Science.gov

Sample records for root growth regulation

  1. Underground tuning: quantitative regulation of root growth.

    PubMed

    Satbhai, Santosh B; Ristova, Daniela; Busch, Wolfgang

    2015-02-01

    Plants display a high degree of phenotypic plasticity that allows them to tune their form and function to changing environments. The plant root system has evolved mechanisms to anchor the plant and to efficiently explore soils to forage for soil resources. Key to this is an enormous capacity for plasticity of multiple traits that shape the distribution of roots in the soil. Such root system architecture-related traits are determined by root growth rates, root growth direction, and root branching. In this review, we describe how the root system is constituted, and which mechanisms, pathways, and genes mainly regulate plasticity of the root system in response to environmental variation.

  2. Brassinosteroids Regulate Root Growth, Development, and Symbiosis.

    PubMed

    Wei, Zhuoyun; Li, Jia

    2016-01-04

    Brassinosteroids (BRs) are natural plant hormones critical for growth and development. BR deficient or signaling mutants show significantly shortened root phenotypes. However, for a long time, it was thought that these phenotypes were solely caused by reduced cell elongation in the mutant roots. Functions of BRs in regulating root development have been largely neglected. Nonetheless, recent detailed analyses, revealed that BRs are not only involved in root cell elongation but are also involved in many aspects of root development, such as maintenance of meristem size, root hair formation, lateral root initiation, gravitropic response, mycorrhiza formation, and nodulation in legume species. In this review, current findings on the functions of BRs in mediating root growth, development, and symbiosis are discussed.

  3. Phenotyping jasmonate regulation of root growth.

    PubMed

    Kellermeier, Fabian; Amtmann, Anna

    2013-01-01

    Root architecture is a complex and highly plastic feature of higher plants. Direct treatments with jasmonates and alterations in jasmonate signaling have been shown to elicit a range of root phenotypes. Here, we describe a fast, noninvasive, and semiautomatic method to monitor root architectural responses to environmental stimuli using plant tissue culture and the software tool EZ-RHIZO.

  4. Root growth regulation and gravitropism in maize roots does not require the epidermis

    NASA Technical Reports Server (NTRS)

    Bjorkman, T.; Cleland, R. E.

    1991-01-01

    We have earlier published observations showing that endogenous alterations in growth rate during gravitropism in maize roots (Zea mays L.) are unaffected by the orientation of cuts which remove epidermal and cortical tissue in the growing zone (Bjorkman and Cleland, 1988, Planta 176, 513-518). We concluded that the epidermis and cortex are not essential for transporting a growth-regulating signal in gravitropism or straight growth, nor for regulating the rate of tissue expansion. This conclusion has been challenged by Yang et al. (1990, Planta 180, 530-536), who contend that a shallow girdle around the entire perimeter of the root blocks gravitropic curvature and that this inhibition is the result of a requirement for epidermal cells to transport the growth-regulating signal. In this paper we demonstrate that the entire epidermis can be removed without blocking gravitropic curvature and show that the position of narrow girdles does not affect the location of curvature. We therefore conclude that the epidermis is not required for transport of a growth-regulating substance from the root cap to the growing zone, nor does it regulate the growth rate of the elongating zone of roots.

  5. Light regulation of the growth response in corn root gravitropism

    NASA Technical Reports Server (NTRS)

    Kelly, M. O.; Leopold, A. C.

    1992-01-01

    Roots of Merit variety corn (Zea mays L.) require red light for orthogravitropic curvature. Experiments were undertaken to identify the step in the pathway from gravity perception to asymmetric growth on which light may act. Red light was effective in inducing gravitropism whether it was supplied concomitant with or as long as 30 minutes after the gravity stimulus (GS). The presentation time was the same whether the GS was supplied in red light or in darkness. Red light given before the GS slightly enhanced the rate of curvature but had little effect on the lag time or on the final curvature. This enhancement was expanded by a delay between the red light pulse and the GS. These results indicate that gravity perception and at least the initial transduction steps proceed in the dark. Light may regulate the final growth (motor) phase of gravitropism. The time required for full expression of the light enhancement of curvature is consistent with its involvement in some light-stimulated biosynthetic event.

  6. New findings in the mechanisms regulating polar growth in root hair cells.

    PubMed

    Cárdenas, Luis

    2009-01-01

    Root hairs cells are highly polarized cellular structures resulting from tip growth of specific root epidermal cells. Root-hair morphogenesis involves many aspects regulating tip growth such as exocytosis, ion flux, calcium homeostasis, reactive oxygen species (ROS), and cytoskeleton. These cells are excellent models for studying polar growth and can be challenged with many extracellular factors affecting the pattern of growth named Nod factors, elicitors, hormones, etc. The general scenery is that the well described tip-high intracellular Ca(2+) gradient plays a central role in regulating tip growth. On the other hand, ROS plays a key role in various processes, for example hypersensitive response, root hair development, hormone action, gravitropism and stress responses. However, ROS has recently emerged as a key player together with calcium in regulating polar growth, not only in root hair cells but also in pollen tubes, filamentous fungi and fucoid cells. Furthermore, Ca(2+)-permeable channel modulation by ROS has been demonstrated in Vicia faba guard cells and Arabidopsis root hairs. Recently, root hair cells were shown to experiment ROS, pH and calcium oscillations coupled to growth oscillation. These recent findings allow considering that root hair cells present a similar pattern of growth as described for pollen tubes.

  7. ABA Suppresses Root Hair Growth via the OBP4 Transcriptional Regulator1[OPEN

    PubMed Central

    Kawamura, Ayako; Schäfer, Sabine; Breuer, Christian; Shibata, Michitaro; Mitsuda, Nobutaka; Ohme-Takagi, Masaru; Matsui, Minami

    2017-01-01

    Plants modify organ growth and tune morphogenesis in response to various endogenous and environmental cues. At the cellular level, organ growth is often adjusted by alterations in cell growth, but the molecular mechanisms underlying this control remain poorly understood. In this study, we identify the DNA BINDING WITH ONE FINGER (DOF)-type transcription regulator OBF BINDING PROTEIN4 (OBP4) as a repressor of cell growth. Ectopic expression of OBP4 in Arabidopsis (Arabidopsis thaliana) inhibits cell growth, resulting in severe dwarfism and the repression of genes involved in the regulation of water transport, root hair development, and stress responses. Among the basic helix-loop-helix transcription factors known to control root hair growth, OBP4 binds the ROOT HAIR DEFECTIVE6-LIKE2 (RSL2) promoter to repress its expression. The accumulation of OBP4 proteins is detected in expanding root epidermal cells, and its expression level is increased by the application of abscisic acid (ABA) at concentrations sufficient to inhibit root hair growth. ABA-dependent induction of OBP4 is associated with the reduced expression of RSL2. Furthermore, ectopic expression of OBP4 or loss of RSL2 function results in ABA-insensitive root hair growth. Taken together, our results suggest that OBP4-mediated transcriptional repression of RSL2 contributes to the ABA-dependent inhibition of root hair growth in Arabidopsis. PMID:28167701

  8. Spatial Regulation of Root Growth: Placing the Plant TOR Pathway in a Developmental Perspective.

    PubMed

    Barrada, Adam; Montané, Marie-Hélène; Robaglia, Christophe; Menand, Benoît

    2015-08-19

    Plant cells contain specialized structures, such as a cell wall and a large vacuole, which play a major role in cell growth. Roots follow an organized pattern of development, making them the organs of choice for studying the spatio-temporal regulation of cell proliferation and growth in plants. During root growth, cells originate from the initials surrounding the quiescent center, proliferate in the division zone of the meristem, and then increase in length in the elongation zone, reaching their final size and differentiation stage in the mature zone. Phytohormones, especially auxins and cytokinins, control the dynamic balance between cell division and differentiation and therefore organ size. Plant growth is also regulated by metabolites and nutrients, such as the sugars produced by photosynthesis or nitrate assimilated from the soil. Recent literature has shown that the conserved eukaryotic TOR (target of rapamycin) kinase pathway plays an important role in orchestrating plant growth. We will summarize how the regulation of cell proliferation and cell expansion by phytohormones are at the heart of root growth and then discuss recent data indicating that the TOR pathway integrates hormonal and nutritive signals to orchestrate root growth.

  9. Spatial Regulation of Root Growth: Placing the Plant TOR Pathway in a Developmental Perspective

    PubMed Central

    Barrada, Adam; Montané, Marie-Hélène; Robaglia, Christophe; Menand, Benoît

    2015-01-01

    Plant cells contain specialized structures, such as a cell wall and a large vacuole, which play a major role in cell growth. Roots follow an organized pattern of development, making them the organs of choice for studying the spatio-temporal regulation of cell proliferation and growth in plants. During root growth, cells originate from the initials surrounding the quiescent center, proliferate in the division zone of the meristem, and then increase in length in the elongation zone, reaching their final size and differentiation stage in the mature zone. Phytohormones, especially auxins and cytokinins, control the dynamic balance between cell division and differentiation and therefore organ size. Plant growth is also regulated by metabolites and nutrients, such as the sugars produced by photosynthesis or nitrate assimilated from the soil. Recent literature has shown that the conserved eukaryotic TOR (target of rapamycin) kinase pathway plays an important role in orchestrating plant growth. We will summarize how the regulation of cell proliferation and cell expansion by phytohormones are at the heart of root growth and then discuss recent data indicating that the TOR pathway integrates hormonal and nutritive signals to orchestrate root growth. PMID:26295391

  10. Local Transcriptional Control of YUCCA Regulates Auxin Promoted Root-Growth Inhibition in Response to Aluminium Stress in Arabidopsis.

    PubMed

    Liu, Guangchao; Gao, Shan; Tian, Huiyu; Wu, Wenwen; Robert, Hélène S; Ding, Zhaojun

    2016-10-01

    Auxin is necessary for the inhibition of root growth induced by aluminium (Al) stress, however the molecular mechanism controlling this is largely unknown. Here, we report that YUCCA (YUC), which encodes flavin monooxygenase-like proteins, regulates local auxin biosynthesis in the root apex transition zone (TZ) in response to Al stress. Al stress up-regulates YUC3/5/7/8/9 in the root-apex TZ, which we show results in the accumulation of auxin in the root-apex TZ and root-growth inhibition during the Al stress response. These Al-dependent changes in the regulation of YUCs in the root-apex TZ and YUC-regulated root growth inhibition are dependent on ethylene signalling. Increasing or disruption of ethylene signalling caused either enhanced or reduced up-regulation, respectively, of YUCs in root-apex TZ in response to Al stress. In addition, ethylene enhanced root growth inhibition under Al stress was strongly alleviated in yuc mutants or by co-treatment with yucasin, an inhibitor of YUC activity, suggesting a downstream role of YUCs in this process. Moreover, ethylene-insensitive 3 (EIN3) is involved into the direct regulation of YUC9 transcription in this process. Furthermore, we demonstrated that PHYTOCHROME INTERACTING FACTOR4 (PIF4) functions as a transcriptional activator for YUC5/8/9. PIF4 promotes Al-inhibited primary root growth by regulating the local expression of YUCs and auxin signal in the root-apex TZ. The Al-induced expression of PIF4 in root TZ acts downstream of ethylene signalling. Taken together, our results highlight a regulatory cascade for YUCs-regulated local auxin biosynthesis in the root-apex TZ mediating root growth inhibition in response to Al stress.

  11. Local Transcriptional Control of YUCCA Regulates Auxin Promoted Root-Growth Inhibition in Response to Aluminium Stress in Arabidopsis

    PubMed Central

    Tian, Huiyu; Wu, Wenwen; Ding, Zhaojun

    2016-01-01

    Auxin is necessary for the inhibition of root growth induced by aluminium (Al) stress, however the molecular mechanism controlling this is largely unknown. Here, we report that YUCCA (YUC), which encodes flavin monooxygenase-like proteins, regulates local auxin biosynthesis in the root apex transition zone (TZ) in response to Al stress. Al stress up-regulates YUC3/5/7/8/9 in the root-apex TZ, which we show results in the accumulation of auxin in the root-apex TZ and root-growth inhibition during the Al stress response. These Al-dependent changes in the regulation of YUCs in the root-apex TZ and YUC-regulated root growth inhibition are dependent on ethylene signalling. Increasing or disruption of ethylene signalling caused either enhanced or reduced up-regulation, respectively, of YUCs in root-apex TZ in response to Al stress. In addition, ethylene enhanced root growth inhibition under Al stress was strongly alleviated in yuc mutants or by co-treatment with yucasin, an inhibitor of YUC activity, suggesting a downstream role of YUCs in this process. Moreover, ethylene-insensitive 3 (EIN3) is involved into the direct regulation of YUC9 transcription in this process. Furthermore, we demonstrated that PHYTOCHROME INTERACTING FACTOR4 (PIF4) functions as a transcriptional activator for YUC5/8/9. PIF4 promotes Al-inhibited primary root growth by regulating the local expression of YUCs and auxin signal in the root-apex TZ. The Al–induced expression of PIF4 in root TZ acts downstream of ethylene signalling. Taken together, our results highlight a regulatory cascade for YUCs-regulated local auxin biosynthesis in the root-apex TZ mediating root growth inhibition in response to Al stress. PMID:27716807

  12. Multilayered Organization of Jasmonate Signalling in the Regulation of Root Growth

    PubMed Central

    Gasperini, Debora; Chételat, Aurore; Acosta, Ivan F.; Goossens, Jonas; Pauwels, Laurens; Goossens, Alain; Dreos, René; Alfonso, Esteban; Farmer, Edward E.

    2015-01-01

    Physical damage can strongly affect plant growth, reducing the biomass of developing organs situated at a distance from wounds. These effects, previously studied in leaves, require the activation of jasmonate (JA) signalling. Using a novel assay involving repetitive cotyledon wounding in Arabidopsis seedlings, we uncovered a function of JA in suppressing cell division and elongation in roots. Regulatory JA signalling components were then manipulated to delineate their relative impacts on root growth. The new transcription factor mutant myc2-322B was isolated. In vitro transcription assays and whole-plant approaches revealed that myc2-322B is a dosage-dependent gain-of-function mutant that can amplify JA growth responses. Moreover, myc2-322B displayed extreme hypersensitivity to JA that totally suppressed root elongation. The mutation weakly reduced root growth in undamaged plants but, when the upstream negative regulator NINJA was genetically removed, myc2-322B powerfully repressed root growth through its effects on cell division and cell elongation. Furthermore, in a JA-deficient mutant background, ninja1 myc2-322B still repressed root elongation, indicating that it is possible to generate JA-responses in the absence of JA. We show that NINJA forms a broadly expressed regulatory layer that is required to inhibit JA signalling in the apex of roots grown under basal conditions. By contrast, MYC2, MYC3 and MYC4 displayed cell layer-specific localisations and MYC3 and MYC4 were expressed in mutually exclusive regions. In nature, growing roots are likely subjected to constant mechanical stress during soil penetration that could lead to JA production and subsequent detrimental effects on growth. Our data reveal how distinct negative regulatory layers, including both NINJA-dependent and -independent mechanisms, restrain JA responses to allow normal root growth. Mechanistic insights from this work underline the importance of mapping JA signalling components to specific

  13. Cytokinins negatively regulate the root iron uptake machinery in Arabidopsis through a growth-dependent pathway.

    PubMed

    Séguéla, Mathilde; Briat, Jean-François; Vert, Grégory; Curie, Catherine

    2008-07-01

    Plants display a number of biochemical and developmental responses to low iron availability in order to increase iron uptake from the soil. The ferric-chelate reductase FRO2 and the ferrous iron transporter IRT1 control iron entry from the soil into the root epidermis. In Arabidopsis, expression of IRT1 and FRO2 is tightly controlled to maintain iron homeostasis, and involves local and long-distance signals, as well as transcriptional and post-transcriptional events. FIT encodes a putative basic helix-loop-helix (bHLH) transcription factor that regulates iron uptake responses in Arabidopsis. Here, we uncover a new regulation of the root iron uptake genes. We show that IRT1, FRO2 and FIT are repressed by the exogenous addition of cytokinins (CKs), and that this repression acts at the level of transcript accumulation, and depends on the AHK3 and CRE1 CK receptors. The CKs and iron-deficiency signals act through distinct pathways to regulate the soil iron uptake genes, as (i) CK repression is independent of the iron status, (ii) IRT1 and FRO2 downregulation is unchanged in a fit loss-of-function mutant, indicating that FIT does not mediate CK repression, and (iii) the iron-regulated genes AtNRAMP3 and AtNRAMP4 are not downregulated by CKs. We show that root growth-inhibitory conditions, such as abiotic stresses (mannitol, NaCl) and hormonal treatments (auxin, abscissic acid), repress the iron starvation response genes. We propose that CKs control the root iron uptake machinery through a root growth dependent pathway in order to adapt nutrient uptake to the demand of the plant.

  14. Strigolactones Effects on Root Growth

    NASA Astrophysics Data System (ADS)

    Koltai, Hinanit

    2012-07-01

    Strigolactones (SLs) were defined as a new group of plant hormones that suppress lateral shoot branching. Our previous studies suggested SLs to be regulators of root development. SLs were shown to alter root architecture by regulating lateral root formation and to affect root hair elongation in Arabidopsis. Another important effect of SLs on root growth was shown to be associated with root directional growth. Supplementation of SLs to roots led to alterations in root directional growth, whereas associated mutants showed asymmetrical root growth, which was influenced by environmental factors. The regulation by SLs of root development was shown to be conducted via a cross talk of SLs with other plant hormones, including auxin. SLs were shown to regulate auxin transport, and to interfere with the activity of auxin-efflux carriers. Therefore, it might be that SLs are regulators of root directional growth as a result of their ability to regulated auxin transport. However, other evidences suggest a localized effect of SLs on cell division, which may not necessarily be associated with auxin efflux. These and other, recent hypothesis as to the SLs mode of action and the associated root perception and response to environmental factors will be discussed.

  15. Abscisic acid- and stress-induced highly proline-rich glycoproteins regulate root growth in rice.

    PubMed

    Tseng, I-Chieh; Hong, Chwan-Yang; Yu, Su-May; Ho, Tuan-Hua David

    2013-09-01

    In the root of rice (Oryza sativa), abscisic acid (ABA) treatment, salinity, or water deficit stress induces the expression of a family of four genes, REPETITIVE PROLINE-RICH PROTEIN (RePRP). These genes encode two subclasses of novel proline-rich glycoproteins with highly repetitive PX₁PX₂ motifs, RePRP1 and RePRP2. RePRP orthologs exist only in monocotyledonous plants, and their functions are virtually unknown. Rice RePRPs are heavily glycosylated with arabinose and glucose on multiple hydroxyproline residues. They are significantly different from arabinogalactan proteins that have glycan chains composed of arabinose and galactose. Transient and stable expressions of RePRP-green fluorescent protein reveal that a fraction of this protein is localized to the plasma membrane. In rice roots, ABA treatment increases RePRP expression preferentially in the elongation zone. Overexpression of RePRP in transgenic rice reduces root cell elongation in the absence of ABA, similar to the effect of ABA on wild-type roots. Conversely, simultaneous knockdown of the expression of RePRP1 and RePRP2 reduces the root sensitivity to ABA, indicating that RePRP proteins play an essential role in ABA/stress regulation of root growth and development. Moreover, rice RePRPs specifically interact with a polysaccharide, arabinogalactan, in a dosage-dependent manner. It is suggested that RePRP1 and RePRP2 are functionally redundant suppressors of root cell expansion and probably act through interactions with cell wall components near the plasma membrane.

  16. TAA1-regulated local auxin biosynthesis in the root-apex transition zone mediates the aluminum-induced inhibition of root growth in Arabidopsis.

    PubMed

    Yang, Zhong-Bao; Geng, Xiaoyu; He, Chunmei; Zhang, Feng; Wang, Rong; Horst, Walter J; Ding, Zhaojun

    2014-07-01

    The transition zone (TZ) of the root apex is the perception site of Al toxicity. Here, we show that exposure of Arabidopsis thaliana roots to Al induces a localized enhancement of auxin signaling in the root-apex TZ that is dependent on TAA1, which encodes a Trp aminotransferase and regulates auxin biosynthesis. TAA1 is specifically upregulated in the root-apex TZ in response to Al treatment, thus mediating local auxin biosynthesis and inhibition of root growth. The TAA1-regulated local auxin biosynthesis in the root-apex TZ in response to Al stress is dependent on ethylene, as revealed by manipulating ethylene homeostasis via the precursor of ethylene biosynthesis 1-aminocyclopropane-1-carboxylic acid, the inhibitor of ethylene biosynthesis aminoethoxyvinylglycine, or mutant analysis. In response to Al stress, ethylene signaling locally upregulates TAA1 expression and thus auxin responses in the TZ and results in auxin-regulated root growth inhibition through a number of auxin response factors (ARFs). In particular, ARF10 and ARF16 are important in the regulation of cell wall modification-related genes. Our study suggests a mechanism underlying how environmental cues affect root growth plasticity through influencing local auxin biosynthesis and signaling.

  17. Differential wall growth in gravistimulated corn roots: Its timing and regulation

    NASA Technical Reports Server (NTRS)

    Serlin, B. S.

    1985-01-01

    The experiments designed to document cell-wall level changes which occur as a result of their gravistimulation are described. The goal of this research is to elucidate the mechanism and time frame of differential growth following a controlled gravistimulation. To achieve this, rates of wall deposition will be determined by following the incorporation of radioactive monosaccharides into the wall. Complementing this experiment will be a freeze-etch study directed at revealing the spatial arrangment of both newly-deposited microfibrils and microfibrils that were present in the growing root prior to stimulation. The second phase of the proposed research will examine the roles ethylene and Ca(2+) have in the modulation of differential wall changes during gravitropism. Ethylene and Ca(2+) have both been implicated as regulators of the gravitropic response in roots and they have also been implicated as regulators of the gravitropic response in roots and they have also been reported to exert some control on the orientation of microfibrils. Both of these agents will be manipulated in such a way as to reveal whether they have a direct influence on cell wall deposition and microfibrillar alignment during the geotropic response.

  18. Touch modulates gravity sensing to regulate the growth of primary roots of Arabidopsis thaliana

    NASA Technical Reports Server (NTRS)

    Massa, Gioia D.; Gilroy, Simon

    2003-01-01

    Plants must sense and respond to diverse stimuli to optimize the architecture of their root system for water and nutrient scavenging and anchorage. We have therefore analyzed how information from two of these stimuli, touch and gravity, are integrated to direct root growth. In Arabidopsis thaliana, touch stimulation provided by a glass barrier placed across the direction of growth caused the root to form a step-like growth habit with bends forming in the central and later the distal elongation zones. This response led to the main root axis growing parallel to, but not touching the obstacle, whilst the root cap maintained contact with the barrier. Removal of the graviperceptive columella cells of the root cap using laser ablation reduced the bending response of the distal elongation zone. Similarly, although the roots of the gravisensing impaired pgm1-1 mutant grew along the barrier at the same average angle as wild-type, this angle became more variable with time. These observations imply a constant gravitropic re-setting of the root tip response to touch stimulation from the barrier. In wild-type plants, transient touch stimulation of root cap cells, but not other regions of the root, inhibited both subsequent gravitropic growth and amyloplast sedimentation in the columella. Taken together, these results suggest that the cells of the root cap sense touch stimuli and their subsequent signaling acts on the columella cells to modulate their graviresponse. This interaction of touch and gravity signaling would then direct root growth to avoid obstacles in the soil while generally maintaining downward growth.

  19. AtrbohD and AtrbohF positively regulate abscisic acid-inhibited primary root growth by affecting Ca2+ signalling and auxin response of roots in Arabidopsis.

    PubMed

    Jiao, Yiheng; Sun, Lirong; Song, Yalin; Wang, Limin; Liu, Liping; Zhang, Liyue; Liu, Bo; Li, Ning; Miao, Chen; Hao, Fushun

    2013-11-01

    Reactive oxygen species (ROS) originating from the NADPH oxidases AtrbohD and AtrbohF play an important role in abscisic acid (ABA)-inhibited primary root growth in Arabidopsis. However, the mechanisms underlying this process remain elusive. In this study, the double mutant atrbohD1/F1 and atrbohD2/F2, in which both AtrbohD and AtrbohF were disrupted, were less sensitive to ABA suppression of root cell elongation than wild-type (WT) plants. Furthermore, the double mutants showed impaired ABA responses in roots, including ROS generation, cytosolic Ca(2+) increases, and activation of plasma membrane Ca(2+)-permeable channels compared with WT. Exogenous H2O2 can activate the Ca(2+) currents in roots of atrbohD1/F1. In addition, exogenous application of the auxin transport inhibitor naphthylphthalamic acid effectively promoted ABA inhibition of root growth of the mutants relative to that of WT. The ABA-induced decreases in auxin sensitivity of the root tips were more pronounced in WT than in atrbohD1/F1. These findings suggest that both AtrbohD and AtrbohF are essential for ABA-promoted ROS production in roots. ROS activate Ca(2+) signalling and reduce auxin sensitivity of roots, thus positively regulating ABA-inhibited primary root growth in Arabidopsis.

  20. Co-regulation of root hair tip growth by ROP GTPases and nitrogen source modulated pH fluctuations.

    PubMed

    Bloch, Daria; Monshausen, Gabriele; Gilroy, Simon; Yalovsky, Shaul

    2011-03-01

    Growth of plant cells involves tight regulation of the cytoskeleton and vesicle trafficking by processes including the action of the ROP small G proteins together with pH-modulated cell wall modifications. Yet, little is known on how these systems are coordinated. In a paper recently published in Plant Cell and Environment we show that ROPs/RACs function synergistically with NH4NO3-modulated pH fluctuations to regulate root hair growth. Root hairs expand exclusively at their apical end in a strictly polarized manner by a process known as tip growth. The highly polarized secretion at the apex is maintained by a complex network of factors including the spatial organization of the actin cytoskeleton, tip-focused ion gradients and by small G proteins. Expression of constitutively active ROP mutants disrupts polar growth, inducing the formation of swollen root hairs. Root hairs are also known to elongate in an oscillating manner, which is correlated with oscillatory H(+) fluxes at the tip. Our analysis shows that root hair elongation in wild type plants and swelling in transgenic plants expressing a constitutively active ROP11 (rop11(CA)) is sensitive to the presence of NH4(+) at concentrations higher than 1 mM and on NO3(-). The NH4(+) and NO3(-) ions did not affect the localization of ROP in the membrane but modulated pH fluctuations at the root hair tip. Actin organization and reactive oxygen species distribution were abnormal in rop11CA root hairs but were similar to wild type root hairs when seedlings were grown on medium lacking NH4(+) and / or NO3(-). These observations suggest that the nitrogen source-modulated pH fluctuations may function synergistically with ROP regulated signaling during root hair tip growth. Interestingly, under certain growth conditions, expression of rop11 (CA) suppressed ammonium toxicity, similar to auxin resistant mutants. In this Addendum article we discuss these findings and their implications.

  1. Gene expression regulation in the plant growth promoting Bacillus atrophaeus UCMB-5137 stimulated by maize root exudates.

    PubMed

    Mwita, Liberata; Chan, Wai Yin; Pretorius, Theresa; Lyantagaye, Sylvester L; Lapa, Svitlana V; Avdeeva, Lilia V; Reva, Oleg N

    2016-09-15

    Despite successful use of Plant Growth Promoting Rhizobacteria (PGPR) in agriculture, little is known about specific mechanisms of gene regulation facilitating the effective communication between bacteria and plants during plant colonization. Active PGPR strain Bacillus atrophaeus UCMB-5137 was studied in this research. RNA sequencing profiles were generated in experiments where root exudate stimulations were used to mimic interactions between bacteria and plants. It was found that the gene regulation in B. atrophaeus UCMB-5137 in response to the root exudate stimuli differed from the reported gene regulation at similar conditions in B. amyloliquefaciens FZB42, which was considered as a paradigm PGPR. This difference was explained by hypersensitivity of UCMB-5137 to the root exudate stimuli impelling it to a sessile root colonization behavior through the CcpA-CodY-AbrB regulation. It was found that the transcriptional factor DegU also could play an important role in gene regulations during plant colonization. A significant stress caused by the root exudates on in vitro cultivated B. atrophaeus UCMB-5137 was noticed and discussed. Multiple cases of conflicted gene regulations showed scantiness of our knowledge on the regulatory network in Bacillus. Some of these conflicted regulations could be explained by interference of non-coding RNA (ncRNA). Search through differential expressed intergenic regions revealed 49 putative loci of ncRNA regulated by the root exudate stimuli. Possible target mRNA were predicted and a general regulatory network of B. atrophaeus UCMB-5137 genome was designed.

  2. Auxin, ethylene and the regulation of root growth under mechanical impedance

    NASA Astrophysics Data System (ADS)

    Sharma, Rameshwar; Santisree, Parankusam; Nongmaithem, Sapana; Sreelakshmi, Yellamaraju

    2012-07-01

    Among the multitude functions performed by plant roots, little information is available about the mechanisms that allow roots to overcome the soil resistance, in order to grow in the soil to obtain water and nutrient. Tomato (Solanum lycopersicum) seedlings grown on horizontally placed agar plates showed a progressive decline in the root length with the increasing impedance of agar media. The incubation with 1-methylcyclopropane (1-MCP), an inhibitor of ethylene perception, led to aerial growth of roots. In contrast, in absence of 1-MCP control roots grew horizontally anchored to the agar surface. Though 1-MCP-treated and control seedlings showed differential ability to penetrate in the agar, the inhibition of root elongation was nearly similar for both treatments. While increased mechanical impedance also progressively impaired hypocotyl elongation in 1-MCP treated seedlings, it did not affect the hypocotyl length of control seedlings. The decline in root elongation was also associated with increased expression of DR5::GUS activity in the root tip signifying accumulation of auxin at the root tip. The increased expression of DR5::GUS activity in the root tip was also observed in 1-MCP treated seedlings, indicating independence of this response from ethylene signaling. Our results indicate operation of a sensing mechanism in root that likely operates independently of ethylene but involves auxin to determine the degree of impedance of the substratum.

  3. The Regulation of Growth in the Distal Elongation Zone of Maize Roots

    NASA Technical Reports Server (NTRS)

    Evans, Michael L.

    1998-01-01

    The major goals of the proposed research were 1. To develop specialized software for automated whole surface root expansion analysis and to develop technology for controlled placement of surface electrodes for analysis of relationships between root growth and root pH and electrophysiological properties. 2. To measure surface pH patterns and determine the possible role of proton flux in gravitropic sensing or response, and 3. To determine the role of auxin transport in establishment of patterns of proton flux and electrical gradients during the gravitropic response of roots with special emphasis on the role of the distal elongation zone in the early phases of the gravitropic response.

  4. Tall or short? Slender or thick? A plant strategy for regulating elongation growth of roots by low concentrations of gibberellin

    PubMed Central

    Tanimoto, Eiichi

    2012-01-01

    Background Since the plant hormone gibberellin (GA) was discovered as a fungal toxin that caused abnormal elongation of rice shoots, the physiological function of GA has mainly been investigated in relation to the regulation of plant height. However, an indispensable role for GA in root growth has been elucidated by using severely GA-depleted plants, either with a gene mutation in GA biosynthesis or which have been treated by an inhibitor of GA biosynthesis. The molecular sequence of GA signalling has also been studied to understand GA functions in root growth. Scope This review addresses research progress on the physiological functions of GA in root growth. Concentration-dependent stimulation of elongation growth by GA is important for the regulation of plant height and root length. Thus the endogenous level of GA and/or the GA sensitivity of shoots and roots plays a role in determining the shoot-to-root ratio of the plant body. Since the shoot-to-root ratio is an important parameter for agricultural production, control of GA production and GA sensitivity may provide a strategy for improving agricultural productivity. The sequence of GA signal transduction has recently been unveiled, and some component molecules are suggested as candidate in planta regulatory sites and as points for the artificial manipulation of GA-mediated growth control. Conclusions This paper reviews: (1) the breakthrough dose–response experiments that show that root growth is regulated by GA in a lower concentration range than is required for shoot growth; (2) research on the regulation of GA biosynthesis pathways that are known predominantly to control shoot growth; and (3) recent research on GA signalling pathways, including GA receptors, which have been suggested to participate in GA-mediated growth regulation. This provides useful information to suggest a possible strategy for the selective control of shoot and root growth, and to explain how GA plays a role in rosette and liana plants

  5. Ethylene's role in phosphate starvation signaling: more than just a root growth regulator.

    PubMed

    Nagarajan, Vinay K; Smith, Aaron P

    2012-02-01

    Phosphate (Pi) is a common limiter of plant growth due to its low availability in most soils. Plants have evolved elaborate mechanisms for sensing Pi deficiency and for initiating adaptive responses to low Pi conditions. Pi signaling pathways are modulated by both local and long-distance, or systemic, sensing mechanisms. Local sensing of low Pi initiates major root developmental changes aimed at enhancing Pi acquisition, whereas systemic sensing governs pathways that modulate expression of numerous genes encoding factors involved in Pi transport and distribution. The gaseous phytohormone ethylene has been shown to play an integral role in regulating local, root developmental responses to Pi deficiency. Comparatively, a role for ethylene in systemic Pi signaling has been more circumstantial. However, recent studies have revealed that ethylene acts to modulate a number of systemically controlled Pi starvation responses. Herein we highlight the findings from these studies and offer a model for how ethylene biosynthesis and responsiveness are integrated into both local and systemic Pi signaling pathways.

  6. The ABA receptor PYL9 together with PYL8 plays an important role in regulating lateral root growth

    PubMed Central

    Xing, Lu; Zhao, Yang; Gao, Jinghui; Xiang, Chengbin; Zhu, Jian-Kang

    2016-01-01

    Abscisic acid is a phytohormone regulating plant growth, development and stress responses. PYR1/PYL/RCAR proteins are ABA receptors that function by inhibiting PP2Cs to activate SnRK2s, resulting in phosphorylation of ABFs and other effectors of ABA response pathways. Exogenous ABA induces growth quiescence of lateral roots, which is prolonged by knockout of the ABA receptor PYL8. Among the 14 members of PYR1/PYL/RCAR protein family, PYL9 is a close relative of PYL8. Here we show that knockout of both PYL9 and PYL8 resulted in a longer ABA-induced quiescence on lateral root growth and a reduced sensitivity to ABA on primary root growth and lateral root formation compared to knockout of PYL8 alone. Induced overexpression of PYL9 promoted the lateral root elongation in the presence of ABA. The prolonged quiescent phase of the pyl8-1pyl9 double mutant was reversed by exogenous IAA. PYL9 may regulate auxin-responsive genes in vivo through direct interaction with MYB77 and MYB44. Thus, PYL9 and PYL8 are both responsible for recovery of lateral root from ABA inhibition via MYB transcription factors. PMID:27256015

  7. PERK–KIPK–KCBP signalling negatively regulates root growth in Arabidopsis thaliana

    PubMed Central

    Humphrey, Tania V.; Haasen, Katrina E.; Aldea-Brydges, May Grace; Sun, He; Zayed, Yara; Indriolo, Emily; Goring, Daphne R.

    2015-01-01

    The Arabidopsis proline-rich, extensin-like receptor-like kinases (PERKs) are a small group of receptor-like kinases that are thought to act as sensors at the cell wall through their predicted proline-rich extracellular domains. In this study, we focused on the characterization of a subclade of three Arabidopsis predicted PERK genes, PERK8, -9, and -10, for which no functions were known. Yeast two-hybrid interaction studies were conducted with the PERK8,- 9, and -10 cytosolic kinase domains, and two members of the Arabidopsis AGC VIII kinase family were identified as interacting proteins: AGC1-9 and the closely related kinesin-like calmodulin-binding protein (KCBP)-interacting protein kinase (KIPK). As KIPK has been identified previously as an interactor of KCBP, these interactions were also examined further and confirmed in this study. Finally, T-DNA mutants for each gene were screened for altered phenotypes under different conditions, and from these screens, a role for the PERK, KIPK, and KCBP genes in negatively regulating root growth was uncovered. PMID:25262228

  8. PHOTOPERIOD RESPONSE 1 (PHOR1)-like genes regulate shoot/root growth, starch accumulation, and wood formation in Populus.

    PubMed

    Zawaski, Christine; Ma, Cathleen; Strauss, Steven H; French, Darla; Meilan, Richard; Busov, Victor B

    2012-09-01

    This study describes functional characterization of two putative poplar PHOTOPERIOD RESPONSE 1 (PHOR1) orthologues. The expression and sequence analyses indicate that the two poplar genes diverged, at least partially, in function. PtPHOR1_1 is most highly expressed in roots and induced by short days, while PtPHOR1_2 is more uniformly expressed throughout plant tissues and is not responsive to short days. The two PHOR1 genes also had distinct effects on shoot and root growth when their expression was up- and downregulated transgenically. PtPHOR1_1 effects were restricted to roots while PtPHOR1_2 had similar effects on aerial and below-ground development. Nevertheless, both genes seemed to be upregulated in transgenic poplars that are gibberellin-deficient and gibberellin-insensitive, suggesting interplay with gibberellin signalling. PHOR1 suppression led to increased starch accumulation in both roots and stems. The effect of PHOR1 suppression on starch accumulation was coupled with growth-inhibiting effects in both roots and shoots, suggesting that PHOR1 is part of a mechanism that regulates the allocation of carbohydrate to growth or storage in poplar. PHOR1 downregulation led to significant reduction of xylem formation caused by smaller fibres and vessels suggesting that PHOR1 likely plays a role in the growth of xylem cells.

  9. AUXIN UP-REGULATED F-BOX PROTEIN1 Regulates the Cross Talk between Auxin Transport and Cytokinin Signaling during Plant Root Growth1[W][OA

    PubMed Central

    Zheng, Xiaohua; Miller, Nathan D.; Lewis, Daniel R.; Christians, Matthew J.; Lee, Kwang-Hee; Muday, Gloria K.; Spalding, Edgar P.; Vierstra, Richard D.

    2011-01-01

    Plant root development is mediated by the concerted action of the auxin and cytokinin phytohormones, with cytokinin serving as an antagonist of auxin transport. Here, we identify the AUXIN UP-REGULATED F-BOX PROTEIN1 (AUF1) and its potential paralog AUF2 as important positive modifiers of root elongation that tether auxin movements to cytokinin signaling in Arabidopsis (Arabidopsis thaliana). The AUF1 mRNA level in roots is strongly up-regulated by auxin but not by other phytohormones. Whereas the auf1 single and auf1 auf2 double mutant roots grow normally without exogenous auxin and respond similarly to the wild type upon auxin application, their growth is hypersensitive to auxin transport inhibitors, with the mutant roots also having reduced basipetal and acropetal auxin transport. The effects of auf1 on auxin movements may be mediated in part by the misexpression of several PIN-FORMED (PIN) auxin efflux proteins, which for PIN2 reduces its abundance on the plasma membrane of root cells. auf1 roots are also hypersensitive to cytokinin and have increased expression of several components of cytokinin signaling. Kinematic analyses of root growth and localization of the cyclin B mitotic marker showed that AUF1 does not affect root cell division but promotes cytokinin-mediated cell expansion in the elongation/differentiation zone. Epistasis analyses implicate the cytokinin regulator ARR1 or its effector(s) as the target of the SKP1-Cullin1-F Box (SCF) ubiquitin ligases assembled with AUF1/2. Given the wide distribution of AUF1/2-type proteins among land plants, we propose that SCFAUF1/2 provides additional cross talk between auxin and cytokinin, which modifies auxin distribution and ultimately root elongation. PMID:21653785

  10. Graphene oxide modulates root growth of Brassica napus L. and regulates ABA and IAA concentration.

    PubMed

    Cheng, Fan; Liu, Yu-Feng; Lu, Guang-Yuan; Zhang, Xue-Kun; Xie, Ling-Li; Yuan, Cheng-Fei; Xu, Ben-Bo

    2016-04-01

    Researchers have proven that nanomaterials have a significant effect on plant growth and development. To better understand the effects of nanomaterials on plants, Zhongshuang 11 was treated with different concentrations of graphene oxide. The results indicated that 25-100mg/l graphene oxide treatment resulted in shorter seminal root length compared with the control samples. The fresh root weight decreased when treated with 50-100mg/l graphene oxide. The graphene oxide treatment had no significant effect on the Malondialdehyde (MDA) content. Treatment with 50mg/l graphene oxide increased the transcript abundance of genes involved in ABA biosynthesis (NCED, AAO, and ZEP) and some genes involved in IAA biosynthesis (ARF2, ARF8, IAA2, and IAA3), but inhibited the transcript levels of IAA4 and IAA7. The graphene oxide treatment also resulted in a higher ABA content, but a lower IAA content compared with the control samples. The results indicated that graphene oxide modulated the root growth of Brassica napus L. and affected ABA and IAA biosynthesis and concentration.

  11. Strigolactones are regulators of root development.

    PubMed

    Koltai, Hinanit

    2011-05-01

    Strigolactones (SLs) have been defined as a new group of plant hormones or their derivatives that suppress lateral shoot branching. Recently, a new role for SLs was discovered, in the regulation of root development. Strigolactones were shown to alter root architecture and affect root-hair elongation. Here, I review the recent findings regarding the effects of SLs on root growth and development, and their association with changes in auxin flux. The networking between SLs and other plant hormones that regulate root development is also presented. Strigolactone regulation of plant development suggests that they are coordinators of shoot and root development and mediators of plant responses to environmental conditions.

  12. Root hair sweet growth

    PubMed Central

    Velasquez, Silvia M; Iusem, Norberto D

    2011-01-01

    Root hairs are single cells specialized in the absorption of water and nutrients from the soil. Growing root hairs require intensive cell-wall changes to accommodate cell expansion at the apical end by a process known as tip or polarized growth. We have recently shown that cell wall glycoproteins such as extensins (EXTs) are essential components of the cell wall during polarized growth. Proline hydroxylation, an early posttranslational modification of cell wall EXTs that is catalyzed by prolyl 4-hydroxylases (P4Hs), defines the subsequent O-glycosylation sites in EXTs. Biochemical inhibition or genetic disruption of specific P4Hs resulted in the blockage of polarized growth in root hairs. Our results demonstrate that correct hydroxylation and also further O-glycosylation on EXTs are essential for cell-wall self-assembly and, hence, root hair elongation. The changes that O-glycosylated cell-wall proteins like EXTs undergo during cell growth represent a starting point to unravel the entire biochemical pathway involved in plant development. PMID:21918376

  13. miR390, Arabidopsis TAS3 tasiRNAs, and Their AUXIN RESPONSE FACTOR Targets Define an Autoregulatory Network Quantitatively Regulating Lateral Root Growth[W

    PubMed Central

    Marin, Elena; Jouannet, Virginie; Herz, Aurélie; Lokerse, Annemarie S.; Weijers, Dolf; Vaucheret, Herve; Nussaume, Laurent; Crespi, Martin D.; Maizel, Alexis

    2010-01-01

    Plants adapt to different environmental conditions by constantly forming new organs in response to morphogenetic signals. Lateral roots branch from the main root in response to local auxin maxima. How a local auxin maximum translates into a robust pattern of gene activation ensuring the proper growth of the newly formed lateral root is largely unknown. Here, we demonstrate that miR390, TAS3-derived trans-acting short-interfering RNAs (tasiRNAs), and AUXIN RESPONSE FACTORS (ARFs) form an auxin-responsive regulatory network controlling lateral root growth. Spatial expression analysis using reporter gene fusions, tasi/miRNA sensors, and mutant analysis showed that miR390 is specifically expressed at the sites of lateral root initiation where it triggers the biogenesis of tasiRNAs. These tasiRNAs inhibit ARF2, ARF3, and ARF4, thus releasing repression of lateral root growth. In addition, ARF2, ARF3, and ARF4 affect auxin-induced miR390 accumulation. Positive and negative feedback regulation of miR390 by ARF2, ARF3, and ARF4 thus ensures the proper definition of the miR390 expression pattern. This regulatory network maintains ARF expression in a concentration range optimal for specifying the timing of lateral root growth, a function similar to its activity during leaf development. These results also show how small regulatory RNAs integrate with auxin signaling to quantitatively regulate organ growth during development. PMID:20363771

  14. Shoot-derived abscisic acid promotes root growth.

    PubMed

    McAdam, Scott A M; Brodribb, Timothy J; Ross, John J

    2016-03-01

    The phytohormone abscisic acid (ABA) plays a major role in regulating root growth. Most work to date has investigated the influence of root-sourced ABA on root growth during water stress. Here, we tested whether foliage-derived ABA could be transported to the roots, and whether this foliage-derived ABA had an influence on root growth under well-watered conditions. Using both application studies of deuterium-labelled ABA and reciprocal grafting between wild-type and ABA-biosynthetic mutant plants, we show that both ABA levels in the roots and root growth in representative angiosperms are controlled by ABA synthesized in the leaves rather than sourced from the roots. Foliage-derived ABA was found to promote root growth relative to shoot growth but to inhibit the development of lateral roots. Increased root auxin (IAA) levels in plants with ABA-deficient scions suggest that foliage-derived ABA inhibits root growth through the root growth-inhibitor IAA. These results highlight the physiological and morphological importance, beyond the control of stomata, of foliage-derived ABA. The use of foliar ABA as a signal for root growth has important implications for regulating root to shoot growth under normal conditions and suggests that leaf rather than root hydration is the main signal for regulating plant responses to moisture.

  15. Tricarboxylic Acid Cycle Activity Regulates Tomato Root Growth via Effects on Secondary Cell Wall Production1[W][OA

    PubMed Central

    van der Merwe, Margaretha J.; Osorio, Sonia; Araújo, Wagner L.; Balbo, Ilse; Nunes-Nesi, Adriano; Maximova, Eugenia; Carrari, Fernando; Bunik, Victoria I.; Persson, Staffan; Fernie, Alisdair R.

    2010-01-01

    Transgenic tomato (Solanum lycopersicum ‘Moneymaker’) plants independently expressing fragments of various genes encoding enzymes of the tricarboxylic acid cycle in antisense orientation have previously been characterized as exhibiting altered root growth. In this study, we evaluate the rates of respiration of roots from these lines in addition to determining their total dry weight accumulation. Given that these features were highly correlated, we decided to carry out an evaluation of the cell wall composition in the transformants that revealed a substantial reduction in cellulose. Since the bulk of cellulose is associated with the secondary cell walls in roots, we reasoned that the transformants most likely were deficient in secondary wall cellulose production. Consistent with these findings, cross-sections of the root collar (approximately 15 mm from the junction between root and stem) displayed reduced lignified secondary cell walls for the transformants. In contrast, cell and cell wall patterning displayed no differences in elongating cells close to the root tip. To further characterize the modified cell wall metabolism, we performed feeding experiments in which we incubated excised root tips in [U-14C]glucose in the presence or absence of phosphonate inhibitors of the reaction catalyzed by 2-oxoglutarate dehydrogenase. Taken together, the combined results suggest that restriction of root respiration leads to a deficit in secondary cell wall synthesis. These data are discussed in the context of current models of biomass partitioning and plant growth. PMID:20118274

  16. Root and bacterial secretions regulate the interaction between plants and PGPR leading to distinct plant growth promotion effects

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant growth-promoting rhizobacteria (PGPR) have garnered interest in agriculture due to their ability to influence the growth and production of host plants. ATP-binding cassette (ABC) transporters play important roles in plant-microbe interactions by modulating plant root exudation. The present stu...

  17. Regulation of nitrogen uptake and assimilation: Effects of nitrogen source and root-zone and aerial environment on growth and productivity of soybean

    NASA Technical Reports Server (NTRS)

    Raper, C. David, Jr.

    1994-01-01

    The interdependence of root and shoot growth produces a functional equilibrium as described in quantitative terms by numerous authors. It was noted that bean seedlings grown in a constant environment tended to have a constant distribution pattern of dry matter between roots and leaves characteristic of the set of environmental conditions. Disturbing equilibrium resulted in a change in relative growth of roots and leaves until the original ratio was restored. To define a physiological basis for regulation of nitrogen uptake within the balance between root and shoot activities, the authors combined a partioning scheme and a utilization priority assumption in which: (1) all carbon enters the plant through photosynthesis in leaves and all nitrogen enters the plant through active uptake by roots, (2) nitrogen uptake by roots and secretion into the xylem for transport to the shoots are active processes, (3) availability of exogenous nitrogen determines concentration of soluble carbohydrates within the roots, (4) leaves are a source and a sink for carbohydrates, and (5) the requirement for nitrogen by leaf growth is proportionally greater during initiation and early expansion than during later expansion.

  18. Single-wall and multi-wall carbon nanotubes promote rice root growth by eliciting the similar molecular pathways and epigenetic regulation.

    PubMed

    Yan, Shihan; Zhang, Hao; Huang, Yan; Tan, Junjun; Wang, Pu; Wang, Yapei; Hou, Haoli; Huang, Jin; Li, Lijia

    2016-08-01

    Organisms are constantly exposed to environmental stimuli and have evolved mechanisms of protection and adaptation. Various effects of nanoparticles (NPs) on crops have been described and some results confirm that NPs could enhance plant growth at the physiological and genetic levels. This study comparatively analysed the effect of carbon nanotubes (CNTs) on rice growth. The results showed that single-wall CNTs were located in the intercellular space while multi-wall CNTs penetrated cell walls in roots. CNTs could promote rice root growth through the regulation of expression of the root growth related genes and elevated global histone acetylation in rice root meristem zones. These responses were returned to normal levels after CNTs were removed from medium. CNTs caused the similar histone acetylation and methylation statuses across the local promoter region of the Cullin-RING ligases 1 (CRL1) gene and increased micrococcal nuclease accessibility of this region, which enhanced this gene expression. The authors results suggested that CNTs could cause plant responses at the cellular, genetic, and epigenetic levels and these responses were independent on interaction modes between root cells and CNTs.

  19. The Roots of Growth

    ERIC Educational Resources Information Center

    Synder, Agnes

    1973-01-01

    Effective planning for child growth through the curriculum takes into account three things: 1) the pace at which children grow, 2) the individuality of every child, and 3) the need for guidance in meeting the problems of living. (ST)

  20. Regulation of nitrogen uptake and assimilation: Effects of nitrogen source, root-zone pH, and aerial CO2 concentration on growth and productivity of soybeans

    NASA Technical Reports Server (NTRS)

    Raper, C. D.; Tolley-Henry, L.

    1989-01-01

    An important feature of controlled-environment crop production systems such as those to be used for life support of crews during space exploration is the efficient utilization of nitrogen supplies. Making decisions about the best sources of these supplies requires research into the relationship between nitrogen source and the physiological processes which regulate vegetative and reproductive plant growth. Work done in four areas within this research objective is reported: (1) experiments on the effects of root-zone pH on preferential utilization of NO3(-) versus NH4(+) nitrogen; (2) investigation of processes at the whole-plant level that regulate nitrogen uptake; (3) studies of the effects of atmospheric CO2 and NO3(-) supply on the growth of soybeans; and (4) examination of the role of NO3(-) uptake in enhancement of root respiration.

  1. Arabidopsis RopGEF4 and RopGEF10 are important for FERONIA-mediated developmental but not environmental regulation of root hair growth.

    PubMed

    Huang, Guo-Qiang; Li, En; Ge, Fu-Rong; Li, Sha; Wang, Qun; Zhang, Chun-Qing; Zhang, Yan

    2013-12-01

    We investigated a genetic pathway in root hair development in Arabidopsis thaliana, involving the receptor-like kinase FERONIA (FER), two guanine nucleotide exchange factors for ROPs (RopGEF4 and RopGEF10), and the small GTPase Rho of plants (ROPs). Loss- and gain-of-function analyses demonstrated distinct roles of RopGEF4 and RopGEF10 such that RopGEF4 is only important for root hair elongation, while RopGEF10 mainly contributes to root hair initiation. Domain dissection by truncation and domain-swapping experiments indicated that their functional distinctions were mainly contributed by the noncatalytic domains. Using fluorescent ratio imaging, we showed that functional loss of RopGEF4 and RopGEF10 additively reduced reactive oxygen species (ROS) production. Bimolecular fluorescence complementation experiments demonstrated that RopGEF4 and RopGEF10 had the same interaction specificity as ROPs, suggesting common downstream components. We further showed that the promoting effects of environmental cues such as exogenous auxin and phosphate limitation on root hair development depended on FER. However, although functional loss of RopGEF4 and RopGEF10 largely abolished FER-induced ROS production, it did not compromise the responses to FER-mediated environmental cues on root hair development. Our results demonstrated that RopGEF4 and RopGEF10 are genetic components in FER-mediated, developmentally (but not environmentally) regulated, root hair growth.

  2. MES Buffer Affects Arabidopsis Root Apex Zonation and Root Growth by Suppressing Superoxide Generation in Root Apex

    PubMed Central

    Kagenishi, Tomoko; Yokawa, Ken; Baluška, František

    2016-01-01

    In plants, growth of roots and root hairs is regulated by the fine cellular control of pH and reactive oxygen species (ROS). MES, 2-(N-morpholino)ethanesulfonic acid as one of the Good’s buffers has broadly been used for buffering medium, and it is thought to suit for plant growth with the concentration at 0.1% (w/v) because the buffer capacity of MES ranging pH 5.5–7.0 (for Arabidopsis, pH 5.8). However, many reports have shown that, in nature, roots require different pH values on the surface of specific root apex zones, namely meristem, transition zone, and elongation zone. Despite the fact that roots always grow on a media containing buffer molecule, little is known about impact of MES on root growth. Here, we have checked the effects of different concentrations of MES buffer using growing roots of Arabidopsis thaliana. Our results show that 1% of MES significantly inhibited root growth, the number of root hairs and length of meristem, whereas 0.1% promoted root growth and root apex area (region spanning from the root tip up to the transition zone). Furthermore, superoxide generation in root apex disappeared at 1% of MES. These results suggest that MES disturbs normal root morphogenesis by changing the ROS homeostasis in root apex. PMID:26925066

  3. A root-specific wall-associated kinase gene, HvWAK1, regulates root growth and is highly divergent in barley and other cereals.

    PubMed

    Kaur, Ravneet; Singh, Kashmir; Singh, Jaswinder

    2013-06-01

    Wall-associated receptor-like kinases (WAKs) are important candidates for directly linking the extracellular matrix with intracellular compartments and are involved in developmental processes and stress response. WAK gene family has been identified in plants such as Arabidopsis and rice. Here, we present a detailed analysis of the WAK1 gene from barley cv. Golden Promise, mapped to chromosome 5H. Three BAC clones corresponding to the WAK fragment were sequenced and the full-length WAK1 gene was characterized. The gene has three exons and two short introns with a coding region of 2,178 bp encoding a protein of 725 amino acids. A regulatory region was analyzed in -1,000 bp sequence upstream to start codon. Using conserved domains database and SMART, various conserved domains such as GUB WAK Bind, epidermal growth factor CA, and protein kinase C as well as other regions like signal peptides, active sites, and transmembrane domains were identified. The gene organization of HvWAK1 was compared with wheat (TaWAK1) and Arabidopsis (AtWAK1), suggesting that the WAK1 gene organization has remained highly conserved. Nonetheless, WAK1 was found to be highly divergent when compared with sequences available from barley cv. Haruna Nijo (50 %), rice (46 %), wheat (21 %), Arabidopsis (25 %), and maize (19 %). This divergence may have facilitated a better adaptation to surrounding environments due to its role in communication between the extracellular matrix, cell, and outer environment. Semiquantitative RT-PCR-based expression analysis indicates HvWAK1 expression is specific to roots. Significant differences in root growth between GP wild type and GP-Ds mutant seedlings were observed under control and salt stress conditions.

  4. Arabidopsis NITRILASE 1 Contributes to the Regulation of Root Growth and Development through Modulation of Auxin Biosynthesis in Seedlings.

    PubMed

    Lehmann, Thomas; Janowitz, Tim; Sánchez-Parra, Beatriz; Alonso, Marta-Marina Pérez; Trompetter, Inga; Piotrowski, Markus; Pollmann, Stephan

    2017-01-01

    Nitrilases consist of a group of enzymes that catalyze the hydrolysis of organic cyanides. They are found ubiquitously distributed in the plant kingdom. Plant nitrilases are mainly involved in the detoxification of ß-cyanoalanine, a side-product of ethylene biosynthesis. In the model plant Arabidopsis thaliana a second group of Brassicaceae-specific nitrilases (NIT1-3) has been found. This so-called NIT1-subfamily has been associated with the conversion of indole-3-acetonitrile (IAN) into the major plant growth hormone, indole-3-acetic acid (IAA). However, apart of reported functions in defense responses to pathogens and in responses to sulfur depletion, conclusive insight into the general physiological function of the NIT-subfamily nitrilases remains elusive. In this report, we test both the contribution of the indole-3-acetaldoxime (IAOx) pathway to general auxin biosynthesis and the influence of altered nitrilase expression on plant development. Apart of a comprehensive transcriptomics approach to explore the role of the IAOx route in auxin formation, we took a genetic approach to disclose the function of NITRILASE 1 (NIT1) of A. thaliana. We show that NIT1 over-expression (NIT1ox) results in seedlings with shorter primary roots, and an increased number of lateral roots. In addition, NIT1ox plants exhibit drastic changes of both free IAA and IAN levels, which are suggested to be the reason for the observed phenotype. On the other hand, NIT2RNAi knockdown lines, capable of suppressing the expression of all members of the NIT1-subfamily, were generated and characterized to substantiate the above-mentioned findings. Our results demonstrate for the first time that Arabidopsis NIT1 has profound effects on root morphogenesis in early seedling development.

  5. Arabidopsis NITRILASE 1 Contributes to the Regulation of Root Growth and Development through Modulation of Auxin Biosynthesis in Seedlings

    PubMed Central

    Lehmann, Thomas; Janowitz, Tim; Sánchez-Parra, Beatriz; Alonso, Marta-Marina Pérez; Trompetter, Inga; Piotrowski, Markus; Pollmann, Stephan

    2017-01-01

    Nitrilases consist of a group of enzymes that catalyze the hydrolysis of organic cyanides. They are found ubiquitously distributed in the plant kingdom. Plant nitrilases are mainly involved in the detoxification of ß-cyanoalanine, a side-product of ethylene biosynthesis. In the model plant Arabidopsis thaliana a second group of Brassicaceae-specific nitrilases (NIT1-3) has been found. This so-called NIT1-subfamily has been associated with the conversion of indole-3-acetonitrile (IAN) into the major plant growth hormone, indole-3-acetic acid (IAA). However, apart of reported functions in defense responses to pathogens and in responses to sulfur depletion, conclusive insight into the general physiological function of the NIT-subfamily nitrilases remains elusive. In this report, we test both the contribution of the indole-3-acetaldoxime (IAOx) pathway to general auxin biosynthesis and the influence of altered nitrilase expression on plant development. Apart of a comprehensive transcriptomics approach to explore the role of the IAOx route in auxin formation, we took a genetic approach to disclose the function of NITRILASE 1 (NIT1) of A. thaliana. We show that NIT1 over-expression (NIT1ox) results in seedlings with shorter primary roots, and an increased number of lateral roots. In addition, NIT1ox plants exhibit drastic changes of both free IAA and IAN levels, which are suggested to be the reason for the observed phenotype. On the other hand, NIT2RNAi knockdown lines, capable of suppressing the expression of all members of the NIT1-subfamily, were generated and characterized to substantiate the above-mentioned findings. Our results demonstrate for the first time that Arabidopsis NIT1 has profound effects on root morphogenesis in early seedling development. PMID:28174581

  6. Stochastic roots of growth phenomena

    NASA Astrophysics Data System (ADS)

    De Lauro, E.; De Martino, S.; De Siena, S.; Giorno, V.

    2014-05-01

    We show that the Gompertz equation describes the evolution in time of the median of a geometric stochastic process. Therefore, we induce that the process itself generates the growth. This result allows us further to exploit a stochastic variational principle to take account of self-regulation of growth through feedback of relative density variations. The conceptually well defined framework so introduced shows its usefulness by suggesting a form of control of growth by exploiting external actions.

  7. The Arabidopsis thaliana Homolog of Yeast BRE1 Has a Function in Cell Cycle Regulation during Early Leaf and Root Growth[W][OA

    PubMed Central

    Fleury, Delphine; Himanen, Kristiina; Cnops, Gerda; Nelissen, Hilde; Boccardi, Tommaso Matteo; Maere, Steven; Beemster, Gerrit T.S.; Neyt, Pia; Anami, Sylvester; Robles, Pedro; Micol, José Luis; Inzé, Dirk; Van Lijsebettens, Mieke

    2007-01-01

    Chromatin modification and transcriptional activation are novel roles for E3 ubiquitin ligase proteins that have been mainly associated with ubiquitin-dependent proteolysis. We identified HISTONE MONOUBIQUITINATION1 (HUB1) (and its homolog HUB2) in Arabidopsis thaliana as RING E3 ligase proteins with a function in organ growth. We show that HUB1 is a functional homolog of the human and yeast BRE1 proteins because it monoubiquitinated histone H2B in an in vitro assay. Hub knockdown mutants had pale leaf coloration, modified leaf shape, reduced rosette biomass, and inhibited primary root growth. One of the alleles had been designated previously as ang4-1. Kinematic analysis of leaf and root growth together with flow cytometry revealed defects in cell cycle activities. The hub1-1 (ang4-1) mutation increased cell cycle duration in young leaves and caused an early entry into the endocycles. Transcript profiling of shoot apical tissues of hub1-1 (ang4-1) indicated that key regulators of the G2-to-M transition were misexpressed. Based on the mutant characterization, we postulate that HUB1 mediates gene activation and cell cycle regulation probably through chromatin modifications. PMID:17329565

  8. Root gravitropism and root hair development constitute coupled developmental responses regulated by auxin homeostasis in the Arabidopsis root apex.

    PubMed

    Rigas, Stamatis; Ditengou, Franck Anicet; Ljung, Karin; Daras, Gerasimos; Tietz, Olaf; Palme, Klaus; Hatzopoulos, Polydefkis

    2013-03-01

    Active polar transport establishes directional auxin flow and the generation of local auxin gradients implicated in plant responses and development. Auxin modulates gravitropism at the root tip and root hair morphogenesis at the differentiation zone. Genetic and biochemical analyses provide evidence for defective basipetal auxin transport in trh1 roots. The trh1, pin2, axr2 and aux1 mutants, and transgenic plants overexpressing PIN1, all showing impaired gravity response and root hair development, revealed ectopic PIN1 localization. The auxin antagonist hypaphorine blocked root hair elongation and caused moderate agravitropic root growth, also leading to PIN1 mislocalization. These results suggest that auxin imbalance leads to proximal and distal developmental defects in Arabidopsis root apex, associated with agravitropic root growth and root hair phenotype, respectively, providing evidence that these two auxin-regulated processes are coupled. Cell-specific subcellular localization of TRH1-YFP in stele and epidermis supports TRH1 engagement in auxin transport, and hence impaired function in trh1 causes dual defects of auxin imbalance. The interplay between intrinsic cues determining root epidermal cell fate through the TTG/GL2 pathway and environmental cues including abiotic stresses modulates root hair morphogenesis. As a consequence of auxin imbalance in Arabidopsis root apex, ectopic PIN1 mislocalization could be a risk aversion mechanism to trigger root developmental responses ensuring root growth plasticity.

  9. Abscisic Acid Regulation of Root Hydraulic Conductivity and Aquaporin Gene Expression Is Crucial to the Plant Shoot Growth Enhancement Caused by Rhizosphere Humic Acids.

    PubMed

    Olaetxea, Maite; Mora, Verónica; Bacaicoa, Eva; Garnica, María; Fuentes, Marta; Casanova, Esther; Zamarreño, Angel M; Iriarte, Juan C; Etayo, David; Ederra, Iñigo; Gonzalo, Ramón; Baigorri, Roberto; García-Mina, Jose M

    2015-12-01

    The physiological and metabolic mechanisms behind the humic acid-mediated plant growth enhancement are discussed in detail. Experiments using cucumber (Cucumis sativus) plants show that the shoot growth enhancement caused by a structurally well-characterized humic acid with sedimentary origin is functionally associated with significant increases in abscisic acid (ABA) root concentration and root hydraulic conductivity. Complementary experiments involving a blocking agent of cell wall pores and water root transport (polyethylenglycol) show that increases in root hydraulic conductivity are essential in the shoot growth-promoting action of the model humic acid. Further experiments involving an inhibitor of ABA biosynthesis in root and shoot (fluridone) show that the humic acid-mediated enhancement of both root hydraulic conductivity and shoot growth depended on ABA signaling pathways. These experiments also show that a significant increase in the gene expression of the main root plasma membrane aquaporins is associated with the increase of root hydraulic conductivity caused by the model humic acid. Finally, experimental data suggest that all of these actions of model humic acid on root functionality, which are linked to its beneficial action on plant shoot growth, are likely related to the conformational structure of humic acid in solution and its interaction with the cell wall at the root surface.

  10. Abscisic Acid Regulation of Root Hydraulic Conductivity and Aquaporin Gene Expression Is Crucial to the Plant Shoot Growth Enhancement Caused by Rhizosphere Humic Acids1

    PubMed Central

    Bacaicoa, Eva; Garnica, María; Fuentes, Marta; Casanova, Esther; Etayo, David; Ederra, Iñigo; Gonzalo, Ramón

    2015-01-01

    The physiological and metabolic mechanisms behind the humic acid-mediated plant growth enhancement are discussed in detail. Experiments using cucumber (Cucumis sativus) plants show that the shoot growth enhancement caused by a structurally well-characterized humic acid with sedimentary origin is functionally associated with significant increases in abscisic acid (ABA) root concentration and root hydraulic conductivity. Complementary experiments involving a blocking agent of cell wall pores and water root transport (polyethylenglycol) show that increases in root hydraulic conductivity are essential in the shoot growth-promoting action of the model humic acid. Further experiments involving an inhibitor of ABA biosynthesis in root and shoot (fluridone) show that the humic acid-mediated enhancement of both root hydraulic conductivity and shoot growth depended on ABA signaling pathways. These experiments also show that a significant increase in the gene expression of the main root plasma membrane aquaporins is associated with the increase of root hydraulic conductivity caused by the model humic acid. Finally, experimental data suggest that all of these actions of model humic acid on root functionality, which are linked to its beneficial action on plant shoot growth, are likely related to the conformational structure of humic acid in solution and its interaction with the cell wall at the root surface. PMID:26450705

  11. Nardostachys jatamansi Root Extract Modulates the Growth of IMR-32 and SK-N-MC Neuroblastoma Cell Lines Through MYCN Mediated Regulation of MDM2 and p53

    PubMed Central

    Suryavanshi, Snehal; Raina, Prerna; Deshpande, Rashmi; Kaul-Ghanekar, Ruchika

    2017-01-01

    Aim: The present study evaluated the effect of ethanolic extract of Nardostachys jatamansi roots (NJet) on MYCN mediated regulation of expression of MDM2 and p53 proteins in neuroblastoma cell lines, IMR-32 and SK-N-MC. Materials and Methods: The effect of NJet on cell viability was determined by MTT; and on growth kinetics was evaluated by trypan blue dye exclusion method and soft agar assay. The expression of p53, MDM2 and MYCN proteins in response to NJet treatment was evaluated by immunoblotting. Results: NJet decreased the viability of neuroblastoma cells without affecting the viability of non-cancerous, HEK-293 cells. It altered the growth kinetics of the cancer cells in a dose-dependent manner. NJet down regulated the expression of MYCN and MDM2 proteins with a simultaneous increase in the expression of tumor suppressor protein p53. Conclusions: The present data demonstrated that NJet regulated the growth of IMR-32 and SK-N-MC through reduction in MYCN expression that lead to down regulation of MDM2 protein and increase in p53 expression. These preliminary results warrant further in depth studies to explore the therapeutic potential of Nardostachys jatamansi in the management of neuroblastoma. SUMMARY NJet reduced the viability of human neuroblastoma cell lines without affecting the viability of non-cancerous, HEK-293 cells.NJet regulated the growth kinetics of the cancer cells.NJet decreased the expression of MYCN and MDM2 proteins and simultaneously increased the expression of tumor suppressor protein p53. Abbreviation used: NJet: Ethanolic extract of Nardostachys jatamansi MTT: 3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide HPTLC: High performance thin layer chromatography PMID:28216878

  12. New theories of root growth modelling

    NASA Astrophysics Data System (ADS)

    Landl, Magdalena; Schnepf, Andrea; Vanderborght, Jan; Huber, Katrin; Javaux, Mathieu; Bengough, A. Glyn; Vereecken, Harry

    2016-04-01

    In dynamic root architecture models, root growth is represented by moving root tips whose line trajectory results in the creation of new root segments. Typically, the direction of root growth is calculated as the vector sum of various direction-affecting components. However, in our simulations this did not reproduce experimental observations of root growth in structured soil. We therefore developed a new approach to predict the root growth direction. In this approach we distinguish between, firstly, driving forces for root growth, i.e. the force exerted by the root which points in the direction of the previous root segment and gravitropism, and, secondly, the soil mechanical resistance to root growth or penetration resistance. The latter can be anisotropic, i.e. depending on the direction of growth, which leads to a difference between the direction of the driving force and the direction of the root tip movement. Anisotropy of penetration resistance can be caused either by microscale differences in soil structure or by macroscale features, including macropores. Anisotropy at the microscale is neglected in our model. To allow for this, we include a normally distributed random deflection angle α to the force which points in the direction of the previous root segment with zero mean and a standard deviation σ. The standard deviation σ is scaled, so that the deflection from the original root tip location does not depend on the spatial resolution of the root system model. Similarly to the water flow equation, the direction of the root tip movement corresponds to the water flux vector while the driving forces are related to the water potential gradient. The analogue of the hydraulic conductivity tensor is the root penetrability tensor. It is determined by the inverse of soil penetration resistance and describes the ease with which a root can penetrate the soil. By adapting the three dimensional soil and root water uptake model R-SWMS (Javaux et al., 2008) in this way

  13. Hormone symphony during root growth and development.

    PubMed

    Garay-Arroyo, Adriana; De La Paz Sánchez, María; García-Ponce, Berenice; Azpeitia, Eugenio; Alvarez-Buylla, Elena R

    2012-12-01

    Hormones regulate plant growth and development in response to external environmental stimuli via complex signal transduction pathways, which in turn form complex networks of interaction. Several classes of hormones have been reported, and their activity depends on their biosynthesis, transport, conjugation, accumulation in the vacuole, and degradation. However, the activity of a given hormone is also dependent on its interaction with other hormones. Indeed, there is a complex crosstalk between hormones that regulates their biosynthesis, transport, and/or signaling functionality, although some hormones have overlapping or opposite functions. The plant root is a particularly useful system in which to study the complex role of plant hormones in the plastic control of plant development. Physiological, cellular, and molecular genetic approaches have been used to study the role of plant hormones in root meristem homeostasis. In this review, we discuss recent findings on the synthesis, signaling, transport of hormones and role during root development and examine the role of hormone crosstalk in maintaining homeostasis in the apical root meristem.

  14. Melatonin promotes seminal root elongation and root growth in transgenic rice after germination.

    PubMed

    Park, Sangkyu; Back, Kyoungwhan

    2012-11-01

    The effect of melatonin on root growth after germination was examined in transgenic rice seedlings expressing sheep serotonin N-acetyltransferase (NAT). Enhanced melatonin levels were found in T(3) homozygous seedlings because of the ectopic overexpression of sheep NAT, which is believed to be the rate-limiting enzyme in melatonin biosynthesis in animals. Compared with wild-type rice seeds, the transgenic rice seeds showed enhanced seminal root growth and an analogous number of adventitious roots 4 and 10 days after seeding on half-strength Murashige and Skoog medium. The enhanced initial seminal root growth in the transgenic seedlings matched their increased root biomass well. We also found that treatment with 0.5 and 1 μM melatonin promoted seminal root growth of the wild type under continuous light. These results indicate that melatonin plays an important role in regulating both seminal root length and root growth after germination in monocotyledonous rice plants. This is the first report on the effects of melatonin on root growth in gain-of-function mutant plants that produce high levels of melatonin.

  15. Differential growth and hormone redistribution in gravireacting maize roots.

    PubMed

    Pilet, P E

    1989-01-01

    When growing roots are placed in a horizontal position gravity induces a positive curvature. It is classically considered to be the consequence of a faster elongation rate by the upper side compared to the lower side. A critical examination indicates that the gravireaction is caused by differential cell extension depending on several processes. Some of the endogenous regulators which may control the growth and gravitropism of elongating roots are briefly presented. The growth inhibitors produced or released from the root cap move preferentially in a basipetal direction and accumulate in the lower side of the elongation zone of horizontally maintained roots. The identity of these compounds is far from clear, but one of these inhibitors could be abscisic acid (ABA). However, indol-3y1 acetic acid (IAA) is also important for root growth and gravitropism. ABA may interact with IAA. Two other aspects of root cell extension have also to be carefully considered. An elongation gradient measured from the tip to the base of the root was found to be important for the growth of both vertical and horizontal gravireactive roots. It was changed significantly during the gravipresentation and can be considered as the origin of the differential elongation. Sephadex beads have been used as both growth markers and as monitors of surface pH changes when they contain some pH indicator. This technique has shown that the distribution of cell extension along the main root axis is related to a pH gradient, the proton efflux being larger for faster growing parts of roots. A lateral movement of calcium is obtained when Ca2+ is applied across the tips of horizontally placed roots with a preferential transport towards the lower side. Endogenous calcium, which may accumulate inside the endoplasmic reticulum of some cap cells, may also act in the gravireception. These observations and several others strongly suggest that calcium may play an essential role in controlling root growth and several

  16. Regulation of cell division and growth in roots of Lactuca sativa L. seedlings by the Ent-Kaurene diterpenoid rabdosin B.

    PubMed

    Ding, Lan; Jing, Hongwei; Qin, Bo; Qi, Linlin; Li, Jing; Wang, Tao; Liu, Guoan

    2010-05-01

    Rabdosin B, an ent-kaurene diterpenoid purified from the air-dried aerial parts of Isodon japonica (Burm.f) Hara var. galaucocalyx (maxin) Hara, showed a biphasic, dose-dependent effect on root growth and a strong inhibitory effect on root hair development in lettuce seedlings (Lactuca sativa L.). Lower concentrations of rabdosin B (20-80 microM) significantly promoted root growth, but its higher levels at 120-200 microM, by contrast, had inhibitory effects. Additionally, all tested concentrations (10-40 microM) inhibited root hair development of seedlings in a dose-dependent manner. Further investigations on the underlying mechanism revealed that the promotion effect of rabdosin B at the lower concentrations resulted from increasing the cell length in the mature region and enhancing the mitotic activity of meristematic cells in seedlings' root tips. In contrast, rabdosin B at higher concentrations inhibited root growth by affecting both cell length in the mature region and division of meristematic cells. Comet assay and cell cycle analysis demonstrated that the decrease of mitotic activity of root meristematic cells was due to DNA damage induced cell cycle retardation of the G(2) phase and S phase at different times.

