Sample records for root growth root

  1. Shoot-derived abscisic acid promotes root growth.

    PubMed

    McAdam, Scott A M; Brodribb, Timothy J; Ross, John J

    2016-03-01

    The phytohormone abscisic acid (ABA) plays a major role in regulating root growth. Most work to date has investigated the influence of root-sourced ABA on root growth during water stress. Here, we tested whether foliage-derived ABA could be transported to the roots, and whether this foliage-derived ABA had an influence on root growth under well-watered conditions. Using both application studies of deuterium-labelled ABA and reciprocal grafting between wild-type and ABA-biosynthetic mutant plants, we show that both ABA levels in the roots and root growth in representative angiosperms are controlled by ABA synthesized in the leaves rather than sourced from the roots. Foliage-derived ABA was found to promote root growth relative to shoot growth but to inhibit the development of lateral roots. Increased root auxin (IAA) levels in plants with ABA-deficient scions suggest that foliage-derived ABA inhibits root growth through the root growth-inhibitor IAA. These results highlight the physiological and morphological importance, beyond the control of stomata, of foliage-derived ABA. The use of foliar ABA as a signal for root growth has important implications for regulating root to shoot growth under normal conditions and suggests that leaf rather than root hydration is the main signal for regulating plant responses to moisture. © 2015 John Wiley & Sons Ltd.

  2. Regeneration of roots from callus reveals stability of the developmental program for determinate root growth in Sonoran Desert Cactaceae.

    PubMed

    Shishkova, Svetlana; García-Mendoza, Edith; Castillo-Díaz, Vicente; Moreno, Norma E; Arellano, Jesús; Dubrovsky, Joseph G

    2007-05-01

    In some Sonoran Desert Cactaceae the primary root has a determinate root growth: the cells of the root apical meristem undergo only a few cell division cycles and then differentiate. The determinate growth of primary roots in Cactaceae was found in plants cultivated under various growth conditions, and could not be reverted by any treatment tested. The mechanisms involved in root meristem maintenance and determinate root growth in plants remain poorly understood. In this study, we have shown that roots regenerated from the callus of two Cactaceae species, Stenocereus gummosus and Ferocactus peninsulae, have a determinate growth pattern, similar to that of the primary root. To demonstrate this, a protocol for root regeneration from callus was established. The determinate growth pattern of roots regenerated from callus suggests that the program of root development is very stable in these species. These findings will permit future analysis of the role of certain Cactaceae genes in the determinate pattern of root growth via the regeneration of transgenic roots from transformed calli.

  3. Apical control, gravitropic signaling, and the growth of lateral roots in Arabidopsis

    NASA Astrophysics Data System (ADS)

    Mullen, Jack L.; Wolverton, Chris; Hangarter, Roger P.

    Most research on gravity responses in plants has focused on primary roots and shoots, which typically grow in a vertical orientation. However, the patterns of lateral organ growth, which generally have large effects on overall plant architecture, are such that the organs are typically not vertical. In lateral roots of Arabidopsis, growth is initially in a nearly horizontal orientation but changes to a near-vertical orientation as the lateral root develops. Although the non-vertical lateral roots are gravitropically competent, following gravitropic reorientation of seedlings, the lateral roots on the upper flank of the primary root have different growth patterns from those on the lower side of the primary root. The differences are in part dependent on reorientation of the primary root, suggesting that gravitropic signaling from the primary root also contributes to the control of lateral root growth. The hormone auxin appears to play a role in this signaling between the primary and lateral roots, as auxin transport inhibitors applied to the primary root affect lateral root growth. Also, lateral roots of pin3 mutants, which are impaired in polar auxin transport, have altered lateral root orientations. However, other signals from the primary root tip also play an important role in regulating lateral root growth.

  4. Tomato root growth, gravitropism, and lateral development: correlation with auxin transport

    NASA Technical Reports Server (NTRS)

    Muday, G. K.; Haworth, P.

    1994-01-01

    Tomato (Lycopersicon esculentum, Mill.) roots were analyzed during growth on agar plates. Growth of these roots was inhibited by the auxin transport inhibitors naphthylphthalamic acid (NPA) and semicarbazone derivative I (SCB-1). The effect of auxin transport inhibitors on root gravitropism was analyzed by measurement of the angle of gravitropic curvature after the roots were reoriented 90 degrees from the vertical. NPA and SCB-1 abolished both the response of these roots to gravity and the formation of lateral roots, with SCB-1 being the more effective at inhibition. Auxins also inhibited root growth. Both auxins tested has a slight effect on the gravity response, but this effect is probably indirect, since auxins reduced the growth rate. Auxins also stimulated lateral root growth at concentration where primary root growth was inhibited. When roots were treated with both IAA and NPA simultaneously, a cumulative inhibition of root growth was found. When both compounds were applied together, analysis of gravitropism and lateral root formation indicated that the dominant effect was exerted by auxin transport inhibitors. Together, these data suggest a model for the role of auxin transport in controlling both primary and lateral root growth.

  5. A New Model for Root Growth in Soil with Macropores

    NASA Astrophysics Data System (ADS)

    Landl, M.; Huber, K.; Schnepf, A.; Vanderborght, J.; Javaux, M.; Bengough, G.; Vereecken, H.

    2016-12-01

    In order to study soil-root interaction processes, dynamic root architecture models which are linked to models that simulate water flow and nutrient transport in the soil-root system are needed. Such models can be used to predict the impact of soil structural features, e.g. the presence of macropores in dense subsoil, on water and nutrient uptake by plants. In dynamic root architecture models, root growth is represented by moving root tips whose growth trajectory results in the creation of linear root segments. Typically, the direction of each new root segment is calculated as the vector sum of various direction-affecting components. The use of these established methods to simulate root growth in soil containing macropores, however, failed to reproduce experimentally observed root growth patterns. We therefore developed an alternative modelling approach where we distinguish between, firstly, the driving force for root growth which is determined by the orientation of the previous root segment as well as the influence of gravitropism and, secondly, soil mechanical resistance to root growth. The latter is expressed by root conductance which represents the inverse of soil penetration resistance and is treated similarly to hydraulic conductivity in Darcy's law. At the presence of macropores, root conductance is anisotropic which leads to a difference between the direction of the driving force and the direction of the root tip movement. The model was tested using data from the literature, at pot scale, at macropore scale, and in a series of simulations where sensitivity to gravity and macropore orientation was evaluated. The model simulated root growth trajectories in structured soil at both single root and whole root-system scales, generating root systems that were similar to images from experiments. Its implementation in the three dimensional soil and root water uptake model R-SWMS enables the use of the model in the future to evaluate the effect of macropores on crop access to water and nutrients.

  6. Root-zone temperature and water availability affect early root growth of planted longleaf pine

    Treesearch

    M.A. Sword

    1995-01-01

    Longleaf pine seedlings from three seed sources were exposed to three root-zone temperatures and three levels of water availability for 28 days. Root growth declined as temperature and water availability decreased. Root growth differed by seed source. Results suggest that subtle changes in the regeneration environment may influence early root growth of longleaf pine...

  7. Trichoderma-Induced Acidification Is an Early Trigger for Changes in Arabidopsis Root Growth and Determines Fungal Phytostimulation

    PubMed Central

    Pelagio-Flores, Ramón; Esparza-Reynoso, Saraí; Garnica-Vergara, Amira; López-Bucio, José; Herrera-Estrella, Alfredo

    2017-01-01

    Trichoderma spp. are common rhizosphere inhabitants widely used as biological control agents and their role as plant growth promoting fungi has been established. Although soil pH influences several fungal and plant functional traits such as growth and nutrition, little is known about its influence in rhizospheric or mutualistic interactions. The role of pH in the Trichoderma–Arabidopsis interaction was studied by determining primary root growth and lateral root formation, root meristem status and cell viability, quiescent center (QC) integrity, and auxin inducible gene expression. Primary root growth phenotypes in wild type seedlings and STOP1 mutants allowed identification of a putative root pH sensing pathway likely operating in plant–fungus recognition. Acidification by Trichoderma induced auxin redistribution within Arabidopsis columella root cap cells, causing root tip bending and growth inhibition. Root growth stoppage correlated with decreased cell division and with the loss of QC integrity and cell viability, which were reversed by buffering the medium. In addition, stop1, an Arabidopsis mutant sensitive to low pH, was oversensitive to T. atroviride primary root growth repression, providing genetic evidence that a pH root sensing mechanism reprograms root architecture during the interaction. Our results indicate that root sensing of pH mediates the interaction of Trichoderma with plants. PMID:28567051

  8. New theories of root growth modelling

    NASA Astrophysics Data System (ADS)

    Landl, Magdalena; Schnepf, Andrea; Vanderborght, Jan; Huber, Katrin; Javaux, Mathieu; Bengough, A. Glyn; Vereecken, Harry

    2016-04-01

    In dynamic root architecture models, root growth is represented by moving root tips whose line trajectory results in the creation of new root segments. Typically, the direction of root growth is calculated as the vector sum of various direction-affecting components. However, in our simulations this did not reproduce experimental observations of root growth in structured soil. We therefore developed a new approach to predict the root growth direction. In this approach we distinguish between, firstly, driving forces for root growth, i.e. the force exerted by the root which points in the direction of the previous root segment and gravitropism, and, secondly, the soil mechanical resistance to root growth or penetration resistance. The latter can be anisotropic, i.e. depending on the direction of growth, which leads to a difference between the direction of the driving force and the direction of the root tip movement. Anisotropy of penetration resistance can be caused either by microscale differences in soil structure or by macroscale features, including macropores. Anisotropy at the microscale is neglected in our model. To allow for this, we include a normally distributed random deflection angle α to the force which points in the direction of the previous root segment with zero mean and a standard deviation σ. The standard deviation σ is scaled, so that the deflection from the original root tip location does not depend on the spatial resolution of the root system model. Similarly to the water flow equation, the direction of the root tip movement corresponds to the water flux vector while the driving forces are related to the water potential gradient. The analogue of the hydraulic conductivity tensor is the root penetrability tensor. It is determined by the inverse of soil penetration resistance and describes the ease with which a root can penetrate the soil. By adapting the three dimensional soil and root water uptake model R-SWMS (Javaux et al., 2008) in this way, we were able to simulate root growth and root water uptake in soil with macropores. The model was parametrized using experimental results of studies by Hirth et al. (2005) and Stirzaker et al. (1996). It proved to be capable of reproducing observed root growth responses to structured soil both at the single root and the plant root system scale. This new approach enables us to investigate how plant roots use macropores to gain access to water and nutrient reservoirs in deeper, highly dense soil layers. Acknowledgements: Funding by German Research Foundation within the Research Unit 888 is gratefully acknowledged. The James Hutton Institute receives funding from the Scottish Government.

  9. Correlated responses of root growth and sugar concentrations to various defoliation treatments and rhythmic shoot growth in oak tree seedlings (Quercus pubescens)

    PubMed Central

    Willaume, Magali; Pagès, Loïc

    2011-01-01

    Background and Aims To understand whether root responses to aerial rhythmic growth and contrasted defoliation treatments can be interpreted under the common frame of carbohydrate availability; root growth was studied in parallel with carbohydrate concentrations in different parts of the root system on oak tree seedlings. Methods Quercus pubescens seedlings were submitted to selective defoliation (removal of mature leaves, cotyledons or young developing leaves) at appearance of the second flush and collected 1, 5 or 10 d later for morphological and biochemical measurements. Soluble sugar and starch concentrations were measured in cotyledons and apical and basal root parts. Key Results Soluble sugar concentration in the root apices diminished during the expansion of the second aerial flush and increased after the end of aerial growth in control seedlings. Starch concentration in cotyledons regularly decreased. Continuous removal of young leaves did not alter either root growth or apical sugar concentration. Starch storage in basal root segments was increased. After removal of mature leaves (and cotyledons), root growth strongly decreased. Soluble sugar concentration in the root apices drastically decreased and starch reserves in the root basal segments were emptied 5 d after defoliation, illustrating a considerable shortage in carbohydrates. Soluble sugar concentrations recovered 10 d after defoliation, after the end of aerial growth, suggesting a recirculation of sugar. No supplementary recourse to starch in cotyledons was observed. Conclusions The parallel between apical sugar concentration and root growth patterns, and the correlations between hexose concentration in root apices and their growth rate, support the hypothesis that the response of root growth to aerial periodic growth and defoliation treatments is largely controlled by carbohydrate availability. PMID:21239407

  10. Root growth dynamics linked to above-ground growth in walnut (Juglans regia).

    PubMed

    Contador, Maria Loreto; Comas, Louise H; Metcalf, Samuel G; Stewart, William L; Porris Gomez, Ignacio; Negron, Claudia; Lampinen, Bruce D

    2015-07-01

    Examination of plant growth below ground is relatively scant compared with that above ground, and is needed to understand whole-plant responses to the environment. This study examines whether the seasonal timing of fine root growth and the spatial distribution of this growth through the soil profile varies in response to canopy manipulation and soil temperature. Plasticity in the seasonal timing and vertical distribution of root production in response to canopy and soil water manipulation was analysed in field-grown walnut (Juglans regia 'Chandler') using minirhizotron techniques. Root production in walnuts followed a unimodal curve, with one marked flush of root growth starting in mid-May, with a peak in mid-June. Root production declined later in the season, corresponding to increased soil temperature, as well as to the period of major carbohydrate allocation to reproduction. Canopy and soil moisture manipulation did not influence the timing of root production, but did influence the vertical distribution of roots through the soil profile. Water deficit appeared to promote root production in deeper soil layers for mining soil water. Canopy removal appeared to promote shallow root production. The findings of this study add to growing evidence that root growth in many ecosystems follows a unimodal curve with one marked flush of root growth in coordination with the initial leaf flush of the season. Root vertical distribution appeared to have greater plasticity than timing of root production in this system, with temperature and/or carbohydrate competition constraining the timing of root growth. Effects on root distribution can have serious impacts on trees, with shallow rooting having negative impacts in years with limited soil water or positive impacts in years with wet springs, and deep rooting having positive impacts on soil water mining from deeper soil layers but negative impacts in years with wet springs. © The Author 2015. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Glucose and auxin signaling interaction in controlling Arabidopsis thaliana seedlings root growth and development.

    PubMed

    Mishra, Bhuwaneshwar S; Singh, Manjul; Aggrawal, Priyanka; Laxmi, Ashverya

    2009-01-01

    Plant root growth and development is highly plastic and can adapt to many environmental conditions. Sugar signaling has been shown to affect root growth and development by interacting with phytohormones such as gibberellins, cytokinin and abscisic acid. Auxin signaling and transport has been earlier shown to be controlling plant root length, number of lateral roots, root hair and root growth direction. Increasing concentration of glucose not only controls root length, root hair and number of lateral roots but can also modulate root growth direction. Since root growth and development is also controlled by auxin, whole genome transcript profiling was done to find out the extent of interaction between glucose and auxin response pathways. Glucose alone could transcriptionally regulate 376 (62%) genes out of 604 genes affected by IAA. Presence of glucose could also modulate the extent of regulation 2 fold or more of almost 63% genes induced or repressed by IAA. Interestingly, glucose could affect induction or repression of IAA affected genes (35%) even if glucose alone had no significant effect on the transcription of these genes itself. Glucose could affect auxin biosynthetic YUCCA genes family members, auxin transporter PIN proteins, receptor TIR1 and members of a number of gene families including AUX/IAA, GH3 and SAUR involved in auxin signaling. Arabidopsis auxin receptor tir1 and response mutants, axr2, axr3 and slr1 not only display a defect in glucose induced change in root length, root hair elongation and lateral root production but also accentuate glucose induced increase in root growth randomization from vertical suggesting glucose effects on plant root growth and development are mediated by auxin signaling components. Our findings implicate an important role of the glucose interacting with auxin signaling and transport machinery to control seedling root growth and development in changing nutrient conditions.

  12. Characterization of the growth and auxin physiology of roots of the tomato mutant, diageotropica

    NASA Technical Reports Server (NTRS)

    Muday, G. K.; Lomax, T. L.; Rayle, D. L.

    1995-01-01

    Roots of the tomato (Lycopersicon esculentum, Mill.) mutant (diageotropica (dgt) exhibit an altered phenotype. These roots are agravitropic and lack lateral roots. Relative to wild-type (VFN8) roots, dgt roots are less sensitive to growth inhibition by exogenously applied IAA and auxin transport inhibitors (phytotropins), and the roots exhibit a reduction in maximal growth inhibition in response to ethylene. However, IAA transport through roots, binding of the phytotropin, tritiated naphthylphthalamic acid ([3H]NPA), to root microsomal membranes, NPA-sensitive IAA uptake by root segments, and uptake of [3H]NPA into root segments are all similar in mutant and wild-type roots. We speculate that the reduced sensitivity of dgt root growth to auxin-transport inhibitors and ethylene is an indirect result of the reduction in sensitivity to auxin in this single gene, recessive mutant. We conclude that dgt roots, like dgt shoots, exhibit abnormalities indicating they have a defect associated with or affecting a primary site of auxin perception or action.

  13. Strigolactones Effects on Root Growth

    NASA Astrophysics Data System (ADS)

    Koltai, Hinanit

    2012-07-01

    Strigolactones (SLs) were defined as a new group of plant hormones that suppress lateral shoot branching. Our previous studies suggested SLs to be regulators of root development. SLs were shown to alter root architecture by regulating lateral root formation and to affect root hair elongation in Arabidopsis. Another important effect of SLs on root growth was shown to be associated with root directional growth. Supplementation of SLs to roots led to alterations in root directional growth, whereas associated mutants showed asymmetrical root growth, which was influenced by environmental factors. The regulation by SLs of root development was shown to be conducted via a cross talk of SLs with other plant hormones, including auxin. SLs were shown to regulate auxin transport, and to interfere with the activity of auxin-efflux carriers. Therefore, it might be that SLs are regulators of root directional growth as a result of their ability to regulated auxin transport. However, other evidences suggest a localized effect of SLs on cell division, which may not necessarily be associated with auxin efflux. These and other, recent hypothesis as to the SLs mode of action and the associated root perception and response to environmental factors will be discussed.

  14. Advancements in Root Growth Measurement Technologies and Observation Capabilities for Container-Grown Plants.

    PubMed

    Judd, Lesley A; Jackson, Brian E; Fonteno, William C

    2015-07-03

    The study, characterization, observation, and quantification of plant root growth and root systems (Rhizometrics) has been and remains an important area of research in all disciplines of plant science. In the horticultural industry, a large portion of the crops grown annually are grown in pot culture. Root growth is a critical component in overall plant performance during production in containers, and therefore it is important to understand the factors that influence and/or possible enhance it. Quantifying root growth has varied over the last several decades with each method of quantification changing in its reliability of measurement and variation among the results. Methods such as root drawings, pin boards, rhizotrons, and minirhizotrons initiated the aptitude to measure roots with field crops, and have been expanded to container-grown plants. However, many of the published research methods are monotonous and time-consuming. More recently, computer programs have increased in use as technology advances and measuring characteristics of root growth becomes easier. These programs are instrumental in analyzing various root growth characteristics, from root diameter and length of individual roots to branching angle and topological depth of the root architecture. This review delves into the expanding technologies involved with expertly measuring root growth of plants in containers, and the advantages and disadvantages that remain.

  15. Advancements in Root Growth Measurement Technologies and Observation Capabilities for Container-Grown Plants

    PubMed Central

    Judd, Lesley A.; Jackson, Brian E.; Fonteno, William C.

    2015-01-01

    The study, characterization, observation, and quantification of plant root growth and root systems (Rhizometrics) has been and remains an important area of research in all disciplines of plant science. In the horticultural industry, a large portion of the crops grown annually are grown in pot culture. Root growth is a critical component in overall plant performance during production in containers, and therefore it is important to understand the factors that influence and/or possible enhance it. Quantifying root growth has varied over the last several decades with each method of quantification changing in its reliability of measurement and variation among the results. Methods such as root drawings, pin boards, rhizotrons, and minirhizotrons initiated the aptitude to measure roots with field crops, and have been expanded to container-grown plants. However, many of the published research methods are monotonous and time-consuming. More recently, computer programs have increased in use as technology advances and measuring characteristics of root growth becomes easier. These programs are instrumental in analyzing various root growth characteristics, from root diameter and length of individual roots to branching angle and topological depth of the root architecture. This review delves into the expanding technologies involved with expertly measuring root growth of plants in containers, and the advantages and disadvantages that remain. PMID:27135334

  16. Seedling root responses to soil moisture and the identification of a belowground trait spectrum across three growth forms.

    PubMed

    Larson, Julie E; Funk, Jennifer L

    2016-05-01

    Root trait variation and plasticity could be key factors differentiating plant performance under drought. However, water manipulation and root measurements are rarely coupled empirically across growth forms to identify whether belowground strategies are generalizable across species. We measured seedling root traits across three moisture levels in 18 Mediterranean forbs, grasses, and woody species. Drought increased the root mass fraction (RMF) and decreased the relative proportion of thin roots (indicated by increased root diameters and decreased specific root length (SRL)), rates of root elongation and growth, plant nitrogen uptake, and plant growth. Although responses varied across species, plasticity was not associated with growth form. Woody species differed from forbs and grasses in many traits, but herbaceous groups were similar. Across water treatments, trait correlations suggested a single spectrum of belowground trade-offs related to resource acquisition and plant growth. While effects of SRL and RMF on plant growth shifted with drought, root elongation rate consistently represented this spectrum. We demonstrate that general patterns of root morphology and plasticity are identifiable across diverse species. Root trait measurements should enhance our understanding of belowground strategy and performance across growth forms, but it will be critical to incorporate plasticity and additional aspects of root function into these efforts. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  17. The key players of the primary root growth and development also function in lateral roots in Arabidopsis.

    PubMed

    Tian, Huiyu; Jia, Yuebin; Niu, Tiantian; Yu, Qianqian; Ding, Zhaojun

    2014-05-01

    The core regulators which are required for primary root growth and development also function in lateral root development or lateral root stem cell niche maintenance. The primary root systems and the lateral root systems are the two important root systems which are vital to the survival of plants. Though the molecular mechanism of the growth and development of both the primary root systems and the lateral root systems have been extensively studied individually in Arabidopsis, there are not so much evidence to show that if both root systems share common regulatory mechanisms. AP2 family transcription factors such as PLT1 (PLETHORA1) and PLT2, GRAS family transcription factors such as SCR (SCARECROW) and SHR (SHORT ROOT) and WUSCHEL-RELATED HOMEOBOX transcription factor WOX5 have been extensively studied and found to be essential for primary root growth and development. In this study, through the expression pattern analysis and mutant examinations, we found that these core regulators also function in lateral root development or lateral root stem cell niche maintenance.

  18. Understanding the development of roots exposed to contaminants and the potential of plant-associated bacteria for optimization of growth

    PubMed Central

    Remans, Tony; Thijs, Sofie; Truyens, Sascha; Weyens, Nele; Schellingen, Kerim; Keunen, Els; Gielen, Heidi; Cuypers, Ann; Vangronsveld, Jaco

    2012-01-01

    Background and Scope Plant responses to the toxic effects of soil contaminants, such as excess metals or organic substances, have been studied mainly at physiological, biochemical and molecular levels, but the influence on root system architecture has received little attention. Nevertheless, the precise position, morphology and extent of roots can influence contaminant uptake. Here, data are discussed that aim to increase the molecular and ecological understanding of the influence of contaminants on root system architecture. Furthermore, the potential of plant-associated bacteria to influence root growth by their growth-promoting and stress-relieving capacities is explored. Methods Root growth parameters of Arabidopsis thaliana seedlings grown in vertical agar plates are quantified. Mutants are used in a reverse genetics approach to identify molecular components underlying quantitative changes in root architecture after exposure to excess cadmium, copper or zinc. Plant-associated bacteria are isolated from contaminated environments, genotypically and phenotypically characterized, and used to test plant root growth improvement in the presence of contaminants. Key Results The molecular determinants of primary root growth inhibition and effects on lateral root density by cadmium were identified. A vertical split-root system revealed local effects of cadmium and copper on root development. However, systemic effects of zinc exposure on root growth reduced both the avoidance of contaminated areas and colonization of non-contaminated areas. The potential for growth promotion and contaminant degradation of plant-associated bacteria was demonstrated by improved root growth of inoculated plants exposed to 2,4-di-nitro-toluene (DNT) or cadmium. Conclusions Knowledge concerning the specific influence of different contaminants on root system architecture and the molecular mechanisms by which this is achieved can be combined with the exploitation of plant-associated bacteria to influence root development and increase plant stress tolerance, which should lead to more optimal root systems for application in phytoremediation or safer biomass production. PMID:22634257

  19. Understanding the development of roots exposed to contaminants and the potential of plant-associated bacteria for optimization of growth.

    PubMed

    Remans, Tony; Thijs, Sofie; Truyens, Sascha; Weyens, Nele; Schellingen, Kerim; Keunen, Els; Gielen, Heidi; Cuypers, Ann; Vangronsveld, Jaco

    2012-07-01

    Plant responses to the toxic effects of soil contaminants, such as excess metals or organic substances, have been studied mainly at physiological, biochemical and molecular levels, but the influence on root system architecture has received little attention. Nevertheless, the precise position, morphology and extent of roots can influence contaminant uptake. Here, data are discussed that aim to increase the molecular and ecological understanding of the influence of contaminants on root system architecture. Furthermore, the potential of plant-associated bacteria to influence root growth by their growth-promoting and stress-relieving capacities is explored. Root growth parameters of Arabidopsis thaliana seedlings grown in vertical agar plates are quantified. Mutants are used in a reverse genetics approach to identify molecular components underlying quantitative changes in root architecture after exposure to excess cadmium, copper or zinc. Plant-associated bacteria are isolated from contaminated environments, genotypically and phenotypically characterized, and used to test plant root growth improvement in the presence of contaminants. The molecular determinants of primary root growth inhibition and effects on lateral root density by cadmium were identified. A vertical split-root system revealed local effects of cadmium and copper on root development. However, systemic effects of zinc exposure on root growth reduced both the avoidance of contaminated areas and colonization of non-contaminated areas. The potential for growth promotion and contaminant degradation of plant-associated bacteria was demonstrated by improved root growth of inoculated plants exposed to 2,4-di-nitro-toluene (DNT) or cadmium. Knowledge concerning the specific influence of different contaminants on root system architecture and the molecular mechanisms by which this is achieved can be combined with the exploitation of plant-associated bacteria to influence root development and increase plant stress tolerance, which should lead to more optimal root systems for application in phytoremediation or safer biomass production.

  20. Comparative effects of auxin and abscisic acid on growth, hydrogen ion efflux and gravitropism in primary roots of maize

    NASA Technical Reports Server (NTRS)

    Evans, M. L.; Mulkey, T. J.

    1984-01-01

    In order to test the idea that auxin action on root growth may be mediated by H(+) movement, the correlation of auxin action on growth and H(+) movement in roots was examined along with changes in H(+) efflux patterns associated with the asymmetric growth which occurs during gravitropism. The effects of indoleacetic acid (IAA) and abscisic acid (AbA) on growth, H(+) secretion, and gravitropism in roots were compared. Results show a close correlation existent between H(+) efflux and growth in maize roots. In intact roots there is strong H(+) efflux from the elongation zone. Growth-promoting concentrations of IAA stimulate H(+) efflux. During gravitropism the H(+) efflux from the elongation zone becomes asymmetric; the evidence indicates that auxin redistribution contributes to the development of acid efflux asymmetry. That AbA stimulates root growth is reflected in its ability to stimulate H(+) efflux from apical root segments.

  1. Flavonols Mediate Root Phototropism and Growth through Regulation of Proliferation-to-Differentiation Transition.

    PubMed

    Silva-Navas, Javier; Moreno-Risueno, Miguel A; Manzano, Concepción; Téllez-Robledo, Bárbara; Navarro-Neila, Sara; Carrasco, Víctor; Pollmann, Stephan; Gallego, F Javier; Del Pozo, Juan C

    2016-06-01

    Roots normally grow in darkness, but they may be exposed to light. After perceiving light, roots bend to escape from light (root light avoidance) and reduce their growth. How root light avoidance responses are regulated is not well understood. Here, we show that illumination induces the accumulation of flavonols in Arabidopsis thaliana roots. During root illumination, flavonols rapidly accumulate at the side closer to light in the transition zone. This accumulation promotes asymmetrical cell elongation and causes differential growth between the two sides, leading to root bending. Furthermore, roots illuminated for a long period of time accumulate high levels of flavonols. This high flavonol content decreases both auxin signaling and PLETHORA gradient as well as superoxide radical content, resulting in reduction of cell proliferation. In addition, cytokinin and hydrogen peroxide, which promote root differentiation, induce flavonol accumulation in the root transition zone. As an outcome of prolonged light exposure and flavonol accumulation, root growth is reduced and a different root developmental zonation is established. Finally, we observed that these differentiation-related pathways are required for root light avoidance. We propose that flavonols function as positional signals, integrating hormonal and reactive oxygen species pathways to regulate root growth direction and rate in response to light. © 2016 American Society of Plant Biologists. All rights reserved.

  2. Flavonols Mediate Root Phototropism and Growth through Regulation of Proliferation-to-Differentiation Transition

    PubMed Central

    Silva-Navas, Javier; Moreno-Risueno, Miguel A.; Manzano, Concepción; Téllez-Robledo, Bárbara; Navarro-Neila, Sara; Carrasco, Víctor; Pollmann, Stephan

    2016-01-01

    Roots normally grow in darkness, but they may be exposed to light. After perceiving light, roots bend to escape from light (root light avoidance) and reduce their growth. How root light avoidance responses are regulated is not well understood. Here, we show that illumination induces the accumulation of flavonols in Arabidopsis thaliana roots. During root illumination, flavonols rapidly accumulate at the side closer to light in the transition zone. This accumulation promotes asymmetrical cell elongation and causes differential growth between the two sides, leading to root bending. Furthermore, roots illuminated for a long period of time accumulate high levels of flavonols. This high flavonol content decreases both auxin signaling and PLETHORA gradient as well as superoxide radical content, resulting in reduction of cell proliferation. In addition, cytokinin and hydrogen peroxide, which promote root differentiation, induce flavonol accumulation in the root transition zone. As an outcome of prolonged light exposure and flavonol accumulation, root growth is reduced and a different root developmental zonation is established. Finally, we observed that these differentiation-related pathways are required for root light avoidance. We propose that flavonols function as positional signals, integrating hormonal and reactive oxygen species pathways to regulate root growth direction and rate in response to light. PMID:26628743

  3. Early Arabidopsis root hair growth stimulation by pathogenic strains of Pseudomonas syringae.

    PubMed

    Pecenková, Tamara; Janda, Martin; Ortmannová, Jitka; Hajná, Vladimíra; Stehlíková, Zuzana; Žárský, Viktor

    2017-09-01

    Selected beneficial Pseudomonas spp. strains have the ability to influence root architecture in Arabidopsis thaliana by inhibiting primary root elongation and promoting lateral root and root hair formation. A crucial role for auxin in this long-term (1week), long-distance plant-microbe interaction has been demonstrated. Arabidopsis seedlings were cultivated in vitro on vertical plates and inoculated with pathogenic strains Pseudomonas syringae pv. maculicola (Psm) and P. syringae pv. tomato DC3000 (Pst), as well as Agrobacterium tumefaciens (Atu) and Escherichia coli (Eco). Root hair lengths were measured after 24 and 48h of direct exposure to each bacterial strain. Several Arabidopsis mutants with impaired responses to pathogens, impaired ethylene perception and defects in the exocyst vesicle tethering complex that is involved in secretion were also analysed. Arabidopsis seedling roots infected with Psm or Pst responded similarly to when infected with plant growth-promoting rhizobacteria; root hair growth was stimulated and primary root growth was inhibited. Other plant- and soil-adapted bacteria induced similar root hair responses. The most compromised root hair growth stimulation response was found for the knockout mutants exo70A1 and ein2. The single immune pathways dependent on salicylic acid, jasmonic acid and PAD4 are not directly involved in root hair growth stimulation; however, in the mutual cross-talk with ethylene, they indirectly modify the extent of the stimulation of root hair growth. The Flg22 peptide does not initiate root hair stimulation as intact bacteria do, but pretreatment with Flg22 prior to Psm inoculation abolished root hair growth stimulation in an FLS2 receptor kinase-dependent manner. These early response phenomena are not associated with changes in auxin levels, as monitored with the pDR5::GUS auxin reporter. Early stimulation of root hair growth is an effect of an unidentified component of living plant pathogenic bacteria. The root hair growth response is triggered in the range of hours after bacterial contact with roots and can be modulated by FLS2 signalling. Bacterial stimulation of root hair growth requires functional ethylene signalling and an efficient exocyst-dependent secretory machinery. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For permissions, please email: journals.permissions@oup.com

  4. Determinate primary root growth as an adaptation to aridity in Cactaceae: towards an understanding of the evolution and genetic control of the trait

    PubMed Central

    Shishkova, Svetlana; Las Peñas, María Laura; Napsucialy-Mendivil, Selene; Matvienko, Marta; Kozik, Alex; Montiel, Jesús; Patiño, Anallely; Dubrovsky, Joseph G.

    2013-01-01

    Background and Aims Species of Cactaceae are well adapted to arid habitats. Determinate growth of the primary root, which involves early and complete root apical meristem (RAM) exhaustion and differentiation of cells at the root tip, has been reported for some Cactoideae species as a root adaptation to aridity. In this study, the primary root growth patterns of Cactaceae taxa from diverse habitats are classified as being determinate or indeterminate, and the molecular mechanisms underlying RAM maintenance in Cactaceae are explored. Genes that were induced in the primary root of Stenocereus gummosus before RAM exhaustion are identified. Methods Primary root growth was analysed in Cactaceae seedlings cultivated in vertically oriented Petri dishes. Differentially expressed transcripts were identified after reverse northern blots of clones from a suppression subtractive hybridization cDNA library. Key Results All species analysed from six tribes of the Cactoideae subfamily that inhabit arid and semi-arid regions exhibited determinate primary root growth. However, species from the Hylocereeae tribe, which inhabit mesic regions, exhibited mostly indeterminate primary root growth. Preliminary results suggest that seedlings of members of the Opuntioideae subfamily have mostly determinate primary root growth, whereas those of the Maihuenioideae and Pereskioideae subfamilies have mostly indeterminate primary root growth. Seven selected transcripts encoding homologues of heat stress transcription factor B4, histone deacetylase, fibrillarin, phosphoethanolamine methyltransferase, cytochrome P450 and gibberellin-regulated protein were upregulated in S. gummosus root tips during the initial growth phase. Conclusions Primary root growth in Cactoideae species matches their environment. The data imply that determinate growth of the primary root became fixed after separation of the Cactiodeae/Opuntioideae and Maihuenioideae/Pereskioideae lineages, and that the genetic regulation of RAM maintenance and its loss in Cactaceae is orchestrated by genes involved in the regulation of gene expression, signalling, and redox and hormonal responses. PMID:23666887

  5. Determinate primary root growth as an adaptation to aridity in Cactaceae: towards an understanding of the evolution and genetic control of the trait.

    PubMed

    Shishkova, Svetlana; Las Peñas, María Laura; Napsucialy-Mendivil, Selene; Matvienko, Marta; Kozik, Alex; Montiel, Jesús; Patiño, Anallely; Dubrovsky, Joseph G

    2013-07-01

    Species of Cactaceae are well adapted to arid habitats. Determinate growth of the primary root, which involves early and complete root apical meristem (RAM) exhaustion and differentiation of cells at the root tip, has been reported for some Cactoideae species as a root adaptation to aridity. In this study, the primary root growth patterns of Cactaceae taxa from diverse habitats are classified as being determinate or indeterminate, and the molecular mechanisms underlying RAM maintenance in Cactaceae are explored. Genes that were induced in the primary root of Stenocereus gummosus before RAM exhaustion are identified. Primary root growth was analysed in Cactaceae seedlings cultivated in vertically oriented Petri dishes. Differentially expressed transcripts were identified after reverse northern blots of clones from a suppression subtractive hybridization cDNA library. All species analysed from six tribes of the Cactoideae subfamily that inhabit arid and semi-arid regions exhibited determinate primary root growth. However, species from the Hylocereeae tribe, which inhabit mesic regions, exhibited mostly indeterminate primary root growth. Preliminary results suggest that seedlings of members of the Opuntioideae subfamily have mostly determinate primary root growth, whereas those of the Maihuenioideae and Pereskioideae subfamilies have mostly indeterminate primary root growth. Seven selected transcripts encoding homologues of heat stress transcription factor B4, histone deacetylase, fibrillarin, phosphoethanolamine methyltransferase, cytochrome P450 and gibberellin-regulated protein were upregulated in S. gummosus root tips during the initial growth phase. Primary root growth in Cactoideae species matches their environment. The data imply that determinate growth of the primary root became fixed after separation of the Cactiodeae/Opuntioideae and Maihuenioideae/Pereskioideae lineages, and that the genetic regulation of RAM maintenance and its loss in Cactaceae is orchestrated by genes involved in the regulation of gene expression, signalling, and redox and hormonal responses.

  6. Nitric oxide is involved in the oxytetracycline-induced suppression of root growth through inhibiting hydrogen peroxide accumulation in the root meristem

    NASA Astrophysics Data System (ADS)

    Yu, Qing-Xiang; Ahammed, Golam Jalal; Zhou, Yan-Hong; Shi, Kai; Zhou, Jie; Yu, Yunlong; Yu, Jing-Quan; Xia, Xiao-Jian

    2017-02-01

    Use of antibiotic-contaminated manure in crop production poses a severe threat to soil and plant health. However, few studies have studied the mechanism by which plant development is affected by antibiotics. Here, we used microscopy, flow cytometry, gene expression analysis and fluorescent dyes to study the effects of oxytetracycline (OTC), a widely used antibiotic in agriculture, on root meristem activity and the accumulation of hydrogen peroxide (H2O2) and nitric oxide (NO) in the root tips of tomato seedlings. We found that OTC caused cell cycle arrest, decreased the size of root meristem and inhibited root growth. Interestingly, the inhibition of root growth by OTC was associated with a decline in H2O2 levels but an increase in NO levels in the root tips. Diphenyliodonium (DPI), an inhibitor of H2O2 production, showed similar effects on root growth as those of OTC. However, exogenous H2O2 partially reversed the effects on the cell cycle, meristem size and root growth. Importantly, cPTIO (the NO scavenger) and tungstate (an inhibitor of nitrate reductase) significantly increased H2O2 levels in the root tips and reversed the inhibition of root growth by OTC. Out results suggest that OTC-induced NO production inhibits H2O2 accumulation in the root tips, thus leading to cell cycle arrest and suppression of root growth.

  7. High-throughput two-dimensional root system phenotyping platform facilitates genetic analysis of root growth and development.

    PubMed

    Clark, Randy T; Famoso, Adam N; Zhao, Keyan; Shaff, Jon E; Craft, Eric J; Bustamante, Carlos D; McCouch, Susan R; Aneshansley, Daniel J; Kochian, Leon V

    2013-02-01

    High-throughput phenotyping of root systems requires a combination of specialized techniques and adaptable plant growth, root imaging and software tools. A custom phenotyping platform was designed to capture images of whole root systems, and novel software tools were developed to process and analyse these images. The platform and its components are adaptable to a wide range root phenotyping studies using diverse growth systems (hydroponics, paper pouches, gel and soil) involving several plant species, including, but not limited to, rice, maize, sorghum, tomato and Arabidopsis. The RootReader2D software tool is free and publicly available and was designed with both user-guided and automated features that increase flexibility and enhance efficiency when measuring root growth traits from specific roots or entire root systems during large-scale phenotyping studies. To demonstrate the unique capabilities and high-throughput capacity of this phenotyping platform for studying root systems, genome-wide association studies on rice (Oryza sativa) and maize (Zea mays) root growth were performed and root traits related to aluminium (Al) tolerance were analysed on the parents of the maize nested association mapping (NAM) population. © 2012 Blackwell Publishing Ltd.

  8. Responses of seminal wheat seedling roots to soil water deficits.

    PubMed

    Trejo, Carlos; Else, Mark A; Atkinson, Christopher J

    2018-04-01

    The aims of this paper are to develop our understanding of the ways by which soil water deficits influence early wheat root growth responses, particularly how seminal roots respond to soil drying and the extent to which information on differences in soil water content are conveyed to the shoot and their impact on shoot behaviour. To achieve this, wheat seedlings have been grown, individually for around 25 days after germination in segmented soil columns within vertical plastic compartments. Roots were exposed to different soil volumetric moisture contents (SVMC) within the two compartments. Experiments where the soil in the lower compartment was allowed to dry to different extents, while the upper was maintained close to field capacity, showed that wheat seedlings allocated proportionally more root dry matter to the lower drier soil compartment. The total production of root, irrespective of the upper or lower SVMC, was similar and there were no detected effects on leaf growth rate or gas exchange. The response of seminal roots to proportionally increase their allocation of dry matter, to the drier soil was unexpected with such plasticity of roots system development traditionally linked to heterogeneous nutrient distribution than accessing soil water. In experiments where the upper soil compartment was allowed to dry, root growth slowed and leaf growth and gas exchange declined. Subsequent experiments used root growth rates to determine when seminal root tips first came into contact with drying soil, with the intentions of determining how the observed root growth rates were maintained as an explanation for the observed changes in root allocation. Measurements of seminal root ABA and ethylene from roots within the drying soil are interpreted with respect to what is known about the physiological control of root growth in drying soil. Copyright © 2018 Elsevier GmbH. All rights reserved.

  9. Ethylene Upregulates Auxin Biosynthesis in Arabidopsis Seedlings to Enhance Inhibition of Root Cell Elongation[W

    PubMed Central

    Swarup, Ranjan; Perry, Paula; Hagenbeek, Dik; Van Der Straeten, Dominique; Beemster, Gerrit T.S.; Sandberg, Göran; Bhalerao, Rishikesh; Ljung, Karin; Bennett, Malcolm J.

