (control), the other - on a slow horizontal clinostat (2 rpm). Anatomical investigation of A. thaliana wild type and scr mutant roots formed de novo showed that formation of root cap and growth zones (meristem, distal elongation zone (DEZ), central elongation zone (CEZ) and mature zone) under clinorotation was similar to that in control. A root cap consists of columella and peripheral cells. In the columella there are meristematic cells, statocytes (graviperceptive cells), and secretory cells. Epidermis, parenchyma, endodermis and central cylinder are distinguished in wild type roots. Unlike a wild type, a cortex of scr mutant was represented by one cell layer which had the parenchyma and endodermis characteristics. A root cap length and width were similar in control and under clinorotation. A cell number in the meristem and DEZ and a length of these growth zones did not differ in control and the experimental conditions. The ultrasructure of cap meristematic cells was typical for cells of this type. Statocytes preserved their polarity in control but it was disturbed under clinorotation due to amyloplast distribution in the cytoplasm whole volume and/or their localization in the cell center. Structural rearrangements occurred similarly in statocytes under their transformation in secretory cells in control and under clinorotation. A characteristic features of the root proper meristematic cells in the control and in the experiment are central nucleus location, the great diversity of a size and a shape of mitochondria and plastids, poorly ER development, the presence of some small ER-bodies. As cells passed in the DEZ, their size enlarged but a nucleus can preserve the central location. A quantity of ER-cistern, vacuoles, and ER-bodies increased also. Dictyosomes acquired polarity and produced many Golgi vesicles. In CEZ cells, a large vacuole occupied the cell center, and the cytoplasm with organelles was on the cell periphery. So, we can conclude that under clinorotation: 1) the structure of a cap and growth zones of A. thaliana wild type and scr mutant roots formed de novo in vitro as similar to that in control; 2) a gaviperceptive apparatus formed in both objects but did not function. The obtained data allow to propose the model “Rhizogenesis in vitro” for using in spaceflight experiments to study the influence of real microgravity on the cellular differentiation and basic processes.

  13. Unique and Conserved Features of the Barley Root Meristem

    PubMed Central

    Kirschner, Gwendolyn K.; Stahl, Yvonne; Von Korff, Maria; Simon, Rüdiger

    2017-01-01

    Plant root growth is enabled by root meristems that harbor the stem cell niches as a source of progenitors for the different root tissues. Understanding the root development of diverse plant species is important to be able to control root growth in order to gain better performances of crop plants. In this study, we analyzed the root meristem of the fourth most abundant crop plant, barley (Hordeum vulgare). Cell division studies revealed that the barley stem cell niche comprises a Quiescent Center (QC) of around 30 cells with low mitotic activity. The surrounding stem cells contribute to root growth through the production of new cells that are displaced from the meristem, elongate and differentiate into specialized root tissues. The distal stem cells produce the root cap and lateral root cap cells, while cells lateral to the QC generate the epidermis, as it is typical for monocots. Endodermis and inner cortex are derived from one common initial lateral to the QC, while the outer cortex cell layers are derived from a distinct stem cell. In rice and Arabidopsis, meristem homeostasis is achieved through feedback signaling from differentiated cells involving peptides of the CLE family. Application of synthetic CLE40 orthologous peptide from barley promotes meristem cell differentiation, similar to rice and Arabidopsis. However, in contrast to Arabidopsis, the columella stem cells do not respond to the CLE40 peptide, indicating that distinct mechanisms control columella cell fate in monocot and dicot plants. PMID:28785269

  14. Border cell release: Cell separation without cell wall degradation?

    PubMed

    Mravec, Jozef

    2017-07-03

    Plant border cells are specialized cells derived from the root cap with roles in the biomechanics of root growth and in forming a barrier against pathogens. The mechanism of highly localized cell separation which is essential for their release to the environment is little understood. Here I present in situ analysis of Brachypodium distachyon, a model organism for grasses which possess type II primary cell walls poor in pectin content. Results suggest similarity in spatial dynamics of pectic homogalacturonan during dicot and monocot border cell release. Integration of observations from different species leads to the hypothesis that this process most likely does not involve degradation of cell wall material but rather uses unique cell wall structural and compositional means enabling both the rigidity of the root cap as well as detachability of given cells on its surface.

  15. Adenosine kinase modulates root gravitropism and cap morphogenesis in Arabidopsis.

    PubMed

    Young, Li-Sen; Harrison, Benjamin R; Narayana Murthy, U M; Moffatt, Barbara A; Gilroy, Simon; Masson, Patrick H

    2006-10-01

    Adenosine kinase (ADK) is a key enzyme that regulates intra- and extracellular levels of adenosine, thereby modulating methyltransferase reactions, production of polyamines and secondary compounds, and cell signaling in animals. Unfortunately, little is known about ADK's contribution to the regulation of plant growth and development. Here, we show that ADK is a modulator of root cap morphogenesis and gravitropism. Upon gravistimulation, soluble ADK levels and activity increase in the root tip. Mutation in one of two Arabidopsis (Arabidopsis thaliana) ADK genes, ADK1, results in cap morphogenesis defects, along with alterations in root sensitivity to gravistimulation and slower kinetics of root gravitropic curvature. The kinetics defect can be partially rescued by adding spermine to the growth medium, whereas the defects in cap morphogenesis and gravitropic sensitivity cannot. The root morphogenesis and gravitropism defects of adk1-1 are accompanied by altered expression of the PIN3 auxin efflux facilitator in the cap and decreased expression of the auxin-responsive DR5-GUS reporter. Furthermore, PIN3 fails to relocalize to the bottom membrane of statocytes upon gravistimulation. Consequently, adk1-1 roots cannot develop a lateral auxin gradient across the cap, necessary for the curvature response. Interestingly, adk1-1 does not affect gravity-induced cytoplasmic alkalinization of the root statocytes, suggesting either that ADK1 functions between cytoplasmic alkalinization and PIN3 relocalization in a linear pathway or that the pH and PIN3-relocalization responses to gravistimulation belong to distinct branches of the pathway. Our data are consistent with a role for ADK and the S-adenosyl-L-methionine pathway in the control of root gravitropism and cap morphogenesis.

  16. Adenosine Kinase Modulates Root Gravitropism and Cap Morphogenesis in Arabidopsis1[W][OA

    PubMed Central

    Young, Li-Sen; Harrison, Benjamin R.; U.M., Narayana Murthy; Moffatt, Barbara A.; Gilroy, Simon; Masson, Patrick H.

    2006-01-01

    Adenosine kinase (ADK) is a key enzyme that regulates intra- and extracellular levels of adenosine, thereby modulating methyltransferase reactions, production of polyamines and secondary compounds, and cell signaling in animals. Unfortunately, little is known about ADK's contribution to the regulation of plant growth and development. Here, we show that ADK is a modulator of root cap morphogenesis and gravitropism. Upon gravistimulation, soluble ADK levels and activity increase in the root tip. Mutation in one of two Arabidopsis (Arabidopsis thaliana) ADK genes, ADK1, results in cap morphogenesis defects, along with alterations in root sensitivity to gravistimulation and slower kinetics of root gravitropic curvature. The kinetics defect can be partially rescued by adding spermine to the growth medium, whereas the defects in cap morphogenesis and gravitropic sensitivity cannot. The root morphogenesis and gravitropism defects of adk1-1 are accompanied by altered expression of the PIN3 auxin efflux facilitator in the cap and decreased expression of the auxin-responsive DR5-GUS reporter. Furthermore, PIN3 fails to relocalize to the bottom membrane of statocytes upon gravistimulation. Consequently, adk1-1 roots cannot develop a lateral auxin gradient across the cap, necessary for the curvature response. Interestingly, adk1-1 does not affect gravity-induced cytoplasmic alkalinization of the root statocytes, suggesting either that ADK1 functions between cytoplasmic alkalinization and PIN3 relocalization in a linear pathway or that the pH and PIN3-relocalization responses to gravistimulation belong to distinct branches of the pathway. Our data are consistent with a role for ADK and the S-adenosyl-l-methionine pathway in the control of root gravitropism and cap morphogenesis. PMID:16891550

  17. A Receptor-Like Kinase Mediates Ammonium Homeostasis and Is Important for the Polar Growth of Root Hairs in Arabidopsis[W

    PubMed Central

    Bai, Ling; Ma, Xiaonan; Zhang, Guozeng; Song, Shufei; Zhou, Yun; Gao, Lijie; Miao, Yuchen; Song, Chun-Peng

    2014-01-01

    Ammonium (NH4+) is both a necessary nutrient and an important signal in plants, but can be toxic in excess. Ammonium sensing and regulatory mechanisms in plant cells have not been fully elucidated. To decipher the complex network of NH4+ signaling, we analyzed [Ca2+]cyt-associated protein kinase (CAP) genes, which encode signaling components that undergo marked changes in transcription levels in response to various stressors. We demonstrated that CAP1, a tonoplast-localized receptor-like kinase, regulates root hair tip growth by maintaining cytoplasmic Ca2+ gradients. A CAP1 knockout mutant (cap1-1) produced elevated levels of cytoplasmic NH4+. Furthermore, root hair growth of cap1-1 was inhibited on Murashige and Skoog medium, but NH4+ depletion reestablished the Ca2+ gradient necessary for normal growth. The lower net NH4+ influx across the vacuolar membrane and relatively alkaline cytosolic pH of cap1-1 root hairs implied that mutation of CAP1 increased NH4+ accumulation in the cytoplasm. Furthermore, CAP1 functionally complemented the npr1 (nitrogen permease reactivator protein) kinase yeast mutant, which is defective in high-affinity NH4+ uptake via MEP2 (methylammonium permease 2), distinguishing CAP1 as a cytosolic modulator of NH4+ levels that participates in NH4+ homeostasis-regulated root hair growth by modulating tip-focused cytoplasmic Ca2+ gradients. PMID:24769480

  18. Gravity-induced changes in intracellular potentials in elongating cortical cells of mung bean roots

    NASA Technical Reports Server (NTRS)

    Ishikawa, H.; Evans, M. L.

    1990-01-01

    Gravity-induced changes in intracellular potentials in primary roots of 2-day-old mung bean (Vigna mungo L. cv. black matpe) seedlings were investigated using glass microelectrodes held by 3-dimensional hydraulic micro-drives. The electrodes were inserted into outer cortical cells within the elongation zone. Intracellular potentials, angle of root orientation with respect to gravity, and position within the root of the impaled cortical cell were measured simultaneously. Gravistimulation caused intracellular potential changes in cortical cells of the elongation zone. When the roots were oriented vertically, the intracellular potentials of the outer cortical cells (2 mm behind the root apex) were approximately - 115 mV. When the roots were placed horizontally cortical cells on the upper side hyperpolarized to - 154 mV within 30 s while cortical cells on the lower side depolarized to about - 62 mV. This electrical asymmetry did not occur in cells of the maturation zone. Because attempts to insert the electrode into cells of the root cap were unsuccessful, these cells were not measured. The hyperpolarization of cortical cells on the upper side was greatly reduced upon application of N,N'-dicyclohexylcarbodiimide (DCCD), an inhibitor of respiratory energy coupling. When stimulated roots were returned to the vertical, the degree of hyperpolarization of cortical cells on the previous upper side decreased within 30 s and approached that of cortical cells in non-stimulated roots. This cycle of hyperpolarization/loss of hyperpolarization was repeatable at least ten times by alternately turning the root from the vertical to the horizontal and back again. The very short (<30 s) lag period of these electrical changes indicates that they may result from stimulus-perception and transduction within the elongation zone rather than from transmission of a signal from the root cap.

  19. Microsurgical removal of epidermal and cortical cells: evidence that the gravitropic signal moves through the outer cell layers in primary roots of maize

    NASA Technical Reports Server (NTRS)

    Yang, R. L.; Evans, M. L.; Moore, R.

    1990-01-01

    There is general agreement that during root gravitropism some sort of growth-modifying signal moves from the cap to the elongation zone and that this signal ultimately induces the curvature that leads to reorientation of the root. However, there is disagreement regarding both the nature of the signal and the pathway of its movement from the root cap to the elongation zone. We examined the pathway of movement by testing gravitropism in primary roots of maize (Zea mays L.) from which narrow (0.5 mm) rings of epidermal and cortical tissue were surgically removed from various positions within the elongation zone. When roots were girdled in the apical part of the elongation zone gravitropic curvature occurred apical to the girdle but not basal to the girdle. Filling the girdle with agar allowed curvature basal to the girdle to occur. Shallow girdles, in which only two or three cell layers (epidermis plus one or two cortical cell layers) were removed, prevented or greatly delayed gravitropic curvature basal to the girdle. The results indicate that the gravitropic signal moves basipetally through the outermost cell layers, perhaps through the epidermis itself.

  20. Calcium movement, graviresponsiveness and the structure of columella cells and columella tissues in roots of Allium cepa L

    NASA Technical Reports Server (NTRS)

    Moore, R.

    1985-01-01

    Roots of Allium cepa L. cv. Yellow are differentially responsive to gravity. Long (e.g. 40 mm) roots are strongly graviresponsive, while short (c.g. 4 mm) roots are minimally responsive to gravity. Although columella cells of graviresponsive roots are larger than those of nongraviresponsive roots, they partition their volumes to cellular organelles similarly. The movement of amyloplasts and nuclei in columella cells of horizontally-oriented roots correlates positively with the onset of gravicurvature. Furthermore, there is no significant difference in the rates of organellar redistribution when graviresponsive and nongraviresponsive roots are oriented horizontally. The more pronounced graviresponsiveness of longer roots correlates positively with (1) their caps being 9-6 times more voluminous, (2) their columella tissues being 42 times more voluminous, (3) their caps having 15 times more columella cells, and (4) their columella tissues having relative volumes 4.4 times larger than those of shorter, nongraviresponsive roots. Graviresponsive roots that are oriented horizontally are characterized by a strongly polar movement of 45Ca2+ across the root tip from the upper to the lower side, while similarly oriented nongraviresponsive roots exhibit only a minimal polar transport of 45Ca2+. These results indicate that the differential graviresponsiveness of roots of A. cepa is probably not due to either (1) ultrastructural differences in their columella cells, (2) differences in the rates of organellar redistribution when roots are oriented horizontally. Rather, these results indicate the graviresponsiveness may require an extensive columella tissue, which, in turn, may be necessary for polar movement of 45Ca2+ across the root tip.

  1. Spatial and directional variation of growth rates in Arabidopsis root apex: a modelling study.

    PubMed

    Nakielski, Jerzy; Lipowczan, Marcin

    2013-01-01

    Growth and cellular organization of the Arabidopsis root apex are investigated in various aspects, but still little is known about spatial and directional variation of growth rates in very apical part of the apex, especially in 3D. The present paper aims to fill this gap with the aid of a computer modelling based on the growth tensor method. The root apex with a typical shape and cellular pattern is considered. Previously, on the basis of two types of empirical data: the published velocity profile along the root axis and dimensions of cell packets formed in the lateral part of the root cap, the displacement velocity field for the root apex was determined. Here this field is adopted to calculate the linear growth rate in different points and directions. The results are interpreted taking principal growth directions into account. The root apex manifests a significant anisotropy of the linear growth rate. The directional preferences depend on a position within the root apex. In the root proper the rate in the periclinal direction predominates everywhere, while in the root cap the predominating direction varies with distance from the quiescent centre. The rhizodermis is distinguished from the neighbouring tissues (cortex, root cap) by relatively high contribution of the growth rate in the anticlinal direction. The degree of growth anisotropy calculated for planes defined by principal growth directions and exemplary cell walls may be as high as 25. The changes in the growth rate variation are modelled.

  2. Graviresponsiveness and the Development of Columella Tissue in Primary and Lateral Roots of Ricinus communis1

    PubMed Central

    Moore, Randy; Pasieniuk, John

    1984-01-01

    Half-tipped primary and lateral roots of Ricinus communis cv Hale bend toward the side of the root on which the intact half-tip remains. Therefore, the minimal graviresponsiveness of lateral roots is not due to the inability of their caps to produce growth effectors (presumably inhibitors). The columella tissues of primary (i.e. graviresponsive) roots are (a) 4.30 times longer, (b) 2.95 times wider, (c) 37.4 times more voluminous, and (d) composed of 17.2 times more cells than those of lateral roots. The onset of positive gravitropism by lateral roots is positively correlated with a (a) 2.99-fold increase in length, (b) 2.63-fold increase in width, and (c) 20.7-fold increase in volume of their columella tissues. We propose that the minimal graviresponsiveness of lateral roots is due to the small size of their columella tissues, which results in their caps being unable to (a) establish a concentration gradient of the effector sufficient to induce gravicurvature and (b) produce as much of the effector as caps of graviresponsive roots. Images Fig. 1 PMID:11540818

  3. Root Apex Transition Zone As Oscillatory Zone

    PubMed Central

    Baluška, František; Mancuso, Stefano

    2013-01-01

    Root apex of higher plants shows very high sensitivity to environmental stimuli. The root cap acts as the most prominent plant sensory organ; sensing diverse physical parameters such as gravity, light, humidity, oxygen, and critical inorganic nutrients. However, the motoric responses to these stimuli are accomplished in the elongation region. This spatial discrepancy was solved when we have discovered and characterized the transition zone which is interpolated between the apical meristem and the subapical elongation zone. Cells of this zone are very active in the cytoskeletal rearrangements, endocytosis and endocytic vesicle recycling, as well as in electric activities. Here we discuss the oscillatory nature of the transition zone which, together with several other features of this zone, suggest that it acts as some kind of command center. In accordance with the early proposal of Charles and Francis Darwin, cells of this root zone receive sensory information from the root cap and instruct the motoric responses of cells in the elongation zone. PMID:24106493

  4. Root gravitropism: a complex response to a simple stimulus?

    NASA Technical Reports Server (NTRS)

    Rosen, E.; Chen, R.; Masson, P. H.

    1999-01-01

    Roots avoid depleting their immediate environment of essential nutrients by continuous growth. Root growth is directed by environmental cues, including gravity. Gravity sensing occurs mainly in the columella cells of the root cap. Upon reorientation within the gravity field, the root-cap amyloplasts sediment, generating a physiological signal that promotes the development of a curvature at the root elongation zones. Recent molecular genetic studies in Arabidopsis have allowed the identification of genes that play important roles in root gravitropism. Among them, the ARG1 gene encodes a DnaJ-like protein involved in gravity signal transduction, whereas the AUX1 and AGR1 genes encode proteins involved in polar auxin transport. These studies have important implications for understanding the intra- and inter-cellular signaling processes that underlie root gravitropism.

  5. Ammonium affects cell viability to inhibit root growth in Arabidopsis * #

    PubMed Central

    Qin, Cheng; Yi, Ke-ke; Wu, Ping

    2011-01-01

    Ammonium (NH4 +) is an important form of nitrogen nutrient for most plants, yet is also a stressor for many of them. However, the primary events of NH4 + toxicity at the cellular level are still unclear. Here, we showed that NH4 + toxicity can induce the root cell death in a temporal pattern which primarily occurs in the cells of root maturation and elongation zones, and then spreads to the cells in the meristem and root cap. The results from the NH4 +-hypersensitive mutant hsn1 further confirmed our findings. Taken together, NH4 + toxicity inhibits primary root growth by inhibiting cell elongation and division and inducing root cell death. PMID:21634041

  6. A new genetic factor for root gravitropism in rice (Oryza sativa L.).

    PubMed

    Shi, Jiang-hua; Hao, Xi; Wu, Zhong-chang; Wu, Ping

    2009-10-01

    Root gravitropism is one of the important factors to determine root architecture. To understand the mechanism underlying root gravitropism, we isolated a rice (Xiushui63) mutant defective in root gravitropism, designated as gls1. Vertical sections of root caps revealed that gls1 mutant displayed normal distribution of amyloplast in the columella cells compared with the wild type. The gls1 mutant was less sensitive to 2,4-dichlorophenoxyacetic acid (2,4-D) and alpha-naphthaleneacetic acid (NAA) than the wild type. Genetic analysis indicated that the phenotype of gls1 mutant was caused by a single recessive mutation, which is mapped in a 255-kb region between RM16253 and CAPS1 on the short arm of chromosome 4.

  7. The role of calcium and calmodulin in the response of roots to gravity

    NASA Technical Reports Server (NTRS)

    Evans, Michael L.

    1992-01-01

    There is general agreement that, in roots, the primary detection of the gravitropic signal occurs in the columella cells of the cap and that this results in the generation of a signal that moves into the elongation zone causing the asymmetric growth that leads to downward curvature. Recent work has generated considerable evidence that indicates that auxin is the ultimate mediator of differential growth during root (and shoot) gravitropism. Our studies of the time course of curvature, auxin redistribution and/or adaptation, and electrical potential changes in maize roots have led to the following generalizations: (1) downward curvature begins 18 to 32 min following gravistimulation; (2) asymmetric auxin redistribution across the root cap begins at about the same time as curvature or perhaps slight earlier; (3) there is a lag of approx. 15 min in the response of roots to applied auxin; and (4) gravi-induced changes in intracellular potentials of cortical cells within the elongation zone occur within 30 s following stimulation.

  8. Root cytoskeleton: its role in perception of and response to gravity

    NASA Technical Reports Server (NTRS)

    Baluska, F.; Hasenstein, K. H.

    1997-01-01

    We have critically evaluated the possible functions of the plant cytoskeleton in root gravisensing and graviresponse and discussed the evidence that microtubules (MTs) and actin microfilaments (MFs) do not control differential cell growth during bending of roots. On the other hand, MF and MT networks are envisaged to participate in gravisensing because of the mechanical properties of the cytoskeletal structures that interconnect plant cell organelles with the plasma membrane. In restrained gravisensing, forces are suggested to be transmitted to membranes because large-scale gravity-dependent repositioning of organelles is effectively prevented due to the cytoskeleton-mediated anchorage of their envelopes at the plasma membrane. From the cytoskeletal point of view, we can also envisage an unrestrained gravity sensing when cytoskeletal tethers are not strong enough to preserve the tight control over distribution of organelles and the latter, if heavy enough, are allowed to sediment towards the physical bottom of cells. This situation obviously occurs in root cap statocytes because these uniquely organized cells are depleted of prominent actin MF bundles, endoplasmic MT arrays, and ER elements in their internal cytoplasm. Nevertheless, indirect evidence clearly indicates that sedimented root cap statoliths are enmeshed within fine but dynamic MF networks and that their behaviour is obviously under, at least partial, cytoskeletal control. The actomyosin-enriched domain among and around amyloplasts is proposed to increase the perception of gravity due to the grouping effect of sedimenting statoliths. Cytoskeletal links between myosin-rich statoliths, and cell peripheries well equipped with dense cortical MTs, membrane-associated cytoskeleton, as well as with ER elements, would allow efficient restrained gravisensing only at the statocyte cell cortex. As a consequence of cytoskeletal depletion in the internal statocyte cytoplasm and bulk sedimentation of large amyloplasts, restrained gravisensing is spatially restricted to the bottom of the statocyte irrespective of whether roots are vertical or horizontal. This spatial aspect allows for efficient gravisensing via amplification of gravity-induced impacts on the cellular architecture, a phenomenon which is unique to root cap statocytes.

  9. Inducing gravitropic curvature of primary roots of Zea mays cv Ageotropic

    NASA Technical Reports Server (NTRS)

    Moore, R.; Evans, M. L.; Fondren, W. M.

    1990-01-01

    Primary roots of the mutant 'Ageotropic' cultivar of Zea mays are nonresponsive to gravity. Their root caps secrete little or no mucilage and touch the root only at the extreme apex. A gap separates the cap and root at the periphery of the cap. Applying mucilage from normal roots or substances with a consistency similar to that of mucilage to tips of mutant roots causes these roots to become strongly graviresponsive. Gravicurvature stops when these substances are removed. Caps of some mutants secrete small amounts of mucilage and are graviresponsive. These results indicate that (a) the lack of graviresponsiveness in the mutant results from disrupting the transport pathway between the cap and root, (b) movement of the growth-modifying signal from the cap to the root occurs via an apoplastic pathway, and (c) mucilage is necessary for normal communication between the root cap and root in Zea mays cv Ageotropic.

  10. Organelle sedimentation in gravitropic roots of Limnobium is restricted to the elongation zone

    NASA Technical Reports Server (NTRS)

    Sack, F. D.; Kim, D.; Stein, B.

    1994-01-01

    Roots of the aquatic angiosperm Limnobium spongia (Bosc) Steud. were evaluated by light and electron microscopy to determine the distribution of organelle sedimentation towards gravity. Roots of Limnobium are strongly gravitropic. The rootcap consists of only two layers of cells. Although small amyloplasts are present in the central cap cells, no sedimentation of any organelle, including amyloplasts, was found. In contrast, both amyloplasts and nuclei sediment consistently and completely in cells of the elongation zone. Sedimentation occurs in one cell layer of the cortex just outside the endodermis. Sedimentation of both amyloplasts and nuclei begins in cells that are in their initial stages of elongation and persists at least to the level of the root where root hairs emerge. This is the first modern report of the presence of sedimentation away from, but not in, the rootcap. It shows that sedimentation in the rootcap is not necessary for gravitropic sensing in at least one angiosperm. If amyloplast sedimentation is responsible for gravitropic sensing, then the site of sensing in Limnobium roots is the elongation zone and not the rootcap. These data do not necessarily conflict with the hypothesis that sensing occurs in the cap in other roots, since Limnobium roots are exceptional in rootcap origin and structure, as well as in the distribution of organelle sedimentation. Similarly, if nuclear sedimentation is involved in gravitropic sensing, then nuclear mass would function in addition to, not instead of, that of amyloplasts.

  11. Pea Border Cell Maturation and Release Involve Complex Cell Wall Structural Dynamics1[OPEN

    PubMed Central

    2017-01-01

    The adhesion of plant cells is vital for support and protection of the plant body and is maintained by a variety of molecular associations between cell wall components. In some specialized cases, though, plant cells are programmed to detach, and root cap-derived border cells are examples of this. Border cells (in some species known as border-like cells) provide an expendable barrier between roots and the environment. Their maturation and release is an important but poorly characterized cell separation event. To gain a deeper insight into the complex cellular dynamics underlying this process, we undertook a systematic, detailed analysis of pea (Pisum sativum) root tip cell walls. Our study included immunocarbohydrate microarray profiling, monosaccharide composition determination, Fourier-transformed infrared microspectroscopy, quantitative reverse transcription-PCR of cell wall biosynthetic genes, analysis of hydrolytic activities, transmission electron microscopy, and immunolocalization of cell wall components. Using this integrated glycobiology approach, we identified multiple novel modes of cell wall structural and compositional rearrangement during root cap growth and the release of border cells. Our findings provide a new level of detail about border cell maturation and enable us to develop a model of the separation process. We propose that loss of adhesion by the dissolution of homogalacturonan in the middle lamellae is augmented by an active biophysical process of cell curvature driven by the polarized distribution of xyloglucan and extensin epitopes. PMID:28400496

  12. The dual effects of root-cap exudates on nematodes: from quiescence in plant-parasitic nematodes to frenzy in entomopathogenic nematodes.

    PubMed

    Hiltpold, Ivan; Jaffuel, Geoffrey; Turlings, Ted C J

    2015-02-01

    To defend themselves against herbivores and pathogens, plants produce numerous secondary metabolites, either constitutively or de novo in response to attacks. An intriguing constitutive example is the exudate produced by certain root-cap cells that can induce a state of reversible quiescence in plant-parasitic nematodes, thereby providing protection against these antagonists. The effect of such root exudates on beneficial entomopathogenic nematodes (EPNs) remains unclear, but could potentially impair their use in pest management programmes. We therefore tested how the exudates secreted by green pea (Pisum sativum) root caps affect four commercial EPN species. The exudates induced reversible quiescence in all EPN species tested. Quiescence levels varied with the green pea cultivars tested. Notably, after storage in root exudate, EPN performance traits were maintained over time, whereas performances of EPNs stored in water rapidly declined. In sharp contrast to high concentrations, lower concentrations of the exudate resulted in a significant increase in EPN activity and infectiousness, but still reduced the activity of two plant-parasitic nematode species. Our study suggests a finely tuned dual bioactivity of the exudate from green pea root caps. Appropriately formulated, it can favour long-term storage of EPNs and boost their infectiousness, while it may also be used to protect plants from plant-parasitic nematodes. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  13. Complex physiological and molecular processes underlying root gravitropism

    NASA Technical Reports Server (NTRS)

    Chen, Rujin; Guan, Changhui; Boonsirichai, Kanokporn; Masson, Patrick H.

    2002-01-01

    Gravitropism allows plant organs to guide their growth in relation to the gravity vector. For most roots, this response to gravity allows downward growth into soil where water and nutrients are available for plant growth and development. The primary site for gravity sensing in roots includes the root cap and appears to involve the sedimentation of amyloplasts within the columella cells. This process triggers a signal transduction pathway that promotes both an acidification of the wall around the columella cells, an alkalinization of the columella cytoplasm, and the development of a lateral polarity across the root cap that allows for the establishment of a lateral auxin gradient. This gradient is then transmitted to the elongation zones where it triggers a differential cellular elongation on opposite flanks of the central elongation zone, responsible for part of the gravitropic curvature. Recent findings also suggest the involvement of a secondary site/mechanism of gravity sensing for gravitropism in roots, and the possibility that the early phases of graviresponse, which involve differential elongation on opposite flanks of the distal elongation zone, might be independent of this auxin gradient. This review discusses our current understanding of the molecular and physiological mechanisms underlying these various phases of the gravitropic response in roots.

  14. Ethylene Upregulates Auxin Biosynthesis in Arabidopsis Seedlings to Enhance Inhibition of Root Cell Elongation[W

    PubMed Central

    Swarup, Ranjan; Perry, Paula; Hagenbeek, Dik; Van Der Straeten, Dominique; Beemster, Gerrit T.S.; Sandberg, Göran; Bhalerao, Rishikesh; Ljung, Karin; Bennett, Malcolm J.

    2007-01-01

    Ethylene represents an important regulatory signal for root development. Genetic studies in Arabidopsis thaliana have demonstrated that ethylene inhibition of root growth involves another hormone signal, auxin. This study investigated why auxin was required by ethylene to regulate root growth. We initially observed that ethylene positively controls auxin biosynthesis in the root apex. We subsequently demonstrated that ethylene-regulated root growth is dependent on (1) the transport of auxin from the root apex via the lateral root cap and (2) auxin responses occurring in multiple elongation zone tissues. Detailed growth studies revealed that the ability of the ethylene precursor 1-aminocyclopropane-1-carboxylic acid to inhibit root cell elongation was significantly enhanced in the presence of auxin. We conclude that by upregulating auxin biosynthesis, ethylene facilitates its ability to inhibit root cell expansion. PMID:17630275

  15. Pea Border Cell Maturation and Release Involve Complex Cell Wall Structural Dynamics.

    PubMed

    Mravec, Jozef; Guo, Xiaoyuan; Hansen, Aleksander Riise; Schückel, Julia; Kračun, Stjepan Krešimir; Mikkelsen, Maria Dalgaard; Mouille, Grégory; Johansen, Ida Elisabeth; Ulvskov, Peter; Domozych, David S; Willats, William George Tycho

    2017-06-01

    The adhesion of plant cells is vital for support and protection of the plant body and is maintained by a variety of molecular associations between cell wall components. In some specialized cases, though, plant cells are programmed to detach, and root cap-derived border cells are examples of this. Border cells (in some species known as border-like cells) provide an expendable barrier between roots and the environment. Their maturation and release is an important but poorly characterized cell separation event. To gain a deeper insight into the complex cellular dynamics underlying this process, we undertook a systematic, detailed analysis of pea ( Pisum sativum ) root tip cell walls. Our study included immunocarbohydrate microarray profiling, monosaccharide composition determination, Fourier-transformed infrared microspectroscopy, quantitative reverse transcription-PCR of cell wall biosynthetic genes, analysis of hydrolytic activities, transmission electron microscopy, and immunolocalization of cell wall components. Using this integrated glycobiology approach, we identified multiple novel modes of cell wall structural and compositional rearrangement during root cap growth and the release of border cells. Our findings provide a new level of detail about border cell maturation and enable us to develop a model of the separation process. We propose that loss of adhesion by the dissolution of homogalacturonan in the middle lamellae is augmented by an active biophysical process of cell curvature driven by the polarized distribution of xyloglucan and extensin epitopes. © 2017 American Society of Plant Biologists. All Rights Reserved.

  16. Lateral root initiation in Marsilea quadrifolia. I. Origin and histogensis of lateral roots

    NASA Technical Reports Server (NTRS)

    Lin, B. L.; Raghavan, V.

    1991-01-01

    In Marsilea quadrifolia, lateral roots arise from modified single cells of the endodermis located opposite the protoxylem poles within the meristematic region of the parent root. The initial cell divides in four specific planes to establish a five-celled lateral root primordium, with a tetrahedral apical cell in the centre and the oldest merophytes and the root cap along the sides. The cells of the merophyte divide in a precise pattern to give rise to the cells of the cortex, endodermis, pericycle, and vascular tissues of the emerging lateral root. Although the construction of the parent root is more complicated than that of lateral roots, patterns of cell division and tissue formation are similar in both types of roots, with the various tissues being arranged in similar positions in relation to the central axis. Vascular connection between the lateral root primordium and the parent root is derived from the pericycle cells lying between the former and the protoxylem members of the latter. It is proposed that the central axis of the root is not only a geometric centre, but also a physiological centre which determines the fate of the different cell types.

  17. Stimulation of root elongation and curvature by calcium

    NASA Technical Reports Server (NTRS)

    Takahashi, H.; Scott, T. K.; Suge, H.

    1992-01-01

    Ca2+ has been proposed to mediate inhibition of root elongation. However, exogenous Ca2+ at 10 or 20 millimolar, applied directly to the root cap, significantly stimulated root elongation in pea (Pisum sativum L.) and corn (Zea mays L.) seedlings. Furthermore, Ca2+ at 1 to 20 millimolar, applied unilaterally to the caps of Alaska pea roots, caused root curvature away from the Ca2+ source, which was caused by an acceleration of elongation growth on the convex side (Ca2+ side) of the roots. Roots of an agravitropic pea mutant, ageotropum, responded to a greater extent. Roots of Merit and Silver Queen corn also responded to Ca2+ in similar ways but required a higher Ca2+ concentration than that of pea roots. Roots of all other cultivars tested (additional four cultivars of pea and one of corn) curved away from the unilateral Ca2+ source as well. The Ca(2+)-stimulated curvature was substantially enhanced by light. A Ca2+ ionophore, A23187, at 20 micromolar or abscisic acid at 0.1 to 100 micromolar partially substituted for the light effect and enhanced the Ca(2+)-stimulated curvature in the dark. Unilateral application of Ca2+ to the elongation zone of intact roots or to the cut end of detipped roots caused either no curvature or very slight curvature toward the Ca2+. Thus, Ca2+ action on root elongation differs depending on its site of application. The stimulatory action of Ca2+ may involve an elevation of cytoplasmic Ca2+ in root cap cells and may partipate in root tropisms.

  18. The initiation of lateral roots in the primary roots of maize (Zea mays L.) implies a reactivation of cell proliferation in a group of founder pericycle cells.

    PubMed

    Alarcón, M Victoria; Lloret, Pedro G; Martín-Partido, Gervasio; Salguero, Julio

    2016-03-15

    The initiation of lateral roots (LRs) has generally been viewed as a reactivation of proliferative activity in pericycle cells that are committed to initiate primordia. However, it is also possible that pericycle founder cells that initiate LRs never cease proliferative activity but rather are displaced to the most distal root zones while undertaking successive stages of LR initiation. In this study, we tested these two alternative hypotheses by examining the incorporation of 5-bromo-2'-deoxyuridine (BrdU) into the DNA of meristematic root cells of Zea mays. According to the values for the length of the cell cycle and values for cell displacement along the maize root, our results strongly suggest that pericycle cells that initiate LR primordia ceased proliferative activity upon exiting the meristematic zone. This finding is supported by the existence of a root zone between 4 and 20mm from the root cap junction, in which neither mitotic cells nor labelled nuclei were observed in phloem pericycle cells. Copyright © 2016 Elsevier GmbH. All rights reserved.

  19. Transduction of the Root Gravitropic Stimulus: Can Apical Calcium Regulate Auxin Distribution?

    NASA Technical Reports Server (NTRS)

    Edwards, K. L.

    1985-01-01

    The hypothesis was tested that calcium, asymmetrically distributes in the root cap upon reorientation to gravity, affects auxin transport and thereby auxin distribution at the elongation zone. It is assumed that calcium exists in the root cap and is asymmetrically transported in root caps altered from a vertical to a horizontal position and that the meristem, the tissue immediately adjacent to the root cap and lying between the site of gravity perception and the site of gravity response, is essential for mediation of gravitropism. Tip calcium in root gravicurvature was implicated. The capstone evidence is that the root cap has the capacity to polarly translocate exogenous calcium downward when tissue is oriented horizontally, and that exogenous calcium, when supplied asymmetrically at the root tip, induces curvature and dictates the direction of curvature in both vertical and horizontal corn roots.

  20. Effects of rooting and tree growth of selected woodland species on cap integrity in a mineral capped landfill site.

    PubMed

    Hutchings, T R; Moffat, A J; Kemp, R A

    2001-06-01

    The above and below ground growth of three tree species (Alnus glutinosa, Pinus nigra var. maritima and Acer pseudoplatanus) was studied on a containment landfill site at Waterford, Hertfordshire, UK. Tree root architecture was studied using soil inspection pits excavated next to 12 trees of each species and mapped in detail. Tree height was related to soil thickness over the compacted mineral cap. No roots entered the cap where soil thickness was 1.3 m, but a few roots, especially of alder, were observed within it when the soil cover was 1.0 m or less. Micromorphological analysis of undisturbed samples of the mineral cap suggested that roots exploited weaknesses in the cap rather than actively causing penetration into it. Alder roots were more tolerant of anaerobic conditions within the cap than the other species examined. The results confirm that mineral caps should be covered by 1.5 m of soil or soil-forming material if tree establishment is intended over a restored landfill site, unless protected by other parts of a composite capping system.

  1. Root gravitropism in response to a signal originating outside of the cap

    NASA Technical Reports Server (NTRS)

    Wolverton, Chris; Mullen, Jack L.; Ishikawa, Hideo; Evans, Michael L.

    2002-01-01

    We have developed image analysis software linked to a rotating stage, allowing constraint of any user-selected region of a root at a prescribed angle during root gravitropism. This device allows the cap of a graviresponding root to reach vertical while maintaining a selected region within the elongation zone at a gravistimulated angle. Under these conditions gravitropic curvature of roots of Zea mays L. continues long after the root cap reaches vertical, indicating that a signal from outside of the cap can contribute to the curvature response.

  2. The possible involvement of root-cap mucilage in gravitropism and calcium movement across root tips of Allium cepa L

    NASA Technical Reports Server (NTRS)

    Moore, R.; Fondren, W. M.

    1986-01-01

    Roots of Allium cepa L. grown in aerated water elongate rapidly, but are not graviresponsive. These roots (1) possess extensive columella tissues comprised of cells containing numerous sedimented amyloplasts, (2) lack mucilage on their tips, and (3) are characterized by a weakly polar movement of calcium (Ca) across their tips. Placing roots in humid air correlates positively with the (1) onset of gravicurvature, (2) appearance of mucilage on tips of the roots, and (3) onset of the ability to transport Ca polarly to the lower side of the root tip. Gravicurvature of roots previously submerged in aerated water is more rapid when roots are oriented vertically for 1-2 h in humid air prior to being oriented horizontally. The more rapid gravicurvature of these roots correlates positively with the accumulation of mucilage at the tips of roots during the time the roots are oriented vertically. Therefore, the onset of gravicurvature and the ability of roots to transport Ca to the lower sides of their tips correlate positively with the presence of mucilage at their tips. These results suggest that mucilage may be important for the transport of Ca across root caps.

  3. The inhibitory effects of capillarisin on cell proliferation and invasion of prostate carcinoma cells.

    PubMed

    Tsui, Ke-Hung; Chang, Ying-Ling; Yang, Pei-Shan; Hou, Chen-Pang; Lin, Yu-Hsiang; Lin, Bing-Wei; Feng, Tsui-Hsia; Juang, Horng-Heng

    2018-04-01

    Capillarisin (Cap), an active component of Artemisia capillaris root extracts, is characterized by its anti-inflammatory, anti-oxidant and anti-cancer properties. Nevertheless, the functions of Cap in prostate cancer have not been fully explored. We evaluated the potential actions of Cap on the cell proliferation, migration and invasion of prostate carcinoma cells. Cell proliferation and cell cycle distribution were measured by water-soluble tetrazolium-1 and flow cytometry assays. The expression of cyclins, p21, p27, survivin, matrix metallopeptidase (MMP2 and MMP9) were assessed by immunoblotting assays. Effects of Cap on invasion and migration were determined by wound closure and matrigel transmigration assays. The constitutive and interlukin-6 (IL-6)-inducible STAT3 activation of prostate carcinoma cells were determined by immunoblotting and reporter assays. Capillarisin inhibited androgen-independent DU145 and androgen-dependent LNCaP cell growth through the induction of cell cycle arrest at the G0/G1 phase by upregulating p21 and p27 while downregulating expression of cyclin D1, cyclin A and cyclin B. Cap decreased protein expression of survivin, MMP-2, and MMP-9 and therefore blocked the migration and invasion of DU145 cells. Cap suppressed constitutive and IL-6-inducible STAT3 activation in DU145 and LNCaP cells. Our data indicate that Cap blocked cell growth by modulation of p21, p27 and cyclins. The inhibitory effects of Cap on survivin, MMP-2, MMP-9 and STAT3 activation may account for the suppression of invasion in prostate carcinoma cells. Our data suggest that Cap might be a therapeutic agent in treating advanced prostate cancer with constitutive STAT3 or IL-6-inducible STAT3 activation. © 2017 John Wiley & Sons Ltd.

  4. Ultrastructure of meristem and root cap of pea seedlings under spaceflight conditions

    NASA Technical Reports Server (NTRS)

    Sytnyk, K. M.; Kordyum, E. L.; Bilyavska, N. O.; Tarasenko, V. O.

    1983-01-01

    Data of electron microscopic analysis of meristem and root cap of pea seedlings grown aboard the Salyut-6 orbital research station in the Oazis apparatus and in the laboratory are presented. The main morphological and anatomical characteristics of the test and control plants are shown to be similar. At the same time, some differences are found in the structural and functional organization of the experimental cells as compared to the controls. They concern first of all the plastic apparatus, mitochondria and Golgi apparatus. It is assumed that cell function for certain periods of weightlessness on the whole ensures execution of the cytodifferentiation programs genetically determined on the Earth. Biochemical and physiological processes vary rather markedly due to lack of initially rigorous determination.

  5. Morphometric analysis of epidermal differentiation in primary roots of Zea mays

    NASA Technical Reports Server (NTRS)

    Moore, R.; Smith, H. S.

    1990-01-01

    Epidermal differentiation in primary roots of Zea mays was divided into six cell types based on cellular shape and cytoplasmic appearance. These six cell types are: 1) apical protoderm, located at the tip of the root pole and characterized by periclinally flattened cells; 2) cuboidal protoderm, located approximately 230 microns from the root pole and characterized by cuboidal cells; 3) tabular epidermis, located approximately 450 microns from the root pole and characterized by anticlinally flattened cells; 4) cuboidal epidermis, located approximately 900 microns from the root pole and characterized by cuboidal cells having numerous small vacuoles; 5) vacuolate cuboidal epidermis, located approximately 1,500 microns from the root pole and characterized by cuboidal cells containing several large vacuoles; and 6) columnar epidermis, located approximately 2,200 microns from the root pole (i.e., at the beginning of the zone of elongation) and characterized by elongated cells. We also used stereology to quantify the cellular changes associated with epidermal differentiation. The quiescent center and the apical protoderm have significantly different ultrastructures. The relative volume of dictyosomes increases dramatically during the early stages of epidermal differentiation. This increase correlates inversely with the amount of coverage provided by the root cap and mucilage.

  6. A role for the root cap in root branching revealed by the non-auxin probe naxillin.

    PubMed

    De Rybel, Bert; Audenaert, Dominique; Xuan, Wei; Overvoorde, Paul; Strader, Lucia C; Kepinski, Stefan; Hoye, Rebecca; Brisbois, Ronald; Parizot, Boris; Vanneste, Steffen; Liu, Xing; Gilday, Alison; Graham, Ian A; Nguyen, Long; Jansen, Leentje; Njo, Maria Fransiska; Inzé, Dirk; Bartel, Bonnie; Beeckman, Tom

    2012-09-01

    The acquisition of water and nutrients by plant roots is a fundamental aspect of agriculture and strongly depends on root architecture. Root branching and expansion of the root system is achieved through the development of lateral roots and is to a large extent controlled by the plant hormone auxin. However, the pleiotropic effects of auxin or auxin-like molecules on root systems complicate the study of lateral root development. Here we describe a small-molecule screen in Arabidopsis thaliana that identified naxillin as what is to our knowledge the first non-auxin-like molecule that promotes root branching. By using naxillin as a chemical tool, we identified a new function for root cap-specific conversion of the auxin precursor indole-3-butyric acid into the active auxin indole-3-acetic acid and uncovered the involvement of the root cap in root branching. Delivery of an auxin precursor in peripheral tissues such as the root cap might represent an important mechanism shaping root architecture.

  7. A role for the root cap in root branching revealed by the non-auxin probe naxillin

    PubMed Central

    De Rybel, Bert; Audenaert, Dominique; Xuan, Wei; Overvoorde, Paul; Strader, Lucia C; Kepinski, Stefan; Hoye, Rebecca; Brisbois, Ronald; Parizot, Boris; Vanneste, Steffen; Liu, Xing; Gilday, Alison; Graham, Ian A; Nguyen, Long; Jansen, Leentje; Njo, Maria Fransiska; Inzé, Dirk; Bartel, Bonnie; Beeckman, Tom

    2013-01-01

    The acquisition of water and nutrients by plant roots is a fundamental aspect of agriculture and strongly depends on root architecture. Root branching and expansion of the root system is achieved through the development of lateral roots and is to a large extent controlled by the plant hormone auxin. However, the pleiotropic effects of auxin or auxin-like molecules on root systems complicate the study of lateral root development. Here we describe a small-molecule screen in Arabidopsis thaliana that identified naxillin as what is to our knowledge the first non-auxin-like molecule that promotes root branching. By using naxillin as a chemical tool, we identified a new function for root cap-specific conversion of the auxin precursor indole-3-butyric acid into the active auxin indole-3-acetic acid and uncovered the involvement of the root cap in root branching. Delivery of an auxin precursor in peripheral tissues such as the root cap might represent an important mechanism shaping root architecture. PMID:22885787

  8. Analysis of AtGUS1 and AtGUS2 in Arabidopsis root apex by a highly sensitive TSA-MISH method.

    PubMed

    Bruno, Leonardo; Ronchini, Matteo; Gagliardi, Olimpia; Corinti, Tamara; Chiappetta, Adriana; Gerola, Paolo; Bitonti, Maria B

    2015-01-01

    A new highly sensitive whole-mount in situ hybridization method, based on tyramide signal amplification (TSA-MISH) was developed and a combined GFP detection and TSA-MISH procedure was applied for the first time in plants, to precisely define the spatial pattern of AtGUS1 and AtGUS2 expression in the root apex. β-glucuronidases (GUSs) belonging to the glycosyl hydrolases (GHs) 79 family, are widely distributed in plants, but their functional role has not yet been fully investigated. In the model system Arabidopsis Thaliana, three different AtGUS genes have been identified which encode proteins with putative different fates. Endogenous GUS expression has been detected in different organs and tissues, but the cyto-histological domains of gene expression remain unclear. The results here reported show co-expression of AtGUS1 and AtGUS2 in different functional zones of the root apex (the cap central zone, the root cap meristem, the staminal cell niche and the cortical cell layers of the proximal meristem), while AtGUS2 is exclusively expressed in the cap peripheral layer and in the epidermis in the elongation zone. Interestingly, both genes are not expressed in the stelar portion of the proximal meristem. A spatial (cortex vs. stele) and temporal (proximal meristem vs. transition zone) regulation of AtGUS1 and AtGUS2 expression is therefore active in the root apex. This expression pattern, although globally consistent with the involvement of GUS activity in both cell proliferation and elongation, clearly indicates that AtGUS1 and AtGUS2 could control distinct downstream process depending on the developmental context and the interaction with other players of root growth control. In the future, the newly developed approaches may well be very useful to dissect such interactions.

  9. Genetic Analysis of Gravity Signal Transduction in Arabidopsis thaliana Seedlings

    NASA Astrophysics Data System (ADS)

    Boonsirichai, K.; Harrison, B.; Stanga, J.; Young, L.-S.; Neal, C.; Sabat, G.; Murthy, N.; Harms, A.; Sedbrook, J.; Masson, P.

    The primary roots of Arabidopsis thaliana seedlings respond to gravity stimulation by developing a tip curvature that results from differential cellular elongation on opposite flanks of the elongation zone. This curvature appears modulated by a lateral gradient of auxin that originates in the gravity-perceiving cells (statocytes) of the root cap through an apparent lateral repositioning of a component the auxin efflux carrier complex within these cells (Friml et al, 2002, Nature 415: 806-809). Unfortunately, little is known about the molecular mechanisms that govern early phases of gravity perception and signal transduction within the root-cap statocytes. We have used a molecular genetic approach to uncover some of these mechanisms. Mutations in the Arabidopsis ARG1 and ARL2 genes, which encode J-domain proteins, resulted in specific alterations in root and hypocotyl gravitropism, without pleiotropic phenotypes. Interestingly, ARG1 and ARL2 appear to function in the same genetic pathway. A combination of molecular genetic, biochemical and cell-biological approaches were used to demonstrate that ARG1 functions in early phases of gravity signal transduction within the root and hypocotyl statocytes, and is needed for efficient lateral auxin transport within the cap. The ARG1 protein is associated with components of the secretory and/or endosomal pathways, suggesting its role in the recycling of components of the auxin efflux carrier complex between plasma membrane and endosome (Boonsirichai et al, 2003, Plant Cell 15:2612-2625). Genetic modifiers of arg1-2 were isolated and shown to enhance the gravitropic defect of arg1-2, while resulting in little or no gravitropic defects in a wild type ARG1 background. A slight tendency for arg1-2;mar1-1 and arg1-2;mar2-1 double-mutant organs to display an opposite gravitropic response compared to wild type suggests that all three genes contribute to the interpretation of the gravity-vector information by seedling organs. The molecular structure of these new loci is being investigated. Furthermore, a proteomic approach is being developed to characterize root-tip proteins that are differentially expressed, modified or targeted in response to gravity stimulation. We acknowledge funding by NASA and NSF.

  10. Effects of light on protein patterns in gravitropically stimulated root caps of corn

    NASA Technical Reports Server (NTRS)

    Feldman, L. J.; Gildow, V.

    1984-01-01

    In certain cultivars of corn (Zea mays var. Merit), light stimulates gravitropic bending of the root by influencing events in the root cap. In this paper, we report on changes in root cap proteins which occur as a result of the light treatment and single out specific proteins as potentially having a role in mediating the gravitropic response. For this work, we have used root caps maintained aseptically in culture media supplemented with auxin. If auxin is deleted from the culture medium, the protein profiles observed following illumination differ from that seen in caps provided light while in auxin-supplemented media. We also report that several of the proteins for which synthesis is stimulated by light appear to turn over rapidly, usually within 0.5 hour of formation.

  11. Root hydrotropism is controlled via a cortex-specific growth mechanism.

    PubMed

    Dietrich, Daniela; Pang, Lei; Kobayashi, Akie; Fozard, John A; Boudolf, Véronique; Bhosale, Rahul; Antoni, Regina; Nguyen, Tuan; Hiratsuka, Sotaro; Fujii, Nobuharu; Miyazawa, Yutaka; Bae, Tae-Woong; Wells, Darren M; Owen, Markus R; Band, Leah R; Dyson, Rosemary J; Jensen, Oliver E; King, John R; Tracy, Saoirse R; Sturrock, Craig J; Mooney, Sacha J; Roberts, Jeremy A; Bhalerao, Rishikesh P; Dinneny, José R; Rodriguez, Pedro L; Nagatani, Akira; Hosokawa, Yoichiroh; Baskin, Tobias I; Pridmore, Tony P; De Veylder, Lieven; Takahashi, Hideyuki; Bennett, Malcolm J

    2017-05-08

    Plants can acclimate by using tropisms to link the direction of growth to environmental conditions. Hydrotropism allows roots to forage for water, a process known to depend on abscisic acid (ABA) but whose molecular and cellular basis remains unclear. Here we show that hydrotropism still occurs in roots after laser ablation removed the meristem and root cap. Additionally, targeted expression studies reveal that hydrotropism depends on the ABA signalling kinase SnRK2.2 and the hydrotropism-specific MIZ1, both acting specifically in elongation zone cortical cells. Conversely, hydrotropism, but not gravitropism, is inhibited by preventing differential cell-length increases in the cortex, but not in other cell types. We conclude that root tropic responses to gravity and water are driven by distinct tissue-based mechanisms. In addition, unlike its role in root gravitropism, the elongation zone performs a dual function during a hydrotropic response, both sensing a water potential gradient and subsequently undergoing differential growth.

  12. The cyclic nucleotide gated cation channel AtCNGC10 traffics from the ER via Golgi vesicles to the plasma membrane of Arabidopsis root and leaf cells.

    PubMed

    Christopher, David A; Borsics, Tamas; Yuen, Christen Y L; Ullmer, Wendy; Andème-Ondzighi, Christine; Andres, Marilou A; Kang, Byung-Ho; Staehelin, L Andrew

    2007-09-19

    The cyclic nucleotide-gated ion channels (CNGCs) maintain cation homeostasis essential for a wide range of physiological processes in plant cells. However, the precise subcellular locations and trafficking of these membrane proteins are poorly understood. This is further complicated by a general deficiency of information about targeting pathways of membrane proteins in plants. To investigate CNGC trafficking and localization, we have measured Atcngc5 and Atcngc10 expression in roots and leaves, analyzed AtCNGC10-GFP fusions transiently expressed in protoplasts, and conducted immunofluorescence labeling of protoplasts and immunoelectron microscopic analysis of high pressure frozen leaves and roots. AtCNGC10 mRNA and protein levels were 2.5-fold higher in roots than leaves, while AtCNGC5 mRNA and protein levels were nearly equal in these tissues. The AtCNGC10-EGFP fusion was targeted to the plasma membrane in leaf protoplasts, and lightly labeled several intracellular structures. Immunofluorescence microscopy with affinity purified CNGC-specific antisera indicated that AtCNGC5 and AtCNGC10 are present in the plasma membrane of protoplasts. Immunoelectron microscopy demonstrated that AtCNGC10 was associated with the plasma membrane of mesophyll, palisade parenchyma and epidermal cells of leaves, and the meristem, columella and cap cells of roots. AtCNCG10 was also observed in the endoplasmic reticulum and Golgi cisternae and vesicles of 50-150 nm in size. Patch clamp assays of an AtCNGC10-GFP fusion expressed in HEK293 cells measured significant cation currents. AtCNGC5 and AtCNGC10 are plasma membrane proteins. We postulate that AtCNGC10 traffics from the endoplasmic reticulum via the Golgi apparatus and associated vesicles to the plasma membrane. The presence of the cation channel, AtCNGC10, in root cap meristem cells, cell plate, and gravity-sensing columella cells, combined with the previously reported antisense phenotypes of decreased gravitropic and cell enlargement responses, suggest roles of AtCNGC10 in modulating cation balance required for root gravitropism, cell division and growth.

  13. Genetical approach to gravitropism

    NASA Astrophysics Data System (ADS)

    Boonsirichai, K.; Chen, R.; Guan, C.; Rosen, E.; Young, L.; Masson, P.

    Gravitropism guides the growth of plant organs at a defined angle from the gravity vector. Accordingly, most roots grow downward, undergoing positive gravitropism. Gravity perception by roots appears to involve the sedimentation of amyloplasts within the columella cells of the cap. Amyloplast sedimentation triggers a signal transduction pathway that promotes the development of an auxin gradient across the root tip. This gradient is then transmitted to the elongation zones where it promotes a differential cellular elongation, partly responsible for the development of a root-tip curvature. To better understand the mechanisms involved in gravity signal transduction, we have identified and characterized several Arabidopsis thaliana mutants that show specific defects in root gravitropism. Several of these genes were characterized. ARG1 functions in gravity signal transduction, and encodes a dnaJ-like protein whose structure suggests an interaction with the cytoskeleton. Two other genes encode similar proteins (ARL1 and ARL2) in Arabidopsis. One of them (ARL2) also appears to function in gravity signal transduction. Because loss-of-function mutations in ARG1 result in partial alterations of gravitropism, we were able to identify and characterize two genetic enhancers of arg1-2: mar1-1 and mar2-1. These enhancers increased the gravitropism defect of arg1-2 roots and hypocotyls, and changed its orientation. Hence, MAR1 and MAR2 also appear to function in gravity signal transduction. AGR1, on the other hand, encodes a transmembrane component of the auxin efflux carrier complex involved in polar auxin transport through the elongation zones of Arabidopsis root tips. It belongs to a large gene family, several members of which are expressed in the root cap. Upon gravistimulation, the AGR3 protein appears to quickly relocate within the columella cells, accumulating in membranes at the new physical bottom. Hence, the gravity signal transduction pathway that includes the ARG1, ARL2, MAR1 and MAR2 gene products, appears to control the cellular distribution of auxin efflux carriers in the columella cells of the root cap, thereby controlling the polarity of lateral auxin transport in response to gravistimulation. Work is in progress to identify new proteins that interact genetically or physically with ARG1, ARL2 or AGR1, and characterize their involvement in gravitropism.

  14. Effects of cations on hormone transport in primary roots of Zea mays

    NASA Technical Reports Server (NTRS)

    Hasenstein, K. H.; Evans, M. L.

    1988-01-01

    We examined the influence of aluminum and calcium (and certain other cations) on hormone transport in corn roots. When aluminum was applied unilaterally to the caps of 15 mm apical root sections the roots curved strongly away from the aluminum. When aluminum was applied unilaterally to the cap and 3H-indole-3-acetic acid was applied to the basal cut surface twice as much radioactivity (assumed to be IAA) accumulated on the concave side of the curved root as on the convex side. Auxin transport in the apical region of intact roots was preferentially basipetal, with a polarity (basipetal transport divided by acropetal transport) of 6.3. In decapped 5 mm apical root segments, auxin transport was acropetally polar (polarity = 0.63). Application of aluminum to the root cap strongly promoted acropetal transport of auxin reducing polarity from 6.3 to 2.1. Application of calcium to the root cap enhanced basipetal movement of auxin, increasing polarity from 6.3 to 7.6. Application of the calcium chelator, ethylene-glycol-bis-(beta-aminoethylether)-N,N,N',N'-tetraacetic acid, greatly decreased basipetal auxin movement, reducing polarity from 6.3 to 3.7. Transport of label after application of tritiated abscisic acid showed no polarity and was not affected by calcium or aluminum. The results indicate that the root cap is particularly important in maintaining basipetal polarity of auxin transport in primary roots of corn. The induction of root curvature by unilateral application of aluminum or calcium to root caps is likely to result from localized effects of these ions on auxin transport. The findings are discussed relative to the possible role of calcium redistribution in the gravitropic curvature of roots and the possibility of calmodulin involvement in the action of calcium and aluminum on auxin transport.

  15. Light-regulated protein and mRNA synthesis in root caps of maize

    NASA Technical Reports Server (NTRS)

    Feldman, L. J.; Piechulla, B.; Sun, P. S.

    1988-01-01

    Illumination of maize roots initiates changes in mRNA levels and in the activities of proteins within the root cap. Using Northern analysis we showed a 5-6 fold increase in the levels of three specific mRNAs and a 14-fold increase in plastid mRNA. This increase is rapid, occurring within 30 minutes of illumination. With prolonged periods of darkness following illumination, messages return to levels observed in dark, control caps. For two species of mRNA illumination results in a reduction in message levels. Light-stimulated increases in the levels of specific mRNAs are proportionally greater than are increases in the activities of corresponding proteins. We suggest that the light-stimulated increase in protein activity in root caps may be preceded by and occur as a consequence of enhanced levels of mRNA. Our work suggests that photomorphogenesis in roots could involve changes in the levels of a wide variety of mRNAs within the root cap.

  16. Trichoderma-Induced Acidification Is an Early Trigger for Changes in Arabidopsis Root Growth and Determines Fungal Phytostimulation

    PubMed Central

    Pelagio-Flores, Ramón; Esparza-Reynoso, Saraí; Garnica-Vergara, Amira; López-Bucio, José; Herrera-Estrella, Alfredo

    2017-01-01

    Trichoderma spp. are common rhizosphere inhabitants widely used as biological control agents and their role as plant growth promoting fungi has been established. Although soil pH influences several fungal and plant functional traits such as growth and nutrition, little is known about its influence in rhizospheric or mutualistic interactions. The role of pH in the Trichoderma–Arabidopsis interaction was studied by determining primary root growth and lateral root formation, root meristem status and cell viability, quiescent center (QC) integrity, and auxin inducible gene expression. Primary root growth phenotypes in wild type seedlings and STOP1 mutants allowed identification of a putative root pH sensing pathway likely operating in plant–fungus recognition. Acidification by Trichoderma induced auxin redistribution within Arabidopsis columella root cap cells, causing root tip bending and growth inhibition. Root growth stoppage correlated with decreased cell division and with the loss of QC integrity and cell viability, which were reversed by buffering the medium. In addition, stop1, an Arabidopsis mutant sensitive to low pH, was oversensitive to T. atroviride primary root growth repression, providing genetic evidence that a pH root sensing mechanism reprograms root architecture during the interaction. Our results indicate that root sensing of pH mediates the interaction of Trichoderma with plants. PMID:28567051

  17. Changes in extracellular calcium activity during gravity sensing in maize roots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bjoerkman, T.; Cleland, R.E.

    1990-05-01

    A redistribution of calcium downward across the root cap has been proposed as an essential part of gravitropism in roots. Exogenous {sup 45}Ca moves preferentially downward across gravistimulated maize root tips. However, because of the many calcium-binding sites in the apoplast, this might not result in a physiologically effect change in the apoplasmic calcium activity. To test whether there is such a change, we measured the effect of gravistimulation on the calcium activity with calcium-specific microelectrodes. Decapped maize roots (Zea mays L. cv. Golden Cross Bantam) were grown for 31 h to regenerate gravitropic sensitivity, but not root caps. Themore » calcium activity in the apoplasm surrounding the gravity-sensing cells could then be measured. The initial pCa was 2.60 {plus minus} 0.28 (approx 2.5 mM). The calcium activity on the upper side of the root tip remained constant for about five minutes after gravistimulation, then decreased by about one half. On the lower side, after a similar lag the calcium activity doubled. Control roots, which were decapped but measured before recovering gravisensitivity (19 h), showed no change in calcium activity. We have found a distinct and rapid differential in the apoplasmic calcium activity between the upper and lower sides of gravistimulated maize root tips.« less

  18. Biological effects of weightlessness and clinostatic conditions registered in cells of root meristem and cap of higher plants

    NASA Astrophysics Data System (ADS)

    Sytnik, K. M.; Kordyum, E. L.; Belyavskaya, N. A.; Nedukha, E. M.; Tarasenko, V. A.

    Research in cellular reproduction, differentiation and vital activity, i.e. processes underlying the development and functioning of organisms, plants included, is essential for solving fundamental and applied problems of space biology. Detailed anatomical analysis of roots of higher plants grown on board the Salyut 6 orbital research station show that under conditions of weightlessness for defined duration mitosis, cytokinesis and tissue differentiation in plant vegetative organs occur essentially normally. At the same time, certain rearrangements in the structural organization of cellular organelles - mainly the plastid apparatus, mitochondria, Golgi apparatus and nucleus - are established in the root meristem and cap of the experimental plants. This is evidence for considerable changes in cellular metabolism. The structural changes in the subcellular level arising under spaceflight conditions are partially absent in clinostat experiments designed to simulate weightlessness. Various clinostatic conditions have different influences on the cell structural and functional organization than does space flight. It is suggested that alterations of cellular metabolism under weightlessness and clinostatic conditions occur within existing genetic programs.

  19. Correlations between gravitropic curvature and auxin movement across gravistimulated roots of Zea mays

    NASA Technical Reports Server (NTRS)

    Young, L. M.; Evans, M. L.; Hertel, R.

    1990-01-01

    We compared the kinetics of auxin redistribution across the caps of primary roots of 2-day-old maize (Zea mays, cv Merit) seedlings with the time course of gravitropic curvature. [3H] indoleacetic acid was applied to one side of the cap in an agar donor and radioactivity moving across the cap was collected in an agar receiver applied to the opposite side. Upon gravistimulation the roots first curved upward slightly, then returned to the horizontal and began curving downward, reaching a final angle of about 67 degrees. Movement of label across the caps of gravistimulated roots was asymmetric with preferential downward movement (ratio downward/upward = ca. 1.6, radioactivity collected during the 90 min following beginning of gravistimulation). There was a close correlation between the development of asymmetric auxin movement across the root cap and the rate of curvature, with both values increasing to a maximum and then declining as the roots approached the final angle of curvature. In roots preadapted to gravity (alternate brief stimulation on opposite flanks over a period of 1 hour) the initial phase of upward curvature was eliminated and downward bending began earlier than for controls. The correlation between asymmetric auxin movement and the kinetics of curvature also held in comparisons between control and preadapted roots. Both downward auxin transport asymmetry and downward curvature occurred earlier in preadapted roots than in controls. These findings are consistent with suggestions that the root cap is not only the site of perception but also the location of the initial redistribution of effectors that ultimately leads to curvature.

  20. Comparative Developmental Anatomy of the Root in Three Species of Cladopus (Podostemaceae)

    PubMed Central

    KOI, SATOSHI; KATO, MASAHIRO

    2003-01-01

    Root meristem structure and root branching in three species of Cladopus were investigated from developmental and anatomical perspectives. Cladopus fukiensis has a compressed bell‐shaped meristem at the apex of a compressed subcylindrical root, while C. javanicus and perhaps C. nymanii, with a ribbon‐like root, have a half lozenge‐shaped (⊂ as seen from above) meristem composed of an apical meristem of cubic cells and a marginal meristem of rectangular cells. The dorsiventrality of the meristem results in root dorsiventrality, and a marginal meristem contributes to the broadening of the root. Comparisons of meristem structure and root morphology suggest that the ribbon‐like root of, e.g. C. javanicus, evolved towards the foliose root of Hydrobryum, sister to the genus Cladopus, by loss of an indeterminate apical meristem. The lateral root of C. javanicus initiates within the meristem of a parent root. The dorsal dermal layer and inner cells of the lateral‐root meristem appear endogenously under the dermal layer of the parent root, while the ventral layer is derived exogenously from a ventral dermal layer continuous with the parent‐root meristem. This mosaic pattern of exogenous and endogenous root formation differs from the truly exogenous formation seen in Hydrobryum and Zeylanidium. The dorsiventral mosaic origin of the root meristem may account for root cap asymmetry. PMID:12770848

  1. Microgravity mediated changes in phytoferritin accumulation in soybean root cap cells

    NASA Technical Reports Server (NTRS)

    Klymchuk, D. O.; Kordyum, E. L.; Vorobyova, T. V.; Brown, C. S.; Chapman, D. K.

    2000-01-01

    Phytoferritin is an iron-protein complex analogous to the ferritin found in mammalian, bacteria and fungi cells. Phytoferritin molecules are large proteins, about 10.5 nm in diameter, visualised in an electron microscope as discrete, electron dense particles with iron-containing core, where several thousand atoms of iron lie within the proteinaceous shell (apoferritin). In higher plants, a plastid stroma is the site of phytoferritin storage. Phytoferritin is seen in all types of plastids. It is considered to be a mechanism used by cells to store iron in a non-toxic form. Phytoferritin-bound iron may subsequently be used to form iron-containing components. It was shown that low levels of phytoferritin are synthesised in normal green leaves, whereas chlorotic leaves do not have a measurable amount of phytoferritin and leaves of iron-loaded seedlings contain a high level of total iron, and phytoferritin well-filled by iron. Phytoferritin accumulation was observed in photosynthetic inactivity chloroplasts during senescence and disease. In this study we analised the effects of microgravity and ethylene on production of phytoferritin in the root cap columella cells of soybean seedlings.

  2. Abscisic acid, xanthoxin and violaxanthin in the caps of gravistimulated maize roots

    NASA Technical Reports Server (NTRS)

    Feldman, L. J.; Arroyave, N. J.; Sun, P. S.

    1985-01-01

    The occurrence and distribution of abscisic acid (ABA), xanthoxin (Xa) and the carotenoid violaxanthin (Va) were investigated in root tips of maize (Zea mays L. cv. Merit). In roots grown in the dark, Va and ABA were present in relatively high amounts in the root cap and in low amounts in the adjacent terminal 1.5 mm of the root. Xanthoxin was present in equal concentrations in both regions. In roots exposed to light, the ABA distribution was reversed, with relatively low levels in the root cap and high levels in the adjacent 1.5-mm segment. Light also caused a decrease in Va in both regions of the root and an increase in Xa, especially in the cap. In the maize cultivar used for this work, light is necessary for gravitropic curving. This response occurs within the same time frame as the light-induced ABA redistribution as well as the changes in the levels of Va and Xa. These data are consistent with a role for ABA in root gravitropism and support the proposal that Xa may arise from the turnover of Va.

  3. Transient Proliferation of Proanthocyanidin-Accumulating Cells on the Epidermal Apex Contributes to Highly Aluminum-Resistant Root Elongation in Camphor Tree1[W

    PubMed Central

    Osawa, Hiroki; Endo, Izuki; Hara, Yukari; Matsushima, Yuki; Tange, Takeshi

    2011-01-01

    Aluminum (Al) is a harmful element that rapidly inhibits the elongation of plant roots in acidic soils. The release of organic anions explains Al resistance in annual crops, but the mechanisms that are responsible for superior Al resistance in some woody plants remain unclear. We examined cell properties at the surface layer of the root apex in the camphor tree (Cinnamomum camphora) to understand its high Al resistance mechanism. Exposure to 500 μm Al for 8 d, more than 20-fold higher concentration and longer duration than what soybean (Glycine max) can tolerate, only reduced root elongation in the camphor tree to 64% of the control despite the slight induction of citrate release. In addition, Al content in the root apices was maintained at low levels. Histochemical profiling revealed that proanthocyanidin (PA)-accumulating cells were present at the adjacent outer layer of epidermis cells at the root apex, having distinctive zones for cell division and the early phase of cell expansion. Then the PA cells were gradually detached off the root, leaving thin debris behind, and the root surface was replaced with the elongating epidermis cells at the 3- to 4-mm region behind the tip. Al did not affect the proliferation of PA cells or epidermis cells, except for the delay in the start of expansion and the accelerated detachment of the former. In soybean roots, the innermost lateral root cap cells were absent in both PA accumulation and active cell division and failed to protect the epidermal cell expansion at 25 μm Al. These results suggest that transient proliferation and detachment of PA cells may facilitate the expansion of epidermis cells away from Al during root elongation in camphor tree. PMID:21045123

  4. Transient proliferation of proanthocyanidin-accumulating cells on the epidermal apex contributes to highly aluminum-resistant root elongation in camphor tree.

    PubMed

    Osawa, Hiroki; Endo, Izuki; Hara, Yukari; Matsushima, Yuki; Tange, Takeshi

    2011-01-01

    Aluminum (Al) is a harmful element that rapidly inhibits the elongation of plant roots in acidic soils. The release of organic anions explains Al resistance in annual crops, but the mechanisms that are responsible for superior Al resistance in some woody plants remain unclear. We examined cell properties at the surface layer of the root apex in the camphor tree (Cinnamomum camphora) to understand its high Al resistance mechanism. Exposure to 500 μm Al for 8 d, more than 20-fold higher concentration and longer duration than what soybean (Glycine max) can tolerate, only reduced root elongation in the camphor tree to 64% of the control despite the slight induction of citrate release. In addition, Al content in the root apices was maintained at low levels. Histochemical profiling revealed that proanthocyanidin (PA)-accumulating cells were present at the adjacent outer layer of epidermis cells at the root apex, having distinctive zones for cell division and the early phase of cell expansion. Then the PA cells were gradually detached off the root, leaving thin debris behind, and the root surface was replaced with the elongating epidermis cells at the 3- to 4-mm region behind the tip. Al did not affect the proliferation of PA cells or epidermis cells, except for the delay in the start of expansion and the accelerated detachment of the former. In soybean roots, the innermost lateral root cap cells were absent in both PA accumulation and active cell division and failed to protect the epidermal cell expansion at 25 μm Al. These results suggest that transient proliferation and detachment of PA cells may facilitate the expansion of epidermis cells away from Al during root elongation in camphor tree.

  5. Molecular Mechanisms of Root Gravitropism.

    PubMed

    Su, Shih-Heng; Gibbs, Nicole M; Jancewicz, Amy L; Masson, Patrick H

    2017-09-11

    Plant shoots typically grow against the gravity vector to access light, whereas roots grow downward into the soil to take up water and nutrients. These gravitropic responses can be altered by developmental and environmental cues. In this review, we discuss the molecular mechanisms that govern the gravitropism of angiosperm roots, where a physical separation between sites for gravity sensing and curvature response has facilitated discovery. Gravity sensing takes place in the columella cells of the root cap, where sedimentation of starch-filled plastids (amyloplasts) triggers a pathway that results in a relocalization to the lower side of the cell of PIN proteins, which facilitate efflux of the plant hormone auxin efflux. Consequently, auxin accumulates in the lower half of the root, triggering bending of the root tip at the elongation zone. We review our understanding of the molecular mechanisms that control this process in primary roots, and discuss recent insights into the regulation of oblique growth in lateral roots and its impact on root-system architecture and soil exploration. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Protein and carotenoid synthesis and turnover in gravistimulated root caps

    NASA Technical Reports Server (NTRS)

    Feldman, L. J.

    1984-01-01

    In certain cultivars of corn gravitropic bending occurs only after the root cap, the site of gravity perception, is exposed to light. Light appears to trigger or to remove some block in the gravity translation process. Using light sensitive cultivars of corn, it was shown that light affects various processes in the cap. The roles of these light-induced processes in gravitropic bending in roots were studied.

  7. The simulation model of growth and cell divisions for the root apex with an apical cell in application to Azolla pinnata.

    PubMed

    Piekarska-Stachowiak, Anna; Nakielski, Jerzy

    2013-12-01

    In contrast to seed plants, the roots of most ferns have a single apical cell which is the ultimate source of all cells in the root. The apical cell has a tetrahedral shape and divides asymmetrically. The root cap derives from the distal division face, while merophytes derived from three proximal division faces contribute to the root proper. The merophytes are produced sequentially forming three sectors along a helix around the root axis. During development, they divide and differentiate in a predictable pattern. Such growth causes cell pattern of the root apex to be remarkably regular and self-perpetuating. The nature of this regularity remains unknown. This paper shows the 2D simulation model for growth of the root apex with the apical cell in application to Azolla pinnata. The field of growth rates of the organ, prescribed by the model, is of a tensor type (symplastic growth) and cells divide taking principal growth directions into account. The simulations show how the cell pattern in a longitudinal section of the apex develops in time. The virtual root apex grows realistically and its cell pattern is similar to that observed in anatomical sections. The simulations indicate that the cell pattern regularity results from cell divisions which are oriented with respect to principal growth directions. Such divisions are essential for maintenance of peri-anticlinal arrangement of cell walls and coordinated growth of merophytes during the development. The highly specific division program that takes place in merophytes prior to differentiation seems to be regulated at the cellular level.

  8. Ammonium Inhibits Primary Root Growth by Reducing the Length of Meristem and Elongation Zone and Decreasing Elemental Expansion Rate in the Root Apex in Arabidopsis thaliana

    PubMed Central

    Gao, Kun; Chen, Fanjun; Yuan, Lixing; Mi, Guohua

    2013-01-01

    The inhibitory effect of ammonium on primary root growth has been well documented; however the underlying physiological and molecular mechanisms are still controversial. To avoid ammonium toxicity to shoot growth, we used a vertical two-layer split plate system, in which the upper layer contained nitrate and the lower layer contained ammonium. In this way, nitrogen status was maintained and only the apical part of the root system was exposed to ammonium. Using a kinematic approach, we show here that 1 mM ammonium reduces primary root growth, decreasing both elemental expansion and cell production. Ammonium inhibits the length of elongation zone and the maximum elemental expansion rate. Ammonium also decreases the apparent length of the meristem as well as the number of dividing cells without affecting cell division rate. Moreover, ammonium reduces the number of root cap cells but appears to affect neither the status of root stem cell niche nor the distal auxin maximum at the quiescent center. Ammonium also inhibits root gravitropism and concomitantly down-regulates the expression of two pivotal auxin transporters, AUX1 and PIN2. Insofar as ammonium inhibits root growth rate in AUX1 and PIN2 loss-of-function mutants almost as strongly as in wild type, we conclude that ammonium inhibits root growth and gravitropism by largely distinct pathways. PMID:23577185

  9. Auxin Deprivation Induces Synchronous Golgi Differentiation in Suspension-Cultured Tobacco BY-2 Cells1

    PubMed Central

    Winicur, Zev M.; Feng Zhang, Guo; Andrew Staehelin, L.

    1998-01-01

    To date, the lack of a method for inducing plant cells and their Golgi stacks to differentiate in a synchronous manner has made it difficult to characterize the nature and extent of Golgi retailoring in biochemical terms. Here we report that auxin deprivation can be used to induce a uniform population of suspension-cultured tobacco (Nicotiana tabacum cv BY-2) cells to differentiate synchronously during a 4-d period. Upon removal of auxin, the cells stop dividing, undergo elongation, and differentiate in a manner that mimics the formation of slime-secreting epidermal and peripheral root-cap cells. The morphological changes to the Golgi apparatus include a proportional increase in the number of trans-Golgi cisternae, a switch to larger-sized secretory vesicles that bud from the trans-Golgi cisternae, and an increase in osmium staining of the secretory products. Biochemical alterations include an increase in large, fucosylated, mucin-type glycoproteins, changes in the types of secreted arabinogalactan proteins, and an increase in the amounts and types of molecules containing the peripheral root-cap-cell-specific epitope JIM 13. Taken together, these findings support the hypothesis that auxin deprivation can be used to induce tobacco BY-2 cells to differentiate synchronously into mucilage-secreting cells. PMID:9625703

  10. Unique Cellular Organization in the Oldest Root Meristem.

    PubMed

    Hetherington, Alexander J; Dubrovsky, Joseph G; Dolan, Liam

    2016-06-20

    Roots and shoots of plant bodies develop from meristems-cell populations that self-renew and produce cells that undergo differentiation-located at the apices of axes [1].The oldest preserved root apices in which cellular anatomy can be imaged are found in nodules of permineralized fossil soils called coal balls [2], which formed in the Carboniferous coal swamp forests over 300 million years ago [3-9]. However, no fossil root apices described to date were actively growing at the time of preservation [3-10]. Because the cellular organization of meristems changes when root growth stops, it has been impossible to compare cellular dynamics as stem cells transition to differentiated cells in extinct and extant taxa [11]. We predicted that meristems of actively growing roots would be preserved in coal balls. Here we report the discovery of the first fossilized remains of an actively growing root meristem from permineralized Carboniferous soil with detail of the stem cells and differentiating cells preserved. The cellular organization of the meristem is unique. The position of the Körper-Kappe boundary, discrete root cap, and presence of many anticlinal cell divisions within a broad promeristem distinguish it from all other known root meristems. This discovery is important because it demonstrates that the same general cellular dynamics are conserved between the oldest extinct and extant root meristems. However, its unique cellular organization demonstrates that extant root meristem organization and development represents only a subset of the diversity that has existed since roots first evolved. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. Life Cycle, Pathogenicity, Histopathology, and Host Range of Race 5 of the Barley Root-Knot Nematode

    PubMed Central

    Ediz, Söngul A.; Dickerson, O. J.

    1976-01-01

    The optimum temperature for development of race 5 of Meloidogyne naasi was 26 C. A life cycle was completed in 34 days. Growth of sorghum was suppressed when inoculated with M. naasi. Observations of M. naasi-infected sorghum roots demonstrated that roots were penetrated just behind the root cap; giant cells were generally initiated either in the procambial region or in very young phloem. When giant cells developed in the cortex, corresponding areas of the vascular system did not have an endodermis, pericycle, or phloem fibers. Nineteen plant species were tested for suitability as hosts for race 5 of M. naasi. Reproduction occurred on 11 of 12 monocotolydenous hosts and none of 7 dicotolydenous hosts. Reproduction often occurred without gall development. PMID:19308227

  12. Developmental and Tissue-Specific Structural Alterations of the Cell-Wall Polysaccharides of Arabidopsis thaliana Roots.

    PubMed Central

    Freshour, G.; Clay, R. P.; Fuller, M. S.; Albersheim, P.; Darvill, A. G.; Hahn, M. G.

    1996-01-01

    The plant cell wall is a dynamic structure that plays important roles in growth and development and in the interactions of plants with their environment and other organisms. We have used monoclonal antibodies that recognize different carbohydrate epitopes present in plant cell-wall polysaccharides to locate these epitopes in roots of developing Arabidopsis thaliana seedlings. An epitope in the pectic polysaccharide rhamnogalacturonan I is observed in the walls of epidermal and cortical cells in mature parts of the root. This epitope is inserted into the walls in a developmentally regulated manner. Initially, the epitope is observed in atrichoblasts and later appears in trichoblasts and simultaneously in cortical cells. A terminal [alpha]-fucosyl-containing epitope is present in almost all of the cell walls in the root. An arabinosylated (1->6)-[beta]-galactan epitope is also found in all of the cell walls of the root with the exception of lateral root-cap cell walls. It is striking that these three polysaccharide epitopes are not uniformly distributed (or accessible) within the walls of a given cell, nor are these epitopes distributed equally across the two walls laid down by adjacent cells. Our results further suggest that the biosynthesis and differentiation of primary cell walls in plants are precisely regulated in a temporal, spatial, and developmental manner. PMID:12226270

  13. Protein synthesis in geostimulated root caps

    NASA Technical Reports Server (NTRS)

    Feldman, L. J.

    1982-01-01

    A study is presented of the processes occurring in the root cap of corn which are requisite for the formation of root cap inhibitor and which can be triggered or modulated by both light and gravity. The results of this study indicate the importance of protein synthesis for light-induced gravitropic bending in roots. Root caps in which protein synthesis is prevented are unable to induce downward bending. This suggests that light acts by stimulating proteins which are necessary for the translation of the gravitropic stimulus into a growth response (downward bending). The turnover of protein with time was also examined in order to determine whether light acts by stimulating the synthesis of unique proteins required for downward growth. It is found that auxin in combination with light allows for the translation of the gravitropic stimulus into a growth response at least in part through the modification of protein synthesis. It is concluded that unique proteins are stimulated by light and are involved in promoting the downward growth in roots which are responding to gravity.

  14. Uptake of polycyclic aromatic hydrocarbons and their cellular effects in the mangrove Bruguiera gymnorrhiza.

    PubMed

    Naidoo, Gonasageran; Naidoo, Krishnaveni

    2016-12-15

    The uptake of polycyclic aromatic hydrocarbons and their cellular effects were investigated in the mangrove Bruguiera gymnorrhiza. Seedlings were subjected to sediment oiling for three weeks. In the oiled treatment, the ƩPAHs was higher in roots (99%) than in leaves (1%). In roots, PAHs included phenanthrene (55%), acenaphthene (13%), fluorine (12%) and anthracene (8%). In leaves, PAHs possessed two to three rings and included acenaphthene (35%), naphthalene (33%), fluorine (18%) and phenanthrene (14%). In the roots, oil caused disorganization of cells in the root cap, meristem and conducting tissue. Oil contaminated cells were distorted and possessed large and irregularly shaped vacuoles. Ultrastructural changes included loss of cell contents and fragmentation of the nucleus and mitochondrion. In the leaves, oil caused dilation and distortion of chloroplasts and disintegration of grana and lamellae. Oil targets critical organelles such as nuclei, chloroplasts and mitochondria which are responsible for cell vitality and energy transformation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Root gravitropism

    NASA Technical Reports Server (NTRS)

    Masson, P. H.

    1995-01-01

    When a plant root is reoriented within the gravity field, it responds by initiating a curvature which eventually results in vertical growth. Gravity sensing occurs primarily in the root tip. It may involve amyloplast sedimentation in the columella cells of the root cap, or the detection of forces exerted by the mass of the protoplast on opposite sides of its cell wall. Gravisensing activates a signal transduction cascade which results in the asymmetric redistribution of auxin and apoplastic Ca2+ across the root tip, with accumulation at the bottom side. The resulting lateral asymmetry in Ca2+ and auxin concentration is probably transmitted to the elongation zone where differential cellular elongation occurs until the tip resumes vertical growth. The Cholodny-Went theory proposes that gravity-induced auxin redistribution across a gravistimulated plant organ is responsible for the gravitropic response. However, recent data indicate that the gravity-induced reorientation is more complex, involving both auxin gradient-dependent and auxin gradient-independent events.

  16. Integrated Metabolomics and Transcriptomics Reveal Enhanced Specialized Metabolism in Medicago truncatula Root Border Cells1[OPEN

    PubMed Central

    Watson, Bonnie S.; Bedair, Mohamed F.; Urbanczyk-Wochniak, Ewa; Huhman, David V.; Yang, Dong Sik; Allen, Stacy N.; Li, Wensheng; Tang, Yuhong; Sumner, Lloyd W.

    2015-01-01

    Integrated metabolomics and transcriptomics of Medicago truncatula seedling border cells and root tips revealed substantial metabolic differences between these distinct and spatially segregated root regions. Large differential increases in oxylipin-pathway lipoxygenases and auxin-responsive transcript levels in border cells corresponded to differences in phytohormone and volatile levels compared with adjacent root tips. Morphological examinations of border cells revealed the presence of significant starch deposits that serve as critical energy and carbon reserves, as documented through increased β-amylase transcript levels and associated starch hydrolysis metabolites. A substantial proportion of primary metabolism transcripts were decreased in border cells, while many flavonoid- and triterpenoid-related metabolite and transcript levels were increased dramatically. The cumulative data provide compounding evidence that primary and secondary metabolism are differentially programmed in border cells relative to root tips. Metabolic resources normally destined for growth and development are redirected toward elevated accumulation of specialized metabolites in border cells, resulting in constitutively elevated defense and signaling compounds needed to protect the delicate root cap and signal motile rhizobia required for symbiotic nitrogen fixation. Elevated levels of 7,4′-dihydroxyflavone were further increased in border cells of roots exposed to cotton root rot (Phymatotrichopsis omnivora), and the value of 7,4′-dihydroxyflavone as an antimicrobial compound was demonstrated using in vitro growth inhibition assays. The cumulative and pathway-specific data provide key insights into the metabolic programming of border cells that strongly implicate a more prominent mechanistic role for border cells in plant-microbe signaling, defense, and interactions than envisioned previously. PMID:25667316

  17. Enhanced gravitropism of roots with a disrupted cap actin cytoskeleton

    NASA Technical Reports Server (NTRS)

    Hou, Guichuan; Mohamalawari, Deepti R.; Blancaflor, Elison B.