  17. Melatonin Regulates Root Architecture by Modulating Auxin Response in Rice

    PubMed Central

    Liang, Chengzhen; Li, Aifu; Yu, Hua; Li, Wenzhen; Liang, Chengzhi; Guo, Sandui; Zhang, Rui; Chu, Chengcai

    2017-01-01

    It has been suggested that melatonin acts as an important regulator in controlling root growth and development, but the underlying molecular mechanism driving this relationship remains undetermined. In this study, we demonstrated that melatonin acts as a potent molecule to govern root architecture in rice. Treatments with melatonin significantly inhibited embryonic root growth, and promoted lateral root formation and development. Genome-wide expression profiling by RNA-sequencing revealed auxin-related genes were significantly activated under melatonin treatment. Moreover, several transcription factors and candidate cis-regulatory elements involved in root growth and developments, as well as auxin-related processes, were over-represented in both co-up and -down differentially expressed genes, suggesting that melatonin-mediated root growth occurs in an auxin signal pathway-dependent manner. Further, gravitropic response analysis determined that melatonin affects auxin-regulated processes in rice root. These data show that melatonin shapes root architecture by directly or indirectly activating the auxin signaling pathway. PMID:28223997

  18. An Nfic-hedgehog signaling cascade regulates tooth root development

    PubMed Central

    Liu, Yang; Feng, Jifan; Li, Jingyuan; Zhao, Hu; Ho, Thach-Vu; Chai, Yang

    2015-01-01

    Coordination between the Hertwig's epithelial root sheath (HERS) and apical papilla (AP) is crucial for proper tooth root development. The hedgehog (Hh) signaling pathway and Nfic are both involved in tooth root development; however, their relationship has yet to be elucidated. Here, we establish a timecourse of mouse molar root development by histological staining of sections, and we demonstrate that Hh signaling is active before and during root development in the AP and HERS using Gli1 reporter mice. The proper pattern of Hh signaling activity in the AP is crucial for the proliferation of dental mesenchymal cells, because either inhibition with Hh inhibitors or constitutive activation of Hh signaling activity in transgenic mice leads to decreased proliferation in the AP and shorter roots. Moreover, Hh activity is elevated in Nfic−/− mice, a root defect model, whereas RNA sequencing and in situ hybridization show that the Hh attenuator Hhip is downregulated. ChIP and RNAscope analyses suggest that Nfic binds to the promoter region of Hhip. Treatment of Nfic−/− mice with Hh inhibitor partially restores cell proliferation, AP growth and root development. Taken together, our results demonstrate that an Nfic-Hhip-Hh signaling pathway is crucial for apical papilla growth and proper root formation. This discovery provides insight into the molecular mechanisms regulating tooth root development. PMID:26293299

  19. Growth and development of the root apical meristem.

    PubMed

    Perilli, Serena; Di Mambro, Riccardo; Sabatini, Sabrina

    2012-02-01

    A key question in plant developmental biology is how cell division and cell differentiation are balanced to modulate organ growth and shape organ size. In recent years, several advances have been made in understanding how this balance is achieved during root development. In the Arabidopsis root meristem, stem cells in the apical region of the meristem self-renew and produce daughter cells that differentiate in the distal meristem transition zone. Several factors have been implicated in controlling the different functional zones of the root meristem to modulate root growth; among these, plant hormones have been shown to play a main role. In this review, we summarize recent findings regarding the role of hormone signaling and transcriptional networks in regulating root development.

  20. Genetic improvement for root growth angle to enhance crop production

    PubMed Central

    Uga, Yusaku; Kitomi, Yuka; Ishikawa, Satoru; Yano, Masahiro

    2015-01-01

    The root system is an essential organ for taking up water and nutrients and anchoring shoots to the ground. On the other hand, the root system has rarely been regarded as breeding target, possibly because it is more laborious and time-consuming to evaluate roots (which require excavation) in a large number of plants than aboveground tissues. The root growth angle (RGA), which determines the direction of root elongation in the soil, affects the area in which roots capture water and nutrients. In this review, we describe the significance of RGA as a potential trait to improve crop production, and the physiological and molecular mechanisms that regulate RGA. We discuss the prospects for breeding to improve RGA based on current knowledge of quantitative trait loci for RGA in rice. PMID:26069440

  1. Plant Growth Regulators.

    ERIC Educational Resources Information Center

    Nickell, Louis G.

    1978-01-01

    Describes the effect of "plant growth regulators" on plants, such as controlling the flowering, fruit development, plant size, and increasing crop yields. Provides a list of plant growth regulators which includes their chemical, common, and trade names, as well as their different use(s). (GA)

  2. Genetic control of root growth: from genes to networks

    PubMed Central

    Slovak, Radka; Ogura, Takehiko; Satbhai, Santosh B.; Ristova, Daniela; Busch, Wolfgang

    2016-01-01

    Background Roots are essential organs for higher plants. They provide the plant with nutrients and water, anchor the plant in the soil, and can serve as energy storage organs. One remarkable feature of roots is that they are able to adjust their growth to changing environments. This adjustment is possible through mechanisms that modulate a diverse set of root traits such as growth rate, diameter, growth direction and lateral root formation. The basis of these traits and their modulation are at the cellular level, where a multitude of genes and gene networks precisely regulate development in time and space and tune it to environmental conditions. Scope This review first describes the root system and then presents fundamental work that has shed light on the basic regulatory principles of root growth and development. It then considers emerging complexities and how they have been addressed using systems-biology approaches, and then describes and argues for a systems-genetics approach. For reasons of simplicity and conciseness, this review is mostly limited to work from the model plant Arabidopsis thaliana, in which much of the research in root growth regulation at the molecular level has been conducted. Conclusions While forward genetic approaches have identified key regulators and genetic pathways, systems-biology approaches have been successful in shedding light on complex biological processes, for instance molecular mechanisms involving the quantitative interaction of several molecular components, or the interaction of large numbers of genes. However, there are significant limitations in many of these methods for capturing dynamic processes, as well as relating these processes to genotypic and phenotypic variation. The emerging field of systems genetics promises to overcome some of these limitations by linking genotypes to complex phenotypic and molecular data using approaches from different fields, such as genetics, genomics, systems biology and phenomics. PMID

  3. Apical control, gravitropic signaling, and the growth of lateral roots in Arabidopsis

    NASA Astrophysics Data System (ADS)

    Mullen, Jack L.; Wolverton, Chris; Hangarter, Roger P.

    Most research on gravity responses in plants has focused on primary roots and shoots, which typically grow in a vertical orientation. However, the patterns of lateral organ growth, which generally have large effects on overall plant architecture, are such that the organs are typically not vertical. In lateral roots of Arabidopsis, growth is initially in a nearly horizontal orientation but changes to a near-vertical orientation as the lateral root develops. Although the non-vertical lateral roots are gravitropically competent, following gravitropic reorientation of seedlings, the lateral roots on the upper flank of the primary root have different growth patterns from those on the lower side of the primary root. The differences are in part dependent on reorientation of the primary root, suggesting that gravitropic signaling from the primary root also contributes to the control of lateral root growth. The hormone auxin appears to play a role in this signaling between the primary and lateral roots, as auxin transport inhibitors applied to the primary root affect lateral root growth. Also, lateral roots of pin3 mutants, which are impaired in polar auxin transport, have altered lateral root orientations. However, other signals from the primary root tip also play an important role in regulating lateral root growth.

  4. Long-term control of root growth

    DOEpatents

    Burton, Frederick G.; Cataldo, Dominic A.; Cline, John F.; Skiens, W. Eugene

    1992-05-26

    A method and system for long-term control of root growth without killing the plants bearing those roots involves incorporating a 2,6-dinitroaniline in a polymer and disposing the polymer in an area in which root control is desired. This results in controlled release of the substituted aniline herbicide over a period of many years. Herbicides of this class have the property of preventing root elongation without translocating into other parts of the plant. The herbicide may be encapsulated in the polymer or mixed with it. The polymer-herbicide mixture may be formed into pellets, sheets, pipe gaskets, pipes for carrying water, or various other forms. The invention may be applied to other protection of buried hazardous wastes, protection of underground pipes, prevention of root intrusion beneath slabs, the dwarfing of trees or shrubs and other applications. The preferred herbicide is 4-difluoromethyl-N,N-dipropyl-2,6-dinitro-aniline, commonly known as trifluralin.

  5. Effect of lead on root growth

    PubMed Central

    Fahr, Mouna; Laplaze, Laurent; Bendaou, Najib; Hocher, Valerie; Mzibri, Mohamed El; Bogusz, Didier; Smouni, Abdelaziz

    2013-01-01

    Lead (Pb) is one of the most widespread heavy metal contaminant in soils. It is highly toxic to living organisms. Pb has no biological function but can cause morphological, physiological, and biochemical dysfunctions in plants. Plants have developed a wide range of tolerance mechanisms that are activated in response to Pb exposure. Pb affects plants primarily through their root systems. Plant roots rapidly respond either (i) by the synthesis and deposition of callose, creating a barrier that stops Pb entering (ii) through the uptake of large amounts of Pb and its sequestration in the vacuole accompanied by changes in root growth and branching pattern or (iii) by its translocation to the aboveground parts of plant in the case of hyperaccumulators plants. Here we review the interactions of roots with the presence of Pb in the rhizosphere and the effect of Pb on the physiological and biochemical mechanisms of root development. PMID:23750165

  6. Balancing Water Uptake and Loss through the Coordinated Regulation of Stomatal and Root Development

    PubMed Central

    Hepworth, Christopher; Turner, Carla; Landim, Marcela Guimaraes; Cameron, Duncan; Gray, Julie E.

    2016-01-01

    Root development is influenced by nutrient and water availabilities. Plants are able to adjust many attributes of their root in response to environmental signals including the size and shape of the primary root, lateral roots and root hairs. Here we investigated the response of roots to changes in the levels of leaf transpiration associated with altered stomatal frequency. We found that plants with high stomatal density and conductance produce a larger rooting area and as a result have enhanced phosphate uptake capacity whereas plants with low stomatal conductance produce a smaller root. Manipulating the growth environment of plants indicated that enhanced root growth is most likely a result of an increased demand for water rather than phosphate. Plants manipulated to have an increase or reduction in root hair growth show a reduction or increase respectively, in stomatal conductance and density. Our results demonstrate that plants can balance their water uptake and loss through coordinated regulation of both stomatal and root development. PMID:27275842

  7. Root-growth-inhibiting sheet

    DOEpatents

    Burton, F.G.; Cataldo, D.A.; Cline, J.F.; Skiens, W.E.; Van Voris, P.

    1993-01-26

    In accordance with this invention, a porous sheet material is provided at intervals with bodies of a polymer which contain a 2,6-dinitroaniline. The sheet material is made porous to permit free passage of water. It may be either a perforated sheet or a woven or non-woven textile material. A particularly desirable embodiment is a non-woven fabric of non-biodegradable material. This type of material is known as a geotextile'' and is used for weed control, prevention of erosion on slopes, and other landscaping purposes. In order to obtain a root repelling property, a dinitroaniline is blended with a polymer which is attached to the geotextile or other porous material.

  8. Root-growth-inhibiting sheet

    DOEpatents

    Burton, Frederick G.; Cataldo, Dominic A.; Cline, John F.; Skiens, W. Eugene; Van Voris, Peter

    1993-01-01

    In accordance with this invention, a porous sheet material is provided at intervals with bodies of a polymer which contain a 2,6-dinitroaniline. The sheet material is made porous to permit free passage of water. It may be either a perforated sheet or a woven or non-woven textile material. A particularly desirable embodiment is a non-woven fabric of non-biodegradable material. This type of material is known as a "geotextile" and is used for weed control, prevention of erosion on slopes, and other landscaping purposes. In order to obtain a root repelling property, a dinitroaniline is blended with a polymer which is attached to the geotextile or other porous material.

  9. Gene expression regulation in roots under drought.

    PubMed

    Janiak, Agnieszka; Kwaśniewski, Mirosław; Szarejko, Iwona

    2016-02-01

    Stress signalling and regulatory networks controlling expression of target genes are the basis of plant response to drought. Roots are the first organs exposed to water deficiency in the soil and are the place of drought sensing. Signalling cascades transfer chemical signals toward the shoot and initiate molecular responses that lead to the biochemical and morphological changes that allow plants to be protected against water loss and to tolerate stress conditions. Here, we present an overview of signalling network and gene expression regulation pathways that are actively induced in roots under drought stress. In particular, the role of several transcription factor (TF) families, including DREB, AP2/ERF, NAC, bZIP, MYC, CAMTA, Alfin-like and Q-type ZFP, in the regulation of root response to drought are highlighted. The information provided includes available data on mutual interactions between these TFs together with their regulation by plant hormones and other signalling molecules. The most significant downstream target genes and molecular processes that are controlled by the regulatory factors are given. These data are also coupled with information about the influence of the described regulatory networks on root traits and root development which may translate to enhanced drought tolerance. This is the first literature survey demonstrating the gene expression regulatory machinery that is induced by drought stress, presented from the perspective of roots.

  10. Quest for Continual Growth Takes Root

    ERIC Educational Resources Information Center

    Surdey, Mary M.; Hashey, Jane M.

    2006-01-01

    In this article, the authors describe how the quest for continual growth has taken its root at Vestal Central School district. Located at the heart of upstate New York, educators at Vestal Central School district have created a spirit of "kaizen," a Japanese word meaning the relentless quest for continual improvement and higher-quality…

  11. Regulation of Growth Anisotropy in Well-Watered and Water-Stressed Maize Roots. II. Role of Cortical Microtubules and Cellulose Microfibrils1

    PubMed Central

    Baskin, Tobias I.; Meekes, Herman T.H.M.; Liang, Benjamin M.; Sharp, Robert E.

    1999-01-01

    We tested the hypothesis that the degree of anisotropic expansion of plant tissues is controlled by the degree of alignment of cortical microtubules or cellulose microfibrils. Previously, for the primary root of maize (Zea mays L.), we quantified spatial profiles of expansion rate in length, radius, and circumference and the degree of growth anisotropy separately for the stele and cortex, as roots became thinner with time from germination or in response to low water potential (B.M. Liang, A.M. Dennings, R.E. Sharp, T.I. Baskin [1997] Plant Physiol 115:101–111). Here, for the same material, we quantified microtubule alignment with indirect immunofluorescence microscopy and microfibril alignment throughout the cell wall with polarized-light microscopy and from the innermost cell wall layer with electron microscopy. Throughout much of the growth zone, mean orientations of microtubules and microfibrils were transverse, consistent with their parallel alignment specifying the direction of maximal expansion rate (i.e. elongation). However, where microtubule alignment became helical, microfibrils often made helices of opposite handedness, showing that parallelism between these elements was not required for helical orientations. Finally, contrary to the hypothesis, the degree of growth anisotropy was not correlated with the degree of alignment of either microtubules or microfibrils. The mechanisms plants use to specify radial and tangential expansion rates remain uncharacterized. PMID:9952465

  12. AtOPR3 specifically inhibits primary root growth in Arabidopsis under phosphate deficiency

    PubMed Central

    Zheng, Hongyan; Pan, Xiaoying; Deng, Yuxia; Wu, Huamao; Liu, Pei; Li, Xuexian

    2016-01-01

    The primary root plays essential roles in root development, nutrient absorption, and root architectural establishment. Primary root growth is generally suppressed by phosphate (P) deficiency in A. thaliana; however, the underlying molecular mechanisms are largely elusive to date. We found that AtOPR3 specifically inhibited primary root growth under P deficiency via suppressing root tip growth at the transcriptional level, revealing an important novel function of AtOPR3 in regulating primary root response to the nutrient stress. Importantly, AtOPR3 functioned to down-regulate primary root growth under P limitation mostly by its own, rather than depending on the Jasmonic acid signaling pathway. Further, AtOPR3 interacted with ethylene and gibberellin signaling pathways to regulate primary root growth upon P deficiency. In addition, the AtOPR3’s function in inhibiting primary root growth upon P limitation was also partially dependent on auxin polar transport. Together, our studies provide new insights into how AtOPR3, together with hormone signaling interactions, modulates primary root growth in coping with the environmental stress in Arabidopsis. PMID:27101793

  13. Jasmonic Acid Enhances Al-Induced Root Growth Inhibition1[OPEN

    PubMed Central

    Yang, Zhong-Bao; Ma, Yanqi

    2017-01-01

    Phytohormones such as ethylene and auxin are involved in the regulation of the aluminum (Al)-induced root growth inhibition. Although jasmonate (JA) has been reported to play a crucial role in the regulation of root growth and development in response to environmental stresses through interplay with ethylene and auxin, its role in the regulation of root growth response to Al stress is not yet known. In an attempt to elucidate the role of JA, we found that exogenous application of JA enhanced the Al-induced root growth inhibition. Furthermore, phenotype analysis with mutants defective in either JA biosynthesis or signaling suggests that JA is involved in the regulation of Al-induced root growth inhibition. The expression of the JA receptor CORONATINE INSENSITIVE1 (COI1) and the key JA signaling regulator MYC2 was up-regulated in response to Al stress in the root tips. This process together with COI1-mediated Al-induced root growth inhibition under Al stress was controlled by ethylene but not auxin. Transcriptomic analysis revealed that many responsive genes under Al stress were regulated by JA signaling. The differential responsive of microtubule organization-related genes between the wild-type and coi1-2 mutant is consistent with the changed depolymerization of cortical microtubules in coi1 under Al stress. In addition, ALMT-mediated malate exudation and thus Al exclusion from roots in response to Al stress was also regulated by COI1-mediated JA signaling. Together, this study suggests that root growth inhibition is regulated by COI1-mediated JA signaling independent from auxin signaling and provides novel insights into the phytohormone-mediated root growth inhibition in response to Al stress. PMID:27932419

  14. Endosomal Interactions during Root Hair Growth

    PubMed Central

    von Wangenheim, Daniel; Rosero, Amparo; Komis, George; Šamajová, Olga; Ovečka, Miroslav; Voigt, Boris; Šamaj, Jozef

    2016-01-01

    The dynamic localization of endosomal compartments labeled with targeted fluorescent protein tags is routinely followed by time lapse fluorescence microscopy approaches and single particle tracking algorithms. In this way trajectories of individual endosomes can be mapped and linked to physiological processes as cell growth. However, other aspects of dynamic behavior including endosomal interactions are difficult to follow in this manner. Therefore, we characterized the localization and dynamic properties of early and late endosomes throughout the entire course of root hair formation by means of spinning disc time lapse imaging and post-acquisition automated multitracking and quantitative analysis. Our results show differential motile behavior of early and late endosomes and interactions of late endosomes that may be specified to particular root hair domains. Detailed data analysis revealed a particular transient interaction between late endosomes—termed herein as dancing-endosomes—which is not concluding to vesicular fusion. Endosomes preferentially located in the root hair tip interacted as dancing-endosomes and traveled short distances during this interaction. Finally, sizes of early and late endosomes were addressed by means of super-resolution structured illumination microscopy (SIM) to corroborate measurements on the spinning disc. This is a first study providing quantitative microscopic data on dynamic spatio-temporal interactions of endosomes during root hair tip growth. PMID:26858728

  15. Long-distance signals regulating stomatal conductance and leaf growth in tomato (Lycopersicon esculentum) plants subjected to partial root-zone drying.

    PubMed

    Sobeih, Wagdy Y; Dodd, Ian C; Bacon, Mark A; Grierson, Donald; Davies, William J

    2004-11-01

    Tomato (Lycopersicon esculentum Mill. cv. Ailsa Craig) plants were grown with roots split between two soil columns. After plant establishment, water was applied daily to one (partial root-zone drying-PRD) or both (well-watered control-WW) columns. Water was withheld from the other column in the PRD treatment, to expose some roots to drying soil. Soil and plant water status were monitored daily and throughout diurnal courses. Over 8 d, there were no treatment differences in leaf water potential (psileaf) even though soil moisture content of the upper 6 cm (theta) of the dry column in the PRD treatment decreased by up to 70%. Stomatal conductance (gs) of PRD plants decreased (relative to WW plants) when of the dry column decreased by 45%. Such closure coincided with increased xylem sap pH and did not require increased xylem sap abscisic acid (ABA) concentration ([X-ABA]). Detached leaflet ethylene evolution of PRD plants increased when of the dry column decreased by 55%, concurrent with decreased leaf elongation. The physiological significance of enhanced ethylene evolution of PRD plants was examined using a transgenic tomato (ACO1AS) with low stress-induced ethylene production. In response to PRD, ACO1AS and wild-type plants showed similar xylem sap pH, [X-ABA] and gs, but ACO1AS plants showed neither enhanced ethylene evolution nor significant reductions in leaf elongation. Combined use of genetic technologies to reduce ethylene production and agronomic technologies to sustain water status (such as PRD) may sustain plant growth under conditions where yield would otherwise be significantly reduced.

  16. Envisaging the Regulation of Alkaloid Biosynthesis and Associated Growth Kinetics in Hairy Roots of Vinca minor Through the Function of Artificial Neural Network.

    PubMed

    Verma, Priyanka; Anjum, Shahin; Khan, Shamshad Ahmad; Roy, Sudeep; Odstrcilik, Jan; Mathur, Ajay Kumar

    2016-03-01

    Artificial neural network based modeling is a generic approach to understand and correlate different complex parameters of biological systems for improving the desired output. In addition, some new inferences can also be predicted in a shorter time with less cost and labor. As terpenoid indole alkaloid pathway in Vinca minor is very less investigated or elucidated, a strategy of elicitation with hydroxylase and acetyltransferase along with incorporation of various precursors from primary shikimate and secoiridoid pools via simultaneous employment of cyclooxygenase inhibitor was performed in the hairy roots of V. minor. This led to the increment in biomass accumulation, total alkaloid concentration, and vincamine production in selected treatments. The resultant experimental values were correlated with algorithm approaches of artificial neural network that assisted in finding the yield of vincamine, alkaloids, and growth kinetics using number of elicits. The inputs were the hydroxylase/acetyltransferase elicitors and cyclooxygenase inhibitor along with various precursors from shikimate and secoiridoid pools and the outputs were growth index (GI), alkaloids, and vincamine. The approach incorporates two MATLAB codes; GRNN and FFBPNN. Growth kinetic studies revealed that shikimate and tryptophan supplementation triggers biomass accumulation (GI = 440.2 to 540.5); while maximum alkaloid (3.7 % dry wt.) and vincamine production (0.017 ± 0.001 % dry wt.) was obtained on supplementation of secologanin along with tryptophan, naproxen, hydrogen peroxide, and acetic anhydride. The study shows that experimental and predicted values strongly correlate each other. The correlation coefficient for growth index (GI), alkaloids, and vincamine was found to be 0.9997, 0.9980, 0.9511 in GRNN and 0.9725, 0.9444, 0.9422 in FFBPNN, respectively. GRNN provided greater similarity between the target and predicted dataset in comparison to FFBPNN. The findings can provide future

  17. CLE peptides regulate lateral root development in response to nitrogen nutritional status of plants.

    PubMed

    Araya, Takao; von Wirén, Nicolaus; Takahashi, Hideki

    2014-01-01

    CLE (CLAVATA3/embryo surrounding region (ESR)) peptides control meristem functions in plants. Our recent study highlights the critical role of a peptide-receptor signaling module composed of nitrogen (N)-responsive CLE peptides and the CLAVATA1 (CLV1) leucine-rich repeat receptor-like kinase in controlling lateral root development in Arabidopsis thaliana. CLE1, -3, -4 and -7 are expressed in root pericycle cells in Arabidopsis roots under N-limited growth conditions. Overexpression of these CLE genes inhibits lateral root emergence from the primary root. The inhibitory action of N-responsive CLE peptides on lateral root development requires the function of CLV1 expressed in phloem companion cells in roots, suggesting that downstream signals are transferred through phloem for systemic regulation of root system architecture. An additional mechanism downstream of CLV1 feedback-regulates transcript levels of N-responsive CLE genes in roots for fine-tuning the signal amplitude.

  18. Functional genomics of root growth and development in Arabidopsis.

    PubMed

    Iyer-Pascuzzi, Anjali; Simpson, June; Herrera-Estrella, Luis; Benfey, Philip N

    2009-04-01

    Roots are vital for the uptake of water and nutrients, and for anchorage in the soil. They are highly plastic, able to adapt developmentally and physiologically to changing environmental conditions. Understanding the molecular mechanisms behind this growth and development requires knowledge of root transcriptomics, proteomics, and metabolomics. Genomics approaches, including the recent publication of a root expression map, root proteome, and environment-specific root expression studies, are uncovering complex transcriptional and post-transcriptional networks underlying root development. The challenge is in further capitalizing on the information in these datasets to understand the fundamental principles of root growth and development. In this review, we highlight progress researchers have made toward this goal.

  19. Branching Out in Roots: Uncovering Form, Function, and Regulation1

    PubMed Central

    Atkinson, Jonathan A.; Rasmussen, Amanda; Traini, Richard; Voß, Ute; Sturrock, Craig; Mooney, Sacha J.; Wells, Darren M.; Bennett, Malcolm J.

    2014-01-01

    Root branching is critical for plants to secure anchorage and ensure the supply of water, minerals, and nutrients. To date, research on root branching has focused on lateral root development in young seedlings. However, many other programs of postembryonic root organogenesis exist in angiosperms. In cereal crops, the majority of the mature root system is composed of several classes of adventitious roots that include crown roots and brace roots. In this Update, we initially describe the diversity of postembryonic root forms. Next, we review recent advances in our understanding of the genes, signals, and mechanisms regulating lateral root and adventitious root branching in the plant models Arabidopsis (Arabidopsis thaliana), maize (Zea mays), and rice (Oryza sativa). While many common signals, regulatory components, and mechanisms have been identified that control the initiation, morphogenesis, and emergence of new lateral and adventitious root organs, much more remains to be done. We conclude by discussing the challenges and opportunities facing root branching research. PMID:25136060

  20. Melatonin Regulates Root Meristem by Repressing Auxin Synthesis and Polar Auxin Transport in Arabidopsis

    PubMed Central

    Wang, Qiannan; An, Bang; Wei, Yunxie; Reiter, Russel J.; Shi, Haitao; Luo, Hongli; He, Chaozu

    2016-01-01

    Melatonin (N-acetyl-5-methoxytryptamine) plays important roles in regulating both biotic and abiotic stress tolerance, biological rhythms, plant growth and development. Sharing the same substrate (tryptophan) for the biosynthesis, melatonin and auxin also have similar effects in plant development. However, the specific function of melatonin in modulating plant root growth and the relationship between melatonin and auxin as well as underlying mechanisms are still unclear. In this study, we found high concentration of melatonin remarkably inhibited root growth in Arabidopsis by reducing root meristem size. Further studies showed that melatonin negatively regulated auxin biosynthesis, the expression of PINFORMED (PIN) proteins as well as auxin response in Arabidopsis. Moreover, the root growth of the triple mutant pin1pin3pin7 was more tolerant than that of wild-type in response to melatonin treatment, suggesting the essential role of PIN1/3/7 in melatonin-mediated root growth. Combination treatment of melatonin and 5-Triiodobenzoic acid (TIBA) did not enhance melatonin-mediated reduction of root meristem size, indicating that polar auxin transport (PAT) may be necessary for the regulation of root meristem size by melatonin treatment. Taken together, this study indicates that melatonin regulates root growth in Arabidopsis, through auxin synthesis and polar auxin transport, at least partially. PMID:28018411

  1. Increased soil phosphorus availability induced by faba bean root exudation stimulates root growth and phosphorus uptake in neighbouring maize.

    PubMed

    Zhang, Deshan; Zhang, Chaochun; Tang, Xiaoyan; Li, Haigang; Zhang, Fusuo; Rengel, Zed; Whalley, William R; Davies, William J; Shen, Jianbo

    2016-01-01

    Root growth is influenced by soil nutrients and neighbouring plants, but how these two drivers affect root interactions and regulate plant growth dynamics is poorly understood. Here, interactions between the roots of maize (Zea mays) and faba bean (Vicia faba) are characterized. Maize was grown alone (maize) or with maize (maize/maize) or faba bean (maize/faba bean) as competitors under five levels of phosphorus (P) supply, and with homogeneous or heterogeneous P distribution. Maize had longer root length and greater shoot biomass and P content when grown with faba bean than with maize. At each P supply rate, faba bean had a smaller root system than maize but greater exudation of citrate and acid phosphatase, suggesting a greater capacity to mobilize P in the rhizosphere. Heterogeneous P availability enhanced the root-length density of maize but not faba bean. Maize root proliferation in the P-rich patches was associated with increased shoot P uptake. Increased P availability by localized P application or by the presence of faba bean exudation stimulated root morphological plasticity and increased shoot growth in maize in the maize/faba bean mixture, suggesting that root interactions of neighbouring plants can be modified by increased P availability.

  2. Effect of calmodulin antagonists on the growth and graviresponsiveness of primary roots of maize.

    PubMed

    Stinemetz, C L; Hasenstein, K H; Young, L M; Evans, M L

    1992-11-01

    We examined the effect of calmodulin (CaM) antagonists applied at the root tip on root growth, gravity-induced root curvature, and the movement of calcium across the root tip and auxin (IAA) across the elongation zone of gravistimulated roots. All of the CaM antagonists used in these studies delayed gravity-induced curvature at a concentration (1 micromole) that did not affect root growth. Calmodulin antagonists (> or = 1 micromole) inhibited downward transport of label from 45Ca2+ across the caps of gravistimulated roots relative to the downward transport of 45Ca2+ in gravistimulated roots which were not treated with CaM antagonists. Application of CaM antagonists at the root tip (> or = 1 micromole) also decreased the relative downward movement of label from 3H-IAA applied to the upper side of the elongation zone of gravistimulated roots. In general, tip application of antagonists inhibited neither the upward transport of 45Ca2+ in the root tip nor the upward movement of label from 3H-IAA in the elongation zone of gravistimulated roots. Thus, roots treated with CaM antagonists > or = 1 micromole become less graviresponsive and exhibit reduced or even a reversal of downward polarity of calcium transport across the root tip and IAA transport across the elongation zone. The results indicate that calmodulin-regulated events play a role in root gravitropism.

  3. Effect of calmodulin antagonists on the growth and graviresponsiveness of primary roots of maize

    NASA Technical Reports Server (NTRS)

    Stinemetz, C. L.; Hasenstein, K. H.; Young, L. M.; Evans, M. L.

    1992-01-01

    We examined the effect of calmodulin (CaM) antagonists applied at the root tip on root growth, gravity-induced root curvature, and the movement of calcium across the root tip and auxin (IAA) across the elongation zone of gravistimulated roots. All of the CaM antagonists used in these studies delayed gravity-induced curvature at a concentration (1 micromole) that did not affect root growth. Calmodulin antagonists (> or = 1 micromole) inhibited downward transport of label from 45Ca2+ across the caps of gravistimulated roots relative to the downward transport of 45Ca2+ in gravistimulated roots which were not treated with CaM antagonists. Application of CaM antagonists at the root tip (> or = 1 micromole) also decreased the relative downward movement of label from 3H-IAA applied to the upper side of the elongation zone of gravistimulated roots. In general, tip application of antagonists inhibited neither the upward transport of 45Ca2+ in the root tip nor the upward movement of label from 3H-IAA in the elongation zone of gravistimulated roots. Thus, roots treated with CaM antagonists > or = 1 micromole become less graviresponsive and exhibit reduced or even a reversal of downward polarity of calcium transport across the root tip and IAA transport across the elongation zone. The results indicate that calmodulin-regulated events play a role in root gravitropism.

  4. The microtubule-associated protein MAP18 affects ROP2 GTPase activity during root hair growth.

    PubMed

    Kang, Erfang; Zheng, Mingzhi; Zhang, Yan; Yuan, Ming; Yalovsky, Shaul; Zhu, Lei; Fu, Ying

    2017-03-17

    Establishment and maintenance of the polar site are important for root hair tip growth. We previously reported that Arabidopsis (Arabidopsis thaliana) MICROTUBULE-ASSOCIATED PROTEIN18 (MAP18) functions in controlling the direction of pollen tube growth and root hair elongation. Additionally, the Rop GTPase ROP2 was reported as a positive regulator of both root hair initiation and tip growth in Arabidopsis. Both loss-of-function of ROP2 or knock-down of MAP18 leads to a decrease in root hair length, whereas overexpression of either MAP18 or ROP2 causes multiple tips or a branching hair phenotype. However, it is unclear whether MAP18 and ROP2 coordinately regulate root hair growth. In the present study, we demonstrate that MAP18 and ROP2 interact genetically and functionally. MAP18 physically interacts with ROP2 in vitro and in vivo and preferentially binds to the inactive form of the ROP2 protein. MAP18 promotes ROP2 activity during root hair tip growth. Further investigation revealed that MAP18 competes with RhoGTPase GDP dissociation inhibitor 1 (AtRhoGDI1)/SUPERCENTIPEDE1 (SCN1) for binding to ROP2, in turn affecting localization of active ROP2 in the plasma membrane of the root hair tip. These results reveal a novel function of MAP18 in the regulation of ROP2 activation during root hair growth.

  5. Effects of glycoalkaloids from Solanum plants on cucumber root growth.

    PubMed

    Sun, Fang; Li, Shengyu; He, Dajun; Cao, Gang; Ni, Xiuzhen; Tai, Guihua; Zhou, Yifa; Wang, Deli

    2010-09-01

    The phytotoxic effect of four glycoalkaloids and two 6-O-sulfated glycoalkaloid derivatives were evaluated by testing their inhibition of cucumber root growth. The bioassays were performed using both compounds singly and in equimolar mixtures, respectively. Cucumber root growth was reduced by chaconine (C), solanine (S), solamargine (SM) and solasonine (SS) with IC(50) values of 260 (C), 380 (S), 530 (SM), and 610 microM (SS). The inhibitory effect was concentration-dependent. 6-O-sulfated chaconine and 6-O-sulfated solamargine had no inhibitory effects, which indicated that the carbohydrate moieties play an important role in inhibiting cucumber root growth. The equimolar mixtures of paired glycoalkaloids, both chaconine/solanine and solamargine/solasonine, produced synergistic effects on inhibition of cucumber root growth. By contrast, mixtures of unpaired glycoalkaloids from different plants had no obviously synergistic effects. The growth inhibited plant roots lacked hairs, which implied that inhibition was perhaps at the level of root hair growth.

  6. Manganese Toxicity Inhibited Root Growth by Disrupting Auxin Biosynthesis and Transport in Arabidopsis

    PubMed Central

    Zhao, Jingjing; Wang, Wenying; Zhou, Huakun; Wang, Ruling; Zhang, Ping; Wang, Huichun; Pan, Xiangliang; Xu, Jin

    2017-01-01

    Mn toxicity inhibits both primary root (PR) growth and lateral root development. However, the mechanism underlying Mn-mediated root growth inhibition remains to be further elucidated. Here, we investigated the role of auxin in Mn-mediated inhibition of PR growth in Arabidopsis using physiological and genetic approaches. Mn toxicity inhibits PR elongation by reducing meristematic cell division potential. Mn toxicity also reduced auxin levels in root tips by reducing IAA biosynthesis and down-regulating the expression of auxin efflux carriers PIN4 and PIN7. Loss of function pin4 and pin7 mutants showed less inhibition of root growth than col-0 seedlings. These results indicated that this inhibitory effect of Mn toxicity on PR growth was mediated by affecting auxin biosynthesis and the expression of auxin efflux transporters PIN4 and PIN7. PMID:28316607

  7. Manganese Toxicity Inhibited Root Growth by Disrupting Auxin Biosynthesis and Transport in Arabidopsis.

    PubMed

    Zhao, Jingjing; Wang, Wenying; Zhou, Huakun; Wang, Ruling; Zhang, Ping; Wang, Huichun; Pan, Xiangliang; Xu, Jin

    2017-01-01

    Mn toxicity inhibits both primary root (PR) growth and lateral root development. However, the mechanism underlying Mn-mediated root growth inhibition remains to be further elucidated. Here, we investigated the role of auxin in Mn-mediated inhibition of PR growth in Arabidopsis using physiological and genetic approaches. Mn toxicity inhibits PR elongation by reducing meristematic cell division potential. Mn toxicity also reduced auxin levels in root tips by reducing IAA biosynthesis and down-regulating the expression of auxin efflux carriers PIN4 and PIN7. Loss of function pin4 and pin7 mutants showed less inhibition of root growth than col-0 seedlings. These results indicated that this inhibitory effect of Mn toxicity on PR growth was mediated by affecting auxin biosynthesis and the expression of auxin efflux transporters PIN4 and PIN7.

  8. Determinate Root Growth and Meristem Maintenance in Angiosperms

    PubMed Central

    Shishkova, S.; Rost, T. L.; Dubrovsky, J. G.

    2008-01-01

    Background The difference between indeterminate and determinate growth in plants consists of the presence or absence of an active meristem in the fully developed organ. Determinate root growth implies that the root apical meristem (RAM) becomes exhausted. As a consequence, all cells in the root tip differentiate. This type of growth is widely found in roots of many angiosperm taxa and might have evolved as a developmental adaptation to water deficit (in desert Cactaceae), or low mineral content in the soil (proteoid roots in various taxa). Scope and Conclusions This review considers the mechanisms of determinate root growth to better understand how the RAM is maintained, how it functions, and the cellular and genetic bases of these processes. The role of the quiescent centre in RAM maintenance and exhaustion will be analysed. During root ageing, the RAM becomes smaller and its organization changes; however, it remains unknown whether every root is truly determinate in the sense that its RAM becomes exhausted before senescence. We define two types of determinate growth: constitutive where determinacy is a natural part of root development; and non-constitutive where determinacy is induced usually by an environmental factor. Determinate root growth is proposed to include two phases: the indeterminate growth phase, when the RAM continuously produces new cells; and the termination growth phase, when cell production gradually decreases and eventually ceases. Finally, new concepts regarding stem cells and a stem cell niche are discussed to help comprehend how the meristem is maintained in a broad taxonomic context. PMID:17954472

  9. Impact of root growth and root hydraulic conductance on water availability of young walnut trees

    NASA Astrophysics Data System (ADS)

    Jerszurki, Daniela; Couvreur, Valentin; Hopmans, Jan W.; Silva, Lucas C. R.; Shackel, Kenneth A.; de Souza, Jorge L. M.

    2015-04-01

    Walnut (Juglans regia L.) is a tree species of high economic importance in the Central Valley of California. This crop has particularly high water requirements, which makes it highly dependent on irrigation. The context of decreasing water availability in the state calls for efficient water management practices, which requires improving our understanding of the relationship between water application and walnut water availability. In addition to the soil's hydraulic conductivity, two plant properties are thought to control the supply of water from the bulk soil to the canopy: (i) root distribution and (ii) plant hydraulic conductance. Even though these properties are clearly linked to crop water requirements, their quantitative relation remains unclear. The aim of this study is to quantitatively explain walnut water requirements under water deficit from continuous measurements of its water consumption, soil and stem water potential, root growth and root system hydraulic conductance. For that purpose, a greenhouse experiment was conducted for a two month period. Young walnut trees were planted in transparent cylindrical pots, equipped with: (i) rhizotron tubes, which allowed for non-invasive monitoring of root growth, (ii) pressure transducer tensiometers for soil water potential, (iii) psychrometers attached to non-transpiring leaves for stem water potential, and (iv) weighing scales for plant transpiration. Treatments consisted of different irrigation rates: 100%, 75% and 50% of potential crop evapotranspiration. Plant responses were compared to predictions from three simple process-based soil-plant-atmosphere models of water flow: (i) a hydraulic model of stomatal regulation based on stem water potential and vapor pressure deficit, (ii) a model of plant hydraulics predicting stem water potential from soil-root interfaces water potential, and (iii) a model of soil water depletion predicting the water potential drop between the bulk soil and soil-root interfaces

  10. MADS-box transcription factor AGL21 regulates lateral root development and responds to multiple external and physiological signals.

    PubMed

    Yu, Lin-Hui; Miao, Zi-Qing; Qi, Guo-Feng; Wu, Jie; Cai, Xiao-Teng; Mao, Jie-Li; Xiang, Cheng-Bin

    2014-11-01

    Plant root system morphology is dramatically influenced by various environmental cues. The adaptation of root system architecture to environmental constraints, which mostly depends on the formation and growth of lateral roots, is an important agronomic trait. Lateral root development is regulated by the external signals coordinating closely with intrinsic signaling pathways. MADS-box transcription factors are known key regulators of the transition to flowering and flower development. However, their functions in root development are still poorly understood. Here we report that AGL21, an AGL17-clade MADS-box gene, plays a crucial role in lateral root development. AGL21 was highly expressed in root, particularly in the root central cylinder and lateral root primordia. AGL21 overexpression plants produced more and longer lateral roots while agl21 mutants showed impaired lateral root development, especially under nitrogen-deficient conditions. AGL21 was induced by many plant hormones and environmental stresses, suggesting a function of this gene in root system plasticity in response to various signals. Furthermore, AGL21 was found positively regulating auxin accumulation in lateral root primordia and lateral roots by enhancing local auxin biosynthesis, thus stimulating lateral root initiation and growth. We propose that AGL21 may be involved in various environmental and physiological signals-mediated lateral root development and growth.

  11. Plant hormone cross-talk: the pivot of root growth.

    PubMed

    Pacifici, Elena; Polverari, Laura; Sabatini, Sabrina

    2015-02-01

    Root indeterminate growth and its outstanding ability to produce new tissues continuously make this organ a highly dynamic structure able to respond promptly to external environmental stimuli. Developmental processes therefore need to be finely tuned, and hormonal cross-talk plays a pivotal role in the regulation of root growth. In contrast to what happens in animals, plant development is a post-embryonic process. A pool of stem cells, placed in a niche at the apex of the meristem, is a source of self-renewing cells that provides cells for tissue formation. During the first days post-germination, the meristem reaches its final size as a result of a balance between cell division and cell differentiation. A complex network of interactions between hormonal pathways co-ordinates such developmental inputs. In recent years, by means of molecular and computational approaches, many efforts have been made aiming to define the molecular components of these networks. In this review, we focus our attention on the molecular mechanisms at the basis of hormone cross-talk during root meristem size determination.

  12. [Effects nutrients on the seedlings root hair development and root growth of Poncirus trifoliata under hydroponics condition].

    PubMed

    Cao, Xiu; Xia, Ren-Xue; Zhang, De-Jian; Shu, Bo

    2013-06-01

    Ahydroponics experiment was conducted to study the effects of nutrients (N, P, K, Ca, Mg, Fe, and Mn) deficiency on the length of primary root, the number of lateral roots, and the root hair density, length, and diameter on the primary root and lateral roots of Poncirus trifoliata seedlings. Under the deficiency of each test nutrient, root hair could generate, but was mainly concentrated on the root base and fewer on the root tip. The root hair density on lateral roots was significantly larger than that on primary root, but the root hair length was in adverse. The deficiency of each test nutrient had greater effects on the growth and development of root hairs, with the root hair density on primary root varied from 55.0 to 174.3 mm(-2). As compared with the control, Ca deficiency induced the significant increase of root hair density and length on primary root, P deficiency promoted the root hair density and length on the base and middle part of primary root and on the lateral roots significantly, Fe deficiency increased the root hair density but decreased the root hair length on the tip of primary root significantly, K deficiency significantly decreased the root hair density, length, and diameter on primary root and lateral roots, whereas Mg deficiency increased the root hair length of primary root significantly. In all treatments of nutrient deficiency, the primary root had the similar growth rate, but, with the exceptions of N and Mg deficiency, the lateral roots exhibited shedding and regeneration.

  13. CEP genes regulate root and shoot development in response to environmental cues and are specific to seed plants.

    PubMed

    Delay, Christina; Imin, Nijat; Djordjevic, Michael A

    2013-12-01

    The manifestation of repetitive developmental programmes during plant growth can be adjusted in response to various environmental cues. During root development, this means being able to precisely control root growth and lateral root development. Small signalling peptides have been found to play roles in many aspects of root development. One member of the CEP (C-TERMINALLY ENCODED PEPTIDE) gene family has been shown to arrest root growth. Here we report that CEP genes are widespread among seed plants but are not present in land plants that lack true branching roots or root vasculature. We have identified 10 additional CEP genes in Arabidopsis. Expression analysis revealed that CEP genes are regulated by environmental cues such as nitrogen limitation, increased salt levels, increased osmotic strength, and increased CO2 levels in both roots and shoots. Analysis of synthetic CEP variants showed that both peptide sequence and modifications of key amino acids affect CEP biological activity. Analysis of several CEP over-expression lines revealed distinct roles for CEP genes in root and shoot development. A cep3 knockout mutant showed increased root and shoot growth under a range of abiotic stress, nutrient, and light conditions. We demonstrate that CEPs are negative regulators of root development, slowing primary root growth and reducing lateral root formation. We propose that CEPs are negative regulators that mediate environmental influences on plant development.

  14. Multiple phytohormones promote root hair elongation by regulating a similar set of genes in the root epidermis in Arabidopsis

    PubMed Central

    Zhang, Shan; Huang, Linli; Yan, An; Liu, Yihua; Liu, Bohan; Yu, Chunyan; Zhang, Aidong; Schiefelbein, John; Gan, Yinbo

    2016-01-01

    Multiple phytohormones, including auxin, ethylene, and cytokinin, play vital roles in regulating cell development in the root epidermis. However, their interactions in specific root hair cell developmental stages are largely unexplored. To bridge this gap, we employed genetic and pharmacological approaches as well as transcriptional analysis in order to dissect their distinct and overlapping roles in root hair initiation and elongation in Arabidopsis thaliana. Our results show that among auxin, ethylene, and cytokinin, only ethylene induces ectopic root hair cells in wild-type plants, implying a special role of ethylene in the hair initiation stage. In the subsequent elongation stage, however, auxin, ethylene, and cytokinin enhance root hair tip growth equally. Our data also suggest that the effect of cytokinin is independent from auxin and ethylene in this process. Exogenous cytokinin restores root hair elongation when the auxin and ethylene signal is defective, whereas auxin and ethylene also sustain elongation in the absence of the cytokinin signal. Notably, transcriptional analyses demonstrated that auxin, ethylene, and cytokinin regulate a similar set of root hair-specific genes. Together these analyses provide important clues regarding the mechanism of hormonal interactions and regulation in the formation of single-cell structures. PMID:27799284

  15. Complete Genome Sequence of Micromonospora Strain L5, a Potential Plant-Growth-Regulating Actinomycete, Originally Isolated from Casuarina equisetifolia Root Nodules

    SciTech Connect

    Hirsch, A. M.; Alvarado, J.; Bruce, D.; Chertkov, O.; De Hoff, P. L.; Detter, J. C.; Fujishige, N. A.; Goodwin, L. A.; Han, J.; Han, S.; Ivanova, N.; Land, M. L.; Lum, M. R.; Milani-Nejad, N.; Nolan, M.; Pati, A.; Pitluck, S.; Tran, S. S.; Woyke, T.; Valdes, M.

    2013-08-29

    Micromonospora species live in diverse environments and exhibit a broad range of functions including antibiotic production, biocontrol, and ability to degrade complex polysaccharides. To learn more about these versatile actinomycetes, we sequenced the genome of strain L5, originally isolated from root nodules of an actinorhizal plant growing in Mexico.

  16. Complete Genome Sequence of Micromonospora Strain L5, a Potential Plant-Growth-Regulating Actinomycete, Originally Isolated from Casuarina equisetifolia Root Nodules

    PubMed Central

    Alvarado, Johana; Bruce, David; Chertkov, Olga; De Hoff, Peter L.; Detter, John C.; Fujishige, Nancy A.; Goodwin, Lynne A.; Han, James; Han, Shunsheng; Ivanova, Natalia; Land, Miriam L.; Lum, Michelle R.; Milani-Nejad, Nima; Nolan, Matt; Pati, Amrita; Pitluck, Sam; Tran, Stephen S.; Woyke, Tanja; Valdés, Maria

    2013-01-01

    Micromonospora species live in diverse environments and exhibit a broad range of functions, including antibiotic production, biocontrol, and degradation of complex polysaccharides. To learn more about these versatile actinomycetes, we sequenced the genome of strain L5, originally isolated from root nodules of an actinorhizal plant growing in Mexico. PMID:24072863

  17. Auxins differentially regulate root system architecture and cell cycle protein levels in maize seedlings.

    PubMed

    Martínez-de la Cruz, Enrique; García-Ramírez, Elpidio; Vázquez-Ramos, Jorge M; Reyes de la Cruz, Homero; López-Bucio, José

    2015-03-15

    Maize (Zea mays) root system architecture has a complex organization, with adventitious and lateral roots determining its overall absorptive capacity. To generate basic information about the earlier stages of root development, we compared the post-embryonic growth of maize seedlings germinated in water-embedded cotton beds with that of plants obtained from embryonic axes cultivated in liquid medium. In addition, the effect of four different auxins, namely indole-3-acetic acid (IAA), 1-naphthaleneacetic acid (NAA), indole-3-butyric acid (IBA) and 2,4-dichlorophenoxyacetic acid (2,4-D) on root architecture and levels of the heat shock protein HSP101 and the cell cycle proteins CKS1, CYCA1 and CDKA1 were analyzed. Our data show that during the first days after germination, maize seedlings develop several root types with a simultaneous and/or continuous growth. The post-embryonic root development started with the formation of the primary root (PR) and seminal scutellar roots (SSR) and then continued with the formation of adventitious crown roots (CR), brace roots (BR) and lateral roots (LR). Auxins affected root architecture in a dose-response fashion; whereas NAA and IBA mostly stimulated crown root formation, 2,4-D showed a strong repressing effect on growth. The levels of HSP101, CKS1, CYCA1 and CDKA in root and leaf tissues were differentially affected by auxins and interestingly, HSP101 registered an auxin-inducible and root specific expression pattern. Taken together, our results show the timing of early branching patterns of maize and indicate that auxins regulate root development likely through modulation of the HSP101 and cell cycle proteins.

  18. Abscisic acid accumulation modulates auxin transport in the root tip to enhance proton secretion for maintaining root growth under moderate water stress.

    PubMed

    Xu, Weifeng; Jia, Liguo; Shi, Weiming; Liang, Jiansheng; Zhou, Feng; Li, Qianfeng; Zhang, Jianhua

    2013-01-01

    Maintenance of root growth is essential for plant adaptation to soil drying. Here, we tested the hypothesis that auxin transport is involved in mediating ABA's modulation by activating proton secretion in the root tip to maintain root growth under moderate water stress. Rice and Arabidopsis plants were raised under a hydroponic system and subjected to moderate water stress (-0.47 MPa) with polyethylene glycol (PEG). ABA accumulation, auxin transport and plasma membrane H(+)-ATPase activity at the root tip were monitored in addition to the primary root elongation and root hair density. We found that moderate water stress increases ABA accumulation and auxin transport in the root apex. Additionally, ABA modulation is involved in the regulation of auxin transport in the root tip. The transported auxin activates the plasma membrane H(+)-ATPase to release more protons along the root tip in its adaption to moderate water stress. The proton secretion in the root tip is essential in maintaining or promoting primary root elongation and root hair development under moderate water stress. These results suggest that ABA accumulation modulates auxin transport in the root tip, which enhances proton secretion for maintaining root growth under moderate water stress.

  19. A Simple Device to Measure Root Growth Rates

    ERIC Educational Resources Information Center

    Rauser, Wilfried E.; Horton, Roger F.

    1975-01-01

    Describes construction and use of a simple auxanometer which students can use to accurately measure root growth rates of intact seedlings. Typical time course data are presented for the effect of ethylene and indole acetic acid on pea root growth. (Author/BR)

  20. Distinctive expression patterns and roles of the miRNA393/TIR1 homolog module in regulating flag leaf inclination and primary and crown root growth in rice (Oryza sativa).

    PubMed

    Bian, Hongwu; Xie, Yakun; Guo, Fu; Han, Ning; Ma, Shengyun; Zeng, Zhanghui; Wang, Junhui; Yang, Yinong; Zhu, Muyuan

    2012-10-01

    • MicroRNA (miRNA)-mediated regulation of auxin signaling components plays a critical role in plant development. miRNA expression and functional diversity contribute to the complexity of regulatory networks of miRNA/target modules. • This study functionally characterizes two members of the rice (Oryza sativa) miR393 family and their target genes, OsTIR1 and OsAFB2 (AUXIN SIGNALING F-BOX), the two closest homologs of Arabidopsis TRANSPORT INHIBITOR RESPONSE 1 (TIR1). • We found that the miR393 family members possess distinctive expression patterns, with miR393a expressed mainly in the crown and lateral root primordia, as well as the coleoptile tip, and miR393b expressed in the shoot apical meristem. Transgenic plants overexpressing miR393a/b displayed a severe phenotype with hallmarks of altered auxin signaling, mainly including enlarged flag leaf inclination and altered primary and crown root growth. Furthermore, OsAFB2- and OsTIR1-suppressed lines exhibited increased inclination of flag leaves at the booting stage, resembling miR393-overexpressing plants. Moreover, yeast two-hybrid and bimolecular fluorescence complementation assays showed that OsTIR1 and OsAFB2 interact with OsIAA1. • Expression diversification of miRNA393 implies the potential role of miRNA regulation during species evolution. The conserved mechanisms of the miR393/target module indicate the fundamental importance of the miR393-mediated regulation of auxin signal transduction in rice.

  1. Root growth, secondary root formation and root gravitropism in carotenoid-deficient seedlings of Zea mays L

    NASA Technical Reports Server (NTRS)

    Ng, Y. K.; Moore, R.

    1985-01-01

    The effect of ABA on root growth, secondary-root formation and root gravitropism in seedlings of Zea mays was investigated by using Fluridone-treated seedlings and a viviparous mutant, both of which lack carotenoids and ABA. Primary roots of seedlings grown in the presence of Fluridone grew significantly slower than those of control (i.e. untreated) roots. Elongation of Fluridone-treated roots was inhibited significantly by the exogenous application of 1 mM ABA. Exogenous application of 1 micromole and 1 nmole ABA had either no effect or only a slight stimulatory effect on root elongation, depending on the method of application. The absence of ABA in Fluridone-treated plants was not an important factor in secondary-root formation in seedlings less than 9-10 d old. However, ABA may suppress secondary-root formation in older seedlings, since 11-d-old control seedlings had significantly fewer secondary roots than Fluridone-treated seedlings. Roots of Fluridone-treated and control seedlings were graviresponsive. Similar data were obtained for vp-9 mutants of Z. mays, which are phenotypically identical to Fluridone-treated seedlings. These results indicate that ABA is necessary for neither secondary-root formation nor for positive gravitropism by primary roots.

  2. Cytokinin-dependent secondary growth determines root biomass in radish (Raphanus sativus L.).

    PubMed

    Jang, Geupil; Lee, Jung-Hun; Rastogi, Khushboo; Park, Suhyoung; Oh, Sang-Hun; Lee, Ji-Young

    2015-08-01

    The root serves as an essential organ in plant growth by taking up nutrients and water from the soil and supporting the rest of the plant body. Some plant species utilize roots as storage organs. Sweet potatoes (Ipomoea batatas), cassava (Manihot esculenta), and radish (Raphanus sativus), for example, are important root crops. However, how their root growth is regulated remains unknown. In this study, we characterized the relationship between cambium and radial root growth in radish. Through a comparative analysis with Arabidopsis root expression data, we identified putative cambium-enriched transcription factors in radish and analysed their expression in representative inbred lines featuring distinctive radial growth. We found that cell proliferation activities in the cambium positively correlated with radial growth and final yields of radish roots. Expression analysis of candidate transcription factor genes revealed that some genes are differentially expressed between inbred lines and that the difference is due to the distinct cytokinin response. Taken together, we have demonstrated for the first time, to the best of our knowledge, that cytokinin-dependent radial growth plays a key role in the yields of root crops.

  3. Plant development in space: Observations on root formation and growth

    NASA Technical Reports Server (NTRS)

    Levine, H. G.; Kann, R. P.; Krikorian, Abraham D.

    1990-01-01

    Root growth in space is discussed and observations on root production from plants flown as part of the Chromex project that were defined as to their origin, stage of development and physiological status, are presented. Roots were generated from fully differentiated, aseptically maintained individuals of Haplopappus gracilis (Compositae) under spaceflight conditions. Results are compared for tissue culture generated plantlets and comparably sized seedling clone individuals, both of which had their roots trimmed on Earth before they were loaded into NASA's plant growth unit and subjected to a 5 day shuttle flight (STS-29). Asepsis was maintained throughout the experiment. Overall root production was 40 to 50 percent greater under spaceflight conditions than during ground control tests. However, root formation slowed down towards the end of the flight. This decrease in new roots did not occur in the ground controls that sought to simulate flight except for microgravity.

  4. Cytokinin and growth of excised roots of Bryophyllum calycinum.

    PubMed

    Robbins, W J; Hervey, A

    1971-02-01

    Excised roots of Bryophyllum calycinum require for growth both auxin and cytokinin. This is demonstrated by the poor growth of 2-mm root tips in a basal medium of mineral salts, sucrose, and vitamins supplemented with either an auxin or a cytokinin, and much better growth when the basal medium is supplemented with both auxin and cytokinin. However, both substances are synthesized by the root, as is demonstrated by the growth of large inocula (dry wt 6-7 mg) through many successive passages in a medium limited to mineral salts, sugar, and vitamins.

  5. Cytokinin and Growth of Excised Roots of Bryophyllum calycinum

    PubMed Central

    Robbins, William J.; Hervery, Annette

    1971-01-01

    Excised roots of Bryophyllum calycinum require for growth both auxin and cytokinin. This is demonstrated by the poor growth of 2-mm root tips in a basal medium of mineral salts, sucrose, and vitamins supplemented with either an auxin or a cytokinin, and much better growth when the basal medium is supplemented with both auxin and cytokinin. However, both substances are synthesized by the root, as is demonstrated by the growth of large inocula (dry wt 6-7 mg) through many successive passages in a medium limited to mineral salts, sugar, and vitamins. Images PMID:5277083

  6. Phosphorylation of CBP20 Links MicroRNA to Root Growth in the Ethylene Response

    PubMed Central

    Zhang, Fan; Lim, Jae Yun; Kim, Taewook; Pyo, Youngjae; Sung, Sibum; Shin, Chanseok; Qiao, Hong

    2016-01-01

    Ethylene is one of the most important hormones for plant developmental processes and stress responses. However, the phosphorylation regulation in the ethylene signaling pathway is largely unknown. Here we report the phosphorylation of cap binding protein 20 (CBP20) at Ser245 is regulated by ethylene, and the phosphorylation is involved in root growth. The constitutive phosphorylation mimic form of CBP20 (CBP20S245E or CBP20S245D), while not the constitutive de-phosphorylation form of CBP20 (CBP20S245A) is able to rescue the root ethylene responsive phenotype of cbp20. By genome wide study with ethylene regulated gene expression and microRNA (miRNA) expression in the roots and shoots of both Col-0 and cbp20, we found miR319b is up regulated in roots while not in shoots, and its target MYB33 is specifically down regulated in roots with ethylene treatment. We described both the phenotypic and molecular consequences of transgenic over-expression of miR319b. Increased levels of miR319b (miR319bOE) leads to enhanced ethylene responsive root phenotype and reduction of MYB33 transcription level in roots; over expression of MYB33, which carrying mutated miR319b target site (mMYB33) in miR319bOE is able to recover both the root phenotype and the expression level of MYB33. Taken together, we proposed that ethylene regulated phosphorylation of CBP20 is involved in the root growth and one pathway is through the regulation of miR319b and its target MYB33 in roots. PMID:27870849

  7. Cell wall-associated ROOT HAIR SPECIFIC 10, a proline-rich receptor-like kinase, is a negative modulator of Arabidopsis root hair growth

    PubMed Central

    Hwang, Youra; Lee, Hyodong; Lee, Young-Sook; Cho, Hyung-Taeg

    2016-01-01

    Plant cell growth is restricted by the cell wall, and cell wall dynamics act as signals for the cytoplasmic and nuclear events of cell growth. Among various receptor kinases, ROOT HAIR SPECIFIC 10 (RHS10) belongs to a poorly known receptor kinase subfamily with a proline-rich extracellular domain. Here, we report that RHS10 defines the root hair length of Arabidopsis thaliana by negatively regulating hair growth. RHS10 modulates the duration of root hair growth rather than the growth rate. As poplar and rice RHS10 orthologs also showed a root hair-inhibitory function, this receptor kinase-mediated function appears to be conserved in angiosperms. RHS10 showed a strong association with the cell wall, most probably through its extracellular proline-rich domain (ECD). Deletion analysis of the ECD demonstrated that a minimal extracellular part, which includes a few proline residues, is required for RHS10-mediated root hair inhibition. RHS10 suppressed the accumulation of reactive oxygen species (ROS) in the root, which are necessary for root hair growth. A yeast two-hybrid screening identified an RNase (RNS2) as a putative downstream target of RHS10. Accordingly, RHS10 overexpression decreased and RHS10 loss increased RNA levels in the hair-growing root region. Our results suggest that RHS10 mediates cell wall-associated signals to maintain proper root hair length, at least in part by regulating RNA catabolism and ROS accumulation. PMID:26884603

  8. Ozone decreases spring root growth and root carbohydrate content in ponderosa pine the year following exposure

    SciTech Connect

    Andersen, C.P.; Hogsett, W.E.; Wessling, R.; Plocher, M.

    1991-01-01

    Storage carbohydrates are extremely important for new shoot and root development following dormancy or during periods of high stress. The hypothesis that ozone decreases carbohydrate storage and decreases new root growth during the year following exposure was investigated. The results suggest that (1) ponderosa pine seedlings exposed to 122 and 169 ppm hrs ozone for one season have significantly less root starch reserves available just prior to and during bud break the following year, and (2) spring root growth is decreased following ozone exposure. The carry-over effects of ozone stress may be important in long-lived perennial species which are annually subjected to ozone.

  9. Process for producing vegetative and tuber growth regulator

    NASA Technical Reports Server (NTRS)

    Stutte, Gary W. (Inventor); Yorio, Neil C. (Inventor)

    1999-01-01

    A process of making a vegetative and tuber growth regulator. The vegetative and tuber growth regulator is made by growing potato plants in a recirculating hydroponic system for a sufficient time to produce the growth regulator. Also, the use of the vegetative and growth regulator on solanaceous plants, tuber forming plants and ornamental seedlings by contacting the roots or shoots of the plant with a sufficient amount of the growth regulator to regulate the growth of the plant and one more of canopy size, plant height, stem length, internode number and presence of tubers in fresh mass. Finally, a method for regulating the growth of potato plants using a recirculating hydroponic system is described.

  10. Low temperature inhibits root growth by reducing auxin accumulation via ARR1/12.

    PubMed

    Zhu, Jiang; Zhang, Kun-Xiao; Wang, Wen-Shu; Gong, Wen; Liu, Wen-Cheng; Chen, Hong-Guo; Xu, Heng-Hao; Lu, Ying-Tang

    2015-04-01

    Plants exhibit reduced root growth when exposed to low temperature; however, how low temperature modulates root growth remains to be understood. Our study demonstrated that low temperature reduces both meristem size and cell number, repressing the division potential of meristematic cells by reducing auxin accumulation, possibly through the repressed expression of PIN1/3/7 and auxin biosynthesis-related genes, although the experiments with exogenous auxin application also suggest the involvement of other factor(s). In addition, we verified that ARABIDOPSIS RESPONSE REGULATOR 1 (ARR1) and ARR12 are involved in low temperature-mediated inhibition of root growth by showing that the roots of arr1-3 arr12-1 seedlings were less sensitive than wild-type roots to low temperature, in terms of changes in root length and meristem cell number. Furthermore, low temperature reduced the levels of PIN1/3 transcripts and the auxin level to a lesser extent in arr1-3 arr12-1 roots than in wild-type roots, suggesting that cytokinin signaling is involved in the low-temperature-mediated reduction of auxin accumulation. Taken together, our data suggest that low temperature inhibits root growth by reducing auxin accumulation via ARR1/12.

  11. Effects of microgravity on the growth of Lepidium roots.

    PubMed

    Antonsen, F; Johnsson, A

    1998-10-01

    The normal growth dynamics of plant roots is partly controlled by the gravitational force. In order to study the detailed growth behavior in absence of gravity, the growth of Lepidium sativum roots was recorded by time lapse photography at 1h intervals in a Spacelab ESA-experiment (IML-2). Plants were germinated and kept in microgravity during the experiments, while control roots were at 1 g with normal static gravistimulation. Extended image analyses allowed new information to be achieved about movements of all parts of the roots, extending earlier published results. Root contours were extracted from the images and divided into 0.6mm segments. Deviation angles were calculated for each root segment, both for the first 8-10 h (phase I) and for the last 6-8 h of the experiment (phase II). For phase I, the present analysis confirmed that the average square deviation increased linearly with time for roots in microgravity, while for roots under 1 g conditions it stayed constant. This was consistent with a random walk hypothesis for the bending pattern. In phase II, roots in microgravity stopped their spontaneous curvatures and showed more straight growth or even diminished the root curvatures that had occurred during phase I. Thus, the growth is distinctly different in the two phases and is thought to be controlled by autotropic reactions in phase II. Root hairs developed when the roots passed into phase II. During phase I, the root growth rates were equal in microgravity and on the ground (0.50 mm h-1 with SE 0.04 and 0.51 mm h-1 with SE 0.03, respectively). In phase II the growth rate on the ground was higher than in microgravity (1.44 mm h-1 with SE 0.10 and 1.07 mm h-1 with SE 0.04 in microgravity). Microgravity conditions, therefore, clearly affect Lepidium root growth: In phase I the bending pattern is random in contrast to the normal straight growth under 1g. In phase II the growth rate is reduced, as compared to the growth rate under 1 g.

  12. Exogenous nitrate induces root branching and inhibits primary root growth in Capsicum chinense Jacq.

    PubMed

    Celis-Arámburo, Teresita de Jesús; Carrillo-Pech, Mildred; Castro-Concha, Lizbeth A; Miranda-Ham, María de Lourdes; Martínez-Estévez, Manuel; Echevarría-Machado, Ileana

    2011-12-01

    The effects of nitrate (NO₃⁻) on the root system are complex and depend on several factors, such as the concentration available to the plant, endogenous nitrogen status and the sensitivity of the species. Though these effects have been widely documented on Arabidopsis and cereals, no reports are available in the Capsicum genus. In this paper, we have determined the effect of an exogenous in vitro application of this nutrient on root growth in habanero pepper (Capsicum chinense Jacq.). Exposure to NO₃⁻ inhibited primary root growth in both, dose- and time-dependent manners. The highest inhibition was attained with 0.1 mM NO₃⁻ between the fourth and fifth days of treatment. Inhibition of primary root growth was observed by exposing the root to both homogeneous and heterogeneous conditions of the nutrient; in contrast, ammonium was not able to induce similar changes. NO₃⁻-induced inhibition of primary root growth was reversed by treating the roots with IAA or NPA, a polar auxin transport inhibitor. Heterogeneous NO₃⁻ application stimulated the formation and elongation of lateral roots in the segment where the nutrient was present, and this response was influenced by exogenous phytohormones. These results demonstrate that habanero pepper responds to NO₃⁻ in a similar fashion to other species with certain particular differences. Therefore, studies in this model could help to elucidate the mechanisms by which roots respond to NO₃⁻ in fluctuating soil environments.

  13. Root growth during molar eruption in extant great apes.

    PubMed

    Kelley, Jay; Dean, Christopher; Ross, Sasha

    2009-01-01

    While there is gradually accumulating knowledge about molar crown formation and the timing of molar eruption in extant great apes, very little is known about root formation during the eruption process. We measured mandibular first and second molar root lengths in extant great ape osteological specimens that died while either the first or second molars were in the process of erupting. For most specimens, teeth were removed so that root lengths could be measured directly. When this was not possible, roots were measured radiographically. We were particularly interested in the variation in the lengths of first molar roots near the point of gingival emergence, so specimens were divided into early, middle and late phases of eruption based on the number of cusps that showed protein staining, with one or two cusps stained equated with immediate post-gingival emergence. For first molars at this stage, Gorilla has the longest roots, followed by Pongo and Pan. Variation in first molar mesial root lengths at this stage in Gorilla and Pan, which comprise the largest samples, is relatively low and represents no more than a few months of growth in both taxa. Knowledge of root length at first molar emergence permits an assessment of the contribution of root growth toward differences between great apes and humans in the age at first molar emergence. Root growth makes up a greater percentage of the time between birth and first molar emergence in humans than it does in any of the great apes.

  14. The small GTPase ROP10 of Medicago truncatula is required for both tip growth of root hairs and nod factor-induced root hair deformation.

    PubMed

    Lei, Ming-Juan; Wang, Qi; Li, Xiaolin; Chen, Aimin; Luo, Li; Xie, Yajun; Li, Guan; Luo, Da; Mysore, Kirankumar S; Wen, Jiangqi; Xie, Zhi-Ping; Staehelin, Christian; Wang, Yan-Zhang

    2015-03-01

    Rhizobia preferentially enter legume root hairs via infection threads, after which root hairs undergo tip swelling, branching, and curling. However, the mechanisms underlying such root hair deformation are poorly understood. Here, we showed that a type II small GTPase, ROP10, of Medicago truncatula is localized at the plasma membrane (PM) of root hair tips to regulate root hair tip growth. Overexpression of ROP10 and a constitutively active mutant (ROP10CA) generated depolarized growth of root hairs, whereas a dominant negative mutant (ROP10DN) inhibited root hair elongation. Inoculated with Sinorhizobium meliloti, the depolarized swollen and ballooning root hairs exhibited extensive root hair deformation and aberrant infection symptoms. Upon treatment with rhizobia-secreted nodulation factors (NFs), ROP10 was transiently upregulated in root hairs, and ROP10 fused to green fluorescent protein was ectopically localized at the PM of NF-induced outgrowths and curls around rhizobia. ROP10 interacted with the kinase domain of the NF receptor NFP in a GTP-dependent manner. Moreover, NF-induced expression of the early nodulin gene ENOD11 was enhanced by the overexpression of ROP10 and ROP10CA. These data suggest that NFs spatiotemporally regulate ROP10 localization and activity at the PM of root hair tips and that interactions between ROP10 and NF receptors are required for root hair deformation and continuous curling during rhizobial infection.

  15. Growth, nitrogen uptake and flow in maize plants affected by root growth restriction.

    PubMed

    Xu, Liangzheng; Niu, Junfang; Li, Chunjian; Zhang, Fusuo

    2009-07-01

    The objective of the present study was to investigate the influence of a reduced maize root-system size on root growth and nitrogen (N) uptake and flow within plants. Restriction of shoot-borne root growth caused a strong decrease in the absorption of root: shoot dry weight ratio and a reduction in shoot growth. On the other hand, compensatory growth and an increased N uptake rate in the remaining roots were observed. Despite the limited long-distance transport pathway in the mesocotyl with restriction of shoot-borne root growth, N cycling within these plants was higher than those in control plants, implying that xylem and phloem flow velocities via the mesocotyl were considerably higher than in plants with an intact root system. The removal of the seminal roots in addition to restricting shoot-borne root development did not affect whole plant growth and N uptake, except for the stronger compensatory growth of the primary roots. Our results suggest that an adequate N supply to maize plant is maintained by compensatory growth of the remaining roots, increased N uptake rate and flow velocities within the xylem and phloem via the mesocotyl, and reduction in the shoot growth rate.

  16. Jatropha curcas L. Root Structure and Growth in Diverse Soils

    PubMed Central

    Valdés-Rodríguez, Ofelia Andrea; Sánchez-Sánchez, Odilón; Pérez-Vázquez, Arturo; Caplan, Joshua S.; Danjon, Frédéric

    2013-01-01

    Unlike most biofuel species, Jatropha curcas has promise for use in marginal lands, but it may serve an additional role by stabilizing soils. We evaluated the growth and structural responsiveness of young J. curcas plants to diverse soil conditions. Soils included a sand, a sandy-loam, and a clay-loam from eastern Mexico. Growth and structural parameters were analyzed for shoots and roots, although the focus was the plasticity of the primary root system architecture (the taproot and four lateral roots). The sandy soil reduced the growth of both shoot and root systems significantly more than sandy-loam or clay-loam soils; there was particularly high plasticity in root and shoot thickness, as well as shoot length. However, the architecture of the primary root system did not vary with soil type; the departure of the primary root system from an index of perfect symmetry was 14 ± 5% (mean ± standard deviation). Although J. curcas developed more extensively in the sandy-loam and clay-loam soils than in sandy soil, it maintained a consistent root to shoot ratio and root system architecture across all types of soil. This strong genetic determination would make the species useful for soil stabilization purposes, even while being cultivated primarily for seed oil. PMID:23844412

  17. Root Exudate-Induced Alterations in Bacillus cereus Cell Wall Contribute to Root Colonization and Plant Growth Promotion

    PubMed Central

    Dutta, Swarnalee; Rani, T. Swaroopa; Podile, Appa Rao

    2013-01-01

    The outcome of an interaction between plant growth promoting rhizobacteria and plants may depend on the chemical composition of root exudates (REs). We report the colonization of tobacco, and not groundnut, roots by a non-rhizospheric Bacillus cereus (MTCC 430). There was a differential alteration in the cell wall components of B. cereus in response to the REs from tobacco and groundnut. Attenuated total reflectance infrared spectroscopy revealed a split in amide I region of B. cereus cells exposed to tobacco-root exudates (TRE), compared to those exposed to groundnut-root exudates (GRE). In addition, changes in exopolysaccharides and lipid-packing were observed in B. cereus grown in TRE-amended minimal media that were not detectable in GRE-amended media. Cell-wall proteome analyses revealed upregulation of oxidative stress-related alkyl hydroperoxide reductase, and DNA-protecting protein chain (Dlp-2), in response to GRE and TRE, respectively. Metabolism-related enzymes like 2-amino-3-ketobutyrate coenzyme A ligase and 2-methylcitrate dehydratase and a 60 kDa chaperonin were up-regulated in response to TRE and GRE. In response to B. cereus, the plant roots altered their exudate-chemodiversity with respect to carbohydrates, organic acids, alkanes, and polyols. TRE-induced changes in surface components of B. cereus may contribute to successful root colonization and subsequent plant growth promotion. PMID:24205213

  18. Ethylene acts as a negative regulator of glucose induced lateral root emergence in Arabidopsis.

    PubMed

    Singh, Manjul; Gupta, Aditi; Laxmi, Ashverya

    2015-01-01

    Plants, being sessile organisms, are more exposed to the hazards of constantly changing environmental conditions globally. During the lifetime of a plant, the root system encounters various challenges such as obstacles, pathogens, high salinity, water logging, nutrient scarcity etc. The developmental plasticity of the root system provides brilliant adaptability to plants to counter the changes exerted by both external as well as internal cues and achieve an optimized growth status. Phytohormones are one of the major intrinsic factors regulating all aspects of plant growth and development both independently as well as through complex signal integrations at multiple levels. We have previously shown that glucose (Glc) and brassinosteroid (BR) signalings interact extensively to regulate lateral root (LR) development in Arabidopsis. (1) Auxin efflux as well as influx and downstream signaling components are also involved in Glc-BR regulation of LR emergence. Here, we provide evidence for involvement of ethylene signaling machinery downstream to Glc and BR in regulation of LR emergence.