    2007-01-01

    Ethylene represents an important regulatory signal for root development. Genetic studies in Arabidopsis thaliana have demonstrated that ethylene inhibition of root growth involves another hormone signal, auxin. This study investigated why auxin was required by ethylene to regulate root growth. We initially observed that ethylene positively controls auxin biosynthesis in the root apex. We subsequently demonstrated that ethylene-regulated root growth is dependent on (1) the transport of auxin from the root apex via the lateral root cap and (2) auxin responses occurring in multiple elongation zone tissues. Detailed growth studies revealed that the ability of the ethylene precursor 1-aminocyclopropane-1-carboxylic acid to inhibit root cell elongation was significantly enhanced in the presence of auxin. We conclude that by upregulating auxin biosynthesis, ethylene facilitates its ability to inhibit root cell expansion. PMID:17630275

  10. Touch and gravitropic set-point angle interact to modulate gravitropic growth in roots

    NASA Technical Reports Server (NTRS)

    Massa, G. D.; Gilroy, S.

    2003-01-01

    Plant roots must sense and respond to a variety of environmental stimuli as they grow through the soil. Touch and gravity represent two of the mechanical signals that roots must integrate to elicit the appropriate root growth patterns and root system architecture. Obstacles such as rocks will impede the general downwardly directed gravitropic growth of the root system and so these soil features must be sensed and this information processed for an appropriate alteration in gravitropic growth to allow the root to avoid the obstruction. We show that primary and lateral roots of Arabidopsis do appear to sense and respond to mechanical barriers placed in their path of growth in a qualitatively similar fashion. Both types of roots exhibited a differential growth response upon contacting the obstacle that directed the main axis of elongation parallel to the barrier. This growth habit was maintained until the obstacle was circumvented, at which point normal gravitropic growth was resumed. Thus, the gravitational set-point angle of the primary and lateral roots prior to encountering the barrier were 95 degrees and 136 degrees respectively and after growing off the end of the obstacle identical set-point angles were reinstated. However, whilst tracking across the barrier, quantitative differences in response were observed between these two classes of roots. The root tip of the primary root maintained an angle of 136 degrees to the horizontal as it traversed the barrier whereas the lateral roots adopted an angle of 154 degrees. Thus, this root tip angle appeared dependent on the gravitropic set-point angle of the root type with the difference in tracking angle quantitatively reflecting differences in initial set-point angle. Concave and convex barriers were also used to analyze the response of the root to tracking along a continuously varying surface. The roots maintained the a fairly fixed angle to gravity on the curved surface implying a constant resetting of this tip angle/tracking response as the curve of the surface changed. We propose that the interaction of touch and gravity sensing/response systems combine to strictly control the tropic growth of the root. Such signal integration is likely a critical part of growth control in the stimulus-rich environment of the soil. c2003 COSPAR. Published by Elsevier Ltd. All rights reserved.

  11. Spatial and directional variation of growth rates in Arabidopsis root apex: a modelling study.

    PubMed

    Nakielski, Jerzy; Lipowczan, Marcin

    2013-01-01

    Growth and cellular organization of the Arabidopsis root apex are investigated in various aspects, but still little is known about spatial and directional variation of growth rates in very apical part of the apex, especially in 3D. The present paper aims to fill this gap with the aid of a computer modelling based on the growth tensor method. The root apex with a typical shape and cellular pattern is considered. Previously, on the basis of two types of empirical data: the published velocity profile along the root axis and dimensions of cell packets formed in the lateral part of the root cap, the displacement velocity field for the root apex was determined. Here this field is adopted to calculate the linear growth rate in different points and directions. The results are interpreted taking principal growth directions into account. The root apex manifests a significant anisotropy of the linear growth rate. The directional preferences depend on a position within the root apex. In the root proper the rate in the periclinal direction predominates everywhere, while in the root cap the predominating direction varies with distance from the quiescent centre. The rhizodermis is distinguished from the neighbouring tissues (cortex, root cap) by relatively high contribution of the growth rate in the anticlinal direction. The degree of growth anisotropy calculated for planes defined by principal growth directions and exemplary cell walls may be as high as 25. The changes in the growth rate variation are modelled.

  12. Beneficial microbes affect endogenous mechanisms controlling root development

    PubMed Central

    Verbon, Eline H.; Liberman, Louisa M.

    2016-01-01

    Plants have incredible developmental plasticity, enabling them to respond to a wide range of environmental conditions. Among these conditions is the presence of plant growth-promoting rhizobacteria (PGPR) in the soil. Recent studies show that PGPR affect root growth and development within Arabidopsis thaliana root. These effects lead to dramatic changes in root system architecture, that significantly impact aboveground plant growth. Thus, PGPR may promote shoot growth via their effect on root developmental programs. This review focuses on contextualizing root developmental changes elicited by PGPR in light of our understanding of plant-microbe interactions and root developmental biology. PMID:26875056

  13. 4,4,4-trifluoro-3-(indole-3-)butyric acid promotes root elongation in Lactuca sativa independent of ethylene synthesis and pH

    NASA Technical Reports Server (NTRS)

    Zhang, Nenggang; Hasenstein, Karl H.

    2002-01-01

    We studied the mode of action of 4,4,4-trifluoro-3- (indole-3-) butyric acid (TFIBA), a recently described root growth stimulator, on primary root growth of Lactuca sativa L. seedlings. TFIBA (100 micromoles) promoted elongation of primary roots by 40% in 72 h but inhibited hypocotyl growth by 35%. TFIBA induced root growth was independent of pH. TFIBA did not affect ethylene production, but reduced the inhibitory effect of ethylene on root elongation. TFIBA promoted root growth even in the presence of the ethylene biosynthesis inhibitor L-alpha-(2-aminoethoxyvinyl)glycine. TFIBA and the ethylene-binding inhibitor silver thiosulphate (STS) had a similar effect on root elongation. The results indicate that TFIBA-stimulated root elongation was neither pH-dependent nor related to inhibition of ethylene synthesis, but was possibly related to ethylene action.

  14. Control of root system architecture by DEEPER ROOTING 1 increases rice yield under drought conditions.

    PubMed

    Uga, Yusaku; Sugimoto, Kazuhiko; Ogawa, Satoshi; Rane, Jagadish; Ishitani, Manabu; Hara, Naho; Kitomi, Yuka; Inukai, Yoshiaki; Ono, Kazuko; Kanno, Noriko; Inoue, Haruhiko; Takehisa, Hinako; Motoyama, Ritsuko; Nagamura, Yoshiaki; Wu, Jianzhong; Matsumoto, Takashi; Takai, Toshiyuki; Okuno, Kazutoshi; Yano, Masahiro

    2013-09-01

    The genetic improvement of drought resistance is essential for stable and adequate crop production in drought-prone areas. Here we demonstrate that alteration of root system architecture improves drought avoidance through the cloning and characterization of DEEPER ROOTING 1 (DRO1), a rice quantitative trait locus controlling root growth angle. DRO1 is negatively regulated by auxin and is involved in cell elongation in the root tip that causes asymmetric root growth and downward bending of the root in response to gravity. Higher expression of DRO1 increases the root growth angle, whereby roots grow in a more downward direction. Introducing DRO1 into a shallow-rooting rice cultivar by backcrossing enabled the resulting line to avoid drought by increasing deep rooting, which maintained high yield performance under drought conditions relative to the recipient cultivar. Our experiments suggest that control of root system architecture will contribute to drought avoidance in crops.

  15. Some Growth Aspects of Seymeria cassioicies

    Treesearch

    Charles M. Stangle; Lytton J. Musselman

    1981-01-01

    The root parasite, Seymeria cassioides, will not initiate height growth without attachment to a host root when grown under normal fertility conditions, although the seedling may remain alive for 40 days or more without a host. During this time the roots elongate markedly. Fresh pine root segments do not influence the direction of root growth. Although S....

  16. Abscisic acid accumulation modulates auxin transport in the root tip to enhance proton secretion for maintaining root growth under moderate water stress.

    PubMed

    Xu, Weifeng; Jia, Liguo; Shi, Weiming; Liang, Jiansheng; Zhou, Feng; Li, Qianfeng; Zhang, Jianhua

    2013-01-01

    Maintenance of root growth is essential for plant adaptation to soil drying. Here, we tested the hypothesis that auxin transport is involved in mediating ABA's modulation by activating proton secretion in the root tip to maintain root growth under moderate water stress. Rice and Arabidopsis plants were raised under a hydroponic system and subjected to moderate water stress (-0.47 MPa) with polyethylene glycol (PEG). ABA accumulation, auxin transport and plasma membrane H(+)-ATPase activity at the root tip were monitored in addition to the primary root elongation and root hair density. We found that moderate water stress increases ABA accumulation and auxin transport in the root apex. Additionally, ABA modulation is involved in the regulation of auxin transport in the root tip. The transported auxin activates the plasma membrane H(+)-ATPase to release more protons along the root tip in its adaption to moderate water stress. The proton secretion in the root tip is essential in maintaining or promoting primary root elongation and root hair development under moderate water stress. These results suggest that ABA accumulation modulates auxin transport in the root tip, which enhances proton secretion for maintaining root growth under moderate water stress. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.

  17. Root growth and spatial distribution characteristics for seedlings raised in substrate and transplanted cotton

    PubMed Central

    Han, Yingchun; Li, Yabing; Wang, Guoping; Feng, Lu; Yang, Beifang; Fan, Zhengyi; Lei, Yaping; Du, Wenli; Mao, Shuchun

    2017-01-01

    In this study, transplanting cotton seedlings grown in artificial substrate is considered due to recent increased interest in cotton planting labor saving approaches. The nursery methods used for growing cotton seedlings affect root growth. However, the underlying functional responses of root growth to variations in cotton seedling transplanting methods are poorly understood. We assessed the responses of cotton (Gossypium hirsutum L.) roots to different planting methods by conducting cotton field experiments in 2012 and 2013. A one-factor random block design was used with three replications and three different cotton planting patterns (substrate seedling transplanted cotton (SSTC), soil-cube seedling transplanted cotton (ScSTC) and directly sown cotton (DSC). The distributions and variances of the root area density (RAD) and root length density (RLD) at different cotton growing stages and several yield components were determined. Overall, the following results were observed: 1) The RAD and RLD were greatest near the plants (a horizontal distance of 0 cm) but were lower at W20 and W40 cm in the absence of film mulching than at E20 and E40 cm with film mulching. 2) The roots were confined to shallow depths (20–40 cm), and the root depths of SSTC and DSC were greater than the root depths of ScSTC. 3) Strong root growth was observed in the SSTC at the cotton flowering and boll setting stages. In addition, early onset root growth occurred in the ScSTC, and vigorous root growth occurred throughout all cotton growth stages in DSC. 4) The SSTC plants had more lateral roots with higher root biomass (RB) than the ScSTC, which resulted in higher cotton yields. However, the early onset root growth in the ScSTC resulted in greater pre-frost seed cotton (PFSC) yields. These results can be used to infer how cotton roots are distributed in soils and capture nutrients. PMID:29272298

  18. Local Transcriptional Control of YUCCA Regulates Auxin Promoted Root-Growth Inhibition in Response to Aluminium Stress in Arabidopsis.

    PubMed

    Liu, Guangchao; Gao, Shan; Tian, Huiyu; Wu, Wenwen; Robert, Hélène S; Ding, Zhaojun

    2016-10-01

    Auxin is necessary for the inhibition of root growth induced by aluminium (Al) stress, however the molecular mechanism controlling this is largely unknown. Here, we report that YUCCA (YUC), which encodes flavin monooxygenase-like proteins, regulates local auxin biosynthesis in the root apex transition zone (TZ) in response to Al stress. Al stress up-regulates YUC3/5/7/8/9 in the root-apex TZ, which we show results in the accumulation of auxin in the root-apex TZ and root-growth inhibition during the Al stress response. These Al-dependent changes in the regulation of YUCs in the root-apex TZ and YUC-regulated root growth inhibition are dependent on ethylene signalling. Increasing or disruption of ethylene signalling caused either enhanced or reduced up-regulation, respectively, of YUCs in root-apex TZ in response to Al stress. In addition, ethylene enhanced root growth inhibition under Al stress was strongly alleviated in yuc mutants or by co-treatment with yucasin, an inhibitor of YUC activity, suggesting a downstream role of YUCs in this process. Moreover, ethylene-insensitive 3 (EIN3) is involved into the direct regulation of YUC9 transcription in this process. Furthermore, we demonstrated that PHYTOCHROME INTERACTING FACTOR4 (PIF4) functions as a transcriptional activator for YUC5/8/9. PIF4 promotes Al-inhibited primary root growth by regulating the local expression of YUCs and auxin signal in the root-apex TZ. The Al-induced expression of PIF4 in root TZ acts downstream of ethylene signalling. Taken together, our results highlight a regulatory cascade for YUCs-regulated local auxin biosynthesis in the root-apex TZ mediating root growth inhibition in response to Al stress.

  19. Shoot phytochrome B modulates reactive oxygen species homeostasis in roots via abscisic acid signaling in Arabidopsis.

    PubMed

    Ha, Jun-Ho; Kim, Ju-Heon; Kim, Sang-Gyu; Sim, Hee-Jung; Lee, Gisuk; Halitschke, Rayko; Baldwin, Ian T; Kim, Jeong-Il; Park, Chung-Mo

    2018-06-01

    Underground roots normally reside in darkness. However, they are often exposed to ambient light that penetrates through cracks in the soil layers which can occur due to wind, heavy rain or temperature extremes. In response to light exposure, roots produce reactive oxygen species (ROS) which promote root growth. It is known that ROS-induced growth promotion facilitates rapid escape of the roots from non-natural light. Meanwhile, long-term exposure of the roots to light elicits a ROS burst, which causes oxidative damage to cellular components, necessitating that cellular levels of ROS should be tightly regulated in the roots. Here we demonstrate that the red/far-red light photoreceptor phytochrome B (phyB) stimulates the biosynthesis of abscisic acid (ABA) in the shoots, and notably the shoot-derived ABA signals induce a peroxidase-mediated ROS detoxification reaction in the roots. Accordingly, while ROS accumulate in the roots of the phyb mutant that exhibits reduced primary root growth in the light, such an accumulation of ROS did not occur in the dark-grown phyb roots that exhibited normal growth. These observations indicate that mobile shoot-to-root ABA signaling links shoot phyB-mediated light perception with root ROS homeostasis to help roots adapt to unfavorable light exposure. We propose that ABA-mediated shoot-to-root phyB signaling contributes to the synchronization of shoot and root growth for optimal propagation and performance in plants. © 2018 The Authors The Plant Journal © 2018 John Wiley & Sons Ltd.

  20. Physiological and growth responses of Centaurea maculosa (Asteraceae) to root herbivory under varying levels of interspecific plant competition and soil nitrogen availability.

    PubMed

    Steinger, Thomas; Müller-Schärer, Heinz

    1992-08-01

    Centaurea maculosa seedlings were grown in pots to study the effects of root herbivory by Agapeta zoegana L. (Lep.: Cochylidae) and Cyphocleonus achates Fahr. (Col.: Curculionidae), grass competition and nitrogen shortage (each present or absent), using a full factorial design. The aims of the study were to analyse the impact of root herbivory on plant growth, resource allocation and physiological processes, and to test if these plant responses to herbivory were influenced by plant competition and nitrogen availability. The two root herbivores differed markedly in their impact on plant growth. While feeding by the moth A. zoegana in the root cortex had no effect on shoot and root mass, feeding by the weevil C. achates in the central vascular tissue greatly reduced shoot mass, but not root mass, leading to a reduced shoot/root ratio. The absence of significant effects of the two herbivores on root biomass, despite considerable consumption, indicates that compensatory root growth occurred. Competition with grass affected plant growth more than herbivory and nutrient status, resulting in reduced shoot and root growth, and number of leaves. Nitrogen shortage did not affect plant growth directly but greatly influenced the compensatory capacity of Centaurea maculosa to root herbivory. Under high nitrogen conditions, shoot biomass of plants infested by the weevil was reduced by 30% compared with uninfested plants. However, under poor nitrogen conditions a 63% reduction was observed compared with corresponding controls. Root herbivory was the most important stress factor affecting plant physiology. Besides a relative increase in biomass allocation to the roots, infested plants also showed a significant increase in nitrogen concentration in the roots and a concomitant reduction in leaf nitrogen concentration, reflecting a redirection of the nitrogen to the stronger sink. The level of fructans was greatly reduced in the roots after herbivore feeding. This is thought to be a consequence of their mobilisation to support compensatory root growth. A preliminary model linking the effects of these root herbivores to the physiological processes of C. maculosa is presented.

  1. [Three-dimensional morphological modeling and visualization of wheat root system].

    PubMed

    Tan, Feng; Tang, Liang; Hu, Jun-Cheng; Jiang, Hai-Yan; Cao, Wei-Xing; Zhu, Yan

    2011-01-01

    Crop three-dimensional (3D) morphological modeling and visualization is an important part of digital plant study. This paper aimed to develop a 3D morphological model of wheat root system based on the parameters of wheat root morphological features, and to realize the visualization of wheat root growth. According to the framework of visualization technology for wheat root growth, a 3D visualization model of wheat root axis, including root axis growth model, branch geometric model, and root axis curve model, was developed firstly. Then, by integrating root topology, the corresponding pixel was determined, and the whole wheat root system was three-dimensionally re-constructed by using the morphological feature parameters in the root morphological model. Finally, based on the platform of OpenGL, and by integrating the technologies of texture mapping, lighting rendering, and collision detection, the 3D visualization of wheat root growth was realized. The 3D output of wheat root system from the model was vivid, which could realize the 3D root system visualization of different wheat cultivars under different water regimes and nitrogen application rates. This study could lay a technical foundation for further development of an integral visualization system of wheat plant.

  2. [Effects nutrients on the seedlings root hair development and root growth of Poncirus trifoliata under hydroponics condition].

    PubMed

    Cao, Xiu; Xia, Ren-Xue; Zhang, De-Jian; Shu, Bo

    2013-06-01

    Ahydroponics experiment was conducted to study the effects of nutrients (N, P, K, Ca, Mg, Fe, and Mn) deficiency on the length of primary root, the number of lateral roots, and the root hair density, length, and diameter on the primary root and lateral roots of Poncirus trifoliata seedlings. Under the deficiency of each test nutrient, root hair could generate, but was mainly concentrated on the root base and fewer on the root tip. The root hair density on lateral roots was significantly larger than that on primary root, but the root hair length was in adverse. The deficiency of each test nutrient had greater effects on the growth and development of root hairs, with the root hair density on primary root varied from 55.0 to 174.3 mm(-2). As compared with the control, Ca deficiency induced the significant increase of root hair density and length on primary root, P deficiency promoted the root hair density and length on the base and middle part of primary root and on the lateral roots significantly, Fe deficiency increased the root hair density but decreased the root hair length on the tip of primary root significantly, K deficiency significantly decreased the root hair density, length, and diameter on primary root and lateral roots, whereas Mg deficiency increased the root hair length of primary root significantly. In all treatments of nutrient deficiency, the primary root had the similar growth rate, but, with the exceptions of N and Mg deficiency, the lateral roots exhibited shedding and regeneration.

  3. Fine Root Abundance and Dynamics of Stone Pine (Pinus cembra) at the Alpine Treeline Is Not Impaired by Self-shading.

    PubMed

    Kubisch, Petra; Leuschner, Christoph; Coners, Heinz; Gruber, Andreas; Hertel, Dietrich

    2017-01-01

    Low temperatures are crucial for the formation of the alpine treeline worldwide. Since soil temperature in the shade of tree canopies is lower than in open sites, it was assumed that self-shading may impair the trees' root growth performance. While experiments with tree saplings demonstrate root growth impairment at soil temperatures below 5-7°C, field studies exploring the soil temperature - root growth relationship at the treeline are missing. We recorded soil temperature and fine root abundance and dynamics in shaded and sun-exposed areas under canopies of isolated Pinus cembra trees at the alpine treeline. In contrast to the mentioned assumption, we found more fine root biomass and higher fine root growth in colder than in warmer soil areas. Moreover, colder areas showed higher fine root turnover and thus lower root lifespan than warmer places. We conclude that P. cembra balances enhanced fine root mortality in cold soils with higher fine root activity and by maintaining higher fine root biomass, most likely as a response to shortage in soil resource supply. The results from our study highlight the importance of in situ measurements on mature trees to understand the fine root response and carbon allocation pattern to the thermal growth conditions at the alpine treeline.

  4. Glucose control of root growth direction in Arabidopsis thaliana.

    PubMed

    Singh, Manjul; Gupta, Aditi; Laxmi, Ashverya

    2014-07-01

    Directional growth of roots is a complex process that is modulated by various environmental signals. This work shows that presence of glucose (Glc) in the medium also extensively modulated seedling root growth direction. Glc modulation of root growth direction was dramatically enhanced by simultaneous brassinosteroid (BR) application. Glc enhanced BR receptor BRASSINOSTEROID INSENSITIVE1 (BRI1) endocytosis from plasma membrane to early endosomes. Glc-induced root deviation was highly enhanced in a PP2A-defective mutant, roots curl in naphthyl phthalamic acid 1-1 (rcn1-1) suggesting that there is a role of phosphatase in Glc-induced root-growth deviation. RCN1, therefore, acted as a link between Glc and the BR-signalling pathway. Polar auxin transport worked further downstream to BR in controlling Glc-induced root deviation response. Glc also affected other root directional responses such as root waving and coiling leading to altered root architecture. High light intensity mimicked the Glc-induced changes in root architecture that were highly reduced in Glc-signalling mutants. Thus, under natural environmental conditions, changing light flux in the environment may lead to enhanced Glc production/response and is a way to manipulate root architecture for optimized development via integrating several extrinsic and intrinsic signalling cues. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  5. Cytokinin-dependent secondary growth determines root biomass in radish (Raphanus sativus L.)

    PubMed Central

    Jang, Geupil; Lee, Jung-Hun; Rastogi, Khushboo; Park, Suhyoung; Oh, Sang-Hun; Lee, Ji-Young

    2015-01-01

    The root serves as an essential organ in plant growth by taking up nutrients and water from the soil and supporting the rest of the plant body. Some plant species utilize roots as storage organs. Sweet potatoes (Ipomoea batatas), cassava (Manihot esculenta), and radish (Raphanus sativus), for example, are important root crops. However, how their root growth is regulated remains unknown. In this study, we characterized the relationship between cambium and radial root growth in radish. Through a comparative analysis with Arabidopsis root expression data, we identified putative cambium-enriched transcription factors in radish and analysed their expression in representative inbred lines featuring distinctive radial growth. We found that cell proliferation activities in the cambium positively correlated with radial growth and final yields of radish roots. Expression analysis of candidate transcription factor genes revealed that some genes are differentially expressed between inbred lines and that the difference is due to the distinct cytokinin response. Taken together, we have demonstrated for the first time, to the best of our knowledge, that cytokinin-dependent radial growth plays a key role in the yields of root crops. PMID:25979997

  6. Root-Contact/Pressure-Plate Assembly For Hydroponic System

    NASA Technical Reports Server (NTRS)

    Morris, Carlton E.; Loretan, Philip A.; Bonsi, Conrad K.; Hill, Walter A.

    1994-01-01

    Hydroponic system includes growth channels equipped with rootcontact/pressure-plate assemblies. Pump and associated plumbing circulate nutrient liquid from reservoir, along bottom of growth channels, and back to reservoir. Root-contact/pressure-plate assembly in each growth channel stimulates growth of roots by applying mild contact pressure. Flat plate and plate connectors, together constitute pressure plate, free to move upward to accommodate growth of roots. System used for growing sweetpotatoes and possibly other tuber and root crops.

  7. Contrasts between whole-plant and local nutrient levels determine root growth and death in Ailanthus altissima (Simaroubaceae).

    PubMed

    Hu, Fengqin; Mou, Paul P; Weiner, Jacob; Li, Shuo

    2014-05-01

    • There is an ongoing debate about the importance of whole-plant control vs. local modular mechanisms for root growth. We conducted a split-root experiment with different patch/background levels of nitrogen to examine whether local root growth and death are controlled by local resource levels or at the whole-plant level.• Three microrhizotrons with 0, 10, and 100 µg N/g growth medium levels (74 g growth medium each) were attached to pots of high or low soil N in which one Ailanthus altissima individual was growing. One fine root was guided into each of the microrhizotrons and photographed every 4 d. Plants were harvested after 28 d; root growth and mortality in the microrhizotrons were recorded. Changes in root length, number of laterals, and interlateral length were determined from the photos and analyzed.• While overall plant growth was influenced by background N level, both patch and background N levels influenced root growth and mortality in patches. Local roots proliferated most when the patch N level was high and background level low, and they proliferated least and showed highest mortality when patch N was low and the background level high.• The fate of roots growing in a patch is influenced by the resource environment of the plant's other roots as well as the resource levels in the patch itself. Thus, the growth and death of roots in patches is determined by both modular and whole-plant mechanisms. © 2014 Botanical Society of America, Inc.

  8. CLE-like (CLEL) peptides control the pattern of root growth and lateral root development in Arabidopsis.

    PubMed

    Meng, Ling; Buchanan, Bob B; Feldman, Lewis J; Luan, Sheng

    2012-01-31

    CLE peptides, named for the CLV3/ESR-related peptide family, participate in intercellular-signaling pathways. Here we investigated members of the CLE-like (CLEL) gene family that encode peptide precursors recently designated as root growth factors [Matsuzaki Y et al. (2010) Science 329:1065-1067]. CLEL precursors share a similar domain structure with CLE precursors (i.e., they contain a putative N-terminal signal peptide and a C-terminal conserved 13-amino-acid CLEL motif with a variable middle portion). Our evidence shows that, unlike root growth factor, CLEL peptides are (i) unmodified and (ii) function in the regulation of the direction of root growth and lateral root development. Overexpression of several CLEL genes in Arabidopsis resulted in either long roots or long and wavy roots that also showed altered lateral root patterning. Exogenous application of unmodified synthetic 13-amino-acid peptides derived from two CLEL motifs resulted in similar phenotypic changes in roots of wild-type plants. In CLEL peptide-induced long roots, the root apical meristem (RAM) was enlarged and consisted of an increased number of cells, compared with wild-type root apical meristems. The wavy-root phenotype appeared to be independent of other responses of the roots to the environment (e.g., gravitropism, phototropism, and thigmotropism). Results also showed that the inhibition of lateral initiation by CLEL overexpression was not overcome by the application of auxin. These findings establish CLEL as a peptide family with previously unrecognized regulatory functions controlling the pattern of root growth and lateral root development in plants.

  9. Responses of root physiological characteristics and yield of sweet potato to humic acid urea fertilizer

    PubMed Central

    Kou, Meng; Tang, Zhonghou; Zhang, Aijun; Li, Hongmin; Wei, Meng

    2017-01-01

    Humic acid (HA), not only promote the growth of crop roots, they can be combined with nitrogen (N) to increase fertilizer use efficiency and yield. However, the effects of HA urea fertilizer (HA-N) on root growth and yield of sweet potato has not been widely investigated. Xushu 28 was used as the experimental crop to investigate the effects of HA-N on root morphology, active oxygen metabolism and yield under field conditions. Results showed that nitrogen application alone was not beneficial for root growth and storage root formation during the early growth stage. HA-N significantly increased the dry weight of the root system, promoted differentiation from adventitious root to storage root, and increased the overall root activity, total root length, root diameter, root surface area, as well as root volume. HA-N thus increased the activity of superoxide dismutase (SOD), peroxidase (POD), and Catalase (CAT) as well as increasing the soluble protein content of roots and decreasing the malondialdehyde (MDA) content. HA-N significantly increased both the number of storage roots per plant increased by 14.01%, and the average fresh weight per storage root increased by 13.7%, while the yield was also obviously increased by 29.56%. In this study, HA-N increased yield through a synergistic increase of biological yield and harvest index. PMID:29253886

  10. CEP genes regulate root and shoot development in response to environmental cues and are specific to seed plants.

    PubMed

    Delay, Christina; Imin, Nijat; Djordjevic, Michael A

    2013-12-01

    The manifestation of repetitive developmental programmes during plant growth can be adjusted in response to various environmental cues. During root development, this means being able to precisely control root growth and lateral root development. Small signalling peptides have been found to play roles in many aspects of root development. One member of the CEP (C-TERMINALLY ENCODED PEPTIDE) gene family has been shown to arrest root growth. Here we report that CEP genes are widespread among seed plants but are not present in land plants that lack true branching roots or root vasculature. We have identified 10 additional CEP genes in Arabidopsis. Expression analysis revealed that CEP genes are regulated by environmental cues such as nitrogen limitation, increased salt levels, increased osmotic strength, and increased CO2 levels in both roots and shoots. Analysis of synthetic CEP variants showed that both peptide sequence and modifications of key amino acids affect CEP biological activity. Analysis of several CEP over-expression lines revealed distinct roles for CEP genes in root and shoot development. A cep3 knockout mutant showed increased root and shoot growth under a range of abiotic stress, nutrient, and light conditions. We demonstrate that CEPs are negative regulators of root development, slowing primary root growth and reducing lateral root formation. We propose that CEPs are negative regulators that mediate environmental influences on plant development.

  11. Determinate Root Growth and Meristem Maintenance in Angiosperms

    PubMed Central

    Shishkova, S.; Rost, T. L.; Dubrovsky, J. G.

    2008-01-01

    Background The difference between indeterminate and determinate growth in plants consists of the presence or absence of an active meristem in the fully developed organ. Determinate root growth implies that the root apical meristem (RAM) becomes exhausted. As a consequence, all cells in the root tip differentiate. This type of growth is widely found in roots of many angiosperm taxa and might have evolved as a developmental adaptation to water deficit (in desert Cactaceae), or low mineral content in the soil (proteoid roots in various taxa). Scope and Conclusions This review considers the mechanisms of determinate root growth to better understand how the RAM is maintained, how it functions, and the cellular and genetic bases of these processes. The role of the quiescent centre in RAM maintenance and exhaustion will be analysed. During root ageing, the RAM becomes smaller and its organization changes; however, it remains unknown whether every root is truly determinate in the sense that its RAM becomes exhausted before senescence. We define two types of determinate growth: constitutive where determinacy is a natural part of root development; and non-constitutive where determinacy is induced usually by an environmental factor. Determinate root growth is proposed to include two phases: the indeterminate growth phase, when the RAM continuously produces new cells; and the termination growth phase, when cell production gradually decreases and eventually ceases. Finally, new concepts regarding stem cells and a stem cell niche are discussed to help comprehend how the meristem is maintained in a broad taxonomic context. PMID:17954472

  12. Single Plant Root System Modeling under Soil Moisture Variation

    NASA Astrophysics Data System (ADS)

    Yabusaki, S.; Fang, Y.; Chen, X.; Scheibe, T. D.

    2016-12-01

    A prognostic Virtual Plant-Atmosphere-Soil System (vPASS) model is being developed that integrates comprehensively detailed mechanistic single plant modeling with microbial, atmospheric, and soil system processes in its immediate environment. Three broad areas of process module development are targeted: Incorporating models for root growth and function, rhizosphere interactions with bacteria and other organisms, litter decomposition and soil respiration into established porous media flow and reactive transport models Incorporating root/shoot transport, growth, photosynthesis and carbon allocation process models into an integrated plant physiology model Incorporating transpiration, Volatile Organic Compounds (VOC) emission, particulate deposition and local atmospheric processes into a coupled plant/atmosphere model. The integrated plant ecosystem simulation capability is being developed as open source process modules and associated interfaces under a modeling framework. The initial focus addresses the coupling of root growth, vascular transport system, and soil under drought scenarios. Two types of root water uptake modeling approaches are tested: continuous root distribution and constitutive root system architecture. The continuous root distribution models are based on spatially averaged root development process parameters, which are relatively straightforward to accommodate in the continuum soil flow and reactive transport module. Conversely, the constitutive root system architecture models use root growth rates, root growth direction, and root branching to evolve explicit root geometries. The branching topologies require more complex data structures and additional input parameters. Preliminary results are presented for root model development and the vascular response to temporal and spatial variations in soil conditions.

  13. Touch modulates gravity sensing to regulate the growth of primary roots of Arabidopsis thaliana

    NASA Technical Reports Server (NTRS)

    Massa, Gioia D.; Gilroy, Simon

    2003-01-01

    Plants must sense and respond to diverse stimuli to optimize the architecture of their root system for water and nutrient scavenging and anchorage. We have therefore analyzed how information from two of these stimuli, touch and gravity, are integrated to direct root growth. In Arabidopsis thaliana, touch stimulation provided by a glass barrier placed across the direction of growth caused the root to form a step-like growth habit with bends forming in the central and later the distal elongation zones. This response led to the main root axis growing parallel to, but not touching the obstacle, whilst the root cap maintained contact with the barrier. Removal of the graviperceptive columella cells of the root cap using laser ablation reduced the bending response of the distal elongation zone. Similarly, although the roots of the gravisensing impaired pgm1-1 mutant grew along the barrier at the same average angle as wild-type, this angle became more variable with time. These observations imply a constant gravitropic re-setting of the root tip response to touch stimulation from the barrier. In wild-type plants, transient touch stimulation of root cap cells, but not other regions of the root, inhibited both subsequent gravitropic growth and amyloplast sedimentation in the columella. Taken together, these results suggest that the cells of the root cap sense touch stimuli and their subsequent signaling acts on the columella cells to modulate their graviresponse. This interaction of touch and gravity signaling would then direct root growth to avoid obstacles in the soil while generally maintaining downward growth.

  14. Plant responses to heterogeneous salinity: growth of the halophyte Atriplex nummularia is determined by the root-weighted mean salinity of the root zone

    PubMed Central

    Bazihizina, Nadia

    2012-01-01

    Soil salinity is generally spatially heterogeneous, but our understanding of halophyte physiology under such conditions is limited. The growth and physiology of the dicotyledonous halophyte Atriplex nummularia was evaluated in split-root experiments to test whether growth is determined by: (i) the lowest; (ii) the highest; or (iii) the mean salinity of the root zone. In two experiments, plants were grown with uniform salinities or horizontally heterogeneous salinities (10–450mM NaCl in the low-salt side and 670mM in the high-salt side, or 10mM NaCl in the low-salt side and 500–1500mM in the high-salt side). The combined data showed that growth and gas exchange parameters responded most closely to the root-weighted mean salinity rather than to the lowest, mean, or highest salinity in the root zone. In contrast, midday shoot water potentials were determined by the lowest salinity in the root zone, consistent with most water being taken from the least negative water potential source. With uniform salinity, maximum shoot growth was at 120–230mM NaCl; ~90% of maximum growth occurred at 10mM and 450mM NaCl. Exposure of part of the roots to 1500mM NaCl resulted in an enhanced (+40%) root growth on the low-salt side, which lowered root-weighted mean salinity and enabled the maintenance of shoot growth. Atriplex nummularia grew even with extreme salinity in part of the roots, as long as the root-weighted mean salinity of the root zone was within the 10–450mM range. PMID:23125356

  15. Plant responses to heterogeneous salinity: growth of the halophyte Atriplex nummularia is determined by the root-weighted mean salinity of the root zone.

    PubMed

    Bazihizina, Nadia; Barrett-Lennard, Edward G; Colmer, Timothy D

    2012-11-01

    Soil salinity is generally spatially heterogeneous, but our understanding of halophyte physiology under such conditions is limited. The growth and physiology of the dicotyledonous halophyte Atriplex nummularia was evaluated in split-root experiments to test whether growth is determined by: (i) the lowest; (ii) the highest; or (iii) the mean salinity of the root zone. In two experiments, plants were grown with uniform salinities or horizontally heterogeneous salinities (10-450 mM NaCl in the low-salt side and 670 mM in the high-salt side, or 10 mM NaCl in the low-salt side and 500-1500 mM in the high-salt side). The combined data showed that growth and gas exchange parameters responded most closely to the root-weighted mean salinity rather than to the lowest, mean, or highest salinity in the root zone. In contrast, midday shoot water potentials were determined by the lowest salinity in the root zone, consistent with most water being taken from the least negative water potential source. With uniform salinity, maximum shoot growth was at 120-230 mM NaCl; ~90% of maximum growth occurred at 10 mM and 450 mM NaCl. Exposure of part of the roots to 1500 mM NaCl resulted in an enhanced (+40%) root growth on the low-salt side, which lowered root-weighted mean salinity and enabled the maintenance of shoot growth. Atriplex nummularia grew even with extreme salinity in part of the roots, as long as the root-weighted mean salinity of the root zone was within the 10-450 mM range.

  16. Leaf water status and root system water flux of shortleaf pine (Pinus echinata Mill.) seedlings in relation to new root growth after transplanting

    Treesearch

    John C. Brissette; Jim L. Chambers

    1992-01-01

    Water relations and root growth of shortleaf pine (Pinus echinata Mill.) were studied four weeks after seedlings from a half-sib family had been transplanted to one of three regimes of soil water availability at a root zone temperature of either 15 or 20 °C. About one-third of the variation in new root growth was explained by the root zone...

  17. Characterization of fructose-bisphosphate aldolase regulated by gibberellin in roots of rice seedling.

    PubMed

    Konishi, Hirosato; Yamane, Hisakazu; Maeshima, Masayoshi; Komatsu, Setsuko

    2004-12-01

    Fructose-bisphosphate aldolase is a glycolytic enzyme whose activity increases in rice roots treated with gibberellin (GA). To investigate the relationship between aldolase and root growth, GA-induced root aldolase was characterized. GA3 promoted an increase in aldolase accumulation when 0.1 microM GA3 was added exogenously to rice roots. Aldolase accumulated abundantly in roots, especially in the apical region. To examine the effect of aldolase function on root growth, transgenic rice plants expressing antisense aldolase were constructed. Root growth of aldolase-antisense transgenic rice was repressed compared with that of the vector control transgenic rice. Although aldolase activity increased by 25% in vector control rice roots treated with 0.1 microM GA3, FBPA activity increased very little by 0.1 microM GA3 treatment in the root of aldolase-antisense transgenic rice. Furthermore, aldolase co-immunoprecipitated with antibodies against vacuolar H+ -ATPase in rice roots. In the root of OsCDPK13-antisense transgenic rice, aldolase did not accumulate even after treatment with GA3. These results suggest that the activation of glycolytic pathway function accelerates root growth and that GA3-induced root aldolase may be modulated through OsCDPK13. Aldolase physically associates with vacuolar H-ATPase in roots and may regulate the vacuolar H-ATPase mediated control of cell elongation that determines root length.

  18. How grow-and-switch gravitropism generates root coiling and root waving growth responses in Medicago truncatula.

    PubMed

    Tan, Tzer Han; Silverberg, Jesse L; Floss, Daniela S; Harrison, Maria J; Henley, Christopher L; Cohen, Itai

    2015-10-20

    Experimental studies show that plant root morphologies can vary widely from straight gravity-aligned primary roots to fractal-like root architectures. However, the opaqueness of soil makes it difficult to observe how environmental factors modulate these patterns. Here, we combine a transparent hydrogel growth medium with a custom built 3D laser scanner to directly image the morphology of Medicago truncatula primary roots. In our experiments, root growth is obstructed by an inclined plane in the growth medium. As the tilt of this rigid barrier is varied, we find Medicago transitions between randomly directed root coiling, sinusoidal root waving, and normal gravity-aligned morphologies. Although these root phenotypes appear morphologically distinct, our analysis demonstrates the divisions are less well defined, and instead, can be viewed as a 2D biased random walk that seeks the path of steepest decent along the inclined plane. Features of this growth response are remarkably similar to the widely known run-and-tumble chemotactic behavior of Escherichia coli bacteria, where biased random walks are used as optimal strategies for nutrient uptake.

  19. Hydrotropism in pea roots in a porous-tube water delivery system

    NASA Technical Reports Server (NTRS)

    Takahashi, H.; Brown, C. S.; Dreschel, T. W.; Scott, T. K.; Knott, W. M. (Principal Investigator)

    1992-01-01

    Orientation of root growth on earth and under microgravity conditions can possibly be controlled by hydrotropism--growth toward a moisture source in the absence of or reduced gravitropism. A porous-tube water delivery system being used for plant growth studies is appropriate for testing this hypothesis since roots can be grown aeroponically in this system. When the roots of the agravitropic mutant pea ageotropum (Pisum sativum L.) were placed vertically in air of 91% relative humidity and 2 to 3 mm from the water-saturated porous tube placed horizontally, the roots responded hydrotropically and grew in a continuous arch along the circular surface of the tube. By contrast, normal gravitropic roots of Alaska' pea initially showed a slight transient curvature toward the tube and then resumed vertical downward growth due to gravitropism. Thus, in microgravity, normal gravitropic roots could respond to a moisture gradient as strongly as the agravitropic roots used in this study. Hydrotropism should be considered a significant factor responsible for orientation of root growth in microgravity.

  20. Potential involvement of drought-induced Ran GTPase CLRan1 in root growth enhancement in a xerophyte wild watermelon.

    PubMed

    Akashi, Kinya; Yoshimura, Kazuya; Kajikawa, Masataka; Hanada, Kouhei; Kosaka, Rina; Kato, Atsushi; Katoh, Akira; Nanasato, Yoshihiko; Tsujimoto, Hisashi; Yokota, Akiho

    2016-10-01

    Enhanced root growth is known as the survival strategy of plants under drought. Previous proteome analysis in drought-resistant wild watermelon has shown that Ran GTPase, an essential regulator of cell division and proliferation, was induced in the roots under drought. In this study, two cDNAs were isolated from wild watermelon, CLRan1 and CLRan2, which showed a high degree of structural similarity with those of other plant Ran GTPases. Quantitative RT-PCR and promoter-GUS assays suggested that CLRan1 was expressed mainly in the root apex and lateral root primordia, whereas CLRan2 was more broadly expressed in other part of the roots. Immunoblotting analysis confirmed that the abundance of CLRan proteins was elevated in the root apex region under drought stress. Transgenic Arabidopsis overexpressing CLRan1 showed enhanced primary root growth, and the growth was maintained under osmotic stress, indicating that CLRan1 functions as a positive factor for maintaining root growth under stress conditions.