    2003-01-01

    The actin cytoskeleton has been proposed to be a major player in plant gravitropism. However, understanding the role of actin in this process is far from complete. To address this problem, we conducted an analysis of the effect of Latrunculin B (Lat B), a potent actin-disrupting drug, on root gravitropism using various parameters that included detailed curvature kinetics, estimation of gravitropic sensitivity, and monitoring of curvature development after extended clinorotation. Lat B treatment resulted in a promotion of root curvature after a 90 degrees reorientation in three plant species tested. More significantly, the sensitivity of maize (Zea mays) roots to gravity was enhanced after actin disruption, as determined from a comparison of presentation time of Lat B-treated versus untreated roots. A short 10-min gravistimulus followed by extended rotation on a 1-rpm clinostat resulted in extensive gravitropic responses, manifested as curvature that often exceeded 90 degrees. Application of Lat B to the cap or elongation zone of maize roots resulted in the disruption of the actin cytoskeleton, which was confined to the area of localized Lat B application. Only roots with Lat B applied to the cap displayed the strong curvature responses after extended clinorotation. Our study demonstrates that disrupting the actin cytoskeleton in the cap leads to the persistence of a signal established by a previous gravistimulus. Therefore, actin could function in root gravitropism by providing a mechanism to regulate the proliferation of a gravitropic signal originating from the cap to allow the root to attain its correct orientation or set point angle.

  18. The role of calcium in the desensitization of capsaicin responses in rat dorsal root ganglion neurons.

    PubMed

    Koplas, P A; Rosenberg, R L; Oxford, G S

    1997-05-15

    Capsaicin (Cap) is a pungent extract of the Capsicum pepper family, which activates nociceptive primary sensory neurons. Inward current and membrane potential responses of cultured neonatal rat dorsal root ganglion neurons to capsaicin were examined using whole-cell and perforated patch recording methods. The responses exhibited strong desensitization operationally classified as acute (diminished response during constant Cap exposure) and tachyphylaxis (diminished response to successive applications of Cap). Both acute desensitization and tachyphylaxis were greatly diminished by reductions in external Ca2+ concentration. Furthermore, chelation of intracellular Ca2+ by addition of either EGTA or bis(2-aminophenoxy)ethane-N,N,N',N'-tetra-acetic acid to the patch pipette attenuated both forms of desensitization even in normal Ca2+. Release of intracellular Ca2+ by caffeine triggered acute desensitization in the absence of extracellular Ca2+, and barium was found to effectively substitute for calcium in supporting desensitization. Cap activated inward current at an ED50 of 728 nM, exhibiting cooperativity (Hill coefficient, 2.2); however, both forms of desensitization were only weakly dependent on [Cap], suggesting a dissociation between activation of Cap-sensitive channels and desensitization. Removal of ATP and GTP from the intracellular solutions resulted in nearly complete tachyphylaxis even with intracellular Ca2+ buffered to low levels, whereas changes in nucleotide levels did not significantly alter the acute form of desensitization. These data suggest a key role for intracellular Ca2+ in desensitization of Cap responses, perhaps through Ca2+-dependent dephosphorylation at a locus that normally sustains Cap responsiveness via ATP-dependent phosphorylation. It also seems that the signaling mechanisms underlying the two forms of desensitization are not identical in detail.

  19. Comparison of in vivo dental pulp responses to capping with iRoot BP Plus and mineral trioxide aggregate.

    PubMed

    Shi, S; Bao, Z F; Liu, Y; Zhang, D D; Chen, X; Jiang, L M; Zhong, M

    2016-02-01

    To compare dental pulp responses to capping with iRoot BP Plus and mineral trioxide aggregate (MTA) in dogs. Pulps in 36 incisors of three 8-month-old beagle dogs were mechanically exposed and assigned to two experimental groups (iRoot BP Plus group and MTA group, n = 15 per group) and one control group (n = 6). Direct pulp capping was performed using either iRoot BP Plus or MTA. The animals were sacrificed 3 months later. Histological sections were stained with haematoxylin and eosin and categorized using a histologic scoring system. Statistical analysis was performed using the Mann-Whitney U-test, with the significance set at 0.05. The majority of specimens in both experimental groups were associated with complete calcified bridge formation and the absence of pulpal inflammation. There was no significant difference in pulp response to iRoot BP Plus or MTA after 3 months (P > 0.05). iRoot BP Plus and MTA had similar favourable results when used as pulp-capping agents. © 2015 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  20. Effects of abscisic acid and xanthoxin on elongation and gravitropism in primary roots of Zea mays

    NASA Technical Reports Server (NTRS)

    Lee, J. S.; Hasenstein, K. H.; Mulkey, T. J.; Yang, R. L.; Evans, M. L.

    1990-01-01

    We examined the involvement of abscisic acid (ABA) and xanthoxin (Xan) in maize root gravitropism by (1) testing the ability of ABA to allow positive gravitropism in dark-grown seedlings of the maize cultivar LG11, a cultivar known to require light for positive gravitropism of the primary root, (2) comparing curvature in roots in which half of the cap had been excised and replaced with agar containing either ABA or indole-3-acetic acid (IAA), (3) measuring gravitropism in roots of seedlings submerged in oxygenated solutions of ABA or IAA and (4) testing the effect of Xan on root elongation. Using a variety of methods of applying ABA to the root, we found that ABA did not cause horizontally-oriented primary roots of dark-grown seedlings to become positively gravitropic. Replacing half of the root cap of vertically oriented roots with an agar block containing ABA had little or no effect on curvature relative to that of controls in which the half cap was replaced by a plain agar block. Replacement of the removed half cap with IAA either canceled or reversed the curvature displayed by controls. When light-grown seedlings were submerged in ABA they responded strongly to gravistimulation while those in IAA did not. Xan (up to 0.1 mM) did not affect root elongation. The results indicate that ABA is not a likely mediator of root gravitropism and that the putative ABA precursor, Xan, lacks the appropriate growth-inhibiting properties to serve as a mediator of root gravitropism.

  1. Nemesia Root Hair Response to Paper Pulp Substrate for Micropropagation

    PubMed Central

    Labrousse, Pascal; Delmail, David; Decou, Raphaël; Carlué, Michel; Lhernould, Sabine; Krausz, Pierre

    2012-01-01

    Agar substrates for in vitro culture are well adapted to plant micropropagation, but not to plant rooting and acclimatization. Conversely, paper-pulp-based substrates appear as potentially well adapted for in vitro culture and functional root production. To reinforce this hypothesis, this study compares in vitro development of nemesia on several substrates. Strong differences between nemesia roots growing in agar or in paper-pulp substrates were evidenced through scanning electron microscopy. Roots developed in agar have shorter hairs, larger rhizodermal cells, and less organized root caps than those growing on paper pulp. In conclusion, it should be noted that in this study, in vitro microporous substrates such as paper pulp lead to the production of similar root hairs to those found in greenhouse peat substrates. Consequently, if agar could be used for micropropagation, rooting, and plant acclimatization, enhancement could be achieved if rooting stage was performed on micro-porous substrates such as paper pulp. PMID:22312323

  2. Nemesia root hair response to paper pulp substrate for micropropagation.

    PubMed

    Labrousse, Pascal; Delmail, David; Decou, Raphaël; Carlué, Michel; Lhernould, Sabine; Krausz, Pierre

    2012-01-01

    Agar substrates for in vitro culture are well adapted to plant micropropagation, but not to plant rooting and acclimatization. Conversely, paper-pulp-based substrates appear as potentially well adapted for in vitro culture and functional root production. To reinforce this hypothesis, this study compares in vitro development of nemesia on several substrates. Strong differences between nemesia roots growing in agar or in paper-pulp substrates were evidenced through scanning electron microscopy. Roots developed in agar have shorter hairs, larger rhizodermal cells, and less organized root caps than those growing on paper pulp. In conclusion, it should be noted that in this study, in vitro microporous substrates such as paper pulp lead to the production of similar root hairs to those found in greenhouse peat substrates. Consequently, if agar could be used for micropropagation, rooting, and plant acclimatization, enhancement could be achieved if rooting stage was performed on micro-porous substrates such as paper pulp.

  3. Mevalonate-derived quinonemethide triterpenoid from in vitro roots of Peritassa laevigata and their localization in root tissue by MALDI imaging

    NASA Astrophysics Data System (ADS)

    Pina, Edieidia S.; Silva, Denise B.; Teixeira, Simone P.; Coppede, Juliana S.; Furlan, Maysa; França, Suzelei C.; Lopes, Norberto P.; Pereira, Ana Maria S.; Lopes, Adriana A.

    2016-03-01

    Biosynthetic investigation of quinonemethide triterpenoid 22β-hydroxy-maytenin (2) from in vitro root cultures of Peritassa laevigata (Celastraceae) was conducted using 13C-precursor. The mevalonate pathway in P. laevigata is responsible for the synthesis of the quinonemethide triterpenoid scaffold. Moreover, anatomical analysis of P. laevigata roots cultured in vitro and in situ showed the presence of 22β-hydroxy-maytenin (2) and maytenin (1) in the tissues from transverse or longitudinal sections with an intense orange color. MALDI-MS imaging confirmed the distribution of (2) and (1) in the more distal portions of the root cap, the outer cell layers, and near the vascular cylinder of P. laevigata in vitro roots suggesting a role in plant defense against infection by microorganisms as well as in the root exudation processes.

  4. Changes in cytosolic pH within Arabidopsis root columella cells play a key role in the early signaling pathway for root gravitropism

    NASA Technical Reports Server (NTRS)

    Scott, A. C.; Allen, N. S.; Davies, E. (Principal Investigator)

    1999-01-01

    Ratiometric wide-field fluorescence microscopy with 1',7'- bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein (BCECF)-dextran demonstrated that gravistimulation leads to rapid changes in cytoplasmic pH (pHc) in columella cells of Arabidopsis roots. The pHc of unstimulated columella cells in tiers 2 and 3, known sites of graviperception (E.B. Blancaflor, J.B. Fasano, S. Gilroy [1998] Plant Physiol 116: 213-222), was 7.22 +/- 0.02 pH units. Following gravistimulation, the magnitude and direction of pHc changes in these cells depended on their location in the columella. Cells in the lower side of tier 2 became more alkaline by 0.4 unit within 55 s of gravistimulation, whereas alkalinization of the cells on the upper side was slower (100 s). In contrast, all cells in tier 3 acidified by 0.4 pH unit within 480 s after gravistimulation. Disrupting these pHc changes in the columella cells using pHc modifiers at concentrations that do not affect root growth altered the gravitropic response. Acidifying agents, including bafilomycin A1, enhanced curvature, whereas alkalinizing agents disrupted gravitropic bending. These results imply that pHc changes in the gravisensing cells and the resultant pH gradients across the root cap are important at an early stage in the signal cascade leading to the gravitropic response.

  5. Apatite formation on bioactive calcium-silicate cements for dentistry affects surface topography and human marrow stromal cells proliferation.

    PubMed

    Gandolfi, Maria Giovanna; Ciapetti, Gabriela; Taddei, Paola; Perut, Francesca; Tinti, Anna; Cardoso, Marcio Vivan; Van Meerbeek, Bart; Prati, Carlo

    2010-10-01

    The effect of ageing in phosphate-containing solution of bioactive calcium-silicate cements on the chemistry, morphology and topography of the surface, as well as on in vitro human marrow stromal cells viability and proliferation was investigated. A calcium-silicate cement (wTC) mainly based on dicalcium-silicate and tricalcium-silicate was prepared. Alpha-TCP was added to wTC to obtain wTC-TCP. Bismuth oxide was inserted in wTC to prepare a radiopaque cement (wTC-Bi). A commercial calcium-silicate cement (ProRoot MTA) was tested as control. Cement disks were aged in DPBS for 5 h ('fresh samples'), 14 and 28 days, and analyzed by ESEM/EDX, SEM/EDX, ATR-FTIR, micro-Raman techniques and scanning white-light interferometry. Proliferation, LDH release, ALP activity and collagen production of human marrow stromal cells (MSC) seeded for 1-28 days on the cements were evaluated. Fresh samples exposed a surface mainly composed of calcium-silicate hydrates CSH (from the hydration of belite and alite), calcium hydroxide, calcium carbonate, and ettringite. Apatite nano-spherulites rapidly precipitated on cement surfaces within 5 h. On wTC-TCP the Ca-P deposits appeared thicker than on the other cements. Aged cements showed an irregular porous calcium-phosphate (Ca-P) coating, formed by aggregated apatite spherulites with interspersed calcite crystals. All the experimental cements exerted no acute toxicity in the cell assay system and allowed cell growth. Using biochemical results, the scores were: fresh cements>aged cements for cell proliferation and ALP activity (except for wTC-Bi), whereas fresh cements

  6. Gravity sensing and signal transduction in vascular plant primary roots.

    PubMed

    Baldwin, Katherine L; Strohm, Allison K; Masson, Patrick H

    2013-01-01

    During gravitropism, the potential energy of gravity is converted into a biochemical signal. How this transfer occurs remains one of the most exciting mysteries in plant cell biology. New experiments are filling in pieces of the puzzle. In this review, we introduce gravitropism and give an overview of what we know about gravity sensing in roots of vascular plants, with special highlight on recent papers. When plant roots are reoriented sideways, amyloplast resedimentation in the columella cells is a key initial step in gravity sensing. This process somehow leads to cytoplasmic alkalinization of these cells followed by relocalization of auxin efflux carriers (PINs). This changes auxin flow throughout the root, generating a lateral gradient of auxin across the cap that upon transmission to the elongation zone leads to differential cell elongation and gravibending. We will present the evidence for and against the following players having a role in transferring the signal from the amyloplast sedimentation into the auxin signaling cascade: mechanosensitive ion channels, actin, calcium ions, inositol trisphosphate, receptors/ligands, ARG1/ARL2, spermine, and the TOC complex. We also outline auxin transport and signaling during gravitropism.

  7. Gravitropism of Arabidopsis thaliana roots requires the polarization of PIN2 toward the root tip in meristematic cortical cells.

    PubMed

    Rahman, Abidur; Takahashi, Maho; Shibasaki, Kyohei; Wu, Shuang; Inaba, Takehito; Tsurumi, Seiji; Baskin, Tobias I

    2010-06-01

    In the root, the transport of auxin from the tip to the elongation zone, referred to here as shootward, governs gravitropic bending. Shootward polar auxin transport, and hence gravitropism, depends on the polar deployment of the PIN-FORMED auxin efflux carrier PIN2. In Arabidopsis thaliana, PIN2 has the expected shootward localization in epidermis and lateral root cap; however, this carrier is localized toward the root tip (rootward) in cortical cells of the meristem, a deployment whose function is enigmatic. We use pharmacological and genetic tools to cause a shootward relocation of PIN2 in meristematic cortical cells without detectably altering PIN2 polarization in other cell types or PIN1 polarization. This relocation of cortical PIN2 was negatively regulated by the membrane trafficking factor GNOM and by the regulatory A1 subunit of type 2-A protein phosphatase (PP2AA1) but did not require the PINOID protein kinase. When GNOM was inhibited, PINOID abundance increased and PP2AA1 was partially immobilized, indicating both proteins are subject to GNOM-dependent regulation. Shootward PIN2 specifically in the cortex was accompanied by enhanced shootward polar auxin transport and by diminished gravitropism. These results demonstrate that auxin flow in the root cortex is important for optimal gravitropic response.

  8. Ammonium-induced loss of root gravitropism is related to auxin distribution and TRH1 function, and is uncoupled from the inhibition of root elongation in Arabidopsis.

    PubMed

    Zou, Na; Li, Baohai; Dong, Gangqiang; Kronzucker, Herbert J; Shi, Weiming

    2012-06-01

    Root gravitropism is affected by many environmental stresses, including salinity, drought, and nutrient deficiency. One significant environmental stress, excess ammonium (NH(4)(+)), is well documented to inhibit root elongation and lateral root formation, yet little is known about its effects on the direction of root growth. We show here that inhibition of root elongation upon elevation of external NH(4)(+) is accompanied by a loss in root gravitropism (agravitropism) in Arabidopsis. Addition of potassium (K(+)) to the treatment medium partially rescued the inhibition of root elongation by high NH(4)(+) but did not improve gravitropic root curvature. Expression analysis of the auxin-responsive reporter gene DR5::GUS revealed that NH(4)(+) treatment delayed the development of gravity-induced auxin gradients across the root cap but extended their duration once initiated. Moreover, the β-glucuronidase (GUS) signal intensity in root tip cells was significantly reduced under high NH(4)(+) treatment over time. The potassium carrier mutant trh1 displayed different patterns of root gravitropism and DR5::GUS signal intensity in root apex cells compared with the wild type in response to NH(4)(+). Together, the results demonstrate that the effects of NH(4)(+) on root gravitropism are related to delayed lateral auxin redistribution and the TRH1 pathway, and are largely independent of inhibitory effects on root elongation.

  9. Mevalonate-derived quinonemethide triterpenoid from in vitro roots of Peritassa laevigata and their localization in root tissue by MALDI imaging

    PubMed Central

    Pina, Edieidia S.; Silva, Denise B.; Teixeira, Simone P.; Coppede, Juliana S.; Furlan, Maysa; França, Suzelei C.; Lopes, Norberto P.; Pereira, Ana Maria S.; Lopes, Adriana A.

    2016-01-01

    Biosynthetic investigation of quinonemethide triterpenoid 22β-hydroxy-maytenin (2) from in vitro root cultures of Peritassa laevigata (Celastraceae) was conducted using 13C-precursor. The mevalonate pathway in P. laevigata is responsible for the synthesis of the quinonemethide triterpenoid scaffold. Moreover, anatomical analysis of P. laevigata roots cultured in vitro and in situ showed the presence of 22β-hydroxy-maytenin (2) and maytenin (1) in the tissues from transverse or longitudinal sections with an intense orange color. MALDI-MS imaging confirmed the distribution of (2) and (1) in the more distal portions of the root cap, the outer cell layers, and near the vascular cylinder of P. laevigata in vitro roots suggesting a role in plant defense against infection by microorganisms as well as in the root exudation processes. PMID:26943243

  10. Outcomes of direct pulp capping: interrogating an insurance database.

    PubMed

    Raedel, M; Hartmann, A; Bohm, S; Konstantinidis, I; Priess, H W; Walter, M H

    2016-11-01

    To evaluate the effectiveness of direct pulp capping under general practice conditions. It was hypothesized that direct pulp capping is an effective procedure in the majority of cases and prevents the need for root canal treatment or extraction. Claims data were collected from the digital database of a major German national health insurance company. Only patients who had been insurance members for the entire 3 year period 2010 to 2012 were eligible. Kaplan-Meier survival analyses were conducted for all teeth with direct pulp capping. Success was defined as not undergoing root canal treatment. Survival was defined as not undergoing extraction. Differences between survival functions were tested with the log rank test. A total of 148 312 teeth were included. The overall success rate was 71.6% at 3 years. The overall survival rate was 95.9% at 3 years. The success rates for single-rooted teeth (71.8%) and multirooted teeth (71.5%) were similar although significantly different (P < 0.001). Best 3-year success rates were found at low (79.7%; <18 years.) and very high age (81.8%; >85 years.). After direct pulp capping, more than two-thirds of the affected teeth did not undergo root canal treatment within 3 years. Although this study has the typical limits of a claims data analysis, it can be concluded that direct pulp capping is an effective intervention to avoid root canal treatment and extraction in a general practice setting. © 2015 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  11. Immunolocalization of integrin-like proteins in Arabidopsis and Chara

    NASA Technical Reports Server (NTRS)

    Katembe, W. J.; Swatzell, L. J.; Makaroff, C. A.; Kiss, J. Z.

    1997-01-01

    Integrins are a large family of integral plasma membrane proteins that link the extracellular matrix to the cytoskeleton in animal cells. As a first step in determining if integrin-like proteins are involved in gravitropic signal transduction pathways, we have used a polyclonal antibody against the chicken beta1 integrin subunit in western blot analyses and immunofluorescence microscopy to gain information on the size and location of these proteins in plants. Several different polypeptides are recognized by the anti-integrin antibody in roots and shoots of Arabidopsis and in the internodal cells and rhizoids of Chara. These cross-reactive polypeptides are associated with cellular membranes, a feature which is consistent with the known location of integrins in animal systems. In immunofluorescence studies of Arabidopsis roots, a strong signal was obtained from labeling integrin-like proteins in root cap cells, and there was little or no immunolabel in other regions of the root tip. While the antibody stained throughout Chara rhizoids, the highest density of immunolabel was at the tip. Thus, in both Arabidopsis roots and Chara rhizoids, the sites of gravity perception/transduction appear to be enriched in integrin-like molecules.

  12. Actin Turnover-Mediated Gravity Response in Maize Root Apices

    PubMed Central

    Mancuso, Stefano; Barlow, Peter W; Volkmann, Dieter

    2006-01-01

    The dynamic actin cytoskeleton has been proposed to be linked to gravity sensing in plants but the mechanistic understanding of these processes remains unknown. We have performed detailed pharmacological analyses of the role of the dynamic actin cytoskeleton in gravibending of maize (Zea mays) root apices. Depolymerization of actin filaments with two drugs having different mode of their actions, cytochalasin D and latrunculin B, stimulated root gravibending. By contrast, drug-induced stimulation of actin polymerization and inhibition of actin turnover, using two different agents phalloidin and jasplakinolide, compromised the root gravibending. Importantly, all these actin drugs inhibited root growth to similar extents suggesting that high actin turnover is essential for the gravity-related growth responses rather than for the general growth process. Both latrunculin B and cytochalasin D treatments inhibited root growth but restored gravibending of the decapped root apices, indicating that there is a strong potential for effective actin-mediated gravity sensing outside the cap. This elusive gravity sensing outside the root cap is dependent not only on the high rate of actin turnover but also on weakening of myosin activities, as general inhibition of myosin ATPases induced stimulation of gravibending of the decapped root apices. Collectively, these data provide evidence for the actin turnover-mediated gravity sensing outside the root cap. PMID:19521476

  13. Chromosomal aberrations and delays in cell progression induced by x-rays in Tradescantia clone 02 meristems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geard, C.R.

    1983-01-01

    In root meristems of Tradescantia clone 02 (developed by Sparrow and his colleagues for mutation studies), X-rays interfere with the progression of cells through the cell cycle and induce chromosomal aberrations in a dose-dependent manner consistent with linear-quadratic kinetics. Sequential mitotic cell accumulations after irradiation indicate that sensitivity to aberration induction is probably greatest in cells from late S to early G2, with chromatid interchanges the most frequent aberration type and all aberrations consistent with initiation from the interaction between two lesions. The ratio of the coefficients in the linear (..cap alpha..) and the quadratic (..beta..) terms (..cap alpha../..beta..) ismore » equal to the dose average of specific energy produced by individual particles in the site where interaction takes place. The ratio ..cap alpha../..beta.. for chromosomal aberrations is similar to that previously found for X-ray-induced mutation in Tradescantia stamen hairs, supporting the proposal that radiation-induced mutational events are due to chromosomal aberrations with interaction distances of about 1..mu..m. Abrahamson and co-workers have noted that both ..cap alpha../..beta.. ratios appear to be related to nuclear target size and are similar for chromosomal and mutational endpoints in the same organism. These findings support this concept; however, it is apparent that any situation which diminishes yield at high doses (e.g., mitotic delay) will probably affect the ..beta.. component. 23 references, 5 figures, 2 tables.« less

  14. Chromosomal aberrations and delays in cell progression induced by x-rays in Tradescantia clone 02 meristems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geard, C.R.

    1983-01-01

    In root meristems of Tradescantia clone 02 (developed by Sparrow and his colleagues for mutation studies), X-rays interfere with the progression of cells through the cell cycle and induce chromosomal aberrations in a dose-dependent manner consistent with linear-quadratic kinetics. Sequential mitotic cell accumulations after irradiation indicate that sensitivity to aberrration induction is probably greatest in cells from late S to early G2, with chromatid interchanges the most frequent aberration type and all aberrations consistent with intiation from the interaction between two lesions. The ratio of the coefficients in the linear (..cap alpha..) and the quadratic (..beta..) terms (..cap alpha../..beta..) ismore » equal to the dose average of specific energy produced by individual particles in the site where interaction takes place. The ratio ..cap alpha../..beta.. for chromosomal aberrations is similar to that previously found for X-ray-induced mutation in Tradescantia stamen hairs, supporting the proposal that radiation-induced mutational events are due to chromosomal aberrations with interaction distances of about 1 ..mu..m. Abrahmson and co-workers have noted that both ..cap alpha../..beta.. ratios appear to be related to nuclear target size and are similar for chromosomal and mutational endpoints in the same organism. These findings support this concept; however, it is apparent that any situation which diminishes yield at high doses (e.g., mitotic delay) will primarily affect the ..beta.. component, resulting in low assessments of interaction site diameters.« less

  15. Molecular mechanisms of root gravity sensing and signal transduction.

    PubMed

    Strohm, Allison K; Baldwin, Katherine L; Masson, Patrick H

    2012-01-01

    Plants use gravity as a guide to direct their roots down into the soil to anchor themselves and to find resources needed for growth and development. In higher plants, the columella cells of the root tip form the primary site of gravity sensing, and in these cells the sedimentation of dense, starch-filled plastids (amyloplasts) triggers gravity signal transduction. This generates an auxin gradient across the root cap that is transmitted to the elongation zone where it promotes differential cell elongation, allowing the root to direct itself downward. It is still not well understood how amyloplast sedimentation leads to auxin redistribution. Models have been proposed to explain how mechanosensitive ion channels or ligand-receptor interactions could connect these events. Although their roles are still unclear, possible second messengers in this process include protons, Ca(2+), and inositol 1,4,5-triphosphate. Upon gravistimulation, the auxin efflux facilitators PIN3 and PIN7 relocalize to the lower side of the columella cells and mediate auxin redistribution. However, evidence for an auxin-independent secondary mechanism of gravity sensing and signal transduction suggests that this physiological process is quite complex. Furthermore, plants must integrate a variety of environmental cues, resulting in multifaceted relationships between gravitropism and other directional growth responses such as hydro-, photo-, and thigmotropism. Copyright © 2011 Wiley Periodicals, Inc.

  16. Gravitropism of Arabidopsis thaliana Roots Requires the Polarization of PIN2 toward the Root Tip in Meristematic Cortical Cells[C][W

    PubMed Central

    Rahman, Abidur; Takahashi, Maho; Shibasaki, Kyohei; Wu, Shuang; Inaba, Takehito; Tsurumi, Seiji; Baskin, Tobias I.

    2010-01-01

    In the root, the transport of auxin from the tip to the elongation zone, referred to here as shootward, governs gravitropic bending. Shootward polar auxin transport, and hence gravitropism, depends on the polar deployment of the PIN-FORMED auxin efflux carrier PIN2. In Arabidopsis thaliana, PIN2 has the expected shootward localization in epidermis and lateral root cap; however, this carrier is localized toward the root tip (rootward) in cortical cells of the meristem, a deployment whose function is enigmatic. We use pharmacological and genetic tools to cause a shootward relocation of PIN2 in meristematic cortical cells without detectably altering PIN2 polarization in other cell types or PIN1 polarization. This relocation of cortical PIN2 was negatively regulated by the membrane trafficking factor GNOM and by the regulatory A1 subunit of type 2-A protein phosphatase (PP2AA1) but did not require the PINOID protein kinase. When GNOM was inhibited, PINOID abundance increased and PP2AA1 was partially immobilized, indicating both proteins are subject to GNOM-dependent regulation. Shootward PIN2 specifically in the cortex was accompanied by enhanced shootward polar auxin transport and by diminished gravitropism. These results demonstrate that auxin flow in the root cortex is important for optimal gravitropic response. PMID:20562236

  17. Wind blade spar cap and method of making

    DOEpatents

    Mohamed, Mansour H [Raleigh, NC

    2008-05-27

    A wind blade spar cap for strengthening a wind blade including an integral, unitary three-dimensional woven material having a first end and a second end, corresponding to a root end of the blade and a tip end of the blade, wherein the material tapers in width from the first to the second end while maintaining a constant thickness and decreasing weight therebetween, the cap being capable of being affixed to the blade for providing increased strength with controlled variation in weight from the root end to the tip end based upon the tapered width of the material thereof. The present inventions also include the method of making the wind blade spar cap and a wind blade including the wind blade spar cap.

  18. Three-Dimensional Analysis of Nuclear Size, Shape and Displacement in Clover Root Cap Statocytes from Space and a Clinostat

    NASA Technical Reports Server (NTRS)

    Smith, J.D.; Todd, P. W.; Staehelin, L. A.; Holton, Emily (Technical Monitor)

    1997-01-01

    Under normal (l-g) conditions the statocytes of root caps have a characteristic polarity with the nucleus in tight association with the proximal cell wall; but, in altered gravity environments including microgravity (mu-g) and the clinostat (c-g) movement of the nucleus away from the proximal cell wall is not uncommon. To further understand the cause of gravity-dependent nuclear displacement in statocytes, three-dimensional cell reconstruction techniques were used to precisely measure the volumes, shapes, and positions of nuclei in white clover (Trifolium repens) flown in space and rotated on a clinostat. Seeds were germinated and grown for 72 hours aboard the Space Shuttle (STS-63) in the Fluid Processing Apparatus (BioServe Space Technologies, Univ. of Colorado, Boulder). Clinorotation experiments were performed on a two-axis clinostat (BioServe). Computer reconstruction of selected groups of statocytes were made from serial sections (0.5 microns thick) using the ROSS (Reconstruction Of Serial Sections) software package (Biocomputation Center, NASA Ames Research Center). Nuclei were significantly displaced from the tops of cells in mu-g (4.2 +/- 1.0 microns) and c-g (4.9 +/- 1.4 microns) when compared to l-g controls (3.4 +/- 0.8 gm); but, nuclear volume (113 +/- 36 cu microns, 127 +/- 32 cu microns and 125 +/- 28 cu microns for l-g, mu-g and c-g respectively) and the ratio of nuclear volume to cell volume (4.310.7%, 4.211.0% and 4.911.4% respectively) were not significantly dependent on gravity treatment (ANOVA; alpha = 0.05). Three-dimensional analysis of nuclear shape and proximity to the cell wall, however, showed that nuclei from l-g controls appeared ellipsoidal while those from space and the clinostat were more spherically shaped. This change in nuclear shape may be responsible for its displacement under altered gravity conditions. Since the cytoskeleton is known to affect nuclear polarity in root cap statocytes, those same cytoskeletal elements could also control nuclear shape. This alteration in nuclear shape and position in mu-g and c-g when compared to l-g may lead to functional differences in the gravity signaling systems of plants subjected to altered gravity environments.

  19. Genetic Analysis of Gravity Signal Transduction in Arabidopsis Roots

    NASA Astrophysics Data System (ADS)

    Masson, Patrick; Strohm, Allison; Barker, Richard; Su, Shih-Heng

    Like most other plant organs, roots use gravity as a directional guide for growth. Specialized cells within the columella region of the root cap (the statocytes) sense the direction of gravity through the sedimentation of starch-filled plastids (amyloplasts). Amyloplast movement and/or pressure on sensitive membranes triggers a gravity signal transduction pathway within these cells, which leads to a fast transcytotic relocalization of plasma-membrane associated auxin-efflux carrier proteins of the PIN family (PIN3 and PIN7) toward the bottom membrane. This leads to a polar transport of auxin toward the bottom flank of the cap. The resulting lateral auxin gradient is then transmitted toward the elongation zones where it triggers a curvature that ultimately leads to a restoration of vertical downward growth. Our laboratory is using strategies derived from genetics and systems biology to elucidate the molecular mechanisms that modulate gravity sensing and signal transduction in the columella cells of the root cap. Our previous research uncovered two J-domain-containing proteins, ARG1 and ARL2, as contributing to this process. Mutations in the corresponding paralogous genes led to alterations of root and hypocotyl gravitropism accompanied by an inability for the statocytes to develop a cytoplasmic alkalinization, relocalize PIN3, and transport auxin laterally, in response to gravistimulation. Both proteins are associated peripherally to membranes belonging to various compartments of the vesicular trafficking pathway, potentially modulating the trafficking of defined proteins between plasma membrane and endosomes. MAR1 and MAR2, on the other end, are distinct proteins of the plastidic outer envelope protein import TOC complex (the transmembrane channel TOC75 and the receptor TOC132, respectively). Mutations in the corresponding genes enhance the gravitropic defects of arg1. Using transformation-rescue experiments with truncated versions of TOC132 (MAR2), we have shown that the protein-import function of the complex, not the presence of a large acidic domain of TOC132 within the cytoplasm, is needed for gravity signal transduction. Furthermore, mutations in several genes encoding distinct members of the TOC complex also enhanced the gravitropic defect of arg1. Together, these data suggest that the TOC complex works indirectly in gravity signal transduction through its ability to target specific cytoplasmically synthesized proteins, possibly gravity signal transducers, into the plastid. We have used a proteomic strategy to identify root-tip proteins that are differentially expressed between wild type and mar2 mutant plants. The corresponding list of differentially expressed proteins, which includes a surprisingly small number of plastid-targeted molecules, mainly contains proteins that are predicted to be associated with distinct cellular compartments. Several of the corresponding genes were found to also be differentially expressed between wild type and mar2 mutant root tips at the transcriptional level, suggesting cross-talk between amyloplasts and nucleus in these cells. Some of the differentially represented proteins are encoded by genes that are differentially expressed in the root tip in response to gravistimulation, further suggesting their contribution to gravity signal transduction. Work in underway to elucidate their function and potential contribution to this pathway. This work was funded by grants from the National Science Foundation.

  20. Murine neural crest stem cells and embryonic stem cell-derived neuron precursors survive and differentiate after transplantation in a model of dorsal root avulsion.

    PubMed

    Konig, Niclas; Trolle, Carl; Kapuralin, Katarina; Adameyko, Igor; Mitrecic, Dinko; Aldskogius, Hakan; Shortland, Peter J; Kozlova, Elena N

    2017-01-01

    Spinal root avulsion results in paralysis and sensory loss, and is commonly associated with chronic pain. In addition to the failure of avulsed dorsal root axons to regenerate into the spinal cord, avulsion injury leads to extensive neuroinflammation and degeneration of second-order neurons in the dorsal horn. The ultimate objective in the treatment of this condition is to counteract degeneration of spinal cord neurons and to achieve functionally useful regeneration/reconnection of sensory neurons with spinal cord neurons. Here we compare survival and migration of murine boundary cap neural crest stem cells (bNCSCs) and embryonic stem cells (ESCs)-derived, predifferentiated neuron precursors after their implantation acutely at the junction between avulsed dorsal roots L3-L6 and the spinal cord. Both types of cells survived transplantation, but showed distinctly different modes of migration. Thus, bNCSCs migrated into the spinal cord, expressed glial markers and formed elongated tubes in the peripheral nervous system (PNS) compartment of the avulsed dorsal root transitional zone (DRTZ) area. In contrast, the ESC transplants remained at the site of implantation and differentiated to motor neurons and interneurons. These data show that both stem cell types successfully survived implantation to the acutely injured spinal cord and maintained their differentiation and migration potential. These data suggest that, depending on the source of neural stem cells, they can play different beneficial roles for recovery after dorsal root avulsion. Copyright © 2014 John Wiley & Sons, Ltd. Copyright © 2014 John Wiley & Sons, Ltd.

  1. Effective delivery of a nematode-repellent peptide using a root-cap-specific promoter.

    PubMed

    Lilley, Catherine J; Wang, Dong; Atkinson, Howard J; Urwin, Peter E

    2011-02-01

    The potential of the MDK4-20 promoter of Arabidopsis thaliana to direct effective transgenic expression of a secreted nematode-repellent peptide was investigated. Its expression pattern was studied in both transgenic Arabidopsis and Solanum tuberosum (potato) plants. It directed root-specific β-glucuronidase expression in both species that was chiefly localized to cells of the root cap. Use of the fluorescent timer protein dsRED-E5 established that the MDK4-20 promoter remains active for longer than the commonly used constitutive promoter CaMV35S in separated potato root border cells. Transgenic Arabidopsis lines that expressed the nematode-repellent peptide under the control of either AtMDK4-20 or CaMV35S reduced the establishment of the beet cyst nematode Heterodera schachtii. The best line using the AtMDK4-20 promoter displayed a level of resistance >80%, comparable to that of lines using the CaMV35S promoter. In transgenic potato plants, 94.9 ± 0.8% resistance to the potato cyst nematode Globodera pallida was achieved using the AtMDK4-20 promoter, compared with 34.4 ± 8.4% resistance displayed by a line expressing the repellent peptide from the CaMV35S promoter. These results establish the potential of the AtMDK4-20 promoter to limit expression of a repellent peptide whilst maintaining or even improving the efficacy of the cyst-nematode defence. © 2010 The Authors. Plant Biotechnology Journal © 2010 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd.

  2. Root development and structure in seedlings of Ginkgo biloba.

    PubMed

    Bonacorsi, Nikole K; Seago, James L

    2016-02-01

    The popular, highly recognizable, well-known gymnosperm, Ginkgo biloba, was studied to document selected developmental features, which are little known in its primary root system from root tips to cotyledonary node following seed germination. Using seedlings grown in soil, vermiculite, or a mixture, we examined sections at various distances from the root cap to capture a developmental sequence of anatomical structures by using standard brightfield, epifluorescence, and confocal microscopic techniques. The vascular cylinder is usually a diarch stele, although modified diarchy and triarchy are found. Between exarch protoxylem poles, metaxylem usually develops into a complete disc, except near the transition region, which has irregularly arranged tracheary cells. The disc of primary xylem undergoes secondary growth on its metaxylem flanks with many tracheids added radially within a few weeks. Production of fibers in secondary phloem also accompanies secondary growth. In the cortex, endodermis produces Casparian bands early in development and continues into the upper transition region. Phi cells with phi-thickenings (bands of lignified walls) of a layer of inner cortex are often evident before endodermis, and then adjoining, additional layers of cortex develop phi cells; phi cells do not occur in the upper transition region or stem. An exodermis is produced early in root development and is continuous into the transition region and cotyledonary node. Seedling root axes of Ginkgo biloba are more complex than the literature suggests, and our findings contribute to our knowledge of root structure of this ancient gymnosperm. © 2016 Botanical Society of America.

  3. The role of the distal elongation zone in the response of maize roots to auxin and gravity

    NASA Technical Reports Server (NTRS)

    Ishikawa, H.; Evans, M. L.

    1993-01-01

    We used a video digitizer system to (a) measure changes in the pattern of longitudinal surface extension in primary roots of maize (Zea mays L.) upon application and withdrawal of auxin and (b) compare these patterns during gravitropism in control roots and roots pretreated with auxin. Special attention was paid to the distal elongation zone (DEZ), arbitrarily defined as the region between the meristem and the point within the elongation zone at which the rate of elongation reaches 0.3 of the peak rate. For roots in aqueous solution, the basal limit of the DEZ is about 2.5 mm behind the tip of the root cap. Auxin suppressed elongation throughout the elongation zone, but, after 1 to 3 h, elongation resumed, primarily as a result of induction of rapid elongation in the DEZ. Withdrawal of auxin during the period of strong inhibition resulted in exceptionally rapid elongation attributable to the initiation of rapid elongation in the DEZ plus recovery in the main elongation zone. Gravistimulation of auxin-inhibited roots induced rapid elongation in the DEZ along the top of the root. This resulted in rapid gravitropism even though the elongation rate of the root was zero before gravistimulation. The results indicate that cells of the DEZ differ from cells in the bulk of the elongation zone with respect to auxin sensitivity and that DEZ cells play an important role in gravitropism.

  4. Columella cells revisited: novel structures, novel properties, and a novel gravisensing model

    NASA Technical Reports Server (NTRS)

    Staehelin, L. A.; Zheng, H. Q.; Yoder, T. L.; Smith, J. D.; Todd, P.

    2000-01-01

    A hundred years of research has not produced a clear understanding of the mechanism that transduces the energy associated with the sedimentation of starch-filled amyloplast statoliths in root cap columella cells into a growth response. Most models postulate that the statoliths interact with microfilaments (MF) to transmit signals to the plasma membrane (or ER), or that sedimentation onto these organelles produces the signals. However, no direct evidence for statolith-MF links has been reported, and no asymmetric structures of columella cells have been identified that might explain how a root turned by 90 degrees knows which side is up. To address these and other questions, we have (1) quantitatively examined the effects of microgravity on the size, number, and spatial distribution of statoliths; (2) re-evaluated the ultrastructure of columella cells in high-pressure frozen/freeze-substituted roots; and (3) followed the sedimentation dynamics of statolith movements in reoriented root tips. The findings have led to the formulation of a new model for the gravity-sensing apparatus of roots, which envisages the cytoplasm pervaded by an actin-based cytoskeletal network. This network is denser in the ER-devoid central region of the cell than in the ER-rich cell cortex and is coupled to receptors in the plasma membrane. Statolith sedimentation is postulated to disrupt the network and its links to receptors in some regions of the cell cortex, while allowing them to reform in other regions and thereby produce a directional signal.

  5. A Role for the TOC Complex in Arabidopsis Root Gravitropism1[W][OA

    PubMed Central

    Stanga, John P.; Boonsirichai, Kanokporn; Sedbrook, John C.; Otegui, Marisa S.; Masson, Patrick H.

    2009-01-01

    Arabidopsis (Arabidopsis thaliana) roots perceive gravity and reorient their growth accordingly. Starch-dense amyloplasts within the columella cells of the root cap are important for gravitropism, and starchless mutants such as pgm1 display an attenuated response to gravistimulation. The altered response to gravity1 (arg1) mutant is known to be involved with the early phases of gravity signal transduction. arg1 responds slowly to gravistimulation and is in a genetically distinct pathway from pgm1, as pgm1 mutants enhance the gravitropic defect of arg1. arg1 seeds were mutagenized with ethylmethane sulfonate to identify new mutants that enhance the gravitropic defect of arg1. Two modifier of arg1 mutants (mar1 and mar2) grow in random directions only when arg1 is present, do not affect phototropism, and respond like the wild type to application of phytohormones. Both have mutations affecting different components of the Translocon of Outer Membrane of Chloroplasts (TOC) complex. mar1 possesses a mutation in the TOC75-III gene; mar2 possesses a mutation in the TOC132 gene. Overexpression of TOC132 rescues the random growth phenotype of mar2 arg1 roots. Root cap amyloplasts in mar2 arg1 appear ultrastructurally normal. They saltate like the wild type and sediment at wild-type rates upon gravistimulation. These data point to a role for the plastidic TOC complex in gravity signal transduction within the statocytes. PMID:19211693

  6. A role for the TOC complex in Arabidopsis root gravitropism.

    PubMed

    Stanga, John P; Boonsirichai, Kanokporn; Sedbrook, John C; Otegui, Marisa S; Masson, Patrick H

    2009-04-01

    Arabidopsis (Arabidopsis thaliana) roots perceive gravity and reorient their growth accordingly. Starch-dense amyloplasts within the columella cells of the root cap are important for gravitropism, and starchless mutants such as pgm1 display an attenuated response to gravistimulation. The altered response to gravity1 (arg1) mutant is known to be involved with the early phases of gravity signal transduction. arg1 responds slowly to gravistimulation and is in a genetically distinct pathway from pgm1, as pgm1 mutants enhance the gravitropic defect of arg1. arg1 seeds were mutagenized with ethylmethane sulfonate to identify new mutants that enhance the gravitropic defect of arg1. Two modifier of arg1 mutants (mar1 and mar2) grow in random directions only when arg1 is present, do not affect phototropism, and respond like the wild type to application of phytohormones. Both have mutations affecting different components of the Translocon of Outer Membrane of Chloroplasts (TOC) complex. mar1 possesses a mutation in the TOC75-III gene; mar2 possesses a mutation in the TOC132 gene. Overexpression of TOC132 rescues the random growth phenotype of mar2 arg1 roots. Root cap amyloplasts in mar2 arg1 appear ultrastructurally normal. They saltate like the wild type and sediment at wild-type rates upon gravistimulation. These data point to a role for the plastidic TOC complex in gravity signal transduction within the statocytes.

  7. Single-cell telomere-length quantification couples telomere length to meristem activity and stem cell development in Arabidopsis.

    PubMed

    González-García, Mary-Paz; Pavelescu, Irina; Canela, Andrés; Sevillano, Xavier; Leehy, Katherine A; Nelson, Andrew D L; Ibañes, Marta; Shippen, Dorothy E; Blasco, Maria A; Caño-Delgado, Ana I

    2015-05-12

    Telomeres are specialized nucleoprotein caps that protect chromosome ends assuring cell division. Single-cell telomere quantification in animals established a critical role for telomerase in stem cells, yet, in plants, telomere-length quantification has been reported only at the organ level. Here, a quantitative analysis of telomere length of single cells in Arabidopsis root apex uncovered a heterogeneous telomere-length distribution of different cell lineages showing the longest telomeres at the stem cells. The defects in meristem and stem cell renewal observed in tert mutants demonstrate that telomere lengthening by TERT sets a replicative limit in the root meristem. Conversely, the long telomeres of the columella cells and the premature stem cell differentiation plt1,2 mutants suggest that differentiation can prevent telomere erosion. Overall, our results indicate that telomere dynamics are coupled to meristem activity and continuous growth, disclosing a critical association between telomere length, stem cell function, and the extended lifespan of plants. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  8. A morel improved growth and suppressed Fusarium infection in sweet corn.

    PubMed

    Yu, Dan; Bu, Fangfang; Hou, Jiaojiao; Kang, Yongxiang; Yu, Zhongdong

    2016-12-01

    A post-fire morel collected from Populus simonii stands in Mt. Qingling was identified as Morchella crassipes Mes-20 by using nuclear ribosomal DNA internal transcribed spacer phylogeny. It was inoculated into sweet corn to observe colonized roots in purified culture and in greenhouse experiments. The elongation and maturation zones of sweet corn were remarkably colonized at the cortex intercellular and intracellular cells, vessel cells, and around the Casparian strip, forming ectendomycorrhiza-like structures. Colonization was also observed in the zone of cell division proximal to the root cap. Greenhouse assays with sweet corn showed that this morel stimulated the development of the root system and significantly increased the dry root biomass. M. crassipes also significantly reduced the incidence of Fusarium verticillioides in the kernels of mature ears when inoculated into young ears before Fusarium inoculation and prevented Fusarium infection in corn ears compared with that of the control in the greenhouse. When grown under axenic conditions, M. crassipes produced the phytohormones abscisic acid, indole-3-acetic acid, and salicylic acid. The benefits to plants elicited by M. crassipes may result from these phytohormones which may improve the drought resistance, biomass growth and resistance to Fusarium.

  9. Changes in the distribution of plastids and endoplasmic reticulum during cellular differentiation in root caps of Zea mays

    NASA Technical Reports Server (NTRS)

    Moore, R.; McClelen, C. E.

    1985-01-01

    In calyptrogen cells of Zea mays, proplastids are distributed randomly throughout the cell, and the endoplasmic reticulum (ER) is distributed parallel to the cell walls. The differentiation of calyptrogen cells into columella statocytes is characterized by the following sequential events: (1) formation of ER complexes at the distal and proximal ends of the cell, (2) differentiation of proplastids into amyloplasts, (3) sedimentation of amyloplasts onto the distal ER complex, (4) breakdown of the distal ER complex and sedimentation of amyloplasts to the bottom of the cell, and (5) formation of sheets of ER parallel to the longitudinal cell walls. Columella statocytes located in the centre of the cap each possess 4530 +/- 780 micrometers2 of ER surface area, an increase of 670 per cent over that of calyptrogen cells. The differentiation of peripheral cells correlates positively with (1) the ER becoming arranged in concentric sheets, (2) amyloplasts and ER becoming randomly distributed, and (3) a 280 per cent increase in ER surface area over that of columella statocytes. These results are discussed relative to graviperception and mucilage secretion, which are functions of columella and peripheral cells, respectively.

  10. WVD2 and WDL1 modulate helical organ growth and anisotropic cell expansion in Arabidopsis

    NASA Technical Reports Server (NTRS)

    Yuen, Christen Y L.; Pearlman, Rebecca S.; Silo-Suh, Laura; Hilson, Pierre; Carroll, Kathleen L.; Masson, Patrick H.

    2003-01-01

    Wild-type Arabidopsis roots develop a wavy pattern of growth on tilted agar surfaces. For many Arabidopsis ecotypes, roots also grow askew on such surfaces, typically slanting to the right of the gravity vector. We identified a mutant, wvd2-1, that displays suppressed root waving and leftward root slanting under these conditions. These phenotypes arise from transcriptional activation of the novel WAVE-DAMPENED2 (WVD2) gene by the cauliflower mosaic virus 35S promoter in mutant plants. Seedlings overexpressing WVD2 exhibit constitutive right-handed helical growth in both roots and etiolated hypocotyls, whereas the petioles of WVD2-overexpressing rosette leaves exhibit left-handed twisting. Moreover, the anisotropic expansion of cells is impaired, resulting in the formation of shorter and stockier organs. In roots, the phenotype is accompanied by a change in the arrangement of cortical microtubules within peripheral cap cells and cells at the basal end of the elongation zone. WVD2 transcripts are detectable by reverse transcriptase-polymerase chain reaction in multiple organs of wild-type plants. Its predicted gene product contains a conserved region named "KLEEK," which is found only in plant proteins. The Arabidopsis genome possesses seven other genes predicted to encode KLEEK-containing products. Overexpression of one of these genes, WVD2-LIKE 1, which encodes a protein with regions of similarity to WVD2 extending beyond the KLEEK domain, results in phenotypes that are highly similar to wvd2-1. Silencing of WVD2 and its paralogs results in enhanced root skewing in the wild-type direction. Our observations suggest that at least two members of this gene family may modulate both rotational polarity and anisotropic cell expansion during organ growth.

  11. Plastidial Glycolytic Glyceraldehyde-3-Phosphate Dehydrogenase Is an Important Determinant in the Carbon and Nitrogen Metabolism of Heterotrophic Cells in Arabidopsis1

    PubMed Central

    Anoman, Armand D.; Muñoz-Bertomeu, Jesús; Rosa-Téllez, Sara; Flores-Tornero, María; Serrano, Ramón; Bueso, Eduardo; Fernie, Alisdair R.; Segura, Juan; Ros, Roc

    2015-01-01

    This study functionally characterizes the Arabidopsis (Arabidopsis thaliana) plastidial glycolytic isoforms of glyceraldehyde-3-phosphate dehydrogenase (GAPCp) in photosynthetic and heterotrophic cells. We expressed the enzyme in gapcp double mutants (gapcp1gapcp2) under the control of photosynthetic (Rubisco small subunit RBCS2B [RBCS]) or heterotrophic (phosphate transporter PHT1.2 [PHT]) cell-specific promoters. Expression of GAPCp1 under the control of RBCS in gapcp1gapcp2 had no significant effect on the metabolite profile or growth in the aerial part (AP). GAPCp1 expression under the control of the PHT promoter clearly affected Arabidopsis development by increasing the number of lateral roots and having a major effect on AP growth and metabolite profile. Our results indicate that GAPCp1 is not functionally important in photosynthetic cells but plays a fundamental role in roots and in heterotrophic cells of the AP. Specifically, GAPCp activity may be required in root meristems and the root cap for normal primary root growth. Transcriptomic and metabolomic analyses indicate that the lack of GAPCp activity affects nitrogen and carbon metabolism as well as mineral nutrition and that glycerate and glutamine are the main metabolites responding to GAPCp activity. Thus, GAPCp could be an important metabolic connector of glycolysis with other pathways, such as the phosphorylated pathway of serine biosynthesis, the ammonium assimilation pathway, or the metabolism of γ-aminobutyrate, which in turn affect plant development. PMID:26134167

  12. Expression of bone morphogenetic proteins and Msx genes during root formation.

    PubMed

    Yamashiro, T; Tummers, M; Thesleff, I

    2003-03-01

    Like crown development, root formation is also regulated by interactions between epithelial and mesenchymml tissues. Bone morphogenetic proteins (BMPs), together with the transcription factors Msx1 and Msx2, play important roles in these interactions during early tooth morphogenesis. To investigate the involvement of this signaling pathway in root development, we analyzed the expression patterns of Bmp2, Bmp3, Bmp4, and Bmp7 as well as Msx1 and Msx2 in the roots of mouse molars. Bmp4 was expressed in the apical mesenchyme and Msx2 in the root sheath. However, Bmps were not detected in the root sheath epithelium, and Msx transcripts were absent from the underlying mesenchyme. These findings indicate that this Bmp signaling pathway, required for tooth initiation, does not regulate root development, but we suggest that root shape may be regulated by a mechanism similar to that regulating crown shape in cap-stage tooth germs. Msx2 expression continued in the epithelial cell rests of Malassez, and the nearby cementoblasts intensely expressed Bmp3, which may regulate some functions of the fragmented epithelium.

  13. Characterizing the Physics of Plant Root Gravitropism: A Systems Modeling Approach

    DTIC Science & Technology

    1999-01-01

    with its root directly downward, the root and stem undergo a gravitropic response. Statoliths (gravity-sensing organelles) within the root cap respond...this study is to model the plant root gravitropic response using classical controls and system identification principles. Specific objectives of this

  14. Unique cell-type-specific patterns of DNA methylation in the root meristem.

    PubMed

    Kawakatsu, Taiji; Stuart, Tim; Valdes, Manuel; Breakfield, Natalie; Schmitz, Robert J; Nery, Joseph R; Urich, Mark A; Han, Xinwei; Lister, Ryan; Benfey, Philip N; Ecker, Joseph R

    2016-04-29

    DNA methylation is an epigenetic modification that differs between plant organs and tissues, but the extent of variation between cell types is not known. Here, we report single-base-resolution whole-genome DNA methylomes, mRNA transcriptomes and small RNA transcriptomes for six cell populations covering the major cell types of the Arabidopsis root meristem. We identify widespread cell-type-specific patterns of DNA methylation, especially in the CHH sequence context, where H is A, C or T. The genome of the columella root cap is the most highly methylated Arabidopsis cell characterized so far. It is hypermethylated within transposable elements (TEs), accompanied by increased abundance of transcripts encoding RNA-directed DNA methylation (RdDM) pathway components and 24-nt small RNAs (smRNAs). The absence of the nucleosome remodeller DECREASED DNA METHYLATION 1 (DDM1), required for maintenance of DNA methylation, and low abundance of histone transcripts involved in heterochromatin formation suggests that a loss of heterochromatin may occur in the columella, thus allowing access of RdDM factors to the whole genome, and producing an excess of 24-nt smRNAs in this tissue. Together, these maps provide new insights into the epigenomic diversity that exists between distinct plant somatic cell types.

  15. The kinetics of root gravitropism in PIN mutants suggest redundancy in the signal transduction pathway

    NASA Astrophysics Data System (ADS)

    Wolverton, Chris

    As nonmotile organisms, plants rely on differential growth responses to maximize exposure to the resources necessary for growth and reproduction. One of the primary environmental cues causing differential growth in roots is gravity, which is thought to be sensed predominately in the root cap. This gravity perception event is thought to be transduced into information in the form of an auxin gradient across the cap and propagating basipetally toward the elongation zone. The discovery of several families of auxin efflux and influx carriers has provided significant insight into the mechanisms of directional auxin transport, and the identification of mutants in the genes encoding these carriers provides the opportunity to test the roles of these transporters in plant gravitropism. In this study, we report the results of a systematic, high-resolution study of the kinetics of root gravitropism of mutants in the PIN family of auxin efflux carriers. Based on reported expression and localization patterns, we predicted mutations in PIN2, PIN3, PIN4, and PIN7 to cause the greatest reduction in root gravitropism. While pin2 mutants showed severe gravitropic deficiencies in roots as reported previously, several alleles of pin3, pin4 and pin7 remained strongly gravitropic. PIN3 has been localized to the central columella cells, the purported gravisensing cells in the root, and shown to rapidly relocate to the lower flank of the columella cells upon gravistimulation, suggesting an early role in auxin gradient formation. Mutant alleles of PIN3 showed an early delay in response, with just 7 deg of curvature in the first hour compared to approximately 15 deg h-1 in wild-type, but their rate of curvature recovered to near wild-type levels over the ensuing 3 h. Pin3 mutants also showed a slower overall growth rate (124 µm h-1 ), elongating at approximately half the rate of wild-type roots (240 µm h-1 ). PIN4 has been localized to the quiescent center in the root, where it presumably plays a role in efflux to the columella. Pin4 mutants showed no deficiencies in gravitropism, in fact responding at a greater rate than wild-type roots over the first hour (22 deg h-1 ). PIN7 has been localized to the vascular tissue of the elongation zone and to the central columella. Like pin4 mutants, pin7 mutants did not show a significantly reduced gravitropic response relative to wild-type roots. Interestingly, roots of pin3pin7 double mutants showed curvature and growth rates similar to pin7 single mutants and wild-type roots, suggesting a genetic interaction between PIN3 and PIN7 in this pathway. These results suggest a significant degree of redundancy in the regulation of directional auxin transport and perhaps in the gravity signaling pathway in roots in general.

  16. Genetic analysis of gravity signal transduction in roots

    NASA Astrophysics Data System (ADS)

    Masson, Patrick; Strohm, Allison; Baldwin, Katherine

    To grow downward into the soil, roots use gravity as a guide. Specialized cells, named stato-cytes, enable this directional growth response by perceiving gravity. Located in the columella region of the cap, these cells sense a reorientation of the root within the gravity field through the sedimentation of, and/or tension/pressure exerted by, dense amyloplasts. This process trig-gers a gravity signal transduction pathway that leads to a fast alkalinization of the cytoplasm and a change in the distribution of the plasma membrane-associated auxin-efflux carrier PIN3. The latter protein is uniformly distributed within the plasma membrane on all sides of the cell in vertically oriented roots. However, it quickly accumulates at the bottom side upon gravis-timulation. This process correlates with a preferential transport of auxin to the bottom side of the root cap, resulting in a lateral gradient across the tip. This gradient is then transported to the elongation zone where it promotes differential cellular elongation, resulting in downward curvature. We isolated mutations that affect gravity signal transduction at a step that pre-cedes cytoplasmic alkalinization and/or PIN3 relocalization and lateral auxin transport across the cap. arg1 and arl2 mutations identify a common genetic pathway that is needed for all three gravity-induced processes in the cap statocytes, indicating these genes function early in the pathway. On the other hand, adk1 affects gravity-induced PIN3 relocalization and lateral auxin transport, but it does not interfere with cytoplasmic alkalinization. ARG1 and ARL2 encode J-domain proteins that are associated with membranes of the vesicular trafficking path-way whereas ADK1 encodes adenosine kinase, an enzyme that converts adenosine derived from nucleic acid metabolism and the AdoMet cycle into AMP, thereby alleviating feedback inhibi-tion of this important methyl-donor cycle. Because mutations in ARG1 (and ARL2) do not completely eliminate gravitropism, we sought genetic enhancers of arg1 as a way to identify new gravity signal transducers. Two of these modifiers, named mar1 and mar2, were found to affect genes that encode two subunits of the plastidic outer-membrane protein import complex, TOC75 and TOC132, respectively. mar2 did not affect the ultrastructure of amyloplasts in the statocytes nor did it alter their ability to sediment in response to gravistimulation, suggesting a role for the outer membrane of the amyloplasts in gravity signal transduction (reviewed in Stanga et al., 2009, Plant Signal Behavior 4(10): 1-9). The contribution of TOC132 in gravity signal transduction is being investigated by analyzing the regions of this protein that are needed for the pathway, and investigating the contribution of a putative TOC132-interacting protein in gravity signal transduction. We have also isolated additional putative enhancers of arg1-2 in the hope of identifying new plastid-associated gravity signal transducers, and have initiated a screen for genetic enhancers of mar2 to seek new transducers in the ARG1 branch of the pathway.

  17. Expression of Arabidopsis class 1 phytoglobin (AtPgb1) delays death and degradation of the root apical meristem during severe PEG-induced water deficit.

    PubMed

    Mira, Mohamed M; Huang, Shuanglong; Kapoor, Karuna; Hammond, Cassandra; Hill, Robert D; Stasolla, Claudio

    2017-11-28

    Maintenance of a functional root is fundamental to plant survival in response to some abiotic stresses, such as water deficit. In this study, we found that overexpression of Arabidopsis class 1 phytoglobin (AtPgb1) alleviated the growth retardation of polyethylene glycol (PEG)-induced water stress by reducing programmed cell death (PCD) associated with protein folding in the endoplasmic reticulum (ER). This was in contrast to PEG-stressed roots down-regulating AtPgb1 that exhibited extensive PCD and reduced expression of several attenuators of ER stress, including BAX Inhibitor-1 (BI-1). The death program experienced by the suppression of AtPgb1 in stressed roots was mediated by reactive oxygen species (ROS) and ethylene. Suppression of ROS synthesis or ethylene perception reduced PCD and partially restored root growth. The PEG-induced cessation of root growth was preceded by structural changes in the root apical meristem (RAM), including the loss of cell and tissue specification, possibly as a result of alterations in PIN1- and PIN4-mediated auxin accumulation at the root pole. These events were attenuated by the overexpression of AtPgb1 and aggravated when AtPgb1 was suppressed. Specifically, suppression of AtPgb1 compromised the functionality of the WOX5-expressing quiescent cells (QCs), leading to the early and premature differentiation of the adjacent columella stem cells and to a rapid reduction in meristem size. The expression and localization of other root domain markers, such as SCARECROW (SCR), which demarks the endodermis and QCs, and WEREWOLF (WER), which specifies the lateral root cap, were also most affected in PEG-treated roots with suppressed AtPgb1. Collectively, the results demonstrate that AtPgb1 exercises a protective role in roots exposed to lethal levels of PEG, and suggest a novel function of this gene in ensuring meristem functionality through the retention of cell fate specification. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  18. Mechanotransduction molecules in the plant gravisensory response: amyloplast/statolith membranes contain a beta 1 integrin-like protein

    NASA Technical Reports Server (NTRS)

    Lynch, T. M.; Lintilhac, P. M.; Domozych, D.

    1998-01-01

    It has been hypothesized that the sedimentation of amyloplasts within root cap cells is the primary event in the plant gravisensory-signal transduction cascade. Statolith sedimentation, with its ability to generate weighty mechanical signals, is a legitimate means for organisms to discriminate the direction of the gravity vector. However, it has been demonstrated that starchless mutants with reduced statolith densities maintain some ability to sense gravity, calling into question the statolith sedimentation hypothesis. Here we report on the presence of a beta 1 integrin-like protein localized inside amyloplasts of tobacco NT-1 suspension culture, callus cells, and whole-root caps. Two different antibodies to the beta 1 integrin, one to the cytoplasmic domain and one to the extracellular domain, localize in the vicinity of the starch grains within amyloplasts of NT-1. Biochemical data reveals a 110-kDa protein immunoprecipitated from membrane fractions of NT-1 suspension culture indicating size homology to known beta 1 integrin in animals. This study provides the first direct evidence for the possibility of integrin-mediated signal transduction in the perception of gravity by higher plants. An integrin-mediated pathway, initiated by starch grain sedimentation within the amyloplast, may provide the signal amplification necessary to explain the gravitropic response in starch-depleted cultivars.

  19. Effects of real or simulated microgravity on plant cell growth and proliferation

    NASA Astrophysics Data System (ADS)

    Medina, Francisco Javier; Manzano, Ana Isabel; Herranz, Raul; Dijkstra, Camelia; Larkin, Oliver; Hill, Richard; Carnero-Díaz, Eugénie; van Loon, Jack J. W. A.; Anthony, Paul; Davey, Michael R.; Eaves, Laurence

    Experiments on seed germination and seedling growth performed in real microgravity on the International Space Station and in different facilities for simulating microgravity in Earth-based laboratories (Random Positioning Machine and Magnetic Levitation), have provided evidence that the absence of gravity (or the artificial compensation of the gravity vector) results in the uncoupling of cell growth and proliferation in root meristematic cells. These are two essential cellular functions that support plant growth and development, which are strictly coordinated under normal ground gravity conditions. Under conditions of altered gravity, we observe that cell proliferation is enhanced, whereas cell growth is reduced, according to different morphometric, cytological and immunocytochemical parameters. Since coordination of cell growth and proliferation are major features of meristematic cells, this observed uncoupling represents a major stress condition for these cells, inducing major alterations in the pattern of plant development. Moreover, the expression of the cyclin B1 gene, a regulator of the entry into mitosis and normally used as an indicator of cell proliferation, appears reduced in the smaller and more actively proliferating cells of samples grown under the conditions of our experiments. These results are compatible with an alteration of the regulation of the cell cycle, producing a shorter G2 period. Interestingly, while cyclin B1 expression is depleted in these conditions in root meristematic cells, it is enhanced in cotyledons of the same seedlings, as shown by qPCR and by the expression of the gus reporter gene. It is known that regulation of root growth (including regulation of root meristematic activity) is driven mainly by auxin, whereas cytokinin is the key hormone regulating cotyledon growth. Therefore, our results indicate a major role of auxin in the sensitivity to altered gravity of root meristematic cells. Auxin is crucial in maintaining the coupling of cell growth and proliferation under normal conditions and it should have a decisive influence in the uncoupling of these processes under altered gravity. Experiments to detect auxin distribution in roots under altered gravity produced by diamagnetic levitation have shown that the lateral balanced distribution of the growth regulator in the root cap is altered slightly and that the total concentration of the auxin detected in root tips is somewhat reduced. These effects are independent of the orientation of statoliths in columella cells.

  20. Effects of norflurazon, an inhibitor of carotenogenesis, on abscisic acid and xanthoxin in the caps of gravistimulated maize roots

    NASA Technical Reports Server (NTRS)

    Feldman, L. J.; Sun, P. S.

    1986-01-01

    Maize seeds were germinated in the dark in the presence of the carotenoid synthesis inhibitor norflurazon and the levels of abscisic acid, xanthoxin and total carotenoids were measured in the root cap and in the adjacent 1.5 mm segment. In norflurazon-treated roots abscisic acid levels were markedly reduced, but an increase occurred in the levels of xanthoxin, a compound structurally and physiologically similar to abscisic acid. In the cultivar of maize (Zea mays L. cv. Merit) used for this work, brief illumination of the root is required for gravitropic curving. Following illumination both control and norflurazon-treated roots showed normal gravitropic curvature; however, the rate of curvature was delayed in norflurazon-treated roots. Our data from norflurazon-treated roots are consistent with a role for xanthoxin in maize root gravitropism. The increase in xanthoxin in the presence of an inhibitor of carotenoid synthesis suggests that xanthoxin and abscisic acid originate, at least in part, via different metabolic pathways.

  1. Purification and immunolocalization of an annexin-like protein in pea seedlings

    NASA Technical Reports Server (NTRS)

    Clark, G. B.; Dauwalder, M.; Roux, S. J.

    1992-01-01

    As part of a study to identify potential targets of calcium action in plant cells, a 35-kDa, annexin-like protein was purified from pea (Pisum sativum L.) plumules by a method used to purify animal annexins. This protein, called p35, binds to a phosphatidylserine affinity column in a calcium-dependent manner and binds 45Ca2+ in a dot-blot assay. Preliminary sequence data confirm a relationship for p35 with the annexin family of proteins. Polyclonal antibodies have been raised which recognize p35 in Western and dot blots. Immunofluorescence and immunogold techniques were used to study the distribution and subcellular localization of p35 in pea plumules and roots. The highest levels of immunostain were found in young developing vascular cells producing wall thickenings and in peripheral root-cap cells releasing slime. This localization in cells which are actively involved in secretion is of interest because one function suggested for the animal annexins is involvement in the mediation of exocytosis.

  2. X-Ray Microanalysis of Human Cementum

    NASA Astrophysics Data System (ADS)

    Alvarez-Pérez, Marco Antonio; Alvarez-Fregoso, Octavio; Ortiz-López, Jaime; Arzate, Higinio

    2005-08-01

    An energy dispersive x-ray microanalysis study was performed throughout the total length of cementum on five impacted human teeth. Mineral content of calcium, phosphorous, and magnesium were determined with an electron probe from the cemento-enamel junction to the root apex on the external surface of the cementum. The concentration profiles for calcium, phosphorous, and magnesium were compared by using Ca/P and Mg/Ca atomic percent ratio. Our findings demonstrated that the Ca/P ratio at the cemento-enamel junction showed the highest values (1.8 2.2). However, the area corresponding to the acellular extrinsic fiber cementum (AEFC) usually located on the coronal one-third of the root surface showed a Ca/P media value of 1.65. Nevertheless, on the area representing the fulcrum of the root there is an abrupt change in the Ca/P ratio, which decreases to 1.3. Our results revealed that Mg2+ distribution throughout the length of human cementum reached its maximum Mg/Ca ratio value of 1.3 1.4 at.% around the fulcrum of the root and an average value of 0.03%. A remarkable finding was that the Mg/Ca ratio pattern distribution showed that in the region where the Ca/P ratio showed a decreasing tendency, the Mg/Ca ratio reached its maximum value, showing a negative correlation. In conclusion, this study has established that clear compositional differences exist between AEFC and cellular mixed stratified cementum varieties and adds new knowledge about Mg2+ distribution and suggests its provocative role regulating human cementum metabolism.

  3. Roles of BOR2, a Boron Exporter, in Cross Linking of Rhamnogalacturonan II and Root Elongation under Boron Limitation in Arabidopsis1[W

    PubMed Central

    Miwa, Kyoko; Wakuta, Shinji; Takada, Shigeki; Ide, Koji; Takano, Junpei; Naito, Satoshi; Omori, Hiroyuki; Matsunaga, Toshiro; Fujiwara, Toru

    2013-01-01

    Boron (B) is required for cross linking of the pectic polysaccharide rhamnogalacturonan II (RG-II) and is consequently essential for the maintenance of cell wall structure. Arabidopsis (Arabidopsis thaliana) BOR1 is an efflux B transporter for xylem loading of B. Here, we describe the roles of BOR2, the most similar paralog of BOR1. BOR2 encodes an efflux B transporter localized in plasma membrane and is strongly expressed in lateral root caps and epidermis of elongation zones of roots. Transfer DNA insertion of BOR2 reduced root elongation by 68%, whereas the mutation in BOR1 reduced it by 32% under low B availability (0.1 µm), but the reduction in shoot growth was not as obvious as that in the BOR1 mutant. A double mutant of BOR1 and BOR2 exhibited much more severe growth defects in both roots and shoots under B-limited conditions than the corresponding single mutants. All single and double mutants grew normally under B-sufficient conditions. These results suggest that both BOR1 and BOR2 are required under B limitation and that their roles are, at least in part, different. The total B concentrations in roots of BOR2 mutants were not significantly different from those in wild-type plants, but the proportion of cross-linked RG-II was reduced under low B availability. Such a reduction in RG-II cross linking was not evident in roots of the BOR1 mutant. Thus, we propose that under B-limited conditions, transport of boric acid/borate by BOR2 from symplast to apoplast is required for effective cross linking of RG-II in cell wall and root cell elongation. PMID:24114060

  4. Determination of stress responses induced by aluminum in maize (Zea mays).

    PubMed

    Vardar, Filiz; Ismailoğlu, Işil; Inan, Deniz; Unal, Meral

    2011-06-01

    To assess the alternative responses to aluminum toxicity, maize (Zea mays L. cv Karadeniz yıldızı) roots were exposed to different concentrations of AlCl3 (150, 300 and 450 μM). Aluminum reduced the root elongation by 39.6% in 150 μM, 44.1% in 300 μM, 50.1% in 450 μM AlCl3 after 96 h period. To correlate the root elongation with the alternative stress responses including aluminum accumulation, lipid peroxidation, mitotic abnormalities, reduction of starch content, intracellular Ca2+ accumulation, callose formation, lignin deposition and peroxidase activity, cytochemical and biochemical tests were performed. The results indicated that aluminum accumulation and lipid peroxidation were observed more densely on the root cap and the outer cortex cells. In addition to morphological deformations, cytochemical analysis displayed cellular deformations. Furthermore, mitotic abnormalities were observed such as c-mitosis, micronuclei, bi- and trinucleated cells in aluminum treated root tips. Aluminum treatment induced starch reduction, callose formation, lignin accumulation and intracellular Ca2+ increase. Moreover, the peroxidase activity increased significantly by 3, 4.4 and 7.7 times higher than in that of control after 96 h, respectively. In conclusion, aluminum is significantly stressful in maize culminating in morphological and cellular alterations.

  5. Exploring the structural basis for selenium/mercury antagonism in Allium fistulosum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McNear, Jr., David H.; Afton, Scott E.; Caruso, Joseph A.

    While continuing efforts are devoted to studying the mutually protective effect of mercury and selenium in mammals, few studies have investigated the mercury-selenium antagonism in plants. In this study, we report the metabolic fate of mercury and selenium in Allium fistulosum (green onion) after supplementation with sodium selenite and mercuric chloride. Analysis of homogenized root extracts via capillary reversed phase chromatography coupled with inductively coupled plasma mass spectrometry (capRPLC-ICP-MS) suggests the formation of a mercury-selenium containing compound. Micro-focused synchrotron X-ray fluorescence mapping of freshly excised roots show Hg sequestered on the root surface and outlining individual root cells, while Semore » is more evenly distributed throughout the root. There are also discrete Hg-only, Se-only regions and an overall strong correlation between Hg and Se throughout the root. Analysis of the X-ray absorption near edge structure (XANES) spectra show a 'background' of methylselenocysteine within the root with discrete spots of SeO{sub 3}{sup 2-}, Se{sup 0} and solid HgSe on the root surface. Mercury outlining individual root cells is possibly binding to sulfhydryl groups or plasma membrane or cell wall proteins, and in some places reacting with reduced selenium in the rhizosphere to form a mercury(II) selenide species. Together with the formation of the root-bound mercury(II) selenide species, we also report on the formation of cinnabar (HgS) and Hg{sup 0} in the rhizosphere. The results presented herein shed light on the intricate chemical and biological processes occurring within the rhizosphere that influence Hg and Se bioavailability and will be instrumental in predicting the fate and assisting in the remediation of these metals in the environment and informing whether or not fruit and vegetable food selection from aerial plant compartments or roots from plants grown in Hg contaminated soils, are safe for consumption.« less

  6. Spatial separation of light perception and growth response in maize root phototropism.

    PubMed

    Mullen, J L; Wolverton, C; Ishikawa, H; Hangarter, R P; Evans, M L

    2002-09-01

    Although the effects of gravity on root growth are well known and interactions between light and gravity have been reported, details of root phototropic responses are less documented. We used high-resolution image analysis to study phototropism in primary roots of Zea mays L. Similar to the location of perception in gravitropism, the perception of light was localized in the root cap. Phototropic curvature away from the light, on the other hand, developed in the central elongation zone, more basal than the site of initiation of gravitropic curvature. The phototropic curvature saturated at approximately 10 micromoles m-2 s-1 blue light with a peak curvature of 29 +/- 4 degrees, in part due to induction of positive gravitropism following displacement of the root tip from vertical during negative phototropism. However, at higher fluence rates, development of phototropic curvature is arrested even if gravitropism is avoided by maintaining the root cap vertically using a rotating feedback system. Thus continuous illumination can cause adaptation in the signalling pathway of the phototropic response in roots.

  7. Intensity of hydrostimulation for the induction of root hydrotropism and its sensing by the root cap

    NASA Technical Reports Server (NTRS)

    Takahashi, H.; Scott, T. K.

    1993-01-01

    Roots of Pisum sativum L. and Zea mays L. were exposed to different moisture gradients established by placing both wet cheesecloth (hydrostimulant) and saturated aqueous solutions of various salts in a closed chamber. Atmospheric conditions with different relative humidity (RH) in a range between 98 and 86% RH were obtained at root level, 2 to 3mm from the water-saturated hydrostimulant. Roots of Silver Queen corn placed vertically with the tips down curved sideways toward the hydrostimulant in response to approximately 94% RH but did not respond positively to RH higher than approximately 95%. The positive hydrotropic response increased linearly as RH was lowered from 95 to 90%. A maximum response was observed at RH between 90 and 86%. However, RH required for the induction of hydrotropism as well as the responsiveness differed among plant species used; gravitropically sensitive roots appeared to require a somewhat greater moisture gradient for the induction of hydrotropism. Decapped roots of corn failed to curve hydrotropically, suggesting the root cap as a major site of hydrosensing.

  8. Spatial separation of light perception and growth response in maize root phototropism

    NASA Technical Reports Server (NTRS)

    Mullen, J. L.; Wolverton, C.; Ishikawa, H.; Hangarter, R. P.; Evans, M. L.

    2002-01-01

    Although the effects of gravity on root growth are well known and interactions between light and gravity have been reported, details of root phototropic responses are less documented. We used high-resolution image analysis to study phototropism in primary roots of Zea mays L. Similar to the location of perception in gravitropism, the perception of light was localized in the root cap. Phototropic curvature away from the light, on the other hand, developed in the central elongation zone, more basal than the site of initiation of gravitropic curvature. The phototropic curvature saturated at approximately 10 micromoles m-2 s-1 blue light with a peak curvature of 29 +/- 4 degrees, in part due to induction of positive gravitropism following displacement of the root tip from vertical during negative phototropism. However, at higher fluence rates, development of phototropic curvature is arrested even if gravitropism is avoided by maintaining the root cap vertically using a rotating feedback system. Thus continuous illumination can cause adaptation in the signalling pathway of the phototropic response in roots.

  9. Morpho-anatomical and growth alterations induced by arsenic in Cajanus cajan (L.) DC (Fabaceae).

    PubMed

    Pita-Barbosa, Alice; Gonçalves, Elton Carvalho; Azevedo, Aristéa Alves

    2015-08-01

    Arsenic (As) is a toxic element to most organisms. Studies investigating anatomic alterations due to As exposure in plants are scarce but of utmost importance to the establishment of environmental biomonitoring techniques. So, this study aimed to investigate the effects of As on the development and initial root growth in Cajanus cajan (Fabaceae), characterize and quantify the possible damages, evaluate genotoxic effects, and identify structural markers to be used in environmental bioindication. Plants were exposed hydroponically to 0.5, 1.0, 1.5, and 2.0 mg As L(-1), as sodium arsenate. Growth parameters were measured, and in the end of the exposure, root samples were analyzed for qualitative and quantitative anatomical alterations. Arsenic genotoxicity was evaluated through analysis of the mitotic index in the root apex. Compared to the control, As-treated seedlings showed an altered architecture, with significantly decreased root length (due to the lower mitotic index in the apical meristem and reduced elongation of parenchyma cells) with darkened color, and abnormal development of the root cap. A significant increase in vascular cylinder/root diameter ratio was also detected, due to the reduction of the cellular spaces in the cortex. The secondary xylem vessel elements were reduced in diameter and had sinuous walls. The severest damage was visible in the ramification zone, where uncommon division planes of phellogen and cambium cells and disintegration of the parenchyma cells adjacent to lateral roots were observed. The high sensibility of C. cajan to As was confirmed, since it caused severe damages in root growth and anatomy. The main structural markers for As toxicity were the altered root architecture, with the reduction of the elongation zone and increase of ramification zone length, and the root primordia retained within the cortex. Our results show a new approach about As toxicity and indicate that C. cajan is a promising species to be used for bioindication of environmental contamination by As.

  10. Auxin transport and response requirements for root hydrotropism differ between plant species.

    PubMed

    Nakajima, Yusuke; Nara, Yoshitaka; Kobayashi, Akie; Sugita, Tomoki; Miyazawa, Yutaka; Fujii, Nobuharu; Takahashi, Hideyuki

    2017-06-15

    The direction of auxin transport changes in gravistimulated roots, causing auxin accumulation in the lower side of horizontally reoriented roots. This study found that auxin was similarly involved in hydrotropism and gravitropism in rice and pea roots, but hydrotropism in Lotus japonicus roots was independent of both auxin transport and response. Application of either auxin transport inhibitors or an auxin response inhibitor decreased both hydrotropism and gravitropism in rice roots, and reduced hydrotropism in pea roots. However, Lotus roots treated with these inhibitors showed reduced gravitropism but an unaltered or an enhanced hydrotropic response. Inhibiting auxin biosynthesis substantially reduced both tropisms in rice and Lotus roots. Removing the final 0.2 mm (including the root cap) from the root tip inhibited gravitropism but not hydrotropism in rice seedling roots. These results suggested that modes of auxin involvement in hydrotropism differed between plant species. In rice roots, although auxin transport and responses were required for both gravitropism and hydrotropism, the root cap was involved in the auxin regulation of gravitropism but not hydrotropism. Hydrotropism in Lotus roots, however, may be regulated by a novel mechanism that is independent of both auxin transport and the TIR1/AFBs auxin response pathway. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  11. Patterns of auxin and abscisic acid movement in the tips of gravistimulated primary roots of maize

    NASA Technical Reports Server (NTRS)

    Young, L. M.; Evans, M. L.

    1996-01-01

    Because both abscisic acid (ABA) and auxin (IAA) have been suggested as possible chemical mediators of differential growth during root gravitropism, we compared with redistribution of label from applied 3H-IAA and 3H-ABA during maize root gravitropism and examined the relative basipetal movement of 3H-IAA and 3H-ABA applied to the caps of vertical roots. Lateral movement of 3H-ABA across the tips of vertical roots was non-polar and about 2-fold greater than lateral movement of 3H-IAA (also non-polar). The greater movement of ABA was not due to enhanced uptake since the uptake of 3H-IAA was greater than that of 3H-ABA. Basipetal movement of label from 3H-IAA or 3H-ABA applied to the root cap was determined by measuring radioactivity in successive 1 mm sections behind the tip 90 minutes after application. ABA remained largely in the first mm (point of application) whereas IAA was concentrated in the region 2-4 mm from the tip with substantial levels found 7-8 mm from the tip. Pretreatment with inhibitors of polar auxin transport decreased both gravicurvature and the basipetal movement of IAA. When roots were placed horizontally, the movement of 3H-IAA from top to bottom across the cap was enhanced relative to movement from bottom to top whereas the pattern of movement of label from 3H-ABA was unaffected. These results are consistent with the hypothesis that IAA plays a role in root gravitropism but contrary to the idea that gravi-induced asymmetric distribution of ABA contributes to the response.

  12. Alfalfa Mob1-like proteins are involved in cell proliferation and are localized in the cell division plane during cytokinesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Citterio, Sandra; Piatti, Simonetta; Albertini, Emidio

    2006-04-15

    Mps-one-binder (Mob) proteins play a crucial role in yeast cytokinesis. After cloning two Mob1-like genes, MsMob1-A and MsMob1-B from alfalfa (Medicago sativa L.) we show that, although they are constitutively expressed in roots, stems, leaves, flowers and pods, their transcripts and proteins are mostly produced in actively proliferating tissues. A polyclonal antibody specifically raised against MsMob1 proteins was used for immunolocalization studies in synchronized root tip cells. The subcellular localization of MsMob1-like proteins is demonstrated to be cell cycle-regulated. Cytoplasmic localization is faint and diffused during G{sub 1} and S. It becomes concentrated in punctuate and fibrillar structures in G{submore » 2} as well as M phase. At the stage of cytokinesis, the protein is found at the emerging cell plate marking the progressive formation of the septum. Mob1 proteins partially co-localize with microtubules structures functionally related to the spindles and important for cytokinesis in eukaryotic cells. The MsMob1 expression cannot rescue the lethality of the yeast mob1 mutant, suggesting that interaction of Mob1 proteins with their effectors may be species-specific. Localization of Mob1 proteins in the inner layer of the root cap indicates an additional function for this class of proteins in plants, which is likely related to the onset of programmed cell death.« less

  13. Pectinous cell wall thickenings formation - A common defense strategy of plants to cope with Pb.

    PubMed

    Krzesłowska, Magdalena; Rabęda, Irena; Basińska, Aneta; Lewandowski, Michał; Mellerowicz, Ewa J; Napieralska, Anna; Samardakiewicz, Sławomir; Woźny, Adam

    2016-07-01

    Lead, one of the most abundant and hazardous trace metals affecting living organisms, has been commonly detected in plant cell walls including some tolerant plants, mining ecotypes and hyperaccumulators. We have previously shown that in tip growing Funaria sp. protonemata cell wall is remodeled in response to lead by formation of thickenings rich in low-methylesterified pectins (pectin epitope JIM5 - JIM5-P) able to bind metal ions, which accumulate large amounts of Pb. Hence, it leads to the increase of cell wall capacity for Pb compartmentalization. Here we show that diverse plant species belonging to different phyla (Arabidopsis, hybrid aspen, star duckweed), form similar cell wall thickenings in response to Pb. These thickenings are formed in tip growing cells such as the root hairs, and in diffuse growing cells such as meristematic and root cap columella cells of root apices in hybrid aspen and Arabidopsis and in mesophyll cells in star duckweed fronds. Notably, all analyzed cell wall thickenings were abundant in JIM5-P and accumulated high amounts of Pb. In addition, the co-localization of JIM5-P and Pb commonly occurred in these cells. Hence, cell wall thickenings formed the extra compartment for Pb accumulation. In this way plant cells increased cell wall capacity for compartmentalization of this toxic metal, protecting protoplast from its toxicity. As cell wall thickenings occurred in diverse plant species and cell types differing in the type of growth we may conclude that pectinous cell wall thickenings formation is a widespread defense strategy of plants to cope with Pb. Moreover, detection of natural defense strategy, increasing plant cell walls capacity for metal accumulation, reveals a promising direction for enhancing plant efficiency in phytoremediation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Root growth regulation and gravitropism in maize roots does not require the epidermis

    NASA Technical Reports Server (NTRS)

    Bjorkman, T.; Cleland, R. E.

    1991-01-01

    We have earlier published observations showing that endogenous alterations in growth rate during gravitropism in maize roots (Zea mays L.) are unaffected by the orientation of cuts which remove epidermal and cortical tissue in the growing zone (Bjorkman and Cleland, 1988, Planta 176, 513-518). We concluded that the epidermis and cortex are not essential for transporting a growth-regulating signal in gravitropism or straight growth, nor for regulating the rate of tissue expansion. This conclusion has been challenged by Yang et al. (1990, Planta 180, 530-536), who contend that a shallow girdle around the entire perimeter of the root blocks gravitropic curvature and that this inhibition is the result of a requirement for epidermal cells to transport the growth-regulating signal. In this paper we demonstrate that the entire epidermis can be removed without blocking gravitropic curvature and show that the position of narrow girdles does not affect the location of curvature. We therefore conclude that the epidermis is not required for transport of a growth-regulating substance from the root cap to the growing zone, nor does it regulate the growth rate of the elongating zone of roots.