  19. Ethylene acts as a negative regulator of glucose induced lateral root emergence in Arabidopsis

    PubMed Central

    Singh, Manjul; Gupta, Aditi; Laxmi, Ashverya

    2015-01-01

    Plants, being sessile organisms, are more exposed to the hazards of constantly changing environmental conditions globally. During the lifetime of a plant, the root system encounters various challenges such as obstacles, pathogens, high salinity, water logging, nutrient scarcity etc. The developmental plasticity of the root system provides brilliant adaptability to plants to counter the changes exerted by both external as well as internal cues and achieve an optimized growth status. Phytohormones are one of the major intrinsic factors regulating all aspects of plant growth and development both independently as well as through complex signal integrations at multiple levels. We have previously shown that glucose (Glc) and brassinosteroid (BR) signalings interact extensively to regulate lateral root (LR) development in Arabidopsis.1 Auxin efflux as well as influx and downstream signaling components are also involved in Glc-BR regulation of LR emergence. Here, we provide evidence for involvement of ethylene signaling machinery downstream to Glc and BR in regulation of LR emergence. PMID:26236960

  20. Evolutionary Roots of Arginase Expression and Regulation

    PubMed Central

    Dzik, Jolanta Maria

    2014-01-01

    Two main types of macrophage functions are known: classical (M1), producing nitric oxide, NO, and M2, in which arginase activity is primarily expressed. Ornithine, the product of arginase, is a substrate for synthesis of polyamines and collagen, important for growth and ontogeny of animals. M2 macrophages, expressing high level of mitochondrial arginase, have been implicated in promoting cell division and deposition of collagen during ontogeny and wound repair. Arginase expression is the default mode of tissue macrophages, but can also be amplified by signals, such as IL-4/13 or transforming growth factor-β (TGF-β) that accelerates wound healing and tissue repair. In worms, the induction of collagen gene is coupled with induction of immune response genes, both depending on the same TGF-β-like pathway. This suggests that the main function of M2 “heal” type macrophages is originally connected with the TGF-β superfamily of proteins, which are involved in regulation of tissue and organ differentiation in embryogenesis. Excretory–secretory products of metazoan parasites are able to induce M2-type of macrophage responses promoting wound healing without participation of Th2 cytokines IL-4/IL-13. The expression of arginase in lower animals can be induced by the presence of parasite antigens and TGF-β signals leading to collagen synthesis. This also means that the main proteins, which, in primitive metazoans, are involved in regulation of tissue and organ differentiation in embryogenesis are produced by innate immunity. The signaling function of NO is known already from the sponge stage of animal evolution. The cytotoxic role of NO molecule appeared later, as documented in immunity of marine mollusks and some insects. This implies that the M2-wound healing promoting function predates the defensive role of NO, a characteristic of M1 macrophages. Understanding when and how the M1 and M2 activities came to be in animals is useful for understanding how macrophage

  1. Root growth dynamics linked to above-ground growth in walnut (Juglans regia)

    PubMed Central

    Contador, Maria Loreto; Comas, Louise H.; Metcalf, Samuel G.; Stewart, William L.; Porris Gomez, Ignacio; Negron, Claudia; Lampinen, Bruce D.

    2015-01-01

    Background and Aims Examination of plant growth below ground is relatively scant compared with that above ground, and is needed to understand whole-plant responses to the environment. This study examines whether the seasonal timing of fine root growth and the spatial distribution of this growth through the soil profile varies in response to canopy manipulation and soil temperature. Methods Plasticity in the seasonal timing and vertical distribution of root production in response to canopy and soil water manipulation was analysed in field-grown walnut (Juglans regia ‘Chandler’) using minirhizotron techniques. Key Results Root production in walnuts followed a unimodal curve, with one marked flush of root growth starting in mid-May, with a peak in mid-June. Root production declined later in the season, corresponding to increased soil temperature, as well as to the period of major carbohydrate allocation to reproduction. Canopy and soil moisture manipulation did not influence the timing of root production, but did influence the vertical distribution of roots through the soil profile. Water deficit appeared to promote root production in deeper soil layers for mining soil water. Canopy removal appeared to promote shallow root production. Conclusions The findings of this study add to growing evidence that root growth in many ecosystems follows a unimodal curve with one marked flush of root growth in coordination with the initial leaf flush of the season. Root vertical distribution appeared to have greater plasticity than timing of root production in this system, with temperature and/or carbohydrate competition constraining the timing of root growth. Effects on root distribution can have serious impacts on trees, with shallow rooting having negative impacts in years with limited soil water or positive impacts in years with wet springs, and deep rooting having positive impacts on soil water mining from deeper soil layers but negative impacts in years with wet springs

  2. 75 FR 30300 - Drawbridge Operation Regulations; Root River, Racine, WI

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-01

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HOMELAND SECURITY Coast Guard 33 CFR Part 117 Drawbridge Operation Regulations; Root River, Racine, WI AGENCY: Coast... Street Bridge at Mile 0.31 and the State Street Bridge at Mile 0.53 over the Root River, at Racine,...

  3. Genome-wide association mapping in plants exemplified for root growth in Arabidopsis thaliana.

    PubMed

    Slovak, Radka; Göschl, Christian; Seren, Ümit; Busch, Wolfgang

    2015-01-01

    Genome-wide association (GWA) mapping is a powerful technique to address the molecular basis of genotype to phenotype relationships and to map regulators of biological processes. This chapter presents a protocol for genome-wide association mapping in Arabidopsis thaliana using the user-friendly internet application GWAPP, and provides a specific protocol for acquiring root trait data suitable for GWA studies using the semi-automated, high-throughput phenotyping pipeline BRAT for early root growth.

  4. Arabidopsis thaliana root growth kinetics and lunisolar tidal acceleration.

    PubMed

    Fisahn, Joachim; Yazdanbakhsh, Nima; Klingele, Emile; Barlow, Peter

    2012-07-01

    • All living organisms on Earth are continually exposed to diurnal variations in the gravitational tidal force due to the Sun and Moon. • Elongation of primary roots of Arabidopsis thaliana seedlings maintained at a constant temperature was monitored for periods of up to 14 d using high temporal- and spatial-resolution video imaging. The time-course of the half-hourly elongation rates exhibited an oscillation which was maintained when the roots were placed in the free-running condition of continuous illumination. • Correlation between the root growth kinetics collected from seedlings initially raised under several light protocols but whose roots were subsequently in the free-running condition and the lunisolar tidal profiles enabled us to identify that the latter is the probable exogenous determinant of the rhythmic variation in root elongation rate. Similar observations and correlations using roots of Arabidopsis starch mutants suggest a central function of starch metabolism in the response to the lunisolar tide. The periodicity of the lunisolar tidal signal and the concomitant adjustments in root growth rate indicate that an exogenous timer exists for the modulation of root growth and development. • We propose that, in addition to the sensitivity to Earthly 1G gravity, which is inherent to all animals and plants, there is another type of responsiveness which is attuned to the natural diurnal variations of the lunisolar tidal force.

  5. The transcription factor OBP4 controls root growth and promotes callus formation.

    PubMed

    Ramirez-Parra, Elena; Perianez-Rodriguez, Juan; Navarro-Neila, Sara; Gude, Inmaculada; Moreno-Risueno, Miguel A; Del Pozo, Juan C

    2017-03-01

    Plant growth and development require a continuous balance between cell division and differentiation. In root meristems, differentiated cells acquire specialized functions, losing their mitotic potential. Some plant cells, such as pericycle cells, have a remarkable plasticity to regenerate new organs. The molecular mechanisms underlying cell reprogramming are not completely known. In this work, a functional screening of transcription factors identified Arabidopsis OBP4 (OBF Binding Protein 4) as a novel regulator of root growth and cell elongation and differentiation. Overexpression of OBP4 regulates the levels of a large number of transcripts in roots, many involved in hormonal signaling and callus formation. OBP4 controls cell elongation and differentiation in root cells. OBP4 does not induce cell division in the root meristem, but promotes pericycle cell proliferation, forming callus-like structures at the root tip, as shown by the expression of stem cell markers. Callus formation is enhanced by ectopic expression of OBP4 in the wild-type or alf4-1, but is significantly reduced in roots that have lower levels of OBP4. Our data provide molecular insights into how differentiated root cells acquire the potential to generate callus, a pluripotent mass of cells that can regenerate fully functional plant organs.

  6. Overexpression of Arabidopsis plasmodesmata germin-like proteins disrupts root growth and development.

    PubMed

    Ham, Byung-Kook; Li, Gang; Kang, Byung-Ho; Zeng, Fanchang; Lucas, William J

    2012-09-01

    In plants, a population of non-cell-autonomous proteins (NCAPs), including numerous transcription factors, move cell to cell through plasmodesmata (PD). In many cases, the intercellular trafficking of these NCAPs is regulated by their interaction with specific PD components. To gain further insight into the functions of this NCAP pathway, coimmunoprecipitation experiments were performed on a tobacco (Nicotiana tabacum) plasmodesmal-enriched cell wall protein preparation using as bait the NCAP, pumpkin (Cucurbita maxima) PHLOEM PROTEIN16 (Cm-PP16). A Cm-PP16 interaction partner, Nt-PLASMODESMAL GERMIN-LIKE PROTEIN1 (Nt-PDGLP1) was identified and shown to be a PD-located component. Arabidopsis thaliana putative orthologs, PDGLP1 and PDGLP2, were identified; expression studies indicated that, postgermination, these proteins were preferentially expressed in the root system. The PDGLP1 signal peptide was shown to function in localization to the PD by a novel mechanism involving the endoplasmic reticulum-Golgi secretory pathway. Overexpression of various tagged versions altered root meristem function, leading to reduced primary root but enhanced lateral root growth. This effect on root growth was corrected with an inability of these chimeric proteins to form stable PD-localized complexes. PDGLP1 and PDGLP2 appear to be involved in regulating primary root growth by controlling phloem-mediated allocation of resources between the primary and lateral root meristems.

  7. Root growth and development in response to CO2 enrichment

    NASA Technical Reports Server (NTRS)

    Day, Frank P., Jr.

    1994-01-01

    A non-destructive technique (minirhizotron observation tubes) was used to assess the effects of CO2 enrichment on root growth and development in experimental plots in a scrub oak-palmetto community at the Kennedy Space Center. Potential effects of CO2 enrichment on plants have a global significance in light of concerns over increasing CO2 concentrations in the Earth's atmosphere. The study at Kennedy Space Center focused on aboveground physiological responses (photosynthetic efficiency and water use efficiency), effects on process rates (litter decomposition and nutrient turnover), and belowground responses of the plants. Belowground dynamics are an exceptionally important component of total plant response but are frequently ignored due to methodological difficulties. Most methods used to examine root growth and development are destructive and, therefore, severely compromise results. Minirhizotrons allow nondestructive observation and quantification of the same soil volume and roots through time. Root length density and root phenology were evaluated for CO2 effects with this nondestructive technique.

  8. High-throughput phenotyping of root growth dynamics.

    PubMed

    Yazdanbakhsh, Nima; Fisahn, Joachim

    2012-01-01

    Plant organ phenotyping by noninvasive video imaging techniques provides a powerful tool to assess physiological traits, circadian and diurnal rhythms, and biomass production. In particular, growth of individual plant organs is known to exhibit a high plasticity and occurs as a result of the interaction between various endogenous and environmental processes. Thus, any investigation aiming to unravel mechanisms that determine plant or organ growth has to accurately control and document the environmental growth conditions. Here we describe challenges in establishing a recently developed plant root monitoring platform (PlaRoM) specially suited for noninvasive high-throughput plant growth analysis with highest emphasis on the detailed documentation of capture time, as well as light and temperature conditions. Furthermore, we discuss the experimental procedure for measuring root elongation kinetics and key points that must be considered in such measurements. PlaRoM consists of a robotized imaging platform enclosed in a custom designed phytochamber and a root extension profiling software application. This platform has been developed for multi-parallel recordings of root growth phenotypes of up to 50 individual seedlings over several days, with high spatial and temporal resolution. Two Petri dishes are mounted on a vertical sample stage in a custom designed phytochamber that provides exact temperature control. A computer-controlled positioning unit moves these Petri dishes in small increments and enables continuous screening of the surface under a binocular microscope. Detection of the root tip is achieved by applying thresholds on image pixel data and verifying the neighbourhood for each dark pixel. The growth parameters are visualized as position over time or growth rate over time graphs and averaged over consecutive days, light-dark periods and 24 h day periods. This setup enables the investigation of root extension profiles of different genotypes in various growth

  9. Plant Nitrogen Acquisition Under Low Availability: Regulation of Uptake and Root Architecture

    PubMed Central

    Kiba, Takatoshi; Krapp, Anne

    2016-01-01

    Nitrogen availability is a major factor determining plant growth and productivity. Plants acquire nitrogen nutrients from the soil through their roots mostly in the form of ammonium and nitrate. Since these nutrients are scarce in natural soils, plants have evolved adaptive responses to cope with the environment. One of the most important responses is the regulation of nitrogen acquisition efficiency. This review provides an update on the molecular determinants of two major drivers of the nitrogen acquisition efficiency: (i) uptake activity (e.g. high-affinity nitrogen transporters) and (ii) root architecture (e.g. low-nitrogen-availability-specific regulators of primary and lateral root growth). Major emphasis is laid on the regulation of these determinants by nitrogen supply at the transcriptional and post-transcriptional levels, which enables plants to optimize nitrogen acquisition efficiency under low nitrogen availability. PMID:27025887

  10. Plant Nitrogen Acquisition Under Low Availability: Regulation of Uptake and Root Architecture.

    PubMed

    Kiba, Takatoshi; Krapp, Anne

    2016-04-01

    Nitrogen availability is a major factor determining plant growth and productivity. Plants acquire nitrogen nutrients from the soil through their roots mostly in the form of ammonium and nitrate. Since these nutrients are scarce in natural soils, plants have evolved adaptive responses to cope with the environment. One of the most important responses is the regulation of nitrogen acquisition efficiency. This review provides an update on the molecular determinants of two major drivers of the nitrogen acquisition efficiency: (i) uptake activity (e.g. high-affinity nitrogen transporters) and (ii) root architecture (e.g. low-nitrogen-availability-specific regulators of primary and lateral root growth). Major emphasis is laid on the regulation of these determinants by nitrogen supply at the transcriptional and post-transcriptional levels, which enables plants to optimize nitrogen acquisition efficiency under low nitrogen availability.

  11. Hormonal regulation of fetal growth.

    PubMed

    Gicquel, C; Le Bouc, Y

    2006-01-01

    Fetal growth is a complex process depending on the genetics of the fetus, the availability of nutrients and oxygen to the fetus, maternal nutrition and various growth factors and hormones of maternal, fetal and placental origin. Hormones play a central role in regulating fetal growth and development. They act as maturational and nutritional signals in utero and control tissue development and differentiation according to the prevailing environmental conditions in the fetus. The insulin-like growth factor (IGF) system, and IGF-I and IGF-II in particular, plays a critical role in fetal and placental growth throughout gestation. Disruption of the IGF1, IGF2 or IGF1R gene retards fetal growth, whereas disruption of IGF2R or overexpression of IGF2 enhances fetal growth. IGF-I stimulates fetal growth when nutrients are available, thereby ensuring that fetal growth is appropriate for the nutrient supply. The production of IGF-I is particularly sensitive to undernutrition. IGF-II plays a key role in placental growth and nutrient transfer. Several key hormone genes involved in embryonic and fetal growth are imprinted. Disruption of this imprinting causes disorders involving growth defects, such as Beckwith-Wiedemann syndrome, which is associated with fetal overgrowth, or Silver-Russell syndrome, which is associated with intrauterine growth retardation. Optimal fetal growth is essential for perinatal survival and has long-term consequences extending into adulthood. Given the high incidence of intrauterine growth retardation and the high risk of metabolic and cardiovascular complications in later life, further clinical and basic research is needed to develop accurate early diagnosis of aberrant fetal growth and novel therapeutic strategies.

  12. Helical growth trajectories in plant roots interacting with stiff barriers

    NASA Astrophysics Data System (ADS)

    Gerbode, Sharon; Noar, Roslyn; Harrison, Maria

    2009-03-01

    Plant roots successfully navigate heterogeneous soil environments with varying nutrient and water concentrations, as well as a variety of stiff obstacles. While it is thought that the ability of roots to penetrate into a stiff lower soil layer is important for soil erosion, little is known about how a root actually responds to a rigid interface. We have developed a laser sheet imaging technique for recording the 3D growth dynamics of plant roots interacting with stiff barriers. We find that a root encountering an angled interface does not grow in a straight line along the surface, but instead follows a helical trajectory. These experiments build on the pioneering studies of roots grown on a tilted 2D surface, which reported ``root waving,'' a similar curved pattern thought to be caused by the root's sensitivity to both gravity and the rigid surface on which it is grown. Our measurements extend these results to the more physiologically relevant case of 3D growth, where the spiral trajectory can be altered by tuning the relative strengths of the gravity and touch stimuli, providing some intuition for the physical mechanism driving it.

  13. Plant growth-promoting rhizobacteria and root system functioning

    PubMed Central

    Vacheron, Jordan; Desbrosses, Guilhem; Bouffaud, Marie-Lara; Touraine, Bruno; Moënne-Loccoz, Yvan; Muller, Daniel; Legendre, Laurent; Wisniewski-Dyé, Florence; Prigent-Combaret, Claire

    2013-01-01

    The rhizosphere supports the development and activity of a huge and diversified microbial community, including microorganisms capable to promote plant growth. Among the latter, plant growth-promoting rhizobacteria (PGPR) colonize roots of monocots and dicots, and enhance plant growth by direct and indirect mechanisms. Modification of root system architecture by PGPR implicates the production of phytohormones and other signals that lead, mostly, to enhanced lateral root branching and development of root hairs. PGPR also modify root functioning, improve plant nutrition and influence the physiology of the whole plant. Recent results provided first clues as to how PGPR signals could trigger these plant responses. Whether local and/or systemic, the plant molecular pathways involved remain often unknown. From an ecological point of view, it emerged that PGPR form coherent functional groups, whose rhizosphere ecology is influenced by a myriad of abiotic and biotic factors in natural and agricultural soils, and these factors can in turn modulate PGPR effects on roots. In this paper, we address novel knowledge and gaps on PGPR modes of action and signals, and highlight recent progress on the links between plant morphological and physiological effects induced by PGPR. We also show the importance of taking into account the size, diversity, and gene expression patterns of PGPR assemblages in the rhizosphere to better understand their impact on plant growth and functioning. Integrating mechanistic and ecological knowledge on PGPR populations in soil will be a prerequisite to develop novel management strategies for sustainable agriculture. PMID:24062756

  14. Plant growth-promoting rhizobacteria and root system functioning.

    PubMed

    Vacheron, Jordan; Desbrosses, Guilhem; Bouffaud, Marie-Lara; Touraine, Bruno; Moënne-Loccoz, Yvan; Muller, Daniel; Legendre, Laurent; Wisniewski-Dyé, Florence; Prigent-Combaret, Claire

    2013-09-17

    The rhizosphere supports the development and activity of a huge and diversified microbial community, including microorganisms capable to promote plant growth. Among the latter, plant growth-promoting rhizobacteria (PGPR) colonize roots of monocots and dicots, and enhance plant growth by direct and indirect mechanisms. Modification of root system architecture by PGPR implicates the production of phytohormones and other signals that lead, mostly, to enhanced lateral root branching and development of root hairs. PGPR also modify root functioning, improve plant nutrition and influence the physiology of the whole plant. Recent results provided first clues as to how PGPR signals could trigger these plant responses. Whether local and/or systemic, the plant molecular pathways involved remain often unknown. From an ecological point of view, it emerged that PGPR form coherent functional groups, whose rhizosphere ecology is influenced by a myriad of abiotic and biotic factors in natural and agricultural soils, and these factors can in turn modulate PGPR effects on roots. In this paper, we address novel knowledge and gaps on PGPR modes of action and signals, and highlight recent progress on the links between plant morphological and physiological effects induced by PGPR. We also show the importance of taking into account the size, diversity, and gene expression patterns of PGPR assemblages in the rhizosphere to better understand their impact on plant growth and functioning. Integrating mechanistic and ecological knowledge on PGPR populations in soil will be a prerequisite to develop novel management strategies for sustainable agriculture.

  15. Physical effects of soil drying on roots and crop growth.

    PubMed

    Whitmore, Andrew P; Whalley, W Richard

    2009-01-01

    The nature and effect of the stresses on root growth in crops subject to drying is reviewed. Drought is a complex stress, impacting on plant growth in a number of interacting ways. In response, there are a number of ways in which the growing plant is able to adapt to or alleviate these stresses. It is suggested that the most significant opportunity for progress in overcoming drought stress and increasing crop yields is to understand and exploit the conditions in soil by which plant roots are able to maximize their use of resources. This may not be straightforward, with multiple stresses, sometimes competing functions of roots, and conditions which impact upon roots very differently depending upon what soil, what depth or what stage of growth the root is at. Several processes and the interaction between these processes in soil have been neglected. It is our view that drought is not a single, simple stress and that agronomic practice which seeks to adapt to climate change must take account of the multiple facets of both the stress induced by insufficient water as well as other interacting stresses such as heat, disease, soil strength, low nutrient status, and even hypoxia. The potential for adaptation is probably large, however. The possible changes in stress as a result of the climate change expected under UK conditions are assessed and it appears possible that wet warm winters will impact on root growth as much if not more than dry warm summers.

  16. Correlations between polyamine ratios and growth patterns in seedling roots

    NASA Technical Reports Server (NTRS)

    Shen, H. J.; Galston, A. W.

    1985-01-01

    The levels of putrescine, cadaverine, spermidine and spermine were determined in seedling roots of pea, tomato, millet and corn, as well as in corn coleoptiles and pea internodes. In all roots, putrescine content increased as elongation progressed, and the putrescine/spermine ratio closely paralleled the sigmoid growth curve up until the time of lateral root initiation. Spermidine and spermine were most abundant near the apices and declined progressively with increasing age of the cells. In the zone of differentiation of root hairs in pea roots, putrescine rose progressively with increasing age, while cadaverine declined. In both pea internodes and corn coleoptiles, the putrescine/spermidine ratio rises with increasing age and elongation. Thus, a block in the conversion of the diamine putrescine to the triamine spermidine may be an important step in the change from cell division to cell elongation.

  17. Phenotypic analysis of Arabidopsis mutants: quantitative analysis of root growth.

    PubMed

    Doerner, Peter

    2008-03-01

    INTRODUCTIONThe growth of plant roots is very easy to measure and is particularly straightforward in Arabidopsis thaliana, because the increase in organ size is essentially restricted to one dimension. The precise measurement of root apical growth can be used to accurately determine growth activity (the rate of growth at a given time) during development in mutants, transgenic backgrounds, or in response to experimental treatments. Root growth is measured in a number of ways, the simplest of which is to grow the seedlings in a Petri dish and record the position of the advancing root tip at appropriate time points. The increase in root length is measured with a ruler and the data are entered into Microsoft Excel for analysis. When dealing with large numbers of seedlings, however, this procedure can be tedious, as well as inaccurate. An alternative approach, described in this protocol, uses "snapshots" of the growing plants, which are taken using gel-documentation equipment (i.e., a video camera with a frame-grabber unit, now commonly used to capture images from ethidium-bromide-stained electrophoresis gels). The images are analyzed using publicly available software (NIH-Image), which allows the user simply to cut and paste data into Microsoft Excel.

  18. Arabidopsis alcohol dehydrogenase expression in both shoots and roots is conditioned by root growth environment

    NASA Technical Reports Server (NTRS)

    Chung, H. J.; Ferl, R. J.

    1999-01-01

    It is widely accepted that the Arabidopsis Adh (alcohol dehydrogenase) gene is constitutively expressed at low levels in the roots of young plants grown on agar media, and that the expression level is greatly induced by anoxic or hypoxic stresses. We questioned whether the agar medium itself created an anaerobic environment for the roots upon their growing into the gel. beta-Glucuronidase (GUS) expression driven by the Adh promoter was examined by growing transgenic Arabidopsis plants in different growing systems. Whereas roots grown on horizontal-positioned plates showed high Adh/GUS expression levels, roots from vertical-positioned plates had no Adh/GUS expression. Additional results indicate that growth on vertical plates closely mimics the Adh/GUS expression observed for soil-grown seedlings, and that growth on horizontal plates results in induction of high Adh/GUS expression that is consistent with hypoxic or anoxic conditions within the agar of the root zone. Adh/GUS expression in the shoot apex is also highly induced by root penetration of the agar medium. This induction of Adh/GUS in shoot apex and roots is due, at least in part, to mechanisms involving Ca2+ signal transduction.

  19. Local and Systemic Regulation of Plant Root System Architecture and Symbiotic Nodulation by a Receptor-Like Kinase

    PubMed Central

    Huault, Emeline; Laffont, Carole; Wen, Jiangqi; Mysore, Kirankumar S.; Ratet, Pascal; Duc, Gérard; Frugier, Florian

    2014-01-01

    In plants, root system architecture is determined by the activity of root apical meristems, which control the root growth rate, and by the formation of lateral roots. In legumes, an additional root lateral organ can develop: the symbiotic nitrogen-fixing nodule. We identified in Medicago truncatula ten allelic mutants showing a compact root architecture phenotype (cra2) independent of any major shoot phenotype, and that consisted of shorter roots, an increased number of lateral roots, and a reduced number of nodules. The CRA2 gene encodes a Leucine-Rich Repeat Receptor-Like Kinase (LRR-RLK) that primarily negatively regulates lateral root formation and positively regulates symbiotic nodulation. Grafting experiments revealed that CRA2 acts through different pathways to regulate these lateral organs originating from the roots, locally controlling the lateral root development and nodule formation systemically from the shoots. The CRA2 LRR-RLK therefore integrates short- and long-distance regulations to control root system architecture under non-symbiotic and symbiotic conditions. PMID:25521478

  20. RALFL34 regulates formative cell divisions in Arabidopsis pericycle during lateral root initiation.

    PubMed

    Murphy, Evan; Vu, Lam Dai; Van den Broeck, Lisa; Lin, Zhefeng; Ramakrishna, Priya; van de Cotte, Brigitte; Gaudinier, Allison; Goh, Tatsuaki; Slane, Daniel; Beeckman, Tom; Inzé, Dirk; Brady, Siobhan M; Fukaki, Hidehiro; De Smet, Ive

    2016-08-01

    In plants, many signalling molecules, such as phytohormones, miRNAs, transcription factors, and small signalling peptides, drive growth and development. However, very few small signalling peptides have been shown to be necessary for lateral root development. Here, we describe the role of the peptide RALFL34 during early events in lateral root development, and demonstrate its specific importance in orchestrating formative cell divisions in the pericycle. Our results further suggest that this small signalling peptide acts on the transcriptional cascade leading to a new lateral root upstream of GATA23, an important player in lateral root formation. In addition, we describe a role for ETHYLENE RESPONSE FACTORs (ERFs) in regulating RALFL34 expression. Taken together, we put forward RALFL34 as a new, important player in lateral root initiation.

  1. RALFL34 regulates formative cell divisions in Arabidopsis pericycle during lateral root initiation

    PubMed Central

    Murphy, Evan; Vu, Lam Dai; Van den Broeck, Lisa; Lin, Zhefeng; Ramakrishna, Priya; van de Cotte, Brigitte; Gaudinier, Allison; Goh, Tatsuaki; Slane, Daniel; Beeckman, Tom; Inzé, Dirk; Brady, Siobhan M.; Fukaki, Hidehiro; De Smet, Ive

    2016-01-01

    In plants, many signalling molecules, such as phytohormones, miRNAs, transcription factors, and small signalling peptides, drive growth and development. However, very few small signalling peptides have been shown to be necessary for lateral root development. Here, we describe the role of the peptide RALFL34 during early events in lateral root development, and demonstrate its specific importance in orchestrating formative cell divisions in the pericycle. Our results further suggest that this small signalling peptide acts on the transcriptional cascade leading to a new lateral root upstream of GATA23, an important player in lateral root formation. In addition, we describe a role for ETHYLENE RESPONSE FACTORs (ERFs) in regulating RALFL34 expression. Taken together, we put forward RALFL34 as a new, important player in lateral root initiation. PMID:27521602

  2. AUXIN AND GROWTH OF EXCISED ROOTS OF Bryophyllum calycinum

    PubMed Central

    Robbins, William J.; Hervey, Annette

    1969-01-01

    Exogenous auxin (α-naphthalene acetic acid, indole acetic acid, or 2,4-dichlorophenoxyacetic acid) was essential for the growth of single excised root tips of Bryophyllum calycinum in 50 ml of a mineral salt-sucrose medium supplemented with vitamins. Large inocula with a dry weight of 2.0 mg or more grew with no auxin added to the medium. Evidence for the synthesis of auxin by the excised roots grown from the larger inocula is presented. Leaching of auxin from single root tips cultivated in 15 or 50 ml of basal medium is considered to account for their failure to grow. Images PMID:16591793

  3. AUXIN AND GROWTH OF EXCISED ROOTS OF Bryophyllum calycinum.

    PubMed

    Robbins, W J; Hervey, A

    1969-10-01

    Exogenous auxin (alpha-naphthalene acetic acid, indole acetic acid, or 2,4-dichlorophenoxyacetic acid) was essential for the growth of single excised root tips of Bryophyllum calycinum in 50 ml of a mineral salt-sucrose medium supplemented with vitamins. Large inocula with a dry weight of 2.0 mg or more grew with no auxin added to the medium. Evidence for the synthesis of auxin by the excised roots grown from the larger inocula is presented. Leaching of auxin from single root tips cultivated in 15 or 50 ml of basal medium is considered to account for their failure to grow.

  4. Cytokinin interplay with ethylene, auxin, and glucose signaling controls Arabidopsis seedling root directional growth.

    PubMed

    Kushwah, Sunita; Jones, Alan M; Laxmi, Ashverya

    2011-08-01

    Optimal root architecture is established by multiple intrinsic (e.g. hormones) and extrinsic (e.g. gravity and touch) signals and is established, in part, by directed root growth. We show that asymmetrical exposure of cytokinin (CK) at the root tip in Arabidopsis (Arabidopsis thaliana) promotes cell elongation that is potentiated by glucose in a hexokinase-influenced, G protein-independent manner. This mode of CK signaling requires the CK receptor, ARABIDOPSIS HISTIDINE KINASE4 and, at a minimum, its cognate type B ARABIDOPSIS RESPONSE REGULATORS ARR1, ARR10, and ARR11 for full responsiveness, while type A response regulators act redundantly to attenuate this CK response. Ethylene signaling through the ethylene receptor ETHYLENE RESISTANT1 and its downstream signaling element ETHYLENE INSENSITIVE2 are required for CK-induced root cell elongation. Negative and positive feedback loops are reinforced by CK regulation of the expression of the genes encoding these elements in both the CK and ethylene signaling pathways. Auxin transport facilitated by PIN-FORMED2 as well as auxin signaling through control of the steady-state level of transcriptional repressors INDOLE-3-ACETIC ACID7 (IAA7), IAA14, and IAA17 via TRANSPORT INHIBITOR RESPONSE1/AUXIN SIGNALING F-BOX PROTEIN are involved in CK-induced root cell elongation. This action lies downstream of ethylene and CK induction. Intrinsic signaling in this response operates independently of the extrinsic signal touch, although actin filament organization, which is important in the touch response, may be important for this response, since latrunculin B can induce similar growth. This root growth response may have adaptive significance, since CK responsiveness is inversely related to root coiling and waving, two root behaviors known to be important for fitness.

  5. NO homeostasis is a key regulator of early nitrate perception and root elongation in maize*

    PubMed Central

    Quaggiotti, Silvia

    2014-01-01

    Crop plant development is strongly dependent on nitrogen availability in the soil and on the efficiency of its recruitment by roots. For this reason, the understanding of the molecular events underlying root adaptation to nitrogen fluctuations is a primary goal to develop biotechnological tools for sustainable agriculture. However, knowledge about molecular responses to nitrogen availability is derived mainly from the study of model species. Nitric oxide (NO) has been recently proposed to be implicated in plant responses to environmental stresses, but its exact role in the response of plants to nutritional stress is still under evaluation. In this work, the role of NO production by maize roots after nitrate perception was investigated by focusing on the regulation of transcription of genes involved in NO homeostasis and by measuring NO production in roots. Moreover, its involvement in the root growth response to nitrate was also investigated. The results provide evidence that NO is produced by nitrate reductase as an early response to nitrate supply and that the coordinated induction of non-symbiotic haemoglobins (nsHbs) could finely regulate the NO steady state. This mechanism seems to be implicated on the modulation of the root elongation in response to nitrate perception. Moreover, an improved agar-plate system for growing maize seedlings was developed. This system, which allows localized treatments to be performed on specific root portions, gave the opportunity to discern between localized and systemic effects of nitrate supply to roots. PMID:24220653

  6. Tungsten disrupts root growth in Arabidopsis thaliana by PIN targeting.

    PubMed

    Adamakis, Ioannis-Dimosthenis S; Panteris, Emmanuel; Eleftheriou, Eleftherios P

    2014-08-15

    Tungsten is a heavy metal with increasing concern over its environmental impact. In plants it is extensively used to deplete nitric oxide by inhibiting nitrate reductase, but its presumed toxicity as a heavy metal has been less explored. Accordingly, its effects on Arabidopsis thaliana primary root were assessed. The effects on root growth, mitotic cell percentage, nitric oxide and hydrogen peroxide levels, the cytoskeleton, cell ultrastructure, auxin and cytokinin activity, and auxin carrier distribution were investigated. It was found that tungsten reduced root growth, particularly by inhibiting cell expansion in the elongation zone, so that root hairs emerged closer to the root tip than in the control. Although extensive vacuolation was observed, even in meristematic cells, cell organelles were almost unaffected and microtubules were not depolymerized but reoriented. Tungsten affected auxin and cytokinin activity, as visualized by the DR5-GFP and TCS-GFP expressing lines, respectively. Cytokinin fluctuations were similar to those of the mitotic cell percentage. DR5-GFP signal appeared ectopically expressed, while the signals of PIN2-GFP and PIN3-GFP were diminished even after relatively short exposures. The observed effects were not reminiscent of those of any nitric oxide scavengers. Taken together, inhibition of root growth by tungsten might rather be related to a presumed interference with the basipetal flow of auxin, specifically affecting cell expansion in the elongation zone.

  7. The exploring root--root growth responses to local environmental conditions.

    PubMed

    Monshausen, Gabriele B; Gilroy, Simon

    2009-12-01

    Because of their sessile lifestyle, the areas which plants can access to forage for resources are confined to those which can be explored by growth. High sensitivity to environmental conditions coupled to the appropriate readjustment of growth and developmental responses are thus critical to plant survival. In this review, we focus on how roots perceive physical cues such as soil water status and mechanical properties and translate them into physiological signals to redirect organ growth and modulate root system architecture. Because the precise molecular identity of most of the sensors used by the root to sample the soil environment remain to be determined, the mechanisms underlying similar processes in microbes are providing important models for how these receptor systems may be functioning in plants.

  8. Plant microRNAs: key regulators of root architecture and biotic interactions.

    PubMed

    Couzigou, Jean-Malo; Combier, Jean-Philippe

    2016-10-01

    Contents 22 I. 22 II. 24 III. 25 IV. 27 V. 29 VI. 10 31 References 32 SUMMARY: Plants have evolved a remarkable faculty of adaptation to deal with various and changing environmental conditions. In this context, the roots have taken over nutritional aspects and the root system architecture can be modulated in response to nutrient availability or biotic interactions with soil microorganisms. This adaptability requires a fine tuning of gene expression. Indeed, root specification and development are highly complex processes requiring gene regulatory networks involved in hormonal regulations and cell identity. Among the different molecular partners governing root development, microRNAs (miRNAs) are key players for the fast regulation of gene expression. miRNAs are small RNAs involved in most developmental processes and are required for the normal growth of organisms, by the negative regulation of key genes, such as transcription factors and hormone receptors. Here, we review the known roles of miRNAs in root specification and development, from the embryonic roots to the establishment of root symbioses, highlighting the major roles of miRNAs in these processes.

  9. Root transcriptome of two contrasting indica rice cultivars uncovers regulators of root development and physiological responses

    PubMed Central

    Singh, Alka; Kumar, Pramod; Gautam, Vibhav; Rengasamy, Balakrishnan; Adhikari, Bijan; Udayakumar, Makarla; Sarkar, Ananda K.

    2016-01-01

    The huge variation in root system architecture (RSA) among different rice (Oryza sativa) cultivars is conferred by their genetic makeup and different growth or climatic conditions. Unlike model plant Arabidopsis, the molecular basis of such variation in RSA is very poorly understood in rice. Cultivars with stable variation are valuable resources for identification of genes involved in RSA and related physiological traits. We have screened for RSA and identified two such indica rice cultivars, IR-64 (OsAS83) and IET-16348 (OsAS84), with stable contrasting RSA. OsAS84 produces robust RSA with more crown roots, lateral roots and root hairs than OsAS83. Using comparative root transcriptome analysis of these cultivars, we identified genes related to root development and different physiological responses like abiotic stress responses, hormone signaling, and nutrient acquisition or transport. The two cultivars differ in their response to salinity/dehydration stresses, phosphate/nitrogen deficiency, and different phytohormones. Differential expression of genes involved in salinity or dehydration response, nitrogen (N) transport, phosphate (Pi) starvation signaling, hormone signaling and root development underlies more resistance of OsAS84 towards abiotic stresses, Pi or N deficiency and its robust RSA. Thus our study uncovers gene-network involved in root development and abiotic stress responses in rice. PMID:28000793

  10. HAWAIIAN SKIRT regulates the quiescent center-independent meristem activity in Arabidopsis roots.

    PubMed

    Kim, Eun-Sol; Choe, Goh; Sebastian, Jose; Ryu, Kook Hui; Mao, Linyong; Fei, Zhangjun; Lee, Ji-Young

    2016-06-01

    Root apical meristem (RAM) drives post-embryonic root growth by constantly supplying cells through mitosis. It is composed of stem cells and their derivatives, the transit-amplifying (TA) cells. Stem cell organization and its maintenance in the RAM are well characterized, however, their relationships with TA cells remain unclear. SHORTROOT (SHR) is critical for root development. It patterns cell types and promotes the post-embryonic root growth. Defective root growth in the shr has been ascribed to the lack of quiescent center (QC), which maintains the surrounding stem cells. However, our recent investigation indicated that SHR maintains TA cells independently of QC by modulating PHABULOSA (PHB) through miRNA165/6. PHB controls TA cell activity by modulating cytokinin levels and type B Arabidopsis Response Regulator activity, in a dosage-dependent manner. To further understand TA cell regulation, we conducted a shr suppressor screen. With an extensive mutagenesis screen followed by genome sequencing of a pooled F2 population, we discovered two suppressor alleles with mutations in HAWAIIAN SKIRT (HWS). HWS, encoding an F-box protein with kelch domain, is expressed, partly depending on SHR, in the root cap and in the pericycle of the differentiation zone. Interestingly, root growth in the shr hws was more active than the wild-type roots for the first 7 days after germination, without recovering QC. Contrary to shr phb, shr hws did not show a recovery of cytokinin signaling. These indicate that HWS affects QC-independent TA cell activities through a pathway distinctive from PHB.

  11. Regeneration of roots from callus reveals stability of the developmental program for determinate root growth in Sonoran Desert Cactaceae.

    PubMed

    Shishkova, Svetlana; García-Mendoza, Edith; Castillo-Díaz, Vicente; Moreno, Norma E; Arellano, Jesús; Dubrovsky, Joseph G

    2007-05-01

    In some Sonoran Desert Cactaceae the primary root has a determinate root growth: the cells of the root apical meristem undergo only a few cell division cycles and then differentiate. The determinate growth of primary roots in Cactaceae was found in plants cultivated under various growth conditions, and could not be reverted by any treatment tested. The mechanisms involved in root meristem maintenance and determinate root growth in plants remain poorly understood. In this study, we have shown that roots regenerated from the callus of two Cactaceae species, Stenocereus gummosus and Ferocactus peninsulae, have a determinate growth pattern, similar to that of the primary root. To demonstrate this, a protocol for root regeneration from callus was established. The determinate growth pattern of roots regenerated from callus suggests that the program of root development is very stable in these species. These findings will permit future analysis of the role of certain Cactaceae genes in the determinate pattern of root growth via the regeneration of transgenic roots from transformed calli.

  12. Root growth studies of willow cuttings using Rhizoboxes

    NASA Astrophysics Data System (ADS)

    Omarova, Dinara; Lammeranner, Walter; Florineth, Florin

    2014-05-01

    Riparian forests (Tugay forests) in Central Asia (Kazakhstan) play a significant in soil protection. However, unadapted forest use leads to damage and loss of these fragile ecosystems. Willows have a crucial function in the ecosystem of these riparian forests. Willows facilitate the colonization with other important tree species and furthermore they protect the soil from wind and water erosion. To propagate willows and to estimate the beneficial effects of these plants it is important to know the root growth development. The research design is planned as model experiment with rhizoboxes. Rhizoboxes are non-invasive investigation methods which offer the possibility to survey the root system growth dynamics in time and space. A total of 33 rhizoboxes in size of 50cm x 75 cm x 5 cm will be constructed. The rhizoboxes will be tilted by 45 degrees using the gravitropism of the roots. The willow cuttings (Salix purpurea) will be planted in three different soil types. Each test series (growth period) will take three months. Investigated parameters will be root architecture, dynamic of root growth and above and below ground biomass allocation. Data will be drawn from photographic surveys which will be performed once a week. The contribution will present the methodology of these rhizobox investigations.

  13. Antisense expression of an Arabidopsis ran binding protein renders transgenic roots hypersensitive to auxin and alters auxin-induced root growth and development by arresting mitotic progress

    NASA Technical Reports Server (NTRS)

    Kim, S. H.; Arnold, D.; Lloyd, A.; Roux, S. J.

    2001-01-01

    We cloned a cDNA encoding an Arabidopsis Ran binding protein, AtRanBP1c, and generated transgenic Arabidopsis expressing the antisense strand of the AtRanBP1c gene to understand the in vivo functions of the Ran/RanBP signal pathway. The transgenic plants showed enhanced primary root growth but suppressed growth of lateral roots. Auxin significantly increased lateral root initiation and inhibited primary root growth in the transformants at 10 pM, several orders of magnitude lower than required to induce these responses in wild-type roots. This induction was followed by a blockage of mitosis in both newly emerged lateral roots and in the primary root, ultimately resulting in the selective death of cells in the tips of both lateral and primary roots. Given the established role of Ran binding proteins in the transport of proteins into the nucleus, these findings are consistent with a model in which AtRanBP1c plays a key role in the nuclear delivery of proteins that suppress auxin action and that regulate mitotic progress in root tips.

  14. Root foraging influences plant growth responses to earthworm foraging.

    PubMed

    Cameron, Erin K; Cahill, James F; Bayne, Erin M

    2014-01-01

    Interactions among the foraging behaviours of co-occurring animal species can impact population and community dynamics; the consequences of interactions between plant and animal foraging behaviours have received less attention. In North American forests, invasions by European earthworms have led to substantial changes in plant community composition. Changes in leaf litter have been identified as a critical indirect mechanism driving earthworm impacts on plants. However, there has been limited examination of the direct effects of earthworm burrowing on plant growth. Here we show a novel second pathway exists, whereby earthworms (Lumbricus terrestris L.) impact plant root foraging. In a mini-rhizotron experiment, roots occurred more frequently in burrows and soil cracks than in the soil matrix. The roots of Achillea millefolium L. preferentially occupied earthworm burrows, where nutrient availability was presumably higher than in cracks due to earthworm excreta. In contrast, the roots of Campanula rotundifolia L. were less likely to occur in burrows. This shift in root behaviour was associated with a 30% decline in the overall biomass of C. rotundifolia when earthworms were present. Our results indicate earthworm impacts on plant foraging can occur indirectly via physical and chemical changes to the soil and directly via root consumption or abrasion and thus may be one factor influencing plant growth and community change following earthworm invasion. More generally, this work demonstrates the potential for interactions to occur between the foraging behaviours of plants and soil animals and emphasizes the importance of integrating behavioural understanding in foraging studies involving plants.

  15. Copper regulates primary root elongation through PIN1-mediated auxin redistribution.

    PubMed

    Yuan, Hong-Mei; Xu, Heng-Hao; Liu, Wen-Cheng; Lu, Ying-Tang

    2013-05-01

    The heavy metal copper (Cu) is an essential microelement required for normal plant growth and development, but it inhibits primary root growth when in excess. The mechanism underlying how excess Cu functions in this process remains to be further elucidated. Here, we report that a higher concentration of CuSO4 inhibited primary root elongation of Arabidopsis seedlings by affecting both the elongation and meristem zones. In the meristem zone, meristematic cell division potential was reduced by excess Cu. Further experiments showed that Cu can modulate auxin distribution, resulting in higher auxin activities in both the elongation and meristem zones of Cu-treated roots based on DR5::GUS expression patterns. This Cu-mediated auxin redistribution was shown to be responsible for Cu-mediated inhibition of primary root elongation. Additional genetic and physiological data demonstrated that it was PINFORMED1 (PIN1), but not PIN2 or AUXIN1 (AUX1), that regulated this process. However, Cu-induced hydrogen peroxide accumulation did not contribute to Cu-induced auxin redistribution for inhibition of root elongation. When the possible role of ethylene in this process was analyzed, Cu had a similar impact on the root elongation of both the wild type and the ein2-1 mutant, implying that Cu-mediated inhibition of primary root elongation was not due to the ethylene signaling pathway.

  16. Genetic and chemical reductions in protein phosphatase activity alter auxin transport, gravity response, and lateral root growth

    NASA Technical Reports Server (NTRS)

    Rashotte, A. M.; DeLong, A.; Muday, G. K.; Brown, C. S. (Principal Investigator)

    2001-01-01

    Auxin transport is required for important growth and developmental processes in plants, including gravity response and lateral root growth. Several lines of evidence suggest that reversible protein phosphorylation regulates auxin transport. Arabidopsis rcn1 mutant seedlings exhibit reduced protein phosphatase 2A activity and defects in differential cell elongation. Here we report that reduced phosphatase activity alters auxin transport and dependent physiological processes in the seedling root. Root basipetal transport was increased in rcn1 or phosphatase inhibitor-treated seedlings but showed normal sensitivity to the auxin transport inhibitor naphthylphthalamic acid (NPA). Phosphatase inhibition reduced root gravity response and delayed the establishment of differential auxin-induced gene expression across a gravity-stimulated root tip. An NPA treatment that reduced basipetal transport in rcn1 and cantharidin-treated wild-type plants also restored a normal gravity response and asymmetric auxin-induced gene expression, indicating that increased basipetal auxin transport impedes gravitropism. Increased auxin transport in rcn1 or phosphatase inhibitor-treated seedlings did not require the AGR1/EIR1/PIN2/WAV6 or AUX1 gene products. In contrast to basipetal transport, root acropetal transport was normal in phosphatase-inhibited seedlings in the absence of NPA, although it showed reduced NPA sensitivity. Lateral root growth also exhibited reduced NPA sensitivity in rcn1 seedlings, consistent with acropetal transport controlling lateral root growth. These results support the role of protein phosphorylation in regulating auxin transport and suggest that the acropetal and basipetal auxin transport streams are differentially regulated.

  17. Cinnamic Acid Increases Lignin Production and Inhibits Soybean Root Growth

    PubMed Central

    Salvador, Victor Hugo; Lima, Rogério Barbosa; dos Santos, Wanderley Dantas; Soares, Anderson Ricardo; Böhm, Paulo Alfredo Feitoza; Marchiosi, Rogério; Ferrarese, Maria de Lourdes Lucio; Ferrarese-Filho, Osvaldo

    2013-01-01

    Cinnamic acid is a known allelochemical that affects seed germination and plant root growth and therefore influences several metabolic processes. In the present work, we evaluated its effects on growth, indole-3-acetic acid (IAA) oxidase and cinnamate 4-hydroxylase (C4H) activities and lignin monomer composition in soybean (Glycine max) roots. The results revealed that exogenously applied cinnamic acid inhibited root growth and increased IAA oxidase and C4H activities. The allelochemical increased the total lignin content, thus altering the sum and ratios of the p-hydroxyphenyl (H), guaiacyl (G), and syringyl (S) lignin monomers. When applied alone or with cinnamic acid, piperonylic acid (PIP, a quasi-irreversible inhibitor of C4H) reduced C4H activity, lignin and the H, G, S monomer content compared to the cinnamic acid treatment. Taken together, these results indicate that exogenously applied cinnamic acid can be channeled into the phenylpropanoid pathway via the C4H reaction, resulting in an increase in H lignin. In conjunction with enhanced IAA oxidase activity, these metabolic responses lead to the stiffening of the cell wall and are followed by a reduction in soybean root growth. PMID:23922685

  18. MADS-box transcription factor OsMADS25 regulates root development through affection of nitrate accumulation in rice.

    PubMed

    Yu, Chunyan; Liu, Yihua; Zhang, Aidong; Su, Sha; Yan, An; Huang, Linli; Ali, Imran; Liu, Yu; Forde, Brian G; Gan, Yinbo

    2015-01-01

    MADS-box transcription factors are vital regulators participating in plant growth and development process and the functions of most of them are still unknown. ANR1 was reported to play a key role in controlling lateral root development through nitrate signal in Arabidopsis. OsMADS25 is one of five ANR1-like genes in Oryza Sativa and belongs to the ANR1 clade. Here we have investigated the role of OsMADS25 in the plant's responses to external nitrate in Oryza Sativa. Our results showed that OsMADS25 protein was found in the nucleus as well as in the cytoplasm. Over-expression of OsMADS25 significantly promoted lateral and primary root growth as well as shoot growth in a nitrate-dependent manner in Arabidopsis. OsMADS25 overexpression in transgenic rice resulted in significantly increased primary root length, lateral root number, lateral root length and shoot fresh weight in the presence of nitrate. Down-regulation of OsMADS25 in transgenic rice exhibited significantly reduced shoot and root growth in the presence of nitrate. Furthermore, over-expression of OsMADS25 in transgenic rice promoted nitrate accumulation and significantly increased the expressions of nitrate transporter genes at high rates of nitrate supply while down-regulation of OsMADS25 produced the opposite effect. Taken together, our findings suggest that OsMADS25 is a positive regulator control lateral and primary root development in rice.

  19. A molecular framework for the inhibition of Arabidopsis root growth in response to boron toxicity.

    PubMed

    Aquea, Felipe; Federici, Fernan; Moscoso, Cristian; Vega, Andrea; Jullian, Pastor; Haseloff, Jim; Arce-Johnson, Patricio

    2012-04-01

    Boron is an essential micronutrient for plants and is taken up in the form of boric acid (BA). Despite this, a high BA concentration is toxic for the plants, inhibiting root growth and is thus a significant problem in semi-arid areas in the world. In this work, we report the molecular basis for the inhibition of root growth caused by boron. We show that application of BA reduces the size of root meristems, correlating with the inhibition of root growth. The decrease in meristem size is caused by a reduction of cell division. Mitotic cell number significantly decreases and the expression level of key core cell cycle regulators is modulated. The modulation of the cell cycle does not appear to act through cytokinin and auxin signalling. A global expression analysis reveals that boron toxicity induces the expression of genes related with abscisic acid (ABA) signalling, ABA response and cell wall modifications, and represses genes that code for water transporters. These results suggest that boron toxicity produces a reduction of water and BA uptake, triggering a hydric stress response that produces root growth inhibition.

  20. Effects of plant growth promoting rhizobacteria (PGPR) on rooting and root growth of kiwifruit (Actinidia deliciosa) stem cuttings.

    PubMed

    Erturk, Yasar; Ercisli, Sezai; Haznedar, Ayhan; Cakmakci, Ramazan

    2010-01-01

    The effects of plant growth promoting rhizobacteria (PGPR) on the rooting and root growth of semi-hardwood and hardwood kiwifruit stem cuttings were investigated. The PGPR used were Bacillus RC23, Paenibacillus polymyxa RC05, Bacillus subtilis OSU142, Bacillus RC03, Comamonas acidovorans RC41, Bacillus megaterium RC01 and Bacillus simplex RC19. All the bacteria showed indole-3-acetic acid (IAA) producing capacity. Among the PGPR used, the highest rooting ratios were obtained at 47.50% for semi-hardwood stem cuttings from Bacillus RC03 and Bacillus simplex RC19 treatments and 42.50% for hardwood stem cuttings from Bacillus RC03. As well, Comamonas acidovorans RC41 inoculations indicated higher value than control treatments. The results suggest that these PGPR can be used in organic nursery material production and point to the feasibility of synthetic auxin (IBA) replacement by organic management based on PGPR.

  1. Putting theory to the test: which regulatory mechanisms can drive realistic growth of a root?

    PubMed

    De Vos, Dirk; Vissenberg, Kris; Broeckhove, Jan; Beemster, Gerrit T S

    2014-10-01

    In recent years there has been a strong development of computational approaches to mechanistically understand organ growth regulation in plants. In this study, simulation methods were used to explore which regulatory mechanisms can lead to realistic output at the cell and whole organ scale and which other possibilities must be discarded as they result in cellular patterns and kinematic characteristics that are not consistent with experimental observations for the Arabidopsis thaliana primary root. To aid in this analysis, a 'Uniform Longitudinal Strain Rule' (ULSR) was formulated as a necessary condition for stable, unidirectional, symplastic growth. Our simulations indicate that symplastic structures are robust to differences in longitudinal strain rates along the growth axis only if these differences are small and short-lived. Whereas simple cell-autonomous regulatory rules based on counters and timers can produce stable growth, it was found that steady developmental zones and smooth transitions in cell lengths are not feasible. By introducing spatial cues into growth regulation, those inadequacies could be avoided and experimental data could be faithfully reproduced. Nevertheless, a root growth model based on previous polar auxin-transport mechanisms violates the proposed ULSR due to the presence of lateral gradients. Models with layer-specific regulation or layer-driven growth offer potential solutions. Alternatively, a model representing the known cross-talk between auxin, as the cell proliferation promoting factor, and cytokinin, as the cell differentiation promoting factor, predicts the effect of hormone-perturbations on meristem size. By down-regulating PIN-mediated transport through the transcription factor SHY2, cytokinin effectively flattens the lateral auxin gradient, at the basal boundary of the division zone, (thereby imposing the ULSR) to signal the exit of proliferation and start of elongation. This model exploration underlines the value of

  2. Putting Theory to the Test: Which Regulatory Mechanisms Can Drive Realistic Growth of a Root?

    PubMed Central

    De Vos, Dirk; Vissenberg, Kris; Broeckhove, Jan; Beemster, Gerrit T. S.

    2014-01-01

    In recent years there has been a strong development of computational approaches to mechanistically understand organ growth regulation in plants. In this study, simulation methods were used to explore which regulatory mechanisms can lead to realistic output at the cell and whole organ scale and which other possibilities must be discarded as they result in cellular patterns and kinematic characteristics that are not consistent with experimental observations for the Arabidopsis thaliana primary root. To aid in this analysis, a ‘Uniform Longitudinal Strain Rule’ (ULSR) was formulated as a necessary condition for stable, unidirectional, symplastic growth. Our simulations indicate that symplastic structures are robust to differences in longitudinal strain rates along the growth axis only if these differences are small and short-lived. Whereas simple cell-autonomous regulatory rules based on counters and timers can produce stable growth, it was found that steady developmental zones and smooth transitions in cell lengths are not feasible. By introducing spatial cues into growth regulation, those inadequacies could be avoided and experimental data could be faithfully reproduced. Nevertheless, a root growth model based on previous polar auxin-transport mechanisms violates the proposed ULSR due to the presence of lateral gradients. Models with layer-specific regulation or layer-driven growth offer potential solutions. Alternatively, a model representing the known cross-talk between auxin, as the cell proliferation promoting factor, and cytokinin, as the cell differentiation promoting factor, predicts the effect of hormone-perturbations on meristem size. By down-regulating PIN-mediated transport through the transcription factor SHY2, cytokinin effectively flattens the lateral auxin gradient, at the basal boundary of the division zone, (thereby imposing the ULSR) to signal the exit of proliferation and start of elongation. This model exploration underlines the value of

  3. Root Growth Patterns and Morphometric Change Based on the Growth Media

    NASA Astrophysics Data System (ADS)

    Schultz, Eric R.; Paul, Anna-Lisa; Ferl, Robert J.

    2016-12-01

    Arabidopsis thaliana roots skew with minimal waving in the microgravity environment of the International Space Station. Root skewing and root waving have been studied on the ground as well as in spaceflight, but often using different media types. In this study, Arabidopsis seedlings were grown on nutrient media plates that were comprised of various gelling agents with varied hardness in order to better assess these media for spaceflight research experiments. ImageJ was used to quantify the root morphology of 8-dayold seedlings, while R was used to perform statistical analyses. Root growth was drastically different between Difco agar, agarose, and Phytagel. Additionally, root waving masked skewing in certain media. Regression analysis revealed overall patterns when organized by hardness but also revealed that differences in media type had more of an impact on root growth than hardness itself. Different arrangements of media around the root tip revealed that roots grown on the media surface were longer and had fewer waves per millimeter than roots grown embedded in media. The implications for spaceflight research are discussed.

  4. Postembryonic control of root meristem growth and development.

    PubMed

    Sozzani, Rosangela; Iyer-Pascuzzi, Anjali

    2014-02-01

    Organ development in multicellular organisms is dependent on the proper balance between cell proliferation and differentiation. In the Arabidopsis root apical meristem, meristem growth is the result of cell divisions in the proximal meristem and cell differentiation in the elongation and differentiation zones. Hormones, transcription factors and small peptides underpin the molecular mechanisms governing these processes. Computer modeling has aided our understanding of the dynamic interactions involved in stem cell maintenance and meristem activity. Here we review recent advances in our understanding of postembryonic root stem cell maintenance and control of meristem size.

  5. Determinate primary root growth as an adaptation to aridity in Cactaceae: towards an understanding of the evolution and genetic control of the trait

    PubMed Central

    Shishkova, Svetlana; Las Peñas, María Laura; Napsucialy-Mendivil, Selene; Matvienko, Marta; Kozik, Alex; Montiel, Jesús; Patiño, Anallely; Dubrovsky, Joseph G.

    2013-01-01

    Background and Aims Species of Cactaceae are well adapted to arid habitats. Determinate growth of the primary root, which involves early and complete root apical meristem (RAM) exhaustion and differentiation of cells at the root tip, has been reported for some Cactoideae species as a root adaptation to aridity. In this study, the primary root growth patterns of Cactaceae taxa from diverse habitats are classified as being determinate or indeterminate, and the molecular mechanisms underlying RAM maintenance in Cactaceae are explored. Genes that were induced in the primary root of Stenocereus gummosus before RAM exhaustion are identified. Methods Primary root growth was analysed in Cactaceae seedlings cultivated in vertically oriented Petri dishes. Differentially expressed transcripts were identified after reverse northern blots of clones from a suppression subtractive hybridization cDNA library. Key Results All species analysed from six tribes of the Cactoideae subfamily that inhabit arid and semi-arid regions exhibited determinate primary root growth. However, species from the Hylocereeae tribe, which inhabit mesic regions, exhibited mostly indeterminate primary root growth. Preliminary results suggest that seedlings of members of the Opuntioideae subfamily have mostly determinate primary root growth, whereas those of the Maihuenioideae and Pereskioideae subfamilies have mostly indeterminate primary root growth. Seven selected transcripts encoding homologues of heat stress transcription factor B4, histone deacetylase, fibrillarin, phosphoethanolamine methyltransferase, cytochrome P450 and gibberellin-regulated protein were upregulated in S. gummosus root tips during the initial growth phase. Conclusions Primary root growth in Cactoideae species matches their environment. The data imply that determinate growth of the primary root became fixed after separation of the Cactiodeae/Opuntioideae and Maihuenioideae/Pereskioideae lineages, and that the genetic regulation of

  6. The role of auxin and ethylene for gravitropic differential growth of coleoptiles and roots of rye- and maize seedlings

    NASA Astrophysics Data System (ADS)

    Edelmann, H. G.; Sabovljevic, A.; Njio, G.; Roth, U.

    The relevance of auxin and ethylene for differential gravitropic growth has been analyzed both in shoots and roots of etiolated rye- and maize seedlings. As previously demonstrated for indolyl-3-acetic acid (IAA), incubation of coleoptiles in dichlorophenoxy acetic acid (2,4-D) resulted in a two- to threefold length increase compared to water controls. In spite of this immense effect on elongation growth, gravi-curvature was similar to water controls. In contrast, inhibition of ethylene synthesis prevented differential growth of abraded coleoptiles as well as of roots without a significant inhibiting effect on elongation. Inhibition of ethylene perception in horizontally stimulated maize roots growing on surfaces eliminated the capacity of the roots to adapt growth to the surface and a vertical orientation of the root tip. This effect is accompanied by up- and down-regulation of a number of proteins as detected with the 2D-MALDI-TOF (matrix-assisted laser desorption ionization- time of flight) method. Exogenous ethylene inhibited growth but enhanced gravitropic curvature in roots that were "freely" gravistimulated in a horizontal position, exhibiting a pronounced "waving" behavior. Together the data challenge the regulatory relevance of IAA-redistribution for gravitropic differential growth. They corroborate the crucial regulatory relevance of ethylene for gravitropic growth, in both roots and coleoptiles.

  7. Brassinolide Increases Potato Root Growth In Vitro in a Dose-Dependent Way and Alleviates Salinity Stress

    PubMed Central

    Xia, Shitou; Su, Yi; Wang, Huiqun; Luo, Weigui; Su, Shengying

    2016-01-01

    Brassinosteroids (BRs) are steroidal phytohormones that regulate various physiological processes, such as root development and stress tolerance. In the present study, we showed that brassinolide (BL) affects potato root in vitro growth in a dose-dependent manner. Low BL concentrations (0.1 and 0.01 μg/L) promoted root elongation and lateral root development, whereas high BL concentrations (1–100 μg/L) inhibited root elongation. There was a significant (P < 0.05) positive correlation between root activity and BL concentrations within a range from 0.01 to 100 μg/L, with the peak activity of 8.238 mg TTC·g−1 FW·h−1 at a BL concentration of 100 μg/L. Furthermore, plants treated with 50 μg/L BL showed enhanced salt stress tolerance through in vitro growth. Under this scenario, BL treatment enhanced the proline content and antioxidant enzymes' (superoxide dismutase, peroxidase, and catalase) activity and reduced malondialdehyde content in potato shoots. Application of BL maintain K+ and Na+ homeostasis by improving tissue K+/Na+ ratio. Therefore, we suggested that the effects of BL on root development from stem fragments explants as well as on primary root development are dose-dependent and that BL application alleviates salt stress on potato by improving root activity, root/shoot ratio, and antioxidative capacity in shoots and maintaining K+/Na+ homeostasis in potato shoots and roots. PMID:27803931

  8. Root-to-shoot signalling when soil moisture is heterogeneous: increasing the proportion of root biomass in drying soil inhibits leaf growth and increases leaf abscisic acid concentration.

    PubMed

    Martin-Vertedor, Ana Isabel; Dodd, Ian C

    2011-07-01

    To determine whether root-to-shoot signalling of soil moisture heterogeneity depended on root distribution, wild-type (WT) and abscisic acid (ABA)-deficient (Az34) barley (Hordeum vulgare) plants were grown in split pots into which different numbers of seminal roots were inserted. After establishment, all plants received the same irrigation volumes, with one pot watered (w) and the other allowed to dry the soil (d), imposing three treatments (1 d: 3 w, 2 d: 2 w, 3 d: 1 w) that differed in the number of seminal roots exposed to drying soil. Root distribution did not affect leaf water relations and had no sustained effect on plant evapotranspiration (ET). In both genotypes, leaf elongation was less and leaf ABA concentrations were higher in plants with more roots in drying soil, with leaf ABA concentrations and water potentials 30% and 0.2 MPa higher, respectively, in WT plants. Whole-pot soil drying increased xylem ABA concentrations, but maximum values obtained when leaf growth had virtually ceased (100 nm in Az34, 330 nm in WT) had minimal effects (<40% leaf growth inhibition) when xylem supplied to detached shoots. Although ABA may not regulate leaf growth in vivo, genetic variation in foliar ABA concentration in the field may indicate different root distributions between upper (drier) and lower (wetter) soil layers.

  9. Root system architecture in Arabidopsis grown in culture is regulated by sucrose uptake in the aerial tissues.

    PubMed

    Macgregor, Dana R; Deak, Karen I; Ingram, Paul A; Malamy, Jocelyn E

    2008-10-01

    This article presents a detailed model for the regulation of lateral root formation in Arabidopsis thaliana seedlings grown in culture. We demonstrate that direct contact between the aerial tissues and sucrose in the growth media is necessary and sufficient to promote emergence of lateral root primordia from the parent root. Mild osmotic stress is perceived by the root, which then sends an abscisic acid-dependent signal that causes a decrease in the permeability of aerial tissues; this reduces uptake of sucrose from the culture media, which leads to a repression of lateral root formation. Osmotic repression of lateral root formation in culture can be overcome by mutations that cause the cuticle of a plant's aerial tissues to become more permeable. Indeed, we report here that the previously described lateral root development2 mutant overcomes osmotic repression of lateral root formation because of a point mutation in Long Chain Acyl-CoA Synthetase2, a gene essential for cutin biosynthesis. Together, our findings (1) impact the interpretation of experiments that use Arabidopsis grown in culture to study root system architecture; (2) identify sucrose as an unexpected regulator of lateral root formation; (3) demonstrate mechanisms by which roots communicate information to aerial tissues and receive information in turn; and (4) provide insights into the regulatory pathways that allow plants to be developmentally plastic while preserving the essential balance between aboveground and belowground organs.

  10. Light is a positive regulator of strigolactone levels in tomato roots.

    PubMed

    Koltai, Hinanit; Cohen, Maja; Chesin, Ori; Mayzlish-Gati, Einav; Bécard, Guillaume; Puech, Virginie; Ben Dor, Bruria; Resnick, Natalie; Wininger, Smadar; Kapulnik, Yoram

    2011-11-01

    Strigolactones (SLs) or closely related molecules were recently identified as phytohormones, acting as long-distance branching factors that suppress growth of pre-formed axillary buds in the shoot. The SL signaling pathways and light appear to be connected, as SLs were shown to induce light-regulated pathways and to mimic light-adapted plant growth. However, it is not yet clear how light affects SL levels. Here, we examined the effect of different light intensities on SL levels in tomato roots. The results show that light intensity, above a certain threshold, is a positive regulator of SL levels and of Sl-CCD7 transcription; Sl-CCD7 is involved in SLs biosynthesis in tomato. Moreover, SL accumulation in plant roots is shown to be a time-dependent process. At least some of the similar effects of light and SLs on plant responses might result from a positive effect of light on SL levels.

  11. High-throughput two-dimensional root system phenotyping platform facilitates genetic analysis of root growth and development.

    PubMed

    Clark, Randy T; Famoso, Adam N; Zhao, Keyan; Shaff, Jon E; Craft, Eric J; Bustamante, Carlos D; McCouch, Susan R; Aneshansley, Daniel J; Kochian, Leon V

    2013-02-01

    High-throughput phenotyping of root systems requires a combination of specialized techniques and adaptable plant growth, root imaging and software tools. A custom phenotyping platform was designed to capture images of whole root systems, and novel software tools were developed to process and analyse these images. The platform and its components are adaptable to a wide range root phenotyping studies using diverse growth systems (hydroponics, paper pouches, gel and soil) involving several plant species, including, but not limited to, rice, maize, sorghum, tomato and Arabidopsis. The RootReader2D software tool is free and publicly available and was designed with both user-guided and automated features that increase flexibility and enhance efficiency when measuring root growth traits from specific roots or entire root systems during large-scale phenotyping studies. To demonstrate the unique capabilities and high-throughput capacity of this phenotyping platform for studying root systems, genome-wide association studies on rice (Oryza sativa) and maize (Zea mays) root growth were performed and root traits related to aluminium (Al) tolerance were analysed on the parents of the maize nested association mapping (NAM) population.

  12. Root morphological and proteomic responses to growth restriction in maize plants supplied with sufficient N.

    PubMed

    Yan, Huifeng; Li, Ke; Ding, Hong; Liao, Chengsong; Li, Xuexian; Yuan, Lixing; Li, Chunjian

    2011-07-01

    The primary objective of this study was to better understand how root morphological alteration stimulates N uptake in maize plants after root growth restriction, by investigating the changes in length and number of lateral roots, (15)NO(3)(-) influx, the expression level of the low-affinity Nitrate transporter ZmNrt1.1, and proteomic composition of primary roots. Maize seedlings were hydroponically cultured with three different types of root systems: an intact root system, embryonic roots only, or primary roots only. In spite of sufficient N supply, root growth restriction stimulated compensatory growth of remaining roots, as indicated by the increased lateral root number and root density. On the other hand, there was no significant difference in (15)NO(3)(-) influx between control and primary root plants; neither in ZmNrt1.1 expression levels in primary roots of different treatments. Our data suggested that increased N uptake by maize seedlings experiencing root growth restriction is attributed to root morphological adaptation, rather than explained by the variation in N uptake activity. Eight proteins were differentially accumulated in embryonic and primary root plants compared to control plants. These differentially accumulated proteins were closely related to signal transduction and increased root growth.

  13. Complex regulation of prolyl-4-hydroxylases impacts root hair expansion.

    PubMed

    Velasquez, Silvia M; Ricardi, Martiniano M; Poulsen, Christian Peter; Oikawa, Ai; Dilokpimol, Adiphol; Halim, Adnan; Mangano, Silvina; Denita Juarez, Silvina Paola; Marzol, Eliana; Salgado Salter, Juan D; Dorosz, Javier Gloazzo; Borassi, Cecilia; Möller, Svenning Rune; Buono, Rafael; Ohsawa, Yukiko; Matsuoka, Ken; Otegui, Marisa S; Scheller, Henrik V; Geshi, Naomi; Petersen, Bent Larsen; Iusem, Norberto D; Estevez, José M

    2015-05-01

    Root hairs are single cells that develop by tip growth, a process shared with pollen tubes, axons, and fungal hyphae. However, structural plant cell walls impose constraints to accomplish tip growth. In addition to polysaccharides, plant cell walls are composed of hydroxyproline-rich glycoproteins (HRGPs), which include several groups of O-glycoproteins, including extensins (EXTs). Proline hydroxylation, an early post-translational modification (PTM) of HRGPs catalyzed by prolyl 4-hydroxylases (P4Hs), defines their subsequent O-glycosylation sites. In this work, our genetic analyses prove that P4H5, and to a lesser extent P4H2 and P4H13, are pivotal for root hair tip growth. Second, we demonstrate that P4H5 has in vitro preferred specificity for EXT substrates rather than for other HRGPs. Third, by P4H promoter and protein swapping approaches, we show that P4H2 and P4H13 have interchangeable functions but cannot replace P4H5. These three P4Hs are shown to be targeted to the secretory pathway, where P4H5 forms dimers with P4H2 and P4H13. Finally, we explore the impact of deficient proline hydroxylation on the cell wall architecture. Taken together, our results support a model in which correct peptidyl-proline hydroxylation on EXTs, and possibly in other HRGPs, is required for proper cell wall self-assembly and hence root hair elongation in Arabidopsis thaliana.

  14. An assessment of the role of ethylene in mediating lettuce (Lactuca sativa) root growth at high temperatures.

    PubMed

    Qin, L; He, J; Lee, S K; Dodd, I C

    2007-01-01

    Growth of temperate lettuce (Lactuca sativa) plants aeroponically in tropical greenhouses under ambient root-zone temperatures (A-RZTs) exposes roots to temperatures of up to 40 degrees C during the middle of the day, and severely limits root and shoot growth. The role of ethylene in inhibiting growth was investigated with just-germinated (24-h-old) seedlings in vitro, and 10-d-old plants grown aeroponically. Compared with seedlings maintained at 20 degrees C, root elongation in vitro was inhibited by 39% and root diameter increased by 25% under a temperature regime (38 degrees C/24 degrees C for 7 h/17 h) that simulated A-RZT in the greenhouse. The effects on root elongation were partially alleviated by supplying the ethylene biosynthesis inhibitors aminooxyacetic acid (100-500 microM) or aminoisobutyric acid (5-100 microM) to the seedlings. Application of the ethylene precursor 1-aminocyclopropane-1-carboxylic acid to seedlings grown at 20 degrees C mimicked the high temperature effects on root elongation (1 microM) and root diameter (1 mM). Compared with plants grown at a constant 20 degrees C root-zone temperature, A-RZT plants showed decreased stomatal conductance, leaf relative water content, photosynthetic CO(2) assimilation, shoot and root biomass, total root length, the number of root tips, and root surface area, but increased average root diameter. Addition of 10 microM ACC to the nutrient solution of plants grown at a constant 20 degrees C root-zone temperature mimicked the effects of A-RZT on these parameters but did not influence relative water content. Addition of 30 microM aminoisobutyric acid or 100 microM aminooxyacetic acid to the nutrient solution of A-RZT plants increased stomatal conductance and relative water content and decreased average root diameter, but had no effect on other root parameters or root and shoot biomass or photosynthetic CO(2) assimilation. Although ethylene is important in regulating root morphology and elongation at A

  15. Recent Advances in Understanding the Molecular Mechanisms Regulating the Root System Response to Phosphate Deficiency in Arabidopsis

    PubMed Central

    Bouain, Nadia; Doumas, Patrick; Rouached, Hatem

    2016-01-01

    Phosphorus (P) is an essential macronutrient for plant growth and development. Inorganic phosphate (Pi) is the major form of P taken up from the soil by plant roots. It is well established that under Pi deficiency condition, plant roots undergo striking morphological changes; mainly a reduction in primary root length while increase in lateral root length as well as root hair length and density. This typical phenotypic change reflects complex interactions with other nutrients such as iron, and involves the activity of a large spectrum of plant hormones. Although, several key proteins involved in the regulation of root growth under Pi-deficiency have been identified in Arabidopsis, how plants adapt roots system architecture in response to Pi availability remains an open question. In the current post-genomic era, state of the art technologies like high-throughput phenotyping and sequencing platforms,“omics” methods, together with the widespread use of system biology and genome-wide association studies will help to elucidate the genetic architectures of root growth on different Pi regimes. It is clear that the large-scale characterization of molecular systems will improve our understanding of nutrient stress phenotype and biology. Herein, we summarize the recent advances and future directions towards a better understanding of Arabidopsis root developmental programs functional under Pi deficiency. Such a progress is necessary to devise strategies to improve the Pi use efficiency in plants that is an important issue for agriculture. PMID:27499680

  16. [Plant hormones, plant growth regulators].