  1. Is there an association between root architecture and mycorrhizal growth response?

    PubMed

    Maherali, Hafiz

    2014-10-01

    The symbiosis between arbuscular mycorrhizal (AM) fungi and plants is evolutionarily widespread. The response of plant growth to inoculation by these fungi (mycorrhizal growth response; MGR) is highly variable, ranging from positive to negative. Some of this variation is hypothesized to be associated with root structure and function. Specifically, species with a coarse root architecture, and thus a limited intrinsic capacity to absorb soil nutrients, are expected to derive the greatest growth benefit from inoculation with AM fungi. To test this hypothesis, previously published literature and phylogenetic information were combined in a meta-analysis to examine the magnitude and direction of relationships among several root architectural traits and MGR. Published studies differed in the magnitude and direction of relationships between root architecture and MGR. However, when combined, the overall relationship between MGR and allocation to roots, root diameter, root hair length and root hair density did not differ significantly from zero. These findings indicate that possessing coarse roots is not necessarily a predictor of plant growth response to AM fungal colonization. Root architecture is therefore unlikely to limit the evolution of variation in MGR. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  2. Enhancing cytokinin synthesis by overexpressing ipt alleviated drought inhibition of root growth through activating ROS-scavenging systems in Agrostis stolonifera.

    PubMed

    Xu, Yi; Burgess, Patrick; Zhang, Xunzhong; Huang, Bingru

    2016-03-01

    Drought stress limits root growth and inhibits cytokinin (CK) production. Increases in CK production through overexpression of isopentenyltransferase (ipt) alleviate drought damages to promote root growth. The objective of this study was to investigate whether CK-regulated root growth was involved in the alteration of reactive oxygen species (ROS) production and ROS scavenging capacity under drought stress. Wild-type (WT) creeping bentgrass (Agrostis stolonifera L. 'Penncross') and a transgenic line (S41) overexpressing ipt ligated to a senescence-activated promoter (SAG12) were exposed to drought stress for 21 d in growth chambers. SAG12-ipt transgenic S41 developed a more extensive root system under drought stress compared to the WT. Root physiological analysis (electrolyte leakage and lipid peroxidation) showed that S41 roots exhibited less cellular damage compared to the WT under drought stress. Roots of SAG12-ipt transgenic S41 had significantly higher endogenous CK content than the WT roots under drought stress. ROS (hydrogen peroxide and superoxide) content was significantly lower and content of total and free ascorbate was significantly higher in S41 roots compared to the WT roots under drought stress. Enzymatic assays and transcript abundance analysis showed that superoxide dismutase, catalase, peroxidase, and dehydroascorbate reductase were significantly higher in S41 roots compared to the WT roots under drought stress. S41 roots also maintained significantly higher alternative respiration rates compared to the WT under drought stress. The improved root growth of transgenic creeping bentgrass may be facilitated by CK-enhanced ROS scavenging through antioxidant accumulation and activation of antioxidant enzymes, as well as higher alternative respiration rates when soil water is limited. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  3. Enhancing cytokinin synthesis by overexpressing ipt alleviated drought inhibition of root growth through activating ROS-scavenging systems in Agrostis stolonifera

    PubMed Central

    Xu, Yi; Burgess, Patrick; Zhang, Xunzhong; Huang, Bingru

    2016-01-01

    Drought stress limits root growth and inhibits cytokinin (CK) production. Increases in CK production through overexpression of isopentenyltransferase (ipt) alleviate drought damages to promote root growth. The objective of this study was to investigate whether CK-regulated root growth was involved in the alteration of reactive oxygen species (ROS) production and ROS scavenging capacity under drought stress. Wild-type (WT) creeping bentgrass (Agrostis stolonifera L. ‘Penncross’) and a transgenic line (S41) overexpressing ipt ligated to a senescence-activated promoter (SAG12) were exposed to drought stress for 21 d in growth chambers. SAG12-ipt transgenic S41 developed a more extensive root system under drought stress compared to the WT. Root physiological analysis (electrolyte leakage and lipid peroxidation) showed that S41 roots exhibited less cellular damage compared to the WT under drought stress. Roots of SAG12-ipt transgenic S41 had significantly higher endogenous CK content than the WT roots under drought stress. ROS (hydrogen peroxide and superoxide) content was significantly lower and content of total and free ascorbate was significantly higher in S41 roots compared to the WT roots under drought stress. Enzymatic assays and transcript abundance analysis showed that superoxide dismutase, catalase, peroxidase, and dehydroascorbate reductase were significantly higher in S41 roots compared to the WT roots under drought stress. S41 roots also maintained significantly higher alternative respiration rates compared to the WT under drought stress. The improved root growth of transgenic creeping bentgrass may be facilitated by CK-enhanced ROS scavenging through antioxidant accumulation and activation of antioxidant enzymes, as well as higher alternative respiration rates when soil water is limited. PMID:26889010

  4. The Arabidopsis WAVY GROWTH 2 protein modulates root bending in response to environmental stimuli.

    PubMed

    Mochizuki, Susumu; Harada, Akiko; Inada, Sayaka; Sugimoto-Shirasu, Keiko; Stacey, Nicola; Wada, Takuji; Ishiguro, Sumie; Okada, Kiyotaka; Sakai, Tatsuya

    2005-02-01

    To understand how the direction of root growth changes in response to obstacles, light, and gravity, we characterized an Arabidopsis thaliana mutant, wavy growth 2 (wav2), whose roots show a short-pitch pattern of wavy growth on inclined agar medium. The roots of the wav2 mutant bent with larger curvature than those of the wild-type seedlings in wavy growth and in gravitropic and phototropic responses. The cell file rotations of the root epidermis of wav2-1 in the wavy growth pattern were enhanced in both right-handed and left-handed rotations. WAV2 encodes a protein belonging to the BUD EMERGENCE 46 family with a transmembrane domain at the N terminus and an alpha/beta-hydrolase domain at the C terminus. Expression analyses showed that mRNA of WAV2 was expressed strongly in adult plant roots and seedlings, especially in the root tip, the cell elongation zone, and the stele. Our results suggest that WAV2 is not involved in sensing environmental stimuli but that it negatively regulates stimulus-induced root bending through inhibition of root tip rotation.

  5. Brassinosteroid signaling-dependent root responses to prolonged elevated ambient temperature.

    PubMed

    Martins, Sara; Montiel-Jorda, Alvaro; Cayrel, Anne; Huguet, Stéphanie; Roux, Christine Paysant-Le; Ljung, Karin; Vert, Grégory

    2017-08-21

    Due to their sessile nature, plants have to cope with and adjust to their fluctuating environment. Temperature elevation stimulates the growth of Arabidopsis aerial parts. This process is mediated by increased biosynthesis of the growth-promoting hormone auxin. How plant roots respond to elevated ambient temperature is however still elusive. Here we present strong evidence that temperature elevation impinges on brassinosteroid hormone signaling to alter root growth. We show that elevated temperature leads to increased root elongation, independently of auxin or factors known to drive temperature-mediated shoot growth. We further demonstrate that brassinosteroid signaling regulates root responses to elevated ambient temperature. Increased growth temperature specifically impacts on the level of the brassinosteroid receptor BRI1 to downregulate brassinosteroid signaling and mediate root elongation. Our results establish that BRI1 integrates temperature and brassinosteroid signaling to regulate root growth upon long-term changes in environmental conditions associated with global warming.Moderate heat stimulates the growth of Arabidopsis shoots in an auxin-dependent manner. Here, Martins et al. show that elevated ambient temperature modifies root growth by reducing the BRI1 brassinosteroid-receptor protein level and downregulating brassinosteroid signaling.

  6. Phloem Girdling of Norway Spruce Alters Quantity and Quality of Wood Formation in Roots Particularly Under Drought

    PubMed Central

    Rainer-Lethaus, Gina; Oberhuber, Walter

    2018-01-01

    Carbon (C) availability plays an essential role in tree growth and wood formation. We evaluated the hypothesis that a decrease in C availability (i) triggers mobilization of C reserves in the coarse roots of Picea abies to maintain growth and (ii) causes modification of wood structure notably under drought. The 6-year-old saplings were subjected to two levels of soil moisture (watered versus drought conditions) and root C status was manipulated by physically blocking phloem transport in the stem at three girdling dates (GDs). Stem girdling was done before the onset of bud break [day of the year (doy) 77], during vigorous aboveground shoot and radial stem growth (GD doy 138), and after cessation of shoot growth (GD doy 190). The effect of blockage of C transport on root growth, root phenology, and wood anatomical traits [cell lumen diameter (CLD) and cell wall thickness (CWT)] in earlywood (EW) and latewood (LW) was determined. To evaluate changes in belowground C status caused by girdling, non-structural carbohydrates (soluble sugars and starch) in coarse roots were determined at the time of girdling and after the growing season. Although fine root mass significantly decreased in response to blockage of phloem C transport, the phenology of root elongation growth was not affected. Surprisingly, radial root growth and CLD of EW tracheids in coarse roots were strikingly increased in drought-stressed trees, when girdling occurred before bud break or during aboveground stem growth. In watered trees, the growth response to girdling was less distinct, but the CWT of EW significantly increased. Starch reserves in the roots of girdled trees significantly decreased in both soil moisture treatments and at all GDs. We conclude that (i) radial growth and wood development in coarse roots of P. abies saplings are not only dependent on current photosynthates, and (ii) blockage of phloem transport induces physiological changes that outweigh drought effects imposed on root cambial activity and cell differentiation. PMID:29636766

  7. Fine Root Abundance and Dynamics of Stone Pine (Pinus cembra) at the Alpine Treeline Is Not Impaired by Self-shading

    PubMed Central

    Kubisch, Petra; Leuschner, Christoph; Coners, Heinz; Gruber, Andreas; Hertel, Dietrich

    2017-01-01

    Low temperatures are crucial for the formation of the alpine treeline worldwide. Since soil temperature in the shade of tree canopies is lower than in open sites, it was assumed that self-shading may impair the trees’ root growth performance. While experiments with tree saplings demonstrate root growth impairment at soil temperatures below 5–7°C, field studies exploring the soil temperature – root growth relationship at the treeline are missing. We recorded soil temperature and fine root abundance and dynamics in shaded and sun-exposed areas under canopies of isolated Pinus cembra trees at the alpine treeline. In contrast to the mentioned assumption, we found more fine root biomass and higher fine root growth in colder than in warmer soil areas. Moreover, colder areas showed higher fine root turnover and thus lower root lifespan than warmer places. We conclude that P. cembra balances enhanced fine root mortality in cold soils with higher fine root activity and by maintaining higher fine root biomass, most likely as a response to shortage in soil resource supply. The results from our study highlight the importance of in situ measurements on mature trees to understand the fine root response and carbon allocation pattern to the thermal growth conditions at the alpine treeline. PMID:28469633

  8. Formin homology 1 (OsFH1) regulates root-hair elongation in rice (Oryza sativa).

    PubMed

    Huang, Jin; Kim, Chul Min; Xuan, Yuan-hu; Liu, Jingmiao; Kim, Tae Ho; Kim, Bo-Kyeong; Han, Chang-deok

    2013-05-01

    The outgrowth of root hairs from the epidermal cell layer is regulated by a strict genetic regulatory system and external growth conditions. Rice plants cultivated in water-logged paddy land are exposed to a soil ecology that differs from the environment surrounding upland plants, such as Arabidopsis and maize. To identify genes that play important roles in root-hair growth, a forward genetics approach was used to screen for short-root-hair mutants. A short-root-hair mutant was identified, and the gene was isolated using map-based cloning and sequencing. The mutant harbored a point mutation at a splicing acceptor site, which led to truncation of OsFH1 (rice formin homology 1). Subsequent analysis of two additional T-DNA mutants verified that OsFH1 is important for root-hair elongation. Further studies revealed that the action of OsFH1 on root-hair growth is dependent on growth conditions. The mutant Osfh1 exhibited root-hair defects when roots were grown submerged in solution, and mutant roots produced normal root hairs in the air. However, root-hair phenotypes of mutants were not influenced by the external supply of hormones or carbohydrates, a deficiency of nutrients, such as Fe or P i , or aeration. This study shows that OsFH1 plays a significant role in root-hair elongation in a growth condition-dependent manner.

  9. Early root growth and architecture of fast- and slow-growing Norway spruce (Picea abies) families differ-potential for functional adaptation.

    PubMed

    Hamberg, Leena; Velmala, Sannakajsa M; Sievänen, Risto; Kalliokoski, Tuomo; Pennanen, Taina

    2018-06-01

    The relationship between the growth rate of aboveground parts of trees and fine root development is largely unknown. We investigated the early root development of fast- and slow-growing Norway spruce (Picea abies (L.) H. Karst.) families at a developmental stage when the difference in size is not yet observed. Seedling root architecture data, describing root branching, were collected with the WinRHIZO™ image analysis system, and mixed models were used to determine possible differences between the two growth phenotypes. A new approach was used to investigate the spatial extent of root properties along the whole sample root from the base of 1-year-old seedlings to the most distal part of a root. The root architecture of seedlings representing fast-growing phenotypes showed ~30% higher numbers of root branches and tips, which resulted in larger root extensions and potentially a better ability to acquire nutrients. Seedlings of fast-growing phenotypes oriented and allocated root tips and biomass further away from the base of the seedling than those growing slowly, a possible advantage in nutrient-limited and heterogeneous boreal forest soils. We conclude that a higher long-term growth rate of the aboveground parts in Norway spruce may relate to greater allocation of resources to explorative roots that confers a competitive edge during early growth phases in forest ecosystems.

  10. Formin homology 1 (OsFH1) regulates submergence-dependent root hair development in rice plants.

    PubMed

    Huang, Jin; Liu, Jingmiao; Han, Chang-Deok

    2013-08-01

    By using a forward genetic approach, a formin homology 1 gene (OsFH1) was identified as a critical regulator of rice root hair development. The phenotypic effect of OsFH1 on root hair development was verified by using three independent mutants, one point mutation and two T-DNA insertions. The study showed that OsFH1 is required for the elongation of root-hairs. However, Osfh1 exhibited growth defect of root hairs only when roots were grown submerged in solution. To understand how OsFH1 impinges on plant responses to root submergence, the growth responses of Osfh1 root hairs to anoxia, carbohydrate supplementation and exogenous hormones (auxin and ethylene) and nutrients (Fe and Pi) were examined. However, none of these treatments rescued the growth defects of Osfhl1 root hairs. This study demonstrates that OsFH1 could be involved in preventing submergence-induced inhibition of root hair growth.

  11. Modeling the Hydraulics of Root Growth in Three Dimensions with Phloem Water Sources1[C][OA

    PubMed Central

    Wiegers, Brandy S.; Cheer, Angela Y.; Silk, Wendy K.

    2009-01-01

    Primary growth is characterized by cell expansion facilitated by water uptake generating hydrostatic (turgor) pressure to inflate the cell, stretching the rigid cell walls. The multiple source theory of root growth hypothesizes that root growth involves transport of water both from the soil surrounding the growth zone and from the mature tissue higher in the root via phloem and protophloem. Here, protophloem water sources are used as boundary conditions in a classical, three-dimensional model of growth-sustaining water potentials in primary roots. The model predicts small radial gradients in water potential, with a significant longitudinal gradient. The results improve the agreement of theory with empirical studies for water potential in the primary growth zone of roots of maize (Zea mays). A sensitivity analysis quantifies the functional importance of apical phloem differentiation in permitting growth and reveals that the presence of phloem water sources makes the growth-sustaining water relations of the root relatively insensitive to changes in root radius and hydraulic conductivity. Adaptation to drought and other environmental stresses is predicted to involve more apical differentiation of phloem and/or higher phloem delivery rates to the growth zone. PMID:19542299

  12. Modeling the hydraulics of root growth in three dimensions with phloem water sources.

    PubMed

    Wiegers, Brandy S; Cheer, Angela Y; Silk, Wendy K

    2009-08-01

    Primary growth is characterized by cell expansion facilitated by water uptake generating hydrostatic (turgor) pressure to inflate the cell, stretching the rigid cell walls. The multiple source theory of root growth hypothesizes that root growth involves transport of water both from the soil surrounding the growth zone and from the mature tissue higher in the root via phloem and protophloem. Here, protophloem water sources are used as boundary conditions in a classical, three-dimensional model of growth-sustaining water potentials in primary roots. The model predicts small radial gradients in water potential, with a significant longitudinal gradient. The results improve the agreement of theory with empirical studies for water potential in the primary growth zone of roots of maize (Zea mays). A sensitivity analysis quantifies the functional importance of apical phloem differentiation in permitting growth and reveals that the presence of phloem water sources makes the growth-sustaining water relations of the root relatively insensitive to changes in root radius and hydraulic conductivity. Adaptation to drought and other environmental stresses is predicted to involve more apical differentiation of phloem and/or higher phloem delivery rates to the growth zone.

  13. Root phenology at Harvard Forest and beyond

    NASA Astrophysics Data System (ADS)

    Abramoff, R. Z.; Finzi, A.

    2013-12-01

    Roots are hidden from view and heterogeneously distributed making them difficult to study in situ. As a result, the causes and timing of root production are not well understood. Researchers have long assumed that above and belowground phenology is synchronous; for example, most parameterizations of belowground carbon allocation in terrestrial biosphere models are based on allometry and represent a fixed fraction of net C uptake. However, using results from metaanalysis as well as empirical data from oak and hemlock stands at Harvard Forest, we show that synchronous root and shoot growth is the exception rather than the rule. We collected root and shoot phenology measurements from studies across four biomes (boreal, temperate, Mediterranean, and subtropical). General patterns of root phenology varied widely with 1-5 production peaks in a growing season. Surprisingly, in 9 out of the 15 studies, the first root production peak was not the largest peak. In the majority of cases maximum shoot production occurred before root production (Offset>0 in 32 out of 47 plant sample means). The number of days offset between maximum root and shoot growth was negatively correlated with median annual temperature and therefore differs significantly across biomes (ANOVA, F3,43=9.47, p<0.0001). This decline in offset with increasing temperature may reflect greater year-round coupling between air and soil temperature in warm biomes. Growth form (woody or herbaceous) also influenced the relative timing of root and shoot growth. Woody plants had a larger range of days between root and shoot growth peaks as well as a greater number of growth peaks. To explore the range of phenological relationships within woody plants in the temperate biome, we focused on above and belowground phenology in two common northeastern tree species, Quercus rubra and Tsuga canadensis. Greenness index, rate of stem growth, root production and nonstructural carbohydrate content were measured beginning in April 2012 through August 2013 at the Harvard Forest in Petersham, MA, USA. Greenness and stem growth were highest in late May and early June with one clear maximum growth period. In contrast, root growth was characterized by multiple production peaks. Q. rubra root growth experienced many small flushes around day of year (DOY) 156 (early June) and one large peak on 234 (late August). T. canadensis root growth peaked on DOY 188 (early July), 234.5 (late August) and 287 (mid-October). However, particular phenological patterns varied widely from site to site. Despite large spatial heterogeneity, it appears that Q. rubra experiences greater overall root production as well as more allocation to roots during the growing season. The storage pool of nonstructural carbohydrates experiences a mid-summer drawdown in Q. rubra but not T. canadensis roots. Timing of belowground C allocation to root growth and nonstructural carbohydrate accumulation may be regulated by climate factors as well as endogenous factors such as vessel size, growth form, or tradeoffs in C allocated between plant organs. Plant roots supply substrate to microbial communities and hence their production feeds back to other plant and soil processes that affect ecosystem C fluxes.

  14. GTL1 and DF1 regulate root hair growth through transcriptional repression of ROOT HAIR DEFECTIVE 6-LIKE 4 in Arabidopsis

    PubMed Central

    Breuer, Christian; Kawamura, Ayako; Clark, Natalie M.; Morohashi, Kengo; Busch, Wolfgang; Benfey, Philip N.; Sozzani, Rosangela

    2018-01-01

    ABSTRACT How plants determine the final size of growing cells is an important, yet unresolved, issue. Root hairs provide an excellent model system with which to study this as their final cell size is remarkably constant under constant environmental conditions. Previous studies have demonstrated that a basic helix-loop helix transcription factor ROOT HAIR DEFECTIVE 6-LIKE 4 (RSL4) promotes root hair growth, but how hair growth is terminated is not known. In this study, we demonstrate that a trihelix transcription factor GT-2-LIKE1 (GTL1) and its homolog DF1 repress root hair growth in Arabidopsis. Our transcriptional data, combined with genome-wide chromatin-binding data, show that GTL1 and DF1 directly bind the RSL4 promoter and regulate its expression to repress root hair growth. Our data further show that GTL1 and RSL4 regulate each other, as well as a set of common downstream genes, many of which have previously been implicated in root hair growth. This study therefore uncovers a core regulatory module that fine-tunes the extent of root hair growth by the orchestrated actions of opposing transcription factors. PMID:29439132

  15. Analysis of changes in relative elemental growth rate patterns in the elongation zone of Arabidopsis roots upon gravistimulation

    NASA Technical Reports Server (NTRS)

    Mullen, J. L.; Ishikawa, H.; Evans, M. L.

    1998-01-01

    Although Arabidopsis is an important system for studying root physiology, the localized growth patterns of its roots have not been well defined, particularly during tropic responses. In order to characterize growth rate profiles along the apex of primary roots of Arabidopsis thaliana (L.) Heynh (ecotype Columbia) we applied small charcoal particles to the root surface and analyzed their displacement during growth using an automated video digitizer system with custom software for tracking the markers. When growing vertically, the maximum elongation rate occurred 481 +/- 50 microns back from the extreme tip of the root (tip of root cap), and the elongation zone extended back to 912 +/- 137 microns. The distal elongation zone (DEZ) has previously been described as the apical region of the elongation zone in which the relative elemental growth rate (REGR) is < or = 30% of the peak rate in the central elongation zone. By this definition, our data indicate that the basal limit of the DEZ was located 248 +/- 30 microns from the root tip. However, after gravistimulation, the growth patterns of the root changed. Within the first hour of graviresponse, the basal limit of the DEZ and the position of peak REGR shifted apically on the upper flank of the root. This was due to a combination of increased growth in the DEZ and growth inhibition in the central elongation zone. On the lower flank, the basal limit of the DEZ shifted basipetally as the REGR decreased. These factors set up the gradient of growth rate across the root, which drives curvature.

  16. Root Growth Patterns and Morphometric Change Based on the Growth Media

    NASA Astrophysics Data System (ADS)

    Schultz, Eric R.; Paul, Anna-Lisa; Ferl, Robert J.

    2016-12-01

    Arabidopsis thaliana roots skew with minimal waving in the microgravity environment of the International Space Station. Root skewing and root waving have been studied on the ground as well as in spaceflight, but often using different media types. In this study, Arabidopsis seedlings were grown on nutrient media plates that were comprised of various gelling agents with varied hardness in order to better assess these media for spaceflight research experiments. ImageJ was used to quantify the root morphology of 8-dayold seedlings, while R was used to perform statistical analyses. Root growth was drastically different between Difco agar, agarose, and Phytagel. Additionally, root waving masked skewing in certain media. Regression analysis revealed overall patterns when organized by hardness but also revealed that differences in media type had more of an impact on root growth than hardness itself. Different arrangements of media around the root tip revealed that roots grown on the media surface were longer and had fewer waves per millimeter than roots grown embedded in media. The implications for spaceflight research are discussed.

  17. Soil weathering agents are limited where deep tree roots are removed, even after decades of forest regeneration

    NASA Astrophysics Data System (ADS)

    Billings, S. A.; Richter, D. D., Jr.; Hirmas, D.; Lehmeier, C.; Bagchi, S.; Brecheisen, Z.; Sullivan, P. L.; Min, K.; Hauser, E.; Stair, R.; Flournoy, R.

    2017-12-01

    Deep roots pump reduced C deep into Earth's critical zone (CZ) as they grow and function. This action generates acid-forming CO2 and organic acids (OA) and fosters microbes that also produce these weathering agents. This phenomenon results in a regolith-weathering reaction front that propagates down with vertical root extension and water infiltration. Across old-growth hardwood, younger pine, and annual crop plots at the Calhoun Critical Zone Observatory, we tested the hypothesis that persistent absence of deep roots, a widespread anthropogenic phenomenon, reduces root- and microbially-mediated biogeochemical pools and fluxes important for weathering, even well below maximum root density. We also hypothesized that land use effects on deep soil biogeochemistry is evident even after decades of forest regeneration. Root abundance to 2 m declined with depth, and was greater in old-growth and regenerating forests than in crop plots at most depths. Old-growth soils also contain more roots than younger pine soils: between 30-45 and 70-80 cm depth, old-growth root abundances were greater than in regenerating forests, and old-growth soils exhibited root distributions with less severe declines with depth and harbored more root-associated bacteria than younger forests. Changing root abundances influenced concentrations of weathering agents. At 3 m, in situ soil [CO2] reached 6%, 4%, and 2% in old-growth, regenerating, and crop soils, respectively. Soil organic C (SOC) and extractable OC (EOC, an OA proxy) did not differ across land use, but at 4-5 m EOC/SOC was higher in old-growth compared to regenerating forests and crop soils (20.0±2.6 vs. 2.0±1.0%). We suggest that biogeochemistry deep beneath old-growth forests reflects greater root prevalence and propensity for generation of weathering agents, and that disturbance regimes inducing deep root mortality impose top-down signals relevant to weathering processes deep in Earth's CZ even after decades of forest regeneration.

  18. Functional genomics of root growth and development in Arabidopsis

    PubMed Central

    Iyer-Pascuzzi, Anjali; Simpson, June; Herrera-Estrella, Luis; Benfey, Philip N.

    2009-01-01

    Summary Roots are vital for the uptake of water and nutrients, and for anchorage in the soil. They are highly plastic, able to adapt developmentally and physiologically to changing environmental conditions. Understanding the molecular mechanisms behind this growth and development requires knowledge of root transcriptomics, proteomics and metabolomics. Genomics approaches, including the recent publication of a root expression map, root proteome, and environment-specific root expression studies, are uncovering complex transcriptional and post-transcriptional networks underlying root development. The challenge is in further capitalizing on the information in these datasets to understand the fundamental principles of root growth and development. In this review, we highlight progress researchers have made toward this goal. PMID:19117793

  19. Functional genomics of root growth and development in Arabidopsis.

    PubMed

    Iyer-Pascuzzi, Anjali; Simpson, June; Herrera-Estrella, Luis; Benfey, Philip N

    2009-04-01

    Roots are vital for the uptake of water and nutrients, and for anchorage in the soil. They are highly plastic, able to adapt developmentally and physiologically to changing environmental conditions. Understanding the molecular mechanisms behind this growth and development requires knowledge of root transcriptomics, proteomics, and metabolomics. Genomics approaches, including the recent publication of a root expression map, root proteome, and environment-specific root expression studies, are uncovering complex transcriptional and post-transcriptional networks underlying root development. The challenge is in further capitalizing on the information in these datasets to understand the fundamental principles of root growth and development. In this review, we highlight progress researchers have made toward this goal.

  20. Tree growth and management in Ugandan agroforestry systems: effects of root pruning on tree growth and crop yield.

    PubMed

    Wajja-Musukwe, Tellie-Nelson; Wilson, Julia; Sprent, Janet I; Ong, Chin K; Deans, J Douglas; Okorio, John

    2008-02-01

    Tree root pruning is a potential tool for managing belowground competition when trees and crops are grown together in agroforestry systems. We investigated the effects of tree root pruning on shoot growth and root distribution of Alnus acuminata (H.B. & K.), Casuarina equisetifolia L., Grevillea robusta A. Cunn. ex R. Br., Maesopsis eminii Engl. and Markhamia lutea (Benth.) K. Schum. and on yield of adjacent crops in sub-humid Uganda. The trees were 3 years old at the commencement of the study, and most species were competing strongly with crops. Tree roots were pruned 41 months after planting by cutting and back-filling a trench to a depth of 0.3 m, at a distance of 0.3 m from the trees, on one side of the tree row. The trench was reopened and roots recut at 50 and 62 months after planting. We assessed the effects on tree growth and root distribution over a 3 year period, and crop yield after the third root pruning at 62 months. Overall, root pruning had only a slight effect on aboveground tree growth: height growth was unaffected and diameter growth was reduced by only 4%. A substantial amount of root regrowth was observed by 11 months after pruning. Tree species varied in the number and distribution of roots, and C. equisetifolia and M. lutea had considerably more roots per unit of trunk volume than the other species, especially in the surface soil layers. Casuarina equisetifolia and M. eminii were the tree species most competitive with crops and G. robusta and M. lutea the least competitive. Crop yield data provided strong evidence of the redistribution of root activity following root pruning, with competition increasing on the unpruned side of tree rows. Thus, one-sided root pruning will be useful in only a few circumstances.

  1. Human Life History Evolution Explains Dissociation between the Timing of Tooth Eruption and Peak Rates of Root Growth

    PubMed Central

    Dean, M. Christopher; Cole, Tim J.

    2013-01-01

    We explored the relationship between growth in tooth root length and the modern human extended period of childhood. Tooth roots provide support to counter chewing forces and so it is advantageous to grow roots quickly to allow teeth to erupt into function as early as possible. Growth in tooth root length occurs with a characteristic spurt or peak in rate sometime between tooth crown completion and root apex closure. Here we show that in Pan troglodytes the peak in root growth rate coincides with the period of time teeth are erupting into function. However, the timing of peak root velocity in modern humans occurs earlier than expected and coincides better with estimates for tooth eruption times in Homo erectus. With more time to grow longer roots prior to eruption and smaller teeth that now require less support at the time they come into function, the root growth spurt no longer confers any advantage in modern humans. We suggest that a prolonged life history schedule eventually neutralised this adaptation some time after the appearance of Homo erectus. The root spurt persists in modern humans as an intrinsic marker event that shows selection operated, not primarily on tooth tissue growth, but on the process of tooth eruption. This demonstrates the overarching influence of life history evolution on several aspects of dental development. These new insights into tooth root growth now provide an additional line of enquiry that may contribute to future studies of more recent life history and dietary adaptations within the genus Homo. PMID:23342167

  2. The influence of calcium and pH on growth in primary roots of Zea mays

    NASA Technical Reports Server (NTRS)

    Hasenstein, K. H.; Evans, M. L.

    1988-01-01

    We investigated the interaction of Ca2+ and pH on root elongation in Zea mays L. cv. B73 x Missouri 17 and cv. Merit. Seedlings were raised to contain high levels of Ca2+ (HC, imbibed and raised in 10 mM CaCl2) or low levels of Ca2+ (LC, imbibed and raised in distilled water). In HC roots, lowering the pH (5 mM MES/Tris) from 6.5 to 4.5 resulted in strong, long-lasting growth promotion. Surprisingly, increasing the pH from 6.5 to 8.5 also resulted in strong growth promotion. In LC roots acidification of the medium (pH 6.5 to 4.5) resulted in transient growth stimulation followed by a gradual decline in the growth rate toward zero. Exposure of LC roots to high pH (pH shift from 6.5 to 8.5) also promoted growth. Addition of EGTA resulted in strong growth promotion in both LC and HC roots. The ability of EGTA to stimulate growth appeared not to be related to H+ release from EGTA upon Ca2+ chelation since, 1) LC roots showed a strong and prolonged response to EGTA, but only a transient response to acid pH, and 2) promotion of growth by EGTA was observed in strongly buffered solutions. We also examined the pH dependence of the release of 45Ca2+ from roots of 3-day-old seedlings grown from grains imbibed in 45Ca2+. Release of 45Ca2+ from the root into agar blocks placed on the root surface was greater the more acidic the pH of the blocks. The results indicate that Ca2+ may be necessary for the acid growth response in roots.

  3. Phosphorus and magnesium interactively modulate the elongation and directional growth of primary roots in Arabidopsis thaliana (L.) Heynh

    PubMed Central

    Niu, Yaofang; Jin, Gulei; Li, Xin; Tang, Caixian; Zhang, Yongsong; Liang, Yongchao; Yu, Jingquan

    2015-01-01

    A balanced supply of essential nutrients is an important factor influencing root architecture in many plants, yet data related to the interactive effects of two nutrients on root growth are limited. Here, we investigated the interactive effect between phosphorus (P) and magnesium (Mg) on root growth of Arabidopsis grown in pH-buffered agar medium at different P and Mg levels. The results showed that elongation and deviation of primary roots were directly correlated with the amount of P added to the medium but could be modified by the Mg level, which was related to the root meristem activity and stem-cell division. High P enhanced while low P decreased the tip-focused fluorescence signal of auxin biosynthesis, transport, and redistribution during elongation of primary roots; these effects were greater under low Mg than under high Mg. The altered root growth in response to P and Mg supply was correlated with AUX1, PIN2, and PIN3 mRNA abundance and expression and the accumulation of the protein. Application of either auxin influx inhibitor or efflux inhibitor inhibited the elongation and increased the deviation angle of primary roots, and decreased auxin level in root tips. Furthermore, the auxin-transport mutants aux1-22 and eir1-1 displayed reduced root growth and increased the deviation angle. Our data suggest a profound effect of the combined supply of P and Mg on the development of root morphology in Arabidopsis through auxin signals that modulate the elongation and directional growth of primary root and the expression of root differentiation and development genes. PMID:25922494

  4. Rates of root and organism growth, soil conditions, and temporal and spatial development of the rhizosphere.

    PubMed

    Watt, Michelle; Silk, Wendy K; Passioura, John B

    2006-05-01

    Roots growing in soil encounter physical, chemical and biological environments that influence their rhizospheres and affect plant growth. Exudates from roots can stimulate or inhibit soil organisms that may release nutrients, infect the root, or modify plant growth via signals. These rhizosphere processes are poorly understood in field conditions. We characterize roots and their rhizospheres and rates of growth in units of distance and time so that interactions with soil organisms can be better understood in field conditions. We review: (1) distances between components of the soil, including dead roots remnant from previous plants, and the distances between new roots, their rhizospheres and soil components; (2) characteristic times (distance(2)/diffusivity) for solutes to travel distances between roots and responsive soil organisms; (3) rates of movement and growth of soil organisms; (4) rates of extension of roots, and how these relate to the rates of anatomical and biochemical ageing of root tissues and the development of the rhizosphere within the soil profile; and (5) numbers of micro-organisms in the rhizosphere and the dependence on the site of attachment to the growing tip. We consider temporal and spatial variation within the rhizosphere to understand the distribution of bacteria and fungi on roots in hard, unploughed soil, and the activities of organisms in the overlapping rhizospheres of living and dead roots clustered in gaps in most field soils. Rhizosphere distances, characteristic times for solute diffusion, and rates of root and organism growth must be considered to understand rhizosphere development. Many values used in our analysis were estimates. The paucity of reliable data underlines the rudimentary state of our knowledge of root-organism interactions in the field.

  5. The wavy growth 3 E3 ligase family controls the gravitropic response in Arabidopsis roots.

    PubMed

    Sakai, Tatsuya; Mochizuki, Susumu; Haga, Ken; Uehara, Yukiko; Suzuki, Akane; Harada, Akiko; Wada, Takuji; Ishiguro, Sumie; Okada, Kiyotaka

    2012-04-01

    Regulation of the root growth pattern is an important control mechanism during plant growth and propagation. To better understand alterations in root growth direction in response to environmental stimuli, we have characterized an Arabidopsis thaliana mutant, wavy growth 3 (wav3), whose roots show a short-pitch pattern of wavy growth on inclined agar medium. The wav3 mutant shows a greater curvature of root bending in response to gravity, but a smaller curvature in response to light, suggesting that it is a root gravitropism-enhancing mutation. This wav3 phenotype also suggests that enhancement of the gravitropic response in roots strengthens root tip impedance after contact with the agar surface and/or causes an increase in subsequent root bending in response to obstacle-touching stimulus in these mutants. WAV3 encodes a protein with a RING finger domain, and is mainly expressed in root tips. RING-containing proteins often function as an E3 ubiquitin ligase, and the WAV3 protein shows such activity in vitro. There are three genes homologous to WAV3 in the Arabidopsis genome [EMBRYO SAC DEVELOPMENT ARREST 40 (EDA40), WAVH1 and WAVH2 ], and wav3 wavh1 wavh2 triple mutants show marked root gravitropism abnormalities. This genetic study indicates that WAV3 functions positively rather than negatively in root gravitropism, and that enhancement of the gravitropic response in wav3 roots is dependent upon the function of WAVH2 in the absence of WAV3. Hence, our results demonstrate that the WAV3 family of proteins are E3 ligases that are required for root gravitropism in Arabidopsis. © 2011 The Authors. The Plant Journal © 2011 Blackwell Publishing Ltd.

  6. Abscisic Acid Regulation of Root Hydraulic Conductivity and Aquaporin Gene Expression Is Crucial to the Plant Shoot Growth Enhancement Caused by Rhizosphere Humic Acids.

    PubMed

    Olaetxea, Maite; Mora, Verónica; Bacaicoa, Eva; Garnica, María; Fuentes, Marta; Casanova, Esther; Zamarreño, Angel M; Iriarte, Juan C; Etayo, David; Ederra, Iñigo; Gonzalo, Ramón; Baigorri, Roberto; García-Mina, Jose M

    2015-12-01

    The physiological and metabolic mechanisms behind the humic acid-mediated plant growth enhancement are discussed in detail. Experiments using cucumber (Cucumis sativus) plants show that the shoot growth enhancement caused by a structurally well-characterized humic acid with sedimentary origin is functionally associated with significant increases in abscisic acid (ABA) root concentration and root hydraulic conductivity. Complementary experiments involving a blocking agent of cell wall pores and water root transport (polyethylenglycol) show that increases in root hydraulic conductivity are essential in the shoot growth-promoting action of the model humic acid. Further experiments involving an inhibitor of ABA biosynthesis in root and shoot (fluridone) show that the humic acid-mediated enhancement of both root hydraulic conductivity and shoot growth depended on ABA signaling pathways. These experiments also show that a significant increase in the gene expression of the main root plasma membrane aquaporins is associated with the increase of root hydraulic conductivity caused by the model humic acid. Finally, experimental data suggest that all of these actions of model humic acid on root functionality, which are linked to its beneficial action on plant shoot growth, are likely related to the conformational structure of humic acid in solution and its interaction with the cell wall at the root surface. © 2015 American Society of Plant Biologists. All Rights Reserved.

  7. Abscisic Acid Regulation of Root Hydraulic Conductivity and Aquaporin Gene Expression Is Crucial to the Plant Shoot Growth Enhancement Caused by Rhizosphere Humic Acids1

    PubMed Central

    Bacaicoa, Eva; Garnica, María; Fuentes, Marta; Casanova, Esther; Etayo, David; Ederra, Iñigo; Gonzalo, Ramón

    2015-01-01

    The physiological and metabolic mechanisms behind the humic acid-mediated plant growth enhancement are discussed in detail. Experiments using cucumber (Cucumis sativus) plants show that the shoot growth enhancement caused by a structurally well-characterized humic acid with sedimentary origin is functionally associated with significant increases in abscisic acid (ABA) root concentration and root hydraulic conductivity. Complementary experiments involving a blocking agent of cell wall pores and water root transport (polyethylenglycol) show that increases in root hydraulic conductivity are essential in the shoot growth-promoting action of the model humic acid. Further experiments involving an inhibitor of ABA biosynthesis in root and shoot (fluridone) show that the humic acid-mediated enhancement of both root hydraulic conductivity and shoot growth depended on ABA signaling pathways. These experiments also show that a significant increase in the gene expression of the main root plasma membrane aquaporins is associated with the increase of root hydraulic conductivity caused by the model humic acid. Finally, experimental data suggest that all of these actions of model humic acid on root functionality, which are linked to its beneficial action on plant shoot growth, are likely related to the conformational structure of humic acid in solution and its interaction with the cell wall at the root surface. PMID:26450705

  8. Cell wall-associated ROOT HAIR SPECIFIC 10, a proline-rich receptor-like kinase, is a negative modulator of Arabidopsis root hair growth

    PubMed Central

    Hwang, Youra; Lee, Hyodong; Lee, Young-Sook; Cho, Hyung-Taeg

    2016-01-01

    Plant cell growth is restricted by the cell wall, and cell wall dynamics act as signals for the cytoplasmic and nuclear events of cell growth. Among various receptor kinases, ROOT HAIR SPECIFIC 10 (RHS10) belongs to a poorly known receptor kinase subfamily with a proline-rich extracellular domain. Here, we report that RHS10 defines the root hair length of Arabidopsis thaliana by negatively regulating hair growth. RHS10 modulates the duration of root hair growth rather than the growth rate. As poplar and rice RHS10 orthologs also showed a root hair-inhibitory function, this receptor kinase-mediated function appears to be conserved in angiosperms. RHS10 showed a strong association with the cell wall, most probably through its extracellular proline-rich domain (ECD). Deletion analysis of the ECD demonstrated that a minimal extracellular part, which includes a few proline residues, is required for RHS10-mediated root hair inhibition. RHS10 suppressed the accumulation of reactive oxygen species (ROS) in the root, which are necessary for root hair growth. A yeast two-hybrid screening identified an RNase (RNS2) as a putative downstream target of RHS10. Accordingly, RHS10 overexpression decreased and RHS10 loss increased RNA levels in the hair-growing root region. Our results suggest that RHS10 mediates cell wall-associated signals to maintain proper root hair length, at least in part by regulating RNA catabolism and ROS accumulation. PMID:26884603

  9. Root growth and hydraulic conductivity of southern pine seedlings in response to soil temperature and water availability after planting

    Treesearch

    Mary Anne Sword Sayer; John C. Brissette; James P. Barnett

    2005-01-01

    Comparison of the root system growth and water transport of southern pine species after planting in different root-zone environments is needed to guide decisions regarding when, and what species to plant. Evaluation of how seed source affects root system responses to soil conditions will allow seed sources to be matched to planting conditions. The root growth and...