  15. Highly diverse microbiota in dental root canals in cases of apical periodontitis (data of illumina sequencing).

    PubMed

    Vengerfeldt, Veiko; Špilka, Katerina; Saag, Mare; Preem, Jens-Konrad; Oopkaup, Kristjan; Truu, Jaak; Mändar, Reet

    2014-11-01

    Chronic apical periodontitis (CAP) is a frequent condition that has a considerable effect on a patient's quality of life. We aimed to reveal root canal microbial communities in antibiotic-naive patients by applying Illumina sequencing (Illumina Inc, San Diego, CA). Samples were collected under strict aseptic conditions from 12 teeth (5 with primary CAP, 3 with secondary CAP, and 4 with a periapical abscess [PA]) and characterized by profiling the microbial community on the basis of the V6 hypervariable region of the 16S ribosomal RNA gene by using Illumina HiSeq2000 sequencing combinatorial sequence-tagged polymerase chain reaction products. Root canal specimens displayed highly polymicrobial communities in all 3 patient groups. One sample contained 5-8 (mean = 6.5) phyla of bacteria. The most numerous were Firmicutes and Bacteroidetes, but Actinobacteria, Fusobacteria, Proteobacteria, Spirochaetes, Tenericutes, and Synergistetes were also present in most of the patients. One sample contained 30-70 different operational taxonomic units; the mean (± standard deviation) was lower in the primary CAP group (36 ± 4) than in the PA (45 ± 4) and secondary CAP (43 ± 13) groups (P < .05). The communities were individually different, but anaerobic bacteria predominated as the rule. Enterococcus faecalis was found only in patients with secondary CAP. One PA sample displayed a significantly high proportion (47%) of Proteobacteria, mainly at the expense of Janthinobacterium lividum. This study provided an in-depth characterization of the microbiota of periapical tissues, revealing highly polymicrobial communities and minor differences between the study groups. A full understanding of the etiology of periodontal disease will only be possible through further in-depth systems-level analyses of the host-microbiome interaction. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  16. Root Secreted Metabolites and Proteins Are Involved in the Early Events of Plant-Plant Recognition Prior to Competition

    PubMed Central

    Badri, Dayakar V.; De-la-Peña, Clelia; Lei, Zhentian; Manter, Daniel K.; Chaparro, Jacqueline M.; Guimarães, Rejane L.; Sumner, Lloyd W.; Vivanco, Jorge M.

    2012-01-01

    The mechanism whereby organisms interact and differentiate between others has been at the forefront of scientific inquiry, particularly in humans and certain animals. It is widely accepted that plants also interact, but the degree of this interaction has been constricted to competition for space, nutrients, water and light. Here, we analyzed the root secreted metabolites and proteins involved in early plant neighbor recognition by using Arabidopsis thaliana Col-0 ecotype (Col) as our focal plant co-cultured in vitro with different neighbors [A. thaliana Ler ecotype (Ler) or Capsella rubella (Cap)]. Principal component and cluster analyses revealed that both root secreted secondary metabolites and proteins clustered separately between the plants grown individually (Col-0, Ler and Cap grown alone) and the plants co-cultured with two homozygous individuals (Col-Col, Ler-Ler and Cap-Cap) or with different individuals (Col-Ler and Col-Cap). In particularly, we observed that a greater number of defense- and stress- related proteins were secreted when our control plant, Col, was grown alone as compared to when it was co-cultured with another homozygous individual (Col-Col) or with a different individual (Col-Ler and Col-Cap). However, the total amount of defense proteins in the exudates of the co-cultures was higher than in the plant alone. The opposite pattern of expression was identified for stress-related proteins. These data suggest that plants can sense and respond to the presence of different plant neighbors and that the level of relatedness is perceived upon initial interaction. Furthermore, the role of secondary metabolites and defense- and stress-related proteins widely involved in plant-microbe associations and abiotic responses warrants reassessment for plant-plant interactions. PMID:23056382

  17. The ARG1-LIKE2 gene of Arabidopsis functions in a gravity signal transduction pathway that is genetically distinct from the PGM pathway

    NASA Technical Reports Server (NTRS)

    Guan, Changhui; Rosen, Elizabeth S.; Boonsirichai, Kanokporn; Poff, Kenneth L.; Masson, Patrick H.

    2003-01-01

    The arl2 mutants of Arabidopsis display altered root and hypocotyl gravitropism, whereas their inflorescence stems are fully gravitropic. Interestingly, mutant roots respond like the wild type to phytohormones and an inhibitor of polar auxin transport. Also, their cap columella cells accumulate starch similarly to wild-type cells, and mutant hypocotyls display strong phototropic responses to lateral light stimulation. The ARL2 gene encodes a DnaJ-like protein similar to ARG1, another protein previously implicated in gravity signal transduction in Arabidopsis seedlings. ARL2 is expressed at low levels in all organs of seedlings and plants. arl2-1 arg1-2 double mutant roots display kinetics of gravitropism similar to those of single mutants. However, double mutants carrying both arl2-1 and pgm-1 (a mutation in the starch-biosynthetic gene PHOSPHOGLUCOMUTASE) at the homozygous state display a more pronounced root gravitropic defect than the single mutants. On the other hand, seedlings with a null mutation in ARL1, a paralog of ARG1 and ARL2, behave similarly to the wild type in gravitropism and other related assays. Taken together, the results suggest that ARG1 and ARL2 function in the same gravity signal transduction pathway in the hypocotyl and root of Arabidopsis seedlings, distinct from the pathway involving PGM.

  18. Uptake, Distribution, and Transformation of CuO NPs in a Floating Plant Eichhornia crassipes and Related Stomatal Responses.

    PubMed

    Zhao, Jian; Ren, Wenting; Dai, Yanhui; Liu, Lijiao; Wang, Zhenyu; Yu, Xiaoyu; Zhang, Junzhe; Wang, Xiangke; Xing, Baoshan

    2017-07-05

    Engineered nanoparticles (NPs) are being released into aquatic environments with their increasing applications. In this work, we investigated the interaction of CuO NPs with a floating plant, water hyacinth (Eichhornia crassipes). CuO NPs (50 mg/L) showed significant growth inhibition on both roots and shoots of E. crassipes after 8-day exposure, much higher than that of the bulk CuO particles (50 mg/L) and their corresponding dissolved Cu 2+ ions (0.30 mg/L). Scanning electron and light microscopic observations showed that the root caps and meristematic zone of E. Crassipes were severely damaged after CuO NP exposure, with disordered cell arrangement and a destroyed elongation zone of root tips. It is confirmed that CuO NPs could be translocated to shoot from both roots and submerged leaves. As detected by X-ray absorption near-edge spectroscopy analysis (XANES), CuO NPs were observed in roots, submerged leaves, and emerged leaves. Cu 2 S and other Cu species were also detected in these tissues, providing solid evidence of the transformation of CuO NPs. In addition, stomatal closure was observed during CuO NPs-leaf contact, which was induced by the production of H 2 O 2 and increased Ca level in leaf guard cells. These findings are helpful for better understanding the fate of NPs in aquatic plants and related biological responses.

  19. Actin Cytoskeleton-Based Plant Synapse as Gravitransducer in the Transition Zone of the Root Apex

    NASA Astrophysics Data System (ADS)

    Baluska, Frantisek; Barlow, Peter; Volkmann, Dieter; Mancuso, Stefano

    The actin cytoskeleton was originally proposed to act as the signal transducer in the plant gravity sensory-motoric circuit. Surprisingly, however, several studies have documented that roots perfom gravisensing and gravitropism more effectively if exposed to diverse anti-F-actin drugs. Our study, using decapped maize root apices, has revealed that depolymerization of F-actin stimulates gravity perception in cells of the transition zone where root gravitropism is initiated (Mancuso et al. 2006). It has been proposed (Balǔka et al. 2005, 2009a) that s the non-growing adhesive end-poles, enriched with F-actin and myosin VIII, and active in endocytic recycling of both PIN transporters and cell wall pectins cross-linked with calcium and boron, act as the gravisensing domains, and that these impinge directly upon the root motoric responses via control of polar auxin transport. This model suggests that mechanical asymmetry at these plant synapses determines vectorial gravity-controlled auxin transport. Due to the gravity-imposed mechanical load upon the protoplast, a tensional stress is also imposed upon the plasma membrane of the physically lower synaptic cell pole. This stress is then relieved by shifting the endocytosis-exocytosis balance towards exocytosis (Balǔka et al. s 2005, 2009a,b). This `Synaptic Auxin Secretion' hypothesis does not conflict with the `Starch Statolith' hypothesis, which is based on amyloplast sedimentation. In fact, the `Synaptic Auxin Secretion' hypothesis has many elements which allow its unification with the Starch-Statolith model (Balǔka et al. 2005, 2009a,b). s References Balǔka F, Volkmann D, Menzel D (2005) Plant synapses: actin-based adhesion s domains for cell-to-cell communication. Trends Plant Sci 10: 106-111 Balǔka F, Schlicht M, s Wan Y-L, Burbach C, Volkmann D (2009a) Intracellular domains and polarity in root apices: from synaptic domains to plant neurobiology. Nova Acta Leopoldina 96: 103-122 Balǔka s F, Mancuso S, Volkmann D, Barlow PW (2009b) The 'root-brain' hypothesis of Charles and Francis Darwin: Revival after more than 125 years. Plant Signal Behav 4: 1121-1127 Mancuso S, Barlow PW, Volkmann D, Balǔka F (2006). Actin turnover-mediated gravity response in s maize root apices: gravitropism of decapped roots implicates gravisensing outside of the root cap. Plant Signal Behav 1: 52-58

  20. Effect of inhibitors of auxin transport and of calmodulin on a gravisensing-dependent current in maize roots

    NASA Technical Reports Server (NTRS)

    Bjorkman, T.; Leopold, A. C.

    1987-01-01

    Some characteristics of the gravity sensing mechanism in maize root caps were investigated using a bioelectric current as an indicator of gravity sensing. This technique involves the measurement of a change in the current density which arises at the columella region coincidently with the presentation time. Two inhibitors of auxin transport, triiodobenzoic acid and naphthylphthalamic acid, blocked gravitropic curvature but not the change in current density. Two inhibitors of calmodulin activity, compound 48/80 and calmidazolium, blocked both curvature and gravity-induced current. The results suggest that auxin transport is not a component of gravity sensing in the root cap. By contrast, the results suggest that calmodulin plays an intrinsic role in gravity sensing.

  1. Specification and spatial arrangement of cells in the germline stem cell niche of the Drosophila ovary depend on the Maf transcription factor Traffic jam

    PubMed Central

    Panchal, Trupti; Chen, Xi; Poon, James; Kouptsova, Jane

    2017-01-01

    Germline stem cells in the Drosophila ovary are maintained by a somatic niche. The niche is structurally and functionally complex and contains four cell types, the escort, cap, and terminal filament cells and the newly identified transition cell. We find that the large Maf transcription factor Traffic jam (Tj) is essential for determining niche cell fates and architecture, enabling each niche in the ovary to support a normal complement of 2–3 germline stem cells. In particular, we focused on the question of how cap cells form. Cap cells express Tj and are considered the key component of a mature germline stem cell niche. We conclude that Tj controls the specification of cap cells, as the complete loss of Tj function caused the development of additional terminal filament cells at the expense of cap cells, and terminal filament cells developed cap cell characteristics when induced to express Tj. Further, we propose that Tj controls the morphogenetic behavior of cap cells as they adopted the shape and spatial organization of terminal filament cells but otherwise appeared to retain their fate when Tj expression was only partially reduced. Our data indicate that Tj contributes to the establishment of germline stem cells by promoting the cap cell fate, and controls the stem cell-carrying capacity of the niche by regulating niche architecture. Analysis of the interactions between Tj and the Notch (N) pathway indicates that Tj and N have distinct functions in the cap cell specification program. We propose that formation of cap cells depends on the combined activities of Tj and the N pathway, with Tj promoting the cap cell fate by blocking the terminal filament cell fate, and N supporting cap cells by preventing the escort cell fate and/or controlling the number of cap cell precursors. PMID:28542174

  2. Origin, timing, and gene expression profile of adventitious rooting in Arabidopsis hypocotyls and stems.

    PubMed

    Welander, Margareta; Geier, Thomas; Smolka, Anders; Ahlman, Annelie; Fan, Jing; Zhu, Li-Hua

    2014-02-01

    Adventitious root (AR) formation is indispensable for vegetative propagation, but difficult to achieve in many crops. Understanding its molecular mechanisms is thus important for such species. Here we aimed at developing a rooting protocol for direct AR formation in stems, locating cellular AR origins in stems and exploring molecular differences underlying adventitious rooting in hypocotyls and stems. In-vitro-grown hypocotyls or stems of wild-type and transgenic ecotype Columbia (Col-0) of Arabidopsis thaliana were rooted on rooting media. Anatomy of AR formation, qRT-PCR of some rooting-related genes and in situ GUS expression were carried out during rooting from hypocotyls and stems. We developed a rooting protocol for AR formation in stems and traced back root origins in stems by anatomical and in situ expression studies. Unlike rooting in hypocotyls, rooting in stems was slower, and AR origins were mainly from lateral parenchyma of vascular bundles and neighboring starch sheath cells as well as, to a lesser extent, from phloem cap and xylem parenchyma. Transcript levels of GH3-3, LBD16, LBD29, and LRP1 in hypocotyls and stems were similar, but transcript accumulation was delayed in stems. In situ expression signals of DR5::GUS, LBD16::GUS, LBD29::GUS, and rolB::GUS reporters in stems mainly occurred at the root initiation sites, suggesting their involvement in AR formation. We have developed an efficient rooting protocol using half-strength Lepoivre medium for studying AR formation in stems, traced back the cellular AR origins in stems, and correlated expression of rooting-related genes with root initiation sites.

  3. Plastid sedimentation kinetics in roots of wild-type and starch-deficient mutants of Arabidopsis

    NASA Technical Reports Server (NTRS)

    MacCleery, S. A.; Kiss, J. Z.

    1999-01-01

    Sedimentation and movement of plastids in columella cells of the root cap were measured in seedlings of wild-type, a reduced starch mutant, and a starchless mutant of Arabidopsis. To assay for sedimentation, we used both linear measurements and the change of angle from the cell center as indices in vertical and reoriented plants with the aid of computer-assisted image analysis. Seedlings were fixed at short periods after reorientation, and plastid sedimentation correlated with starch content in the three strains of Arabidopsis. Amyloplasts of wild-type seedlings showed the greatest sedimentation, whereas plastids of the starchless mutant showed no significant sedimentation in the vertically grown and reoriented seedlings. Because previous research has shown that a full complement of starch is needed for full gravitropic sensitivity, this study correlates increased sensitivity with plastid sedimentation. However, although plastid sedimentation contributed to gravisensitivity, it was not required, because the gravitropic starchless mutant had plastids that did not sediment. This is the first study, to our knowledge, to measure plastid sedimentation in Arabidopsis roots after reorientation of seedlings. Taken together, the results of this study are consistent with the classic plastid-based and protoplast-based models of graviperception and suggest that multiple systems of perception exist in plant cells.

  4. Distribution of calmodulin in pea seedlings: immunocytochemical localization in plumules and root apices

    NASA Technical Reports Server (NTRS)

    Dauwalder, M.; Roux, S. J.; Hardison, L.

    1986-01-01

    Immunofluorescence techniques have been used to study the distribution of calmodulin in several tissues in young etiolated pea (Pisum sativum L.) seedlings. A fairly uniform staining was seen in the nucleoplasm and background cytoplasm of most cell types. Cell walls and nucleoli were not stained. In addition, patterned staining reactions were seen in many cells. In cells of the plumule, punctate staining of the cytoplasm was common, and in part this stain appeared to be associated with the plastids. A very distinctive staining of amyloplasts was seen in the columella of the root cap. Staining associated with cytoskeletal elements could be shown in division stages. By metaphase, staining of the spindle region was quite evident. In epidermal cells of the stem and along the underside of the leaf there was an intense staining of the vacuolar contents. Guard cells lacked this vacuolar stain. Vacuolar staining was sometimes seen in cells of the stele, but the most distinctive pattern in the stele was associated with young conducting cells of the xylem. These staining patterns are consistent with the idea that the interactions of plastids and the cytoskeletal may be one of the Ca(2+)-mediated steps in the response of plants to environmental stimuli. Nuclear functions may also be controlled, at least in part, by Ca2+.

  5. Cytoplasmic calcium levels in protoplasts from the cap and elongation zone of maize roots

    NASA Technical Reports Server (NTRS)

    Kiss, H. G.; Evans, M. L.; Johnson, J. D.

    1991-01-01

    Calcium has been implicated as a key component in the signal transduction process of root gravitropism. We measured cytoplasmic free calcium in protoplasts isolated from the elongation zone and cap of primary roots of light-grown, vertically oriented seedlings of Zea mays L. Protoplasts were loaded with the penta-potassium salts of fura-2 and indo-1 by incubation in acidic solutions of these calcium indicators. Loading increased with decreasing pH but the pH dependence was stronger for indo-1 than for fura-2. In the case of fura-2, loading was enhanced only at the lowest pH (4.5) tested. Dyes loaded in this manner were distributed predominantly in the cytoplasm as indicated by fluorescence patterns. As an alternative method of loading, protoplasts were incubated with the acetoxymethylesters of fura-2 and indo-1. Protoplasts loaded by this method exhibited fluorescence both in the cytoplasm and in association with various organelles. Cytoplasmic calcium levels measured using spectrofluorometry, were found to be 160 +/- 40 nM and 257 +/- 27 nM, respectively, in populations of protoplasts from the root cap and elongation zone. Cytoplasmic free calcium did not increase upon addition of calcium to the incubation medium, indicating that the passive permeability to calcium was low.

  6. Root gravitropism: an experimental tool to investigate basic cellular and molecular processes underlying mechanosensing and signal transmission in plants

    NASA Technical Reports Server (NTRS)

    Boonsirichai, K.; Guan, C.; Chen, R.; Masson, P. H.

    2002-01-01

    The ability of plant organs to use gravity as a guide for growth, named gravitropism, has been recognized for over two centuries. This growth response to the environment contributes significantly to the upward growth of shoots and the downward growth of roots commonly observed throughout the plant kingdom. Root gravitropism has received a great deal of attention because there is a physical separation between the primary site for gravity sensing, located in the root cap, and the site of differential growth response, located in the elongation zones (EZs). Hence, this system allows identification and characterization of different phases of gravitropism, including gravity perception, signal transduction, signal transmission, and curvature response. Recent studies support some aspects of an old model for gravity sensing, which postulates that root-cap columellar amyloplasts constitute the susceptors for gravity perception. Such studies have also allowed the identification of several molecules that appear to function as second messengers in gravity signal transduction and of potential signal transducers. Auxin has been implicated as a probable component of the signal that carries the gravitropic information between the gravity-sensing cap and the gravity-responding EZs. This has allowed the identification and characterization of important molecular processes underlying auxin transport and response in plants. New molecular models can be elaborated to explain how the gravity signal transduction pathway might regulate the polarity of auxin transport in roots. Further studies are required to test these models, as well as to study the molecular mechanisms underlying a poorly characterized phase of gravitropism that is independent of an auxin gradient.

  7. Thin calcium phosphate coatings on titanium by electrochemical deposition in modified simulated body fluid.

    PubMed

    Peng, Ping; Kumar, Sunil; Voelcker, Nicolas H; Szili, Endre; Smart, Roger St C; Griesser, Hans J

    2006-02-01

    Adherent and optically semitransparent thin calcium phosphate (CaP) films were electrochemically deposited on titanium substrates in a modified simulated body fluid at 37 degrees C. Coatings deposited by using periodic pulsed potentials showed better adhesion and better mechanical properties than coatings deposited with use of a constant potential. Scanning electron microscopy was used to study the morphology of the coatings. The coatings displayed a polydispersed porous structure with pores in the range of a few nanometers to 1 mum. Furthermore, X-ray diffractometry and the O(1s) satellite peaks in X-ray photoelectron spectroscopy indicated that the coatings possessed a similar surface chemistry to that of natural bone minerals. These results were confirmed by inductively coupled plasma optical emission spectrometry, which yielded a Ca:P ratio of 1.65, close to that of hydroxyapatite. Contact mode atomic force microscopy (AFM) showed the average thickness of the coatings was in the order of 200 nm. Root-mean-square (RMS) roughness values, also derived by AFM, were shown to be much higher on the titanium-CaP surfaces in comparison with untreated titanium substrates, with RMS values of about 300 and 110 nm, respectively. Cell culture experiments showed that the CaP surfaces are nontoxic to MG63 osteoblastic cells in vitro and were able to support cell growth for up to 4 days, outperforming the untreated titanium surface in a direct comparison. These easily prepared coatings show promise for hard-tissue biomaterials. (c) 2005 Wiley Periodicals, Inc.

  8. Girdling and Applying Chemicals Promote Rapid Rooting of Sycamore Cuttings

    Treesearch

    Robert C. Hare

    1975-01-01

    Shoots of 6- and 13-year-old sycamore (Platanus occidentalis L.) were girdled and treated with rooting powder 4 weeks before cuttings were taken. The powder, which contained auxins, sucrose, and cap tan, was also applied basally to nongirdled cuttings immediately before iwertion in a rooting medium. Thirteen days later, 100 percent of the...

  9. Cyclotron-based effects on plant gravitropism

    NASA Astrophysics Data System (ADS)

    Kordyum, E.; Sobol, M.; Kalinina, Ia.; Bogatina, N.; Kondrachuk, A.

    Primary roots exhibit positive gravitropism and grow in the direction of the gravitational vector, while shoots respond negatively and grow opposite to the gravitational vector. We first demonstrated that the use of a weak combined magnetic field (CMF), which is comprised of a permanent magnetic field and an alternating magnetic field with the frequency resonance of the cyclotron frequency of calcium ions, can change root gravitropism from a positive direction to negative direction. Two-day-old cress seedlings were gravistimulated in a chamber that was placed into a μ-metal shield where this CMF was created. Using this "new model" of a root gravitropic response, we have studied some of its components including the movement of amyloplasts-statoliths in root cap statocytes and the distribution of Ca 2+ ions in the distal elongation zone during gravistimulation. Unlike results from the control, amyloplasts did not sediment in the distal part of a statocyte, and more Ca 2+ accumulation was observed in the upper side of a gravistimulated root for seedlings treated with the CMF. For plants treated with the CMF, it appears that a root gravitropic reaction occurs by a normal physiological process resulting in root bending although in the opposite direction. These results support the hypothesis that both the amyloplasts in the root cap statocytes and calcium are important signaling components in plant gravitropism.

  10. Is Pulp Inflammation a Prerequisite for Pulp Healing and Regeneration?

    PubMed

    Goldberg, Michel; Njeh, Akram; Uzunoglu, Emel

    2015-01-01

    The importance of inflammation has been underestimated in pulpal healing, and in the past, it has been considered only as an undesirable effect. Associated with moderate inflammation, necrosis includes pyroptosis, apoptosis, and nemosis. There are now evidences that inflammation is a prerequisite for pulp healing, with series of events ahead of regeneration. Immunocompetent cells are recruited in the apical part. They slide along the root and migrate toward the crown. Due to the high alkalinity of the capping agent, pulp cells display mild inflammation, proliferate, and increase in number and size and initiate mineralization. Pulp fibroblasts become odontoblast-like cells producing type I collagen, alkaline phosphatase, and SPARC/osteonectin. Molecules of the SIBLING family, matrix metalloproteinases, and vascular and nerve mediators are also implicated in the formation of a reparative dentinal bridge, osteo/orthodentin closing the pulp exposure. Beneath a calciotraumatic line, a thin layer identified as reactionary dentin underlines the periphery of the pulp chamber. Inflammatory and/or noninflammatory processes contribute to produce a reparative dentinal bridge closing the pulp exposure, with minute canaliculi and large tunnel defects. Depending on the form and severity of the inflammatory and noninflammatory processes, and according to the capping agent, pulp reactions are induced specifically.

  11. Is Pulp Inflammation a Prerequisite for Pulp Healing and Regeneration?

    PubMed Central

    Goldberg, Michel; Njeh, Akram; Uzunoglu, Emel

    2015-01-01

    The importance of inflammation has been underestimated in pulpal healing, and in the past, it has been considered only as an undesirable effect. Associated with moderate inflammation, necrosis includes pyroptosis, apoptosis, and nemosis. There are now evidences that inflammation is a prerequisite for pulp healing, with series of events ahead of regeneration. Immunocompetent cells are recruited in the apical part. They slide along the root and migrate toward the crown. Due to the high alkalinity of the capping agent, pulp cells display mild inflammation, proliferate, and increase in number and size and initiate mineralization. Pulp fibroblasts become odontoblast-like cells producing type I collagen, alkaline phosphatase, and SPARC/osteonectin. Molecules of the SIBLING family, matrix metalloproteinases, and vascular and nerve mediators are also implicated in the formation of a reparative dentinal bridge, osteo/orthodentin closing the pulp exposure. Beneath a calciotraumatic line, a thin layer identified as reactionary dentin underlines the periphery of the pulp chamber. Inflammatory and/or noninflammatory processes contribute to produce a reparative dentinal bridge closing the pulp exposure, with minute canaliculi and large tunnel defects. Depending on the form and severity of the inflammatory and noninflammatory processes, and according to the capping agent, pulp reactions are induced specifically. PMID:26538825

  12. Nodal endoplasmic reticulum, a specialized form of endoplasmic reticulum found in gravity-sensing root tip columella cells

    NASA Technical Reports Server (NTRS)

    Zheng, H. Q.; Staehelin, L. A.

    2001-01-01

    The endoplasmic reticulum (ER) of columella root cap cells has been postulated to play a role in gravity sensing. We have re-examined the ultrastructure of columella cells in tobacco (Nicotiana tabacum) root tips preserved by high-pressure freezing/freeze-substitution techniques to gain more precise information about the organization of the ER in such cells. The most notable findings are: the identification of a specialized form of ER, termed "nodal ER," which is found exclusively in columella cells; the demonstration that the bulk of the ER is organized in the form of a tubular network that is confined to a peripheral layer under the plasma membrane; and the discovery that this ER-rich peripheral region excludes Golgi stacks, vacuoles, and amyloplasts but not mitochondria. Nodal ER domains consist of an approximately 100-nm-diameter central rod composed of oblong subunits to which usually seven sheets of rough ER are attached along their margins. These domains form patches at the interface between the peripheral ER network and the ER-free central region of the cells, and they occupy defined positions within central and flanking columella cells. Over one-half of the nodal ER domains are located along the outer tangential walls of the flanking cells. Cytochalasin D and latrunculin A cause an increase in size and a decrease in numbers of nodal ER domains. We postulate that the nodal ER membranes locally modulate the gravisensing signals produced by the sedimenting amyloplasts, and that the confinement of all ER membranes to the cell periphery serves to enhance the sedimentability of the amyloplasts in the central region of columella cells.

  13. VIP1 is very important/interesting protein 1 regulating touch responses of Arabidopsis.

    PubMed

    Tsugama, Daisuke; Liu, Shenkui; Takano, Tetsuo

    2016-06-02

    VIP1 (VIRE2-INTERACTING PROTEIN 1) is a bZIP transcription factor in Arabidopsis thaliana. VIP1 and its close homologs (i.e., Arabidopsis group I bZIP proteins) are present in the cytoplasm under steady conditions, but are transiently localized to the nucleus when cells are exposed to hypo-osmotic conditions, which mimic mechanical stimuli such as touch. Recently we have reported that overexpression of a repression domain-fused form of VIP1 represses the expression of some touch-responsive genes, changes structures and/or local auxin responses of the root cap cells, and enhances the touch-induced root waving. This raises the possibility that VIP1 suppresses touch-induced responses. VIP1 should be useful to further characterize touch responses of plants. Here we discuss 2 seemingly interesting perspectives about VIP1: (1) What factors are involved in regulating the nuclear localization of VIP1?; (2) What can be done to further characterize the physiological functions of VIP1 and other Arabidopsis group I bZIP proteins?

  14. Principles of using Cold Atmospheric Plasma Stimulated Media for Cancer Treatment

    PubMed Central

    Yan, Dayun; Talbot, Annie; Nourmohammadi, Niki; Cheng, Xiaoqian; Canady, Jerome; Sherman, Jonathan; Keidar, Michael

    2015-01-01

    To date, the significant anti-cancer capacity of cold atmospheric plasma (CAP) on dozens of cancer cell lines has been demonstrated in vitro and in mice models. Conventionally, CAP was directly applied to irradiate cancer cells or tumor tissue. Over past three years, the CAP irradiated media was also found to kill cancer cells as effectively as the direct CAP treatment. As a novel strategy, using the CAP stimulated (CAPs) media has become a promising anti-cancer tool. In this study, we demonstrated several principles to optimize the anti-cancer capacity of the CAPs media on glioblastoma cells and breast cancer cells. Specifically, using larger wells on a multi-well plate, smaller gaps between the plasma source and the media, and smaller media volume enabled us to obtain a stronger anti-cancer CAPs media composition without increasing the treatment time. Furthermore, cysteine was the main target of effective reactive species in the CAPs media. Glioblastoma cells were more resistant to the CAPs media than breast cancer cells. Glioblastoma cells consumed the effective reactive species faster than breast cancer cells did. In contrast to nitric oxide, hydrogen peroxide was more likely to be the effective reactive species. PMID:26677750

  15. Variation in stem morphology and movement of amyloplasts in white spruce grown in the weightless environment of the International Space Station

    NASA Astrophysics Data System (ADS)

    Rioux, Danny; Lagacé, Marie; Cohen, Luchino Y.; Beaulieu, Jean

    2015-01-01

    One-year-old white spruce (Picea glauca) seedlings were studied in microgravity conditions in the International Space Station (ISS) and compared with seedlings grown on Earth. Leaf growth was clearly stimulated in space whereas data suggest a similar trend for the shoots. Needles on the current shoots of ground-based seedlings were more inclined towards the stem base than those of seedlings grown in the ISS. Amyloplasts sedimented in specialized cells of shoots and roots in seedlings grown on Earth while they were distributed at random in similar cells of seedlings tested in the ISS. In shoots, such amyloplasts were found in starch sheath cells located between leaf traces and cortical cells whereas in roots they were constituents of columella cells of the cap. Nuclei were regularly observed just above the sedimented amyloplasts in both organs. It was also frequent to detect vacuoles with phenolic compounds and endoplasmic reticulum (ER) close to the sedimented amyloplasts. The ER was mainly observed just under these amyloplasts. Thus, when amyloplasts sediment, the pressure exerted on the ER, the organelle that can for instance secrete proteins destined for the plasma membrane, might influence their functioning and play a role in signaling pathways involved in gravity-sensing white spruce cells.

  16. Analysis of radiopacity, pH and cytotoxicity of a new bioceramic material.

    PubMed

    Souza, Letícia Chaves de; Yadlapati, Mamatha; Dorn, Samuel O; Silva, Renato; Letra, Ariadne

    2015-01-01

    RetroMTA® is a new hydraulic bioceramic indicated for pulp capping, perforations or root resorption repair, apexification and apical surgery. The aim of this study was to compare the radiopacity, pH variation and cytotoxicity of this material to ProRoot® MTA. Mixed cements were exposed to a digital x-ray along with an aluminum stepwedge for the radiopacity assay. pH values were verified after incubation period of 3, 24, 48, 72 and 168 hours. The cytotoxicity of each cement was tested on human periodontal ligament fibroblasts using a multiparametric assay. Data analysis was performed using ANOVA and Tukey'spost hoc in GraphPad Prism. ProRoot® MTA had higher radiopacity than RetroMTA®(p<0.001). No significant differences were observed for the pH of the materials throughout experimental periods (p>0.05) although pH levels of both materials reduced over time. Both ProRoot® MTA and RetroMTA® allowed for significantly higher cell viability when compared with the positive control (p<0.001). No statistical difference was observed between ProRoot® MTA and RetroMTA® cytotoxicity level in all test parameters, except for the ProRoot® MTA 48-hour extract media in the NR assay (p<0.05). The current study provides new data about the physicochemical and biological properties of Retro® MTA concerning radiopacity, pH and cytotoxic effects on human periodontal ligaments cells. Based on our findings, RetroMTA® meets the radiopacity requirements standardized by ANSI/ADA number 572, and similar pH values and biocompatibility to ProRoot® MTA. Further studies should be performed to evaluate additional properties of this new material.

  17. TOPOISOMERASE1α Acts through Two Distinct Mechanisms to Regulate Stele and Columella Stem Cell Maintenance.

    PubMed

    Zhang, Yonghong; Zheng, Lanlan; Hong, Jing Han; Gong, Ximing; Zhou, Chun; Pérez-Pérez, José Manuel; Xu, Jian

    2016-05-01

    TOPOISOMERASE1 (TOP1), which releases DNA torsional stress generated during replication through its DNA relaxation activity, plays vital roles in animal and plant development. In Arabidopsis (Arabidopsis thaliana), TOP1 is encoded by two paralogous genes (TOP1α and TOP1β), of which TOP1α displays specific developmental functions that are critical for the maintenance of shoot and floral stem cells. Here, we show that maintenance of two different populations of root stem cells is also dependent on TOP1α-specific developmental functions, which are exerted through two distinct novel mechanisms. In the proximal root meristem, the DNA relaxation activity of TOP1α is critical to ensure genome integrity and survival of stele stem cells (SSCs). Loss of TOP1α function triggers DNA double-strand breaks in S-phase SSCs and results in their death, which can be partially reversed by the replenishment of SSCs mediated by ETHYLENE RESPONSE FACTOR115 In the quiescent center and root cap meristem, TOP1α is epistatic to RETINOBLASTOMA-RELATED (RBR) in the maintenance of undifferentiated state and the number of columella stem cells (CSCs). Loss of TOP1α function in either wild-type or RBR RNAi plants leads to differentiation of CSCs, whereas overexpression of TOP1α mimics and further enhances the effect of RBR reduction that increases the number of CSCs Taken together, these findings provide important mechanistic insights into understanding stem cell maintenance in plants. © 2016 American Society of Plant Biologists. All Rights Reserved.

  18. Root-tip-mediated inhibition of hydrotropism is accompanied with the suppression of asymmetric expression of auxin-inducible genes in response to moisture gradients in cucumber roots

    PubMed Central

    Miyabayashi, Sachiko; Sugita, Tomoki; Kobayashi, Akie; Yamazaki, Chiaki; Miyazawa, Yutaka; Kamada, Motoshi; Kasahara, Haruo; Osada, Ikuko; Shimazu, Toru; Fusejima, Yasuo; Higashibata, Akira; Yamazaki, Takashi; Ishioka, Noriaki; Takahashi, Hideyuki

    2018-01-01

    In cucumber seedlings, gravitropism interferes with hydrotropism, which results in the nearly complete inhibition of hydrotropism under stationary conditions. However, hydrotropic responses are induced when the gravitropic response in the root is nullified by clinorotation. Columella cells in the root cap sense gravity, which induces the gravitropic response. In this study, we found that removing the root tip induced hydrotropism in cucumber roots under stationary conditions. The application of auxin transport inhibitors to cucumber seedlings under stationary conditions suppressed the hydrotropic response induced by the removal of the root tip. To investigate the expression of genes related to hydrotropism in de-tipped cucumber roots, we conducted transcriptome analysis of gene expression by RNA-Seq using seedlings exhibiting hydrotropic and gravitropic responses. Of the 21 and 45 genes asymmetrically expressed during hydrotropic and gravitropic responses, respectively, five genes were identical. Gene ontology (GO) analysis indicated that the category auxin-inducible genes was significantly enriched among genes that were more highly expressed in the concave side of the root than the convex side during hydrotropic or gravitropic responses. Reverse transcription followed by quantitative polymerase chain reaction (RT-qPCR) analysis revealed that root hydrotropism induced under stationary conditions (by removing the root tip) was accompanied by the asymmetric expression of several auxin-inducible genes. However, intact roots did not exhibit the asymmetric expression patterns of auxin-inducible genes under stationary conditions, even in the presence of a moisture gradient. These results suggest that the root tip inhibits hydrotropism by suppressing the induction of asymmetric auxin distribution. Auxin transport and distribution not mediated by the root tip might play a role in hydrotropism in cucumber roots. PMID:29324818

  19. The model of root graviresponse with retarded arguments

    NASA Astrophysics Data System (ADS)

    Kondrachuk, Alexander

    The graviperception mechanism (GPM) of the roots of higher plants localized in the cap region of a root and supposedly related to statoliths sedimentation produces the signals in response to the change of the root axis orientation relative to the gravity vector G. Meanwhile, the regions (Distal Elongation Zone -DEZ and Central Elongation Zone-CEZ), where the signals initiate the changes of the growth rates of the upper and lower flanks of the root, are located at the significant distances from the cap (thousands microns for some plants). It causes the time delays between the relocation of statoliths in statocytes and the change of the growth rates in elongation zones. It is suggested that the signal targeting the CEZ modulates the initially uniform lateral distribution of some specific substances (S) in the cap region. Then already nonhomogeneous lateral distribution of S is transferred to the CEZ to initiate the change of the growth rates of the opposite flanks. It results in the bending of the root in the line of G and thus in the change of the GPM signal in the cap region. In the present model the kinetics of a root apex bending (angle A) in response to the time (t)-dependent change of the G orientation is described by the integro-differential equation in A(t). The main peculiarity of this model is the presence of retarded (time-delayed) arguments t-TCEZ and t-TDEZ . In this case the solutions of this equation depend on the preceding kinetics of A(t) during the time delays TCEZ and TDEZ . It is suggested that the signals activating the CEZ and DEZ are of different nature. The work is focused on two problems concerning the modeling of the effects of time-delay(s) on the root bending. The first problem supposes the existence of one zone (CEZ) and one time-delay TCEZ . This equation was studied and solved using analytical and numerical methods. We analyzed the model as to whether it can be used to describe the kinetics of root graviresponse in the case of different orientations of the root apex relative to the G vector during the time interval equal to TCEZ (TCEZ > TDEZ ) that precedes the beginning of gravistimultion. Also we explored the conditions of the overshooting (the vertical) and non-overshooting regimes of gravistimulated root bending. Good correlation between the results of the modeling and known experimental data (Barlow et al, 1993, Stochkus, 1994, Mullen, 1998) was found. This allowed us to estimate and analyze the parameters of the model. The second problem supposed the existence of two zones of growth (CEZ and DEZ) and two corresponding time-delays. The effects of the second time-delay connected with the presence of the DEZ on the behavior of the model equation of the root graviresponse kinetics were analyzed and discussed.

  20. The Ca2+ pump inhibitor, thapsigargin, inhibits root gravitropism in Arabidopsis thaliana.

    PubMed

    Urbina, Daniela C; Silva, Herman; Meisel, Lee A

    2006-01-01

    Thapsigargin, a specific inhibitor of most animal intracellular SERCA-type Ca2+ pumps present in the sarcoplasmic/endoplasmic reticulum, was originally isolated from the roots of the Mediterranean plant Thapsia gargancia L. Here, we demonstrate that this root-derived compound is capable of altering root gravitropism in Arabidopsis thaliana. Thapsigargin concentrations as low as 0.1 microM alter root gravitropism whereas under similar conditions cyclopiazonic acid does not. Furthermore, a fluorescently conjugated thapsigargin (BODIPY FL thapsigargin) suggests that target sites for thapsigargin are located in intracellular organelles in the root distal elongation zone and the root cap, regions known to regulate root gravitropism.

  1. Effects of the ionic liquid 1-hexyl-3-methylimidazolium bromide on root gravitropism in Arabidopsis seedlings.

    PubMed

    Zhang, Liang; Wang, Tianqi; Zheng, Fengxia; Ma, Lingyu; Li, Jingyuan

    2016-03-01

    The toxic effects of ionic liquids (ILs) have attracted increasing attention in recent years. However, the knowledge about the toxic effects of ILs on tropism in organisms remains quite limited. In this study, the effects of 1-hexyl-3-methylimidazolium bromide [C6mim]Br on root gravitropism were evaluated using Arabidopsis seedlings. Our results showed that the root growth and gravity response were significantly inhibited with increasing IL concentration. [C6mim]Br treatment affected the amount and distribution pattern of amyloplasts in root cap compared with controls. The auxin distribution marked with DR5rev::VENUS was altered in IL-treated seedlings. The signal intensity and gene expression of auxin efflux carriers PIN2 and PIN3 were obviously decreased by IL stress. Moreover, as consequences in response to gravity stimulus, the asymmetric DR5 signals in control root apex were impaired by IL treatment. The predominant PIN2 signals along the lower flank of root and PIN3 polarization in columella cells were also significantly reduced in seedlings exposed to IL. Our results suggest that the ionic liquid [C6mim]Br affects the amount and distribution of amyloplasts and disturbs the deployment of PIN2 and PIN3, thus impairing auxin flows in response to gravity stimulus and causing deficient root gravitropism in Arabidopsis seedlings. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Molecular genetic investigations of root gravitropism and other complex growth behaviors using Arabidopsis and Brachypodium as models

    NASA Astrophysics Data System (ADS)

    Masson, Patrick; Barker, Richard; Miller, Nathan; Su, Shih-Hao; Su, Shih-Heng

    2016-07-01

    When growing on hard surfaces, Arabidopsis roots tend to grown downward, as dictated by positive gravitropism. At the same time, surface-derived stimuli promote a wavy pattern of growth that is superimposed to a rightward root-skewing trend. This behavior is believed to facilitate obstacle avoidance in soil. To better understand these complex behaviors, we have isolated and characterized mutations that affect them. Some of these mutations were shown to affect gravitropism whereas others did not. Within the latter group, most of the mutations affected mechanisms that control anisotropic cell expansion. We have also characterized mutations that affect early steps of gravity signal transduction within the gravity-sensing columella cells of the root cap. Upon reorientation within the gravity field, starch-filled plastids sediment to the bottom-side of these cells, triggering a pathway that leads to re-localization of auxin efflux facilitators to the bottom membrane. Lateral auxin transport toward the bottom flank ensues, leading to gravitropic curvature. Several of the mutations we characterized affect genes that encode proteins associated with the vesicle trafficking pathway needed for this cell polarization. Other mutations were shown to affect components of the plastid outer envelope protein import complex (TOC). Their functional analysis suggests an active role for plastids in gravity signal transduction, beyond a simple contribution as sedimenting gravity susceptors. Because most cultivated crops are monocots, not dicots like Arabidopsis, we have also initiated studies of root-growth behavior with Brachypodium distachyon. When responding to a gravistimulus, the roots of Brachypodium seedlings develop a strong downward curvature that proceeds until the tip reaches a ~50-degree curvature. At that time, an oscillatory tip movement occurs while the root continues its downward reorientation. These root-tip oscillations also occur if roots are allowed to simply grow downward on vertical surfaces, or fully embedded in agar-containing medium. Brachypodium distachyon accessions differ in their gravisensitivity, kinetics of gravitropism and occurrence, periodicity and amplitude of tip oscillations. Mathematical models are being built to fit the data, and used to estimate growth, gravitropism and oscillation parameters for incorporation into Genome-Wide Association Study (GWAS) algorithms aimed at identifying contributing loci. This work was supported by grants from the National Aeronautics and Space Administration (NASA) and from the National Science Foundation (NSF).

  3. Modulation of statolith mass and grouping in white clover (Trifolium repens) growth in 1-g, microgravity and on the clinostat

    NASA Technical Reports Server (NTRS)

    Smith, J. D.; Todd, P.; Staehelin, L. A.

    1997-01-01

    Current models of gravity perception in higher plants focus on the buoyant weight of starch-filled amyloplasts as the initial gravity signal susceptor (statolith). However, no tests have yet determined if statolith mass is regulated to increase or decrease gravity stimulus to the plant. To this end, the root caps of white clover (Trifolium repens) grown in three gravity environments with three different levels of gravity stimulation have been examined: (i) 1-g control with normal static gravistimulation, (ii) on a slow clinostat with constant gravistimulation, and (iii) in the stimulus-free microgravity aboard the Space Shuttle. Seedlings were germinated and grown in the BioServe Fluid Processing Apparatus and root cap structure was examined at both light and electron microscopic levels, including three-dimensional cell reconstruction from serial sections. Quantitative analysis of the electron micrographs demonstrated that the starch content of amyloplasts varied with seedling age but not gravity condition. It was also discovered that, unlike in starch storage amyloplasts, all of the starch granules of statolith amyloplasts were encompassed by a fine filamentous, ribosome-excluding matrix. From light micrographic 3-D cell reconstructions, the absolute volume, number, and positional relationships between amyloplasts showed (i) that individual amyloplast volume increased in microgravity but remained constant in seedlings grown for up to three days on the clinostat, (ii) the number of amyloplasts per cell remained unchanged in microgravity but decreased on the clinostat, and (iii) the three-dimensional positions of amyloplasts were not random. Instead amyloplasts in microgravity were grouped near the cell centers while those from the clinostat appeared more dispersed. Taken together, these observations suggest that changing gravity stimulation can elicit feedback control over statolith mass by changing the size, number, and grouping of amyloplasts. These results support the starch-statolith theory of graviperception in higher plants and add to current models with a new feedback control loop as a mechanism for modulation of statolith responsiveness to inertial acceleration.

  4. The pharmaceutical vial capping process: Container closure systems, capping equipment, regulatory framework, and seal quality tests.

    PubMed

    Mathaes, Roman; Mahler, Hanns-Christian; Buettiker, Jean-Pierre; Roehl, Holger; Lam, Philippe; Brown, Helen; Luemkemann, Joerg; Adler, Michael; Huwyler, Joerg; Streubel, Alexander; Mohl, Silke

    2016-02-01

    Parenteral drug products are protected by appropriate primary packaging to protect against environmental factors, including potential microbial contamination during shelf life duration. The most commonly used CCS configuration for parenteral drug products is the glass vial, sealed with a rubber stopper and an aluminum crimp cap. In combination with an adequately designed and controlled aseptic fill/finish processes, a well-designed and characterized capping process is indispensable to ensure product quality and integrity and to minimize rejections during the manufacturing process. In this review, the health authority requirements and expectations related to container closure system quality and container closure integrity are summarized. The pharmaceutical vial, the rubber stopper, and the crimp cap are described. Different capping techniques are critically compared: The most common capping equipment with a rotating capping plate produces the lowest amount of particle. The strength and challenges of methods to control the capping process are discussed. The residual seal force method can characterize the capping process independent of the used capping equipment or CCS. We analyze the root causes of several cosmetic defects associated with the vial capping process. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. [Environmental Effect of Substrate Amelioration on Lake: Effects on Phragmites communis Growth and Photosynthetic Fluorescence Characteristics].

    PubMed

    Yu, Ju-hua; Zhong, Ji-cheng; Fan, Cheng-xin; Huang, Wei; Shang, Jing-ge; Gu, Xiao-zhi

    2015-12-01

    Growth of rooted aquatic macrophytes was affected by the nature and composition of lake bottom sediments. Obviously, it has been recognized as an important ecological restoration measure by improving lake substrate and then reestablishing and restoring aquatic macrophytes in order to get rid of the environmental problem of lake. This study simulated five covering thickness to give an insight into the influence of substrate amelioration on Phragmites communis growth and photosynthetic fluorescence characteristics. The results showed that the total biomass, plant height, leaf length and leaf width of Phragmites communis under capping 5 cm were much more significant than those of capping 18 cm (P < 0.01), at the 120 d, the underground: shoot biomass ratio and fine root: underground biomass ratio were also much higher than those of other treatments (P < 0.05), which indicated that capping 18 cm treatment would significantly inhibit the growth of Phragmites communis , but the growth of control group Phragmites communis was slightly constrained by eutrophicated sediment. In addition, as the capping thickness growing, the underground: shoot biomass ratio of the plant would be reduced dramatically, in order to acquire much more nutrients from sediment for plant growing, the underground biomass of Phragmites communis would be preferentially developed, especially, the biomass of fine root. However, Photosystem II (PS II) photochemical efficiency (Fv/Fm), quantum yield (Yield), photochemical quenching (qP), non-photochemical quenching (qN) of Phragmites communis under different treatments had no significant differences (P > 0.05), furthermore, with much greater capping thickness, the photosynthesis structure of PS II would be much easier destroyed, and PS II would be protected by increasing heat dissipating and reducing leaf photosynthetic area and leaf light-captured pigment contents. In terms of the influence of sediment amelioration by soil exchange on the growth and photosynthetic fluorescence characteristics of Phragmites communis, plant growth could be effectively promoted under capping 2 cm and capping 5 cm by increasing the Eh value and nutrient content, whereas plant under capping 18 cm would be much easier adaptive to low-light stress in winter season, of which capping 2 cm treatment was conducive to enhance the initial slope of RLCs (α), maximum electron transport rate (ETRmax) and minimum saturating irradiance (Ek). With regard to the harness of environmental problem of lake, the eutrophication status of lake will be mitigated by using multi-ecological measures to control the internal nutrients content once the external loading was first effectively controlled.

  6. An electric current associated with gravity sensing in maize roots

    NASA Technical Reports Server (NTRS)

    Bjorkman, T.; Leopold, A. C.

    1987-01-01

    The study of gravisensing would be greatly enhanced if physiological events associated with gravity sensing could be detected separately from subsequent growth processes. This report presents a means to discriminate sensing from the growth processes. By using a vibrating probe, we have found an electric current generated by the gravity sensing region of the root cap of maize (Zea mays cv Merit) in response to gravistimulation. On the upper surface of the root cap, the change from the endogenous current has a density of 0.55 microampere per square centimeter away from gravity. The onset of the current shift has a characteristic of lag of three to four minutes after gravistimulation, which corresponds to the presentation time for gravity sensing in this tissue. A description of the current provides some information about the sensing mechanism, as well as being a valuable means to detect gravity sensing independently of differential growth.

  7. Integrin activation by a cold atmospheric plasma jet

    NASA Astrophysics Data System (ADS)

    Volotskova, Olga; Stepp, Mary Ann; Keidar, Michael

    2012-05-01

    Current breakthrough research on cold atmospheric plasma (CAP) demonstrates that CAP has great potential in various areas, including medicine and biology, thus providing a new tool for living tissue treatment. In this paper, we explore potential mechanisms by which CAP alters cell migration and influences cell adhesion. We focus on the study of CAP interaction with fibroblasts and corneal epithelial cells. The data show that fibroblasts and corneal epithelial cells have different thresholds (treatment times) required to achieve maximum inhibition of cell migration. Both cell types reduced their migration rates by ˜30-40% after CAP compared to control cells. Also, the impact of CAP treatment on cell migration and persistence of fibroblasts after integrin activation by MnCl2, serum starvation or replating cells onto surfaces coated with integrin ligands is assessed; the results show that activation by MnCl2 or starvation attenuates cells’ responses to plasma. Studies carried out to assess the impact of CAP treatment on the activation state of β1 integrin and focal adhesion size by using immunofluorescence show that fibroblasts have more active β1 integrin on their surface and large focal adhesions after CAP treatment. Based on these data, a thermodynamic model is presented to explain how CAP leads to integrin activation and focal adhesion assembly.

  8. Epigenetic silencing of miR-19a-3p by cold atmospheric plasma contributes to proliferation inhibition of the MCF-7 breast cancer cell

    NASA Astrophysics Data System (ADS)

    Lee, Seungyeon; Lee, Hyunkyung; Bae, Hansol; Choi, Eun H.; Kim, Sun Jung

    2016-07-01

    Cold atmospheric plasma (CAP) has been proposed as a useful cancer treatment option after showing higher induction of cell death in cancer cells than in normal cells. Although a few studies have contributed to elucidating the molecular mechanism by which CAP differentially inhibits cancer cell proliferation, no results are yet to be reported related to microRNA (miR). In this study, miR-19a-3p (miR-19a) was identified as a mediator of the cell proliferation-inhibitory effect of CAP in the MCF-7 breast cancer cell. CAP treatment of MCF-7 induced hypermethylation at the promoter CpG sites and downregulation of miR-19a, which was known as an oncomiR. The overexpression of miR-19a in MCF-7 increased cell proliferation, and CAP deteriorated the effect. The target genes of miR-19a, such as ABCA1 and PTEN, that had been suppressed by miR recovered their expression through CAP treatment. In addition, an inhibitor of reactive oxygen species that is produced by CAP suppressed the effect of CAP on cell proliferation. Taken together, the present study, to the best of authors’ knowledge, is the first to identify the involvement of a miR, which is dysregulated by the CAP and results in the anti-proliferation effect of CAP on cancer cells.

  9. Gravitropism in a starchless mutant of Arabidopsis: implications for the starch-statolith theory of gravity sensing

    NASA Technical Reports Server (NTRS)

    Caspar, T.; Pickard, B. G.

    1989-01-01

    The starch-statolith theory of gravity reception has been tested with a mutant of Arabidopsis thaliana (L.) Heynh. which, lacking plastid phosphoglucomutase (EC 2.7.5.1) activity, does not synthesize starch. The hypocotyls and seedling roots of the mutant were examined by light and electron microscopy to confirm that they did not contain starch. In upright wild-type (WT) seedlings, starch-filled plastids in the starch sheath of the hypocotyl and in three of the five columellar layers of the root cap were piled on the cell floors, and sedimented to the ceilings when the plants were inverted. However, starchless plastids of the mutant were not significantly sedimented in these cells in either upright or inverted seedlings. Gravitropism of light-grown seedling roots was vigorous: e.g., 10 degrees curvature developed in mutants rotated on a clinostat following a 5 min induction at 1 g, compared with 14 degrees in the WT. Curvatures induced during intervals from 2.5 to 30 min were 70% as great in the mutant as the WT. Thus under these conditions the presence of starch and the sedimentation of plastids are unnecessary for reception of gravity by Arabidopsis roots. Gravitropism by hypocotyls of light-grown seedlings was less vigorous than that by roots, but the mutant hypocotyls exhibited an average of 70-80% as much curvature as the WT. Roots and hypocotyls of etiolated seedlings and flower stalks of mature plants were also gravitropic, although in these cases the mutant was generally less closely comparable to the WT. Thus, starch is also unnecessary for gravity reception in these tissues.

  10. Variation in stem morphology and movement of amyloplasts in white spruce grown in the weightless environment of the International Space Station.

    PubMed

    Rioux, Danny; Lagacé, Marie; Cohen, Luchino Y; Beaulieu, Jean

    2015-01-01

    One-year-old white spruce (Picea glauca) seedlings were studied in microgravity conditions in the International Space Station (ISS) and compared with seedlings grown on Earth. Leaf growth was clearly stimulated in space whereas data suggest a similar trend for the shoots. Needles on the current shoots of ground-based seedlings were more inclined towards the stem base than those of seedlings grown in the ISS. Amyloplasts sedimented in specialized cells of shoots and roots in seedlings grown on Earth while they were distributed at random in similar cells of seedlings tested in the ISS. In shoots, such amyloplasts were found in starch sheath cells located between leaf traces and cortical cells whereas in roots they were constituents of columella cells of the cap. Nuclei were regularly observed just above the sedimented amyloplasts in both organs. It was also frequent to detect vacuoles with phenolic compounds and endoplasmic reticulum (ER) close to the sedimented amyloplasts. The ER was mainly observed just under these amyloplasts. Thus, when amyloplasts sediment, the pressure exerted on the ER, the organelle that can for instance secrete proteins destined for the plasma membrane, might influence their functioning and play a role in signaling pathways involved in gravity-sensing white spruce cells. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  11. Functional and Evolutionary Analysis of the CASPARIAN STRIP MEMBRANE DOMAIN PROTEIN Family1[C][W

    PubMed Central

    Roppolo, Daniele; Boeckmann, Brigitte; Pfister, Alexandre; Boutet, Emmanuel; Rubio, Maria C.; Dénervaud-Tendon, Valérie; Vermeer, Joop E.M.; Gheyselinck, Jacqueline; Xenarios, Ioannis; Geldner, Niko

    2014-01-01

    CASPARIAN STRIP MEMBRANE DOMAIN PROTEINS (CASPs) are four-membrane-span proteins that mediate the deposition of Casparian strips in the endodermis by recruiting the lignin polymerization machinery. CASPs show high stability in their membrane domain, which presents all the hallmarks of a membrane scaffold. Here, we characterized the large family of CASP-like (CASPL) proteins. CASPLs were found in all major divisions of land plants as well as in green algae; homologs outside of the plant kingdom were identified as members of the MARVEL protein family. When ectopically expressed in the endodermis, most CASPLs were able to integrate the CASP membrane domain, which suggests that CASPLs share with CASPs the propensity to form transmembrane scaffolds. Extracellular loops are not necessary for generating the scaffold, since CASP1 was still able to localize correctly when either one of the extracellular loops was deleted. The CASP first extracellular loop was found conserved in euphyllophytes but absent in plants lacking Casparian strips, an observation that may contribute to the study of Casparian strip and root evolution. In Arabidopsis (Arabidopsis thaliana), CASPL showed specific expression in a variety of cell types, such as trichomes, abscission zone cells, peripheral root cap cells, and xylem pole pericycle cells. PMID:24920445

  12. Functional and Evolutionary Analysis of the CASPARIAN STRIP MEMBRANE DOMAIN PROTEIN Family.

    PubMed

    Roppolo, Daniele; Boeckmann, Brigitte; Pfister, Alexandre; Boutet, Emmanuel; Rubio, Maria C; Dénervaud-Tendon, Valérie; Vermeer, Joop E M; Gheyselinck, Jacqueline; Xenarios, Ioannis; Geldner, Niko

    2014-08-01

    CASPARIAN STRIP MEMBRANE DOMAIN PROTEINS (CASPs) are four-membrane-span proteins that mediate the deposition of Casparian strips in the endodermis by recruiting the lignin polymerization machinery. CASPs show high stability in their membrane domain, which presents all the hallmarks of a membrane scaffold. Here, we characterized the large family of CASP-like (CASPL) proteins. CASPLs were found in all major divisions of land plants as well as in green algae; homologs outside of the plant kingdom were identified as members of the MARVEL protein family. When ectopically expressed in the endodermis, most CASPLs were able to integrate the CASP membrane domain, which suggests that CASPLs share with CASPs the propensity to form transmembrane scaffolds. Extracellular loops are not necessary for generating the scaffold, since CASP1 was still able to localize correctly when either one of the extracellular loops was deleted. The CASP first extracellular loop was found conserved in euphyllophytes but absent in plants lacking Casparian strips, an observation that may contribute to the study of Casparian strip and root evolution. In Arabidopsis (Arabidopsis thaliana), CASPL showed specific expression in a variety of cell types, such as trichomes, abscission zone cells, peripheral root cap cells, and xylem pole pericycle cells. © 2014 American Society of Plant Biologists. All Rights Reserved.

  13. Transient Receptor Potential Vanilloid 1 Expression Mediates Capsaicin-Induced Cell Death.

    PubMed

    Ramírez-Barrantes, Ricardo; Córdova, Claudio; Gatica, Sebastian; Rodriguez, Belén; Lozano, Carlo; Marchant, Ivanny; Echeverria, Cesar; Simon, Felipe; Olivero, Pablo

    2018-01-01

    The transient receptor potential (TRP) ion channel family consists of a broad variety of non-selective cation channels that integrate environmental physicochemical signals for dynamic homeostatic control. Involved in a variety of cellular physiological processes, TRP channels are fundamental to the control of the cell life cycle. TRP channels from the vanilloid (TRPV) family have been directly implicated in cell death. TRPV1 is activated by pain-inducing stimuli, including inflammatory endovanilloids and pungent exovanilloids, such as capsaicin (CAP). TRPV1 activation by high doses of CAP (>10 μM) leads to necrosis, but also exhibits apoptotic characteristics. However, CAP dose-response studies are lacking in order to determine whether CAP-induced cell death occurs preferentially via necrosis or apoptosis. In addition, it is not known whether cytosolic Ca 2+ and mitochondrial dysfunction participates in CAP-induced TRPV1-mediated cell death. By using TRPV1-transfected HeLa cells, we investigated the underlying mechanisms involved in CAP-induced TRPV1-mediated cell death, the dependence of CAP dose, and the participation of mitochondrial dysfunction and cytosolic Ca 2+ increase. Together, our results contribute to elucidate the pathophysiological steps that follow after TRPV1 stimulation with CAP. Low concentrations of CAP (1 μM) induce cell death by a mechanism involving a TRPV1-mediated rapid and transient intracellular Ca 2+ increase that stimulates plasma membrane depolarization, thereby compromising plasma membrane integrity and ultimately leading to cell death. Meanwhile, higher doses of CAP induce cell death via a TRPV1-independent mechanism, involving a slow and persistent intracellular Ca 2+ increase that induces mitochondrial dysfunction, plasma membrane depolarization, plasma membrane loss of integrity, and ultimately, cell death.

  14. Cold plasma selectivity in the interaction with various types of the cells

    NASA Astrophysics Data System (ADS)

    Volotskova, Olga; Stepp, Mary Ann; Keidar, Michael

    2011-10-01

    Present research in the area of cold atmospheric plasma (CAP) demonstrates great potential in various areas including medicine and biology. Depending on their configuration they can be used for wound healing, sterilization, targeted cell/tissue removal, and cancer treatments. Here we explore potential mechanisms by which CAP alters cell migration and influences cell adhesion. The migration studies are focused on the CAP interaction with fibroblasts and corneal epithelial cells. Data show that various types of cells have different thresholds (treatment times) required to achieve maximum inhibition of cell migration which is around ~30-40%. Studies to assess the impact of CAP treatment on the activation state of integrins and focal adhesion size by immunofluorescence showed more active b1 integrin on the cell surface and large focal adhesions after CAP treatment. Based on these data, a thermodynamic model is presented to explain how CAP leads to integrin activation and focal adhesion assembly. Also responses of the various types of the cells to the cold plasma treatment on the example of the epithelial keratinocytes, papilloma and carcinoma cells are studied. Cell cycle, migration and cell vitality analysis were performed. The goal of this study is to understand the mechanism by which the CAP jet alters cell migration, influences adhesion and cell survival.

  15. The effect and fate of water-soluble carbon nanodots in maize (Zea mays L.).

    PubMed

    Chen, Jing; Dou, Runzhi; Yang, Zhongzhou; Wang, Xiaoping; Mao, Chuanbin; Gao, Xiang; Wang, Li

    2016-08-01

    In this study, the toxicity of water-soluble carbon nanodots (C-dots) to maize (Zea mays L.) and their uptake and transport in plants were investigated. After exposed in sand matrix amended with 0-2000 mg/L C-dots for 4 weeks, we found that the phytotoxicity of C-dots was concentration-dependent. C-dots at 250 and 500 mg/L showed no toxicity to maize. However, 1000 and 2000 mg/L C-dots significantly reduced the fresh weight of root by 57% and 68%, and decreased the shoot fresh weight by 38% and 72%, respectively. Moreover, in maize roots, the exposure of C-dots at 2000 mg/L significantly increased the H2O2 content and lipid peroxidation (6.5 and 1.65 times higher, respectively), as well as, the antioxidant enzymes activities, up to 2, 1.5, 1.9 and 1.9 times higher for catalase, ascorbate peroxidase, guaiacol peroxidase and superoxide dismutase, respectively. On the other hand, C-dots were observed in detached root-cap cells, cortex and vascular bundle of roots and mesophyll cells of leaves through fluorescence microscopy analysis, suggesting that C-dots were absorbed and translocated systemically in maize. Remarkably, a certain amount of C-dots were excreted out from leaf blade. To our knowledge, this is the first study combined phenotypic observation with physiologic responses and bioaccumulation and translocation analysis of C-dots to investigate their effect and fate in maize.

  16. Resident CAPS on dense-core vesicles docks and primes vesicles for fusion

    PubMed Central

    Kabachinski, Greg; Kielar-Grevstad, D. Michelle; Zhang, Xingmin; James, Declan J.; Martin, Thomas F. J.

    2016-01-01

    The Ca2+-dependent exocytosis of dense-core vesicles in neuroendocrine cells requires a priming step during which SNARE protein complexes assemble. CAPS (aka CADPS) is one of several factors required for vesicle priming; however, the localization and dynamics of CAPS at sites of exocytosis in live neuroendocrine cells has not been determined. We imaged CAPS before, during, and after single-vesicle fusion events in PC12 cells by TIRF micro­scopy. In addition to being a resident on cytoplasmic dense-core vesicles, CAPS was present in clusters of approximately nine molecules near the plasma membrane that corresponded to docked/tethered vesicles. CAPS accompanied vesicles to the plasma membrane and was present at all vesicle exocytic events. The knockdown of CAPS by shRNA eliminated the VAMP-2–dependent docking and evoked exocytosis of fusion-competent vesicles. A CAPS(ΔC135) protein that does not localize to vesicles failed to rescue vesicle docking and evoked exocytosis in CAPS-depleted cells, showing that CAPS residence on vesicles is essential. Our results indicate that dense-core vesicles carry CAPS to sites of exocytosis, where CAPS promotes vesicle docking and fusion competence, probably by initiating SNARE complex assembly. PMID:26700319

  17. Mechanisms of selective antitumor action of cold atmospheric plasma

    NASA Astrophysics Data System (ADS)

    Graves, David; Bauer, Georg

    2016-09-01

    Transformed (precancerous) cells are known to be subject to elimination through intercellular RONS-dependent apoptosis-inducing signaling. It is a remarkable fact that the chemical species utilized by apoptosis induction in transformed cells are essentially identical to chemical species created by cold atmospheric plasma (CAP) in aqueous solutions. The association between CAP-induced biochemistry and natural cell anti-tumor mechanisms offers the opportunity to establish a rationale for the observed successes of CAP in selectively eliminating tumor cells in vitro and in vivo. In particular, 1O2 appears to act to selectively induce apoptosis in tumor cells, and can also result in self-perpetuating, cell-to-cell apoptotic signaling. Various CAP-generated liquid phase species can react to form 1O2, thus providing a hypothetical mechanism to explain how CAP can trigger therapeutic apoptosis in tumors. The analysis of model experiments performed with defined RONS in vitro implies that CAP-derived 1O2 induces the mechanism through which CAP acts selectively against cancer cells in vitro and tumors in vivo. This hypothesis needs to be tested experimentally in order to establish its validity.

  18. Porcine circovirus-2 capsid protein induces cell death in PK15 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walia, Rupali; Dardari, Rkia, E-mail: rdardari@ucalgary.ca; Chaiyakul, Mark

    Studies have shown that Porcine circovirus (PCV)-2 induces apoptosis in PK15 cells. Here we report that cell death is induced in PCV2b-infected PK15 cells that express Capsid (Cap) protein and this effect is enhanced in interferon gamma (IFN-γ)-treated cells. We further show that transient PCV2a and 2b-Cap protein expression induces cell death in PK15 cells at rate similar to PCV2 infection, regardless of Cap protein localization. These data suggest that Cap protein may have the capacity to trigger different signaling pathways involved in cell death. Although further investigation is needed to gain deeper insights into the nature of the pathwaysmore » involved in Cap-induced cell death, this study provides evidence that PCV2-induced cell death in kidney epithelial PK15 cells can be mapped to the Cap protein and establishes the need for future research regarding the role of Cap-induced cell death in PCV2 pathogenesis. - Highlights: • IFN-γ enhances PCV2 replication that leads to cell death in PK15 cells. • IFN-γ enhances nuclear localization of the PCV2 Capsid protein. • Transient PCV2a and 2b-Capsid protein expression induces cell death. • Cell death is not dictated by specific Capsid protein sub-localization.« less

  19. PTEN deficiency promotes macrophage infiltration and hypersensitivity of prostate cancer to IAP antagonist/radiation combination therapy

    PubMed Central

    Armstrong, Chris W.D.; Maxwell, Pamela J.; Ong, Chee Wee; Redmond, Kelly M.; McCann, Christopher; Neisen, Jessica; Ward, George A.; Chessari, Gianni; Johnson, Christopher; Crawford, Nyree T.; LaBonte, Melissa J.; Prise, Kevin M.; Robson, Tracy; Salto-Tellez, Manuel; Longley, Daniel B.; Waugh, David J.J.

    2016-01-01

    PTEN loss is prognostic for patient relapse post-radiotherapy in prostate cancer (CaP). Infiltration of tumor-associated macrophages (TAMs) is associated with reduced disease-free survival following radical prostatectomy. However, the association between PTEN loss, TAM infiltration and radiotherapy response of CaP cells remains to be evaluated. Immunohistochemical and molecular analysis of surgically-resected Gleason 7 tumors confirmed that PTEN loss correlated with increased CXCL8 expression and macrophage infiltration. However PTEN status had no discernable correlation with expression of other inflammatory markers by CaP cells, including TNF-α. In vitro, exposure to conditioned media harvested from irradiated PTEN null CaP cells induced chemotaxis of macrophage-like THP-1 cells, a response partially attenuated by CXCL8 inhibition. Co-culture with THP-1 cells resulted in a modest reduction in the radio-sensitivity of DU145 cells. Cytokine profiling revealed constitutive secretion of TNF-α from CaP cells irrespective of PTEN status and IR-induced TNF-α secretion from THP-1 cells. THP-1-derived TNF-α increased NFκB pro-survival activity and elevated expression of anti-apoptotic proteins including cellular inhibitor of apoptosis protein-1 (cIAP-1) in CaP cells, which could be attenuated by pre-treatment with a TNF-α neutralizing antibody. Treatment with a novel IAP antagonist, AT-IAP, decreased basal and TNF-α-induced cIAP-1 expression in CaP cells, switched TNF-α signaling from pro-survival to pro-apoptotic and increased radiation sensitivity of CaP cells in co-culture with THP-1 cells. We conclude that targeting cIAP-1 can overcome apoptosis resistance of CaP cells and is an ideal approach to exploit high TNF-α signals within the TAM-rich microenvironment of PTEN-deficient CaP cells to enhance response to radiotherapy. PMID:26799286

  20. The effect of green synthesized gold nanoparticles on rice germination and roots

    NASA Astrophysics Data System (ADS)

    Tsi Ndeh, Nji; Maensiri, Santi; Maensiri, Duangkamol

    2017-09-01

    In this paper, gold nanoparticles were synthesized by means of a green approach with Tiliacora triandra leaf extracts under different conditions. No additional reducing or capping agents were employed. The gold nanoparticles were characterized using UV-visible spectrophotometry, transmission electron microscope, x-ray diffraction and Fourier transform infrared spectroscopy. Gold nanoparticles synthesized at temperature of 80 °C were further used to treat rice (Oryza sativa) grains at different concentrations (0, 10, 100, 500, 1000, 2000 mg l-1) for one week. While germination percentages were high (95-98.38%), a slight decrease in root and shoot lengths relative to the control was observed. Phytotoxicity results indicated that the plant synthesized gold nanoparticles were of minimal toxicity to rice seedlings. Increases in cell death, hydrogen peroxide formation and lipid peroxidation in roots and shoots were noted. However, these increases were not statistically significant. The overall results confirmed that Tiliacora triandra synthesized gold nanoparticles are biocompatible and can be potentially used as nanocarriers in agriculture. Contribution at 5th Thailand International Nanotechnology Conference (Nano Thailand-2016), 27-29 November 2016, Nakhon Ratchasima, Thailand.

  1. Peroxiredoxin Expression of Human Osteosarcoma Cells Is Influenced by Cold Atmospheric Plasma Treatment.

    PubMed

    Gümbel, Denis; Gelbrich, Nadine; Napp, Matthias; Daeschlein, Georg; Kramer, Axel; Sckell, Axel; Burchardt, Martin; Ekkernkamp, Axel; Stope, Matthias B

    2017-03-01

    To evaluate the potential involvement of redox-specific signalling pathways in cold atmospheric plasma (CAP)-induced apoptosis on human osteosarcoma cells. Osteosarcoma cell lines were treated with CAP with or without antioxidative agents and seeded in cell culture plates. Cell proliferation was determined by counting viable cells. Carrier gas-treated cells served as control. Peroxiredoxin (PRX) 1-3 expression and secretion were assessed. CAP treatment exhibited strongly attenuated proliferation rates. This effect was significantly attenuated by the addition of N-acetylcysteine (NAC). CAP-treated cells exhibited an increase of PRX 1 and 2 10 sec after treatment. The ratio of oxidized to reduced PRX1 and PRX2 was significantly altered with increasing cellular concentration of the oxidized dimer. Antioxidant supplementation with NAC increases proliferation of CAP-treated osteosarcoma cells, implicating an involvement of redox signalling. Activation of PRX1 and -2 indicate CAP affects redox homeostasis. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  2. Molecular genetic analysis of plant gravitropism

    NASA Technical Reports Server (NTRS)

    Lomax, T. L.

    1997-01-01

    The analysis of mutants is a powerful approach for elucidating the components of complex biological processes. A growing number of mutants have been isolated which affect plant gravitropism and the classes of mutants found thus far provide important information about the gravity response mechanism. The wide variety of mutants isolated, especially in Arabidopsis, indicates that gravitropism is a complex, multi-step process. The existence of mutants altered in either root gravitropism alone, shoot gravitropism alone, or both indicates that the root and shoot gravitropic mechanisms have both separate and common steps. Reduced starch mutants have confirmed the role of amyloplasts in sensing the gravity signal. The hormone auxin is thought to act as the transducing signal between the sites of gravity perception (the starch parenchyma cells surrounding the vascular tissue in shoots and the columella cells of root caps) and asymmetric growth (the epidermal cells of the elongation zone(s) of each organ). To date, all mutants that are resistant to high concentrations of auxin have also been found to exhibit a reduced gravitropic response, thus supporting the role of auxin. Not all gravitropic mutants are auxin-resistant, however, indicating that there are additional steps which do not involve auxin. Studies with mutants of tomato which exhibit either reduced or reversed gravitropic responses further support the role of auxin redistribution in gravitropism and suggest that both red light and cytokinin interact with gravitropism through controlling lateral auxin transport. Plant responses to gravity thus likely involve changes in both auxin transport and sensitivity.

  3. Long noncoding RNA BDNF-AS is associated with clinical outcomes and has functional role in human prostate cancer.

    PubMed

    Li, Wensheng; Dou, Zhongling; We, Shuguang; Zhu, Zhiyi; Pan, Dong; Jia, Zhaohui; Liu, Hui; Wang, Xiaobin; Yu, Guoqiang

    2018-06-01

    The underlying molecular mechanisms of prostate cancer (CaP) are largely unknown. We investigated the expression, prognostic value and functional role of long non-coding RNA (lncRNA) brain-derived neurotrophin factor antisense (BDNF-AS) in CaP. Clinical tumor samples were excised from patients with CaP. Their endogenous BDNF-AS expression levels were evaluated by qRT-PCR. Correlations between CaP patients' endogenous BDNF-AS expression and their clinicopathological factors, overall survival were statistically analyzed. BDNF-AS expression levels were also probed in immortal CaP cell lines. In LNCaP and PC-3 cells, BDNF-AS was ectopically overexpressed through lentiviral transduction. The functions of BDNF-AS upregulation on CaP cell development were evaluated both in vitro and in vivo. BDNF-AS was downregulated in human CaP tumors. Low BDNF-AS expression was correlated with CaP patients' poor prognosis and shorter overall survival. BDNF-AS was also found to be lowly expressed in CaP cell lines. In LNCaP and PC-3 cells, lentivirus-driven BDNF-AS overexpression exerted significantly tumor-suppressing effects on hindering cancer cell proliferation and invasion in vitro, and explant growth in vivo. Downregulated BDNF-AS in CaP patients could be a potential prognostic biomarker for predicating poor prognosis and survival. Upregulating BDNF-AS may be a novel molecular intervening target for CaP treatment. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  4. p130Cas-associated Protein (p140Cap) as a New Tyrosine-phosphorylated Protein Involved in Cell Spreading

    PubMed Central

    Di Stefano, Paola; Cabodi, Sara; Erba, Elisabetta Boeri; Margaria, Valentina; Bergatto, Elena; Giuffrida, Maria Gabriella; Silengo, Lorenzo; Tarone, Guido; Turco, Emilia; Defilippi, Paola

    2004-01-01

    Integrin-mediated cell adhesion stimulates a cascade of signaling pathways that control cell proliferation, migration, and survival, mostly through tyrosine phosphorylation of signaling molecules. p130Cas, originally identified as a major substrate of v-Src, is a scaffold molecule that interacts with several proteins and mediates multiple cellular events after cell adhesion and mitogen treatment. Here, we describe a novel p130Cas-associated protein named p140Cap (Cas-associated protein) as a new tyrosine phosphorylated molecule involved in integrin- and epidermal growth factor (EGF)-dependent signaling. By affinity chromatography of human ECV304 cell extracts on a MBP-p130Cas column followed by mass spectrometry matrix-assisted laser desorption ionization/time of flight analysis, we identified p140Cap as a protein migrating at 140 kDa. We detected its expression in human, mouse, and rat cells and in different mouse tissues. Endogenous and transfected p140Cap proteins coimmunoprecipitate with p130Cas in ECV304 and in human embryonic kidney 293 cells and associate with p130Cas through their carboxy-terminal region. By immunofluorescence analysis, we demonstrated that in ECV304 cells plated on fibronectin, the endogenous p140Cap colocalizes with p130Cas in the perinuclear region as well as in lamellipodia. In addition p140Cap codistributes with cortical actin and actin stress fibers but not with focal adhesions. We also show that p140Cap is tyrosine phosphorylated within 15 min of cell adhesion to integrin ligands. p140Cap tyrosine phosphorylation is also induced in response to EGF through an EGF receptor dependent-mechanism. Interestingly expression of p140Cap in NIH3T3 and in ECV304 cells delays the onset of cell spreading in the early phases of cell adhesion to fibronectin. Therefore, p140Cap is a novel protein associated with p130Cas and actin cytoskeletal structures. Its tyrosine phosphorylation by integrin-mediated adhesion and EGF stimulation and its involvement in cell spreading on matrix proteins suggest that p140Cap plays a role in controlling actin cytoskeleton organization in response to adhesive and growth factor signaling. PMID:14657239

  5. Alpha-catenin-dependent recruitment of the centrosomal protein CAP350 to adherens junctions allows epithelial cells to acquire a columnar shape.

    PubMed

    Gavilan, Maria P; Arjona, Marina; Zurbano, Angel; Formstecher, Etienne; Martinez-Morales, Juan R; Bornens, Michel; Rios, Rosa M

    2015-03-01

    Epithelial morphogenesis involves a dramatic reorganisation of the microtubule cytoskeleton. How this complex process is controlled at the molecular level is still largely unknown. Here, we report that the centrosomal microtubule (MT)-binding protein CAP350 localises at adherens junctions in epithelial cells. By two-hybrid screening, we identified a direct interaction of CAP350 with the adhesion protein α-catenin that was further confirmed by co-immunoprecipitation experiments. Block of epithelial cadherin (E-cadherin)-mediated cell-cell adhesion or α-catenin depletion prevented CAP350 localisation at cell-cell junctions. Knocking down junction-located CAP350 inhibited the establishment of an apico-basal array of microtubules and impaired the acquisition of columnar shape in Madin-Darby canine kidney II (MDCKII) cells grown as polarised epithelia. Furthermore, MDCKII cystogenesis was also defective in junctional CAP350-depleted cells. CAP350-depleted MDCKII cysts were smaller and contained either multiple lumens or no lumen. Membrane polarity was not affected, but cortical microtubule bundles did not properly form. Our results indicate that CAP350 may act as an adaptor between adherens junctions and microtubules, thus regulating epithelial differentiation and contributing to the definition of cell architecture. We also uncover a central role of α-catenin in global cytoskeleton remodelling, in which it acts not only on actin but also on MT reorganisation during epithelial morphogenesis.

  6. Alpha-catenin-Dependent Recruitment of the Centrosomal Protein CAP350 to Adherens Junctions Allows Epithelial Cells to Acquire a Columnar Shape

    PubMed Central

    Zurbano, Angel; Formstecher, Etienne; Martinez-Morales, Juan R.; Bornens, Michel; Rios, Rosa M.

    2015-01-01

    Epithelial morphogenesis involves a dramatic reorganisation of the microtubule cytoskeleton. How this complex process is controlled at the molecular level is still largely unknown. Here, we report that the centrosomal microtubule (MT)-binding protein CAP350 localises at adherens junctions in epithelial cells. By two-hybrid screening, we identified a direct interaction of CAP350 with the adhesion protein α-catenin that was further confirmed by co-immunoprecipitation experiments. Block of epithelial cadherin (E-cadherin)-mediated cell-cell adhesion or α-catenin depletion prevented CAP350 localisation at cell-cell junctions. Knocking down junction-located CAP350 inhibited the establishment of an apico-basal array of microtubules and impaired the acquisition of columnar shape in Madin-Darby canine kidney II (MDCKII) cells grown as polarised epithelia. Furthermore, MDCKII cystogenesis was also defective in junctional CAP350-depleted cells. CAP350-depleted MDCKII cysts were smaller and contained either multiple lumens or no lumen. Membrane polarity was not affected, but cortical microtubule bundles did not properly form. Our results indicate that CAP350 may act as an adaptor between adherens junctions and microtubules, thus regulating epithelial differentiation and contributing to the definition of cell architecture. We also uncover a central role of α-catenin in global cytoskeleton remodelling, in which it acts not only on actin but also on MT reorganisation during epithelial morphogenesis. PMID:25764135

  7. Evaluation of Linear, Inviscid, Viscous, and Reduced-Order Modeling Aeroelastic Solutions of the AGARD 445.6 Wing Using Root Locus Analysis

    NASA Technical Reports Server (NTRS)

    Silva, Walter A.; Perry, Boyd III; Chwalowski, Pawel

    2014-01-01

    Reduced-order modeling (ROM) methods are applied to the CFD-based aeroelastic analysis of the AGARD 445.6 wing in order to gain insight regarding well-known discrepancies between the aeroelastic analyses and the experimental results. The results presented include aeroelastic solutions using the inviscid CAP-TSD code and the FUN3D code (Euler and Navier-Stokes). Full CFD aeroelastic solutions and ROM aeroelastic solutions, computed at several Mach numbers, are presented in the form of root locus plots in order to better reveal the aeroelastic root migrations with increasing dynamic pressure. Important conclusions are drawn from these results including the ability of the linear CAP-TSD code to accurately predict the entire experimental flutter boundary (repeat of analyses performed in the 1980's), that the Euler solutions at supersonic conditions indicate that the third mode is always unstable, and that the FUN3D Navier-Stokes solutions stabilize the unstable third mode seen in the Euler solutions.

  8. Influence of Microgravity Environment on Root Growth, Soluble Sugars, and Starch Concentration of Sweetpotato Stem Cuttings

    PubMed Central

    Mortley, Desmond G.; Bonsi, Conrad K.; Hill, Walter A.; Morris, Carlton E.; Williams, Carol S.; Davis, Ceyla F.; Williams, John W.; Levine, Lanfang H.; Petersen, Barbara V.; Wheeler, Raymond M.

    2009-01-01

    Because sweetpotato [Ipomoea batatas (L.) Lam.] stem cuttings regenerate very easily and quickly, a study of their early growth and development in microgravity could be useful to an understanding of morphological changes that might occur under such conditions for crops that are propagated vegetatively. An experiment was conducted aboard a U.S. Space Shuttle to investigate the impact of microgravity on root growth, distribution of amyloplasts in the root cells, and on the concentration of soluble sugars and starch in the stems of sweetpotatoes. Twelve stem cuttings of ‘Whatley/Loretan’ sweetpotato (5 cm long) with three to four nodes were grown in each of two plant growth units filled with a nutrient agarose medium impregnated with a half-strength Hoagland solution. One plant growth unit was flown on Space Shuttle Colombia for 5 days, whereas the other remained on the ground as a control. The cuttings were received within 2 h postflight and, along with ground controls, processed in ≈45 min. Adventitious roots were counted, measured, and fixed for electron microscopy and stems frozen for starch and sugar assays. Air samples were collected from the headspace of each plant growth unit for postflight determination of carbon dioxide, oxygen, and ethylene levels. All stem cuttings produced adventitious roots and growth was quite vigorous in both ground-based and flight samples and, except for a slight browning of some root tips in the flight samples, all stem cuttings appeared normal. The roots on the flight cuttings tended to grow in random directions. Also, stem cuttings grown in microgravity had more roots and greater total root length than ground-based controls. Amyloplasts in root cap cells of ground-based controls were evenly sedimented toward one end compared with a more random distribution in the flight samples. The concentration of soluble sugars, glucose, fructose, and sucrose and total starch concentration were all substantially greater in the stems of flight samples than those found in the ground-based samples. Carbon dioxide levels were 50% greater and oxygen marginally lower in the flight plants, whereas ethylene levels were similar and averaged less than 10 nL·L −1. Despite the greater accumulation of carbohydrates in the stems, and greater root growth in the flight cuttings, overall results showed minimal differences in cell development between space flight and ground-based tissues. This suggests that the space flight environment did not adversely impact sweetpotato metabolism and that vegetative cuttings should be an acceptable approach for propagating sweetpotato plants for space applications. PMID:20186286

  9. Controlling plasma stimulated media in cancer treatment application

    NASA Astrophysics Data System (ADS)

    Yan, Dayun; Sherman, Jonathan H.; Cheng, Xiaoqian; Ratovitski, Edward; Canady, Jerome; Keidar, Michael

    2014-12-01

    Cold atmospheric plasma (CAP) constitutes a "cocktail" of various reactive species. Accumulating evidence shows the effectiveness of CAP in killing cancer cells and decreasing the tumor size, which provides a solid basis for its potential use in cancer treatment. Currently, CAP is mainly used to directly treat cancer cells and trigger the death of cancer cells via apoptosis or necrosis. By altering the concentration of fetal bovine serum in Dulbecco's modified Eagle's medium and the temperature to store CAP stimulated media, we demonstrated controllable strategies to harness the stimulated media to kill glioblastoma cells in vitro. This study demonstrated the significant role of media in killing cancer cells via the CAP treatment.

  10. Tetracycline-inducible protein expression in pancreatic cancer cells: Effects of CapG overexpression

    PubMed Central

    Tonack, Sarah; Patel, Sabina; Jalali, Mehdi; Nedjadi, Taoufik; Jenkins, Rosalind E; Goldring, Christopher; Neoptolemos, John; Costello, Eithne

    2011-01-01

    AIM: To establish stable tetracycline-inducible pancreatic cancer cell lines. METHODS: Suit-2, MiaPaca-2, and Panc-1 cells were transfected with a second generation reverse tetracycline-controlled transactivator protein (rtTA2S-M2), under the control of either a cytomegalovirus (CMV) or a chicken β-actin promoter, and the resulting clones were characterised. RESULTS: Use of the chicken (β-actin) promoter proved superior for both the production and maintenance of doxycycline-inducible cell lines. The system proved versatile, enabling transient inducible expression of a variety of genes, including GST-P, CYP2E1, S100A6, and the actin capping protein, CapG. To determine the physiological utility of this system in pancreatic cancer cells, stable inducible CapG expressors were established. Overexpressed CapG was localised to the cytoplasm and the nuclear membrane, but was not observed in the nucleus. High CapG levels were associated with enhanced motility, but not with changes to the cell cycle, or cellular proliferation. In CapG-overexpressing cells, the levels and phosphorylation status of other actin-moduating proteins (Cofilin and Ezrin/Radixin) were not altered. However, preliminary analyses suggest that the levels of other cellular proteins, such as ornithine aminotransferase and enolase, are altered upon CapG induction. CONCLUSION: We have generated pancreatic-cancer derived cell lines in which gene expression is fully controllable. PMID:21528072

  11. Differential expression of α-L-arabinofuranosidases during maize (Zea mays L.) root elongation.

    PubMed

    Kozlova, Liudmila V; Gorshkov, Oleg V; Mokshina, Natalia E; Gorshkova, Tatyana A

    2015-05-01

    Specific α- l -arabinofuranosidases are involved in the realisation of elongation growth process in cells with type II cell walls. Elongation growth in a plant cell is largely based on modification of the cell wall. In type II cell walls, the Ara/Xyl ratio is known to decrease during elongation due to the partial removal of Ara residues from glucuronoarabinoxylan. We searched within the maize genome for the genes of all predicted α-L-arabinofuranosidases that may be responsible for such a process and related their expression to the activity of the enzyme and the amount of free arabinose measured in six zones of a growing maize root. Eight genes of the GH51 family (ZmaABFs) and one gene of the GH3 family (ZmaARA-I) were identified. The abundance of ZmaABF1 and 3-6 transcripts was highly correlated with the measured enzymatic activity and free arabinose content that significantly increased during elongation. The transcript abundances also coincided with the pattern of changes in the Ara/Xyl ratio of the xylanase-extractable glucuronoarabinoxylan described in previous studies. The expression of ZmaABF3, 5 and 6 was especially up-regulated during elongation although corresponding proteins are devoid of the catalytic glutamate at the proper position. ZmaABF2 transcripts were specifically enriched in the root cap and meristem. A single ZmaARA-I gene was not expressed as a whole gene but instead as splice variants that encode the C-terminal end of the protein. Changes in the ZmaARA-I transcript level were rather moderate and had no significant correlation with free arabinose content. Thus, elongation growth of cells with type II cell walls is accompanied by the up-regulation of specific and predicted α-L-arabinofuranosidase genes, and the corresponding activity is indeed pronounced and is important for the modification of glucuronoarabinoxylan, which plays a key role in the modification of the cell wall supramolecular organisation.