    PubMed

    Végvári, György; Vidéki, Edina

    2014-06-29

    Plants seem to be rather defenceless, they are unable to do motion, have no nervous system or immune system unlike animals. Besides this, plants do have hormones, though these substances are produced not in glands. In view of their complexity they lagged behind animals, however, plant organisms show large scale integration in their structure and function. In higher plants, such as in animals, the intercellular communication is fulfilled through chemical messengers. These specific compounds in plants are called phytohormones, or in a wide sense, bioregulators. Even a small quantity of these endogenous organic compounds are able to regulate the operation, growth and development of higher plants, and keep the connection between cells, tissues and synergy between organs. Since they do not have nervous and immume systems, phytohormones play essential role in plants' life.

  17. Growth in Turface® clay permits root hair phenotyping along the entire crown root in cereal crops and demonstrates that root hair growth can extend well beyond the root hair zone.

    PubMed

    Goron, Travis L; Watts, Sophia; Shearer, Charles; Raizada, Manish N

    2015-04-12

    In cereal crops, root hairs are reported to function within the root hair zone to carry out important roles in nutrient and water absorption. Nevertheless, these single cells remain understudied due to the practical challenges of phenotyping these delicate structures in large cereal crops growing on soil or other growth systems. Here we present an alternative growth system for examining the root hairs of cereal crops: the use of coarse Turface® clay alongside fertigation. This system allowed for root hairs to be easily visualized along the entire lengths of crown roots in three different cereal crops (maize, wheat, and finger millet). Surprisingly, we observed that the root hairs in these crops continued to grow beyond the canonical root hair zone, with the most root hair growth occurring on older crown root segments. We suggest that the Turface® fertigation system may permit a better understanding of the changing dynamics of root hairs as they age in large plants, and may facilitate new avenues for crop improvement below ground. However, the relevance of this system to field conditions must be further evaluated in other crops.

  18. Root growth in response to nitrogen supply in Chinese maize hybrids released between 1973 and 2009.

    PubMed

    Wu, QiuPing; Chen, FanJun; Chen, YanLing; Yuan, LiXing; Zhang, FuSuo; Mi, GuoHua

    2011-07-01

    Root growth has a fundamental role in nitrogen (N) use efficiency. Nevertheless, little is known about how modern breeding progress has affected root growth and its responses to N supply. The root and shoot growth of a core set of 11 representative Chinese maize (Zea mays L.) hybrids released between 1973 and 2009 were investigated under high N (4 mmol L(-1), HN) and low N (0.04 mmol L(-1), LN) levels in a solution culture system. Compared with LN, HN treatment decreased root dry weight (RDW), the root: shoot ratio (R/S), and the relative growth rate for root dry weight (RGR(root)), but increased the total root length (TRL) and the total lateral root length (LRL). The total axial root length (ARL) per plant was reduced under HN, mostly in hybrids released before the 1990s. The number of seminal roots (SRN) was largely unaffected by different N levels. More recently released hybrids showed higher relative growth rates in the shoot under both HN and LN. However, the roots only showed increased RGR under HN treatment. Correspondingly, there was a positive linear relationship with the year of hybrid release for TRL, LRL and ARL under HN treatment. Together, these results suggest that while shoot growth of maize has improved, its root growth has only improved under high N conditions over the last 36 years of selective breeding in China. Improving root growth under LN conditions may be necessary to increase the N use efficiency of maize.

  19. Montane forest root growth and soil organic layer depth as potential factors stabilizing Cenozoic global change

    NASA Astrophysics Data System (ADS)

    Doughty, Christopher E.; Taylor, Lyla L.; Girardin, Cecile A. J.; Malhi, Yadvinder; Beerling, David J.

    2014-02-01

    Tree roots and their symbiotic fungal partners are believed to play a major role in regulating long-term global climate, but feedbacks between global temperature and biotic weathering have not yet been explored in detail. In situ field data from a 3000 m altitudinal transect in Peru show fine root growth decreases and organic layer depth increases with the cooler temperatures that prevail at increased altitude. We hypothesize that this observation suggests a negative feedback: as global temperatures rise, the soil organic layer will shrink, and more roots will grow in the mineral layer, thereby accelerating weathering and reducing atmospheric CO2. We examine this mechanism with a process-based biological weathering model and demonstrate that this negative feedback could have contributed to moderating long-term global Cenozoic climate during major Cenozoic CO2 changes linked to volcanic degassing and tectonic uplift events.

  20. The MADS transcription factor XAL2/AGL14 modulates auxin transport during Arabidopsis root development by regulating PIN expression

    PubMed Central

    Garay-Arroyo, Adriana; Ortiz-Moreno, Enrique; de la Paz Sánchez, María; Murphy, Angus S; García-Ponce, Berenice; Marsch-Martínez, Nayelli; de Folter, Stefan; Corvera-Poiré, Adriana; Jaimes-Miranda, Fabiola; Pacheco-Escobedo, Mario A; Dubrovsky, Joseph G; Pelaz, Soraya; Álvarez-Buylla, Elena R

    2013-01-01

    Elucidating molecular links between cell-fate regulatory networks and dynamic patterning modules is a key for understanding development. Auxin is important for plant patterning, particularly in roots, where it establishes positional information for cell-fate decisions. PIN genes encode plasma membrane proteins that serve as auxin efflux transporters; mutations in members of this gene family exhibit smaller roots with altered root meristems and stem-cell patterning. Direct regulators of PIN transcription have remained elusive. Here, we establish that a MADS-box gene (XAANTAL2, XAL2/AGL14) controls auxin transport via PIN transcriptional regulation during Arabidopsis root development; mutations in this gene exhibit altered stem-cell patterning, root meristem size, and root growth. XAL2 is necessary for normal shootward and rootward auxin transport, as well as for maintaining normal auxin distribution within the root. Furthermore, this MADS-domain transcription factor upregulates PIN1 and PIN4 by direct binding to regulatory regions and it is required for PIN4-dependent auxin response. In turn, XAL2 expression is regulated by auxin levels thus establishing a positive feedback loop between auxin levels and PIN regulation that is likely to be important for robust root patterning. PMID:24121311

  1. The Interaction between Rice ERF3 and WOX11 Promotes Crown Root Development by Regulating Gene Expression Involved in Cytokinin Signaling[OPEN

    PubMed Central

    Song, Yaling; Huang, Yulan

    2015-01-01

    Crown roots are the main components of the fibrous root system in rice (Oryza sativa). WOX11, a WUSCHEL-related homeobox gene specifically expressed in the emerging crown root meristem, is a key regulator in crown root development. However, the nature of WOX11 function in crown root development has remained elusive. Here, we identified a rice AP2/ERF protein, ERF3, which interacts with WOX11 and was expressed in crown root initials and during crown root growth. Functional analysis revealed that ERF3 was essential for crown root development and acts in auxin- and cytokinin-responsive gene expression. Downregulation of ERF3 in wox11 mutants produced a more severe root phenotype. Also, increased expression of ERF3 could partially complement wox11, indicating that the two genes functioned cooperatively to regulate crown root development. ERF3 and WOX11 shared a common target, the cytokinin-responsive gene RR2. The expression of ERF3 and WOX11 only partially overlapped, underlining a spatio-temporal control of RR2 expression and crown root development. Furthermore, ERF3-regulated RR2 expression was involved in crown root initiation, while the ERF3/WOX11 interaction likely repressed RR2 during crown root elongation. These results define a mechanism regulating gene expression involved in cytokinin signaling during different stages of crown root development in rice. PMID:26307379

  2. Growth and physiology of olive pioneer and fibrous roots exposed to soil moisture deficits.

    PubMed

    Polverigiani, S; McCormack, M L; Mueller, C W; Eissenstat, D M

    2011-11-01

    In woody plants, pioneer roots are the main roots used to expand the root system horizontally and vertically whereas fibrous 'feeder' roots are chiefly used in the absorption of water and nutrients. Because of their different roles, we expected newly emerged pioneer and fibrous roots to respond differently to restrictions in soil moisture. We hypothesized that fibrous roots would exhibit greater growth plasticity and greater physiological impairment from soil moisture deficits, especially under heterogeneous conditions. We compared the responses of fibrous and pioneer roots of olive seedlings (Olea europaea) to localized and uniform soil moisture deficits in transparent containers in the greenhouse. In comparison with uniformly wet conditions, uniformly dry conditions caused reduced shoot photosynthesis and reduced shoot growth, but no significant effect on root morphology, root respiration (measured in aerated buffer solution using excised roots) or electrolyte leakage as a function of root age. Under heterogeneous soil moisture conditions, root growth tended to preferentially occur in the moist sector, especially in the pioneer roots. In comparison with pioneer roots in the moist sector, pioneer roots in the dry sector had higher tissue density and higher suberin content, but no shift in root respiration, non-structural carbohydrates or electrolyte leakage. In contrast, fibrous roots in the dry sector exhibited evidence of impaired physiology in older (>38 days) roots compared with similar age fibrous roots in the moist sector. While we anticipated that, compared with pioneer roots, fibrous roots would be more sensitive to soil moisture deficits as expressed by higher electrolyte leakage, we did not expect the strong growth plasticity of pioneer roots under heterogeneous soil moisture conditions. Differentiating the responses of these two very different root types can improve our understanding of how different portions of the root system of woody plants cope with

  3. Tomato root growth, gravitropism, and lateral development: correlation with auxin transport

    NASA Technical Reports Server (NTRS)

    Muday, G. K.; Haworth, P.

    1994-01-01

    Tomato (Lycopersicon esculentum, Mill.) roots were analyzed during growth on agar plates. Growth of these roots was inhibited by the auxin transport inhibitors naphthylphthalamic acid (NPA) and semicarbazone derivative I (SCB-1). The effect of auxin transport inhibitors on root gravitropism was analyzed by measurement of the angle of gravitropic curvature after the roots were reoriented 90 degrees from the vertical. NPA and SCB-1 abolished both the response of these roots to gravity and the formation of lateral roots, with SCB-1 being the more effective at inhibition. Auxins also inhibited root growth. Both auxins tested has a slight effect on the gravity response, but this effect is probably indirect, since auxins reduced the growth rate. Auxins also stimulated lateral root growth at concentration where primary root growth was inhibited. When roots were treated with both IAA and NPA simultaneously, a cumulative inhibition of root growth was found. When both compounds were applied together, analysis of gravitropism and lateral root formation indicated that the dominant effect was exerted by auxin transport inhibitors. Together, these data suggest a model for the role of auxin transport in controlling both primary and lateral root growth.

  4. Cytohistological analysis of roots whose growth is affected by a 60-Hz electric field

    SciTech Connect

    Brulfert, A.; Miller, M.W.; Robertson, D.; Dooley, D.A.; Economou, P.

    1985-01-01

    Roots of Pisum sativum were exposed for 48 h to 60-Hz electric fields of 430 V/m in an aqueous inorganic growth medium. The growth in length of the exposed roots was 44% of that for control roots. Root tips were analyzed for mitotic index and cell cycle duration. Mature, differentiated root sections from tissue produced after electrode energization were analyzed for cell lengths and number of files. The major reason for the observation that exposed roots are shorter than control roots is that cell elongation in the former is greatly diminished relative to controls. 15 references, 1 figures, 4 tables.

  5. Proteomic Profiling of the Microsomal Root Fraction: Discrimination of Pisum sativum L. Cultivars and Identification of Putative Root Growth Markers

    PubMed Central

    Meisrimler, Claudia-Nicole; Wienkoop, Stefanie; Lüthje, Sabine

    2017-01-01

    Legumes are a large and economically important family, containing a variety of crop plants. Alongside different cereals, some fruits, and tropical roots, a number of leguminosae evolved for millennia as crops with human society. One of these legumes is Pisum sativum L., the common garden pea. In the past, breeding has been largely selective on improved above-ground organs. However, parameters, such as root-growth, which determines acquisition of nutrients and water, have largely been underestimated. Although the genome of P. sativum is still not fully sequenced, multiple proteomic studies have been published on a variety of physiological aspects in the last years. The presented work focused on the connection between root length and the influence of the microsomal root proteome of four different pea cultivars after five days of germination (cultivar Vroege, Girl from the Rhineland, Kelvedon Wonder, and Blauwschokker). In total, 60 proteins were identified to have significantly differential abundances in the four cultivars. Root growth of five-days old seedlings and their microsomal proteome revealed a similar separation pattern, suggesting that cultivar-specific root growth performance is explained by differential membrane and ribosomal protein levels. Hence, we reveal and discuss several putative root growth protein markers possibly playing a key role for improved primary root growth breeding strategies. PMID:28257117

  6. Plant-in-chip: Microfluidic system for studying root growth and pathogenic interactions in Arabidopsis

    NASA Astrophysics Data System (ADS)

    Parashar, Archana; Pandey, Santosh

    2011-06-01

    We report a microfluidic platform for the hydroponic growth of Arabidopsis plants with high-resolution visualization of root development and root-pathogen interactions. The platform comprises a set of parallel microchannels with individual input/output ports where 1-day old germinated seedlings are initially placed. Under optimum conditions, a root system grows in each microchannel and its images are recorded over a 198-h period. Different concentrations of plant growth media show different root growth characteristics. Later, the developed roots are inoculated with two plant pathogens (nematodes and zoospores) and their physicochemical interactions with the live root systems are observed.

  7. Tolerance to high soil temperature in foxtail millet (Setaria italica L.) is related to shoot and root growth and metabolism.

    PubMed

    Aidoo, Moses Kwame; Bdolach, Eyal; Fait, Aaron; Lazarovitch, Naftali; Rachmilevitch, Shimon

    2016-09-01

    Roots play important roles in regulating whole-plant carbon and water relations in response to extreme soil temperature. Three foxtail millet (Setaria italica L.) lines (448-Ames 21521, 463-P1391643 and 523-P1219619) were subjected to two different soil temperatures (28 and 38 °C). The gas exchange, chlorophyll fluorescence, root morphology and central metabolism of leaves and roots were studied at the grain-filling stage. High soil temperature (38 °C) significantly influenced the shoot transpiration, stomatal conductance, photosynthesis, root growth and metabolism of all lines. The root length and area were significantly reduced in lines 448 and 463 in response to the stress, while only a small non-specific reduction was observed in line 523 in response to the treatment. The shift of root metabolites in response to high soil temperature was also genotype specific. In response to high soil temperature, glutamate, proline and pyroglutamate were reduced in line 448, and alanine, aspartate, glycine, pyroglutamate, serine, threonine and valine were accumulated in line 463. In the roots of line 523, serine, threonine, valine, isomaltose, maltose, raffinose, malate and itaconate were accumulated. Root tolerance to high soil temperature was evident in line 523, in its roots growth potential, lower photosynthesis and stomatal conductance rates, and effective utilization and assimilation of membrane carbon and nitrogen, coupled with the accumulation of protective metabolites.

  8. Analysis of Arabidopsis thaliana root growth kinetics with high temporal and spatial resolution

    PubMed Central

    Yazdanbakhsh, Nima; Fisahn, Joachim

    2010-01-01

    Background Methods exist to quantify the distribution of growth rate over the root axis. However, non-destructive, high-throughput evaluations of total root elongation in controlled environments and the field are lacking in growth studies. A new imaging approach to analyse total root elongation is described. Scope High pixel resolution of the images enables the study of growth in short time intervals and provides high temporal resolution. Using the method described, total root elongation rates are calculated from the displacement of the root tip. Although the absolute root elongation rate changes in response to growth conditions, this set-up enables root growth of Arabidopsis wild-type seedlings to be followed for more than 1 month after germination. The method provides an easy approach to decipher root extension rate and much simpler calculations compared with other methods that use segmental growth to address this question. Conclusions The high temporal resolution allows small modifications of total root elongation growth to be revealed. Furthermore, with the options to investigate growth of various mutants in diverse growth conditions the present tool allows modulations in root growth kinetics due to different biotic and abiotic stimuli to be unravelled. Measurements performed on Arabidopsis thaliana wild-type (Col0) plants revealed rhythms superimposed on root elongation. Results obtained from the starchless mutant pgm, however, present a clearly modified pattern. As expected, deviation is strongest during the dark period. PMID:20421235

  9. Improving root-zone soil moisture estimations using dynamic root growth and crop phenology

    NASA Astrophysics Data System (ADS)

    Hashemian, Minoo; Ryu, Dongryeol; Crow, Wade T.; Kustas, William P.

    2015-12-01

    Water Energy Balance (WEB) Soil Vegetation Atmosphere Transfer (SVAT) modelling can be used to estimate soil moisture by forcing the model with observed data such as precipitation and solar radiation. Recently, an innovative approach that assimilates remotely sensed thermal infrared (TIR) observations into WEB-SVAT to improve the results has been proposed. However, the efficacy of the model-observation integration relies on the model's realistic representation of soil water processes. Here, we explore methods to improve the soil water processes of a simple WEB-SVAT model by adopting and incorporating an exponential root water uptake model with water stress compensation and establishing a more appropriate soil-biophysical linkage between root-zone moisture content, above-ground states and biophysical indices. The existing WEB-SVAT model is extended to a new Multi-layer WEB-SVAT with Dynamic Root distribution (MWSDR) that has five soil layers. Impacts of plant root depth variations, growth stages and phenological cycle of the vegetation on transpiration are considered in developing stages. Hydrometeorological and biogeophysical measurements collected from two experimental sites, one in Dookie, Victoria, Australia and the other in Ponca, Oklahoma, USA, are used to validate the new model. Results demonstrate that MWSDR provides improved soil moisture, transpiration and evaporation predictions which, in turn, can provide an improved physical basis for assimilating remotely sensed data into the model. Results also show the importance of having an adequate representation of vegetation-related transpiration process for an appropriate simulation of water transfer in a complicated system of soil, plants and atmosphere.

  10. Induction of hairy roots and characterization of peroxidase expression as a potential root growth marker in sesame.

    PubMed

    Chun, J-A; Lee, J-W; Yi, Y-B; Park, G-Y; Chung, C-H

    2009-01-01

    Using hypocotyl and cotyledon of sesame seedlings, hairy root cultures were established and cDNA coding for a peroxidase was cloned from the roots. The frequency of sesame hairy root formation was higher in hypocotyl (33.4%) than cotyledon (9.3%). Applicable levels of kanamycin and hygromycin as a selectable marker were 100 microg/mL and 30 microg/mL, respectively. The peroxidase cDNA showed relatively high sequence identity with and similarity to plant class III peroxidase family. The cDNA encoded polypeptide was identified with the presence of three sequence features: 1) the putative 4 disulfide bridges, 2) an ER-targeted signal sequence in the N-terminus, and 3) two triplets, NXS for glycosylation. A real-time RT-PCR exhibited an abrupt increase in the peroxidase transcription activity after 4-week cultures of the sesame hairy roots and its highest level in 6-week cultured hairy roots. In contrast, the growth pattern of sesame hairy roots showed a typical sigmoidal curve. The active hairy root growth began after 2-week culture and their stationary growth phase occurred after 5-week culture. These results suggested that the peroxidase expression patterns at its transcription level could be used a potential indicator signaling a message that there will be no longer active growth in hairy root cultures. The sesame peroxidase gene was differentially expressed in different tissues.

  11. How grow-and-switch gravitropism generates root coiling and root waving growth responses in Medicago truncatula

    PubMed Central

    Tan, Tzer Han; Silverberg, Jesse L.; Floss, Daniela S.; Harrison, Maria J.; Henley, Christopher L.; Cohen, Itai

    2015-01-01

    Experimental studies show that plant root morphologies can vary widely from straight gravity-aligned primary roots to fractal-like root architectures. However, the opaqueness of soil makes it difficult to observe how environmental factors modulate these patterns. Here, we combine a transparent hydrogel growth medium with a custom built 3D laser scanner to directly image the morphology of Medicago truncatula primary roots. In our experiments, root growth is obstructed by an inclined plane in the growth medium. As the tilt of this rigid barrier is varied, we find Medicago transitions between randomly directed root coiling, sinusoidal root waving, and normal gravity-aligned morphologies. Although these root phenotypes appear morphologically distinct, our analysis demonstrates the divisions are less well defined, and instead, can be viewed as a 2D biased random walk that seeks the path of steepest decent along the inclined plane. Features of this growth response are remarkably similar to the widely known run-and-tumble chemotactic behavior of Escherichia coli bacteria, where biased random walks are used as optimal strategies for nutrient uptake. PMID:26432881

  12. Plant growth regulators enhance gold uptake in Brassica juncea.

    PubMed

    Kulkarni, Manoj G; Stirk, Wendy A; Southway, Colin; Papenfus, Heino B; Swart, Pierre A; Lux, Alexander; Vaculík, Marek; Martinka, Michal; Van Staden, Johannes

    2013-01-01

    The use of plant growth regulators is well established and they are used in many fields of plant science for enhancing growth. Brassica juncea plants were treated with 2.5, 5.0 and 7.5 microM auxin indole-3-butyric acid (IBA), which promotes rooting. The IBA-treated plants were also sprayed with 100 microM gibberellic acid (GA3) and kinetin (Kin) to increase leaf-foliage. Gold (I) chloride (AuCl) was added to the growth medium of plants to achieve required gold concentration. The solubilizing agent ammonium thiocyanate (1 g kg(-1)) (commonly used in mining industries to solubilize gold) was added to the nutrient solution after six weeks of growth and, two weeks later, plants were harvested. Plant growth regulators improved shoot and root dry biomass of B. juncea plants. Inductively Coupled Plasma Optical Emission Spectrometry analysis showed the highest Au uptake for plants treated with 5.0 microM IBA. The average recovery of Au with this treatment was significantly greater than the control treatment by 45.8 mg kg(-1) (155.7%). The other IBA concentrations (2.5 and 7.5 microM) also showed a significant increase in Au uptake compared to the control plants by 14.7 mg kg(-1) (50%) and 42.5 mg kg(-1) (144.5%) respectively. A similar trend of Au accumulation was recorded in the roots of B. juncea plants. This study conducted in solution culture suggests that plant growth regulators can play a significant role in improving phytoextraction of Au.

  13. Spatial and directional variation of growth rates in Arabidopsis root apex: a modelling study.

    PubMed

    Nakielski, Jerzy; Lipowczan, Marcin

    2013-01-01

    Growth and cellular organization of the Arabidopsis root apex are investigated in various aspects, but still little is known about spatial and directional variation of growth rates in very apical part of the apex, especially in 3D. The present paper aims to fill this gap with the aid of a computer modelling based on the growth tensor method. The root apex with a typical shape and cellular pattern is considered. Previously, on the basis of two types of empirical data: the published velocity profile along the root axis and dimensions of cell packets formed in the lateral part of the root cap, the displacement velocity field for the root apex was determined. Here this field is adopted to calculate the linear growth rate in different points and directions. The results are interpreted taking principal growth directions into account. The root apex manifests a significant anisotropy of the linear growth rate. The directional preferences depend on a position within the root apex. In the root proper the rate in the periclinal direction predominates everywhere, while in the root cap the predominating direction varies with distance from the quiescent centre. The rhizodermis is distinguished from the neighbouring tissues (cortex, root cap) by relatively high contribution of the growth rate in the anticlinal direction. The degree of growth anisotropy calculated for planes defined by principal growth directions and exemplary cell walls may be as high as 25. The changes in the growth rate variation are modelled.

  14. Root growth dynamics linked to aboveground growth in walnuts (Juglans regia L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background and Aims: Examination of belowground plant responses to canopy and soil moisture manipulation is scant compared to that aboveground but needed to understand whole plant responses to environmental factors. Plasticity in the seasonal timing and vertical distribution of root growth in respon...

  15. The Garlic Allelochemical Diallyl Disulfide Affects Tomato Root Growth by Influencing Cell Division, Phytohormone Balance and Expansin Gene Expression

    PubMed Central

    Cheng, Fang; Cheng, Zhihui; Meng, Huanwen; Tang, Xiangwei

    2016-01-01

    Diallyl disulfide (DADS) is a volatile organosulfur compound derived from garlic (Allium sativum L.), and it is known as an allelochemical responsible for the strong allelopathic potential of garlic. The anticancer properties of DADS have been studied in experimental animals and various types of cancer cells, but to date, little is known about its mode of action as an allelochemical at the cytological level. The current research presents further studies on the effects of DADS on tomato (Solanum lycopersicum L.) seed germination, root growth, mitotic index, and cell size in root meristem, as well as the phytohormone levels and expression profile of auxin biosynthesis genes (FZYs), auxin transport genes (SlPINs), and expansin genes (EXPs) in tomato root. The results showed a biphasic, dose-dependent effect on tomato seed germination and root growth under different DADS concentrations. Lower concentrations (0.01–0.62 mM) of DADS significantly promoted root growth, whereas higher levels (6.20–20.67 mM) showed inhibitory effects. Cytological observations showed that the cell length of root meristem was increased and that the mitotic activity of meristematic cells in seedling root tips was enhanced at lower concentrations of DADS. In contrast, DADS at higher concentrations inhibited root growth by affecting both the length and division activity of meristematic cells. However, the cell width of the root meristem was not affected. Additionally, DADS increased the IAA and ZR contents of seedling roots in a dose-dependent manner. The influence on IAA content may be mediated by the up-regulation of FZYs and PINs. Further investigation into the underlying mechanism revealed that the expression levels of tomato EXPs were significantly affected by DADS. The expression levels of EXPB2 and beta-expansin precursor were increased after 3 d, and those of EXP1, EXPB3 and EXLB1 were increased after 5 d of DADS treatment (0.41 mM). This result suggests that tomato root growth may be

  16. [Impacts of root-zone hypoxia stress on muskmelon growth, its root respiratory metabolism, and antioxidative enzyme activities].

    PubMed

    Liu, Yi-Ling; Li, Tian-Lai; Sun, Zhou-Ping; Chen, Ya-Dong

    2010-06-01

    By using aeroponics culture system, this paper studied the impacts of root-zone hypoxia (10% O2 and 5% O2) stress on the plant growth, root respiratory metabolism, and antioxidative enzyme activities of muskmelon at its fruit development stage. Root-zone hypoxia stress inhibited the plant growth of muskmelon, resulting in the decrease of plant height, root length, and fresh and dry biomass. Comparing with the control (21% O2), hypoxia stress reduced the root respiration rate and malate dehydrogenase (MDH) activity significantly, and the impact of 5% O2 stress was more serious than that of 10% O2 stress. Under hypoxic conditions, the lactate dehydrogenase (LDH), alcohol dehydrogenase (ADH), pyruvate decarboxylase (PDC), superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) activities and the malondialdehyde (MDA) content were significantly higher than the control. The increment of antioxidative enzyme activities under 10% O2 stress was significantly higher than that under 5% O2 stress, while the MDA content was higher under 5% O2 stress than under 10% O2 stress, suggesting that when the root-zone oxygen concentration was below 10%, the aerobic respiration of muskmelon at its fruit development stage was obviously inhibited while the anaerobic respiration was accelerated, and the root antioxidative enzymes induced defense reaction. With the increasing duration of hypoxic stress, the lipid peroxidation would be aggravated, resulting in the damages on muskmelon roots, inhibition of plant growth, and decrease of fruit yield and quality.

  17. [Effects of drought stress on the root growth and development and physiological characteristics of peanut].

    PubMed

    Ding, Hong; Zhang, Zhi-Meng; Dai, Liang-Xiang; Kang, Tao; Ci, Dun-Wei; Song, Wen-Wu

    2013-06-01

    Taking two peanut varieties Huayu 17 and Tangke 8 as test objects, a soil column culture experiment was conducted in a rainproof tank to study the peanut root morphological development and physiological characteristics at late growth stages under moderate drought and well-watered conditions. Tanke 8 had more developed root system and higher yield and drought coefficient, while Huayu 17 had poorer root adaptability to drought stress. For the two varieties, their root length density and root biomass were mainly distributed in 0-40 cm soil layer, whereas their root traits differed in the same soil layer. The total root length, total root surface area, and total root volume of Huayu 17 at each growth stage were smaller under drought stress than under well-balanced water treatment, while these root characteristics of Tangke 8 under drought stress only decreased at flowering-pegging stage. Drought stress increased the root biomass, surface area, and volume of the two varieties in 20-40 cm soil layer, but decreased these root traits in the soil layers below 40 cm. Under drought stress, the root activity of the two varieties in the soil layers below 40 cm at pod filling stage decreased, and the decrement was larger for Huayu 17. The differences in the root system development and physiological characteristics of the two varieties at late growth stages under drought stress suggested that the root system of the two varieties had different water absorption and utilization under drought stress.

  18. Advancements in Root Growth Measurement Technologies and Observation Capabilities for Container-Grown Plants

    PubMed Central

    Judd, Lesley A.; Jackson, Brian E.; Fonteno, William C.

    2015-01-01

    The study, characterization, observation, and quantification of plant root growth and root systems (Rhizometrics) has been and remains an important area of research in all disciplines of plant science. In the horticultural industry, a large portion of the crops grown annually are grown in pot culture. Root growth is a critical component in overall plant performance during production in containers, and therefore it is important to understand the factors that influence and/or possible enhance it. Quantifying root growth has varied over the last several decades with each method of quantification changing in its reliability of measurement and variation among the results. Methods such as root drawings, pin boards, rhizotrons, and minirhizotrons initiated the aptitude to measure roots with field crops, and have been expanded to container-grown plants. However, many of the published research methods are monotonous and time-consuming. More recently, computer programs have increased in use as technology advances and measuring characteristics of root growth becomes easier. These programs are instrumental in analyzing various root growth characteristics, from root diameter and length of individual roots to branching angle and topological depth of the root architecture. This review delves into the expanding technologies involved with expertly measuring root growth of plants in containers, and the advantages and disadvantages that remain. PMID:27135334

  19. Advancements in Root Growth Measurement Technologies and Observation Capabilities for Container-Grown Plants.

    PubMed

    Judd, Lesley A; Jackson, Brian E; Fonteno, William C

    2015-07-03

    The study, characterization, observation, and quantification of plant root growth and root systems (Rhizometrics) has been and remains an important area of research in all disciplines of plant science. In the horticultural industry, a large portion of the crops grown annually are grown in pot culture. Root growth is a critical component in overall plant performance during production in containers, and therefore it is important to understand the factors that influence and/or possible enhance it. Quantifying root growth has varied over the last several decades with each method of quantification changing in its reliability of measurement and variation among the results. Methods such as root drawings, pin boards, rhizotrons, and minirhizotrons initiated the aptitude to measure roots with field crops, and have been expanded to container-grown plants. However, many of the published research methods are monotonous and time-consuming. More recently, computer programs have increased in use as technology advances and measuring characteristics of root growth becomes easier. These programs are instrumental in analyzing various root growth characteristics, from root diameter and length of individual roots to branching angle and topological depth of the root architecture. This review delves into the expanding technologies involved with expertly measuring root growth of plants in containers, and the advantages and disadvantages that remain.

  20. Nonfumigant Nematicides for Control of Root-knot Nematode to Protect Carrot Root Growth in Organic Soils.

    PubMed

    Vrain, T C; Belair, G; Martel, P

    1979-10-01

    Greenhouse tests were conducted to determine the effects of two kinds of Meloidogyne hapla inoculum on the growth and quality of carrot roots, and the protection afforded in each case by nonfumigant nematicides in organic soils. For all treatments the percentage of carrots damaged was greater with larvae alone as inoculum than with larvae and eggs, indicating that most of the damage occurs early during formation of the taproot. Fosthietan, aldicarb, and oxamyl at 4 and 6 kg ai/ha protected the roots during formation and gave a lasting control of root-knot nematode. There was some nematode damage to the roots with phenamiphos and carbofuran at 4 and 6 kg ai/ha. Isazophos, diflubenzuron, and fenvalerate gave little protection to carrot roots and did not control root-knot nematode effectively.

  1. Gibberellin Is Involved in Inhibition of Cucumber Growth and Nitrogen Uptake at Suboptimal Root-Zone Temperatures

    PubMed Central

    Zhang, Xiaocui; Yu, Xianchang

    2016-01-01

    Suboptimal temperature stress often causes heavy yield losses of vegetables by suppressing plant growth during winter and early spring. Gibberellin acid (GA) has been reported to be involved in plant growth and acquisition of mineral nutrients. However, no studies have evaluated the role of GA in the regulation of growth and nutrient acquisition by vegetables under conditions of suboptimal temperatures in greenhouse. Here, we investigated the roles of GA in the regulation of growth and nitrate acquisition of cucumber (Cucumis sativus L.) plants under conditions of short-term suboptimal root-zone temperatures (Tr). Exposure of cucumber seedlings to a Tr of 16°C led to a significant reduction in root growth, and this inhibitory effect was reversed by exogenous application of GA. Expression patterns of several genes encoding key enzymes in GA metabolism were altered by suboptimal Tr treatment, and endogenous GA concentrations in cucumber roots were significantly reduced by exposure of cucumber plants to 16°C Tr, suggesting that inhibition of root growth by suboptimal Tr may result from disruption of endogenous GA homeostasis. To further explore the mechanism underlying the GA-dependent cucumber growth under suboptimal Tr, we studied the effect of suboptimal Tr and GA on nitrate uptake, and found that exposure of cucumber seedlings to 16°C Tr led to a significant reduction in nitrate uptake rate, and exogenous application GA can alleviate the down-regulation by up regulating the expression of genes associated with nitrate uptake. Finally, we demonstrated that N accumulation in cucumber seedlings under suboptimal Tr conditions was improved by exogenous application of GA due probably to both enhanced root growth and nitrate absorption activity. These results indicate that a reduction in endogenous GA concentrations in roots due to down-regulation of GA biosynthesis at transcriptional level may be a key event to underpin the suboptimal Tr-induced inhibition of root

  2. Gibberellin Is Involved in Inhibition of Cucumber Growth and Nitrogen Uptake at Suboptimal Root-Zone Temperatures.

    PubMed

    Bai, Longqiang; Deng, Huihui; Zhang, Xiaocui; Yu, Xianchang; Li, Yansu

    2016-01-01

    Suboptimal temperature stress often causes heavy yield losses of vegetables by suppressing plant growth during winter and early spring. Gibberellin acid (GA) has been reported to be involved in plant growth and acquisition of mineral nutrients. However, no studies have evaluated the role of GA in the regulation of growth and nutrient acquisition by vegetables under conditions of suboptimal temperatures in greenhouse. Here, we investigated the roles of GA in the regulation of growth and nitrate acquisition of cucumber (Cucumis sativus L.) plants under conditions of short-term suboptimal root-zone temperatures (Tr). Exposure of cucumber seedlings to a Tr of 16°C led to a significant reduction in root growth, and this inhibitory effect was reversed by exogenous application of GA. Expression patterns of several genes encoding key enzymes in GA metabolism were altered by suboptimal Tr treatment, and endogenous GA concentrations in cucumber roots were significantly reduced by exposure of cucumber plants to 16°C Tr, suggesting that inhibition of root growth by suboptimal Tr may result from disruption of endogenous GA homeostasis. To further explore the mechanism underlying the GA-dependent cucumber growth under suboptimal Tr, we studied the effect of suboptimal Tr and GA on nitrate uptake, and found that exposure of cucumber seedlings to 16°C Tr led to a significant reduction in nitrate uptake rate, and exogenous application GA can alleviate the down-regulation by up regulating the expression of genes associated with nitrate uptake. Finally, we demonstrated that N accumulation in cucumber seedlings under suboptimal Tr conditions was improved by exogenous application of GA due probably to both enhanced root growth and nitrate absorption activity. These results indicate that a reduction in endogenous GA concentrations in roots due to down-regulation of GA biosynthesis at transcriptional level may be a key event to underpin the suboptimal Tr-induced inhibition of root

  3. [Tomato root exudates and their effect on the growth and antifungal activity of Pseudomonas strains].

    PubMed

    Kravchenko, L V; Azarova, T S; Leonova-Erko, E I; Shaposhnikov, A I; Makarova, N M; Tikhonovich, I A

    2003-01-01

    The study of the effect of the root exometabolites of tomato plants on the growth and antifungal activity of the plant growth-promoting Pseudomonas strains showed that the antifungal activity of plant growth-promoting rhizobacteria in the plant rhizosphere may depend on the sugar and organic acid composition of root exudates.

  4. Autonomous regulation of growth cone filopodia.

    PubMed

    Rehder, V; Cheng, S

    1998-02-05

    The fan-shaped array of filopodia is the first site of contact of a neuronal growth cone with molecules encountered during neuronal pathfinding. Filopodia are highly dynamic structures, and the "action radius" of a growth cone is strongly determined by the length and number of its filopodia. Since interactions of filopodia with instructive cues in the vicinity of the growth cone can have effects on growth cone morphology within minutes, it has to be assumed that a large part of the signaling underlying such morphological changes resides locally within the growth cone proper. In this study, we tested the hypothesis that two important growth cone parameters-namely, the length and number of its filopodia-are regulated autonomously in the growth cone. We previously demonstrated in identified neurons from the snail Helisoma trivolvis that filopodial length and number are regulated by intracellular calcium. Here, we investigated filopodial dynamics and their regulation by the second-messenger calcium in growth cones which were physically isolated from their parent neuron by neurite transection. Our results show that isolated growth cones have longer but fewer filopodia than growth cones attached to their parent cell. These isolated growth cones, however, are fully capable of undergoing calcium-induced cytoskeletal changes, suggesting that the machinery necessary to perform changes in filopodial length and number is fully intrinsic to the growth cone proper.

  5. Regulation of plant growth by cytokinin

    PubMed Central

    Werner, Tomáš; Motyka, Václav; Strnad, Miroslav; Schmülling, Thomas

    2001-01-01

    Cytokinins are a class of plant-specific hormones that play a central role during the cell cycle and influence numerous developmental programs. Because of the lack of biosynthetic and signaling mutants, the regulatory roles of cytokinins are not well understood. We genetically engineered cytokinin oxidase expression in transgenic tobacco plants to reduce their endogenous cytokinin content. Cytokinin-deficient plants developed stunted shoots with smaller apical meristems. The plastochrone was prolonged, and leaf cell production was only 3–4% that of wild type, indicating an absolute requirement of cytokinins for leaf growth. In contrast, root meristems of transgenic plants were enlarged and gave rise to faster growing and more branched roots. These results suggest that cytokinins are an important regulatory factor of plant meristem activity and morphogenesis, with opposing roles in shoots and roots. PMID:11504909

  6. Involvement of 14-3-3 protein GRF9 in root growth and response under polyethylene glycol-induced water stress.

    PubMed

    He, Yuchi; Wu, Jingjing; Lv, Bing; Li, Jia; Gao, Zhiping; Xu, Weifeng; Baluška, František; Shi, Weiming; Shaw, Pang Chui; Zhang, Jianhua

    2015-04-01

    Plant 14-3-3 proteins are phosphoserine-binding proteins that regulate a wide array of targets via direct protein-protein interactions. In this study, the role of a 14-3-3 protein, GRF9, in plant response to water stress was investigated. Arabidopsis wild-type, GRF9-deficient mutant (grf9), and GRF9-overexpressing (OE) plants were treated with polyethylene glycol (PEG) to induce mild water stress. OE plant showed better whole-plant growth and root growth than the wild type under normal or water stress conditions while the grf9 mutant showed worse growth. In OE plants, GRF9 favours the allocation of shoot carbon to roots. In addition, GRF9 enhanced proton extrusion, mainly in the root elongation zone and root hair zone, and maintained root growth under mild water stress. Grafting among the wild type, OE, and grf9 plants showed that when OE plants were used as the scion and GRF9 was overexpressed in the shoot, it enhanced sucrose transport into the root, and when OE plants were used as rootstock and GRF9 was overexpressed in the root, it caused more release of protons into the root surface under water stress. Taken together, the results suggest that under PEG-induced water stress, GRF9 is involved in allocating more carbon from the shoot to the root and enhancing proton secretion in the root growing zone, and this process is important for root response to mild water stress.

  7. Cyclic GMP is involved in auxin signalling during Arabidopsis root growth and development.

    PubMed

    Nan, Wenbin; Wang, Xiaomin; Yang, Lei; Hu, Yanfeng; Wei, Yuantao; Liang, Xiaolei; Mao, Lina; Bi, Yurong

    2014-04-01

    The second messenger cyclic guanosine 3',5'-monophosphate (cGMP) plays an important role in plant development and responses to stress. Recent studies indicated that cGMP is a secondary signal generated in response to auxin stimulation. cGMP also mediates auxin-induced adventitious root formation in mung bean and gravitropic bending in soybean. Nonetheless, the mechanism of the participation of cGMP in auxin signalling to affect these growth and developmental processes is largely unknown. In this report we provide evidence that indole-3-acetic acid (IAA) induces cGMP accumulation in Arabidopsis roots through modulation of the guanylate cyclase activity. Application of 8-bromo-cGMP (a cell-permeable cGMP derivative) increases auxin-dependent lateral root formation, root hair development, primary root growth, and gene expression. In contrast, inhibitors of endogenous cGMP synthesis block these processes induced by auxin. Data also showed that 8-bromo-cGMP enhances auxin-induced degradation of Aux/IAA protein modulated by the SCF(TIR1) ubiquitin-proteasome pathway. Furthermore, it was found that 8-bromo-cGMP is unable to directly influence the auxin-dependent TIR1-Aux/IAA interaction as evidenced by pull-down and yeast two-hybrid assays. In addition, we provide evidence for cGMP-mediated modulation of auxin signalling through cGMP-dependent protein kinase (PKG). Our results suggest that cGMP acts as a mediator to participate in auxin signalling and may govern this process by PKG activity via its influence on auxin-regulated gene expression and auxin/IAA degradation.

  8. Selenite-induced hormonal and signalling mechanisms during root growth of Arabidopsis thaliana L.

    PubMed

    Lehotai, Nóra; Kolbert, Zsuzsanna; Peto, Andrea; Feigl, Gábor; Ördög, Attila; Kumar, Devanand; Tari, Irma; Erdei, László

    2012-09-01

    Selenium excess can cause toxicity symptoms, e.g. root growth inhibition in non-hyperaccumulator plants such as Arabidopsis. Selenite-induced hormonal and signalling mechanisms in the course of development are poorly understood; therefore this study set out to investigate the possible hormonal and signalling processes using transgenic and mutant Arabidopsis plants. Significant alterations were observed in the root architecture of the selenite-treated plants, due to the loss of cell viability in the root apex. During mild selenite excess, the plants showed symptoms of the morphogenic response: primary root (PR) shortening and increased initiation of laterals, ensuring better nutrient and water uptake and stress acclimation. As well as lower meristem cell activity, the second reason for the Se-induced growth hindrance is the hormonal imbalance, since the in situ expression of the auxin-responsive DR5::GUS, and consequently the auxin levels, significantly decreased, while that of the cytokinin-inducible ARR5::GUS and the ethylene biosynthetic ACS8::GUS increased. It is assumed that auxin and ethylene might positively regulate selenium tolerance, since reduced levels of them resulted in sensitivity. Moreover, high cytokinin levels caused notable selenite tolerance. During early seedling development, nitric oxide (NO) contents decreased but hydrogen peroxide levels increased reflecting the antagonism between the two signal molecules during Se excess. High levels of NO in gsnor1-3, lead to selenite tolerance, while low NO production in nia1nia2 resulted in selenite sensitivity. Consequently, NO derived from the root nitrate reductase activity is responsible for the large-scale selenite tolerance in Arabidopsis.

  9. SIZ1 regulation of phosphate starvation-induced root architecture remodeling involves the control of auxin accumulation.

    PubMed

    Miura, Kenji; Lee, Jiyoung; Gong, Qingqiu; Ma, Shisong; Jin, Jing Bo; Yoo, Chan Yul; Miura, Tomoko; Sato, Aiko; Bohnert, Hans J; Hasegawa, Paul M

    2011-02-01

    Phosphate (Pi) limitation causes plants to modulate the architecture of their root systems to facilitate the acquisition of Pi. Previously, we reported that the Arabidopsis (Arabidopsis thaliana) SUMO E3 ligase SIZ1 regulates root architecture remodeling in response to Pi limitation; namely, the siz1 mutations cause the inhibition of primary root (PR) elongation and the promotion of lateral root (LR) formation. Here, we present evidence that SIZ1 is involved in the negative regulation of auxin patterning to modulate root system architecture in response to Pi starvation. The siz1 mutations caused greater PR growth inhibition and LR development of seedlings in response to Pi limitation. Similar root phenotypes occurred if Pi-deficient wild-type seedlings were supplemented with auxin. N-1-Naphthylphthalamic acid, an inhibitor of auxin efflux activity, reduced the Pi starvation-induced LR root formation of siz1 seedlings to a level equivalent to that seen in the wild type. Monitoring of the auxin-responsive reporter DR5::uidA indicated that auxin accumulates in PR tips at early stages of the Pi starvation response. Subsequently, DR5::uidA expression was observed in the LR primordia, which was associated with LR elongation. The time-sequential patterning of DR5::uidA expression occurred earlier in the roots of siz1 as compared with the wild type. In addition, microarray analysis revealed that several other auxin-responsive genes, including genes involved in cell wall loosening and biosynthesis, were up-regulated in siz1 relative to wild-type seedlings in response to Pi starvation. Together, these results suggest that SIZ1 negatively regulates Pi starvation-induced root architecture remodeling through the control of auxin patterning.

  10. Nitric Oxide-Mediated Maize Root Apex Responses to Nitrate are Regulated by Auxin and Strigolactones

    PubMed Central

    Manoli, Alessandro; Trevisan, Sara; Voigt, Boris; Yokawa, Ken; Baluška, František; Quaggiotti, Silvia

    2016-01-01

    Nitrate (NO3-) is a key element for crop production but its levels in agricultural soils are limited. Plants have developed mechanisms to cope with these NO3- fluctuations based on sensing nitrate at the root apex. Particularly, the transition zone (TZ) of root apex has been suggested as a signaling-response zone. This study dissects cellular and molecular mechanisms underlying NO3- resupply effects on primary root (PR) growth in maize, confirming nitric oxide (NO) as a putative modulator. Nitrate restoration induced PR elongation within the first 2 h, corresponding to a stimulation of cell elongation at the basal border of the TZ. Xyloglucans (XGs) immunolocalization together with Brefeldin A applications demonstrated that nitrate resupply induces XG accumulation. This effect was blocked by cPTIO (NO scavenger). Transcriptional analysis of ZmXET1 confirmed the stimulatory effect of nitrate on XGs accumulation in cells of the TZ. Immunolocalization analyses revealed a positive effect of nitrate resupply on auxin and PIN1 accumulation, but a transcriptional regulation of auxin biosynthesis/transport/signaling genes was excluded. Short-term nitrate treatment repressed the transcription of genes involved in strigolactones (SLs) biosynthesis and transport, mainly in the TZ. Enhancement of carotenoid cleavage dioxygenases (CCDs) transcription in presence of cPTIO indicated endogenous NO as a negative modulator of CCDs activity. Finally, treatment with the SLs-biosynthesis inhibitor (TIS108) restored the root growth in the nitrate-starved seedlings. Present report suggests that the NO-mediated root apex responses to nitrate are accomplished in cells of the TZ via integrative actions of auxin, NO and SLs. PMID:26834770

  11. Nitric Oxide-Mediated Maize Root Apex Responses to Nitrate are Regulated by Auxin and Strigolactones.

    PubMed

    Manoli, Alessandro; Trevisan, Sara; Voigt, Boris; Yokawa, Ken; Baluška, František; Quaggiotti, Silvia

    2015-01-01

    Nitrate (NO3 (-)) is a key element for crop production but its levels in agricultural soils are limited. Plants have developed mechanisms to cope with these NO3 (-) fluctuations based on sensing nitrate at the root apex. Particularly, the transition zone (TZ) of root apex has been suggested as a signaling-response zone. This study dissects cellular and molecular mechanisms underlying NO3 (-) resupply effects on primary root (PR) growth in maize, confirming nitric oxide (NO) as a putative modulator. Nitrate restoration induced PR elongation within the first 2 h, corresponding to a stimulation of cell elongation at the basal border of the TZ. Xyloglucans (XGs) immunolocalization together with Brefeldin A applications demonstrated that nitrate resupply induces XG accumulation. This effect was blocked by cPTIO (NO scavenger). Transcriptional analysis of ZmXET1 confirmed the stimulatory effect of nitrate on XGs accumulation in cells of the TZ. Immunolocalization analyses revealed a positive effect of nitrate resupply on auxin and PIN1 accumulation, but a transcriptional regulation of auxin biosynthesis/transport/signaling genes was excluded. Short-term nitrate treatment repressed the transcription of genes involved in strigolactones (SLs) biosynthesis and transport, mainly in the TZ. Enhancement of carotenoid cleavage dioxygenases (CCDs) transcription in presence of cPTIO indicated endogenous NO as a negative modulator of CCDs activity. Finally, treatment with the SLs-biosynthesis inhibitor (TIS108) restored the root growth in the nitrate-starved seedlings. Present report suggests that the NO-mediated root apex responses to nitrate are accomplished in cells of the TZ via integrative actions of auxin, NO and SLs.

  12. Influence of Merosesquiterpenoids from Marine Sponges on Seedling Root Growth of Agricultural Plants.

    PubMed

    Chaikina, Elena L; Utkina, Natalia K; Anisimov, Mikhail M

    2016-01-01

    The impact of the merosesquiterpenoids avarol (1), avarone (2), 18-methylaminoavarone (3), melemeleone A (4), isospongiaquinone (5), ilimaquinone (6), and smenoquinone (7), isolated from marine sponges of the Dictyoceratida order, was studied on the root growth of seedlings of buckwheat (Fagopyrumesculentum Moench), wheat (Triticumaestivum L.), soy (Glycine max (L.) Merr.), and barley (Hordeumvulgare L.). Compounds 2and 6 were effective for the root growth of wheat seedlings, compound 3 stimulated the root growth of seedlings of buckwheat and soy, compound 4 affected the roots of barley seedlings, and compound 5 stimulated the root growth of seedlings of buckwheat and barley. Compounds 1 and 7 showed no activity on the root growth of the seedlings of any of the studied plants. The stimulatory effect depends on the chemical structure of the compounds and the type of crop plant.

  13. ROS Regulation of Polar Growth in Plant Cells1[OPEN

    PubMed Central

    Mangano, Silvina; Juárez, Silvina Paola Denita

    2016-01-01

    Root hair cells and pollen tubes, like fungal hyphae, possess a typical tip or polar cell expansion with growth limited to the apical dome. Cell expansion needs to be carefully regulated to produce a correct shape and size. Polar cell growth is sustained by oscillatory feedback loops comprising three main components that together play an important role regulating this process. One of the main components are reactive oxygen species (ROS) that, together with calcium ions (Ca2+) and pH, sustain polar growth over time. Apoplastic ROS homeostasis controlled by NADPH oxidases as well as by secreted type III peroxidases has a great impact on cell wall properties during cell expansion. Polar growth needs to balance a focused secretion of new materials in an extending but still rigid cell wall in order to contain turgor pressure. In this review, we discuss the gaps in our understanding of how ROS impact on the oscillatory Ca2+ and pH signatures that, coordinately, allow root hair cells and pollen tubes to expand in a controlled manner to several hundred times their original size toward specific signals. PMID:27208283

  14. Gonads directly regulate growth in teleosts.

    PubMed

    Bhatta, Sandip; Iwai, Toshiharu; Miura, Chiemi; Higuchi, Masato; Shimizu-Yamaguchi, Sonoko; Fukada, Haruhisa; Miura, Takeshi

    2012-07-10

    In general, there is a relationship between growth and reproduction, and gonads are known to be important organs for growth, but direct evidence for their role is lacking. Here, using a fish model, we report direct evidence that gonads are endocrine organs equal to the pituitary in controlling body growth. Gonadal loss of function, gain of function, and rescue of growth were investigated in tilapia. Gonadectomy experiments were carried out in juvenile males and females. Gonadectomy significantly retarded growth compared with controls; however, this retardation was rescued by the implantation of extirpated gonads. Because gonads express growth hormone, it is possible that gonads control body growth through the secretion of growth hormone and/or other endocrine factors. We propose that gonads are integral players in the dynamic regulation of growth in teleosts.

  15. GABA signalling modulates plant growth by directly regulating the activity of plant-specific anion transporters.

    PubMed

    Ramesh, Sunita A; Tyerman, Stephen D; Xu, Bo; Bose, Jayakumar; Kaur, Satwinder; Conn, Vanessa; Domingos, Patricia; Ullah, Sana; Wege, Stefanie; Shabala, Sergey; Feijó, José A; Ryan, Peter R; Gilliham, Matthew; Gillham, Matthew

    2015-07-29

    The non-protein amino acid, gamma-aminobutyric acid (GABA) rapidly accumulates in plant tissues in response to biotic and abiotic stress, and regulates plant growth. Until now it was not known whether GABA exerts its effects in plants through the regulation of carbon metabolism or via an unidentified signalling pathway. Here, we demonstrate that anion flux through plant aluminium-activated malate transporter (ALMT) proteins is activated by anions and negatively regulated by GABA. Site-directed mutagenesis of selected amino acids within ALMT proteins abolishes GABA efficacy but does not alter other transport properties. GABA modulation of ALMT activity results in altered root growth and altered root tolerance to alkaline pH, acid pH and aluminium ions. We propose that GABA exerts its multiple physiological effects in plants via ALMT, including the regulation of pollen tube and root growth, and that GABA can finally be considered a legitimate signalling molecule in both the plant and animal kingdoms.

  16. [Effects of drip irrigation methods on the regulation between root and crown function of 'Cabernet Sauvignon' seedlings].

    PubMed

    Yu, Kun; Yu, Song-lin; Liu, Huai-feng; Zhao, Bao-long; Wang, Wen-jing

    2015-05-01

    The objective of this experiment was to study the effects of three irrigation methods, i.e., subsurface drip irrigation with a tank system (SDI) , plastic film mulched-drip irrigation (MDI), and conventional drip irrigation (DI) on the regulation between root and crown function of Vitis vinifera 'Cabernet Sauvignon' seedlings. The results showed that both the SDI and MDI systems promoted the growth of the grape seedlings compared with DI, with the SDI system promoting the root growth, and MDI system promoting the aboveground growth. Root area, root volume, and root activity and SOD enzyme activity in the SDI treatment were greater than those of MDI or DI treatment in the 20-60 cm soil layer. SDI treatment increased root penetration and physiological activity. Symptoms of drought stress appeared earlier in DI treatment than in either MDI or SDI treatment in the same watering schedule. Net photosynthetic rate (Pn) and stomatal conductance (g(s)) of leaves were higher in SDI and MDI treatments than in DI treatment. ΦPS II and qP at 12:00-14:00 were lower in the MDI treatment than in SDI treatment at 7 d after irrigation, suggesting that the degree of photoinhibition in the fluorescence process in MDI treatment was more than that in SDI treatment. The high biomass and physiological activity of roots in the 20-40 cm depth could increase both of total plant biomass and aboveground biomass. The regulation between root and crown function was better in SDI treatment than in MDI and DI treatments. Therefore, SDI could be used as an alternative technique of water-saving irrigation practices.

  17. Characterization of the growth and auxin physiology of roots of the tomato mutant, diageotropica

    NASA Technical Reports Server (NTRS)

    Muday, G. K.; Lomax, T. L.; Rayle, D. L.

    1995-01-01

    Roots of the tomato (Lycopersicon esculentum, Mill.) mutant (diageotropica (dgt) exhibit an altered phenotype. These roots are agravitropic and lack lateral roots. Relative to wild-type (VFN8) roots, dgt roots are less sensitive to growth inhibition by exogenously applied IAA and auxin transport inhibitors (phytotropins), and the roots exhibit a reduction in maximal growth inhibition in response to ethylene. However, IAA transport through roots, binding of the phytotropin, tritiated naphthylphthalamic acid ([3H]NPA), to root microsomal membranes, NPA-sensitive IAA uptake by root segments, and uptake of [3H]NPA into root segments are all similar in mutant and wild-type roots. We speculate that the reduced sensitivity of dgt root growth to auxin-transport inhibitors and ethylene is an indirect result of the reduction in sensitivity to auxin in this single gene, recessive mutant. We conclude that dgt roots, like dgt shoots, exhibit abnormalities indicating they have a defect associated with or affecting a primary site of auxin perception or action.

  18. Arabidopsis thaliana sku mutant seedlings show exaggerated surface-dependent alteration in root growth vector

    NASA Technical Reports Server (NTRS)

    Rutherford, R.; Masson, P. H.

    1996-01-01

    Roots of wild-type Arabidopsis thaliana seedlings in the Wassilewskija (WS) and Landsberg erecta (Ler) ecotypes often grow aslant on vertical agar surfaces. Slanted root growth always occurs to the right of the gravity vector when the root is viewed through the agar surface, and is not observed in the Columbia ecotype. Right-slanted root growth is surface-dependent and does not result directly from directional environmental stimuli or gradients in the plane of skewing. We have isolated two partially dominant mutations in WS (sku1 and sku2) that show an exaggerated right-slanting root-growth phenotype on agar surfaces. The right-slanting root-growth phenotype of wild-type and mutant roots is not the result of diagravitropism or of an alteration in root gravitropism. It is accompanied by a left-handed rotation of the root about its axis within the elongation zone, the rate of which positively correlates with the degree of right-slanted curvature. Our data suggest that the right-slanting root growth phenotype results from an endogenous structural asymmetry that expresses itself by a directional root-tip rotation.

  19. Hydrogen sulfide is a novel gasotransmitter with pivotal role in regulating lateral root formation in plants

    PubMed Central

    Li, Yan-Jun; Shi, Zhi-Qi; Gan, Li-Jun; Chen, Jian

    2014-01-01

    Hydrogen sulfide (H2S), the third gasotransmitter after nitric oxide (NO) and carbon monoxide (CO), is a critical neuromodulator in the pathogenesis of various diseases from neurodegenerative diseases to diabetes or heart failure. The crosstalk between NO and H2S has been well established in mammalian physiology. In planta, NO is demonstrated to regulate lateral root formation by acting downstream of auxin. The recent reports revealed that H2S is a novel inducer of lateral root (LR) formation by stimulating the expression of cell cycle regulatory genes (CCRGs), acting similarly with NO, CO, and IAA. Interestingly, during the initiation of lateral root primordia, IAA is a potent inducer of endogenous H2S and CO, which is produced by L-cysteine desulfhydrase (LCD) and heme oxygenase-1 (HO-1), respectively. The increasing evidences suggest that H2S-promoted LR growth is dependent on the endogenous production of CO. In addition, our results indicate that the H2S signaling in the regulation of LR formation can be associated to NO and Ca2+. In this addendum, we advanced a proposed schematic model for H2S-mediated signaling pathway of plant LR development. PMID:24832131

  20. SDG2-mediated H3K4 methylation is required for proper Arabidopsis root growth and development.

    PubMed

    Yao, Xiaozhen; Feng, Haiyang; Yu, Yu; Dong, Aiwu; Shen, Wen-Hui

    2013-01-01

    Trithorax group (TrxG) proteins are evolutionarily conserved in eukaryotes and play critical roles in transcriptional activation via deposition of histone H3 lysine 4 trimethylation (H3K4me3) in chromatin. Several Arabidopsis TrxG members have been characterized, and among them SET DOMAIN GROUP 2 (SDG2) has been shown to be necessary for global genome-wide H3K4me3 deposition. Although pleiotropic phenotypes have been uncovered in the sdg2 mutants, SDG2 function in the regulation of stem cell activity has remained largely unclear. Here, we investigate the sdg2 mutant root phenotype and demonstrate that SDG2 is required for primary root stem cell niche (SCN) maintenance as well as for lateral root SCN establishment. Loss of SDG2 results in drastically reduced H3K4me3 levels in root SCN and differentiated cells and causes the loss of auxin gradient maximum in the root quiescent centre. Elevated DNA damage is detected in the sdg2 mutant, suggesting that impaired genome integrity may also have challenged the stem cell activity. Genetic interaction analysis reveals that SDG2 and CHROMATIN ASSEMBLY FACTOR-1 act synergistically in root SCN and genome integrity maintenance but not in telomere length maintenance. We conclude that SDG2-mediated H3K4me3 plays a distinctive role in the regulation of chromatin structure and genome integrity, which are key features in pluripotency of stem cells and crucial for root growth and development.

  1. Ethylene-induced inhibition of root growth requires abscisic acid function in rice (Oryza sativa L.) seedlings.

    PubMed

    Ma, Biao; Yin, Cui-Cui; He, Si-Jie; Lu, Xiang; Zhang, Wan-Ke; Lu, Tie-Gang; Chen, Shou-Yi; Zhang, Jin-Song

    2014-10-01

    Ethylene and abscisic acid (ABA) have a complicated interplay in many developmental processes. Their interaction in rice is largely unclear. Here, we characterized a rice ethylene-response mutant mhz4, which exhibited reduced ethylene-response in roots but enhanced ethylene-response in coleoptiles of etiolated seedlings. MHZ4 was identified through map-based cloning and encoded a chloroplast-localized membrane protein homologous to Arabidopsis thaliana (Arabidopsis) ABA4, which is responsible for a branch of ABA biosynthesis. MHZ4 mutation reduced ABA level, but promoted ethylene production. Ethylene induced MHZ4 expression and promoted ABA accumulation in roots. MHZ4 overexpression resulted in enhanced and reduced ethylene response in roots and coleoptiles, respectively. In root, MHZ4-dependent ABA pathway acts at or downstream of ethylene receptors and positively regulates root ethylene response. This ethylene-ABA interaction mode is different from that reported in Arabidopsis, where ethylene-mediated root inhibition is independent of ABA function. In coleoptile, MHZ4-dependent ABA pathway acts at or upstream of OsEIN2 to negatively regulate coleoptile ethylene response, possibly by affecting OsEIN2 expression. At mature stage, mhz4 mutation affects branching and adventitious root formation on stem nodes of higher positions, as well as yield-related traits. Together, our findings reveal a novel mode of interplay between ethylene and ABA in control of rice growth and development.

  2. Structural Sterols Are Involved in Both the Initiation and Tip Growth of Root Hairs in Arabidopsis thaliana[W

    PubMed Central

    Ovečka, Miroslav; Berson, Tobias; Beck, Martina; Derksen, Jan; Šamaj, Jozef; Baluška, František; Lichtscheidl, Irene K.

    2010-01-01

    Structural sterols are abundant in the plasma membrane of root apex cells in Arabidopsis thaliana. They specifically accumulate in trichoblasts during the prebulging and bulge stages and show a polar accumulation in the tip during root hair elongation but are distributed evenly in mature root hairs. Thus, structural sterols may serve as a marker for root hair initiation and growth. In addition, they may predict branching events in mutants with branching root hairs. Structural sterols were detected using the sterol complexing fluorochrome filipin. Application of filipin caused a rapid, concentration-dependent decrease in tip growth. Filipin-complexed sterols accumulated in globular structures that fused to larger FM4-64–positive aggregates in the tip, so-called filipin-induced apical compartments, which were closely associated with the plasma membrane. The plasma membrane appeared malformed and the cytoarchitecture of the tip zone was affected. Trans-Golgi network/early endosomal compartments containing molecular markers, such as small Rab GTPase RabA1d and SNARE Wave line 13 (VTI12), locally accumulated in these filipin-induced apical compartments, while late endosomes, endoplasmic reticulum, mitochondria, plastids, and cytosol were excluded from them. These data suggest that the local distribution and apical accumulation of structural sterols may regulate vesicular trafficking and plasma membrane properties during both initiation and tip growth of root hairs in Arabidopsis. PMID:20841426

  3. Tree growth and management in Ugandan agroforestry systems: effects of root pruning on tree growth and crop yield.

    PubMed

    Wajja-Musukwe, Tellie-Nelson; Wilson, Julia; Sprent, Janet I; Ong, Chin K; Deans, J Douglas; Okorio, John

    2008-02-01

    Tree root pruning is a potential tool for managing belowground competition when trees and crops are grown together in agroforestry systems. We investigated the effects of tree root pruning on shoot growth and root distribution of Alnus acuminata (H.B. & K.), Casuarina equisetifolia L., Grevillea robusta A. Cunn. ex R. Br., Maesopsis eminii Engl. and Markhamia lutea (Benth.) K. Schum. and on yield of adjacent crops in sub-humid Uganda. The trees were 3 years old at the commencement of the study, and most species were competing strongly with crops. Tree roots were pruned 41 months after planting by cutting and back-filling a trench to a depth of 0.3 m, at a distance of 0.3 m from the trees, on one side of the tree row. The trench was reopened and roots recut at 50 and 62 months after planting. We assessed the effects on tree growth and root distribution over a 3 year period, and crop yield after the third root pruning at 62 months. Overall, root pruning had only a slight effect on aboveground tree growth: height growth was unaffected and diameter growth was reduced by only 4%. A substantial amount of root regrowth was observed by 11 months after pruning. Tree species varied in the number and distribution of roots, and C. equisetifolia and M. lutea had considerably more roots per unit of trunk volume than the other species, especially in the surface soil layers. Casuarina equisetifolia and M. eminii were the tree species most competitive with crops and G. robusta and M. lutea the least competitive. Crop yield data provided strong evidence of the redistribution of root activity following root pruning, with competition increasing on the unpruned side of tree rows. Thus, one-sided root pruning will be useful in only a few circumstances.

  4. A plant U-box protein, PUB4, regulates asymmetric cell division and cell proliferation in the root meristem.

    PubMed

    Kinoshita, Atsuko; ten Hove, Colette A; Tabata, Ryo; Yamada, Masashi; Shimizu, Noriko; Ishida, Takashi; Yamaguchi, Katsushi; Shigenobu, Shuji; Takebayashi, Yumiko; Iuchi, Satoshi; Kobayashi, Masatomo; Kurata, Tetsuya; Wada, Takuji; Seo, Mitsunori; Hasebe, Mitsuyasu; Blilou, Ikram; Fukuda, Hiroo; Scheres, Ben; Heidstra, Renze; Kamiya, Yuji; Sawa, Shinichiro

    2015-02-01

    The root meristem (RM) is a fundamental structure that is responsible for postembryonic root growth. The RM contains the quiescent center (QC), stem cells and frequently dividing meristematic cells, in which the timing and the frequency of cell division are tightly regulated. In Arabidopsis thaliana, several gain-of-function analyses have demonstrated that peptide ligands of the Clavata3 (CLV3)/embryo surrounding region-related (CLE) family are important for maintaining RM size. Here, we demonstrate that a plant U-box E3 ubiquitin ligase, PUB4, is a novel downstream component of CLV3/CLE signaling in the RM. Mutations in PUB4 reduced the inhibitory effect of exogenous CLV3/CLE peptide on root cell proliferation and columella stem cell maintenance. Moreover, pub4 mutants grown without exogenous CLV3/CLE peptide exhibited characteristic phenotypes in the RM, such as enhanced root growth, increased number of cortex/endodermis stem cells and decreased number of columella layers. Our phenotypic and gene expression analyses indicated that PUB4 promotes expression of a cell cycle regulatory gene, CYCD6;1, and regulates formative periclinal asymmetric cell divisions in endodermis and cortex/endodermis initial daughters. These data suggest that PUB4 functions as a global regulator of cell proliferation and the timing of asymmetric cell division that are important for final root architecture.

  5. Effects of water and nutrient availability on fine root growth in eastern Amazonian forest regrowth, Brazil.

    PubMed

    Lima, Tâmara Thaiz Santana; Miranda, Izildinha Souza; Vasconcelos, Steel Silva

    2010-08-01

    *Fine root dynamics is widely recognized as an important biogeochemical process, but there are few data on fine root growth and its response to soil resource availability, especially for tropical forests. *We evaluated the response of fine root dynamics to altered availability of soil water and nutrients in a 20-yr-old forest regrowth in eastern Amazonia. In one experiment the dry season reduction in soil moisture was alleviated by irrigation. In the other experiment, nutrient supply was reduced by litter removal. We used the ingrowth core technique to measure fine root mass growth, length growth, mortality and specific root length. *Dry-season irrigation had no significant effect on mass and length of live and dead roots, whereas litter removal reduced mass and length of live roots. For both irrigation and litter removal experiments, root growth was significantly greater in the dry season than in the wet season. *Increased root growth was associated with decreased soil water availability. However, root growth did not increase in response to nutrient reduction in litter removal plots. Overall, our results suggest that belowground allocation may differ according to the type of soil resource limitation.

  6. Regulation of muscle growth in neonates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This review reports recent findings on the multiple factors that regulate skeletal muscle growth in neonates. Skeletal muscle is the fastest growing protein mass in neonates. The high rate of neonatal muscle growth is due to accelerated rates of protein synthesis accompanied by the rapid accumulatio...

  7. Enhancing cytokinin synthesis by overexpressing ipt alleviated drought inhibition of root growth through activating ROS-scavenging systems in Agrostis stolonifera

    PubMed Central

    Xu, Yi; Burgess, Patrick; Zhang, Xunzhong; Huang, Bingru

    2016-01-01

    Drought stress limits root growth and inhibits cytokinin (CK) production. Increases in CK production through overexpression of isopentenyltransferase (ipt) alleviate drought damages to promote root growth. The objective of this study was to investigate whether CK-regulated root growth was involved in the alteration of reactive oxygen species (ROS) production and ROS scavenging capacity under drought stress. Wild-type (WT) creeping bentgrass (Agrostis stolonifera L. ‘Penncross’) and a transgenic line (S41) overexpressing ipt ligated to a senescence-activated promoter (SAG12) were exposed to drought stress for 21 d in growth chambers. SAG12-ipt transgenic S41 developed a more extensive root system under drought stress compared to the WT. Root physiological analysis (electrolyte leakage and lipid peroxidation) showed that S41 roots exhibited less cellular damage compared to the WT under drought stress. Roots of SAG12-ipt transgenic S41 had significantly higher endogenous CK content than the WT roots under drought stress. ROS (hydrogen peroxide and superoxide) content was significantly lower and content of total and free ascorbate was significantly higher in S41 roots compared to the WT roots under drought stress. Enzymatic assays and transcript abundance analysis showed that superoxide dismutase, catalase, peroxidase, and dehydroascorbate reductase were significantly higher in S41 roots compared to the WT roots under drought stress. S41 roots also maintained significantly higher alternative respiration rates compared to the WT under drought stress. The improved root growth of transgenic creeping bentgrass may be facilitated by CK-enhanced ROS scavenging through antioxidant accumulation and activation of antioxidant enzymes, as well as higher alternative respiration rates when soil water is limited. PMID:26889010

  8. Enhancing cytokinin synthesis by overexpressing ipt alleviated drought inhibition of root growth through activating ROS-scavenging systems in Agrostis stolonifera.

    PubMed

    Xu, Yi; Burgess, Patrick; Zhang, Xunzhong; Huang, Bingru

    2016-03-01

    Drought stress limits root growth and inhibits cytokinin (CK) production. Increases in CK production through overexpression of isopentenyltransferase (ipt) alleviate drought damages to promote root growth. The objective of this study was to investigate whether CK-regulated root growth was involved in the alteration of reactive oxygen species (ROS) production and ROS scavenging capacity under drought stress. Wild-type (WT) creeping bentgrass (Agrostis stolonifera L. 'Penncross') and a transgenic line (S41) overexpressing ipt ligated to a senescence-activated promoter (SAG12) were exposed to drought stress for 21 d in growth chambers. SAG12-ipt transgenic S41 developed a more extensive root system under drought stress compared to the WT. Root physiological analysis (electrolyte leakage and lipid peroxidation) showed that S41 roots exhibited less cellular damage compared to the WT under drought stress. Roots of SAG12-ipt transgenic S41 had significantly higher endogenous CK content than the WT roots under drought stress. ROS (hydrogen peroxide and superoxide) content was significantly lower and content of total and free ascorbate was significantly higher in S41 roots compared to the WT roots under drought stress. Enzymatic assays and transcript abundance analysis showed that superoxide dismutase, catalase, peroxidase, and dehydroascorbate reductase were significantly higher in S41 roots compared to the WT roots under drought stress. S41 roots also maintained significantly higher alternative respiration rates compared to the WT under drought stress. The improved root growth of transgenic creeping bentgrass may be facilitated by CK-enhanced ROS scavenging through antioxidant accumulation and activation of antioxidant enzymes, as well as higher alternative respiration rates when soil water is limited.

  9. Time-lapse fluorescence imaging of Arabidopsis root growth with rapid manipulation of the root environment using the RootChip.