  10. Effect of soil acidity, soil strength and macropores on root growth and morphology of perennial grass species differing in acid-soil resistance.

    PubMed

    Haling, Rebecca E; Simpson, Richard J; Culvenor, Richard A; Lambers, Hans; Richardson, Alan E

    2011-03-01

    It is unclear whether roots of acid-soil resistant plants have significant advantages, compared with acid-soil sensitive genotypes, when growing in high-strength, acid soils or in acid soils where macropores may allow the effects of soil acidity and strength to be avoided. The responses of root growth and morphology to soil acidity, soil strength and macropores by seedlings of five perennial grass genotypes differing in acid-soil resistance were determined, and the interaction of soil acidity and strength for growth and morphology of roots was investigated. Soil acidity and strength altered root length and architecture, root hair development, and deformed the root tip, especially in acid-soil sensitive genotypes. Root length was restricted to some extent by soil acidity in all genotypes, but the adverse impact of soil acidity on root growth by acid-soil resistant genotypes was greater at high levels of soil strength. Roots reacted to soil acidity when growing in macropores, but elongation through high-strength soil was improved. Soil strength can confound the effect of acidity on root growth, with the sensitivity of acid-resistant genotypes being greater in high-strength soils. This highlights the need to select for genotypes that resist both acidity and high soil strength. © 2010 Blackwell Publishing Ltd.

  11. Reductions in maize root-tip elongation by salt and osmotic stress do not correlate with apoplastic O2*- levels.

    PubMed

    Bustos, Dolores; Lascano, Ramiro; Villasuso, Ana Laura; Machado, Estela; Senn, María Eugenia; Córdoba, Alicia; Taleisnik, Edith

    2008-10-01

    Experimental evidence in the literature suggests that O(2)(*-) produced in the elongation zone of roots and leaves by plasma membrane NADPH oxidase activity is required for growth. This study explores whether growth changes along the root tip induced by hyperosmotic treatments in Zea mays are associated with the distribution of apoplastic O(2)(*-). Stress treatments were imposed using 150 mm NaCl or 300 mM sorbitol. Root elongation rates and the spatial distribution of growth rates in the root tip were measured. Apoplastic O(2)(*-) was determined using nitro blue tetrazolium, and H(2)O(2) was determined using 2', 7'-dichlorofluorescin. In non-stressed plants, the distribution of accelerating growth and highest O(2)(*-) levels coincided along the root tip. Salt and osmotic stress of the same intensity had similar inhibitory effects on root elongation, but O(2)(*-) levels increased in sorbitol-treated roots and decreased in NaCl-treated roots. The lack of association between apoplastic O(2)(*-) levels and root growth inhibition under hyper-osmotic stress leads us to hypothesize that under those conditions the role of apoplastic O(2)(*-) may be to participate in signalling processes, that convey information on the nature of the substrate that the growing root is exploring.

  12. The effects of Vexar® seedling protectors on the growth and development of lodgepole pine roots

    USGS Publications Warehouse

    Engeman, Richard M.; Anthony, R. Michael; Krupa, Heather W.; Evans, James

    1997-01-01

    The effects on the growth and development of lodgepole pine roots from the Vexar® tubes used to protect seedlings from pocket gopher damage were studied in the Targhee National Forest, Idaho and the Deschutes National Forest, Oregon. At each site, Vexar-protected and unprotected seedlings, with and without above-ground gopher damage were examined after six growing seasons for root deformities and growth. Undamaged seedlings exhibited greater growth, reflecting the importance of non-lethal gopher damage as a deterrent to tree growth. Protected seedlings with similar damage history as unprotected seedlings had greater root depth than unprotected seedlings, although unprotected seedlings with no above-ground damage generally had the greatest root weight. In general, the percent of seedlings with root deformities was greater for the unprotected seedlings than for the Vexar-protectd seedlings, although this could be largely due to the greater care required to plant protected seedlings. Acute deformities were more common for unprotected seedlings, whereas root deformities with less severe bending were more common for protected seedlings. The incidence of crossed roots was similar for protected and unprotected seedlings on the Deschutes site, where enough occurrences of this deformity permitted analyses. Protected seedlings were similar in root abundance, root distribution, root size and vigor to the unprotected seedlings, with some indication from the Deshutes study site that root distribution was improved with Vexar protection.

  13. Characterizing roots and water uptake in a ground cover rice production system.

    PubMed

    Li, Sen; Zuo, Qiang; Wang, Xiaoyu; Ma, Wenwen; Jin, Xinxin; Shi, Jianchu; Ben-Gal, Alon

    2017-01-01

    Water-saving ground cover rice production systems (GCRPS) are gaining popularity in many parts of the world. We aimed to describe the characteristics of root growth, morphology, distribution, and water uptake for a GCRPS. A traditional paddy rice production system (TPRPS) was compared with GCRPS in greenhouse and field experiments. In the greenhouse, GCRPS where root zone average soil water content was kept near saturation (GCRPSsat), field capacity (GCRPSfwc) and 80% field capacity (GCRPS80%), were evaluated. In a two-year field experiment, GCRPSsat and GCRPS80% were applied. Similar results were found in greenhouse and field experiments. Before mid-tillering the upper soil temperature was higher for GCRPS, leading to enhanced root dry weight, length, surface area, specific root length, and smaller diameter of roots but lower water uptake rate per root length compared to TPRPS. In subsequent growth stages, the reduced soil water content under GCRPS caused that the preponderance of root growth under GCRPSsat disappeared in comparison to TPRPS. Under other GCRPS treatments (GCRPSfwc and GCRPS80%), significant limitation on root growth, bigger root diameter and higher water uptake rate per root length were found. Discrepancies in soil water and temperature between TPRPS and GCRPS caused adjustments to root growth, morphology, distribution and function. Even though drought stress was inevitable after mid-tillering under GCRPS, especially GCRPS80%, similar or even enhanced root water uptake capacity in comparison to TPRPS might promote allocation of photosynthetic products to shoots and increase water productivity.

  14. Phene Synergism between Root Hair Length and Basal Root Growth Angle for Phosphorus Acquisition1[OPEN

    PubMed Central

    Miguel, Magalhaes Amade

    2015-01-01

    Shallow basal root growth angle (BRGA) increases phosphorus acquisition efficiency by enhancing topsoil foraging because in most soils, phosphorus is concentrated in the topsoil. Root hair length and density (RHL/D) increase phosphorus acquisition by expanding the soil volume subject to phosphorus depletion through diffusion. We hypothesized that shallow BRGA and large RHL/D are synergetic for phosphorus acquisition, meaning that their combined effect is greater than the sum of their individual effects. To evaluate this hypothesis, phosphorus acquisition in the field in Mozambique was compared among recombinant inbred lines of common bean (Phaseolus vulgaris) having four distinct root phenotypes: long root hairs and shallow basal roots, long root hairs and deep basal roots, short root hairs and shallow basal roots, and short root hairs and deep basal roots. The results revealed substantial synergism between BRGA and RHL/D. Compared with short-haired, deep-rooted phenotypes, long root hairs increased shoot biomass under phosphorus stress by 89%, while shallow roots increased shoot biomass by 58%. Genotypes with both long root hairs and shallow roots had 298% greater biomass accumulation than short-haired, deep-rooted phenotypes. Therefore, the utility of shallow basal roots and long root hairs for phosphorus acquisition in combination is twice as large as their additive effects. We conclude that the anatomical phene of long, dense root hairs and the architectural phene of shallower basal root growth are synergetic for phosphorus acquisition. Phene synergism may be common in plant biology and can have substantial importance for plant fitness, as shown here. PMID:25699587

  15. Salt modulates gravity signaling pathway to regulate growth direction of primary roots in Arabidopsis.

    PubMed

    Sun, Feifei; Zhang, Wensheng; Hu, Haizhou; Li, Bao; Wang, Youning; Zhao, Yankun; Li, Kexue; Liu, Mengyu; Li, Xia

    2008-01-01

    Plant root architecture is highly plastic during development and can adapt to many environmental stresses. The proper distribution of roots within the soil under various conditions such as salinity, water deficit, and nutrient deficiency greatly affects plant survival. Salinity profoundly affects the root system architecture of Arabidopsis (Arabidopsis thaliana). However, despite the inhibitory effects of salinity on root length and the number of roots, very little is known concerning influence of salinity on root growth direction and the underlying mechanisms. Here we show that salt modulates root growth direction by reducing the gravity response. Exposure to salt stress causes rapid degradation of amyloplasts in root columella cells of Arabidopsis. The altered root growth direction in response to salt was found to be correlated with PIN-FORMED2 (PIN2) messenger RNA abundance and expression and localization of the protein. Furthermore, responsiveness to gravity of salt overly sensitive (sos) mutants is substantially reduced, indicating that salt-induced altered gravitropism of root growth is mediated by ion disequilibrium. Mutation of SOS genes also leads to reduced amyloplast degradation in root tip columella cells and the defects in PIN2 gene expression in response to salt stress. These results indicate that the SOS pathway may mediate the decrease of PIN2 messenger RNA in salinity-induced modification of gravitropic response in Arabidopsis roots. Our findings provide new insights into the development of a root system necessary for plant adaptation to high salinity and implicate an important role of the SOS signaling pathway in this process.

  16. Jasmonic Acid Enhances Al-Induced Root Growth Inhibition1[OPEN

    PubMed Central

    Yang, Zhong-Bao; Ma, Yanqi

    2017-01-01

    Phytohormones such as ethylene and auxin are involved in the regulation of the aluminum (Al)-induced root growth inhibition. Although jasmonate (JA) has been reported to play a crucial role in the regulation of root growth and development in response to environmental stresses through interplay with ethylene and auxin, its role in the regulation of root growth response to Al stress is not yet known. In an attempt to elucidate the role of JA, we found that exogenous application of JA enhanced the Al-induced root growth inhibition. Furthermore, phenotype analysis with mutants defective in either JA biosynthesis or signaling suggests that JA is involved in the regulation of Al-induced root growth inhibition. The expression of the JA receptor CORONATINE INSENSITIVE1 (COI1) and the key JA signaling regulator MYC2 was up-regulated in response to Al stress in the root tips. This process together with COI1-mediated Al-induced root growth inhibition under Al stress was controlled by ethylene but not auxin. Transcriptomic analysis revealed that many responsive genes under Al stress were regulated by JA signaling. The differential responsive of microtubule organization-related genes between the wild-type and coi1-2 mutant is consistent with the changed depolymerization of cortical microtubules in coi1 under Al stress. In addition, ALMT-mediated malate exudation and thus Al exclusion from roots in response to Al stress was also regulated by COI1-mediated JA signaling. Together, this study suggests that root growth inhibition is regulated by COI1-mediated JA signaling independent from auxin signaling and provides novel insights into the phytohormone-mediated root growth inhibition in response to Al stress. PMID:27932419

  17. Jasmonic Acid Enhances Al-Induced Root Growth Inhibition.

    PubMed

    Yang, Zhong-Bao; He, Chunmei; Ma, Yanqi; Herde, Marco; Ding, Zhaojun

    2017-02-01

    Phytohormones such as ethylene and auxin are involved in the regulation of the aluminum (Al)-induced root growth inhibition. Although jasmonate (JA) has been reported to play a crucial role in the regulation of root growth and development in response to environmental stresses through interplay with ethylene and auxin, its role in the regulation of root growth response to Al stress is not yet known. In an attempt to elucidate the role of JA, we found that exogenous application of JA enhanced the Al-induced root growth inhibition. Furthermore, phenotype analysis with mutants defective in either JA biosynthesis or signaling suggests that JA is involved in the regulation of Al-induced root growth inhibition. The expression of the JA receptor CORONATINE INSENSITIVE1 (COI1) and the key JA signaling regulator MYC2 was up-regulated in response to Al stress in the root tips. This process together with COI1-mediated Al-induced root growth inhibition under Al stress was controlled by ethylene but not auxin. Transcriptomic analysis revealed that many responsive genes under Al stress were regulated by JA signaling. The differential responsive of microtubule organization-related genes between the wild-type and coi1-2 mutant is consistent with the changed depolymerization of cortical microtubules in coi1 under Al stress. In addition, ALMT-mediated malate exudation and thus Al exclusion from roots in response to Al stress was also regulated by COI1-mediated JA signaling. Together, this study suggests that root growth inhibition is regulated by COI1-mediated JA signaling independent from auxin signaling and provides novel insights into the phytohormone-mediated root growth inhibition in response to Al stress. © 2017 American Society of Plant Biologists. All Rights Reserved.

  18. Root hairs improve root penetration, root-soil contact, and phosphorus acquisition in soils of different strength.

    PubMed

    Haling, Rebecca E; Brown, Lawrie K; Bengough, A Glyn; Young, Iain M; Hallett, Paul D; White, Philip J; George, Timothy S

    2013-09-01

    Root hairs are a key trait for improving the acquisition of phosphorus (P) by plants. However, it is not known whether root hairs provide significant advantage for plant growth under combined soil stresses, particularly under conditions that are known to restrict root hair initiation or elongation (e.g. compacted or high-strength soils). To investigate this, the root growth and P uptake of root hair genotypes of barley, Hordeum vulgare L. (i.e. genotypes with and without root hairs), were assessed under combinations of P deficiency and high soil strength. Genotypes with root hairs were found to have an advantage for root penetration into high-strength layers relative to root hairless genotypes. In P-deficient soils, despite a 20% reduction in root hair length under high-strength conditions, genotypes with root hairs were also found to have an advantage for P uptake. However, in fertilized soils, root hairs conferred an advantage for P uptake in low-strength soil but not in high-strength soil. Improved root-soil contact, coupled with an increased supply of P to the root, may decrease the value of root hairs for P acquisition in high-strength, high-P soils. Nevertheless, this work demonstrates that root hairs are a valuable trait for plant growth and nutrient acquisition under combined soil stresses. Selecting plants with superior root hair traits is important for improving P uptake efficiency and hence the sustainability of agricultural systems.

  19. Impact of treated wastewater on growth, respiration and hydraulic conductivity of citrus root systems in light and heavy soils.

    PubMed

    Paudel, Indira; Cohen, Shabtai; Shaviv, Avi; Bar-Tal, Asher; Bernstein, Nirit; Heuer, Bruria; Ephrath, Jhonathan

    2016-06-01

    Roots interact with soil properties and irrigation water quality leading to changes in root growth, structure and function. We studied these interactions in an orchard and in lysimeters with clay and sandy loam soils. Minirhizotron imaging and manual sampling showed that root growth was three times lower in the clay relative to sandy loam soil. Treated wastewater (TWW) led to a large reduction in root growth with clay (45-55%) but not with sandy loam soil (<20%). Treated wastewater increased salt uptake, membrane leakage and proline content, and decreased root viability, carbohydrate content and osmotic potentials in the fine roots, especially in clay. These results provide evidence that TWW challenges and damages the root system. The phenology and physiology of root orders were studied in lysimeters. Soil type influenced diameter, specific root area, tissue density and cortex area similarly in all root orders, while TWW influenced these only in clay soil. Respiration rates were similar in both soils, and root hydraulic conductivity was severely reduced in clay soil. Treated wastewater increased respiration rate and reduced hydraulic conductivity of all root orders in clay but only of the lower root orders in sandy loam soil. Loss of hydraulic conductivity increased with root order in clay and clay irrigated with TWW. Respiration and hydraulic properties of all root orders were significantly affected by sodium-amended TWW in sandy loam soil. These changes in root order morphology, anatomy, physiology and hydraulic properties indicate rapid and major modifications of root systems in response to differences in soil type and water quality. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Modelling Root Systems Using Oriented Density Distributions

    NASA Astrophysics Data System (ADS)

    Dupuy, Lionel X.

    2011-09-01

    Root architectural models are essential tools to understand how plants access and utilize soil resources during their development. However, root architectural models use complex geometrical descriptions of the root system and this has limitations to model interactions with the soil. This paper presents the development of continuous models based on the concept of oriented density distribution function. The growth of the root system is built as a hierarchical system of partial differential equations (PDEs) that incorporate single root growth parameters such as elongation rate, gravitropism and branching rate which appear explicitly as coefficients of the PDE. Acquisition and transport of nutrients are then modelled by extending Darcy's law to oriented density distribution functions. This framework was applied to build a model of the growth and water uptake of barley root system. This study shows that simplified and computer effective continuous models of the root system development can be constructed. Such models will allow application of root growth models at field scale.

  1. Adaptive shoot and root responses collectively enhance growth at optimum temperature and limited phosphorus supply of three herbaceous legume species.

    PubMed

    Suriyagoda, Lalith D B; Ryan, Megan H; Renton, Michael; Lambers, Hans

    2012-10-01

    Studies on the effects of sub- and/or supraoptimal temperatures on growth and phosphorus (P) nutrition of perennial herbaceous species at growth-limiting P availability are few, and the impacts of temperature on rhizosphere carboxylate dynamics are not known for any species. The effect of three day/night temperature regimes (low, 20/13 °C; medium, 27/20 °C; and high, 32/25 °C) on growth and P nutrition of Cullen cinereum, Kennedia nigricans and Lotus australis was determined. The highest temperature was optimal for growth of C. cinereum, while the lowest temperature was optimal for K. nigricans and L. australis. At optimum temperatures, the relative growth rate (RGR), root length, root length per leaf area, total P content, P productivity and water-use efficiency were higher for all species, and rhizosphere carboxylate content was higher for K. nigricans and L. australis. Cullen cinereum, with a slower RGR, had long (higher root length per leaf area) and thin roots to enhance P uptake by exploring a greater volume of soil at its optimum temperature, while K. nigricans and L. australis, with faster RGRs, had only long roots (higher root length per leaf area) as a morphological adaptation, but had a higher content of carboxylates in their rhizospheres at the optimum temperature. Irrespective of the species, the amount of P taken up by a plant was mainly determined by root length, rather than by P uptake rate per unit root surface area. Phosphorus productivity was correlated with RGR and plant biomass. All three species exhibited adaptive shoot and root traits to enhance growth at their optimum temperatures at growth-limiting P supply. The species with a slower RGR (i.e. C. cinereum) showed only morphological root adaptations, while K. nigricans and L. australis, with faster RGRs, had both morphological and physiological (i.e. root carboxylate dynamics) root adaptations.

  2. Hormone-Mediated Pattern Formation in Seedling of Plants: a Competitive Growth Dynamics Model

    NASA Astrophysics Data System (ADS)

    Kawaguchi, Satoshi; Mimura, Masayasu; Ohya, Tomoyuki; Oikawa, Noriko; Okabe, Hirotaka; Kai, Shoichi

    2001-10-01

    An ecologically relevant pattern formation process mediated by hormonal interactions among growing seedlings is modeled based on the experimental observations on the effects of indole acetic acid, which can act as an inhibitor and activator of root growth depending on its concentration. In the absence of any lateral root with constant hormone-sensitivity, the edge effect phenomenon is obtained depending on the secretion rate of hormone from the main root. Introduction of growth-stage-dependent hormone-sensitivity drastically amplifies the initial randomness, resulting in spatially irregular macroscopic patterns. When the lateral root growth is introduced, periodic patterns are obtained whose periodicity depends on the length of lateral roots. The growth-stage-dependent hormone-sensitivity and the lateral root growth are crucial for macroscopic periodic-pattern formation.

  3. GTL1 and DF1 regulate root hair growth through transcriptional repression of ROOT HAIR DEFECTIVE 6-LIKE 4 in Arabidopsis.

    PubMed

    Shibata, Michitaro; Breuer, Christian; Kawamura, Ayako; Clark, Natalie M; Rymen, Bart; Braidwood, Luke; Morohashi, Kengo; Busch, Wolfgang; Benfey, Philip N; Sozzani, Rosangela; Sugimoto, Keiko

    2018-02-08

    How plants determine the final size of growing cells is an important, yet unresolved, issue. Root hairs provide an excellent model system with which to study this as their final cell size is remarkably constant under constant environmental conditions. Previous studies have demonstrated that a basic helix-loop helix transcription factor ROOT HAIR DEFECTIVE 6-LIKE 4 (RSL4) promotes root hair growth, but how hair growth is terminated is not known. In this study, we demonstrate that a trihelix transcription factor GT-2-LIKE1 (GTL1) and its homolog DF1 repress root hair growth in Arabidopsis Our transcriptional data, combined with genome-wide chromatin-binding data, show that GTL1 and DF1 directly bind the RSL4 promoter and regulate its expression to repress root hair growth. Our data further show that GTL1 and RSL4 regulate each other, as well as a set of common downstream genes, many of which have previously been implicated in root hair growth. This study therefore uncovers a core regulatory module that fine-tunes the extent of root hair growth by the orchestrated actions of opposing transcription factors. © 2018. Published by The Company of Biologists Ltd.

  4. Underground tuning: quantitative regulation of root growth.

    PubMed

    Satbhai, Santosh B; Ristova, Daniela; Busch, Wolfgang

    2015-02-01

    Plants display a high degree of phenotypic plasticity that allows them to tune their form and function to changing environments. The plant root system has evolved mechanisms to anchor the plant and to efficiently explore soils to forage for soil resources. Key to this is an enormous capacity for plasticity of multiple traits that shape the distribution of roots in the soil. Such root system architecture-related traits are determined by root growth rates, root growth direction, and root branching. In this review, we describe how the root system is constituted, and which mechanisms, pathways, and genes mainly regulate plasticity of the root system in response to environmental variation. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  5. Antisense expression of an Arabidopsis ran binding protein renders transgenic roots hypersensitive to auxin and alters auxin-induced root growth and development by arresting mitotic progress

    NASA Technical Reports Server (NTRS)

    Kim, S. H.; Arnold, D.; Lloyd, A.; Roux, S. J.

    2001-01-01

    We cloned a cDNA encoding an Arabidopsis Ran binding protein, AtRanBP1c, and generated transgenic Arabidopsis expressing the antisense strand of the AtRanBP1c gene to understand the in vivo functions of the Ran/RanBP signal pathway. The transgenic plants showed enhanced primary root growth but suppressed growth of lateral roots. Auxin significantly increased lateral root initiation and inhibited primary root growth in the transformants at 10 pM, several orders of magnitude lower than required to induce these responses in wild-type roots. This induction was followed by a blockage of mitosis in both newly emerged lateral roots and in the primary root, ultimately resulting in the selective death of cells in the tips of both lateral and primary roots. Given the established role of Ran binding proteins in the transport of proteins into the nucleus, these findings are consistent with a model in which AtRanBP1c plays a key role in the nuclear delivery of proteins that suppress auxin action and that regulate mitotic progress in root tips.

  6. Plant root and shoot dynamics during subsurface obstacle interaction

    NASA Astrophysics Data System (ADS)

    Conn, Nathaniel; Aguilar, Jeffrey; Benfey, Philip; Goldman, Daniel

    As roots grow, they must navigate complex underground environments to anchor and retrieve water and nutrients. From gravity sensing at the root tip to pressure sensing along the tip and elongation zone, the complex mechanosensory feedback system of the root allows it to bend towards greater depths and avoid obstacles of high impedance by asymmetrically suppressing cell elongation. Here we investigate the mechanical and physiological responses of roots to rigid obstacles. We grow Maize, Zea mays, plants in quasi-2D glass containers (22cm x 17cm x 1.4cm) filled with photoelastic gel and observe that, regardless of obstacle interaction, smaller roots branch off the primary root when the upward growing shoot (which contains the first leaf) reaches an average length of 40 mm, coinciding with when the first leaf emerges. However, prior to branching, contacts with obstacles result in reduced root growth rates. The growth rate of the root relative to the shoot is sensitive to the angle of the obstacle surface, whereby the relative root growth is greatest for horizontally oriented surfaces. We posit that root growth is prioritized when horizontal obstacles are encountered to ensure anchoring and access to nutrients during later stages of development. NSF Physics of Living Systems.

  7. Superior Root Hair Formation Confers Root Efficiency in Some, But Not All, Rice Genotypes upon P Deficiency.

    PubMed

    Nestler, Josefine; Wissuwa, Matthias

    2016-01-01

    Root hairs are a low-cost way to extend root surface area (RSA), water and nutrient acquisition. This study investigated to what extend variation exists for root hair formation in rice in dependence of genotype, phosphorus (P) supply, growth medium, and root type. In general, genotypic variation was found for three root hair properties: root hair length, density, and longevity. In low P nutrient solution more than twofold genotypic difference was detected for root hair length while only onefold variation was found in low P soil. These differences were mostly due to the ability of some genotypes to increase root hair length in response to P deficiency. In addition, we were able to show that a higher proportion of root hairs remain viable even in mature, field-grown plants under low P conditions. All investigated root hair parameters exhibited high correlations across root types which were always higher in the low P conditions compared to the high P controls. Therefore we hypothesize that a low P response leads to a systemic signal in the entire root system. The genotype DJ123 consistently had the longest root hairs under low P conditions and we estimated that, across the field-grown root system, root hairs increased the total RSA by 31% in this genotype. This would explain why DJ123 is considered to be very root efficient in P uptake and suggests that DJ123 should be utilized as a donor in breeding for enhanced P uptake. Surprisingly, another root and P efficient genotype seemed not to rely on root hair growth upon P deficiency and therefore must contain different methods of low P adaptation. Genotypic ranking of root hair properties did change substantially with growth condition highlighting the need to phenotype plants in soil-based conditions or at least to validate results obtained in solution-based growth conditions.

  8. Long-Term Effects of Season of Prescribed Burn on the Fine-Root Growth, Root Carbohydrates, and Foliar Dynamics of Mature Longleaf Pine

    Treesearch

    Eric A. Kuehler; Mary Anne Sword Sayer; James D. Haywood; C. Dan Andries

    2004-01-01

    Depending on the season and intensity of fire, as well as the phenology of foliage and new root growth, fire may damage foliage, and subsequently decrease whole-crown carbon fixation and allocation to the root system. In central Louisiana the authors investigated how season of prescribed burning affects fine-root dynamics, root carbohydrate relations, and leaf area...

  9. Sweets for the foe - effects of nonstructural carbohydrates on the susceptibility of Quercus robur against Phytophthora quercina.

    PubMed

    Angay, Oguzhan; Fleischmann, Frank; Recht, Sabine; Herrmann, Sylvie; Matyssek, Rainer; Oßwald, Wolfgang; Buscot, François; Grams, Thorsten E E

    2014-09-01

    The root-rot pathogen Phytophthora quercina is a key determinant of oak decline in Europe. The susceptibility of pedunculate oak (Quercus robur) to this pathogen has been hypothesized to depend on the carbon availability in roots as an essential resource for defense. Microcuttings of Q. robur undergo an alternating rhythm of root and shoot growth. Inoculation of mycorrhizal (Piloderma croceum) and nonmycorrhizal oak roots with P. quercina was performed during both growth phases, that is, root flush (RF) and shoot flush (SF). Photosynthetic and morphological responses as well as concentrations of nonstructural carbohydrates (NSC) were analyzed. Infection success was quantified by the presence of pathogen DNA in roots. Concentrations of NSC in roots depended on the alternating root/shoot growth rhythm, being high and low during RF and SF, respectively. Infection success was high during RF and low during SF, resulting in a significantly positive correlation between pathogen DNA and NSC concentration in roots, contrary to the hypothesis. The alternating growth of roots and shoots plays a crucial role for the susceptibility of lateral roots to the pathogen. NSC availability in oak roots has to be considered as a benchmark for susceptibility rather than resistance against P. quercina. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  10. Plant and Root Growth Responses to Heterogeneous Supplies of Soil Water in Two Coastal Shrubs of California.

    NASA Astrophysics Data System (ADS)

    Cole, S.; Mahall, B. E.

    2007-05-01

    Much effort has been focused on identifying plant and root growth responses to heterogeneous supplies of soil nutrients. However, in many circumstances, soil water may limit plant growth and it too can have a patchy distribution. In our research we asked: 1) What is the ecological significance of soil moisture heterogeneity to plant growth in a California coastal dune habitat? 2) How does growth of whole plants and roots respond to soil moisture heterogeneity? and 3) Can roots of these species sense and grow towards moisture-rich areas (hydrotropism) in a natural medium? To address these questions: we conducted comparative field studies of water relations and growth of Artemisia californica and Eriogonum parvifolium; we performed a growth rate study of roots and plants in experimental pots with either patchy or homogeneous distributions of soil water; and we analyzed individual root growth in sand-filled observation chambers in response to moisture-rich patches and resultant soil water gradients. In the field, correlations between daily photosynthetic rates, active leaf display and predawn xylem pressure potentials (ΨPD) indicated that access to water limited growth in A. californica and E. parvifolium. These species, common in habit and habitat, differed in their ability to access water with E. parvifolium having overall higher ΨPD than A. californica (repeated measures ANOVA, P < 0.01). Our growth rate study revealed that patchy supplies of water did not reduce the relative growth rate or average size of E. parvifolium (two-tailed t-tests, P > 0.25). It appears that modified partitioning of growth both at the whole plant and root system level permitted E. parvifolium to maintain growth in patchy soil water conditions. We found that E. parvifolium increased allocation to roots and proliferated in moisture-rich patches in the patchy soil water treatment. Root length density and the proportion of root mass present in the patch was 20- to >100-fold greater in and near the moisture-rich patch than in a comparable but drier soil location (one-tailed matched pairs t-tests, P ≤ 0.05). While root hydrotropism could be a means by which plants are able to locate moisture-rich patches, from our chamber studies we found no compelling evidence for hydrotropic root behavior in seedlings of these two dune shrubs and suggest that roots instead may encounter patches of soil water serendipitously.

  11. Hormonal regulation of wheat growth during hydroponic culture

    NASA Technical Reports Server (NTRS)

    Wetherell, Donald

    1988-01-01

    Hormonal control of root growth has been explored as one means to alleviate the crowding of plant root systems experienced in prototype hydroponic biomass production chambers being developed by the CELSS Breadboard Project. Four plant hormones, or their chemical analogs, which have been reported to selectively inhibit root growth, were tested by adding them to the nutrient solutions on day 10 of a 25 day growth test using spring wheat in hydroponic cultures. Growth and morphological changes is both shoot and root systems were evaluated. In no case was it possible to inhibit root growth without a comparable inhibition of shoot growth. It was concluded that this approach is unlikely to prove useful for wheat.

  12. Single-point ACT2 gene mutation in the Arabidopsis root hair mutant der1-3 affects overall actin organization, root growth and plant development.

    PubMed

    Vaškebová, L; Šamaj, J; Ovecka, M

    2017-12-27

    The actin cytoskeleton forms a dynamic network in plant cells. A single-point mutation in the DER1 (deformed root hairs1) locus located in the sequence of ACTIN2, a gene for major actin in vegetative tissues of Arabidopsis thaliana, leads to impaired root hair development (Ringli C, Baumberger N, Diet A, Frey B, Keller B. 2002. ACTIN2 is essential for bulge site selection and tip growth during root hair development of Arabidopsis. Plant Physiology129: 1464-1472). Only root hair phenotypes have been described so far in der1 mutants, but here we demonstrate obvious aberrations in the organization of the actin cytoskeleton and overall plant development. Organization of the actin cytoskeleton in epidermal cells of cotyledons, hypocotyls and roots was studied qualitatively and quantitatively by live-cell imaging of transgenic lines carrying the GFP-FABD2 fusion protein and in fixed cells after phalloidin labelling. Patterns of root growth were characterized by FM4-64 vital staining, light-sheet microscopy imaging and microtubule immunolabelling. Plant phenotyping included analyses of germination, root growth and plant biomass. Speed of germination, plant fresh weight and total leaf area were significantly reduced in the der1-3 mutant in comparison with the C24 wild-type. Actin filaments in root, hypocotyl and cotyledon epidermal cells of the der1-3 mutant were shorter, thinner and arranged in more random orientations, while actin bundles were shorter and had altered orientations. The wavy pattern of root growth in der1-3 mutant was connected with higher frequencies of shifted cell division planes (CDPs) in root cells, which was consistent with the shifted positioning of microtubule-based preprophase bands and phragmoplasts. The organization of cortical microtubules in the root cells of the der1-3 mutant, however, was not altered. Root growth rate of the der1-3 mutant is not reduced, but changes in the actin cytoskeleton organization can induce a wavy root growth pattern through deregulation of CDP orientation. The results suggest that the der1-3 mutation in the ACT2 gene does not influence solely root hair formation process, but also has more general effects on the actin cytoskeleton, plant growth and development. © The Author(s) 2017. Published by Oxford University Press on behalf of the Annals of Botany Company.

  13. A worldview of root traits: the influence of ancestry, growth form, climate and mycorrhizal association on the functional trait variation of fine-root tissues in seed plants.

    PubMed

    Valverde-Barrantes, Oscar J; Freschet, Grégoire T; Roumet, Catherine; Blackwood, Christopher B

    2017-09-01

    Fine-root traits play key roles in ecosystem processes, but the drivers of fine-root trait diversity remain poorly understood. The plant economic spectrum (PES) hypothesis predicts that leaf and root traits evolved in coordination. Mycorrhizal association type, plant growth form and climate may also affect root traits. However, the extent to which these controls are confounded with phylogenetic structuring remains unclear. Here we compiled information about root and leaf traits for > 600 species. Using phylogenetic relatedness, climatic ranges, growth form and mycorrhizal associations, we quantified the importance of these factors in the global distribution of fine-root traits. Phylogenetic structuring accounts for most of the variation for all traits excepting root tissue density, with root diameter and nitrogen concentration showing the strongest phylogenetic signal and specific root length showing intermediate values. Climate was the second most important factor, whereas mycorrhizal type had little effect. Substantial trait coordination occurred between leaves and roots, but the strength varied between growth forms and clades. Our analyses provide evidence that the integration of roots and leaves in the PES requires better accounting of the variation in traits across phylogenetic clades. Inclusion of phylogenetic information provides a powerful framework for predictions of belowground functional traits at global scales. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  14. Influence of four nematodes on root and shoot growth parameters in grape.

    PubMed

    Anwar, S A; Van Gundy, S D

    1989-04-01

    Two grape cultivars, susceptible French Colombard and tolerant Rubired, and four nematodes, Meloidogyne incognita, Pratylenchus vulnus, Tylenchulus semipenetrans, and Xiphinema index, were used to quantify the equilibrium between root (R) and shoot (S) growth. Root and shoot growth of French Colombard was retarded by M. incognita, P. vulnus, and X. index but not by T. semipenetrans. Although the root growth of Rubired was limited by all the nematodes, the shoot growth was limited only by X. index. The R:S ratios of Rubired were higher than those of French Colombard. The reduced R:S ratios of Rubired were primarily an expression of reduction in root systems without an equal reduction in shoot growth, whereas in French Colombard the reduced R:S ratios were due to a reduction in both shoot growth and root growth and to a greater reduction in root growth than shoot growth. All nematodes reproduced equally well on both cultivars. Both foliage and root growth of French Colombard were significantly reduced by M. incognita and P. vulnus. Nematodes reduced the shoot length by reducing the internode length. Accumulative R:S ratios in inoculated plants were significantly smaller than those in controls in all nematode treatments but not at individual harvest dates. Bud break was delayed by X. index and was initiated earlier by P. vulnus and M. incognita. All buds in nematode treatments were less vigorous than in controls.

  15. Ammonium Inhibits Primary Root Growth by Reducing the Length of Meristem and Elongation Zone and Decreasing Elemental Expansion Rate in the Root Apex in Arabidopsis thaliana

    PubMed Central

    Gao, Kun; Chen, Fanjun; Yuan, Lixing; Mi, Guohua

    2013-01-01

    The inhibitory effect of ammonium on primary root growth has been well documented; however the underlying physiological and molecular mechanisms are still controversial. To avoid ammonium toxicity to shoot growth, we used a vertical two-layer split plate system, in which the upper layer contained nitrate and the lower layer contained ammonium. In this way, nitrogen status was maintained and only the apical part of the root system was exposed to ammonium. Using a kinematic approach, we show here that 1 mM ammonium reduces primary root growth, decreasing both elemental expansion and cell production. Ammonium inhibits the length of elongation zone and the maximum elemental expansion rate. Ammonium also decreases the apparent length of the meristem as well as the number of dividing cells without affecting cell division rate. Moreover, ammonium reduces the number of root cap cells but appears to affect neither the status of root stem cell niche nor the distal auxin maximum at the quiescent center. Ammonium also inhibits root gravitropism and concomitantly down-regulates the expression of two pivotal auxin transporters, AUX1 and PIN2. Insofar as ammonium inhibits root growth rate in AUX1 and PIN2 loss-of-function mutants almost as strongly as in wild type, we conclude that ammonium inhibits root growth and gravitropism by largely distinct pathways. PMID:23577185

  16. Characterizing roots and water uptake in a ground cover rice production system

    PubMed Central

    Li, Sen; Zuo, Qiang; Wang, Xiaoyu; Ma, Wenwen; Jin, Xinxin; Shi, Jianchu; Ben-Gal, Alon

    2017-01-01

    Background and aims Water-saving ground cover rice production systems (GCRPS) are gaining popularity in many parts of the world. We aimed to describe the characteristics of root growth, morphology, distribution, and water uptake for a GCRPS. Methods A traditional paddy rice production system (TPRPS) was compared with GCRPS in greenhouse and field experiments. In the greenhouse, GCRPS where root zone average soil water content was kept near saturation (GCRPSsat), field capacity (GCRPSfwc) and 80% field capacity (GCRPS80%), were evaluated. In a two-year field experiment, GCRPSsat and GCRPS80% were applied. Results Similar results were found in greenhouse and field experiments. Before mid-tillering the upper soil temperature was higher for GCRPS, leading to enhanced root dry weight, length, surface area, specific root length, and smaller diameter of roots but lower water uptake rate per root length compared to TPRPS. In subsequent growth stages, the reduced soil water content under GCRPS caused that the preponderance of root growth under GCRPSsat disappeared in comparison to TPRPS. Under other GCRPS treatments (GCRPSfwc and GCRPS80%), significant limitation on root growth, bigger root diameter and higher water uptake rate per root length were found. Conclusions Discrepancies in soil water and temperature between TPRPS and GCRPS caused adjustments to root growth, morphology, distribution and function. Even though drought stress was inevitable after mid-tillering under GCRPS, especially GCRPS80%, similar or even enhanced root water uptake capacity in comparison to TPRPS might promote allocation of photosynthetic products to shoots and increase water productivity. PMID:28686687

  17. [Effects of water storage in deeper soil layers on the root growth, root distribution and economic yield of cotton in arid area with drip irrigation under mulch].

    PubMed

    Luo, Hong-Hai; Zhang, Hong-Zhi; Zhang, Ya-Li; Zhang, Wang-Feng

    2012-02-01

    Taking cotton cultivar Xinluzao 13 as test material, a soil column culture expenment was conducted to study the effects of water storage in deeper (> 60 cm) soil layer on the root growth and its relations with the aboveground growth of the cultivar in arid area with drip irrigation under mulch. Two levels of water storage in 60-120 cm soil layer were installed, i. e., well-watered and no watering, and for each, the moisture content in 0-40 cm soil layer during growth period was controlled at two levels, i.e., 70% and 55% of field capacity. It was observed that the total root mass density of the cultivar and its root length density and root activity in 40-120 cm soil layer had significant positive correlations with the aboveground dry mass. When the moisture content in 0-40 cm soil layer during growth season was controlled at 70% of field capacity, the total root mass density under well-watered and no watering had less difference, but the root length density and root activity in 40-120 cm soil layer under well-watered condition increased, which enhanced the water consumption in deeper soil layer, increased the aboveground dry mass, and finally, led to an increased economic yield and higher water use efficiency. When the moisture content in 0-40 cm soil layer during growth season was controlled at 55% of field capacity and the deeper soil layer was well-watered, the root/shoot ratio and root length density in 40-120 cm soil layer and the root activity in 80-120 cm soil layer were higher, the water consumption in deeper soil layer increased, but it was still failed to adequately compensate for the negative effects of water deficit during growth season on the impaired growth of roots and aboveground parts, leading to a significant decrease in the economic yield, as compared with that at 70% of field capacity. Overall, sufficient water storage in deeper soil layer and a sustained soil moisture level of 65% -75% of field capacity during growth period could promote the downward growth of cotton roots, which was essential for achieving water-saving and high-yielding cultivation of cotton with drip irrigation under mulch.