  12. The Arabidopsis LAZY1 Family Plays a Key Role in Gravity Signaling within Statocytes and in Branch Angle Control of Roots and Shoots[OPEN

    PubMed Central

    Taniguchi, Masatoshi; Furutani, Masahiko; Nishimura, Takeshi; Nakamura, Moritaka; Fushita, Toyohito; Iijima, Kohta; Baba, Kenichiro; Toyota, Masatsugu

    2017-01-01

    During gravitropism, the directional signal of gravity is perceived by gravity-sensing cells called statocytes, leading to asymmetric distribution of auxin in the responding organs. To identify the genes involved in gravity signaling in statocytes, we performed transcriptome analyses of statocyte-deficient Arabidopsis thaliana mutants and found two candidates from the LAZY1 family, AtLAZY1/LAZY1-LIKE1 (LZY1) and AtDRO3/AtNGR1/LZY2. We showed that LZY1, LZY2, and a paralog AtDRO1/AtNGR2/LZY3 are redundantly involved in gravitropism of the inflorescence stem, hypocotyl, and root. Mutations of LZY genes affected early processes in gravity signal transduction without affecting amyloplast sedimentation. Statocyte-specific expression of LZY genes rescued the mutant phenotype, suggesting that LZY genes mediate gravity signaling in statocytes downstream of amyloplast displacement, leading to the generation of asymmetric auxin distribution in gravity-responding organs. We also found that lzy mutations reversed the growth angle of lateral branches and roots. Moreover, expression of the conserved C-terminal region of LZY proteins also reversed the growth direction of primary roots in the lzy mutant background. In lateral root tips of lzy multiple mutants, asymmetric distribution of PIN3 and auxin response were reversed, suggesting that LZY genes regulate the direction of polar auxin transport in response to gravity through the control of asymmetric PIN3 expression in the root cap columella. PMID:28765510

  13. Cold Atmospheric Plasma for Selectively Ablating Metastatic Breast Cancer Cells

    PubMed Central

    Wang, Mian; Holmes, Benjamin; Cheng, Xiaoqian; Zhu, Wei; Keidar, Michael; Zhang, Lijie Grace

    2013-01-01

    Traditional breast cancer treatments such as surgery and radiotherapy contain many inherent limitations with regards to incomplete and nonselective tumor ablation. Cold atomospheric plasma (CAP) is an ionized gas where the ion temperature is close to room temperature. It contains electrons, charged particles, radicals, various excited molecules, UV photons and transient electric fields. These various compositional elements have the potential to either enhance and promote cellular activity, or disrupt and destroy them. In particular, based on this unique composition, CAP could offer a minimally-invasive surgical approach allowing for specific cancer cell or tumor tissue removal without influencing healthy cells. Thus, the objective of this research is to investigate a novel CAP-based therapy for selectively bone metastatic breast cancer treatment. For this purpose, human metastatic breast cancer (BrCa) cells and bone marrow derived human mesenchymal stem cells (MSCs) were separately treated with CAP, and behavioral changes were evaluated after 1, 3, and 5 days of culture. With different treatment times, different BrCa and MSC cell responses were observed. Our results showed that BrCa cells were more sensitive to these CAP treatments than MSCs under plasma dose conditions tested. It demonstrated that CAP can selectively ablate metastatic BrCa cells in vitro without damaging healthy MSCs at the metastatic bone site. In addition, our study showed that CAP treatment can significantly inhibit the migration and invasion of BrCa cells. The results suggest the great potential of CAP for breast cancer therapy. PMID:24040051

  14. Inhibition of polar calcium movement and gravitropism in roots treated with auxin-transport inhibitors

    NASA Technical Reports Server (NTRS)

    Lee, J. S.; Mulkey, T. J.; Evans, M. L.

    1984-01-01

    Primary roots of maize (Zea mays L.) and pea (Pisum sativum L.) exhibit strong positive gravitropism. In both species, gravistimulation induces polar movement of calcium across the root tip from the upper side to the lower side. Roots of onion (Allium cepa L.) are not responsive to gravity and gravistimulation induces little or no polar movement of calcium across the root tip. Treatment of maize or pea roots with inhibitors of auxin transport (morphactin, naphthylphthalamic acid, 2,3,5-triiodobenzoic acid) prevents both gravitropism and gravity-induced polar movement of calcium across the root tip. The results indicate that calcium movement and auxin movement are closely linked in roots and that gravity-induced redistribution of calcium across the root cap may play an important role in the development of gravitropic curvature.

  15. In vitro investigation of anodization and CaP deposited titanium surface using MG63 osteoblast-like cells

    NASA Astrophysics Data System (ADS)

    Lee, J. M.; Lee, J. I.; Lim, Y. J.

    2010-03-01

    The aim of the present study was to investigate surface characteristics in four different titanium surfaces (AN: anodized at 270 V; AN-CaP: anodic oxidation and CaP deposited; SLA: sandblasted and acid etched; MA: machined) and to evaluate biological behaviors such as cell adhesion, cell proliferation, cytoskeletal organization, and osteogenic protein expression of MG63 osteoblast-like cells at the early stage. Surface analysis was performed using scanning electron microscopy, thin-film X-ray diffractometry, and a confocal laser scanning microscope. In order to evaluate cellular responses, MG63 osteoblast-like cells were used. The cell viability was evaluated by MTT assay. Immunofluorescent analyses of actin, type I collagen, osteonectin and osteocalcin were performed. The anodized and CaP deposited specimen showed homogeneously distributed CaP particles around micropores and exhibited anatase type oxides, titanium, and HA crystalline structures. This experiment suggests that CaP particles on the anodic oxidation surface affect cellular attachment and spreading. When designing an in vitro biological study for CaP coated titanium, it must be taken into account that preincubation in medium prior to cell seeding and the cell culture medium may affect the CaP coatings. All these observations illustrate the importance of the experimental conditions and the physicochemical parameters of the CaP coating. It is considered that further evaluations such as long-term in vitro cellular assays and in vivo experiments should be necessary to figure out the effect of CaP deposition to biological responses.

  16. Resident CAPS on dense-core vesicles docks and primes vesicles for fusion.

    PubMed

    Kabachinski, Greg; Kielar-Grevstad, D Michelle; Zhang, Xingmin; James, Declan J; Martin, Thomas F J

    2016-02-15

    The Ca(2+)-dependent exocytosis of dense-core vesicles in neuroendocrine cells requires a priming step during which SNARE protein complexes assemble. CAPS (aka CADPS) is one of several factors required for vesicle priming; however, the localization and dynamics of CAPS at sites of exocytosis in live neuroendocrine cells has not been determined. We imaged CAPS before, during, and after single-vesicle fusion events in PC12 cells by TIRF micro-scopy. In addition to being a resident on cytoplasmic dense-core vesicles, CAPS was present in clusters of approximately nine molecules near the plasma membrane that corresponded to docked/tethered vesicles. CAPS accompanied vesicles to the plasma membrane and was present at all vesicle exocytic events. The knockdown of CAPS by shRNA eliminated the VAMP-2-dependent docking and evoked exocytosis of fusion-competent vesicles. A CAPS(ΔC135) protein that does not localize to vesicles failed to rescue vesicle docking and evoked exocytosis in CAPS-depleted cells, showing that CAPS residence on vesicles is essential. Our results indicate that dense-core vesicles carry CAPS to sites of exocytosis, where CAPS promotes vesicle docking and fusion competence, probably by initiating SNARE complex assembly. © 2016 Kabachinski, Kielar-Grevstad, et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  17. CPI motif interaction is necessary for capping protein function in cells

    PubMed Central

    Edwards, Marc; McConnell, Patrick; Schafer, Dorothy A.; Cooper, John A.

    2015-01-01

    Capping protein (CP) has critical roles in actin assembly in vivo and in vitro. CP binds with high affinity to the barbed end of actin filaments, blocking the addition and loss of actin subunits. Heretofore, models for actin assembly in cells generally assumed that CP is constitutively active, diffusing freely to find and cap barbed ends. However, CP can be regulated by binding of the ‘capping protein interaction' (CPI) motif, found in a diverse and otherwise unrelated set of proteins that decreases, but does not abolish, the actin-capping activity of CP and promotes uncapping in biochemical experiments. Here, we report that CP localization and the ability of CP to function in cells requires interaction with a CPI-motif-containing protein. Our discovery shows that cells target and/or modulate the capping activity of CP via CPI motif interactions in order for CP to localize and function in cells. PMID:26412145

  18. Gibberellin Biosynthesis in Developing Pumpkin Seedlings12

    PubMed Central

    Lange, Theo; Kappler, Jeannette; Fischer, Andreas; Frisse, Andrea; Padeffke, Tania; Schmidtke, Sabine; Lange, Maria João Pimenta

    2005-01-01

    A gibberellin (GA) biosynthetic pathway was discovered operating in root tips of 7-d-old pumpkin (Cucurbita maxima) seedlings. Stepwise analysis of GA metabolism in cell-free systems revealed the conversion of GA12-aldehyde to bioactive GA4 and inactive GA34. Highest levels of endogenous GA4 and GA34 were found in hypocotyls and root tips of 3-d-old seedlings. cDNA molecules encoding two GA oxidases, CmGA20ox3 and CmGA3ox3, were isolated from root tips of 7-d-old LAB150978-treated seedlings. Recombinant CmGA20ox3 fusion protein converted GA12 to GA9, GA24 to GA9, GA14 to GA4, and, less efficiently, GA53 to GA20, and recombinant CmGA3ox3 protein oxidized GA9 to GA4. Transcript profiles were determined for four GA oxidase genes from pumpkin revealing relatively high transcript levels for CmGA7ox in shoot tips and cotyledons, for CmGA20ox3 in shoot tips and hypocotyls, and for CmGA3ox3 in hypocotyls and roots of 3-d-old seedlings. Transcripts of CmGA2ox1 were mainly found in roots of 7-d-old seedlings. In roots of 7-d-old seedlings, transcripts of CmGA7ox, CmGA20ox3, and CmGA3ox3 were localized in the cap and the rhizodermis by in situ hybridization. We conclude that hypocotyls and root tips are important sites of GA biosynthesis in the developing pumpkin seedling. PMID:16126862

  19. Reduction of copper phytotoxicity by liming: A study of the root anatomy of young vines (Vitis labrusca L.).

    PubMed

    Ambrosini, Vítor Gabriel; Rosa, Daniel José; Corredor Prado, Jenny Paola; Borghezan, Marcelo; Bastos de Melo, George Wellington; Fonsêca de Sousa Soares, Cláudio Roberto; Comin, Jucinei José; Simão, Daniela Guimarães; Brunetto, Gustavo

    2015-11-01

    Frequent applications of copper (Cu)-based fungicides on vines causes the accumulation of this metal in vineyard soils, which can cause toxicity in young vines. However, liming may reduce these toxic effects. The present study aimed to evaluate the effects of Cu toxicity on the root anatomy of young vines and the alleviation of Cu toxicity by lime applications to contaminated sandy soil. The treatments consisted of the addition of lime (0.0, 1.5 and 3.0 Mg ha(-1)) and two Cu concentrations (0 and 50 mg kg(-1)) to Typic Hapludalf soil. Young vines 'Niágara Branca' (Vitis labrusca L.) were obtained by micropropagation and cultivated for 70 days. The young vines grown with Cu and without liming presented a disorganized root structure; reduced root cap size; increased diameter (47%), cortex area (128%), vascular cylinder area (93%), and number of cortical layers and cells containing phenolic compounds (132%); and reduced root (41%), stem (44%) and leaf dry mass (21%) and height increase (55%). Moreover, Cu exposure reduced Ca concentrations (13%) and increased Cu concentrations (371%) in the roots. Liming, primarily with the highest tested dose, increased the soil pH (from 4.4 to 5.4-6.1), decreased the Cu concentration in the soil (extracted by CaCl2), increased the calcium (Ca) and magnesium (Mg) uptake by plants, prevented root anatomical changes and benefited young vine growth in soil with higher Cu concentrations. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  20. Biomedical Applications of the Cold Atmospheric Plasma: Cell Responses

    NASA Astrophysics Data System (ADS)

    Volotskova, Olga

    Current breakthrough research on cold atmospheric plasma (CAP) demonstrates that CAP has great potential in various areas, including medicine and biology, thus providing a new tool for living tissue treatment. Depending on the configuration the cold plasma sources can be used in the following areas: wound healing, skin diseases, hospital hygiene, sterilization, antifungal treatments, dental care, cosmetics targeted cell/tissue removal, and cancer treatments. This dissertation is focused on the studies of biomedical applications of cold atmospheric plasma jet based on helium flow and resultant cell responses to the cold plasma treatment. The studies were carried out on extra-cellular and intra-cellular levels in vitro. The main practical applications are wound healing and alternative to existing cancer therapy methods, areas of great interest and significant challenges. The CAP jet was built in the Micropropulsion and Nanotechnology Laboratory of Dr. Michael Keidar, as a part of multidisciplinary collaboration with the GW Medical School (Dr. M.A. Stepp) concerned with plasma medicine and bioengineering studies. Normal and cancer cells have two fundamental behavioral properties, proliferation and motility, which can be evaluated through cell migration rates and cell cycle progression. Various microscopic, spectroscopic and flow cytometry techniques were used to characterize cell responses to the cold plasma treatment. It was found that CAP effect on the cells is localized within the area of the treatment (of around ˜ 5mm in diameter). The migration rates of the normal skin cells can be reduced up to ˜ 40%. However, depending on the cell type the required treatment time is different, thus differential treatment of various cells presented in tissue is possible. The CAP effect on the migration was explained through the changes of the cell surface proteins/integrins. It was also found that normal and cancer cells respond differently to the CAP treatment under the same experimental conditions. CAP is currently being evaluated as a new highly selective alternative addition to existing cancer therapies. It was shown that the increased sensitivity of cancer cells to CAP treatment is caused by differences in the distribution of cancer cells and normal cells within the cell cycle. It was also shown that the expression of γH2A.X (pSer139), an oxidative stress reporter indicating S-phase damage, is enhanced specifically within CAP treated cells in the S phase of the cell cycle together with significant decrease in EdU-signal of DNA-replicating cells. Thus, newly developed CAP technology was proven to be of a great interest for practical applications in the areas of wound healing and cancer treatment. The identification and explanation of the mechanisms by which CAP affects the cells was presented.

  1. Influence of electrical fields and asymmetric application of mucilage on curvature of primary roots of Zea mays

    NASA Technical Reports Server (NTRS)

    Marcum, H.; Moore, R.

    1990-01-01

    Primary roots of Zea mays cv. Yellow Dent growing in an electric field curve towards the anode. Roots treated with EDTA and growing in electric field do not curve. When root cap mucilage is applied asymmetrically to tips of vertically-oriented roots, the roots curve toward the mucilage. Roots treated with EDTA curve toward the side receiving mucilage and toward blocks containing 10 mM CaCl2, but not toward "empty" agar blocks or the cut surfaces of severed root tips. These results suggest that 1) free calcium (Ca) is necessary for root electrotropism, 2) mucilage contains effector(s) that induce gravitropiclike curvature, and 3) mucilage can replace gravitropic effectors chelated by EDTA. These results are consistent with the hypothesis that the downward movement of gravitropic effectors to the lower sides of tips of horizontally-oriented roots occurs at least partially in the apoplast.

  2. Ashwagandha

    MedlinePlus

    ... specific ashwagandha root extract (KSM66, Ixoreal Biomed, Hyderabad, India) 300 mg twice daily after food for 60 ... Cap Strelaxin, M/s Pharmanza Herbal Pvt. Ltd., Gujarat, India) 400 mg three times daily for one month ...

  3. Interaction of capsaicinoids with cell membrane models does not correlate with pungency of peppers

    NASA Astrophysics Data System (ADS)

    Geraldo, Vananélia P. N.; Ziglio, Analine C.; Gonçalves, Débora; Oliveira, Osvaldo N.

    2017-04-01

    Mixed monolayers were prepared using phospholipids in order to mimic cell membranes and fractions of capsaicinoids (extracted from Malagueta, Caps-M, and Bhut Jolokia, Caps-B, peppers). According to their surface-pressure isotherms and polarization-modulated infrared reflection absorption spectra (PM-IRRAS), weak molecular-level interactions were observed between Caps and phospholipids. Both Caps-M and Caps-B penetrated into the alkyl tail region of the monolayer, interacted with the phosphate group of the phospholipids and affected hydration of their Cdbnd O groups. Since the physiological activity of Caps is not governed solely by interaction with cell membranes, it should require participation of a neuronal membrane receptor, e.g. vanilloid receptor (TRPV1).

  4. Analysis of Expression Pattern and Genetic Deletion of Netrin5 in the Developing Mouse

    PubMed Central

    Garrett, Andrew M.; Jucius, Thomas J.; Sigaud, Liam P. R.; Tang, Fu-Lei; Xiong, Wen-Cheng; Ackerman, Susan L.; Burgess, Robert W.

    2016-01-01

    Boundary cap cells (BCC) are a transient, neural-crest-derived population found at the motor exit point (MEP) and dorsal root entry zone (DREZ) of the embryonic spinal cord. These cells contribute to the central/peripheral nervous system (CNS/PNS) boundary, and in their absence neurons and glia from the CNS migrate into the PNS. We found Netrin5 (Ntn5), a previously unstudied member of the netrin gene family, to be robustly expressed in BCC. We generated Ntn5 knockout mice and examined neurodevelopmental and BCC-related phenotypes. No abnormalities in cranial nerve guidance, dorsal root organization, or sensory projections were found. However, Ntn5 mutant embryos did have ectopic motor neurons (MNs) that migrated out of the ventral horn and into the motor roots. Previous studies have implicated semaphorin6A (Sema6A) in BCC signaling to plexinA2 (PlxnA2)/neuropilin2 (Nrp2) in MNs in restricting MN cell bodies to the ventral horn, particularly in the caudal spinal cord. In Ntn5 mutants, ectopic MNs are likely to be a different population, as more ectopias were found rostrally. Furthermore, ectopic MNs in Ntn5 mutants were not immunoreactive for NRP2. The netrin receptor deleted in colorectal cancer (DCC) is a potential receptor for NTN5 in MNs, as similar ectopic neurons were found in Dcc mutant mice, but not in mice deficient for other netrin receptors. Thus, Ntn5 is a novel netrin family member that is expressed in BCC, functioning to prevent MN migration out of the CNS. PMID:26858598

  5. Active targeting of cancer cells using folic acid-conjugated platinum nanoparticles.

    PubMed

    Teow, Yiwei; Valiyaveettil, Suresh

    2010-12-01

    Interaction of nanoparticles with human cells is an interesting topic for understanding toxicity and developing potential drug candidates. Water soluble platinum nanoparticles were synthesized via reduction of hexachloroplatinic acid using sodium borohydride in the presence of capping agents. The bioactivity of folic acid and poly(vinyl pyrrolidone) capped platinum nanoparticles (Pt-nps) has been investigated using commercially available cell lines. In the cell viability experiments, PVP-capped nanoparticles were found to be less toxic (>80% viability), whereas, folic acid-capped platinum nanoparticles showed a reduced viability down to 24% after 72 h of exposure at a concentration of 100 μg ml(-1) for MCF7 breast cancer cells. Such toxicity, combined with the possibility to incorporate functional organic molecules as capping agents, can be used for developing new drug candidates.

  6. The Effect of Weak Combined Magnetic Field on Root Gravitropism and a Role of Ca2+ Ions Therein

    NASA Astrophysics Data System (ADS)

    Kordyum, Elizabeth; Bogatina, Nina; Kondrachuk, A.

    At present, magnetic fields of different types are widely used to study gravity sensing in plants. For instance, magnetic levitation of amyloplasts caused by high gradient magnetic field enables us to alter the effective gravity sensed by plant cells. For the first time we showed that a weak combined magnetic field (CMF), that is the sum of collinear permanent and alternating magnetic fields ( 0.5 gauss, 0-100 Hz), changes a cress and pea root positive gravitropic reaction on a negative one. This effect has the form of resonance and occurs at the frequency of cyclotron resonance of calcium ions. What is especially interesting is that under gravistimulation in the CMF, the displacement of amylopasts in the root cap statocytes is directed to the upper wall of a cell, i.e. in the direction opposite to the gravitational vector. The displacement of amyloplasts, which contain the abundance of free Ca2+ ions in the stroma, is accompanied by Ca2+ redistribution in the same direction, and increasing in the cytosol around amyloplasts near ten times in the CMF in comparison with the state magnetic field. Earlier, we also observed the Ca2+ accumulation in the upper site of a root curvature in the elongation zone in the CMF unlike a positive gravitropic reaction. Thus, it should be stressed that a root is bending in the same direction in which amyloplasts are displacing: downwards when gravitropism is positive and upwards when gravitropism is negative. The obtained data confirm the amyloplast statolithic function and give another striking demonstration of a leading role of Ca2+ ions in root gravitropism. But these data bring the question: what forces can promote amyloplast displacement against gravity? The possible explanation of the effect found is discussed. It is based on the ion cyclotron resonance in biosystems proposed by Liboff.. The original approach based on the use of a weak CMF may be helpful for understanding the mechanisms of plant gravisensing

  7. Antibacterial and cytotoxic effect of biologically synthesized silver nanoparticles using aqueous root extract of Erythrina indica lam

    NASA Astrophysics Data System (ADS)

    Rathi Sre, P. R.; Reka, M.; Poovazhagi, R.; Arul Kumar, M.; Murugesan, K.

    2015-01-01

    Simple, yet an effective and rapid approach for the green synthesis of silver nanoparticles (Ag NPs) using root extract of Erythrina indica and its in vitro antibacterial activity was tried against human pathogenic bacteria and its cytotoxic effect in breast and lung cancer cell lines has been demonstrated in this study. Various instrumental techniques were adopted to characterize the synthesized Ag NPs viz. UV-Vis (Ultra violet), FTIR (Fourier Transform Infrared), XRD (X-ray diffraction), DLS (Dynamic light scattering), HR TEM (High-resolution transmission electron microscopy), EDX (Energy-dispersive X-ray spectroscopy). Surface plasmon spectra for Ag NPs are centered nearly at 438 nm with dark brown color. FTIR analysis revealed the presence of terpenes, phenol, flavonols and tannin act as effective reducing and capping agents for converting silver nitrate to Ag NPs. The synthesized Ag NPs were found to be spherical in shape with size in the range of 20-118 nm. Moreover, the synthesized Ag NPs showed potent antibacterial activity against Gram positive and Gram negative bacteria and these biologically synthesized nanoparticles were also proved to exhibit excellent cytotoxic effect on breast and lung cancer cell lines.

  8. Gravisensing in roots

    NASA Astrophysics Data System (ADS)

    Perbal, G.

    1999-01-01

    The mode of gravisensing in higher plants is not yet elucidated. Although, it is generally accepted that the amyloplasts (statoliths) in the root cap cells (statocytes) are responsible for susception of gravity. However, the hypothesis that the whole protoplast acts as gravisusceptor cannot be dismissed. The nature of the sensor that is able to transduce and amplify the mechanical energy into a biochemical factor is even more controversial. Several cell structures could potentially serve as gravireceptors: the endoplasmic reticulum, the actin network, the plasma membrane, or the cytoskeleton associated with this membrane. The nature of the gravisusceptors and gravisensors is discussed by taking into account the characteristics of the gravitropic reaction with respect to the presentation time, the threshold acceleration, the reciprocity rule, the deviation from the sine rule, the movement of the amyloplasts, the pre-inversion effect, the response of starch free and intermediate mutants and the effects of cytochalasin treatment. From this analysis, it can be concluded that both the amyloplasts and the protoplast could be the gravisusceptors, the former being more efficient than the latter since they can focus pressure on limited areas. The receptor should be located in the plasma membrane and could be a stretch-activated ion channel.

  9. Effects of mycoplasma contamination on phenotypic expression of mitochondrial mutants in human cells.

    PubMed

    Doersen, C J; Stanbridge, E J

    1981-04-01

    HeLa cells sensitive to the mitochondrial protein synthesis inhibitors erythromycin (ERY) and chloramphenicol (CAP) and HeLa variants resistant to the effects of these drugs were purposefully infected with drug-sensitive and -resistant mycoplasma strains. Mycoplasma hyorhinis and the ERY-resistant strain of Mycoplasma orale, MO-ERYr, did not influence the growth of HeLa and ERY-resistant ERY2301 cells in the presence or absence of ERY. M. hyorhinis also did not affect the growth of HeLa and CAP-resistant Cap-2 cells in the presence or absence of CAP. However, both HeLa and Cap-2 cells infected with the CAP-resistant strain of M. hyorhinis, MH-CAPr, were more sensitive to the cytotoxic effect of CAP. This may be due to the glucose dependence of the cells, which was compromised by the increased utilization of glucose by MH-CAPr in these infected cell cultures. In vitro protein synthesis by isolated mitochondria was significantly altered by mycoplasma infection of the various cell lines. A substantial number of mycoplasmas copurified with the mitochondria, resulting in up to a sevenfold increase in the incorporation of [3H]leucine into the trichloroacetic acid-insoluble material. More importantly, the apparent drug sensitivity or resistance of mitochondrial preparations from mycoplasma-infected cells reflected the drug sensitivity or resistance of the contaminating mycoplasmas. These results illustrate the hazards in interpreting mitochondrial protein synthesis data derived from mycoplasma-infected cell lines, particularly putative mitochondrially encoded mutants resistant to inhibitors of mitochondrial protein synthesis.

  10. Gossypol-Capped Mitoxantrone-Loaded Mesoporous SiO2 NPs for the Cooperative Controlled Release of Two Anti-Cancer Drugs.

    PubMed

    Heleg-Shabtai, Vered; Aizen, Ruth; Sharon, Etery; Sohn, Yang Sung; Trifonov, Alexander; Enkin, Natalie; Freage, Lina; Nechushtai, Rachel; Willner, Itamar

    2016-06-15

    Mesoporous SiO2 nanoparticles, MP-SiO2 NPs, are functionalized with the boronic acid ligand units. The pores of the MP-SiO2 NPs are loaded with the anticancer drug mitoxantrone, and the pores are capped with the anticancer drug gossypol. The resulting two-drug-functionalized MP-SiO2 NPs provide a potential stimuli-responsive anticancer drug carrier for cooperative chemotherapeutic treatment. In vitro experiments reveal that the MP-SiO2 NPs are unlocked under environmental conditions present in cancer cells, e.g., acidic pH and lactic acid overexpressed in cancer cells. The effective unlocking of the capping units under these conditions is attributed to the acidic hydrolysis of the boronate ester capping units and to the cooperative separation of the boronate ester bridges by the lactate ligand. The gossypol-capped mitoxantrone-loaded MP-SiO2 NPs reveals preferential cytotoxicity toward cancer cells and cooperative chemotherapeutic activities toward the cancer cells. The MCF-10A epithelial breast cells and the malignant MDA-MB-231 breast cancer cells treated with the gossypol-capped mitoxantrone-loaded MP-SiO2 NPs revealed after a time-interval of 5 days a cell death of ca. 8% and 60%, respectively. Also, the gossypol-capped mitoxantrone-loaded MP-SiO2 NPs revealed superior cancer-cell death (ca. 60%) as compared to control carriers consisting of β-cyclodextrin-capped mitoxantrone-loaded (ca. 40%) under similar loading of the mitoxantrone drug. The drugs-loaded MP-SiO2 NPs reveal impressive long-term stabilities.

  11. The anticancer activity of lytic peptides is inhibited by heparan sulfate on the surface of the tumor cells

    PubMed Central

    2009-01-01

    Background Cationic antimicrobial peptides (CAPs) with antitumor activity constitute a promising group of novel anticancer agents. These peptides induce lysis of cancer cells through interactions with the plasma membrane. It is not known which cancer cell membrane components influence their susceptibility to CAPs. We have previously shown that CAPs interact with the two glycosaminoglycans (GAGs), heparan sulfate (HS) and chondroitin sulfate (CS), which are present on the surface of most cells. The purpose of this study was to investigate the role of the two GAGs in the cytotoxic activity of CAPs. Methods Various cell lines, expressing different levels of cell surface GAGs, were exposed to bovine lactoferricin (LfcinB) and the designer peptide, KW5. The cytotoxic effect of the peptides was investigated by use of the colorimetric MTT viability assay. The cytotoxic effect on wild type CHO cells, expressing normal amounts of GAGs on the cell surface, and the mutant pgsA-745, that has no expression of GAGs on the cell surface, was also investigated. Results We show that cells not expressing HS were more susceptible to CAPs than cells expressing HS at the cell surface. Further, exogenously added heparin inhibited the cytotoxic effect of the peptides. Chondroitin sulfate had no effect on the cytotoxic activity of KW5 and only minor effects on LfcinB cytotoxicity. Conclusion Our results show for the first time that negatively charged molecules at the surface of cancer cells inhibit the cytotoxic activity of CAPs. Our results indicate that HS at the surface of cancer cells sequesters CAPs away from the phospholipid bilayer and thereby impede their ability to induce cytolysis. PMID:19527490

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chan, R.K.; Otte, C.A.

    Eight independently isolated mutants which are supersensitive (Sst/sup -/) to the G1 arrest induced by the tridecapeptide pheromone ..cap alpha.. factor were identified by screening mutagenized Saccharomyces cerevisiae MATa cells on solid medium for increased growth inhibition by ..cap alpha.. factor. These mutants carries lesions in two complementation groups, sst1 and sst2. Mutations at the sst1 locus were mating type specific: MATa sst1 cells were supersensitive to ..cap alpha.. factor, but MAT..cap alpha.. sst1 cells were not supersensitive to a factor. In contrast, mutations at the sst2 locus conferred supersensitivity to the pheromones of the opposite mating type on bothmore » MATa and MAT..cap alpha.. cells. Even in the absence of added ..cap alpha.. pheromone, about 10% of the cells in exponentially growing cultures of MATa strains carrying any of three different alleles of sst2 (including the ochre mutation sst2-4) had the aberrant morphology (''shmoo'' shape) that normally develops only after MATa cells are exposed to ..cap alpha.. factor. This ''self-shmooing'' phenotype was genetically linked to the sst2 mutations, although the leakiest allele isolated (sst2-3) did not display this characteristic. Normal MATa/MAT..cap alpha.. diploids do not respond to pheromones; diploids homozygous for an sst2 mutation (MATa/MAT..cap alpha.. sst2-1/sst2-1) were still insensitive to ..cap alpha.. factor. The sst1 gene was mapped to within 6.9 centimorgans of his6 on chromosome IX. The sst2 gene was unlinked to sst1, was not centromere linked, and was shown to be neither linked nor centromere distal to MAT on the right arm of chromosome III.« less

  13. Pheromone induction of agglutination in Saccharomyces cerevisiae a cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Terrance, K.; Lipke, P.N.

    1987-10-01

    a-Agglutinin, the cell surface sexual agglutinin of yeast a cells, was assayed by its ability to bind its complementary agglutinin, ..cap alpha..-agglutinin. The specific binding of /sup 125/I-..cap alpha..-agglutinin to a cells treated with the sex pheromone ..cap alpha..-factor was 2 to 2.5 times that of binding to a cells not treated with ..cap alpha..-factor. Competition with unlabeled ..cap alpha..-agglutinin revealed that the increased binding was due to increased cell surface expression of a-agglutinin, with no apparent change in the binding constant. The increase in site number was similar to the increase in cellular agglutinability. Increased expression of a-agglutinin followedmore » the same kinetics as the increase in cellular agglutinability, with a 10-min lag followed by a 15- to 20-min response time. Induction kinetics were similar in cells in phases G1 and G2 of the cell cycle. Maximal expression levels were similar in cells treated with excess pheromone and in cells exposed to pheromone after destruction of constitutively expressed a-agglutinin.« less

  14. Biosynthesis, characterization and cytotoxic effect of plant mediated silver nanoparticles using Morinda citrifolia root extract.

    PubMed

    Suman, T Y; Radhika Rajasree, S R; Kanchana, A; Elizabeth, S Beena

    2013-06-01

    Silver has been used since time to control bodily infection, prevent food spoilage and heal wounds by preventing infection. The present study aims at an environmental friendly method of synthesizing silver nanoparticles, from the root of Morinda citrifolia; without involving chemical agents associated with environmental toxicity. The obtained nanoparticles were characterized by UV-vis absorption spectroscopy with an intense surface plasmon resonance band at 413 nm clearly reveals the formation of silver nanoparticles. Fourier transmission infra red spectroscopy (FTIR) showed nanopartilces were capped with plant compounds. Field emission-scanning electron microscopy (FE-SEM) and Transmission electron microscopy (TEM) showed that the spherical nature of the silver nanoparticles with a size of 30-55 nm. The X-ray diffraction spectrum XRD pattern clearly indicates that the silver nanoparticles formed in the present synthesis were crystalline in nature. In addition these biologically synthesized nanoparticles were also proved to exhibit excellent cytotoxic effect on HeLa cell. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Toward the in vivo study of captopril-conjugated quantum dots

    NASA Astrophysics Data System (ADS)

    Manabe, Noriyoshi; Hoshino, Akiyoshi; Liang, Yi-qiang; Goto, Tomomasa; Kato, Norihiro; Yamamoto, Kenji

    2005-04-01

    Photo-luminescent semiconductor quantum dots are nanometer-size probes that have the potential to be applied to the fields of the bio-imaging and the study of the cell mobility inside the body. At the same time, on the other hand, quantum dots are expected to carry some kind of molecules to the local organ inside of the animal body, which leads to the expectation that they can be used as a medicine-carrier. For this purpose, we conjugate (2S)-1-[(2s)-2-Methyl-3-sulfanylpropionyl]pyrrolidine-2-carboxylic acid (cap) with the quantum dot. Cap has the effect as an anti-hypertension drug, which inhibits angiotensin 1 converting enzyme. We conjugated the quantum dot with cap by the exchange reaction avoiding the regions which holds medicinal effect. Quantum dot conjugated with cap (QD-cap) were 3-times brighter than thioglycerol-coated quantum dots (QD-OH). The particle size of cap was 1.1nm and that of QD-cap was 12nm. QD-cap was permeated into the HeLa cells, while QD-MUA were taken into the HeLa cells by endocytosis. In addition, no apoptosis was detected against the cells that permeated QD-cap, because there was no damage to DNA. These results indicated that QD-conjugated medicines (QD-medicine) could be safe in the experiment on the level of the cell. More over, when QD-cap was intravenously injected into Stroke-prone Spontaneously Hypertensive Rats (SHRSP), they reduced blood pressure at systole. Therefore, the anti-hypertension effect of cap remained after conjugated with the quantum dot. These results suggested that QD-medicine were effective on the animal level.

  16. Method and design for externally applied laser welding of internal connections in a high power electrochemical cell

    DOEpatents

    Martin, Charles E; Fontaine, Lucien; Gardner, William H

    2014-01-21

    An electrochemical cell includes components that are welded from an external source after the components are assembled in a cell canister. The cell canister houses electrode tabs and a core insert. An end cap insert is disposed opposite the core insert. An external weld source, such as a laser beam, is applied to the end cap insert, such that the end cap insert, the electrode tabs, and the core insert are electrically coupled by a weld which extends from the end cap insert to the core insert.

  17. The Arabidopsis LAZY1 Family Plays a Key Role in Gravity Signaling within Statocytes and in Branch Angle Control of Roots and Shoots.

    PubMed

    Taniguchi, Masatoshi; Furutani, Masahiko; Nishimura, Takeshi; Nakamura, Moritaka; Fushita, Toyohito; Iijima, Kohta; Baba, Kenichiro; Tanaka, Hirokazu; Toyota, Masatsugu; Tasaka, Masao; Morita, Miyo Terao

    2017-08-01

    During gravitropism, the directional signal of gravity is perceived by gravity-sensing cells called statocytes, leading to asymmetric distribution of auxin in the responding organs. To identify the genes involved in gravity signaling in statocytes, we performed transcriptome analyses of statocyte-deficient Arabidopsis thaliana mutants and found two candidates from the LAZY1 family, AtLAZY1 / LAZY1-LIKE1 ( LZY1 ) and AtDRO3 / AtNGR1 / LZY2 We showed that LZY1 , LZY2 , and a paralog AtDRO1/AtNGR2/LZY3 are redundantly involved in gravitropism of the inflorescence stem, hypocotyl, and root. Mutations of LZY genes affected early processes in gravity signal transduction without affecting amyloplast sedimentation. Statocyte-specific expression of LZY genes rescued the mutant phenotype, suggesting that LZY genes mediate gravity signaling in statocytes downstream of amyloplast displacement, leading to the generation of asymmetric auxin distribution in gravity-responding organs. We also found that lzy mutations reversed the growth angle of lateral branches and roots. Moreover, expression of the conserved C-terminal region of LZY proteins also reversed the growth direction of primary roots in the lzy mutant background. In lateral root tips of lzy multiple mutants, asymmetric distribution of PIN3 and auxin response were reversed, suggesting that LZY genes regulate the direction of polar auxin transport in response to gravity through the control of asymmetric PIN3 expression in the root cap columella. © 2017 American Society of Plant Biologists. All rights reserved.

  18. CAP waveform estimation from the measured electrical bioimpedance values: Patient's heart rate variability analysis.

    PubMed

    Krivoshei, A; Uuetoa, H; Min, M; Annus, P; Uuetoa, T; Lamp, J

    2015-08-01

    The paper presents analysis of the generic transfer function (TF) between Electrical Bioimpedance (EBI) measured non-invasively on the wrist and Central Aortic Pressure (CAP) invasively measured at the aortic root. Influence of the Heart Rate (HR) variations on the generic TF and on reconstructed CAP waveforms is investigated. The HR variation analysis is provided on a single patient data to exclude inter-patient influences at the current research stage. A new approach for the generic TF estimating from a data ensemble is presented as well. Moreover, an influence of the cardiac period beginning point selection is analyzed and empirically optimal solution for its selection is proposed.

  19. Effects of mycoplasma contamination on phenotypic expression of mitochondrial mutants in human cells.

    PubMed Central

    Doersen, C J; Stanbridge, E J

    1981-01-01

    HeLa cells sensitive to the mitochondrial protein synthesis inhibitors erythromycin (ERY) and chloramphenicol (CAP) and HeLa variants resistant to the effects of these drugs were purposefully infected with drug-sensitive and -resistant mycoplasma strains. Mycoplasma hyorhinis and the ERY-resistant strain of Mycoplasma orale, MO-ERYr, did not influence the growth of HeLa and ERY-resistant ERY2301 cells in the presence or absence of ERY. M. hyorhinis also did not affect the growth of HeLa and CAP-resistant Cap-2 cells in the presence or absence of CAP. However, both HeLa and Cap-2 cells infected with the CAP-resistant strain of M. hyorhinis, MH-CAPr, were more sensitive to the cytotoxic effect of CAP. This may be due to the glucose dependence of the cells, which was compromised by the increased utilization of glucose by MH-CAPr in these infected cell cultures. In vitro protein synthesis by isolated mitochondria was significantly altered by mycoplasma infection of the various cell lines. A substantial number of mycoplasmas copurified with the mitochondria, resulting in up to a sevenfold increase in the incorporation of [3H]leucine into the trichloroacetic acid-insoluble material. More importantly, the apparent drug sensitivity or resistance of mitochondrial preparations from mycoplasma-infected cells reflected the drug sensitivity or resistance of the contaminating mycoplasmas. These results illustrate the hazards in interpreting mitochondrial protein synthesis data derived from mycoplasma-infected cell lines, particularly putative mitochondrially encoded mutants resistant to inhibitors of mitochondrial protein synthesis. PMID:6965101

  20. Numerical study on the influence of boss cap fins on efficiency of controllable-pitch propeller

    NASA Astrophysics Data System (ADS)

    Xiong, Ying; Wang, Zhanzhi; Qi, Wanjiang

    2013-03-01

    Numerical simulation is investigated to disclose how propeller boss cap fins (PBCF) operate utilizing Reynolds-averaged Navier-Stokes (RANS) method. In addition, exploration of the influencing mechanism of PBCF on the open water efficiency of one controllable-pitch propeller is analyzed through the open water characteristic curves, blade surface pressure distribution and hub streamline distribution. On this basis, the influence of parameters including airfoil profile, diameter, axial position of installation and circumferential installation angle on the open water efficiency of the controllable-pitch propeller is investigated. Numerical results show: for the controllable-pitch propeller, the thrust generated is at the optimum when the radius of boss cap fins is 1.5 times of propeller hub with an optimal installation position in the axial direction, and its optimal circumferential installation position is the midpoint of the extension line of the front and back ends of two adjacent propeller roots in the front of fin root. Under these optimal parameters, the gain of open water efficiency of the controllable-pitch propeller with different advance velocity coefficients is greater than 0.01, which accounts for approximately an increase of 1%-5% of open water efficiency.

  1. Design and implementation of the protective cap/biobarrier experiment at the Idaho National Engineering Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Limbach, W.E.; Ratzlaff, T.D.; Anderson, J.E.

    1994-12-31

    The Protective Cap/Biobarrier Experiment (PCBE), initiated in 1993 at the Idaho National Engineering Laboratory (INEL), is a strip-split plot experiment with three replications designed to rigorously test a 2.0-m loessal soil cap against a cap recommended by the US Environmental Protection Agency and two caps with biological intrusion barriers. Past research at INEL indicates that it should be possible to exclude water from buried wastes using natural materials and natural processes in arid environments rather than expensive materials (geotextiles) and highly engineered caps. The PCBE will also test the effects of two vegetal covers and three irrigation levels on capmore » performance. Drainage pans, located at the bottom of each plot, will monitor cap failure. Soil water profiles will be monitored biweekly by neutron probe and continuously by time domain reflectometry. The performance of each cap design will be monitored under a variety of conditions through 1998. From 1994 to 1996, the authors will assess plant establishment, rooting depths, patterns of moisture extraction and their interactions among caps, vegetal covers, and irrigation levels. In 1996, they will introduce ants and burrowing mammals to test the structural integrity of each cap design. In 1998, the authors will apply sufficient water to determine the failure limit for each cap design. The PCBE should provide reliable knowledge of the performances of the four cap designs under a variety of conditions and aid in making hazardous-waste management decisions at INEL and at disposal sites in similar environments.« less

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chan, R.K.; Otte, C.A.

    Saccharomyces cerevisiae MATa cells carrying mutations in either sst1 or sst2 are supersensitive to the G1 arrest induced by ..cap alpha.. factor pheromone. When sst1 mutants were mixed with normal SST/sup +/ cells, the entire population recovered together from ..cap alpha.. factor arrest, suggesting that SST/sup +/ cells helped sst1 mutants to recover. Complementation tests and linkage analysis showed that sst1 and bar1, a mutation which eliminates the ability of MATa cells to act as a ''barrier'' to the diffusion of ..cap alpha.. factor, were lesions in the same genes. These findings suggest that sst1 mutants are defective in recoverymore » from ..cap alpha.. factor arrest because they are unable to degrade the pheromone. In contrast, recovery of sst2 mutants was not potentiated by the presence of SST/sup +/ cells in mixing experiments. When either normal MATa cells or mutant cells carrying defects in sst1 or sst2 were exposed to ..cap alpha.. factor for 1 h and then washed free of the pheromone, the sst2 cells subsequently remained arrested in the absence of ..cap alpha.. factor for a much longer time than SST/sup +/ or sst1 cells. These observations suggest that the defect in sst2 mutants is intrinsic to the cell and is involved in the mechanism of ..cap alpha.. factor action at some step after the initial interaction of the pheromone with the cell. The presence of an sst2 mutation appears to cause a growth debility, since repeated serial subculture of haploid sst2-1 strains led to the accumulation of faster-growing revertants that were pheromone resistant and were mating defective (''sterile'').« less

  3. Root elongation against a constant force: experiment with a computerized feedback-controlled device

    NASA Technical Reports Server (NTRS)

    Kuzeja, P. S.; Lintilhac, P. M.; Wei, C.

    2001-01-01

    Axial force was applied to the root tip of corn (Zea mays L. cv. Merit) seedlings using a computerized, feedback-controlled mechanical device. The system's feedback capability allowed continuous control of a constant tip load, and the attached displacement transducer provided the time course of root elongation. Loads up to 7.5 g decreased the root elongation rate by 0.13 mm h-1 g-1, but loads 7.5 to 17.5 g decreased the growth rate by only 0.04 mm h-1 g-1. Loads higher than 18 g stopped root elongation completely. Measurement of the cross-sectional areas of the root tips indicated that the 18 g load had applied about 0.98 MPa of axial pressure to the root, thereby exceeding the root's ability to respond with increased turgor pressure. Recorded time-lapse images of loaded roots showed that radial thickening (swelling) occurred behind the root cap, whose cross-sectional area increased with tip load.

  4. Clinical and laboratory features of children with community-acquired pneumonia are associated with distinct radiographic presentations.

    PubMed

    Falup-Pecurariu, Oana G; Diez-Domingo, Javier; Esposito, Susanna; Finn, Adam; Rodrigues, Fernanda; Spoulou, Vana; Syrogiannopoulos, George A; Usonis, Vytautas; Greenberg, David

    2018-07-01

    Chest radiographs from children with community-acquired pneumonia (CAP) were categorized into three distinct presentations and each presentation was correlated to clinical and laboratory findings. Children < 59 months with CAP presenting to pediatric emergency rooms during two years were enrolled prospectively in eight centers across Europe. Clinical and laboratory data were documented and radiographs obtained from patients. Of the 1107 enrolled patients, radiographs were characterized as 74.9% alveolar CAP, 8.9% non-alveolar CAP, and 16.3% clinical CAP. Alveolar CAP patients had significantly higher rates of fever (90.7%), vomiting (27.6%), and abdominal pain (18.6%), while non-alveolar CAP patients presented more with cough (96.9%). A model using independent parameters that characterize alveolar, non-alveolar, and clinical CAP demonstrated that alveolar CAP patients were significantly older (OR = 1.02) and had significantly lower oxygen saturation than non-alveolar CAP patients (OR = 0.54). Alveolar CAP patients had significantly higher mean WBC (17,760 ± 8539.68 cells/mm 3 ) and ANC (11.5 ± 7.5 cells/mm 3 ) than patients categorized as non-alveolar CAP (WBC 15,160 ± 5996 cells/mm 3 , ANC 9.2 ± 5.1 cells/mm 3 ) and clinical CAP (WBC 13,180 ± 5892, ANC 7.3 ± 4.7). Alveolar CAP, non-alveolar CAP, and clinical CAP are distinct entities differing not only by chest radiographic appearance but also in clinical and laboratory characteristics. Alveolar CAP has unique characteristics, which suggest association with bacterial etiology. Trial number 3075 (Soroka Hospital, Israel) What is Known: • Community-acquired pneumonia in children is diagnosed based on clinical and radiological definitions. • Radiological criteria were standardized by WHO-SICR and have been utilized in vaccine studies. What is New: • Correlation between the WHO-SICR radiological definitions and clinical and laboratory parameters has not been studied. • Using the WHO-SICR radiological definitions for alveolar community-acquired pneumonia (CAP) and non-alveolar CAP and the study definition for clinical CAP, it was found that the groups are distinct, differing clinically and in laboratory parameters.

  5. Evolution of the Mauthner axon cap.

    PubMed

    Bierman, Hilary S; Zottoli, Steven J; Hale, Melina E

    2009-01-01

    Studies of vertebrate brain evolution have focused primarily on patterns of gene expression or changes in size and organization of major brain regions. The Mauthner cell, an important reticulospinal neuron that functions in the startle response of many species, provides an opportunity for evolutionary comparisons at the cellular level. Despite broad interspecific similarities in Mauthner cell morphology, the motor patterns and startle behaviors it initiates vary markedly. Response diversity has been hypothesized to result, in part, from differences in the structure and function of the Mauthner cell-associated axon cap. We used light microscopy techniques to compare axon cap morphology across a wide range of species, including all four extant basal actinopterygian orders, representatives of a variety of teleost lineages and lungfishes, and we combined our data with published descriptions of axon cap structure. The 'composite' axon cap, observed in teleosts, is an organized conglomeration of glia and fibers of inhibitory and excitatory interneurons. Lungfish, amphibian tadpoles and several basal actinopterygian fishes have 'simple' axon caps that appear to lack glia and include few fibers. Several other basal actinopterygian fishes have 'simple-dense' caps that include greater numbers of fibers than simple caps, but lack the additional elements and organization of composite caps. Phylogenetic mapping shows that through evolution there are discrete transitions in axon cap morphology occurring at the base of gnathostomes, within basal actinopterygians, and at the base of the teleost radiation. Comparing axon cap evolution to the evolution of startle behavior and motor pattern provides insight into the relationship between Mauthner cell-associated structures and their functions in behavior. Copyright 2009 S. Karger AG, Basel.

  6. Microarray-based gene expression profiling in patients with cryopyrin-associated periodic syndromes defines a disease-related signature and IL-1-responsive transcripts.

    PubMed

    Balow, James E; Ryan, John G; Chae, Jae Jin; Booty, Matthew G; Bulua, Ariel; Stone, Deborah; Sun, Hong-Wei; Greene, James; Barham, Beverly; Goldbach-Mansky, Raphaela; Kastner, Daniel L; Aksentijevich, Ivona

    2013-06-01

    To analyse gene expression patterns and to define a specific gene expression signature in patients with the severe end of the spectrum of cryopyrin-associated periodic syndromes (CAPS). The molecular consequences of interleukin 1 inhibition were examined by comparing gene expression patterns in 16 CAPS patients before and after treatment with anakinra. We collected peripheral blood mononuclear cells from 22 CAPS patients with active disease and from 14 healthy children. Transcripts that passed stringent filtering criteria (p values≤false discovery rate 1%) were considered as differentially expressed genes (DEG). A set of DEG was validated by quantitative reverse transcription PCR and functional studies with primary cells from CAPS patients and healthy controls. We used 17 CAPS and 66 non-CAPS patient samples to create a set of gene expression models that differentiates CAPS patients from controls and from patients with other autoinflammatory conditions. Many DEG include transcripts related to the regulation of innate and adaptive immune responses, oxidative stress, cell death, cell adhesion and motility. A set of gene expression-based models comprising the CAPS-specific gene expression signature correctly classified all 17 samples from an independent dataset. This classifier also correctly identified 15 of 16 post-anakinra CAPS samples despite the fact that these CAPS patients were in clinical remission. We identified a gene expression signature that clearly distinguished CAPS patients from controls. A number of DEG were in common with other systemic inflammatory diseases such as systemic onset juvenile idiopathic arthritis. The CAPS-specific gene expression classifiers also suggest incomplete suppression of inflammation at low doses of anakinra.

  7. Microarray-based gene expression profiling in patients with cryopyrin-associated periodic syndromes defines a disease-related signature and IL-1-responsive transcripts

    PubMed Central

    Balow, James E; Ryan, John G; Chae, Jae Jin; Booty, Matthew G; Bulua, Ariel; Stone, Deborah; Sun, Hong-Wei; Greene, James; Barham, Beverly; Goldbach-Mansky, Raphaela; Kastner, Daniel L; Aksentijevich, Ivona

    2014-01-01

    Objective To analyse gene expression patterns and to define a specific gene expression signature in patients with the severe end of the spectrum of cryopyrin-associated periodic syndromes (CAPS). The molecular consequences of interleukin 1 inhibition were examined by comparing gene expression patterns in 16 CAPS patients before and after treatment with anakinra. Methods We collected peripheral blood mononuclear cells from 22 CAPS patients with active disease and from 14 healthy children. Transcripts that passed stringent filtering criteria (p values ≤ false discovery rate 1%) were considered as differentially expressed genes (DEG). A set of DEG was validated by quantitative reverse transcription PCR and functional studies with primary cells from CAPS patients and healthy controls. We used 17 CAPS and 66 non-CAPS patient samples to create a set of gene expression models that differentiates CAPS patients from controls and from patients with other autoinflammatory conditions. Results Many DEG include transcripts related to the regulation of innate and adaptive immune responses, oxidative stress, cell death, cell adhesion and motility. A set of gene expression-based models comprising the CAPS-specific gene expression signature correctly classified all 17 samples from an independent dataset. This classifier also correctly identified 15 of 16 postanakinra CAPS samples despite the fact that these CAPS patients were in clinical remission. Conclusions We identified a gene expression signature that clearly distinguished CAPS patients from controls. A number of DEG were in common with other systemic inflammatory diseases such as systemic onset juvenile idiopathic arthritis. The CAPS-specific gene expression classifiers also suggest incomplete suppression of inflammation at low doses of anakinra. PMID:23223423

  8. Capped mRNAs with reduced secondary structure can function in extracts from poliovirus-infected cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sonenberg, N.; Guertin, D.; Lee, K.A.W.

    1982-12-01

    Extracts form poliovirus-infected HeLa cells were used to study ribosome binding of native and denatured reovirus mRNAs and translation of capped mRNAs with different degrees of secondary structure. Here, the authors demonstrate that ribosomes in extracts from poliovirus-infected cells could form initiation complexes with denatured reovirus mRNA, in contrast to their inability to bind native reovirus mRNA. Furthermore, the capped alfalfa mosiac virus 4 RNA, which is most probable devoid of stable secondary structure at its 5' end, could be translated at much higher efficiency than could other capped mRNAs in extracts from poliovirus-infected cells.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Popp, R.A.; Lalley, P.A.; Whitney, J.B.

    A genetic polymorphism for a Bgl I endonuclease site near the ..cap alpha..-globin-like pseudogene ..cap alpha..-4 of C57BL/6 and C3H/HeN mice was used to show that ..cap alpha..-4 was not affected by three independent mutations in which the adult globin genes ..cap alpha..-1 and ..cap alpha..-2 were deleted. These results indicated that ..cap alpha..-4 might not be located adjacent to the adult ..cap alpha..-globin genes on chromosome 11. Restriction endonuclease analysis of DNA of a primary clone of a Chinese hamster-mouse somatic cell hybrid that had lost mouse chromosomes 11 and 18 showed that this clone lacked the adult murinemore » globin genes ..cap alpha..-1 and ..cap alpha..-2 but it did contain the ..cap alpha..-globin-like pseudogenes ..cap alpha..-3 and ..cap alpha..-4. These results indicated that the adult ..cap alpha..-globin genes and ..cap alpha..-globin-like pseudogenes are not located on the same chromosome. Similar analyses of several other Chinese hamster-mouse somatic cell hybrids that had segregated other mouse chromosomes indicated that the ..cap alpha..-globin-like pseudogenes ..cap alpha..-3 and ..cap alpha..-4 are located on mouse chromosomes 15 and 17, respectively. These data explain why ..cap alpha..-3 and ..cap alpha..-4 were not affected by the three independently induced deletion-type mutations that cause ..cap alpha..-thalassemia in the mouse.« less

  10. Morphological and functional changes in RAW264 macrophage-like cells in response to a hydrated layer of carbonate-substituted hydroxyapatite.

    PubMed

    Igeta, Kazuki; Kuwamura, Yuta; Horiuchi, Naohiro; Nozaki, Kosuke; Shiraishi, Daichi; Aizawa, Mamoru; Hashimoto, Kazuaki; Yamashita, Kimihiro; Nagai, Akiko

    2017-04-01

    Synthetic hydroxyapatite (HAp) is used clinically as a material for bone prostheses owing to its good bone-bonding ability; however, it does not contribute to bone remodeling. Carbonate-substituted hydroxyapatite (CAp) has greater bioresorption capacity than HAp while having similar bone-bonding potential, and is therefore considered as a next promising material for bone prostheses. However, the effects of the CAp instability on inflammatory and immune responses are unknown in detail. Here, we show that the surface layer of CAp is more hydrated than that of HAp and induces changes in the shape and function of macrophage-like cells. HAp and CAp were synthesized by wet method and molded into disks. The carbonate content of CAp disks was 6.2% as determined by Fourier transform (FT) infrared spectral analysis. Diffuse reflectance infrared FT analysis confirmed that physisorbed water and surface hydroxyl groups (OH - ) were increased whereas structural OH - was decreased on the CAp as compared to the HAp surface. The degree of hydroxylation in CAp was comparable to that in bone-apatite structures, and the CAp surface exhibited greater hydrophilicity and solubility than HAp. We investigated immune responses to these materials by culturing RAW264 cells (macrophage precursors) on their surfaces. Cell spreading on the CAp disk was suppressed and the secretion level of inflammatory cytokines was reduced as compared to cells grown on HAp. These results indicate that the greater surface hydration of CAp surface can attenuate adverse inflammatory responses to implanted bone prostheses composed of this material. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1063-1070, 2017. © 2017 Wiley Periodicals, Inc.

  11. Molecular and morphological surface analysis: effect of filling pastes and cleaning agents on root dentin.

    PubMed

    Dainezi, Vanessa Benetello; Iwamoto, Alexsandra Shizue; Martin, Airton Abrahão; Soares, Luís Eduardo Silva; Hosoya, Yumiko; Pascon, Fernanda Miori; Puppin-Rontani, Regina Maria

    2017-01-01

    This study evaluated the effect of different filling pastes and cleaning agents on the root dentin of primary teeth using Fourier-transformed Raman spectroscopy (FT-Raman), micro energy-dispersive X-ray fluorescence (µ-EDXRF) and scanning electron microscopic (SEM) analysis. Eighty roots of primary teeth were endodontically prepared and distributed into 4 groups and filled according to the following filling pastes: Control-no filling (CP), Calen®+zinc oxide (CZ), Calcipex II® (CII), Vitapex® (V). After seven days, filling paste groups were distributed to 4 subgroups according to cleaning agents (n=5): Control-no cleaning (C), Ethanol (E), Tergenform® (T), 35% Phosphoric acid (PA). Then, the roots were sectioned and the dentin root sections were internally evaluated by FT-Raman, µ-EDXRF and SEM. Data was submitted to two-way ANOVA and Tukey tests (α=0.05). Regarding filling pastes, there was no significant difference in organic content. CP provided the lowest calcium values and, calcium/phosphoric ratio (Ca/P), and the highest phosphoric values. For cleaning agents there was no difference in organic content when compared to the C; however, T showed significantly higher calcium and Ca/P than PA. All groups showed similar results for phosphorus. The dentin smear layer was present after use of the cleaning agents, except PA. The filling pastes changed the inorganic content, however they did not change the organic content. Cleaning agents did not alter the inorganic and organic content. PA cleaned and opened dentin tubules.

  12. Innovative research of plasma physics for life sciences

    NASA Astrophysics Data System (ADS)

    Boonyawan, D.

    2017-06-01

    In medicine, cold atmospheric plasma (CAP) for the medical treatment is a new field in plasma application, called plasma medicine. CAP contains mix of excited atoms and molecules, UV photons, charged particles as well as reactive oxygen species (ROS) and reactive nitrogen species (RNS). Typical species in air-CAPs are O3, OH, NxOx, and HNOx. The current developments in this field have fuelled the hope that CAP could be an interesting new therapeutic approach in the treatment of cancer. CAP apparently demonstrated effect on cancer cell apoptosis which did not induce cell necrosis or disruption. Moreover, CAP seemed to be selective for cancer cells since it was more effective in tumor cells than in normal non-neoplastic cells. In bioscience, dentistry and veterinary medicine : Since CAP, is delivered at room temperature, which results in less damaging effects on living tissue, while still has the efficiency in disinfection and sterilization. Recent studies proved that it is able to inactivate gram-negative and gram-positive bacteria, fungi, virus, spore, various parasites, and foreign organisms or pathogens without harming tissue. Moreover, cold plasma has been used effectively in medical field such as dental use, inducing apoptosis of malignant cells, stopping bleeding, promoting wound healing and tissue regeneration. Sericin hydrolysates, originating from silkworm is found support cell proliferation, expand cell adhesion and increase cell yield. The covalent linkage between a bioactive protein molecule and polystyrene dish surface via a carbon intermediate layer can slow down the release rate of protein compound into the phosphate buffer saline (PBS) solution. We found that a-C films and a-C:N2 films show good attachment of human bone marrow-derived mesenchymal stem cells (hBM-MSCs). All of carbon modified-Polystyrene(PS) dishes revealed the less release rate of sericin molecules into PBS solution than PS control.

  13. Intelligence, Cognition, and Language of Green Plants.

    PubMed

    Trewavas, Anthony

    2016-01-01

    A summary definition of some 70 descriptions of intelligence provides a definition for all other organisms including plants that stresses fitness. Barbara McClintock, a plant biologist, posed the notion of the 'thoughtful cell' in her Nobel prize address. The systems structure necessary for a thoughtful cell is revealed by comparison of the interactome and connectome. The plant root cap, a group of some 200 cells that act holistically in responding to numerous signals, likely possesses a similar systems structure agreeing with Darwin's description of acting like the brain of a lower organism. Intelligent behavior requires assessment of different choices and taking the beneficial one. Decisions are constantly required to optimize the plant phenotype to a dynamic environment and the cambium is the assessing tissue diverting more or removing resources from different shoot and root branches through manipulation of vascular elements. Environmental awareness likely indicates consciousness. Spontaneity in plant behavior, ability to count to five and error correction indicate intention. Volatile organic compounds are used as signals in plant interactions and being complex in composition may be the equivalent of language accounting for self and alien recognition by individual plants. Game theory describes competitive interactions. Interactive and intelligent outcomes emerge from application of various games between plants themselves and interactions with microbes. Behavior profiting from experience, another simple definition of intelligence, requires both learning and memory and is indicated in the priming of herbivory, disease and abiotic stresses.

  14. Prostate cancer marker panel with single cell sensitivity in urine.

    PubMed

    Nickens, Kristen P; Ali, Amina; Scoggin, Tatiana; Tan, Shyh-Han; Ravindranath, Lakshmi; McLeod, David G; Dobi, Albert; Tacha, David; Sesterhenn, Isabell A; Srivastava, Shiv; Petrovics, Gyorgy

    2015-06-15

    Over one million men undergo prostate biopsies annually in the United States, a majority of whom due to elevated serum PSA. More than half of the biopsies turn out to be negative for prostate cancer (CaP). The limitations of both the PSA test and the biopsy procedure have led to the development for more precise CaP detection assays in urine (e.g., PCA3, TMPRSS2-ERG) or blood (e.g., PHI, 4K). Here, we describe the development and evaluation of the Urine CaP Marker Panel (UCMP) assay for sensitive and reproducible detection of CaP cells in post-digital rectal examination (post-DRE) urine. The cellular content of the post-DRE urine was captured on a translucent filter membrane, which is placed on Cytoclear slides for direct evaluation by microscopy and immuno-cytochemistry (ICC). Cells captured on the membrane were assayed for PSA and Prostein expression to identify prostate epithelial cells, and for ERG and AMACR to identify prostate tumor cells. Immunostained cells were analyzed for quantitative and qualitative features and correlated with biopsy positive and negative status for malignancy. The assay was optimized for single cell capture sensitivity and downstream evaluations by spiking a known number of cells from established CaP cell lines, LNCaP and VCaP, into pre-cleared control urine. The cells captured from the post-DRE urine of subjects, obtained prior to biopsy procedure, were co-stained for ERG, AMACR (CaP specific), and Prostein or PSA (prostate epithelium specific) rendering a whole cell based analysis and characterization. A feasibility cohort of 63 post-DRE urine specimens was assessed. Comparison of the UCMP results with blinded biopsy results showed an assay sensitivity of 64% (16 of 25) and a specificity of 68.8% (22 of 32) for CaP detection by biopsy. This pilot study assessing a minimally invasive CaP detection assay with single cell sensitivity cell-capture and characterization from the post-DRE urine holds promise for further development of this novel assay platform. Prostate 75: 969-975, 2015. © 2015 The Authors. The Prostate, published by Wiley Periodicals, Inc. © 2015 The Authors. The Prostate, published by Wiley Periodicals, Inc.

  15. The presence of orellanine in spores and basidiocarp from Cortinarius orellanus and Cortinarius rubellus.

    PubMed

    Koller, Gry Eb; Høiland, Klaus; Janak, Karel; Størmer, Fredrik C

    2002-01-01

    This is the first report quantifying the orellanine content in basidiospores. The toxin content and tissue distribution of orellanine were determined from Cortinarius orellanus (Fr.) Fr. and Cortinarius rubellus Cooke. Basidiospores, the basidiocarp, divided into cap and stem, and mycorrhiza roots were analyzed to determine the amount of orellanine by reversed phase high performance liquid chromatography and thin layer chromatography. The orellanine contents in spores were 0.31% (C. orellanus) and 0.09% (C. rubellus). In caps, we found the toxin content to be 0.94% (C. orellanus) and 0.78% (C. rubellus), in stems 0.48% (C. orellanus) and 0.42% (C. rubellus) and in mycorrhiza roots from C. rubellus we determined the orellanine contents to 0.03%. In addition, extracts from the different structures of the basidiocarp of C. orellanus and C. rubellus, with an orellanine content corresponding to 25 nmol, inhibited the growth of Bacillus subtilis.

  16. Human Cells Cultured under Physiological Oxygen Utilize Two Cap-binding Proteins to recruit Distinct mRNAs for Translation*

    PubMed Central

    Timpano, Sara; Uniacke, James

    2016-01-01

    Translation initiation is a focal point of translational control and requires the binding of eIF4E to the 5′ cap of mRNA. Under conditions of extreme oxygen depletion (hypoxia), human cells repress eIF4E and switch to an alternative cap-dependent translation mediated by a homolog of eIF4E, eIF4E2. This homolog forms a complex with the oxygen-regulated hypoxia-inducible factor 2α and can escape translation repression. This complex mediates cap-dependent translation under cell culture conditions of 1% oxygen (to mimic tumor microenvironments), whereas eIF4E mediates cap-dependent translation at 21% oxygen (ambient air). However, emerging evidence suggests that culturing cells in ambient air, or “normoxia,” is far from physiological or “normal.” In fact, oxygen in human tissues ranges from 1–11% or “physioxia.” Here we show that two distinct modes of cap-dependent translation initiation are active during physioxia and act on separate pools of mRNAs. The oxygen-dependent activities of eIF4E and eIF4E2 are elucidated by observing their polysome association and the status of mammalian target of rapamycin complex 1 (eIF4E-dependent) or hypoxia-inducible factor 2α expression (eIF4E2-dependent). We have identified oxygen conditions where eIF4E is the dominant cap-binding protein (21% normoxia or standard cell culture conditions), where eIF4E2 is the dominant cap-binding protein (1% hypoxia or ischemic diseases and cancerous tumors), and where both cap-binding proteins act simultaneously to initiate the translation of distinct mRNAs (1–11% physioxia or during development and stem cell differentiation). These data suggest that the physioxic proteome is generated by initiating translation of mRNAs via two distinct but complementary cap-binding proteins. PMID:27002144

  17. Ca-P spots modified zirconia by liquid precursor infiltration and the effect on osteoblast-like cell responses.

    PubMed

    Li, Yongmei; Liu, Yan; Zhang, Zutai; Zhuge, Ruishen; Ding, Ning; Tian, Yueming

    2018-01-26

    Ca-P spots modified zirconia by liquid precursor infiltration and the cell responses were investigated. Pre-sintered zirconia specimens were immersed in Ca-P precursor solution. After dense sintering, scanning electron microscopy showed Ca-P spots were formed on the zirconia and anchored with zirconia substrates. The distribution density was increased with the extension of immersion time. Energy dispersive spectrometer confirmed the stoichiometric Ca/P ratio was about 1.67. After hydrothermal treatment, Ca-P spots turned into rod crystals where diffraction peaks of tricalcium phosphate and hydroxyapatite were detected by X-ray diffraction, and Ca 2+ and PO 4 3- release decreased slightly (p>0.05). There was no significant decrease on three-point bending strength (p>0.05). Osteoblast-like MC3T3-E1 cells attached and spread well and showed higher proliferation on Ca-P spots modified zirconia (p<0.05), though its initial alkaline phosphatase activity was not significant high (p>0.05). In conclusion, Ca-P liquid precursor infiltration is a potential method to modify the zirconia ceramics for improving bioactivity.

  18. Electromagnetic radiation (Wi-Fi) and epilepsy induce calcium entry and apoptosis through activation of TRPV1 channel in hippocampus and dorsal root ganglion of rats.

    PubMed

    Ghazizadeh, Vahid; Nazıroğlu, Mustafa

    2014-09-01

    Incidence rates of epilepsy and use of Wi-Fi worldwide have been increasing. TRPV1 is a Ca(2+) permeable and non-selective channel, gated by noxious heat, oxidative stress and capsaicin (CAP). The hyperthermia and oxidant effects of Wi-Fi may induce apoptosis and Ca(2+) entry through activation of TRPV1 channel in epilepsy. Therefore, we tested the effects of Wi-Fi (2.45 GHz) exposure on Ca(2+) influx, oxidative stress and apoptosis through TRPV1 channel in the murine dorsal root ganglion (DRG) and hippocampus of pentylentetrazol (PTZ)-induced epileptic rats. Rats in the present study were divided into two groups as controls and PTZ. The PTZ groups were divided into two subgroups namely PTZ + Wi-Fi and PTZ + Wi-Fi + capsazepine (CPZ). The hippocampal and DRG neurons were freshly isolated from the rats. The DRG and hippocampus in PTZ + Wi-Fi and PTZ + Wi-Fi + CPZ groups were exposed to Wi-Fi for 1 hour before CAP stimulation. The cytosolic free Ca(2+), reactive oxygen species production, apoptosis, mitochondrial membrane depolarization, caspase-3 and -9 values in hippocampus were higher in the PTZ group than in the control although cell viability values decreased. The Wi-Fi exposure induced additional effects on the cytosolic Ca(2+) increase. However, pretreatment of the neurons with CPZ, results in a protection against epilepsy-induced Ca(2+) influx, apoptosis and oxidative damages. In results of whole cell patch-clamp experiments, treatment of DRG with Ca(2+) channel antagonists [thapsigargin, verapamil + diltiazem, 2-APB, MK-801] indicated that Wi-Fi exposure induced Ca(2+) influx via the TRPV1 channels. In conclusion, epilepsy and Wi-Fi in our experimental model is involved in Ca(2+) influx and oxidative stress-induced hippocampal and DRG death through activation of TRPV1 channels, and negative modulation of this channel activity by CPZ pretreatment may account for the neuroprotective activity against oxidative stress.

  19. In vitro and in vivo assessment of cellular permeability and pharmacodynamics of S-nitrosylated Captopril, a nitric oxide donor

    PubMed Central

    Jia, Lee; Wong, Hong

    2001-01-01

    The present studies were aimed at testing the hypothesis that S-nitrosylated captopril (CapNO), a novel crystalline nitric oxide (NO) donor, readily permeates both in vitro and in vivo endothelial monolayers, resulting in its pharmacodynamic effects. CapNO and Captopril (Cap) were added to apical side of endothelial monolayers formed on microporous membranes, and the permeated drugs were collected from basolateral side and detected by a HPLC method. The permeability coefficient (Papp; cm sec−1) of CapNO across the endothelial monolayers was 6.0×10−5, higher than that of Cap (3.13×10−5), indicating the enhancement effect of the attached NO group in CapNO on cellular permeability. The Papp of CapNO and Cap across Caco-2 cells were 3.15×10−5 and 1.53×10−5, respectively. The low Papp of CapNO to Caco-2 cells may be attributed to the high membrane resistance of Caco-2 cells. A bolus injection of CapNO to epicardial coronary artery of chronically-instrumented awake dogs caused significant increases in coronary blood flow and coronary diameters dose-dependently without significant changes in aortic pressure. In contrast, the equimolar doses of Cap did not produce haemodynamic responses. Intravenous CapNO caused an instant increase in the regional cerebral blood flow determined by H2-clearance, whereas the equimolar doses of Cap did not enhance the cerebral blood flow. These results conclude that the NO group, an active component of CapNO, enhances both in vitro and in vivo endothelial permeability to the entire compound, resulting in instant increases in blood flow and vascular diameters. In contrast, the equimolar Cap does not have the instant vascular effects. PMID:11739246

  20. In vitro and in vivo assessment of cellular permeability and pharmacodynamics of S-nitrosylated captopril, a nitric oxide donor.

    PubMed

    Jia, L; Wong, H

    2001-12-01

    1. The present studies were aimed at testing the hypothesis that S-nitrosylated captopril (CapNO), a novel crystalline nitric oxide (NO) donor, readily permeates both in vitro and in vivo endothelial monolayers, resulting in its pharmacodynamic effects. 2. CapNO and Captopril (Cap) were added to apical side of endothelial monolayers formed on microporous membranes, and the permeated drugs were collected from basolateral side and detected by a HPLC method. The permeability coefficient (P(app); cm sec(-1)) of CapNO across the endothelial monolayers was 6.0 x 10(-5), higher than that of Cap (3.13 x 10(-5)), indicating the enhancement effect of the attached NO group in CapNO on cellular permeability. The P(app) of CapNO and Cap across Caco-2 cells were 3.15 x 10(-5) and 1.53 x 10(-5), respectively. The low P(app) of CapNO to Caco-2 cells may be attributed to the high membrane resistance of Caco-2 cells. 3. A bolus injection of CapNO to epicardial coronary artery of chronically-instrumented awake dogs caused significant increases in coronary blood flow and coronary diameters dose-dependently without significant changes in aortic pressure. In contrast, the equimolar doses of Cap did not produce haemodynamic responses. 4. Intravenous CapNO caused an instant increase in the regional cerebral blood flow determined by H(2)-clearance, whereas the equimolar doses of Cap did not enhance the cerebral blood flow. 5. These results conclude that the NO group, an active component of CapNO, enhances both in vitro and in vivo endothelial permeability to the entire compound, resulting in instant increases in blood flow and vascular diameters. In contrast, the equimolar Cap does not have the instant vascular effects.

  1. Multiple piece turbine rotor blade

    DOEpatents

    Kimmel, Keith D.; Plank, William L.

    2016-07-19

    A spar and shell turbine rotor blade with a spar and a tip cap formed as a single piece, the spar includes a bottom end with dovetail or fir tree slots that engage with slots on a top end of a root section, and a platform includes an opening on a top surface for insertion of the spar in which a shell made from an exotic high temperature resistant material is secured between the tip cap and the platform. The spar is tapered to form thinner walls at the tip end to further reduce the weight and therefore a pulling force due to blade rotation. The spar and tip cap piece is made from a NiAL material to further reduce the weight and the pulling force.

  2. Phytotoxicity of veterinary antibiotics to seed germination and root elongation of crops.

    PubMed

    Pan, Min; Chu, L M

    2016-04-01

    Large quantities of veterinary antibiotics (VAs) are being used worldwide in agricultural fields through wastewater irrigation and manure application. They cause damages to the ecosystem when discharged into the environment, but there is a lack of information on their toxicity to plants and animals. This study evaluated the phytotoxic effects of five major VAs, namely tetracycline (TC), sulfamethazine (SMZ), norfloxacin (NOR), erythromycin (ERY) and chloramphenicol (CAP), on seed germination and root elongation in lettuce, tomato, carrot and cucumber, and investigated the relationship between their physicochemical properties and phytotoxicities. Results show that these compounds significantly inhibited root elongation (p<0.05), the most sensitive endpoint for the phytotoxicity test. TC was associated with the highest level of toxicity, followed by NOR, ERY, SMZ and CAP. Regarding crop species, lettuce was found to be sensitive to most of the VAs. The median effect concentration (EC50) of TC, SMZ, NOR, ERY and CAP to lettuce was 14.4, 157, 49.4, 68.8 and 204 mg/L, respectively. A quantitative structure-activity relationship (QSAR) model has been established based on the measured data. It is evident that hydrophobicity was the most important factor governing the phytotoxicity of these compounds to seeds, which could be explained by the polar narcosis mechanism. Lettuce is considered a good biomarker for VAs in the environment. According to the derived equation, phytotoxicities of selected VA compounds on different crops can be calculated, which could be applicable to other VAs. Environmental risks of VAs were summarized based on the phytotoxicity results and other persistent factors. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Engineering of pulsed laser deposited calcium phosphate biomaterials in controlled atmospheres

    NASA Astrophysics Data System (ADS)

    Drukteinis, Saulius E.

    Synthetic calcium phosphates (CAP) such as hydroxyapatite (HA) have been used as regenerative bone graft materials and also as thin films to improve the integration of biomedical implant devices within skeletal tissue. Pulsed laser deposition (PLD) can deposit crystalline HA with significant adhesion on titanium biomaterials. However, there are PLD processing constraints due to the complex physical and chemical interactions occurring simultaneously during PLD, which influence ablation plume formation and development. In this investigation PLD CAP films were engineered with a focus on novel decoupling of partial pressure of H2O (g) ( PH2O ) from total background pressure, in combination with substrate heat treatment and laser energy density control. Characterization of these films was performed with X-ray Diffraction, Scanning Electron Microscopy, Energy Dispersive X-ray Spectroscopy, Fourier Transform Infrared Spectroscopy, and Optical Profilometry. In vitro cellular adhesion testing was also performed using osteoblast (MC3T3) cell lines to evaluate adhesion of bone-forming cells on processed PLD CAP samples. Preferred a-axis orientation films were deposited in H2O (g) saturated atmospheres with reduced laser fluence (< 4 J/cm2). Crystalline HA/tetracalcium phosphate (TTCP) films were deposited in H2O ( g)-deficient atmospheres with higher laser fluence (> 3 J/cm 2). Varied PH2O resulted in control of biphasic HA/TTCP composition with increasing TTCP at lower PH2O . These were dense continuous films composed of micron-scale particles. Cellular adhesion assays did not demonstrate a significant difference between osteoblast adhesion density on HA films compared with biphasic HA/TTCP films. Room temperature PLD at varied PH2O combined with furnace heat treatment resulted in controlled variation in surface amplitude parameters including surface roughness (S a), root mean square (Sq), peak to valley height (St), and ten-point height ( Sz). These discontinuous films were composed of nano-scale particles and resulted in significant osteoblast adhesion compared to control samples or to PLD CAP films deposited on heated substrates. Surface amplitude parameters (Sa, Sq, St, and Sz) correlated with osteoblast adhesion. This new approach of control over H2O ( g) operating atmospheres enabled the deposition of unique PLD CAP films with potential use as thin films for biomedical implants or as regenerative bone graft materials. Keywords: hydroxyapatite, pulsed laser deposition, biomaterials.

  4. Melanoma-Targeted Chemothermotherapy and In Situ Peptide Immunotherapy through HSP Production by Using Melanogenesis Substrate, NPrCAP, and Magnetite Nanoparticles

    PubMed Central

    Jimbow, Kowichi; Ishii-Osai, Yasue; Ito, Shosuke; Tamura, Yasuaki; Ito, Akira; Yoneta, Akihiro; Kamiya, Takafumi; Yamashita, Toshiharu; Honda, Hiroyuki; Wakamatsu, Kazumasa; Murase, Katsutoshi; Nohara, Satoshi; Nakayama, Eiichi; Hasegawa, Takeo; Yamamoto, Itsuo; Kobayashi, Takeshi

    2013-01-01

    Exploitation of biological properties unique to cancer cells may provide a novel approach to overcome difficult challenges to the treatment of advanced melanoma. In order to develop melanoma-targeted chemothermoimmunotherapy, a melanogenesis substrate, N-propionyl-4-S-cysteaminylphenol (NPrCAP), sulfur-amine analogue of tyrosine, was conjugated with magnetite nanoparticles. NPrCAP was exploited from melanogenesis substrates, which are expected to be selectively incorporated into melanoma cells and produce highly reactive free radicals through reacting with tyrosinase, resulting in chemotherapeutic and immunotherapeutic effects by oxidative stress and apoptotic cell death. Magnetite nanoparticles were conjugated with NPrCAP to introduce thermotherapeutic and immunotherapeutic effects through nonapoptotic cell death and generation of heat shock protein (HSP) upon exposure to alternating magnetic field (AMF). During these therapeutic processes, NPrCAP was also expected to provide melanoma-targeted drug delivery system. PMID:23533767

  5. Adenylyl cyclase-associated protein 1 in metastasis of squamous cell carcinoma of the head and neck and non-small cell lung cancer

    NASA Astrophysics Data System (ADS)

    Kakurina, G. V.; Kolegova, E. S.; Cheremisina, O. V.; Zavyalov, A. A.; Shishkin, D. A.; Kondakova, I. V.; Choinzonov, E. L.

    2016-08-01

    Progression of tumors and metastasis in particular is one of the main reasons of the high mortality rate among cancer patients. The primary role in developing metastases plays cell locomotion which requires remodeling of the actin cytoskeleton. Form, dynamics, localization and mechanical properties of the actin cytoskeleton are regulated by a variety of actin-binding proteins, which include the adenylyl cyclase-associated protein 1 (CAP1). The study is devoted to the investigation of CAP1 level depending on the presence or absence of metastases in patients with squamous cell carcinoma of the head and neck (SCCHN) and non-small cell lung cancer (NSCLC). The results show the contribution of CAP1 to SCCHN and NSCLC progression. We detected the connection between the tissue protein CAP1 level and the stage of NSCLC and SCCHN disease. Also the levels of the CAP1 protein in tissues of primary tumors and metastases in lung cancer were different. Our data showed that CAP is important in the development of metastases, which suggests further perspectives in the study of this protein for projecting metastasis of NSCLC and SCCHN.

  6. Geoperception in primary and lateral roots of Phaseolus vulgaris (Fabaceae). III. A model to explain the differential georesponsiveness of primary and lateral roots

    NASA Technical Reports Server (NTRS)

    Ransom, J. S.; Moore, R.

    1985-01-01

    Half-tipped primary and lateral roots of Phaseolus vulgaris bend toward the side of the root on which the intact half tip remains. Therefore, tips of lateral and primary roots produce growth effectors capable of inducing gravicurvature. The asymmetrical placement of a tip of a lateral root onto a detipped primary root results in the root bending toward the side of the root onto which the tip was placed. That is, the lesser graviresponsiveness of lateral roots as compared with primary roots is not due to the inability of their caps to produce growth inhibitors. The more pronounced graviresponsiveness of primary roots is positively correlated with the presence of columella tissues that are 3.8 times longer, 1.7 times wider, and 10.5 times more voluminous than the columellas of lateral roots. We propose that the lack of graviresponsiveness exhibited by lateral roots is due to the fact that they (i) produce smaller amounts of the inhibitor than primary (i.e., strongly graviresponsive) roots and (ii) are unable to redistribute the inhibitor so as to be able to create a concentration gradient sufficient to induce a pronounced gravitropic response.

  7. Gram positive and Gram negative bacteria differ in their sensitivity to cold plasma

    NASA Astrophysics Data System (ADS)

    Mai-Prochnow, Anne; Clauson, Maryse; Hong, Jungmi; Murphy, Anthony B.

    2016-12-01

    Cold atmospheric-pressure plasma (CAP) is a relatively new method being investigated for antimicrobial activity. However, the exact mode of action is still being explored. Here we report that CAP efficacy is directly correlated to bacterial cell wall thickness in several species. Biofilms of Gram positive Bacillus subtilis, possessing a 55.4 nm cell wall, showed the highest resistance to CAP, with less than one log10 reduction after 10 min treatment. In contrast, biofilms of Gram negative Pseudomonas aeruginosa, possessing only a 2.4 nm cell wall, were almost completely eradicated using the same treatment conditions. Planktonic cultures of Gram negative Pseudomonas libanensis also had a higher log10 reduction than Gram positive Staphylococcus epidermidis. Mixed species biofilms of P. aeruginosa and S. epidermidis showed a similar trend of Gram positive bacteria being more resistant to CAP treatment. However, when grown in co-culture, Gram negative P. aeruginosa was more resistant to CAP overall than as a mono-species biofilm. Emission spectra indicated OH and O, capable of structural cell wall bond breakage, were present in the plasma. This study indicates that cell wall thickness correlates with CAP inactivation times of bacteria, but cell membranes and biofilm matrix are also likely to play a role.

  8. Phytotoxicity, accumulation and transport of silver nanoparticles by Arabidopsis thaliana.

    PubMed

    Geisler-Lee, Jane; Wang, Qiang; Yao, Ying; Zhang, Wen; Geisler, Matt; Li, Kungang; Huang, Ying; Chen, Yongsheng; Kolmakov, Andrei; Ma, Xingmao

    2013-05-01

    The widespread availability of nano-enabled products in the global market may lead to the release of a substantial amount of engineered nanoparticles in the environment, which frequently display drastically different physiochemical properties than their bulk counterparts. The purpose of the study was to evaluate the impact of citrate-stabilised silver nanoparticles (AgNPs) on the plant Arabidopsis thaliana at three levels, physiological phytotoxicity, cellular accumulation and subcellular transport of AgNPs. The monodisperse AgNPs of three different sizes (20, 40 and 80 nm) aggregated into much larger sizes after mixing with quarter-strength Hoagland solution and became polydisperse. Immersion in AgNP suspension inhibited seedling root elongation and demonstrated a linear dose-response relationship within the tested concentration range. The phytotoxic effect of AgNPs could not be fully explained by the released silver ions. Plants exposed to AgNP suspensions bioaccumulated higher silver content than plants exposed to AgNO3 solutions (Ag(+) representative), indicating AgNP uptake by plants. AgNP toxicity was size and concentration dependent. AgNPs accumulated progressively in this sequence: border cells, root cap, columella and columella initials. AgNPs were apoplastically transported in the cell wall and found aggregated at plasmodesmata. In all the three levels studied, AgNP impacts differed from equivalent dosages of AgNO3.