    PubMed

    Grossmann, Guido; Meier, Matthias; Cartwright, Heather N; Sosso, Davide; Quake, Stephen R; Ehrhardt, David W; Frommer, Wolf B

    2012-07-07

    The root functions as the physical anchor of the plant and is the organ responsible for uptake of water and mineral nutrients such as nitrogen, phosphorus, sulfate and trace elements that plants acquire from the soil. If we want to develop sustainable approaches to producing high crop yield, we need to better understand how the root develops, takes up a wide spectrum of nutrients, and interacts with symbiotic and pathogenic organisms. To accomplish these goals, we need to be able to explore roots in microscopic detail over time periods ranging from minutes to days. We developed the RootChip, a polydimethylsiloxane (PDMS)- based microfluidic device, which allows us to grow and image roots from Arabidopsis seedlings while avoiding any physical stress to roots during preparation for imaging(1) (Figure 1). The device contains a bifurcated channel structure featuring micromechanical valves to guide the fluid flow from solution inlets to each of the eight observation chambers(2). This perfusion system allows the root microenvironment to be controlled and modified with precision and speed. The volume of the chambers is approximately 400 nl, thus requiring only minimal amounts of test solution. Here we provide a detailed protocol for studying root biology on the RootChip using imaging-based approaches with real time resolution. Roots can be analyzed over several days using time lapse microscopy. Roots can be perfused with nutrient solutions or inhibitors, and up to eight seedlings can be analyzed in parallel. This system has the potential for a wide range of applications, including analysis of root growth in the presence or absence of chemicals, fluorescence-based analysis of gene expression, and the analysis of biosensors, e.g. FRET nanosensors(3).

  10. Chemical Growth Regulators for Guayule Plants

    NASA Technical Reports Server (NTRS)

    Dastoor, M. N.; Schubert, W. W.; Petersen, G. R.

    1982-01-01

    Test Tubes containing Guayule - tissue cultures were used in experiments to test effects of chemical-growth regulators. The shoots grew in response to addition of 2-(3,4-dichlorophenoxy)-triethylamine (triethylamine (TEA) derivative) to agar medium. Preliminary results indicate that a class of compounds that promotes growth in soil may also promote growth in a culture medium. Further experiments are needed to define the effect of the TEA derivative.

  11. Early Events in the Life of Apple Roots: Variation in Root Growth Rate is Linked to Mycorrhizal and Nonmycorrhizal Fungal Colonization

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A study was conducted to characterize early events of mycorrhizal and nonmycorrhizal fungal colonization in newly-emerging roots of mature apple (Malus domestica) trees and to determine the relationship to fine root growth rate and development. New roots were traced on root windows to measure growt...

  12. Touch and gravitropic set-point angle interact to modulate gravitropic growth in roots

    NASA Technical Reports Server (NTRS)

    Massa, G. D.; Gilroy, S.

    2003-01-01

    Plant roots must sense and respond to a variety of environmental stimuli as they grow through the soil. Touch and gravity represent two of the mechanical signals that roots must integrate to elicit the appropriate root growth patterns and root system architecture. Obstacles such as rocks will impede the general downwardly directed gravitropic growth of the root system and so these soil features must be sensed and this information processed for an appropriate alteration in gravitropic growth to allow the root to avoid the obstruction. We show that primary and lateral roots of Arabidopsis do appear to sense and respond to mechanical barriers placed in their path of growth in a qualitatively similar fashion. Both types of roots exhibited a differential growth response upon contacting the obstacle that directed the main axis of elongation parallel to the barrier. This growth habit was maintained until the obstacle was circumvented, at which point normal gravitropic growth was resumed. Thus, the gravitational set-point angle of the primary and lateral roots prior to encountering the barrier were 95 degrees and 136 degrees respectively and after growing off the end of the obstacle identical set-point angles were reinstated. However, whilst tracking across the barrier, quantitative differences in response were observed between these two classes of roots. The root tip of the primary root maintained an angle of 136 degrees to the horizontal as it traversed the barrier whereas the lateral roots adopted an angle of 154 degrees. Thus, this root tip angle appeared dependent on the gravitropic set-point angle of the root type with the difference in tracking angle quantitatively reflecting differences in initial set-point angle. Concave and convex barriers were also used to analyze the response of the root to tracking along a continuously varying surface. The roots maintained the a fairly fixed angle to gravity on the curved surface implying a constant resetting of this tip angle

  13. Ethylene responses in rice roots and coleoptiles are differentially regulated by a carotenoid isomerase-mediated abscisic acid pathway.

    PubMed

    Yin, Cui-Cui; Ma, Biao; Collinge, Derek Phillip; Pogson, Barry James; He, Si-Jie; Xiong, Qing; Duan, Kai-Xuan; Chen, Hui; Yang, Chao; Lu, Xiang; Wang, Yi-Qin; Zhang, Wan-Ke; Chu, Cheng-Cai; Sun, Xiao-Hong; Fang, Shuang; Chu, Jin-Fang; Lu, Tie-Gang; Chen, Shou-Yi; Zhang, Jin-Song

    2015-04-01

    Ethylene and abscisic acid (ABA) act synergistically or antagonistically to regulate plant growth and development. ABA is derived from the carotenoid biosynthesis pathway. Here, we analyzed the interplay among ethylene, carotenoid biogenesis, and ABA in rice (Oryza sativa) using the rice ethylene response mutant mhz5, which displays a reduced ethylene response in roots but an enhanced ethylene response in coleoptiles. We found that MHZ5 encodes a carotenoid isomerase and that the mutation in mhz5 blocks carotenoid biosynthesis, reduces ABA accumulation, and promotes ethylene production in etiolated seedlings. ABA can largely rescue the ethylene response of the mhz5 mutant. Ethylene induces MHZ5 expression, the production of neoxanthin, an ABA biosynthesis precursor, and ABA accumulation in roots. MHZ5 overexpression results in enhanced ethylene sensitivity in roots and reduced ethylene sensitivity in coleoptiles. Mutation or overexpression of MHZ5 also alters the expression of ethylene-responsive genes. Genetic studies revealed that the MHZ5-mediated ABA pathway acts downstream of ethylene signaling to inhibit root growth. The MHZ5-mediated ABA pathway likely acts upstream but negatively regulates ethylene signaling to control coleoptile growth. Our study reveals novel interactions among ethylene, carotenogenesis, and ABA and provides insight into improvements in agronomic traits and adaptive growth through the manipulation of these pathways in rice.

  14. Reduced expression of the SHORT-ROOT gene increases the rates of growth and development in hybrid poplar and Arabidopsis.

    PubMed

    Wang, Jiehua; Andersson-Gunnerås, Sara; Gaboreanu, Ioana; Hertzberg, Magnus; Tucker, Matthew R; Zheng, Bo; Leśniewska, Joanna; Mellerowicz, Ewa J; Laux, Thomas; Sandberg, Göran; Jones, Brian

    2011-01-01

    SHORT-ROOT (SHR) is a well characterized regulator of cell division and cell fate determination in the Arabidopsis primary root. However, much less is known about the functions of SHR in the aerial parts of the plant. In this work, we cloned SHR gene from Populus trichocarpa (PtSHR1) as an AtSHR ortholog and down-regulated its expression in hybrid poplar (Populus tremula×P. tremuloides Michx-clone T89) in order to determine its physiological functions in shoot development. Sharing a 90% similarity to AtSHR at amino acid level, PtSHR1 was able to complement the Arabidopsis shr mutant. Down regulation of PtSHR1 led to a strong enhancement of primary (height) and secondary (girth) growth rates in the transgenic poplars. A similar approach in Arabidopsis showed a comparable accelerated growth and development phenotype. Our results suggest that the response to SHR could be dose-dependent and that a partial down-regulation of SHR could lead to enhanced meristem activity and a coordinated acceleration of plant growth in woody species. Therefore, SHR functions in plant growth and development as a regulator of cell division and meristem activity not only in the roots but also in the shoots. Reducing SHR expression in transgenic poplar was shown to lead to significant increases in primary and secondary growth rates. Given the current interest in bioenergy crops, SHR has a broader role as a key regulator of whole plant growth and development and SHR suppression has considerable potential for accelerating biomass accumulation in a variety of species.

  15. Reduced Expression of the SHORT-ROOT Gene Increases the Rates of Growth and Development in Hybrid Poplar and Arabidopsis

    PubMed Central

    Wang, Jiehua; Andersson-Gunnerås, Sara; Gaboreanu, Ioana; Hertzberg, Magnus; Tucker, Matthew R.; Zheng, Bo; Leśniewska, Joanna; Mellerowicz, Ewa J.; Laux, Thomas; Sandberg, Göran; Jones, Brian

    2011-01-01

    SHORT-ROOT (SHR) is a well characterized regulator of cell division and cell fate determination in the Arabidopsis primary root. However, much less is known about the functions of SHR in the aerial parts of the plant. In this work, we cloned SHR gene from Populus trichocarpa (PtSHR1) as an AtSHR ortholog and down-regulated its expression in hybrid poplar (Populus tremula×P. tremuloides Michx-clone T89) in order to determine its physiological functions in shoot development. Sharing a 90% similarity to AtSHR at amino acid level, PtSHR1 was able to complement the Arabidopsis shr mutant. Down regulation of PtSHR1 led to a strong enhancement of primary (height) and secondary (girth) growth rates in the transgenic poplars. A similar approach in Arabidopsis showed a comparable accelerated growth and development phenotype. Our results suggest that the response to SHR could be dose-dependent and that a partial down-regulation of SHR could lead to enhanced meristem activity and a coordinated acceleration of plant growth in woody species. Therefore, SHR functions in plant growth and development as a regulator of cell division and meristem activity not only in the roots but also in the shoots. Reducing SHR expression in transgenic poplar was shown to lead to significant increases in primary and secondary growth rates. Given the current interest in bioenergy crops, SHR has a broader role as a key regulator of whole plant growth and development and SHR suppression has considerable potential for accelerating biomass accumulation in a variety of species. PMID:22194939

  16. Root cooling strongly affects diel leaf growth dynamics, water and carbohydrate relations in Ricinus communis.

    PubMed

    Poiré, Richard; Schneider, Heike; Thorpe, Michael R; Kuhn, Arnd J; Schurr, Ulrich; Walter, Achim

    2010-03-01

    In laboratory and greenhouse experiments with potted plants, shoots and roots are exposed to temperature regimes throughout a 24 h (diel) cycle that can differ strongly from the regime under which these plants have evolved. In the field, roots are often exposed to lower temperatures than shoots. When the root-zone temperature in Ricinus communis was decreased below a threshold value, leaf growth occurred preferentially at night and was strongly inhibited during the day. Overall, leaf expansion, shoot biomass growth, root elongation and ramification decreased rapidly, carbon fluxes from shoot to root were diminished and carbohydrate contents of both root and shoot increased. Further, transpiration rate was not affected, yet hydrostatic tensions in shoot xylem increased. When root temperature was increased again, xylem tension reduced, leaf growth recovered rapidly, carbon fluxes from shoot to root increased, and carbohydrate pools were depleted. We hypothesize that the decreased uptake of water in cool roots diminishes the growth potential of the entire plant - especially diurnally, when the growing leaf loses water via transpiration. As a consequence, leaf growth and metabolite concentrations can vary enormously, depending on root-zone temperature and its heterogeneity inside pots.

  17. Overexpressing the ANR1 MADS-box gene in transgenic plants provides new insights into its role in the nitrate regulation of root development.

    PubMed

    Gan, Yinbo; Bernreiter, Andreas; Filleur, Sophie; Abram, Beverley; Forde, Brian G

    2012-06-01

    The expression of the ANR1 MADS-box gene was manipulated in transgenic plants to investigate its role in the NO(3)(-)-dependent regulation of root development in Arabidopsis thaliana. Constitutive overexpression of ANR1 in roots, achieved using GAL4 enhancer trap lines, resulted in more rapid early seedling development, increased lengths and numbers of lateral roots and increased shoot fresh weight. Based on results obtained with five different enhancer trap lines, the overexpression of ANR1 in the lateral root tips appears to be more important for this phenotype than its level of expression in the developing lateral root primordia. Dexamethasone-mediated induction of ANR1 in lines expressing an ANR1-GR (glucocorticoid receptor) fusion protein stimulated lateral root growth but not primary root growth. Short-term (24 h) dexamethasone treatments led to prolonged stimulation of lateral root growth, whether the lateral roots were already mature or still unemerged at the time of treatment. In split-root experiments, localized application of dexamethasone to half of the root system of an ANR1-GR line elicited a localized increase in both the length and numbers of lateral roots, mimicking the effect of a localized NO(3)(-) treatment. In both types of transgenic line, the root phenotype was strongly dependent on the presence of NO(3)(-), indicating that there are additional components involved in ANR1 function that are NO(3)(-) regulated. The implications of these results for our understanding of ANR1's mode of action in the root response to localized NO(3)(-) are discussed.

  18. Al Partitioning Patterns and Root Growth as Related to Al Sensitivity and Al Tolerance in Wheat.

    PubMed Central

    Samuels, T. D.; Kucukakyuz, K.; Rincon-Zachary, M.

    1997-01-01

    Studies of Al partitioning and accumulation and of the effect of Al on the growth of intact wheat (Triticum aestivum L.) roots of cultivars that show differential Al sensitivity were conducted. The effects of various Al concentrations on root growth and Al accumulation in the tissue were followed for 24 h. At low external Al concentrations, Al accumulation in the root tips was low and root growth was either unaffected or stimulated. Calculations based on regression analysis of growth and Al accumulation in the root tips predicted that 50% root growth inhibition in the Al-tolerant cv Atlas 66 would be attained when the Al concentrations were 105 [mu]M in the nutrient solution and 376.7 [mu]g Al g-1 dry weight in the tissue. In contrast, in the Al-sensitive cv Tam 105, 50% root growth inhibition would be attained when the Al concentrations were 11 [mu]M in the nutrient solution and 546.2 [mu]g Al g-1 dry weight in the tissue. The data support the hypotheses that differential Al sensitivity correlates with differential Al accumulation in the growing root tissue, and that mechanisms of Al tolerance may be based on strategies to exclude Al from the root meristems. PMID:12223623

  19. Vigorous Root Growth Is a Better Indicator of Early Nutrient Uptake than Root Hair Traits in Spring Wheat Grown under Low Fertility

    PubMed Central

    Wang, Yaosheng; Thorup-Kristensen, Kristian; Jensen, Lars Stoumann; Magid, Jakob

    2016-01-01

    A number of root and root hair traits have been proposed as important for nutrient acquisition. However, there is still a need for knowledge on which traits are most important in determining macro- and micronutrient uptake at low soil fertility. This study investigated the variations in root growth vigor and root hair length (RHL) and density (RHD) among spring wheat genotypes and their relationship to nutrient concentrations and uptake during early growth. Six spring wheat genotypes were grown in a soil with low nutrient availability. The root and root hair traits as well as the concentration and content of macro- and micronutrients were identified. A significant genetic variability in root and root hair traits as well as nutrient uptake was found. Fast and early root proliferation and long and dense root hairs enhanced uptake of macro- and micronutrients under low soil nutrient availability. Vigorous root growth, however, was a better indicator of early nutrient acquisition than RHL and RHD. Vigorous root growth and long and dense root hairs ensured efficient acquisition of macro- and micronutrients during early growth and a high root length to shoot dry matter ratio favored high macronutrient concentrations in the shoots, which is assumed to be important for later plant development. PMID:27379145

  20. Spatio-temporal sequence of cross-regulatory events in root meristem growth

    PubMed Central

    Scacchi, Emanuele; Salinas, Paula; Gujas, Bojan; Santuari, Luca; Krogan, Naden; Ragni, Laura; Berleth, Thomas; Hardtke, Christian S.

    2010-01-01

    A central question in developmental biology is how multicellular organisms coordinate cell division and differentiation to determine organ size. In Arabidopsis roots, this balance is controlled by cytokinin-induced expression of SHORT HYPOCOTYL 2 (SHY2) in the so-called transition zone of the meristem, where SHY2 negatively regulates auxin response factors (ARFs) by protein–protein interaction. The resulting down-regulation of PIN-FORMED (PIN) auxin efflux carriers is considered the key event in promoting differentiation of meristematic cells. Here we show that this regulation involves additional, intermediary factors and is spatio-temporally constrained. We found that the described cytokinin–auxin crosstalk antagonizes BREVIS RADIX (BRX) activity in the developing protophloem. BRX is an auxin-responsive target of the prototypical ARF MONOPTEROS (MP), a key promoter of vascular development, and transiently enhances PIN3 expression to promote meristem growth in young roots. At later stages, cytokinin induction of SHY2 in the vascular transition zone restricts BRX expression to down-regulate PIN3 and thus limit meristem growth. Interestingly, proper SHY2 expression requires BRX, which could reflect feedback on the auxin responsiveness of SHY2 because BRX protein can directly interact with MP, likely acting as a cofactor. Thus, cross-regulatory antagonism between BRX and SHY2 could determine ARF activity in the protophloem. Our data suggest a model in which the regulatory interactions favor BRX expression in the early proximal meristem and SHY2 prevails because of supplementary cytokinin induction in the later distal meristem. The complex equilibrium of this regulatory module might represent a universal switch in the transition toward differentiation in various developmental contexts. PMID:21149702

  1. Arabidopsis Tyrosylprotein Sulfotransferase Acts in the Auxin/PLETHORA Pathway in Regulating Postembryonic Maintenance of the Root Stem Cell Niche[W][OA

    PubMed Central

    Zhou, Wenkun; Wei, Lirong; Xu, Jian; Zhai, Qingzhe; Jiang, Hongling; Chen, Rong; Chen, Qian; Sun, Jiaqiang; Chu, Jinfang; Zhu, Lihuang; Liu, Chun-Ming; Li, Chuanyou

    2010-01-01

    Recent identification of the Arabidopsis thaliana tyrosylprotein sulfotransferase (TPST) and a group of Tyr-sulfated peptides known as root meristem growth factors (RGFs) highlights the importance of protein Tyr sulfation in plant growth and development. Here, we report the action mechanism of TPST in maintenance of the root stem cell niche, which in the Arabidopsis root meristem is an area of four mitotically inactive quiescent cells plus the surrounding mitotically active stem cells. Mutation of TPST leads to defective maintenance of the root stem cell niche, decreased meristematic activity, and stunted root growth. We show that TPST expression is positively regulated by auxin and that mutation of this gene affects auxin distribution by reducing local expression levels of several PIN genes and auxin biosynthetic genes in the stem cell niche region. We also show that mutation of TPST impairs basal- and auxin-induced expression of the PLETHORA (PLT) stem cell transcription factor genes and that overexpression of PLT2 rescues the root meristem defects of the loss-of-function mutant of TPST. Together, these results support that TPST acts to maintain root stem cell niche by regulating basal- and auxin-induced expression of PLT1 and PLT2. TPST-dependent sulfation of RGFs provides a link between auxin and PLTs in regulating root stem cell niche maintenance. PMID:21045165

  2. A Novel Plant Leucine-Rich Repeat Receptor Kinase Regulates the Response of Medicago truncatula Roots to Salt Stress[W

    PubMed Central

    de Lorenzo, Laura; Merchan, Francisco; Laporte, Philippe; Thompson, Richard; Clarke, Jonathan; Sousa, Carolina; Crespi, Martín

    2009-01-01

    In plants, a diverse group of cell surface receptor-like protein kinases (RLKs) plays a fundamental role in sensing external signals to regulate gene expression. Roots explore the soil environment to optimize their growth via complex signaling cascades, mainly analyzed in Arabidopsis thaliana. However, legume roots have significant physiological differences, notably their capacity to establish symbiotic interactions. These major agricultural crops are affected by environmental stresses such as salinity. Here, we report the identification of a leucine-rich repeat RLK gene, Srlk, from the legume Medicago truncatula. Srlk is rapidly induced by salt stress in roots, and RNA interference (RNAi) assays specifically targeting Srlk yielded transgenic roots whose growth was less inhibited by the presence of salt in the medium. Promoter-β-glucuronidase fusions indicate that this gene is expressed in epidermal root tissues in response to salt stress. Two Srlk-TILLING mutants also failed to limit root growth in response to salt stress and accumulated fewer sodium ions than controls. Furthermore, early salt-regulated genes are downregulated in Srlk-RNAi roots and in the TILLING mutant lines when submitted to salt stress. We propose a role for Srlk in the regulation of the adaptation of M. truncatula roots to salt stress. PMID:19244136

  3. Aggressiveness of Fusarium species and impact of root infection on growth and yield of soybeans.

    PubMed

    Arias, María M Díaz; Leandro, Leonor F; Munkvold, Gary P

    2013-08-01

    Fusarium spp. are commonly isolated from soybean roots but the pathogenic activity of most species is poorly documented. Aggressiveness and yield impact of nine species of Fusarium were determined on soybean in greenhouse (50 isolates) and field microplot (19 isolates) experiments. Root rot severity and shoot and root dry weights were compared at growth stages V3 or R1. Root systems were scanned and digital image analysis was conducted; yield was measured in microplots. Disease severity and root morphology impacts varied among and within species. Fusarium graminearum was highly aggressive (root rot severity >90%), followed by F. proliferatum and F. virguliforme. Significant variation in damping-off (20 to 75%) and root rot severity (<20 to >60%) was observed among F. oxysporum isolates. In artificially-infested microplots, root rot severity was low (<25%) and mean yield was not significantly reduced. However, there were significant linear relationships between yield and root symptoms for some isolates. Root morphological characteristics were more consistent indicators of yield loss than root rot severity. This study provides the first characterization of aggressiveness and yield impact of Fusarium root rot species on soybean at different plant stages and introduces root image analysis to assess the impact of root pathogens on soybean.

  4. Effect of loss of T-DNA genes on MIA biosynthetic pathway gene regulation and alkaloid accumulation in Catharanthus roseus hairy roots.

    PubMed

    Taneja, Jyoti; Jaggi, Monika; Wankhede, Dhammaprakash Pandhari; Sinha, Alok Krishna

    2010-10-01

    Hairy roots are generated by integration of T-DNA in host plant genome from root inducing (Ri) plasmid of Agrobacterium rhizogenes and have been utilized for production of secondary metabolites in different plant systems. In Catharanthus roseus, hairy roots are known to show different morphologies, growth patterns, and alkaloid contents. It is also known that during transformation, there is a differential loss of a few T-DNA genes. To decipher the effect of loss of T-DNA genes on the various aspects of hairy roots, ten hairy root clones were analyzed for the presence or absence of T-DNA genes and its implications. It was found that the loss of a few ORFs drastically affects the growth and morphological patterns of hairy roots. The absence of T(R)-DNA from hairy roots revealed increased transcript accumulation and higher alkaloid concentrations, whereas callusing among hairy root lines led to decreased transcript and alkaloid accumulation. Significantly higher expression of MIA biosynthetic pathway genes and low abundance of regulator transcripts in hairy root clones in comparison with non-transformed control roots were also observed. This study indicates that it is not only the integration of T-DNA at certain region of host plant genome but also the presence or absence of important ORFs that affects the expression patterns of MIA biosynthetic pathway genes, regulators, and accumulation of specific alkaloids.

  5. Endogenous rhythmic growth in oak trees is regulated by internal clocks rather than resource availability.

    PubMed

    Herrmann, S; Recht, S; Boenn, M; Feldhahn, L; Angay, O; Fleischmann, F; Tarkka, M T; Grams, T E E; Buscot, F

    2015-12-01

    Common oak trees display endogenous rhythmic growth with alternating shoot and root flushes. To explore the mechanisms involved, microcuttings of the Quercus robur L. clone DF159 were used for (13)C/(15)N labelling in combination with RNA sequencing (RNASeq) transcript profiling of shoots and roots. The effect of plant internal resource availability on the rhythmic growth of the cuttings was tested through inoculation with the ectomycorrhizal fungus Piloderma croceum. Shoot and root flushes were related to parallel shifts in above- and below-ground C and, to a lesser extent, N allocation. Increased plant internal resource availability by P. croceum inoculation with enhanced plant growth affected neither the rhythmic growth nor the associated resource allocation patterns. Two shifts in transcript abundance were identified during root and shoot growth cessation, and most concerned genes were down-regulated. Inoculation with P. croceum suppressed these transcript shifts in roots, but not in shoots. To identify core processes governing the rhythmic growth, functions [Gene Ontology (GO) terms] of the genes differentially expressed during the growth cessation in both leaves and roots of non-inoculated plants and leaves of P. croceum-inoculated plants were examined. Besides genes related to resource acquisition and cell development, which might reflect rather than trigger rhythmic growth, genes involved in signalling and/or regulated by the circadian clock were identified. The results indicate that rhythmic growth involves dramatic oscillations in plant metabolism and gene regulation between below- and above-ground parts. Ectomycorrhizal symbiosis may play a previously unsuspected role in smoothing these oscillations without modifying the rhythmic growth pattern.

  6. Symbiotic regulation of plant growth, development and reproduction

    USGS Publications Warehouse

    Rodriguez, R.J.; Freeman, D. Carl; McArthur, E.D.; Kim, Y.-O.; Redman, R.S.

    2009-01-01

    The growth and development of rice (Oryzae sativa) seedlings was shown to be regulated epigenetically by a fungal endophyte. In contrast to un-inoculated (nonsymbiotic) plants, endophyte colonized (symbiotic) plants preferentially allocated resources into root growth until root hairs were well established. During that time symbiotic roots expanded at five times the rate observed in nonsymbiotic plants. Endophytes also influenced sexual reproduction of mature big sagebrush (Artemisia tridentata) plants. Two spatially distinct big sagebrush subspecies and their hybrids were symbiotic with unique fungal endophytes, despite being separated by only 380 m distance and 60 m elevation. A double reciprocal transplant experiment of parental and hybrid plants, and soils across the hybrid zone showed that fungal endophytes interact with the soils and different plant genotypes to confer enhanced plant reproduction in soil native to the endophyte and reduced reproduction in soil alien to the endophyte. Moreover, the most prevalent endophyte of the hybrid zone reduced the fitness of both parental subspecies. Because these endophytes are passed to the next generation of plants on seed coats, this interaction provides a selective advantage, habitat specificity, and the means of restricting gene flow, thereby making the hybrid zone stable, narrow and potentially leading to speciation. ?? 2009 Landes Bioscience.

  7. The Arabidopsis bZIP11 transcription factor links low-energy signalling to auxin-mediated control of primary root growth.

    PubMed

    Weiste, Christoph; Pedrotti, Lorenzo; Selvanayagam, Jebasingh; Muralidhara, Prathibha; Fröschel, Christian; Novák, Ondřej; Ljung, Karin; Hanson, Johannes; Dröge-Laser, Wolfgang

    2017-02-01

    Plants have to tightly control their energy homeostasis to ensure survival and fitness under constantly changing environmental conditions. Thus, it is stringently required that energy-consuming stress-adaptation and growth-related processes are dynamically tuned according to the prevailing energy availability. The evolutionary conserved SUCROSE NON-FERMENTING1 RELATED KINASES1 (SnRK1) and the downstream group C/S1 basic leucine zipper (bZIP) transcription factors (TFs) are well-characterised central players in plants' low-energy management. Nevertheless, mechanistic insights into plant growth control under energy deprived conditions remains largely elusive. In this work, we disclose the novel function of the low-energy activated group S1 bZIP11-related TFs as regulators of auxin-mediated primary root growth. Whereas transgenic gain-of-function approaches of these bZIPs interfere with the activity of the root apical meristem and result in root growth repression, root growth of loss-of-function plants show a pronounced insensitivity to low-energy conditions. Based on ensuing molecular and biochemical analyses, we propose a mechanistic model, in which bZIP11-related TFs gain control over the root meristem by directly activating IAA3/SHY2 transcription. IAA3/SHY2 is a pivotal negative regulator of root growth, which has been demonstrated to efficiently repress transcription of major auxin transport facilitators of the PIN-FORMED (PIN) gene family, thereby restricting polar auxin transport to the root tip and in consequence auxin-driven primary root growth. Taken together, our results disclose the central low-energy activated SnRK1-C/S1-bZIP signalling module as gateway to integrate information on the plant's energy status into root meristem control, thereby balancing plant growth and cellular energy resources.

  8. The Arabidopsis bZIP11 transcription factor links low-energy signalling to auxin-mediated control of primary root growth

    PubMed Central

    Weiste, Christoph; Pedrotti, Lorenzo; Muralidhara, Prathibha; Ljung, Karin; Dröge-Laser, Wolfgang

    2017-01-01

    Plants have to tightly control their energy homeostasis to ensure survival and fitness under constantly changing environmental conditions. Thus, it is stringently required that energy-consuming stress-adaptation and growth-related processes are dynamically tuned according to the prevailing energy availability. The evolutionary conserved SUCROSE NON-FERMENTING1 RELATED KINASES1 (SnRK1) and the downstream group C/S1 basic leucine zipper (bZIP) transcription factors (TFs) are well-characterised central players in plants’ low-energy management. Nevertheless, mechanistic insights into plant growth control under energy deprived conditions remains largely elusive. In this work, we disclose the novel function of the low-energy activated group S1 bZIP11-related TFs as regulators of auxin-mediated primary root growth. Whereas transgenic gain-of-function approaches of these bZIPs interfere with the activity of the root apical meristem and result in root growth repression, root growth of loss-of-function plants show a pronounced insensitivity to low-energy conditions. Based on ensuing molecular and biochemical analyses, we propose a mechanistic model, in which bZIP11-related TFs gain control over the root meristem by directly activating IAA3/SHY2 transcription. IAA3/SHY2 is a pivotal negative regulator of root growth, which has been demonstrated to efficiently repress transcription of major auxin transport facilitators of the PIN-FORMED (PIN) gene family, thereby restricting polar auxin transport to the root tip and in consequence auxin-driven primary root growth. Taken together, our results disclose the central low-energy activated SnRK1-C/S1-bZIP signalling module as gateway to integrate information on the plant’s energy status into root meristem control, thereby balancing plant growth and cellular energy resources. PMID:28158182

  9. The influence of calcium and pH on growth in primary roots of Zea mays

    NASA Technical Reports Server (NTRS)

    Hasenstein, K. H.; Evans, M. L.

    1988-01-01

    We investigated the interaction of Ca2+ and pH on root elongation in Zea mays L. cv. B73 x Missouri 17 and cv. Merit. Seedlings were raised to contain high levels of Ca2+ (HC, imbibed and raised in 10 mM CaCl2) or low levels of Ca2+ (LC, imbibed and raised in distilled water). In HC roots, lowering the pH (5 mM MES/Tris) from 6.5 to 4.5 resulted in strong, long-lasting growth promotion. Surprisingly, increasing the pH from 6.5 to 8.5 also resulted in strong growth promotion. In LC roots acidification of the medium (pH 6.5 to 4.5) resulted in transient growth stimulation followed by a gradual decline in the growth rate toward zero. Exposure of LC roots to high pH (pH shift from 6.5 to 8.5) also promoted growth. Addition of EGTA resulted in strong growth promotion in both LC and HC roots. The ability of EGTA to stimulate growth appeared not to be related to H+ release from EGTA upon Ca2+ chelation since, 1) LC roots showed a strong and prolonged response to EGTA, but only a transient response to acid pH, and 2) promotion of growth by EGTA was observed in strongly buffered solutions. We also examined the pH dependence of the release of 45Ca2+ from roots of 3-day-old seedlings grown from grains imbibed in 45Ca2+. Release of 45Ca2+ from the root into agar blocks placed on the root surface was greater the more acidic the pH of the blocks. The results indicate that Ca2+ may be necessary for the acid growth response in roots.

  10. The influence of calcium and pH on growth in primary roots of Zea mays.

    PubMed

    Hasenstein, K H; Evans, M L

    1988-01-01

    We investigated the interaction of Ca2+ and pH on root elongation in Zea mays L. cv. B73 x Missouri 17 and cv. Merit. Seedlings were raised to contain high levels of Ca2+ (HC, imbibed and raised in 10 mM CaCl2) or low levels of Ca2+ (LC, imbibed and raised in distilled water). In HC roots, lowering the pH (5 mM MES/Tris) from 6.5 to 4.5 resulted in strong, long-lasting growth promotion. Surprisingly, increasing the pH from 6.5 to 8.5 also resulted in strong growth promotion. In LC roots acidification of the medium (pH 6.5 to 4.5) resulted in transient growth stimulation followed by a gradual decline in the growth rate toward zero. Exposure of LC roots to high pH (pH shift from 6.5 to 8.5) also promoted growth. Addition of EGTA resulted in strong growth promotion in both LC and HC roots. The ability of EGTA to stimulate growth appeared not to be related to H+ release from EGTA upon Ca2+ chelation since, 1) LC roots showed a strong and prolonged response to EGTA, but only a transient response to acid pH, and 2) promotion of growth by EGTA was observed in strongly buffered solutions. We also examined the pH dependence of the release of 45Ca2+ from roots of 3-day-old seedlings grown from grains imbibed in 45Ca2+. Release of 45Ca2+ from the root into agar blocks placed on the root surface was greater the more acidic the pH of the blocks. The results indicate that Ca2+ may be necessary for the acid growth response in roots.

  11. Aluminium-induced reduction of plant growth in alfalfa (Medicago sativa) is mediated by interrupting auxin transport and accumulation in roots.

    PubMed

    Wang, Shengyin; Ren, Xiaoyan; Huang, Bingru; Wang, Ge; Zhou, Peng; An, Yuan

    2016-07-20

    The objective of this study was to investigate Al(3+)-induced IAA transport, distribution, and the relation of these two processes to Al(3+)-inhibition of root growth in alfalfa. Alfalfa seedlings with or without apical buds were exposed to 0 or 100 μM AlCl3 and were foliar sprayed with water or 6 mg L(-1) IAA. Aluminium stress resulted in disordered arrangement of cells, deformed cell shapes, altered cell structure, and a shorter length of the meristematic zone in root tips. Aluminium stress significantly decreased the IAA concentration in apical buds and root tips. The distribution of IAA fluorescence signals in root tips was disturbed, and the IAA transportation from shoot base to root tip was inhibited. The highest intensity of fluorescence signals was detected in the apical meristematic zone. Exogenous application of IAA markedly alleviated the Al(3+)-induced inhibition of root growth by increasing IAA accumulation and recovering the damaged cell structure in root tips. In addition, Al(3+) stress up-regulated expression of AUX1 and PIN2 genes. These results indicate that Al(3+)-induced reduction of root growth could be associated with the inhibitions of IAA synthesis in apical buds and IAA transportation in roots, as well as the imbalance of IAA distribution in root tips.

  12. Aluminium-induced reduction of plant growth in alfalfa (Medicago sativa) is mediated by interrupting auxin transport and accumulation in roots

    PubMed Central

    Wang, Shengyin; Ren, Xiaoyan; Huang, Bingru; Wang, Ge; Zhou, Peng; An, Yuan

    2016-01-01

    The objective of this study was to investigate Al3+-induced IAA transport, distribution, and the relation of these two processes to Al3+-inhibition of root growth in alfalfa. Alfalfa seedlings with or without apical buds were exposed to 0 or 100 μM AlCl3 and were foliar sprayed with water or 6 mg L−1 IAA. Aluminium stress resulted in disordered arrangement of cells, deformed cell shapes, altered cell structure, and a shorter length of the meristematic zone in root tips. Aluminium stress significantly decreased the IAA concentration in apical buds and root tips. The distribution of IAA fluorescence signals in root tips was disturbed, and the IAA transportation from shoot base to root tip was inhibited. The highest intensity of fluorescence signals was detected in the apical meristematic zone. Exogenous application of IAA markedly alleviated the Al3+-induced inhibition of root growth by increasing IAA accumulation and recovering the damaged cell structure in root tips. In addition, Al3+ stress up-regulated expression of AUX1 and PIN2 genes. These results indicate that Al3+-induced reduction of root growth could be associated with the inhibitions of IAA synthesis in apical buds and IAA transportation in roots, as well as the imbalance of IAA distribution in root tips. PMID:27435109

  13. Root Zone Cooling and Exogenous Spermidine Root-Pretreatment Promoting Lactuca sativa L. Growth and Photosynthesis in the High-temperature Season.

    PubMed

    Sun, Jin; Lu, Na; Xu, Hongjia; Maruo, Toru; Guo, Shirong

    2016-01-01

    Root zone high-temperature stress is a major factor limiting hydroponic plant growth during the high-temperature season. The effects of root zone cooling (RZC; at 25°C) and exogenous spermidine (Spd) root-pretreatment (SRP, 0.1 mM) on growth, leaf photosynthetic traits, and chlorophyll fluorescence characteristics of hydroponic Lactuca sativa L. grown in a high-temperature season (average temperature > 30°C) were examined. Both treatments significantly promoted plant growth and photosynthesis in the high-temperature season, but the mechanisms of photosynthesis improvement in the hydroponic grown lettuce plants were different between the RZC and SRP treatments. The former improved plant photosynthesis by increasing stoma conductance (G s) to enhance CO2 supply, thus promoting photosynthetic electron transport activity and phosphorylation, which improved the level of the photochemical efficiency of photosystem II (PSII), rather than enhancing CO2 assimilation efficiency. The latter improved plant photosynthesis by enhancing CO2 assimilation efficiency, rather than stomatal regulation. Combination of RZC and SRP significantly improved P N of lettuce plants in a high-temperature season by both improvement of G s to enhance CO2 supply and enhancement of CO2 assimilation. The enhancement of photosynthetic efficiency in both treatments was independent of altering light-harvesting or excessive energy dissipation.

  14. Root Zone Cooling and Exogenous Spermidine Root-Pretreatment Promoting Lactuca sativa L. Growth and Photosynthesis in the High-temperature Season

    PubMed Central

    Sun, Jin; Lu, Na; Xu, Hongjia; Maruo, Toru; Guo, Shirong

    2016-01-01

    Root zone high-temperature stress is a major factor limiting hydroponic plant growth during the high-temperature season. The effects of root zone cooling (RZC; at 25°C) and exogenous spermidine (Spd) root-pretreatment (SRP, 0.1 mM) on growth, leaf photosynthetic traits, and chlorophyll fluorescence characteristics of hydroponic Lactuca sativa L. grown in a high-temperature season (average temperature > 30°C) were examined. Both treatments significantly promoted plant growth and photosynthesis in the high-temperature season, but the mechanisms of photosynthesis improvement in the hydroponic grown lettuce plants were different between the RZC and SRP treatments. The former improved plant photosynthesis by increasing stoma conductance (Gs) to enhance CO2 supply, thus promoting photosynthetic electron transport activity and phosphorylation, which improved the level of the photochemical efficiency of photosystem II (PSII), rather than enhancing CO2 assimilation efficiency. The latter improved plant photosynthesis by enhancing CO2 assimilation efficiency, rather than stomatal regulation. Combination of RZC and SRP significantly improved PN of lettuce plants in a high-temperature season by both improvement of Gs to enhance CO2 supply and enhancement of CO2 assimilation. The enhancement of photosynthetic efficiency in both treatments was independent of altering light-harvesting or excessive energy dissipation. PMID:27047532

  15. Phytotoxic effects of leukamenin E (an ent-kaurene diterpenoid) on root growth and root hair development in Lactuca sativa L. seedlings.

    PubMed

    Ding, Lan; Qi, Linlin; Jing, Hongwei; Li, Juan; Wang, Wei; Wang, Tao

    2008-11-01

    Leukamenin E, an ent-kaurene diterpenoid isolated from Isodon racemosa (Hemsl) Hara, showed phytotoxic effects on root growth and root hair development of lettuce seedlings (Lactuca sativa L.). Lower concentrations (10 microM) of leukamenin E did not affect root growth, but at concentrations higher than 50 microM, the rate was inhibited. The influence of leukamenin E on root growth rate was closely correlated with alterations in the mitotic index. A low incidence of aberrant mitosis image was observed when lettuce roots were treated with higher concentrations (100 and 200 microM) of leukamenin E. This suggests that inhibition of root growth may be due to inhibition of cell division. All tested concentrations of the diterpenoid (10 microM or more) inhibited root hair development in a dose-dependent manner. At a concentration of 80 microM, leukamenin E completely blocked root hair initiation. Application of Ag(+)-an ethylene action inhibitor-to lettuce seedlings inhibited root hair elongation similar to the diterpenoid. Enhanced root hair length was stimulated by exogenous ethephon-an ethylene-releasing agent-and could be reversed by addition of leukamenin E. This suggests that leukamenin E may act as a potential ethylene action antagonist in the inhibition of lettuce root hair development. We conclude that leukamenin E may curb root hair development by interfering with ethylene action at concentrations above 10 microM and inhibits root growth via inhibition of cell division at concentrations above 50 microM.

  16. Field and laboratory root growth and development of Lesquerella germplasm

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lesquerella roots have not been fully characterized as compared to other crop species. There is initial information gathered on root trait variation in young seedling grown in laboratory settings but studies to determine if the results can be extrapolated in field grown plants are lacking. We report...

  17. Chemical Mowing: Effect of Plant Growth Retardants on Plant Roots

    DTIC Science & Technology

    1991-08-01

    fructose, sucrose, and fructans were considerably greater in leaf and stem tissue than in roots. Annual bluegrass stems were the major storage organ...for fructans , with only minor fructan storage occurring in roots. The carbohydrate content of mefluidide-treated annual bluegrass decreased

  18. Hormonal regulation of wheat growth during hydroponic culture

    NASA Technical Reports Server (NTRS)

    Wetherell, Donald

    1988-01-01

    Hormonal control of root growth has been explored as one means to alleviate the crowding of plant root systems experienced in prototype hydroponic biomass production chambers being developed by the CELSS Breadboard Project. Four plant hormones, or their chemical analogs, which have been reported to selectively inhibit root growth, were tested by adding them to the nutrient solutions on day 10 of a 25 day growth test using spring wheat in hydroponic cultures. Growth and morphological changes is both shoot and root systems were evaluated. In no case was it possible to inhibit root growth without a comparable inhibition of shoot growth. It was concluded that this approach is unlikely to prove useful for wheat.

  19. Nitric oxide is involved in the oxytetracycline-induced suppression of root growth through inhibiting hydrogen peroxide accumulation in the root meristem

    NASA Astrophysics Data System (ADS)

    Yu, Qing-Xiang; Ahammed, Golam Jalal; Zhou, Yan-Hong; Shi, Kai; Zhou, Jie; Yu, Yunlong; Yu, Jing-Quan; Xia, Xiao-Jian

    2017-02-01

    Use of antibiotic-contaminated manure in crop production poses a severe threat to soil and plant health. However, few studies have studied the mechanism by which plant development is affected by antibiotics. Here, we used microscopy, flow cytometry, gene expression analysis and fluorescent dyes to study the effects of oxytetracycline (OTC), a widely used antibiotic in agriculture, on root meristem activity and the accumulation of hydrogen peroxide (H2O2) and nitric oxide (NO) in the root tips of tomato seedlings. We found that OTC caused cell cycle arrest, decreased the size of root meristem and inhibited root growth. Interestingly, the inhibition of root growth by OTC was associated with a decline in H2O2 levels but an increase in NO levels in the root tips. Diphenyliodonium (DPI), an inhibitor of H2O2 production, showed similar effects on root growth as those of OTC. However, exogenous H2O2 partially reversed the effects on the cell cycle, meristem size and root growth. Importantly, cPTIO (the NO scavenger) and tungstate (an inhibitor of nitrate reductase) significantly increased H2O2 levels in the root tips and reversed the inhibition of root growth by OTC. Out results suggest that OTC-induced NO production inhibits H2O2 accumulation in the root tips, thus leading to cell cycle arrest and suppression of root growth.

  20. Nitric oxide is involved in the oxytetracycline-induced suppression of root growth through inhibiting hydrogen peroxide accumulation in the root meristem

    PubMed Central

    Yu, Qing-Xiang; Ahammed, Golam Jalal; Zhou, Yan-Hong; Shi, Kai; Zhou, Jie; Yu, Yunlong; Yu, Jing-Quan; Xia, Xiao-Jian

    2017-01-01

    Use of antibiotic-contaminated manure in crop production poses a severe threat to soil and plant health. However, few studies have studied the mechanism by which plant development is affected by antibiotics. Here, we used microscopy, flow cytometry, gene expression analysis and fluorescent dyes to study the effects of oxytetracycline (OTC), a widely used antibiotic in agriculture, on root meristem activity and the accumulation of hydrogen peroxide (H2O2) and nitric oxide (NO) in the root tips of tomato seedlings. We found that OTC caused cell cycle arrest, decreased the size of root meristem and inhibited root growth. Interestingly, the inhibition of root growth by OTC was associated with a decline in H2O2 levels but an increase in NO levels in the root tips. Diphenyliodonium (DPI), an inhibitor of H2O2 production, showed similar effects on root growth as those of OTC. However, exogenous H2O2 partially reversed the effects on the cell cycle, meristem size and root growth. Importantly, cPTIO (the NO scavenger) and tungstate (an inhibitor of nitrate reductase) significantly increased H2O2 levels in the root tips and reversed the inhibition of root growth by OTC. Out results suggest that OTC-induced NO production inhibits H2O2 accumulation in the root tips, thus leading to cell cycle arrest and suppression of root growth. PMID:28220869

  1. Vegetative growth and cluster development in Shiraz grapevines subjected to partial root-zone cooling.

    PubMed

    Rogiers, Suzy Y; Clarke, Simon J

    2013-01-01

    Heterogeneity in root-zone temperature both vertically and horizontally may contribute to the uneven vegetative and reproductive growth often observed across vineyards. An experiment was designed to assess whether the warmed half of a grapevine root zone could compensate for the cooled half in terms of vegetative growth and reproductive development. We divided the root system of potted Shiraz grapevines bilaterally and applied either a cool or a warm treatment to each half from budburst to fruit set. Shoot growth and inflorescence development were monitored over the season. Simultaneous cooling and warming of parts of the root system decreased shoot elongation, leaf emergence and leaf expansion below that of plants with a fully warmed root zone, but not to the same extent as those with a fully cooled root zone. Inflorescence rachis length, flower number and berry number after fertilization were smaller only in those vines exposed to fully cooled root zones. After terminating the treatments, berry enlargement and the onset of veraison were slowed in those vines that had been exposed to complete or partial root-zone cooling. Grapevines exposed to partial root-zone cooling were thus delayed in vegetative and reproductive development, but the inhibition was greater in those plants whose entire root system had been cooled.

  2. Effect of nitrate on nodule and root growth of soybean (Glycine max (L.) Merr.).

    PubMed

    Saito, Akinori; Tanabata, Sayuri; Tanabata, Takanari; Tajima, Seiya; Ueno, Manabu; Ishikawa, Shinji; Ohtake, Norikuni; Sueyoshi, Kuni; Ohyama, Takuji

    2014-03-13

    The application of combined nitrogen, especially nitrate, to soybean plants is known to strongly inhibit nodule formation, growth and nitrogen fixation. In the present study, we measured the effects of supplying 5 mM nitrate on the growth of nodules, primary root, and lateral roots under light at 28 °C or dark at 18 °C conditions. Photographs of the nodulated roots were periodically taken by a digital camera at 1-h intervals, and the size of the nodules was measured with newly developed computer software. Nodule growth was depressed approximately 7 h after the addition of nitrate under light conditions. The nodule growth rate under dark conditions was almost half that under light conditions, and nodule growth was further suppressed by the addition of 5 mM nitrate. Similar results were observed for the extending growth rate of the primary root as those for nodule growth supplied with 5 mM nitrate under light/dark conditions. In contrast, the growth of lateral roots was promoted by the addition of 5 mM nitrate. The 2D-PAGE profiles of nodule protein showed similar patterns between the 0 and 5 mM nitrate treatments, which suggested that metabolic integrity may be maintained with the 5 mM nitrate treatment. Further studies are required to confirm whether light or temperature condition may give the primary effect on the growth of nodules and roots.

  3. Rates of Root and Organism Growth, Soil Conditions, and Temporal and Spatial Development of the Rhizosphere

    PubMed Central

    WATT, MICHELLE; SILK, WENDY K.; PASSIOURA, JOHN B.

    2006-01-01

    • Background Roots growing in soil encounter physical, chemical and biological environments that influence their rhizospheres and affect plant growth. Exudates from roots can stimulate or inhibit soil organisms that may release nutrients, infect the root, or modify plant growth via signals. These rhizosphere processes are poorly understood in field conditions. • Scope and Aims We characterize roots and their rhizospheres and rates of growth in units of distance and time so that interactions with soil organisms can be better understood in field conditions. We review: (1) distances between components of the soil, including dead roots remnant from previous plants, and the distances between new roots, their rhizospheres and soil components; (2) characteristic times (distance2/diffusivity) for solutes to travel distances between roots and responsive soil organisms; (3) rates of movement and growth of soil organisms; (4) rates of extension of roots, and how these relate to the rates of anatomical and biochemical ageing of root tissues and the development of the rhizosphere within the soil profile; and (5) numbers of micro-organisms in the rhizosphere and the dependence on the site of attachment to the growing tip. We consider temporal and spatial variation within the rhizosphere to understand the distribution of bacteria and fungi on roots in hard, unploughed soil, and the activities of organisms in the overlapping rhizospheres of living and dead roots clustered in gaps in most field soils. • Conclusions Rhizosphere distances, characteristic times for solute diffusion, and rates of root and organism growth must be considered to understand rhizosphere development. Many values used in our analysis were estimates. The paucity of reliable data underlines the rudimentary state of our knowledge of root–organism interactions in the field. PMID:16551700

  4. FGF signalling regulates bone growth through autophagy.

    PubMed

    Cinque, Laura; Forrester, Alison; Bartolomeo, Rosa; Svelto, Maria; Venditti, Rossella; Montefusco, Sandro; Polishchuk, Elena; Nusco, Edoardo; Rossi, Antonio; Medina, Diego L; Polishchuk, Roman; De Matteis, Maria Antonietta; Settembre, Carmine

    2015-12-10

    Skeletal growth relies on both biosynthetic and catabolic processes. While the role of the former is clearly established, how the latter contributes to growth-promoting pathways is less understood. Macroautophagy, hereafter referred to as autophagy, is a catabolic process that plays a fundamental part in tissue homeostasis. We investigated the role of autophagy during bone growth, which is mediated by chondrocyte rate of proliferation, hypertrophic differentiation and extracellular matrix (ECM) deposition in growth plates. Here we show that autophagy is induced in growth-plate chondrocytes during post-natal development and regulates the secretion of type II collagen (Col2), the major component of cartilage ECM. Mice lacking the autophagy related gene 7 (Atg7) in chondrocytes experience endoplasmic reticulum storage of type II procollagen (PC2) and defective formation of the Col2 fibrillary network in the ECM. Surprisingly, post-natal induction of chondrocyte autophagy is mediated by the growth factor FGF18 through FGFR4 and JNK-dependent activation of the autophagy initiation complex VPS34-beclin-1. Autophagy is completely suppressed in growth plates from Fgf18(-/-) embryos, while Fgf18(+/-) heterozygous and Fgfr4(-/-) mice fail to induce autophagy during post-natal development and show decreased Col2 levels in the growth plate. Strikingly, the Fgf18(+/-) and Fgfr4(-/-) phenotypes can be rescued in vivo by pharmacological activation of autophagy, pointing to autophagy as a novel effector of FGF signalling in bone. These data demonstrate that autophagy is a developmentally regulated process necessary for bone growth, and identify FGF signalling as a crucial regulator of autophagy in chondrocytes.

  5. Arabidopsis thaliana root elongation growth is sensitive to lunisolar tidal acceleration and may also be weakly correlated with geomagnetic variations

    PubMed Central

    Barlow, Peter W.; Fisahn, Joachim; Yazdanbakhsh, Nima; Moraes, Thiago A.; Khabarova, Olga V.; Gallep, Cristiano M.

    2013-01-01

    Background Correlative evidence suggests a relationship between the lunisolar tidal acceleration and the elongation rate of arabidopsis roots grown under free-running conditions of constant low light. Methods Seedlings of Arabidopsis thaliana were grown in a controlled-climate chamber maintained at a constant temperature and subjected to continuous low-level illumination from fluorescent tubes, conditions that approximate to a ‘free-running’ state in which most of the abiotic factors that entrain root growth rates are excluded. Elongation of evenly spaced, vertical primary roots was recorded continuously over periods of up to 14 d using high temporal- and spatial-resolution video imaging and were analysed in conjunction with geophysical variables. Key Results and Conclusions The results confirm the lunisolar tidal/root elongation relationship. Also presented are relationships between the hourly elongation rates and the contemporaneous variations in geomagnetic activity, as evaluated from the disturbance storm time and ap indices. On the basis of time series of root elongation rates that extend over ≥4 d and recorded at different seasons of the year, a provisional conclusion is that root elongation responds to variation in the lunisolar force and also appears to adjust in accordance with variations in the geomagnetic field. Thus, both lunisolar tidal acceleration and the geomagnetic field should be considered as modulators of root growth rate, alongside other, stronger and more well-known abiotic environmental regulators, and perhaps unexplored factors such as air ions. Major changes in atmospheric pressure are not considered to be a factor contributing to oscillations of root elongation rate. PMID:23532042

  6. The choroid as a sclera growth regulator.

    PubMed

    Summers, Jody A

    2013-09-01

    Emmetropization is a vision dependent mechanism that attempts to minimize refractive error through coordinated growth of the cornea, lens and sclera such that the axial length matches the focal length of the eye. It is generally accepted that this visually guided eye growth is controlled via a cascade of locally generated chemical events that are initiated in the retina and ultimately cause changes in scleral extracellular matrix (ECM) remodeling which lead to changes in eye size and refraction. Of much interest, therefore, are the molecular mechanisms that underpin emmetropization and visually guided ocular growth. The choroid, a highly vascularized layer located between the retina and the sclera is uniquely situated to relay retina-derived signals to the sclera to effect changes in ECM synthesis and ocular size. Studies initiated by Josh Wallman clearly demonstrate that the choroid plays an active role in emmetropization, both by modulation of its thickness to adjust the retina to the focal plane of the eye (choroidal accommodation), and well as through the release of growth factors that have the potential to regulate scleral extracellular matrix remodeling. His discoveries prompted numerous investigations on the molecular composition of the choroid and changes in gene expression associated with visually guided ocular growth. This article will review molecular and functional studies of the choroid to provide support for the hypothesis that the choroid is a source of sclera growth regulators that effect changes in ocular growth in response to visual stimuli.

  7. Regulation of bone mass by growth hormone.

    PubMed

    Olney, Robert C

    2003-09-01

    Growth hormone (GH) is a peptide hormone secreted from the pituitary gland under the control of the hypothalamus. It has a many actions in the body, including regulating a number of metabolic pathways. Some, but not all, of its effects are mediated through insulin-like growth factor-I (IGF-I). Both GH and IGF-I play significant roles in the regulation of growth and bone metabolism and hence are regulators of bone mass. Bone mass increases steadily through childhood, peaking in the mid 20s. Subsequently, there is a slow decline that accelerates in late life. During childhood, the accumulation in bone mass is a combination of bone growth and bone remodeling. Bone remodeling is the process of new bone formation by osteoblasts and bone resorption by osteoclasts. GH directly and through IGF-I stimulates osteoblast proliferation and activity, promoting bone formation. It also stimulates osteoclast differentiation and activity, promoting bone resorption. The result is an increase in the overall rate of bone remodeling, with a net effect of bone accumulation. The absence of GH results in a reduced rate of bone remodeling and a gradual loss of bone mineral density. Bone growth primarily occurs at the epiphyseal growth plates and is the result of the proliferation and differentiation of chondrocytes. GH has direct effects on these chondrocytes, but primarily regulates this function through IGF-I, which stimulates the proliferation of and matrix production by these cells. GH deficiency severely limits bone growth and hence the accumulation of bone mass. GH deficiency is not an uncommon complication in oncology and has long-term effects on bone health.

  8. Myosin XIK of Arabidopsis thaliana Accumulates at the Root Hair Tip and Is Required for Fast Root Hair Growth

    PubMed Central

    Park, Eunsook; Nebenführ, Andreas

    2013-01-01

    Myosin motor proteins are thought to carry out important functions in the establishment and maintenance of cell polarity by moving cellular components such as organelles, vesicles, or protein complexes along the actin cytoskeleton. In Arabidopsis thaliana, disruption of the myosin XIK gene leads to reduced elongation of the highly polar root hairs, suggesting that the encoded motor protein is involved in this cell growth. Detailed live-cell observations in this study revealed that xik root hairs elongated more slowly and stopped growth sooner than those in wild type. Overall cellular organization including the actin cytoskeleton appeared normal, but actin filament dynamics were reduced in the mutant. Accumulation of RabA4b-containing vesicles, on the other hand, was not significantly different from wild type. A functional YFP-XIK fusion protein that could complement the mutant phenotype accumulated at the tip of growing root hairs in an actin-dependent manner. The distribution of YFP-XIK at the tip, however, did not match that of the ER or several tip-enriched markers including CFP-RabA4b. We conclude that the myosin XIK is required for normal actin dynamics and plays a role in the subapical region of growing root hairs to facilitate optimal growth. PMID:24116145

  9. Impact of copper oxide nanoparticles exposure on Arabidopsis thaliana growth, root system development, root lignificaion, and molecular level changes.

    PubMed

    Nair, Prakash M Gopalakrishnan; Chung, Ill Min

    2014-11-01

    The effect of copper oxide nanoparticles (CuONPs) on physiological and molecular level responses were studied in Arabidopsis thaliana. The seedlings were exposed to different concentrations of CuONPs (0, 0.5, 1, 2, 5, 10, 20, 50, and 100 mg/L) for 21 days in half strength Murashige and Skoog medium. The plant biomass significantly reduced under different concentrations (2, 5, 10, 20, 50, and 100 mg/L) of CuONPs stress. Exposure to 2, 5, 10, 20, 50, and 100 mg/L of CuONPs has resulted in significant reduction of total chlorophyll content. The anthocyanin content significantly increased upon exposure to 10, 20, 50, and 100 mg/L of CuONPs. Increased lipid peroxidation was observed upon exposure to 5, 10, and 20 mg/L of CuONPs and amino acid proline content was significantly high in plants exposed to 10 and 20 mg/L of CuONPs. Significant reduction in root elongation was observed upon exposure to 0.5-100 mg/L of CuONPs for 21 days. Exposure to CuONPs has resulted in retardation of primary root growth, enhanced lateral root formation, and also resulted in loss of root gravitropism. Staining with phloroglucionol detected the deposition of lignin in CuONPs-treated roots. Histochemical staining of leaves and roots of CuONPs-exposed plants with nitroblue tetrazolium and 3'3'-diaminobenzidine showed a concentration-dependant increase in superoxide and hydrogen peroxide formation in leaves and roots of CuONPs-exposed plants. Cytotoxicity was observed in root tips of CuONPs-exposed plants as evidenced by increased propidium iodide staining. Real-time PCR analysis showed significant induction of genes related to oxidative stress responses, sulfur assimilation, glutathione, and proline biosynthesis under CuONPs stress.

  10. Consequences of insect herbivory on grape fine root systems with different growth rates.

    PubMed

    Bauerle, T L; Eissenstat, D M; Granett, J; Gardner, D M; Smart, D R

    2007-07-01

    Herbivory tolerance has been linked to plant growth rate where plants with fast growth rates are hypothesized to be more tolerant of herbivory than slower-growing plants. Evidence supporting this theory has been taken primarily from observations of aboveground organs but rarely from roots. Grapevines differing in overall rates of new root production, were studied in Napa Valley, California over two growing seasons in an established vineyard infested with the sucking insect, grape phylloxera (Daktulosphaira vitifoliae Fitch). The experimental vineyard allowed for the comparison of two root systems that differed in rates of new root tip production (a 'fast grower', Vitis berlandieri x Vitis rupestris cv. 1103P, and a slower-growing stock, Vitis riparia x Vitis rupestris cv. 101-14 Mgt). Each root system was grafted with a genetically identical shoot system (Vitis vinifera cv. Merlot). Using minirhizotrons, we did not observe any evidence of spatial or temporal avoidance of insect populations by root growth. Insect infestations were abundant throughout the soil profile, and seasonal peaks in phylloxera populations generally closely followed peaks in new root production. Our data supported the hypothesis that insect infestation was proportional to the number of growing tips, as indicated by similar per cent infestation in spite of a threefold difference in root tip production. In addition, infested roots of the fast-growing rootstock exhibited somewhat shorter median lifespans (60 d) than the slower-growing rootstock (85 d). Lifespans of uninfested roots were similar for the two rootstocks (200 d). As a consequence of greater root mortality of younger roots, infested root populations in the fast-growing rootstock had an older age structure. While there does not seem to be a trade-off between potential growth rate and relative rate of root infestation in these cultivars, our study indicates that a fast-growing root system may more readily shed infested roots that are

  11. Mathematics Coursework Regulates Growth in Mathematics Achievement

    ERIC Educational Resources Information Center

    Ma, Xin; Wilkins, Jesse L. M.

    2007-01-01

    Using data from the Longitudinal Study of American Youth (LSAY), we examined the extent to which students' mathematics coursework regulates (influences) the rate of growth in mathematics achievement during middle and high school. Graphical analysis showed that students who started middle school with higher achievement took individual mathematics…

  12. Growth of the Maize Primary Root at Low Water Potentials 1

    PubMed Central

    Sharp, Robert E.; Hsiao, Theodore C.; Silk, Wendy Kuhn

    1990-01-01

    Primary roots of maize (Zea mays L. cv WF9 × Mo17) seedlings growing in vermiculite at various water potentials exhibited substantial osmotic adjustment in the growing region. We have assessed quantitatively whether the osmotic adjustment was attributable to increased net solute deposition rates or to slower rates of water deposition associated with reduced volume expansion. Spatial distributions of total osmotica, soluble carbohydrates, potassium, and water were combined with published growth velocity distributions to calculate deposition rate profiles using the continuity equation. Low water potentials had no effect on the rate of total osmoticum deposition per unit length close to the apex, and caused decreased deposition rates in basal regions. However, rates of water deposition decreased more than osmoticum deposition. Consequently, osmoticum deposition rates per unit water volume were increased near the apex and osmotic potentials were lower throughout the growing region. Because the stressed roots were thinner, osmotic adjustment occurred without osmoticum accumulation per unit length. The effects of low water potential on hexose deposition were similar to those for total osmotica, and hexose made a major contribution to the osmotic adjustment in middle and basal regions. In contrast, potassium deposition decreased at low water potentials in close parallel with water deposition, and increases in potassium concentration were small. The results show that growth of the maize primary root at low water potentials involves a complex pattern of morphogenic and metabolic events. Although osmotic adjustment is largely the result of a greater inhibition of volume expansion and water deposition than solute deposition, the contrasting behavior of hexose and potassium deposition indicates that the adjustment is a highly regulated process. PMID:16667622

  13. Corn-on-a-chip: Mini-channel Device for Corn Root Growth

    NASA Astrophysics Data System (ADS)

    Kreis, Kevin; Ryu, Sangjin

    2015-11-01

    Plant growth heavily relies on interactions between the root and the soil environment, but it is impossible to observe such interactions because of opaqueness of soil. Microfluidics has been successfully utilized to monitor the root growth behaviors of Arabidopsis. In this study we have chosen Maize as a model plant because of its economic significance, and aim to develop transparent mini-channel devices accommodating the root growth of corn seedlings in a controlled environment. To mimic aspects of the soil environment, we try to impose concentration gradients of key chemical ions to the growing root using the device, and to investigate how the root responds to the applied stimuli. We acknowledge support from NASA Nebraska Space Grant Fellowship.

  14. Root aeration improves growth and nitrogen accumulation in rice seedlings under low nitrogen

    PubMed Central

    Zhu, Jingwen; Liang, Jing; Xu, Zhihui; Fan, Xiaorong; Zhou, Quansuo; Shen, Qirong; Xu, Guohua

    2015-01-01

    In wetland soils, changes in oxygen (O2) level in the rhizosphere are believed to influence the behaviour of nutrients and their usage by plants. However, the effect of aeration on nitrogen (N) acquisition under different N supply conditions remains largely unknown. In this study, the rice cultivars Yangdao 6 (YD6, with higher root aerenchyma abundance) and Nongken 57 (NK57, with lower root aerenchyma abundance) were used to evaluate the effects of aeration on rice growth and N accumulation. Our results showed that the number of adventitious roots and the root surface area increased significantly, and ethylene production and aerenchyma formation decreased in both cultivars after external aeration (EA). Five N treatments, including no N (−N), 0.125 mM NH4NO3 (LN), 1.25 mM Ca(NO3)2 (NO3-N), 1.25 mM (NH4)2SO4 (NH4-N) and 1.25 mM NH4NO3 (N/N), were applied to YD6 and NK57 for 2 days under internal aeration or EA conditions. External aeration increased the root biomass in both cultivars and the shoot biomass in NK57 by 18–50 %. The total N concentrations in roots of YD6 grown under −N and LN and of NK57 grown under NO3-N were increased by EA. Expression of OsPAD4, one of four putative genes regulating aerenchyma formation, showed a similar pattern alongside changes in the ethylene level in the EA-treated rice irrespective of the N treatments. Furthermore, expression of the high-affinity nitrate transporter gene OsNRT2.1 was increased by EA under −N, LN and NO3-N conditions. Our data provide evidence of an interaction between O2 and the supply of N in ethylene production, aerenchyma formation and N nutrition through modification of the expression of OsPAD4 and OsNRT2.1. PMID:26578743

  15. PHYTOCHROME AND FLOWERING TIME1/MEDIATOR25 Regulates Lateral Root Formation via Auxin Signaling in Arabidopsis1[C][W

    PubMed Central

    Raya-González, Javier; Ortiz-Castro, Randy; Ruíz-Herrera, León Francisco; Kazan, Kemal; López-Bucio, José

    2014-01-01

    Root system architecture is a major determinant of water and nutrient acquisition as well as stress tolerance in plants. The Mediator complex is a conserved multiprotein complex that acts as a universal adaptor between transcription factors and the RNA polymerase II. In this article, we characterize possible roles of the MEDIATOR8 (MED8) and MED25 subunits of the plant Mediator complex in the regulation of root system architecture in Arabidopsis (Arabidopsis thaliana). We found that loss-of-function mutations in PHYTOCHROME AND FLOWERING TIME1 (PFT1)/MED25 increase primary and lateral root growth as well as lateral and adventitious root formation. In contrast, PFT1/MED25 overexpression reduces these responses, suggesting that PFT1/MED25 is an important element of meristematic cell proliferation and cell size control in both lateral and primary roots. PFT1/MED25 negatively regulates auxin transport and response gene expression in most parts of the plant, as evidenced by increased and decreased expression of the auxin-related reporters PIN-FORMED1 (PIN1)::PIN1::GFP (for green fluorescent protein), DR5:GFP, DR5:uidA, and BA3:uidA in pft1-2 mutants and in 35S:PFT1 seedlings, respectively. No alterations in endogenous auxin levels could be found in pft1-2 mutants or in 35S:PFT1-overexpressing seedlings. However, detailed analyses of DR5:GFP and DR5:uidA activity in wild-type, pft1-2, and 35S:PFT1 seedlings in response to indole-3-acetic acid, naphthaleneacetic acid, and the polar auxin transport inhibitor 1-N-naphthylphthalamic acid indicated that PFT1/MED25 principally regulates auxin transport and response. These results provide compelling evidence for a new role for PFT1/MED25 as an important transcriptional regulator of root system architecture through auxin-related mechanisms in Arabidopsis. PMID:24784134

  16. Summer dormancy and winter growth: root survival strategy in a perennial monocotyledon.

    PubMed

    Shane, Michael W; McCully, Margaret E; Canny, Martin J; Pate, John S; Ngo, Hai; Mathesius, Ulrike; Cawthray, Gregory R; Lambers, Hans

    2009-01-01

    Here, we tested the alternation of root summer dormancy and winter growth as a critical survival strategy for a long-lived monocotyledon (Restionaceae) adapted to harsh seasonal extremes of Mediterranean southwest Western Australia. Measurements of growth and the results of comparative studies of the physiology, water content, metabolites, osmotic adjustments, and proteomics of the dormant and growing perennial roots of Lyginia barbata (Restionaceae) were assessed in field-grown plants. Formation of dormant roots occurred before the onset of summer extremes. They resumed growth (average 2.3 mm d(-1)) the following winter to eventually reach depths of 2-4 m. Compared with winter-growing roots, summer dormant roots had decreased respiration and protein concentration and c. 70% water content, sustained by sand-sheaths, osmotic adjustment and presumably hydraulic redistribution. Concentrations of compatible solutes (e.g. sucrose and proline) were significantly greater during dormancy, presumably mitigating the effects of heat and drought. Fifteen root proteins showed differential abundance and were correlated with either winter growth or summer dormancy. None matched currently available libraries. The specific features of the root dormancy strategy of L. barbata revealed in this study are likely to be important to understanding similar behaviour in roots of many long-lived monocotyledons, including overwintering and oversummering crop species.

  17. Combined effects of bisphenol A and cadmium on growth and nitrate assimilation of soybean seedling roots.

    PubMed

    Sun, Zhaoguo; Wang, Lihong; Wang, Qingqing; Zhou, Qing; Huang, Xiaohua

    2014-09-01

    Bisphenol A (BPA) and cadmium (Cd) pollution exist simultaneously in many regions. However, little information is available regarding the combined effects of BPA and Cd pollution on plants. Plant roots are in direct contact with the soil, which is an important compartment of BPA and Cd. In the present study, the effects of combined BPA and Cd pollution on soybean seedling roots were evaluated in pot experiments. Combined treatment with BPA and Cd at low concentrations (1.5 mg/kg BPA and 0.2 mg/kg Cd) improved soybean seedling root growth. However, other combined BPA and Cd treatments, including combined treatment with BPA (Cd) at the low concentration and Cd (BPA) at the high concentration as well as combined treatment with BPA and Cd at the high concentration, inhibited soybean seedling root growth. The improvement or inhibition of soybean seedling root growth was greater in the combined BPA and Cd treatments than in single treatments. The effects of the combined BPA and Cd treatments on root growth resulted from changes in nitrate assimilation. In addition, the combined effects of BPA and Cd on the nitrate and ammonium contents in roots are discussed. The present research provides a basic understanding of the combined effects of BPA and Cd pollution on plant roots.

  18. Phytotoxic cyanamide affects maize (Zea mays) root growth and root tip function: from structure to gene expression.

    PubMed

    Soltys, Dorota; Rudzińska-Langwald, Anna; Kurek, Wojciech; Szajko, Katarzyna; Sliwinska, Elwira; Bogatek, Renata; Gniazdowska, Agnieszka

    2014-05-01

    Cyanamide (CA) is a phytotoxic compound produced by four Fabaceae species: hairy vetch, bird vetch, purple vetch and black locust. Its toxicity is due to complex activity that involves the modification of both cellular structures and physiological processes. To date, CA has been investigated mainly in dicot plants. The goal of this study was to investigate the effects of CA in the restriction of the root growth of maize (Zea mays), representing the monocot species. CA (3mM) reduced the number of border cells in the root tips of maize seedlings and degraded their protoplasts. However, CA did not induce any significant changes in the organelle structure of other root cells, apart from increased vacuolization. CA toxicity was also demonstrated by its effect on cell cycle activity, endoreduplication intensity, and modifications of cyclins CycA2, CycD2, and histone HisH3 gene expression. In contrast, the arrangement of microtubules was not altered by CA. Treatment of maize seedlings with CA did not completely arrest mitotic activity, although the frequency of dividing cells was reduced. Furthermore, prolonged CA treatment increased the proportion of endopolyploid cells in the root tip. Cytological malformations were accompanied by an induction of oxidative stress in root cells, which manifested as enhanced accumulation of H2O2. Exposure of maize seedlings to CA resulted in an increased concentration of auxin and stimulated ethylene emission. Taken together, these findings suggested that the inhibition of root growth by CA may be a consequence of stress-induced morphogenic responses.

  19. Growth and microtubule orientation of Zea mays roots subjected to osmotic stress

    NASA Technical Reports Server (NTRS)

    Blancaflor, E. B.; Hasenstein, K. H.

    1995-01-01

    Previous work has shown that microtubule (MT) reorientation follows the onset of growth inhibition on the lower side of graviresponding roots, indicating that growth reduction can occur independently of MT reorientation. To test this observation further, we examined whether the reduction in growth in response to osmotic stress is correlated with MT reorientation. The distribution and rate of growth in maize roots exposed to 350 mOsm sorbitol and KCl or 5 mM Mes/Tris buffer were measured with a digitizer. After various times roots were processed for indirect immunofluorescence microscopy. Application of sorbitol or KCl had no effect on the organization of MTs in the apical 2 mm of the root but resulted in striking and different effects in the basal region of the root. Sorbitol treatment caused rapid appearance of oval to circular holes in the microtubular array that persisted for at least 9 h. Between 30 min and 4 h of submersion in KCl, MTs in cortical cells 4 mm and farther from the quiescent center began to reorient oblique to the longitudinal axis. After 9 h, the alignment of MTs had shifted to parallel to the root axis but MTs of the epidermal cells remained transverse. In KCl-treated roots MT reorientation appeared to follow a pattern of development similar to that in controls but without elongation. Our data provide additional evidence that MT reorientation is not the cause but a consequence of growth inhibition.

  20. Growth Promotion-Related miRNAs in Oncidium Orchid Roots Colonized by the Endophytic Fungus Piriformospora indica

    PubMed Central

    Lin, Yuling; Chen, Peng-Jen; Xu, Xuming; Oelmüller, Ralf; Yeh, Kai-Wun; Lai, Zhongxiong

    2014-01-01

    Piriformospora indica, an endophytic fungus of Sebacinales, colonizes the roots of a wide range of host plants and establishes various benefits for the plants. In this work, we describe miRNAs which are upregulated in Oncidium orchid roots after colonization by the fungus. Growth promotion and vigorous root development were observed in Oncidium hybrid orchid, while seedlings were colonized by P. indica. We performed a genome-wide expression profiling of small RNAs in Oncidium orchid roots either colonized or not-colonized by P. indica. After sequencing, 24,570,250 and 24744,141 clean reads were obtained from two libraries. 13,736 from 17,036,953 unique sequences showed homology to either 86 miRNA families described in 41 plant species, or to 46 potential novel miRNAs, or to 51 corresponding miRNA precursors. The predicted target genes of these miRNAs are mainly involved in auxin signal perception and transduction, transcription, development and plant defense. The expression analysis of miRNAs and target genes demonstrated the regulatory functions they may participate in. This study revealed that growth stimulation of the Oncidium orchid after colonization by P. indica includes an intricate network of miRNAs and their targets. The symbiotic function of P. indica on Oncidium orchid resembles previous findings on Chinese cabbage. This is the first study on growth regulation and development of Oncidium orchid by miRNAs induced by the symbiotic fungus P. indica. PMID:24409313

  1. Growth promotion-related miRNAs in Oncidium orchid roots colonized by the endophytic fungus Piriformospora indica.

    PubMed

    Ye, Wei; Shen, Chin-Hui; Lin, Yuling; Chen, Peng-Jen; Xu, Xuming; Oelmüller, Ralf; Yeh, Kai-Wun; Lai, Zhongxiong

    2014-01-01

    Piriformospora indica, an endophytic fungus of Sebacinales, colonizes the roots of a wide range of host plants and establishes various benefits for the plants. In this work, we describe miRNAs which are upregulated in Oncidium orchid roots after colonization by the fungus. Growth promotion and vigorous root development were observed in Oncidium hybrid orchid, while seedlings were colonized by P. indica. We performed a genome-wide expression profiling of small RNAs in Oncidium orchid roots either colonized or not-colonized by P. indica. After sequencing, 24,570,250 and 24744,141 clean reads were obtained from two libraries. 13,736 from 17,036,953 unique sequences showed homology to either 86 miRNA families described in 41 plant species, or to 46 potential novel miRNAs, or to 51 corresponding miRNA precursors. The predicted target genes of these miRNAs are mainly involved in auxin signal perception and transduction, transcription, development and plant defense. The expression analysis of miRNAs and target genes demonstrated the regulatory functions they may participate in. This study revealed that growth stimulation of the Oncidium orchid after colonization by P. indica includes an intricate network of miRNAs and their targets. The symbiotic function of P. indica on Oncidium orchid resembles previous findings on Chinese cabbage. This is the first study on growth regulation and development of Oncidium orchid by miRNAs induced by the symbiotic fungus P. indica.