  18. Fagopyrum esculentum Alters Its Root Exudation after Amaranthus retroflexus Recognition and Suppresses Weed Growth

    PubMed Central

    Gfeller, Aurélie; Glauser, Gaétan; Etter, Clément; Signarbieux, Constant; Wirth, Judith

    2018-01-01

    Weed control by crops through growth suppressive root exudates is a promising alternative to herbicides. Buckwheat (Fagopyrum esculentum) is known for its weed suppression and redroot pigweed (Amaranthus retroflexus) control is probably partly due to allelopathic root exudates. This work studies whether other weeds are also suppressed by buckwheat and if the presence of weeds is necessary to induce growth repression. Buckwheat and different weeds were co-cultivated in soil, separating roots by a mesh allowing to study effects due to diffusion. Buckwheat suppressed growth of pigweed, goosefoot and barnyard grass by 53, 42, and 77% respectively without physical root interactions, probably through allelopathic compounds. Root exudates were obtained from sand cultures of buckwheat (BK), pigweed (P), and a buckwheat/pigweed mixed culture (BK-P). BK-P root exudates inhibited pigweed root growth by 49%. Characterization of root exudates by UHPLC-HRMS and principal component analysis revealed that BK and BK-P had a different metabolic profile suggesting that buckwheat changes its root exudation in the presence of pigweed indicating heterospecific recognition. Among the 15 different markers, which were more abundant in BK-P, tryptophan was identified and four others were tentatively identified. Our findings might contribute to the selection of crops with weed suppressive effects. PMID:29445385

  19. Fagopyrum esculentum Alters Its Root Exudation after Amaranthus retroflexus Recognition and Suppresses Weed Growth.

    PubMed

    Gfeller, Aurélie; Glauser, Gaétan; Etter, Clément; Signarbieux, Constant; Wirth, Judith

    2018-01-01

    Weed control by crops through growth suppressive root exudates is a promising alternative to herbicides. Buckwheat ( Fagopyrum esculentum ) is known for its weed suppression and redroot pigweed ( Amaranthus retroflexus ) control is probably partly due to allelopathic root exudates. This work studies whether other weeds are also suppressed by buckwheat and if the presence of weeds is necessary to induce growth repression. Buckwheat and different weeds were co-cultivated in soil, separating roots by a mesh allowing to study effects due to diffusion. Buckwheat suppressed growth of pigweed, goosefoot and barnyard grass by 53, 42, and 77% respectively without physical root interactions, probably through allelopathic compounds. Root exudates were obtained from sand cultures of buckwheat (BK), pigweed (P), and a buckwheat/pigweed mixed culture (BK-P). BK-P root exudates inhibited pigweed root growth by 49%. Characterization of root exudates by UHPLC-HRMS and principal component analysis revealed that BK and BK-P had a different metabolic profile suggesting that buckwheat changes its root exudation in the presence of pigweed indicating heterospecific recognition. Among the 15 different markers, which were more abundant in BK-P, tryptophan was identified and four others were tentatively identified. Our findings might contribute to the selection of crops with weed suppressive effects.

  20. Rhizoslides: paper-based growth system for non-destructive, high throughput phenotyping of root development by means of image analysis.

    PubMed

    Le Marié, Chantal; Kirchgessner, Norbert; Marschall, Daniela; Walter, Achim; Hund, Andreas

    2014-01-01

    A quantitative characterization of root system architecture is currently being attempted for various reasons. Non-destructive, rapid analyses of root system architecture are difficult to perform due to the hidden nature of the root. Hence, improved methods to measure root architecture are necessary to support knowledge-based plant breeding and to analyse root growth responses to environmental changes. Here, we report on the development of a novel method to reveal growth and architecture of maize root systems. The method is based on the cultivation of different root types within several layers of two-dimensional, large (50 × 60 cm) plates (rhizoslides). A central plexiglass screen stabilizes the system and is covered on both sides with germination paper providing water and nutrients for the developing root, followed by a transparent cover foil to prevent the roots from falling dry and to stabilize the system. The embryonic roots grow hidden between a Plexiglas surface and paper, whereas crown roots grow visible between paper and the transparent cover. Long cultivation with good image quality up to 20 days (four fully developed leaves) was enhanced by suppressing fungi with a fungicide. Based on hyperspectral microscopy imaging, the quality of different germination papers was tested and three provided sufficient contrast to distinguish between roots and background (segmentation). Illumination, image acquisition and segmentation were optimised to facilitate efficient root image analysis. Several software packages were evaluated with regard to their precision and the time investment needed to measure root system architecture. The software 'Smart Root' allowed precise evaluation of root development but needed substantial user interference. 'GiaRoots' provided the best segmentation method for batch processing in combination with a good analysis of global root characteristics but overestimated root length due to thinning artefacts. 'WhinRhizo' offered the most rapid and precise evaluation of root lengths in diameter classes, but had weaknesses with respect to image segmentation and analysis of root system architecture. A new technique has been established for non-destructive root growth studies and quantification of architectural traits beyond seedlings stages. However, automation of the scanning process and appropriate software remains the bottleneck for high throughput analysis.

  1. Root-zone temperatures affect phenology of bud break, flower cluster development, shoot extension growth and gas exchange of 'Braeburn' (Malus domestica) apple trees.

    PubMed

    Greer, Dennis H; Wünsche, Jens N; Norling, Cara L; Wiggins, Harry N

    2006-01-01

    We investigated the effects of root-zone temperature on bud break, flowering, shoot growth and gas exchange of potted mature apple (Malus domestica (Borkh.)) trees with undisturbed roots. Soil respiration was also determined. Potted 'Braeburn' apple trees on M.9 rootstock were grown for 70 days in a constant day/night temperature regime (25/18 degrees C) and one of three constant root-zone temperatures (7, 15 and 25 degrees C). Both the proportion and timing of bud break were significantly enhanced as root-zone temperature increased. Rate of floral cluster opening was also markedly increased with increasing root-zone temperature. Shoot length increased but shoot girth growth declined as root-zone temperatures increased. Soil respiration and leaf photosynthesis generally increased as root-zone temperatures increased. Results indicate that apple trees growing in regions where root zone temperatures are < or = 15 degrees C have delayed bud break and up to 20% fewer clusters than apple trees exposed to root zone temperatures of > or = 15 degrees C. The effect of root-zone temperature on shoot performance may be mediated through the mobilization of root reserves, although the role of phytohormones cannot be discounted. Variation in leaf photosynthesis across the temperature treatments was inadequately explained by stomatal conductance. Given that root growth increases with increasing temperature, changes in sink activity induced by the root-zone temperature treatments provide a possible explanation for the non-stomatal effect on photosynthesis. Irrespective of underlying mechanisms, root-zone temperatures influence bud break and flowering in apple trees.

  2. Steep, cheap and deep: an ideotype to optimize water and N acquisition by maize root systems.

    PubMed

    Lynch, Jonathan P

    2013-07-01

    A hypothetical ideotype is presented to optimize water and N acquisition by maize root systems. The overall premise is that soil resource acquisition is optimized by the coincidence of root foraging and resource availability in time and space. Since water and nitrate enter deeper soil strata over time and are initially depleted in surface soil strata, root systems with rapid exploitation of deep soil would optimize water and N capture in most maize production environments. • THE IDEOTYPE: Specific phenes that may contribute to rooting depth in maize include (a) a large diameter primary root with few but long laterals and tolerance of cold soil temperatures, (b) many seminal roots with shallow growth angles, small diameter, many laterals, and long root hairs, or as an alternative, an intermediate number of seminal roots with steep growth angles, large diameter, and few laterals coupled with abundant lateral branching of the initial crown roots, (c) an intermediate number of crown roots with steep growth angles, and few but long laterals, (d) one whorl of brace roots of high occupancy, having a growth angle that is slightly shallower than the growth angle for crown roots, with few but long laterals, (e) low cortical respiratory burden created by abundant cortical aerenchyma, large cortical cell size, an optimal number of cells per cortical file, and accelerated cortical senescence, (f) unresponsiveness of lateral branching to localized resource availability, and (g) low K(m) and high Vmax for nitrate uptake. Some elements of this ideotype have experimental support, others are hypothetical. Despite differences in N distribution between low-input and commercial maize production, this ideotype is applicable to low-input systems because of the importance of deep rooting for water acquisition. Many features of this ideotype are relevant to other cereal root systems and more generally to root systems of dicotyledonous crops.

  3. Evaluation of data transformations used with the square root and schoolfield models for predicting bacterial growth rate.

    PubMed Central

    Alber, S A; Schaffner, D W

    1992-01-01

    A comparison was made between mathematical variations of the square root and Schoolfield models for predicting growth rate as a function of temperature. The statistical consequences of square root and natural logarithm transformations of growth rate use in several variations of the Schoolfield and square root models were examined. Growth rate variances of Yersinia enterocolitica in brain heart infusion broth increased as a function of temperature. The ability of the two data transformations to correct for the heterogeneity of variance was evaluated. A natural logarithm transformation of growth rate was more effective than a square root transformation at correcting for the heterogeneity of variance. The square root model was more accurate than the Schoolfield model when both models used natural logarithm transformation. PMID:1444367

  4. ABA Suppresses Root Hair Growth via the OBP4 Transcriptional Regulator1[OPEN

    PubMed Central

    Kawamura, Ayako; Schäfer, Sabine; Breuer, Christian; Shibata, Michitaro; Mitsuda, Nobutaka; Ohme-Takagi, Masaru; Matsui, Minami

    2017-01-01

    Plants modify organ growth and tune morphogenesis in response to various endogenous and environmental cues. At the cellular level, organ growth is often adjusted by alterations in cell growth, but the molecular mechanisms underlying this control remain poorly understood. In this study, we identify the DNA BINDING WITH ONE FINGER (DOF)-type transcription regulator OBF BINDING PROTEIN4 (OBP4) as a repressor of cell growth. Ectopic expression of OBP4 in Arabidopsis (Arabidopsis thaliana) inhibits cell growth, resulting in severe dwarfism and the repression of genes involved in the regulation of water transport, root hair development, and stress responses. Among the basic helix-loop-helix transcription factors known to control root hair growth, OBP4 binds the ROOT HAIR DEFECTIVE6-LIKE2 (RSL2) promoter to repress its expression. The accumulation of OBP4 proteins is detected in expanding root epidermal cells, and its expression level is increased by the application of abscisic acid (ABA) at concentrations sufficient to inhibit root hair growth. ABA-dependent induction of OBP4 is associated with the reduced expression of RSL2. Furthermore, ectopic expression of OBP4 or loss of RSL2 function results in ABA-insensitive root hair growth. Taken together, our results suggest that OBP4-mediated transcriptional repression of RSL2 contributes to the ABA-dependent inhibition of root hair growth in Arabidopsis. PMID:28167701

  5. [Allelopathy autotoxicity effects of aquatic extracts from rhizospheric soil on rooting and growth of stem cuttings in Pogostemon cablin].

    PubMed

    Tang, Kun; Li, Ming; Dong, Shan; Li, Yun-qi; Huang, Jie-wen; Li, Long-ming

    2014-06-01

    To study the allelopathy effects of aquatic extracts from rhizospheric soil on the rooting and growth of stem cutting in Pogostemon cablin, and to reveal its mechanism initially. The changes of rhizogenesis characteristics and physic-biochemical during cutting seedlings were observed when using different concentration of aquatic extracts from rhizospheric soil. Aquatic extracts from rhizospheric soil had significant inhibitory effects on rooting rate, root number, root length, root activity, growth rate of cutting with increasing concentrations of tissue extracts; The chlorophyll content of cutting seedlings were decreased, but content of MDA were increased, and activities of POD, PPO and IAAO in cutting seedlings were affected. Aquatic extracts from rhizospheric soil of Pogostemon cablin have varying degrees of inhibitory effects on the normal rooting and growth of stem cuttings.

  6. UV-B Radiation Induces Root Bending Through the Flavonoid-Mediated Auxin Pathway in Arabidopsis.

    PubMed

    Wan, Jinpeng; Zhang, Ping; Wang, Ruling; Sun, Liangliang; Wang, Wenying; Zhou, Huakun; Xu, Jin

    2018-01-01

    Ultraviolet (UV)-B radiation-induced root bending has been reported; however, the underlying mechanisms largely remain unclear. Here, we investigate whether and how auxin and flavonoids are involved in UV-B radiation-induced root bending in Arabidopsis using physiological, pharmacological, and genetic approaches. UV-B radiation modulated the direction of root growth by decreasing IAA biosynthesis and affecting auxin distribution in the root tips, where reduced auxin accumulation and asymmetric auxin distribution were observed. UV-B radiation increased the distribution of auxin on the nonradiated side of the root tips, promoting growth and causing root bending. Further analysis indicated that UV-B induced an asymmetric accumulation of flavonoids; this pathway is involved in modulating the accumulation and asymmetric distribution of auxin in root tips and the subsequent redirection of root growth by altering the distribution of auxin carriers in response to UV-B radiation. Taken together, our results indicate that UV-B radiation-induced root bending occurred through a flavonoid-mediated phototropic response to UV-B radiation.

  7. UV-B Radiation Induces Root Bending Through the Flavonoid-Mediated Auxin Pathway in Arabidopsis

    PubMed Central

    Wan, Jinpeng; Zhang, Ping; Wang, Ruling; Sun, Liangliang; Wang, Wenying; Zhou, Huakun; Xu, Jin

    2018-01-01

    Ultraviolet (UV)-B radiation-induced root bending has been reported; however, the underlying mechanisms largely remain unclear. Here, we investigate whether and how auxin and flavonoids are involved in UV-B radiation-induced root bending in Arabidopsis using physiological, pharmacological, and genetic approaches. UV-B radiation modulated the direction of root growth by decreasing IAA biosynthesis and affecting auxin distribution in the root tips, where reduced auxin accumulation and asymmetric auxin distribution were observed. UV-B radiation increased the distribution of auxin on the nonradiated side of the root tips, promoting growth and causing root bending. Further analysis indicated that UV-B induced an asymmetric accumulation of flavonoids; this pathway is involved in modulating the accumulation and asymmetric distribution of auxin in root tips and the subsequent redirection of root growth by altering the distribution of auxin carriers in response to UV-B radiation. Taken together, our results indicate that UV-B radiation-induced root bending occurred through a flavonoid-mediated phototropic response to UV-B radiation. PMID:29868074

  8. Nitric Oxide Affects Rice Root Growth by Regulating Auxin Transport Under Nitrate Supply

    PubMed Central

    Sun, Huwei; Feng, Fan; Liu, Juan; Zhao, Quanzhi

    2018-01-01

    Nitrogen (N) is a major essential nutrient for plant growth, and rice is an important food crop globally. Although ammonium (NH4+) is the main N source for rice, nitrate (NO3-) is also absorbed and utilized. Rice responds to NO3- supply by changing root morphology. However, the mechanisms of rice root growth and formation under NO3- supply are unclear. Nitric oxide (NO) and auxin are important regulators of root growth and development under NO3- supply. How the interactions between NO and auxin in regulating root growth in response to NO3- are unknown. In this study, the levels of indole-3-acetic acid (IAA) and NO in roots, and the responses of lateral roots (LRs) and seminal roots (SRs) to NH4+ and NO3-, were investigated using wild-type (WT) rice, as well as osnia2 and ospin1b mutants. NO3- supply promoted LR formation and SR elongation. The effects of NO donor and NO inhibitor/scavenger supply on NO levels and the root morphology of WT and nia2 mutants under NH4+ or NO3- suggest that NO3--induced NO is generated by the nitrate reductase (NR) pathway rather than the NO synthase (NOS)-like pathway. IAA levels, [3H] IAA transport, and PIN gene expression in roots were enhanced under NO3- relative to NH4+ supply. These results suggest that NO3- regulates auxin transport in roots. Application of SNP under NH4+ supply, or of cPTIO under NO3- supply, resulted in auxin levels in roots similar to those under NO3- and NH4+ supply, respectively. Compared to WT, the roots of the ospin1b mutant had lower auxin levels, fewer LRs, and shorter SRs. Thus, NO affects root growth by regulating auxin transport in response to NO3-. Overall, our findings suggest that NO3- influences LR formation and SR elongation by regulating auxin transport via a mechanism involving NO. PMID:29875779

  9. Roots Revealed - Neutron imaging insight of spatial distribution, morphology, growth and function

    NASA Astrophysics Data System (ADS)

    Warren, J.; Bilheux, H.; Kang, M.; Voisin, S.; Cheng, C.; Horita, J.; Perfect, E.

    2013-05-01

    Root production, distribution and turnover are not easily measured, yet their dynamics are an essential part of understanding and modeling ecosystem response to changing environmental conditions. Root age, order, morphology and mycorrhizal associations all regulate root uptake of water and nutrients, which along with along with root distribution determines plant response to, and impact on its local environment. Our objectives were to demonstrate the ability to non-invasively monitor fine root distribution, root growth and root functionality in Zea mays L. (maize) and Panicum virgatum L. (switchgrass) seedlings using neutron imaging. Plants were propagated in aluminum chambers containing sand then placed into a high flux cold neutron beam line. Dynamics of root distribution and growth were assessed by collecting consecutive CCD radiographs through time. Root functionality was assessed by tracking individual root uptake of water (H2O) or deuterium oxide (D2O) through time. Since neutrons strongly scatter H atoms, but not D atoms, biological materials such as plants are prime candidates for neutron imaging. 2D and 3D neutron radiography readily illuminated root structure, root growth, and relative plant and soil water content. Fungal hyphae associated with the roots were also visible and appeared as dark masses since their diameter was likely several orders of magnitude less than ~100 μm resolution of the detector. The 2D pulse-chase irrigation experiments with H2O and D2O successfully allowed observation of uptake and mass flow of water within the root system. Water flux within individual roots responded differentially to foliar illumination based on internal water potential gradients, illustrating the ability to track root functionality based on root size, order and distribution within the soil. (L) neutron image of switchgrass growing in sandy soil with 100 μm diameter roots (R) 3D reconstruction of maize seedling following neutron tomography

  10. Comparing root architectural models

    NASA Astrophysics Data System (ADS)

    Schnepf, Andrea; Javaux, Mathieu; Vanderborght, Jan

    2017-04-01

    Plant roots play an important role in several soil processes (Gregory 2006). Root architecture development determines the sites in soil where roots provide input of carbon and energy and take up water and solutes. However, root architecture is difficult to determine experimentally when grown in opaque soil. Thus, root architectural models have been widely used and been further developed into functional-structural models that are able to simulate the fate of water and solutes in the soil-root system (Dunbabin et al. 2013). Still, a systematic comparison of the different root architectural models is missing. In this work, we focus on discrete root architecture models where roots are described by connected line segments. These models differ (a) in their model concepts, such as the description of distance between branches based on a prescribed distance (inter-nodal distance) or based on a prescribed time interval. Furthermore, these models differ (b) in the implementation of the same concept, such as the time step size, the spatial discretization along the root axes or the way stochasticity of parameters such as root growth direction, growth rate, branch spacing, branching angles are treated. Based on the example of two such different root models, the root growth module of R-SWMS and RootBox, we show the impact of these differences on simulated root architecture and aggregated information computed from this detailed simulation results, taking into account the stochastic nature of those models. References Dunbabin, V.M., Postma, J.A., Schnepf, A., Pagès, L., Javaux, M., Wu, L., Leitner, D., Chen, Y.L., Rengel, Z., Diggle, A.J. Modelling root-soil interactions using three-dimensional models of root growth, architecture and function (2013) Plant and Soil, 372 (1-2), pp. 93 - 124. Gregory (2006) Roots, rhizosphere and soil: the route to a better understanding of soil science? European Journal of Soil Science 57: 2-12.

  11. Using low energy x-ray radiography to evaluate root initiation and growth of Populus

    Treesearch

    Ronald S., Jr. Zalesny; A. L. Friend; B. Kodrzycki; D.W. McDonald; R. Michaels; A.H. Wiese; J.W. Powers

    2007-01-01

    Populus roots have been studied less than aboveground tissues. However, there is an overwhelming need to evaluate root initiation and growth in order to understand the genetics and physiology of rooting, along with genotype x environment interactions.

  12. The Microtubule-Associated Protein MAP18 Affects ROP2 GTPase Activity during Root Hair Growth1[OPEN

    PubMed Central

    Kang, Erfang; Zheng, Mingzhi; Zhang, Yan; Yuan, Ming; Fu, Ying

    2017-01-01

    Establishment and maintenance of the polar site are important for root hair tip growth. We previously reported that Arabidopsis (Arabidopsis thaliana) MICROTUBULE-ASSOCIATED PROTEIN18 (MAP18) functions in controlling the direction of pollen tube growth and root hair elongation. Additionally, the Rop GTPase ROP2 was reported as a positive regulator of both root hair initiation and tip growth in Arabidopsis. Both loss of function of ROP2 and knockdown of MAP18 lead to a decrease in root hair length, whereas overexpression of either MAP18 or ROP2 causes multiple tips or a branching hair phenotype. However, it is unclear whether MAP18 and ROP2 coordinately regulate root hair growth. In this study, we demonstrate that MAP18 and ROP2 interact genetically and functionally. MAP18 interacts physically with ROP2 in vitro and in vivo and preferentially binds to the inactive form of the ROP2 protein. MAP18 promotes ROP2 activity during root hair tip growth. Further investigation revealed that MAP18 competes with RhoGTPase GDP DISSOCIATION INHIBITOR1/SUPERCENTIPEDE1 for binding to ROP2, in turn affecting the localization of active ROP2 in the plasma membrane of the root hair tip. These results reveal a novel function of MAP18 in the regulation of ROP2 activation during root hair growth. PMID:28314794

  13. Coupling root architecture and pore network modeling - an attempt towards better understanding root-soil interactions

    NASA Astrophysics Data System (ADS)

    Leitner, Daniel; Bodner, Gernot; Raoof, Amir

    2013-04-01

    Understanding root-soil interactions is of high importance for environmental and agricultural management. Root uptake is an essential component in water and solute transport modeling. The amount of groundwater recharge and solute leaching significantly depends on the demand based plant extraction via its root system. Plant uptake however not only responds to the potential demand, but in most situations is limited by supply form the soil. The ability of the plant to access water and solutes in the soil is governed mainly by root distribution. Particularly under conditions of heterogeneous distribution of water and solutes in the soil, it is essential to capture the interaction between soil and roots. Root architecture models allow studying plant uptake from soil by describing growth and branching of root axes in the soil. Currently root architecture models are able to respond dynamically to water and nutrient distribution in the soil by directed growth (tropism), modified branching and enhanced exudation. The porous soil medium as rooting environment in these models is generally described by classical macroscopic water retention and sorption models, average over the pore scale. In our opinion this simplified description of the root growth medium implies several shortcomings for better understanding root-soil interactions: (i) It is well known that roots grow preferentially in preexisting pores, particularly in more rigid/dry soil. Thus the pore network contributes to the architectural form of the root system; (ii) roots themselves can influence the pore network by creating preferential flow paths (biopores) which are an essential element of structural porosity with strong impact on transport processes; (iii) plant uptake depend on both the spatial location of water/solutes in the pore network as well as the spatial distribution of roots. We therefore consider that for advancing our understanding in root-soil interactions, we need not only to extend our root models, but also improve the description of the rooting environment. Until now there have been no attempts to couple root architecture and pore network models. In our work we present a first attempt to join both types of models using the root architecture model of Leitner et al., (2010) and a pore network model presented by Raoof et al. (2010). The two main objectives of coupling both models are: (i) Representing the effect of root induced biopores on flow and transport processes: For this purpose a fixed root architecture created by the root model is superimposed as a secondary root induced pore network to the primary soil network, thus influencing the final pore topology in the network generation. (ii) Representing the influence of pre-existing pores on root branching: Using a given network of (rigid) pores, the root architecture model allocates its root axes into these preexisting pores as preferential growth paths with thereby shape the final root architecture. The main objective of our study is to reveal the potential of using a pore scale description of the plant growth medium for an improved representation of interaction processes at the interface of root and soil. References Raoof, A., Hassanizadeh, S.M. 2010. A New Method for Generating Pore-Network Models. Transp. Porous Med. 81, 391-407. Leitner, D, Klepsch, S., Bodner, G., Schnepf, S. 2010. A dynamic root system growth model based on L-Systems. Tropisms and coupling to nutrient uptake from soil. Plant Soil 332, 177-192.

  14. The Arabidopsis bZIP11 transcription factor links low-energy signalling to auxin-mediated control of primary root growth

    PubMed Central

    Weiste, Christoph; Pedrotti, Lorenzo; Muralidhara, Prathibha; Ljung, Karin; Dröge-Laser, Wolfgang

    2017-01-01

    Plants have to tightly control their energy homeostasis to ensure survival and fitness under constantly changing environmental conditions. Thus, it is stringently required that energy-consuming stress-adaptation and growth-related processes are dynamically tuned according to the prevailing energy availability. The evolutionary conserved SUCROSE NON-FERMENTING1 RELATED KINASES1 (SnRK1) and the downstream group C/S1 basic leucine zipper (bZIP) transcription factors (TFs) are well-characterised central players in plants’ low-energy management. Nevertheless, mechanistic insights into plant growth control under energy deprived conditions remains largely elusive. In this work, we disclose the novel function of the low-energy activated group S1 bZIP11-related TFs as regulators of auxin-mediated primary root growth. Whereas transgenic gain-of-function approaches of these bZIPs interfere with the activity of the root apical meristem and result in root growth repression, root growth of loss-of-function plants show a pronounced insensitivity to low-energy conditions. Based on ensuing molecular and biochemical analyses, we propose a mechanistic model, in which bZIP11-related TFs gain control over the root meristem by directly activating IAA3/SHY2 transcription. IAA3/SHY2 is a pivotal negative regulator of root growth, which has been demonstrated to efficiently repress transcription of major auxin transport facilitators of the PIN-FORMED (PIN) gene family, thereby restricting polar auxin transport to the root tip and in consequence auxin-driven primary root growth. Taken together, our results disclose the central low-energy activated SnRK1-C/S1-bZIP signalling module as gateway to integrate information on the plant’s energy status into root meristem control, thereby balancing plant growth and cellular energy resources. PMID:28158182

  15. [Different responses of growth and root development of Schima superba provenance to the adjacent plant competition in different nutrient conditions].

    PubMed

    Yao, Jia Bao; Chu, Xiu Li; Zhou, Zhi Chun; Tong, Jian She; Wang, Hui; Yu, Jia Zhong

    2017-04-18

    Growth and root development of three Schima superba seedling provenances were influenced by adjacent plant competition in the homogeneous and heterogeneous nutrient environment, which revealed the reasons of S. superba competition differences in the different genotypes. The results indicated that, compared with homogeneous nutrient environment, all three S. superba provenances showed higher seedling height, more dry matter accumulation, and significant root proliferation in heterogeneous nutrient environment. Under heterogeneous nutrient environment, the seedlings of S. superba from Jian'ou of Fujian exhibited higher competitive advantage in growth than that of S. superba from Longquan of Zhejiang and Xinfeng of Jiangxi, especially standing out under mixed cultivation with seedlings of Cunninghamia lanceolata. Under mixed cultivation, the root growth parameters of S. superba such as root length, root surface area and volume increased by 20.4%-69.0% compared with the single plant, which enhanced the foraging ability and growth advantage. To some extent, however, the root development in Longquan of Zhejiang and Xinfeng of Jiangxi was suppressed when subjected to the pattern of mixed cultivation. Besides, the root growth and development of all three S. superba provenances were suppressed, which might be due to their root self-recognition in the pattern of mono cultivation. Therefore, the seedling growth in Jian'ou of Fujian decreased significantly, but seedling growth in Longquan of Zhejiang and Xinfeng of Jiangxi was not suppressed, even increased evidently, as their root physiological plasticity might play the crucial role in seedling growth. Hence the S. superba from Jian'ou of Fujian with high foraging efficiency and competition ability was suggested with the method of mixed forestation to improve the S. superba forest plantation productivity.

  16. The Arabidopsis bZIP11 transcription factor links low-energy signalling to auxin-mediated control of primary root growth.

    PubMed

    Weiste, Christoph; Pedrotti, Lorenzo; Selvanayagam, Jebasingh; Muralidhara, Prathibha; Fröschel, Christian; Novák, Ondřej; Ljung, Karin; Hanson, Johannes; Dröge-Laser, Wolfgang

    2017-02-01

    Plants have to tightly control their energy homeostasis to ensure survival and fitness under constantly changing environmental conditions. Thus, it is stringently required that energy-consuming stress-adaptation and growth-related processes are dynamically tuned according to the prevailing energy availability. The evolutionary conserved SUCROSE NON-FERMENTING1 RELATED KINASES1 (SnRK1) and the downstream group C/S1 basic leucine zipper (bZIP) transcription factors (TFs) are well-characterised central players in plants' low-energy management. Nevertheless, mechanistic insights into plant growth control under energy deprived conditions remains largely elusive. In this work, we disclose the novel function of the low-energy activated group S1 bZIP11-related TFs as regulators of auxin-mediated primary root growth. Whereas transgenic gain-of-function approaches of these bZIPs interfere with the activity of the root apical meristem and result in root growth repression, root growth of loss-of-function plants show a pronounced insensitivity to low-energy conditions. Based on ensuing molecular and biochemical analyses, we propose a mechanistic model, in which bZIP11-related TFs gain control over the root meristem by directly activating IAA3/SHY2 transcription. IAA3/SHY2 is a pivotal negative regulator of root growth, which has been demonstrated to efficiently repress transcription of major auxin transport facilitators of the PIN-FORMED (PIN) gene family, thereby restricting polar auxin transport to the root tip and in consequence auxin-driven primary root growth. Taken together, our results disclose the central low-energy activated SnRK1-C/S1-bZIP signalling module as gateway to integrate information on the plant's energy status into root meristem control, thereby balancing plant growth and cellular energy resources.

  17. Influence of nitrogen and phosphorous on the growth and root morphology of Acer mono

    PubMed Central

    Zhang, Peng; Shen, Hai-long; Salahuddin

    2017-01-01

    Nitrogen and phosphorous are critical determinants of plant growth and productivity, and both plant growth and root morphology are important parameters for evaluating the effects of supplied nutrients. Previous work has shown that the growth of Acer mono seedlings is retarded under nursery conditions; we applied different levels of N (0, 5, 10, and 15 g plant-1) and P (0, 4, 6 and 8 g plant-1) fertilizer to investigate the effects of fertilization on the growth and root morphology of four-year-old seedlings in the field. Our results indicated that both N and P application significantly affected plant height, root collar diameter, chlorophyll content, and root morphology. Among the nutrient levels, 10 g N and 8 g P were found to yield maximum growth, and the maximum values of plant height, root collar diameter, chlorophyll content, and root morphology were obtained when 10 g N and 8 g P were used together. Therefore, the present study demonstrates that optimum levels of N and P can be used to improve seedling health and growth during the nursery period. PMID:28234921

  18. Root growth and physiology of potted and field-grown trembling aspen exposed to tropospheric ozone

    Treesearch

    M.D. Coleman; R.E. Dickson; J.G. Isebrands; D.F. Karnosky

    1996-01-01

    We studied root growth and respiration of potted plants and field-grown aspen trees (Populus tremuloides Michx.) exposed to ambient or twice-ambient ozone. Root dry weight of potted plants decreased up to 45% after 12 weeks of ozone treatment, and root system respiration decreased by 27%. The ozone-induced decrease in root system respiration of...

  19. Vegetative growth and cluster development in Shiraz grapevines subjected to partial root-zone cooling

    PubMed Central

    Rogiers, Suzy Y.; Clarke, Simon J.

    2013-01-01

    Heterogeneity in root-zone temperature both vertically and horizontally may contribute to the uneven vegetative and reproductive growth often observed across vineyards. An experiment was designed to assess whether the warmed half of a grapevine root zone could compensate for the cooled half in terms of vegetative growth and reproductive development. We divided the root system of potted Shiraz grapevines bilaterally and applied either a cool or a warm treatment to each half from budburst to fruit set. Shoot growth and inflorescence development were monitored over the season. Simultaneous cooling and warming of parts of the root system decreased shoot elongation, leaf emergence and leaf expansion below that of plants with a fully warmed root zone, but not to the same extent as those with a fully cooled root zone. Inflorescence rachis length, flower number and berry number after fertilization were smaller only in those vines exposed to fully cooled root zones. After terminating the treatments, berry enlargement and the onset of veraison were slowed in those vines that had been exposed to complete or partial root-zone cooling. Grapevines exposed to partial root-zone cooling were thus delayed in vegetative and reproductive development, but the inhibition was greater in those plants whose entire root system had been cooled. PMID:24244839

  20. Increased soil phosphorus availability induced by faba bean root exudation stimulates root growth and phosphorus uptake in neighbouring maize.

    PubMed

    Zhang, Deshan; Zhang, Chaochun; Tang, Xiaoyan; Li, Haigang; Zhang, Fusuo; Rengel, Zed; Whalley, William R; Davies, William J; Shen, Jianbo

    2016-01-01

    Root growth is influenced by soil nutrients and neighbouring plants, but how these two drivers affect root interactions and regulate plant growth dynamics is poorly understood. Here, interactions between the roots of maize (Zea mays) and faba bean (Vicia faba) are characterized. Maize was grown alone (maize) or with maize (maize/maize) or faba bean (maize/faba bean) as competitors under five levels of phosphorus (P) supply, and with homogeneous or heterogeneous P distribution. Maize had longer root length and greater shoot biomass and P content when grown with faba bean than with maize. At each P supply rate, faba bean had a smaller root system than maize but greater exudation of citrate and acid phosphatase, suggesting a greater capacity to mobilize P in the rhizosphere. Heterogeneous P availability enhanced the root-length density of maize but not faba bean. Maize root proliferation in the P-rich patches was associated with increased shoot P uptake. Increased P availability by localized P application or by the presence of faba bean exudation stimulated root morphological plasticity and increased shoot growth in maize in the maize/faba bean mixture, suggesting that root interactions of neighbouring plants can be modified by increased P availability. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  1. Proliferation and ajmalicine biosynthesis of Catharanthus roseus (L). G. Don adventitious roots in self-built temporary immersion system

    NASA Astrophysics Data System (ADS)

    Phuc, Vo Thanh; Trung, Nguyen Minh; Thien, Huynh Tri; Tien, Le Thi Thuy

    2017-09-01

    Periwinkle (Catharanthus roseus (L.) G. Don) is a medicinal plant containing about 130 types of alkaloids that have important pharmacological effects. Ajmalicine in periwinkle root is an antihypertensive drug used in treatment of high blood pressure. Adventitious roots obtained from periwinkle leaves of in vitro shoots grew well in quarter-strength MS medium supplemented with 0.3 mg/l IBA and 20 g/l sucrose. Dark condition was more suitable for root growth than light. However, callus formation also took place in addition to the growth of adventitious roots. Temporary immersion system was applied in the culture of adventitious roots in order to reduce the callus growth rate formed in shake flask cultures. The highest growth index of roots was achieved using the system with 5-min immersion every 45 min (1.676 ± 0.041). The roots cultured in this system grew well without callus formation. Ajmalicine content was highest in the roots cultured with 5-min immersion every 180 min (950 μg/g dry weight).

  2. Root gravitropism and root hair development constitute coupled developmental responses regulated by auxin homeostasis in the Arabidopsis root apex.

    PubMed

    Rigas, Stamatis; Ditengou, Franck Anicet; Ljung, Karin; Daras, Gerasimos; Tietz, Olaf; Palme, Klaus; Hatzopoulos, Polydefkis

    2013-03-01

    Active polar transport establishes directional auxin flow and the generation of local auxin gradients implicated in plant responses and development. Auxin modulates gravitropism at the root tip and root hair morphogenesis at the differentiation zone. Genetic and biochemical analyses provide evidence for defective basipetal auxin transport in trh1 roots. The trh1, pin2, axr2 and aux1 mutants, and transgenic plants overexpressing PIN1, all showing impaired gravity response and root hair development, revealed ectopic PIN1 localization. The auxin antagonist hypaphorine blocked root hair elongation and caused moderate agravitropic root growth, also leading to PIN1 mislocalization. These results suggest that auxin imbalance leads to proximal and distal developmental defects in Arabidopsis root apex, associated with agravitropic root growth and root hair phenotype, respectively, providing evidence that these two auxin-regulated processes are coupled. Cell-specific subcellular localization of TRH1-YFP in stele and epidermis supports TRH1 engagement in auxin transport, and hence impaired function in trh1 causes dual defects of auxin imbalance. The interplay between intrinsic cues determining root epidermal cell fate through the TTG/GL2 pathway and environmental cues including abiotic stresses modulates root hair morphogenesis. As a consequence of auxin imbalance in Arabidopsis root apex, ectopic PIN1 mislocalization could be a risk aversion mechanism to trigger root developmental responses ensuring root growth plasticity. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.

  3. MADS-box transcription factor AGL21 regulates lateral root development and responds to multiple external and physiological signals.

    PubMed

    Yu, Lin-Hui; Miao, Zi-Qing; Qi, Guo-Feng; Wu, Jie; Cai, Xiao-Teng; Mao, Jie-Li; Xiang, Cheng-Bin

    2014-11-01

    Plant root system morphology is dramatically influenced by various environmental cues. The adaptation of root system architecture to environmental constraints, which mostly depends on the formation and growth of lateral roots, is an important agronomic trait. Lateral root development is regulated by the external signals coordinating closely with intrinsic signaling pathways. MADS-box transcription factors are known key regulators of the transition to flowering and flower development. However, their functions in root development are still poorly understood. Here we report that AGL21, an AGL17-clade MADS-box gene, plays a crucial role in lateral root development. AGL21 was highly expressed in root, particularly in the root central cylinder and lateral root primordia. AGL21 overexpression plants produced more and longer lateral roots while agl21 mutants showed impaired lateral root development, especially under nitrogen-deficient conditions. AGL21 was induced by many plant hormones and environmental stresses, suggesting a function of this gene in root system plasticity in response to various signals. Furthermore, AGL21 was found positively regulating auxin accumulation in lateral root primordia and lateral roots by enhancing local auxin biosynthesis, thus stimulating lateral root initiation and growth. We propose that AGL21 may be involved in various environmental and physiological signals-mediated lateral root development and growth. © The Author 2014. Published by Oxford University Press on behalf of CSPB and IPPE, SIBS, CAS.

  4. Plant-Microbe Communication Enhances Auxin Biosynthesis by a Root-Associated Bacterium, Bacillus amyloliquefaciens SQR9.

    PubMed

    Liu, Yunpeng; Chen, Lin; Zhang, Nan; Li, Zunfeng; Zhang, Guishan; Xu, Yu; Shen, Qirong; Zhang, Ruifu

    2016-04-01

    Mechanisms by which beneficial rhizobacteria promote plant growth include tryptophan-dependent indole-3-acetic acid (IAA) synthesis. The abundance of tryptophan in the rhizosphere, however, may influence the level of benefit provided by IAA-producing rhizobacteria. This study examined the cucumber-Bacillus amyloliquefaciens SQR9 system and found that SQR9, a bacterium previously shown to enhance the growth of cucumber, increased root secretion of tryptophan by three- to fourfold. Using a split-root system, SQR9 colonization of roots in one chamber not only increased tryptophan secretion from the noninoculated roots but also increased the expression of the cucumber tryptophan transport gene but not the anthranilate synthesis gene in those roots. The increased tryptophan in isolated rhizosphere exudates was sufficient to support increased IAA production by SQR9. Moreover, SQR9 colonization of roots in one chamber in the split-root system resulted in sufficient tryptophan production by the other roots to upregulate SQR9 IAA biosynthesis genes, including a 27-fold increase in the indole-3-acetonitrilase gene yhcX during subsequent colonization of those roots. Deletion of yhcX eliminated SQR9-mediated increases in root surface area, likely by reducing IAA-stimulated lateral root growth. This study demonstrates a chemical dialogue between B. amyloliquefaciens and cucumber in which this communication contributes to bacteria-mediated plant-growth enhancement.

  5. Aberrant temporal growth pattern and morphology of root and shoot caused by a defective circadian clock in Arabidopsis thaliana.

    PubMed

    Ruts, Tom; Matsubara, Shizue; Wiese-Klinkenberg, Anika; Walter, Achim

    2012-10-01

    Circadian clocks synchronized with the environment allow plants to anticipate recurring daily changes and give a fitness advantage. Here, we mapped the dynamic growth phenotype of leaves and roots in two lines of Arabidopsis thaliana with a disrupted circadian clock: the CCA1 over-expressing line (CCA1ox) and the prr9 prr7 prr5 (prr975) mutant. We demonstrate leaf growth defects due to a disrupted circadian clock over a 24 h time scale. Both lines showed enhanced leaf growth compared with the wild-type during the diurnal period, suggesting increased partitioning of photosynthates for leaf growth. Nocturnal leaf growth was reduced and growth inhibition occurred by dawn, which may be explained by ineffective starch degradation in the leaves of the mutants. However, this growth inhibition was not caused by starch exhaustion. Overall, these results are consistent with the notion that the defective clock affects carbon and energy allocation, thereby reducing growth capacity during the night. Furthermore, rosette morphology and size as well as root architecture were strikingly altered by the defective clock control. Separate analysis of the primary root and lateral roots revealed strong suppression of lateral root formation in both CCA1ox and prr975, accompanied by unusual changes in lateral root growth direction under light-dark cycles and increased lateral extension of the root system. We conclude that growth of the whole plant is severely affected by improper clock regulation in A. thaliana, resulting not only in altered timing and capacity for growth but also aberrant development of shoot and root architecture. © 2012 Forschungszentrum Jülich. The Plant Journal © 2012 Blackwell Publishing Ltd.

  6. Corn-on-a-chip: Mini-channel Device for Corn Root Growth

    NASA Astrophysics Data System (ADS)

    Kreis, Kevin; Ryu, Sangjin

    2015-11-01

    Plant growth heavily relies on interactions between the root and the soil environment, but it is impossible to observe such interactions because of opaqueness of soil. Microfluidics has been successfully utilized to monitor the root growth behaviors of Arabidopsis. In this study we have chosen Maize as a model plant because of its economic significance, and aim to develop transparent mini-channel devices accommodating the root growth of corn seedlings in a controlled environment. To mimic aspects of the soil environment, we try to impose concentration gradients of key chemical ions to the growing root using the device, and to investigate how the root responds to the applied stimuli. We acknowledge support from NASA Nebraska Space Grant Fellowship.