  9. Molecular and morphological surface analysis: effect of filling pastes and cleaning agents on root dentin

    PubMed Central

    DAINEZI, Vanessa Benetello; IWAMOTO, Alexsandra Shizue; MARTIN, Airton Abrahão; SOARES, Luís Eduardo Silva; HOSOYA, Yumiko; PASCON, Fernanda Miori; PUPPIN-RONTANI, Regina Maria

    2017-01-01

    Abstract The quality of the dentin root is the most important factor for restoration resin sealing and drives the outcome of endodontic treatment. Objective This study evaluated the effect of different filling pastes and cleaning agents on the root dentin of primary teeth using Fourier-transformed Raman spectroscopy (FT-Raman), micro energy-dispersive X-ray fluorescence (µ-EDXRF) and scanning electron microscopic (SEM) analysis. Material and Methods Eighty roots of primary teeth were endodontically prepared and distributed into 4 groups and filled according to the following filling pastes: Control-no filling (CP), Calen®+zinc oxide (CZ), Calcipex II® (CII), Vitapex® (V). After seven days, filling paste groups were distributed to 4 subgroups according to cleaning agents (n=5): Control-no cleaning (C), Ethanol (E), Tergenform® (T), 35% Phosphoric acid (PA). Then, the roots were sectioned and the dentin root sections were internally evaluated by FT-Raman, µ-EDXRF and SEM. Data was submitted to two-way ANOVA and Tukey tests (α=0.05). Results Regarding filling pastes, there was no significant difference in organic content. CP provided the lowest calcium values and, calcium/phosphoric ratio (Ca/P), and the highest phosphoric values. For cleaning agents there was no difference in organic content when compared to the C; however, T showed significantly higher calcium and Ca/P than PA. All groups showed similar results for phosphorus. The dentin smear layer was present after use of the cleaning agents, except PA. Conclusion The filling pastes changed the inorganic content, however they did not change the organic content. Cleaning agents did not alter the inorganic and organic content. PA cleaned and opened dentin tubules. PMID:28198982

  10. Autogenous teeth used for bone grafting: a comparison with traditional grafting materials.

    PubMed

    Kim, Young-Kyun; Kim, Su-Gwan; Yun, Pil-Young; Yeo, In-Sung; Jin, Seung-Chan; Oh, Ji-Su; Kim, Heung-Joong; Yu, Sun-Kyoung; Lee, Sook-Young; Kim, Jae-Sung; Um, In-Woong; Jeong, Mi-Ae; Kim, Gyung-Wook

    2014-01-01

    This study evaluated the surface structures and physicochemical characteristics of a novel autogenous tooth bone graft material currently in clinical use. The material's surface structure was compared with a variety of other bone graft materials via scanning electron microscope (SEM). The crystalline structure of the autogenous tooth bone graft material from the crown (AutoBT crown) and root (AutoBT root), xenograft (BioOss), alloplastic material (MBCP), allograft (ICB), and autogenous mandibular cortical bone were compared using x-ray diffraction (XRD) analysis. The solubility of each material was measured with the Ca/P dissolution test. The results of the SEM analysis showed that the pattern associated with AutoBT was similar to that from autogenous cortical bones. In the XRD analysis, AutoBT root and allograft showed a low crystalline structure similar to that of autogenous cortical bones. In the CaP dissolution test, the amount of calcium and phosphorus dissolution in AutoBT was significant from the beginning, while displaying a pattern similar to that of autogenous cortical bones. In conclusion, autogenous tooth bone graft materials can be considered to have physicochemical characteristics similar to those of autogenous bones. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Characterization and distribution of a maize cDNA encoding a peptide similar to the catalytic region of second messenger dependent protein kinases

    NASA Technical Reports Server (NTRS)

    Biermann, B.; Johnson, E. M.; Feldman, L. J.

    1990-01-01

    Maize (Zea mays) roots respond to a variety of environmental stimuli which are perceived by a specialized group of cells, the root cap. We are studying the transduction of extracellular signals by roots, particularly the role of protein kinases. Protein phosphorylation by kinases is an important step in many eukaryotic signal transduction pathways. As a first phase of this research we have isolated a cDNA encoding a maize protein similar to fungal and animal protein kinases known to be involved in the transduction of extracellular signals. The deduced sequence of this cDNA encodes a polypeptide containing amino acids corresponding to 33 out of 34 invariant or nearly invariant sequence features characteristic of protein kinase catalytic domains. The maize cDNA gene product is more closely related to the branch of serine/threonine protein kinase catalytic domains composed of the cyclic-nucleotide- and calcium-phospholipid-dependent subfamilies than to other protein kinases. Sequence identity is 35% or more between the deduced maize polypeptide and all members of this branch. The high structural similarity strongly suggests that catalytic activity of the encoded maize protein kinase may be regulated by second messengers, like that of all members of this branch whose regulation has been characterized. Northern hybridization with the maize cDNA clone shows a single 2400 base transcript at roughly similar levels in maize coleoptiles, root meristems, and the zone of root elongation, but the transcript is less abundant in mature leaves. In situ hybridization confirms the presence of the transcript in all regions of primary maize root tissue.

  12. Fluorescence Resonance Energy Transfer-Sensitized Emission of Yellow Cameleon 3.60 Reveals Root Zone-Specific Calcium Signatures in Arabidopsis in Response to Aluminum and Other Trivalent Cations1[W][OA

    PubMed Central

    Rincón-Zachary, Magaly; Teaster, Neal D.; Sparks, J. Alan; Valster, Aline H.; Motes, Christy M.; Blancaflor, Elison B.

    2010-01-01

    Fluorescence resonance energy transfer-sensitized emission of the yellow cameleon 3.60 was used to study the dynamics of cytoplasmic calcium ([Ca2+]cyt) in different zones of living Arabidopsis (Arabidopsis thaliana) roots. Transient elevations of [Ca2+]cyt were observed in response to glutamic acid (Glu), ATP, and aluminum (Al3+). Each chemical induced a [Ca2+]cyt signature that differed among the three treatments in regard to the onset, duration, and shape of the response. Glu and ATP triggered patterns of [Ca2+]cyt increases that were similar among the different root zones, whereas Al3+ evoked [Ca2+]cyt transients that had monophasic and biphasic shapes, most notably in the root transition zone. The Al3+-induced [Ca2+]cyt increases generally started in the maturation zone and propagated toward the cap, while the earliest [Ca2+]cyt response after Glu or ATP treatment occurred in an area that encompassed the meristem and elongation zone. The biphasic [Ca2+]cyt signature resulting from Al3+ treatment originated mostly from cortical cells located at 300 to 500 μ m from the root tip, which could be triggered in part through ligand-gated Glu receptors. Lanthanum and gadolinium, cations commonly used as Ca2+ channel blockers, elicited [Ca2+]cyt responses similar to those induced by Al3+. The trivalent ion-induced [Ca2+]cyt signatures in roots of an Al3+-resistant and an Al3+-sensitive mutant were similar to those of wild-type plants, indicating that the early [Ca2+]cyt changes we report here may not be tightly linked to Al3+ toxicity but rather to a general response to trivalent cations. PMID:20053711

  13. Fluorescence resonance energy transfer-sensitized emission of yellow cameleon 3.60 reveals root zone-specific calcium signatures in Arabidopsis in response to aluminum and other trivalent cations.

    PubMed

    Rincón-Zachary, Magaly; Teaster, Neal D; Sparks, J Alan; Valster, Aline H; Motes, Christy M; Blancaflor, Elison B

    2010-03-01

    Fluorescence resonance energy transfer-sensitized emission of the yellow cameleon 3.60 was used to study the dynamics of cytoplasmic calcium ([Ca(2+)](cyt)) in different zones of living Arabidopsis (Arabidopsis thaliana) roots. Transient elevations of [Ca(2+)](cyt) were observed in response to glutamic acid (Glu), ATP, and aluminum (Al(3+)). Each chemical induced a [Ca(2+)](cyt) signature that differed among the three treatments in regard to the onset, duration, and shape of the response. Glu and ATP triggered patterns of [Ca(2+)](cyt) increases that were similar among the different root zones, whereas Al(3+) evoked [Ca(2+)](cyt) transients that had monophasic and biphasic shapes, most notably in the root transition zone. The Al(3+)-induced [Ca(2+)](cyt) increases generally started in the maturation zone and propagated toward the cap, while the earliest [Ca(2+)](cyt) response after Glu or ATP treatment occurred in an area that encompassed the meristem and elongation zone. The biphasic [Ca(2+)](cyt) signature resulting from Al(3+) treatment originated mostly from cortical cells located at 300 to 500 mu m from the root tip, which could be triggered in part through ligand-gated Glu receptors. Lanthanum and gadolinium, cations commonly used as Ca(2+) channel blockers, elicited [Ca(2+)](cyt) responses similar to those induced by Al(3+). The trivalent ion-induced [Ca(2+)](cyt) signatures in roots of an Al(3+)-resistant and an Al(3+)-sensitive mutant were similar to those of wild-type plants, indicating that the early [Ca(2+)](cyt) changes we report here may not be tightly linked to Al(3+) toxicity but rather to a general response to trivalent cations.

  14. Selective Killing Effects of Cold Atmospheric Pressure Plasma with NO Induced Dysfunction of Epidermal Growth Factor Receptor in Oral Squamous Cell Carcinoma.

    PubMed

    Lee, Jung-Hwan; Om, Ji-Yeon; Kim, Yong-Hee; Kim, Kwang-Mahn; Choi, Eun-Ha; Kim, Kyoung-Nam

    2016-01-01

    The aim of this study is to investigate the effects of cold atmospheric pressure plasma (CAP)-induced radicals on the epidermal growth factor receptor (EGFR), which is overexpressed by oral squamous cell carcinoma, to determine the underlying mechanism of selective killing. CAP-induced highly reactive radicals were observed in both plasma plume and cell culture media. The selective killing effect was observed in oral squamous cell carcinoma compared with normal human gingival fibroblast. Degradation and dysfunction of EGFRs were observed only in the EGFR-overexpressing oral squamous cell carcinoma and not in the normal cell. Nitric oxide scavenger pretreatment in cell culture media before CAP treatment rescued above degradation and dysfunction of the EGFR as well as the killing effect in oral squamous cell carcinoma. CAP may be a promising cancer treatment method by inducing EGFR dysfunction in EGFR-overexpressing oral squamous cell carcinoma via nitric oxide radicals.

  15. Rhizophores in Rhizophora mangle L: an alternative interpretation of so-called ''aerial roots''.

    PubMed

    Menezes, Nanuza L de

    2006-06-01

    Rhizophora mangle L., one of the most common mangrove species, has an aerial structure system that gives it stability in permanently swampy soils. In fact, these structures, known as "aerial roots" or "stilt roots", have proven to be peculiar branches with positive geotropism, which form a large number of roots when in contact with swampy soils. These organs have a sympodial branching system, wide pith, slightly thickened cortex, collateral vascular bundles, polyarch stele and endarch protoxylem, as in the stem, and a periderm produced by a phellogen at the apex similar to a root cap. They also have the same type of trichosclereid that occurs in the stem, with negative geotropism, unlike true Rhizophora roots, which do not form trichosclereids at all. On the other hand, these branches do not form leaves and in this respect they are similar to roots. These peculiar branches are rhizophores or special root-bearing branches, analogous to those found in Lepidodendrales and other Carboniferous tree ferns that grew in swampy soils.

  16. Capsaicin-induced activation of ERK1/2 and its involvement in GAP-43 expression and CGRP depletion in organotypically cultured DRG neurons.

    PubMed

    Li, Yunfeng; Liu, Guixiang; Li, Hao; Xu, Youzheng; Zhang, Hong; Liu, Zhen

    2013-04-01

    Low concentrations of capsaicin (CAP) stimulate and high concentrations of CAP can be toxic to the primary sensory neurons of the dorsal root ganglion (DRG). CAP induces the phosphorylation of extracellular signal-regulated protein kinases 1/2 (ERK1/2) in DRG neurons. The effect of the activation of ERK1/2 by different concentrations of CAP on growth-associated protein 43 (GAP-43) expression and calcitonin gene-related peptide (CGRP) depletion in DRG neurons remains unknown. In the present study, organotypic embryonic 15-day-old rat DRG explants were used to determine the effect of different concentrations of CAP on GAP-43 expression and CGRP depletion. The results showed that, compared to unstimulated control cultures, GAP-43 and pERK1/2 protein levels increased at a low concentration (2 μmol/L) of CAP and decreased at a higher concentration (10 μmol/L). The number of CGRP-immunoreactive (IR) migrating neurons also decreased in CAP-treated cultures. The increase in GAP-43 levels and CGRP depletion could be blocked by the administration of ERK1/2 inhibitor PD98059. The results of the present study imply that CAP at different concentrations has different effects on GAP-43 expression and CGRP depletion. These effects were involved in the activation of ERK1/2 in organotypically cultured DRG neurons stimulated with CAP. These data may provide new insights for further development potential therapeutic applications of CAP with moderate dose on neurogenic inflammation.

  17. Cytotoxicity Induced by a Redox-silent Analog of Tocotrienol in Human Mesothelioma H2452 Cell Line via Suppression of Cap-dependent Protein Translation.

    PubMed

    Sato, Ayami; Ueno, Haruka; Takase, Akari; Ando, Akira; Sekine, Yuko; Yano, Tomohiro

    2016-04-01

    De novo synthesis of proteins is regulated by cap-dependent protein translation. Aberrant activation of the translation is a hallmark of many cancer types including malignant mesothelioma (MM). We previously reported that a redox-silent analog of α-tocotrienol, 6-O-carboxypropyl-α-tocotrienol (T3E) induces potent cytotoxicity against human MM cells. However, the detailed mechanism of cytotoxicity of T3E remains unclear. In this study, we investigated if T3E induced potent cytotoxicity aganist MM cells. T3E reduced the formation of the cap-dependent translation complex and induced inactivation of oncogene from rat sarcoma virus (RAS). These events were associated with T3E cytotoxicity in MM cells. Furthermore, atorvastatin, an inhibitor of RAS function, had similar effects on MM cells. Moreover, 4EGI-1, a specific inhibitor of the cap-dependent translation complex, induced severe cytotoxicity in MM cells. Overall, T3E had a cytotoxic effect on MM cells via disruption of the activated cap-dependent translation complex through inactivation of RAS. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  18. Therapy of prostate cancer using a novel cancer terminator virus and a small molecule BH-3 mimetic.

    PubMed

    Sarkar, Siddik; Quinn, Bridget A; Shen, Xue-Ning; Dash, Rupesh; Das, Swadesh K; Emdad, Luni; Klibanov, Alexander L; Wang, Xiang-Yang; Pellecchia, Maurizio; Sarkar, Devanand; Fisher, Paul B

    2015-05-10

    Despite recent advances, treatment options for advanced prostate cancer (CaP) remain limited. We are pioneering approaches to treat advanced CaP that employ conditionally replication-competent oncolytic adenoviruses that simultaneously produce a systemically active cancer-specific therapeutic cytokine, mda-7/IL-24, Cancer Terminator Viruses (CTV). A truncated version of the CCN1/CYR61 gene promoter, tCCN1-Prom, was more active than progression elevated gene-3 promoter (PEG-Prom) in regulating transformation-selective transgene expression in CaP and oncogene-transformed rat embryo cells. Accordingly, we developed a new CTV, Ad.tCCN1-CTV-m7, which displayed dose-dependent killing of CaP without harming normal prostate epithelial cells in vitro with significant anti-cancer activity in vivo in both nude mouse CaP xenograft and transgenic Hi-Myc mice (using ultrasound-targeted microbubble (MB)-destruction, UTMD, with decorated MBs). Resistance to mda-7/IL-24-induced cell death correlated with overexpression of Bcl-2 family proteins. Inhibiting Mcl-1 using an enhanced BH3 mimetic, BI-97D6, sensitized CaP cell lines to mda-7/IL-24-induced apoptosis. Combining BI-97D6 with Ads expressing mda-7/IL-24 promoted ER stress, decreased anti-apoptotic Mcl-1 expression and enhanced mda-7/IL-24 expression through mRNA stabilization selectively in CaP cells. In Hi-myc mice, the combination induced enhanced apoptosis and tumor growth suppression. These studies highlight therapeutic efficacy of combining a BH3 mimetic with a novel CTV, supporting potential clinical applications for treating advanced CaP.

  19. Innate immune restriction and antagonism of viral RNA lacking 2'-O methylation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hyde, Jennifer L.; Diamond, Michael S., E-mail: diamond@borcim.wustl.edu; Molecular Microbiology, Washington University School of Medicine, St Louis., MO 63110

    N-7 and 2′-O methylation of host cell mRNA occurs in the nucleus and results in the generation of cap structures (cap 0, m{sup 7}GpppN; cap 1, m{sup 7}GpppNm) that control gene expression by modulating nuclear export, splicing, turnover, and protein synthesis. Remarkably, RNA cap modification also contributes to mammalian cell host defense as viral RNA lacking 2′-O methylation is sensed and inhibited by IFIT1, an interferon (IFN) stimulated gene (ISG). Accordingly, pathogenic viruses that replicate in the cytoplasm have evolved mechanisms to circumvent IFIT1 restriction and facilitate infection of mammalian cells. These include: (a) generating cap 1 structures on theirmore » RNA through cap-snatching or virally-encoded 2′-O methyltransferases, (b) using cap-independent means of translation, or (c) using RNA secondary structural motifs to antagonize IFIT1 binding. This review will discuss new insights as to how specific modifications at the 5′-end of viral RNA modulate host pathogen recognition responses to promote infection and disease.« less

  20. Mapping of p140Cap Phosphorylation Sites: The EPLYA and EGLYA Motifs Have a Key Role in Tyrosine Phosphorylation and Csk Binding, and Are Substrates of the Abl Kinase

    PubMed Central

    Sharma, Nanaocha; Grasso, Silvia; Russo, Isabella; Jensen, Ole N.; Cabodi, Sara; Turco, Emilia; Di Stefano, Paola; Defilippi, Paola

    2013-01-01

    Protein phosphorylation tightly regulates specific binding of effector proteins that control many diverse biological functions of cells (e. g. signaling, migration and proliferation). p140Cap is an adaptor protein, specifically expressed in brain, testis and epithelial cells, that undergoes phosphorylation and tunes its interactions with other regulatory molecules via post-translation modification. In this work, using mass spectrometry, we found that p140Cap is in vivo phosphorylated on tyrosine (Y) within the peptide GEGLpYADPYGLLHEGR (from now on referred to as EGLYA) as well as on three serine residues. Consistently, EGLYA has the highest score of in silico prediction of p140Cap phosphorylation. To further investigate the p140Cap function, we performed site specific mutagenesis on tyrosines inserted in EGLYA and EPLYA, a second sequence with the same highest score of phosphorylation. The mutant protein, in which both EPLYA/EGLYA tyrosines were converted to phenylalanine, was no longer tyrosine phosphorylated, despite the presence of other tyrosine residues in p140Cap sequence. Moreover, this mutant lost its ability to bind the C-terminal Src kinase (Csk), previously shown to interact with p140Cap by Far Western analysis. In addition, we found that in vitro and in HEK-293 cells, the Abelson kinase is the major kinase involved in p140Cap tyrosine phosphorylation on the EPLYA and EGLYA sequences. Overall, these data represent an original attempt to in vivo characterise phosphorylated residues of p140Cap. Elucidating the function of p140Cap will provide novel insights into its biological activity not only in normal cells, but also in tumors. PMID:23383002

  1. Cap analog and Potato virus A HC-Pro silencing suppressor improve GFP transient expression using an infectious virus vector in Nicotiana benthamiana.

    PubMed

    Tahmasebi, Amin-Alah; Afsharifar, Alireza

    2017-06-01

    Transient expression of proteins in plants has become a choice to facilitate recombinant protein production with its fast and easy application. On the other hand, host defensive mechanisms have been reported to reduce the efficiency of transient expression in plants. Hence, this study was designed to evaluate the effect of cap analog and Potato virus A helper component proteinase (PVA HC-Pro) on green fluorescent protein (GFP) expression efficiency. N . benthamiana leaves were inoculated with capped or un-capped RNA transcripts of a Turnip crinkle virus (TCV) construct containing a green fluorescent protein reporter gene (TCV-sGFP) in place of its coat protein (CP) ORF. PVA HC-Pro as a viral suppressor of RNA silencing was infiltrated in trans by Agrobacterium tumefaciens , increased the GFP foci diameter to six and even more cells in both capped and un capped treatments. The expression level of GFP in inoculated plants with TCV-sGFP transcript pre-infiltrated with PVA HC-Pro was 12.97-fold higher than the GFP accumulation level in pre-infiltrated leaves with empty plasmid (EP) control. Also, the yield of GFP in inoculated N. benthamiana plants with capped TCV-sGFP transcript pre-infiltrated with EP and PVA HC-Pro was 1.54 and 1.2-fold respectively, greater than the level of GFP expressed without cap analog application at 5 days post inoculation (dpi). In addition, the movement of TCV-sGFP was increased in some cells of inoculated leaves with capped transcripts. Results of this study indicated that PVA HC-Pro and mRNA capping can increase GFP expression and its cell to cell movement in N. benthamiana .

  2. STEM Tomography Imaging of Hypertrophied Golgi Stacks in Mucilage-Secreting Cells.

    PubMed

    Kang, Byung-Ho

    2016-01-01

    Because of the weak penetrating power of electrons, the signal-to-noise ratio of a transmission electron micrograph (TEM) worsens as section thickness increases. This problem is alleviated by the use of the scanning transmission electron microscopy (STEM). Tomography analyses using STEM of thick sections from yeast and mammalian cells are of higher quality than are bright-field (BF) images. In this study, we compared regular BF tomograms and STEM tomograms from 500-nm thick sections from hypertrophied Golgi stacks of alfalfa root cap cells. Due to their thickness and intense heavy metal staining, BF tomograms of the thick sections suffer from poor contrast and high noise levels. We were able to mitigate these drawbacks by using STEM tomography. When we performed STEM tomography of densely stained chloroplasts of Arabidopsis cotyledon, we observed similar improvements relative to BF tomograms. A longer time is required to collect a STEM tilt series than similar BF TEM images, and dynamic autofocusing required for STEM imaging often fails at high tilt angles. Despite these limitations, STEM tomography is a powerful method for analyzing structures of large or dense organelles of plant cells.

  3. ARG1 and ARL2 contribute to gravity signal transduction in the statocytes of Arabidopsis thaliana roots and hypocotyls

    NASA Astrophysics Data System (ADS)

    Masson, Patrick; Harrison, Benjamin; Stanga, John; Otegui, Marisa; Sedbrook, John

    Gravity is an important cue that plant organs use to guide their growth. Each organ is characterized by a defined gravity set point angle that dictates its optimal orientation within the gravity field. Specialized cells, named statocytes, enable this directional growth response by perceiving gravity via the sedimentation of, and/or tension/pressure exerted by, starch-filled plastids within their cytoplasm. Located in the columella region of the cap in roots and in the endodermis of hypocotyls and stems, these cells modulate the lateral transport of auxin across the corresponding organ in a gravistimulus-dependent manner. Upon plant reorientation within the gravity field, a gravity signal transduction pathway is activated within those cells, which in roots leads to a relocalization of the PIN3 auxin efflux carrier toward the lower membrane and an alkalinization of the cytoplasm. In turn, these events appear to promote a lateral transport of auxin toward the bottom side of the stimulated organ, which promotes a curvature. We previously uncovered ARG1 and ARL2 as essential contributors to these cellular processes. Mutations in these genes result in altered root and hypocotyl gravitropism. In roots, this abnormal growth behavior is associated with a lack of PIN3 relocalization within the statocytes and an absence of preferential downward auxin transport upon gravistimulation. These two genes encode paralogous J-domain proteins that are associated with the plasma membrane and other membranes of the vesicular trafficking pathway, and appear to modulate protein trafficking within the statocytes. An analysis of the root gravitropic phenotypes associated with different double mutant configurations affecting ARG1, ARL2 and PIN3 suggest that all three proteins function in a common gravity-signaling pathway. Surprisingly, when a mutation that affects starch biosynthesis (pgm) is introgressed into an arg1-2 mutant, the gravitropic defects are dramatically enhanced relative to those of the single mutants. We used this observation to design a genetic screen for the identification of new loci that contribute to the pgm gravity-signaling pathway. Two genetic enhancers of arg1-2 were identified this way, called mar1-1 and mar2-1. These mutations were shown to affect components of the protein-import complex found in the outer membrane of plastids. Interestingly, the columellar amyloplasts of arg1-2 mar2-1 mutant roots display wild-type ultra-structure, accumulate starch and sediment at wild-type rates upon gravistimulation. We conclude that the plastid outer envelope may contribute directly to gravity signal transduction within the statocytes.

  4. Mechanical tensile stress effects on the expression of bone sialoprotein in bovine cementoblasts.

    PubMed

    Yu, Hongyou; Ren, Yijin; Sandham, Andrew; Ren, Aishu; Huang, Lan; Bai, Ding

    2009-03-01

    To develop a new cementoblast culture method and to detect bone sialoprotein (BSP) expression in response to high and low mechanical tensile stress in cementoblast in vitro. Cementoblasts were collected from the roots of newborn bovine teeth and were identified with cementum-derived attachment protein (CAP) antibody 3G9. Cell proliferation was evaluated by MTT [3-(4,5-dimethylthazol-2-yl)-2,5-diphenyl tetrazolium bromide] assay, and mineralization was confirmed by von Kossa staining. Mechanical tensile stress was applied in vitro to the cementoblast with the use of a uniaxial four-point bending system with 2000 or 4000 microstrains, at a frequency of 0.5 Hz for 3, 6, 12, 24, or 36 hours. BSP mRNA level was quantified by real-time quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR). A large amount of cementoblast was observed to be expressing CAP. Cementoblasts had a proliferation tendency similar to that of osteoblasts but different from that of periodontal ligament (PDL) cells. Cementoblasts had the ability to become mineralized between osteoblasts and PDL cells. The mechanical tensile stress significantly up-regulated BSP mRNA expression, which reached a peak at 24 hours in both 2000 and 4000 microstrain groups (P < .01) and was tenfold and sixfold higher than that of controls, respectively. BSP expression dropped toward baseline levels at 36 hours in both groups. Mechanical tensile stress up-regulated the expression of BSP. Low mechanical tensile stress induced earlier and more intensive up-regulation of BSP mRNA; this might represent the optimal stimuli for cementoblast activity.

  5. Fluorescence microscopic analysis of antifungal effects of cold atmospheric pressure plasma in Saccharomyces cerevisiae.

    PubMed

    Itooka, Koki; Takahashi, Kazuo; Izawa, Shingo

    2016-11-01

    Cold atmospheric pressure plasma (CAP) has potential to be utilized as an alternative method for sterilization in food industries without thermal damage or toxic residues. In contrast to the bactericidal effects of CAP, information regarding the efficacy of CAP against eukaryotic microorganisms is very limited. Therefore, herein we investigated the effects of CAP on the budding yeast Saccharomyces cerevisiae, with a focus on the cellular response to CAP. The CAP treatment caused oxidative stress responses including the nuclear accumulation of the oxidative stress responsive transcription factor Yap1, mitochondrial fragmentation, and enhanced intracellular oxidation. Yeast cells also induced the expression of heat shock protein (HSP) genes and formation of Hsp104 aggregates when treated with CAP, suggesting that CAP denatures proteins. As phenomena unique to eukaryotic cells, the formation of cytoplasmic mRNP granules such as processing bodies and stress granules and changes in the intracellular localization of Ire1 were caused by the treatment with CAP, indicating that translational repression and endoplasmic reticulum (ER) stress were induced by the CAP treatment. These results suggest that the fungicidal effects of CAP are attributed to the multiple severe stresses.

  6. Delayed transition to new cell fates during cellular reprogramming

    PubMed Central

    Cheng, Xianrui; Lyons, Deirdre C.; Socolar, Joshua E. S.; McClay, David R.

    2014-01-01

    In many embryos specification toward one cell fate can be diverted to a different cell fate through a reprogramming process. Understanding how that process works will reveal insights into the developmental regulatory logic that emerged from evolution. In the sea urchin embryo, cells at gastrulation were found to reprogram and replace missing cell types after surgical dissections of the embryo. Non-skeletogenic mesoderm (NSM) cells reprogrammed to replace missing skeletogenic mesoderm cells and animal caps reprogrammed to replace all endomesoderm. In both cases evidence of reprogramming onset was first observed at the early gastrula stage, even if the cells to be replaced were removed earlier in development. Once started however, the reprogramming occurred with compressed gene expression dynamics. The NSM did not require early contact with the skeletogenic cells to reprogram, but the animal cap cells gained the ability to reprogram early in gastrulation only after extended contact with the vegetal halves prior to that time. If the entire vegetal half was removed at early gastrula, the animal caps reprogrammed and replaced the vegetal half endomesoderm. If the animal caps carried morpholinos to either hox11/13b or foxA (endomesoderm specification genes), the isolated animal caps failed to reprogram. Together these data reveal that the emergence of a reprogramming capability occurs at early gastrulation in the sea urchin embryo and requires activation of early specification components of the target tissues. PMID:24780626

  7. Modifying the 5'-Cap for Click Reactions of Eukaryotic mRNA and To Tune Translation Efficiency in Living Cells.

    PubMed

    Holstein, Josephin M; Anhäuser, Lea; Rentmeister, Andrea

    2016-08-26

    The 5'-cap is a hallmark of eukaryotic mRNAs and plays fundamental roles in RNA metabolism, ranging from quality control to export and translation. Modifying the 5'-cap may thus enable modulation of the underlying processes and investigation or tuning of several biological functions. A straightforward approach is presented for the efficient production of a range of N7-modified caps based on the highly promiscuous methyltransferase Ecm1. We show that these, as well as N(2) -modified 5'-caps, can be used to tune translation of the respective mRNAs both in vitro and in cells. Appropriate modifications allow subsequent bioorthogonal chemistry, as demonstrated by intracellular live-cell labeling of a target mRNA. The efficient and versatile N7 manipulation of the mRNA cap makes mRNAs amenable to both modulation of their biological function and intracellular labeling, and represents a valuable addition to the chemical biology toolbox. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Ionospheric convection driven by NBZ currents

    NASA Technical Reports Server (NTRS)

    Rasmussen, C. E.; Schunk, R. W.

    1987-01-01

    Computer simulations of Birkeland currents and electric fields in the polar ionosphere during periods of northward IMF were conducted. When the IMF z component is northward, an additional current system, called the NBZ current system, is present in the polar cap. These simulations show the effect of the addition of NBZ currents on ionospheric convection, particularly in the polar cap. When the total current in the NBZ system is roughly 25 to 50 percent of the net region 1 and 2 currents, convection in the central portion of the polar cap reverses direction and turns sunward. This creates a pattern of four-cell convection with two small cells located in the polar cap, rotating in an opposite direction from the larger cells. When the Birkeland currents are fixed (constant current source), the electric field is reduced in regions of relatively high conductivity, which affects the pattern of ionospheric convection. Day-night asymmetries in conductivity change convection in such a way that the two polar-cap cells are located within the large dusk cell. When ionospheric convection is fixed (constant voltage source), Birkeland currents are increased in regions of relatively high conductivity. Ionospheric currents, which flow horizontally to close the Birkeland currents, are changed appreciably by the NBZ current system. The principal effect is an increase in ionospheric current in the polar cap.

  9. Engineering ellipsoidal cap-like hydrogel particles as building blocks or sacrificial templates for three-dimensional cell culture.

    PubMed

    Zhang, Weiwei; Huang, Guoyou; Ng, Kelvin; Ji, Yuan; Gao, Bin; Huang, Liqing; Zhou, Jinxiong; Lu, Tian Jian; Xu, Feng

    2018-03-26

    Hydrogel particles that can be engineered to compartmentally culture cells in a three-dimensional (3D) and high-throughput manner have attracted increasing interest in the biomedical area. However, the ability to generate hydrogel particles with specially designed structures and their potential biomedical applications need to be further explored. This work introduces a method for fabricating hydrogel particles in an ellipsoidal cap-like shape (i.e., ellipsoidal cap-like hydrogel particles) by employing an open-pore anodic aluminum oxide membrane. Hydrogel particles of different sizes are fabricated. The ability to produce ellipsoidal cap-like magnetic hydrogel particles with controlled distribution of magnetic nanoparticles is demonstrated. Encapsulated cells show high viability, indicating the potential for using these hydrogel particles as structure- and remote-controllable building blocks for tissue engineering application. Moreover, the hydrogel particles are also used as sacrificial templates for fabricating ellipsoidal cap-like concave wells, which are further applied for producing size controllable cell aggregates. The results are beneficial for the development of hydrogel particles and their applications in 3D cell culture.

  10. Porous hydroxyapatite and biphasic calcium phosphate ceramics promote ectopic osteoblast differentiation from mesenchymal stem cells

    NASA Astrophysics Data System (ADS)

    Zhang, Lingli; Hanagata, Nobutaka; Maeda, Megumi; Minowa, Takashi; Ikoma, Toshiyuki; Fan, Hongsong; Zhang, Xingdong

    2009-04-01

    Because calcium phosphate (Ca-P) ceramics have been used as bone substitutes, it is necessary to investigate what effects the ceramics have on osteoblast maturation. We prepared three types of Ca-P ceramics with different Ca-P ratios, i.e. hydroxyapatite (HA), beta-tricalcium phosphate (β-TCP), and biphasic calcium phosphate (BCP) ceramics with dense-smooth and porous structures. Comprehensive gene expression microarray analysis of mouse osteoblast-like cells cultured on these ceramics revealed that porous Ca-P ceramics considerably affected the gene expression profiles, having a higher potential for osteoblast maturation. In the in vivo study that followed, porous Ca-P ceramics were implanted into rat skeletal muscle. Sixteen weeks after the implantation, more alkaline-phosphatase-positive cells were observed in the pores of hydroxyapatite and BCP, and the expression of the osteocalcin gene (an osteoblast-specific marker) in tissue grown in pores was also higher in hydroxyapatite and BCP than in β-TCP. In the pores of any Ca-P ceramics, 16 weeks after the implantation, we detected the expressions of marker genes of the early differentiation stage of chondrocytes and the complete differentiation stage of adipocytes, which originate from mesenchymal stem cells, as well as osteoblasts. These marker gene expressions were not observed in the muscle tissue surrounding the implanted Ca-P ceramics. These observations indicate that porous hydroxyapatite and BCP had a greater potential for promoting the differentiation of mesenchymal stem cells into osteoblasts than β-TCP.

  11. The microstructure and fracture behavior of the dissimilar alloy 690-SUS 304L joint with various Nb addition

    NASA Astrophysics Data System (ADS)

    Lee, H. T.; Jeng, S. L.; Kuo, T. Y.

    2003-05-01

    This study investigates the microstructure and fracture behavior of dissimilar weldments of alloy 690 and SUS 304L for various additions of niobium (0.1, 1.03, 2.49, and 3.35 wt pct) in the flux. With identical parameters and procedures, weldments were butt welded by the shielding metal arc welding (SMAW) process using three layers, with each layer being deposited in a single pass. The results indicate that the microstructure of the fusion zone was primarily dendritic and that the contents of Ni, Cr, and Fe within this zone remain relatively constant and resemble alloy 690. With Nb addition, it is noted that the microstructure changes from a cellular to columnar dendrite and equiaxed dendrite. Meanwhile, the dendrite arm spacing reduces and the secondary arms grow longer. Moreover, the composition of the interdendritic phase, whose precipitate volume percentage increases from 5 to 25 pct, changes from Al-Ti-O to Nb rich. The spread of the interdendritic phase is less in the root bead than in the cap bead due to the greater influence of base metal dilution in this region. Mechanical tests indicate that Nb addition increases the average hardness of the weldment and reduces its elongation prior to rupture. However, the tensile strength is essentially unchanged by Nb addition. It is found that the average hardness of the root bead is generally lower than the cap bead, and that the tensile specimens all rupture in the fusion zone, with the fracture surfaces exhibiting ductile features. It is noted that the cap bead tends to rupture interdendritically with increasing Nb addition. Finally, fractography shows that the dimples in the root become larger and shallower with Nb addition and are rich with an interdendritic phase.

  12. Native Grasses as a Management Alternative on Vegetated Closure Caps

    NASA Astrophysics Data System (ADS)

    Kwit, Charles; Collins, Beverly

    2008-06-01

    Capped waste sites often are vegetated with commercial turf grasses to increase evapotranspiration and prevent erosion and possible exposure of the barrier. Fertilizer, frequent watering, and mowing may be required to establish the turf grass and prevent invasion by trees and shrubs. Oldfield vegetation of grasses and forbs is a possible sustainable alternative to turf grass communities. To determine if oldfield vegetation can establish on caps, we (1) compared establishment of a dominant oldfield grass and a commercial turf grass under different combinations of new closure cap management: spring or summer planting and presence or absence of amendments to alleviate drought (watering, mulch) or increase soil fertility (fertilizer, lime, a nitrogen-fixing legume); (2) surveyed existing caps to determine if oldfield species establish naturally; and (3) performed a greenhouse experiment to compare growth of two native grasses under low and amended (added water, soil nutrients) conditions. Both the commercial grass and oldfield species established under new cap conditions; fertilizer, water, and mulch improved vegetation establishment in spring or summer, but legumes decreased grass cover. In the greenhouse, both native grasses grew best with amendments; however, substantial stem and root length were obtained with no fertilizer and only once-weekly watering. Existing vegetated caps supported planted grasses and naturally established oldfield species. Overall, the results indicate native grasses can establish on new caps and oldfields can serve as a management model; further work is needed to determine the management strategy to maintain herbaceous vegetation and slow woody species invasion.

  13. Effect of functional end groups of silane self assembled monolayer surfaces on apatite formation, fibronectin adsorption and osteoblast cell function

    PubMed Central

    Toworfe, G.K.; Bhattacharyya, S.; Composto, R.J.; Adams, C.S.; Shapiro, I.M.; Ducheyne, P.

    2008-01-01

    Bioactive glass (BG) can directly bond to living bone without fibrous tissue encapsulation. Key mechanistic steps of BG’s activity are attributed to calcium phosphate formation, surface hydroxylation and fibronectin (FN) adsorption. In the present study, self-assembled monolayers (SAMs) of alkanesilanes with different surface chemistry (OH, NH2, and COOH) were used as a model system to mimic BG’s surface activity. Calcium phosphate (Ca-P) was formed on SAMs by immersion in a solution which simulates the electrolyte content of physiological fluids. FN adsorption kinetics and monolayer coverage was determined on SAMs with or without Ca-P coating. The surface roughness was also examined on these substrates before and after FN adsorption. The effects of FN-adsorbed, Ca-P coated SAMs on the function of MC3T3-E1 were evaluated by cell growth, expression of alkaline phosphatase activity, and actin cytoskeleton formation. We demonstrate that, although the FN monolayer coverage and the rms roughness are similar on −OH and −COOH terminated SAMs with or without Ca-P coating, higher levels of ALP activity, more actin cytoskeleton formation and more cell growth are obtained on −OH and −COOH terminated SAMs with Ca-P coating. In addition, although the FN monolayer coverage is higher on Ca-P coated −NH2 terminated SAMs and SiOx surfaces, higher levels of ALP activity and more cell growth are obtained on Ca-P coated −OH and −COOH terminated SAMs. Thus with same Ca-P coatings, different surface functional groups have different effects on the function of osteoblastic cells. These findings represent new insights into the mechanism of bioactivity of BG and, thereby, may lead to designing superior constructs for bone grafting. PMID:19012271

  14. Effects of dietary Capsicum oleoresin on productivity and immune responses in lactating dairy cows.

    PubMed

    Oh, J; Giallongo, F; Frederick, T; Pate, J; Walusimbi, S; Elias, R J; Wall, E H; Bravo, D; Hristov, A N

    2015-09-01

    This study investigated the effect of Capsicum oleoresin in granular form (CAP) on nutrient digestibility, immune responses, oxidative stress markers, blood chemistry, rumen fermentation, rumen bacterial populations, and productivity of lactating dairy cows. Eight multiparous Holstein cows, including 3 ruminally cannulated, were used in a replicated 4×4 Latin square design experiment. Experimental periods were 25 d in duration, including a 14-d adaptation and an 11-d data collection and sampling period. Treatments included control (no CAP) and daily supplementation of 250, 500, or 1,000 mg of CAP/cow. Dry matter intake was not affected by CAP (average 27.0±0.64 kg/d), but milk yield tended to quadratically increase with CAP supplementation (50.3 to 51.9±0.86 kg/d). Capsicum oleoresin quadratically increased energy-corrected milk yield, but had no effect on milk fat concentration. Rumen fermentation variables, apparent total-tract digestibility of nutrients, and N excretion in feces and urine were not affected by CAP. Blood serum β-hydroxybutyrate was quadratically increased by CAP, whereas the concentration of nonesterified fatty acids was similar among treatments. Rumen populations of Bacteroidales, Prevotella, and Roseburia decreased and Butyrivibrio increased quadratically with CAP supplementation. T cell phenotypes were not affected by treatment. Mean fluorescence intensity for phagocytic activity of neutrophils tended to be quadratically increased by CAP. Numbers of neutrophils and eosinophils and the ratio of neutrophils to lymphocytes in peripheral blood linearly increased with increasing CAP. Oxidative stress markers were not affected by CAP. Overall, in the conditions of this experiment, CAP did not affect feed intake, rumen fermentation, nutrient digestibility, T cell phenotypes, and oxidative stress markers. However, energy-corrected milk yield was quadratically increased by CAP, possibly as a result of enhanced mobilization of body fat reserves. In addition, CAP increased neutrophil activity and immune cells related to acute phase immune response. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  15. Effects of composite antimicrobial peptides in weanling piglets challenged with deoxynivalenol: II. Intestinal morphology and function.

    PubMed

    Xiao, H; Tan, B E; Wu, M M; Yin, Y L; Li, T J; Yuan, D X; Li, L

    2013-10-01

    Deoxynivalenol (DON) affects animal and human health and targets the gastrointestinal tract. The objective of this study was to evaluate the ability of composite antimicrobial peptides (CAP) to repair intestinal injury in piglets challenged with DON. A total of 28 piglets (Duroc × Landrace × Large Yorkshire) weaned at 28 d of age were randomly assigned to receive 1 of 4 treatments (7 pigs/treatment): negative control, basal diet (NC), basal diet + 0.4% composite antimicrobial peptide (CAP), basal diet + 4 mg/kg DON (DON), and basal diet + 4 mg/kg DON + 0.4% CAP (DON + CAP). After an adaptation period of 7 d, blood samples were collected on d 15 and 30 after the initiation of treatment for determinations of the concentrations of D-lactate and diamine oxidase. At the end of the study, all piglets were slaughtered to obtain small intestines for the determination of intestinal morphology, epithelial cell proliferation, and protein expression in the mammalian target of rapamycin (mTOR) signaling pathway. The results showed that DON increased serum concentrations of D-lactate and diamine oxidase, and these values in the CAP and DON + CAP treatments were less than those in the NC and DON treatments, respectively (P < 0.05). The villous height/crypt depth in the jejunum and ileum and the goblet cell number in the ileum in the CAP and DON + CAP treatments were greater than those in the NC and DON treatments (P < 0.05). The proliferating cell nuclear antigen (PCNA) labeling indexes for the jejunum and ileum in the DON + CAP treatment were greater than those in the DON treatment (P < 0.05). The DON decreased (P < 0.05) the relative protein expression of phosphorylated Akt (Protein Kinase B) and mTOR in the jejunal and ileal mucosa and of phosphorylated 4E-binding protein 1 (p-4EBP1) in the jejunal mucosa, whereas CAP increased (P < 0.05) the protein expression of p-4EBP1 in the jejunum. These findings showed that DON could enhance intestinal permeability, damage villi, cause epithelial cell apoptosis, and inhibit protein synthesis, whereas CAP improved intestinal morphology and promoted intestinal epithelial cell proliferation and protein synthesis, indicating that CAP may repair the intestinal injury induced by DON.

  16. An active role of the amyloplasts and nuclei of root statocytes in graviperception

    NASA Technical Reports Server (NTRS)

    Kordyum, E.; Guikema, J.

    2001-01-01

    Three main phases are discerned in the gravitropic reaction: perception of a gravitational stimulus, its transduction, and fixation of the reaction resulting in bending of an organ. According to the starch-statolith hypothesis of Nemec and Haberlandt, amyloplasts in the structurally and functionally specialized graviperceptive cells (statocytes) sediment in the direction of a gravitational vector in the distal part of a cell while a nucleus is in the proximal one. If amyloplasts appear to act as gravity sensors, the receptors, which interact with sedimented amyloplasts, and next signaling are still unclear. An analysis of the structural-functional organization of cells in different root cap layers of such higher plants as pea, Arabidopsis thaliana, and Brassica rapa grown under 1 g, on the clinostats, and in microgravity, allows us to support the hypothesis that amyloplasts function as statoliths in statocytes, but they may not be only the passive statolithic mass. We propose that amyloplasts fulfill a more complex function by interacting with a receptor, which is a nucleus, in transduction of some signal to it. Gravity-induced statolith movement in certain order leads to a new functional connection between gravity susceptors--amyloplasts and a receptor--a nucleus receiving some signal presumedly of a mechanical or biochemical nature from the amyloplasts. During gravitropism, sugar signaling could induce expression of genes encoding auxin transport proteins in a nucleus giving the nucleus an intermediate role in signal trunsduction following perception. c 2001 COSPAR. Published by Elsevier Science Ltd. All rights reserved.

  17. An active role of the amyloplasts and nuclei of root statocytes in graviperception

    NASA Astrophysics Data System (ADS)

    Kordyum, E.; Guikema, J.

    Three main phases are discerned in the gravitropic reaction: perception of a gravitational stimulus, its transduction, and fixation of the reaction resulting in bending of an organ. According to the starch-statolith hypothesis of Nemec and Haberlandt, amyloplasts in the structurally and functionally specialized graviperceptive cells (statocytes) sediment in the direction of a gravitational vector in the distal part of a cell while a nucleus is in the proximal one. If amyloplasts appear to act as gravity sensors, the receptors, which interact with sedimented amyloplasts, and next signaling are still unclear. An analysis of the structural-functional organization of cells in different root cap layers of such higher plants as pea, Arabidopsis thaliana, and Brassica rapa grown under 1 g, on the clinostats, and in microgravity, allows us to support the hypothesis that amyloplasts function as statoliths in statocytes, but they may not be only the passive statolithic mass. We propose that amyloplasts fulfill a more complex function by interacting with a receptor, which is a necleus, in transduction of some signal to it. Gravity-induced statolith movement in certain order leads to a new functional connection between gravity susceptors - amyloplasts and a receptor - a nucleus receiving some signal presumedly of a mechanical or biochemical nature from the amyloplasts. During gravitropism, sugar signaling could induce expression of genes encoding auxin transport proteins in a nucleus giving the nucleus an intermediate role in signal trunsduction following perception.

  18. Characterization of hMTr1, a Human Cap1 2′-O-Ribose Methyltransferase*

    PubMed Central

    Bélanger, François; Stepinski, Janusz; Darzynkiewicz, Edward; Pelletier, Jerry

    2010-01-01

    Cellular eukaryotic mRNAs are capped at their 5′ ends with a 7-methylguanosine nucleotide, a structural feature that has been shown to be important for conferring mRNA stability, stimulating mRNA biogenesis (splicing, poly(A) addition, nucleocytoplasmic transport), and increasing translational efficiency. Whereas yeast mRNAs have no additional modifications to the cap, called cap0, higher eukaryotes are methylated at the 2′-O-ribose of the first or the first and second transcribed nucleotides, called cap1 and cap2, respectively. In the present study, we identify the methyltransferase responsible for cap1 formation in human cells, which we call hMTr1 (also known as FTSJD2 and ISG95). We show in vitro that hMTr1 catalyzes specific methylation of the 2′-O-ribose of the first nucleotide of a capped RNA transcript. Using siRNA-mediated knockdown of hMTr1 in HeLa cells, we demonstrate that hMTr1 is responsible for cap1 formation in vivo. PMID:20713356

  19. Capping a Pulpotomy with Calcium Aluminosilicate Cement: Comparison to Mineral Trioxide Aggregates

    PubMed Central

    Kramer, Phillip R.; Woodmansey, Karl F.; White, Robert; Primus, Carolyn M.; Opperman, Lynne A.

    2014-01-01

    Introduction Calcium aluminate cements have shown little affinity for bacterial growth, low toxicity, and immunogenicity when used as a restoration material, but calcium aluminate cements have not been tested in vivo in pulpotomy procedures. Methods To address this question, a calcium aluminate cement (Quick-Set) was tested along with 2 mineral trioxide aggregates, ProRoot MTA and MTA Plus. These cements were used as a capping agent after pulpotomy. Control rats had no pulpotomy, or the pulpotomy was not capped. Proinflammatory cytokines interleukin (IL)-1β and IL-1α were measured, and histology was performed at 30 and 60 days after capping. The nociceptive response was determined by measuring the lengthening of the rat's meal duration. Results and Conclusions: IL-1β and IL-1α concentrations were reduced in the capped teeth, but no differences were observed among the 3 cements. Dentinal bridging could be detected at both 30 and 60 days with each of the 3 cements, and the pulps were still vital 60 days after capping. Meal duration significantly shortened after placement of the 3 different cements, indicating a nociceptive response, but there were no differences among the materials. Calcium aluminate cements had similar properties to mineral trioxide aggregates and is a viable option for pulpotomy procedures. PMID:25146026

  20. Managed pollinator CAP Coordinated Agricultural Project

    USDA-ARS?s Scientific Manuscript database

    Scientists are looking at the root cause of the Colony Collapse Disorder (CCD) syndrome; searching for new diseases, harmful chemicals or a combination of these factors which could inflict stress on bee colonies pushing them over the edge for recovery. Among multiple suspects identified so far, bee...

  1. L-serine capped ZnS:Mn nanocrystals for plant cell biological studies and as a growth enhancing agent for micropropagation of Bacopa monnieri Linn. (Brahmi:Scrophulariaceae)

    NASA Astrophysics Data System (ADS)

    Augustine, M. Sajimol; Mathew, Lizzy; Alex, Roselin; Deepa, G. D.; Jayalekshmi, S.

    2014-01-01

    In the present work, the prospects of ZnS:Mn nanocrystals capped with L- serine, a bio-compatible amino acid, synthesized by wet chemical route, as efficient fluorescent probes for plant cell biological studies have been investigated. The present synthesis route using bio-compatible material is a low cost and easy to control method. The colloidal stability of the capped nano crystals is very good as they remain stable without settling down for long time. It is observed that L- serine significantly modifies the structural and optical characteristics of the ZnS:Mn nanocrystals and hence is suitable as a bio-compatible capping agent. The structural properties of L- serine capped nanocrystals were investigated by XRD technique. The size of the L- serine capped ZnS:Mn nanocrystals is found to be around 2 nm . The optical characterization of the nanocrystals was carried out on the basis of photoluminescence (PL) spectroscopic studies. The intense photoluminescence emission observed around 597nm for L-serine capped ZnS:Mn offers high prospects of applications in bio-imaging fields. The unique optical properties of nanoparticles make them appealing as in vivo and in vitro fluorophores in a variety of biological investigations. In the present study, L-serine capped ZnS:Mn nanocrystals were used as a staining dye in fluorescent microscope for observing cell division, cell structure etc. These nanocrystals were also incorporated into the culture media along with the normal auxin- cytokinin hormone combinations in Murashige and Skoog (MS) medium for micropropagation of Bacopa monnieri Linn. (Brahmi:Scrophulariaceae), an Ayurvedic medicine. The results suggest that L-serine capped ZnS:Mn nanocrystals can act as efficient enhancers towards quick callusing and shoot proliferation.

  2. Ionospheric convection inferred from interplanetary magnetic field-dependent Birkeland currents

    NASA Technical Reports Server (NTRS)

    Rasmussen, C. E.; Schunk, R. W.

    1988-01-01

    Computer simulations of ionospheric convection have been performed, combining empirical models of Birkeland currents with a model of ionospheric conductivity in order to investigate IMF-dependent convection characteristics. Birkeland currents representing conditions in the northern polar cap of the negative IMF By component are used. Two possibilities are considered: (1) the morning cell shifting into the polar cap as the IMF turns northward, and this cell and a distorted evening cell providing for sunward flow in the polar cap; and (2) the existence of a three-cell pattern when the IMF is strongly northward.

  3. Investigations of the toxic effects of glycans-based silver nanoparticles on different types of human cells

    NASA Astrophysics Data System (ADS)

    Panzarini, E.; Mariano, S.; Dini, L.

    2017-08-01

    The effects of glycans-capped AgNPs (30±5 nm average diameter, spherical shape) on biocompatibility and uptake was studied in relation to the glycan capping (glucose AgNPs-G, glucose/sucrose AgNPs-GS, glucose/fructose AgNPs-GF), and to the cell types (HeLa cells, lymphocytes, and HepG2 cells). Glycan capping and type of cells drive morphological changes, viability loss and type and extent of cell death induction; in addition cells response is largely influenced by the AgNPs amount. The MTT photometric method to determine cell metabolism and the analysis of the membrane integrity by Annexin V-Propidium Iodide labelling were used to quantify cell viability and cell death with different concentrations of NPs. It turns out that i) AgNPs-GF are the most toxic, whereas ii) AgNPs-GS are the less toxic NPs, probably due to the stability of glucose/sucrose capping up to 5 days in culture medium; iii) HepG2 cells are the most sensitive to the presence of NPs. A deeper investigation is necessary to explain the interesting PBLs proliferation increase observed in the presence of AgNPs-GS.

  4. Enhancing Cold Atmospheric Plasma Treatment Efficiency for Cancer Therapy

    NASA Astrophysics Data System (ADS)

    Cheng, Xiaoqian

    To improve efficiency and safety of anti-cancer therapies the researchers and clinicians alike are prompted to develop targeted combined therapies that especially minimize damage to healthy tissues while eradicating the body of cancerous tissues. Previous research in cold atmospheric plasma (CAP) and cancer cell interaction has repeatedly proven that cold plasma induced cell death. In this study, we seek to integrate the medical application of CAP. We proposed and implemented 3 novel ideas to enhance efficacy and selectivity of cancer therapy. It is postulated that the reactive oxygen species (ROS) and reactive nitrogen species (RNS) play a major role in the CAP cancer therapy. We determined a mechanism of CAP therapy on glioblastoma cells (U87) through an understanding of the composition of CAP, including output voltage, treatment time, and gas flow-rate. We varied the characteristics of the cold plasma in order to obtain different major species (such as O, OH, N2+, and N2 lines). "plasma dosage" D ~ Q * V * t. is defined, where D is the entire "plasma dosage"; Q is the flow rate of feeding gas; V is output voltage; t is treatment time. The proper CAP dosage caused 3-fold cell death in the U87 cells compared to the normal human astrocytes E6/E7 cells. We demonstrated there is a synergy between AuNPS and CAP in cancer therapy. Specifically, the concentration of AuNPs plays an important role on plasma therapy. At an optimal concentration, gold nanoparticles can significantly induce U87 cell death up to a 30% overall increase compared to the control group with the same plasma dosage but no AuNPs applied. The ROS intensity of the corresponding conditions has a reversed trend compared to cell viability. This matches with the theory that intracellular ROS accumulation results in oxidative stress, which further changes the intracellular pathways, causing damage to the proteins, lipids and DNA. Our results show that this synergy has great potential in improving the efficiency of cancer therapy and reducing harm to normal cells. Finally, we propose a novel idea to combine static magnetic field (SMF) with CAP as a tool for cancer therapy. The breast cancer cells MDA-MB-231 showed a significant decrease in viability after direct plasma treatment with SMF (compared to only plasma treatment). In addition, cancer cells treated by the CAP-SMF-activated media (indirect treatment) also showed viability decrease but slightly weaker than the direct plasma-MF treatment. When treated by plasma with MF, mouse wild type dermal fibroblasts (WTDF) show no difference from the plasma treatment, both directly and indirectly. By integrating the use of MF and CAP, we are able to discover their advantages that are yet to be utilized. Although plasma can selectively kill cancer cells, long time exposure can still damage the normal cells around the tumor. This prompts researchers to seek for novel ideas in the designing of plasma treatment. This study provides the idea of combining the proper dosage of cold atmospheric plasma, AuNPs and MF in order to achieve the enhanced killing effect on cancer cells.

  5. Impact of food model (micro)structure on the microbial inactivation efficacy of cold atmospheric plasma.

    PubMed

    Smet, C; Noriega, E; Rosier, F; Walsh, J L; Valdramidis, V P; Van Impe, J F

    2017-01-02

    The large potential of cold atmospheric plasma (CAP) for food decontamination has recently been recognized. Room-temperature gas plasmas can decontaminate foods without causing undesired changes. This innovative technology is a promising alternative for treating fresh produce. However, more fundamental studies are needed before its application in the food industry. The impact of the food structure on CAP decontamination efficacy of Salmonella Typhimurium and Listeria monocytogenes was studied. Cells were grown planktonically or as surface colonies in/on model systems. Both microorganisms were grown in lab culture media in petri dishes at 20°C until cells reached the stationary phase. Before CAP treatment, cells were deposited in a liquid carrier, on a solid(like) surface or on a filter. A dielectric barrier discharge reactor generated helium-oxygen plasma, which was used to treat samples up to 10min. Although L. monocytogenes is more resistant to CAP treatment, similar trends in inactivation behavior as for S. Typhimurium are observed, with log reductions in the range [1.0-2.9] for S. Typhimurium and [0.2-2.2] for L. monocytogenes. For both microorganisms, cells grown planktonically are easily inactivated, as compared to surface colonies. More stressing growth conditions, due to cell immobilization, result in more resistant cells during CAP treatment. The main difference between the inactivation support systems is the absence or presence of a shoulder phase. For experiments in the liquid carrier, which exhibit a long shoulder, the plasma components need to diffuse and penetrate through the medium. This explains the higher efficacies of CAP treatment on cells deposited on a solid(like) surface or on a filter. This research demonstrates that the food structure influences the cell inactivation behavior and efficacy of CAP, and indicates that food intrinsic factors need to be accounted when designing plasma treatment. Copyright © 2016. Published by Elsevier B.V.

  6. Tight coupling between nucleus and cell migration through the perinuclear actin cap

    PubMed Central

    Kim, Dong-Hwee; Cho, Sangkyun; Wirtz, Denis

    2014-01-01

    ABSTRACT Although eukaryotic cells are known to alternate between ‘advancing’ episodes of fast and persistent movement and ‘hesitation’ episodes of low speed and low persistence, the molecular mechanism that controls the dynamic changes in morphology, speed and persistence of eukaryotic migratory cells remains unclear. Here, we show that the movement of the interphase nucleus during random cell migration switches intermittently between two distinct modes – rotation and translocation – that follow with high fidelity the sequential rounded and elongated morphologies of the nucleus and cell body, respectively. Nuclear rotation and translocation mediate the stop-and-go motion of the cell through the dynamic formation and dissolution, respectively, of the contractile perinuclear actin cap, which is dynamically coupled to the nuclear lamina and the nuclear envelope through LINC complexes. A persistent cell movement and nuclear translocation driven by the actin cap are halted following the disruption of the actin cap, which in turn allows the cell to repolarize for its next persistent move owing to nuclear rotation mediated by cytoplasmic dynein light intermediate chain 2. PMID:24639463

  7. The distinct roles of the nucleus and nucleus-cytoskeleton connections in three-dimensional cell migration

    PubMed Central

    Khatau, Shyam B.; Bloom, Ryan J.; Bajpai, Saumendra; Razafsky, David; Zang, Shu; Giri, Anjil; Wu, Pei-Hsun; Marchand, Jorge; Celedon, Alfredo; Hale, Christopher M.; Sun, Sean X.; Hodzic, Didier; Wirtz, Denis

    2012-01-01

    Cells often migrate in vivo in an extracellular matrix that is intrinsically three-dimensional (3D) and the role of actin filament architecture in 3D cell migration is less well understood. Here we show that, while recently identified linkers of nucleoskeleton to cytoskeleton (LINC) complexes play a minimal role in conventional 2D migration, they play a critical role in regulating the organization of a subset of actin filament bundles – the perinuclear actin cap - connected to the nucleus through Nesprin2giant and Nesprin3 in cells in 3D collagen I matrix. Actin cap fibers prolong the nucleus and mediate the formation of pseudopodial protrusions, which drive matrix traction and 3D cell migration. Disruption of LINC complexes disorganizes the actin cap, which impairs 3D cell migration. A simple mechanical model explains why LINC complexes and the perinuclear actin cap are essential in 3D migration by providing mechanical support to the formation of pseudopodial protrusions. PMID:22761994

  8. Over-expression of AtEXLA2 alters etiolated arabidopsis hypocotyl growth

    PubMed Central

    Boron, Agnieszka Karolina; Van Loock, Bram; Suslov, Dmitry; Markakis, Marios Nektarios; Verbelen, Jean-Pierre; Vissenberg, Kris

    2015-01-01

    Background and Aims Plant stature and shape are largely determined by cell elongation, a process that is strongly controlled at the level of the cell wall. This is associated with the presence of many cell wall proteins implicated in the elongation process. Several proteins and enzyme families have been suggested to be involved in the controlled weakening of the cell wall, and these include xyloglucan endotransglucosylases/hydrolases (XTHs), yieldins, lipid transfer proteins and expansins. Although expansins have been the subject of much research, the role and involvement of expansin-like genes/proteins remain mostly unclear. This study investigates the expression and function of AtEXLA2 (At4g38400), a member of the expansin-like A (EXLA) family in arabidposis, and considers its possible role in cell wall metabolism and growth. Methods Transgenic plants of Arabidopsis thaliana were grown, and lines over-expressing AtEXLA2 were identified. Plants were grown in the dark, on media containing growth hormones or precursors, or were gravistimulated. Hypocotyls were studied using transmission electron microscopy and extensiometry. Histochemical GUS (β-glucuronidase) stainings were performed. Key Results AtEXLA2 is one of the three EXLA members in arabidopsis. The protein lacks the typical domain responsible for expansin activity, but contains a presumed cellulose-interacting domain. Using promoter::GUS lines, the expression of AtEXLA2 was seen in germinating seedlings, hypocotyls, lateral root cap cells, columella cells and the central cylinder basally to the elongation zone of the root, and during different stages of lateral root development. Furthermore, promoter activity was detected in petioles, veins of leaves and filaments, and also in the peduncle of the flowers and in a zone just beneath the papillae. Over-expression of AtEXLA2 resulted in an increase of >10 % in the length of dark-grown hypocotyls and in slightly thicker walls in non-rapidly elongating etiolated hypocotyl cells. Biomechanical analysis by creep tests showed that AtEXLA2 over-expression may decrease the wall strength in arabidopsis hypocotyls. Conclusions It is concluded that AtEXLA2 may function as a positive regulator of cell elongation in the dark-grown hypocotyl of arabidopsis by possible interference with cellulose metabolism, deposition or its organization. PMID:25492062

  9. Probable systemic lupus erythematosus with cell-bound complement activation products (CB-CAPS).

    PubMed

    Lamichhane, D; Weinstein, A

    2016-08-01

    Complement activation is a key feature of systemic lupus erythematosus (SLE). Detection of cell-bound complement activation products (CB-CAPS) occurs more frequently than serum hypocomplementemia in definite lupus. We describe a patient with normocomplementemic probable SLE who did not fulfill ACR classification criteria for lupus, but the diagnosis was supported by the presence of CB-CAPS. © The Author(s) 2016.

  10. Characterization of rat leydig cell gonadotropin receptor structure by affinity cross-linking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Q.Y.; Hwang, J.; Menon, K.M.J.

    1986-05-01

    The gonadotropin receptor from rat leydig cell has been characterized with respect to binding kinetics and physiological regulation. The present study was intended to examine the structure of the receptor. Leydig cell suspension was prepared by either collagenase digestion or by mechanical disruption of the testis. The cells were incubated with /sup 125/I-hCG and the unreacted hCG was removed by centrifugation. The /sup 125/I-hCG was then covalently linked to the cell surface receptor using cleavable (dithiobis (succinimidyl propionate)) and non-cleavable (disuccinimidyl suberate) cross-linking reagents. The extracted cross-linked membrane proteins were resolved on SDS-polyacrylamide gels under reducing and non-reducing conditions andmore » subjected to autoradiographic analysis. Under non-reducing conditions, two labeled species with M/sub r/ = 87,000 and 120,000 were detected. However, only one labeled band was detected under reducing conditions with M/sub r/ = 64,000. The binding of /sup 125/I-hCG to the receptor was inhibited by hCG and LH, but not by a number of peptides and proteins. The data suggest that hCG receptor in leydig cell is an oligomeric complex consisting of four subunits, ..cap alpha cap alpha beta gamma... The ..beta.. and ..gamma.. subunits are each linked to an ..cap alpha.. subunit through disulfide linkage and the hormone binds to each ..cap alpha.. subunit. The two dimers formed (..cap alpha beta cap alpha gamma..) are associated by noncovalent interactions.« less

  11. A weak combined magnetic field changes root gravitropism

    NASA Astrophysics Data System (ADS)

    Kordyum, E. L.; Bogatina, N. I.; Kalinina, Ja. M.; Sheykina, N. V.

    Immobile higher plants are oriented in the gravitational field due to gravitropim that is a physiological growth reaction and consists of three phases: reception of a gravitational signal by statocytes, its transduction to the elongation zone, and finally the organ bending. According to the starch-statolith hypothesis, amyloplasts in the specialized graviperceptive cells - statocytes sediment in the direction of a gravitational vector in the distal part of a cell. The polar arrangement of organelles is maintained by means of the cytoskeleton. On the Kholodny-Went's, theory the root bending is provided by the polar movement of auxin from a root cap to the elongation zone. It is also known that gravistimulation initiates a rapid Ca2+ redistribution in a root apex. Calcium ions modify an activity of many cytoskeletal proteins and clustering of calcium channels may be directed by actin microfilaments. Although the available data show the Ca2+ and cytoskeleton participation in graviperception and signal transduction, the clear evidence with regard to the participation of cytoskeletal elements and calcium ions in these processes is therefore substantial but still circumstantial and requires new experimental data. Roots are characterized with positive gravitropism, i. e. they grow in the direction of a gravitational vector. It was first shown by us that roots change the direction of a gravitropic reaction under gravistimulation in the weak combined magnetic field with a frequency of 32 Hz. 2-3-day old cress seedlings were gravistimulated in moist chambers, which are placed in μ-metal shields. Inside μ -metal shields, combined magnetic fields have been created. Experiments were performed in darkness at temperature 20±10C. Measurements of the magnitude of magnetic fields were carried out with a flux-gate magnetometer. Cress roots reveal negative gravitropism, i. e. they grow in the opposite direction to a gravitational vector, during 2 h of gravistimulation and then roots begin to grow more or less parallel to the Earth's surface, i.e. they reveal plagiotropism. Since such combined magnetic field is adjusted to the cyclotron frequency of Ca2+ ions, these observations demonstrate the participation of calcium ions in root gravitropism. Cyclotron frequency of Ca2+ ions is the formal frequency of ion rotation in the static magnetic field. Simultaneous applying the altering magnetic field with the same frequency can provoke auto-oscillation in the system and consequently change the rate and/or the direction of Ca2+ ion flow in a root under gravistimulation. The data of light, electron, and confocal laser microscopy and kinetics of a gravitropic reaction, which have been obtained on such the new original model, are discussed in the light of current concepts of root gravitropism.

  12. Capping hazardous red mud using acidic soil with an embedded layer of zeolite for plant growth.

    PubMed

    Ma, Yingqun; Si, Chunhua; Lin, Chuxia

    2014-01-01

    A nearly three-year microcosm experiment was conducted to test the effectiveness of capping red mud using acidic soil with an embedded layer of zeolite in sustaining the growth of a grass species. This 'sandwich-structured' design allowed self-sustaining growth of the plants under rain-fed conditions no matter whether the underlying red mud was neutralized or not. During the initial stage, the plants grew better when the red mud was not neutralized with MgCl2 probably due to pH rise in the root zone. Neutralization of red mud led to salinization and pH decrease in the root zone. However, the difference in plant growth performance between these scenarios became less remarkable over time due to gradual improvement of soil conditions in the neutralized scenarios. Continuous leaching of soluble salts and alkali by rainwater extended the root zone to the red mud layer. As a result of vegetative production, soil organic matter rapidly accumulated. This, combined with increase in pH and decrease in salinity, markedly facilitated microbial activities and consequently improved the supply of nutrients. This study provides abasis for field-scale experimental design that will have implications for effectively establishing vegetative cover in red mud disposal sites to control dust hazards.

  13. Polysaccharide from black currant (Ribes nigrum L.) stimulates dendritic cells through TLR4 signaling.

    PubMed

    Ashigai, Hiroshi; Komano, Yuta; Wang, Guanying; Kawachi, Yasuji; Sunaga, Kazuko; Yamamoto, Reiko; Takata, Ryoji; Miyake, Mika; Yanai, Takaaki

    2017-01-01

    Black currant ( Ribes nigrum ) has various beneficial properties for human health. In particular, polysaccharide from black currant was found to be an immunostimulating food ingredient and was reported to have antitumor activity in a mouse model. We named it cassis polysaccharide (CAPS). In a previous study, CAPS administration caused tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) production in vitro and in vivo , but the immunological mechanism of CAPS was not demonstrated. In this study, we revealed the CAPS immunostimulating mechanism in vitro . First, we found that CAPS activated dendritic cells (DCs). Second, we investigated whether it depends on Toll-like receptor 4 (TLR4) and myeloid differentiation primary response (Myd). We concluded that CAPS stimulates DCs through Myd88 depending TLR4 signaling and activates Th1-type cytokine release.

  14. Drosophila Casein Kinase I Alpha Regulates Homolog Pairing and Genome Organization by Modulating Condensin II Subunit Cap-H2 Levels

    PubMed Central

    Nguyen, Huy Q.; Nye, Jonathan; Buster, Daniel W.; Klebba, Joseph E.; Rogers, Gregory C.; Bosco, Giovanni

    2015-01-01

    The spatial organization of chromosomes within interphase nuclei is important for gene expression and epigenetic inheritance. Although the extent of physical interaction between chromosomes and their degree of compaction varies during development and between different cell-types, it is unclear how regulation of chromosome interactions and compaction relate to spatial organization of genomes. Drosophila is an excellent model system for studying chromosomal interactions including homolog pairing. Recent work has shown that condensin II governs both interphase chromosome compaction and homolog pairing and condensin II activity is controlled by the turnover of its regulatory subunit Cap-H2. Specifically, Cap-H2 is a target of the SCFSlimb E3 ubiquitin-ligase which down-regulates Cap-H2 in order to maintain homologous chromosome pairing, chromosome length and proper nuclear organization. Here, we identify Casein Kinase I alpha (CK1α) as an additional negative-regulator of Cap-H2. CK1α-depletion stabilizes Cap-H2 protein and results in an accumulation of Cap-H2 on chromosomes. Similar to Slimb mutation, CK1α depletion in cultured cells, larval salivary gland, and nurse cells results in several condensin II-dependent phenotypes including dispersal of centromeres, interphase chromosome compaction, and chromosome unpairing. Moreover, CK1α loss-of-function mutations dominantly suppress condensin II mutant phenotypes in vivo. Thus, CK1α facilitates Cap-H2 destruction and modulates nuclear organization by attenuating chromatin localized Cap-H2 protein. PMID:25723539

  15. Calcium phosphate particles stimulate interleukin-1β release from human vascular smooth muscle cells: A role for spleen tyrosine kinase and exosome release.

    PubMed

    Dautova, Yana; Kapustin, Alexander N; Pappert, Kevin; Epple, Matthias; Okkenhaug, Hanneke; Cook, Simon J; Shanahan, Catherine M; Bootman, Martin D; Proudfoot, Diane

    2018-02-01

    Calcium phosphate (CaP) particle deposits are found in several inflammatory diseases including atherosclerosis and osteoarthritis. CaP, and other forms of crystals and particles, can promote inflammasome formation in macrophages leading to caspase-1 activation and secretion of mature interleukin-1β (IL-1β). Given the close association of small CaP particles with vascular smooth muscle cells (VSMCs) in atherosclerotic fibrous caps, we aimed to determine if CaP particles affected pro-inflammatory signalling in human VSMCs. Using ELISA to measure IL-1β release from VSMCs, we demonstrated that CaP particles stimulated IL-1β release from proliferating and senescent human VSMCs, but with substantially greater IL-1β release from senescent cells; this required caspase-1 activity but not LPS-priming of cells. Potential inflammasome agonists including ATP, nigericin and monosodium urate crystals did not stimulate IL-1β release from VSMCs. Western blot analysis demonstrated that CaP particles induced rapid activation of spleen tyrosine kinase (SYK) (increased phospho-Y525/526). The SYK inhibitor R406 reduced IL-1β release and caspase-1 activation in CaP particle-treated VSMCs, indicating that SYK activation occurs upstream of and is required for caspase-1 activation. In addition, IL-1β and caspase-1 colocalised in intracellular endosome-like vesicles and we detected IL-1β in exosomes isolated from VSMC media. Furthermore, CaP particle treatment stimulated exosome secretion by VSMCs in a SYK-dependent manner, while the exosome-release inhibitor spiroepoxide reduced IL-1β release. CaP particles stimulate SYK and caspase-1 activation in VSMCs, leading to the release of IL-1β, at least in part via exosomes. These novel findings in human VSMCs highlight the pro-inflammatory and pro-calcific potential of microcalcification. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. Cold Atmospheric Plasma (CAP) Changes Gene Expression of Key Molecules of the Wound Healing Machinery and Improves Wound Healing In Vitro and In Vivo

    PubMed Central

    Arndt, Stephanie; Unger, Petra; Wacker, Eva; Shimizu, Tetsuji; Heinlin, Julia; Li, Yang-Fang; Thomas, Hubertus M.; Morfill, Gregor E.; Zimmermann, Julia L.

    2013-01-01

    Cold atmospheric plasma (CAP) has the potential to interact with tissue or cells leading to fast, painless and efficient disinfection and furthermore has positive effects on wound healing and tissue regeneration. For clinical implementation it is necessary to examine how CAP improves wound healing and which molecular changes occur after the CAP treatment. In the present study we used the second generation MicroPlaSter ß® in analogy to the current clinical standard (2 min treatment time) in order to determine molecular changes induced by CAP using in vitro cell culture studies with human fibroblasts and an in vivo mouse skin wound healing model. Our in vitro analysis revealed that the CAP treatment induces the expression of important key genes crucial for the wound healing response like IL-6, IL-8, MCP-1, TGF-ß1, TGF-ß2, and promotes the production of collagen type I and alpha-SMA. Scratch wound healing assays showed improved cell migration, whereas cell proliferation analyzed by XTT method, and the apoptotic machinery analyzed by protein array technology, was not altered by CAP in dermal fibroblasts. An in vivo wound healing model confirmed that the CAP treatment affects above mentioned genes involved in wound healing, tissue injury and repair. Additionally, we observed that the CAP treatment improves wound healing in mice, no relevant side effects were detected. We suggest that improved wound healing might be due to the activation of a specified panel of cytokines and growth factors by CAP. In summary, our in vitro human and in vivo animal data suggest that the 2 min treatment with the MicroPlaSter ß® is an effective technique for activating wound healing relevant molecules in dermal fibroblasts leading to improved wound healing, whereas the mechanisms which contribute to these observed effects have to be further investigated. PMID:24265766

  17. Influence of rate of force application during compression on tablet capping.

    PubMed

    Sarkar, Srimanta; Ooi, Shing Ming; Liew, Celine Valeria; Heng, Paul Wan Sia

    2015-04-01

    Root cause and possible processing remediation of tablet capping were investigated using a specially designed tablet press with an air compensator installed above the precompression roll to limit compression force and allow extended dwell time in the precompression event. Using acetaminophen-starch (77.9:22.1) as a model formulation, tablets were prepared by various combinations of precompression and main compression forces, set precompression thickness, and turret speed. The rate of force application (RFA) was the main factor contributing to the tablet mechanical strength and capping. When target force above the force required for strong interparticulate bond formation, the resultant high RFA contributed to more pronounced air entrapment, uneven force distribution, and consequently, stratified densification in compact together with high viscoelastic recovery. These factors collectively had contributed to the tablet capping. As extended dwell time assisted particle rearrangement and air escape, a denser and more homogenous packing in the die could be achieved. This occurred during the extended dwell time when a low precompression force was applied, followed by application of main compression force for strong interparticulate bond formation that was the most beneficial option to solve capping problem. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  18. PRMT5 is essential for the eIF4E-mediated 5′-cap dependent translation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lim, Ji-Hong; Lee, Yoon-Mi; Lee, Gibok

    2014-10-03

    Highlights: • PRMT5 participates in syntheses of HIF-1α, c-Myc and cyclin D1 proteins. • PRMT5 promotes the 5′-cap dependent translation. • PRMT5 is required for eIF4E binding to mRNA 5′-cap. • PRMT5 is essential for eIF4E-dependent cell proliferation. - Abstract: It is becoming clear that PRMT5 plays essential roles in cell cycle progression, survival, and responses to external stresses. However, the precise mechanisms underlying such roles of PRMT5 have not been clearly understood. Previously, we have demonstrated that PRMT5 participates in cellular adaptation to hypoxia by ensuring 5′-cap dependent translation of HIF-1α. Given that c-Myc and cyclin D1 expressions aremore » also tightly regulated in 5′-cap dependent manner, we here tested the possibility that PRMT5 promotes cell proliferation by increasing de novo syntheses of the oncoproteins. c-Myc and cyclin D1 were found to be noticeably downregulated by PRMT5 knock-down. A RNA immunoprecipitation analysis, which can identify RNA–protein interactions, showed that PRMT5 is required for the interaction among eIF4E and 5′-UTRs of HIF-1α, c-Myc and cyclin D1 mRNAs. In addition, PRMT5 knock-down inhibited cell proliferation by inducing cell cycle arrest at the G1 phase. More importantly, ectopic expression of eIF4E significantly rescued the cell cycle progression and cell proliferation even in PRMT5-deficeint condition. Based on these results, we propose that PRMT5 determines cell fate by regulating 5′-cap dependent translation of proteins essential for proliferation and survival.« less

  19. Springback in root gravitropism

    NASA Technical Reports Server (NTRS)

    Leopold, A. C.; Wettlaufer, S. H.

    1989-01-01

    Conditions under which a gravistimulus of Merit corn roots (Zea mays L.) is withdrawn result in a subsequent loss of gravitropic curvature, an effect which we refer to as springback.' This loss of curvature begins within 1 to 10 minutes after removal of the gravistimulus. It occurs regardless of the presence or absence of the root cap. It is insensitive to inhibitors of auxin transport (2,3,5-triiodobenzoic acid, naphthylphthalamic [correction of naphthylphthalmaic] acid) or to added auxin (2,4-dichlorophenoxyacetic acid). Springback is prevented if a clinostat treatment is interjected to neutralize gravistimulation during germination, which suggests that the change in curvature is a response to a memory' effect carried over from a prior gravistimulation.

  20. Springback in Root Gravitropism 1

    PubMed Central

    Leopold, A. Carl; Wettlaufer, Scott H.

    1989-01-01

    Conditions under which a gravistimulus of Merit corn roots (Zea mays L.) is withdrawn result in a subsequent loss of gravitropic curvature, an effect which we refer to as `springback.' This loss of curvature begins within 1 to 10 minutes after removal of the gravistimulus. It occurs regardless of the presence or absence of the root cap. It is insensitive to inhibitors of auxin transport (2,3,5-triiodobenzoic acid, naphthylphthalmaic acid) or to added auxin (2,4-dichlorophenoxyacetic acid). Springback is prevented if a clinostat treatment is interjected to neutralize gravistimulation during germination, which suggests that the change in curvature is a response to a `memory' effect carried over from a prior gravistimulation. PMID:11537456

  1. Interactions between human osteoblasts and prostate cancer cells in a novel 3D in vitro model

    PubMed Central

    Sieh, Shirly; Lubik, Amy A; Clements, Judith A; Nelson, Colleen C

    2010-01-01

    Cell-cell and cell-matrix interactions play a major role in tumor morphogenesis and cancer metastasis. Therefore, it is crucial to create a model with a biomimetic microenvironment that allows such interactions to fully represent the pathophysiology of a disease for an in vitro study. This is achievable by using three-dimensional (3D) models instead of conventional two-dimensional (2D) cultures with the aid of tissue engineering technology. We are now able to better address the complex intercellular interactions underlying prostate cancer (CaP) bone metastasis through such models. In this study, we assessed the interaction of CaP cells and human osteoblasts (hOBs) within a tissue engineered bone (TEB) construct. Consistent with other in vivo studies, our findings show that intercellular and CaP cell-bone matrix interactions lead to elevated levels of matrix metalloproteinases, steroidogenic enzymes and the CaP biomarker, prostate specific antigen (PSA); all associated with CaP metastasis. Hence, it highlights the physiological relevance of this model. We believe that this model will provide new insights for understanding of the previously poorly understood molecular mechanisms of bone metastasis, which will foster further translational studies, and ultimately offer a potential tool for drug screening. PMID:21197221

  2. Artificial Niches for Stromal Stem Cells as a Potential Instrument for the Design of the Surface of Biomimetic Osteogenic Materials

    NASA Astrophysics Data System (ADS)

    Khlusov, I. A.; Khlusova, M. Yu.; Pichugin, V. F.; Sharkeev, Yu. P.; Legostaeva, E. V.

    2014-02-01

    A relationship between the topography of rough calcium phosphate surfaces having osteogenic niche-reliefs and the electrostatic potential of these surfaces as a possible instrument to control stromal stem cells has been investigated. The in vitro culture of human lung prenatal stromal cells on nanostructured/ultrafine-grained VT1.0 titanium alloy plates with bilateral rough calcium phosphate (CaP) microarc coating was used. It was established that the amplitude of the electret CaP surface potential linearly increased with increasing area of valleys (sockets), and the negative charge is formed on the socket surface. The area of alkaline phosphatase staining (the marker of osteoblast maturation and differentiation) of adherent CD34- CD44+ cells increases linearly with increasing area of artificial microterritory (socket) of the CaP surface occupied with each cell. The negative electret potential in valleys (sockets) of microarc CaP coatings can be the physical mechanism mediating the influence of the surface topography on osteogenic maturation and differentiation of cells in vitro. This mechanism can be called "niche-potential" and can be used as an instrument for biomimetic modification of smooth CaP surfaces to strengthen their integration with the bone tissue.

  3. Growth Chambers on the International Space Station for Large Plants

    NASA Technical Reports Server (NTRS)

    Massa, G. D.; Wheeler, R. M.; Morrow, R. C.; Levine, H. G.

    2016-01-01

    The International Space Station (ISS) now has platforms for conducting research on horticultural plant species under LED lighting, and those capabilities continue to expand. The 'Veggie' vegetable production system was deployed to the ISS as an applied research platform for food production in space. Veggie is capable of growing a wide array of horticultural crops. It was designed for low power usage, low launch mass and stowage volume, and minimal crew time requirements. The Veggie flight hardware consists of a light cap containing red (630 nm), blue, (455 nm) and green (530 nm) LEDs. Interfacing with the light cap is an extendable bellows/baseplate for enclosing the plant canopy. A second large plant growth chamber, the Advanced Plant Habitat (APH), is will fly to the ISS in 2017. APH will be a fully controllable environment for high-quality plant physiological research. APH will control light (quality, level, and timing), temperature, CO2, relative humidity, and irrigation, while scrubbing any cabin or plant-derived ethylene and other volatile organic compounds. Additional capabilities include sensing of leaf temperature and root zone moisture, root zone temperature, and oxygen concentration. The light cap will have red (630 nm), blue (450 nm), green (525 nm), far red (730 nm) and broad spectrum white LEDs (4100K). There will be several internal cameras (visible and IR) to monitor and record plant growth and operations. Veggie and APH are available for research proposals.

  4. Effect of capping agents on the cytotoxicity of silver nanoparticles in human normal and cancer skin cell lines

    NASA Astrophysics Data System (ADS)

    Netchareonsirisuk, Ponsawan; Puthong, Songchan; Dubas, Stephan; Palaga, Tanapat; Komolpis, Kittinan

    2016-11-01

    Silver nanoparticles (AgNPs) are among the most widely used nanomaterials in medical and consumer products. However, safety in the uses of AgNPs is still controversial. The toxicity of AgNPs toward various cell types has been reported to depend on the surface properties of the nanoparticles. In this study, the effect of AgNPs with the average size of 5-15 nm on the viability of the CCD-986SK human normal skin fibroblast cell line and A375 human malignant melanoma cell line was evaluated. Comparative toxicity studies, based on MTT assay, were performed by using either sodium alginate or poly (4-styrenesulfonic acid-co-maleic acid) sodium salt (PSSMA) as capping agent in the nanoparticle preparation. The cytotoxicity tests revealed that AgNO3 alone was highly toxic to both cell types while both alginate and PSSMA alone were not toxic. AgNPs capped with alginate were selectively toxic to the cancer cell line but not to the normal cell line while AgNPs capped with PSSMA were toxic to both cancer and normal cell lines. Judging from the 50 % inhibition concentration (IC50), it was found that the cancer cell line was more sensitive to AgNPs than the normal cell line. Study on the mode of cell death by annexin V and propidium iodide staining revealed that AgNPs induced more apoptotic cell death (84-90 %) than necrosis (8-12 %) in the skin cancer cell line. These results suggest that the toxicity of AgNPs depended on the type of capping agent and the type of cell line.

  5. Direct Pulp Capping with Calcium Hydroxide, Mineral Trioxide Aggregate, and Biodentine in Permanent Young Teeth with Caries: A Randomized Clinical Trial.

    PubMed

    Brizuela, Claudia; Ormeño, Andrea; Cabrera, Carolina; Cabezas, Roxana; Silva, Carolina Inostroza; Ramírez, Valeria; Mercade, Montse

    2017-11-01

    Direct pulp capping treatment is intended to preserve pulp vitality, to avoid or retard root canal treatment, and, in cases with an open apex, to allow continued root development. Historically, calcium hydroxide (CH) was the gold standard material, but nowadays calcium silicate materials (CSMs) are displacing CH because of their high bioactivity, biocompatibility, sealing ability, and mechanical properties. However, more randomized clinical trials are needed to confirm the appropriateness of CSMs as replacement materials for CH in direct pulp capping procedures. A randomized clinical trial was conducted that included 169 patients (mean age, 11.3 years) from the Maipo district (Chile). The inclusion criterion was patients with 1 carious permanent tooth with pulpal exposure, a candidate for a direct pulp capping procedure. The patients were randomly allocated to one of the experimental groups (CH, Biodentine, or mineral trioxide aggregate [MTA]). Clinical follow-up examinations were performed at 1 week, 3 months, 6 months, and 1 year. The Fisher exact test was performed. At the follow-up examination at 1 week, the patients showed 100% clinical success. At 3 months, there was 1 failure in the CH group. At 6 months, there were 4 new failures (1 in the CH group and 3 in the MTA group). At 1 year, there was another failure in the CH group. There were no statistically significant differences among the experimental groups. CSMs appear to be suitable materials to replace CH. Although no significant differences were found among the materials studied, Biodentine and MTA offered some advantages over CH. Copyright © 2017 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  6. Cometabolic degradation of chloramphenicol via a meta-cleavage pathway in a microbial fuel cell and its microbial community.