  2. Proteolytic Processing Regulates Placental Growth Factor Activities*

    PubMed Central

    Hoffmann, Daniel C.; Willenborg, Sebastian; Koch, Manuel; Zwolanek, Daniela; Müller, Stefan; Becker, Ann-Kathrin A.; Metzger, Stephanie; Ehrbar, Martin; Kurschat, Peter; Hellmich, Martin; Hubbell, Jeffrey A.; Eming, Sabine A.

    2013-01-01

    Placental growth factor (PlGF) is a critical mediator of blood vessel formation, yet mechanisms of its action and regulation are incompletely understood. Here we demonstrate that proteolytic processing regulates the biological activity of PlGF. Specifically, we show that plasmin processing of PlGF-2 yields a protease-resistant core fragment comprising the vascular endothelial growth factor receptor-1 binding site but lacking the carboxyl-terminal domain encoding the heparin-binding domain and an 8-amino acid peptide encoded by exon 7. We have identified plasmin cleavage sites, generated a truncated PlGF118 isoform mimicking plasmin-processed PlGF, and explored its biological function in comparison with that of PlGF-1 and -2. The angiogenic responses induced by the diverse PlGF forms were distinct. Whereas PlGF-2 increased endothelial cell chemotaxis, vascular sprouting, and granulation tissue formation upon skin injury, these activities were abrogated following plasmin digestion. Investigation of PlGF/Neuropilin-1 binding and function suggests a critical role for heparin-binding domain/Neuropilin-1 interaction and its regulation by plasmin processing. Collectively, here we provide new mechanistic insights into the regulation of PlGF-2/Neuropilin-1-mediated tissue vascularization and growth. PMID:23645683

  3. Intracerebroventricular administration of nerve growth factor induces gliogenesis in sensory ganglia, dorsal root, and within the dorsal root entry zone.

    PubMed

    Schlachetzki, Johannes C M; Pizzo, Donald P; Morrissette, Debbi A; Winkler, Jürgen

    2014-01-01

    Previous studies indicated that intracerebroventricular administration of nerve growth factor (NGF) leads to massive Schwann cell hyperplasia surrounding the medulla oblongata and spinal cord. This study was designed to characterize the proliferation of peripheral glial cells, that is, Schwann and satellite cells, in the trigeminal ganglia and dorsal root ganglia (DRG) of adult rats during two weeks of NGF infusion using bromodeoxyuridine (BrdU) to label dividing cells. The trigeminal ganglia as well as the cervical and lumbar DRG were analyzed. Along the entire neuraxis a small number of dividing cells were observed within these regions under physiological condition. NGF infusion has dramatically increased the generation of new cells in the neuronal soma and axonal compartments of sensory ganglia and along the dorsal root and the dorsal root entry zone. Quantification of BrdU positive cells within sensory ganglia revealed a 2.3- to 3-fold increase in glial cells compared to controls with a similar response to NGF for the different peripheral ganglia examined. Immunofluorescent labeling with S100β revealed that Schwann and satellite cells underwent mitosis after NGF administration. These data indicate that intracerebroventricular NGF infusion significantly induces gliogenesis in trigeminal ganglia and the spinal sensory ganglia and along the dorsal root entry zone as well as the dorsal root.

  4. Alterations in plant growth and in root hormone levels of lodgepole pines inoculated with rhizobacteria.

    PubMed

    Bent, E; Tuzun, S; Chanway, C P; Enebak, S

    2001-09-01

    The presence of other soil microorganisms might influence the ability of rhizobacterial inoculants to promote plant growth either by reducing contact between the inoculant and the plant root or by interfering with the mechanism(s) involved in rhizobacterially mediated growth promotion. We conducted the following experiments to determine whether reductions in the extent of growth promotion of lodgepole pine mediated by Paenibacillus polymyxa occur in the presence of a forest soil isolate (Pseudomonas fluorescens M20) and whether changes in plant growth promotion mediated by P. polymyxa (i) are related to changes in P. polymyxa density in the rhizosphere or (ii) result from alterations in root hormone levels. The extent of plant growth, P. polymyxa rhizosphere density, and root hormone concentrations were determined for lodgepole pine treated with (i) a single growth-promoting rhizobacterial strain (P. polymyxa L6 or Pw-2) or (ii) a combination of bacteria: strain L6 + strain M20 or strain Pw-2 + strain M20. There was no difference in the growth of pines inoculated with strain L6 and those inoculated with strain L6 + strain M20. However, seedlings inoculated with strain Pw-2 had more lateral roots and greater root mass at 12 weeks after inoculation than plants inoculated with strain Pw-2 + strain M20. The extent of growth promotion mediated by P. polymyxa L6 and Pw-2 in each treatment was not correlated to the average population density of each strain in the rhizosphere. Bacterial species-specific effects were observed in root hormone levels: indole-3-acetic acid concentration was elevated in roots inoculated with P. polymyxa L6 or Pw-2, while dihydrozeatin riboside concentration was elevated in roots inoculated with P. fluorescens M20.

  5. An auxin-responsive endogenous peptide regulates root development in Arabidopsis.

    PubMed

    Yang, Fengxi; Song, Yu; Yang, Hao; Liu, Zhibin; Zhu, Genfa; Yang, Yi

    2014-07-01

    Auxin plays critical roles in root formation and development. The components involved in this process, however, are not well understood. Here, we newly identified a peptide encoding gene, auxin-responsive endogenous polypeptide 1 (AREP1), which is induced by auxin, and mediates root development in Arabidopsis. Expression of AREP1 was specific to the cotyledon and to root and shoot meristem tissues. Amounts of AREP1 transcripts and AREP1-green fluorescent protein fusion proteins were elevated in response to indoleacetic acid treatment. Suppression of AREP1 through RNAi silencing resulted in reduction of primary root length, increase of lateral root number, and expansion of adventitious roots, compared to the observations in wild-type plants in the presence of auxin. By contrast, transgenic plants overexpressing AREP1 showed enhanced growth of the primary root under auxin treatment. Additionally, root morphology, including lateral root number and adventitious roots, differed greatly between transgenic and wild-type plants. Further analysis indicated that the expression of auxin-responsive genes, such as IAA3, IAA7, IAA17, GH3.2, GH3.3, and SAUR-AC1, was significantly higher in AREP1 RNAi plants, and was slightly lower in AREP1 overexpressing plants than in wild-type plants. These results suggest that the novel endogenous peptide AREP1 plays an important role in the process of auxin-mediated root development.

  6. Three functional transporters for constitutive, diurnally regulated, and starvation-induced uptake of ammonium into Arabidopsis roots.

    PubMed Central

    Gazzarrini, S; Lejay, L; Gojon, A; Ninnemann, O; Frommer, W B; von Wirén, N

    1999-01-01

    Ammonium and nitrate are the prevalent nitrogen sources for growth and development of higher plants. 15N-uptake studies demonstrated that ammonium is preferred up to 20-fold over nitrate by Arabidopsis plants. To study the regulation and complex kinetics of ammonium uptake, we isolated two new ammonium transporter (AMT) genes and showed that they functionally complemented an ammonium uptake-deficient yeast mutant. Uptake studies with 14C-methylammonium and inhibition by ammonium yielded distinct substrate affinities between roots showed that nitrogen supply and time of day differentially regulated the individual carriers. Transcript levels of AtAMT1;1, which possesses an affinity in the nanomolar range, steeply increased with ammonium uptake in roots when nitrogen nutrition became limiting, whereas those of AtAMT1;3 increased slightly, with AtAMT1;2 being more constitutively expressed. All three ammonium transporters showed diurnal variation in expression, but AtAMT1;3 transcript levels peaked with ammonium uptake at the end of the light period, suggesting that AtAMT1;3 provides a link between nitrogen assimilation and carbon provision in roots. Our results show that high-affinity ammonium uptake in roots is regulated in relation to the physiological status of the plant at the transcriptional level and by substrate affinities of individual members of the AMT1 gene family. PMID:10330477

  7. Auxin Influx Carrier AUX1 Confers Acid Resistance for Arabidopsis Root Elongation Through the Regulation of Plasma Membrane H+-ATPase.

    PubMed

    Inoue, Shin-Ichiro; Takahashi, Koji; Okumura-Noda, Hiromi; Kinoshita, Toshinori

    2016-10-01

    The plant plasma membrane (PM) H(+)-ATPase regulates pH homeostasis and cell elongation in roots through the formation of an electrochemical H(+) gradient across the PM and a decrease in apoplastic pH; however, the detailed signaling for the regulation of PM H(+)-ATPases remains unclear. Here, we show that an auxin influx carrier, AUXIN RESISTANT1 (AUX1), is required for the maintenance of PM H(+)-ATPase activity and proper root elongation. We isolated a low pH-hypersensitive 1 (loph1) mutant by a genetic screen of Arabidopsis thaliana on low pH agar plates. The loph1 mutant is a loss-of-function mutant of the AUX1 gene and exhibits a root growth retardation restricted to the low pH condition. The ATP hydrolysis and H(+) extrusion activities of the PM H(+)-ATPase were reduced in loph1 roots. Furthermore, the phosphorylation of the penultimate threonine of the PM H(+)-ATPase was reduced in loph1 roots under both normal and low pH conditions without reduction of the amount of PM H(+)-ATPase. Expression of the DR5:GUS reporter gene and auxin-responsive genes suggested that endogenous auxin levels were lower in loph1 roots than in the wild type. The aux1-7 mutant roots also exhibited root growth retardation in the low pH condition like the loph1 roots. These results indicate that AUX1 positively regulates the PM H(+)-ATPase activity through maintenance of the auxin accumulation in root tips, and this process may serve to maintain root elongation especially under low pH conditions.

  8. Influence of nitrogen and phosphorous on the growth and root morphology of Acer mono

    PubMed Central

    Zhang, Peng; Shen, Hai-long; Salahuddin

    2017-01-01

    Nitrogen and phosphorous are critical determinants of plant growth and productivity, and both plant growth and root morphology are important parameters for evaluating the effects of supplied nutrients. Previous work has shown that the growth of Acer mono seedlings is retarded under nursery conditions; we applied different levels of N (0, 5, 10, and 15 g plant-1) and P (0, 4, 6 and 8 g plant-1) fertilizer to investigate the effects of fertilization on the growth and root morphology of four-year-old seedlings in the field. Our results indicated that both N and P application significantly affected plant height, root collar diameter, chlorophyll content, and root morphology. Among the nutrient levels, 10 g N and 8 g P were found to yield maximum growth, and the maximum values of plant height, root collar diameter, chlorophyll content, and root morphology were obtained when 10 g N and 8 g P were used together. Therefore, the present study demonstrates that optimum levels of N and P can be used to improve seedling health and growth during the nursery period. PMID:28234921

  9. Cytokinin Receptors Are Involved in Alkamide Regulation of Root and Shoot Development in Arabidopsis1[C][OA

    PubMed Central

    López-Bucio, José; Millán-Godínez, Mayra; Méndez-Bravo, Alfonso; Morquecho-Contreras, Alina; Ramírez-Chávez, Enrique; Molina-Torres, Jorge; Pérez-Torres, Anahí; Higuchi, Masayuki; Kakimoto, Tatsuo; Herrera-Estrella, Luis

    2007-01-01

    Alkamides and N-acilethanolamides are a class of lipid compounds related to animal endocannabinoids of wide distribution in plants. We investigated the structural features required for alkamides to regulate plant development by comparing the root responses of Arabidopsis (Arabidopsis thaliana) seedlings to a range of natural and synthetic compounds. The length of the acyl chain and the amide moiety were found to play a crucial role in their biological activity. From the different compounds tested, N-isobutyl decanamide, a small saturated alkamide, was found to be the most active in regulating primary root growth and lateral root formation. Proliferative-promoting activity of alkamide treatment was evidenced by formation of callus-like structures in primary roots, ectopic blades along petioles of rosette leaves, and disorganized tumorous tissue originating from the leaf lamina. Ectopic organ formation by N-isobutyl decanamide treatment was related to altered expression of the cell division marker CycB1:uidA and an enhanced expression of the cytokinin-inducible marker ARR5:uidA both in roots and in shoots. The involvement of cytokinins in mediating the observed activity of alkamides was tested using Arabidopsis mutants lacking one, two, or three of the putative cytokinin receptors CRE1, AHK2, and AHK3. The triple cytokinin receptor mutant was insensitive to N-isobutyl decanamide treatment, showing absence of callus-like structures in roots, the lack of lateral root proliferation, and absence of ectopic outgrowths in leaves under elevated levels of this alkamide. Taken together our results suggest that alkamides and N-acylethanolamides may belong to a class of endogenous signaling compounds that interact with a cytokinin-signaling pathway to control meristematic activity and differentiation processes during plant development. PMID:17965178

  10. Root growth and plant biomass in Lolium perenne exploring a nutrient-rich patch in soil.

    PubMed

    Nakamura, Ryoji; Kachi, Naoki; Suzuki, Jun-Ichirou

    2008-11-01

    We investigated soil exploration by roots and plant growth in a heterogeneous environment to determine whether roots can selectively explore a nutrient-rich patch, and how nutrient heterogeneity affects biomass allocation and total biomass before a patch is reached. Lolium perenne L. plants were grown in a factorial experiment with combinations of fertilization (heterogeneous and homogeneous) and day of harvest (14, 28, 42, or 56 days after transplanting). The plant in the heterogeneous treatment was smaller in its mean total biomass, and allocated more biomass to roots. The distributions of root length and root biomass in the heterogeneous treatment did not favor the nutrient-rich patch, and did not correspond to the patchy distribution of inorganic nitrogen. Specific root length (length/biomass) was higher and root elongation was more extensive both laterally and vertically in the heterogeneous treatment. These characteristics may enable plants to acquire nutrients efficiently and increase the probability of encountering nutrient-rich patches in a heterogeneous soil. However, heterogeneity of soil nutrients would hold back plant growth before a patch was reached. Therefore, although no significant selective root placement in the nutrient-rich patch was observed, plant growth before reaching nutrient-rich patches differed between heterogeneous and homogeneous environments.

  11. Mechanical regulation of plant growth and development

    NASA Technical Reports Server (NTRS)

    Mitchell, C. A.

    1984-01-01

    Soybean and eggplant grown and shaken in a greenhouse exhibited decreased internode length, internode diameter, leaf area, and fresh and dry weight of roots and shoots in much the same way as outdoor-exposed plants. Perhaps more important than decreased dimensions of plant parts resulting from periodic seismic treatment is the inhibition of photosynthetic productivity that accompanies this stress. Soybeam plants briefly shaken or rubbed twice daily experienced a decrease in relative as well as absolute growth rate compared to that of undisturbed controls. Growth dynamics analysis revealed that virtually all of the decline in relative growth rate (RGR) was due to a decline in net assimilation rate (NAR), but not in leaf area ratio (LAR). Lower NAR suggests that the stress-induced decrease in dry weight gain is due to a decline in photosynthetic efficiency. Possible effects on stomatal aperture was investigated by measuring rates of whole plant transpiration as a function of seismo-stress, and a transitory decrease followed by a gradual, partial recovery was detected.

  12. Comparative effects of auxin and abscisic acid on growth, hydrogen ion efflux and gravitropism in primary roots of maize

    NASA Technical Reports Server (NTRS)

    Evans, M. L.; Mulkey, T. J.

    1984-01-01

    In order to test the idea that auxin action on root growth may be mediated by H(+) movement, the correlation of auxin action on growth and H(+) movement in roots was examined along with changes in H(+) efflux patterns associated with the asymmetric growth which occurs during gravitropism. The effects of indoleacetic acid (IAA) and abscisic acid (AbA) on growth, H(+) secretion, and gravitropism in roots were compared. Results show a close correlation existent between H(+) efflux and growth in maize roots. In intact roots there is strong H(+) efflux from the elongation zone. Growth-promoting concentrations of IAA stimulate H(+) efflux. During gravitropism the H(+) efflux from the elongation zone becomes asymmetric; the evidence indicates that auxin redistribution contributes to the development of acid efflux asymmetry. That AbA stimulates root growth is reflected in its ability to stimulate H(+) efflux from apical root segments.

  13. Growth of plant root cultures in liquid- and gas-dispersed reactor environments.

    PubMed

    McKelvey, S A; Gehrig, J A; Hollar, K A; Curtis, W R

    1993-01-01

    The growth of Agrobacterium transformed "hairy root" cultures of Hyoscyamus muticus was examined in various liquid- and gas-dispersed bioreactor configurations. Reactor runs were replicated to provide statistical comparisons of nutrient availability on culture performance. Accumulated tissue mass in submerged air-sparged reactors was 31% of gyratory shake-flask controls. Experiments demonstrate that poor performance of sparged reactors is not due to bubble shear damage, carbon dioxide stripping, settling, or flotation of roots. Impaired oxygen transfer due to channeling and stagnation of the liquid phase are the apparent causes of poor growth. Roots grown on a medium-perfused inclined plane grew at 48% of gyratory controls. This demonstrates the ability of cultures to partially compensate for poor liquid distribution through vascular transport of nutrients. A reactor configuration in which the medium is sprayed over the roots and permitted to drain down through the root tissue was able to provide growth rates which are statistically indistinguishable (95% T-test) from gyratory shake-flask controls. In this type of spray/trickle-bed configuration, it is shown that distribution of the roots becomes a key factor in controlling the rate of growth. Implications of these results regarding design and scale-up of bioreactors to produce fine chemicals from root cultures are discussed.

  14. Dynamic root growth and architecture responses to limiting nutrient availability: linking physiological models and experimentation.

    PubMed

    Postma, Johannes A; Schurr, Ulrich; Fiorani, Fabio

    2014-01-01

    In recent years the study of root phenotypic plasticity in response to sub-optimal environmental factors and the genetic control of these responses have received renewed attention. As a path to increased productivity, in particular for low fertility soils, several applied research projects worldwide target the improvement of crop root traits both in plant breeding and biotechnology contexts. To assist these tasks and address the challenge of optimizing root growth and architecture for enhanced mineral resource use, the development of realistic simulation models is of great importance. We review this research field from a modeling perspective focusing particularly on nutrient acquisition strategies for crop production on low nitrogen and low phosphorous soils. Soil heterogeneity and the dynamics of nutrient availability in the soil pose a challenging environment in which plants have to forage efficiently for nutrients in order to maintain their internal nutrient homeostasis throughout their life cycle. Mathematical models assist in understanding plant growth strategies and associated root phenes that have potential to be tested and introduced in physiological breeding programs. At the same time, we stress that it is necessary to carefully consider model assumptions and development from a whole plant-resource allocation perspective and to introduce or refine modules simulating explicitly root growth and architecture dynamics through ontogeny with reference to key factors that constrain root growth. In this view it is important to understand negative feedbacks such as plant-plant competition. We conclude by briefly touching on available and developing technologies for quantitative root phenotyping from lab to field, from quantification of partial root profiles in the field to 3D reconstruction of whole root systems. Finally, we discuss how these approaches can and should be tightly linked to modeling to explore the root phenome.

  15. Root growth and function of three Mojave Desert grasses in response to elevated atmospheric CO2 concentration

    USGS Publications Warehouse

    Yoder, C.K.; Vivin, P.; DeFalco, L.A.; Seemann, J.R.; Nowak, R.S.

    2000-01-01

    Root growth and physiological responses to elevated CO2 were investigated for three important Mojave Desert grasses: the C3 perennial Achnatherum hymenoides, the C4 perennial Pleuraphis rigida and the C3 annual Bromus madritensis ssp. rubens. Seeds of each species were grown at ambient (360 μl l−1) or elevated (1000 μl l−1) CO2 in a glasshouse and harvested at three phenological stages: vegetative, anthesis and seed fill. Because P. rigida did not flower during the course of this study, harvests for this species represent three vegetative stages. Primary productivity was increased in both C3 grasses in response to elevated CO2 (40 and 19% for A. hymenoides and B. rubens, respectively), but root biomass increased only in the C3 perennial grass. Neither above-ground nor below-ground biomass of the C4 perennial grass was significantly affected by the CO2 treatment. Elevated CO2 did not significantly affect root surface area for any species. Total plant nitrogen was also not statistically different between CO2treatments for any species, indicating no enhanced uptake of N under elevated CO2. Physiological uptake capacities for NO3 and NH4 were not affected by the CO2 treatment during the second harvest; measurements were not made for the first harvest. However, at the third harvest uptake capacity was significantly decreased in response to elevated CO2 for at least one N form in each species. NO3 uptake rates were lower in A. hymenoides and P. rigida, and NH4 uptake rates were lower in B. rubens at elevated CO2. Nitrogen uptake on a whole root-system basis (NO3+NH4uptake capacity × root biomass) was influenced positively by elevated CO2 only for A. hymenoidesafter anthesis. These results suggest that elevated CO2 may result in a competitive advantage forA. hymenoides relative to species that do not increase root-system N uptake capacity. Root respiration measurements normalized to 20 °C were not significantly affected by the CO2treatment. However, specific root

  16. Ethylene-auxin interactions regulate lateral root initiation and emergence in Arabidopsis thaliana.

    PubMed

    Ivanchenko, Maria G; Muday, Gloria K; Dubrovsky, Joseph G

    2008-07-01

    Plant root systems display considerable plasticity in response to endogenous and environmental signals. Auxin stimulates pericycle cells within elongating primary roots to enter de novo organogenesis, leading to the establishment of new lateral root meristems. Crosstalk between auxin and ethylene in root elongation has been demonstrated, but interactions between these hormones in root branching are not well characterized. We find that enhanced ethylene synthesis, resulting from the application of low concentrations of the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC), promotes the initiation of lateral root primordia. Treatment with higher doses of ACC strongly inhibits the ability of pericycle cells to initiate new lateral root primordia, but promotes the emergence of existing lateral root primordia: behaviour that is also seen in the eto1 mutation. These effects are correlated with decreased pericycle cell length and increased lateral root primordia cell width. When auxin is applied simultaneously with ACC, ACC is unable to prevent the auxin stimulation of lateral root formation in the root tissues formed prior to ACC exposure. However, in root tissues formed after transfer to ACC, in which elongation is reduced, auxin does not rescue the ethylene inhibition of primordia initiation, but instead increases it by several fold. Mutations that block auxin responses, slr1 and arf7 arf19, render initiation of lateral root primordia insensitive to the promoting effect of low ethylene levels, and mutations that inhibit ethylene-stimulated auxin biosynthesis, wei2 and wei7, reduce the inhibitory effect of higher ethylene levels, consistent with ethylene regulating root branching through interactions with auxin.

  17. Ascending migration of endophytic rhizobia, from roots to leaves, inside rice plants and assessment of benefits to rice growth physiology.

    PubMed

    Chi, Feng; Shen, Shi-Hua; Cheng, Hai-Ping; Jing, Yu-Xiang; Yanni, Youssef G; Dazzo, Frank B

    2005-11-01

    Rhizobia, the root-nodule endosymbionts of leguminous plants, also form natural endophytic associations with roots of important cereal plants. Despite its widespread occurrence, much remains unknown about colonization of cereals by rhizobia. We examined the infection, dissemination, and colonization of healthy rice plant tissues by four species of gfp-tagged rhizobia and their influence on the growth physiology of rice. The results indicated a dynamic infection process beginning with surface colonization of the rhizoplane (especially at lateral root emergence), followed by endophytic colonization within roots, and then ascending endophytic migration into the stem base, leaf sheath, and leaves where they developed high populations. In situ CMEIAS image analysis indicated local endophytic population densities reaching as high as 9 x 10(10) rhizobia per cm3 of infected host tissues, whereas plating experiments indicated rapid, transient or persistent growth depending on the rhizobial strain and rice tissue examined. Rice plants inoculated with certain test strains of gfp-tagged rhizobia produced significantly higher root and shoot biomass; increased their photosynthetic rate, stomatal conductance, transpiration velocity, water utilization efficiency, and flag leaf area (considered to possess the highest photosynthetic activity); and accumulated higher levels of indoleacetic acid and gibberellin growth-regulating phytohormones. Considered collectively, the results indicate that this endophytic plant-bacterium association is far more inclusive, invasive, and dynamic than previously thought, including dissemination in both below-ground and above-ground tissues and enhancement of growth physiology by several rhizobial species, therefore heightening its interest and potential value as a biofertilizer strategy for sustainable agriculture to produce the world's most important cereal crops.

  18. Strigolactones' ability to regulate root development may be executed by induction of the ethylene pathway.

    PubMed

    Koltai, Hinanit

    2011-07-01

    The newly defined phytohormones strigolactones (SLs) were recently shown to act as regulators of root development. Their positive effect on root-hair (RH) elongation enabled examination of their cross talk with auxin and ethylene. Analysis of wild-type plants and hormone-signaling mutants combined with hormonal treatments suggested that SLs and ethylene regulate RH elongation via a common regulatory pathway, in which ethylene is epistatic to SLs. The SL and auxin hormonal pathways were suggested to converge for regulation of RH elongation; this convergence was suggested to be mediated via the ethylene pathway, and to include regulation of auxin transport.

  19. Towards systems biology of the gravity response of higher plants -multiscale analysis of Arabidopsis thaliana root growth

    NASA Astrophysics Data System (ADS)

    Palme, Klaus; Aubry, D.; Bensch, M.; Schmidt, T.; Ronneberger, O.; Neu, C.; Li, X.; Wang, H.; Santos, F.; Wang, B.; Paponov, I.; Ditengou, F. A.; Teale, W. T.; Volkmann, D.; Baluska, F.; Nonis, A.; Trevisan, S.; Ruperti, B.; Dovzhenko, A.

    Gravity plays a fundamental role in plant growth and development. Up to now, little is known about the molecular organisation of the signal transduction cascades and networks which co-ordinate gravity perception and response. By using an integrated systems biological approach, a systems analysis of gravity perception and the subsequent tightly-regulated growth response is planned in the model plant Arabidopsis thaliana. This approach will address questions such as: (i) what are the components of gravity signal transduction pathways? (ii) what are the dynamics of these components? (iii) what is their spatio-temporal regulation in different tis-sues? Using Arabidopsis thaliana as a model-we use root growth to obtain insights in the gravity response. New techniques enable identification of the individual genes affected by grav-ity and further integration of transcriptomics and proteomics data into interaction networks and cell communication events that operate during gravitropic curvature. Using systematic multiscale analysis we have identified regulatory networks consisting of transcription factors, the protein degradation machinery, vesicle trafficking and cellular signalling during the gravire-sponse. We developed approach allowing to incorporate key features of the root system across all relevant spatial and temporal scales to describe gene-expression patterns and correlate them with individual gene and protein functions. Combination of high-resolution microscopy and novel computational tools resulted in development of the root 3D model in which quantitative descriptions of cellular network properties and of multicellular interactions important in root growth and gravitropism can be integrated for the first time.

  20. Ethylene regulates lateral root formation and auxin transport in Arabidopsis thaliana

    PubMed Central

    Negi, Sangeeta; Ivanchenko, Maria G; Muday, Gloria K

    2008-01-01

    Lateral root branching is a genetically defined and environmentally regulated process. Auxin is required for lateral root formation, and mutants that are altered in auxin synthesis, transport or signaling often have lateral root defects. Crosstalk between auxin and ethylene in root elongation has been demonstrated, but interactions between these hormones in the regulation of Arabidopsis lateral root formation are not well characterized. This study utilized Arabidopsis mutants altered in ethylene signaling and synthesis to explore the role of ethylene in lateral root formation. We find that enhanced ethylene synthesis or signaling, through the eto1-1 and ctr1-1 mutations, or through the application of 1-aminocyclopropane-1-carboxylic acid (ACC), negatively impacts lateral root formation, and is reversible by treatment with the ethylene antagonist, silver nitrate. In contrast, mutations that block ethylene responses, etr1-3 and ein2-5, enhance root formation and render it insensitive to the effect of ACC, even though these mutants have reduced root elongation at high ACC doses. ACC treatments or the eto1-1 mutation significantly enhance radiolabeled indole-3-acetic acid (IAA) transport in both the acropetal and the basipetal directions. ein2-5 and etr1-3 have less acropetal IAA transport, and transport is no longer regulated by ACC. DR5-GUS reporter expression is also altered by ACC treatment, which is consistent with transport differences. The aux1-7 mutant, which has a defect in an IAA influx protein, is insensitive to the ethylene inhibition of root formation. aux1-7 also has ACC-insensitive acropetal and basipetal IAA transport, as well as altered DR5-GUS expression, which is consistent with ethylene altering AUX1-mediated IAA uptake, and thereby blocking lateral root formation. PMID:18363780

  1. Regulation of root hair initiation and expansin gene expression in Arabidopsis

    NASA Technical Reports Server (NTRS)

    Cho, Hyung-Taeg; Cosgrove, Daniel J.

    2002-01-01

    The expression of two Arabidopsis expansin genes (AtEXP7 and AtEXP18) is tightly linked to root hair initiation; thus, the regulation of these genes was studied to elucidate how developmental, hormonal, and environmental factors orchestrate root hair formation. Exogenous ethylene and auxin, as well as separation of the root from the medium, stimulated root hair formation and the expression of these expansin genes. The effects of exogenous auxin and root separation on root hair formation required the ethylene signaling pathway. By contrast, blocking the endogenous ethylene pathway, either by genetic mutations or by a chemical inhibitor, did not affect normal root hair formation and expansin gene expression. These results indicate that the normal developmental pathway for root hair formation (i.e., not induced by external stimuli) is independent of the ethylene pathway. Promoter analyses of the expansin genes show that the same promoter elements that determine cell specificity also determine inducibility by ethylene, auxin, and root separation. Our study suggests that two distinctive signaling pathways, one developmental and the other environmental/hormonal, converge to modulate the initiation of the root hair and the expression of its specific expansin gene set.

  2. Soil microbial biomass and root growth in Bt and non-Bt cotton

    NASA Astrophysics Data System (ADS)

    Tan, D. K. Y.; Broughton, K.; Knox, O. G.; Hulugalle, N. R.

    2012-04-01

    The introduction of transgenic Bacillus thuringiensis (Bt) cotton (Gossypium hirsutum L.) has had a substantial impact on pest management in the cotton industry. While there has been substantial research done on the impact of Bt on the above-ground parts of the cotton plant, less is known about the effect of Bt genes on below ground growth of cotton and soil microbial biomass. The aim of this research was to test the hypothesis that Bt [Sicot 80 BRF (Bollgard II Roundup Ready Flex®)] and non-Bt [Sicot 80 RRF (Roundup Ready Flex®)] transgenic cotton varieties differ in root growth and root turnover, carbon indices and microbial biomass. A field experiment was conducted in Narrabri, north-western NSW. The experimental layout was a randomised block design and used minirhizotron and core break and root washing methods to measure cotton root growth and turnover during the 2008/09 season. Root growth in the surface 0-0.1 m of the soil was measured using the core break and root washing methods, and that in the 0.1 to 1 m depth was measured with a minirhizotron and an I-CAP image capture system. These measurements were used to calculate root length per unit area, root carbon added to the soil through intra-seasonal root death, carbon in roots remaining at the end of the season and root carbon potentially added to the soil. Microbial biomass was also measured using the ninhydrin reactive N method. Root length densities and length per unit area of non-Bt cotton were greater than Bt cotton. There were no differences in root turnover between Bt and non-Bt cotton at 0-1 m soil depth, indicating that soil organic carbon stocks may not be affected by cotton variety. Cotton variety did not have an effect on soil microbial biomass. The results indicate that while there are differences in root morphology between Bt and non-Bt cotton, these do not change the carbon turnover dynamics in the soil.

  3. Regulation of body growth by microRNAs.

    PubMed

    Lui, Julian C

    2016-10-24

    Regulation of body growth remains a fascinating and unresolved biological mystery. One key component of body growth is skeletal and longitudinal bone growth. Children grow taller because their bones grew longer, and the predominant driver of longitudinal bone growth is a cartilaginous structure found near the ends of long bone named the growth plate. Numerous recent studies have started to unveil the importance of microRNAs in regulation of growth plate functions, therefore contributing to regulation of linear growth. In addition to longitudinal growth, other organs in our body need to increase in size and cell number as we grow, and the regulation of organ growth involves both systemic factors like hormones; and other intrinsic mechanisms, which we are just beginning to understand. This review aims to summarize some recent important findings on how microRNAs are involved in both of these processes: the regulation of longitudinal bone growth, and the regulation of organs and overall body growth.

  4. Determination of zinc oxide nanoparticles toxicity in root growth in wheat (Triticum aestivum L.) seedlings.

    PubMed

    Prakash, Meppaloor G; Chung, Ill Min

    2016-09-01

    The effect of zinc oxide nanoparticles (ZnONPs) was studied in wheat (Triticum aestivum L.) seedlings under in vitro exposure conditions. To avoid precipitation of nanoparticles, the seedlings were grown in half strength semisolid Murashige and Skoog medium containing 0, 50, 100, 200, 400 and 500 mg L(-1) of ZnONPs. Analysis of zinc (Zn) content showed significant increase in roots. In vivo detection using fluorescent probe Zynpyr-1 indicated accumulation of Zn in primary and lateral root tips. All concentrations of ZnONPs significantly reduced root growth. However, significant decrease in shoot growth was observed only after exposure to 400 and 500 mg L(-1) of ZnONPs. The reactive oxygen species and lipid peroxidation levels significantly increased in roots. Significant increase in cell-wall bound peroxidase activity was observed after exposure to 500 mg L(-1) of ZnONPs. Histochemical staining with phloroglucinol-HCl showed lignification of root cells upon exposure to 500 mg L(-1) of ZnONPs. Treatment with propidium iodide indicated loss of cell viability in root tips of wheat seedlings. These results suggest that redox imbalances, lignification and cell death has resulted in reduction of root growth in wheat seedlings exposed to ZnONPs nanoparticles.

  5. Elicitors from the endophytic fungus Trichoderma atroviride promote Salvia miltiorrhiza hairy root growth and tanshinone biosynthesis.

    PubMed

    Ming, Qianliang; Su, Chunyan; Zheng, Chengjian; Jia, Min; Zhang, Qiaoyan; Zhang, Hong; Rahman, Khalid; Han, Ting; Qin, Luping

    2013-12-01

    Biotic elicitors can be used to stimulate the production of secondary metabolites in plants. However, limited information is available on the effects of biotic elicitors from endophytic fungi on their host plant. Trichoderma atroviride D16 is an endophytic fungus isolated from the root of Salvia miltiorrhiza and previously reported to produce tanshinone I (T-I) and tanshinone IIA (T-IIA). Here, the effects of extract of mycelium (EM) and the polysaccharide fraction (PSF), produced by T. atroviride D16, on the growth and secondary metabolism of S. miltiorrhiza hairy roots are reported. The results indicated that both EM and PSF promoted hairy root growth and stimulated the biosynthesis of tanshinones in hairy roots. EM slightly suppressed the accumulation of phenolic acids, while PSF had no significant influence on the accumulation of these compounds. When comparing the effects of EM versus PSF, it was concluded that PSF is one of the main active constituents responsible for promoting hairy root growth, as well as stimulating biosynthesis of tanshinones in the hairy root cultures. Moreover, the transcriptional activity of genes involved in the tanshinone biosynthetic pathway increased significantly with PSF treatment. Thus, PSF from endophytic T. atroviride D16 affected the chemical composition of the host plant by influencing the expression of genes related to the secondary metabolite biosynthetic pathway. Furthermore, treatment with PSF can be effectively utilized for large-scale production of tanshinones in the S. miltiorrhiza hairy root culture system.

  6. Physiological minimum temperatures for root growth in seven common European broad-leaved tree species.

    PubMed

    Schenker, Gabriela; Lenz, Armando; Körner, Christian; Hoch, Günter

    2014-03-01

    Temperature is the most important factor driving the cold edge distribution limit of temperate trees. Here, we identified the minimum temperatures for root growth in seven broad-leaved tree species, compared them with the species' natural elevational limits and identified morphological changes in roots produced near their physiological cold limit. Seedlings were exposed to a vertical soil-temperature gradient from 20 to 2 °C along the rooting zone for 18 weeks. In all species, the bulk of roots was produced at temperatures above 5 °C. However, the absolute minimum temperatures for root growth differed among species between 2.3 and 4.2 °C, with those species that reach their natural distribution limits at higher elevations also tending to have lower thermal limits for root tissue formation. In all investigated species, the roots produced at temperatures close to the thermal limit were pale, thick, unbranched and of reduced mechanical strength. Across species, the specific root length (m g(-1) root) was reduced by, on average, 60% at temperatures below 7 °C. A significant correlation of minimum temperatures for root growth with the natural high elevation limits of the investigated species indicates species-specific thermal requirements for basic physiological processes. Although these limits are not necessarily directly causative for the upper distribution limit of a species, they seem to belong to a syndrome of adaptive processes for life at low temperatures. The anatomical changes at the cold limit likely hint at the mechanisms impeding meristematic activity at low temperatures.

  7. A pathway of bisphenol A affecting mineral element contents in plant roots at different growth stages.

    PubMed

    Xia, Binxin; Wang, Lihong; Nie, Lijun; Zhou, Qing; Huang, Xiaohua

    2017-01-01

    Bisphenol A (BPA), an environmental endocrine disruptor, is an important industrial raw material. The wide use of BPA has increased the risk of BPA release into the environment, and it has become a new environmental pollutant. In this work, the ecological deleterious effects of this new pollutant on soybean roots at different growth stages were investigated by determining the contents of mineral elements (P, K, Ca, and Mg) and analyzing root activity and the activities of critical respiratory enzymes (hexokinase, phosphofructokinase, pyruvate kinase, and isocitrate dehydrogenase). Our results revealed that low dose (1.5mg/L) of BPA increased the levels of P, K, Mg, and Ca in soybean roots at different growth stages. Whereas, high doses (6.0 and 12.0mg/L) of BPA decreased the levels of P, K, and Mg contents in a dose-dependent manner. BPA had a promotive effect on the content of Ca in soybean roots. Synchronous observation showed that the aforementioned dual response to BPA were also observed in the root activity and respiratory enzyme activities. The effects of BPA on the mineral element contents, root activity and respiratory enzyme activities in soybean roots at different growth stages followed the order: flowering and podding stage>seed-filling stage>seedling stage (mineral element contents); seedling stage>flowering and podding stage>seed-filling stage (root activity and respiratory enzyme activities). In a word, the response of plant root activity and respiratory enzyme activities to BPA pollution is a pathway of BPA affecting mineral element contents in plant roots.

  8. Modeling hairy root tissue growth in in vitro environments using an agent-based, structured growth model.

    PubMed

    Lenk, Felix; Sürmann, Almuth; Oberthür, Patrick; Schneider, Mandy; Steingroewer, Juliane; Bley, Thomas

    2014-06-01

    An agent-based model for simulating the in vitro growth of Beta vulgaris hairy root cultures is described. The model fitting is based on experimental results and can be used as a virtual experimentator for root networks. It is implemented in the JAVA language and is designed to be easily modified to describe the growth of diverse biological root networks. The basic principles of the model are outlined, with descriptions of all of the relevant algorithms using the ODD protocol, and a case study is presented in which it is used to simulate the development of hairy root cultures of beetroot (Beta vulgaris) in a Petri dish. The model can predict various properties of the developing network, including the total root length, branching point distribution, segment distribution and secondary metabolite accumulation. It thus provides valuable information that can be used when optimizing cultivation parameters (e.g., medium composition) and the cultivation environment (e.g., the cultivation temperature) as well as how constructional parameters change the morphology of the root network. An image recognition solution was used to acquire experimental data that were used when fitting the model and to evaluate the agreement between the simulated results and practical experiments. Overall, the case study simulation closely reproduced experimental results for the cultures grown under equivalent conditions to those assumed in the simulation. A 3D-visualization solution was created to display the simulated results relating to the state of the root network and its environment (e.g., oxygen and nutrient levels).

  9. Glucose inhibits root meristem growth via ABA INSENSITIVE 5, which represses PIN1 accumulation and auxin activity in Arabidopsis.

    PubMed

    Yuan, Ting-Ting; Xu, Heng-Hao; Zhang, Kun-Xiao; Guo, Ting-Ting; Lu, Ying-Tang

    2014-06-01

    Glucose functions as a hormone-like signalling molecule that modulates plant growth and development in Arabidopsis thaliana. However, the role of glucose in root elongation remains elusive. Our study demonstrates that high concentrations of glucose reduce the size of the root meristem zone by repressing PIN1 accumulation and thereby reducing auxin levels. In addition, we verified the involvement of ABA INSENSITIVE 5 (ABI5) in this process by showing that abi5-1 is less sensitive to glucose than the wild type, whereas glucose induces ABI5 expression and the inducible overexpression of ABI5 reduces the size of the root meristem zone. Furthermore, the inducible overexpression of ABI5 in PIN1::PIN1-GFP plants reduces the level of PIN1-GFP, but glucose reduces the level of PIN1-GFP to a lesser extent in abi5-1 PIN1::PIN1-GFP plants than in the PIN1::PIN1-GFP control, suggesting that ABI5 is involved in glucose-regulated PIN1 accumulation. Taken together, our data suggest that ABI5 functions in the glucose-mediated inhibition of the root meristem zone by repressing PIN1 accumulation, thus leading to reduced auxin levels in roots.

  10. Over-expression of mango (Mangifera indica L.) MiARF2 inhibits root and hypocotyl growth of Arabidopsis.

    PubMed

    Wu, Bei; Li, Yun-He; Wu, Jian-Yong; Chen, Qi-Zhu; Huang, Xia; Chen, Yun-Feng; Huang, Xue-Lin

    2011-06-01

    An auxin response factor 2 gene, MiARF2, was cloned in our previous study [1] from the cotyledon section of mango (Mangifera indica L. cv. Zihua) during adventitious root formation, which shares an 84% amino acid sequence similarity to Arabidopsis ARF2. This study was to examine the effects of over-expression of the full-length MiARF2 open reading frame on the root and hypocotyl growth in Arabidopsis. Phenotype analysis showed that the T(3) transgenic lines had about 20-30% reduction in the length of hypocotyls and roots of the seedlings in comparison with the wild-type. The transcription levels of ANT and ARGOS genes which play a role in controlling organ size and cell proliferation in the transgenic seedlings also decreased. Therefore, the inhibited root and hypocotyl growth in the transgenic seedlings may be associated with the down-regulated transcription of ANT and ARGOS by the over-expression of MiARF2. This study also suggests that although MiARF2 only has a single DNA-binding domain (DBD), it can function as other ARF-like proteins containing complete DBD, middle region (MR) and carboxy-terminal dimerization domain (CTD).

  11. Influence of low air humidity and low root temperature on water uptake, growth and aquaporin expression in rice plants.

    PubMed

    Kuwagata, Tsuneo; Ishikawa-Sakurai, Junko; Hayashi, Hidehiro; Nagasuga, Kiyoshi; Fukushi, Keiko; Ahamed, Arifa; Takasugi, Katsuko; Katsuhara, Maki; Murai-Hatano, Mari

    2012-08-01

    The effects of low air humidity and low root temperature (LRT) on water uptake, growth and aquaporin gene expression were investigated in rice plants. The daily transpiration of the plants grown at low humidity was 1.5- to 2-fold higher than that at high humidity. LRT at 13°C reduced transpiration, and the extent was larger at lower humidity. LRT also reduced total dry matter production and leaf area expansion, and the extent was again larger at lower humidity. These observations suggest that the suppression of plant growth by LRT is associated with water stress due to decreased water uptake ability of the root. On the other hand, the net assimilation rate was not affected by low humidity and LRT, and water use efficiency was larger for LRT. We found that low humidity induced coordinated up-regulation of many PIP and TIP aquaporin genes in both the leaves and the roots. Expression levels of two root-specific aquaporin genes, OsPIP2;4 and OsPIP2;5, were increased significantly after 6 and 13 d of LRT exposure. Taken together, we discuss the possibility that aquaporins are part of an integrated response of this crop to low air humidity and LRT.

  12. Analysis of Respiratory Chain Regulation in Roots of Soybean Seedlings1

    PubMed Central

    Millar, A. Harvey; Atkin, Owen K.; Ian Menz, R.; Henry, Beverley; Farquhar, Graham; Day, David A.

    1998-01-01

    Changes in the respiratory rate and the contribution of the cytochrome (Cyt) c oxidase and alternative oxidase (COX and AOX, respectively) were investigated in soybean (Glycine max L. cv Stevens) root seedlings using the 18O-discrimination method. In 4-d-old roots respiration proceeded almost entirely via COX, but by d 17 more than 50% of the flux occurred via AOX. During this period the capacity of COX, the theoretical yield of ATP synthesis, and the root relative growth rate all decreased substantially. In extracts from whole roots of different ages, the ubiquinone pool was maintained at 50% to 60% reduction, whereas pyruvate content fluctuated without a consistent trend. In whole-root immunoblots, AOX protein was largely in the reduced, active form at 7 and 17 d but was partially oxidized at 4 d. In isolated mitochondria, Cyt pathway and succinate dehydrogenase capacities and COX I protein abundance decreased with root age, whereas both AOX capacity and protein abundance remained unchanged. The amount of mitochondrial protein on a dry-mass basis did not vary significantly with root age. It is concluded that decreases in whole-root respiration during growth of soybean seedlings can be largely explained by decreases in maximal rates of electron transport via COX. Flux via AOX is increased so that the ubiquinone pool is maintained in a moderately reduced state. PMID:9662551

  13. The simulation model of growth and cell divisions for the root apex with an apical cell in application to Azolla pinnata.

    PubMed

    Piekarska-Stachowiak, Anna; Nakielski, Jerzy

    2013-12-01

    In contrast to seed plants, the roots of most ferns have a single apical cell which is the ultimate source of all cells in the root. The apical cell has a tetrahedral shape and divides asymmetrically. The root cap derives from the distal division face, while merophytes derived from three proximal division faces contribute to the root proper. The merophytes are produced sequentially forming three sectors along a helix around the root axis. During development, they divide and differentiate in a predictable pattern. Such growth causes cell pattern of the root apex to be remarkably regular and self-perpetuating. The nature of this regularity remains unknown. This paper shows the 2D simulation model for growth of the root apex with the apical cell in application to Azolla pinnata. The field of growth rates of the organ, prescribed by the model, is of a tensor type (symplastic growth) and cells divide taking principal growth directions into account. The simulations show how the cell pattern in a longitudinal section of the apex develops in time. The virtual root apex grows realistically and its cell pattern is similar to that observed in anatomical sections. The simulations indicate that the cell pattern regularity results from cell divisions which are oriented with respect to principal growth directions. Such divisions are essential for maintenance of peri-anticlinal arrangement of cell walls and coordinated growth of merophytes during the development. The highly specific division program that takes place in merophytes prior to differentiation seems to be regulated at the cellular level.

  14. Modeling potato root growth and water uptake under water stress conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Potato (Solanum tuberosum L.) growth and yield are sensitive to drought starting at mild stress levels. Accurate simulation of root growth is critical for estimating water and nutrient uptake dynamics of major crops and improving agricultural decision support tools for natural resource management. ...

  15. CARRY-OVER EFFECTS OF OZONE ON ROOT GROWTH AND CARBOHYDRATE CONCENTRATIONS OF PONDEROSA PINE SEEDLINGS

    EPA Science Inventory

    Ozone exposure decreases belowground carbon allocation and root growth of plants;however,the extent to which these effects persist and the cumulative impact of ozone stress on plant growth are poorly understood.To evaluate the potential for plant compensation,we followed the prog...

  16. Salt stress-induced seedling growth inhibition coincides with differential distribution of serotonin and melatonin in sunflower seedling roots and cotyledons.

    PubMed

    Mukherjee, Soumya; David, Anisha; Yadav, Sunita; Baluška, František; Bhatla, Satish Chander

    2014-12-01

    Indoleamines regulate a variety of physiological functions during the growth, morphogenesis and stress-induced responses in plants. Present investigations report the effect of NaCl stress on endogenous serotonin and melatonin accumulation and their differential spatial distribution in sunflower (Helianthus annuus) seedling roots and cotyledons using HPLC and immunohistochemical techniques, respectively. Exogenous serotonin and melatonin treatments lead to variable effect on hypocotyl elongation and root growth under NaCl stress. NaCl stress for 48 h increases endogenous serotonin and melatonin content in roots and cotyledons, thus indicating their involvement in salt-induced long distance signaling from roots to cotyledons. Salt stress-induced accumulation of serotonin and melatonin exhibits differential distribution in the vascular bundles and cortex in the differentiating zones of the primary roots, suggesting their compartmentalization in the growing region of roots. Serotonin and melatonin accumulation in oil body rich cells of salt-treated seedling cotyledons correlates with longer retention of oil bodies in the cotyledons. Present investigations indicate the possible role of serotonin and melatonin in regulating root growth during salt stress in sunflower. Effect of exogenous serotonin and melatonin treatments (15 μM) on sunflower seedlings grown in the absence or presence of 120 mM NaCl substantiates their role on seedling growth. Auxin and serotonin biosynthesis are coupled to the common precursor tryptophan. Salt stress-induced root growth inhibition, thus pertains to partial impairment of auxin functions caused by increased serotonin biosynthesis. In seedling cotyledons, NaCl stress modulates the activity of N-acetylserotonin O-methyltransferase (HIOMT; EC 2.1.1.4), the enzyme responsible for melatonin biosynthesis from N-acetylserotonin.

  17. Seedling root responses to soil moisture and the identification of a belowground trait spectrum across three growth forms.

    PubMed

    Larson, Julie E; Funk, Jennifer L

    2016-05-01

    Root trait variation and plasticity could be key factors differentiating plant performance under drought. However, water manipulation and root measurements are rarely coupled empirically across growth forms to identify whether belowground strategies are generalizable across species. We measured seedling root traits across three moisture levels in 18 Mediterranean forbs, grasses, and woody species. Drought increased the root mass fraction (RMF) and decreased the relative proportion of thin roots (indicated by increased root diameters and decreased specific root length (SRL)), rates of root elongation and growth, plant nitrogen uptake, and plant growth. Although responses varied across species, plasticity was not associated with growth form. Woody species differed from forbs and grasses in many traits, but herbaceous groups were similar. Across water treatments, trait correlations suggested a single spectrum of belowground trade-offs related to resource acquisition and plant growth. While effects of SRL and RMF on plant growth shifted with drought, root elongation rate consistently represented this spectrum. We demonstrate that general patterns of root morphology and plasticity are identifiable across diverse species. Root trait measurements should enhance our understanding of belowground strategy and performance across growth forms, but it will be critical to incorporate plasticity and additional aspects of root function into these efforts.

  18. Regulation of myostatin activity and muscle growth.

    PubMed

    Lee, S J; McPherron, A C

    2001-07-31

    Myostatin is a transforming growth factor-beta family member that acts as a negative regulator of skeletal muscle mass. To identify possible myostatin inhibitors that may have applications for promoting muscle growth, we investigated the regulation of myostatin signaling. Myostatin protein purified from mammalian cells consisted of a noncovalently held complex of the N-terminal propeptide and a disulfide-linked dimer of C-terminal fragments. The purified C-terminal myostatin dimer was capable of binding the activin type II receptors, Act RIIB and, to a lesser extent, Act RIIA. Binding of myostatin to Act RIIB could be inhibited by the activin-binding protein follistatin and, at higher concentrations, by the myostatin propeptide. To determine the functional significance of these interactions in vivo, we generated transgenic mice expressing high levels of the propeptide, follistatin, or a dominant-negative form of Act RIIB by using a skeletal muscle-specific promoter. Independent transgenic mouse lines for each construct exhibited dramatic increases in muscle mass comparable to those seen in myostatin knockout mice. Our findings suggest that the propeptide, follistatin, or other molecules that block signaling through this pathway may be useful agents for enhancing muscle growth for both human therapeutic and agricultural applications.

  19. Plant responses to heterogeneous salinity: growth of the halophyte Atriplex nummularia is determined by the root-weighted mean salinity of the root zone.

    PubMed

    Bazihizina, Nadia; Barrett-Lennard, Edward G; Colmer, Timothy D

    2012-11-01

    Soil salinity is generally spatially heterogeneous, but our understanding of halophyte physiology under such conditions is limited. The growth and physiology of the dicotyledonous halophyte Atriplex nummularia was evaluated in split-root experiments to test whether growth is determined by: (i) the lowest; (ii) the highest; or (iii) the mean salinity of the root zone. In two experiments, plants were grown with uniform salinities or horizontally heterogeneous salinities (10-450 mM NaCl in the low-salt side and 670 mM in the high-salt side, or 10 mM NaCl in the low-salt side and 500-1500 mM in the high-salt side). The combined data showed that growth and gas exchange parameters responded most closely to the root-weighted mean salinity rather than to the lowest, mean, or highest salinity in the root zone. In contrast, midday shoot water potentials were determined by the lowest salinity in the root zone, consistent with most water being taken from the least negative water potential source. With uniform salinity, maximum shoot growth was at 120-230 mM NaCl; ~90% of maximum growth occurred at 10 mM and 450 mM NaCl. Exposure of part of the roots to 1500 mM NaCl resulted in an enhanced (+40%) root growth on the low-salt side, which lowered root-weighted mean salinity and enabled the maintenance of shoot growth. Atriplex nummularia grew even with extreme salinity in part of the roots, as long as the root-weighted mean salinity of the root zone was within the 10-450 mM range.

  20. [Effects of partial root excision on the growth, photosynthesis, and antioxidant enzyme activities of maize under salt stress].

    PubMed

    Zhang, Hong; Cui, Li-Na; Meng, Jia-Jia; Zhang, Hai-Yan; Shi, De-Yang; Dong, Shu-Ting; Zhang, Ji-Wang; Liu, Peng

    2012-12-01

    A pot experiment was conducted to study the effects of partial root excision on the growth of two maize cultivars (Zhengdan 958 and Denghai 9) throughout their growth period and the photosynthesis and leaf antioxidant enzyme activities at grain-filling stage under salt stress. Four treatments were installed, i. e., control (no salt), low salt (0.2% NaCl), moderate salt (0.4% NaCl), and high salt (0.6% NaCl). Under low salt stress, the grain yield of Zhengdan 958 and Denghai 9 with partial root excision was increased by 13.1% and 31.4%, respectively, as compared with that of the cultivars with no root excision. At jointing stage, the growth of the cultivars with partial root excision was restrained, the root- and shoot dry masses under the same salt stresses being lesser than those of the cultivars with no root excision, but the growth under the conditions of no salt and low salt recovered quickly. At milk-ripe stage and under no salt and low salt conditions, the root- and shoot dry masses, leaf area, total root length, total root surface area, root activity, leaf chlorophyll content, and ear leaf net photosynthetic rate, stomatal conductance, transpiration rate, and CAT and POD activities of the cultivars with partial root excision were significantly larger than those of the cultivars with no root excision, while the shoot diameter and ear leaf MDA content were in adverse. Moderate and high salt stresses had greater effects on the cultivars with partial root excision. The root- and shoot dry masses, root morphology, and photosynthesis indices of the cultivars with partial root excision were smaller than those of the cultivars with no root excision, so did the grain yields. Throughout the growth period of the cultivars, the growth of the cultivars with partial root excision depended on the salt concentration, i. e., was promoted under no and low salt, and inhibited under moderate and high salt conditions.

  1. Cytokinin as a positional cue regulating lateral root spacing in Arabidopsis.

    PubMed

    Chang, Ling; Ramireddy, Eswarayya; Schmülling, Thomas

    2015-08-01

    The root systems of plants have developed adaptive architectures to exploit soil resources. The formation of lateral roots (LRs) contributes to root system architecture. Roots of plants with a lower cytokinin status form LR primordia (LRP) in unusually close proximity, indicating a role for the hormone in regulating the positioning of LRs along the main root axis. Data obtained from cytokinin-synthesis mutants of Arabidopsis thaliana combined with gene expression analysis indicate that cytokinin synthesis by IPT5 and LOG4 occurring early during LRP initiation generates a local cytokinin signal abbreviating LRP formation in neighbouring pericycle cells. In addition, IPT3, IPT5, and IPT7 contribute to cytokinin synthesis in the vicinity of existing LRP, thus suppressing initiation of new LRs. Interestingly, mutation of CYP735A genes required for trans-zeatin biosynthesis caused strong defects in LR positioning, indicating an important role for this cytokinin metabolite in regulating LR spacing. Further it is shown that cytokinin and a known regulator of LR spacing, the receptor-like kinase ARABIDOPSIS CRINKLY4 (ACR4), operate in a non-hierarchical manner but might exert reciprocal control at the transcript level. Taken together, the results suggest that cytokinin acts as a paracrine hormonal signal in regulating root system architecture.

  2. Experimental observations of root growth in a controlled photoelastic granular material

    NASA Astrophysics Data System (ADS)

    Mora, Serge; Bares, Jonathan; Delenne, Jean-Yves; Fourcaud, Thierry

    The mechanism of root growth in soil is a key issue to understand both how to improve plant development and how to stabilize grounds. However, no experimental studies have been carried out to directly observe root development and surrounding stress while imposing specific grain configurations or mechanical loading. We present a novel set-up which permits to observe the development of chickpea root networks in a 2D granular material made of bidisperse photoelastic discs while imposing the position of the grains, the intergranular spacing and the nature of the system confinement: (i) open cell, (ii) confined cell (iii) sheared cell. In the experimental apparatus several root development cells are treated in parallel to increase the statistical meaning of the observations. Evolution of the root network is followed as well as position and pressure inside each disc by mean of a camera and classical photoelastic techniques. Preliminary results will be presented.

  3. Lignification and related enzymes in Glycine max root growth-inhibition by ferulic acid.

    PubMed

    dos Santos, Wanderley Dantas; Ferrarese, Maria de Lourdes L; Finger, Aline; Teixeira, Aline C N; Ferrarese-Filho, Osvaldo

    2004-06-01

    Changes in soluble and cell wall bound peroxidase (POD, EC 1.11.1.7) activity, phenylalanine ammonia-lyase (PAL, EC 4.3.1.5) activity, and lignin content in roots of ferulic acid-stressed soybean (Glycine max (L.) Merr.) seedlings and their relationships with root growth were investigated. Three-day-old soybean seedlings were cultivated in half-strength Hoagland nutrient solution containing 1.0 mM ferulic acid for 24-72 hr. Length, fresh weight, and dry weight of roots decreased, while soluble and cell wall bound POD activity, PAL activity, and lignin content increased after ferulic acid treatment. These enzymes probably participate in root growth reduction in association with cell wall stiffening related to the formation of cross-linking among cell wall polymers and lignin production.

  4. CLE-CLAVATA1 peptide-receptor signaling module regulates the expansion of plant root systems in a nitrogen-dependent manner.

    PubMed

    Araya, Takao; Miyamoto, Mayu; Wibowo, Juliarni; Suzuki, Akinori; Kojima, Soichi; Tsuchiya, Yumiko N; Sawa, Shinichiro; Fukuda, Hiroo; von Wirén, Nicolaus; Takahashi, Hideki

    2014-02-04

    Morphological plasticity of root systems is critically important for plant survival because it allows plants to optimize their capacity to take up water and nutrients from the soil environment. Here we show that a signaling module composed of nitrogen (N)-responsive CLE (CLAVATA3/ESR-related) peptides and the CLAVATA1 (CLV1) leucine-rich repeat receptor-like kinase is expressed in the root vasculature in Arabidopsis thaliana and plays a crucial role in regulating the expansion of the root system under N-deficient conditions. CLE1, -3, -4, and -7 were induced by N deficiency in roots, predominantly expressed in root pericycle cells, and their overexpression repressed the growth of lateral root primordia and their emergence from the primary root. In contrast, clv1 mutants showed progressive outgrowth of lateral root primordia into lateral roots under N-deficient conditions. The clv1 phenotype was reverted by introducing a CLV1 promoter-driven CLV1:GFP construct producing CLV1:GFP fusion proteins in phloem companion cells of roots. The overaccumulation of CLE2, -3, -4, and -7 in clv1 mutants suggested the amplitude of the CLE peptide signals being feedback-regulated by CLV1. When CLE3 was overexpressed under its own promoter in wild-type plants, the length of lateral roots was negatively correlated with increasing CLE3 mRNA levels; however, this inhibitory action of CLE3 was abrogated in the clv1 mutant background. Our findings identify the N-responsive CLE-CLV1 signaling module as an essential mechanism restrictively controlling the expansion of the lateral root system in N-deficient environments.

  5. Influence of Microgravity Environment on Root Growth, Soluble Sugars, and Starch Concentration of Sweetpotato Stem Cuttings

    PubMed Central

    Mortley, Desmond G.; Bonsi, Conrad K.; Hill, Walter A.; Morris, Carlton E.; Williams, Carol S.; Davis, Ceyla F.; Williams, John W.; Levine, Lanfang H.; Petersen, Barbara V.; Wheeler, Raymond M.

    2009-01-01

    Because sweetpotato [Ipomoea batatas (L.) Lam.] stem cuttings regenerate very easily and quickly, a study of their early growth and development in microgravity could be useful to an understanding of morphological changes that might occur under such conditions for crops that are propagated vegetatively. An experiment was conducted aboard a U.S. Space Shuttle to investigate the impact of microgravity on root growth, distribution of amyloplasts in the root cells, and on the concentration of soluble sugars and starch in the stems of sweetpotatoes. Twelve stem cuttings of ‘Whatley/Loretan’ sweetpotato (5 cm long) with three to four nodes were grown in each of two plant growth units filled with a nutrient agarose medium impregnated with a half-strength Hoagland solution. One plant growth unit was flown on Space Shuttle Colombia for 5 days, whereas the other remained on the ground as a control. The cuttings were received within 2 h postflight and, along with ground controls, processed in ≈45 min. Adventitious roots were counted, measured, and fixed for electron microscopy and stems frozen for starch and sugar assays. Air samples were collected from the headspace of each plant growth unit for postflight determination of carbon dioxide, oxygen, and ethylene levels. All stem cuttings produced adventitious roots and growth was quite vigorous in both ground-based and flight samples and, except for a slight browning of some root tips in the flight samples, all stem cuttings appeared normal. The roots on the flight cuttings tended to grow in random directions. Also, stem cuttings grown in microgravity had more roots and greater total root length than ground-based controls. Amyloplasts in root cap cells of ground-based controls were evenly sedimented toward one end compared with a more random distribution in the flight samples. The concentration of soluble sugars, glucose, fructose, and sucrose and total starch concentration were all substantially greater in the stems of

  6. Regulation of iron acquisition responses in plant roots by a transcription factor.

    PubMed

    Bauer, Petra

    2016-09-10

    The presented research hypothesis-driven laboratory exercise teaches advanced undergraduate students state of the art methods and thinking in an integrated molecular physiology context. Students understand the theoretical background of iron acquisition in the model plant Arabidopsis thaliana. They design a flowchart summarizing the key steps of the experimental approach. Students are made familiar with current techniques such as qPCR. Following their experimental outline, students grow Arabidopsis seedlings up to the age of six days under sufficient and deficient iron supply. The Arabidopsis plants are of two different genotypes, namely wild type and fit loss of function mutants. fit mutants lack the essential transcription factor FIT, required for iron acquisition and plant growth. Students monitor growth phenotypes and root iron reductase activity in a quantitative and qualitative manner. Then, students determine gene expression regulation of FIT, FRO2, and a reference gene by reverse transcription-quantitative PCR (RT-qPCR). Finally, students interpet their results and build a model summarizing the connections between morphological, physiological and molecular iron deficiency responses. Learning outcomes and suggestions for integrating the course concept are explained. © 2016 by The International Union of Biochemistry and Molecular Biology, 44(5):438-449, 2016.

  7. Different metabolite profile and metabolic pathway with leaves and roots in response to boron deficiency at the initial stage of citrus rootstock growth.

    PubMed

    Dong, Xiaochang; Liu, Guidong; Wu, Xiuwen; Lu, Xiaopei; Yan, Lei; Muhammad, Riaz; Shah, Asad; Wu, Lishu; Jiang, Cuncang

    2016-11-01

    Boron (B) is a microelement required for higher plants, and B deficiency has serious negative effect on metabolic processes. We concentrated on the changes in metabolite profiles of trifoliate orange leaves and roots as a consequence of B deficiency at the initial stage of growth by gas chromatography-mass spectrometry (GC-MS)-based metabolomics. Enlargement and browning of root tips were observed in B-deficient plants, while any obvious symptom was not recorded in the leaves after 30 days of B deprivation. The distinct patterns of alterations in metabolites observed in leaves and roots due to B deficiency suggest the presence of specific organ responses to B starvation. The accumulation of soluble sugars was occurred in leaves, which may be attributed to down-regulated pentose phosphate pathway (PPP) and amino acid biosynthesis under B deficiency, while the amount of most amino acids in roots was increased, indicating that the effects of B deficiency on amino acids metabolism in trifoliate orange may be a consequence of disruptions in root tissues and decreased protein biosynthesis. Several important products of shikimate pathway were also significantly affected by B deficiency, which may be related to abnormal growth of roots induced by B deficiency. Conclusively, our results revealed a global perspective of the discriminative metabolism responses appearing between B-deprived leaves and roots and provided new insight into the relationship between B deficiency symptom in roots and the altered amino acids profiling and shikimate pathway induced by B deficiency during seedling establishment.

  8. Phytoglobins Improve Hypoxic Root Growth by Alleviating Apical Meristem Cell Death1[OPEN

    PubMed Central

    Stasolla, Claudio

    2016-01-01

    Hypoxic root growth in maize (Zea mays) is influenced by the expression of phytoglobins (ZmPgbs). Relative to the wild type, suppression of ZmPgb1.1 or ZmPgb1.2 inhibits the growth of roots exposed to 4% oxygen, causing structural abnormalities in the root apical meristems. These effects were accompanied by increasing levels of reactive oxygen species (ROS), possibly through the transcriptional induction of four Respiratory Burst Oxidase Homologs. TUNEL-positive nuclei in meristematic cells indicated the involvement of programmed cell death (PCD) in the process. These cells also accumulated nitric oxide and stained heavily for ethylene biosynthetic transcripts. A sharp increase in the expression level of several 1-aminocyclopropane synthase (ZmAcs2, ZmAcs6, and ZmAcs7), 1-aminocyclopropane oxidase (Aco15, Aco20, Aco31, and Aco35), and ethylene-responsive (ZmErf2 and ZmEbf1) genes was observed in hypoxic ZmPgb-suppressing roots, which overproduced ethylene. Inhibiting ROS synthesis with diphenyleneiodonium or ethylene perception with 1-methylcyclopropene suppressed PCD, increased BAX inhibitor-1, an effective attenuator of the death programs in eukaryotes, and restored root growth. Hypoxic roots overexpressing ZmPgbs had the lowest level of ethylene and showed a reduction in ROS staining and TUNEL-positive nuclei in the meristematic cells. These roots retained functional meristems and exhibited the highest growth performance when subjected to hypoxic conditions. Collectively, these results suggest a novel function of Pgbs in protecting root apical meristems from hypoxia-induced PCD through mechanisms initiated by nitric oxide and mediated by ethylene via ROS. PMID:27702845

  9. Enhanced Lignin Monomer Production Caused by Cinnamic Acid and Its Hydroxylated Derivatives Inhibits Soybean Root Growth

    PubMed Central

    Lima, Rogério Barbosa; Salvador, Victor Hugo; dos Santos, Wanderley Dantas; Bubna, Gisele Adriana; Finger-Teixeira, Aline; Soares, Anderson Ricardo; Marchiosi, Rogério; Ferrarese, Maria de Lourdes Lucio; Ferrarese-Filho, Osvaldo

    2013-01-01

    Cinnamic acid and its hydroxylated derivatives (p-coumaric, caffeic, ferulic and sinapic acids) are known allelochemicals that affect the seed germination and root growth of many plant species. Recent studies have indicated that the reduction of root growth by these allelochemicals is associated with premature cell wall lignification. We hypothesized that an influx of these compounds into the phenylpropanoid pathway increases the lignin monomer content and reduces the root growth. To confirm this hypothesis, we evaluated the effects of cinnamic, p-coumaric, caffeic, ferulic and sinapic acids on soybean root growth, lignin and the composition of p-hydroxyphenyl (H), guaiacyl (G) and syringyl (S) monomers. To this end, three-day-old seedlings were cultivated in nutrient solution with or without allelochemical (or selective enzymatic inhibitors of the phenylpropanoid pathway) in a growth chamber for 24 h. In general, the results showed that 1) cinnamic, p-coumaric, caffeic and ferulic acids reduced root growth and increased lignin content; 2) cinnamic and p-coumaric acids increased p-hydroxyphenyl (H) monomer content, whereas p-coumaric, caffeic and ferulic acids increased guaiacyl (G) content, and sinapic acid increased sinapyl (S) content; 3) when applied in conjunction with piperonylic acid (PIP, an inhibitor of the cinnamate 4-hydroxylase, C4H), cinnamic acid reduced H, G and S contents; and 4) when applied in conjunction with 3,4-(methylenedioxy)cinnamic acid (MDCA, an inhibitor of the 4-coumarate:CoA ligase, 4CL), p-coumaric acid reduced H, G and S contents, whereas caffeic, ferulic and sinapic acids reduced G and S contents. These results confirm our hypothesis that exogenously applied allelochemicals are channeled into the phenylpropanoid pathway causing excessive production of lignin and its main monomers. By consequence, an enhanced stiffening of the cell wall restricts soybean root growth. PMID:24312480

  10. Enhanced lignin monomer production caused by cinnamic Acid and its hydroxylated derivatives inhibits soybean root growth.

    PubMed

    Lima, Rogério Barbosa; Salvador, Victor Hugo; dos Santos, Wanderley Dantas; Bubna, Gisele Adriana; Finger-Teixeira, Aline; Soares, Anderson Ricardo; Marchiosi, Rogério; Ferrarese, Maria de Lourdes Lucio; Ferrarese-Filho, Osvaldo

    2013-01-01

    Cinnamic acid and its hydroxylated derivatives (p-coumaric, caffeic, ferulic and sinapic acids) are known allelochemicals that affect the seed germination and root growth of many plant species. Recent studies have indicated that the reduction of root growth by these allelochemicals is associated with premature cell wall lignification. We hypothesized that an influx of these compounds into the phenylpropanoid pathway increases the lignin monomer content and reduces the root growth. To confirm this hypothesis, we evaluated the effects of cinnamic, p-coumaric, caffeic, ferulic and sinapic acids on soybean root growth, lignin and the composition of p-hydroxyphenyl (H), guaiacyl (G) and syringyl (S) monomers. To this end, three-day-old seedlings were cultivated in nutrient solution with or without allelochemical (or selective enzymatic inhibitors of the phenylpropanoid pathway) in a growth chamber for 24 h. In general, the results showed that 1) cinnamic, p-coumaric, caffeic and ferulic acids reduced root growth and increased lignin content; 2) cinnamic and p-coumaric acids increased p-hydroxyphenyl (H) monomer content, whereas p-coumaric, caffeic and ferulic acids increased guaiacyl (G) content, and sinapic acid increased sinapyl (S) content; 3) when applied in conjunction with piperonylic acid (PIP, an inhibitor of the cinnamate 4-hydroxylase, C4H), cinnamic acid reduced H, G and S contents; and 4) when applied in conjunction with 3,4-(methylenedioxy)cinnamic acid (MDCA, an inhibitor of the 4-coumarate:CoA ligase, 4CL), p-coumaric acid reduced H, G and S contents, whereas caffeic, ferulic and sinapic acids reduced G and S contents. These results confirm our hypothesis that exogenously applied allelochemicals are channeled into the phenylpropanoid pathway causing excessive production of lignin and its main monomers. By consequence, an enhanced stiffening of the cell wall restricts soybean root growth.

  11. [Effects of Chinese onion' s root exudates on cucumber seedlings growth and rhizosphere soil microorganisms].

    PubMed

    Yang, Yang; Liu, Shou-wei; Pan, Kai; Wu, Feng-zhi

    2013-04-01

    Taking the Chinese onion cultivars with different allelopathy potentials as the donor and cucumber as the accepter, this paper studied the effects of Chinese onion' s root exudates on the seedlings growth of cucumber and the culturable microbial number and bacterial community structure in the seedlings rhizosphere soil. The root exudates of the Chinese onion cultivars could promote the growth of cucumber seedlings, and the stimulatory effect increased with the increasing concentration of the root exudates. However, at the same concentrations of root exudates, the stimulatory effect had no significant differences between the Chinese onion cultivars with strong and weak allelopathy potential. The root exudates of the Chinese onion cultivars increased the individual numbers of bacteria and actinomyces but decreased those of fungi and Fusarium in rhizosphere soil, being more significant for the Chinese onion cultivar with high allelopathy potential (L-06). The root exudates of the Chinese onion cultivars also increased the bacterial community diversity in rhizosphere soil. The cloning and sequencing results indicated that the differential bacteria bands were affiliated with Actinobacteria, Proteobacteria, and Anaerolineaceae, and Anaerolineaceae only occurred in the rhizosphere soil in the treatment of high allelopathy potential Chinese onion (L-06). It was suggested that high concentration (10 mL per plant) of root exudates from high allelopathy potential Chinese onion (L-06) could benefit the increase of bacterial community diversity in cucumber seedlings rhizosphere soil.