  7. Light as stress factor to plant roots – case of root halotropism

    PubMed Central

    Yokawa, Ken; Fasano, Rossella; Kagenishi, Tomoko; Baluška, František

    2014-01-01

    Despite growing underground, largely in darkness, roots emerge to be very sensitive to light. Recently, several important papers have been published which reveal that plant roots not only express all known light receptors but also that their growth, physiology and adaptive stress responses are light-sensitive. In Arabidopsis, illumination of roots speeds-up root growth via reactive oxygen species-mediated and F-actin dependent process. On the other hand, keeping Arabidopsis roots in darkness alters F-actin distribution, polar localization of PIN proteins as well as polar transport of auxin. Several signaling components activated by phytohormones are overlapping with light-related signaling cascade. We demonstrated that the sensitivity of roots to salinity is altered in the light-grown Arabidopsis roots. Particularly, light-exposed roots are less effective in their salt-avoidance behavior known as root halotropism. Here we discuss these new aspects of light-mediated root behavior from cellular, physiological and evolutionary perspectives. PMID:25566292

  8. Ethylene Promotes Cadmium-induced Root Growth Inhibition through EIN3 controlled XTH33 and LSU1 expression in Arabidopsis.

    PubMed

    Kong, Xiangpei; Li, Cuiling; Zhang, Feng; Yu, Qianqian; Gao, Shan; Zhang, Maolin; Tian, Huiyu; Zhang, Jian; Yuan, Xianzheng; Ding, Zhaojun

    2018-06-05

    Cadmium (Cd) stress is one of the most serious heavy metal stresses limiting plant growth and development. However, the molecular mechanisms underlying Cd-induced root growth inhibition remain unclear. Here, we found that ethylene signaling positively regulates Cd-induced root growth inhibition. Arabidopsis seedlings pretreated with the ethylene precursor 1-aminocyclopropane-1-carboxylic acid exhibited enhanced Cd-induced root growth inhibition; while the addition of the ethylene biosynthesis inhibitor aminoethoxyvinyl glycine decreased Cd-induced root growth inhibition. Consistently, ethylene-insensitive mutants such as ein4-1, ein3-1 eil1-1 double mutant, and EBF1ox, displayed an increased tolerance to Cd. Furthermore, we also observed that Cd inhibited EIN3 protein degradation, a process which was regulated by ethylene signaling. Genetic and biochemical analyses showed that EIN3 enhanced root growth inhibition under Cd stress through direct binding to the promoters and regulating the expression of XTH33 and LSU1, which encode key regulators of cell wall extension and S metabolic process, respectively. Collectively, our study demonstrates that ethylene plays a positive role in Cd-regulated root growth inhibition through EIN3-mediated transcriptional regulation of XTH33 and LSU1, and provides a molecular framework for the integration of environmental signals and intrinsic regulators in modulating plant root growth. This article is protected by copyright. All rights reserved.

  9. Transcriptomics insights into the genetic regulation of root apical meristem exhaustion and determinate primary root growth in Pachycereus pringlei (Cactaceae).

    PubMed

    Rodriguez-Alonso, Gustavo; Matvienko, Marta; López-Valle, Mayra L; Lázaro-Mixteco, Pedro E; Napsucialy-Mendivil, Selene; Dubrovsky, Joseph G; Shishkova, Svetlana

    2018-06-04

    Many Cactaceae species exhibit determinate growth of the primary root as a consequence of root apical meristem (RAM) exhaustion. The genetic regulation of this growth pattern is unknown. Here, we de novo assembled and annotated the root apex transcriptome of the Pachycereus pringlei primary root at three developmental stages, with active or exhausted RAM. The assembled transcriptome is robust and comprehensive, and was used to infer a transcriptional regulatory network of the primary root apex. Putative orthologues of Arabidopsis regulators of RAM maintenance, as well as putative lineage-specific transcripts were identified. The transcriptome revealed putative orthologues of most proteins involved in housekeeping processes, hormone signalling, and metabolic pathways. Our results suggest that specific transcriptional programs operate in the root apex at specific developmental time points. Moreover, the transcriptional state of the P. pringlei root apex as the RAM becomes exhausted is comparable to the transcriptional state of cells from the meristematic, elongation, and differentiation zones of Arabidopsis roots along the root axis. We suggest that the transcriptional program underlying the drought stress response is induced during Cactaceae root development, and that lineage-specific transcripts could contribute to RAM exhaustion in Cactaceae.

  10. Grasses suppress shoot-borne roots to conserve water during drought

    PubMed Central

    Sebastian, Jose; Yee, Muh-Ching; Goudinho Viana, Willian; Rellán-Álvarez, Rubén; Feldman, Max; Priest, Henry D.; Trontin, Charlotte; Lee, Tak; Jiang, Hui; Mockler, Todd C.

    2016-01-01

    Many important crops are members of the Poaceae family, which develop root systems characterized by a high degree of root initiation from the belowground basal nodes of the shoot, termed the crown. Although this postembryonic shoot-borne root system represents the major conduit for water uptake, little is known about the effect of water availability on its development. Here we demonstrate that in the model C4 grass Setaria viridis, the crown locally senses water availability and suppresses postemergence crown root growth under a water deficit. This response was observed in field and growth room environments and in all grass species tested. Luminescence-based imaging of root systems grown in soil-like media revealed a shift in root growth from crown-derived to primary root-derived branches, suggesting that primary root-dominated architecture can be induced in S. viridis under certain stress conditions. Crown roots of Zea mays and Setaria italica, domesticated relatives of teosinte and S. viridis, respectively, show reduced sensitivity to water deficit, suggesting that this response might have been influenced by human selection. Enhanced water status of maize mutants lacking crown roots suggests that under a water deficit, stronger suppression of crown roots actually may benefit crop productivity. PMID:27422554

  11. Effect of seed pelleting with biocontrol agents on growth and colonisation of roots of mungbean by root-infecting fungi.

    PubMed

    Ramzan, Nadia; Noreen, Nayara; Perveen, Zahida; Shahzad, Saleem

    2016-08-01

    Mungbean (Vigna radiata (L.) Wilczek) is a leguminous pulse crop that is a major source of proteins, vitamins and minerals. Root-infecting fungi produce severe plant diseases like root rot, charcoal rot, damping-off and stem rot. The soil-borne pathogens can be controlled by chemicals, but these chemicals have several negative effects. Use of microbial antagonist such as fungi and bacteria is a safe, effective and eco-friendly method for the control of many soil-borne pathogens. Biological control agents promote plant growth and develop disease resistance. Application of bacteria and fungi as seed dressing suppressed the root-infecting fungi on leguminous crops. Seeds of mungbean were pelleted with different biocontrol agents to determine their effect on plant growth and colonisation of roots by root-infecting fungi, viz. Fusarium solani, Macrophomina phaseolina, Pythium aphanidermatum, Rhizoctonia solani and Sclerotium rolfsii. Treatment of mungbean seeds with fungal antagonists showed more shoot and root length as compared to bacterial antagonists, whereas seed treated with bacterial antagonists showed maximum shoot and root weight. Trichoderma harzianum and Bacillus subtilis were the best among all the biocontrol agents since they provided the highest plant growth and greater reduction in root colonisation by all root-infecting fungi. Bacillus cereus, Trichoderma virens, Pseudomonas fluorescens and Micrococcus varians were also effective against root-infecting fungi but to a lesser extent. T. harzianum, T. virens, B. subtilis and P. fluorescens were found to be best among all biocontrol agents. The root-infecting fungi can be controlled by pelleting seeds with biocontrol agents as it is safe and effective method. Additionally, plant growth was promoted more by this method. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  12. Transcriptome analysis reveals the effects of sugar metabolism and auxin and cytokinin signaling pathways on root growth and development of grafted apple.

    PubMed

    Li, Guofang; Ma, Juanjuan; Tan, Ming; Mao, Jiangping; An, Na; Sha, Guangli; Zhang, Dong; Zhao, Caiping; Han, Mingyu

    2016-02-29

    The root architecture of grafted apple (Malus spp.) is affected by various characteristics of the scions. To provide information on the molecular mechanisms underlying this influence, we examined root transcriptomes of M. robusta rootstock grafted with scions of wild-type (WT) apple (M. spectabilis) and a more-branching (MB) mutant at the branching stage. The growth rate of rootstock grafted MB was repressed significantly, especially the primary root length and diameter, and root weight. Biological function categories of differentially expressed genes were significantly enriched in processes associated with hormone signal transduction and intracellular activity, with processes related to the cell cycle especially down-regulated. Roots of rootstock grafted with MB scions displayed elevated auxin and cytokinin contents and reduced expression of MrPIN1, MrARF, MrAHP, most MrCRE1 genes, and cell growth-related genes MrGH3, MrSAUR and MrTCH4. Although auxin accumulation and transcription of MrPIN3, MrALF1 and MrALF4 tended to induce lateral root formation in MB-grafted rootstock, the number of lateral roots was not significantly changed. Sucrose, fructose and glucose contents were not decreased in MB-grafted roots compared with those bearing WT scions, but glycolysis and tricarboxylic acid cycle metabolic activities were repressed. Root resistance and nitrogen metabolism were reduced in MB-grafted roots as well. Our findings suggest that root growth and development of rootstock are mainly influenced by sugar metabolism and auxin and cytokinin signaling pathways. This study provides a basis that the characteristics of scions are related to root growth and development, resistance and activity of rootstocks.

  13. Computer based imaging and analysis of root gravitropism

    NASA Technical Reports Server (NTRS)

    Evans, M. L.; Ishikawa, H.

    1997-01-01

    Two key issues in studies of the nature of the gravitropic response in roots have been the determination of the precise pattern of differential elongation responsible for downward bending and the identification of the cells that show the initial motor response. The main approach for examining patterns of differential growth during root gravitropic curvature has been to apply markers to the root surface and photograph the root at regular intervals during gravitropic curvature. Although these studies have provided valuable information on the characteristics of the gravitropic motor response in roots, their labor intensive nature limits sample size and discourages both high frequency of sampling and depth of analysis of surface expansion data. In this brief review we describe the development of computer-based video analysis systems for automated measurement of root growth and shape change and discuss some key features of the root gravitropic response that have been revealed using this methodology. We summarize the capabilities of several new pieces of software designed to measure growth and shape changes in graviresponding roots and describe recent progress in developing analysis systems for studying the small, but experimentally popular, primary roots of Arabidopsis. A key finding revealed by such studies is that the initial gravitropic response of roots of maize and Arabidopsis occurs in the distal elongation zone (DEZ) near the root apical meristem, not in the main elongation zone. Another finding is that the initiation of rapid elongation in the DEZ following gravistimulation appears to be related to rapid membrane potential changes in this region of the root. These observations have provided the incentive for ongoing studies examining possible links between potential growth modifying factors (auxin, calcium, protons) and gravistimulated changes in membrane potential and growth patterns in the DEZ.

  14. Root rots

    Treesearch

    Kathryn Robbins; Philip M. Wargo

    1989-01-01

    Root rots of central hardwoods are diseases caused by fungi that infect and decay woody roots and sometimes also invade the butt portion of the tree. By killing and decaying roots, root rotting fungi reduce growth, decrease tree vigor, and cause windthrow and death. The most common root diseases of central hardwoods are Armillaria root rot, lnonotus root rot, and...

  15. Inhibition of auxin movement from the shoot into the root inhibits lateral root development in Arabidopsis

    NASA Technical Reports Server (NTRS)

    Reed, R. C.; Brady, S. R.; Muday, G. K.

    1998-01-01

    In roots two distinct polar movements of auxin have been reported that may control different developmental and growth events. To test the hypothesis that auxin derived from the shoot and transported toward the root controls lateral root development, the two polarities of auxin transport were uncoupled in Arabidopsis. Local application of the auxin-transport inhibitor naphthylphthalamic acid (NPA) at the root-shoot junction decreased the number and density of lateral roots and reduced the free indoleacetic acid (IAA) levels in the root and [3H]IAA transport into the root. Application of NPA to the basal half of or at several positions along the root only reduced lateral root density in regions that were in contact with NPA or in regions apical to the site of application. Lateral root development was restored by application of IAA apical to NPA application. Lateral root development in Arabidopsis roots was also inhibited by excision of the shoot or dark growth and this inhibition was reversible by IAA. Together, these results are consistent with auxin transport from the shoot into the root controlling lateral root development.

  16. APSR1, a novel gene required for meristem maintenance, is negatively regulated by low phosphate availability.

    PubMed

    González-Mendoza, Víctor; Zurita-Silva, Andrés; Sánchez-Calderón, Lenin; Sánchez-Sandoval, María Eugenia; Oropeza-Aburto, Araceli; Gutiérrez-Alanís, Dolores; Alatorre-Cobos, Fulgencio; Herrera-Estrella, Luis

    2013-05-01

    Proper root growth is crucial for anchorage, exploration, and exploitation of the soil substrate. Root growth is highly sensitive to a variety of environmental cues, among them water and nutrient availability have a great impact on root development. Phosphorus (P) availability is one of the most limiting nutrients that affect plant growth and development under natural and agricultural environments. Root growth in the direction of the long axis proceeds from the root tip and requires the coordinated activities of cell proliferation, cell elongation and cell differentiation. Here we report a novel gene, APSR1 (Altered Phosphate Starvation Response1), involved in root meristem maintenance. The loss of function mutant apsr1-1 showed a reduction in primary root length and root apical meristem size, short differentiated epidermal cells and long root hairs. Expression of APSR1 gene decreases in response to phosphate starvation and apsr1-1 did not show the typical progressive decrease of undifferentiated cells at root tip when grown under P limiting conditions. Interestingly, APSR1 expression pattern overlaps with root zones of auxin accumulation. Furthermore, apsr1-1 showed a clear decrease in the level of the auxin transporter PIN7. These data suggest that APSR1 is required for the coordination of cell processes necessary for correct root growth in response to phosphate starvation conceivably by direct or indirect modulation of PIN7. We also propose, based on its nuclear localization and structure, that APSR1 may potentially be a member of a novel group of transcription factors. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  17. Exogenous nitrate induces root branching and inhibits primary root growth in Capsicum chinense Jacq.

    PubMed

    Celis-Arámburo, Teresita de Jesús; Carrillo-Pech, Mildred; Castro-Concha, Lizbeth A; Miranda-Ham, María de Lourdes; Martínez-Estévez, Manuel; Echevarría-Machado, Ileana

    2011-12-01

    The effects of nitrate (NO₃⁻) on the root system are complex and depend on several factors, such as the concentration available to the plant, endogenous nitrogen status and the sensitivity of the species. Though these effects have been widely documented on Arabidopsis and cereals, no reports are available in the Capsicum genus. In this paper, we have determined the effect of an exogenous in vitro application of this nutrient on root growth in habanero pepper (Capsicum chinense Jacq.). Exposure to NO₃⁻ inhibited primary root growth in both, dose- and time-dependent manners. The highest inhibition was attained with 0.1 mM NO₃⁻ between the fourth and fifth days of treatment. Inhibition of primary root growth was observed by exposing the root to both homogeneous and heterogeneous conditions of the nutrient; in contrast, ammonium was not able to induce similar changes. NO₃⁻-induced inhibition of primary root growth was reversed by treating the roots with IAA or NPA, a polar auxin transport inhibitor. Heterogeneous NO₃⁻ application stimulated the formation and elongation of lateral roots in the segment where the nutrient was present, and this response was influenced by exogenous phytohormones. These results demonstrate that habanero pepper responds to NO₃⁻ in a similar fashion to other species with certain particular differences. Therefore, studies in this model could help to elucidate the mechanisms by which roots respond to NO₃⁻ in fluctuating soil environments. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  18. Drought-Up-Regulated TaNAC69-1 is a Transcriptional Repressor of TaSHY2 and TaIAA7, and Enhances Root Length and Biomass in Wheat.

    PubMed

    Chen, Dandan; Richardson, Terese; Chai, Shoucheng; Lynne McIntyre, C; Rae, Anne L; Xue, Gang-Ping

    2016-10-01

    A well-known physiological adaptation process of plants encountering drying soil is to achieve water balance by reducing shoot growth and maintaining or promoting root elongation, but little is known about the molecular basis of this process. This study investigated the role of a drought-up-regulated Triticum aestivum NAC69-1 (TaNAC69-1) in the modulation of root growth in wheat. TaNAC69-1 was predominantly expressed in wheat roots at the early vegetative stage. Overexpression of TaNAC69-1 in wheat roots using OsRSP3 (essentially root-specific) and OsPIP2;3 (root-predominant) promoters resulted in enhanced primary seminal root length and a marked increase in maturity root biomass. Competitive growth analysis under water-limited conditions showed that OsRSP3 promoter-driven TaNAC69-1 transgenic lines produced 32% and 35% more above-ground biomass and grains than wild-type plants, respectively. TaNAC69-1 overexpression in the roots down-regulated the expression of TaSHY2 and TaIAA7, which are from the auxin/IAA (Aux/IAA) transcriptional repressor gene family and are the homologs of negative root growth regulators SHY2/IAA3 and IAA7 in Arabidopsis. The expression of TaSHY2 and TaIAA7 in roots was down-regulated by drought stress and up-regulated by cytokinin treatment, which inhibited root growth. DNA binding and transient expression analyses revealed that TaNAC69-1 bound to the promoters of TaSHY2 and TaIAA7, acted as a transcriptional repressor and repressed the expression of reporter genes driven by the TaSHY2 or TaIAA7 promoter. These data suggest that TaNAC69-1 is a transcriptional repressor of TaSHY2 and TaIAA7 homologous to Arabidopsis negative root growth regulators and is likely to be involved in promoting root elongation in drying soil. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  19. Influence of root-bed size on the response of tobacco to elevated CO2 as mediated by cytokinins

    PubMed Central

    Schaz, Ulrike; Düll, Barbara; Reinbothe, Christiane; Beck, Erwin

    2014-01-01

    The extent of growth stimulation of C3 plants by elevated CO2 is modulated by environmental factors. Under optimized environmental conditions (high light, continuous water and nutrient supply, and others), we analysed the effect of an elevated CO2 atmosphere (700 ppm, EC) and the importance of root-bed size on the growth of tobacco. Biomass production was consistently higher under EC. However, the stimulation was overridden by root-bed volumes that restricted root growth. Maximum growth and biomass production were obtained at a root bed of 15 L at ambient and elevated CO2 concentrations. Starting with seed germination, the plants were strictly maintained under ambient or elevated CO2 until flowering. Thus, the well-known acclimation effect of growth to enhanced CO2 did not occur. The relative growth rates of EC plants exceeded those of ambient-CO2 plants only during the initial phases of germination and seedling establishment. This was sufficient for a persistently higher absolute biomass production by EC plants in non-limiting root-bed volumes. Both the size of the root bed and the CO2 concentration influenced the quantitative cytokinin patterns, particularly in the meristematic tissues of shoots, but to a smaller extent in stems, leaves and roots. In spite of the generally low cytokinin concentrations in roots, the amounts of cytokinins moving from the root to the shoot were substantially higher in high-CO2 plants. Because the cytokinin patterns of the (xylem) fluid in the stems did not match those of the shoot meristems, it is assumed that cytokinins as long-distance signals from the roots stimulate meristematic activity in the shoot apex and the sink leaves. Subsequently, the meristems are able to synthesize those phytohormones that are required for the cell cycle. Root-borne cytokinins entering the shoot appear to be one of the major control points for the integration of various environmental cues into one signal for optimized growth. PMID:24790131

  20. Root and Shoot Phenology May Respond Differently to Warming

    NASA Astrophysics Data System (ADS)

    Radville, L.; Eissenstat, D. M.; Post, E.

    2015-12-01

    Climate change is increasing temperatures and extending the growing season for many organisms. Shifts in phenology have been widely reported in response to global warming and have strong effects on ecosystem processes and greenhouse gas emissions. It is well understood that warming generally advances aboveground plant phenology, but the influence of temperature on root phenology is unclear. Most terrestrial biosphere models assume that root and shoot growth occur at the same time and are influenced by warming in the same way, but recent studies suggest that this may not be the case. Testing this assumption is particularly important in the Arctic where over 70% of plant biomass can be belowground and warming is happening faster than in other ecosystems. In 2013 and 2014 we examined the timing of root growth in the Arctic in plots that had been warmed or unwarmed for 10 years. We found that peak root growth occurred about one month before leaf growth, suggesting that spring root phenology is not controlled by carbon produced during spring photosynthesis. If root phenology is not controlled by photosynthate early in the season, earlier spring leaf growth may not cause earlier spring root growth. In support of this, we found that warming advanced spring leaf cover but did not significantly affect root phenology. Root growth was not significantly correlated with soil temperature and did not appear to be limited by near-freezing temperatures above the permafrost. These results suggest that although shoots are influenced by temperature, roots in this system may be more influenced by photosynthesis and carbon storage. Aboveground phenology, one of the most widely measured aspects of climate change, may not represent whole-plant phenology and may be a poor indicator of the timing of whole-plant carbon fluxes. Additionally, climate model assumptions that roots and shoots grow at the same time may need to be revised.

  1. A preliminary analysis of the effects of bisphenol A on the plant root growth via changes in endogenous plant hormones.

    PubMed

    Li, Xingyi; Wang, Lihong; Wang, Shengman; Yang, Qing; Zhou, Qing; Huang, Xiaohua

    2018-04-15

    Bisphenol A (BPA) is ubiquitous in the environment worldwide, affecting plant growth and development. Endogenous plant hormones serve as switches that regulate plant growth and development. However, plants have different physiological requirements and environmental adaptive capacities during the different growth stages. Here, we investigated the effects of BPA on soybean (Glycine max L.) root growth at the three growth stages and analyzed the mechanisms underlying the effects of BPA on the root growth by assessing changes in endogenous hormone. The results showed that low concentration of BPA (1.5mgL -1 ) improved root growth (except at the seed-filling stage), increased indole-3-acetic acid (IAA) content at the first two growth stages, and increased zeatin (ZT) content and decreased gibberellic acid (GA 3 ) content at the seedling stage. But low concentration of BPA caused decreased ethylene (ETH) contents and constant abscisic acid (ABA) content at all three stages. However, BPA at moderate and high concentrations (6.0 and 12.0mgL -1 ) inhibited root growth, causing the decreased IAA, GA 3 and ETH contents and increased ABA content at all three growth stages. The change degrees of above indices were weakened with prolonging the growth stages. After BPA withdrawal, both the root growth and the hormone contents recovered (with the exception of ZT and ETH), and the recovery degrees had negative correlation with the BPA exposure concentration and had positive correlation with the growth stage. Changes in residual BPA content in the roots were also observed at different BPA concentrations and different growth stages. Our results demonstrated the effects of BPA on root growth were related to BPA-induced changes in hormone, which performed differently at various growth stages. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. The influence of treeshelters and irrigation on shoot and root growth of three California oak species

    Treesearch

    Douglas McCreary; Laurence R. Costello; Jerry Tecklin; Katherine Jones; David Labadie

    2002-01-01

    Treeshelters are individual seedling protectors that can accelerate height growth of native California oaks. There is concern, however, that this growth may occur at the expense of the roots, resulting in poor long-term field performance. This study could detect no differences between protected and unprotected seedlings in shoot weight, root weight or shoot/root ratios...

  3. Growth is required for perception of water availability to pattern root branches in plants.

    PubMed

    Robbins, Neil E; Dinneny, José R

    2018-01-23

    Water availability is a potent regulator of plant development and induces root branching through a process termed hydropatterning. Hydropatterning enables roots to position lateral branches toward regions of high water availability, such as wet soil or agar media, while preventing their emergence where water is less available, such as in air. The mechanism by which roots perceive the spatial distribution of water during hydropatterning is unknown. Using primary roots of Zea mays (maize) we reveal that developmental competence for hydropatterning is limited to the growth zone of the root tip. Past work has shown that growth generates gradients in water potential across an organ when asymmetries exist in the distribution of available water. Using mathematical modeling, we predict that substantial growth-sustained water potential gradients are also generated in the hydropatterning competent zone and that such biophysical cues inform the patterning of lateral roots. Using diverse chemical and environmental treatments we experimentally demonstrate that growth is necessary for normal hydropatterning of lateral roots. Transcriptomic characterization of the local response of tissues to a moist surface or air revealed extensive regulation of signaling and physiological pathways, some of which we show are growth-dependent. Our work supports a "sense-by-growth" mechanism governing hydropatterning, by which water availability cues are rendered interpretable through growth-sustained water movement. Copyright © 2018 the Author(s). Published by PNAS.

  4. GLO-Roots: an imaging platform enabling multidimensional characterization of soil-grown root systems

    PubMed Central

    Rellán-Álvarez, Rubén; Lobet, Guillaume; Lindner, Heike; Pradier, Pierre-Luc; Sebastian, Jose; Yee, Muh-Ching; Geng, Yu; Trontin, Charlotte; LaRue, Therese; Schrager-Lavelle, Amanda; Haney, Cara H; Nieu, Rita; Maloof, Julin; Vogel, John P; Dinneny, José R

    2015-01-01

    Root systems develop different root types that individually sense cues from their local environment and integrate this information with systemic signals. This complex multi-dimensional amalgam of inputs enables continuous adjustment of root growth rates, direction, and metabolic activity that define a dynamic physical network. Current methods for analyzing root biology balance physiological relevance with imaging capability. To bridge this divide, we developed an integrated-imaging system called Growth and Luminescence Observatory for Roots (GLO-Roots) that uses luminescence-based reporters to enable studies of root architecture and gene expression patterns in soil-grown, light-shielded roots. We have developed image analysis algorithms that allow the spatial integration of soil properties, gene expression, and root system architecture traits. We propose GLO-Roots as a system that has great utility in presenting environmental stimuli to roots in ways that evoke natural adaptive responses and in providing tools for studying the multi-dimensional nature of such processes. DOI: http://dx.doi.org/10.7554/eLife.07597.001 PMID:26287479

  5. GLO-Roots: An imaging platform enabling multidimensional characterization of soil-grown root systems

    DOE PAGES

    Rellan-Alvarez, Ruben; Lobet, Guillaume; Lindner, Heike; ...

    2015-08-19

    Root systems develop different root types that individually sense cues from their local environment and integrate this information with systemic signals. This complex multi-dimensional amalgam of inputs enables continuous adjustment of root growth rates, direction, and metabolic activity that define a dynamic physical network. Current methods for analyzing root biology balance physiological relevance with imaging capability. To bridge this divide, we developed an integrated-imaging system called Growth and Luminescence Observatory for Roots (GLO-Roots) that uses luminescence-based reporters to enable studies of root architecture and gene expression patterns in soil-grown, light-shielded roots. We have developed image analysis algorithms that allow themore » spatial integration of soil properties, gene expression, and root system architecture traits. We propose GLO-Roots as a system that has great utility in presenting environmental stimuli to roots in ways that evoke natural adaptive responses and in providing tools for studying the multi-dimensional nature of such processes.« less

  6. A novel morphological response of maize (Zea mays) adult roots to heterogeneous nitrate supply revealed by a split-root experiment.

    PubMed

    Yu, Peng; Li, Xuexian; Yuan, Lixing; Li, Chunjian

    2014-01-01

    Approximately 35-55% of total nitrogen (N) in maize plants is taken up by the root at the reproductive stage. Little is known about how the root of an adult plant responds to heterogeneous nutrient supply. In this study, root morphological and physiological adaptations to nitrate-rich and nitrate-poor patches and corresponding gene expression of ZmNrt2.1 and ZmNrt2.2 of maize seedlings and adult plants were characterized. Local high nitrate (LoHN) supply increased both lateral root length (LRL) and density of the treated nodal roots of adult maize plants, but only increased LRL of the treated primary roots of seedlings. LoHN also increased plant total N acquisition but not N influx rate of the treated roots, when expressed as per unit of root length. Furthermore, LoHN markedly increased specific root length (m g(-1)) of the treated roots but significantly inhibited the growth of the lateral roots outside of the nitrate-rich patches, suggesting a systemic carbon saving strategy within a whole root system. Surprisingly, local low nitrate (LoLN) supply stimulated nodal root growth of adult plants although LoLN inhibited growth of primary roots of seedlings. LoLN inhibited the N influx rate of the treated roots and did not change plant total N content. The gene expression of ZmNrt2.1 and ZmNrt2.2 of the treated roots of seedlings and adult plants was inhibited by LoHN but enhanced by LoLN. In conclusion, maize adult roots responded to nitrate-rich and nitrate-poor patches by adaptive morphological alterations and displayed carbon saving strategies in response to heterogeneous nitrate supply. © 2013 Scandinavian Plant Physiology Society.

  7. Inhibition of root elongation in microgravity by an applied electric field

    NASA Technical Reports Server (NTRS)

    Wolverton, C.; Mullen, J. L.; Aizawa, S.; Yoshizaki, I.; Kamigaichi, S.; Mukai, C.; Shimazu, T.; Fukui, K.; Evans, M. L.; Ishikawa, H.

    1999-01-01

    Roots grown in an applied electric field demonstrate a bidirectional curvature. To further understand the nature of this response and its implications for the regulation of differential growth, we applied an electric field to roots growing in microgravity. We found that growth rates of roots in microgravity were higher than growth rates of ground controls. Immediately upon application of the electric field, root elongation was inhibited. We interpret this result as an indication that, in the absence of a gravity stimulus, the sensitivity of the root to an applied electric stimulus is increased. Further space experiments are required to determine the extent to which this sensitivity is shifted. The implications of this result are discussed in relation to gravitropic signaling and the regulation of differential cell elongation in the root.

  8. Aluminium-induced reduction of plant growth in alfalfa (Medicago sativa) is mediated by interrupting auxin transport and accumulation in roots.

    PubMed

    Wang, Shengyin; Ren, Xiaoyan; Huang, Bingru; Wang, Ge; Zhou, Peng; An, Yuan

    2016-07-20

    The objective of this study was to investigate Al(3+)-induced IAA transport, distribution, and the relation of these two processes to Al(3+)-inhibition of root growth in alfalfa. Alfalfa seedlings with or without apical buds were exposed to 0 or 100 μM AlCl3 and were foliar sprayed with water or 6 mg L(-1) IAA. Aluminium stress resulted in disordered arrangement of cells, deformed cell shapes, altered cell structure, and a shorter length of the meristematic zone in root tips. Aluminium stress significantly decreased the IAA concentration in apical buds and root tips. The distribution of IAA fluorescence signals in root tips was disturbed, and the IAA transportation from shoot base to root tip was inhibited. The highest intensity of fluorescence signals was detected in the apical meristematic zone. Exogenous application of IAA markedly alleviated the Al(3+)-induced inhibition of root growth by increasing IAA accumulation and recovering the damaged cell structure in root tips. In addition, Al(3+) stress up-regulated expression of AUX1 and PIN2 genes. These results indicate that Al(3+)-induced reduction of root growth could be associated with the inhibitions of IAA synthesis in apical buds and IAA transportation in roots, as well as the imbalance of IAA distribution in root tips.

  9. Aluminium-induced reduction of plant growth in alfalfa (Medicago sativa) is mediated by interrupting auxin transport and accumulation in roots

    PubMed Central

    Wang, Shengyin; Ren, Xiaoyan; Huang, Bingru; Wang, Ge; Zhou, Peng; An, Yuan

    2016-01-01

    The objective of this study was to investigate Al3+-induced IAA transport, distribution, and the relation of these two processes to Al3+-inhibition of root growth in alfalfa. Alfalfa seedlings with or without apical buds were exposed to 0 or 100 μM AlCl3 and were foliar sprayed with water or 6 mg L−1 IAA. Aluminium stress resulted in disordered arrangement of cells, deformed cell shapes, altered cell structure, and a shorter length of the meristematic zone in root tips. Aluminium stress significantly decreased the IAA concentration in apical buds and root tips. The distribution of IAA fluorescence signals in root tips was disturbed, and the IAA transportation from shoot base to root tip was inhibited. The highest intensity of fluorescence signals was detected in the apical meristematic zone. Exogenous application of IAA markedly alleviated the Al3+-induced inhibition of root growth by increasing IAA accumulation and recovering the damaged cell structure in root tips. In addition, Al3+ stress up-regulated expression of AUX1 and PIN2 genes. These results indicate that Al3+-induced reduction of root growth could be associated with the inhibitions of IAA synthesis in apical buds and IAA transportation in roots, as well as the imbalance of IAA distribution in root tips. PMID:27435109

  10. Progressive Inhibition by Water Deficit of Cell Wall Extensibility and Growth along the Elongation Zone of Maize Roots Is Related to Increased Lignin Metabolism and Progressive Stelar Accumulation of Wall Phenolics1

    PubMed Central

    Fan, Ling; Linker, Raphael; Gepstein, Shimon; Tanimoto, Eiichi; Yamamoto, Ryoichi; Neumann, Peter M.

    2006-01-01

    Water deficit caused by addition of polyethylene glycol 6000 at −0.5 MPa water potential to well-aerated nutrient solution for 48 h inhibited the elongation of maize (Zea mays) seedling primary roots. Segmental growth rates in the root elongation zone were maintained 0 to 3 mm behind the tip, but in comparison with well-watered control roots, progressive growth inhibition was initiated by water deficit as expanding cells crossed the region 3 to 9 mm behind the tip. The mechanical extensibility of the cell walls was also progressively inhibited. We investigated the possible involvement in root growth inhibition by water deficit of alterations in metabolism and accumulation of wall-linked phenolic substances. Water deficit increased expression in the root elongation zone of transcripts of two genes involved in lignin biosynthesis, cinnamoyl-CoA reductase 1 and 2, after only 1 h, i.e. before decreases in wall extensibility. Further increases in transcript expression and increased lignin staining were detected after 48 h. Progressive stress-induced increases in wall-linked phenolics at 3 to 6 and 6 to 9 mm behind the root tip were detected by comparing Fourier transform infrared spectra and UV-fluorescence images of isolated cell walls from water deficit and control roots. Increased UV fluorescence and lignin staining colocated to vascular tissues in the stele. Longitudinal bisection of the elongation zone resulted in inward curvature, suggesting that inner, stelar tissues were also rate limiting for root growth. We suggest that spatially localized changes in wall-phenolic metabolism are involved in the progressive inhibition of wall extensibility and root growth and may facilitate root acclimation to drying environments. PMID:16384904

  11. TAA1-regulated local auxin biosynthesis in the root-apex transition zone mediates the aluminum-induced inhibition of root growth in Arabidopsis.

    PubMed

    Yang, Zhong-Bao; Geng, Xiaoyu; He, Chunmei; Zhang, Feng; Wang, Rong; Horst, Walter J; Ding, Zhaojun

    2014-07-01

    The transition zone (TZ) of the root apex is the perception site of Al toxicity. Here, we show that exposure of Arabidopsis thaliana roots to Al induces a localized enhancement of auxin signaling in the root-apex TZ that is dependent on TAA1, which encodes a Trp aminotransferase and regulates auxin biosynthesis. TAA1 is specifically upregulated in the root-apex TZ in response to Al treatment, thus mediating local auxin biosynthesis and inhibition of root growth. The TAA1-regulated local auxin biosynthesis in the root-apex TZ in response to Al stress is dependent on ethylene, as revealed by manipulating ethylene homeostasis via the precursor of ethylene biosynthesis 1-aminocyclopropane-1-carboxylic acid, the inhibitor of ethylene biosynthesis aminoethoxyvinylglycine, or mutant analysis. In response to Al stress, ethylene signaling locally upregulates TAA1 expression and thus auxin responses in the TZ and results in auxin-regulated root growth inhibition through a number of auxin response factors (ARFs). In particular, ARF10 and ARF16 are important in the regulation of cell wall modification-related genes. Our study suggests a mechanism underlying how environmental cues affect root growth plasticity through influencing local auxin biosynthesis and signaling. © 2014 American Society of Plant Biologists. All rights reserved.

  12. Actin Turnover-Mediated Gravity Response in Maize Root Apices

    PubMed Central

    Mancuso, Stefano; Barlow, Peter W; Volkmann, Dieter

    2006-01-01

    The dynamic actin cytoskeleton has been proposed to be linked to gravity sensing in plants but the mechanistic understanding of these processes remains unknown. We have performed detailed pharmacological analyses of the role of the dynamic actin cytoskeleton in gravibending of maize (Zea mays) root apices. Depolymerization of actin filaments with two drugs having different mode of their actions, cytochalasin D and latrunculin B, stimulated root gravibending. By contrast, drug-induced stimulation of actin polymerization and inhibition of actin turnover, using two different agents phalloidin and jasplakinolide, compromised the root gravibending. Importantly, all these actin drugs inhibited root growth to similar extents suggesting that high actin turnover is essential for the gravity-related growth responses rather than for the general growth process. Both latrunculin B and cytochalasin D treatments inhibited root growth but restored gravibending of the decapped root apices, indicating that there is a strong potential for effective actin-mediated gravity sensing outside the cap. This elusive gravity sensing outside the root cap is dependent not only on the high rate of actin turnover but also on weakening of myosin activities, as general inhibition of myosin ATPases induced stimulation of gravibending of the decapped root apices. Collectively, these data provide evidence for the actin turnover-mediated gravity sensing outside the root cap. PMID:19521476

  13. Jatropha curcas L. Root Structure and Growth in Diverse Soils

    PubMed Central

    Valdés-Rodríguez, Ofelia Andrea; Sánchez-Sánchez, Odilón; Pérez-Vázquez, Arturo; Caplan, Joshua S.; Danjon, Frédéric

    2013-01-01

    Unlike most biofuel species, Jatropha curcas has promise for use in marginal lands, but it may serve an additional role by stabilizing soils. We evaluated the growth and structural responsiveness of young J. curcas plants to diverse soil conditions. Soils included a sand, a sandy-loam, and a clay-loam from eastern Mexico. Growth and structural parameters were analyzed for shoots and roots, although the focus was the plasticity of the primary root system architecture (the taproot and four lateral roots). The sandy soil reduced the growth of both shoot and root systems significantly more than sandy-loam or clay-loam soils; there was particularly high plasticity in root and shoot thickness, as well as shoot length. However, the architecture of the primary root system did not vary with soil type; the departure of the primary root system from an index of perfect symmetry was 14 ± 5% (mean ± standard deviation). Although J. curcas developed more extensively in the sandy-loam and clay-loam soils than in sandy soil, it maintained a consistent root to shoot ratio and root system architecture across all types of soil. This strong genetic determination would make the species useful for soil stabilization purposes, even while being cultivated primarily for seed oil. PMID:23844412

  14. Gene Networks Involved in Hormonal Control of Root Development in Arabidopsis thaliana: A Framework for Studying Its Disturbance by Metal Stress

    PubMed Central

    De Smet, Stefanie; Cuypers, Ann; Vangronsveld, Jaco; Remans, Tony

    2015-01-01

    Plant survival under abiotic stress conditions requires morphological and physiological adaptations. Adverse soil conditions directly affect root development, although the underlying mechanisms remain largely to be discovered. Plant hormones regulate normal root growth and mediate root morphological responses to abiotic stress. Hormone synthesis, signal transduction, perception and cross-talk create a complex network in which metal stress can interfere, resulting in root growth alterations. We focus on Arabidopsis thaliana, for which gene networks in root development have been intensively studied, and supply essential terminology of anatomy and growth of roots. Knowledge of gene networks, mechanisms and interactions related to the role of plant hormones is reviewed. Most knowledge has been generated for auxin, the best-studied hormone with a pronounced primary role in root development. Furthermore, cytokinins, gibberellins, abscisic acid, ethylene, jasmonic acid, strigolactones, brassinosteroids and salicylic acid are discussed. Interactions between hormones that are of potential importance for root growth are described. This creates a framework that can be used for investigating the impact of abiotic stress factors on molecular mechanisms related to plant hormones, with the limited knowledge of the effects of the metals cadmium, copper and zinc on plant hormones and root development included as case example. PMID:26287175

  15. Autotoxic Ginsenosides in the Rhizosphere Contribute to the Replant Failure of Panax notoginseng

    PubMed Central

    Yang, Min; Zhang, Xiaodan; Xu, Yanguo; Mei, Xinyue; Jiang, Bingbing; Liao, Jingjing; Yin, Zhaobo; Zheng, Jianfen; Zhao, Zhi; Fan, Liming; He, Xiahong; Zhu, Youyong; Zhu, Shusheng

    2015-01-01

    Background and Aims Sanqi ginseng (Panax notoginseng) growth is often hampered by replant failure. In this study, we aimed to examine the role of autotoxicity in Sanqi replant failures and assess the role of ginsenosides in autotoxicity. Methods The autotoxicities were measured using seedling emergence bioassays and root cell vigor staining. The ginsenosides in the roots, soils, and root exudates were identified with HPLC-MS. Results The seedling emergence and survival rate decreased significantly with the continuous number of planting years from one to three years. The root exudates, root extracts, and extracts from consecutively cultivated soils also showed significant autotoxicity against seedling emergence and growth. Ginsenosides, including R1, Rg1, Re, Rb1, Rb3, Rg2, and Rd, were identified in the roots and consecutively cultivated soil. The ginsenosides, Rg1, Re, Rg2, and Rd, were identified in the root exudates. Furthermore, the ginsenosides, R1, Rg1, Re, Rg2, and Rd, caused autotoxicity against seedling emergence and growth and root cell vigor at a concentration of 1.0 µg/mL. Conclusion Our results demonstrated that autotoxicity results in replant failure of Sanqi ginseng. While Sanqi ginseng consecutively cultivated, some ginsenosides can accumulate in rhizosphere soils through root exudates or root decomposition, which impedes seedling emergence and growth. PMID:25695831

  16. Jatropha curcas L. root structure and growth in diverse soils.

    PubMed

    Valdés-Rodríguez, Ofelia Andrea; Sánchez-Sánchez, Odilón; Pérez-Vázquez, Arturo; Caplan, Joshua S; Danjon, Frédéric

    2013-01-01

    Unlike most biofuel species, Jatropha curcas has promise for use in marginal lands, but it may serve an additional role by stabilizing soils. We evaluated the growth and structural responsiveness of young J. curcas plants to diverse soil conditions. Soils included a sand, a sandy-loam, and a clay-loam from eastern Mexico. Growth and structural parameters were analyzed for shoots and roots, although the focus was the plasticity of the primary root system architecture (the taproot and four lateral roots). The sandy soil reduced the growth of both shoot and root systems significantly more than sandy-loam or clay-loam soils; there was particularly high plasticity in root and shoot thickness, as well as shoot length. However, the architecture of the primary root system did not vary with soil type; the departure of the primary root system from an index of perfect symmetry was 14 ± 5% (mean ± standard deviation). Although J. curcas developed more extensively in the sandy-loam and clay-loam soils than in sandy soil, it maintained a consistent root to shoot ratio and root system architecture across all types of soil. This strong genetic determination would make the species useful for soil stabilization purposes, even while being cultivated primarily for seed oil.