    PubMed

    Zhang, Qinghua; Zhang, Yanyan; Li, Daping

    2017-04-01

    The performance of a microbial fuel cell (MFC) in terms of degradation of chloramphenicol (CAP) was investigated. Approximately 84% of 50mg/L CAP was degraded within 12h in the MFC. A significant interaction of pH, temperature, and initial CAP concentration was found on removal of CAP, and a maximum degradation rate of 96.53% could theoretically be achieved at 31.48°C, a pH of 7.12, and an initial CAP concentration of 106.37mg/L. Moreover, CAP was further degraded through a ring-cleavage pathway. The antibacterial activity of CAP towards Escherichia coli ATCC 25922 and Shewanella oneidensis MR-1 was largely eliminated by MFC treatment. High-throughput sequencing analysis indicated that Azonexus, Comamonas, Nitrososphaera, Chryseobacterium, Azoarcus, Rhodococcus, and Dysgonomonas were the predominant genera in the MFC anode biofilm. In conclusion, the MFC shows potential for the treatment of antibiotic residue-containing wastewater due to its high rates of CAP removal and energy recovery. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. ROBO1, a tumor suppressor and critical molecular barrier for localized tumor cells to acquire invasive phenotype: Study in African-American and Caucasian prostate cancer models

    PubMed Central

    Parray, Aijaz; Siddique, Hifzur R.; Kuriger, Jacquelyn K.; Mishra, Shrawan K.; Rhim, Johng S.; Nelson, Heather H.; Aburatani, Hiroyuki; Konety, Badrinath R.; Koochekpour, Shahriar; Saleem, Mohammad

    2015-01-01

    High-risk populations exhibit early transformation of localized prostate cancer (CaP) disease to metastasis which results in the mortality of such patients. The paucity of knowledge about the molecular mechanism involved in acquiring of metastatic behavior by primary tumor cells and non-availability of reliable phenotype-discriminating biomarkers are stumbling blocks in the management of CaP disease. Here, we determine the role and translational relevance of ROBO1 (an organogenesis-associated gene) in human CaP. Employing CaP-progression models and prostatic tissues of Caucasian and African-American patients, we show that ROBO1 expression is localized to cell-membrane and significantly lost in primary and metastatic tumors. While Caucasians exhibited similar ROBO1 levels in primary and metastatic phenotype, a significant difference was observed between tumor phenotypes in African-Americans. Epigenetic assays identified promoter methylation of ROBO1 specific to African-American metastatic CaP cells. Using African-American CaP models for further studies, we show that ROBO1 negatively regulates motility and invasiveness of primary CaP cells, and its loss causes these cells to acquire invasive trait. To understand the underlying mechanism, we employed ROBO1-expressing/ROBO1-C2C3-mutant constructs, immunoprecipitation, confocal-microscopy and luciferase-reporter techniques. We show that ROBO1 through its interaction with DOCK1 (at SH3-SH2-domain) controls the Rac-activation. However, loss of ROBO1 results in Rac1-activation which in turn causes E-Cadherin/β-catenin cytoskeleton destabilization and induction of cell migration. We suggest that ROBO1 is a predictive biomarker that has potential to discriminate among CaP types, and could be exploited as a molecular target to inhibit the progression of disease as well as treat metastasis in high-risk populations such as African-Americans. PMID:24752651

  8. Restoration of gravitropic sensitivity in starch-deficient mutants of Arabidopsis by hypergravity

    NASA Technical Reports Server (NTRS)

    Fitzelle, K. J.; Kiss, J. Z.

    2001-01-01

    Despite the extensive study of plant gravitropism, there have been few experiments which have utilized hypergravity as a tool to investigate gravisensitivity in flowering plants. Previous studies have shown that starch-deficient mutants of Arabidopsis are less sensitive to gravity compared to the wild-type (WT). In this report, the question addressed was whether hypergravity could restore the sensitivity of starch-deficient mutants of Arabidopsis. The strains examined include a WT, a starchless mutant and a reduced-starch mutant. Vertical orientation studies with dark-grown seedlings indicate that increased centrifugal acceleration improves orientation relative to the acceleration vector for all strains, even the WT. For starchless roots, growth of seedlings under constant 5 g acceleration was required to restore orientation to the level of the WT at 1 g. In contrast, approximately 10 g was required to restore the orientation of the starchless mutant hypocotyls to a WT level at 1 g. Examination of plastid position in root cap columella cells of the starchless mutant revealed that the restoration of gravitropic sensitivity was correlated with the sedimentation of plastids toward the distal cell wall. Even in WT plants, hypergravity caused greater sedimentation of plastids and improved gravitropic capability. Collectively, these experiments support the hypothesis of a statolith-based system of gravity perception in plants. As far as is known, this is the first report to use hypergravity to study the mechanisms of gravitropism in Arabidopsis.

  9. Characterization of LeMir, a Root-Knot Nematode-Induced Gene in Tomato with an Encoded Product Secreted from the Root1

    PubMed Central

    Brenner, Eric D.; Lambert, Kris N.; Kaloshian, Isgouhi; Williamson, Valerie M.

    1998-01-01

    A tomato gene that is induced early after infection of tomato (Lycopersicon esculentum Mill.) with root-knot nematodes (Meloidogyne javanica) encodes a protein with 54% amino acid identity to miraculin, a flavorless protein that causes sour substances to be perceived as sweet. This gene was therefore named LeMir (L. esculentum miraculin). Sequence similarity places the encoded protein in the soybean trypsin-inhibitor family (Kunitz). LeMir mRNA is found in root, hypocotyl, and flower tissues, with the highest expression in the root. Rapid induction of expression upon nematode infection is localized to root tips. In situ hybridization shows that LeMir is expressed constitutively in the root-cap and root-tip epidermis. The LeMir protein product (LeMir) was produced in the yeast Pichia pastoris for generation of antibodies. Western-blot analysis showed that LeMir expression is up-regulated by nematode infection and by wounding. LeMir is also expressed in tomato callus tissue. Immunoprint analysis revealed that LeMir is expressed throughout the seedling root, but that levels are highest at the root/shoot junction. Analysis of seedling root exudates revealed that LeMir is secreted from the root into the surrounding environment, suggesting that it may interact with soil-borne microorganisms. PMID:9733543

  10. Large Plant Growth Chambers: Flying Soon on a Space Station near You!

    NASA Technical Reports Server (NTRS)

    Massa, Gioia D.; Morrow, Robert C.; Levine, Howard G.

    2014-01-01

    The International Space Station (ISS) now has platforms for conducting research on horticultural plant species, and those capabilities continue to grow. The Veggie vegetable production system will be deployed to the ISS in Spring of 2014 to act as an applied research platform with goals of studying food production in space, providing the crew with a source of fresh food, allowing behavioral health and plant microbiology experimentation, and being a source of recreation and enjoyment for the crew. Veggie was conceived, designed, and constructed by Orbital Technologies Corporation (ORBITEC, Madison, WI). Veggie is the largest plant growth chamber that NASA has flown to date, and is capable of growing a wide array of horticultural crops. It was designed for low energy usage, low launch mass and stowage volume, and minimal crew time requirements. The Veggie flight hardware consists of a light cap containing red (630 nanometers), blue, (455 nanometers) and green (530 nanometers) light emitting diodes. Interfacing with the light cap is an extendable bellows baseplate secured to the light cap via magnetic closures and stabilized with extensible flexible arms. The baseplate contains vents allowing air from the ISS cabin to be pulled through the plant growth area by a fan in the light cap. The baseplate holds a Veggie root mat reservoir that will supply water to plant pillows attached via elastic cords. Plant pillows are packages of growth media and seeds that will be sent to ISS dry and installed and hydrated on orbit. Pillows can be constructed in various sizes for different plant types. Watering will be via passive wicking from the root mat to the pillows. Science procedures will include photography or videography, plant thinning, pollination, harvesting, microbial sampling, water sampling, etcetera. Veggie is one of the ISS flight options currently available for research investigations on plants. The Plant Habitat (PH) is being designed and constructed through a NASA-ORBITEC collaboration, and is scheduled to fly on ISS around 2016. This large plant chamber will control light quality, level, and timing, temperature, CO2, relative humidity, and irrigation, while scrubbing ethylene. Additional monitoring capabilities include leaf temperature sensing and root zone moisture and oxygen sensing. The PH light cap will have red (630 nanometers), blue (450 nanometers), green (525 nanometers), far red (730 nanometers) and broad spectrum white light emitting diodes. There will be several internal cameras to monitor and record plant growth and operations.

  11. Gravistimulus Production in Roots of Corn

    NASA Technical Reports Server (NTRS)

    Feldman, L. J.

    1985-01-01

    Because of the similarities in structure of known growth regulators, specifically abscisic acid and xanthoxin, with portions of the violaxanthin molecule, it was suggested that these growth substances normally arise from the breakdown or turnover of carotenoid. The light-induced disappearance of violaxanthin occurs in a time frame coincident with an increase in the levels in cap tissue of substances with growth inhibitor properties. One of the ways by which light may regulate root development, including aspects of gravitropism, is through the production of inhibitory growth substances arising from the turnover of carotenoids.

  12. Inhaled concentrated ambient particles are associated with hematologic and bronchoalveolar lavage changes in canines.

    PubMed Central

    Clarke, R W; Coull, B; Reinisch, U; Catalano, P; Killingsworth, C R; Koutrakis, P; Kavouras, I; Murthy, G G; Lawrence, J; Lovett, E; Wolfson, J M; Verrier, R L; Godleski, J J

    2000-01-01

    Pulmonary inflammatory and hematologic responses of canines were studied after exposure to concentrated ambient particles (CAPs) using the Harvard ambient particle concentrator (HAPC). For pulmonary inflammatory studies, normal dogs were exposed in pairs to either CAPs or filtered air (paired studies) for 6 hr/day on 3 consecutive days. For hematologic studies, dogs were exposed for 6 hr/day for 3 consecutive days with one receiving CAPs while the other was simultaneously exposed to filtered air; crossover of exposure took place the following week (crossover studies). Physicochemical characterization of CAPs exposure samples included measurements of particle mass, size distribution, and composition. No statistical differences in biologic responses were found when all CAPs and all sham exposures were compared. However, the variability in biologic response was considerably higher with CAPs exposure. Subsequent exploratory graphical analyses and mixed linear regression analyses suggested associations between CAPs constituents and biologic responses. Factor analysis was applied to the compositional data from paired and crossover experiments to determine elements consistently associated with each other in CAPs samples. In paired experiments, four factors were identified; in crossover studies, a total of six factors were observed. Bronchoalveolar lavage (BAL) and hematologic data were regressed on the factor scores. Increased BAL neutrophil percentage, total peripheral white blood cell (WBC) counts, circulating neutrophils, and circulating lymphocytes were associated with increases in the aluminum/silicon factor. Increased circulating neutrophils and increased BAL macrophages were associated with the vanadium/nickel factor. Increased BAL neutrophils were associated with the bromine/lead factor when only the compositional data from the third day of CAPs exposure were used. Significant decreases in red blood cell counts and hemoglobin levels were correlated with the sulfur factor. BAL or hematologic parameters were not associated with increases in total CAPs mass concentration. These data suggest that CAPs inhalation is associated with subtle alterations in pulmonary and systemic cell profiles, and specific components of CAPs may be responsible for these biologic responses. PMID:11133399

  13. Calcium phosphate coupled Newcastle disease vaccine elicits humoral and cell mediated immune responses in chickens.

    PubMed

    Koppad, Sanganagouda; Raj, G Dhinakar; Gopinath, V P; Kirubaharan, J John; Thangavelu, A; Thiagarajan, V

    2011-12-01

    Calcium phosphate (CaP) particles were coupled with inactivated Newcastle disease virus (NDV) vaccine. The surface morphology of CaP particles coupled to NDV was found to be spherical, smooth and with a tendency to agglomerate. The mean (± SE) size of CaP particles was found 557.44 ± 18.62 nm. The mean percent encapsulation efficiency of CaP particles coupled to NDV assessed based on total protein content and haemagglutination (HA) activity in eluate was found to be 10.72 ± 0.89 and 12.50 ± 2.09, respectively. The humoral and cell mediated immune responses induced by CaP coupled NDV vaccine were assessed in comparison to a commercial live vaccine (RDV 'F'). CaP coupled NDV vaccine elicited prolonged haemagglutination inhibition (HI) and enzyme linked immunosorbent assay (ELISA) titres in the serum even at fourth and fifth week post-vaccination (PV), unlike RDV 'F' inoculated chickens whose titres declined to insignificant levels by this time. CaP coupled NDV vaccine could stimulate HI antibodies in tracheal washings and tears from second and first week PV, respectively. IgA ELISA antibodies were also seen in tracheal washings of these birds from third week PV and in tears from second week PV. CaP coupled NDV vaccine elicited cell mediated immune responses (CMI) from two to four weeks PV. The stimulation indices obtained after stimulation with specific antigen was not significantly different between CaP coupled antigen and live NDV virus except on first week PV. However, CaP coupled antigen did not cause suppression of lympo proliferation as indicated by statistically similar responses to mitogen, concanavalin A between the two groups. Overall, CaP coupled NDV vaccine elicited stronger and prolonged immune responses in comparison to the commercial live vaccine. No increase in the serum calcium and phosphorous levels were seen in CaP coupled NDV vaccine inoculated chickens. Copyright © 2010 Elsevier Ltd. All rights reserved.

  14. Effects of microgravity and clinorotation on stress ethylene production in two starchless mutants of Arabidopsis thaliana

    NASA Technical Reports Server (NTRS)

    Gallegos, Gregory L.; Hilaire, Emmanuel M.; Peterson, Barbara V.; Brown, Christopher S.; Guikema, James A.

    1995-01-01

    Starch filled plastids termed amyloplasts, contained within columella cells of the root caps of higher plant roots, are believed to play a statolith-like role in the gravitropic response of roots. Plants having amyloplasts containing less starch exhibit a corresponding reduction in gravitropic response. We have observed enhanced ethylene production by sweet clover (Melilotus alba L.) seedlings grown in the altered gravity condition of a slow rotating clinostat, and have suggested that this is a stress response resulting from continuous gravistimulation rather than as a result of the simulation of a microgravity condition. If so, we expect that plants deficient in starch accumulation in amyloplasts may produce less stress ethylene when grown on a clinostat. Therefore, we have grown Arabidopsis thaliana in the small, closed environment of the Fluid Processing Apparatus (FPA). In this preliminary report we compare stationary plants with clinorotated and those grown in microgravity aboard Discovery during the STS-63 flight in February 1995. In addition to wildtype, two mutants deficient in starch biosynthesis, mutants TC7 and TL25, which are, respectively, deficient in the activity of amyloplast phosphoglucomutase and ADP-glucose pyrophosphorylase, were grown for three days before being fixed within the FPA. Gas samples were aspirated from the growth chambers and carbon dioxide and ethylene concentations were measured using a gas chromatograph. The fixed tissue is currently undergoing further morphologic and microscopic characterization.

  15. Managed pollinator CAP coordinated agricultural project: detecting Nosema in time

    USDA-ARS?s Scientific Manuscript database

    Scientists are looking at the root cause of the Colony Collapse Disorder (CCD) syndrome by searching for new diseases, harmful chemicals or a combination of these factors which could inflict stress on bee colonies pushing them over the edge for recovery. Among multiple suspects identified so far, be...

  16. Exposure to fine and ultrafine particulate matter during gestation alters postnatal oligodendrocyte maturation, proliferation capacity, and myelination.

    PubMed

    Klocke, Carolyn; Allen, Joshua L; Sobolewski, Marissa; Blum, Jason L; Zelikoff, Judith T; Cory-Slechta, Deborah A

    2018-03-01

    Accumulating studies indicate that the brain is a direct target of air pollution exposure during the fetal period. We have previously demonstrated that exposure to concentrated ambient particles (CAPs) during gestation produces ventriculomegaly, periventricular hypermyelination, and enlargement of the corpus callosum (CC) during postnatal development in mice. This study aimed to further characterize the cellular basis of the observed hypermyelination and determine if this outcome, among other effects, persisted as the brain matured. Analysis of CC-1 + mature oligodendrocytes in the CC at postnatal days (PNDs) 11-15 suggest a premature maturational shift in number and proportion of total cells in prenatally CAPs-exposed males and females, with no overall change in total CC cellularity. The overall number of Olig2 + lineage cells in the CC was not affected in either sex at the same postnatal timepoint. Assessment of myelin status at early brain maturity (PNDs 57-61) revealed persistent hypermyelination in CAPs-exposed animals of both sexes. In addition, ventriculomegaly was persistent in CAPs-treated females, with possible amelioration of ventriculomegaly in CAPs-exposed males. When oligodendrocyte precursor cell (OPC) pool status was analyzed at PNDs 57-61, there were significant CAPs-induced alterations in cycling Ki67 + /Olig2 + cell number and proportion of total cells in the female CC. Total CC cellularity was slightly elevated in CAPs-exposed males at PNDs 57-61. Overall, these data support a growing body of evidence that demonstrate the vulnerability of the developing brain to environmental insults such as ambient particulate matter. The sensitivity of oligodendrocytes and myelin, in particular, to such an insult warrants further investigation into the mechanistic underpinnings of OPC and myelin disruption by constituent air pollutants. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Induction of curvature in maize roots by calcium or by thigmostimulation: role of the postmitotic isodiametric growth zone

    NASA Technical Reports Server (NTRS)

    Ishikawa, H.; Evans, M. L.

    1992-01-01

    We examined the response of primary roots of maize (Zea mays L. cv Merit) to unilateral application of calcium with particular attention to the site of application, the dependence on growth rate, and possible contributions of thigmotropic stimulation during application. Unilateral application of agar to the root cap induced negative curvature whether or not the agar contained calcium. This apparent thigmotropic response was enhanced by including calcium in the agar. Curvature away from objects applied unilaterally to the extreme root tip occurred both in intact and detipped roots. When agar containing calcium chloride was applied to one side of the postmitotic isodiametric growth zone ( a region between the apical meristem and the elongation zone), the root curved toward the side of application. This response could not be induced by plain agar. We conclude that curvature away from calcium applied to the root tip results from a thigmotropic response to stimulation during application. In contrast, curvature toward the calcium applied to the postmitotic isodiametric growth zone results from direct calcium-induced inhibition of growth.

  18. Factors affecting weld root morphology in laser keyhole welding

    NASA Astrophysics Data System (ADS)

    Frostevarg, Jan

    2018-02-01

    Welding production efficiency is usually optimised if full penetration can be achieved in a single pass. Techniques such as electron and laser beam welding offer deep high speed keyhole welding, especially since multi-kilowatt lasers became available. However, there are limitations for these techniques when considering weld imperfections such as weld cap undercuts, interior porosity or humps at the root. The thickness of sheets during full penetration welding is practically limited by these root humps. The mechanisms behind root morphology formation are not yet satisfactory understood. In this paper root humping is studied by reviewing previous studies and findings and also by sample examination and process observation by high speed imaging. Different process regimes governing root quality are presented, categorized and explained. Even though this study mainly covers laser beam and laser arc hybrid welding, the presented findings can generally be applied full penetration welding in medium to thick sheets, especially the discussion of surface tension effects. As a final result of this analysis, a map of methods to optimise weld root topology is presented.

  19. Vitamin D3 analog maxacalcitol (OCT) induces hCAP-18/LL-37 production in human oral epithelial cells.

    PubMed

    Tada, Hiroyuki; Shimizu, Takamitsu; Nagaoka, Isao; Takada, Haruhiko

    2016-01-01

    Maxacalcitol (22-oxacalcitriol: OCT) is a synthetic vitamin D3 analog with a limited calcemic effect. In this study, we investigated whether OCT increases the production of LL-37/CAP-18, a human cathelicidin antimicrobial peptide, in human gingival/oral epithelial cells. A human gingival epithelial cell line (Ca9-22) and human oral epithelial cell lines (HSC-2, HSC-3, and HSC-4) exhibited the enhanced expression of LL-37 mRNA upon stimulation with OCT as well as active metabolites of vitamins D3 and D2. Among the human epithelial cell lines, Ca9-22 exhibited the strongest response to these vitamin D-related compounds. OCT induced the higher production of CAP-18 (ng/mL order) until 6 days time-dependently in Ca9-22 cells in culture. The periodontal pathogen Porphyromonas gingivalis was killed by treatment with the LL-37 peptide. These findings suggest that OCT induces the production of hCAP-18/LL-37 in a manner similar to that induced by the active metabolite of vitamin D3.

  20. L-serine capped ZnS:Mn nanocrystals for plant cell biological studies and as a growth enhancing agent for micropropagation of Bacopa monnieri Linn. (Brahmi:Scrophulariaceae)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Augustine, M. Sajimol, E-mail: sajimollazar@gmail.com; Mathew, Lizzy; Alex, Roselin

    2014-01-28

    In the present work, the prospects of ZnS:Mn nanocrystals capped with L- serine, a bio-compatible amino acid, synthesized by wet chemical route, as efficient fluorescent probes for plant cell biological studies have been investigated. The present synthesis route using bio-compatible material is a low cost and easy to control method. The colloidal stability of the capped nano crystals is very good as they remain stable without settling down for long time. It is observed that L- serine significantly modifies the structural and optical characteristics of the ZnS:Mn nanocrystals and hence is suitable as a bio-compatible capping agent. The structural propertiesmore » of L- serine capped nanocrystals were investigated by XRD technique. The size of the L- serine capped ZnS:Mn nanocrystals is found to be around 2 nm . The optical characterization of the nanocrystals was carried out on the basis of photoluminescence (PL) spectroscopic studies. The intense photoluminescence emission observed around 597nm for L-serine capped ZnS:Mn offers high prospects of applications in bio-imaging fields. The unique optical properties of nanoparticles make them appealing as in vivo and in vitro fluorophores in a variety of biological investigations. In the present study, L-serine capped ZnS:Mn nanocrystals were used as a staining dye in fluorescent microscope for observing cell division, cell structure etc. These nanocrystals were also incorporated into the culture media along with the normal auxin- cytokinin hormone combinations in Murashige and Skoog (MS) medium for micropropagation of Bacopa monnieri Linn. (Brahmi:Scrophulariaceae), an Ayurvedic medicine. The results suggest that L-serine capped ZnS:Mn nanocrystals can act as efficient enhancers towards quick callusing and shoot proliferation.« less

  1. Role of a guanine nucleotide-binding protein in. cap alpha. /sub 1/-adrenergic receptor-mediated Ca/sup 2 +/ mobilization in DDT/sub 1/ MF-2 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cornett, L.E.; Norris, J.S.

    1987-11-01

    In this study the mechanisms involved in ..cap alpha../sub 1/-adrenergic receptor-mediated Ca/sup 2 +/ mobilization at the level of the plasma membrane were investigated. Stimulation of /sup 45/Ca/sup 2 +/ efflux from saponin-permeabilized DDT/sub 1/ MF-2 cells was observed with the addition of either the ..cap alpha../sub 1/-adrenergic agonist phenylephrine and guanosine-5'-triphosphate or the nonhydrolyzable guanine nucleotide guanylyl-imidodiphosphate. In the presence of (/sup 32/P) NAD, pertussis toxin was found to catalyze ADP-ribosylation of a M/sub r/ = 40,500 (n = 8) peptide in membranes prepared from DDT/sub 1/, MF-2 cells, possibly the ..cap alpha..-subunit of N/sub i/. However, stimulation ofmore » unidirectional /sup 45/Ca/sup 2 +/ efflux by phenylephrine was not affected by previous treatment of cells with 100 ng/ml pertussis toxin. These data suggest that the putative guanine nucleotide-binding protein which couples the ..cap alpha../sub 1/-adrenergic receptor to Ca/sup 2 +/ mobilization in DDT/sub 1/ MF-2 cells is not a pertussis toxin substrate and may possibly be an additional member of guanine nucleotide binding protein family.« less

  2. Androgen receptor requires JunD as a coactivator to switch on an oxidative stress generation pathway in prostate cancer cells.

    PubMed

    Mehraein-Ghomi, Farideh; Basu, Hirak S; Church, Dawn R; Hoffmann, F Michael; Wilding, George

    2010-06-01

    Relatively high oxidative stress levels in the prostate are postulated to be a major factor for prostate carcinogenesis and prostate cancer (CaP) progression. We focused on elucidating metabolic pathways of oxidative stress generation in CaP cells. Previously, we showed that the transcription factor JunD is essential for androgen-induced reactive oxygen species (ROS) production in androgen-dependent human CaP cells. We also recently showed that androgen induces the first and regulatory enzyme spermidine/spermine N1-acetyltransferase (SSAT) in a polyamine catabolic pathway that produces copious amounts of metabolic ROS. Here, we present coimmunoprecipitation and Gaussia luciferase reconstitution assay data that show that JunD forms a complex with androgen-activated androgen receptor (AR) in situ. Our chromatin immunoprecipitation assay data show that JunD binds directly to a specific SSAT promoter sequence only in androgen-treated LNCaP cells. Using a vector containing a luciferase reporter gene connected to the SSAT promoter and a JunD-silenced LNCaP cell line, we show that JunD is essential for androgen-induced SSAT gene expression. The elucidation of JunD-AR complex inducing SSAT expression leading to polyamine oxidation establishes the mechanistic basis of androgen-induced ROS production in CaP cells and opens up a new prostate-specific target for CaP chemopreventive/chemotherapeutic drug development. Copyright 2010 AACR.

  3. Immunogenicity and immunoprotection of porcine circovirus type 2 (PCV2) Cap protein displayed by Lactococcus lactis.

    PubMed

    Li, Peng-Cheng; Qiao, Xu-Wen; Zheng, Qi-Sheng; Hou, Ji-Bo

    2016-01-27

    The capsid (Cap) protein, an important immunoprotective protein of porcine circovirus type 2 (PCV2), was expressed on the cell surface of the Gram-positive food-grade bacterium, Lactococcus lactis. Cap protein was fused to the peptidoglycan binding domain (known as the protein anchor domain, PA) of the lactococcal AcmA cell-wall hydrolase. The Cap protein fusion was non-covalently rebound to the surface of non-genetically modified, non-living high-binder L. lactis cells (designated Gram-positive enhancer matrix (GEM) particles). Expression of the recombinant GEM-displaying capsid protein (GEM-PA-Cap) was verified by Western blotting and immunofluorescence and transmission electron microscopy assays. To evaluate the immunogenicity of the recombinant Cap protein (rCap), 20 PCV2-seronegative piglets were immunized with the GEM-PA-Cap subunit vaccine, GEM alone, or phosphate-buffered saline (PBS, challenge control and empty control). Each group consisted of five piglets. The results showed that the level of PCV2-specific antibodies in piglets immunized with the GEM-PA-Cap subunit vaccine was significantly higher than that of the piglets immunized with GEM alone or the control group at all the time points post-vaccination (P<0.01). After challenge with the PCV2 wild-type strain, piglets that received the GEM-PA-Cap subunit vaccine showed significantly higher average daily weight gain (DWG) and shorter fever duration than the other two groups (P<0.001). Furthermore, a significant reduction in the gross lung lesion scores and lymph node lesion scores was noted in the GEM-PA-Cap-immunized group compared with the scores of the GEM or PBS-treated group (P<0.01). The results suggest that recombinant rCap displayed by L. lactis GEM particles provided the piglets with significant immunoprotection from PCV2-associated disease. Thus, the novel GEM-PA-Cap subunit vaccine has potential to be considered an effective and safe candidate vaccine against PCV2 infection in piglets. Copyright © 2015. Published by Elsevier Ltd.

  4. Role of IL-1 Beta in the Development of Human TH17 Cells: Lesson from NLPR3 Mutated Patients

    PubMed Central

    Lasigliè, Denise; Traggiai, Elisabetta; Federici, Silvia; Alessio, Maria; Buoncompagni, Antonella; Accogli, Andrea; Chiesa, Sabrina; Penco, Federica; Martini, Alberto; Gattorno, Marco

    2011-01-01

    Background T helper 17 cells (TH-17) represent a lineage of effector T cells critical in host defence and autoimmunity. In both mouse and human IL-1β has been indicated as a key cytokine for the commitment to TH-17 cells. Cryopyrin-associated periodic syndromes (CAPS) are a group of inflammatory diseases associated with mutations of the NLRP3 gene encoding the inflammasome component cryopyrin. In this work we asked whether the deregulated secretion of IL-1β secondary to mutations characterizing these patients could affect the IL-23/IL-17 axis. Methodology/Principal Findings A total of 11 CAPS, 26 systemic onset juvenile idiopathic arthritis (SoJIA) patients and 20 healthy controls were analyzed. Serum levels of IL-17 and IL-6 serum were assessed by ELISA assay. Frequency of TH17 cells was quantified upon staphylococcus enterotoxin B (SEB) stimulation. Secretion of IL-1β, IL-23 and IL-6 by monocyte derived dendritic cells (MoDCs), were quantified by ELISA assay. A total of 8 CAPS and 11 SoJIA patients were also analysed before and after treatment with IL-1β blockade. Untreated CAPS patients showed significantly increased IL-17 serum levels as well as a higher frequency of TH17 compared to control subjects. On the contrary, SoJIA patients displayed a frequency of TH17 similar to normal donors, but were found to have significantly increased serum level of IL-6 when compared to CAPS patients or healthy donors. Remarkably, decreased IL-17 serum levels and TH17 frequency were observed in CAPS patients following in vivo IL-1β blockade. On the same line, MoDCs from CAPS patients exhibited enhanced secretion of IL-1β and IL-23 upon TLRs stimulation, with a reduction after anti-IL-1 treatment. Conclusion/Significance These findings further support the central role of IL-1β in the differentiation of TH17 in human inflammatory conditions. PMID:21637346

  5. Wnt6 maintains anterior escort cells as an integral component of the germline stem cell niche

    PubMed Central

    2018-01-01

    ABSTRACT Stem cells reside in a niche, a local environment whose cellular and molecular complexity is still being elucidated. In Drosophila ovaries, germline stem cells depend on cap cells for self-renewing signals and physical attachment. Germline stem cells also contact the anterior escort cells, and here we report that anterior escort cells are absolutely required for germline stem cell maintenance. When escort cells die from impaired Wnt signaling or hid expression, the loss of anterior escort cells causes loss of germline stem cells. Anterior escort cells function as an integral niche component by promoting DE-cadherin anchorage and by transiently expressing the Dpp ligand to promote full-strength BMP signaling in germline stem cells. Anterior escort cells are maintained by Wnt6 ligands produced by cap cells; without Wnt6 signaling, anterior escort cells die leaving vacancies in the niche, leading to loss of germline stem cells. Our data identify anterior escort cells as constituents of the germline stem cell niche, maintained by a cap cell-produced Wnt6 survival signal. PMID:29361569

  6. Wnt6 maintains anterior escort cells as an integral component of the germline stem cell niche.

    PubMed

    Wang, Xiaoxi; Page-McCaw, Andrea

    2018-02-07

    Stem cells reside in a niche, a local environment whose cellular and molecular complexity is still being elucidated. In Drosophila ovaries, germline stem cells depend on cap cells for self-renewing signals and physical attachment. Germline stem cells also contact the anterior escort cells, and here we report that anterior escort cells are absolutely required for germline stem cell maintenance. When escort cells die from impaired Wnt signaling or hid expression, the loss of anterior escort cells causes loss of germline stem cells. Anterior escort cells function as an integral niche component by promoting DE-cadherin anchorage and by transiently expressing the Dpp ligand to promote full-strength BMP signaling in germline stem cells. Anterior escort cells are maintained by Wnt6 ligands produced by cap cells; without Wnt6 signaling, anterior escort cells die leaving vacancies in the niche, leading to loss of germline stem cells. Our data identify anterior escort cells as constituents of the germline stem cell niche, maintained by a cap cell-produced Wnt6 survival signal. © 2018. Published by The Company of Biologists Ltd.

  7. Glucocorticoids inhibit coordinated translation of. cap alpha. - and. beta. -globin mRNAs in Friend erythroleukemia cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Papaconstantinou, J.; Stewart, J.A.; Rabek, J.P.

    The dimethylsulfoxide (Me/sub 2/SO)-mediated induction of hemoglobin synthesis in Friend erythroleukemia cells is inhibited by the glucocorticoids hydrocortisone, dexamethasone, and fluocinolone acetonide; hydrocortisone, at concentrations of 10/sup -5/ to 10/sup -8/ M inhibits by 90-30% and fluocinolone acetonide at concentrations of 10/sup -8/ to 10/sup -11/ M shows a greater than 90% inhibition. At these concentrations the hormones have no effect on cell growth or viability. In this study it has been shown that there is a group of proteins, including the ..cap alpha..- and ..beta..-globins, whose regulation is associated with the induction of Friend erythroleukemia cell differentiation, and thatmore » the expression of these, in addition to ..cap alpha..- and ..beta..-globin, is affected by glucocorticoids. It is concluded that, although the translation of ..cap alpha..- and ..beta..-globin mRNA is a major site of inhibition by glucocorticoids, there is a detectable amount of ..cap alpha..- and ..beta..-globin mRNA translation which results in unequal amounts of globin synthesis and an overall more potent inhibition of hemoglobin formation.« less

  8. Intramolecular Dynamics within the N-Cap-SH3-SH2 Regulatory Unit of the c-Abl Tyrosine Kinase Reveal Targeting to the Cellular Membrane*♦

    PubMed Central

    de Oliveira, Guilherme A. P.; Pereira, Elen G.; Ferretti, Giulia D. S.; Valente, Ana Paula; Cordeiro, Yraima; Silva, Jerson L.

    2013-01-01

    c-Abl is a key regulator of cell signaling and is under strict control via intramolecular interactions. In this study, we address changes in the intramolecular dynamics coupling within the c-Abl regulatory unit by presenting its N-terminal segment (N-Cap) with an alternative function in the cell as c-Abl becomes activated. Using small angle x-ray scattering, nuclear magnetic resonance, and confocal microscopy, we demonstrate that the N-Cap and the Src homology (SH) 3 domain acquire μs-ms motions upon N-Cap association with the SH2-L domain, revealing a stabilizing synergy between these segments. The N-Cap-myristoyl tether likely triggers the protein to anchor to the membrane because of these flip-flop dynamics, which occur in the μs-ms time range. This segment not only presents the myristate during c-Abl inhibition but may also trigger protein localization inside the cell in a functional and stability-dependent mechanism that is lost in Bcr-Abl+ cells, which underlie chronic myeloid leukemia. This loss of intramolecular dynamics and binding to the cellular membrane is a potential therapeutic target. PMID:23928308

  9. Intramolecular dynamics within the N-Cap-SH3-SH2 regulatory unit of the c-Abl tyrosine kinase reveal targeting to the cellular membrane.

    PubMed

    de Oliveira, Guilherme A P; Pereira, Elen G; Ferretti, Giulia D S; Valente, Ana Paula; Cordeiro, Yraima; Silva, Jerson L

    2013-09-27

    c-Abl is a key regulator of cell signaling and is under strict control via intramolecular interactions. In this study, we address changes in the intramolecular dynamics coupling within the c-Abl regulatory unit by presenting its N-terminal segment (N-Cap) with an alternative function in the cell as c-Abl becomes activated. Using small angle x-ray scattering, nuclear magnetic resonance, and confocal microscopy, we demonstrate that the N-Cap and the Src homology (SH) 3 domain acquire μs-ms motions upon N-Cap association with the SH2-L domain, revealing a stabilizing synergy between these segments. The N-Cap-myristoyl tether likely triggers the protein to anchor to the membrane because of these flip-flop dynamics, which occur in the μs-ms time range. This segment not only presents the myristate during c-Abl inhibition but may also trigger protein localization inside the cell in a functional and stability-dependent mechanism that is lost in Bcr-Abl(+) cells, which underlie chronic myeloid leukemia. This loss of intramolecular dynamics and binding to the cellular membrane is a potential therapeutic target.

  10. Alveolar macrophage cytokine response to air pollution particles: oxidant mechanisms.

    PubMed

    Imrich, Amy; Ning, YaoYu; Lawrence, Joy; Coull, Brent; Gitin, Elena; Knutson, Mitchell; Kobzik, Lester

    2007-02-01

    Alveolar macrophages (AMs) primed with LPS and treated with concentrated ambient air particles (CAPs) showed enhanced release of tumor necrosis factor (TNF) and provide an in vitro model for the amplified effects of air pollution particles seen in people with preexisting lung disease. To investigate the mechanism(s) by which CAPs mediate TNF release in primed rat AMs, we first tested the effect of a panel of antioxidants. N-Acetyl-l-cysteine (20 mM), dimethyl thiourea (20 mM) and catalase (5 microM) significantly inhibited TNF release by primed AMs incubated with CAPs. Conversely, when LPS-primed AMs were treated with CAPs in the presence of exogenous oxidants (H(2)O(2) generated by glucose oxidase, 10 microM/h), TNF release and cell toxicity was significantly increased. The soluble fraction of CAPs suspensions caused most of the increased bioactivity in the presence of exogenous H(2)O(2). The metal chelator deferoxamine (DFO) strongly inhibited the interaction of the soluble fraction with H(2)O(2) but had no effect on the bioactivity of the insoluble CAPs fraction. We conclude that CAPs can mediate their effects in primed AMs by acting on oxidant-sensitive cytokine release in at least two distinct ways. In the primed cell, insoluble components of PM mediate enhanced TNF production that is H(2)O(2)-dependent (catalase-sensitive) yet independent of iron (DFO-insensitive). In the presence of exogenous H(2)O(2) released by AMs, PMNs, or other lung cells within an inflamed alveolar milieu, soluble iron released from air particles can also mediate cytokine release and cell toxicity.

  11. Nuclear localization signal regulates porcine circovirus type 2 capsid protein nuclear export through phosphorylation.

    PubMed

    Hou, Qiang; Hou, Shaohua; Chen, Qing; Jia, Hong; Xin, Ting; Jiang, Yitong; Guo, Xiaoyu; Zhu, Hongfei

    2018-02-15

    The open reading frame 2 (ORF2) of Porcine circovirus type 2 (PCV2) encodes the major Capsid (Cap) protein, which self-assembles into virus-like particle (VLP) of similar morphology to the PCV2 virion and accumulates in the nucleus through the N-terminal arginine-rich nuclear localization signal (NLS). In this study, PCV2 Cap protein and its derivates were expressed via the baculovirus expression system, and the cellular localization of the recombinant proteins were investigated using anti-Cap mAb by imaging flow cytometry. Analysis of subcellular localization of Cap protein and its variants demonstrated that NLS mediated Cap protein nuclear export as well as nuclear import, and a phosphorylation site (S17) was identified by liquid chromatography-tandem mass spectrometry (LC-MS/MS) in the NLS domain to regulate Cap protein nuclear export. Phosphorylation of NLS regulating the PCV2 Cap protein nuclear export was also demonstrated in PK15 cells by fluorescence microscopy. Moreover, the influence of Rep and Rep' protein on Cap protein subcellular localization was investigated in PK15 cells. Phosphorylation of NLS regulating Cap protein nuclear export provides more detailed knowledge of the PCV2 viral life cycle. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Plant Roots: The Hidden Half. Chapter 16; Calcium and Gravitropism; Revised

    NASA Technical Reports Server (NTRS)

    Poovaiah, B. W.; Reedy, A. S. N.

    1995-01-01

    Environmental signals such as light and gravity control many aspects of plant growth and development. In higher plants, the directional growth of an organ in response to stimuli such as gravity and light is considered a tropic movement. Such movement could be either positive or negative with respect to a specific stimulus. In general, stems show a positive response to light and negative response to gravity. In contrast, most roots show a positive response to gravity and a negative response to light. Investigations on plant tropism date back a century when Darwin studied the phototropic responses of maize seedlings (Darwin). Although the precise mechanism of signal perception and transduction in roots is not understood, Darwin recognized over 100 years ago that the root cap is the probable site of signal perception. He discovered that the removal of the root cap eliminates the ability of roots to respond to gravity. Other investigators have since confirmed Darwin's observation (Konings; Evans et al.). In recent years, especially with the advent of the U.S. Space Program, there has been a renewed interest in understanding how plants respond to extracellular signals such as gravity (Halstead and Dutcher). Studies on the mechanisms involved in perception and transduction of gravity signal by roots would ultimately help us to better understand gravitropism and also to grow plants under microgravity conditions as in space. In this chapter, we restrict ourselves to the role of calcium in transduction of the gravity signal. In doing so, emphasis is given to the role of calcium-modulated proteins and their role in signal transduction in gravitropism. Detailed reviews on various other aspects of gravitropism (Scott, Torrey, Wilkins, Fim and Digby, Feldman, Pickard, Moore and Evans, Halstead and Dutcher, Poovaiah et al.) and on the role of calcium as a messenger in signal transduction in general have been published (Helper and Wayne, Poovaiah and Reddy, Roberts and Hartnon, Bowler and Chua, Gilroy and Trewavas). Plant roots have been widely used to study the transduction of gravity and light signals (Poovaiah et al., Roux and Serlin). Most roots show positive gravitropic response in either dark or light. However, roots of some varieties of plants (e.g., Zea mays L., cv Merit, and Zea rwvs L., cv Golden Cross Bantam 70) show positive gravitropic response only in light (Feldman, Miyazaki et al.). Investigations from various laboratories indicate that calcium acts as a messenger in transducing gravity and light signals in plant roots(Pickard, Evans et al., Pooviah et al.).

  13. COLLAPSED ABNORMAL POLLEN1 Gene Encoding the Arabinokinase-Like Protein Is Involved in Pollen Development in Rice1[C][W][OA

    PubMed Central

    Ueda, Kenji; Yoshimura, Fumiaki; Miyao, Akio; Hirochika, Hirohiko; Nonomura, Ken-Ichi; Wabiko, Hiroetsu

    2013-01-01

    We isolated a pollen-defective mutant, collapsed abnormal pollen1 (cap1), from Tos17 insertional mutant lines of rice (Oryza sativa). The cap1 heterozygous plant produced equal numbers of normal and collapsed abnormal grains. The abnormal pollen grains lacked almost all cytoplasmic materials, nuclei, and intine cell walls and did not germinate. Genetic analysis of crosses revealed that the cap1 mutation did not affect female reproduction or vegetative growth. CAP1 encodes a protein consisting of 996 amino acids that showed high similarity to Arabidopsis (Arabidopsis thaliana) l-arabinokinase, which catalyzes the conversion of l-arabinose to l-arabinose 1-phosphate. A wild-type genomic DNA segment containing CAP1 restored mutants to normal pollen grains. During rice pollen development, CAP1 was preferentially expressed in anthers at the bicellular pollen stage, and the effects of the cap1 mutation were mainly detected at this stage. Based on the metabolic pathway of l-arabinose, cap1 pollen phenotype may have been caused by toxic accumulation of l-arabinose or by inhibition of cell wall metabolism due to the lack of UDP-l-arabinose derived from l-arabinose 1-phosphate. The expression pattern of CAP1 was very similar to that of another Arabidopsis homolog that showed 71% amino acid identity with CAP1. Our results suggested that CAP1 and related genes are critical for pollen development in both monocotyledonous and dicotyledonous plants. PMID:23629836

  14. Munc13 homology domain-1 in CAPS/UNC31 mediates SNARE binding required for priming vesicle exocytosis.

    PubMed

    Khodthong, Chuenchanok; Kabachinski, Greg; James, Declan J; Martin, Thomas F J

    2011-08-03

    Neuropeptide and peptide hormone secretion from neural and endocrine cells occurs by Ca(2+)-triggered dense-core vesicle exocytosis. The membrane fusion machinery consisting of vesicle and plasma membrane SNARE proteins needs to be assembled for Ca(2+)-triggered vesicle exocytosis. The related Munc13 and CAPS/UNC31 proteins that prime vesicle exocytosis are proposed to promote SNARE complex assembly. CAPS binds SNARE proteins and stimulates SNARE complex formation on liposomes, but the relevance of SNARE binding to CAPS function in cells had not been determined. Here we identify a core SNARE-binding domain in CAPS as corresponding to Munc13 homology domain-1 (MHD1). CAPS lacking a single helix in MHD1 was unable to bind SNARE proteins or to support the Ca(2+)-triggered exocytosis of either docked or newly arrived dense-core vesicles. The results show that MHD1 is a SNARE-binding domain and that SNARE protein binding is essential for CAPS function in dense-core vesicle exocytosis. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. Ruthenium (Ru) peeling and predicting robustness of the capping layer using finite element method (FEM) modeling

    NASA Astrophysics Data System (ADS)

    Jang, Il-Yong; John, Arun; Goodwin, Frank; Lee, Su-Young; Kim, Byung-Gook; Kim, Seong-Sue; Jeon, Chan-Uk; Kim, Jae Hyung; Jang, Yong Hoon

    2014-07-01

    Ruthenium (Ru) film used as capping layer in extreme ultraviolet (EUV) mask peeled off after annealing and in-situ UV (IUV) cleaning. We investigated Ru peeling and found out that the mechanical stress caused by the formation of Si oxide due to the penetration of oxygen atoms from ambient or cleaning media to top-Si of ML is the root cause for the problem. To support our experimental results, we developed a numerical model of finite element method (FEM) using commercial software (ABAQUS™) to calculate the stress and displacement forced on the capping layer. By using this model, we could observe that the displacement agrees well with the actual results measured from the transmission electron microscopy (TEM) image. Using the ion beam deposition (IBD) tool at SEMATECH, we developed four new types of alternative capping materials (RuA, RuB, B4C, B4C-buffered Ru). The durability of each new alternative capping layer observed by experiment was better than that of conventional Ru. The stress and displacement calculated from each new alternative capping layer, using modeling, also agreed well with the experimental results. A new EUV mask structure is proposed, inserting a layer of B4C (B4C-buffered Ru) at the interface between the capping layer (Ru) and the top-Si layer. The modeling results showed that the maximum displacement and bending stress observed from the B4C-buffered Ru are significantly lower than that of single capping layer cases. The durability investigated from the experiment also showed that the B4C-buffered structure is at least 3X stronger than that of conventional Ru.

  16. Reconfiguring the AR-TIF2 Protein–Protein Interaction HCS Assay in Prostate Cancer Cells and Characterizing the Hits from a LOPAC Screen

    PubMed Central

    Fancher, Ashley T.; Hua, Yun; Camarco, Daniel P.; Close, David A.; Strock, Christopher J.

    2016-01-01

    Abstract The continued activation of androgen receptor (AR) transcription and elevated expression of AR and transcriptional intermediary factor 2 (TIF2) coactivator observed in prostate cancer (CaP) recurrence and the development of castration-resistant CaP (CRPC) support a screening strategy for small-molecule inhibitors of AR-TIF2 protein–protein interactions (PPIs) to find new drug candidates. Small molecules can elicit tissue selective effects, because the cells of distinct tissues express different levels and cohorts of coregulatory proteins. We reconfigured the AR-TIF2 PPI biosensor (PPIB) assay in the PC-3 CaP cell line to determine whether AR modulators and hits from an AR-TIF2 PPIB screen conducted in U-2 OS cells would behave differently in the CaP cell background. Although we did not observe any significant differences in the compound responses between the assay performed in osteosarcoma and CaP cells, the U-2 OS AR-TIF2 PPIB assay would be more amenable to screening, because both the virus and cell culture demands are lower. We implemented a testing paradigm of counter-screens and secondary hit characterization assays that allowed us to identify and deprioritize hits that inhibited/disrupted AR-TIF2 PPIs and AR transcriptional activation (AR-TA) through antagonism of AR ligand binding or by non-specifically blocking nuclear receptor trafficking. Since AR-TIF2 PPI inhibitor/disruptor molecules act distally to AR ligand binding, they have the potential to modulate AR-TA in a cell-specific manner that is distinct from existing anti-androgen drugs, and to overcome the development of resistance to AR antagonism. We anticipate that the application of this testing paradigm to characterize the hits from an AR-TIF2 PPI high-content screening campaign will enable us to prioritize the AR-TIF2 PPI inhibitor/disruptor leads that have potential to be developed into novel therapeutics for CaP and CRPC. PMID:27606620

  17. Growth Chambers on the International Space Station for Large Plants

    NASA Technical Reports Server (NTRS)

    Massa, Gioia D.; Wheeler, Raymond M.; Morrow, Robert C.; Levine, Howard G.

    2016-01-01

    The International Space Station (ISS) now has platforms for conducting research on horticultural plant species under LED (Light Emitting Diodes) lighting, and those capabilities continue to expand. The Veggie vegetable production system was deployed to the ISS as an applied research platform for food production in space. Veggie is capable of growing a wide array of horticultural crops. It was designed for low power usage, low launch mass and stowage volume, and minimal crew time requirements. The Veggie flight hardware consists of a light cap containing red (630 nanometers), blue, (455 nanometers) and green (530 nanometers) LEDs. Interfacing with the light cap is an extendable bellowsbaseplate for enclosing the plant canopy. A second large plant growth chamber, the Advanced Plant Habitat (APH), is will fly to the ISS in 2017. APH will be a fully controllable environment for high-quality plant physiological research. APH will control light (quality, level, and timing), temperature, CO2, relative humidity, and irrigation, while scrubbing any cabin or plant-derived ethylene and other volatile organic compounds. Additional capabilities include sensing of leaf temperature and root zone moisture, root zone temperature, and oxygen concentration. The light cap will have red (630 nm), blue (450 nm), green (525 nm), far red (730 nm) and broad spectrum white LEDs (4100K). There will be several internal cameras (visible and IR) to monitor and record plant growth and operations. Veggie and APH are available for research proposals.

  18. Crystallographic Texture and Elemental Composition Mapped in Bovine Root Dentin at the 200 nm Level

    PubMed Central

    Deymier-Black, A. C.; Veis, A.; Cai, Z.; Stock, S. R.

    2015-01-01

    Summary The relationship between the mineralization of peritubular dentin (PTD) and intertubular dentin (ITD) is not well understood. Tubules are quite small, diameter ~2 μm, and this makes the near-tubule region of dentin difficult to study. Here, advanced characterization techniques are applied in a novel way to examine what organic or nanostructural signatures may indicate the end of ITD or the beginning of PTD mineralization. X-ray fluorescence intensity (Ca, P, and Zn) and X-ray diffraction patterns from carbonated apatite (cAp) were mapped around dentintubules at resolutions ten times smaller than the feature size (200 nm pixels), representing a 36% increase in resolution over earlier work. In the near tubule volumes of near-pulp, root dentin, Zn intensity was higher than in ITD remote from the tubules. This increase in Zn2+, as determined by X-ray absorption near edge structure analysis, may indicate the presence of metalloenzymes or transcription factors important to ITD or PTD mineralization. The profiles of the cAp 00.2 X-ray diffraction rings were fitted with a pseudo-Voigt function, and the spatial and azimuthal distribution of these rings’ integrated intensities indicated that the cAp platelets were arranged with their c-axes aligned tangential to the edge of the tubule lumen. This texture was continuous throughout the dentin indicating a lack of structural difference between in the Zn rich near-tubular region and the remote ITD. PMID:23630059

  19. Valve Cap For An Electric Storage Cell

    DOEpatents

    Verhoog, Roelof; Genton, Alain

    2000-04-18

    The valve cap for an electric storage cell includes a central annular valve seat (23) and a membrane (5) fixed by its peripheral edge and urged against the seat by a piston (10) bearing thereagainst by means of a spring (12), the rear end of said spring (12) bearing on the endwall (8) of a chamber (20) formed in the cap and containing the piston (10) and the spring. A vent (19) puts the chamber (20) into communication with the atmosphere. A central orifice (26, 28) through the piston (10) and the membrane (5), enables gas from within the cell to escape via the top vent (19) when the valve opens.

  20. Effects of cold atmospheric plasma on mucosal tissue culture

    NASA Astrophysics Data System (ADS)

    Welz, Christian; Becker, Sven; Li, Yang-Fang; Shimizu, Tetsuji; Jeon, Jin; Schwenk-Zieger, Sabina; Thomas, Hubertus M.; Isbary, Georg; Morfill, Gregor E.; Harréus, Ulrich; Zimmermann, Julia L.

    2013-01-01

    Thermal plasmas have been commonly used in medical applications such as plasma ablation and blood coagulation. Newer developments show that plasmas can be generated with ion temperatures close to room temperature: these non-thermal or so-called cold atmospheric plasmas (CAPs) therefore open up a wide range of further biomedical applications. Based on the understanding of the bactericidal, virucidal and fungicidal properties of CAPs, information about the effects of CAP on mucosal cells and tissue is still lacking. Therefore this study focuses on the interaction of CAP with healthy head and neck mucosal cells on a molecular level. To analyse this interaction in detail, fresh tissue samples from healthy nasal and pharyngeal mucosa were harvested during surgery, assembled to a three-dimensional tissue culture model (mini organ cultures) and treated with CAP for different treatment times. Effects on the viability, necrosis induction and mutagenic activity were evaluated with the trypan blue exclusion test, Annexin-V/PI staining and alkaline microgel electrophoresis (comet assay). Trypan blue exclusion test revealed that the CAP treatment significantly decreases the cell viability for all tested treatment times (5, 10, 30, 60 and 120 s p < 0.05), but only a treatment time of 120 s showed a cytotoxic effect as the viability dropped below 90%. Annexin-V/PI staining revealed a significant increase in necrosis in CAP treated pharyngeal tissue cultures for treatment times of 60 and 120 s (p < 0.05). For nasal tissue this effect was already detected for a 30 s treatment (p < 0.05). Comet assay analysis showed no mutagenic effects after exposure to CAP.

  1. Cell Penetrating Peptides and Cationic Antibacterial Peptides

    PubMed Central

    Rodriguez Plaza, Jonathan G.; Morales-Nava, Rosmarbel; Diener, Christian; Schreiber, Gabriele; Gonzalez, Zyanya D.; Lara Ortiz, Maria Teresa; Ortega Blake, Ivan; Pantoja, Omar; Volkmer, Rudolf; Klipp, Edda; Herrmann, Andreas; Del Rio, Gabriel

    2014-01-01

    Cell penetrating peptides (CPP) and cationic antibacterial peptides (CAP) have similar physicochemical properties and yet it is not understood how such similar peptides display different activities. To address this question, we used Iztli peptide 1 (IP-1) because it has both CPP and CAP activities. Combining experimental and computational modeling of the internalization of IP-1, we show it is not internalized by receptor-mediated endocytosis, yet it permeates into many different cell types, including fungi and human cells. We also show that IP-1 makes pores in the presence of high electrical potential at the membrane, such as those found in bacteria and mitochondria. These results provide the basis to understand the functional redundancy of CPPs and CAPs. PMID:24706763

  2. Oxidative stress in patients with endodontic pathologies

    PubMed Central

    Vengerfeldt, Veiko; Mändar, Reet; Saag, Mare; Piir, Anneli; Kullisaar, Tiiu

    2017-01-01

    Background Apical periodontitis (AP) is an inflammatory disease affecting periradicular tissues. It is a widespread condition but its etiopathogenetic mechanisms have not been completely elucidated and the current treatment options are not always successful. Purpose To compare oxidative stress (OxS) levels in the saliva and the endodontium (root canal [RC] contents) in patients with different endodontic pathologies and in endodontically healthy subjects. Patients and methods The study group of this comparison study included 22 subjects with primary chronic apical periodontitis (pCAP), 26 with posttreatment or secondary chronic apical periodontitis (sCAP), eight with acute periapical abscess, 13 with irreversible pulpitis, and 17 healthy controls. Resting saliva samples were collected before clinical treatment. Pulp samples (remnants of the pulp, tooth tissue, and/or previous root filling material) were collected under strict aseptic conditions using the Hedström file. The samples were frozen to −80°C until analysis. OxS markers (myeloperoxidase [MPO], oxidative stress index [OSI], 8-isoprostanes [8-EPI]) were detected in the saliva and the endodontium. Results The highest MPO and 8-EPI levels were seen in pCAP and pulpitis, while the highest levels of OSI were seen in pCAP and abscess patients, as well as the saliva of sCAP patients. Controls showed the lowest OxS levels in both RC contents and saliva. Significant positive correlations between OxS markers, periapical index, and pain were revealed. Patients with pain had significantly higher OxS levels in both the endodontium (MPO median 27.9 vs 72.6 ng/mg protein, p=0.004; OSI 6.0 vs 10.4, p<0.001; 8-EPI 50.0 vs 75.0 pg/mL, p<0.001) and saliva (MPO 34.2 vs 117.5 ng/mg protein, p<0.001; 8-EPI 50.0 vs 112.8 pg/mL, p<0.001) compared to pain-free subjects. Conclusion OxS is an important pathomechanism in endodontic pathologies that is evident at both the local (RC contents) and systemic (saliva) level. OxS is significantly associated with dental pain and bone destruction. PMID:28894386

  3. Oxidative stress in patients with endodontic pathologies.

    PubMed

    Vengerfeldt, Veiko; Mändar, Reet; Saag, Mare; Piir, Anneli; Kullisaar, Tiiu

    2017-01-01

    Apical periodontitis (AP) is an inflammatory disease affecting periradicular tissues. It is a widespread condition but its etiopathogenetic mechanisms have not been completely elucidated and the current treatment options are not always successful. To compare oxidative stress (OxS) levels in the saliva and the endodontium (root canal [RC] contents) in patients with different endodontic pathologies and in endodontically healthy subjects. The study group of this comparison study included 22 subjects with primary chronic apical periodontitis (pCAP), 26 with posttreatment or secondary chronic apical periodontitis (sCAP), eight with acute periapical abscess, 13 with irreversible pulpitis, and 17 healthy controls. Resting saliva samples were collected before clinical treatment. Pulp samples (remnants of the pulp, tooth tissue, and/or previous root filling material) were collected under strict aseptic conditions using the Hedström file. The samples were frozen to -80°C until analysis. OxS markers (myeloperoxidase [MPO], oxidative stress index [OSI], 8-isoprostanes [8-EPI]) were detected in the saliva and the endodontium. The highest MPO and 8-EPI levels were seen in pCAP and pulpitis, while the highest levels of OSI were seen in pCAP and abscess patients, as well as the saliva of sCAP patients. Controls showed the lowest OxS levels in both RC contents and saliva. Significant positive correlations between OxS markers, periapical index, and pain were revealed. Patients with pain had significantly higher OxS levels in both the endodontium (MPO median 27.9 vs 72.6 ng/mg protein, p =0.004; OSI 6.0 vs 10.4, p <0.001; 8-EPI 50.0 vs 75.0 pg/mL, p <0.001) and saliva (MPO 34.2 vs 117.5 ng/mg protein, p <0.001; 8-EPI 50.0 vs 112.8 pg/mL, p <0.001) compared to pain-free subjects. OxS is an important pathomechanism in endodontic pathologies that is evident at both the local (RC contents) and systemic (saliva) level. OxS is significantly associated with dental pain and bone destruction.

  4. Loss of 4E-BP1 function induces EMT and promotes cancer cell migration and invasion via cap-dependent translational activation of snail

    PubMed Central

    She, Qing-Bai

    2014-01-01

    The cap-dependent translation is frequently deregulated in a variety of cancers associated with tumor progression. However, the molecular basis of the translation activation for metastatic progression of cancer remains largely elusive. Here, we demonstrate that activation of cap-dependent translation by silencing the translational repressor 4E-BP1 causes cancer epithelial cells to undergo epithelial-mesenchymal transition (EMT), which is associated with selective upregulation of the EMT inducer Snail followed by repression of E-cadherin expression and promotion of cell migratory and invasive capabilities as well as metastasis. Conversely, inhibition of cap-dependent translation by a dominant active mutant 4E-BP1 effectively downregulates Snail expression and suppresses cell migration and invasion. Furthermore, dephosphorylation of 4E-BP1 by mTORC1 inhibition or directly targeting the translation initiation also profoundly attenuates Snail expression and cell motility, whereas knockdown of 4E-BP1 or overexpression of Snail significantly rescues the inhibitory effects. Importantly, 4E-BP1-regulated Snail expression is not associated with its changes in the level of transcription or protein stability. Together, these findings indicate a novel role of 4E-BP1 in the regulation of EMT and cell motility through translational control of Snail expression and activity, and suggest that targeting cap-dependent translation may provide a promising approach for blocking Snail-mediated metastatic potential of cancer. PMID:24970798

  5. Differentiation to adipocytes in accompanied by an increase in the amounts of Gi- and Go-proteins in 3T3-L1 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watkins, D.C.; Northup, J.K.; Malbon, C.C.

    Treatment of cultures of 3T3-L1 cells with methylisobutyl-xanthine and dexamethasone has been shown to result in accumulation of lipid and conversion to the morphology of adipocytes in more than 90% of the cells. The status of the stimulatory (Gs), inhibitory (Gi) and Go-proteins during the course of 3T3-L1 differentiation was examined. The amount of alpha subunit of Gs (..cap alpha..Gs), assayed by radiolabeling in the presence of cholera toxin and (/sup 32/P)NAD/sup +/, increased upon differentiation as previously described by others. The amounts of ..cap alpha..Gi and ..cap alpha..Go assayed by radiolabeling in the presence of pertussis toxin and (/supmore » 32/P)NAD/sup +/ increased 3-fold upon differentiation. Immunoblots of cell membranes subjected to gel electrophoresis in sodium dodecyl sulfate were probed with two rabbit antisera raised against bovine brain ..cap alpha..Go and with one raised against the..beta..-subunit of the bovine rod-outer-segment G-protein, referred to as transducin. The immunoblotting data confirm the increase upon differentiation of ..cap alpha..Go and also demonstrate an increase in the amount of the ..beta..-subunit. Thus differentiation of 3T3-L1 cells is accompanied by dramatic changes in the complexion of G-proteins in the membranes.« less

  6. Determination of the optimum conditions for lung cancer cells treatment using cold atmospheric plasma

    NASA Astrophysics Data System (ADS)

    Akhlaghi, Morteza; Rajaei, Hajar; Mashayekh, Amir Shahriar; Shafiae, Mojtaba; Mahdikia, Hamed; Khani, Mohammadreza; Hassan, Zuhair Mohammad; Shokri, Babak

    2016-10-01

    Cold atmospheric plasmas (CAPs) can affect live cells and organisms due to the production of different reactive species. In this paper, the effects of various parameters of the CAP such as the treatment time, gas mixture, gas flow rate, applied voltage, and distance from the nozzle on the LL/2 lung cancer cell line have been studied. The probable effect of UV radiation has also been investigated using an MgF2 filter. Besides the cancerous cells, the 3T3 fibroblast cell line as a normal cell has been treated with the CAP. The Methylthiazol Tetrazolium assay showed that all parameters except the gas flow rate could impress effectively on the cancer cell viability. The cell proliferation seemed to be stopped after plasma treatment. The flow cytometry assay revealed that apoptosis and necrosis were appreciable. It was also found that treating time up to 2 min will not exert any effect on the normal cells.

  7. Mechanical forces in plant growth and development

    NASA Technical Reports Server (NTRS)

    Fisher, D. D.; Cyr, R. J.

    2000-01-01

    Plant cells perceive forces that arise from the environment and from the biophysics of plant growth. These forces provide meaningful cues that can affect the development of the plant. Seedlings of Arabidopsis thaliana were used to examine the cytoplasmic tensile character of cells that have been implicated in the gravitropic response. Laser-trapping technology revealed that the starch-containing statoliths of the central columella cells in root caps are held loosely within the cytoplasm. In contrast, the peripheral cells have starch granules that are relatively resistant to movement. The role of the actin cytoskeleton in affecting the tensile character of these cells is discussed. To explore the role that biophysical forces might play in generating developmental cues, we have developed an experimental model system in which protoplasts, embedded in a synthetic agarose matrix, are subjected to stretching or compression. We have found that protoplasts subjected to these forces from five minutes to two hours will subsequently elongate either at right angles or parallel to the tensive or compressive force vector. Moreover, the cortical microtubules are found to be organized either at right angles or parallel to the tensive or compressive force vector. We discuss these results in terms of an interplay of information between the extracellular matrix and the underlying cytoskeleton.

  8. Mesenchymal stem cells promote hard-tissue repair after direct pulp capping.

    PubMed

    Obeid, Maram; Saber, Shehab El Din Mohamed; Ismael, Alaa El Din; Hassanien, Ehab

    2013-05-01

    The aim of this study was to investigate the potential of autologous mesenchymal bone marrow stem cells (BMSCs) to promote hard-tissue formation after direct pulp capping procedures. Bone marrow was aspirated from the iliac crest of healthy dogs of nonspecific race. Mononuclear cells were obtained using the Histopaque (Sigma-Aldrich, St Louis, MO) protocol and cultured for 21 days. Direct pulp capping procedures were performed in posterior teeth, and then mineral trioxide aggregate (MTA), hydroxyapatite/tricalcium phosphate, or BMSCs were used as direct pulp capping agents. After 3 months, animals were sacrificed, and jaw segments were processed for radiographic examination using cone-beam computed tomography scanning and histologic examination to assess the formation of a hard-tissue barrier according to a scoring system. The longitudinal and cross-sectional radiophotographs and histologic sections confirmed the formation of an evident calcific barrier after direct pulp capping with MTA and BMSCs. Statistical analysis of the scores given for radiographic and histologic calcific bridge formation showed that both MTA and BMSCs had a comparable tendency to produce a hard-tissue barrier that was significantly higher than hydroxyapatite tricalcium phosphate (P < .05). Autologous mesenchymal BMSCs were able to promote hard-tissue formation after direct pulp capping procedures. Copyright © 2013 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  9. Induction of cap-independent BiP (hsp-3) and Bcl-2 (ced-9) translation in response to eIF4G (IFG-1) depletion in C. elegans

    PubMed Central

    Morrison, J Kaitlin; Friday, Andrew J; Henderson, Melissa A; Hao, Enhui; Keiper, Brett D

    2014-01-01

    During apoptosis, activated caspases cleave the translation initiation factor eIF4G. This cleavage disrupts cap-dependent mRNA translation initiation within the cell. However, a specific subset of mRNAs can still be recruited for protein synthesis in a cap-independent manner by the residual initiation machinery. Many of these mRNAs, including cell death related mRNAs, contain internal ribosome entry sites (IRESes) that promote their enhanced translation during apoptosis. Still other mRNAs have little dependence on the cap recognition mechanism. The expression of the encoded proteins, both anti- and pro-apoptotic, allows for an initial period of attempted cell survival, then commitment to cell death when damage is extensive. In this study we address the translational regulation of the stress and apoptosis-related mRNAs in C. elegans: BiP (hsp-3) (hsp-4), Hif-1 (hif-1), p53 (cep-1), Bcl-2 (ced-9) and Apaf-1 (ced-4). Altered translational efficiency of these messages was observed upon depletion of cap-dependent translation and induction of apoptosis within the C. elegans gonad. Our findings suggest a physiological link between the cap-independent mechanism and the enhanced translation of hsp-3 and ced-9. This increase in the efficiency of translation may be integral to the stress response during the induction of physiological apoptosis. PMID:26779406

  10. Model of turnover kinetics in the lamellipodium: implications of slow- and fast- diffusing capping protein and Arp2/3 complex

    NASA Astrophysics Data System (ADS)

    McMillen, Laura M.; Vavylonis, Dimitrios

    2016-12-01

    Cell protrusion through polymerization of actin filaments at the leading edge of motile cells may be influenced by spatial gradients of diffuse actin and regulators. Here we study the distribution of two of the most important regulators, capping protein and Arp2/3 complex, which regulate actin polymerization in the lamellipodium through capping and nucleation of free barbed ends. We modeled their kinetics using data from prior single molecule microscopy experiments on XTC cells. These experiments have provided evidence for a broad distribution of diffusion coefficients of both capping protein and Arp2/3 complex. The slowly diffusing proteins appear as extended ‘clouds’ while proteins bound to the actin filament network appear as speckles that undergo retrograde flow. Speckle appearance and disappearance events correspond to assembly and dissociation from the actin filament network and speckle lifetimes correspond to the dissociation rate. The slowly diffusing capping protein could represent severed capped actin filament fragments or membrane-bound capping protein. Prior evidence suggests that slowly diffusing Apr2/3 complex associates with the membrane. We use the measured rates and estimates of diffusion coefficients of capping protein and Arp2/3 complex in a Monte Carlo simulation that includes particles in association with a filament network and diffuse in the cytoplasm. We consider two separate pools of diffuse proteins, representing fast and slowly diffusing species. We find a steady state with concentration gradients involving a balance of diffusive flow of fast and slow species with retrograde flow. We show that simulations of FRAP are consistent with prior experiments performed on different cell types. We provide estimates for the ratio of bound to diffuse complexes and calculate conditions where Arp2/3 complex recycling by diffusion may become limiting. We discuss the implications of slowly diffusing populations and suggest experiments to distinguish among mechanisms that influence long range transport.

  11. [Comparison of expression of transforming growth factor-β1 in rat dental pulp during direct pulp capping with 2 capping agents].

    PubMed

    Zhang, Xiao-fang; Yao, Ya-peng; Kang, Hong-ying; Dong, Pei

    2014-04-01

    To examine and compare the expression of transforming growth factor-β1(TGF-β1) in rat dental pulp after direct pulp capping with calcium hydroxide (CH) and mineral trioxide aggregate (MTA). The model of direct dental pulp capping after first molars was established in 28 female Wistar rats with CH and MTA. The rats were sacrificed 1, 3, 5, 7, 14,21 and 28 days after direct pulp capping. TGF-β1 expression in pulp tissues were measured with immunohistochemical staining. The data was analyzed by Dunnett t test and paired t test with SPSS 13.0 software package. The results showed that no TGF-β1 expression was detected in the control group. After direct pulp capping with MTA, TGF-β1 expression gradually increased and reached peak expression on 5 day. TGF-β1 expression gradually decreased afterwards and reached normal on 21 day after direct pulp. TGF-β1 was mainly expressed in neutrophils, odontoblasts cells, vascular endothelial cells and fibroblasts. The expression of TGF-β1 was significantly different between 2 capping agents 1, 3, 5, 7, 14 days after direct pulp capping (P<0.05). The results suggest that TGF-β1 expression increases at first and then decreases after direct pulp capping. The type of capping agents has an impact on the expression of TGF-β1 after direct pulp capping. MTA enhances more TGFβ-1 expression than CH 1, 3, 5, 7 and 14 days after direct pulp capping. Supported by Science and Technology Plan Project of Liaoning Province (2009225001-2).

  12. Cell water balance of white button mushrooms (Agaricus bisporus) during its post-harvest lifetime studied by quantitative magnetic resonance imaging.

    PubMed

    Donker, H C; Van As, H

    1999-04-19

    A combination of quantitative water density and T2 MRI and changes therein observed after infiltration with 'invisible' Gd-DTPA solution was used to study cell water balances, cell water potentials and cell integrity. This method was applied to reveal the evolution and mechanism of redistribution of water in harvested mushrooms. Even when mushrooms did not lose water during the storage period, a redistribution of water was observed from stipe to cap and gills. When the storage condition resulted in a net loss of water, the stipe lost more water than the cap. The water density in the gill increased, probably due to development of spores. Deterioration effects (i.e. leakage of cells, decrease in osmotic water potential) were found in the outer stipe. They were not found in the cap, even at prolonged storage at 293 K and R.H.=70%. The changes in osmotic potential were partly accounted for by changes in the mannitol concentration. Changes in membrane permeability were also indicated. Cells in the cap had a constant low membrane (water) permeability. They developed a decreasing osmotic potential (more negative), whereas the osmotic potential in the outer stipe increased, together with the permeability of cells.

  13. Eukaryotic Translation Initiation Factor 4E Availability Controls the Switch between Cap-Dependent and Internal Ribosomal Entry Site-Mediated Translation†

    PubMed Central

    Svitkin, Yuri V.; Herdy, Barbara; Costa-Mattioli, Mauro; Gingras, Anne-Claude; Raught, Brian; Sonenberg, Nahum

    2005-01-01

    Translation of m7G-capped cellular mRNAs is initiated by recruitment of ribosomes to the 5′ end of mRNAs via eukaryotic translation initiation factor 4F (eIF4F), a heterotrimeric complex comprised of a cap-binding subunit (eIF4E) and an RNA helicase (eIF4A) bridged by a scaffolding molecule (eIF4G). Internal translation initiation bypasses the requirement for the cap and eIF4E and occurs on viral and cellular mRNAs containing internal ribosomal entry sites (IRESs). Here we demonstrate that eIF4E availability plays a critical role in the switch from cap-dependent to IRES-mediated translation in picornavirus-infected cells. When both capped and IRES-containing mRNAs are present (as in intact cells or in vitro translation extracts), a decrease in the amount of eIF4E associated with the eIF4F complex elicits a striking increase in IRES-mediated viral mRNA translation. This effect is not observed in translation extracts depleted of capped mRNAs, indicating that capped mRNAs compete with IRES-containing mRNAs for translation. These data explain numerous reported observations where viral mRNAs are preferentially translated during infection. PMID:16287867

  14. Eukaryotic translation initiation factor 4E availability controls the switch between cap-dependent and internal ribosomal entry site-mediated translation.

    PubMed

    Svitkin, Yuri V; Herdy, Barbara; Costa-Mattioli, Mauro; Gingras, Anne-Claude; Raught, Brian; Sonenberg, Nahum

    2005-12-01

    Translation of m7G-capped cellular mRNAs is initiated by recruitment of ribosomes to the 5' end of mRNAs via eukaryotic translation initiation factor 4F (eIF4F), a heterotrimeric complex comprised of a cap-binding subunit (eIF4E) and an RNA helicase (eIF4A) bridged by a scaffolding molecule (eIF4G). Internal translation initiation bypasses the requirement for the cap and eIF4E and occurs on viral and cellular mRNAs containing internal ribosomal entry sites (IRESs). Here we demonstrate that eIF4E availability plays a critical role in the switch from cap-dependent to IRES-mediated translation in picornavirus-infected cells. When both capped and IRES-containing mRNAs are present (as in intact cells or in vitro translation extracts), a decrease in the amount of eIF4E associated with the eIF4F complex elicits a striking increase in IRES-mediated viral mRNA translation. This effect is not observed in translation extracts depleted of capped mRNAs, indicating that capped mRNAs compete with IRES-containing mRNAs for translation. These data explain numerous reported observations where viral mRNAs are preferentially translated during infection.

  15. Tropomodulins: pointed-end capping proteins that regulate actin filament architecture in diverse cell types

    PubMed Central

    Yamashiro, Sawako; Gokhin, David S.; Kimura, Sumiko; Nowak, Roberta B.; Fowler, Velia M.

    2012-01-01

    Tropomodulins are a family of four proteins (Tmods 1–4) that cap the pointed ends of actin filaments in actin cytoskeletal structures in a developmentally regulated and tissue-specific manner. Unique among capping proteins, Tmods also bind tropomyosins (TMs), which greatly enhance the actin filament pointed-end capping activity of Tmods. Tmods are defined by a tropomyosin (TM)-regulated/Pointed-End Actin Capping (TM-Cap) domain in their unstructured N-terminal portion, followed by a compact, folded Leucine-Rich Repeat/Pointed-End Actin Capping (LRR-Cap) domain. By inhibiting actin monomer association and dissociation from pointed ends, Tmods regulate regulate actin dynamics and turnover, stabilizing actin filament lengths and cytoskeletal architecture. In this review, we summarize the genes, structural features, molecular and biochemical properties, actin regulatory mechanisms, expression patterns, and cell and tissue functions of Tmods. By understanding Tmods’ functions in the context of their molecular structure, actin regulation, binding partners, and related variants (leiomodins 1–3), we can draw broad conclusions that can explain the diverse morphological and functional phenotypes that arise from Tmod perturbation experiments in vitro and in vivo. Tmod-based stabilization and organization of intracellular actin filament networks provide key insights into how the emergent properties of the actin cytoskeleton drive tissue morphogenesis and physiology. PMID:22488942

  16. Increased symplasmic permeability in barley root epidermal cells correlates with defects in root hair development

    PubMed Central

    Marzec, M; Muszynska, A; Melzer, M; Sas-Nowosielska, H; Kurczynska, E U; Wick, S

    2014-01-01

    It is well known that the process of plant cell differentiation depends on the symplasmic isolation of cells. Before starting the differentiation programme, the individual cell or group of cells should restrict symplasmic communication with neighbouring cells. We tested the symplasmic communication between epidermal cells in the different root zones of parental barley plants Hordeum vulgare L., cv. ‘Karat’ with normal root hair development, and two root hairless mutants (rhl1.a and rhl1.b). The results clearly show that symplasmic communication was limited during root hair differentiation in the parental variety, whereas in both root hairless mutants epidermal cells were still symplasmically connected in the corresponding root zone. This paper is the first report on the role of symplasmic isolation in barley root cell differentiation, and additionally shows that a disturbance in the restriction of symplasmic communication is present in root hairless mutants. PMID:23927737

  17. Tankyrase 2 Poly(ADP-Ribose) Polymerase Domain-Deleted Mice Exhibit Growth Defects but Have Normal Telomere Length and Capping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsiao, Susan J; Poitras, Marc; Cook, Brandoch

    Regulation of telomere length maintenance and capping are a critical cell functions in both normal and tumor cells. Tankyrase 2 (Tnks2) is a poly(ADP-ribose) polymerase (PARP) that has been shown to modify itself and TRF1, a telomere-binding protein. We show here by overexpression studies that tankyrase 2, like its closely related homolog tankyrase 1, can function as a positive regulator of telomere length in human cells, dependent on its catalytic PARP activity. To study the role of Tnks2 in vivo, we generated mice with the Tnks2 PARP domain deleted. These mice are viable and fertile but display a growth retardationmore » phenotype. Telomere analysis by quantitative fluorescence in situ hybridization (FISH), flow-FISH, and restriction fragment analysis showed no change in telomere length or telomere capping in these mice. To determine the requirement foTnks2 in long-term maintenance of telomeres, we generated embryonic stem cells with the Tnks2 PARP domain deleted and observed no change, even upon prolonged growth, in telomere length or telomere capping. Together these results suggest that Tnkjs2 has a role in normal growth and development but is not essential for telomere length maintenance or telomere capping in mice.« less

  18. In vitro studies on radiosensitization effect of glucose capped gold nanoparticles in photon and ion irradiation of HeLa cells

    NASA Astrophysics Data System (ADS)

    Kaur, Harminder; Pujari, Geetanjali; Semwal, Manoj K.; Sarma, Asitikantha; Avasthi, Devesh Kumar

    2013-04-01

    Noble metal nanoparticles are of great interest due to their potential applications in diagnostics and therapeutics. In the present work, we synthesized glucose capped gold nanoparticle (Glu-AuNP) for internalization in the HeLa cell line (human cervix cancer cells). The capping of glucose on Au nanoparticle was confirmed by Raman spectroscopy. The Glu-AuNP did not show any toxicity to the HeLa cell. The γ-radiation and carbon ion irradiation of HeLa cell with and without Glu-AuNP were performed to evaluate radiosensitization effects. The study revealed a significant reduction in radiation dose for killing the HeLa cells with internalized Glu-AuNPs as compared to the HeLa cells without Glu-AuNP. The Glu-AuNP treatment resulted in enhancement of radiation effect as evident from increase in relative biological effectiveness (RBE) values for carbon ion irradiated HeLa cells.

  19. Phase I/II combined chemoimmunotherapy with carcinoembryonic antigen-derived HLA-A2-restricted CAP-1 peptide and irinotecan, 5-fluorouracil, and leucovorin in patients with primary metastatic colorectal cancer.

    PubMed

    Weihrauch, Martin R; Ansén, Sascha; Jurkiewicz, Elke; Geisen, Caroline; Xia, Zhinan; Anderson, Karen S; Gracien, Edith; Schmidt, Manuel; Wittig, Burghardt; Diehl, Volker; Wolf, Juergen; Bohlen, Heribert; Nadler, Lee M

    2005-08-15

    We conducted a phase I/II randomized trial to evaluate the clinical and immunologic effect of chemotherapy combined with vaccination in primary metastatic colorectal cancer patients with a carcinoembryonic antigen-derived peptide in the setting of adjuvants granulocyte macrophage colony-stimulating factor, CpG-containing DNA molecules (dSLIM), and dendritic cells. HLA-A2-positive patients with confirmed newly diagnosed metastatic colorectal cancer and elevated serum carcinoembryonic antigen (CEA) were randomized to receive three cycles of standard chemotherapy (irinotecan/high-dose 5-fluorouracil/leucovorin) and vaccinations with CEA-derived CAP-1 peptide admixed with different adjuvants [CAP-1/granulocyte macrophage colony-stimulating factor/interleukin-2 (IL-2), CAP-1/dSLIM/IL-2, and CAP-1/IL-2]. After completion of chemotherapy, patients received weekly vaccinations until progression of disease. Immune assessment was done at baseline and after three cycles of combined chemoimmunotherapy. HLA-A2 tetramers complexed with the peptides CAP-1, human T-cell lymphotrophic virus type I TAX, cytomegalovirus (CMV) pp65, and EBV BMLF-1 were used for phenotypic immune assessment. IFN-gamma intracellular cytokine assays were done to evaluate CTL reactivity. Seventeen metastatic patients were recruited, of whom 12 completed three cycles. Therapy resulted in five complete response, one partial response, five stable disease, and six progressive disease. Six grade 1 local skin reactions and one mild systemic reaction to vaccination treatment were observed. Overall survival after a median observation time of 29 months was 17 months with a survival rate of 35% (6 of 17) at that time. Eight patients (47%) showed elevation of CAP-1-specific CTLs. Neither of the adjuvants provided superiority in eliciting CAP-1-specific immune responses. During three cycles of chemotherapy, EBV/CMV recall antigen-specific CD8+ cells decreased by an average 14%. The presented chemoimmunotherapy is a feasible and safe combination therapy with clinical and immunologic efficacy. Despite concurrent chemotherapy, increases in CAP-1-specific T cells were observed in 47% of patients after vaccination.

  20. Diagravitropism in corn roots

    NASA Technical Reports Server (NTRS)

    Leopold, A. C.; Wettlaufer, S. H.

    1988-01-01

    The diagravitropic behavior of Merit corn (Zea mays L.) roots grown in darkness provides an opportunity for comparison of two qualitatively different gravitropic systems. As with positive gravitropism, diagravitropism is shown to require the presence of the root cap, have a similar time course for the onset of curvature, and a similar presentation time. In contrast with positive gravitropism, diagravitropism appears to have a more limited requirement for calcium, for it is insensitive to the elution of calcium by EGTA and insensitive to the subsequent addition of a calcium/EGTA complex. These results are interpreted as indicating that whereas the same sensing system is shared by the two types of gravitropism, separate transductive systems are involved, one for diagravitropism, which is relatively independent of calcium, and one for positive gravitropism, which is markedly dependent on calcium.

  1. Alkyl-Capped Silicon Nanocrystals Lack Cytotoxicity and have Enhanced Intracellular Accumulation in Malignant Cells via Cholesterol-Dependent Endocytosis

    PubMed Central

    Alsharif, Naif H; Berger, Christine E M; Varanasi, Satya S; Chao, Yimin; Horrocks, Benjamin R; Datta, Harish K

    2009-01-01

    Nanocrystals of various inorganic materials are being considered for application in the life sciences as fluorescent labels and for such therapeutic applications as drug delivery or targeted cell destruction. The potential applications of the nanoparticles are critically compromised due to the well-documented toxicity and lack of understanding about the mechanisms involved in the intracellular internalization. Here intracellular internalization and toxicity of alkyl-capped silicon nanocrystals in human neoplastic and normal primary cells is reported. The capped nanocrystals lack cytotoxicity, and there is a marked difference in the rate and extent of intracellular accumulation of the nanoparticles between human cancerous and non-cancerous primary cells, the rate and extent being higher in the malignant cells compared to normal human primary cells. The exposure of the cells to the alkyl-capped nanocrystals demonstrates no evidence of in vitro cytotoxicity when assessed by cell morphology, apoptosis, and cell viability assays. The internalization of the nanocrystals by Hela and SW1353 cells is almost completely blocked by the pinocytosis inhibitors filipin, cytochalasin B, and actinomycin D. The internalization process is not associated with any surface change in the nanoparticles, as their luminescence spectrum is unaltered upon transport into the cytosol. The observed dramatic difference in the rate and extent of internalization of the nanocrystals between malignant and non-malignant cells therefore offers potential application in the management of human neoplastic conditions. PMID:19058285

  2. Intelligence, Cognition, and Language of Green Plants

    PubMed Central

    Trewavas, Anthony

    2016-01-01

    A summary definition of some 70 descriptions of intelligence provides a definition for all other organisms including plants that stresses fitness. Barbara McClintock, a plant biologist, posed the notion of the ‘thoughtful cell’ in her Nobel prize address. The systems structure necessary for a thoughtful cell is revealed by comparison of the interactome and connectome. The plant root cap, a group of some 200 cells that act holistically in responding to numerous signals, likely possesses a similar systems structure agreeing with Darwin’s description of acting like the brain of a lower organism. Intelligent behavior requires assessment of different choices and taking the beneficial one. Decisions are constantly required to optimize the plant phenotype to a dynamic environment and the cambium is the assessing tissue diverting more or removing resources from different shoot and root branches through manipulation of vascular elements. Environmental awareness likely indicates consciousness. Spontaneity in plant behavior, ability to count to five and error correction indicate intention. Volatile organic compounds are used as signals in plant interactions and being complex in composition may be the equivalent of language accounting for self and alien recognition by individual plants. Game theory describes competitive interactions. Interactive and intelligent outcomes emerge from application of various games between plants themselves and interactions with microbes. Behavior profiting from experience, another simple definition of intelligence, requires both learning and memory and is indicated in the priming of herbivory, disease and abiotic stresses. PMID:27199823

  3. Volcanic Ash Soils: Sustainable Soil Management Practices, With Examples of Harvest Effects and Root Disease Trends

    Treesearch

    Mike Curran; Pat Green; Doug Maynard

    2007-01-01

    Sustainability protocols recognize forest soil disturbance as an important issue at national and international levels. At regional levels continual monitoring and testing of standards, practices, and effects are necessary for successful implementation of sustainable soil management. Volcanic ash-cap soils are affected by soil disturbance and changes to soil properties...

  4. Hematology of the Red-capped parrot (Pionopsitta pileata) and Vinaceous Amazon parrot (Amazona vinacea) in captivity.

    PubMed

    Schmidt, Elizabeth Moreira dos Santos; Lange, Rogério Ribas; Ribas, Janaciara Moreira; Daciuk, Bárbara Maria; Montiani-Ferreira, Fabiano; Paulillo, Antonio Carlos

    2009-03-01

    Preliminary reference intervals for hematologic and total plasma protein profiles were determined for nine adult Red-capped parrots (Pionopsitta pileata) (six males and three females) and six Vinaceous Amazon parrots (Amazona vinacea) (two adult males, two adult females, one juvenile, and one nonsexed) from the Curitiba Zoo, Paraná, Brazil. For both Red-capped parrots and Vinaceous Amazon parrots, adult males had higher red blood cell counts than adult females. Regarding white blood cell distribution, differences due to gender were also found for both species of parrots.