  12. Involvement of reactive oxygen species in lanthanum-induced inhibition of primary root growth.

    PubMed

    Liu, Yang-Yang; Wang, Ru-Ling; Zhang, Ping; Sun, Liang-Liang; Xu, Jin

    2016-11-01

    Although lanthanum (La) has been used as an agricultural plant growth stimulant for approximately 50 years, high concentrations are toxic to plants. Despite significant advances in recent years, the mechanisms underlying the effects of La on root system development remain unclear. Here, we report that a high concentration of La inhibits primary root (PR) elongation and induces lateral root (LR) development. La results in cell death in PR tips, thereby leading to the loss of meristematic cell division potential, stem cell niche activity, and auxin distribution in PR tips. Further analysis indicated that La induces reactive oxygen species (ROS) over-accumulation in PR tips. Reduction in ROS accumulation partially alleviated the inhibitory effects of La on PR elongation by improving cell survival in PR tips and thereby improving meristematic cell division potential and auxin distribution in PR tips. We also found ROS to be involved in La-induced endocytosis. Genetic analyses supported the described phenotype. Overall, our results indicate that La affects root growth, at least partially, by modulating ROS levels in roots to induce cell death in PR tips and subsequent auxin redistribution in roots, leading to remodeling of the root system architecture.

  13. Involvement of reactive oxygen species in lanthanum-induced inhibition of primary root growth

    PubMed Central

    Liu, Yang-Yang; Wang, Ru-Ling; Zhang, Ping; Sun, Liang-liang; Xu, Jin

    2016-01-01

    Although lanthanum (La) has been used as an agricultural plant growth stimulant for approximately 50 years, high concentrations are toxic to plants. Despite significant advances in recent years, the mechanisms underlying the effects of La on root system development remain unclear. Here, we report that a high concentration of La inhibits primary root (PR) elongation and induces lateral root (LR) development. La results in cell death in PR tips, thereby leading to the loss of meristematic cell division potential, stem cell niche activity, and auxin distribution in PR tips. Further analysis indicated that La induces reactive oxygen species (ROS) over-accumulation in PR tips. Reduction in ROS accumulation partially alleviated the inhibitory effects of La on PR elongation by improving cell survival in PR tips and thereby improving meristematic cell division potential and auxin distribution in PR tips. We also found ROS to be involved in La-induced endocytosis. Genetic analyses supported the described phenotype. Overall, our results indicate that La affects root growth, at least partially, by modulating ROS levels in roots to induce cell death in PR tips and subsequent auxin redistribution in roots, leading to remodeling of the root system architecture. PMID:27811082

  14. Root growth and exudate production define the frequency of horizontal plasmid transfer in the Rhizosphere.

    PubMed

    Mølbak, Lars; Molin, Søren; Kroer, Niels

    2007-01-01

    To identify the main drivers of plasmid transfer in the rhizosphere, conjugal transfer was studied in the rhizospheres of pea and barley. The donor Pseudomonas putida KT2442, containing plasmid pKJK5::gfp, was coated onto the seeds, while the recipient P. putida LM24, having a chromosomal insertion of dsRed, was inoculated into the growth medium. Mean transconjugant-to-donor ratios in vermiculite were 4.0+/-0.8 x 10(-2) in the pea and 5.9+/-1.4 x 10(-3) in the barley rhizospheres. In soil, transfer ratios were about 10 times lower. As a result of a 2-times higher root exudation rate in pea, donor densities in pea (1 x 10(6)-2 x 10(9) CFU g(-1) root) were about 10 times higher than in barley. No difference in recipient densities was observed. In situ visualization of single cells on the rhizoplane and macroscopic visualization of the colonization pattern showed that donors and transconjugants were ubiquitously distributed in the pea rhizosphere, while they were only located on the upper parts of the barley roots. Because the barley root elongated about 10 times faster than the pea root, donors were probably outgrown by the elongating barley root. Thus by affecting the cell density and distribution, exudation and root growth appear to be key parameters controlling plasmid transfer in the rhizosphere.

  15. Extremely high boron tolerance in Puccinellia distans (Jacq.) Parl. related to root boron exclusion and a well-regulated antioxidant system.

    PubMed

    Hamurcu, Mehmet; Hakki, Erdogan E; Demiral Sert, Tijen; Özdemir, Canan; Minareci, Ersin; Avsaroglu, Zuhal Z; Gezgin, Sait; Ali Kayis, Seyit; Bell, Richard W

    Recent studies indicate an extremely high level of tolerance to boron (B) toxicity in Puccinellia distans (Jacq.) Parl. but the mechanistic basis is not known. Puccinellia distans was exposed to B concentrations of up to 1000 mg B L-1 and root B uptake, growth parameters, B and N contents, H2O2 accumulation and ·OH-scavenging activity were measured. Antioxidant enzyme activities including superoxide dismutase (SOD), ascorbate peroxidase, catalase, peroxidase and glutathione reductase, and lipid peroxidation products were determined. B appears to be actively excluded from roots. Excess B supply caused structural deformations in roots and leaves, H2O2 accumulation and simultaneous up-regulation of the antioxidative system, which prevented lipid peroxidation even at the highest B concentrations. Thus, P. distans has an efficient root B-exclusion capability and, in addition, B tolerance in shoots is achieved by a well-regulated antioxidant defense system.

  16. Long-distance signals positively regulate the expression of iron uptake genes in tobacco roots.

    PubMed

    Enomoto, Yusuke; Hodoshima, Hirotaka; Shimada, Hiroaki; Shoji, Kazuhiro; Yoshihara, Toshihiro; Goto, Fumiyuki

    2007-12-01

    Long-distance signals generated in shoots are thought to be associated with the regulation of iron uptake from roots; however, the signaling mechanism is still unknown. To elucidate whether the signal regulates iron uptake genes in roots positively or negatively, we analyzed the expressions of two representative iron uptake genes: NtIRT1 and NtFRO1 in tobacco (Nicotiana tabacum L.) roots, after shoots were manipulated in vitro. When iron-deficient leaves were treated with Fe(II)-EDTA, the expressions of both genes were significantly reduced; nevertheless iron concentration in the roots maintained a similar level to that in roots grown under iron-deficient conditions. Next, all leaves from tobacco plants grown under the iron-deficient condition were excised. The expression of two genes were quickly reduced below half within 2 h after the leaf excision and gradually disappeared by the end of a 24-h period. The NtIRT1 expression was compared among the plants whose leaves were cut off in various patterns. The expression increased in proportion to the dry weight of iron-deficient leaves, although no relation was observed between the gene expression and the position of excised leaves. Interestingly, the NtIRT1 expression in hairy roots increased under the iron-deficient condition, suggesting that roots also have the signaling mechanism of iron status as well as shoots. Taken together, these results indicate that the long-distance signal generated in iron-deficient tissues including roots is a major factor in positive regulation of the expression of NtIRT1 and NtFRO1 in roots, and that the strength of the signal depends on the size of plants.

  17. Waving and skewing: how gravity and the surface of growth media affect root development in Arabidopsis.

    PubMed

    Oliva, Michele; Dunand, Christophe

    2007-01-01

    Arabidopsis seedlings growing on inclined agar surfaces exhibit characteristic root behaviours called 'waving' and 'skewing': the former consists of a series of undulations, whereas the latter is a deviation from the direction of gravity. Even though the precise basis of these growth patterns is not well understood, both gravity and the contact between the medium and the root are considered to be the major players that result in these processes. The influence of these forces on root surface-dependent behaviours can be verified by growing seedlings at different gel pitches: plants growing on vertical plates present roots with slight waving and skewing when compared with seedlings grown on plates held at minor angles of < 90 degrees . However, other factors are thought to modulate root growth on agar; for instance, it has been demonstrated that the presence and concentration of certain compounds in the medium (such as sucrose) and of drugs able to modify the plant cell cytoskeleton also affect skewing and waving. The recent discovery of an active role of ethylene on surface-dependent root behaviour, and the finding of new mutants showing anomalous growth, pave the way for a more detailed description of these phenomena.

  18. Ramified Challenges: Monitoring and Modeling of Hairy Root Growth in Bioprocesses--A Review.

    PubMed

    Lenk, Felix; Bley, Thomas

    2015-01-01

    The review presents a comprehensive overview on available solutions for the monitoring and modeling of various aspects of hairy root growth processes. Several online and offline measurement principles get explained exemplary and are being compared. It was found that no direct online measurement principle for hairy root biomass in submerged and solid-state culturing environment is available. However, certain indirect methods involving one or more measurement values have been developed for biomonitoring of hairy roots especially in bioreactors. In the field of modeling of hairy root growth processes, four independent architectures (continuous models, metabolic flux analysis, agent-based models, and artificial neural networks) are described and compared including literature references. The discussion is structured into microscopic model approaches, addressing only certain aspects of growth, and macroscopic model approaches, describing the hairy root network as a whole. An agent-based macroscopic model based on phenomenological data acquired with systematic imaging of hairy roots on culture dishes together with a 3D visualization of simulation results is presented in detail.

  19. Complex regulation of Arabidopsis AGR1/PIN2-mediated root gravitropic response and basipetal auxin transport by cantharidin-sensitive protein phosphatases

    NASA Technical Reports Server (NTRS)

    Shin, Heungsop; Shin, Hwa-Soo; Guo, Zibiao; Blancaflor, Elison B.; Masson, Patrick H.; Chen, Rujin

    2005-01-01

    Polar auxin transport, mediated by two distinct plasma membrane-localized auxin influx and efflux carrier proteins/complexes, plays an important role in many plant growth and developmental processes including tropic responses to gravity and light, development of lateral roots and patterning in embryogenesis. We have previously shown that the Arabidopsis AGRAVITROPIC 1/PIN2 gene encodes an auxin efflux component regulating root gravitropism and basipetal auxin transport. However, the regulatory mechanism underlying the function of AGR1/PIN2 is largely unknown. Recently, protein phosphorylation and dephosphorylation mediated by protein kinases and phosphatases, respectively, have been implicated in regulating polar auxin transport and root gravitropism. Here, we examined the effects of chemical inhibitors of protein phosphatases on root gravitropism and basipetal auxin transport, as well as the expression pattern of AGR1/PIN2 gene and the localization of AGR1/PIN2 protein. We also examined the effects of inhibitors of vesicle trafficking and protein kinases. Our data suggest that protein phosphatases, sensitive to cantharidin and okadaic acid, are likely involved in regulating AGR1/PIN2-mediated root basipetal auxin transport and gravitropism, as well as auxin response in the root central elongation zone (CEZ). BFA-sensitive vesicle trafficking may be required for the cycling of AGR1/PIN2 between plasma membrane and the BFA compartment, but not for the AGR1/PIN2-mediated root basipetal auxin transport and auxin response in CEZ cells.

  20. The function of stilt roots in the growth strategy of Socratea exorrhiza (Arecaceae) at two neotropical sites.

    PubMed

    Goldsmith, Gregory R; Zahawi, Rakan A

    2007-01-01

    Arboreal palms have developed a variety of structural root modifications and systems to adapt to the harsh abiotic conditions of tropical rain forests. Stilt roots have been proposed to serve a number of functions including the facilitation of rapid vertical growth to the canopy and enhanced mechanical stability. To examine whether stilt roots provide these functions, we compared stilt root characteristics of the neotropical palm tree Socratea exorrhiza on sloped (>20 degrees) and flat locations at two lowland neotropical sites. S. exorrhiza (n=80 trees) did not demonstrate differences in number of roots, vertical stilt root height, root cone circumference, root cone volume, or location of roots as related to slope. However, we found positive relationships between allocation to vertical growth and stilt root architecture including root cone circumference, number of roots, and root cone volume. Accordingly, stilt roots may allow S. exorrhiza to increase height and maintain mechanical stability without having to concurrently invest in increased stem diameter and underground root structure. This strategy likely increases the species ability to rapidly exploit light gaps as compared to non-stilt root palms and may also enhance survival as mature trees approach the theoretical limits of their mechanical stability.

  1. Exaggerated root respiration accounts for growth retardation in a starchless mutant of Arabidopsis thaliana.

    PubMed

    Brauner, Katrin; Hörmiller, Imke; Nägele, Thomas; Heyer, Arnd G

    2014-07-01

    The knock-out mutation of plastidial phosphoglucomutase (pgm) causes a starchless phenotype in Arabidopsis thaliana, and results in a severe growth reduction of plants cultivated under diurnal conditions. It has been speculated that high soluble sugar levels accumulating during the light phase in leaf mesophyll might cause a reduction of photosynthetic activity or that shortage of reduced carbon during the night is the reason for the slow biomass gain of pgm. Separate simultaneous measurements of leaf net photosynthesis and root respiration demonstrate that photosynthetic activity per unit fresh weight is not reduced in pgm, whereas root respiration is strongly elevated. Comparison with a mutant defective in the dominating vacuolar invertase (AtβFruct4) revealed that high sucrose concentration in the cytosol, but not in the vacuole, of leaf cells is responsible for elevated assimilate transport to the root. Increased sugar supply to the root, as observed in pgm mutants, forces substantial respiratory losses. Because root respiration accounts for 80% of total plant respiration under long-day conditions, this gives rise to retarded biomass formation. In contrast, reduced vacuolar invertase activity leads to reduced net photosynthesis in the shoot and lowered root respiration, and affords an increased root/shoot ratio. The results demonstrate that roots have very limited capacity for carbon storage but exert rigid control of supply for their maintenance metabolism.

  2. Photosynthate Regulation of the Root System Architecture Mediated by the Heterotrimeric G Protein Complex in Arabidopsis

    PubMed Central

    Mudgil, Yashwanti; Karve, Abhijit; Teixeira, Paulo J. P. L.; Jiang, Kun; Tunc-Ozdemir, Meral; Jones, Alan M.

    2016-01-01

    Assimilate partitioning to the root system is a desirable developmental trait to control but little is known of the signaling pathway underlying partitioning. A null mutation in the gene encoding the Gβ subunit of the heterotrimeric G protein complex, a nexus for a variety of signaling pathways, confers altered sugar partitioning in roots. While fixed carbon rapidly reached the roots of wild type and agb1-2 mutant seedlings, agb1 roots had more of this fixed carbon in the form of glucose, fructose, and sucrose which manifested as a higher lateral root density. Upon glucose treatment, the agb1-2 mutant had abnormal gene expression in the root tip validated by transcriptome analysis. In addition, PIN2 membrane localization was altered in the agb1-2 mutant. The heterotrimeric G protein complex integrates photosynthesis-derived sugar signaling incorporating both membrane-and transcriptional-based mechanisms. The time constants for these signaling mechanisms are in the same range as photosynthate delivery to the root, raising the possibility that root cells are able to use changes in carbon fixation in real time to adjust growth behavior. PMID:27610112

  3. BES1 regulates the localization of the brassinosteroid receptor BRL3 within the provascular tissue of the Arabidopsis primary root

    PubMed Central

    Salazar-Henao, Jorge E.; Lehner, Reinhard; Betegón-Putze, Isabel; Vilarrasa-Blasi, Josep; Caño-Delgado, Ana I.

    2016-01-01

    Brassinosteroid (BR) hormones are important regulators of plant growth and development. Recent studies revealed the cell-specific role of BRs in vascular and stem cell development by the action of cell-specific BR receptor complexes and downstream signaling components in Arabidopsis thaliana. Despite the importance of spatiotemporal regulation of hormone signaling in the control of plant vascular development, the mechanisms that confer cellular specificity to BR receptors within the vascular cells are not yet understood. The present work shows that BRI1-like receptor genes 1 and 3 (BRL1 and BRL3) are differently regulated by BRs. By using promoter deletion constructs of BRL1 and BRL3 fused to GFP/GUS (green fluorescent protein/β-glucuronidase) reporters in Arabidopsis, analysis of their cell-specific expression and regulation by BRs in the root apex has been carried out. We found that BRL3 expression is finely modulated by BRs in different root cell types, whereas the location of BRL1 appears to be independent of this hormone. Physiological and genetic analysis show a BR-dependent expression of BRL3 in the root meristem. In particular, BRL3 expression requires active BES1, a central transcriptional effector within the BRI1 pathway. ChIP analysis showed that BES1 directly binds to the BRRE present in the BRL3 promoter region, modulating its transcription in different subsets of cells of the root apex. Overall our study reveals the existence of a cell-specific negative feedback loop from BRI1-mediated BES1 transcription factor to BRL3 in phloem cells, while contributing to a general understanding of the spatial control of steroid signaling in plant development. PMID:27511026

  4. Analysis of changes in relative elemental growth rate patterns in the elongation zone of Arabidopsis roots upon gravistimulation

    NASA Technical Reports Server (NTRS)

    Mullen, J. L.; Ishikawa, H.; Evans, M. L.

    1998-01-01

    Although Arabidopsis is an important system for studying root physiology, the localized growth patterns of its roots have not been well defined, particularly during tropic responses. In order to characterize growth rate profiles along the apex of primary roots of Arabidopsis thaliana (L.) Heynh (ecotype Columbia) we applied small charcoal particles to the root surface and analyzed their displacement during growth using an automated video digitizer system with custom software for tracking the markers. When growing vertically, the maximum elongation rate occurred 481 +/- 50 microns back from the extreme tip of the root (tip of root cap), and the elongation zone extended back to 912 +/- 137 microns. The distal elongation zone (DEZ) has previously been described as the apical region of the elongation zone in which the relative elemental growth rate (REGR) is < or = 30% of the peak rate in the central elongation zone. By this definition, our data indicate that the basal limit of the DEZ was located 248 +/- 30 microns from the root tip. However, after gravistimulation, the growth patterns of the root changed. Within the first hour of graviresponse, the basal limit of the DEZ and the position of peak REGR shifted apically on the upper flank of the root. This was due to a combination of increased growth in the DEZ and growth inhibition in the central elongation zone. On the lower flank, the basal limit of the DEZ shifted basipetally as the REGR decreased. These factors set up the gradient of growth rate across the root, which drives curvature.

  5. Analysis of genes developmentally regulated during storage root formation of sweet potato.

    PubMed

    Tanaka, Masaru; Takahata, Yasuhiro; Nakatani, Makoto

    2005-01-01

    To identify the genes involved in storage root formation of sweet potato (Ipomoea batatas), we performed a simplified differential display analysis on adventitious roots at different developmental stages of the storage root. The expression patterns were confirmed by semiquantitative RT-PCR analyses. As a result, 10 genes were identified as being developmentally regulated and were named SRF1-SRF10. The expression of SRF1, SRF2, SRF3, SRF5, SRF6, SRF7, and SRF9 increased during storage root formation, whereas the expression of SRF4, SRF8, and SRF10 decreased. For further characterization, a full-length cDNA of SRF6 was isolated from the cDNA library of the storage root. SRF6 encoded a receptor-like kinase (RLK), which was structurally similar to the leucine-rich repeat (LRR) II RLK family of Arabidopsis thaliana. RNA gel blot analysis showed that the mRNA of SRF6 was most abundantly expressed in the storage roots, although a certain amount of expression was also observed in other vegetative organs. Tissue print mRNA blot analysis of the storage root showed that the mRNA of SRF6 was localized around the primary cambium and meristems in the xylem, which consist of actively dividing cells and cause the thickening of the storage root.

  6. ANGUSTIFOLIA mediates one of the multiple SCRAMBLED signaling pathways regulating cell growth pattern in Arabidopsis thaliana.

    PubMed

    Kwak, Su-Hwan; Song, Sang-Kee; Lee, Myeong Min; Schiefelbein, John

    2015-09-25

    In Arabidopsis thaliana, an atypical leucine-rich repeat receptor-like kinase, SCRAMBLED (SCM), is required for multiple developmental processes including root epidermal cell fate determination, silique dehiscence, inflorescence growth, ovule morphogenesis, and tissue morphology. Previous work suggested that SCM regulates these multiple pathways using distinct mechanisms via interactions with specific downstream factors. ANGUSTIFOLIA (AN) is known to regulate cell and tissue morphogenesis by influencing cortical microtubule arrangement, and recently, the AN protein was reported to interact with the SCM protein. Therefore, we examined whether AN might be responsible for mediating some of the SCM-dependent phenotypes. We discovered that both scm and an mutant lines cause an abnormal spiral or twisting growth of roots, but only the scm mutant affected root epidermal patterning. The siliques of the an and scm mutants also exhibited spiral growth, as previously reported, but only the scm mutant altered silique dehiscence. Interestingly, we discovered that the spiral growth of roots and siliques of the scm mutant is rescued by a truncated SCM protein that lacks its kinase domain, and that a juxtamembrane domain of SCM was sufficient for AN binding in the yeast two-hybrid analysis. These results suggest that the AN protein is one of the critical downstream factors of SCM pathways specifically responsible for mediating its effects on cell/tissue morphogenesis through cortical microtubule arrangement.

  7. Soil contamination with silver nanoparticles reduces Bishop pine growth and ectomycorrhizal diversity on pine roots

    NASA Astrophysics Data System (ADS)

    Sweet, M. J.; Singleton, I.

    2015-11-01

    Soil contamination by silver nanoparticles (AgNP) is of potential environmental concern but little work has been carried out on the effect of such contamination on ectomycorrhizal fungi (EMF). EMF are essential to forest ecosystem functions as they are known to enhance growth of trees by nutrient transfer. In this study, soil was experimentally contaminated with AgNP (0, 350 and 790 mg Ag/kg) and planted with Bishop pine seedlings. The effect of AgNP was subsequently measured, assessing variation in pine growth and ectomycorrhizal diversity associated with the root system. After only 1 month, the highest AgNP level had significantly reduced the root length of pine seedlings, which in turn had a small effect on above ground plant biomass. However, after 4 months growth, both AgNP levels utilised had significantly reduced both pine root and shoot biomass. For example, even the lower levels of AgNP (350 mg Ag/kg) soil, reduced fresh root biomass by approximately 57 %. The root systems of the plants grown in AgNP-contaminated soils lacked the lateral and fine root development seen in the control plants (no AgNP). Although, only five different genera of EMF were found on roots of the control plants, only one genus Laccaria was found on roots of plants grown in soil containing 350 mg AgNP/kg. At the higher levels of AgNP contamination, no EMF were observed. Furthermore, extractable silver was found in soils containing AgNP, indicating potential dissolution of silver ions (Ag+) from the solid AgNP.

  8. [Polyphase character of the dependence of Brassica napus germ root and hypocotyl growth on zeatin and thidiazuron concentrations with view of applicability to biological life support systems].

    PubMed

    Komarova, G I; Babosha, A V

    2010-01-01

    Physiologically active substances are considered as a potential component of plant cultivation technologies for biological life support systems. In spacelight, plant reactions to growth-regulating agents may be changed by the specific stress factors such as microgravity, radiation, and trace admixtures in cabin air. Complex character of the concentration dependence of PAS efficiency and consequent variability generate a need to optimize plant growth regulating technologies in order to stabilize the wanted effect. Pattern of the concentration dependence of zeatin and tidiazurone effects on roots and hypocotyls growth was analyzed in rape germs. 24-hour Brassica napus germs grown in the dark in thermostat at 24 degrees C were transferred to Petri dishes with solutions of cytokinins under study for continued incubation under the same conditions for the next 24 hours. Roots and hypocotyls were measured. Zeatin concentration curve for roots was multiphase and, in addition to the general trend towards greater inhibition with increase of phyto-hormone concentration and had clearly defined minimum and maximum. The dependence of root growth inhibition on tidiazurone concentration also was not monotonic and had a distinct similarity with the zeatin curve. Gradual increase of tidiazurone concentration used in combination with zeatin brought about a predictable gradual twist of the zeatin curve; however, in most of the instances no additive cytokinin effect was observed. A supposition can be made that PAS interaction with the phytohormone regulation system may be a factor in variability of activity of these substances.

  9. Human Life History Evolution Explains Dissociation between the Timing of Tooth Eruption and Peak Rates of Root Growth

    PubMed Central

    Dean, M. Christopher; Cole, Tim J.

    2013-01-01

    We explored the relationship between growth in tooth root length and the modern human extended period of childhood. Tooth roots provide support to counter chewing forces and so it is advantageous to grow roots quickly to allow teeth to erupt into function as early as possible. Growth in tooth root length occurs with a characteristic spurt or peak in rate sometime between tooth crown completion and root apex closure. Here we show that in Pan troglodytes the peak in root growth rate coincides with the period of time teeth are erupting into function. However, the timing of peak root velocity in modern humans occurs earlier than expected and coincides better with estimates for tooth eruption times in Homo erectus. With more time to grow longer roots prior to eruption and smaller teeth that now require less support at the time they come into function, the root growth spurt no longer confers any advantage in modern humans. We suggest that a prolonged life history schedule eventually neutralised this adaptation some time after the appearance of Homo erectus. The root spurt persists in modern humans as an intrinsic marker event that shows selection operated, not primarily on tooth tissue growth, but on the process of tooth eruption. This demonstrates the overarching influence of life history evolution on several aspects of dental development. These new insights into tooth root growth now provide an additional line of enquiry that may contribute to future studies of more recent life history and dietary adaptations within the genus Homo. PMID:23342167

  10. Aluminum stress inhibits root growth and alters physiological and metabolic responses in chickpea (Cicer arietinum L.).

    PubMed

    Choudhury, Shuvasish; Sharma, Parul

    2014-12-01

    Chickpea (Cicer arietinum L.) roots were treated with aluminum (Al3+) in calcium chloride (CaCl2) solution (pH 4.7) and growth responses along with physiological and metabolic changes were investigated. Al3+ treatment for 7d resulted in a dose dependent decline of seed germination and inhibition of root growth. A significant (p ≤ 0.05) decline in fresh and dry biomass were observed after 7d of Al3+ stress.The root growth (length) was inhibited after 24 and 48 h of stress imposition. The hydrogen peroxide (H2O2) levels increased significantly (p ≤ 0.05) with respect to control in Al3+ treated roots. The hematoxylin and Evans blue assay indicated significant (p ≤ 0.05) accumulation of Al3+ in the roots and loss of plasma membrane integrity respectively. The time-course evaluation of lipid peroxidation showed increase in malondialdehyde (MDA) after 12, 24 and 48 h of stress imposition. Al3+ treatment did not alter the MDA levels after 2 or 4 h of stress, however, a minor increase was observed after 6 and 10 h of treatment. The proton (1H) nuclear magnetic resonance (NMR) spectrum of the perchloric acid extracts showed variation in the abundance of metabolites and suggested a major metabolic shift in chickpea root during Al3+ stress. The key differences that were observed include changes in energy metabolites. Accumulation of phenolic compounds suggested its possible role in Al3+ exclusion in roots during stress. The results suggested that Al3+ alters growth pattern in chickpea and induces reactive oxygen species (ROS) production that causes physiological and metabolic changes.

  11. Growth response of Casuarina equisetifolia Forst. rooted stem cuttings to Frankia in nursery and field conditions.

    PubMed

    Karthikeyan, A; Chandrasekaran, K; Geetha, M; Kalaiselvi, R

    2013-11-01

    Casuarina equisetifolia Forst. is a tree crop that provides fuel wood, land reclamation, dune stabilization, and scaffolding for construction, shelter belts, and pulp and paper production. C. equisetifolia fixes atmospheric nitrogen through a symbiotic relationship with Frankia, a soil bacterium of the actinobacteria group. The roots of C. equisetifolia produce root nodules where the bacteria fix atmospheric nitrogen, which is an essential nutrient for all plant metabolic activities. However, rooted stem cuttings of elite clones of C. equisetifolia by vegetative propagation is being planted by the farmers of Pondicherry as costeffective method. As the vegetative propagation method uses inert material (vermiculite) for rooting there is no chance for Frankia association. Therefore after planting of these stocks the farmers are applying 150 kg of di-ammonium phosphate (DAP)/acre/year. To overcome this fertilizer usage, the Frankia-inoculated rooted stem cuttings were propagated under nursery conditions and transplanted in the nutrient-deficient soils of Karaikal, Pondicherry (India), in this study. Under nursery experiments the growth and biomass of C. equisetifolia rooted stem cuttings inoculated with Frankia showed 3 times higher growth and biomass than uninoculated control. These stocks were transplanted and monitored for their growth and survival for 1 year in the nutrient-deficient farm land. The results showed that the rooted stem cuttings of C. equisetifolia significantly improved growth in height (8.8 m), stem girth (9.6 cm) and tissue nitrogen content (3.3 mg g-1) than uninoculated controls. The soil nutrient status was also improved due to inoculation of Frankia.

  12. Correlated responses of root growth and sugar concentrations to various defoliation treatments and rhythmic shoot growth in oak tree seedlings (Quercus pubescens)

    PubMed Central

    Willaume, Magali; Pagès, Loïc

    2011-01-01

    Background and Aims To understand whether root responses to aerial rhythmic growth and contrasted defoliation treatments can be interpreted under the common frame of carbohydrate availability; root growth was studied in parallel with carbohydrate concentrations in different parts of the root system on oak tree seedlings. Methods Quercus pubescens seedlings were submitted to selective defoliation (removal of mature leaves, cotyledons or young developing leaves) at appearance of the second flush and collected 1, 5 or 10 d later for morphological and biochemical measurements. Soluble sugar and starch concentrations were measured in cotyledons and apical and basal root parts. Key Results Soluble sugar concentration in the root apices diminished during the expansion of the second aerial flush and increased after the end of aerial growth in control seedlings. Starch concentration in cotyledons regularly decreased. Continuous removal of young leaves did not alter either root growth or apical sugar concentration. Starch storage in basal root segments was increased. After removal of mature leaves (and cotyledons), root growth strongly decreased. Soluble sugar concentration in the root apices drastically decreased and starch reserves in the root basal segments were emptied 5 d after defoliation, illustrating a considerable shortage in carbohydrates. Soluble sugar concentrations recovered 10 d after defoliation, after the end of aerial growth, suggesting a recirculation of sugar. No supplementary recourse to starch in cotyledons was observed. Conclusions The parallel between apical sugar concentration and root growth patterns, and the correlations between hexose concentration in root apices and their growth rate, support the hypothesis that the response of root growth to aerial periodic growth and defoliation treatments is largely controlled by carbohydrate availability. PMID:21239407

  13. Pollen tube and root-hair tip growth is disrupted in a mutant of Arabidopsis thaliana.

    PubMed Central

    Schiefelbein, J; Galway, M; Masucci, J; Ford, S

    1993-01-01

    The expansion of both root hairs and pollen tubes occurs by a process known as tip growth. In this report, an Arabidopsis thaliana mutant (tip1) is described that displays defects in both root-hair and pollen-tube growth. The root hairs of the tip1 mutant plants are shorter than those of the wild-type plants and branched at their base. The tip1 pollen-tube growth defect was identified by the aberrant segregation ratio of phenotypically normal to mutant seeds in siliques from self-pollinated, heterozygous plants. Homozygous mutant seeds are not randomly distributed in the siliques, comprising only 14.4% of the total seeds, 5.3% of the seeds from the bottom half, and 2.2% of the seeds from the bottom quarter of the heterozygous siliques. Studies of pollen-tube growth in vivo showed that mutant pollen tubes grow more slowly than wild-type pollen through the transmitting tissue of wild-type flowers. Cosegregation studies indicate that the root-hair and pollen-tube defects are caused by the same genetic lesion. Based on these findings, the TIP1 gene is likely to encode a product involved in a fundamental aspect of tip growth in plant cells. PMID:8022944

  14. Maize Fungal Growth Control with Scopoletin of Cassava Roots Produced in Benin

    PubMed Central

    Ba, Rafiatou; Alfa, Teou; Gbaguidi, Fernand; Novidzro, Kosi Mawuéna; Dotse, Kokouvi; Koudouvo, Koffi; Houngue, Ursula; Donou Hounsode, Marcel T.; Koumaglo, Kossi Honoré; Ameyapoh, Yaovi

    2017-01-01

    The chemical contamination of food is among the main public health issues in developing countries. With a view to find new natural bioactive products against fungi responsible for chemical contamination of staple food such as maize, the antifungal activity tests of scopoletin extracted from different components of the cassava root produced in Benin were carried out. The dosage of scopoletin from parts of the root (first skin, second skin, whole root, and flesh) was done by High Performance Liquid Chromatography. The scopoletin extract was used to assess the activity of 12 strains (11 strains of maize and a reference strain). The presence of scopoletin was revealed in all components of the cassava root. Scopoletin extracted from the first skin cassava root was the most active both as inhibition of sporulation (52.29 to 87.91%) and the mycelial growth (36.51–80.41%). Scopoletin extract from the cassava root skins showed significant inhibitory activity on the tested strains with fungicide concentration (MFC) between 0.0125 mg/mL and 0.1 mg/mL. The antifungal scopoletin extracted from the cassava root skins may be well beneficial for the fungal control of the storage of maize. PMID:28197207

  15. Spatial separation of light perception and growth response in maize root phototropism

    NASA Technical Reports Server (NTRS)

    Mullen, J. L.; Wolverton, C.; Ishikawa, H.; Hangarter, R. P.; Evans, M. L.

    2002-01-01

    Although the effects of gravity on root growth are well known and interactions between light and gravity have been reported, details of root phototropic responses are less documented. We used high-resolution image analysis to study phototropism in primary roots of Zea mays L. Similar to the location of perception in gravitropism, the perception of light was localized in the root cap. Phototropic curvature away from the light, on the other hand, developed in the central elongation zone, more basal than the site of initiation of gravitropic curvature. The phototropic curvature saturated at approximately 10 micromoles m-2 s-1 blue light with a peak curvature of 29 +/- 4 degrees, in part due to induction of positive gravitropism following displacement of the root tip from vertical during negative phototropism. However, at higher fluence rates, development of phototropic curvature is arrested even if gravitropism is avoided by maintaining the root cap vertically using a rotating feedback system. Thus continuous illumination can cause adaptation in the signalling pathway of the phototropic response in roots.

  16. Maize Fungal Growth Control with Scopoletin of Cassava Roots Produced in Benin.

    PubMed

    Ba, Rafiatou; Alfa, Teou; Gbaguidi, Fernand; Novidzro, Kosi Mawuéna; Dotse, Kokouvi; Koudouvo, Koffi; Houngue, Ursula; Donou Hounsode, Marcel T; Koumaglo, Kossi Honoré; Ameyapoh, Yaovi; Baba-Moussa, Lamine

    2017-01-01

    The chemical contamination of food is among the main public health issues in developing countries. With a view to find new natural bioactive products against fungi responsible for chemical contamination of staple food such as maize, the antifungal activity tests of scopoletin extracted from different components of the cassava root produced in Benin were carried out. The dosage of scopoletin from parts of the root (first skin, second skin, whole root, and flesh) was done by High Performance Liquid Chromatography. The scopoletin extract was used to assess the activity of 12 strains (11 strains of maize and a reference strain). The presence of scopoletin was revealed in all components of the cassava root. Scopoletin extracted from the first skin cassava root was the most active both as inhibition of sporulation (52.29 to 87.91%) and the mycelial growth (36.51-80.41%). Scopoletin extract from the cassava root skins showed significant inhibitory activity on the tested strains with fungicide concentration (MFC) between 0.0125 mg/mL and 0.1 mg/mL. The antifungal scopoletin extracted from the cassava root skins may be well beneficial for the fungal control of the storage of maize.

  17. Root growth of Lotus corniculatus interacts with P distribution in young sandy soil

    NASA Astrophysics Data System (ADS)

    Felderer, B.; Boldt-Burisch, K. M.; Schneider, B. U.; Hüttl, R. F. J.; Schulin, R.

    2013-03-01

    Large areas of land are restored with unweathered soil substrates following mining activities in eastern Germany and elsewhere. In the initial stages of colonization of such land by vegetation, plant roots may become key agents in generating soil formation patterns by introducing gradients in chemical and physical soil properties. On the other hand, such patterns may be influenced by root growth responses to pre-existing substrate heterogeneities. In particular, the roots of many plants were found to preferentially proliferate into nutrient-rich patches. Phosphorus (P) is of primary interest in this respect because its availability is often low in unweathered soils, limiting especially the growth of leguminous plants. However, leguminous plants occur frequently among the pioneer plant species on such soils, as they only depend on atmospheric nitrogen (N) fixation as N source. In this study we investigated the relationship between root growth allocation of the legume Lotus corniculatus and soil P distribution on recently restored land. As test sites, the experimental Chicken Creek Catchment (CCC) in eastern Germany and a nearby experimental site (ES) with the same soil substrate were used. We established two experiments with constructed heterogeneity, one in the field on the experimental site and the other in a climate chamber. In addition, we conducted high-density samplings on undisturbed soil plots colonized by L. corniculatus on the ES and on the CCC. In the field experiment, we installed cylindrical ingrowth soil cores (4.5 × 10 cm) with and without P fertilization around single two-month-old L. corniculatus plants. Roots showed preferential growth into the P-fertilized ingrowth-cores. Preferential root allocation was also found in the climate chamber experiment, where single L. corniculatus plants were grown in containers filled with ES soil and where a lateral portion of the containers was additionally supplied with a range of different P concentrations. In

  18. Root growth of Lotus corniculatus interacts with P distribution in young sandy soil

    NASA Astrophysics Data System (ADS)

    Felderer, B.; Boldt-Burisch, K. M.; Schneider, B. U.; Hüttl, R. F. J.; Schulin, R.

    2012-07-01

    Large areas of land are restored with un-weathered soil substrates following mining activities in eastern Germany and elsewhere. In the initial stages of colonization of such land by vegetation, plant roots may become key agents in generating soil formation patterns by introducing gradients in chemical and physical soil properties. On the other hand, such patterns may be influenced by root growth responses to pre-existing substrate heterogeneities. In particular, the roots of many plants were found to preferentially proliferate into nutrient-rich patches. Phosphorus (P) is of primary interest in this respect because its availability is often low in unweathered soils, limiting especially the growth of leguminous plants. However, leguminous plants occur frequently among the pioneer plant species on such soils as they only depend on atmospheric nitrogen (N) fixation as N source. In this study we investigated the relationship between root growth allocation of the legume Lotus corniculatus and soil P distribution on recently restored land. As test sites the experimental Chicken Creek Catchment (CCC) in eastern Germany and a nearby experimental site (ES) with the same soil substrate were used. We established two experiments with constructed heterogeneity, one in the field on the experimental site and the other in a climate chamber. In addition we conducted high-density samplings on undisturbed soil plots colonized by L. corniculatus on the ES and on the CCC. In the field experiment, we installed cylindrical ingrowth soil cores (4.5×10 cm) with and without P fertilization around single two-month-old L. corniculatus plants. Roots showed preferential growth into the P-fertilized ingrowth-cores. Preferential root allocation was also found in the climate chamber experiment, where single L. corniculatus plants were grown in containers filled with ES soil and where a lateral portion of the containers was additionally supplied with a range of different P concentrations. In the

  19. Lunisolar tidal force and the growth of plant roots, and some other of its effects on plant movements

    PubMed Central

    Barlow, Peter W.; Fisahn, Joachim

    2012-01-01

    Background Correlative evidence has often suggested that the lunisolar tidal force, to which the Sun contributes 30 % and the Moon 60 % of the combined gravitational acceleration, regulates a number of features of plant growth upon Earth. The time scales of the effects studied have ranged from the lunar day, with a period of approx. 24·8 h, to longer, monthly or seasonal variations. Scope We review evidence for a lunar involvement with plant growth. In particular, we describe experimental observations which indicate a putative lunar-based relationship with the rate of elongation of roots of Arabidopsis thaliana maintained in constant light. The evidence suggests that there may be continuous modulation of root elongation growth by the lunisolar tidal force. In order to provide further supportive evidence for a more general hypothesis of a lunisolar regulation of growth, we highlight similarly suggestive evidence from the time courses of (a) bean leaf movements obtained from kymographic observations; (b) dilatation cycles of tree stems obtained from dendrograms; and (c) the diurnal changes of wood–water relationships in a living tree obtained by reflectometry. Conclusions At present, the evidence for a lunar or a lunisolar influence on root growth or, indeed, on any other plant system, is correlative, and therefore circumstantial. Although it is not possible to alter the lunisolar gravitational force experienced by living organisms on Earth, it is possible to predict how this putative lunisolar influence will vary at times in the near future. This may offer ways of testing predictions about possible Moon–plant relationships. As for a hypothesis about how the three-body system of Earth–Sun–Moon could interact with biological systems to produce a specific growth response, this remains a challenge for the future. Plant growth responses are mainly brought about by differential movement of water across protoplasmic membranes in conjunction with water movement in

  20. The effect of ethylene on root growth of Zea mays seedlings

    NASA Technical Reports Server (NTRS)

    Whalen, M. C.; Feldman, L. J.

    1988-01-01

    The control of primary root growth in Zea mays cv. Merit by ethylene was examined. At applied concentrations of ethylene equal to or greater than 0.1 microliter L-1, root elongation during 24 h was inhibited. The half-maximal response occurred at 0.6 microliter L-1 and the response saturated at 6 microliters L-1. Inhibition of elongation took place within 20 min. However, after ethylene was removed, elongation recovered to control values within 15 min. Root elongation was also inhibited by green light. The inhibition caused by a 24-h exposure to ethylene was restricted to the elongating region just behind the apex, with inhibition of cortical cell elongation being the primary contributor to the effect. Based on use of 2,5-norbornadiene, a gaseous competitive inhibitor of ethylene, it was concluded that endogenous ethylene normally inhibits root elongation.

  1. [Effects of water storage in deeper soil layers on the root growth, root distribution and economic yield of cotton in arid area with drip irrigation under mulch].

    PubMed

    Luo, Hong-Hai; Zhang, Hong-Zhi; Zhang, Ya-Li; Zhang, Wang-Feng

    2012-02-01

    Taking cotton cultivar Xinluzao 13 as test material, a soil column culture expenment was conducted to study the effects of water storage in deeper (> 60 cm) soil layer on the root growth and its relations with the aboveground growth of the cultivar in arid area with drip irrigation under mulch. Two levels of water storage in 60-120 cm soil layer were installed, i. e., well-watered and no watering, and for each, the moisture content in 0-40 cm soil layer during growth period was controlled at two levels, i.e., 70% and 55% of field capacity. It was observed that the total root mass density of the cultivar and its root length density and root activity in 40-120 cm soil layer had significant positive correlations with the aboveground dry mass. When the moisture content in 0-40 cm soil layer during growth season was controlled at 70% of field capacity, the total root mass density under well-watered and no watering had less difference, but the root length density and root activity in 40-120 cm soil layer under well-watered condition increased, which enhanced the water consumption in deeper soil layer, increased the aboveground dry mass, and finally, led to an increased economic yield and higher water use efficiency. When the moisture content in 0-40 cm soil layer during growth season was controlled at 55% of field capacity and the deeper soil layer was well-watered, the root/shoot ratio and root length density in 40-120 cm soil layer and the root activity in 80-120 cm soil layer were higher, the water consumption in deeper soil layer increased, but it was still failed to adequately compensate for the negative effects of water deficit during growth season on the impaired growth of roots and aboveground parts, leading to a significant decrease in the economic yield, as compared with that at 70% of field capacity. Overall, sufficient water storage in deeper soil layer and a sustained soil moisture level of 65% -75% of field capacity during growth period could promote the

  2. Wntless Regulates Dentin Apposition and Root Elongation in the Mandibular Molar

    PubMed Central

    Bae, C.H.; Kim, T.H.; Ko, S.O.; Lee, J.C.; Yang, X.

    2015-01-01

    Wnt signaling plays an essential role in the dental epithelium and mesenchyme during tooth morphogenesis. However, it remains unclear if Wnt ligands, produced from dental mesenchyme, are necessary for odontoblast differentiation and dentin formation. Here, we show that odontoblast-specific disruption of Wntless (Wls), a chaperon protein that regulates Wnt sorting and secretion, leads to severe defects in dentin formation and root elongation. Dentin thickness decreased remarkably and pulp chambers enlarged in the mandibular molars of OC-Cre;WlsCO/CO mice. Although the initial odontoblast differentiation was normal in the mutant crown, odontoblasts became cuboidal and dentin thickness was reduced. In immunohistochemistry, Wnt10a, β-catenin, type I collagen, and dentin sialoprotein were significantly down-regulated in the odontoblasts of mutant crown. In addition, roots were short and root canals were widened. Cell proliferation was reduced in the developing root apex of mutant molars. Furthermore, Wnt10a and Axin2 expression was remarkably decreased in the odontoblasts of mutant roots. Deletion of the Wls gene in odontoblasts appears to reduce canonical Wnt activity, leading to inhibition of odontoblast maturation and root elongation. PMID:25595365

  3. Wntless regulates dentin apposition and root elongation in the mandibular molar.

    PubMed

    Bae, C H; Kim, T H; Ko, S O; Lee, J C; Yang, X; Cho, E S

    2015-03-01

    Wnt signaling plays an essential role in the dental epithelium and mesenchyme during tooth morphogenesis. However, it remains unclear if Wnt ligands, produced from dental mesenchyme, are necessary for odontoblast differentiation and dentin formation. Here, we show that odontoblast-specific disruption of Wntless (Wls), a chaperon protein that regulates Wnt sorting and secretion, leads to severe defects in dentin formation and root elongation. Dentin thickness decreased remarkably and pulp chambers enlarged in the mandibular molars of OC-Cre;Wls(CO/CO) mice. Although the initial odontoblast differentiation was normal in the mutant crown, odontoblasts became cuboidal and dentin thickness was reduced. In immunohistochemistry, Wnt10a, β-catenin, type I collagen, and dentin sialoprotein were significantly down-regulated in the odontoblasts of mutant crown. In addition, roots were short and root canals were widened. Cell proliferation was reduced in the developing root apex of mutant molars. Furthermore, Wnt10a and Axin2 expression was remarkably decreased in the odontoblasts of mutant roots. Deletion of the Wls gene in odontoblasts appears to reduce canonical Wnt activity, leading to inhibition of odontoblast maturation and root elongation.

  4. Organ-specific regulation of growth-defense tradeoffs by plants.

    PubMed

    Smakowska, Elwira; Kong, Jixiang; Busch, Wolfgang; Belkhadir, Youssef

    2016-02-01

    Plants grow while also defending themselves against phylogenetically unrelated pathogens. Because defense and growth are both costly programs, a plant's success in colonizing resource-scarce environments requires tradeoffs between the two. Here, we summarize efforts aimed at understanding how plants use iterative tradeoffs to modulate differential organ growth when defenses are elicited. First, we focus on shoots to illustrate how light, in conjunction with the growth hormone gibberellin (GA) and the defense hormone jasmonic acid (JA), act to finely regulate defense and growth programs in this organ. Second, we expand on the regulation of growth-defense trade-offs in the root, a less well-studied topic despite the critical role of this organ in acquiring resources in an environment deeply entrenched with disparate populations of microbes.

  5. Osterix regulates tooth root formation in a site-specific manner.

    PubMed

    Kim, T H; Bae, C H; Lee, J C; Kim, J E; Yang, X; de Crombrugghe, B; Cho, E S

    2015-03-01

    Bone and dentin share similar biochemical compositions and physiological properties. Dentin, a major tooth component, is formed by odontoblasts; in contrast, bone is produced by osteoblasts. Osterix (Osx), a zinc finger-containing transcription factor, has been identified as an essential regulator of osteoblast differentiation and bone formation. However, it has been difficult to establish whether Osx functions in odontoblast differentiation and dentin formation. To understand the role of Osx in dentin formation, we analyzed mice in which Osx was subjected to tissue-specific ablation under the control of either the Col1a1 or the OC promoter. Two independent Osx conditional knockout mice exhibited similar molar abnormalities. Although no phenotype was found in the crowns of these teeth, both mutant lines exhibited short molar roots due to impaired root elongation. Furthermore, the interradicular dentin in these mice showed severe hypoplastic features, which were likely caused by disruptions in odontoblast differentiation and dentin formation. These phenotypes were closely related to the temporospatial expression pattern of Osx during tooth development. These findings indicate that Osx is required for root formation by regulating odontoblast differentiation, maturation, and root elongation. Cumulatively, our data strongly indicate that Osx is a site-specific regulator in tooth root formation.

  6. Scanning electron microscopic investigations of root structural modifications arising from growth in crude oil-contaminated sand.

    PubMed

    Balasubramaniyam, Anuluxshy; Harvey, Patricia J

    2014-11-01

    The choice of plant for phytoremediation success requires knowledge of how plants respond to contaminant exposure, especially their roots which are instrumental in supporting rhizosphere activity. In this study, we investigated the responses of plants with different architectures represented by beetroot (Beta vulgaris), a eudicot with a central taproot and many narrower lateral roots, and tall fescue (Festuca arundinacea), a monocot possessing a mass of threadlike fibrous roots to grow in crude oil-treated sand. In this paper, scanning electron microscopy was used to investigate modifications to plant root structure caused by growth in crude oil-contaminated sand. Root structural disorders were evident and included enhanced thickening in the endodermis, increased width of the root cortical zone and smaller diameter of xylem vessels. Inhibition in the rate of root elongation correlated with the increase in cell wall thickening and was dramatically pronounced in beetroot compared to the roots of treated fescue. The latter possessed significantly fewer (p < 0.001) and significantly shorter (p < 0.001) root hairs compared to control plants. Possibly, root hairs that absorb the hydrophobic contaminants may prevent contaminant absorption into the main root and concomitant axile root thickening by being sloughed off from roots. Tall fescue exhibited greater root morphological adaptability to growth in crude oil-treated sand than beetroot and, thus, a potential for long-term phytoremediation.

  7. [Alleviated affect of exogenous CaCl2 on the growth, antioxidative enzyme activities and cadmium absorption efficiency of Wedelia trilobata hairy roots under cadmium stress].

    PubMed

    Shi, Heping; Wang, Yunling; Tsang, PoKeung Eric; Chan, LeeWah Andrew

    2012-06-01

    In order to study the physiological mechanism of exogenous calcium on the toxicity of heavy metal cadmium (Cd) to Wedelia trilobata hairy roots, the effects of Cd alone, and in combination with different concentrations of Ca on growth, contents of soluble protein and malondialdehyde (MDA), activities of superoxide dismutase (SOD) and peroxidase (POD), Cd2+ absorption in W. trilobata hairy roots were investigated. Cd concentrations lower than 50 micromol/L enhanced the growth of hairy roots, while concentrations higher than 100 micromol/L inhibited growth, making the branched roots short and small, and also turning the root tips brown, even black. In comparison with the control (0 micromol/L Cd), the soluble protein content in hairy roots was found to increase when cultured with 10-50 micromol/L Cd, and decrease when exposed to a cadmium concentration higher than 100 micromol/L Cd. In addition, the activities of POD and SOD activity and MDA content were significantly higher than the control. Compared to the control (hairy roots cultured without 10-30 mmol/L Ca), 100 micromol/L Cd or 300 micromol/L Cd in combination with 10-30 mmol/L Ca resulted in increased growth, causing the main root and secondary roots thicker and also an increase in soluble protein content. On the contrary, MDA content and POD and SOD activities decreased. Quantitative analysis by Atomic Absorption Spectrophotometry showed that W. trilobata hairy roots can absorb and adsorb heavy metal Cd in the ionic form of Cd2+. The maximum content of Cd2+ absorbed by the hairy roots was obtained with a concentration 100 micromol/L Cd2+ while that of Cd2+ adsorbed by hairy roots was achieved with a concentration of 300 micromol/L Cd2+. The exogenous addition of 10-30 mmol/L Ca2+ was found to reduce the absorption, adsorption of Cd2+ and the toxicity of Cd significantly. This reduction in toxicity was caused by the reduction in the absorption of Cd and decreasing the lipid peroxidation through regulating the

  8. Clinorotation influence on the growth of root hairs in Beta Vulgaris L. seedlings

    NASA Astrophysics Data System (ADS)

    Shevchenko, G. V.; Kordyum, E. L.

    It is shown that clinorotation affects the angle of Beta Vulgaris L. root hair growth and changes it from 85-95° to 40-60° at the stage of hair initiation. The investigation of actin cytoskeleton arrangement and tip-based gradient of calcium ions proved the involvement of above components in the maintenance of the directed growth in simulated microgravity (clinorotation).

  9. Mathematical Modeling of the Dynamics of Shoot-Root Interactions and Resource Partitioning in Plant Growth.

    PubMed

    Feller, Chrystel; Favre, Patrick; Janka, Ales; Zeeman, Samuel C; Gabriel, Jean-Pierre; Reinhardt, Didier

    2015-01-01

    Plants are highly plastic in their potential to adapt to changing environmental conditions. For example, they can selectively promote the relative growth of the root and the shoot in response to limiting supply of mineral nutrients and light, respectively, a phenomenon that is referred to as balanced growth or functional equilibrium. To gain insight into the regulatory network that controls this phenomenon, we took a systems biology approach that combines experimental work with mathematical modeling. We developed a mathematical model representing the activities of the root (nutrient and water uptake) and the shoot (photosynthesis), and their interactions through the exchange of the substrates sugar and phosphate (Pi). The model has been calibrated and validated with two independent experimental data sets obtained with Petunia hybrida. It involves a realistic environment with a day-and-night cycle, which necessitated the introduction of a transitory carbohydrate storage pool and an endogenous clock for coordination of metabolism with the environment. Our main goal was to grasp the dynamic adaptation of shoot:root ratio as a result of changes in light and Pi supply. The results of our study are in agreement with balanced growth hypothesis, suggesting that plants maintain a functional equilibrium between shoot and root activity based on differential growth of these two compartments. Furthermore, our results indicate that resource partitioning can be understood as the emergent property of many local physiological processes in the shoot and the root without explicit partitioning functions. Based on its encouraging predictive power, the model will be further developed as a tool to analyze resource partitioning in shoot and root crops.

  10. Final Report: Regulation and Function of Two Cell Wall protein Genes in Me Dicago Roots and Root Nodules, August 1, 1995 - January 31, 1999

    SciTech Connect

    Cooper, James B.

    2000-05-08

    During the period of DOE funding we synthesized several PRP peptides, generated rabbit antisera against two PRP repeats found in early nodulin PRPs, and developed confocal microscopy methods for root immunohistochemistry. Using the antibodies, we completed extensive descriptive studies of PRP deposition in medic and alfalfa roots showing that PRPs deposition is developmentally regulated in roots and spatially restricted within the walls of specific root tissues. Domain-specific antibodies were isolated from polyclonal sera using peptide affinity chromatography and were then used to demonstrate that nodule-specific epitopes are shared by several nodule-specific proteins. The following provides a more detailed summary of this work.

  11. Two distinct regions of response drive differential growth in Vigna root electrotropism

    NASA Technical Reports Server (NTRS)

    Wolverton, C.; Mullen, J. L.; Ishikawa, H.; Evans, M. L.

    2000-01-01

    Although exogenous electric fields have been reported to influence the orientation of plant root growth, reports of the ultimate direction of differential growth have been contradictory. Using a high-resolution image analysis approach, the kinetics of electrotropic curvature in Vigna mungo L. roots were investigated. It was found that curvature occurred in the same root toward both the anode and cathode. However, these two responses occurred in two different regions of the root, the central elongation zone (CEZ) and distal elongation zone (DEZ), respectively. These oppositely directed responses could be reproduced individually by a localized electric field application to the region of response. This indicates that both are true responses to the electric field, rather than one being a secondary response to an induced gravitropic stimulation. The individual responses differed in the type of differential growth giving rise to curvature. In the CEZ, curvature was driven by inhibition of elongation, whereas curvature in the DEZ was primarily due to stimulation of elongation. This stimulation of elongation is consistent with the growth response of the DEZ to other environmental stimuli.

  12. The mechanism of boron tolerance for maintenance of root growth in barley (Hordeum vulgare L.).

    PubMed

    Choi, Eun-Young; Kolesik, Peter; McNeill, Ann; Collins, Helen; Zhang, Qisen; Huynh, Bao-Lam; Graham, Robin; Stangoulis, James

    2007-08-01

    Cultivar differences in root elongation under B toxic conditions were observed in barley (Hordeum vulgare L.). A significant increase in the length and width of the root meristematic zone (RMZ) was observed in Sahara 3771 (B tolerant) when it was grown under excessive B concentration, compared to when grown at adequate B supply. This coincided with an increase in cell width and cell numbers in the meristematic zone (MZ), whereas a significant decrease in the length and no significant effect on the width of the MZ was observed in Clipper (B intolerant) when it was grown under excessive B supply. This was accompanied by a decrease in cell numbers, but an increase in the length and width of individual cells present along the MZ. Excessive B concentrations led to a significantly lower osmotic potential within the cell sap of the root tip in SloopVic (B tolerant) and Sahara 3771, while the opposite was observed in Clipper. Enhanced sugar levels in the root tips of SloopVic were observed between 48 and 96 h after excess B was applied. This coincided with an increase in the root elongation rate and with a 2.7-fold increase in sucrose level within mature leaf tissue. A significant decrease in reducing sugar levels was observed in the root tips of Clipper under excessive B concentrations. This coincided with significantly lower root elongation rates and lower sucrose levels in leaf tissues. Results indicate a B tolerance mechanism associated with a complex control of sucrose levels between leaf and root tip that assist in maintaining root growth under B toxicity.

  13. Root growth inhibition by NH(4)(+) in Arabidopsis is mediated by the root tip and is linked to NH(4)(+) efflux and GMPase activity.

    PubMed

    Li, Qing; Li, Bao-Hai; Kronzucker, Herbert J; Shi, Wei-Ming

    2010-09-01

    Root growth in higher plants is sensitive to excess ammonium (NH(4)(+)). Our study shows that contact of NH(4)(+) with the primary root tip is both necessary and sufficient to the development of arrested root growth under NH(4)(+) nutrition in Arabidopsis. We show that cell elongation and not cell division is the principal target in the NH(4)(+) inhibition of primary root growth. Mutant and expression analyses using DR5:GUS revealed that the growth inhibition is furthermore independent of auxin and ethylene signalling. NH(4)(+) fluxes along the primary root, measured using the Scanning Ion-selective Electrode Technique, revealed a significant stimulation of NH(4)(+) efflux at the elongation zone following treatment with elevated NH(4)(+), coincident with the inhibition of root elongation. Stimulation of NH(4)(+) efflux and inhibition of cell expansion were significantly more pronounced in the NH(4)(+)-hypersensitive mutant vtc1-1, deficient in the enzyme GDP-mannose pyrophosphorylase (GMPase). We conclude that both restricted transmembrane NH(4)(+) fluxes and proper functioning of GMPase in roots are critical to minimizing the severity of the NH(4)(+) toxicity response in Arabidopsis.

  14. Impact of treated wastewater on growth, respiration and hydraulic conductivity of citrus root systems in light and heavy soils.

    PubMed

    Paudel, Indira; Cohen, Shabtai; Shaviv, Avi; Bar-Tal, Asher; Bernstein, Nirit; Heuer, Bruria; Ephrath, Jhonathan

    2016-06-01

    Roots interact with soil properties and irrigation water quality leading to changes in root growth, structure and function. We studied these interactions in an orchard and in lysimeters with clay and sandy loam soils. Minirhizotron imaging and manual sampling showed that root growth was three times lower in the clay relative to sandy loam soil. Treated wastewater (TWW) led to a large reduction in root growth with clay (45-55%) but not with sandy loam soil (<20%). Treated wastewater increased salt uptake, membrane leakage and proline content, and decreased root viability, carbohydrate content and osmotic potentials in the fine roots, especially in clay. These results provide evidence that TWW challenges and damages the root system. The phenology and physiology of root orders were studied in lysimeters. Soil type influenced diameter, specific root area, tissue density and cortex area similarly in all root orders, while TWW influenced these only in clay soil. Respiration rates were similar in both soils, and root hydraulic conductivity was severely reduced in clay soil. Treated wastewater increased respiration rate and reduced hydraulic conductivity of all root orders in clay but only of the lower root orders in sandy loam soil. Loss of hydraulic conductivity increased with root order in clay and clay irrigated with TWW. Respiration and hydraulic properties of all root orders were significantly affected by sodium-amended TWW in sandy loam soil. These changes in root order morphology, anatomy, physiology and hydraulic properties indicate rapid and major modifications of root systems in response to differences in soil type and water quality.

  15. Drought-Up-Regulated TaNAC69-1 is a Transcriptional Repressor of TaSHY2 and TaIAA7, and Enhances Root Length and Biomass in Wheat.

    PubMed

    Chen, Dandan; Richardson, Terese; Chai, Shoucheng; Lynne McIntyre, C; Rae, Anne L; Xue, Gang-Ping

    2016-10-01

    A well-known physiological adaptation process of plants encountering drying soil is to achieve water balance by reducing shoot growth and maintaining or promoting root elongation, but little is known about the molecular basis of this process. This study investigated the role of a drought-up-regulated Triticum aestivum NAC69-1 (TaNAC69-1) in the modulation of root growth in wheat. TaNAC69-1 was predominantly expressed in wheat roots at the early vegetative stage. Overexpression of TaNAC69-1 in wheat roots using OsRSP3 (essentially root-specific) and OsPIP2;3 (root-predominant) promoters resulted in enhanced primary seminal root length and a marked increase in maturity root biomass. Competitive growth analysis under water-limited conditions showed that OsRSP3 promoter-driven TaNAC69-1 transgenic lines produced 32% and 35% more above-ground biomass and grains than wild-type plants, respectively. TaNAC69-1 overexpression in the roots down-regulated the expression of TaSHY2 and TaIAA7, which are from the auxin/IAA (Aux/IAA) transcriptional repressor gene family and are the homologs of negative root growth regulators SHY2/IAA3 and IAA7 in Arabidopsis. The expression of TaSHY2 and TaIAA7 in roots was down-regulated by drought stress and up-regulated by cytokinin treatment, which inhibited root growth. DNA binding and transient expression analyses revealed that TaNAC69-1 bound to the promoters of TaSHY2 and TaIAA7, acted as a transcriptional repressor and repressed the expression of reporter genes driven by the TaSHY2 or TaIAA7 promoter. These data suggest that TaNAC69-1 is a transcriptional repressor of TaSHY2 and TaIAA7 homologous to Arabidopsis negative root growth regulators and is likely to be involved in promoting root elongation in drying soil.

  16. [Difference of anti-fracture mechanical characteristics between lateral-root branches and adjacent upper straight roots of four plant species in vigorous growth period].

    PubMed

    Liu, Peng-fei; Liu, Jing; Zhu, Hong-hui; Zhang, Xin; Zhang, Ge; Li, You-fang; Su, Yu; Wang, Chen-jia

    2016-01-01

    Taking four plant species, Caragana korshinskii, Salix psammophila, Hippophae rhamnides and Artemisia sphaerocephala, which were 3-4 years old and in vigorous growth period, as test materials, the anti-fracture forces of lateral-root branches and adjacent upper straight roots were measured with the self-made fixture and the instrument of TY 8000. The lateral-root branches were vital and the diameters were 1-4 mm. The results showed that the anti-fracture force and anti-fracture strength of lateral-root branches were lesser than those of the adjacent upper straight roots even though the average diameter of lateral-root branches was greater. The ratios of anti-fracture strength of lateral-root branches to the adjacent upper straight roots were 71.5% for C. korshinskii, 62.9% for S. psammophila, 45.4% for H. rhamnides and 35.4% for A. sphaerocephala. For the four plants, the anti-fracture force positively correlated with the diameter in a power function, while the anti-fracture strength negatively correlated with diameter in a power function. The anti-fracture strengths of lateral-root branches and adjacent upper straight roots for the four species followed the sequence of C. korshinskii (33.66 and 47.06 MPa) > S. psammophila (17.31 and 27.54 MPa) > H. rhamnides (3.97 and 8.75 MPa) > A. sphaerphala (2.18 and 6.15 MPa).

  17. The effects of Vexar® seedling protectors on the growth and development of lodgepole pine roots

    USGS Publications Warehouse

    Engeman, Richard M.; Anthony, R. Michael; Krupa, Heather W.; Evans, James

    1997-01-01

    The effects on the growth and development of lodgepole pine roots from the Vexar® tubes used to protect seedlings from pocket gopher damage were studied in the Targhee National Forest, Idaho and the Deschutes National Forest, Oregon. At each site, Vexar-protected and unprotected seedlings, with and without above-ground gopher damage were examined after six growing seasons for root deformities and growth. Undamaged seedlings exhibited greater growth, reflecting the importance of non-lethal gopher damage as a deterrent to tree growth. Protected seedlings with similar damage history as unprotected seedlings had greater root depth than unprotected seedlings, although unprotected seedlings with no above-ground damage generally had the greatest root weight. In general, the percent of seedlings with root deformities was greater for the unprotected seedlings than for the Vexar-protectd seedlings, although this could be largely due to the greater care required to plant protected seedlings. Acute deformities were more common for unprotected seedlings, whereas root deformities with less severe bending were more common for protected seedlings. The incidence of crossed roots was similar for protected and unprotected seedlings on the Deschutes site, where enough occurrences of this deformity permitted analyses. Protected seedlings were similar in root abundance, root distribution, root size and vigor to the unprotected seedlings, with some indication from the Deshutes study site that root distribution was improved with Vexar protection.

  18. Identification of OsbHLH133 as a regulator of iron distribution between roots and shoots in Oryza sativa.

    PubMed

    Wang, Lu; Ying, Yinghui; Narsai, Reena; Ye, Lingxiao; Zheng, Luqing; Tian, Jingluan; Whelan, James; Shou, Huixia

    2013-01-01

    Iron (Fe) is an essential micronutrient element for plant growth. Regulation of Fe-deficiency signalling networks is one of the many functions reported for basic helix-loop-helix (bHLH) transcription factors in plants. In the present study, OsbHLH133 was found to be induced by Fe-deficiency conditions in Oryza sativa. Insertional inactivation of OsbHLH133 (bhlh133) resulted in growth retardation, with enhanced Fe concentration seen in shoots, and reduced Fe concentration in roots. Overexpression of OsbHLH133 had the opposite effect, that is resulted in an enhanced Fe concentration in roots and reduced Fe concentration in shoots and also in xylem sap. Microarray analysis showed that some of the genes encoding Fe-related functions were up-regulated under Fe-sufficient conditions, in bhlh133 mutant plants compared to wild-type plants. Significant differential expression of a number of signalling pathways, including calcium signalling, was also seen in bhlh133 plants compared to wild-type plants, independent of Fe conditions.

  19. A Receptor-Like Kinase Mediates Ammonium Homeostasis and Is Important for the Polar Growth of Root Hairs in Arabidopsis[W

    PubMed Central

    Bai, Ling; Ma, Xiaonan; Zhang, Guozeng; Song, Shufei; Zhou, Yun; Gao, Lijie; Miao, Yuchen; Song, Chun-Peng

    2014-01-01

    Ammonium (NH4+) is both a necessary nutrient and an important signal in plants, but can be toxic in excess. Ammonium sensing and regulatory mechanisms in plant cells have not been fully elucidated. To decipher the complex network of NH4+ signaling, we analyzed [Ca2+]cyt-associated protein kinase (CAP) genes, which encode signaling components that undergo marked changes in transcription levels in response to various stressors. We demonstrated that CAP1, a tonoplast-localized receptor-like kinase, regulates root hair tip growth by maintaining cytoplasmic Ca2+ gradients. A CAP1 knockout mutant (cap1-1) produced elevated levels of cytoplasmic NH4+. Furthermore, root hair growth of cap1-1 was inhibited on Murashige and Skoog medium, but NH4+ depletion reestablished the Ca2+ gradient necessary for normal growth. The lower net NH4+ influx across the vacuolar membrane and relatively alkaline cytosolic pH of cap1-1 root hairs implied that mutation of CAP1 increased NH4+ accumulation in the cytoplasm. Furthermore, CAP1 functionally complemented the npr1 (nitrogen permease reactivator protein) kinase yeast mutant, which is defective in high-affinity NH4+ uptake via MEP2 (methylammonium permease 2), distinguishing CAP1 as a cytosolic modulator of NH4+ levels that participates in NH4+ homeostasis-regulated root hair growth by modulating tip-focused cytoplasmic Ca2+ gradients. PMID:24769480

  20. Root foraging in response to heterogeneous soil moisture in two grapevines that differ in potential growth rate.

    PubMed

    Bauerle, Taryn L; Smart, David R; Bauerle, William L; Stockert, Christine; Eissenstat, David M

    2008-01-01

    * Linkages between plant growth rate and root responses to soil moisture heterogeneity were investigated. * Root dynamics were studied using genetically identical shoots (Vitis vinifera cv. Merlot) with genetically distinct root systems that promote higher (HSV) and lower (LSV) shoot growth rates (1103P and 101-14 Mgt, respectively). Three quantities of irrigation replenished different amounts of evapotranspiration (0, 40 and 100%ET(c)) in a California vineyard. * Roots of HSV vines exhibited more plasticity, as indicated by greater preferential growth in irrigated soil during the summer, and a larger shift in root diameter with a change in soil moisture than LSV vines. Higher tolerance of low soil moisture was not observed in LSV roots--root survivorship was similar for the two rootstocks. LSV vines produced a large fraction of its roots during the winter months and increased root density over the study, while HSV vines produced roots mainly in summer and only exhibited a high initial peak in root biomass in the first year. * These results demonstrated that a plant of higher vigor has greater morphological plasticity in response to lateral heterogeneity in soil moisture but similar tolerance to moisture stress as indicated by root survivorship in dry soil.

  1. Recovering the dynamics of root growth and development using novel image acquisition and analysis methods

    PubMed Central

    Wells, Darren M.; French, Andrew P.; Naeem, Asad; Ishaq, Omer; Traini, Richard; Hijazi, Hussein; Bennett, Malcolm J.; Pridmore, Tony P.

    2012-01-01

    Roots are highly responsive to environmental signals encountered in the rhizosphere, such as nutrients, mechanical resistance and gravity. As a result, root growth and development is very plastic. If this complex and vital process is to be understood, methods and tools are required to capture the dynamics of root responses. Tools are needed which are high-throughput, supporting large-scale experimental work, and provide accurate, high-resolution, quantitative data. We describe and demonstrate the efficacy of the high-throughput and high-resolution root imaging systems recently developed within the Centre for Plant Integrative Biology (CPIB). This toolset includes (i) robotic imaging hardware to generate time-lapse datasets from standard cameras under infrared illumination and (ii) automated image analysis methods and software to extract quantitative information about root growth and development both from these images and via high-resolution light microscopy. These methods are demonstrated using data gathered during an experimental study of the gravitropic response of Arabidopsis thaliana. PMID:22527394

  2. Recovering the dynamics of root growth and development using novel image acquisition and analysis methods.

    PubMed

    Wells, Darren M; French, Andrew P; Naeem, Asad; Ishaq, Omer; Traini, Richard; Hijazi, Hussein I; Hijazi, Hussein; Bennett, Malcolm J; Pridmore, Tony P

    2012-06-05

    Roots are highly responsive to environmental signals encountered in the rhizosphere, such as nutrients, mechanical resistance and gravity. As a result, root growth and development is very plastic. If this complex and vital process is to be understood, methods and tools are required to capture the dynamics of root responses. Tools are needed which are high-throughput, supporting large-scale experimental work, and provide accurate, high-resolution, quantitative data. We describe and demonstrate the efficacy of the high-throughput and high-resolution root imaging systems recently developed within the Centre for Plant Integrative Biology (CPIB). This toolset includes (i) robotic imaging hardware to generate time-lapse datasets from standard cameras under infrared illumination and (ii) automated image analysis methods and software to extract quantitative information about root growth and development both from these images and via high-resolution light microscopy. These methods are demonstrated using data gathered during an experimental study of the gravitropic response of Arabidopsis thaliana.

  3. Contrasting strategies of water use: seasonal root growth and soil water depletion in maize and sunflower under deficit irrigation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Quantifying root growth and soil water depletion in response to deficit irrigation is key to understanding crop ET under deficit irrigation as well as modeling crop water use across the season. We examined seasonal root growth and distribution patterns using a minirhizotron camera in maize and sunf...

  4. Water Relations of Pine Seedlings in Relation to Root and Shoot Growth 1

    PubMed Central

    Kaufmann, Merrill R.

    1968-01-01

    The effects of water stress on growth and water relations of loblolly and white pine seedlings were studied during series of drying cycles. As mean soil water potential decreased, growth of roots, needles, and buds decreased. Growth of roots during successive severe drying cycles was not uniform, however. A study of needle and root extension showed that of the total growth of roots for 3 7-day drying cycles, only 6% occurred during the third cycle, while needle extension was uniform for the 3 cycles. The difference in response of needles and roots to drying cycles may be attributed primarily to the effect of water stress on the growing region. When subjected to a severe stress, roots matured toward the tip and became dormant, resulting in less growth during subsequent drying cycles. The intercalary growing region of needles, however, was not altered seriously enough by the stress to cause a difference in amount of growth during each drying cycle. Transpiration of loblolly pine was lower in the second drying cycle than in the first. Needle water potential after rewatering was as high as that of control plants watered daily; root resistance was apparently not important in restricting transpiration during a second drying cycle. Needle diffusion resistance of loblolly pine, measured with a low-resistance diffusion porometer, was slightly higher during the second drying cycle than during the first. In addition, many primary needles were killed during the first period of stress. These factors contributed to the reduction of transpiration during the second drying cycle. Diffusion resistance of Coleus increased and transpiration ceased during the first drying cycle while water potential remained relatively high. After rewatering, both leaf resistance and transpiration returned to the control level, presumably because the stress during the first period of drying was not severe. The diffusion resistances observed for well-watered plants were 30 to 50 sec·cm−1 for loblolly

  5. PIV as a method for quantifying root cell growth and particle displacement in confocal images.

    PubMed

    Bengough, A Glyn; Hans, Joachim; Bransby, M Fraser; Valentine, Tracy A

    2010-01-01

    Particle image velocimetry (PIV) quantifies displacement of patches of pixels between successive images. We evaluated PIV as a tool for microscopists by measuring displacements of cells and of a surrounding granular medium in confocal laser scanning microscopy images of Arabidopsis thaliana roots labeled with cell-membrane targeted green fluorescent protein. Excellent accuracy (e.g., displacement standard deviation <0.006 pixels) was obtained for root images that had undergone rigid digital translations of up to 40 pixels. Analysis of zoomed images showed that magnifications of up to 5% maintained good linear relations between PIV-predicted and actual displacements (r(2) > 0.83). Root mean squared error for these distorted images was 0.4-1.1 pixels, increasing at higher magnification factors. Cell growth and rhizosphere deformation were tracked with good temporal (e.g., 1-min interval) and spatial resolution, with PIV patches located on recognizable cell features being tracked more successfully. Appropriate choice of GFP-label was important to decrease small-scale biological noise due to intracellular motion. PIV of roots grown in stiff 2% versus 0.7% agar showed patterns of cell expansion consistent with physically impeded roots of other species. Roots in glass ballotini underwent rapid changes in growth direction on a timescale of minutes, associated with localized arching of ballotini. By tracking cell vertices, we monitored automatically cell length, width, and area every minute for 0.5 h for cells in different stages of development. In conclusion, PIV measured displacements successfully in images of living root cells and the external granular medium, revealing much potential for use by microscopists.