  17. The simulation model of growth and cell divisions for the root apex with an apical cell in application to Azolla pinnata.

    PubMed

    Piekarska-Stachowiak, Anna; Nakielski, Jerzy

    2013-12-01

    In contrast to seed plants, the roots of most ferns have a single apical cell which is the ultimate source of all cells in the root. The apical cell has a tetrahedral shape and divides asymmetrically. The root cap derives from the distal division face, while merophytes derived from three proximal division faces contribute to the root proper. The merophytes are produced sequentially forming three sectors along a helix around the root axis. During development, they divide and differentiate in a predictable pattern. Such growth causes cell pattern of the root apex to be remarkably regular and self-perpetuating. The nature of this regularity remains unknown. This paper shows the 2D simulation model for growth of the root apex with the apical cell in application to Azolla pinnata. The field of growth rates of the organ, prescribed by the model, is of a tensor type (symplastic growth) and cells divide taking principal growth directions into account. The simulations show how the cell pattern in a longitudinal section of the apex develops in time. The virtual root apex grows realistically and its cell pattern is similar to that observed in anatomical sections. The simulations indicate that the cell pattern regularity results from cell divisions which are oriented with respect to principal growth directions. Such divisions are essential for maintenance of peri-anticlinal arrangement of cell walls and coordinated growth of merophytes during the development. The highly specific division program that takes place in merophytes prior to differentiation seems to be regulated at the cellular level.

  18. Optimal inductive and cultural conditions of Polygonum multiflorum transgenic hairy roots mediated with Agrobacterium rhizogenes R1601 and an analysis of their anthraquinone constituents.

    PubMed

    Huang, Bing; Lin, Huanjie; Yan, Chuanyan; Qiu, Hongyan; Qiu, Lipeng; Yu, Rongmin

    2014-01-01

    Polygonum multiflorum is an important medicinal plant. Hairy roots systems obtained by transforming plant tissues with the natural genetic engineer Agrobacterium rhizogenes can produce valuable biological active substances, which have immense potential in the pharmaceutical industry. To optimize the inductive and cultural conditions of P. multiflorum hairy roots and to identify the major active secondary metabolites in hairy roots. P. multiflorum hairy root were mediated with A. rhizogenes R1601 to induce hairy roots. Four combinations, including Murashige-Skoog (MS), 1/2 MS, B5, and White, were investigated to optimize the culture medium. MS medium was selected for the growth measurement. The qualitative and quantitative determinations of free anthraquinone in hairy roots were compared with the calli and aseptic plantlets using high-performance liquid chromatography. The inductive rates of hairy roots by leaves were higher than for any other explants. The presence of agropine in the P. multiflorum hairy roots confirmed that they were indeed transgenic. MS medium was the most suitable of the four media for hairy root growth. Meanwhile, the growth kinetics and nutrient consumption results showed that the hairy roots displayed a sigmoidal growth curve and that their optimal inoculation time was 18-21 days. The determination of the anthraquinone constituents indicated that the rhein content of the hairy roots reached 2.495 μg g(-1) and was 2.55-fold higher than that of natural plants. Transgenic hairy roots of P. multiflorum could be one of the most potent materials for industrial-scale production of bioactive anthraquinone constituents.

  19. X-ray computed tomography uncovers root-root interactions: quantifying spatial relationships between interacting root systems in three dimensions.

    PubMed

    Paya, Alexander M; Silverberg, Jesse L; Padgett, Jennifer; Bauerle, Taryn L

    2015-01-01

    Research in the field of plant biology has recently demonstrated that inter- and intra-specific interactions belowground can dramatically alter root growth. Our aim was to answer questions related to the effect of inter- vs. intra-specific interactions on the growth and utilization of undisturbed space by fine roots within three dimensions (3D) using micro X-ray computed tomography. To achieve this, Populus tremuloides (quaking aspen) and Picea mariana (black spruce) seedlings were planted into containers as either solitary individuals, or inter-/intra-specific pairs, allowed to grow for 2 months, and 3D metrics developed in order to quantify their use of belowground space. In both aspen and spruce, inter-specific root interactions produced a shift in the vertical distribution of the root system volume, and deepened the average position of root tips when compared to intra-specifically growing seedlings. Inter-specific interactions also increased the minimum distance between root tips belonging to the same root system. There was no effect of belowground interactions on the radial distribution of roots, or the directionality of lateral root growth for either species. In conclusion, we found that significant differences were observed more often when comparing controls (solitary individuals) and paired seedlings (inter- or intra-specific), than when comparing inter- and intra-specifically growing seedlings. This would indicate that competition between neighboring seedlings was more responsible for shifting fine root growth in both species than was neighbor identity. However, significant inter- vs. intra-specific differences were observed, which further emphasizes the importance of biological interactions in competition studies.

  20. Environmental Response and Genomic Regions Correlated with Rice Root Growth and Yield under Drought in the OryzaSNP Panel across Multiple Study Systems

    PubMed Central

    Wade, Len J.; Bartolome, Violeta; Mauleon, Ramil; Vasant, Vivek Deshmuck; Prabakar, Sumeet Mankar; Chelliah, Muthukumar; Kameoka, Emi; Nagendra, K.; Reddy, K. R. Kamalnath; Varma, C. Mohan Kumar; Patil, Kalmeshwar Gouda; Shrestha, Roshi; Al-Shugeairy, Zaniab; Al-Ogaidi, Faez; Munasinghe, Mayuri; Gowda, Veeresh; Semon, Mande; Suralta, Roel R.; Shenoy, Vinay; Vadez, Vincent; Serraj, Rachid; Shashidhar, H. E.; Yamauchi, Akira; Babu, Ranganathan Chandra; Price, Adam; McNally, Kenneth L.; Henry, Amelia

    2015-01-01

    The rapid progress in rice genotyping must be matched by advances in phenotyping. A better understanding of genetic variation in rice for drought response, root traits, and practical methods for studying them are needed. In this study, the OryzaSNP set (20 diverse genotypes that have been genotyped for SNP markers) was phenotyped in a range of field and container studies to study the diversity of rice root growth and response to drought. Of the root traits measured across more than 20 root experiments, root dry weight showed the most stable genotypic performance across studies. The environment (E) component had the strongest effect on yield and root traits. We identified genomic regions correlated with root dry weight, percent deep roots, maximum root depth, and grain yield based on a correlation analysis with the phenotypes and aus, indica, or japonica introgression regions using the SNP data. Two genomic regions were identified as hot spots in which root traits and grain yield were co-located; on chromosome 1 (39.7–40.7 Mb) and on chromosome 8 (20.3–21.9 Mb). Across experiments, the soil type/ growth medium showed more correlations with plant growth than the container dimensions. Although the correlations among studies and genetic co-location of root traits from a range of study systems points to their potential utility to represent responses in field studies, the best correlations were observed when the two setups had some similar properties. Due to the co-location of the identified genomic regions (from introgression block analysis) with QTL for a number of previously reported root and drought traits, these regions are good candidates for detailed characterization to contribute to understanding rice improvement for response to drought. This study also highlights the utility of characterizing a small set of 20 genotypes for root growth, drought response, and related genomic regions. PMID:25909711

  1. Hormonal changes in relation to biomass partitioning and shoot growth impairment in salinized tomato (Solanum lycopersicum L.) plants.

    PubMed

    Albacete, Alfonso; Ghanem, Michel Edmond; Martínez-Andújar, Cristina; Acosta, Manuel; Sánchez-Bravo, José; Martínez, Vicente; Lutts, Stanley; Dodd, Ian C; Pérez-Alfocea, Francisco

    2008-01-01

    Following exposure to salinity, the root/shoot ratio is increased (an important adaptive response) due to the rapid inhibition of shoot growth (which limits plant productivity) while root growth is maintained. Both processes may be regulated by changes in plant hormone concentrations. Tomato plants (Solanum lycopersicum L. cv Moneymaker) were cultivated hydroponically for 3 weeks under high salinity (100 mM NaCl) and five major plant hormones (abscisic acid, ABA; the cytokinins zeatin, Z, and zeatin-riboside, ZR; the auxin indole-3-acetic acid, IAA; and the ethylene precursor 1-aminocyclopropane-1-carboxylic acid, ACC) were determined weekly in roots, xylem sap, and leaves. Salinity reduced shoot biomass by 50-60% and photosynthetic area by 20-25% both by decreasing leaf expansion and delaying leaf appearance, while root growth was less affected, thus increasing the root/shoot ratio. ABA and ACC concentrations strongly increased in roots, xylem sap, and leaves after 1 d (ABA) and 15 d (ACC) of salinization. By contrast, cytokinins and IAA were differentially affected in roots and shoots. Salinity dramatically decreased the Z+ZR content of the plant, and induced the conversion of ZR into Z, especially in the roots, which accounted for the relative increase of cytokinins in the roots compared to the leaf. IAA concentration was also strongly decreased in the leaves while it accumulated in the roots. Decreased cytokinin content and its transport from the root to the shoot were probably induced by the basipetal transport of auxin from the shoot to the root. The auxin/cytokinin ratio in the leaves and roots may explain both the salinity-induced decrease in shoot vigour (leaf growth and leaf number) and the shift in biomass allocation to the roots, in agreement with changes in the activity of the sink-related enzyme cell wall invertase.

  2. Alpha-Glucan, Water Dikinase 1 Affects Starch Metabolism and Storage Root Growth in Cassava (Manihot esculenta Crantz).

    PubMed

    Zhou, Wenzhi; He, Shutao; Naconsie, Maliwan; Ma, Qiuxiang; Zeeman, Samuel C; Gruissem, Wilhelm; Zhang, Peng

    2017-08-29

    Regulation of storage root development by source strength remains largely unknown. The cassava storage root delay (srd) T-DNA mutant postpones storage root development but manifests normal foliage growth as wild-type plants. The SRD gene was identified as an orthologue of α-glucan, water dikinase 1 (GWD1), whose expression is regulated under conditions of light/dark cycles in leaves and is associated with storage root development. The GWD1-RNAi cassava plants showed both retarded plant and storage root growth, as a result of starch excess phenotypes with reduced photosynthetic capacity and decreased levels of soluble saccharides in their leaves. These leaves contained starch granules having greatly increased amylose content and type C semi-crystalline structures with increased short chains that suggested storage starch. In storage roots of GWD1-RNAi lines, maltose content was dramatically decreased and starches with much lower phosphorylation levels showed a drastically reduced β-amylolytic rate. These results suggested that GWD1 regulates transient starch morphogenesis and storage root growth by decreasing photo-assimilation partitioning from the source to the sink and by starch mobilization in root crops.

  3. Effect of cold plasma treatment on seedling growth and nutrient absorption of tomato

    NASA Astrophysics Data System (ADS)

    Jiafeng, JIANG; Jiangang, LI; Yuanhua, DONG

    2018-04-01

    The effects of cold plasma (CP) treatment on seed germination, seedling growth, root morphology, and nutrient uptake of a tomato were investigated. The results showed that 80 W of CP treatment significantly increased tomato nitrogen (N) and phosphorus (P) absorption by 12.7% and 19.1%, respectively. CP treatment significantly improved the germination potential of tomato seed by 11.1% and the germination rate by 13.8%. Seedling growth characteristics, including total dry weight, root dry weight, root shoot rate, and leaf area, significantly increased after 80 W of CP treatment. Root activity was increased by 15.7% with 80 W of CP treatment, and 12.6% with 100 W of CP treatment. CP treatment (80 W) markedly ameliorated tomato root morphology, and root length, surface area, and volume, which increased 21.3%, 23.6%, and 29.0%, respectively. Our results suggested that CP treatment improved tomato N and P absorption by promoting the accumulation of shoot and root biomass, increasing the leaf area and root activity, and improving the length, surface area, and volume of root growth. Thus, CP treatment could be used in an ameliorative way to improve tomato nutrient absorption.

  4. Root Bending Is Antagonistically Affected by Hypoxia and ERF-Mediated Transcription via Auxin Signaling1[OPEN

    PubMed Central

    Eysholdt-Derzsó, Emese

    2017-01-01

    When plants encounter soil water logging or flooding, roots are the first organs to be confronted with reduced gas diffusion resulting in limited oxygen supply. Since roots do not generate photosynthetic oxygen, they are rapidly faced with oxygen shortage rendering roots particularly prone to damage. While metabolic adaptations to low oxygen conditions, which ensure basic energy supply, have been well characterized, adaptation of root growth and development have received less attention. In this study, we show that hypoxic conditions cause the primary root to grow sidewise in a low oxygen environment, possibly to escape soil patches with reduced oxygen availability. This growth behavior is reversible in that gravitropic growth resumes when seedlings are returned to normoxic conditions. Hypoxic root bending is inhibited by the group VII ethylene response factor (ERFVII) RAP2.12, as rap2.12-1 seedlings show exaggerated primary root bending. Furthermore, overexpression of the ERFVII member HRE2 inhibits root bending, suggesting that primary root growth direction at hypoxic conditions is antagonistically regulated by hypoxia and hypoxia-activated ERFVIIs. Root bending is preceded by the establishment of an auxin gradient across the root tip as quantified with DII-VENUS and is synergistically enhanced by hypoxia and the auxin transport inhibitor naphthylphthalamic acid. The protein abundance of the auxin efflux carrier PIN2 is reduced at hypoxic conditions, a response that is suppressed by RAP2.12 overexpression, suggesting antagonistic control of auxin flux by hypoxia and ERFVII. Taken together, we show that hypoxia triggers an escape response of the primary root that is controlled by ERFVII activity and mediated by auxin signaling in the root tip. PMID:28698356

  5. miR396 affects mycorrhization and root meristem activity in the legume Medicago truncatula.

    PubMed

    Bazin, Jérémie; Khan, Ghazanfar Abbas; Combier, Jean-Philippe; Bustos-Sanmamed, Pilar; Debernardi, Juan Manuel; Rodriguez, Ramiro; Sorin, Céline; Palatnik, Javier; Hartmann, Caroline; Crespi, Martin; Lelandais-Brière, Christine

    2013-06-01

    The root system is crucial for acquisition of resources from the soil. In legumes, the efficiency of mineral and water uptake by the roots may be reinforced due to establishment of symbiotic relationships with mycorrhizal fungi and interactions with soil rhizobia. Here, we investigated the role of miR396 in regulating the architecture of the root system and in symbiotic interactions in the model legume Medicago truncatula. Analyses with promoter-GUS fusions suggested that the mtr-miR396a and miR396b genes are highly expressed in root tips, preferentially in the transition zone, and display distinct expression profiles during lateral root and nodule development. Transgenic roots of composite plants that over-express the miR396b precursor showed lower expression of six growth-regulating factor genes (MtGRF) and two bHLH79-like target genes, as well as reduced growth and mycorrhizal associations. miR396 inactivation by mimicry caused contrasting tendencies, with increased target expression, higher root biomass and more efficient colonization by arbuscular mycorrhizal fungi. In contrast to MtbHLH79, repression of three GRF targets by RNA interference severely impaired root growth. Early activation of mtr-miR396b, concomitant with post-transcriptional repression of MtGRF5 expression, was also observed in response to exogenous brassinosteroids. Growth limitation in miR396 over-expressing roots correlated with a reduction in cell-cycle gene expression and the number of dividing cells in the root apical meristem. These results link the miR396 network to the regulation of root growth and mycorrhizal associations in plants. © 2013 The Authors The Plant Journal © 2013 John Wiley & Sons Ltd.

  6. Nitrate foraging by Arabidopsis roots is mediated by the transcription factor TCP20 through the systemic signaling pathway

    PubMed Central

    Guan, Peizhu; Wang, Rongchen; Nacry, Philippe; Breton, Ghislain; Kay, Steve A.; Pruneda-Paz, Jose L.; Davani, Ariea; Crawford, Nigel M.

    2014-01-01

    To compete for nutrients in diverse soil microenvironments, plants proliferate lateral roots preferentially in nutrient-rich zones. For nitrate, root foraging involves local and systemic signaling; however, little is known about the genes that function in the systemic signaling pathway. By using nitrate enhancer DNA to screen a library of Arabidopsis transcription factors in the yeast one-hybrid system, the transcription factor gene TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTOR1-20 (TCP20) was identified. TCP20, which belongs to an ancient, plant-specific gene family that regulates shoot, flower, and embryo development, was implicated in nitrate signaling by its ability to bind DNA in more than 100 nitrate-regulated genes. Analysis of insertion mutants of TCP20 showed that they had normal primary and lateral root growth on homogenous nitrate media but were impaired in preferential lateral root growth (root foraging) on heterogeneous media in split-root plates. Inhibition of preferential lateral root growth was still evident in the mutants even when ammonium was uniformly present in the media, indicating that the TCP20 response was to nitrate. Comparison of tcp20 mutants with those of nlp7 mutants, which are defective in local control of root growth but not in the root-foraging response, indicated that TCP20 function is independent of and distinct from NLP7 function. Further analysis showed that tcp20 mutants lack systemic control of root growth regardless of the local nitrate concentrations. These results indicate that TCP20 plays a key role in the systemic signaling pathway that directs nitrate foraging by Arabidopsis roots. PMID:25288754

  7. Abscisic acid regulates root growth under osmotic stress conditions via an interacting hormonal network with cytokinin, ethylene and auxin.

    PubMed

    Rowe, James H; Topping, Jennifer F; Liu, Junli; Lindsey, Keith

    2016-07-01

    Understanding the mechanisms regulating root development under drought conditions is an important question for plant biology and world agriculture. We examine the effect of osmotic stress on abscisic acid (ABA), cytokinin and ethylene responses and how they mediate auxin transport, distribution and root growth through effects on PIN proteins. We integrate experimental data to construct hormonal crosstalk networks to formulate a systems view of root growth regulation by multiple hormones. Experimental analysis shows: that ABA-dependent and ABA-independent stress responses increase under osmotic stress, but cytokinin responses are only slightly reduced; inhibition of root growth under osmotic stress does not require ethylene signalling, but auxin can rescue root growth and meristem size; osmotic stress modulates auxin transporter levels and localization, reducing root auxin concentrations; PIN1 levels are reduced under stress in an ABA-dependent manner, overriding ethylene effects; and the interplay among ABA, ethylene, cytokinin and auxin is tissue-specific, as evidenced by differential responses of PIN1 and PIN2 to osmotic stress. Combining experimental analysis with network construction reveals that ABA regulates root growth under osmotic stress conditions via an interacting hormonal network with cytokinin, ethylene and auxin. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  8. A Simple Device to Measure Root Growth Rates

    ERIC Educational Resources Information Center

    Rauser, Wilfried E.; Horton, Roger F.

    1975-01-01

    Describes construction and use of a simple auxanometer which students can use to accurately measure root growth rates of intact seedlings. Typical time course data are presented for the effect of ethylene and indole acetic acid on pea root growth. (Author/BR)

  9. Complementarity in nutrient foraging strategies of absorptive fine roots and arbuscular mycorrhizal fungi across 14 coexisting subtropical tree species.

    PubMed

    Liu, Bitao; Li, Hongbo; Zhu, Biao; Koide, Roger T; Eissenstat, David M; Guo, Dali

    2015-10-01

    In most cases, both roots and mycorrhizal fungi are needed for plant nutrient foraging. Frequently, the colonization of roots by arbuscular mycorrhizal (AM) fungi seems to be greater in species with thick and sparsely branched roots than in species with thin and densely branched roots. Yet, whether a complementarity exists between roots and mycorrhizal fungi across these two types of root system remains unclear. We measured traits related to nutrient foraging (root morphology, architecture and proliferation, AM colonization and extramatrical hyphal length) across 14 coexisting AM subtropical tree species following root pruning and nutrient addition treatments. After root pruning, species with thinner roots showed more root growth, but lower mycorrhizal colonization, than species with thicker roots. Under multi-nutrient (NPK) addition, root growth increased, but mycorrhizal colonization decreased significantly, whereas no significant changes were found under nitrogen or phosphate additions. Moreover, root length proliferation was mainly achieved by altering root architecture, but not root morphology. Thin-root species seem to forage nutrients mainly via roots, whereas thick-root species rely more on mycorrhizal fungi. In addition, the reliance on mycorrhizal fungi was reduced by nutrient additions across all species. These findings highlight complementary strategies for nutrient foraging across coexisting species with contrasting root traits. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  10. A class I ADP-ribosylation factor GTPase-activating protein is critical for maintaining directional root hair growth in Arabidopsis.

    PubMed

    Yoo, Cheol-Min; Wen, Jiangqi; Motes, Christy M; Sparks, J Alan; Blancaflor, Elison B

    2008-08-01

    Membrane trafficking and cytoskeletal dynamics are important cellular processes that drive tip growth in root hairs. These processes interact with a multitude of signaling pathways that allow for the efficient transfer of information to specify the direction in which tip growth occurs. Here, we show that AGD1, a class I ADP ribosylation factor GTPase-activating protein, is important for maintaining straight growth in Arabidopsis (Arabidopsis thaliana) root hairs, since mutations in the AGD1 gene resulted in wavy root hair growth. Live cell imaging of growing agd1 root hairs revealed bundles of endoplasmic microtubules and actin filaments extending into the extreme tip. The wavy phenotype and pattern of cytoskeletal distribution in root hairs of agd1 partially resembled that of mutants in an armadillo repeat-containing kinesin (ARK1). Root hairs of double agd1 ark1 mutants were more severely deformed compared with single mutants. Organelle trafficking as revealed by a fluorescent Golgi marker was slightly inhibited, and Golgi stacks frequently protruded into the extreme root hair apex of agd1 mutants. Transient expression of green fluorescent protein-AGD1 in tobacco (Nicotiana tabacum) epidermal cells labeled punctate bodies that partially colocalized with the endocytic marker FM4-64, while ARK1-yellow fluorescent protein associated with microtubules. Brefeldin A rescued the phenotype of agd1, indicating that the altered activity of an AGD1-dependent ADP ribosylation factor contributes to the defective growth, organelle trafficking, and cytoskeletal organization of agd1 root hairs. We propose that AGD1, a regulator of membrane trafficking, and ARK1, a microtubule motor, are components of converging signaling pathways that affect cytoskeletal organization to specify growth orientation in Arabidopsis root hairs.

  11. A Class I ADP-Ribosylation Factor GTPase-Activating Protein Is Critical for Maintaining Directional Root Hair Growth in Arabidopsis1[W][OA

    PubMed Central

    Yoo, Cheol-Min; Wen, Jiangqi; Motes, Christy M.; Sparks, J. Alan; Blancaflor, Elison B.

    2008-01-01

    Membrane trafficking and cytoskeletal dynamics are important cellular processes that drive tip growth in root hairs. These processes interact with a multitude of signaling pathways that allow for the efficient transfer of information to specify the direction in which tip growth occurs. Here, we show that AGD1, a class I ADP ribosylation factor GTPase-activating protein, is important for maintaining straight growth in Arabidopsis (Arabidopsis thaliana) root hairs, since mutations in the AGD1 gene resulted in wavy root hair growth. Live cell imaging of growing agd1 root hairs revealed bundles of endoplasmic microtubules and actin filaments extending into the extreme tip. The wavy phenotype and pattern of cytoskeletal distribution in root hairs of agd1 partially resembled that of mutants in an armadillo repeat-containing kinesin (ARK1). Root hairs of double agd1 ark1 mutants were more severely deformed compared with single mutants. Organelle trafficking as revealed by a fluorescent Golgi marker was slightly inhibited, and Golgi stacks frequently protruded into the extreme root hair apex of agd1 mutants. Transient expression of green fluorescent protein-AGD1 in tobacco (Nicotiana tabacum) epidermal cells labeled punctate bodies that partially colocalized with the endocytic marker FM4-64, while ARK1-yellow fluorescent protein associated with microtubules. Brefeldin A rescued the phenotype of agd1, indicating that the altered activity of an AGD1-dependent ADP ribosylation factor contributes to the defective growth, organelle trafficking, and cytoskeletal organization of agd1 root hairs. We propose that AGD1, a regulator of membrane trafficking, and ARK1, a microtubule motor, are components of converging signaling pathways that affect cytoskeletal organization to specify growth orientation in Arabidopsis root hairs. PMID:18539780

  12. [Effects of arbuscular mycorrhizal fungi on root system morphology and sucrose and glucose contents of Poncirus trifoliata].

    PubMed

    Zou, Ying-Ning; Wu, Qiang-Sheng; Li, Yan; Huang, Yong-Ming

    2014-04-01

    The effects of inoculation with Glomus mosseae, G. versiforme, and their mixture on plant growth, root system morphology, and sucrose and glucose contents of trifoliate orange (Poncirus trifoliata L.) were studied by pot culture. The results showed that all the inoculated treatments significantly increased the plant height, stem diameter, leaf number, and shoot and root biomass. In addition, the mycorrhizal treatments significantly increased the number of 1st, 2nd, and 3rd lateral roots. Inoculation with arbuscular mycorrhizal fungi significantly increased the root projected area, surface area, volume, and total root length (mainly 0-1 cm root length), but decreased the root average diameter. Meanwhile, G. versiforme showed the best effects. Mycorrhizal inoculation significantly increased the leaf sucrose and root glucose contents, but decreased the leaf glucose and root sucrose contents. Owing to the 'mycorrhizal carbon pool' in roots, inoculation with arbuscular mycorrhizal fungi resulted in high glucose content and low sucrose content of roots, which would facilitate the root growth and development, thereby the establishment of better root system morphology of host plants.

  13. RNA-seq for gene identification and transcript profiling in relation to root growth of bermudagrass (Cynodon dactylon) under salinity stress.

    PubMed

    Hu, Longxing; Li, Huiying; Chen, Liang; Lou, Yanhong; Amombo, Erick; Fu, Jinmin

    2015-08-04

    Soil salinity is one of the most significant abiotic stresses affecting plant shoots and roots growth. The adjustment of root architecture to spatio-temporal heterogeneity in salinity is particularly critical for plant growth and survival. Bermudagrass (Cynodon dactylon) is a widely used turf and forage perennial grass with a high degree of salinity tolerance. Salinity appears to stimulate the growth of roots and decrease their mortality in tolerant bermudagrass. To estimate a broad spectrum of genes related to root elongation affected by salt stress and the molecular mechanisms that control the positive response of root architecture to salinity, we analyzed the transcriptome of bermudagrass root tips in response to salinity. RNA-sequencing was performed in root tips of two bermudagrass genotypes contrasting in salt tolerance. A total of 237,850,130 high quality clean reads were generated and 250,359 transcripts were assembled with an average length of 1115 bp. Totally, 103,324 unigenes obtained with 53,765 unigenes (52 %) successfully annotated in databases. Bioinformatics analysis indicated that major transcription factor (TF) families linked to stress responses and growth regulation (MYB, bHLH, WRKY) were differentially expressed in root tips of bermudagrass under salinity. In addition, genes related to cell wall loosening and stiffening (xyloglucan endotransglucosylase/hydrolases, peroxidases) were identified. RNA-seq analysis identified candidate genes encoding TFs involved in the regulation of lignin synthesis, reactive oxygen species (ROS) homeostasis controlled by peroxidases, and the regulation of phytohormone signaling that promote cell wall loosening and therefore root growth under salinity.

  14. Symbiosis of Arbuscular Mycorrhizal Fungi and Robinia pseudoacacia L. Improves Root Tensile Strength and Soil Aggregate Stability

    PubMed Central

    Zhang, Haoqiang; Liu, Zhenkun; Chen, Hui; Tang, Ming

    2016-01-01

    Robinia pseudoacacia L. (black locust) is a widely planted tree species on Loess Plateau for revegetation. Due to its symbiosis forming capability with arbuscular mycorrhizal (AM) fungi, we explored the influence of arbuscular mycorrhizal fungi on plant biomass, root morphology, root tensile strength and soil aggregate stability in a pot experiment. We inoculated R. pseudoacacia with/without AM fungus (Rhizophagus irregularis or Glomus versiforme), and measured root colonization, plant growth, root morphological characters, root tensile force and tensile strength, and parameters for soil aggregate stability at twelve weeks after inoculation. AM fungi colonized more than 70% plant root, significantly improved plant growth. Meanwhile, AM fungi elevated root morphological parameters, root tensile force, root tensile strength, Glomalin-related soil protein (GRSP) content in soil, and parameters for soil aggregate stability such as water stable aggregate (WSA), mean weight diameter (MWD) and geometric mean diameter (GMD). Root length was highly correlated with WSA, MWD and GMD, while hyphae length was highly correlated with GRSP content. The improved R. pseudoacacia growth, root tensile strength and soil aggregate stability indicated that AM fungi could accelerate soil fixation and stabilization with R. pseudoacacia, and its function in revegetation on Loess Plateau deserves more attention. PMID:27064570

  15. Symbiosis of Arbuscular Mycorrhizal Fungi and Robinia pseudoacacia L. Improves Root Tensile Strength and Soil Aggregate Stability.

    PubMed

    Zhang, Haoqiang; Liu, Zhenkun; Chen, Hui; Tang, Ming

    2016-01-01

    Robinia pseudoacacia L. (black locust) is a widely planted tree species on Loess Plateau for revegetation. Due to its symbiosis forming capability with arbuscular mycorrhizal (AM) fungi, we explored the influence of arbuscular mycorrhizal fungi on plant biomass, root morphology, root tensile strength and soil aggregate stability in a pot experiment. We inoculated R. pseudoacacia with/without AM fungus (Rhizophagus irregularis or Glomus versiforme), and measured root colonization, plant growth, root morphological characters, root tensile force and tensile strength, and parameters for soil aggregate stability at twelve weeks after inoculation. AM fungi colonized more than 70% plant root, significantly improved plant growth. Meanwhile, AM fungi elevated root morphological parameters, root tensile force, root tensile strength, Glomalin-related soil protein (GRSP) content in soil, and parameters for soil aggregate stability such as water stable aggregate (WSA), mean weight diameter (MWD) and geometric mean diameter (GMD). Root length was highly correlated with WSA, MWD and GMD, while hyphae length was highly correlated with GRSP content. The improved R. pseudoacacia growth, root tensile strength and soil aggregate stability indicated that AM fungi could accelerate soil fixation and stabilization with R. pseudoacacia, and its function in revegetation on Loess Plateau deserves more attention.

  16. Root growth, secondary root formation and root gravitropism in carotenoid-deficient seedlings of Zea mays L

    NASA Technical Reports Server (NTRS)

    Ng, Y. K.; Moore, R.

    1985-01-01

    The effect of ABA on root growth, secondary-root formation and root gravitropism in seedlings of Zea mays was investigated by using Fluridone-treated seedlings and a viviparous mutant, both of which lack carotenoids and ABA. Primary roots of seedlings grown in the presence of Fluridone grew significantly slower than those of control (i.e. untreated) roots. Elongation of Fluridone-treated roots was inhibited significantly by the exogenous application of 1 mM ABA. Exogenous application of 1 micromole and 1 nmole ABA had either no effect or only a slight stimulatory effect on root elongation, depending on the method of application. The absence of ABA in Fluridone-treated plants was not an important factor in secondary-root formation in seedlings less than 9-10 d old. However, ABA may suppress secondary-root formation in older seedlings, since 11-d-old control seedlings had significantly fewer secondary roots than Fluridone-treated seedlings. Roots of Fluridone-treated and control seedlings were graviresponsive. Similar data were obtained for vp-9 mutants of Z. mays, which are phenotypically identical to Fluridone-treated seedlings. These results indicate that ABA is necessary for neither secondary-root formation nor for positive gravitropism by primary roots.

  17. The Cyclic Nucleotide-Gated Channel CNGC14 Regulates Root Gravitropism in Arabidopsis thaliana.

    PubMed

    Shih, Han-Wei; DePew, Cody L; Miller, Nathan D; Monshausen, Gabriele B

    2015-12-07

    In plant roots, auxin inhibits cell expansion, and an increase in cellular auxin levels on the lower flanks of gravistimulated roots suppresses growth and thereby causes downward bending. These fundamental features of root growth responses to auxin were first described over 80 years ago, but our understanding of the underlying molecular mechanisms has remained scant. Here, we report that CYCLIC NUCLEOTIDE-GATED CHANNEL 14 (CNGC14) is essential for the earliest phase of auxin-induced ion signaling and growth inhibition in Arabidopsis roots. Using a fluorescence-imaging-based genetic screen, we found that cngc14 mutants exhibit a complete loss of rapid Ca(2+) and pH signaling in response to auxin treatment. Similarly impaired ion signaling was observed upon gravistimulation. We further developed a kinematic analysis approach to study dynamic root growth responses to auxin at high spatiotemporal resolution. These analyses revealed that auxin-induced growth inhibition and gravitropic bending are significantly delayed in cngc14 compared to wild-type roots, where auxin suppresses cell expansion within 1 min of treatment. Finally, we demonstrate that auxin-induced cytosolic Ca(2+) changes are required for rapid growth inhibition. Our results support a direct role for CNGC14-dependent Ca(2+) signaling in regulating the early posttranscriptional phase of auxin growth responses in Arabidopsis roots. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Growth is required for perception of water availability to pattern root branches in plants

    PubMed Central

    2018-01-01

    Water availability is a potent regulator of plant development and induces root branching through a process termed hydropatterning. Hydropatterning enables roots to position lateral branches toward regions of high water availability, such as wet soil or agar media, while preventing their emergence where water is less available, such as in air. The mechanism by which roots perceive the spatial distribution of water during hydropatterning is unknown. Using primary roots of Zea mays (maize) we reveal that developmental competence for hydropatterning is limited to the growth zone of the root tip. Past work has shown that growth generates gradients in water potential across an organ when asymmetries exist in the distribution of available water. Using mathematical modeling, we predict that substantial growth-sustained water potential gradients are also generated in the hydropatterning competent zone and that such biophysical cues inform the patterning of lateral roots. Using diverse chemical and environmental treatments we experimentally demonstrate that growth is necessary for normal hydropatterning of lateral roots. Transcriptomic characterization of the local response of tissues to a moist surface or air revealed extensive regulation of signaling and physiological pathways, some of which we show are growth-dependent. Our work supports a “sense-by-growth” mechanism governing hydropatterning, by which water availability cues are rendered interpretable through growth-sustained water movement. PMID:29317538

  19. Improved rooting of western white pine shoots from tissue cultures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amerson, H.V.; Mott, R.L.

    1982-01-01

    Adventitious shoots of Pinus monticola obtained from embryonic tissue were exposed to 4 combinations of growth regulators (6-benzylaminopurine/NAA/IAA/IBA), either continuously for 6 weeks or by pulse treatment for 7 days, followed by 5 weeks culture without growth regulators. After 6 weeks of continuous exposure, rooting of shoots varied between 0 and 20%. Pulse treatment resulted in 40-64% rooting. In paired comparisons pulse treatments always provided better rooting percentages than did constant exposure treatments. Pulse treatments also produced longer (less than 2 mm) roots and more multiple roots.

  20. The Root Transition Zone: A Hot Spot for Signal Crosstalk.

    PubMed

    Kong, Xiangpei; Liu, Guangchao; Liu, Jiajia; Ding, Zhaojun

    2018-05-01

    The root transition zone (TZ), located between the apical meristem and basal elongation region, has a unique role in root growth and development. The root TZ is not only the active site for hormone crosstalk, but also the perception site for various environmental cues, such as aluminum (Al) stress and low phosphate (Pi) stress. We propose that the root TZ is a hot spot for the integration of diverse inputs from endogenous (hormonal) and exogenous (sensorial) stimuli to control root growth. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. ABNORMAL INFLORESCENCE MERISTEM1 Functions in Salicylic Acid Biosynthesis to Maintain Proper Reactive Oxygen Species Levels for Root Meristem Activity in Rice

    PubMed Central

    Zhao, Hongyu; Ruan, Wenyuan; Deng, Minjuan; Wang, Fang; Peng, Jinrong; Luo, Jie; Chen, Zhixiang

    2017-01-01

    Root meristem activity determines root growth and root architecture and consequently affects water and nutrient uptake in plants. However, our knowledge about the regulation of root meristem activity in crop plants is very limited. Here, we report the isolation and characterization of a short root mutant in rice (Oryza sativa) with reduced root meristem activity. This root growth defect is caused by a mutation in ABNORMAL INFLORESCENCE MERISTEM1 (AIM1), which encodes a 3-hydroxyacyl-CoA dehydrogenase, an enzyme involved in β-oxidation. The reduced root meristem activity of aim1 results from reduced salicylic acid (SA) levels and can be rescued by SA application. Furthermore, reduced SA levels are associated with reduced levels of reactive oxygen species (ROS) in aim1, likely due to increased expression of redox and ROS-scavenging-related genes, whose increased expression is (at least in part) caused by reduced expression of the SA-inducible transcriptional repressors WRKY62 and WRKY76. Like SA, ROS application substantially increased root length and root meristem activity in aim1. These results suggest that AIM1 is required for root growth in rice due to its critical role in SA biosynthesis: SA maintains root meristem activity through promoting ROS accumulation by inducing the activity of WRKY transcriptional repressors, which repress the expression of redox and ROS-scavenging genes. PMID:28298519

  2. Food reserves and seasonal growth of Douglas-fir seedlings.

    Treesearch

    Kenneth W. Krueger; James M. Trappe

    1967-01-01

    Seasonal growth of tops and roots and concomitant trends in food reserves were observed biweekly on Peudotsuga menzisii (Mirb.) Franco seedlings of two seed sources growing in a Pacific Northwest forest nursery. A general pattern of alternating root, diameter, and shoot growth was found. Rapid root growth did not coincide with rapid shoot...

  3. Growth of cress seedlings and morphogenesis of root Gravisensors under clino-rotation and in unidirectional red or blue light

    NASA Astrophysics Data System (ADS)

    Rakleviciene, D.; Svegzdiene, D.; Tamulaitis, G.; Zukauskas, A.

    2005-08-01

    The growth rate and orientation of cress seedlings in response to the direction of illumination under clino- rotation were investigated at the initial stage of intensive hypocotyl elongation. Roots and hypocotyls growing in normal gravity conditions (1 g) and under clino-rotation at 3 rpm were illuminated with red (660 nm) or blue (450 nm) light from light-emitting diodes (LEDs). Unidirectional illumination in the direction opposite to the gravity vector promoted the growth rate of roots. Inhibition of gravitropism by clino-rotation reduced the growth of roots and stimulated the elongation of hypocotyls in both red and blue light. Illumination of roots invoked changes in the formation of gravisensing cells in the columella. Illumination under clino-rotation stimulated root statocyte growth and increased the number of amyloplasts in cells of the 3rd-6th columella rows. Also, an increase in the columella cell area, mainly caused by cell elongation in blue light and by enhanced radial growth in red light, was observed.

  4. Multilayered Organization of Jasmonate Signalling in the Regulation of Root Growth

    PubMed Central

    Gasperini, Debora; Chételat, Aurore; Acosta, Ivan F.; Goossens, Jonas; Pauwels, Laurens; Goossens, Alain; Dreos, René; Alfonso, Esteban; Farmer, Edward E.

    2015-01-01

    Physical damage can strongly affect plant growth, reducing the biomass of developing organs situated at a distance from wounds. These effects, previously studied in leaves, require the activation of jasmonate (JA) signalling. Using a novel assay involving repetitive cotyledon wounding in Arabidopsis seedlings, we uncovered a function of JA in suppressing cell division and elongation in roots. Regulatory JA signalling components were then manipulated to delineate their relative impacts on root growth. The new transcription factor mutant myc2-322B was isolated. In vitro transcription assays and whole-plant approaches revealed that myc2-322B is a dosage-dependent gain-of-function mutant that can amplify JA growth responses. Moreover, myc2-322B displayed extreme hypersensitivity to JA that totally suppressed root elongation. The mutation weakly reduced root growth in undamaged plants but, when the upstream negative regulator NINJA was genetically removed, myc2-322B powerfully repressed root growth through its effects on cell division and cell elongation. Furthermore, in a JA-deficient mutant background, ninja1 myc2-322B still repressed root elongation, indicating that it is possible to generate JA-responses in the absence of JA. We show that NINJA forms a broadly expressed regulatory layer that is required to inhibit JA signalling in the apex of roots grown under basal conditions. By contrast, MYC2, MYC3 and MYC4 displayed cell layer-specific localisations and MYC3 and MYC4 were expressed in mutually exclusive regions. In nature, growing roots are likely subjected to constant mechanical stress during soil penetration that could lead to JA production and subsequent detrimental effects on growth. Our data reveal how distinct negative regulatory layers, including both NINJA-dependent and -independent mechanisms, restrain JA responses to allow normal root growth. Mechanistic insights from this work underline the importance of mapping JA signalling components to specific cell types in order to understand and potentially engineer the growth reduction that follows physical damage. PMID:26070206

  5. Experimental observations of root growth in a controlled photoelastic granular material

    NASA Astrophysics Data System (ADS)

    Barés, Jonathan; Mora, Serge; Delenne, Jean-Yves; Fourcaud, Thierry

    2017-06-01

    We present a novel root observation apparatus capable of measuring the mechanical evolution of both the root network and the surrounding granular medium. The apparatus consists of 11 parallel growth frames, two of them being shearable, where the roots grow inside a photo-elastic or glass granular medium sandwiched between two pieces of glass. An automated system waters the plant and image each frame periodically in white light and between crossed polarisers. This makes it possible to follow (i) the root tips and (ii) the grain displacements as well as (iii) their inner pressure. We show how a root networks evolve in a granular medium and how it can mechanically stabilize it. This constitutes a model experiment to move forward in the understanding of the complex interaction between root growth and surrounding soil mechanical evolution.