  5. ROOT HAIR DEFECTIVE SIX-LIKE Class I Genes Promote Root Hair Development in the Grass Brachypodium distachyon

    PubMed Central

    Kim, Chul Min

    2016-01-01

    Genes encoding ROOT HAIR DEFECTIVE SIX-LIKE (RSL) class I basic helix loop helix proteins are expressed in future root hair cells of the Arabidopsis thaliana root meristem where they positively regulate root hair cell development. Here we show that there are three RSL class I protein coding genes in the Brachypodium distachyon genome, BdRSL1, BdRSL2 and BdRSL3, and each is expressed in developing root hair cells after the asymmetric cell division that forms root hair cells and hairless epidermal cells. Expression of BdRSL class I genes is sufficient for root hair cell development: ectopic overexpression of any of the three RSL class I genes induces the development of root hairs in every cell of the root epidermis. Expression of BdRSL class I genes in root hairless Arabidopsis thaliana root hair defective 6 (Atrhd6) Atrsl1 double mutants, devoid of RSL class I function, restores root hair development indicating that the function of these proteins has been conserved. However, neither AtRSL nor BdRSL class I genes is sufficient for root hair development in A. thaliana. These data demonstrate that the spatial pattern of class I RSL activity can account for the pattern of root hair cell differentiation in B. distachyon. However, the spatial pattern of class I RSL activity cannot account for the spatial pattern of root hair cells in A. thaliana. Taken together these data indicate that that the functions of RSL class I proteins have been conserved among most angiosperms—monocots and eudicots—despite the dramatically different patterns of root hair cell development. PMID:27494519

  6. Gibberellin homeostasis and plant height control by EUI and a role for gibberellin in root gravity responses in rice.

    PubMed

    Zhang, Yingying; Zhu, Yongyou; Peng, Yu; Yan, Dawei; Li, Qun; Wang, Jianjun; Wang, Linyou; He, Zuhua

    2008-03-01

    The rice Eui (ELONGATED UPPERMOST INTERNODE) gene encodes a cytochrome P450 monooxygenase that deactivates bioactive gibberellins (GAs). In this study, we investigated controlled expression of the Eui gene and its role in plant development. We found that Eui was differentially induced by exogenous GAs and that the Eui promoter had the highest activity in the vascular bundles. The eui mutant was defective in starch granule development in root caps and Eui overexpression enhanced starch granule generation and gravity responses, revealing a role for GA in root starch granule development and gravity responses. Experiments using embryoless half-seeds revealed that RAmy1A and GAmyb were highly upregulated in eui aleurone cells in the absence of exogenous GA. In addition, the GA biosynthesis genes GA3ox1 and GA20ox2 were downregulated and GA2ox1 was upregulated in eui seedlings. These results indicate that EUI is involved in GA homeostasis, not only in the internodes at the heading stage, but also in the seedling stage, roots and seeds. Disturbing GA homeostasis affected the expression of the GA signaling genes GID1 (GIBBERELLIN INSENSITIVE DWARF 1), GID2 and SLR1. Transgenic RNA interference of the Eui gene effectively increased plant height and improved heading performance. By contrast, the ectopic expression of Eui under the promoters of the rice GA biosynthesis genes GA3ox2 and GA20ox2 significantly reduced plant height. These results demonstrate that a slight increase in Eui expression could dramatically change rice morphology, indicating the practical application of the Eui gene in rice molecular breeding for a high yield potential.

  7. Induction of Myeloid-Derived Suppressor Cells in Cryopyrin-Associated Periodic Syndromes.

    PubMed

    Ballbach, Marlene; Hall, Tobias; Brand, Alina; Neri, Davide; Singh, Anurag; Schaefer, Iris; Herrmann, Eva; Hansmann, Sandra; Handgretinger, Rupert; Kuemmerle-Deschner, Jasmin; Hartl, Dominik; Rieber, Nikolaus

    2016-01-01

    Cryopyrin-associated periodic syndromes (CAPS) are caused by mutations in the NLRP3 gene leading to overproduction of IL-1β and other NLRP3 inflammasome products. Myeloid-derived suppressor cells (MDSCs) represent a novel innate immune cell subset capable of suppressing T-cell responses. As inflammasome products were previously found to induce MDSCs, we hypothesized that NLRP3 inflammasome-dependent factors induce the generation of MDSCs in CAPS. We studied neutrophilic MDSCs, their clinical relevance, and MDSC-inducing factors in a unique cohort of CAPS patients under anti-IL-1 therapy. Despite anti-IL-1 therapy and low clinical disease activity, CAPS patients showed significantly elevated MDSCs compared to healthy controls. MDSCs were functionally competent, as they suppressed polyclonal T-cell proliferation, as well as Th1 and Th17 responses. In addition, MDSCs decreased monocytic IL-1β secretion. Multiplex assays revealed a distinct pattern of MDSC-inducing cytokines, chemokines, and growth factors. Experimental analyses demonstrated that IL-1 cytokine family members and autoinflammation-associated alarmins differentially induced human MDSCs. Increased MDSCs might represent a novel autologous anti-inflammatory mechanism in autoinflammatory conditions and may serve as a future therapeutic target. © 2016 S. Karger AG, Basel.

  8. Erk regulation of actin capping and bundling by Eps8 promotes cortex tension and leader bleb-based migration

    PubMed Central

    Logue, Jeremy S; Cartagena-Rivera, Alexander X; Baird, Michelle A; Davidson, Michael W; Chadwick, Richard S; Waterman, Clare M

    2015-01-01

    Within the confines of tissues, cancer cells can use blebs to migrate. Eps8 is an actin bundling and capping protein whose capping activity is inhibited by Erk, a key MAP kinase that is activated by oncogenic signaling. We tested the hypothesis that Eps8 acts as an Erk effector to modulate actin cortex mechanics and thereby mediate bleb-based migration of cancer cells. Cells confined in a non-adhesive environment migrate in the direction of a very large ‘leader bleb.’ Eps8 bundling activity promotes cortex tension and intracellular pressure to drive leader bleb formation. Eps8 capping and bundling activities act antagonistically to organize actin within leader blebs, and Erk mediates this effect. An Erk biosensor reveals concentrated kinase activity within leader blebs. Bleb contents are trapped by the narrow neck that separates the leader bleb from the cell body. Thus, Erk activity promotes actin bundling by Eps8 to enhance cortex tension and drive the bleb-based migration of cancer cells under non-adhesive confinement. DOI: http://dx.doi.org/10.7554/eLife.08314.001 PMID:26163656

  9. RNA Cap Methyltransferase Activity Assay

    PubMed Central

    Trotman, Jackson B.; Schoenberg, Daniel R.

    2018-01-01

    Methyltransferases that methylate the guanine-N7 position of the mRNA 5′ cap structure are ubiquitous among eukaryotes and commonly encoded by viruses. Here we provide a detailed protocol for the biochemical analysis of RNA cap methyltransferase activity of biological samples. This assay involves incubation of cap-methyltransferase-containing samples with a [32P]G-capped RNA substrate and S-adenosylmethionine (SAM) to produce RNAs with N7-methylated caps. The extent of cap methylation is then determined by P1 nuclease digestion, thin-layer chromatography (TLC), and phosphorimaging. The protocol described here includes additional steps for generating the [32P]G-capped RNA substrate and for preparing nuclear and cytoplasmic extracts from mammalian cells. This assay is also applicable to analyzing the cap methyltransferase activity of other biological samples, including recombinant protein preparations and fractions from analytical separations and immunoprecipitation/pulldown experiments. PMID:29644259

  10. Dumbbell meningioma of the cervico-clavicular region.

    PubMed

    Hlavka, V; Miklić, P; Besenski, N; Miklić, D; Franz, G

    1991-01-01

    The authors are reporting on a case of a 55-year-old man with an epidural meningioma in the region from the C VII. to the Th I. segment. The tumor encircled this region, and to the front and right involved the channels through which pass the C VI, C VII. and C VIII. roots. Subdurally, no tumoral mass was found. Another part of this tumor, of the same histological architecture as the epidural cervicospinal part was found in the supraclavicular region to the right, closely connected to the arteries and nerves of this region. The authors discuss the possibility of the tumoral occurrence at this site, primarily taking into account the origin of this tumor from the cells of the outer surface of the arachnoidea, i.e. cap cells which can invade the dura, with later separation from the main arachnoidal layer. The other possibility of such dumbbell meningioma occurring at the outgoing openings of the neural paths from the spinal channel should be looked for in the remnants of the arachnoidal cells in the region of the outgoing openings. In the paper are also discussed and correlated clinico-pathological, CT and angiographic findings.

  11. The influence of microgravity and spaceflight on columella cell ultrastructure in starch-deficient mutants of Arabidopsis

    NASA Technical Reports Server (NTRS)

    Guisinger, M. M.; Kiss, J. Z.

    1999-01-01

    The ultrastructure of root cap columella cells was studied by morphometric analysis in wild-type, a reduced-starch mutant, and a starchless mutant of Arabidopsis grown in microgravity (F-microgravity) and compared to ground 1g (G-1g) and flight 1g (F-1g) controls. Seedlings of the wild-type and reduced-starch mutant that developed during an experiment on the Space Shuttle (both the F-microgravity samples and the F-lg control) exhibited a decreased starch content in comparison to the G-1g control. These results suggest that some factor associated with spaceflight (and not microgravity per se) affects starch metabolism. Elevated levels of ethylene were found during the experiments on the Space Shuttle, and analysis of ground controls with added ethylene demonstrated that this gas was responsible for decreased starch levels in the columella cells. This is the first study to use an on-board centrifuge as a control when quantifying starch in spaceflight-grown plants. Furthermore, our results show that ethylene levels must be carefully considered and controlled when designing experiments with plants for the International Space Station.

  12. New candidate markers of head and neck squamous cell carcinoma progression

    NASA Astrophysics Data System (ADS)

    Kakurina, G. V.; Kolegova, E. S.; Cheremisina, O. V.; Kulbakin, D. E.; Choinzonov, E. L.

    2017-09-01

    The tumor progression in head and neck squamous cell carcinoma (HNSCC) is one of the main causes of high mortality of the patients with HNSCC. The tumor progression, particularly the metastasis, is characterized by the changes in the composition, functions and structure of different proteins. We have previously shown that serum of HNSCC patients contains the proteins which regulate various cellular processes—adenylyl cyclase associated protein 1 (CAP1), protein phosphatase 1 B (PPM1B), etc. The levels of CAP1 and PPM1B were determined using the enzyme immunoassay. The results of this study show that CAP1 and PPM1B take a part in the progression of HNSCC. The levels of CAP1 and PPM1B in the tumor and in morphologically normal tissue depended on the prevalence of the tumor process. The CAP1 and PPM1B levels were significantly higher in tumor tissue of the patients with regional metastasis. Our data allow assuming the potential possibility for predicting the outcome of the HNSCC measuring the level of tissue CAP1.

  13. Coextrusion-Based 3D Plotting of Ceramic Pastes for Porous Calcium Phosphate Scaffolds Comprised of Hollow Filaments.

    PubMed

    Jo, In-Hwan; Koh, Young-Hag; Kim, Hyoun-Ee

    2018-05-29

    This paper demonstrates the utility of coextrusion-based 3D plotting of ceramic pastes (CoEx-3DP) as a new type of additive manufacturing (AM) technique, which can produce porous calcium phosphate (CaP) ceramic scaffolds comprised of hollow CaP filaments. In this technique, green filaments with a controlled core/shell structure can be produced by coextruding an initial feedrod, comprised of the carbon black (CB) core and CaP shell, through a fine nozzle in an acetone bath and then deposited in a controlled manner according to predetermined paths. In addition, channels in CaP filaments can be created through the removal of the CB cores during heat-treatment. Produced CaP scaffolds had two different types of pores with well-defined geometries: three-dimensionally interconnected pores (~360 × 230 μm² in sizes) and channels (>100 μm in diameter) in hollow CaP filaments. The porous scaffolds showed high compressive strengths of ~12.3 ± 2.2 MPa at a high porosity of ~73 vol % when compressed parallel to the direction of the hollow CaP filaments. In addition, the mechanical properties of porous CaP scaffolds could be tailored by adjusting their porosity, for example, compressive strengths of 4.8 ± 1.1 MPa at a porosity of ~82 vol %. The porous CaP scaffold showed good biocompatibility, which was assessed by in vitro cell tests, where several the cells adhered to and spread actively with the outer and inner surfaces of the hollow CaP filaments.

  14. Economic growth and biodiversity loss in an age of tradable permits.

    PubMed

    Rosales, Jon

    2006-08-01

    Tradable permits are increasingly becoming part of environmental policy and conservation programs. The efficacy of tradable permit schemes in addressing the root cause of environmental decline-economic growth--will not be achieved unless the schemes cap economic activity based on ecological thresholds. Lessons can be learned from the largest tradable permit scheme to date, emissions trading now being implemented with the Kyoto Protocol. The Kyoto Protocol caps neither greenhouse gas emissions at a level that will achieve climate stability nor economic growth. If patterned after the Kyoto Protocol, cap-and-trade schemes for conservation will not ameliorate biodiversity loss either because they will not address economic growth. In response to these failures to cap economic growth, professional organizations concerned about biodiversity conservation should release position statements on economic growth and ecological thresholds. The statements can then be used by policy makers to infuse these positions into the local, national, and international environmental science-policy process when these schemes are being developed. Infusing language into the science-policy process that calls for capping economic activity based on ecological thresholds represents sound conservation science. Most importantly, position statements have a greater potential to ameliorate biodiversity loss if they are created and released than if this information remains within professional organizations because there is the potential for these ideas to be enacted into law and policy.

  15. Effects of vegetation, a clay cap and environmental variables on 222Rn fluence rate from reclaimed U mill tailings.

    PubMed

    Morris, R C; Fraley, L

    1989-04-01

    We measured 222Rn fluence rate and several environmental variables on two plots with U mill tailings buried beneath 30 cm of overburden and 20 cm of topsoil. An additional 30 cm of clay covered the tailings on one plot and each plot was subdivided into bare soil and vegetated subplots. We used linear correlation, two-way ANOVA and stepwise multiple regression to analyze the effects of the plot characteristics and the environmental variables on 222Rn fluence rate. The most important effect on 222Rn fluence rates from these plots was the combination of a clay cap and a vegetated surface. The mean annual fluence rate from the plot having both of these characteristics (520 +/- 370 mBq m-2 s-1) was over three times that of the vegetated plot without a clay cap (170 +/- 130 mBq m-2 s-1) and 18 times that of the bare plot with a clay cap (29 +/- 13 mBq m-2 s-1). The interaction effect may have been due to the growth of roots in the moist clay and active transport of dissolved 222Rn to the surface in water. This speculation is supported by the observation that on vegetated plots with a clay cap, moisture in the clay enhanced the fluence rate.

  16. Formocresol versus calcium hydroxide direct pulp capping of human primary molars: two year follow-up.

    PubMed

    Aminabadi, Naser Asl; Farahani, Ramin Mostofi Zadeh; Oskouei, Sina Ghertasi

    2010-01-01

    Clinical and radiographic evaluation of the premedicated direct pulp capping using formocresol (PDC) versus conventional direct pulp capping using calcium hydroxide (CDC) in human carious primary molars. A total of 120 vital primary molars with pinpoint exposure during caries removal in 84 patients aged 4-5 years were selected. In the PDC group (n = 60), 20% Buckley's formocresol solution, and in the CDC group (n = 60), calcium hydroxide powder were applied to the exposure sites followed by placement of zinc oxide-eugenol base. Teeth were restored with preformed stainless steel crowns. Clinical and radiographic evaluations of the treatment outcomes were performed at regular intervals of 6 and 12 months, respectively, for two years post-operatively. The prevalence of spontaneous pain, sensitivity on percussion, and fistula were significantly higher in the CDC group compared to the PDC group (P < 0.05). The number of teeth exhibiting periapical/furcal radiolucency or external/internal root resorption was also higher in the CDC group (P < 0.05). The clinical success rate of the PDC was 90% compared to the 61.7% of the CDC (P < 0.05). The radiographic success rates of the PDC and CDC groups were 85% and 53.3%, respectively (P < 0.05). It seems formocresol premedicated direct pulp capping could safely be used as a substitute for conventional direct pulp capping.

  17. MoCAP proteins regulated by MoArk1-mediated phosphorylation coordinate endocytosis and actin dynamics to govern development and virulence of Magnaporthe oryzae

    PubMed Central

    Yang, Jun; Chen, Deng; Liu, Muxing; Zhang, Haifeng; Zheng, Xiaobo; Wang, Ping; Peng, Youliang; Zhang, Zhengguang

    2017-01-01

    Actin organization is a conserved cellular process that regulates the growth and development of eukaryotic cells. It also governs the virulence process of pathogenic fungi, such as the rice blast fungus Magnaporthe oryzae, with mechanisms not yet fully understood. In a previous study, we found that actin-regulating kinase MoArk1 displays conserved functions important in endocytosis and actin organization, and MoArk1 is required for maintaining the growth and full virulence of M. oryzae. To understand how MoArk1 might function, we identified capping protein homologs from M. oryzae (MoCAP) that interact with MoArk1 in vivo. MoCAP is heterodimer consisting of α and β subunits MoCapA and MoCapB. Single and double deletions of MoCAP subunits resulted in abnormal mycelial growth and conidia formation. The ΔMocap mutants also exhibited reduced appressorium penetration and invasive hyphal growth within host cells. Furthermore, the ΔMocap mutants exhibited delayed endocytosis and abnormal cytoskeleton assembly. Consistent with above findings, MoCAP proteins interacted with MoAct1, co-localized with actin during mycelial development, and participated in appressorial actin ring formation. Further analysis revealed that the S85 residue of MoCapA and the S285 residue of MoCapB were subject to phosphorylation by MoArk1 that negatively regulates MoCAP functions. Finally, the addition of exogenous phosphatidylinositol 4,5-bisphosphate (PIP2) failed to modulate actin ring formation in ΔMocap mutants, in contrast to the wild-type strain, suggesting that MoCAP may also mediate phospholipid signaling in the regulation of the actin organization. These results together demonstrate that MoCAP proteins whose functions are regulated by MoArk1 and PIP2 are important for endocytosis and actin dynamics that are directly linked to growth, conidiation and pathogenicity of M. oryzae. PMID:28542408

  18. Small GSH-Capped CuInS2 Quantum Dots: MPA-Assisted Aqueous Phase Transfer and Bioimaging Applications.

    PubMed

    Zhao, Chuanzhen; Bai, Zelong; Liu, Xiangyou; Zhang, Yijia; Zou, Bingsuo; Zhong, Haizheng

    2015-08-19

    An efficient ligand exchange strategy for aqueous phase transfer of hydrophobic CuInS2/ZnS quantum dots was developed by employing glutathione (GSH) and mercaptopropionic acid (MPA) as the ligands. The whole process takes less than 20 min and can be scaled up to gram amount. The material characterizations show that the final aqueous soluble samples are solely capped with GSH on the surface. Importantly, these GSH-capped CuInS2/ZnS quantum dots have small size (hydrodynamic diameter <10 nm), moderate fluorescent properties (up to 34%) as well as high stability in aqueous solutions (stable for more than three months in 4 °C without any significant fluorescence quenching). Moreover, this ligand exchange strategy is also versatile for the aqueous phase transfer of other hydrophobic quantum dots, for instance, CuInSe2 and CdSe/ZnS quantum dots. We further demonstrated that GSH-capped quantum dots could be suitable fluorescence markers to penetrate cell membrane and image the cells. In addition, the GSH-capped CuInS2 quantum dots also have potential use in other fields such as photocatalysis and quantum dots sensitized solar cells.

  19. Two Routes to Genetic Suppression of RNA Trimethylguanosine Cap Deficiency via C-Terminal Truncation of U1 snRNP Subunit Snp1 or Overexpression of RNA Polymerase Subunit Rpo26.

    PubMed

    Qiu, Zhicheng R; Schwer, Beate; Shuman, Stewart

    2015-04-24

    The trimethylguanosine (TMG) caps of small nuclear (sn) RNAs are synthesized by the enzyme Tgs1 via sequential methyl additions to the N2 atom of the m(7)G cap. Whereas TMG caps are inessential for Saccharomyces cerevisiae vegetative growth at 25° to 37°, tgs1∆ cells that lack TMG caps fail to thrive at 18°. The cold-sensitive defect correlates with ectopic stoichiometric association of nuclear cap-binding complex (CBC) with the residual m(7)G cap of the U1 snRNA and is suppressed fully by Cbc2 mutations that weaken cap binding. Here, we show that normal growth of tgs1∆ cells at 18° is also restored by a C-terminal deletion of 77 amino acids from the Snp1 subunit of yeast U1 snRNP. These results underscore the U1 snRNP as a focal point for TMG cap function in vivo. Casting a broader net, we conducted a dosage suppressor screen for genes that allowed survival of tgs1∆ cells at 18°. We thereby recovered RPO26 (encoding a shared subunit of all three nuclear RNA polymerases) and RPO31 (encoding the largest subunit of RNA polymerase III) as moderate and weak suppressors of tgs1∆ cold sensitivity, respectively. A structure-guided mutagenesis of Rpo26, using rpo26∆ complementation and tgs1∆ suppression as activity readouts, defined Rpo26-(78-155) as a minimized functional domain. Alanine scanning identified Glu89, Glu124, Arg135, and Arg136 as essential for rpo26∆ complementation. The E124A and R135A alleles retained tgs1∆ suppressor activity, thereby establishing a separation-of-function. These results illuminate the structure activity profile of an essential RNA polymerase component. Copyright © 2015 Qiu et al.

  20. Tumor-derived CXCL8 signaling augments stroma-derived CCL2-promoted proliferation and CXCL12-mediated invasion of PTEN-deficient prostate cancer cells

    PubMed Central

    Maxwell, Pamela J.; Neisen, Jessica; Messenger, Johanna; Waugh, David J.J.

    2014-01-01

    Impaired PTEN function is a genetic hallmark of aggressive prostate cancers (CaP) and is associated with increased CXCL8 expression and signaling. The current aim was to further characterize biological responses and mechanisms underpinning CXCL8-promoted progression of PTEN-depleted prostate cancer, focusing on characterizing the potential interplay between CXCL8 and other disease-promoting chemokines resident within the prostate tumor microenvironment. Autocrine CXCL8-stimulation (i) increased expression of CXCR1 and CXCR2 in PTEN-deficient CaP cells suggesting a self-potentiating signaling axis and (ii) induced expression of CXCR4 and CCR2 in PTEN-wild-type and PTEN-depleted CaP cells. In contrast, paracrine CXCL8 signaling induced expression and secretion of the chemokines CCL2 and CXCL12 from prostate stromal WPMY-1 fibroblasts and monocytic macrophage-like THP-1 cells. In vitro studies demonstrated functional co-operation of tumor-derived CXCL8 with stromal-derived chemokines. CXCL12-induced migration of PC3 cells and CCL2-induced proliferation of prostate cancer cells were dependent upon intrinsic CXCL8 signaling within the prostate cancer cells. For example, in co-culture experiments, CXCL12/CXCR4 signaling but not CCL2/CCR2 signaling supported fibroblast-mediated migration of PC3 cells while CXCL12/CXCR4 and CCL2/CCR2 signaling underpinned monocyte-enhanced migration of PC3 cells. Combined inhibition of both CXCL8 and CXCL12 signaling was more effective in inhibiting fibroblast-promoted cell motility while repression of CXCL8 attenuated CCL2-promoted proliferation of prostate cancer cells. We conclude that tumor-derived CXCL8 signaling from PTEN-deficient tumor cells increases the sensitivity and responsiveness of CaP cells to stromal chemokines by concurrently upregulating receptor expression in cancer cells and inducing stromal chemokine synthesis. Combined chemokine targeting may be required to inhibit their multi-faceted actions in promoting the invasion and proliferation of aggressive CaP. PMID:24970800

  1. Long term exposure to cell phone frequencies (900 and 1800 MHz) induces apoptosis, mitochondrial oxidative stress and TRPV1 channel activation in the hippocampus and dorsal root ganglion of rats.

    PubMed

    Ertilav, Kemal; Uslusoy, Fuat; Ataizi, Serdar; Nazıroğlu, Mustafa

    2018-06-01

    Mobile phone providers use electromagnetic radiation (EMR) with frequencies ranging from 900 to 1800 MHz. The increasing use of mobile phones has been accompanied by several potentially pathological consequences, such as neurological diseases related to hippocampal (HIPPON) and dorsal root ganglion neuron (DRGN). The TRPV1 channel is activated different stimuli, including CapN, high temperature and oxidative stress. We investigated the contribution TRPV1 to mitochondrial oxidative stress and apoptosis in HIPPON and DRGN following long term exposure to 900 and 1800 MHz in a rat model. Twenty-four adult rats were equally divided into the following groups: (1) control, (2) 900 MHz, and (3) 1800 MHz exposure. Each experimental group was exposed to EMR for 60 min/ 5 days of the week during the one year. The 900 and 1800 MHz EMR exposure induced increases in TRPV1 currents, intracellular free calcium influx (Ca 2+ ), reactive oxygen species (ROS) production, mitochondrial membrane depolarization (JC-1), apoptosis, and caspase 3 and 9 activities in the HIPPON and DRGN. These deleterious processes were further increased in the 1800 MHz experimental group compared to the 900 MHz exposure group. In conclusion, mitochondrial oxidative stress, programmed cell death and Ca 2+ entry pathway through TRPV1 activation in the HIPPON and DRGN of rats were increased in the rat model following exposure to 900 and 1800 MHz cell frequencies. Our results suggest that exposure to 900 and 1800 MHz EMR may induce a dose-associated, TRPV1-mediated stress response.

  2. Immunolocalization of an annexin-like protein in corn

    NASA Astrophysics Data System (ADS)

    Clark, G. B.; Dauwalder, M.; Roux, S. J.

    1994-08-01

    Although calcium has been proposed to be an important regulatory element in plant gravitropic growth, as yet no specific function of Ca2+ in growth regulation has been discovered. Our recent studies on a Ca2+-binding protein in pea seedlings called p35 indicate that it is a member of the annexin family of proteins and may play a key role in growth regulation through its function in delivering polysaccharides needed for wall construction. We previously reported the isolation of p35 from pea plumules and the production of polyclonal antibodies to it. Immunolocalization analyses of p35 in pea tissues revealed high levels of staining in secretory cell types such as developing vascular cells and outer root cap cells. To test how general was the occurrence and distribution of this annexin-like protein in plant cells we initiated an analysis of annexins in the monocot corn using immunological techniques. Our results indicate the immunochemical properties and localization of corn annexins are very similar to those reported for pea. They are consistent with the postulate that annexins may play a general role in the regulation of the secretion of wall polysaccharides needed for growth, and thus could be an important target of calcium action during gravitropic growth.

  3. Immunolocalization of an annexin-like protein in corn

    NASA Technical Reports Server (NTRS)

    Clark, G. B.; Dauwalder, M.; Roux, S. J.

    1994-01-01

    Although calcium has been proposed to be an important regulatory element in plant gravitropic growth, as yet no specific function of Ca2(+) in growth regulation has been discovered. Our recent studies on a Ca2(+)-binding protein in pea seedlings called p35 indicate that it is a member of the annexin family of proteins and may play a key role in growth regulation through its function in delivering polysaccharides needed for wall construction. We previously reported the isolation of p35 from pea plumules and the production of polyclonal antibodies to it. Immunolocalization analyses of p35 in pea tissues revealed high levels of staining in secretory cell types such as developing vascular cells and outer root cap cells. To test how general was the occurrence and distribution of this annexin-like protein in plant cells we initiated an analysis of annexins in the monocot corn using immunological techniques. Our results indicate the immunochemical properties and localization of corn annexins are very similar to those reported for pea. They are consistent with the postulate that annexins may play a general role in the regulation of the secretion of wall polysaccharides needed for growth, and thus could be an important target of calcium action during gravitropic growth.

  4. The function of yeast CAP family proteins in lipid export, mating, and pathogen defense.

    PubMed

    Darwiche, Rabih; El Atab, Ola; Cottier, Stéphanie; Schneiter, Roger

    2018-04-01

    In their natural habitat, yeast cells are constantly challenged by changing environmental conditions and a fierce competition for limiting resources. To thrive under such conditions, cells need to adapt and divide quickly, and be able to neutralize the toxic compounds secreted by their neighbors. Proteins like the pathogen-related yeast, Pry proteins, which belong to the large CAP/SCP/TAPS superfamily, may have an important role in this function. CAP proteins are conserved from yeast to man and are characterized by a unique αβα sandwich fold. They are mostly secreted glycoproteins and have been implicated in many different physiological processes including pathogen defense, virulence, venom toxicity, and sperm maturation. Yeast members of this family bind and export sterols as well as fatty acids, and they render cells resistant to eugenol, an antimicrobial compound present in clove oil. CAP family members might thus exert their various physiological functions through binding, sequestration, and neutralization of such small hydrophobic compounds. © 2017 Federation of European Biochemical Societies.

  5. Retention Strength of Conical Welding Caps for Fixed Implant-Supported Prostheses.

    PubMed

    Nardi, Diego; Degidi, Marco; Sighinolfi, Gianluca; Tebbel, Florian; Marchetti, Claudio

    This study evaluated the retention strength of welding caps for Ankylos standard abutments using a pull-out test. Each sample consisted of an implant abutment and its welding cap. The tests were performed with a Zwick Roell testing machine with a 1-kN load cell. The retention strength of the welding caps increased with higher abutment diameters and higher head heights and was comparable or superior to the values reported in the literature for the temporary cements used in implant dentistry. Welding caps provide a reliable connection between an abutment and a fixed prosthesis without the use of cement.

  6. Cell wall properties play an important role in the emergence of lateral root primordia from the parent root.

    PubMed

    Roycewicz, Peter S; Malamy, Jocelyn E

    2014-05-01

    Plants adapt to their unique soil environments by altering the number and placement of lateral roots post-embryonic. Mutants were identified in Arabidopsis thaliana that exhibit increased lateral root formation. Eight mutants were characterized in detail and were found to have increased lateral root formation due to at least three distinct mechanisms. The causal mutation in one of these mutants was found in the XEG113 gene, recently shown to be involved in plant cell wall biosynthesis. Lateral root primordia initiation is unaltered in this mutant. In contrast, synchronization of lateral root initiation demonstrated that mutation of XEG113 increases the rate at which lateral root primordia develop and emerge to form lateral roots. The effect of the XEG113 mutation was specific to the root system and had no apparent effect on shoot growth. Screening of 17 additional cell wall mutants, altering a myriad of cell wall components, revealed that many (but not all) types of cell wall defects promote lateral root formation. These results suggest that proper cell wall biosynthesis is necessary to constrain lateral root primordia emergence. While previous reports have shown that lateral root emergence is accompanied by active remodelling of cell walls overlying the primordia, this study is the first to demonstrate that alteration of the cell wall is sufficient to promote lateral root formation. Therefore, inherent cell wall properties may play a previously unappreciated role in regulation of root system architecture.

  7. Forum: Communication Activism Pedagogy. Critical Pedagogy Meets Transformation: Creating the Being of Communication Activists

    ERIC Educational Resources Information Center

    Donovan, Matthew C. J.; Tracy, Sarah J.

    2017-01-01

    Communication activism pedagogy (CAP) is rooted in many of the same ideals as participatory action research (e.g., attending to issues of social inequality and oppression with the goal of enacting social change). Not only does participatory action serve an important role in taking research outside of the ivory tower, but also it notably gives…

  8. Root hair development in grasses and cereals (Poaceae).

    PubMed

    Dolan, Liam

    2017-08-01

    Root hairs are tubular, cellular outgrowths of epidermal cells that extend from the root surface into the soil. Root hairs tether root systems to their growth substrate, take up inorganic nutrients and water, and interact with the soil microflora. At maturity, the root epidermis comprises two cell types; cells with root hairs and hairless epidermal cells. These two cell types alternate with each other along longitudinal files in grasses and cereals (Poaceae). While the mechanism by which this alternating pattern develops is unknown, the later stages of root hair differentiation are controlled by a conserved mechanism that promotes root hair development among angiosperms. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  9. Root anatomical phenes predict root penetration ability and biomechanical properties in maize (Zea Mays)

    PubMed Central

    Chimungu, Joseph G.; Loades, Kenneth W.; Lynch, Jonathan P.

    2015-01-01

    The ability of roots to penetrate hard soil is important for crop productivity but specific root phenes contributing to this ability are poorly understood. Root penetrability and biomechanical properties are likely to vary in the root system dependent on anatomical structure. No information is available to date on the influence of root anatomical phenes on root penetrability and biomechanics. Root penetration ability was evaluated using a wax layer system. Root tensile and bending strength were evaluated in plant roots grown in the greenhouse and in the field. Root anatomical phenes were found to be better predictors of root penetrability than root diameter per se and associated with smaller distal cortical region cell size. Smaller outer cortical region cells play an important role in stabilizing the root against ovalization and reducing the risk of local buckling and collapse during penetration, thereby increasing root penetration of hard layers. The use of stele diameter was found to be a better predictor of root tensile strength than root diameter. Cortical thickness, cortical cell count, cortical cell wall area and distal cortical cell size were stronger predictors of root bend strength than root diameter. Our results indicate that root anatomical phenes are important predictors for root penetrability of high-strength layers and root biomechanical properties. PMID:25903914

  10. Light-regulated root gravitropism: a role for, and characterization of, a calcium/calmodulin-dependent protein kinase homolog

    NASA Technical Reports Server (NTRS)

    Lu, Y. T.; Feldman, L. J.

    1997-01-01

    Roots of many species grow downward (orthogravitropism) only when illuminated. Previous work suggests that this is a calcium-regulated response and that both calmodulin and calcium/calmodulin-dependent kinases participate in transducing gravity and light stimuli. A genomic sequence has been obtained for a calcium/calmodulin-dependent kinase homolog (MCK1) expressed in root caps, the site of perception for both light and gravity. This homolog consists of 7265 base pairs and contains 11 exons and 10 introns. Since MCK1 is expressed constitutively in both light and dark, it is unlikely that the light directly affects MCK1 expression, though the activity of the protein may be affected by light. In cultivars showing light-regulated gravitropism, we hypothesize that MCK1, or a homolog, functions in establishing the auxin asymmetry necessary for orthogravitropism.

  11. Animal Models of Inflammasomopathies Reveal Roles for Innate but not Adaptive Immunity

    PubMed Central

    Brydges, Susannah D; Mueller, James L; McGeough, Matthew D; Pena, Carla A; Misaghi, Amirhossein; Gandhi, Chhavi; Putnam, Chris D; Boyle, David L; Firestein, Gary S; Horner, Anthony A; Soroosh, Pejman; Watford, Wendy T; O’Shea, John J; Kastner, Daniel L; Hoffman, Hal M

    2009-01-01

    SUMMARY Cryopyrin (NALP3) mediates formation of the inflammasome, a protein complex responsible for cleavage of pro-IL-1β to its active form. Mutations in the cryopyrin gene, NLRP3, cause the autoinflammatory disease spectrum: cryopyrin-associated periodic syndromes (CAPS). The central role of IL-1β in CAPS is supported by the remarkable response to IL-1 targeted therapy. We developed two novel Nlrp3 mutant knock-in mouse strains to model CAPS to examine the role of other inflammatory mediators and adaptive immune responses in an innate immune driven disease. These mice had systemic inflammation and poor growth, similar to some human CAPS patients, and demonstrated early mortality, primarily mediated by myeloid cells. Mating these mutant mice to various knock-out backgrounds confirmed the mouse disease phenotype required an intact inflammasome, was only partially dependent on IL-1β, and was independent of T cells. This data suggests CAPS are true inflammasomopathies and provide insight for more common inflammatory disorders. PMID:19501000

  12. Interplanetary magnetic field dependency of stable Sun-aligned polar cap arcs

    NASA Technical Reports Server (NTRS)

    Valladares, C. E.; Carlson, H. C., Jr.; Fukui, K.

    1994-01-01

    This is the first analysis, using a statistically significant data set, of the morphological dependence of the presence, orientation, and motion of stable sun-aligned polar cap arcs upon the vector interplanetary magnetic field (IMF). For the one winter season analyzed we had 1392 all-sky 630.0-nm images of 2-min resolution containing a total of 150 polar cap arcs, all with corresponding values of the IMF as measured by International Monitoring Platform (IMP) 8 or International Sun Earth Explorer (ISEE) 2. After demonstrating an unbiased data set with smooth normal distributions of events versus the dimensions of time, space, and IMF component, we examine IMF dependencies of the properties of the optical arcs. A well-defined dependence for B(sub z) is found for the presence/absence of stable Sun-aligned polar cap arcs. Consistent with previous statistical studies, the probability of observing polar cap aurora steadily increases for larger positive values of B(sub z), and linearly decreases when B(sub z) becomes more negative. The probability of observing Sun-aligned arcs within the polar cap is determined to vary sharply as a function of the arc location; arcs were observed 40% of the time on the dawnside and only 10% on the duskside. This implies an overall probability of at least 40% for the whole polar cap. 20% of the arcs were observed during 'southward IMF conditions,' but in fact under closer inspection were found to have been formed under northward IMF conditions; these 'residual' positive B(sub z) arcs ha d a delayed residence time in the polar cap of about what would be expected after a north to south transition of B(sub z). A firm dependence on B(sub y) is also found for both the orientation and the dawn-dusk direction of motion of the arcs. All the arcs are Sun-aligned to a first approximation, but present deviations from this orientation, depending primarily upon the location of the arc in corrected geomagnetic (CG) coordinates. The arcs populating the 06-12 and the 12-18 quadrants of the CG coordinate system point toward the cusp. The B(sub y) dependency of the arc alignment is consistent with a cusp displacement in local time according to the sign of B(sub y). We found that the arc direction of motion depended both on B(sub y) and the arc location within the polar cap. For a given value of B(sub y) two well-defined regions (or cells) exist. Within each cell the arcs move in the same direction toward the boundary between the cells. The arcs located in the duskside move dawnward; those in the dawnside move duskward. The relative size of these dusk and dawn regions (or cells) are controlled by the magnitude of B(sub y). This persistent dusk-dawn motion fo the polar cap arcs is interpreted in terms of newly open flux tubes entering the polar cap and exerting a displacement of the convective cells and the polar cap arcs that are embedded within them.

  13. Goat's milk allergy without cow's milk allergy: suppression of non-cross-reactive epitopes on caprine β-casein.

    PubMed

    Hazebrouck, S; Ah-Leung, S; Bidat, E; Paty, E; Drumare, M-F; Tilleul, S; Adel-Patient, K; Wal, J-M; Bernard, H

    2014-04-01

    Goat's milk (GM) allergy associated with tolerance to cow's milk (CM) has been reported in patients without history of CM allergy and in CM-allergic children successfully treated with oral immunotherapy. The IgE antibodies from GM-allergic/CM-tolerant patients recognize caprine β-casein (βcap) without cross-reacting with bovine β-casein (βbov) despite a sequence identity of 91%. In this study, we investigated the non-cross-reactive IgE-binding epitopes of βcap. Recombinant βcap was genetically modified by substituting caprine domains with the bovine counterparts and by performing site-directed mutagenesis. We then evaluated the recognition of modified βcap by IgE antibodies from 11 GM-allergic/CM-tolerant patients and 11 CM-allergic patients or by monoclonal antibodies (mAb) raised against caprine caseins. The allergenic potency of modified βcap was finally assessed by degranulation tests of humanized rat basophil leukaemia (RBL)-SX38 cells. Non-cross-reactive epitopes of βcap were found in domains 44-88 and 130-178. The substitutions A55T/T63P/L75P and P148H/S152P induced the greatest decrease in IgE reactivity of GM-allergic/CM-tolerant patients towards βcap. The pivotal role of threonine 63 was particularly revealed as its substitution also impaired the recognition of βcap by specific mAb, which could discriminate between βcap and βbov. The modified βcap containing the five substitutions was then unable to trigger the degranulation of RBL-SX38 cells passively sensitized with IgE antibodies from GM-allergic/CM-tolerant patients. Although IgE-binding epitopes are spread all over βcap, a non-cross-linking version of βcap was generated with only five amino acid substitutions and could thus provide new insight for the design of hypoallergenic variants. © 2013 John Wiley & Sons Ltd.

  14. Fast filtration sampling protocol for mammalian suspension cells tailored for phosphometabolome profiling by capillary ion chromatography - tandem mass spectrometry.

    PubMed

    Kvitvang, Hans F N; Bruheim, Per

    2015-08-15

    Capillary ion chromatography (capIC) is the premium separation technology for low molecular phosphometabolites and nucleotides in biological extracts. Removal of excessive amounts of salt during sample preparation stages is a prerequisite to enable high quality capIC separation in combination with reproducible and sensitive MS detection. Existing sampling protocols for mammalian cells used for GC-MS and LC-MS metabolic profiling can therefore not be directly applied to capIC separations. Here, the development of a fast filtration sampling protocol for mammalian suspension cells tailored for quantitative profiling of the phosphometabolome on capIC-MS/MS is presented. The whole procedure from sampling the culture to transfer of filter to quenching and extraction solution takes less than 10s. To prevent leakage it is critical that a low vacuum pressure is applied, and satisfactorily reproducibility was only obtained by usage of a vacuum pressure controlling device. A vacuum of 60mbar was optimal for filtration of multiple myeloma Jjn-3 cell cultures through 5μm polyvinylidene (PVDF) filters. A quick deionized water (DI-water) rinse step prior to extraction was tested, and significantly higher metabolite yields were obtained during capIC-MS/MS analyses in this extract compared to extracts prepared by saline and reduced saline (25%) washing steps only. In addition, chromatographic performance was dramatically improved. Thus, it was verified that a quick DI-water rinse is tolerated by the cells and can be included as the final stage during filtration. Over 30 metabolites were quantitated in JJN-3 cell extracts by using the optimized sampling protocol with subsequent capIC-MS/MS analysis, and up to 2 million cells can be used in a single filtration step for the chosen filter and vacuum pressure. The technical set-up is also highly advantageous for microbial metabolome filtration protocols after optimization of vacuum pressure and washing solutions, and the reduced salt content of the extract will also improve the quality of LC-MS analysis due to lower salt adduct ion formation. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. In Vitro and In Vivo Prostate Cancer Metastasis and Chemoresistance Can Be Modulated by Expression of either CD44 or CD147

    PubMed Central

    Hao, Jingli; Madigan, Michele C.; Khatri, Aparajita; Power, Carl A.; Hung, Tzong-Tyng; Beretov, Julia; Chang, Lei; Xiao, Weiwei; Cozzi, Paul J.; Graham, Peter H.; Kearsley, John H.; Li, Yong

    2012-01-01

    CD44 and CD147 are associated with cancer metastasis and progression. Our purpose in the study was to investigate the effects of down-regulation of CD44 or CD147 on the metastatic ability of prostate cancer (CaP) cells, their docetaxel (DTX) responsiveness and potential mechanisms involved in vitro and in vivo. CD44 and CD147 were knocked down (KD) in PC-3M-luc CaP cells using short hairpin RNA (shRNA). Expression of CD44, CD147, MRP2 (multi-drug resistance protein-2) and MCT4 (monocarboxylate tranporter-4) was evaluated using immunofluorescence and Western blotting. The DTX dose-response and proliferation was measured by MTT and colony assays, respectively. The invasive potential was assessed using a matrigel chamber assay. Signal transduction proteins in PI3K/Akt and MAPK/Erk pathways were assessed by Western blotting. An in vivo subcutaneous (s.c.) xenograft model was established to assess CaP tumorigenecity, lymph node metastases and DTX response. Our results indicated that KD of CD44 or CD147 decreased MCT4 and MRP2 expression, reduced CaP proliferation and invasive potential and enhanced DTX sensitivity; and KD of CD44 or CD147 down-regulated p-Akt and p-Erk, the main signal modulators associated with cell growth and survival. In vivo, CD44 or CD147-KD PC-3M-luc xenografts displayed suppressed tumor growth with increased DTX responsiveness compared to control xenografts. Both CD44 and CD147 enhance metastatic capacity and chemoresistance of CaP cells, potentially mediated by activation of the PI3K and MAPK pathways. Selective targeting of CD44/CD147 alone or combined with DTX may limit CaP metastasis and increase chemosensitivity, with promise for future CaP treatment. PMID:22870202

  16. Neural and receptor cochlear potentials obtained by transtympanic electrocochleography in auditory neuropathy.

    PubMed

    Santarelli, Rosamaria; Starr, Arnold; Michalewski, Henry J; Arslan, Edoardo

    2008-05-01

    Transtympanic electrocochleography (ECochG) was recorded bilaterally in children and adults with auditory neuropathy (AN) to evaluate receptor and neural generators. Test stimuli were clicks from 60 to 120dB p.e. SPL. Measures obtained from eight AN subjects were compared to 16 normally hearing children. Receptor cochlear microphonics (CMs) in AN were of normal or enhanced amplitude. Neural compound action potentials (CAPs) and receptor summating potentials (SPs) were identified in five AN ears. ECochG potentials in those ears without CAPs were of negative polarity and of normal or prolonged duration. We used adaptation to rapid stimulus rates to distinguish whether the generators of the negative potentials were of neural or receptor origin. Adaptation in controls resulted in amplitude reduction of CAP twice that of SP without affecting the duration of ECochG potentials. In seven AN ears without CAP and with prolonged negative potential, adaptation was accompanied by reduction of both amplitude and duration of the negative potential to control values consistent with neural generation. In four ears without CAP and with normal duration potentials, adaptation was without effect consistent with receptor generation. In five AN ears with CAP, there was reduction in amplitude of CAP and SP as controls but with a significant decrease in response duration. Three patterns of cochlear potentials were identified in AN: (1) presence of receptor SP without CAP consistent with pre-synaptic disorder of inner hair cells; (2) presence of both SP and CAP consistent with post-synaptic disorder of proximal auditory nerve; (3) presence of prolonged neural potentials without a CAP consistent with post-synaptic disorder of nerve terminals. Cochlear potential measures may identify pre- and post-synaptic disorders of inner hair cells and auditory nerves in AN.

  17. Automorphosis of higher plants on a 3-D clinostat

    NASA Astrophysics Data System (ADS)

    Hoson, T.; Kamisaka, S.; Yamashita, M.; Masuda, Y.

    On a three-dimensional (3-D) clinostat, various plant organs developed statocytes capable of responding to the gravity vector. The graviresponse of primary roots of garden cress and maize grown on the clinostat was the same as the control roots, whereas that of maize coleoptiles was reduced. When maize seedlings were grown in the presence of 10^-4 M gibberellic acid and kinetin, the graviresponse of both roots and shoots was suppressed. The corresponding suppression of amyloplast development was observed in the clinostatted and the hormone-treated seedlings. Maize roots and shoots showed spontaneous curvatures in different portions on the 3-D clinostat. The hormone treatment did not significantly influence such an automorphic curvature. When the root cap was removed, maize roots did not curve gravitropically. However, the removal suppressed the automorphic curvatures only slightly. On the other hand, the removal of coleoptile tip did not influence its graviresponse, whereas the spontaneous curvature of decapitated coleoptiles on the clinostat was strongly suppressed. Also, cytochalasin B differently affected the gravitropic and the automorphic curvatures of maize roots and shoots. From these results it is concluded that the graviperception and the early processes of signal transmission are unnecessary for automorphoses under simulated microgravity conditions. Moreover, the results support the view that the amyloplasts act as statoliths probably via an interaction with microfilaments.

  18. Catastrophic antiphospholipid syndrome: a clinical review.

    PubMed

    Nayer, Ali; Ortega, Luis M

    2014-01-01

    Catastrophic antiphospholipid syndrome (CAPS) is a rare life-threatening autoimmune disease characterized by disseminated intravascular thrombosis resulting in multiorgan failure. Directory of Open Access Journals (DOAJ), Google Scholar, PubMed (NLM), LISTA (EBSCO) and Web of Science have been searched. CAPS is due to antiphospholipid antibodies directed against a heterogeneous group of proteins that are associated with phospholipids. These autoantibodies activate endothelial cells, platelets, and immune cells, thereby promoting a proinflammatory and prothrombotic phenotype. Furthermore, antiphospholipid antibodies inhibit anticoagulants, impair fibrinolysis, and activate complements. Although CAPS can affect a variety of organs and tissues, the kidneys, lungs, central nervous system, heart, skin, liver, and gastrointestinal tract are most commonly affected. The systemic inflammatory response syndrome, likely to extensive tissue damage, accompanies CAPS. The most frequent renal manifestations are hypertension, proteinuria, hematuria, and acute renal failure.In the majority of patients with CAPS, a precipitating factor such as infection, surgery, or medication can be identified. Antiphospholipid antibodies such as lupus anticoagulant and antibodies against cardiolipin, β2-glycoprotein I, and prothrombin are serological hallmark of CAPS. Laboratory tests often reveal antinuclear antibodies, thrombocytopenia, and anemia. Despite widespread intravascular coagulation, blood films reveal only a small number of schistocytes. In addition, severe thrombocytopenia is uncommon. Histologically, CAPS is characterized by acute thrombotic microangiopathy. CAPS must be distinguished from other forms of thrombotic microangiopathies such as hemolytic-uremic syndrome, thrombotic thrombocytopenic purpura, disseminated intravascular coagulation, and heparin-induced thrombocyt openia. CAPS is associated with high morbidity and mortality. Therefore, an aggressive multidisciplinary treatment strategy is indicated. Anticoagulation, immunosuppression, plasma exchange, intravenous immunoglobulins, and anti-platelet agents, used in various combinations, have resulted in improved patient outcome.

  19. Fused X-ray and MR Imaging Guidance of Intrapericardial Delivery of Microencapsulated Human Mesenchymal Stem Cells in Immunocompetent Swine

    PubMed Central

    Fu, Yingli; Azene, Nicole; Ehtiati, Tina; Flammang, Aaron; Gilson, Wesley D.; Gabrielson, Kathleen; Weiss, Clifford R.; Bulte, Jeff W. M.; Solaiyappan, Meiyappan; Johnston, Peter V.

    2014-01-01

    Purpose To assess intrapericardial delivery of microencapsulated, xenogeneic human mesenchymal stem cells (hMSCs) by using x-ray fused with magnetic resonance (MR) imaging (x-ray/MR imaging) guidance as a potential treatment for ischemic cardiovascular disease in an immunocompetent swine model. Materials and Methods All animal experiments were approved by the institutional animal care and use committee. Stem cell microencapsulation was performed by using a modified alginate-poly-l-lysine-alginate encapsulation method to include 10% (wt/vol) barium sulfate to create barium-alginate microcapsules (BaCaps) that contained hMSCs. With x-ray/MR imaging guidance, eight female pigs (approximately 25 kg) were randomized to receive either BaCaps with hMSCs, empty BaCaps, naked hMSCs, or saline by using a percutaneous subxiphoid approach and were compared with animals that received empty BaCaps (n = 1) or BaCaps with hMSCs (n = 2) by using standard fluoroscopic delivery only. MR images and C-arm computed tomographic (CT) images were acquired before injection and 1 week after delivery. Animals were sacrificed immediately or at 1 week for histopathologic validation. Cardiac function between baseline and 1 week after delivery was evaluated by using a paired Student t test. Results hMSCs remained highly viable (94.8% ± 6) 2 days after encapsulation in vitro. With x-ray/MR imaging, successful intrapericardial access and delivery were achieved in all animals. BaCaps were visible fluoroscopically and at C-arm CT immediately and 1 week after delivery. Whereas BaCaps were free floating immediately after delivery, they consolidated into a pseudoepicardial tissue patch at 1 week, with hMSCs remaining highly viable within BaCaps; naked hMSCs were poorly retained. Follow-up imaging 1 week after x-ray/MR imaging–guided intrapericardial delivery showed no evidence of pericardial adhesion and/or effusion or adverse effect on cardiac function. In contradistinction, BaCaps delivery with x-ray fluoroscopy without x-ray/MR imaging (n = 3) resulted in pericardial adhesions and poor hMSC viability after 1 week. Conclusion Intrapericardial delivery of BaCaps with hMSCs leads to high cell retention and survival. With x-ray/MR imaging guidance, intrapericardial delivery can be performed safely in the absence of preexisting pericardial effusion to provide a novel route for cardiac cellular regenerative therapy. © RSNA, 2014 Online supplemental material is available for this article. PMID:24749713

  20. Re-analysis of RNA-seq transcriptome data reveals new aspects of gene activity in Arabidopsis root hairs

    PubMed Central

    Li, Wenfeng; Lan, Ping

    2015-01-01

    Root hairs, tubular-shaped outgrowths from root epidermal cells, play important roles in the acquisition of nutrients and water, interaction with microbe, and in plant anchorage. As a specialized cell type, root hairs, especially in Arabidopsis, provide a pragmatic research system for various aspects of studies. Here, we re-analyzed the RNA-seq transcriptome profile of Arabidopsis root hair cells by Tophat software and used Cufflinks program to mine the differentially expressed genes. Results showed that ERD14, RIN4, AT5G64401 were among the most abundant genes in the root hair cells; while ATGSTU2, AT5G54940, AT4G30530 were highly expressed in non-root hair tissues. In total, 5409 genes, with a fold change greater than two-fold (FDR adjusted P < 0.05), showed differential expression between root hair cells and non-root hair tissues. Of which, 61 were expressed only in root hair cells. One hundred and thirty-six out of 5409 genes have been reported to be “core” root epidermal genes, which could be grouped into nine clusters according to expression patterns. Gene ontology (GO) analysis of the 5409 genes showed that processes of “response to salt stress,” “ribosome biogenesis,” “protein phosphorylation,” and “response to water deprivation” were enriched. Whereas only process of “intracellular signal transduction” was enriched in the subset of 61 genes expressed only in the root hair cells. One hundred and twenty-one unannotated transcripts were identified and 14 of which were shown to be differentially expressed between root hair cells and non-root hair tissues, with transcripts XLOC_000763, XLOC_031361, and XLOC_005665 being highly expressed in the root hair cells. The comprehensive transcriptomic analysis provides new information on root hair gene activity and sets the stage for follow-up experiments to certify the biological functions of the newly identified genes and novel transcripts in root hair cell morphogenesis. PMID:26106402

  1. Quantum Dot Nanotoxicity Investigations Using Human Lung Cells and TOXOR Electrochemical Enzyme Assay Methodology.

    PubMed

    O'Hara, Tony; Seddon, Brian; O'Connor, Andrew; McClean, Siobhán; Singh, Baljit; Iwuoha, Emmanuel; Fuku, Xolile; Dempsey, Eithne

    2017-01-27

    Recent studies have suggested that certain nanomaterials can interfere with optically based cytotoxicity assays resulting in underestimations of nanomaterial toxicity. As a result there has been growing interest in the use of whole cell electrochemical biosensors for nanotoxicity applications. Herein we report application of an electrochemical cytotoxicity assay developed in house (TOXOR) in the evaluation of toxic effects of mercaptosuccinic acid capped cadmium telluride quantum dots (MSA capped CdTe QDs), toward mammalian cells. MSA capped CdTe QDs were synthesized, characterized, and their cytotoxicity toward A549 human lung epithelial cells investigated. The internalization of QDs within cells was scrutinized via confocal microscopy. The cytotoxicity assay is based on the measurement of changes in cellular enzyme acid phosphatase upon 24 h exposure to QDs. Acid phosphatase catalyzes dephosphorylation of 2-naphthyl phosphate to 2-naphthol (determined by chronocoulometry) and is indicative of metabolic activity in cells. The 24 h IC50 (concentration resulting in 50% reduction in acid phosphatase activity) value for MSA capped CdTe QDs was found to be 118 ± 49 μg/mL using the TOXOR assay and was in agreement with the MTT assay (157 ± 31 μg/mL). Potential uses of this electrochemical assay include the screening of nanomaterials, environmental toxins, in addition to applications in the pharmaceutical, food, and health sectors.

  2. Changes in infestation, cell cap condition, and reproductive status of Varroa destructor (Mesostigmata: Varrroidae) in brood exposed to honey bees with Varroa sensitive hygiene

    USDA-ARS?s Scientific Manuscript database

    Honey bees (Apis mellifera L.) bred for Varroa sensitive hygiene (VSH) selectively remove pupae infested with Varroa destructor Anderson & Trueman from capped brood that is inserted into the nest. After one week, remaining brood cells tend to have been uncapped and recapped, and remaining mites are...

  3. Cellular Response to Doping of High Porosity Foamed Alumina with Ca, P, Mg, and Si.

    PubMed

    Soh, Edwin; Kolos, Elizabeth; Ruys, Andrew J

    2015-03-13

    Foamed alumina was previously synthesised by direct foaming of sulphate salt blends varying ammonium mole fraction (AMF), foaming heating rate and sintering temperature. The optimal product was produced with 0.33AMF, foaming at 100 °C/h and sintering at 1600 °C. This product attained high porosity of 94.39%, large average pore size of 300 µm and the highest compressive strength of 384 kPa. To improve bioactivity, doping of porous alumina by soaking in dilute or saturated solutions of Ca, P, Mg, CaP or CaP + Mg was done. Saturated solutions of Ca, P, Mg, CaP and CaP + Mg were made with excess salt in distilled water and decanted. Dilute solutions were made by diluting the 100% solution to 10% concentration. Doping with Si was done using the sol gel method at 100% concentration only. Cell culture was carried out with MG63 osteosarcoma cells. Cellular response to the Si and P doped samples was positive with high cell populations and cell layer formation. The impact of doping with phosphate produced a result not previously reported. The cellular response showed that both Si and P doping improved the biocompatibility of the foamed alumina.

  4. Characterizing the physics of plant root gravitropism: A systems modeling approach

    NASA Astrophysics Data System (ADS)

    Yoder, Thomas Lynn

    Root gravitropism is divided into three mechanisms; the gravity sensor, transduction, and differential growth. The gravitropic response has been imitated with various mathematical constructs, but a coherent model based on systems engineering concepts does not exist. The goal of this research is to create models of the gravitropic sensor and differential growth response that are consistent with actual physical characteristics of these mechanisms. The study initially establishes that the amyloplasts within the central columella cells of maize are feasible gravity sensors; statoliths. Video-microscopy studies of live root cap sections are used to quantify the dynamics of the statoliths. Extensive MATLAB analysis of amyloplast sedimentation indicates that an actin network interferes with the free sedimentation of the statoliths. This interference is most significant in the central region of the cell and less significant near the periphery. This obstruction of actin creates a channeling behavior in amyloplasts sedimenting through the cell's central region. The amyloplasts also appear to exhibit cross-correlated motions. Cytochalasin D mediates both the channeling and correlated behaviors, confirming that the obstructive influence is actin-based. The video analysis produced a refined value for maize cytoplasmic viscosity. Efforts to model the differential growth mechanism examined historical growth data from numerous researchers. RELEL (relative elemental elongation) growth data applied to a model set analogous to bi-metallic bending is used. Testing and analysis of the model highlights an extremely high sensitivity of curvature to all RELEL parameters. This sensitivity appears to be the reason for the significant differences between gravitropic responses within like species. Newly observed gravitropic responses, along with historical data, are used to explore the gravitropic time response specifications as opposed to averaging individual time-curvature data into single responses. This approach highlights the significant disadvantages of time-averaging, low sampling rates, and a lack of frequency components being incorporated into the response. A single feedback "black box" model is created so that, along with the sensor and differential growth models, some inferences could be made about the elusive transduction mechanism. Numerous pieces of circumstantial evidence are found that indicate that the gravitropic mechanism is not a single-pathway system.

  5. Box H/ACA snoRNAs are preferred substrates for the trimethylguanosine synthase in the divergent unicellular eukaryote Trichomonas vaginalis

    PubMed Central

    Simoes-Barbosa, Augusto; Chakrabarti, Kausik; Pearson, Michael; Benarroch, Delphine; Shuman, Stewart; Johnson, Patricia J.

    2012-01-01

    The 2,2,7-trimethylguanosine caps of eukaryal snRNAs and snoRNA are formed by the enzyme Tgs1, which catalyzes sequential guanine-N2 methylations of m7G caps. Atypically, in the divergent unicellular eukaryote Trichomonas vaginalis, spliceosomal snRNAs lack a guanosine cap and the recombinant T. vaginalis trimethylguanosine synthase (TvTgs) produces only m2,7G in vitro. Here, we show by direct metabolic labeling that endogenous T. vaginalis RNAs contain m7G, m2,7G, and m2,2,7G caps. Immunodepletion of TvTgs from cell extracts and TvTgs add-back experiments demonstrate that TvTgs produces m2,7G and m2,2,7G caps. Expression of TvTgs in yeast tgs1Δ cells leads to the formation of m2,7G and m2,2,7G caps and complementation of the lethality of a tgs1Δ mud2Δ strain. Whereas TvTgs is present in the nucleus and cytosol of T. vaginalis cells, TMG-containing RNAs are localized primarily in the nucleolus. Molecular cloning of anti-TMG affinity-purified T. vaginalis RNAs identified 16 box H/ACA snoRNAs, which are implicated in guiding RNA pseudouridylation. The ensemble of new T. vaginalis H/ACA snoRNAs allowed us to predict and partially validate an extensive map of pseudouridines in T. vaginalis rRNA. PMID:22847815

  6. Sealing properties of one-step root-filling fibre post-obturators vs. two-step delayed fibre post-placement.

    PubMed

    Monticelli, Francesca; Osorio, Raquel; Toledano, Manuel; Ferrari, Marco; Pashley, David H; Tay, Franklin R

    2010-07-01

    The sealing properties of a one-step obturation post-placement technique consisting of Resilon-capped fibre post-obturators were compared with a two-step technique based on initial Resilon root filling following by 24h-delayed fibre post-placement. Thirty root segments were shaped to size 40, 0.04 taper and filled with: (1) InnoEndo obturators; (2) Resilon/24h-delayed FibreKor post-cementation. Obturator, root filling and post-cementation procedures were performed using InnoEndo bonding agent/dual-cured root canal sealer. Fluid flow rate through the filled roots was evaluated at 10psi using a computerised fluid filtration model before root resection and after 3 and 9mm apical resections. Fluid flow data were analysed using two-way repeated measures ANOVA and Tukey test to examine the effects of root-filling post-placement techniques and root resection lengths on fluid leakage from the filled canals (alpha=0.05). A significantly greater amount of fluid leakage was observed with the one-step technique when compared with two-step technique. No difference in fluid leakage was observed among intact canals and canals resected at different lengths for both materials. The seal of root canals achieved with the one-step obturator is less effective than separate Resilon root fillings followed by a 24-h delay prior to the fibre post-placement. Incomplete setting of the sealer and restricted relief of polymerisation shrinkage stresses may be responsible for the inferior seal of the one-step root-filling/post-restoration technique. Copyright 2010 Elsevier Ltd. All rights reserved.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martinell, J.; Whitney, J.B.; Popp, R.A.

    Three types of mice with globin gene mutations, called 352HB, 27HB, and Hba/sup th-J/, appear to be true animal models of human thalassemia. Expression of the ..cap alpha..-globin genes in three stocks of mice, each one heterozygous for one of the ..cap alpha..-globin mutations, was examined at the polypeptide, RNA, and DNA levels. ..cap alpha..-globin polypeptide chains, relative to ..gamma..-globin chains in heterozygous thalassemic mice, are present at approximately 80% of normal. The ratios of ..cap alpha..-globin to ..gamma..-globin RNA sequences are also 75 to 80% normal, exactly reflecting the ..cap alpha..-globin to ..gamma..-globin chain ratios. In the case ofmore » mutant 352HB, at least one ..cap alpha..-globin gene is deleted. Thalassemic mouse erythroid cells appear to compensate partially for the loss of half of their ..cap alpha..-globin genes.« less

  8. Actin capping protein CAPZB regulates cell morphology, differentiation, and neural crest migration in craniofacial morphogenesis†

    PubMed Central

    Mukherjee, Kusumika; Ishii, Kana; Pillalamarri, Vamsee; Kammin, Tammy; Atkin, Joan F.; Hickey, Scott E.; Xi, Qiongchao J.; Zepeda, Cinthya J.; Gusella, James F.; Talkowski, Michael E.; Morton, Cynthia C.; Maas, Richard L.; Liao, Eric C.

    2016-01-01

    CAPZB is an actin-capping protein that caps the growing end of F-actin and modulates the cytoskeleton and tethers actin filaments to the Z-line of the sarcomere in muscles. Whole-genome sequencing was performed on a subject with micrognathia, cleft palate and hypotonia that harbored a de novo, balanced chromosomal translocation that disrupts the CAPZB gene. The function of capzb was analyzed in the zebrafish model. capzb−/− mutants exhibit both craniofacial and muscle defects that recapitulate the phenotypes observed in the human subject. Loss of capzb affects cell morphology, differentiation and neural crest migration. Differentiation of both myogenic stem cells and neural crest cells requires capzb. During palate morphogenesis, defective cranial neural crest cell migration in capzb−/− mutants results in loss of the median cell population, creating a cleft phenotype. capzb is also required for trunk neural crest migration, as evident from melanophores disorganization in capzb−/− mutants. In addition, capzb over-expression results in embryonic lethality. Therefore, proper capzb dosage is important during embryogenesis, and regulates both cell behavior and tissue morphogenesis. PMID:26758871

  9. Expression of a gymnosperm PIN homologous gene correlates with auxin immunolocalization pattern at cotyledon formation and in demarcation of the procambium during Picea abies somatic embryo development and in seedling tissues.

    PubMed

    Palovaara, Joakim; Hallberg, Henrik; Stasolla, Claudio; Luit, Bert; Hakman, Inger

    2010-04-01

    In seed plants, the body organization is established during embryogenesis and is uniform across gymnosperms and angiosperms, despite differences during early embryogeny. Evidence from angiosperms implicates the plant hormone auxin and its polar transport, mainly established by the PIN family of auxin efflux transporters, in the patterning of embryos. Here, PaPIN1 from Norway spruce (Picea abies [L.] Karst.), a gene widely expressed in conifer tissues and organs, was characterized and its expression and localization patterns were determined with reverse transcription polymerase chain reaction and in situ hybridization during somatic embryo development and in seedlings. PaPIN1 shares the predicted structure of other PIN proteins, but its central hydrophilic loop is longer than most PINs. In phylogenetic analyses, PaPIN1 clusters with Arabidopsis thaliana (L.) Heynh. PIN3, PIN4 and PIN7, but its expression pattern also suggests similarity to PIN1. The PaPIN1 expression signal was high in the protoderm of pre-cotyledonary embryos, but not if embryos were pre-treated with the auxin transport inhibitor N-1-naphthylphthalamic acid (NPA). This, together with a high auxin immunolocalization signal in this cell layer, suggests a role of PaPIN1 during cotyledon formation. At later stages, high PaPIN1 expression was observed in differentiating procambium, running from the tip of incipient cotyledons down through the embryo axis and to the root apical meristem (RAM), although the mode of RAM specification in conifer embryos differs from that of most angiosperms. Also, the PaPIN1 in situ signal was high in seedling root tips including root cap columella cells. The results thus suggest that PaPIN1 provides an ancient function associated with auxin transport and embryo pattern formation prior to the separation of angiosperms and gymnosperms, in spite of some morphological differences.

  10. Cost-effectiveness analysis of bortezomib in combination with rituximab, cyclophosphamide, doxorubicin, vincristine and prednisone (VR-CAP) in patients with previously untreated mantle cell lymphoma.

    PubMed

    van Keep, Marjolijn; Gairy, Kerry; Seshagiri, Divyagiri; Thilakarathne, Pushpike; Lee, Dawn

    2016-08-04

    Mantle cell lymphoma (MCL) is a rare and aggressive form of non-Hodgkin's lymphoma. Bortezomib is the first product to be approved for the treatment of patients with previously untreated MCL, for whom haematopoietic stem cell transplantation is unsuitable, and is used in combination with rituximab, cyclophosphamide, doxorubicin, vincristine and prednisone (VR-CAP). The National Institute of Health and Care Excellence recently recommended the use of VR-CAP in the UK following a technology appraisal. We present the cost effectiveness analysis performed as part of that assessment: VR-CAP versus the current standard of care regimen of rituximab, cyclophosphamide, doxorubicin, vincristine and prednisone (R-CHOP) in a UK setting. A lifetime economic model was developed with health states based upon line of treatment and progression status. Baseline patient characteristics, dosing, safety and efficacy were based on the LYM-3002 trial. As overall survival data were immature, survival was modelled by progression status, and post-progression survival was assumed equal across arms. Utilities were derived from LYM-3002 and literature, and standard UK cost sources were used. Treatment with VR-CAP compared to R-CHOP gave an incremental quality-adjusted life year (QALY) gain of 0.81 at an additional cost of £16,212, resulting in a base case incremental cost-effectiveness ratio of £20,043. Deterministic and probabilistic sensitivity analyses showed that treatment with VR-CAP was cost effective at conventional willingness-to-pay thresholds (£20,000-£30,000 per QALY). VR-CAP is a cost-effective option for previously untreated patients with MCL in the UK.

  11. Helium-based cold atmospheric plasma-induced reactive oxygen species-mediated apoptotic pathway attenuated by platinum nanoparticles.

    PubMed

    Jawaid, Paras; Rehman, Mati Ur; Zhao, Qing Li; Takeda, Keigo; Ishikawa, Kenji; Hori, Masaru; Shimizu, Tadamichi; Kondo, Takashi

    2016-09-01

    Plasma is generated by ionizing gas molecules. Helium (He)-based cold atmospheric plasma (CAP) was generated using a high-voltage power supply with low-frequency excitation (60 Hz at 7 kV) and He flow at 2 l/min. Platinum nanoparticles (Pt-NPs) are potent antioxidants due to their unique ability to scavenge superoxides and peroxides. These features make them useful for the protection against oxidative stress-associated pathologies. Here, the effects of Pt-NPs on He-CAP-induced apoptosis and the underlying mechanism were examined in human lymphoma U937 cells. Apoptosis was measured after cells were exposed to He-CAP in the presence or absence of Pt-NPs. The effects of combined treatment were determined by observing the changes in intracellular reactive oxygen species (ROS) and both mitochondrial and Fas dependent pathway. The results indicate that Pt-NPs substantially scavenge He-CAP-induced superoxides and peroxides and inhibit all the pathways involved in apoptosis execution. This might be because of the SOD/catalase mimetic effects of Pt-NPs. These results showed that the Pt-NPs can induce He-CAP desensitization in human lymphoma U937 cells. © 2016 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  12. Identifying the transition to the maturation zone in three ecotypes of Arabidopsis thaliana roots.

    PubMed

    Cajero Sánchez, Wendy; García-Ponce, Berenice; Sánchez, María de la Paz; Álvarez-Buylla, Elena R; Garay-Arroyo, Adriana

    2018-01-01

    The Arabidopsis thaliana (hereafter Arabidopsis) root has become a useful model for studying how organ morphogenesis emerge from the coordination and balance of cell proliferation and differentiation, as both processes may be observed and quantified in the root at different stages of development. Hence, being able to objectively identify and delimit the different stages of root development has been very important. Up to now, three different zones along the longitudinal axis of the primary root of Arabidopsis, have been identified: the root apical meristematic zone (RAM) with two domains [the proliferative (PD) and the transition domain (TD)], the elongation zone (EZ) and the maturation zone (MZ). We previously reported a method to quantify the length of the cells of the meristematic and the elongation zone, as well as the boundaries or transitions between the root domains along the growing part of the Arabidopsis root. In this study, we provide a more accurate criterion to identify the MZ. Traditionally, the transition between the EZ to the MZ has been established by the emergence of the first root-hair bulge in the epidermis, because this emergence coincides with cell maturation in this cell type. But we have found here that after the emergence of the first root-hair bulge some cells continue to elongate and we have confirmed this in three different Arabidopsis ecotypes. We established the limit between the EZ and the MZ by looking for the closest cortical cell with a longer length than the average cell length of 10 cells after the cortical cell closest to the epidermal cell with the first root-hair bulge in these three ecotypes. In Col-0 and Ws this cell is four cells above the one with the root hair bulge and, in the Ler ecotype, this cell is five cells above. To unambiguously identifying the site at which cells stop elongating and attain their final length and fate at the MZ, we propose to calculate the length of completely elongated cortical cells counting 10 cells starting from the sixth cell above the cortical cell closest to the epidermal cell with the first root-hair bulge. We validated this proposal in the three ecotypes analyzed and consider that this proposal may aid at having a more objective way to characterize root phenotypes and compare among them.

  13. Identifying the transition to the maturation zone in three ecotypes of Arabidopsis thaliana roots

    PubMed Central

    Cajero Sánchez, Wendy; García-Ponce, Berenice; Sánchez, María de la Paz; Álvarez-Buylla, Elena R.; Garay-Arroyo, Adriana

    2018-01-01

    ABSTRACT The Arabidopsis thaliana (hereafter Arabidopsis) root has become a useful model for studying how organ morphogenesis emerge from the coordination and balance of cell proliferation and differentiation, as both processes may be observed and quantified in the root at different stages of development. Hence, being able to objectively identify and delimit the different stages of root development has been very important. Up to now, three different zones along the longitudinal axis of the primary root of Arabidopsis, have been identified: the root apical meristematic zone (RAM) with two domains [the proliferative (PD) and the transition domain (TD)], the elongation zone (EZ) and the maturation zone (MZ). We previously reported a method to quantify the length of the cells of the meristematic and the elongation zone, as well as the boundaries or transitions between the root domains along the growing part of the Arabidopsis root. In this study, we provide a more accurate criterion to identify the MZ. Traditionally, the transition between the EZ to the MZ has been established by the emergence of the first root-hair bulge in the epidermis, because this emergence coincides with cell maturation in this cell type. But we have found here that after the emergence of the first root-hair bulge some cells continue to elongate and we have confirmed this in three different Arabidopsis ecotypes. We established the limit between the EZ and the MZ by looking for the closest cortical cell with a longer length than the average cell length of 10 cells after the cortical cell closest to the epidermal cell with the first root-hair bulge in these three ecotypes. In Col-0 and Ws this cell is four cells above the one with the root hair bulge and, in the Ler ecotype, this cell is five cells above. To unambiguously identifying the site at which cells stop elongating and attain their final length and fate at the MZ, we propose to calculate the length of completely elongated cortical cells counting 10 cells starting from the sixth cell above the cortical cell closest to the epidermal cell with the first root-hair bulge. We validated this proposal in the three ecotypes analyzed and consider that this proposal may aid at having a more objective way to characterize root phenotypes and compare among them. PMID:29497470

  14. Cold atmospheric plasma discharged in water and its potential use in cancer therapy

    NASA Astrophysics Data System (ADS)

    Chen, Zhitong; Cheng, Xiaoqian; Lin, Li; Keidar, Michael

    2017-01-01

    Cold atmospheric plasma (CAP) has emerged as a novel technology for cancer treatment. CAP can directly treat cells and tissue but such direct application is limited to skin or can be invoked as a supplement during open surgery. In this study we report indirect plasma treatment using CAP discharged in deionized (DI) water using three gases as carriers (argon (Ar), helium (He), and nitrogen (N2)). Plasma stimulated water was applied to the human breast cancer cell line (MDA-MB-231). MTT (3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay tests showed that using Ar plasma had the strongest effect on inducing apoptosis in cultured human breast cancer cells. This result is attributed to the elevated production of reactive oxygen species and reactive nitrogen species in water.

  15. Inflammatory response in mixed viral-bacterial community-acquired pneumonia.

    PubMed

    Bello, Salvador; Mincholé, Elisa; Fandos, Sergio; Lasierra, Ana B; Ruiz, María A; Simon, Ana L; Panadero, Carolina; Lapresta, Carlos; Menendez, Rosario; Torres, Antoni

    2014-07-29

    The role of mixed pneumonia (virus+bacteria) in community-acquired pneumonia (CAP) has been described in recent years. However, it is not known whether the systemic inflammatory profile is different compared to monomicrobial CAP. We wanted to investigate this profile of mixed viral-bacterial infection and to compare it to monomicrobial bacterial or viral CAP. We measured baseline serum procalcitonin (PCT), C reactive protein (CRP), and white blood cell (WBC) count in 171 patients with CAP with definite etiology admitted to a tertiary hospital: 59 (34.5%) bacterial, 66 (39.%) viral and 46 (27%) mixed (viral-bacterial). Serum PCT levels were higher in mixed and bacterial CAP compared to viral CAP. CRP levels were higher in mixed CAP compared to the other groups. CRP was independently associated with mixed CAP. CRP levels below 26 mg/dL were indicative of an etiology other than mixed in 83% of cases, but the positive predictive value was 45%. PCT levels over 2.10 ng/mL had a positive predictive value for bacterial-involved CAP versus viral CAP of 78%, but the negative predictive value was 48%. Mixed CAP has a different inflammatory pattern compared to bacterial or viral CAP. High CRP levels may be useful for clinicians to suspect mixed CAP.

  16. Molecular mechanisms responsible for interaction or differentiation between hydrotropism and gravitropism in roots

    NASA Astrophysics Data System (ADS)

    Takahashi, Hideyuki; Morohashi, Keita; Kobayashi, Akie; Miyazawa, Yutaka; Fujii, Nobuharu

    Roots display hydrotropism in response to moisture gradient, but it is often interfered by gravitropic response on Earth. We demonstrated that roots of cucumber seedlings showed positive hydrotropism when exposed to moisture gradient and rotated on a two-axis clinostat. Under stationary conditions, however, gravitropic response overcame hydrotropic response. Using this experimental system, we examined the role of auxin in hydrotropism. Cucumber roots showed severely reduced hydrotropic response when treated with inhibitors of auxin transport (efflux) or auxin action. mRNA accumulation of auxin-inducible gene, CsIAA1, became more abundant in the concave side of the hydrotropically responding roots, compared with that of the convex side. To understand the auxin dynamics in cucumber roots, we isolated cDNAs of auxin efflux carriers, CsPINs, and examined the localization of their mRNAs and proteins. Of these CsPINs, CsPIN5 was localized peripherally in the region between lateral root cap and elongation zone of cucumber roots. In hydrotropically responding roots, CsPIN5 proteins decreased in the convex side while it was maintained in the concave side. These results suggest that auxin dynamics and action play important roles in inducing hydrotropism, similarly to the case of gravitropism in roots. In cucumber roots, therefore, hydrotropism interacts with gravitropism, possibly by competitive manner in auxin dynamics. We are currently preparing spaceflight experiment for separating the hydrotropic response mechanism from that of gravitropism to understand the regulatory mechanisms of root growth orientation and determine whether hydrotropic response can be used for controlling growth orientation of roots in microgravity. On the other hand, we identified MIZ1 gene essential for hydrotropism but not gravitropism in Arabidopsis roots. Thus, there exist molecular mechanisms shared and differed in the two tropisms.

  17. 14-3-3η Amplifies Androgen Receptor Actions in Prostate Cancer

    PubMed Central

    Titus, Mark A.; Tan, Jiann-an; Gregory, Christopher W.; Ford, O. Harris; Subramanian, Romesh R.; Fu, Haian; Wilson, Elizabeth M.; Mohler, James L.; French, Frank S.

    2009-01-01

    Purpose Androgen receptor (AR) abundance and AR-regulated gene expression in castration-recurrent prostate cancer (CaP) are indicative of AR activation in the absence of testicular androgen. AR transactivation of target genes in castration-recurrent CaP occurs in part through mitogen signaling that amplifies the actions of AR and its coregulators. Herein we report on the role of 14-3-3η in AR action. Experimental Design and Results AR and 14-3-3η co-localized in COS cell nuclei with and without androgen and 14-3-3η promoted AR nuclear localization in the absence of androgen. 14-3-3η interacted with AR in cell-free binding and coimmunoprecipitation assays. In the recurrent human CaP cell line, CWR-R1, native endogenous AR transcriptional activation was stimulated by 14-3-3η at low DHT concentrations and was increased by EGF. Moreover, the DHT and EGF dependent increase in AR transactivation was inhibited by a dominant negative 14-3-3η. In the CWR22 CaP xenograft model, 14-3-3η expression was increased by androgen, suggesting a feed-forward mechanism that potentiates both 14-3-3η and AR actions. 14-3-3η mRNA and protein decreased following castration of tumor bearing mice and increased in tumors of castrate mice after treatment with testosterone. CWR22 tumors that recurred 5 months after castration contained 14-3-3η levels similar to the androgen-stimulated tumors removed before castration. In a human prostate tissue microarray of clinical specimens, 14-3-3η localized with AR in nuclei and the similar amounts expressed in castration-recurrent CaP, androgen-stimulated CaP and benign prostatic hyperplasia were consistent with AR activation in recurrent CaP. Conclusion 14-3-3η enhances androgen and mitogen induced AR transcriptional activity in castration-recurrent CaP. PMID:19996220

  18. Vesicular LL-37 Contributes to Inflammation of the Lesional Skin of Palmoplantar Pustulosis

    PubMed Central

    Murakami, Masamoto; Kaneko, Takaaki; Nakatsuji, Teruaki; Kameda, Kenji; Okazaki, Hidenori; Dai, Xiuju; Hanakawa, Yasushi; Tohyama, Mikiko; Ishida-Yamamoto, Akemi; Sayama, Koji

    2014-01-01

    “Pustulosis palmaris et plantaris”, or palmoplantar pustulosis (PPP), is a chronic pustular dermatitis characterized by intraepidermal palmoplantar pustules. Although early stage vesicles (preceding the pustular phase) formed in the acrosyringium contain the antimicrobial peptides cathelicidin (hCAP-18/LL-37) and dermcidin, the details of hCAP-18/LL-37 expression in such vesicles remain unclear. The principal aim of the present study was to clarify the manner of hCAP-18/LL-37 expression in PPP vesicles and to determine whether this material contributed to subsequent inflammation of lesional skin. PPP vesicle fluid (PPP-VF) induced the expression of mRNAs encoding IL-17C, IL-8, IL-1α, and IL-1β in living skin equivalents, but the level of only IL-8 mRNA decreased significantly upon stimulation of PPP vesicle with depletion of endogenous hCAP-18/LL-37 by affinity chromatography (dep-PPP-VF). Semi-quantitative dot-blot analysis revealed higher concentrations of hCAP-18/LL-37 in PPP-VF compared to healthy sweat (2.87±0.93 µM vs. 0.09±0.09 µM). This concentration of hCAP-18/LL-37 in PPP-VF could upregulate expression of IL-17C, IL-8, IL-1α, and IL-1β at both the mRNA and protein levels. Recombinant hCAP-18 was incubated with dep-PPP-VF. Proteinase 3, which converts hCAP-18 to the active form (LL-37), was present in PPP-VF. Histopathological and immunohistochemical examination revealed that early stage vesicles contained many mononuclear cells but no polymorphonuclear cells, and the mononuclear cells were CD68-positive. The epidermis surrounding the vesicle expresses monocyte chemotactic chemokine, CCL2. In conclusion, PPP-VF contains the proteinase required for LL-37 processing and also may directly upregulate IL-8 in lesional keratinocytes, in turn contributing to the subsequent inflammation of PPP lesional skin. PMID:25330301

  19. The role of aquaporins in the anti-glioblastoma capacity of the cold plasma-stimulated medium

    NASA Astrophysics Data System (ADS)

    Yan, Dayun; Xiao, Haijie; Zhu, Wei; Nourmohammadi, Niki; Zhang, Lijie Grace; Bian, Ka; Keidar, Michael

    2017-02-01

    The cold atmospheric plasma (CAP) is a promising novel anti-cancer method. Our previous study showed that the cold plasma-stimulated medium (PSM) exerted remarkable anti-cancer effect as effectively as the direct CAP treatment did. H2O2 has been identified as a key anti-cancer substance in PSM. However, the mechanisms underlying intracellular H2O2 regulation by cancer cells is largely unknown. Aquaporins (AQPs) are the confirmed membrane channels of H2O2. In this study, we first demonstrated that the anti-glioblastoma capacity of PSM could be inhibited by silencing the expression of AQP8 in glioblastoma cells (U87MG) or using the aquaporins-blocker silver atoms. This discovery illustrates the key intermediate role of AQPs in the toxicity of PSM on cancer cells. Because the expression of AQPs varies significantly among different cancer cell lines, this study may facilitate the understanding on the diverse responses of cancer cells to PSM or the direct CAP treatment.

  20. Novel biodegradable calcium phosphate/polymer composite coating with adjustable mechanical properties formed by hydrothermal process for corrosion protection of magnesium substrate.

    PubMed

    Kaabi Falahieh Asl, Sara; Nemeth, Sandor; Tan, Ming Jen

    2016-11-01

    Ceramic type coatings on metallic implants, such as calcium phosphate (Ca-P), are generally stiff and brittle, potentially leading to the early failure of the bone-implant interface. To reduce material brittleness, polyacrylic acid and carboxymethyl cellulose were used in this study to deposit two types of novel Ca-P/polymer composite coatings on AZ31 magnesium alloy using a one-step hydrothermal process. X-ray diffraction and scanning electron microscopy showed that the deposited Ca-P crystal phase and morphology could be controlled by the type and concentration of polymer used. Incorporation of polymer in the Ca-P coatings reduced the coating elastic modulus bringing it close to that of magnesium and that of human bone. Nanoindentation test results revealed significantly decreased cracking tendency with the incorporation of polymer in the Ca-P coating. Apart from mechanical improvements, the protective composite layers had also enhanced the corrosion resistance of the substrate by a factor of 1000 which is sufficient for implant application. Cell proliferation studies indicated that the composite coatings induced better cell attachment compared with the purely inorganic Ca-P coating, confirming that the obtained composite materials could be promising candidates for surface protection of magnesium for implant application with the multiple functions of corrosion protection, interfacial stress reduction, and cell attachment/cell growth promotion. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 1643-1657, 2016. © 2015 Wiley Periodicals, Inc.