  6. Cadmium Disrupts the Balance between Hydrogen Peroxide and Superoxide Radical by Regulating Endogenous Hydrogen Sulfide in the Root Tip of Brassica rapa

    PubMed Central

    Lv, Wenjing; Yang, Lifei; Xu, Cunfa; Shi, Zhiqi; Shao, Jinsong; Xian, Ming; Chen, Jian

    2017-01-01

    Cd (cadmium) stress always alters the homeostasis of ROS (reactive oxygen species) including H2O2 (hydrogen sulfide) and O2•– (superoxide radical), leading to the oxidative injury and growth inhibition in plants. In addition to triggering oxidative injury, ROS has been suggested as important regulators modulating root elongation. However, whether and how Cd stress induces the inhibition of root elongation by differentially regulating endogenous H2O2 and O2•–, rather than by inducing oxidative injury, remains elusive. To address these gaps, histochemical, physiological, and biochemical approaches were applied to investigate the mechanism for Cd to fine-tune the balance between H2O2 and O2•– in the root tip of Brassica rapa. Treatment with Cd at 4 and 16 μM significantly inhibited root elongation, while only 16 μM but not 4 μM of Cd induced oxidative injury and cell death in root tip. Fluorescent and pharmaceutical tests suggested that H2O2 and O2•– played negative and positive roles, respectively, in the regulation of root elongation in the presence of Cd (4 μM) or not. Treatment with Cd at 4 μM led to the increase in H2O2 and the decrease in O2•– in root tip, which may be attributed to the up-regulation of Br_UPB1s and the down-regulation of their predicted targets (four peroxidase genes). Cd at 4 μM resulted in the increase in endogenous H2S in root tip by inducing the up-regulation of LCDs and DCDs. Treatment with H2S biosynthesis inhibitor or H2S scavenger significantly blocked Cd (4 μM)-induced increase in endogenous H2S level, coinciding with the recovery of root elongation, the altered balance between H2O2 and O2•–, and the expression of Br_UPB1s and two peroxidase genes. Taken together, it can be proposed that endogenous H2S mediated the phytotoxicity of Cd at low concentration by regulating Br_UPB1s-modulated balance between H2O2 and O2•– in root tip. Such findings shed new light on the regulatory role of endogenous H2S in

  7. Cadmium Disrupts the Balance between Hydrogen Peroxide and Superoxide Radical by Regulating Endogenous Hydrogen Sulfide in the Root Tip of Brassica rapa.

    PubMed

    Lv, Wenjing; Yang, Lifei; Xu, Cunfa; Shi, Zhiqi; Shao, Jinsong; Xian, Ming; Chen, Jian

    2017-01-01

    Cd (cadmium) stress always alters the homeostasis of ROS (reactive oxygen species) including H2O2 (hydrogen sulfide) and [Formula: see text] (superoxide radical), leading to the oxidative injury and growth inhibition in plants. In addition to triggering oxidative injury, ROS has been suggested as important regulators modulating root elongation. However, whether and how Cd stress induces the inhibition of root elongation by differentially regulating endogenous H2O2 and [Formula: see text], rather than by inducing oxidative injury, remains elusive. To address these gaps, histochemical, physiological, and biochemical approaches were applied to investigate the mechanism for Cd to fine-tune the balance between H2O2 and [Formula: see text] in the root tip of Brassica rapa. Treatment with Cd at 4 and 16 μM significantly inhibited root elongation, while only 16 μM but not 4 μM of Cd induced oxidative injury and cell death in root tip. Fluorescent and pharmaceutical tests suggested that H2O2 and [Formula: see text] played negative and positive roles, respectively, in the regulation of root elongation in the presence of Cd (4 μM) or not. Treatment with Cd at 4 μM led to the increase in H2O2 and the decrease in [Formula: see text] in root tip, which may be attributed to the up-regulation of Br_UPB1s and the down-regulation of their predicted targets (four peroxidase genes). Cd at 4 μM resulted in the increase in endogenous H2S in root tip by inducing the up-regulation of LCDs and DCDs. Treatment with H2S biosynthesis inhibitor or H2S scavenger significantly blocked Cd (4 μM)-induced increase in endogenous H2S level, coinciding with the recovery of root elongation, the altered balance between H2O2 and [Formula: see text], and the expression of Br_UPB1s and two peroxidase genes. Taken together, it can be proposed that endogenous H2S mediated the phytotoxicity of Cd at low concentration by regulating Br_UPB1s-modulated balance between H2O2 and [Formula: see text] in root

  8. A circadian and an ultradian rhythm are both evident in root growth of rice.

    PubMed

    Iijima, Morio; Matsushita, Naofumi

    2011-11-15

    This paper presents evidence for the existence of both a circadian and an ultradian rhythm in the elongation growth of rice roots. Root elongation of rice (Oryza sativa) was recorded under dim green light by using a CCD camera connected to a computer. Four treatment conditions were set-up to investigate the existence of endogenous rhythms: 28°C constant temperature and continuous dark (28 DD); 28°C constant temperature and alternating light and dark (28 LD); 33°C constant temperature and continuous dark (33 DD); and diurnal temperature change and alternating light and dark (DT-LD). The resulting spectral densities suggested the existence of periodicities of 20.4-25.2 h (circadian cycles) and 2.0-6.0 h (ultradian cycles) in each of the 4 treatments. The shorter ultradian cycles can be attributed to circumnutational growth of roots and/or to mucilage exudation. The average values across all the replicate data showed that the highest power spectral densities (PSDs) corresponded to root growth rhythms with periods of 22.9, 23.7, and 2.1 h for the 28 DD, 28 LD, and 33 DD treatments, respectively. Accumulation of PSD for each data set indicated that the periodicity was similar in both the 28 DD and 33 DD treatments. We conclude that a 23-h circadian and a 2-h ultradian rhythmicity exist in rice root elongation. Moreover, root elongation rates during the day were 1.08 and 1.44 times faster than those during the night for the 28 LD and DT-LD treatments, respectively.

  9. Root jasmonic acid synthesis and perception regulate folivore-induced shoot metabolites and increase Nicotiana attenuata resistance.

    PubMed

    Fragoso, Variluska; Rothe, Eva; Baldwin, Ian T; Kim, Sang-Gyu

    2014-06-01

    While jasmonic acid (JA) signaling is widely accepted as mediating plant resistance to herbivores, and the importance of the roots in plant defenses is recently being recognized, the role of root JA in the defense of above-ground parts remains unstudied. To restrict JA impairment to the roots, we micrografted wildtype Nicotiana attenuata shoots to the roots of transgenic plants impaired in JA signaling and evaluated ecologically relevant traits in the glasshouse and in nature. Root JA synthesis and perception are involved in regulating nicotine production in roots. Strikingly, systemic root JA regulated local leaf JA and abscisic acid (ABA) concentrations, which were associated with differences in nicotine transport from roots to leaves via the transpiration stream. Root JA signaling also regulated the accumulation of other shoot metabolites; together these account for differences in resistance against a generalist, Spodoptera littoralis, and a specialist herbivore, Manduca sexta. In N. attenuata's native habitat, silencing root JA synthesis increased the shoot damage inflicted by Empoasca leafhoppers, which are able to select natural jasmonate mutants. Silencing JA perception in roots also increased damage by Tupiocoris notatus. We conclude that attack from above-ground herbivores recruits root JA signaling to launch the full complement of plant defense responses.

  10. Sulphadimethoxine inhibits Phaseolus vulgaris root growth and development of N-fixing nodules.

    PubMed

    Sartorius, Marilena; Riccio, Anna; Cermola, Michele; Casoria, Paolo; Patriarca, Eduardo J; Taté, Rosarita

    2009-07-01

    Sulphonamides contamination of cultivated lands occurs through the recurrent spreading of animal wastes from intensive farming. The aim of this study was to test the effect(s) of sulphadimethoxine on the beneficial N-fixing Rhizobium etli-Phaseolus vulgaris symbiosis under laboratory conditions. The consequence of increasing concentrations of sulphadimethoxine on the growth ability of free-living R. etli bacteria, as well as on seed germination, seedling development and growth of common bean plants was examined. We have established that sulphadimethoxine inhibited the growth of both symbiotic partners in a dose-dependent manner. Bacterial invasion occurring in developing root nodules was visualized by fluorescence microscopy generating EGFP-marked R. etli bacteria. Our results proved that the development of symbiotic N-fixing root nodules is hampered by sulphadimethoxine thus identifying sulphonamides as toxic compounds for the Rhizobium-legume symbiosis: a low-input sustainable agricultural practice.

  11. Fibroblast Growth Factor Signaling in Metabolic Regulation

    PubMed Central

    Nies, Vera J. M.; Sancar, Gencer; Liu, Weilin; van Zutphen, Tim; Struik, Dicky; Yu, Ruth T.; Atkins, Annette R.; Evans, Ronald M.; Jonker, Johan W.; Downes, Michael Robert

    2016-01-01

    The prevalence of obesity is a growing health problem. Obesity is strongly associated with several comorbidities, such as non-alcoholic fatty liver disease, certain cancers, insulin resistance, and type 2 diabetes, which all reduce life expectancy and life quality. Several drugs have been put forward in order to treat these diseases, but many of them have detrimental side effects. The unexpected role of the family of fibroblast growth factors in the regulation of energy metabolism provides new approaches to the treatment of metabolic diseases and offers a valuable tool to gain more insight into metabolic regulation. The known beneficial effects of FGF19 and FGF21 on metabolism, together with recently discovered similar effects of FGF1 suggest that FGFs and their derivatives carry great potential as novel therapeutics to treat metabolic conditions. To facilitate the development of new therapies with improved targeting and minimal side effects, a better understanding of the molecular mechanism of action of FGFs is needed. In this review, we will discuss what is currently known about the physiological roles of FGF signaling in tissues important for metabolic homeostasis. In addition, we will discuss current concepts regarding their pharmacological properties and effector tissues in the context of metabolic disease. Also, the recent progress in the development of FGF variants will be reviewed. Our goal is to provide a comprehensive overview of the current concepts and consensuses regarding FGF signaling in metabolic health and disease and to provide starting points for the development of FGF-based therapies against metabolic conditions. PMID:26834701

  12. Gravity-regulated differential auxin transport from columella to lateral root cap cells

    NASA Technical Reports Server (NTRS)

    Ottenschlager, Iris; Wolff, Patricia; Wolverton, Chris; Bhalerao, Rishikesh P.; Sandberg, Goran; Ishikawa, Hideo; Evans, Mike; Palme, Klaus

    2003-01-01

    Gravity-induced root curvature has long been considered to be regulated by differential distribution of the plant hormone auxin. However, the cells establishing these gradients, and the transport mechanisms involved, remain to be identified. Here, we describe a GFP-based auxin biosensor to monitor auxin during Arabidopsis root gravitropism at cellular resolution. We identify elevated auxin levels at the root apex in columella cells, the site of gravity perception, and an asymmetric auxin flux from these cells to the lateral root cap (LRC) and toward the elongation zone after gravistimulation. We differentiate between an efflux-dependent lateral auxin transport from columella to LRC cells, and an efflux- and influx-dependent basipetal transport from the LRC to the elongation zone. We further demonstrate that endogenous gravitropic auxin gradients develop even in the presence of an exogenous source of auxin. Live-cell auxin imaging provides unprecedented insights into gravity-regulated auxin flux at cellular resolution, and strongly suggests that this flux is a prerequisite for root gravitropism.

  13. Regulation of ascorbic acid biosynthesis and recycling during root development in carrot (Daucus carota L.).

    PubMed

    Wang, Guang-Long; Xu, Zhi-Sheng; Wang, Feng; Li, Meng-Yao; Tan, Guo-Fei; Xiong, Ai-Sheng

    2015-09-01

    Ascorbic acid (AsA), also known as vitamin C, is an essential nutrient in fruits and vegetables. The fleshy root of carrot (Daucus carota L.) is a good source of AsA for humans. However, the metabolic pathways and molecular mechanisms involved in the control of AsA content during root development in carrot have not been elucidated. To gain insights into the regulation of AsA accumulation and to identify the key genes involved in the AsA metabolism, we cloned and analyzed the expression of 21 related genes during carrot root development. The results indicate that AsA accumulation in the carrot root is regulated by intricate pathways, of which the l-galactose pathway may be the major pathway for AsA biosynthesis. Transcript levels of the genes encoding l-galactose-1-phosphate phosphatase and l-galactono-1,4-lactone dehydrogenase were strongly correlated with AsA levels during root development. Data from this research may be used to assist breeding for improved nutrition, quality, and stress tolerance in carrots.

  14. Gravity-regulated differential auxin transport from columella to lateral root cap cells

    PubMed Central

    Ottenschläger, Iris; Wolff, Patricia; Wolverton, Chris; Bhalerao, Rishikesh P.; Sandberg, Göran; Ishikawa, Hideo; Evans, Mike; Palme, Klaus

    2003-01-01

    Gravity-induced root curvature has long been considered to be regulated by differential distribution of the plant hormone auxin. However, the cells establishing these gradients, and the transport mechanisms involved, remain to be identified. Here, we describe a GFP-based auxin biosensor to monitor auxin during Arabidopsis root gravitropism at cellular resolution. We identify elevated auxin levels at the root apex in columella cells, the site of gravity perception, and an asymmetric auxin flux from these cells to the lateral root cap (LRC) and toward the elongation zone after gravistimulation. We differentiate between an efflux-dependent lateral auxin transport from columella to LRC cells, and an efflux- and influx-dependent basipetal transport from the LRC to the elongation zone. We further demonstrate that endogenous gravitropic auxin gradients develop even in the presence of an exogenous source of auxin. Live-cell auxin imaging provides unprecedented insights into gravity-regulated auxin flux at cellular resolution, and strongly suggests that this flux is a prerequisite for root gravitropism. PMID:12594336

  15. Fe-chlorophyllin promotes the growth of wheat roots associated with nitric oxide generation.

    PubMed

    Tong, Min; Zhang, Liefeng; Wang, Yifan; Jiang, Hui; Ren, Yong

    2010-01-01

    Effects of Fe-chlorophyllin on the growth of wheat root were investigated in this study. We found that Fe-chlorophyllin can promote root growth. The production of nitric oxide in wheat root was detected using DAF-2DA fluorescent emission. The intensity of fluorescent in the presence of 0.1 mg/L Fe-chlorophyllin was near to that observed with the positive control of sodium nitroprusside (SNP), the nitric oxide donor. IAA oxidase activity decreased with all treatments of Fe-chlorophyllin from 0.01 to 10 mg/L. At the relatively lower Fe-chlorophyllin concentration of 0.1 mg/L, the activity of IAA oxidase displayed a remarkable decrease, being 40.1% lower than the control. Meanwhile, Fe-chlorophyllin treatment could increase the activities of reactive oxygen scavenging enzymes, such as superoxide dismutase (SOD) and peroxidase (POD), as determined using non-denaturing polyacrylamide gel electrophoresis. These results indicate that Fe-chlorophyllin contributes to the growth of wheat root associated with nitric oxide generation.

  16. Plant growth promoting rhizobacteria (PGPR): the bugs to debug the root zone.

    PubMed

    Dutta, Swarnalee; Podile, Appa Rao

    2010-08-01

    Interaction of plant growth promoting rhizobacteria (PGPR) with host plants is an intricate and interdependent relationship involving not only the two partners but other biotic and abiotic factors of the rhizosphere region. Survival and establishment of PGPR in the rhizosphere is a major concern of agricultural microbiologists. Various factors that play a determining role include the composition of root exudates, properties of bacterial strain, soil status, and activities of other soil microbes. This review focuses on the different components that affect root colonization of PGPR and the underlying principles behind the success of these bugs to tide over the unfavorable conditions.

  17. Juglone disrupts root plasma membrane H+-ATPase activity and impairs water uptake, root respiration, and growth in soybean (Glycine max) and corn (Zea mays).

    PubMed

    Hejl, Angela M; Koster, Karen L

    2004-02-01

    Juglone is phytotoxic, but the mechanisms of growth inhibition have not been fully explained. Previous studies have proposed that disruption of electron transport functions in mitochondria and chloroplasts contribute to observed growth reduction in species exposed to juglone. In studies reported here, corn and soybean seedlings grown in nutrient solution amended with 10, 50, or 100 microM juglone showed significant decreases in root and shoot dry weights and lengths with increasing concentrations. However, no significant differences in leaf chlorophyll fluorescence or CO2-dependent leaf oxygen evolution were observed, even in seedlings that were visibly affected. Disruption of root oxygen uptake was positively correlated with increasing concentrations of juglone, suggesting that juglone may reach mitochondria in root cells. Water uptake and acid efflux also decreased for corn and soybean seedlings treated with juglone, suggesting that juglone may affect metabolism of root cells by disrupting root plasma membrane function. Therefore, the effect of juglone on H+-ATPase activity in corn and soybean root microsomes was tested. Juglone treatments from 10 to 1000 microM significantly reduced H+-ATPase activity compared to controls. This inhibition of H+-ATPase activity and observed reduction of water uptake offers a logical explanation for previously documented phytotoxicity of juglone. Impairment of this enzyme's activity could affect plant growth in a number of ways because proton-pumping in root cells drives essential plant processes such as solute uptake and, hence, water uptake.

  18. Nitric oxide contributes to cadmium toxicity in Arabidopsis by promoting cadmium accumulation in roots and by up-regulating genes related to iron uptake.

    PubMed

    Besson-Bard, Angélique; Gravot, Antoine; Richaud, Pierre; Auroy, Pascaline; Duc, Céline; Gaymard, Frédéric; Taconnat, Ludivine; Renou, Jean-Pierre; Pugin, Alain; Wendehenne, David

    2009-03-01

    Nitric oxide (NO) functions as a cell-signaling molecule in plants. In particular, a role for NO in the regulation of iron homeostasis and in the plant response to toxic metals has been proposed. Here, we investigated the synthesis and the role of NO in plants exposed to cadmium (Cd(2+)), a nonessential and toxic metal. We demonstrate that Cd(2+) induces NO synthesis in roots and leaves of Arabidopsis (Arabidopsis thaliana) seedlings. This production, which is sensitive to NO synthase inhibitors, does not involve nitrate reductase and AtNOA1 but requires IRT1, encoding a major plasma membrane transporter for iron but also Cd(2+). By analyzing the incidence of NO scavenging or inhibition of its synthesis during Cd(2+) treatment, we demonstrated that NO contributes to Cd(2+)-triggered inhibition of root growth. To understand the mechanisms underlying this process, a microarray analysis was performed in order to identify NO-modulated root genes up- and down-regulated during Cd(2+) treatment. Forty-three genes were identified encoding proteins related to iron homeostasis, proteolysis, nitrogen assimilation/metabolism, and root growth. These genes include IRT1. Investigation of the metal and ion contents in Cd(2+)-treated roots in which NO synthesis was impaired indicates that IRT1 up-regulation by NO was consistently correlated to NO's ability to promote Cd(2+) accumulation in roots. This analysis also highlights that NO is responsible for Cd(2+)-induced inhibition of root Ca(2+) accumulation. Taken together, our results suggest that NO contributes to Cd(2+) toxicity by favoring Cd(2+) versus Ca(2+) uptake and by initiating a cellular pathway resembling those activated upon iron deprivation.

  19. Nitric Oxide Contributes to Cadmium Toxicity in Arabidopsis by Promoting Cadmium Accumulation in Roots and by Up-Regulating Genes Related to Iron Uptake1[W

    PubMed Central

    Besson-Bard, Angélique; Gravot, Antoine; Richaud, Pierre; Auroy, Pascaline; Duc, Céline; Gaymard, Frédéric; Taconnat, Ludivine; Renou, Jean-Pierre; Pugin, Alain; Wendehenne, David

    2009-01-01

    Nitric oxide (NO) functions as a cell-signaling molecule in plants. In particular, a role for NO in the regulation of iron homeostasis and in the plant response to toxic metals has been proposed. Here, we investigated the synthesis and the role of NO in plants exposed to cadmium (Cd2+), a nonessential and toxic metal. We demonstrate that Cd2+ induces NO synthesis in roots and leaves of Arabidopsis (Arabidopsis thaliana) seedlings. This production, which is sensitive to NO synthase inhibitors, does not involve nitrate reductase and AtNOA1 but requires IRT1, encoding a major plasma membrane transporter for iron but also Cd2+. By analyzing the incidence of NO scavenging or inhibition of its synthesis during Cd2+ treatment, we demonstrated that NO contributes to Cd2+-triggered inhibition of root growth. To understand the mechanisms underlying this process, a microarray analysis was performed in order to identify NO-modulated root genes up- and down-regulated during Cd2+ treatment. Forty-three genes were identified encoding proteins related to iron homeostasis, proteolysis, nitrogen assimilation/metabolism, and root growth. These genes include IRT1. Investigation of the metal and ion contents in Cd2+-treated roots in which NO synthesis was impaired indicates that IRT1 up-regulation by NO was consistently correlated to NO's ability to promote Cd2+ accumulation in roots. This analysis also highlights that NO is responsible for Cd2+-induced inhibition of root Ca2+ accumulation. Taken together, our results suggest that NO contributes to Cd2+ toxicity by favoring Cd2+ versus Ca2+ uptake and by initiating a cellular pathway resembling those activated upon iron deprivation. PMID:19168643

  20. Adaptive shoot and root responses collectively enhance growth at optimum temperature and limited phosphorus supply of three herbaceous legume species

    PubMed Central

    Suriyagoda, Lalith D. B.; Ryan, Megan H.; Renton, Michael; Lambers, Hans

    2012-01-01

    Background and Aims Studies on the effects of sub- and/or supraoptimal temperatures on growth and phosphorus (P) nutrition of perennial herbaceous species at growth-limiting P availability are few, and the impacts of temperature on rhizosphere carboxylate dynamics are not known for any species. Methods The effect of three day/night temperature regimes (low, 20/13 °C; medium, 27/20 °C; and high, 32/25 °C) on growth and P nutrition of Cullen cinereum, Kennedia nigricans and Lotus australis was determined. Key Results The highest temperature was optimal for growth of C. cinereum, while the lowest temperature was optimal for K. nigricans and L. australis. At optimum temperatures, the relative growth rate (RGR), root length, root length per leaf area, total P content, P productivity and water-use efficiency were higher for all species, and rhizosphere carboxylate content was higher for K. nigricans and L. australis. Cullen cinereum, with a slower RGR, had long (higher root length per leaf area) and thin roots to enhance P uptake by exploring a greater volume of soil at its optimum temperature, while K. nigricans and L. australis, with faster RGRs, had only long roots (higher root length per leaf area) as a morphological adaptation, but had a higher content of carboxylates in their rhizospheres at the optimum temperature. Irrespective of the species, the amount of P taken up by a plant was mainly determined by root length, rather than by P uptake rate per unit root surface area. Phosphorus productivity was correlated with RGR and plant biomass. Conclusions All three species exhibited adaptive shoot and root traits to enhance growth at their optimum temperatures at growth-limiting P supply. The species with a slower RGR (i.e. C. cinereum) showed only morphological root adaptations, while K. nigricans and L. australis, with faster RGRs, had both morphological and physiological (i.e. root carboxylate dynamics) root adaptations. PMID:22847657

  1. Modeling the Hydraulics of Root Growth in Three Dimensions with Phloem Water Sources1[C][OA

    PubMed Central

    Wiegers, Brandy S.; Cheer, Angela Y.; Silk, Wendy K.

    2009-01-01

    Primary growth is characterized by cell expansion facilitated by water uptake generating hydrostatic (turgor) pressure to inflate the cell, stretching the rigid cell walls. The multiple source theory of root growth hypothesizes that root growth involves transport of water both from the soil surrounding the growth zone and from the mature tissue higher in the root via phloem and protophloem. Here, protophloem water sources are used as boundary conditions in a classical, three-dimensional model of growth-sustaining water potentials in primary roots. The model predicts small radial gradients in water potential, with a significant longitudinal gradient. The results improve the agreement of theory with empirical studies for water potential in the primary growth zone of roots of maize (Zea mays). A sensitivity analysis quantifies the functional importance of apical phloem differentiation in permitting growth and reveals that the presence of phloem water sources makes the growth-sustaining water relations of the root relatively insensitive to changes in root radius and hydraulic conductivity. Adaptation to drought and other environmental stresses is predicted to involve more apical differentiation of phloem and/or higher phloem delivery rates to the growth zone. PMID:19542299

  2. Mobile phone radiation inhibits Vigna radiata (mung bean) root growth by inducing oxidative stress.

    PubMed

    Sharma, Ved Parkash; Singh, Harminder Pal; Kohli, Ravinder Kumar; Batish, Daizy Rani

    2009-10-15

    During the last couple of decades, there has been a tremendous increase in the use of cell phones. It has significantly added to the rapidly increasing EMF smog, an unprecedented type of pollution consisting of radiation in the environment, thereby prompting the scientists to study the effects on humans. However, not many studies have been conducted to explore the effects of cell phone EMFr on growth and biochemical changes in plants. We investigated whether EMFr from cell phones inhibit growth of Vigna radiata (mung bean) through induction of conventional stress responses. Effects of cell phone EMFr (power density: 8.55 microW cm(-2); 900 MHz band width; for 1/2, 1, 2, and 4 h) were determined by measuring the generation of reactive oxygen species (ROS) in terms of malondialdehyde and hydrogen peroxide (H(2)O(2)) content, root oxidizability and changes in levels of antioxidant enzymes. Our results showed that cell phone EMFr significantly inhibited the germination (at > or =2 h), and radicle and plumule growths (> or =1 h) in mung bean in a time-dependent manner. Further, cell phone EMFr enhanced MDA content (indicating lipid peroxidation), and increased H(2)O(2) accumulation and root oxidizability in mung bean roots, thereby inducing oxidative stress and cellular damage. In response to EMFr, there was a significant upregulation in the activities of scavenging enzymes, such as superoxide dismutases, ascorbate peroxidases, guaiacol peroxidases, catalases and glutathione reductases, in mung bean roots. The study concluded that cell phone EMFr inhibit root growth of mung bean by inducing ROS-generated oxidative stress despite increased activities of antioxidant enzymes.

  3. Regulation of Pollen Tube Growth by Transglutaminase

    PubMed Central

    Cai, Giampiero; Serafini-Fracassini, Donatella; Del Duca, Stefano

    2013-01-01

    In pollen tubes, cytoskeleton proteins are involved in many aspects of pollen germination and growth, from the transport of sperm cells to the asymmetrical distribution of organelles to the deposition of cell wall material. These activities are based on the dynamics of the cytoskeleton. Changes to both actin filaments and microtubules are triggered by specific proteins, resulting in different organization levels suitable for the different functions of the cytoskeleton. Transglutaminases are enzymes ubiquitous in all plant organs and cell compartments. They catalyze the post-translational conjugation of polyamines to different protein targets, such as the cytoskeleton. Transglutaminases are suggested to have a general role in the interaction between pollen tubes and the extracellular matrix during fertilization and a specific role during the self-incompatibility response. In such processes, the activity of transglutaminases is enhanced, leading to the formation of cross-linked products (including aggregates of tubulin and actin). Consequently, transglutaminases are suggested to act as regulators of cytoskeleton dynamics. The distribution of transglutaminases in pollen tubes is affected by both membrane dynamics and the cytoskeleton. Transglutaminases are also secreted in the extracellular matrix, where they may take part in the assembly and/or strengthening of the pollen tube cell wall. PMID:27137368

  4. A Potassium-Dependent Oxygen Sensing Pathway Regulates Plant Root Hydraulics.

    PubMed

    Shahzad, Zaigham; Canut, Matthieu; Tournaire-Roux, Colette; Martinière, Alexandre; Boursiac, Yann; Loudet, Olivier; Maurel, Christophe

    2016-09-22

    Aerobic organisms survive low oxygen (O2) through activation of diverse molecular, metabolic, and physiological responses. In most plants, root water permeability (in other words, hydraulic conductivity, Lpr) is downregulated under O2 deficiency. Here, we used a quantitative genetics approach in Arabidopsis to clone Hydraulic Conductivity of Root 1 (HCR1), a Raf-like MAPKKK that negatively controls Lpr. HCR1 accumulates and is functional under combined O2 limitation and potassium (K(+)) sufficiency. HCR1 regulates Lpr and hypoxia responsive genes, through the control of RAP2.12, a key transcriptional regulator of the core anaerobic response. A substantial variation of HCR1 in regulating Lpr is observed at the Arabidopsis species level. Thus, by combinatorially integrating two soil signals, K(+) and O2 availability, HCR1 modulates the resilience of plants to multiple flooding scenarios.

  5. Tricho- and atrichoblast cell files show distinct PIN2 auxin efflux carrier exploitations and are jointly required for defined auxin-dependent root organ growth.

    PubMed

    Löfke, Christian; Scheuring, David; Dünser, Kai; Schöller, Maria; Luschnig, Christian; Kleine-Vehn, Jürgen

    2015-08-01

    The phytohormone auxin is a vital growth regulator in plants. In the root epidermis auxin steers root organ growth. However, the mechanisms that allow adjacent tissues to integrate growth are largely unknown. Here, the focus is on neighbouring epidermal root tissues to assess the integration of auxin-related growth responses. The pharmacologic, genetic, and live-cell imaging approaches reveal that PIN2 auxin efflux carriers are differentially controlled in tricho- and atrichoblast cells. PIN2 proteins show lower abundance at the plasma membrane of trichoblast cells, despite showing higher rates of intracellular trafficking in these cells. The data suggest that PIN2 proteins display distinct cell-type-dependent trafficking rates to the lytic vacuole for degradation. Based on this insight, it is hypothesized that auxin-dependent processes are distinct in tricho- and atrichoblast cells. Moreover, genetic interference with epidermal patterning supports this assumption and suggests that tricho- and atrichoblasts have distinct importance for auxin-sensitive root growth and gravitropic responses.

  6. A Markovian Growth Dynamics on Rooted Binary Trees Evolving According to the Gompertz Curve

    NASA Astrophysics Data System (ADS)

    Landim, C.; Portugal, R. D.; Svaiter, B. F.

    2012-08-01

    Inspired by biological dynamics, we consider a growth Markov process taking values on the space of rooted binary trees, similar to the Aldous-Shields (Probab. Theory Relat. Fields 79(4):509-542, 1988) model. Fix n≥1 and β>0. We start at time 0 with the tree composed of a root only. At any time, each node with no descendants, independently from the other nodes, produces two successors at rate β( n- k)/ n, where k is the distance from the node to the root. Denote by Z n ( t) the number of nodes with no descendants at time t and let T n = β -1 nln( n/ln4)+(ln2)/(2 β). We prove that 2- n Z n ( T n + nτ), τ∈ℝ, converges to the Gompertz curve exp(-(ln2) e - βτ ). We also prove a central limit theorem for the martingale associated to Z n ( t).

  7. Root and stem hydraulic conductivity as determinants of growth potential in grafted trees of apple (Malus pumila Mill.).

    PubMed

    Atkinson, C J; Else, M A; Taylor, L; Dover, C J

    2003-04-01

    The anatomy of the graft tissue between a rootstock and its shoot (scion) can provide a mechanistic explanation of the way dwarfing Malus rootstocks reduce shoot growth. Considerable xylem tissue disorganization may result in graft tissue having a low hydraulic conductivity (k(h)), relative to the scion stem. The graft may influence the movement of substances in the xylem such as ions, water and plant-growth-regulating hormones. Measurements were made on 3-year-old apple trees with a low-pressure flow system to determine k(h) of root and scion stem sections incorporating the graft tissue. A range of rootstocks was examined, with different abilities of dwarfing; both ungrafted and grafted with the same scion shoot cultivar. The results showed that the hydraulic conductivity (k(hroot)) of roots from dwarfing rootstocks was lower compared with semi-vigorous rootstocks, at least for the size class of root measured (1.5 mm diameter). Scion hydraulic conductivity (k(hs)) was linked to leaf area and also to the rootstock on to which it was grafted, i.e. hydraulic conductivity was greater for the scion stem on the semi-vigorous rootstock. Expressing conductivities relative to xylem cross-sectional areas (k(s)) did not remove these differences suggesting that there were anatomical changes induced by the rootstock. The calculated hydraulic conductivity of the graft tissue was found to be lower for grafted trees on dwarfing rootstocks compared to invigorating rootstocks. These observations are discussed in relation to the mechanism(s) by which rootstock influences shoot growth in grafted trees.

  8. Phosphorus and magnesium interactively modulate the elongation and directional growth of primary roots in Arabidopsis thaliana (L.) Heynh.

    PubMed

    Niu, Yaofang; Jin, Gulei; Li, Xin; Tang, Caixian; Zhang, Yongsong; Liang, Yongchao; Yu, Jingquan

    2015-07-01

    A balanced supply of essential nutrients is an important factor influencing root architecture in many plants, yet data related to the interactive effects of two nutrients on root growth are limited. Here, we investigated the interactive effect between phosphorus (P) and magnesium (Mg) on root growth of Arabidopsis grown in pH-buffered agar medium at different P and Mg levels. The results showed that elongation and deviation of primary roots were directly correlated with the amount of P added to the medium but could be modified by the Mg level, which was related to the root meristem activity and stem-cell division. High P enhanced while low P decreased the tip-focused fluorescence signal of auxin biosynthesis, transport, and redistribution during elongation of primary roots; these effects were greater under low Mg than under high Mg. The altered root growth in response to P and Mg supply was correlated with AUX1, PIN2, and PIN3 mRNA abundance and expression and the accumulation of the protein. Application of either auxin influx inhibitor or efflux inhibitor inhibited the elongation and increased the deviation angle of primary roots, and decreased auxin level in root tips. Furthermore, the auxin-transport mutants aux1-22 and eir1-1 displayed reduced root growth and increased the deviation angle. Our data suggest a profound effect of the combined supply of P and Mg on the development of root morphology in Arabidopsis through auxin signals that modulate the elongation and directional growth of primary root and the expression of root differentiation and development genes.

  9. Phosphorus and magnesium interactively modulate the elongation and directional growth of primary roots in Arabidopsis thaliana (L.) Heynh

    PubMed Central

    Niu, Yaofang; Jin, Gulei; Li, Xin; Tang, Caixian; Zhang, Yongsong; Liang, Yongchao; Yu, Jingquan

    2015-01-01

    A balanced supply of essential nutrients is an important factor influencing root architecture in many plants, yet data related to the interactive effects of two nutrients on root growth are limited. Here, we investigated the interactive effect between phosphorus (P) and magnesium (Mg) on root growth of Arabidopsis grown in pH-buffered agar medium at different P and Mg levels. The results showed that elongation and deviation of primary roots were directly correlated with the amount of P added to the medium but could be modified by the Mg level, which was related to the root meristem activity and stem-cell division. High P enhanced while low P decreased the tip-focused fluorescence signal of auxin biosynthesis, transport, and redistribution during elongation of primary roots; these effects were greater under low Mg than under high Mg. The altered root growth in response to P and Mg supply was correlated with AUX1, PIN2, and PIN3 mRNA abundance and expression and the accumulation of the protein. Application of either auxin influx inhibitor or efflux inhibitor inhibited the elongation and increased the deviation angle of primary roots, and decreased auxin level in root tips. Furthermore, the auxin-transport mutants aux1-22 and eir1-1 displayed reduced root growth and increased the deviation angle. Our data suggest a profound effect of the combined supply of P and Mg on the development of root morphology in Arabidopsis through auxin signals that modulate the elongation and directional growth of primary root and the expression of root differentiation and development genes. PMID:25922494

  10. Effects of Phlomis umbrosa Root on Longitudinal Bone Growth Rate in Adolescent Female Rats.

    PubMed

    Lee, Donghun; Kim, Young-Sik; Song, Jungbin; Kim, Hyun Soo; Lee, Hyun Jung; Guo, Hailing; Kim, Hocheol

    2016-04-07

    This study aimed to investigate the effects of Phlomis umbrosa root on bone growth and growth mediators in rats. Female adolescent rats were administered P. umbrosa extract, recombinant human growth hormone or vehicle for 10 days. Tetracycline was injected intraperitoneally to produce a glowing fluorescence band on the newly formed bone on day 8, and 5-bromo-2'-deoxyuridine was injected to label proliferating chondrocytes on days 8-10. To assess possible endocrine or autocrine/paracrine mechanisms, we evaluated insulin-like growth factor-1 (IGF-1), insulin-like growth factor binding protein-3 (IGFBP-3) or bone morphogenetic protein-2 (BMP-2) in response to P. umbrosa administration in either growth plate or serum. Oral administration of P. umbrosa significantly increased longitudinal bone growth rate, height of hypertrophic zone and chondrocyte proliferation of the proximal tibial growth plate. P. umbrosa also increased serum IGFBP-3 levels and upregulated the expressions of IGF-1 and BMP-2 in growth plate. In conclusion, P. umbrosa increases longitudinal bone growth rate by stimulating proliferation and hypertrophy of chondrocyte with the increment of circulating IGFBP-3. Regarding the immunohistochemical study, the effect of P. umbrosa may also be attributable to upregulation of local IGF-1 and BMP-2 expressions in the growth plate, which can be considered as a GH dependent autocrine/paracrine pathway.

  11. Eugenol-inhibited root growth in Avena fatua involves ROS-mediated oxidative damage.

    PubMed

    Ahuja, Nitina; Singh, Harminder Pal; Batish, Daizy Rani; Kohli, Ravinder Kumar

    2015-02-01

    Plant essential oils and their constituent monoterpenes are widely known plant growth retardants but their mechanism of action is not well understood. We explored the mechanism of phytotoxicity of eugenol, a monoterpenoid alcohol, proposed as a natural herbicide. Eugenol (100-1000 µM) retarded the germination of Avena fatua and strongly inhibited its root growth compared to the coleoptile growth. We further investigated the underlying physiological and biochemical alterations leading to the root growth inhibition. Eugenol induced the generation of reactive oxygen species (ROS) leading to oxidative stress and membrane damage in the root tissue. ROS generation measured in terms of hydrogen peroxide, superoxide anion and hydroxyl radical content increased significantly in the range of 24 to 144, 21 to 91, 46 to 173% over the control at 100 to 1000 µM eugenol, respectively. The disruption in membrane integrity was indicated by 25 to 125% increase in malondialdehyde (lipid peroxidation byproduct), and decreased conjugated diene content (~10 to 41%). The electrolyte leakage suggesting membrane damage increased both under light as well as dark conditions measured over a period from 0 to 30 h. In defense to the oxidative damage due to eugenol, a significant upregulation in the ROS-scavenging antioxidant enzyme machinery was observed. The activities of superoxide dismutases, catalases, ascorbate peroxidases, guaiacol peroxidases and glutathione reductases were elevated by ~1.5 to 2.8, 2 to 4.3, 1.9 to 5.0, 1.4 to 3.9, 2.5 to 5.5 times, respectively, in response to 100 to 1000 µM eugenol. The study concludes that eugenol inhibits early root growth through ROS-mediated oxidative damage, despite an activation of the antioxidant enzyme machinery.

  12. Effects of Irrigation and Verticillium dahliae on Cauliflower Root and Shoot Growth Dynamics.

    PubMed

    Xiao, C L; Subbarao, K V

    2000-09-01

    ABSTRACT Cauliflower root and plant growth and Verticillium wilt development were evaluated under different moisture regimes in the presence or absence of V. dahliae. Treatments included two main plots (V. dahliae-infested and fumigated), two subplots (furrow and subsurface drip irrigation), and three sub-subplots (deficit, moderate, and excessive regimes) that were arranged in a split-split-plot design in the field. Soil cores with roots were periodically sampled at 5 and 25 cm distance from plants. Total roots in each soil core were extracted with a hydropneumatic root elutriator, and root length from each sample was determined with a digital image analysis system. Incidence and severity of Verticillium wilt, plant height, number of leaves, and dry weights of leaves and roots were determined on 10 plants sampled at 7- to 10-day intervals 1 month after cauliflower transplanting and continued until harvest. To evaluate the effects of Verticillium wilt-induced stress on cauliflower plants, stomatal resistance was measured in upper healthy and lower (or diseased) leaves. Root length density at 5 and 25 cm from plant was significantly (P < 0.05) higher in subsurface drip than in furrow irrigation. Root length density was significantly higher in excessive irrigation regime than in the other regimes. Concomitantly, there was higher wilt incidence and severity in excessive and moderate regimes than deficit regime regardless of the irrigation method. Plant height was affected by irrigation methods and deficit regime. Neither the method of irrigation nor the quantity of water affected the other variables. Stomatal resistance in lower diseased leaves was significantly higher in infested than in fumigated plots but it was not in the upper healthy leaves. In this study, cauliflower yield was not affected by V. dahliae and irrigation method, but the deficit irrigation regime resulted in reduced yield even though it suppressed wilt in cauliflower. Thus, higher moisture levels

  13. AtMYB93 is an endodermis-specific transcriptional regulator of lateral root development in arabidopsis.

    PubMed

    Gibbs, Daniel J; Coates, Juliet C

    2014-01-01

    Plant root systems are critical for survival, acting as the primary interface for nutrient and water acquisition, as well as anchoring the plant to the ground. As plants grow, their root systems become more elaborate, which is largely mediated by the formation of root branches, or lateral roots. Lateral roots initiate deep within the root in the pericycle cell layer, and their development is controlled by a wide range of internal signaling factors and environmental cues, as well as mechanical feedback from the surrounding cells. The endodermal cell layer, which overlies the pericycle, has emerged as an important tissue regulating LR initiation and formation. We recently identified the AtMYB93 transcription factor as a negative regulator of lateral root development in Arabidopsis. Interestingly, AtMYB93 expression is highly restricted to the few endodermal cells overlying developing lateral root primordia, suggesting that this transcriptional regulator might play a key role in mediating the effect of the endodermis on lateral root development. Here we discuss our recent findings in the wider context of root system development - with a particular focus on the role of the endodermis - and propose several potential models to explain AtMYB93 function during lateral root organogenesis.

  14. Cytokinin-Deficient Transgenic Arabidopsis Plants Show Multiple Developmental Alterations Indicating Opposite Functions of Cytokinins in the Regulation of Shoot and Root Meristem Activity

    PubMed Central

    Werner, Tomáš; Motyka, Václav; Laucou, Valérie; Smets, Rafaël; Van Onckelen, Harry; Schmülling, Thomas

    2003-01-01

    Cytokinins are hormones that regulate cell division and development. As a result of a lack of specific mutants and biochemical tools, it has not been possible to study the consequences of cytokinin deficiency. Cytokinin-deficient plants are expected to yield information about processes in which cytokinins are limiting and that, therefore, they might regulate. We have engineered transgenic Arabidopsis plants that overexpress individually six different members of the cytokinin oxidase/dehydrogenase (AtCKX) gene family and have undertaken a detailed phenotypic analysis. Transgenic plants had increased cytokinin breakdown (30 to 45% of wild-type cytokinin content) and reduced expression of the cytokinin reporter gene ARR5:GUS (β-glucuronidase). Cytokinin deficiency resulted in diminished activity of the vegetative and floral shoot apical meristems and leaf primordia, indicating an absolute requirement for the hormone. By contrast, cytokinins are negative regulators of root growth and lateral root formation. We show that the increased growth of the primary root is linked to an enhanced meristematic cell number, suggesting that cytokinins control the exit of cells from the root meristem. Different AtCKX-green fluorescent protein fusion proteins were localized to the vacuoles or the endoplasmic reticulum and possibly to the extracellular space, indicating that subcellular compartmentation plays an important role in cytokinin biology. Analyses of promoter:GUS fusion genes showed differential expression of AtCKX genes during plant development, the activity being confined predominantly to zones of active growth. Our results are consistent with the hypothesis that cytokinins have central, but opposite, regulatory functions in root and shoot meristems and indicate that a fine-tuned control of catabolism plays an important role in ensuring the proper regulation of cytokinin functions. PMID:14555694

  15. Growth rate and mitotic index analysis of Vicia faba L. roots exposed to 60-Hz electric fields

    SciTech Connect

    Inoue, M.; Miller, M.W.; Cox, C.; Carstesen, E.L.

    1985-01-01

    Growth, mitotic index, and growth rate recovery were determined for Vicia faba L. roots exposed to 60-Hz electric fields of 200, 290, and 360 V/m in an aqueous inorganic nutrient medium (conductivity 0.07-0.09 S/m). Root growth rate decreased in proportion to the increasing strength; the electric field threshold for a growth rate effect was about 230 V/m. The induced transmembrane potential at the threshold exposure was about 4-7 mV. The mitotic index was not affected by an electric field exposure sufficient to reduce root growth rate to about 35% of control. Root growth rate recovery from 31-96% of control occurred in 4 days after cessation of the 360 V/m exposure. The results support the postulate that the site of action of the applied electric fields is the cell membrane. 10 references, 4 figures, 4 tables.

  16. Trichoderma virens, a Plant Beneficial Fungus, Enhances Biomass Production and Promotes Lateral Root Growth through an Auxin-Dependent Mechanism in Arabidopsis1[C][W][OA

    PubMed Central

    Contreras-Cornejo, Hexon Angel; Macías-Rodríguez, Lourdes; Cortés-Penagos, Carlos; López-Bucio, José

    2009-01-01

    Trichoderma species belong to a class of free-living fungi beneficial to plants that are common in the rhizosphere. We investigated the role of auxin in regulating the growth and development of Arabidopsis (Arabidopsis thaliana) seedlings in response to inoculation with Trichoderma virens and Trichoderma atroviride by developing a plant-fungus interaction system. Wild-type Arabidopsis seedlings inoculated with either T. virens or T. atroviride showed characteristic auxin-related phenotypes, including increased biomass production and stimulated lateral root development. Mutations in genes involved in auxin transport or signaling, AUX1, BIG, EIR1, and AXR1, were found to reduce the growth-promoting and root developmental effects of T. virens inoculation. When grown under axenic conditions, T. virens produced the auxin-related compounds indole-3-acetic acid, indole-3-acetaldehyde, and indole-3-ethanol. A comparative analysis of all three indolic compounds provided detailed information about the structure-activity relationship based on their efficacy at modulating root system architecture, activation of auxin-regulated gene expression, and rescue of the root hair-defective phenotype of the rhd6 auxin response Arabidopsis mutant. Our results highlight the important role of auxin signaling for plant growth promotion by T. virens. PMID:19176721

  17. The Arabidopsis thaliana Mob1A gene is required for organ growth and correct tissue patterning of the root tip

    PubMed Central

    Pinosa, Francesco; Begheldo, Maura; Pasternak, Taras; Zermiani, Monica; Paponov, Ivan A.; Dovzhenko, Alexander; Barcaccia, Gianni; Ruperti, Benedetto; Palme, Klaus

    2013-01-01

    Background and Aims The Mob1 family includes a group of kinase regulators conserved throughout eukaryotes. In multicellular organisms, Mob1 is involved in cell proliferation and apoptosis, thus controlling appropriate cell number and organ size. These functions are also of great importance for plants, which employ co-ordinated growth processes to explore the surrounding environment and respond to changing external conditions. Therefore, this study set out to investigate the role of two Arabidopsis thaliana Mob1-like genes, namely Mob1A and Mob1B, in plant development. Methods A detailed spatio-temporal analysis of Mob1A and Mob1B gene expression was performed by means of bioinformatic tools, the generation of expression reporter lines and in situ hybridization of gene-specific probes. To explore the function of the two genes in plant development, knock-out and knock-down mutants were isolated and their phenotype quantitatively characterized. Key Results Transcripts of the two genes were detected in specific sets of cells in all plant organs. Mob1A was upregulated by several stress conditions as well as by abscisic acid and salicylic acid. A knock-out mutation in Mob1B did not cause any visible defect in plant development, whereas suppression of Mob1A expression affected organ growth and reproduction. In the primary root, reduced levels of Mob1A expression brought about severe defects in tissue patterning of the stem cell niche and columella and led to a decrease in meristem size. Moreover, loss of Mob1A function resulted in a higher sensitivity of root growth to abscisic acid. Conclusions Taken together, the results indicate that arabidopsis Mob1A is involved in the co-ordination of tissue patterning and organ growth, similarly to its orthologues in other multicellular eukaryotes. In addition, Mob1A serves a plant-specific function by contributing to growth adjustments in response to stress conditions. PMID:24201137

  18. Root hair-specific disruption of cellulose and xyloglucan in AtCSLD3 mutants, and factors affecting the post-rupture resumption of mutant root hair growth.

    PubMed

    Galway, Moira E; Eng, Ryan C; Schiefelbein, John W; Wasteneys, Geoffrey O

    2011-05-01

    The glycosyl transferase encoded by the cellulose synthase-like gene CSLD3/KJK/RHD7 (At3g03050) is required for cell wall integrity during root hair formation in Arabidopsis thaliana but it remains unclear whether it contributes to the synthesis of cellulose or hemicellulose. We identified two new alleles, root hair-defective (rhd) 7-1 and rhd7-4, which affect the C-terminal end of the encoded protein. Like root hairs in the previously characterized kjk-2 putative null mutant, rhd7-1 and rhd7-4 hairs rupture before tip growth but, depending on the growth medium and temperature, hairs are able to survive rupture and initiate tip growth, indicating that these alleles retain some function. At 21°C, the rhd7 tip-growing root hairs continued to rupture but at 5ºC, rupture was inhibited, resulting in long, wild type-like root hairs. At both temperatures, the expression of another root hair-specific CSLD gene, CSLD2, was increased in the rhd7-4 mutant but reduced in the kjk-2 mutant, suggesting that CSLD2 expression is CSLD3-dependent, and that CSLD2 could partially compensate for CSLD3 defects to prevent rupture at 5°C. Using a fluorescent brightener (FB 28) to detect cell wall (1 → 4)-β-glucans (primarily cellulose) and CCRC-M1 antibody to detect fucosylated xyloglucans revealed a patchy distribution of both in the mutant root hair cell walls. Cell wall thickness varied, and immunogold electron microscopy indicated that xyloglucan distribution was altered throughout the root hair cell walls. These cell wall defects indicate that CSLD3 is required for the normal organization of both cellulose and xyloglucan in root hair cell walls.

  19. Experimental Salix shoot and root growth statistics on the alluvial sediment of a restored river corridor

    NASA Astrophysics Data System (ADS)

    Pasquale, N.; Perona, P.; Verones, F.; Francis, R.; Burlando, P.

    2009-12-01

    River restoration projects encompass not only the amelioration of flood protection but also the rehabilitation of the riverine ecosystem. However, the interactions and feedbacks between river hydrology, riparian vegetation and aquifer dynamics are still poorly understood. Vegetation interacts with river hydrology on multiple time scales. Hence, there is considerable interest in understanding the morphodynamics of restored river reaches in relation to the characteristics of vegetation that may colonize the bare sediment, and locally stabilize it by root anchoring. In this paper we document results from a number of ongoing experiments within the project RECORD (Restored CORridor Dynamics, sponsored by CCES - www.cces.ch - and Cantons Zurich and Thurgau, CH). In particular, we discuss both the above and below ground biomass growth dynamics of 1188 Salix cuttings (individual and group survival rate, growth of the longest shoots and number of branches and morphological root analysis) in relation to local river hydrodynamics. Cuttings were organized in square plots of different size and planted in spring 2009 on a gravel island of the restored river section of River Thur in Switzerland. By periodical monitoring the plots we obtained a detailed and quite unique set of data, including root statistics of uprooted samples derived from image analysis from a high-resolution scanner. Beyond describing the survival rate dynamics in relation to river hydrology, we show the nature and strength of correlations between island topography and cutting growth statistics. In particular, by root analysis and by comparing empirical histograms of the vertical root distribution vs satured water surface in the sediment, we show that main tropic responses on such environment are oxytropism, hydrotropism and thigmotropism. The main factor influencing the survival rate is naturally found in erosion by floods, of which we also give an interesting example that helps demonstrate the role of river

  20. [Effects of nighttime warming on winter wheat root growth and soil nutrient availability].

    PubMed

    Zhang, Ming-Qian; Chen, Jin; Guo, Jia; Tian, Yun-Lu; Yang, Shi-Jia; Zhang, Li; Yang, Bing; Zhang, Wei-Jian

    2013-02-01

    Climate warming has an obvious asymmetry between day and night, with a greater increment of air temperature at nighttime than at daytime. By adopting passive nighttime warming (PNW) system, a two-year field experiment of nighttime warming was conducted in the main production areas of winter wheat in China (Shijiazhuang of Hebei Province, Xuzhou of Jiangsu Province, Xuchang of Henan Province, and Zhenjiang of Jiangsu Province) in 2009 and 2010, with the responses of soil pH and available nutrient contents during the whole growth periods and of wheat root characteristics at heading stage determined. As compared with the control (no nighttime warming), nighttime warming decreased the soil pH and available nutrient contents significantly, and increased the root dry mass and root/shoot ratio to a certain extent. During the whole growth period of winter wheat, nighttime warming decreased the soil pH in Shijiazhuang, Xuzhou, Xuchang, and Zhenjiang averagely by 0.4%, 0.4%, 0.7%, and 0.9%, the soil alkaline nitrogen content averagely by 8.1%, 8.1%, 7.1%, and 6.0%, the soil available phosphorus content averagely by 15.7%, 12.1%, 19.6%, and 25.8%, and the soil available potassium content averagely by 11.5%, 7.6%, 7.6% , and 10.1%, respectively. However, nighttime warming increased the wheat root dry mass at heading stage in Shijiazhuang, Xuzhou, and Zhenjiang averagely by 31. 5% , 27.0%, and 14.5%, and the root/shoot ratio at heading stage in Shijiazhuang, Xuchang, and Zhenjiang averagely by 23.8%, 13.7% and 9.7%, respectively. Our results indicated that nighttime warming could affect the soil nutrient supply and winter wheat growth via affecting the soil chemical properties.

  1. Genetic Variability in Nodulation and Root Growth Affects Nitrogen Fixation and Accumulation in Pea

    PubMed Central

    Bourion, Virginie; Laguerre, Gisele; Depret, Geraldine; Voisin, Anne-Sophie; Salon, Christophe; Duc, Gerard

    2007-01-01

    Background and Aims Legume nitrogen is derived from two different sources, symbiotically fixed atmospheric N2 and soil N. The effect of genetic variability of root and nodule establishment on N acquisition and seed protein yield was investigated under field conditions in pea (Pisum sativum). In addition, these parameters were related to the variability in preference for rhizobial genotypes. Methods Five different spring pea lines (two hypernodulating mutants and three cultivars), previously identified in artificial conditions as contrasted for both root and nodule development, were characterized under field conditions. Root and nodule establishment was examined from the four-leaf stage up to the beginning of seed filling and was related to the patterns of shoot dry matter and nitrogen accumulation. The genetic structure of rhizobial populations associated with the pea lines was obtained by analysis of nodule samples. The fraction of nitrogen derived from symbiotic fixation was estimated at the beginning of seed filling and at physiological maturity, when seed protein content and yield were determined. Key Results The hypernodulating mutants established nodules earlier and maintained them longer than was the case for the three cultivars, whereas their root development and nitrogen accumulation were lower. The seed protein yield was higher in ‘Athos’ and ‘Austin’, the two cultivars with increased root development, consistent with their higher N absorption during seed filling. Conclusion The hypernodulating mutants did not accumulate more nitrogen, probably due to the C cost for nodulation being higher than for root development. Enhancing exogenous nitrogen supply at the end of the growth cycle, by increasing the potential for root N uptake from soil, seems a good option for improving pea seed filling. PMID:17670753

  2. [Effects of wheat root exudates on cucumber growth and soil fungal community structure].

    PubMed

    Wu, Feng-Zhi; Li, Min; Cao, Peng; Ma, Ya-Fei; Wang, Li-Li

    2014-10-01

    With wheat as the donor plant and cucumber as the receptor plant, this study investigated the effects of root exudates from wheat cultivars with different allelopathic potentials (positive or negative) and companion cropping with wheat on soil fungal community structure by PCR-DGGE method and cucumber growth. Results showed that the wheat root exudates with positive allelopathic potential increased height and stem diameter of cucumber seedlings significantly, compared to the control seedlings (W) after 6 days and 12 days treatment, respectively. Also, wheat root exudates with both positive and negative allelopathic potential increased the seedling height of cucumber significantly after 18 days treatment. The wheat root exudates with different allelopathic potentials decreased the band number, Shannon and evenness indices of soil fungal community significantly in cucumber seedling rhizosphere, and those in the soil with the control seedlings (W) were also significantly higher than that in the control soil without seedlings (Wn) after 6 days treatment. The band number, Shannon and evenness indices in all the treatments were significantly higher than those in the control soil without seedlings (Wn) after 18 days treatment. Companion cropping with negative allelopathic potential wheat decreased the Shannon and evenness indices of soil fungi community significantly in the cucumber seedling rhizosphere, suggesting the wheat root exudates and companion cropping with wheat changed soil fungal community structure in the cucumber seedling rhizosphere. The results of DGGE map and the principal component analysis showed that companion cropping with wheat cultivars with different allelopathic potentials changed soil fungal community structure in cucumber seedling rhizosphere.

  3. Growth, root formation, and nutrient value of triticale plants fertilized with biosolids.

    PubMed

    Rauw, Wendy Mercedes; Teglas, Michael Bela; Chandra, Sudeep; Forister, Matthew Lewis

    2012-01-01

    Biosolids are utilized as nutrient rich fertilizer. Little material is available on benefits to forage crops resulting from fertilization with biosolids. This paper aimed to compare the effects of fertilization with biosolids versus commercial nitrogen fertilizer on growth, root formation, and nutrient value of triticale plants in a greenhouse experiment. Per treatment, five pots were seeded with five triticale seeds each. Treatments included a nonfertilized control, fertilization with 100, 200, 300, 400, and 500 ml biosolids per pot, and fertilization with a commercial nitrogen fertilizer at the recommended application rate and at double that rate. Biomass production, root length, root diameter, nitrogen, phosphorus, and potassium concentration were analyzed at harvest. Fertilization with biosolids increased triticale production (P < 0.001); production was similar for the 100 to 400 mL treatments. Root length, nitrogen, and phosphorus concentration increased, and potassium concentration decreased linearly with application rate. At the recommended rate, biomass production was similar between fertilization with biosolids and commercial fertilizer. However, plants fertilized with commercial fertilizer had considerably longer roots (P < 0.001), higher nitrogen concentration (P < 0.05), and lower potassium concentration (P < 0.01) than those fertilized with biosolids. Our results indicate that at the recommended application rate, biomass production was similar between fertilization with biosolids and with commercial nitrogen fertilizer, indicating the value of biosolids fertilization as a potential alternative.

  4. Growth, Root Formation, and Nutrient Value of Triticale Plants Fertilized with Biosolids

    PubMed Central

    Rauw, Wendy Mercedes; Teglas, Michael Bela; Chandra, Sudeep; Forister, Matthew Lewis

    2012-01-01

    Biosolids are utilized as nutrient rich fertilizer. Little material is available on benefits to forage crops resulting from fertilization with biosolids. This paper aimed to compare the effects of fertilization with biosolids versus commercial nitrogen fertilizer on growth, root formation, and nutrient value of triticale plants in a greenhouse experiment. Per treatment, five pots were seeded with five triticale seeds each. Treatments included a nonfertilized control, fertilization with 100, 200, 300, 400, and 500 ml biosolids per pot, and fertilization with a commercial nitrogen fertilizer at the recommended application rate and at double that rate. Biomass production, root length, root diameter, nitrogen, phosphorus, and potassium concentration were analyzed at harvest. Fertilization with biosolids increased triticale production (P < 0.001); production was similar for the 100 to 400 mL treatments. Root length, nitrogen, and phosphorus concentration increased, and potassium concentration decreased linearly with application rate. At the recommended rate, biomass production was similar between fertilization with biosolids and commercial fertilizer. However, plants fertilized with commercial fertilizer had considerably longer roots (P < 0.001), higher nitrogen concentration (P < 0.05), and lower potassium concentration (P < 0.01) than those fertilized with biosolids. Our results indicate that at the recommended application rate, biomass production was similar between fertilization with biosolids and with commercial nitrogen fertilizer, indicating the value of biosolids fertilization as a potential alternative. PMID:22593686

  5. Live substrate positively affects root growth and stolon direction in the woodland strawberry, Fragaria vesca

    PubMed Central

    Waters, Erica M.; Watson, Maxine A.

    2015-01-01

    Studies of clonal plant foraging generally focus on growth responses to patch quality once rooted. Here we explore the possibility of true plant foraging; the ability to detect and respond to patch resource status prior to rooting. Two greenhouse experiments were conducted to investigate the morphological changes that occur when individual daughter ramets of Fragaria vesca (woodland strawberry) were exposed to air above live (non-sterilized) or dead (sterilized) substrates. Contact between daughter ramets and substrate was prohibited. Daughter ramet root biomass was significantly larger over live versus dead substrate. Root:shoot ratio also increased over live substrate, a morphological response we interpret as indicative of active nutrient foraging. Daughter ramet root biomass was positively correlated with mother ramet size over live but not dead substrate. Given the choice between a live versus a dead substrate, primary stolons extended preferentially toward live substrates. We conclude that exposure to live substrate drives positive nutrient foraging responses in F. vesca. We propose that volatiles emitted from the substrates might be effecting the morphological changes that occur during true nutrient foraging. PMID:26483826

  6. The effects of dopamine on root growth and enzyme activity in soybean seedlings

    PubMed Central

    Guidotti, Bruno Boni; Gomes, Bruno Ribeiro; Siqueira-Soares, Rita de Cássia; Soares, Anderson Ricardo; Ferrarese-Filho, Osvaldo

    2013-01-01

    In the present study, we investigated the effects of dopamine, an allelochemical exuded from the velvetbean (Mucuna pruriens L DC. var utilis), on the growth and cell viability of soybean (Glycine max L. Merrill) roots. We analyzed the effects of dopamine on superoxide dismutase, phenylalanine ammonia-lyase and cell wall-bound peroxidase activities as well as its effects on lignin contents in the roots. Three-day-old seedlings were cultivated in half-strength Hoagland nutrient solution (pH 6.0), without or with 0.25 to 1.0 mM dopamine, in a growth chamber (25°C, 12L:12D photoperiod, irradiance of 280 μmol m−2 s−1) for 24 h. In general, the length, fresh weight and dry weight of roots, cell viability, PAL and POD activities decreased, while SOD activities increased after dopamine treatment. The content of lignin was not altered. The data demonstrate the susceptibility of soybean to dopamine and reinforce the role of this catecholamine as a strong allelochemical. The results also suggest that dopamine-induced inhibition in soybean roots is not related to the production of lignin, but may be related to damage caused by reactive oxygen species. PMID:23838960

  7. Temperature constraints on the growth and functioning of root organ cultures with arbuscular mycorrhizal fungi.

    PubMed

    Gavito, Mayra E; Olsson, Pål A; Rouhier, Hervé; Medina-Peñafiel, Almudena; Jakobsen, Iver; Bago, Albert; Azcón-Aguilar, Concepción

    2005-10-01

    In this study we investigated the effects of temperature on fungal growth and tested whether the differences in fungal growth were related to the effects of temperature on carbon movement to, or within, the fungus. Growth curves and C uptake-transfer-translocation measurements were obtained for three arbuscular mycorrhizal fungi (AMF) isolates cultured within a 6-30 degrees C temperature range. A series of experiments with a model fungal isolate, Glomus intraradices, was used to examine the effects of temperature on lipid body and 33P movement, and to investigate the role of acclimation and incubation time. Temperature effects on AMF growth were both direct and indirect because, despite clear independent root and AMF growth responses in some cases, the uptake and translocation of 13C was also affected within the temperature range tested. Root C uptake and, to a lesser extent, C translocation in the fungus, were reduced by low temperatures (< 18 degrees C). Uptake and translocation of 33P by fungal hyphae were, by contrast, similar between 10 and 25 degrees C. We conclude that temperature, between 6 and 18 degrees C, reduces AMF growth, and that C movement to the fungus is involved in this response.

  8. Transcriptional profiling of sweetpotato (Ipomoea batatas) roots indicates down-regulation of lignin biosynthesis and up-regulation of starch biosynthesis at an early stage of storage root formation

    PubMed Central

    2013-01-01

    Background The number of fibrous roots that develop into storage roots determines sweetpotato yield. The aim of the present study was to identify the molecular mechanisms involved in the initiation of storage root formation, by performing a detailed transcriptomic analysis of initiating storage roots using next-generation sequencing platforms. A two-step approach was undertaken: (1) generating a database for the sweetpotato root transcriptome using 454-Roche sequencing of a cDNA library created from pooled samples of two root types: fibrous and initiating storage roots; (2) comparing the expression profiles of initiating storage roots and fibrous roots, using the Illumina Genome Analyzer to sequence cDNA libraries of the two root types and map the data onto the root transcriptome database. Results Use of the 454-Roche platform generated a total of 524,607 reads, 85.6% of which were clustered into 55,296 contigs that matched 40,278 known genes. The reads, generated by the Illumina Genome Analyzer, were found to map to 31,284 contigs out of the 55,296 contigs serving as the database. A total of 8,353 contigs were found to exhibit differential expression between the two root types (at least 2.5-fold change). The Illumina-based differential expression results were validated for nine putative genes using quantitative real-time PCR. The differential expression profiles indicated down-regulation of classical root functions, such as transport, as well as down-regulation of lignin biosynthesis in initiating storage roots, and up-regulation of carbohydrate metabolism and starch biosynthesis. In addition, data indicated delicate control of regulators of meristematic tissue identity and maintenance, associated with the initiation of storage root formation. Conclusions This study adds a valuable resource of sweetpotato root transcript sequences to available data, facilitating the identification of genes of interest. This resource enabled us to identify genes that are involved

  9. TRIPTYCHON, not CAPRICE, participates in feedback regulation of SCM expression in the Arabidopsis root epidermis.

    PubMed

    Kwak, Su-Hwan; Schiefelbein, John

    2014-01-01

    The Arabidopsis root epidermal cells decide their fates (root-hair cell and non-hair cell) according to their position. SCRAMBLED (SCM), an atypical leucine-rich repeat receptor-like kinase (LRR RLK) mediates the positional information to the epidermal cells enabling them to adopt the proper fate. Via feedback regulation, the SCM protein accumulates preferentially in cells adopting the root-hair cell fate. In this study, we determine that TRY, but not the related factor CPC, is responsible for this preferential SCM accumulation. We observed severe reduction of SCM::GUS expression in the try-82 mutant root, but not in the cpc-1 mutant. Furthermore, the overexpression of TRY by CaMV35S promoter caused an increase in the expression of SCM::GUS in the root epidermis. Intriguingly, the overexpression of CPC by CaMV35S promoter repressed the expression of SCM::GUS. Together, these results suggest that TRY plays a unique role in generating the appropriate spatial expression of SCM.

  10. Regulation of root morphogenesis in arbuscular mycorrhizae: what role do fungal exudates, phosphate, sugars and hormones play in lateral root formation?

    PubMed Central

    Fusconi, Anna

    2014-01-01

    Background Arbuscular mycorrhizae (AMs) form a widespread root–fungus symbiosis that improves plant phosphate (Pi) acquisition and modifies the physiology and development of host plants. Increased branching is recognized as a general feature of AM roots, and has been interpreted as a means of increasing suitable sites for colonization. Fungal exudates, which are involved in the dialogue between AM fungi and their host during the pre-colonization phase, play a well-documented role in lateral root (LR) formation. In addition, the increased Pi content of AM plants, in relation to Pi-starved controls, as well as changes in the delivery of carbohydrates to the roots and modulation of phytohormone concentration, transport and sensitivity, are probably involved in increasing root system branching. Scope This review discusses the possible causes of increased branching in AM plants. The differential root responses to Pi, sugars and hormones of potential AM host species are also highlighted and discussed in comparison with those of the non-host Arabidopsis thaliana. Conclusions Fungal exudates are probably the main compounds regulating AM root morphogenesis during the first colonization steps, while a complex network of interactions governs root development in established AMs. Colonization and high Pi act synergistically to increase root branching, and sugar transport towards the arbusculated cells may contribute to LR formation. In addition, AM colonization and high Pi generally increase auxin and cytokinin and decrease ethylene and strigolactone levels. With the exception of cytokinins, which seem to regulate mainly the root:shoot biomass ratio, these hormones play a leading role in governing root morphogenesis, with strigolactones and ethylene blocking LR formation in the non-colonized, Pi-starved plants, and auxin inducing them in colonized plants, or in plants grown under high Pi conditions. PMID:24227446

  11. Development of a mathematical model for growth and oxygen transfer in in vitro plant hairy root cultivations.

    PubMed

    Palavalli, Rajashekar Reddy; Srivastava, Smita; Srivastava, Ashok Kumar

    2012-07-01

    Genetically transformed, "Hairy roots" once developed can serve as a stable parent culture for in vitro production of plant secondary metabolites. However, the major bottleneck in the commercial exploitation of hairy roots remains its successful scale-up due to oxygen transfer limitation in three-dimensionally growing hairy root mass. Mass transfer resistances near the gas-liquid and liquid-solid boundary layer affect the oxygen delivery to the growing hairy roots. In addition, the diffusional mass transfer limitation due to increasing size of the root ball (matrix) with growth also plays a limiting role in the oxygen transfer rate. In the present study, a mathematical model is developed which describes the oxygen transfer kinetics in the growing Azadirachta indica hairy root matrix as a case study for offline simulation of process control strategies ensuring non-limiting concentrations of oxygen in the medium throughout the hairy root cultivation period. The unstructured model simulates the effect of oxygen transfer limitation in terms of efficiency factor (η) on specific growth rate (μ) of the hairy root biomass. The model is able to predict effectively the onset of oxygen transfer limitation in the inner core of the growing hairy root matrix such that the bulk oxygen concentration can be increased so as to prevent the subsequent inhibition in growth of the hairy root biomass due to oxygen transfer (diffusional) limitation.

  12. Arabidopsis SUMO E3 ligase AtMMS21 regulates root meristem development

    PubMed Central

    Zhang, Shengchun; Qi, Yanli

    2010-01-01

    The small ubiquitin modifier (SUMO) conjugation/deconjugation is an important regulatory progress in plant development and responses to abiotic stresses. However, much less is known about the roles of sumoylation in plant root development. Cytokinin and auxin play crucial roles in determining the balance between cell proliferation and cell differentiation in Arabidopsis roots. The SUMO E3 ligase AtMMS21 is a homologue of human NSE2/MMS21, which modulates DNA damage and DNA repair in human cells. This addendum summarizes our recent paper on the AtMMS21 mediating cytokinin signaling to regulate the root meristem cell proliferation. The mms21-1 roots had reduced responses to exogenous cytokinins and decreased expression of the cytokinin-induced genes ARR3, ARR4, ARR5 and ARR7, compared with the wild type. Furthermore, the expression of CRE1 and ARR1, which are both the receptor and positive regulator of cytokinin signaling, was also reduced in the mms21-1 mutant plants. PMID:20592809

  13. Sequential induction of auxin efflux and influx carriers regulates lateral root emergence

    PubMed Central

    Péret, Benjamin; Middleton, Alistair M; French, Andrew P; Larrieu, Antoine; Bishopp, Anthony; Njo, Maria; Wells, Darren M; Porco, Silvana; Mellor, Nathan; Band, Leah R; Casimiro, Ilda; Kleine-Vehn, Jürgen; Vanneste, Steffen; Sairanen, Ilkka; Mallet, Romain; Sandberg, Göran; Ljung, Karin; Beeckman, Tom; Benkova, Eva; Friml, Jiří; Kramer, Eric; King, John R; De Smet, Ive; Pridmore, Tony; Owen, Markus; Bennett, Malcolm J

    2013-01-01

    In Arabidopsis, lateral roots originate from pericycle cells deep within the primary root. New lateral root primordia (LRP) have to emerge through several overlaying tissues. Here, we report that auxin produced in new LRP is transported towards the outer tissues where it triggers cell separation by inducing both the auxin influx carrier LAX3 and cell-wall enzymes. LAX3 is expressed in just two cell files overlaying new LRP. To understand how this striking pattern of LAX3 expression is regulated, we developed a mathematical model that captures the network regulating its expression and auxin transport within realistic three-dimensional cell and tissue geometries. Our model revealed that, for the LAX3 spatial expression to be robust to natural variations in root tissue geometry, an efflux carrier is required—later identified to be PIN3. To prevent LAX3 from being transiently expressed in multiple cell files, PIN3 and LAX3 must be induced consecutively, which we later demonstrated to be the case. Our study exemplifies how mathematical models can be used to direct experiments to elucidate complex developmental processes. PMID:24150423

  14. Low humic acids promote in vitro lily bulblet enlargement by enhancing roots growth and carbohydrate metabolism * #

    PubMed Central

    Wu, Yun; Xia, Yi-ping; Zhang, Jia-ping; Du, Fang; Zhang, Lin; Ma, Yi-di; Zhou, Hong

    2016-01-01

    Bulblet development is a problem in global lily bulb production and carbohydrate metabolism is a crucial factor. Micropropagation acts as an efficient substitute for faster propagation and can provide a controllable condition to explore bulb growth. The present study was conducted to investigate the effects of humic acid (HA) on bulblet swelling and the carbohydrate metabolic pathway in Lilium Oriental Hybrids ‘Sorbonne’ under in vitro conditions. HA greatly promoted bulblet growth at 0.2, 2.0, and 20.0 mg/L, and pronounced increases in bulblet sucrose, total soluble sugar, and starch content were observed for higher HA concentrations (≥2.0 mg/L) within 45 d after transplanting (DAT). The activities of three major starch synthetic enzymes (including adenosine 5'-diphosphate glucose pyrophosphorylase, granule-bound starch synthase, and soluble starch synthase) were enhanced dramatically after HA application especially low concentration HA (LHA), indicating a quick response of starch metabolism. However, higher doses of HA also caused excessive aboveground biomass accumulation and inhibited root growth. Accordingly, an earlier carbon starvation emerged by observing evident starch degradation. Relative bulblet weight gradually decreased with increased HA doses and thereby broke the balance between the source and sink. A low HA concentration at 0.2 mg/L performed best in both root and bulblet growth. The number of roots and