  1. Isolation and Characterization of a Phosphorus-Solubilizing Bacterium from Rhizosphere Soils and Its Colonization of Chinese Cabbage (Brassica campestris ssp. chinensis)

    PubMed Central

    Wang, Zhen; Xu, Guoyi; Ma, Pengda; Lin, Yanbing; Yang, Xiangna; Cao, Cuiling

    2017-01-01

    Phosphate-solubilizing bacteria (PSB) can promote the dissolution of insoluble phosphorus (P) in soil, enhancing the availability of soluble P. Thus, their application can reduce the consumption of fertilizer and aid in sustainable agricultural development. From the rhizosphere of Chinese cabbage plants grown in Yangling, we isolated a strain of PSB (YL6) with a strong ability to dissolve P and showed that this strain promoted the growth of these plants under field conditions. However, systematic research on the colonization of bacteria in the plant rhizosphere remains deficient. Thus, to further study the effects of PSB on plant growth, in this study, green fluorescent protein (GFP) was used to study the colonization of YL6 on Chinese cabbage roots. GFP expression had little effect on the ability of YL6 to grow and solubilize P. In addition, the GFP-expressing strain stably colonized the Chinese cabbage rhizosphere (the number of colonizing bacteria in the rhizosphere soil was 4.9 lg CFU/g). Using fluorescence microscopy, we observed a high abundance of YL6-GFP bacteria at the Chinese cabbage root cap and meristematic zone, as well as in the root hairs and hypocotyl epidermal cells. High quantities of GFP-expressing bacteria were recovered from Chinese cabbage plants during different planting periods for further observation, indicating that YL6-GFP had the ability to endogenously colonize the plants. This study has laid a solid and significant foundation for further research on how PSB affects the physiological processes in Chinese cabbage to promote plant growth. PMID:28798725

  2. Toxicological implications of selenium nanoparticles with different coatings along with Se4+ on Lemna minor.

    PubMed

    Tarrahi, Roshanak; Khataee, Alireza; Movafeghi, Ali; Rezanejad, Farkhondeh; Gohari, Gholamreza

    2017-08-01

    Nanoparticles have potential high risks for living organisms in the environment due to their specific qualities and their easy access. In the present study, selenium nanoparticles (Se NPs) with two different coatings (l-cysteine and tannic acid) were synthesized. The characteristics of particles were analyzed using XRD, FT-IR and SEM. The impact of the nanoparticles besides Se 4+ , on the aquatic higher plant Lemna minor was evaluated and compared. Entrance of l-cysteine and tannic acid capped Se NPs in the roots of Lemna minor was proved by TEM and fluorescence microscopy. Adverse effects of mentioned NPs and differences of these effects from those by sodium selenite as the ionic form were assessed by a range of biophysicochemical tests. Altogether, the results asserted that Lemna minor was notably poisoned by both capped Se NPs and Se 4+ . Thus, growth and photosynthetic pigments were decreased while lipid peroxidation along with total phenol and flavonoid contents were raised. Eventually some changes in enzymatic activities were presented. To sum up the consequences, it can be concluded that all changes occurred due to the plant defense system especially in order to remove reactive oxygen species (ROS) and possible phytotoxicity originated by l- cysteine and tannic acid capped Se NPs in addition to Se 4+ . The influence of tannic acid capped Se NPs after sodium selenite is stronger by the means of antioxidant enzymes activity in comparison with l-cysteine capped Se NPs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Functional Tooth Restoration by Allogeneic Mesenchymal Stem Cell-Based Bio-Root Regeneration in Swine

    PubMed Central

    Wei, Fulan; Song, Tieli; Ding, Gang; Xu, Junji; Liu, Yi; Liu, Dayong; Fan, Zhipeng; Zhang, Chunmei

    2013-01-01

    Our previous proof-of-concept study showed the feasibility of regenerating the dental stem cell-based bioengineered tooth root (bio-root) structure in a large animal model. Here, we used allogeneic dental mesenchymal stem cells to regenerate bio-root, and then installed a crown on the bio-root to restore tooth function. A root shape hydroxyapatite tricalcium phosphate scaffold containing dental pulp stem cells was covered by a Vc-induced periodontal ligament stem cell sheet and implanted into a newly generated jaw bone implant socket. Six months after implantation, a prefabricated porcelain crown was cemented to the implant and subjected to tooth function. Clinical, radiological, histological, ultrastructural, systemic immunological evaluations and mechanical properties were analyzed for dynamic changes in the bio-root structure. The regenerated bio-root exhibited characteristics of a normal tooth after 6 months of use, including dentinal tubule-like and functional periodontal ligament-like structures. No immunological response to the bio-roots was observed. We developed a standard stem cell procedure for bio-root regeneration to restore adult tooth function. This study is the first to successfully regenerate a functional bio-root structure for artificial crown restoration by using allogeneic dental stem cells and Vc-induced cell sheet, and assess the recipient immune response in a preclinical model. PMID:23363023

  4. Phenotypic variation of Pseudomonas brassicacearum as a plant root-colonization strategy.

    PubMed

    Achouak, Wafa; Conrod, Sandrine; Cohen, Valérie; Heulin, Thierry

    2004-08-01

    Pseudomonas brassicacearum was isolated as a major root-colonizing population from Arabidopsis thaliana. The strain NFM421 of P. brassicacearum undergoes phenotypic variation during A. thaliana and Brassica napus root colonization in vitro as well as in soil, resulting in different colony appearance on agar surfaces. Bacteria forming translucent colonies (phase II cells) essentially were localized at the surface of young roots and root tips, whereas wild-type cells (phase I cells) were localized at the basal part of roots. The ability of phase II cells to spread and colonize new sites on root surface correlates with over-production of flagellin as evidenced by sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of surface proteins and microsequencing. Moreover, phase II cells showed a higher ability to swim and to swarm on semisolid agar medium. Phase I and phase II cells of P. brassicacearum NFM421 were tagged genetically with green fluorescent protein and red fluorescent protein. Confocal scanning laser microscopy was used to localize phase II cells on secondary roots and root tips of A. thaliana, whereas phase I cells essentially were localized at the basal part of roots. These experiments were conducted in vitro and in soil. Phenotypic variation on plant roots is likely to be a colonization strategy that may explain the high colonization power of P. brassicacearum.

  5. Evaluation of Roles of Interferon Gamma Regulated Genes in Inhibition of Androgen-Independent Prostate Cancer

    DTIC Science & Technology

    2006-08-01

    35V xenograft does not grow in vitro; for this reason, this exploratory proposal was design to evaluate the responses of various CaP cell lines to E2...observed effects of E2 on prostate cancer xenografts in vivo might be mediated via indirect effects through interactions of CaP cells with cells of the...16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18 . NUMBER OF PAGES 19a. NAME OF RESPONSIBLE PERSON USAMRMC a. REPORT U b

  6. Root Hairs

    PubMed Central

    Grierson, Claire; Nielsen, Erik; Ketelaarc, Tijs; Schiefelbein, John

    2014-01-01

    Roots hairs are cylindrical extensions of root epidermal cells that are important for acquisition of nutrients, microbe interactions, and plant anchorage. The molecular mechanisms involved in the specification, differentiation, and physiology of root hairs in Arabidopsis are reviewed here. Root hair specification in Arabidopsis is determined by position-dependent signaling and molecular feedback loops causing differential accumulation of a WD-bHLH-Myb transcriptional complex. The initiation of root hairs is dependent on the RHD6 bHLH gene family and auxin to define the site of outgrowth. Root hair elongation relies on polarized cell expansion at the growing tip, which involves multiple integrated processes including cell secretion, endomembrane trafficking, cytoskeletal organization, and cell wall modifications. The study of root hair biology in Arabidopsis has provided a model cell type for insights into many aspects of plant development and cell biology. PMID:24982600

  7. Laser capture microdissection of embryonic cells and preparation of RNA for microarray assays.

    PubMed

    Redmond, Latasha C; Pang, Christopher J; Dumur, Catherine; Haar, Jack L; Lloyd, Joyce A

    2014-01-01

    In order to compare the global gene expression profiles of different embryonic cell types, it is first necessary to isolate the specific cells of interest. The purpose of this chapter is to provide a step-by-step protocol to perform laser capture microdissection (LCM) on embryo samples and obtain sufficient amounts of high-quality RNA for microarray hybridizations. Using the LCM/microarray strategy on mouse embryo samples has some challenges, because the cells of interest are available in limited quantities. The first step in the protocol is to obtain embryonic tissue, and immediately cryoprotect and freeze it in a cryomold containing Optimal Cutting Temperature freezing media (Sakura Finetek), using a dry ice-isopentane bath. The tissue is then cryosectioned, and the microscope slides are processed to fix, stain, and dehydrate the cells. LCM is employed to isolate specific cell types from the slides, identified under the microscope by virtue of their morphology. Detailed protocols are provided for using the currently available ArcturusXT LCM instrument and CapSure(®) LCM Caps, to which the selected cells adhere upon laser capture. To maintain RNA integrity, upon removing a slide from the final processing step, or attaching the first cells on the LCM cap, LCM is completed within 20 min. The cells are then immediately recovered from the LCM cap using a denaturing solution that stabilizes RNA integrity. RNA is prepared using standard methods, modified for working with small samples. To ensure the validity of the microarray data, the quality of the RNA is assessed using the Agilent bioanalyzer. Only RNA that is of sufficient integrity and quantity is used to perform microarray assays. This chapter provides guidance regarding troubleshooting and optimization to obtain high-quality RNA from cells of limited availability, obtained from embryo samples by LCM.

  8. Laser Capture Microdissection of Embryonic Cells and Preparation of RNA for Microarray Assays

    PubMed Central

    Redmond, Latasha C.; Pang, Christopher J.; Dumur, Catherine; Haar, Jack L.; Lloyd, Joyce A.

    2014-01-01

    In order to compare the global gene expression profiles of different embryonic cell types, it is first necessary to isolate the specific cells of interest. The purpose of this chapter is to provide a step-by-step protocol to perform laser capture microdissection (LCM) on embryo samples and obtain sufficient amounts of high-quality RNA for microarray hybridizations. Using the LCM/microarray strategy on mouse embryo samples has some challenges, because the cells of interest are available in limited quantities. The first step in the protocol is to obtain embryonic tissue, and immediately cryoprotect and freeze it in a cryomold containing Optimal Cutting Temperature freezing media (Sakura Finetek), using a dry ice–isopentane bath. The tissue is then cryosectioned, and the microscope slides are processed to fix, stain, and dehydrate the cells. LCM is employed to isolate specific cell types from the slides, identified under the microscope by virtue of their morphology. Detailed protocols are provided for using the currently available ArcturusXT LCM instrument and CapSure® LCM Caps, to which the selected cells adhere upon laser capture. To maintain RNA integrity, upon removing a slide from the final processing step, or attaching the first cells on the LCM cap, LCM is completed within 20 min. The cells are then immediately recovered from the LCM cap using a denaturing solution that stabilizes RNA integrity. RNA is prepared using standard methods, modified for working with small samples. To ensure the validity of the microarray data, the quality of the RNA is assessed using the Agilent bioanalyzer. Only RNA that is of sufficient integrity and quantity is used to perform microarray assays. This chapter provides guidance regarding troubleshooting and optimization to obtain high-quality RNA from cells of limited availability, obtained from embryo samples by LCM. PMID:24318813

  9. Esterase- and pH-responsive poly(β-amino ester)-capped mesoporous silica nanoparticles for drug delivery.

    PubMed

    Fernando, Isurika R; Ferris, Daniel P; Frasconi, Marco; Malin, Dmitry; Strekalova, Elena; Yilmaz, M Deniz; Ambrogio, Michael W; Algaradah, Mohammed M; Hong, Michael P; Chen, Xinqi; Nassar, Majed S; Botros, Youssry Y; Cryns, Vincent L; Stoddart, J Fraser

    2015-04-28

    Gating of mesoporous silica nanoparticles (MSNs) with the stimuli-responsive poly(β-amino ester) has been achieved. This hybrid nanocarrier releases doxorubicin (DOX) under acidic conditions or in the presence of porcine liver esterase. The DOX loaded poly(β-amino ester)-capped MSNs reduce cell viability when tested on MDA-MB-231 human breast cancer cells.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keidar, Michael, E-mail: keidar@gwu.edu; Robert, Eric

    Intense research effort over last few decades in low-temperature (or cold) atmospheric plasma application in bioengineering led to the foundation of a new scientific field, plasma medicine. Cold atmospheric plasmas (CAP) produce various chemically reactive species including reactive oxygen species (ROS) and reactive nitrogen species (RNS). It has been found that these reactive species play an important role in the interaction of CAP with prokaryotic and eukaryotic cells triggering various signaling pathways in cells.

  11. Analysis of changes in relative elemental growth rate patterns in the elongation zone of Arabidopsis roots upon gravistimulation

    NASA Technical Reports Server (NTRS)

    Mullen, J. L.; Ishikawa, H.; Evans, M. L.

    1998-01-01

    Although Arabidopsis is an important system for studying root physiology, the localized growth patterns of its roots have not been well defined, particularly during tropic responses. In order to characterize growth rate profiles along the apex of primary roots of Arabidopsis thaliana (L.) Heynh (ecotype Columbia) we applied small charcoal particles to the root surface and analyzed their displacement during growth using an automated video digitizer system with custom software for tracking the markers. When growing vertically, the maximum elongation rate occurred 481 +/- 50 microns back from the extreme tip of the root (tip of root cap), and the elongation zone extended back to 912 +/- 137 microns. The distal elongation zone (DEZ) has previously been described as the apical region of the elongation zone in which the relative elemental growth rate (REGR) is < or = 30% of the peak rate in the central elongation zone. By this definition, our data indicate that the basal limit of the DEZ was located 248 +/- 30 microns from the root tip. However, after gravistimulation, the growth patterns of the root changed. Within the first hour of graviresponse, the basal limit of the DEZ and the position of peak REGR shifted apically on the upper flank of the root. This was due to a combination of increased growth in the DEZ and growth inhibition in the central elongation zone. On the lower flank, the basal limit of the DEZ shifted basipetally as the REGR decreased. These factors set up the gradient of growth rate across the root, which drives curvature.

  12. Synthesis and characterization of nanosized calcium phosphates by flame spray pyrolysis, and their effect on osteogenic differentiation of stem cells

    NASA Astrophysics Data System (ADS)

    Ataol, Sibel; Tezcaner, Ayşen; Duygulu, Ozgur; Keskin, Dilek; Machin, Nesrin E.

    2015-02-01

    The present study evaluates the synthesis of biocompatible osteoconductive and osteoinductive nano calcium phosphate (CaP) particles by industrially applied, aerosol-derived flame spray pyrolysis method for biomedical field. Calcium phosphate nanoparticles were produced in a range of calcium-to-phosphorus ratio, (1.20-2.19) in order to analyze the morphology and crystallinity changes, and to test the bioactivity of particles. The characterization results confirmed that nanometer-sized, spherical calcium phosphate particles were produced. The average primary particle size was determined as 23 nm by counting more than 500 particles in TEM pictures. XRD patterns, HRTEM, SAED, and SEM analyses revealed the amorphous nature of the as-prepared nano calcium phosphate particles at low Ca/P ratios. Increases in the specific surface area and crystallinity were observed with the increasing Ca/P ratio. TGA-DTA analysis showed that the thermally stable crystal phases formed after 700 °C. Cell culture studies were conducted with urine-derived stem cells that possess the characteristics of mesenchymal stem cells. Synthesized amorphous nanoparticles did not have cytotoxic effect at 5-50 μg/ml concentration range. Cells treated with the as-prepared nanoparticles had higher alkaline phosphatase (ALP) enzyme activity than control cells, indicating osteogenic differentiation of cells. A slight decrease in ALP activity of cells treated with two highest Ca:P ratios at 50 μg/ml concentration was observed at day 7. The findings suggest that calcium phosphate nanoparticles produced in this work have a potential to be used as biomaterials in biomedical applications.

  13. Association between bortezomib dose intensity and overall survival in mantle cell lymphoma patients on frontline VR-CAP in the phase 3 LYM-3002 study.

    PubMed

    Robak, Tadeusz; Huang, Huiqiang; Jin, Jie; Zhu, Jun; Liu, Ting; Samoilova, Olga; Pylypenko, Halyna; Verhoef, Gregor; Siritanaratkul, Noppadol; Osmanov, Evgenii; Pereira, Juliana; Mayer, Jiri; Hong, Xiaonan; Okamoto, Rumiko; Pei, Lixia; Rooney, Brendan; van de Velde, Helgi; Cavalli, Franco

    2017-06-05

    The pivotal LYM-3002 study compared frontline rituximab plus cyclophosphamide, doxorubicin, vincristine and prednisone (R-CHOP) with bortezomib, rituximab, cyclophosphamide, doxorubicin and prednisone (VR-CAP) in newly diagnosed mantle cell lymphoma (MCL) patients for whom stem cell transplantation was not an option. This post hoc subanalysis of the VR-CAP data from LYM-3002 evaluated the effect of bortezomib dose intensity on OS in patients who completed ≥6 cycles of treatment. From the end of cycle 6, patients receiving ≥4.6 mg/m 2 /cycle of bortezomib had significantly longer OS (but not PFS) compared with those receiving <4.6 mg/m 2 /cycle by univariate analysis (HR 0.43 [95% CI: 0.23-0.80]; p = .0059). This association remained significant in multivariate analysis adjusting for baseline patient and disease characteristics (HR 0.40 [95% CI: 0.20-0.79]; p = .008]. Higher bortezomib dose intensity was the strongest predictor of OS in newly diagnosed MCL patients receiving VR-CAP. Clinicaltrials.gov identifier: NCT00722137.

  14. Methylation of the PMEPA1 gene, a negative regulator of the androgen receptor in prostate cancer.

    PubMed

    Sharad, Shashwat; Ravindranath, Lakshmi; Haffner, Michael C; Li, Hua; Yan, Wusheng; Sesterhenn, Isabell A; Chen, Yongmei; Ali, Amina; Srinivasan, Alagarsamy; McLeod, David G; Yegnasubramanian, Srinivasan; Srivastava, Shiv; Dobi, Albert; Petrovics, Gyorgy

    2014-06-01

    The prostate transmembrane protein androgen induced 1 (PMEPA1) gene is highly expressed in prostate epithelial cells and is a direct transcriptional target for the androgen receptor (AR). AR protein levels are controlled by the AR-PMEPA1 negative feedback loop through NEDD4-E3 ligase. Reduced expression of PMEPA1 observed in prostate tumors, suggests that loss of PMEPA1 may play critical roles in prostate tumorigenesis. This study focuses on epigenetic mechanisms of reduced PMEPA1 expression in the cancer of the prostate (CaP). Benign (n = 77) and matched malignant (n = 77) prostate epithelial cells were laser capture micro-dissected from optimum cutting temperature embedded frozen prostate sections from 42 Caucasian American (CA) and 35 African American (AA) cases. Purified DNA specimens were analyzed for CpG methylation of the PMEPA1 gene. PMEPA1 mRNA expression levels were evaluated by qRT-PCR. Analysis of PMEPA1 methylation and mRNA expression in the same tumor cell populations indicated a significant inverse correlation between mRNA expression and methylation in CaP (P = 0.0115). We noted higher frequency of CpG methylation within the evaluated first intronic region of the PMEPA1 gene in prostate tumors of CA men as compared with AA. In CaP cell lines, PMEPA1 expression was induced and AR protein levels were diminished in response to treatment with the DNA methyltransferase inhibitor, 5-aza-2'-deoxycytidine (decitabine). Cell culture-based studies demonstrated that decitabine restores PMEPA1 expression in AR-positive CaP cell lines. This report reveals the potential role of PMEPA1 gene methylation in the regulation of AR stability. Thus, downregulation of PMEPA1 may result in increased AR protein levels and function in CaP cells, contributing to prostate tumorigenesis.

  15. Methylation of the PMEPA1 gene, a negative regulator of the androgen receptor in prostate cancer

    PubMed Central

    Sharad, Shashwat; Ravindranath, Lakshmi; Haffner, Michael C; Li, Hua; Yan, Wusheng; Sesterhenn, Isabell A; Chen, Yongmei; Ali, Amina; Srinivasan, Alagarsamy; McLeod, David G; Yegnasubramanian, Srinivasan; Srivastava, Shiv; Dobi, Albert; Petrovics, Gyorgy

    2014-01-01

    The prostate transmembrane protein androgen induced 1 (PMEPA1) gene is highly expressed in prostate epithelial cells and is a direct transcriptional target for the androgen receptor (AR). AR protein levels are controlled by the AR-PMEPA1 negative feedback loop through NEDD4-E3 ligase. Reduced expression of PMEPA1 observed in prostate tumors, suggests that loss of PMEPA1 may play critical roles in prostate tumorigenesis. This study focuses on epigenetic mechanisms of reduced PMEPA1 expression in the cancer of the prostate (CaP). Benign (n = 77) and matched malignant (n = 77) prostate epithelial cells were laser capture micro-dissected from optimum cutting temperature embedded frozen prostate sections from 42 Caucasian American (CA) and 35 African American (AA) cases. Purified DNA specimens were analyzed for CpG methylation of the PMEPA1 gene. PMEPA1 mRNA expression levels were evaluated by qRT-PCR. Analysis of PMEPA1 methylation and mRNA expression in the same tumor cell populations indicated a significant inverse correlation between mRNA expression and methylation in CaP (P = 0.0115). We noted higher frequency of CpG methylation within the evaluated first intronic region of the PMEPA1 gene in prostate tumors of CA men as compared with AA. In CaP cell lines, PMEPA1 expression was induced and AR protein levels were diminished in response to treatment with the DNA methyltransferase inhibitor, 5-aza-2'-deoxycytidine (decitabine). Cell culture-based studies demonstrated that decitabine restores PMEPA1 expression in AR-positive CaP cell lines. This report reveals the potential role of PMEPA1 gene methylation in the regulation of AR stability. Thus, downregulation of PMEPA1 may result in increased AR protein levels and function in CaP cells, contributing to prostate tumorigenesis. PMID:24694733

  16. Growth Control and Biophoton Radiation by Plant Hormones in Red Bean

    NASA Astrophysics Data System (ADS)

    Kai, Shoichi; Moriya, Tomoyuki; Fujimoto, Tokio

    1995-12-01

    The growth kinetics of seeds of red beans ( Phaseolus angularis ) was investigated by externally adding various hormones (gibberellin (GA3)), abscisic acid (ABA) and indole acetic acid (IAA)) during germination. For root growth of red beans, GA3 always acted as an activator while ABA as an inhibitor. IAA was both an activator and an inhibitor depending on its concentration. Root growth could be described by a stochastic logistic equation. The hormone concentration dependences of coefficients of the equation were determined. The hormone influences on biophoton radiation were also investgated. With GA3, the intensity of spontaneous bioluminescence increased with time and showed two strong radiation periods, in which strong localization of bioluminescence was induced. However with ABA and IAA, weaker bioluminescences were observed. The location of the strong radiation induced by GA3 was determined as the growing point near a root cap, by use of a two-dimensional photon counting system.

  17. Impaired cytokine responses in patients with cryopyrin-associated periodic syndrome (CAPS)

    PubMed Central

    Haverkamp, M H; van de Vosse, E; Goldbach-Mansky, R; Holland, S M

    2014-01-01

    Cryopyrin-associated periodic syndrome (CAPS) is characterized by dysregulated inflammation with excessive interleukin (IL)-1β activation and secretion. Neonatal-onset multi-system inflammatory disease (NOMID) is the most severe form. We explored cytokine responses in 32 CAPS patients before and after IL-1β blocking therapy. We measured cytokines produced by activated peripheral blood monuclear cells (PBMCs) from treated and untreated CAPS patients after stimulation for 48 h with phytohaemagglutinin (PHA), PHA plus IL-12, lipopolysaccharide (LPS) or LPS plus interferon (IFN)-γ. We measured IL-1β, IL-6, IL-10, tumour necrosis factor (TNF), IL-12p70 and IFN-γ in the supernatants. PBMCs from three untreated CAPS patients were cultured in the presence of the IL-1β blocker Anakinra. Fifty healthy individuals served as controls. CAPS patients had high spontaneous production of IL-1β, IL-6, TNF and IFN-γ by unstimulated cells. However, stimulation indexes (SIs, ratio of stimulated to unstimulated production) of these cytokines to PHA and LPS were low in NOMID patients compared to controls. Unstimulated IL-10 and IL-12p70 production was normal, but up-regulation after PHA and LPS was also low. LPS plus IFN-γ inadequately up-regulated the production of IL-1β, IL-6, TNF and IL-10 in CAPS patients. In-vitro but not in-vivo treatment with Anakinra improved SIs by lowering spontaneous cytokine production. However, in-vitro treatment did not improve the low stimulated cytokine levels. Activating mutations in NLRP3 in CAPS are correlated with poor SIs to PHA, LPS and IFN-γ. The impairment in stimulated cytokine responses in spite of IL-1β blocking therapy suggests a broader intrinsic defect in CAPS patients, which is not corrected by targeting IL-1β. PMID:24773462

  18. Microbial Diversity and Metal Speciation Changes in Mine Tailings Following Compost-Assisted Direct Planting: A Four-Year Superfund Site Field Study

    NASA Astrophysics Data System (ADS)

    Maier, R. M.; Gil-Loaiza, J.; Honeker, L. K.; Hottenstein, J. D.; Valentin-Vargas, A.; Jennings, L. L.; Hammond, C.; Neilson, J. W.; Root, R. A.; Chorover, J.

    2014-12-01

    EPA estimates that future mine tailings remediation costs will exceed US $50 billion using present technologies based on constructing an inert or biological cap on the tailings. Both approaches require large amounts of capping materials that can be difficult and expensive to obtain especially for sites several thousand hectares in size. An alternative technology is direct planting into tailings. However, direct planting alone is not feasible for many legacy sites due to extreme acidity and high metal content which prevent plant germination and growth. Therefore the process must be "assisted" through the addition of amendments such as compost. Here we present results from the first four years of a field study at the Iron King Mine and Humboldt Smelter Superfund site demonstrating the feasibility of compost-assisted direct planting. Parameters measured during the field study included: canopy cover, pH, nutrient content, plant metal uptake, metal(loid) speciation, mineral analysis, microbiome analysis, and plant root-metal-microbe interactions. Integrated analysis of these parameters suggests that even in this "worst-case scenario" mine tailings site (pH 2.5; As and Pb each exceeding 2 g kg-1), we have created a sustainable system. In this system, phyto-catalyzed stabilization of inorganic contaminants in the root zone is driven by plant root exudates and the associated rhizosphere microbial community. The results of this research will be put into context of a larger topic- that of ecological engineering of mine tailings sites - a technique being proposed to prevent creation of acidic conditions and metal(loid) mobilization in the first place.

  19. Microbial Diversity and Metal Speciation Changes in Mine Tailings Following Compost-Assisted Direct Planting: A Four-Year Superfund Site Field Study

    NASA Astrophysics Data System (ADS)

    Maier, R. M.; Gil-Loaiza, J.; Honeker, L. K.; Hottenstein, J. D.; Valentin-Vargas, A.; Jennings, L. L.; Hammond, C.; Neilson, J. W.; Root, R. A.; Chorover, J.

    2015-12-01

    EPA estimates that future mine tailings remediation costs will exceed US $50 billion using present technologies based on constructing an inert or biological cap on the tailings. Both approaches require large amounts of capping materials that can be difficult and expensive to obtain especially for sites several thousand hectares in size. An alternative technology is direct planting into tailings. However, direct planting alone is not feasible for many legacy sites due to extreme acidity and high metal content which prevent plant germination and growth. Therefore the process must be "assisted" through the addition of amendments such as compost. Here we present results from the first four years of a field study at the Iron King Mine and Humboldt Smelter Superfund site demonstrating the feasibility of compost-assisted direct planting. Parameters measured during the field study included: canopy cover, pH, nutrient content, plant metal uptake, metal(loid) speciation, mineral analysis, microbiome analysis, and plant root-metal-microbe interactions. Integrated analysis of these parameters suggests that even in this "worst-case scenario" mine tailings site (pH 2.5; As and Pb each exceeding 2 g kg-1), we have created a sustainable system. In this system, phyto-catalyzed stabilization of inorganic contaminants in the root zone is driven by plant root exudates and the associated rhizosphere microbial community. The results of this research will be put into context of a larger topic- that of ecological engineering of mine tailings sites - a technique being proposed to prevent creation of acidic conditions and metal(loid) mobilization in the first place.

  20. 24 CFR 3285.304 - Pier configuration.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... inches; (2) The concrete blocks must be stacked with their hollow cells aligned vertically; and (3) When... across capped-hollow block piers, as shown in Figures A and B to § 3285.306. (2) Caps must be solid...

  1. Cap-independent protein synthesis is enhanced by betaine under hypertonic conditions.

    PubMed

    Carnicelli, Domenica; Arfilli, Valentina; Onofrillo, Carmine; Alfieri, Roberta R; Petronini, Pier Giorgio; Montanaro, Lorenzo; Brigotti, Maurizio

    2017-02-12

    Protein synthesis is one of the main cellular functions inhibited during hypertonic challenge. The subsequent accumulation of the compatible osmolyte betaine during the later adaptive response allows not only recovery of translation but also its stimulation. In this paper, we show that betaine modulates translation by enhancing the formation of cap-independent 48 S pre-initiation complexes, leaving cap-dependent 48 S pre-initiation complexes basically unchanged. In the presence of betaine, CrPV IRES- and sodium-dependent neutral amino acid transporter-2 (SNAT2) 5'-UTR-driven translation is 2- and 1.5-fold stimulated in MCF7 cells, respectively. Thus, betaine could provide an advantage in translation of messengers coding for proteins implicated in the response of cells to different stressors, which are often recognized by ribosomal 40 S subunit through simplified cap-independent mechanisms. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. ARABIDOPSIS HOMOLOG of TRITHORAX1 (ATX1) is required for cell production, patterning, and morphogenesis in root development

    PubMed Central

    Napsucialy-Mendivil, Selene; Alvarez-Venegas, Raúl; Shishkova, Svetlana; Dubrovsky, Joseph G.

    2014-01-01

    ARABIDOPSIS HOMOLOG of TRITHORAX1 (ATX1/SDG27), a known regulator of flower development, encodes a H3K4histone methyltransferase that maintains a number of genes in an active state. In this study, the role of ATX1 in root development was evaluated. The loss-of-function mutant atx1-1 was impaired in primary root growth. The data suggest that ATX1 controls root growth by regulating cell cycle duration, cell production, and the transition from cell proliferation in the root apical meristem (RAM) to cell elongation. In atx1-1, the quiescent centre (QC) cells were irregular in shape and more expanded than those of the wild type. This feature, together with the atypical distribution of T-divisions, the presence of oblique divisions, and the abnormal cell patterning in the RAM, suggests a lack of coordination between cell division and cell growth in the mutant. The expression domain of QC-specific markers was expanded both in the primary RAM and in the developing lateral root primordia of atx1-1 plants. These abnormalities were independent of auxin-response gradients. ATX1 was also found to be required for lateral root initiation, morphogenesis, and emergence. The time from lateral root initiation to emergence was significantly extended in the atx1-1 mutant. Overall, these data suggest that ATX1 is involved in the timing of root development, stem cell niche maintenance, and cell patterning during primary and lateral root development. Thus, ATX1 emerges as an important player in root system architecture. PMID:25205583

  3. Cold Atmospheric Plasma for Medicine: State of Research and Clinical Application

    NASA Astrophysics Data System (ADS)

    von Woedtke, Thomas

    2015-09-01

    Basic research in plasma medicine has made excellent progress and resulted in the fundamental insights that biological effects of cold atmospheric plasmas (CAP) are significantly caused by changes of the liquid environment of cells, and are dominated by redox-active species. First CAP sources are CE-certified as medical devices. Main focus of plasma application is on wound healing and treatment of infective skin diseases. Clinical applications in this field confirm the supportive effect of cold plasma treatment in acceleration of healing of chronic wounds above all in cases where conventional treatment fails. Cancer treatment is another actual and emerging field of CAP application. The ability of CAP to kill cancer cells by induction of apoptosis has been proved in vitro. First clinical applications of CAP in palliative care of cancer are realized. In collaboration with Hans-Robert Metelmann, University Medicine Greifswald; Helmut Uhlemann, Klinikum Altenburger Land GmbH Altenburg; Anke Schmidt and Kai Masur, Leibniz Institute for Plasma Science and Technology (INP Greifswald); Renate Schönebeck, Neoplas Tools GmbH Greifswald; and Klaus-Dieter Weltmann, Leibniz Institute for Plasma Science and Technology (INP Greifswald).

  4. Sequestration by IFIT1 Impairs Translation of 2′O-unmethylated Capped RNA

    PubMed Central

    Lacerda, Livia; Benda, Christian; Holze, Cathleen; Eberl, Christian H.; Mann, Angelika; Kindler, Eveline; Gil-Cruz, Cristina; Ziebuhr, John; Thiel, Volker; Pichlmair, Andreas

    2013-01-01

    Viruses that generate capped RNA lacking 2′O methylation on the first ribose are severely affected by the antiviral activity of Type I interferons. We used proteome-wide affinity purification coupled to mass spectrometry to identify human and mouse proteins specifically binding to capped RNA with different methylation states. This analysis, complemented with functional validation experiments, revealed that IFIT1 is the sole interferon-induced protein displaying higher affinity for unmethylated than for methylated capped RNA. IFIT1 tethers a species-specific protein complex consisting of other IFITs to RNA. Pulsed stable isotope labelling with amino acids in cell culture coupled to mass spectrometry as well as in vitro competition assays indicate that IFIT1 sequesters 2′O-unmethylated capped RNA and thereby impairs binding of eukaryotic translation initiation factors to 2′O-unmethylated RNA template, which results in inhibition of translation. The specificity of IFIT1 for 2′O-unmethylated RNA serves as potent antiviral mechanism against viruses lacking 2′O-methyltransferase activity and at the same time allows unperturbed progression of the antiviral program in infected cells. PMID:24098121

  5. Evaluation of ZnSe(S) Quantum Dots on the Cell Viability of Prostate Cancer Cell (PC3)

    NASA Astrophysics Data System (ADS)

    Calderón-Ortiz, E. R.; Bailón-Ruiz, S.; Martínez-Ferrer, M.; Rodríguez-Orengo, J. F.; Perales-Pérez, O.

    2018-05-01

    Nanomedicine is described as the process of diagnosing, treating, and preventing disease using nanostructured materials to improve human health. Quantum dots (QDs) host suitable optical properties for light-driven therapies, e.g., photo-dynamic therapy (PDT), for cancer treatment. The efficacy of QDs-assisted PDT relies on the capability of QDs to generate reactive oxygen species, which can be enhanced by inducing structural defects at the atomic level. Furthermore, data concerning the applicability of QDs-PDT in medicine is scarce, particularly for prostate cancer cells (PC3). On this basis, and as a first step in this research, the present report focused on the direct aqueous-synthesis of water-stable ZnSe(S) QDs via a microwave-assisted synthesis approach in the presence of thioglycolic acid (TGA) and mercaptopropionic acid (MPA). XRD analysis confirmed the face centered cubic structure in host ZnS; the average crystallite size was estimated at 10 nm. The photoluminescence of MPA-capped ZnSe(S) showed a strong main emission peak around 363 nm and a trap emission, attributed to structural defects, centered on 450 nm. The photoluminescence spectrum for TGA-capped ZnSe(S) QDs exhibited only the band gap peak around 390 nm, suggesting the absence of major structural defects. In turn, cell viability assays TGA-capped ZnSe(S) were not toxic at concentrations up to 100 ppm, whereas MPA-capped ZnSe(S) evidenced cytotoxicity at a concentration of 10 ppm. The lethal dose (LD50) for the MPA-capped ZnSe(S) in the PC3 cell line was 36 ppm and 35 ppm for 24 h and 48 h, respectively.

  6. Strong IMF By-Related Plasma Convection in the Ionosphere and Cusp Field-Aligned Currents Under Northward IMF Conditions

    NASA Technical Reports Server (NTRS)

    Le, G.; Lu, G.; Strangeway, R. J.; Pfaff, R. F., Jr.; Vondrak, Richard R. (Technical Monitor)

    2001-01-01

    We present in this paper an investigation of IMF-By related plasma convection and cusp field-aligned currents using FAST data and AMIE model during a prolonged interval with large positive IMF By and northward Bz conditions (By/Bz much greater than 1). Using the FAST single trajectory observations to validate the global convection patterns at key times and key locations, we have demonstrated that the AMIE procedure provides a reasonably good description of plasma circulations in the ionosphere during this interval. Our results show that the plasma convection in the ionosphere is consistent with the anti-parallel merging model. When the IMF has a strongly positive By component under northward conditions, we find that the global plasma convection forms two cells oriented nearly along the Sun-earth line in the ionosphere. In the northern hemisphere, the dayside cell has clockwise convection mainly circulating within the polar cap on open field lines. A second cell with counterclockwise convection is located in the nightside circulating across the polar cap boundary, The observed two-cell convection pattern appears to be driven by the reconnection along the anti-parallel merging lines poleward of the cusp extending toward the dusk side when IMF By/Bz much greater than 1. The magnetic tension force on the newly reconnected field lines drives the plasma to move from dusk to dawn in the polar cusp region near the polar cap boundary. The field-aligned currents in the cusp region flow downward into the ionosphere. The return field-aligned currents extend into the polar cap in the center of the dayside convection cell. The field-aligned currents are closed through the Peterson currents in the ionosphere, which flow poleward from the polar cap boundary along the electric field direction.

  7. Effect of emodin on mobility signal transduction system of gallbladder smooth muscle in Guinea pig with cholelithiasis.

    PubMed

    Fang, Bang-Jiang; Shen, Jun-Yi; Zhang, Hua; Zhou, Shuang; Lyu, Chuan-Zhu; Xie, Yi-Qiang

    2016-10-01

    To study the effect of emodin on protein and gene expressions of the massagers in mobility signal transduction system of cholecyst smooth muscle cells in guinea pig with cholesterol calculus. The guinea pigs were randomly divided into 4 groups, such as control group, gall-stone (GS) group, emodin group and ursodeoxycholic acid (UA) group. Cholesterol calculus models were induced in guinea pigs of GS, emodin and UA groups by lithogenic diet, while emodin or UA were given to the corresponding group for 7 weeks. The histomorphological and ultrastructure change of gallbladder were detected by microscope and electron microscope, the content of plasma cholecystokinin (CCK) and [Ca 2+ ] i were analyzed successively by radioimmunoassay and flow cytometry. The protein and mRNA of Gsα, Giα and Cap in cholecyst cells were determined by western blotting and real time polymerase chain reaction (RT-PCR). Emodin or UA can relieve pathogenic changes in epithelial cells and muscle cells in gallbladder of guinea pig with cholesterol calculus by microscope and transmission electron microscope. In the cholecyst cells of GS group, CCK levels in plasma and [Ca 2+ ] i decreased, the protein and mRNA of GS were down-regulated, the protein and mRNA of Gi and Cap were up-regulated. Emodin significantly decreased the formative rate of gallstone, improved the pathogenic change in epithelial cells and muscle cells, increased CCK levels in plasma and [Ca 2+ ] i in cholecyst cells, enhanced the protein and mRNA of Gs in cholecyst cells, reduced the protein and mRNA of Gi and Cap in cholecyst cells in guinea pig with cholesterol calculus. The dysfunction of gallbladder contraction gives rise to the disorders of mobility signal transduction system in cholecyst smooth muscle cells, including low content of plasma CCK and [Ca 2+ ] i in cholecyst cells, abnormal protein and mRNA of Gs, Gi and Cap. Emodin can enhance the contractibility of gallbladder and alleviate cholestasis by regulating plasma CCK levels, [Ca 2+ ] i in cholecyst cells and the protein and mRNA of Gs, Gi and Cap. Copyright © 2016 Hainan Medical University. Production and hosting by Elsevier B.V. All rights reserved.

  8. Identifying Developmental Zones in Maize Lateral Root Cell Length Profiles using Multiple Change-Point Models

    PubMed Central

    Moreno-Ortega, Beatriz; Fort, Guillaume; Muller, Bertrand; Guédon, Yann

    2017-01-01

    The identification of the limits between the cell division, elongation and mature zones in the root apex is still a matter of controversy when methods based on cellular features, molecular markers or kinematics are compared while methods based on cell length profiles have been comparatively underexplored. Segmentation models were developed to identify developmental zones within a root apex on the basis of epidermal cell length profiles. Heteroscedastic piecewise linear models were estimated for maize lateral roots of various lengths of both wild type and two mutants affected in auxin signaling (rtcs and rum-1). The outputs of these individual root analyses combined with morphological features (first root hair position and root diameter) were then globally analyzed using principal component analysis. Three zones corresponding to the division zone, the elongation zone and the mature zone were identified in most lateral roots while division zone and sometimes elongation zone were missing in arrested roots. Our results are consistent with an auxin-dependent coordination between cell flux, cell elongation and cell differentiation. The proposed segmentation models could extend our knowledge of developmental regulations in longitudinally organized plant organs such as roots, monocot leaves or internodes. PMID:29123533

  9. The effect of graphene oxide on surface features, biological performance and bio-stability of calcium phosphate coating applied by pulse electrochemical deposition

    NASA Astrophysics Data System (ADS)

    Fathyunes, Leila; Khalil-Allafi, Jafar

    2018-04-01

    In the current study, the effect of second phase of graphene oxide (GO) on the surface features and biological behavior of calcium phosphate (CaP) coating was evaluated. To do so, the GO-CaP composite coating was applied on TiO2 nanotubular arrays using pulse electrochemical deposition. The SEM and AFM images showed that, the CaP-based coating with uniform and refined microstructure could be formed through its compositing with GO sheets. The biological assessment of the coatings was also conducted by cell culture test and MTT assay. Based on findings, the GO-CaP coating showed the better biocompatibility compared to the CaP coating. This could be owing to the fact that the composite coating provided the lower roughness, moderately wettable surface with a contact angle of 23.5° ± 2.6° and the higher stability in the biological environments because of being involved with only the stable phase of CHA. However, in the CaP coating, spreading of cells could be limited by the plate-like crystals with larger size. The higher solubility of the CaP coating in the cell culture medium possibly owing to the existence of some metastable CaP phases like OCP in addition to the dominant phase of CHA in this coating could be another reason for its less biocompatibility. At last, the CaP coating showed the higher apatite-forming ability in SBF solution after its compositing with GO.

  10. Cold argon-oxygen plasma species oxidize and disintegrate capsid protein of feline calicivirus

    PubMed Central

    Mor, Sunil K.; Higgins, LeeAnn; Armien, Anibal; Youssef, Mohammed M.; Bruggeman, Peter J.; Goyal, Sagar M.

    2018-01-01

    Possible mechanisms that lead to inactivation of feline calicivirus (FCV) by cold atmospheric-pressure plasma (CAP) generated in 99% argon-1% O2 admixture were studied. We evaluated the impact of CAP exposure on the FCV viral capsid protein and RNA employing several cultural, molecular, proteomic and morphologic characteristics techniques. In the case of long exposure (2 min) to CAP, the reactive species of CAP strongly oxidized the major domains of the viral capsid protein (VP1) leading to disintegration of a majority of viral capsids. In the case of short exposure (15 s), some of the virus particles retained their capsid structure undamaged but failed to infect the host cells in vitro. In the latter virus particles, CAP exposure led to the oxidation of specific amino acids located in functional peptide residues in the P2 subdomain of the protrusion (P) domain, the dimeric interface region of VP1 dimers, and the movable hinge region linking the S and P domains. These regions of the capsid are known to play an essential role in the attachment and entry of the virus to the host cell. These observations suggest that the oxidative effect of CAP species inactivates the virus by hindering virus attachment and entry into the host cell. Furthermore, we found that the oxidative impact of plasma species led to oxidation and damage of viral RNA once it becomes unpacked due to capsid destruction. The latter effect most likely plays a secondary role in virus inactivation since the intact FCV genome is infectious even after damage to the capsid. PMID:29566061

  11. An electromagnetic compressive force by cell exciter stimulates chondrogenic differentiation of bone marrow-derived mesenchymal stem cells.

    PubMed

    Park, Sang-Hyug; Sim, Woo Young; Park, Sin Wook; Yang, Sang Sik; Choi, Byung Hyune; Park, So Ra; Park, Kwideok; Min, Byoung-Hyun

    2006-11-01

    In this study, we present a biological micro-electromechanical system and its application to the chondrogenic differentiation of rabbit bone marrow-derived mesenchymal stem cells (MSCs). Actuated by an electromagnetic force, the micro cell exciter was designed to deliver a cyclic compressive load (CCL) with various magnitudes. Two major parts in the system are an actuator and a cartridge-type chamber. The former has a permanent magnet and coil, and the latter is equipped with 7 sample dishes and 7 metal caps. Mixed with a 2.4% alginate solution, the alginate/MSC layers were positioned in the sample dishes; the caps contained chondrogenic defined medium without transforming growth factor-beta (TGF-beta). Once powered, the actuator coil-derived electromagnetic force pulled the metal caps down, compressing the samples. The cyclic load was given at 1-Hz frequency for 10 min twice a day. Samples in the dishes without a cap served as a control. The samples were analyzed at 3, 5, and 7 days after stimulation for cell viability, biochemical assays, histologic features, immunohistochemistry, and gene expression of the chondrogenic markers. Applied to the alginate/MSC layer, the CCL system enhanced the synthesis of cartilage-specific matrix proteins and the chondrogenic markers, such as aggrecan, type II collagen, and Sox9. We found that the micromechanically exerted CCL by the cell exciter was very effective in enhancing the chondrogenic differentiation of MSCs, even without using exogenous TGF-beta.

  12. 75 FR 19559 - Public Safety and Homeland Security Bureau Seeks Informal Comment Regarding Revisions to the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-15

    ..., cell phones and electronic highway signs. CAP will also allow an alert initiator to send alerts... CAP-formatted alerts delivered via any new delivery systems, whether wireline, internet, satellite, or...

  13. Serum levels of endothelial and neural cell adhesion molecules in prostate cancer.

    PubMed

    Lynch, D F; Hassen, W; Clements, M A; Schellhammer, P F; Wright, G L

    1997-08-01

    Tumorigenesis and progression to metastatic disease are accompanied by changes in the expression of cell adhesion molecules (CAMs). Normally expressed CAMs, such as E-cadherin, are lost, while others, i.e., ICAM-1, VCAM-1, NCAM, and E-selectin, are altered and overexpressed in progressive disease and metastases. Abnormal levels of these latter CAMs have been observed in melanoma and carcinomas of the colon and breast, and NCAM is overexpressed in small-cell lung carcinoma (SCLC). The objective of this study was to determine if serum levels of ICAM-1, VCAM-1, NCAM, and E-selectin could differentiate patients with benign prostate hypertrophy (BPH) from those with prostate carcinoma (CaP) and identify prostate cancers with high potential for progression to metastatic disease. Serum levels of these CAMs were determined by ELISA in serum from normal males and females and from patients with BPH and CaP before and after treatment. Sera from patients with breast carcinoma, colon carcinoma, melanoma, and small-cell lung carcinoma were also evaluated, as soluble CAMs have been reported to be elevated in these cancer patients. ICAM-1 levels were elevated in sera from patients with breast carcinoma (P = 0.0004) and melanoma (P = 0.0001). VCAM-1 levels were elevated in sera from patients with colon carcinoma (P = 0.0001). NCAM levels were elevated in the sera of patients with SCLC (P = 0.0001). Normal levels of ICAM-1, E-selectin, and NCAM were found in both BPH and pretreatment CaP patients. Median NCAM levels in hormone-refractive CaP patients were significantly greater than in BPH (P = 0.0005) and CaP patients with pathologically determined organ-confined (P = 0.0014) or nonorgan-confined disease (P = 0.0385). VCAM-1 levels were significantly elevated in both BPH patients (P = 0.0002) and CaP patients (P = 0.0002) when compared with levels for normal age-matched donors. None of the CAMs were found to offer an advantage over prostatic-specific antigen (PSA) for monitoring CaP patients following definitive radiotherapy, radical prostatectomy, or hormonal therapy. The results of this study indicate that serum ICAM-1, VCAM-1, NCAM, and E-selectin are not clinically useful biomarkers for differentiating CaP from BPH, for predicting progression, for identifying metastatic potential, or for monitoring treatment.

  14. Polysaccharide-capped silver Nanoparticles inhibit biofilm formation and eliminate multi-drug-resistant bacteria by disrupting bacterial cytoskeleton with reduced cytotoxicity towards mammalian cells

    NASA Astrophysics Data System (ADS)

    Sanyasi, Sridhar; Majhi, Rakesh Kumar; Kumar, Satish; Mishra, Mitali; Ghosh, Arnab; Suar, Mrutyunjay; Satyam, Parlapalli Venkata; Mohapatra, Harapriya; Goswami, Chandan; Goswami, Luna

    2016-04-01

    Development of effective anti-microbial therapeutics has been hindered by the emergence of bacterial strains with multi-drug resistance and biofilm formation capabilities. In this article, we report an efficient green synthesis of silver nanoparticle (AgNP) by in situ reduction and capping with a semi-synthetic polysaccharide-based biopolymer (carboxymethyl tamarind polysaccharide). The CMT-capped AgNPs were characterized by UV, DLS, FE-SEM, EDX and HR-TEM. These AgNPs have average particle size of ~20-40 nm, and show long time stability, indicated by their unchanged SPR and Zeta-potential values. These AgNPs inhibit growth and biofilm formation of both Gram positive (B. subtilis) and Gram negative (E. coli and Salmonella typhimurium) bacterial strains even at concentrations much lower than the minimum inhibitory concentration (MIC) breakpoints of antibiotics, but show reduced or no cytotoxicity against mammalian cells. These AgNPs alter expression and positioning of bacterial cytoskeletal proteins FtsZ and FtsA. CMT-capped AgNPs can effectively block growth of several clinical isolates and MDR strains representing different genera and resistant towards multiple antibiotics belonging to different classes. We propose that the CMT-capped AgNPs can have potential bio-medical application against multi-drug-resistant microbes with minimal cytotoxicity towards mammalian cells.

  15. Self-Sealing Wet Chemistry Cell for Field Analysis

    NASA Technical Reports Server (NTRS)

    Beegle, Luther W.; Soto, Juancarlos; Lasnik, James; Roark, Shane

    2012-01-01

    In most analytical investigations, there is a need to process complex field samples for the unique detection of analytes, especially when detecting low concentration organic molecules that may identify extraterrestrial life. Wet chemistry based instruments are the techniques of choice for most laboratory- based analysis of organic molecules due to several factors including less fragmentation of fragile biomarkers, and ability to concentrate target species resulting in much lower limits of detection. Development of an automated wet chemistry preparation system that can operate autonomously on Earth and is also designed to operate under Martian ambient conditions will demonstrate the technical feasibility of including wet chemistry on future missions. An Automated Sample Processing System (ASPS) has recently been developed that receives fines, extracts organics through solvent extraction, processes the extract by removing non-organic soluble species, and delivers sample to multiple instruments for analysis (including for non-organic soluble species). The key to this system is a sample cell that can autonomously function under field conditions. As a result, a self-sealing sample cell was developed that can autonomously hermetically seal fines and powder into a container, regardless of orientation of the apparatus. The cap is designed with a beveled edge, which allows the cap to be self-righted as the capping motor engages. Each cap consists of a C-clip lock ring below a crucible O-ring that is placed into a groove cut into the sample cap.

  16. Polysaccharide-capped silver Nanoparticles inhibit biofilm formation and eliminate multi-drug-resistant bacteria by disrupting bacterial cytoskeleton with reduced cytotoxicity towards mammalian cells

    PubMed Central

    Sanyasi, Sridhar; Majhi, Rakesh Kumar; Kumar, Satish; Mishra, Mitali; Ghosh, Arnab; Suar, Mrutyunjay; Satyam, Parlapalli Venkata; Mohapatra, Harapriya; Goswami, Chandan; Goswami, Luna

    2016-01-01

    Development of effective anti-microbial therapeutics has been hindered by the emergence of bacterial strains with multi-drug resistance and biofilm formation capabilities. In this article, we report an efficient green synthesis of silver nanoparticle (AgNP) by in situ reduction and capping with a semi-synthetic polysaccharide-based biopolymer (carboxymethyl tamarind polysaccharide). The CMT-capped AgNPs were characterized by UV, DLS, FE-SEM, EDX and HR-TEM. These AgNPs have average particle size of ~20–40 nm, and show long time stability, indicated by their unchanged SPR and Zeta-potential values. These AgNPs inhibit growth and biofilm formation of both Gram positive (B. subtilis) and Gram negative (E. coli and Salmonella typhimurium) bacterial strains even at concentrations much lower than the minimum inhibitory concentration (MIC) breakpoints of antibiotics, but show reduced or no cytotoxicity against mammalian cells. These AgNPs alter expression and positioning of bacterial cytoskeletal proteins FtsZ and FtsA. CMT-capped AgNPs can effectively block growth of several clinical isolates and MDR strains representing different genera and resistant towards multiple antibiotics belonging to different classes. We propose that the CMT-capped AgNPs can have potential bio-medical application against multi-drug-resistant microbes with minimal cytotoxicity towards mammalian cells. PMID:27125749

  17. Purification and characterization of the glycoprotein hormone. cap alpha. -subunit-like material secreted by HeLa cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cox, G.S.; Rimerman, R.A.

    1988-08-23

    The protein secreted by HeLa cells that cross-reacts with antiserum developed against the ..cap alpha..-subunit of human chorionic gonadotropin (hCG) has been purified approximately 30,000-fold from concentrated culture medium by organic solvent fractionation followed by ion exchange, gel filtration, and lectin affinity chromatography. The final preparation had a specific activity (by RIA) of 6.8 x 10/sup 5/ ng of ..cap alpha../mg of protein and appeared homogeneous by electrophoresis on reducing/denaturing polyacrylamide gels (SDS-PAGE). Amino acid analysis indicated that HeLa-..cap alpha.. had a composition very similar to that of the urinary hCG ..cap alpha..-subunit. However, comparison of hCG-..cap alpha.. and HeLa-..capmore » alpha.. demonstrated that the tumor-associated subunit was not identical with its normal counterpart. The purified tumor protein had an apparent molecular weight greater than that of the urinary ..cap alpha..-subunit when analyzed by SDS-PAGE, and this difference was even greater when a partially purified preparation was examined by an immunoblot technique (Western). Isoelectric focusing of the HeLa and hCG subunits demonstrated that the tumor protein had a lower pI. Immunoprecipitation and electrophoresis of ..cap alpha..-subunit from HeLa cultures labeled with (/sup 3/H)fucose indicated that the tumor subunit was fucosylated, whereas analysis of hCG-..cap alpha.. hydrosylates by HPLC confirmed previous reports that the placental subunit does not contain fucose. The results indicate that, regardless of whether or not a single ..cap alpha..-subunit gene is being expressed in both normal and neoplastic tissues, posttranslational modifications lead to a highly altered subunit in the tumor. The differences observed may be useful in diagnosing neoplastic vs hyperplastic conditions and may lend insight into the mechanism of ectopic hormone production by tumors.« less

  18. Summaries of Research, Fiscal Year 1992

    DTIC Science & Technology

    1992-01-01

    needs, or between early exposure to fluoridated drinking water and treatment needs. - Three hundred seventy four female recruits have been surveyed at... fluoridated drinking water and treat- ment needs. An abstract was presented at the 1992 AADR Annual Meeting and Exhibition, July 1-4, Glasgow, Scotland...significant difference (p <.002) in subsequent root-canal (RCT) or extraction (EXT) when pulp capping was performed. When all caries could be removed

  19. Woody plant roots fail to penetrate a clay-lined landfill: Managment implications

    NASA Astrophysics Data System (ADS)

    Robinson, George R.; Handel, Steven N.

    1995-01-01

    In many locations, regulatory agencies do not permit tree planting above landfills that are sealed with a capping clay, because roots might penetrate the clay barrier and expose landfill contents to leaching. We find, however, no empirical or theoretical basis for this restriction, and instead hypothesize that plant roots of any kind are incapable of penetrating the dense clays used to seal landfills. As a test, we excavated 30 trees and shrubs, of 12 species, growing over a clay-lined municipal sanitary landfill on Staten Island, New York. The landfill had been closed for seven years, and featured a very shallow (10 to 30-cm) soil layer over a 45-cm layer of compacted grey marl (Woodbury series) clay. The test plants had invaded naturally from nearby forests. All plants examined—including trees as tall as 6 m—had extremely shallow root plates, with deformed tap roots that grew entirely above and parallel to the clay layer. Only occasional stubby feeder roots were found in the top 1 cm of clay, and in clay cracks at depths to 6 cm, indicating that the primary impediment to root growth was physical, although both clay and the overlying soil were highly acidic. These results, if confirmed by experimental research should lead to increased options for the end use of many closed sanitary landfills.

  20. Response of human bone marrow-derived MSCs on triphasic Ca-P substrate with various HA/TCP ratio.

    PubMed

    Bajpai, Indu; Kim, Duk Yeon; Kyong-Jin, Jung; Song, In-Hwan; Kim, Sukyoung

    2017-01-01

    Calcium phosphates (Ca-P) are used commonly as artificial bone substitutes to control the biodegradation rate of an implant in the body fluid. This study examined the in vitro proliferation of human bone marrow-derived mesenchymal stem cells (hBMSCs) on triphasic Ca-P samples. For this aspect, hydroxyapatite (HA), dicalcium phosphate dehydrate (DCPD), and calcium hydroxide (Ca(OH) 2 ) were mixed at various ratios, cold compacted, and sintered at 1250°C in air. X-ray diffraction showed that the β-tricalcium phosphate (TCP) to α-TCP phase transformation increased with increasing DCPD/HA ratio. The micro-hardness deceased with increasing TCP content, whereas the mean grain size and porosity increased with increasing TCP concentration. To evaluate the in vitro degree of adhesion and proliferation on the HA/TCP samples, human BMSCs were incubated on the HA/TCP samples and analyzed by a cells proliferation assay, expression of the extracellular matrix (ECM) genes, such as α-smooth muscle actin (α-SMA) and fibronectin (FN), and FITC-phalloidin fluorescent staining. In terms of the interactions of human BMSCs with the triphasic Ca-P samples, H50T50 (Ca/P = 1.59) markedly enhanced cell spreading, proliferation, FN, and α-SMA compared with H100T0 (Ca/P = 1.67). Interestingly, these results show that among the five HA/TCP samples, H50T50 is the optimal Ca-P composition for in vitro cell proliferation. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 72-80, 2017. © 2015 Wiley Periodicals, Inc.

  1. CsSCL1 is differentially regulated upon maturation in chestnut microshoots and is specifically expressed in rooting-competent cells.

    PubMed

    Vielba, Jesús M; Díaz-Sala, Carmen; Ferro, Enrique; Rico, Saleta; Lamprecht, María; Abarca, Dolores; Ballester, Antonio; Sánchez, Conchi

    2011-10-01

    The Castanea sativa SCL1 gene (CsSCL1) has previously been shown to be induced by auxin during adventitious root (AR) formation in rooting-competent microshoots. However, its expression has not previously been analyzed in rooting-incompetent shoots. This study focuses on the regulation of CsSCL1 during maturation and the role of the gene in the formation of AR. The expression of CsSCL1 in rooting-incompetent microshoots and other tissues was investigated by quantitative reverse transcriptase--polymerase chain reaction. The analysis was complemented by in situ hybridization of the basal segments of rooting-competent and --incompetent microshoots during AR induction, as well as in AR and lateral roots. It was found that CsSCL1 is upregulated by auxin in a cell-type- and phase-dependent manner during the induction of AR. In root-forming shoots, CsSCL1 mRNA was specifically located in the cambial zone and derivative cells, which are rooting-competent cells, whereas in rooting-incompetent shoots the hybridization signal was more diffuse and evenly distributed through the phloem and parenchyma. CsSCL1 expression was also detected in lateral roots and axillary buds. The different CsSCL1 expression patterns in rooting-competent and -incompetent microshoots, together with the specific location of transcripts in cell types involved in root meristem initiation and in the root primordia of AR and lateral roots, indicate an important role for the gene in determining whether certain cells will enter the root differentiation pathway and its involvement in meristem maintenance.

  2. Promoter-level expression clustering identifies time development of transcriptional regulatory cascades initiated by ErbB receptors in breast cancer cells.

    PubMed

    Mina, Marco; Magi, Shigeyuki; Jurman, Giuseppe; Itoh, Masayoshi; Kawaji, Hideya; Lassmann, Timo; Arner, Erik; Forrest, Alistair R R; Carninci, Piero; Hayashizaki, Yoshihide; Daub, Carsten O; Okada-Hatakeyama, Mariko; Furlanello, Cesare

    2015-07-16

    The analysis of CAGE (Cap Analysis of Gene Expression) time-course has been proposed by the FANTOM5 Consortium to extend the understanding of the sequence of events facilitating cell state transition at the level of promoter regulation. To identify the most prominent transcriptional regulations induced by growth factors in human breast cancer, we apply here the Complexity Invariant Dynamic Time Warping motif EnRichment (CIDER) analysis approach to the CAGE time-course datasets of MCF-7 cells stimulated by epidermal growth factor (EGF) or heregulin (HRG). We identify a multi-level cascade of regulations rooted by the Serum Response Factor (SRF) transcription factor, connecting the MAPK-mediated transduction of the HRG stimulus to the negative regulation of the MAPK pathway by the members of the DUSP family phosphatases. The finding confirms the known primary role of FOS and FOSL1, members of AP-1 family, in shaping gene expression in response to HRG induction. Moreover, we identify a new potential regulation of DUSP5 and RARA (known to antagonize the transcriptional regulation induced by the estrogen receptors) by the activity of the AP-1 complex, specific to HRG response. The results indicate that a divergence in AP-1 regulation determines cellular changes of breast cancer cells stimulated by ErbB receptors.

  3. An essential role for trimethylguanosine RNA caps in Saccharomyces cerevisiae meiosis and their requirement for splicing of SAE3 and PCH2 meiotic pre-mRNAs

    PubMed Central

    Qiu, Zhicheng R.; Shuman, Stewart; Schwer, Beate

    2011-01-01

    Tgs1 is the enzyme that converts m7G RNA caps to the 2,2,7-trimethylguanosine (TMG) caps characteristic of spliceosomal snRNAs. Fungi grow vegetatively without TMG caps, thereby raising the question of what cellular transactions, if any, are TMG cap-dependent. Here, we report that Saccharomyces cerevisiae Tgs1 methyltransferase activity is essential for meiosis. tgs1Δ cells are specifically defective in splicing PCH2 and SAE3 meiotic pre-mRNAs. The TMG requirement for SAE3 splicing is alleviated by two intron mutations: a UAUUAAC to UACUAAC change that restores a consensus branchpoint and disruption of a stem–loop encompassing the branchpoint. The TMG requirement for PCH2 splicing is alleviated by a CACUAAC to UACUAAC change restoring a consensus branchpoint and by shortening the PCH2 5′ exon. Placing the SAE3 and PCH2 introns within a HIS3 reporter confers Tgs1-dependent histidine prototrophy, signifying that the respective introns are portable determinants of TMG-dependent gene expression. Analysis of in vitro splicing in extracts of TGS1 versus tgs1Δ cells showed that SAE3 intron removal was enfeebled without TMG caps, whereas splicing of ACT1 was unaffected. Our findings illuminate a new mode of tunable splicing, a reliance on TMG caps for an essential developmental RNA transaction, and three genetically distinct meiotic splicing regulons in budding yeast. PMID:21398639

  4. An essential role for trimethylguanosine RNA caps in Saccharomyces cerevisiae meiosis and their requirement for splicing of SAE3 and PCH2 meiotic pre-mRNAs.

    PubMed

    Qiu, Zhicheng R; Shuman, Stewart; Schwer, Beate

    2011-07-01

    Tgs1 is the enzyme that converts m(7)G RNA caps to the 2,2,7-trimethylguanosine (TMG) caps characteristic of spliceosomal snRNAs. Fungi grow vegetatively without TMG caps, thereby raising the question of what cellular transactions, if any, are TMG cap-dependent. Here, we report that Saccharomyces cerevisiae Tgs1 methyltransferase activity is essential for meiosis. tgs1Δ cells are specifically defective in splicing PCH2 and SAE3 meiotic pre-mRNAs. The TMG requirement for SAE3 splicing is alleviated by two intron mutations: a UAUUAAC to UACUAAC change that restores a consensus branchpoint and disruption of a stem-loop encompassing the branchpoint. The TMG requirement for PCH2 splicing is alleviated by a CACUAAC to UACUAAC change restoring a consensus branchpoint and by shortening the PCH2 5' exon. Placing the SAE3 and PCH2 introns within a HIS3 reporter confers Tgs1-dependent histidine prototrophy, signifying that the respective introns are portable determinants of TMG-dependent gene expression. Analysis of in vitro splicing in extracts of TGS1 versus tgs1Δ cells showed that SAE3 intron removal was enfeebled without TMG caps, whereas splicing of ACT1 was unaffected. Our findings illuminate a new mode of tunable splicing, a reliance on TMG caps for an essential developmental RNA transaction, and three genetically distinct meiotic splicing regulons in budding yeast.

  5. Divergent cytosine DNA methylation patterns in single-cell, soybean root hairs.

    PubMed

    Hossain, Md Shakhawat; Kawakatsu, Taiji; Kim, Kyung Do; Zhang, Ning; Nguyen, Cuong T; Khan, Saad M; Batek, Josef M; Joshi, Trupti; Schmutz, Jeremy; Grimwood, Jane; Schmitz, Robert J; Xu, Dong; Jackson, Scott A; Ecker, Joseph R; Stacey, Gary

    2017-04-01

    Chromatin modifications, such as cytosine methylation of DNA, play a significant role in mediating gene expression in plants, which affects growth, development, and cell differentiation. As root hairs are single-cell extensions of the root epidermis and the primary organs for water uptake and nutrients, we sought to use root hairs as a single-cell model system to measure the impact of environmental stress. We measured changes in cytosine DNA methylation in single-cell root hairs as compared with multicellular stripped roots, as well as in response to heat stress. Differentially methylated regions (DMRs) in each methylation context showed very distinct methylation patterns between cell types and in response to heat stress. Intriguingly, at normal temperature, root hairs were more hypermethylated than were stripped roots. However, in response to heat stress, both root hairs and stripped roots showed hypomethylation in each context, especially in the CHH context. Moreover, expression analysis of mRNA from similar tissues and treatments identified some associations between DMRs, genes and transposons. Taken together, the data indicate that changes in DNA methylation are directly or indirectly associated with expression of genes and transposons within the context of either specific tissues/cells or stress (heat). © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  6. Overexpression of adenylate cyclase-associated protein 2 is a novel prognostic marker in malignant melanoma.

    PubMed

    Masugi, Yohei; Tanese, Keiji; Emoto, Katsura; Yamazaki, Ken; Effendi, Kathryn; Funakoshi, Takeru; Mori, Mariko; Sakamoto, Michiie

    2015-12-01

    Malignant melanoma is one of the lethal malignant tumors worldwide. Previously we reported that adenylate cyclase-associated protein 2 (CAP2), which is a well-conserved actin regulator, was overexpressed in hepatocellular carcinoma; however, CAP2 expression in other clinical cancers remains unclear. The aim of the current study was to clarify the clinicopathological significance of CAP2 overexpression in malignant melanoma. Immunohistochemical analyses revealed that many melanoma cells exhibited diffuse cytoplasmic expression of CAP2, whereas no normal melanocytes showed detectable immunostaining for CAP2. A high level of CAP2 expression was seen in 14 of 50 melanomas and was significantly correlated with greater tumor thickness and nodular melanoma subtypes. In addition, a high level of CAP2 expression was associated with poor overall survival in univariate and multivariate analyses. For 13 patients, samples of primary and metastatic melanoma tissue were available: four patients exhibited higher levels of CAP2 expression in metastatic tumor compared to the primary site, whereas no patient showed lower levels of CAP2 expression in metastatic melanomas. Our findings show that CAP2 overexpression is a novel prognostic marker in malignant melanoma and that CAP2 expression seems to increase stepwise during tumor progression, suggesting the involvement of CAP2 in the aggressive behavior of malignant melanoma. © 2015 Japanese Society of Pathology and Wiley Publishing Asia Pty Ltd.

  7. Listeria monocytogenes - Danger for health safety vegetable production.

    PubMed

    Kljujev, Igor; Raicevic, Vera; Jovicic-Petrovic, Jelena; Vujovic, Bojana; Mirkovic, Milica; Rothballer, Michael

    2018-04-22

    The microbiologically contaminated vegetables represent a risk for consumers, especially vegetables without thermal processing. It is known that human pathogen bacteria, such as Listeria monocytogenes, could exist on fresh vegetables. The fresh vegetables could become Listeria-contaminated if they come in touch with contaminated soil, manure, irrigation water. The aim of this work was to investigate the presence of Listeria spp. and L. monocytogenes in different kind of vegetables grown in field and greenhouse condition as well as surface and endophytic colonization plant roots of different vegetables species by L. monocytogenes in laboratory conditions. The detection of Listeria spp. and L. monocytogenes in vegetable samples was done using ISO and PCR methods. The investigation of colonization vegetable roots and detection Listeria-cells inside plant root tissue was done using Fluorescence in situ hybridization (FISH) method in combination with confocal laser scanning microscopy (CLSM). The results showed that 25.58% vegetable samples were positive for Listeria spp. and only one sample (carrot) was positive for L. monocytogenes out of 43 samples in total collected from field and greenhouse. The strain L. monocytogenes EGD-E surface and endophytic colonized carrot root in highest degree while strain L. monocytogenes SV4B was the most represented at leafy vegetable plants, such at lettuce (1.68 × 10 6  cells/mm 3 absolutely dry root) and spinach (1.39 × 10 6  cells/mm 3 absolutely dry root) root surface. The cells of L. monocytogenes SV4B were visible as single cells in interior tissue of plant roots (celery and sweet corn roots) as well as in the interior of the plant root cell at sweet corn root. The cells of L. monocytogenes EGD-E bind to the surface of the plant root and they were less commonly found out on root hair. In the inner layers of the root, those bacterial cells were inhabited intercellular spaces mainly as single cells very close to the larval vessels of root. Our results suggest that L. monocytogenes is very good endophytic colonizer of vegetable plant roots. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. The kinetics of root gravitropism: dual motors and sensors

    NASA Technical Reports Server (NTRS)

    Wolverton, Chris; Ishikawa, Hideo; Evans, Michael L.

    2002-01-01

    The Cholodny-Went theory of tropisms has served as a framework for investigation of root gravitropism for nearly three quarters of a century. Recent investigations using modern techniques have generated findings consistent with the classical theory, including confirmation of asymmetrical distribution of polar auxin transport carriers, molecular evidence for auxin asymmetry following gravistimulation, and generation of auxin response mutants with predictable lesions in gravitropism. Other results indicate that the classical model is inadequate to account for key features of root gravitropism. Initiation of curvature, for example, occurs outside the region of most rapid elongation and is driven by differential acceleration rather than differential inhibition of elongation. The evidence indicates that there are two motors driving root gravitropism, one of which appears not to be auxin regulated. We have recently developed technology that is capable of maintaining a constant angle of gravistimulation at any selected target region of a root while continuously monitoring growth and curvature kinetics. This review elaborates on the advantages of this new technology for analyzing gravitropism and describes applications of the technology that reveal (1) the existence of at least two phases to gravitropic motor output, even under conditions of constant stimulus input and (2) the existence of gravity sensing outside of the root cap. We propose a revised model of root gravitropism including dual sensors and dual motors interacting to accomplish root gravitropism, with only one of the systems linked to the classical Cholodny-Went theory.

  9. The kinetics of root gravitropism: dual motors and sensors.

    PubMed

    Wolverton, Chris; Ishikawa, Hideo; Evans, Michael L

    2002-06-01

    The Cholodny-Went theory of tropisms has served as a framework for investigation of root gravitropism for nearly three quarters of a century. Recent investigations using modern techniques have generated findings consistent with the classical theory, including confirmation of asymmetrical distribution of polar auxin transport carriers, molecular evidence for auxin asymmetry following gravistimulation, and generation of auxin response mutants with predictable lesions in gravitropism. Other results indicate that the classical model is inadequate to account for key features of root gravitropism. Initiation of curvature, for example, occurs outside the region of most rapid elongation and is driven by differential acceleration rather than differential inhibition of elongation. The evidence indicates that there are two motors driving root gravitropism, one of which appears not to be auxin regulated. We have recently developed technology that is capable of maintaining a constant angle of gravistimulation at any selected target region of a root while continuously monitoring growth and curvature kinetics. This review elaborates on the advantages of this new technology for analyzing gravitropism and describes applications of the technology that reveal (1) the existence of at least two phases to gravitropic motor output, even under conditions of constant stimulus input and (2) the existence of gravity sensing outside of the root cap. We propose a revised model of root gravitropism including dual sensors and dual motors interacting to accomplish root gravitropism, with only one of the systems linked to the classical Cholodny-Went theory.

  10. Arabidopsis JACKDAW and MAGPIE zinc finger proteins delimit asymmetric cell division and stabilize tissue boundaries by restricting SHORT-ROOT action

    PubMed Central

    Welch, David; Hassan, Hala; Blilou, Ikram; Immink, Richard; Heidstra, Renze; Scheres, Ben

    2007-01-01

    In the Arabidopsis root, the SHORT-ROOT transcription factor moves outward to the ground tissue from its site of transcription in the stele and is required for the specification of the endodermis and the stem cell organizing quiescent center cells. In addition, SHORT-ROOT and the downstream transcription factor SCARECROW control an oriented cell division in ground tissue stem cell daughters. Here, we show that the JACKDAW and MAGPIE genes, which encode members of a plant-specific family of zinc finger proteins, act in a SHR-dependent feed-forward loop to regulate the range of action of SHORT-ROOT and SCARECROW. JACKDAW expression is initiated independent of SHORT-ROOT and regulates the SCARECROW expression domain outside the stele, while MAGPIE expression depends on SHORT-ROOT and SCARECROW. We provide evidence that JACKDAW and MAGPIE regulate tissue boundaries and asymmetric cell division and can control SHORT-ROOT and SCARECROW activity in a transcriptional and protein interaction network. PMID:17785527

  11. Halogenated auxins affect microtubules and root elongation in Lactuca sativa

    NASA Technical Reports Server (NTRS)

    Zhang, N.; Hasenstein, K. H.

    2000-01-01

    We studied the effect of 4,4,4-trifluoro-3-(indole-3-)butyric acid (TFIBA), a recently described root growth stimulator, and 5,6-dichloro-indole-3-acetic acid (DCIAA) on growth and microtubule (MT) organization in roots of Lactuca sativa L. DCIAA and indole-3-butyric acid (IBA) inhibited root elongation and depolymerized MTs in the cortex of the elongation zone, inhibited the elongation of stele cells, and promoted xylem maturation. Both auxins caused the plane of cell division to shift from anticlinal to periclinal. In contrast, TFIBA (100 micromolar) promoted elongation of primary roots by 40% and stimulated the elongation of lateral roots, even in the presence of IBA, the microtubular inhibitors oryzalin and taxol, or the auxin transport inhibitor naphthylphthalamic acid. However, TFIBA inhibited the formation of lateral root primordia. Immunostaining showed that TFIBA stabilized MTs orientation perpendicular to the root axis, doubled the cortical cell length, but delayed xylem maturation. The data indicate that the auxin-induced inhibition of elongation and swelling of roots results from reoriented phragmoplasts, the destabilization of MTs in elongating cells, and promotion of vessel formation. In contrast, TFIBA induced promotion of root elongation by enhancing cell length, prolonging transverse MT orientation, delaying cell and xylem maturation.

  12. Cold atmospheric plasma, a novel promising anti-cancer treatment modality.

    PubMed

    Yan, Dayun; Sherman, Jonathan H; Keidar, Michael

    2017-02-28

    Over the past decade, cold atmospheric plasma (CAP), a near room temperature ionized gas has shown its promising application in cancer therapy. Two CAP devices, namely dielectric barrier discharge and plasma jet, show significantly anti-cancer capacity over dozens of cancer cell lines in vitro and several subcutaneous xenograft tumors in vivo. In contrast to conventional anti-cancer approaches and drugs, CAP is a selective anti-cancer treatment modality. Thus far establishing the chemical and molecular mechanism of the anti-cancer capacity of CAP is far from complete. In this review, we provide a comprehensive introduction of the basics of CAP, state of the art research in this field, the primary challenges, and future directions to cancer biologists.

  13. Legionella pneumophila community-acquired pneumonia (CAP) in a post-splenectomy patient with myelodysplastic syndrome (MDS).

    PubMed

    Cunha, Burke A; Hage, Jean E

    2012-01-01

    Legionnaire's disease is a cause of community-acquired pneumonia (CAP) in normal hosts, but those with impaired cell-mediated immunity (CMI) and T-lymphocyte function are particularly predisposed to Legionella species CAP. Myelodysplastic syndrome (MDS) is a disorder of the elderly that is associated with impaired CMI. Cases of MDS or Legionella species CAP are rare. Splenectomized patients primarily have impaired humoral immunity and B-lymphocyte function, and, to a lesser extent, some decrease in CMI. For this reason, Legionnaire's disease has rarely been reported in splenectomized patients. We believe this to be the first reported case of Legionella pneumophila CAP in an asplenic patient with MDS. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. The Effects of High Steady State Auxin Levels on Root Cell Elongation in Brachypodium[OPEN

    PubMed Central

    Pacheco-Villalobos, David; Tamaki, Takayuki; Gujas, Bojan; Jaspert, Nina; Oecking, Claudia; Bulone, Vincent; Hardtke, Christian S.

    2016-01-01

    The long-standing Acid Growth Theory of plant cell elongation posits that auxin promotes cell elongation by stimulating cell wall acidification and thus expansin action. To date, the paucity of pertinent genetic materials has precluded thorough analysis of the importance of this concept in roots. The recent isolation of mutants of the model grass species Brachypodium distachyon with dramatically enhanced root cell elongation due to increased cellular auxin levels has allowed us to address this question. We found that the primary transcriptomic effect associated with elevated steady state auxin concentration in elongating root cells is upregulation of cell wall remodeling factors, notably expansins, while plant hormone signaling pathways maintain remarkable homeostasis. These changes are specifically accompanied by reduced cell wall arabinogalactan complexity but not by increased proton excretion. On the contrary, we observed a tendency for decreased rather than increased proton extrusion from root elongation zones with higher cellular auxin levels. Moreover, similar to Brachypodium, root cell elongation is, in general, robustly buffered against external pH fluctuation in Arabidopsis thaliana. However, forced acidification through artificial proton pump activation inhibits root cell elongation. Thus, the interplay between auxin, proton pump activation, and expansin action may be more flexible in roots than in shoots. PMID:27169463

  15. Mobilization and acquisition of sparingly soluble P-Sources by Brassica cultivars under P-starved environment II. Rhizospheric pH changes, redesigned root architecture and pi-uptake kinetics.

    PubMed

    Akhtar, Muhammad Shahbaz; Oki, Yoko; Adachi, Tadashi

    2009-11-01

    Non-mycorrhizal Brassica does not produce specialized root structures such as cluster or dauciform roots but is an effective user of P compared with other crops. In addition to P-uptake, utilization and remobilization activity, acquisition of orthophosphate (Pi) from extracellular sparingly P-sources or unavailable bound P-forms can be enhanced by biochemical rescue mechanisms such copious H(+)-efflux and/or carboxylates exudation into rhizosphere by roots via plasmalemma H(+) ATPase and anion channels triggered by P-starvation. To visualize the dissolution of sparingly soluble Ca-phosphate (Ca-P), newly formed Ca-P was suspended in agar containing other essential nutrients. With NH(4)(+) applied as the N source, the precipitate dissolved in the root vicinity can be ascribed to rhizosphere acidification, whereas no dissolution occurred with nitrate nutrition. To observe in situ rhizospheric pH changes, images were recorded after embedding the roots in agar containing bromocresol purple as a pH indicator. P-tolerant cultivar showed a greater decrease in pH than the sensitive cultivar in the culture media (the appearance of typical patterns of various colors of pH indicator in the root vicinity), and at stress P-level this acidification was more prominent. In experiment 2, low P-tolerant class-I cultivars (Oscar and Con-II) showed a greater decrease in solution media pH than low P-sensitive class-II (Gold Rush and RL-18) cultivars, and P-contents of the cultivars was inversely related to decrease in culture media pH. To elucidate P-stress-induced remodeling and redesigning in a root architectural system, cultivars were grown in rhizoboxes in experiment 3. The elongation rates of primary roots increased as P-supply increased, but the elongation rates of the branched zones of primary roots decreased. The length of the lateral roots and topological index values increased when cultivars were exposed to a P-stress environment. To elucidate Pi-uptake kinetics, parameters related to P influx: maximal transport rate (V(max)), the Michaelis-Menten constant (K(m)), and the external concentration when net uptake is zero (C(min)) were tested in experiment 4. Lower K(m) and C(min) values were better indicative of the P-uptake ability of the class-I cultivars, evidencing their adaptability to P-starved environmental cues. In experiment 5, class-I cultivars exuded two- to threefold more carboxylates than class-II cultivars under the P-stress environment. The amount and types of carboxylates exuded from the roots of P-starved plants differed from those of plants grown under P-sufficient conditions. Nevertheless, the exudation rate of both class-I and class-II cultivars decreased with time, and the highest exudation rate was found after the first 4 h of carboxylates collection. Higher P uptake by class-I cultivars was significantly related to the drop in root medium pH, which can be ascribed to H(+)-efflux from the roots supplied with sparingly soluble rock-P and Ca(3)(PO(4))(2). These classical rescue strategies provided the basis of P-solubilization and acquisition from sparingly soluble P-sources by Brassica cultivars to thrive in a typically stressful environment.

  16. [The mechanism of root hair development and molecular regulation in plants].

    PubMed

    Wang, Yue-Ping; Li, Ying-Hui; Guan, Rong-Xia; Liu, Zhang-Xiong; Chen, Xiong-Ting; Chang, Ru-Zhen; Qiu, Li-Juan

    2007-04-01

    The formation of the root epidermis in Arabidopsis thaliana provides a simple model to study mechanisms underlying patterning in plants. Root hair increases the root surface area and effectively increases the root diameter, so root hair is thought to aid plants in nutrient uptake, anchorage and microbe interactions. The determination of root hair development has two types, lateral inhibition with feedback and position-dependent pattern of cell differentiation. The initiation and development of root hair in Arabidopsis provide a simple and efficacious model for the study of cell fate determination in plants. Molecular genetic studies identify a suite of putative transcription factors which regulate the epidermal cell pattern. The homeodomain protein GLABRA2 (GL2), R2R3 MYB-type transcription factor WEREWOLF (WER) and WD-repeat protein TRANSPARENTT TESTA GLABRA (TTG) are required for specification of non-hair cell type. The CAPRICE (CPC) and TRYPTICHON (TRY) are involved in specifying the hair cell fate.

  17. Localization of ascorbic acid, ascorbic acid oxidase, and glutathione in roots of Cucurbita maxima L.

    PubMed

    Liso, Rosalia; De Tullio, Mario C; Ciraci, Samantha; Balestrini, Raffaella; La Rocca, Nicoletta; Bruno, Leonardo; Chiappetta, Adriana; Bitonti, Maria Beatrice; Bonfante, Paola; Arrigoni, Oreste

    2004-12-01

    To understand the function of ascorbic acid (ASC) in root development, the distribution of ASC, ASC oxidase, and glutathione (GSH) were investigated in cells and tissues of the root apex of Cucubita maxima. ASC was regularly distributed in the cytosol of almost all root cells, with the exception of quiescent centre (QC) cells. ASC also occurred at the surface of the nuclear membrane and correspondingly in the nucleoli. No ASC could be observed in vacuoles. ASC oxidase was detected by immunolocalization mainly in cell walls and vacuoles. This enzyme was particularly abundant in the QC and in differentiating vascular tissues and was absent in lateral root primordia. Administration of the ASC precursor L-galactono-gamma-lactone markedly increased ASC content in all root cells, including the QC. Root treatment with the ASC oxidized product, dehydroascorbic acid (DHA), also increased ASC content, but caused ASC accumulation only in peripheral tissues, where DHA was apparently reduced at the expense of GSH. The different pattern of distribution of ASC in different tissues and cell compartments reflects its possible role in cell metabolism and root morphogenesis.

  18. Bone stroma-derived cells change coregulators recruitment to androgen receptor and decrease cell proliferation in androgen-sensitive and castration-resistant prostate cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Villagran, Marcelo A.; Gutierrez-Castro, Francisco A.; Pantoja, Diego F.

    Prostate cancer (CaP) bone metastasis is an early event that remains inactive until later-stage progression. Reduced levels of circulating androgens, due to andropause or androgen deprivation therapies, alter androgen receptor (AR) coactivator expression. Coactivators shift the balance towards enhanced AR-mediated gene transcription that promotes progression to androgen-resistance. Disruptions in coregulators may represent a molecular switch that reactivates latent bone metastasis. Changes in AR-mediated transcription in androgen-sensitive LNCaP and androgen-resistant C4-2 cells were analyzed for AR coregulator recruitment in co-culture with Saos-2 and THP-1. The Saos-2 cell line derived from human osteosarcoma and THP-1 cell line representing human monocytes were usedmore » to display osteoblast and osteoclast activity. Increased AR activity in androgen-resistant C4-2 was due to increased AR expression and SRC1/TIF2 recruitment and decreased SMRT/NCoR expression. AR activity in both cell types was decreased over 90% when co-cultured with Saos-2 or THP-1 due to dissociation of AR from the SRC1/TIF2 and SMRT/NCoR coregulators complex, in a ligand-dependent and cell-type specific manner. In the absence of androgens, Saos-2 decreased while THP-1 increased proliferation of LNCaP cells. In contrast, both Saos-2 and THP-1 decreased proliferation of C4-2 in absence and presence of androgens. Global changes in gene expression from both CaP cell lines identified potential cell cycle and androgen regulated genes as mechanisms for changes in cell proliferation and AR-mediated transactivation in the context of bone marrow stroma cells. - Highlights: • Decreased corepressor expression change AR in androgen-resistance prostate cancer. • Bone stroma-derived cells change AR coregulator recruitment in prostate cancer. • Bone stroma cells change cell proliferation in androgen-resistant cancer cells. • Global gene expression in CaP cells is modified by bone stroma cells in co-cultures. • Potential new multi-subunit coactivator complexes for AR in CaP bone metastasis.« less

  19. Preface to Special Topic: Plasmas for Medical Applications

    NASA Astrophysics Data System (ADS)

    Keidar, Michael; Robert, Eric

    2015-12-01

    Intense research effort over last few decades in low-temperature (or cold) atmospheric plasma application in bioengineering led to the foundation of a new scientific field, plasma medicine. Cold atmospheric plasmas (CAP) produce various chemically reactive species including reactive oxygen species (ROS) and reactive nitrogen species (RNS). It has been found that these reactive species play an important role in the interaction of CAP with prokaryotic and eukaryotic cells triggering various signaling pathways in cells.

  20. A Genome-Wide RNAi Screen Identifies FOXO4 as a Metastasis-Suppressor through Counteracting PI3K/AKT Signal Pathway in Prostate Cancer

    PubMed Central

    Su, Bing; Gao, Lingqiu; Baranowski, Catherine; Gillard, Bryan; Wang, Jianmin; Ransom, Ryan; Ko, Hyun-Kyung; Gelman, Irwin H.

    2014-01-01

    Activation of the PI3K/AKT signal pathway is a known driving force for the progression to castration-recurrent prostate cancer (CR-CaP), which constitutes the major lethal phenotype of CaP. Here, we identify using a genomic shRNA screen the PI3K/AKT-inactivating downstream target, FOXO4, as a potential CaP metastasis suppressor. FOXO4 protein levels inversely correlate with the invasive potential of a panel of human CaP cell lines, with decreased mRNA levels correlating with increased incidence of clinical metastasis. Knockdown (KD) of FOXO4 in human LNCaP cells causes increased invasion in vitro and lymph node (LN) metastasis in vivo without affecting indices of proliferation or apoptosis. Increased Matrigel invasiveness was found by KD of FOXO1 but not FOXO3. Comparison of differentially expressed genes affected by FOXO4-KD in LNCaP cells in culture, in primary tumors and in LN metastases identified a panel of upregulated genes, including PIP, CAMK2N1, PLA2G16 and PGC, which, if knocked down by siRNA, could decrease the increased invasiveness associated with FOXO4 deficiency. Although only some of these genes encode FOXO promoter binding sites, they are all RUNX2-inducible, and RUNX2 binding to the PIP promoter is increased in FOXO4-KD cells. Indeed, the forced expression of FOXO4 reversed the increased invasiveness of LNCaP/shFOXO4 cells; the forced expression of FOXO4 did not alter RUNX2 protein levels, yet it decreased RUNX2 binding to the PIP promoter, resulting in PIP downregulation. Finally, there was a correlation between FOXO4, but not FOXO1 or FOXO3, downregulation and decreased metastasis-free survival in human CaP patients. Our data strongly suggest that increased PI3K/AKT-mediated metastatic invasiveness in CaP is associated with FOXO4 loss, and that mechanisms to induce FOXO4 re-expression might suppress CaP metastatic aggressiveness. PMID:24983969

Top