  6. Fine root responses to temporal nutrient heterogeneity and competition in seedlings of two tree species with different rooting strategies.

    PubMed

    Wang, Peng; Shu, Meng; Mou, Pu; Weiner, Jacob

    2018-03-01

    There is little direct evidence for effects of soil heterogeneity and root plasticity on the competitive interactions among plants. In this study, we experimentally examined the impacts of temporal nutrient heterogeneity on root growth and interactions between two plant species with very different rooting strategies: Liquidambar styraciflua (sweet gum), which shows high root plasticity in response to soil nutrient heterogeneity, and Pinus taeda (loblolly pine), a species with less plastic roots. Seedlings of the two species were grown in sandboxes in inter- and intraspecific combinations. Nutrients were applied in a patch either in a stable (slow-release) or in a variable (pulse) manner. Plant aboveground biomass, fine root mass, root allocation between nutrient patch and outside the patch, and root vertical distribution were measured. L. styraciflua grew more aboveground (40% and 27% in stable and variable nutrient treatment, respectively) and fine roots (41% and 8% in stable and variable nutrient treatment, respectively) when competing with P. taeda than when competing with a conspecific individual, but the growth of P. taeda was not changed by competition from L. styraciflua . Temporal variation in patch nutrient level had little effect on the species' competitive interactions. The more flexible L. styraciflua changed its vertical distribution of fine roots in response to competition from P. taeda , growing more roots in deeper soil layers compared to its roots in conspecific competition, leading to niche differentiation between the species, while the fine root distribution of P. taeda remained unchanged across all treatments. Synthesis . L. styraciflua showed greater flexibility in root growth by changing its root vertical distribution and occupying space of not occupied by P. taeda . This flexibility gave L. styraciflua an advantage in interspecific competition.

  7. Auxins differentially regulate root system architecture and cell cycle protein levels in maize seedlings.

    PubMed

    Martínez-de la Cruz, Enrique; García-Ramírez, Elpidio; Vázquez-Ramos, Jorge M; Reyes de la Cruz, Homero; López-Bucio, José

    2015-03-15

    Maize (Zea mays) root system architecture has a complex organization, with adventitious and lateral roots determining its overall absorptive capacity. To generate basic information about the earlier stages of root development, we compared the post-embryonic growth of maize seedlings germinated in water-embedded cotton beds with that of plants obtained from embryonic axes cultivated in liquid medium. In addition, the effect of four different auxins, namely indole-3-acetic acid (IAA), 1-naphthaleneacetic acid (NAA), indole-3-butyric acid (IBA) and 2,4-dichlorophenoxyacetic acid (2,4-D) on root architecture and levels of the heat shock protein HSP101 and the cell cycle proteins CKS1, CYCA1 and CDKA1 were analyzed. Our data show that during the first days after germination, maize seedlings develop several root types with a simultaneous and/or continuous growth. The post-embryonic root development started with the formation of the primary root (PR) and seminal scutellar roots (SSR) and then continued with the formation of adventitious crown roots (CR), brace roots (BR) and lateral roots (LR). Auxins affected root architecture in a dose-response fashion; whereas NAA and IBA mostly stimulated crown root formation, 2,4-D showed a strong repressing effect on growth. The levels of HSP101, CKS1, CYCA1 and CDKA in root and leaf tissues were differentially affected by auxins and interestingly, HSP101 registered an auxin-inducible and root specific expression pattern. Taken together, our results show the timing of early branching patterns of maize and indicate that auxins regulate root development likely through modulation of the HSP101 and cell cycle proteins. Copyright © 2014 Elsevier GmbH. All rights reserved.

  8. Effect of nitrate on nodule and root growth of soybean (Glycine max (L.) Merr.).

    PubMed

    Saito, Akinori; Tanabata, Sayuri; Tanabata, Takanari; Tajima, Seiya; Ueno, Manabu; Ishikawa, Shinji; Ohtake, Norikuni; Sueyoshi, Kuni; Ohyama, Takuji

    2014-03-13

    The application of combined nitrogen, especially nitrate, to soybean plants is known to strongly inhibit nodule formation, growth and nitrogen fixation. In the present study, we measured the effects of supplying 5 mM nitrate on the growth of nodules, primary root, and lateral roots under light at 28 °C or dark at 18 °C conditions. Photographs of the nodulated roots were periodically taken by a digital camera at 1-h intervals, and the size of the nodules was measured with newly developed computer software. Nodule growth was depressed approximately 7 h after the addition of nitrate under light conditions. The nodule growth rate under dark conditions was almost half that under light conditions, and nodule growth was further suppressed by the addition of 5 mM nitrate. Similar results were observed for the extending growth rate of the primary root as those for nodule growth supplied with 5 mM nitrate under light/dark conditions. In contrast, the growth of lateral roots was promoted by the addition of 5 mM nitrate. The 2D-PAGE profiles of nodule protein showed similar patterns between the 0 and 5 mM nitrate treatments, which suggested that metabolic integrity may be maintained with the 5 mM nitrate treatment. Further studies are required to confirm whether light or temperature condition may give the primary effect on the growth of nodules and roots.

  9. Induction of curvature in maize roots by calcium or by thigmostimulation: role of the postmitotic isodiametric growth zone

    NASA Technical Reports Server (NTRS)

    Ishikawa, H.; Evans, M. L.

    1992-01-01

    We examined the response of primary roots of maize (Zea mays L. cv Merit) to unilateral application of calcium with particular attention to the site of application, the dependence on growth rate, and possible contributions of thigmotropic stimulation during application. Unilateral application of agar to the root cap induced negative curvature whether or not the agar contained calcium. This apparent thigmotropic response was enhanced by including calcium in the agar. Curvature away from objects applied unilaterally to the extreme root tip occurred both in intact and detipped roots. When agar containing calcium chloride was applied to one side of the postmitotic isodiametric growth zone ( a region between the apical meristem and the elongation zone), the root curved toward the side of application. This response could not be induced by plain agar. We conclude that curvature away from calcium applied to the root tip results from a thigmotropic response to stimulation during application. In contrast, curvature toward the calcium applied to the postmitotic isodiametric growth zone results from direct calcium-induced inhibition of growth.

  10. Influence of indole-butyric acid and electro-pulse on in vitro rooting and development of olive (Olea europea L.) microshoots.

    PubMed

    Padilla, Isabel Maria Gonzalez; Vidoy, I; Encina, C L

    2009-09-01

    The effects of indole-butyric acid (IBA) and electro-pulses on rooting and shoot growth were studied in vitro, using olive shoot cultures. Tested shoots were obtained from seedlings belonging to three Spanish cultivars, 'Arbequina', 'Manzanilla de Sevilla' and 'Gordal Sevillana', which have easy-, medium- and difficult-to-root rooting abilities, respectively. The standard two-step rooting method (SRM), consisting of root induction in olive rooting medium supplemented with 0, 0.1 or 1 mg/l IBA followed by root elongation in the same rooting medium without IBA, was compared with a novel one-step method consisting of shoot electro-pulses of 250, 1,250 or 2,500 V in a solution of IBA (0, 0.1 or 1 mg/l) and direct transferral to root elongation medium. The rooting percentage of the seedling-derived shoots obtained with the SRM was 76% for 'Arbequina' and 'Gordal Sevillana' cultivars and 100% for 'Manzanilla de Sevilla' cultivar, whereas with the electro-pulse method, the rooting percentages were 68, 64 and 88%, respectively. IBA dipping without pulse produced 0% rooting in 'Arbequina' seedling-derived shoots. The electroporation in IBA not only had an effect on shoot rooting but also on shoot growth and development, with longer shoots and higher axillary shoot sprouting and growth after some of the treatments. These effects were cultivar-dependent. The electro-pulse per se could explain some of these effects on shoot development.

  11. Geoperception in primary and lateral roots of Phaseolus vulgaris (Fabaceae). III. A model to explain the differential georesponsiveness of primary and lateral roots

    NASA Technical Reports Server (NTRS)

    Ransom, J. S.; Moore, R.

    1985-01-01

    Half-tipped primary and lateral roots of Phaseolus vulgaris bend toward the side of the root on which the intact half tip remains. Therefore, tips of lateral and primary roots produce growth effectors capable of inducing gravicurvature. The asymmetrical placement of a tip of a lateral root onto a detipped primary root results in the root bending toward the side of the root onto which the tip was placed. That is, the lesser graviresponsiveness of lateral roots as compared with primary roots is not due to the inability of their caps to produce growth inhibitors. The more pronounced graviresponsiveness of primary roots is positively correlated with the presence of columella tissues that are 3.8 times longer, 1.7 times wider, and 10.5 times more voluminous than the columellas of lateral roots. We propose that the lack of graviresponsiveness exhibited by lateral roots is due to the fact that they (i) produce smaller amounts of the inhibitor than primary (i.e., strongly graviresponsive) roots and (ii) are unable to redistribute the inhibitor so as to be able to create a concentration gradient sufficient to induce a pronounced gravitropic response.

  12. Auxin, the organizer of the hormonal/environmental signals for root hair growth

    PubMed Central

    Lee, Richard D.-W.; Cho, Hyung-Taeg

    2013-01-01

    The root hair development is controlled by diverse factors such as fate-determining developmental cues, auxin-related environmental factors, and hormones. In particular, the soil environmental factors are important as they maximize their absorption by modulating root hair development. These environmental factors affect the root hair developmental process by making use of diverse hormones. These hormonal factors interact with each other to modulate root hair development in which auxin appears to form the most intensive networks with the pathways from environmental factors and hormones. Moreover, auxin action for root hair development is genetically located immediately upstream of the root hair-morphogenetic genes. These observations suggest that auxin plays as an organizing node for environmental/hormonal pathways to modulate root hair growth. PMID:24273547

  13. Soil microbial biomass and root growth in Bt and non-Bt cotton

    NASA Astrophysics Data System (ADS)

    Tan, D. K. Y.; Broughton, K.; Knox, O. G.; Hulugalle, N. R.

    2012-04-01

    The introduction of transgenic Bacillus thuringiensis (Bt) cotton (Gossypium hirsutum L.) has had a substantial impact on pest management in the cotton industry. While there has been substantial research done on the impact of Bt on the above-ground parts of the cotton plant, less is known about the effect of Bt genes on below ground growth of cotton and soil microbial biomass. The aim of this research was to test the hypothesis that Bt [Sicot 80 BRF (Bollgard II Roundup Ready Flex®)] and non-Bt [Sicot 80 RRF (Roundup Ready Flex®)] transgenic cotton varieties differ in root growth and root turnover, carbon indices and microbial biomass. A field experiment was conducted in Narrabri, north-western NSW. The experimental layout was a randomised block design and used minirhizotron and core break and root washing methods to measure cotton root growth and turnover during the 2008/09 season. Root growth in the surface 0-0.1 m of the soil was measured using the core break and root washing methods, and that in the 0.1 to 1 m depth was measured with a minirhizotron and an I-CAP image capture system. These measurements were used to calculate root length per unit area, root carbon added to the soil through intra-seasonal root death, carbon in roots remaining at the end of the season and root carbon potentially added to the soil. Microbial biomass was also measured using the ninhydrin reactive N method. Root length densities and length per unit area of non-Bt cotton were greater than Bt cotton. There were no differences in root turnover between Bt and non-Bt cotton at 0-1 m soil depth, indicating that soil organic carbon stocks may not be affected by cotton variety. Cotton variety did not have an effect on soil microbial biomass. The results indicate that while there are differences in root morphology between Bt and non-Bt cotton, these do not change the carbon turnover dynamics in the soil.

  14. Unresolving the "real age" of fine roots in forest ecosystems

    NASA Astrophysics Data System (ADS)

    Solly, Emily; Brunner, Ivano; Herzog, Claude; Schöning, Ingo; Schrumpf, Marion; Schweigruber, Fritz; Trumbore, Susan; Hagedorn, Frank

    2016-04-01

    Estimating the turnover time of tree fine roots is crucial for modelling soil organic matter dynamics, but it is one of the biggest challenges in soil ecology and one of the least understood aspects of the belowground carbon cycle. The methods used - ranging from radiocarbon to ingrowth cores and root cameras (minirhizotrons) - yield very diverse pictures of fine root dynamics in forest ecosystems with turnover rates reaching from less than one year to decades. These have huge implications on estimates of carbon allocation to root growth and maintenance and on the persistence of root carbon in soils before it is decomposed or leached. We will present a new approach, involving techniques to study plant anatomy, which unravels the "real age" of fine roots. For a range of forests with diverse water and nutrient limitations located at different latitudes, we investigated the annual growth rings in the secondary xylem of thin transversal sections of fine roots belonging to tree species which form distinct growth rings. In temperate forests we find mean root "ring ages" of 1-2 years while in sub-arctic forests living fine roots can also persist for several years. The robustness of these results were tested by counting the maximum yearly growth rings in tree seedlings of known age and by counting the maximum number of growth rings of fine roots grown in ingrowth cores which were kept in temperate forest soils for one and two years. Radiocarbon estimates of mean "carbon ages", which define the time elapsed since structural carbon was fixed from the atmosphere, instead average around a decade in root systems of temperate forests (mixture of newly produced and older living roots). This dramatic difference may not be related to methodological bias, but to a time lag between C assimilation and production of a portion of fine root tissues due to the storage of older carbon components. The time lag depends very likely on tree species and environmental conditions. We further observed that the root ring age increases with root diameter although it does not appear to be related to the branching order. Our findings suggest that both the physiological and radiocarbon ages must be modelled jointly in forest ecosystems, if we want to correctly account for the inputs of root litter

  15. Microcystin-LR-induced phytotoxicity in rice crown root is associated with the cross-talk between auxin and nitric oxide.

    PubMed

    Chen, Jian; Zhang, Hai-Qiang; Hu, Liang-Bin; Shi, Zhi-Qi

    2013-09-01

    Irrigation with cyanobacterial-blooming water containing microcystin-LR (MC-LR) poses threat to the growth of agricultural plants. Large amounts of rice (Oryza sativa) field in the middle part of China has been irrigating with cyanobacterial-blooming water. Nevertheless, the mechanism of MC-LR-induced phytotoxicity in the root of monocot rice remains unclear. In the present study, we demonstrate that MC-LR stress significantly inhibits the growth of rice root by impacting the morphogenesis rice crown root. MC-LR treatment results in the decrease in IAA (indole-3-acetic acid) concentration as well as the expression of CRL1 and WOX11 in rice roots. The application of NAA (1-naphthylacetic acid), an IAA homologue, is able to attenuate the inhibitory effect of MC-LR on rice root development. MC-LR treatment significantly inhibits OsNia1-dependent NO generation in rice roots. The application of NO donor SNP (sodium nitroprusside) is able to partially reverse the inhibitory effects of MC-LR on the growth of rice root and the expression of CRL1 and WOX11 by enhancing endogenous NO level in rice roots. The application of NO scavenger cPTIO [2-(4-carboxy-2-phenyl)-4,4,5,5-tetramethylinidazoline-1-oxyl-3-oxide] eliminates the effects of SNP. Treatment with NAA stimulates the generation of endogenous NO in MC-LR-treated rice roots. Treatment with NO scavenger cPTIO abolishes the ameliorated effect of NAA on MC-LR-induced growth inhibition of rice root. Treatment with SNP enhanced IAA concentration in MC-LR-treated rice roots. Altogether, our data suggest that NO acts both downstream and upstream of auxin in regulating rice root morphogenesis under MC-LR stress. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Life in the dark: Roots and how they regulate plant-soil interactions

    NASA Astrophysics Data System (ADS)

    Wu, Y.; Chou, C.; Peruzzo, L.; Riley, W. J.; Hao, Z.; Petrov, P.; Newman, G. A.; Versteeg, R.; Blancaflor, E.; Ma, X.; Dafflon, B.; Brodie, E.; Hubbard, S. S.

    2017-12-01

    Roots play a key role in regulating interactions between soil and plants, an important biosphere process critical for soil development and health, global food security, carbon sequestration, and the cycling of elements (water, carbon, nutrients, and environmental contaminants). However, their underground location has hindered studies of plant roots and the role they play in regulating plant-soil interactions. Technological limitations for root phenotyping and the lack of an integrated approach capable of linking root development, its environmental adaptation/modification with subsequent impact on plant health and productivity are major challenges faced by scientists as they seek to understand the plant's hidden half. To overcome these challenges, we combine novel experimental methods with numerical simulations, and conduct controlled studies to explore the dynamic growth of crop roots. We ask how roots adapt to and change the soil environment and their subsequent impacts on plant health and productivity. Specifically, our efforts are focused on (1) developing novel geophysical approaches for non-invasive plant root and rhizosphere characterization; (2) correlating root developments with key canopy traits indicative of plant health and productivity; (3) developing numerical algorithms for novel geophysical root signal processing; (4) establishing plant growth models to explore root-soil interactions and above and below ground traits co-variabilities; and (5) exploring how root development modifies rhizosphere physical, hydrological, and geochemical environments for adaptation and survival. Our preliminary results highlight the potential of using electro-geophysical methods to quantifying key rhizosphere traits, the capability of the ecosys model for mechanistic plant growth simulation and traits correlation exploration, and the combination of multi-physics and numerical approach for a systematic understanding of root growth dynamics, impacts on soil physicochemical environments, and plant health and productivity.

  17. Dissecting the Role of CHITINASE-LIKE1 in Nitrate-Dependent Changes in Root Architecture1[C][W

    PubMed Central

    Hermans, Christian; Porco, Silvana; Vandenbussche, Filip; Gille, Sascha; De Pessemier, Jérôme; Van Der Straeten, Dominique; Verbruggen, Nathalie; Bush, Daniel R.

    2011-01-01

    The root phenotype of an Arabidopsis (Arabidopsis thaliana) mutant of CHITINASE-LIKE1 (CTL1), called arm (for anion-related root morphology), was previously shown to be conditional on growth on high nitrate, chloride, or sucrose. Mutants grown under restrictive conditions displayed inhibition of primary root growth, radial swelling, proliferation of lateral roots, and increased root hair density. We found here that the spatial pattern of CTL1 expression was mainly in the root and root tips during seedling development and that the protein localized to the cell wall. Fourier-transform infrared microspectroscopy of mutant root tissues indicated differences in spectra assigned to linkages in cellulose and pectin. Indeed, root cell wall polymer composition analysis revealed that the arm mutant contained less crystalline cellulose and reduced methylesterification of pectins. We also explored the implication of growth regulators on the phenotype of the mutant response to the nitrate supply. Exogenous abscisic acid application inhibited more drastically primary root growth in the arm mutant but failed to repress lateral branching compared with the wild type. Cytokinin levels were higher in the arm root, but there were no changes in mitotic activity, suggesting that cytokinin is not directly involved in the mutant phenotype. Ethylene production was higher in arm but inversely proportional to the nitrate concentration in the medium. Interestingly, eto2 and eto3 ethylene overproduction mutants mimicked some of the conditional root characteristics of the arm mutant on high nitrate. Our data suggest that ethylene may be involved in the arm mutant phenotype, albeit indirectly, rather than functioning as a primary signal. PMID:21949212

  18. Root-shoot growth responses during interspecific competition quantified using allometric modelling.

    PubMed

    Robinson, David; Davidson, Hazel; Trinder, Clare; Brooker, Rob

    2010-12-01

    Plant competition studies are restricted by the difficulty of quantifying root systems of competitors. Analyses are usually limited to above-ground traits. Here, a new approach to address this issue is reported. Root system weights of competing plants can be estimated from: shoot weights of competitors; combined root weights of competitors; and slopes (scaling exponents, α) and intercepts (allometric coefficients, β) of ln-regressions of root weight on shoot weight of isolated plants. If competition induces no change in root : shoot growth, α and β values of competing and isolated plants will be equal. Measured combined root weight of competitors will equal that estimated allometrically from measured shoot weights of each competing plant. Combined root weights can be partitioned directly among competitors. If, as will be more usual, competition changes relative root and shoot growth, the competitors' combined root weight will not equal that estimated allometrically and cannot be partitioned directly. However, if the isolated-plant α and β values are adjusted until the estimated combined root weight of competitors matches the measured combined root weight, the latter can be partitioned among competitors using their new α and β values. The approach is illustrated using two herbaceous species, Dactylis glomerata and Plantago lanceolata. Allometric modelling revealed a large and continuous increase in the root : shoot ratio by Dactylis, but not Plantago, during competition. This was associated with a superior whole-plant dry weight increase in Dactylis, which was ultimately 2·5-fold greater than that of Plantago. Whole-plant growth dominance of Dactylis over Plantago, as deduced from allometric modelling, occurred 14-24 d earlier than suggested by shoot data alone. Given reasonable assumptions, allometric modelling can analyse competitive interactions in any species mixture, and overcomes a long-standing problem in studies of competition.

  19. Characterization of low phosphorus insensitive Mutants Reveals a Crosstalk between Low Phosphorus-Induced Determinate Root Development and the Activation of Genes Involved in the Adaptation of Arabidopsis to Phosphorus Deficiency1

    PubMed Central

    Sánchez-Calderón, Lenin; López-Bucio, José; Chacón-López, Alejandra; Gutiérrez-Ortega, Abel; Hernández-Abreu, Esmeralda; Herrera-Estrella, Luis

    2006-01-01

    Low phosphorus (P) availability is one of the most limiting factors for plant productivity in many natural and agricultural ecosystems. Plants display a wide range of adaptive responses to cope with low P stress, which generally serve to enhance P availability in the soil and to increase its uptake by roots. In Arabidopsis (Arabidopsis thaliana), primary root growth inhibition and increased lateral root formation have been reported to occur in response to P limitation. To gain knowledge of the genetic mechanisms that regulate root architectural responses to P availability, we designed a screen for identifying Arabidopsis mutants that fail to arrest primary root growth when grown under low P conditions. Eleven low phosphorus insensitive (lpi) mutants that define at least four different complementation groups involved in primary root growth responses to P availability were identified. The lpi mutants do not show the typical determinate developmental program induced by P stress in the primary root. Other root developmental aspects of the low P rescue system, including increased root hair elongation and anthocyanin accumulation, remained unaltered in lpi mutants. In addition to the insensitivity of primary root growth inhibition, when subjected to P deprivation, lpi mutants show a reduced induction in the expression of several genes involved in the P starvation rescue system (PHOSPHATE TRANSPORTER 1 and 2, PURPLE ACID PHOSPHATASE 1, ACID PHOSPHATASE 5, and INDUCED BY PHOSPHATE STARVATION 1). Our results provide genetic support for the role of P as an important signal for postembryonic root development and root meristem maintenance and show a crosstalk in developmental and biochemical responses to P deprivation. PMID:16443695

  20. The influence of arbuscular mycorrhizae on root precision nutrient foraging of two pioneer plant species during early reclamation

    NASA Astrophysics Data System (ADS)

    Boldt-Burisch, Katja; Naeth, M. Anne

    2017-04-01

    On many post mining sites in the Lusatian Mining District (East Germany) soil heterogeneity consists of sandy soil with embedded clay-silt fragments. Those clays silt fragments might act as nutrient hotspots. Arbuscular mycorrhizal fungi in an infertile ecosystem could enhance a plant's ability to selectively forage for those nutrients and thus to improve plants nutrient supply. In our study we investigated whether silt-clay fragments within a sandy soil matrix induced preferential root growth of Lotus corniculatus and Calamagrostis epigeios, whether arbuscular mycorrhizae influenced root foraging patterns, and to what extent selective rooting in clay silt fragments influenced plant growth were addressed in this research. Soil types were sterile and non-sterile sandy soil and clay-silt fragments. Treatments were with and without arbuscular mycorrhizae, with and without soil solution, and soil solution and mycorrhizal inoculum combined. Root biomass, root density and intraradical fungal alkaline phosphatase activity and frequency were determined in fragments relative to sandy soil. Furthermore, temporal relationship of number of roots in fragments and plant height was assessed. Lotus corniculatus showed strong selective rooting into fragments especially with those plants treated with commercial cultivated arbuscular mycorrhizae; Calamagrostis epigeios did not. Without arbuscular mycorrhizae, L. corniculatus growth was significantly reduced and selective rooting did not occur. Selective rooting induced significant growth spurts of L. corniculatus. Roots in fragments had higher fungal alkaline phosphatase activity suggesting that mycorrhizal efficiency and related plants phosphorus supply is enhanced in roots in fragments. The application of cultivated arbuscular mycorrhizal fungi significantly and quickly influenced root foraging patterns, especially those of L. corniculatus, suggesting mycorrhizae may also enhance the ability of other plants to selectively forage for nutrients and could therefore play an important role in early plant establishment on infertile reclamation sites.

  1. Spatiotemporal variation of nitrate uptake kinetics within the maize (Zea mays L.) root system is associated with greater nitrate uptake and interactions with architectural phenes.

    PubMed

    York, Larry M; Silberbush, Moshe; Lynch, Jonathan P

    2016-06-01

    Increasing maize nitrogen acquisition efficiency is a major goal for the 21st century. Nitrate uptake kinetics (NUK) are defined by I max and K m, which denote the maximum uptake rate and the affinity of transporters, respectively. Because NUK have been studied predominantly at the molecular and whole-root system levels, little is known about the functional importance of NUK variation within root systems. A novel method was created to measure NUK of root segments that demonstrated variation in NUK among root classes (seminal, lateral, crown, and brace). I max varied among root class, plant age, and nitrate deprivation combinations, but was most affected by plant age, which increased I max, and nitrate deprivation time, which decreased I max K m was greatest for crown roots. The functional-structural simulation SimRoot was used for sensitivity analysis of plant growth to root segment I max and K m, as well as to test interactions of I max with root system architectural phenes. Simulated plant growth was more sensitive to I max than K m, and reached an asymptote near the maximum I max observed in the empirical studies. Increasing the I max of lateral roots had the largest effect on shoot growth. Additive effects of I max and architectural phenes on nitrate uptake were observed. Empirically, only lateral root tips aged 20 d operated at the maximum I max, and simulations demonstrated that increasing all seminal and lateral classes to this maximum rate could increase plant growth by as much as 26%. Therefore, optimizing I max for all maize root classes merits attention as a promising breeding goal. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  2. Additional disinfection with a modified salt solution in a root canal model.

    PubMed

    van der Waal, Suzette V; Oonk, Charlotte A M; Nieman, Selma H; Wesselink, Paul R; de Soet, Johannes J; Crielaard, Wim

    2015-10-01

    The aim of this study is to investigate the disinfecting properties of a modified salt solution (MSS) and calcium hydroxide (Ca(OH)2) in a non-direct-contact ex-vivo model. Seventy-four single-canal roots infected with Enterococcus faecalis were treated with 1% sodium hypochlorite (NaOCl) irrigation or with NaOCl irrigation with subsequent dressing with MSS or Ca(OH)2. After removal of the dressings, the roots were filled with bacterial growth medium and incubated for seven days to enable the surviving bacteria to repopulate the root canal lumen. Growth was determined by sampling the root canals with paper points before treatment (S1), after treatment (S2) and incubation after treatment (S3). The colony forming units were counted at S1 and S2. At S3, growth was determined as no/yes regrowth. The Kruskal-Wallis, McNemar and χ(2) test were used for statistical analyses. At S2, in the NaOCl group, growth was found in 5 of 19 root canals. After the removal of MSS or Ca(OH)2 bacteria were retrieved from one root canal in both groups. At S3, repopulation of the root canals had occurred in 14 of 19 roots after sole NaOCl irrigation, 6 of 20 roots after MSS-dressing and in 14 of 20 roots after Ca(OH)2-dressing. MSS was more effective in preventing regrowth than Ca(OH)2 (P=0.009). The modified salt solution prevented regrowth in roots which indicates that it can eliminate persistent bacteria. Dressing the root canals with Ca(OH)2 did not provide additional disinfection after NaOCl irrigation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Use of Chenopodium murale L. transgenic hairy root in vitro culture system as a new tool for allelopathic assays.

    PubMed

    Mitić, Nevena; Dmitrović, Slavica; Djordjević, Mirka; Zdravković-Korać, Snežana; Nikolić, Radomirka; Raspor, Martin; Djordjević, Tatjana; Maksimović, Vuk; Zivković, Suzana; Krstić-Milošević, Dijana; Stanišić, Mariana; Ninković, Slavica

    2012-08-15

    We investigated Chenopodium murale transgenic hairy root in vitro culture system as a new tool for allelopathic assays. Transgenic hairy roots were induced by Agrobacterium rhizogenes A4M70GUS from roots, cotyledons, leaves, and internodes of C. murale seedlings. Roots were found to be the best target explants, providing transformation efficiency of up to 11.1%. Established hairy root clones differed in their morphology and growth potential. Molecular characterization of these clones was carried out by PCR, RT-PCR and histochemical GUS analyses. No differences in rol gene expression were observed. Liquid culture system of characterized hairy root clones was maintained for over 2 years. Six hairy root clones were selected for assaying the allelopathic effect of their growth medium against germination and seedling elongation of wheat and lettuce test plants. The inhibitory potential varied depending on the hairy root clone. Some transgenic clones showed significantly higher inhibition compared to wild-type roots. These results revealed that hairy roots as an independent system synthesize some bioactive substances with allelopathic activity and exude them into the growth medium. Concentrations of caffeic, ferulic and p-coumaric acids (0.07-2.85 μmol/L) identified by HPLC analysis in the growth media were at least 1000 times lower than the inhibitory active concentration (5 mmol/L) of pure grade phenolic acids, suggesting that they have a limited role in the allelopathic phenomena of C. murale. The presented hairy root system appears to be a suitable tool for further investigation of the potential and nature of root-mediated allelopathic interference of C. murale. Copyright © 2012 Elsevier GmbH. All rights reserved.

  4. Root growth during molar eruption in extant great apes.

    PubMed

    Kelley, Jay; Dean, Christopher; Ross, Sasha

    2009-01-01

    While there is gradually accumulating knowledge about molar crown formation and the timing of molar eruption in extant great apes, very little is known about root formation during the eruption process. We measured mandibular first and second molar root lengths in extant great ape osteological specimens that died while either the first or second molars were in the process of erupting. For most specimens, teeth were removed so that root lengths could be measured directly. When this was not possible, roots were measured radiographically. We were particularly interested in the variation in the lengths of first molar roots near the point of gingival emergence, so specimens were divided into early, middle and late phases of eruption based on the number of cusps that showed protein staining, with one or two cusps stained equated with immediate post-gingival emergence. For first molars at this stage, Gorilla has the longest roots, followed by Pongo and Pan. Variation in first molar mesial root lengths at this stage in Gorilla and Pan, which comprise the largest samples, is relatively low and represents no more than a few months of growth in both taxa. Knowledge of root length at first molar emergence permits an assessment of the contribution of root growth toward differences between great apes and humans in the age at first molar emergence. Root growth makes up a greater percentage of the time between birth and first molar emergence in humans than it does in any of the great apes. Copyright (c) 2009 S. Karger AG, Basel.

  5. Reactive oxygen species and nitric oxide are involved in polyamine-induced growth inhibition in wheat plants.

    PubMed

    Recalde, Laura; Vázquez, Analía; Groppa, María D; Benavides, María Patricia

    2018-03-06

    Polyamines (PAs) produce H 2 O 2 and nitric oxide (NO) during their normal catabolism and modulate plant growth and development. To explore the biochemical basis of PAs-induced growth inhibition in Triticum aestivum L seedlings, we examined the role of O 2 ·- , H 2 O 2 or NO in shoot and root development. Although all PA treatments resulted in a variable reduction of root and shoot elongation, spermine (Spm) caused the greater inhibition in a similar way to that observed with the NO donor, sodium nitroprusside (SNP). In both cases, O 2 ·- production was completely blocked whereas H 2 O 2 formation was high in the root apex under SNP or Spm treatments. Catalase recovered root and shoot growth in SNP but not in Spm-treated plants, revealing the involvement of H 2 O 2 in SNP-root length reduction. The addition of the NO scavenger, cPTIO, restored root length in SNP- or Spm-treated plants, respectively, and partially recovered O 2 ·- levels, compared to the plants exposed to PAs or SNP without cPTIO. A strong correlation was observed between root growth restoration and O 2 ·- accumulation after treating roots with SNP + aminoguanidine, a diamine oxidase inhibitor, and with SNP + 1,8-diaminoctane, a polyamine oxidase inhibitor, confirming the essential role of O 2 ·- formation for root growth and the importance of the origin and level of H 2 O 2 . The differential modulation of wheat growth by PAs through reactive oxygen species or NO is discussed. Graphical abstract Polyamines, nitric oxide and ROS interaction in plants during plant growth.

  6. Roots and the stability of forested slopes

    Treesearch

    R. R. Ziemer

    1981-01-01

    Abstract - Root decay after timber cutting can lead to slope failure. In situ measurements of soil with tree roots showed that soil strength increased linearly as root biomass increased. Forests clear-felled 3 years earlier contained about one-third of the root biomass of old-growth forests. Nearly all of the roots

  7. Chemical root pruning of conifer seedlings in Mexico

    Treesearch

    Arnulfo Aldrete; John G. Mexal

    2002-01-01

    Many countries grow seedlings for reforestation in polybags where root spiraling and root egression can decrease seedling survival and growth following outplanting. The overall objectives of this study were to investigate the effect of chemical root pruning on root spiraling, root egression, and nursery performance of Pinus pseudostrobus, P...

  8. Effect of pruning the parent root on growth of aspen suckers

    Treesearch

    Ashbel F. Hough

    1965-01-01

    Various portions of the root systems of bigtooth aspen (Populus grandidentata) suckers were severed, and the subsequent height and radial growth of stems were measured. Aspen vegetative regeneration is heavily dependent on the parent roots for at least 25 years following initial suckering. The distal portion of the parent root contributes more to...

  9. Root morphology and growth of bare-root seedlings of Oregon white oak

    Treesearch

    Peter J. Gould; Constance A. Harrington

    2009-01-01

    Root morphology and stem size were evaluated as predictors of height and basal-area growth (measured at groundline) of 1-1 Oregon white oak (Quercus garryana Dougl. ex Hook.) seedlings planted in raised beds with or without an additional irrigation treatment. Seedlings were classified into three root classes based on a visual assessment of the...

  10. Physical root-soil interactions

    NASA Astrophysics Data System (ADS)

    Kolb, Evelyne; Legué, Valérie; Bogeat-Triboulot, Marie-Béatrice

    2017-12-01

    Plant root system development is highly modulated by the physical properties of the soil and especially by its mechanical resistance to penetration. The interplay between the mechanical stresses exerted by the soil and root growth is of particular interest for many communities, in agronomy and soil science as well as in biomechanics and plant morphogenesis. In contrast to aerial organs, roots apices must exert a growth pressure to penetrate strong soils and reorient their growth trajectory to cope with obstacles like stones or hardpans or to follow the tortuous paths of the soil porosity. In this review, we present the main macroscopic investigations of soil-root physical interactions in the field and combine them with simple mechanistic modeling derived from model experiments at the scale of the individual root apex.

  11. Physical root-soil interactions.

    PubMed

    Kolb, Evelyne; Legué, Valérie; Bogeat-Triboulot, Marie-Béatrice

    2017-11-16

    Plant root system development is highly modulated by the physical properties of the soil and especially by its mechanical resistance to penetration. The interplay between the mechanical stresses exerted by the soil and root growth is of particular interest for many communities, in agronomy and soil science as well as in biomechanics and plant morphogenesis. In contrast to aerial organs, roots apices must exert a growth pressure to penetrate strong soils and reorient their growth trajectory to cope with obstacles like stones or hardpans or to follow the tortuous paths of the soil porosity. In this review, we present the main macroscopic investigations of soil-root physical interactions in the field and combine them with simple mechanistic modeling derived from model experiments at the scale of the individual root apex.

  12. Computer-based video digitizer analysis of surface extension in maize roots: kinetics of growth rate changes during gravitropism

    NASA Technical Reports Server (NTRS)

    Ishikawa, H.; Hasenstein, K. H.; Evans, M. L.

    1991-01-01

    We used a video digitizer system to measure surface extension and curvature in gravistimulated primary roots of maize (Zea mays L.). Downward curvature began about 25 +/- 7 min after gravistimulation and resulted from a combination of enhanced growth along the upper surface and reduced growth along the lower surface relative to growth in vertically oriented controls. The roots curved at a rate of 1.4 +/- 0.5 degrees min-1 but the pattern of curvature varied somewhat. In about 35% of the samples the roots curved steadily downward and the rate of curvature slowed as the root neared 90 degrees. A final angle of about 90 degrees was reached 110 +/- 35 min after the start of gravistimulation. In about 65% of the samples there was a period of backward curvature (partial reversal of curvature) during the response. In some cases (about 15% of those showing a period of reverse bending) this period of backward curvature occurred before the root reached 90 degrees. Following transient backward curvature, downward curvature resumed and the root approached a final angle of about 90 degrees. In about 65% of the roots showing a period of reverse curvature, the roots curved steadily past the vertical, reaching maximum curvature about 205 +/- 65 min after gravistimulation. The direction of curvature then reversed back toward the vertical. After one or two oscillations about the vertical the roots obtained a vertical orientation and the distribution of growth within the root tip became the same as that prior to gravistimulation. The period of transient backward curvature coincided with and was evidently caused by enhancement of growth along the concave and inhibition of growth along the convex side of the curve, a pattern opposite to that prevailing in the earlier stages of downward curvature. There were periods during the gravitropic response when the normally unimodal growth-rate distribution within the elongation zone became bimodal with two peaks of rapid elongation separated by a region of reduced elongation rate. This occurred at different times on the convex and concave sides of the graviresponding root. During the period of steady downward curvature the elongation zone along the convex side extended farther toward the tip than in the vertical control. During the period of reduced rate of curvature, the zone of elongation extended farther toward the tip along the concave side of the root. The data show that the gravitropic response pattern varies with time and involves changes in localized elongation rates as well as changes in the length and position of the elongation zone. Models of root gravitropic curvature based on simple unimodal inhibition of growth along the lower side cannot account for these complex growth patterns.

  13. In Vitro Morphogenesis of Arabidopsis to Search for Novel Endophytic Fungi Modulating Plant Growth.

    PubMed

    Dovana, Francesco; Mucciarelli, Marco; Mascarello, Maurizio; Fusconi, Anna

    2015-01-01

    Fungal endophytes have shown to affect plant growth and to confer stress tolerance to the host; however, effects of endophytes isolated from water plants have been poorly investigated. In this study, fungi isolated from stems (stem-E) and roots (root-E) of Mentha aquatica L. (water mint) were identified, and their morphogenetic properties analysed on in vitro cultured Arabidopsis (L.) Heynh., 14 and 21 days after inoculation (DAI). Nineteen fungi were analysed and, based on ITS analysis, 17 isolates showed to be genetically distinct. The overall effect of water mint endophytes on Arabidopsis fresh (FW) and dry weight (DW) was neutral and positive, respectively, and the increased DW, mainly occurring 14 DAI, was possibly related to plant defence mechanism. Only three fungi increased both FW and DW of Arabidopsis at 14 and 21 DAI, thus behaving as plant growth promoting (PGP) fungi. E-treatment caused a reduction of root depth and primary root length in most cases and inhibition-to-promotion of root area and lateral root length, from 14 DAI. Only Phoma macrostoma, among the water mint PGP fungi, increased both root area and depth, 21 DAI. Root depth and area 14 DAI were shown to influence DWs, indicating that the extension of the root system, and thus nutrient uptake, was an important determinant of plant dry biomass. Reduction of Arabidopsis root depth occurred to a great extent when plants where treated with stem-E while root area decreased or increased under the effects of stem-E and root-E, respectively, pointing to an influence of the endophyte origin on root extension. M. aquatica and many other perennial hydrophytes have growing worldwide application in water pollution remediation. The present study provided a model for directed screening of endophytes able to modulate plant growth in the perspective of future field applications of these fungi.

  14. Deciphering composition and function of the root microbiome of a legume plant.

    PubMed

    Hartman, Kyle; van der Heijden, Marcel Ga; Roussely-Provent, Valexia; Walser, Jean-Claude; Schlaeppi, Klaus

    2017-01-17

    Diverse assemblages of microbes colonize plant roots and collectively function as a microbiome. Earlier work has characterized the root microbiomes of numerous plant species, but little information is available for legumes despite their key role in numerous ecosystems including agricultural systems. Legumes form a root nodule symbiosis with nitrogen-fixing Rhizobia bacteria and thereby account for large, natural nitrogen inputs into soils. Here, we describe the root bacteria microbiome of the legume Trifolium pratense combining culture-dependent and independent methods. For a functional understanding of individual microbiome members and their impact on plant growth, we began to inoculate root microbiome members alone or in combination to Trifolium roots. At a whole-root scale, Rhizobia bacteria accounted for ~70% of the root microbiome. Other enriched members included bacteria from the genera Pantoea, Sphingomonas, Novosphingobium, and Pelomonas. We built a reference stock of 200 bacteria isolates, and we found that they corresponded to ~20% of the abundant root microbiome members. We developed a microcosm system to conduct simplified microbiota inoculation experiments with plants. We observed that while an abundant root microbiome member reduced plant growth when inoculated alone, this negative effect was alleviated if this Flavobacterium was co-inoculated with other root microbiome members. The Trifolium root microbiome was dominated by nutrient-providing Rhizobia bacteria and enriched for bacteria from genera that may provide disease protection. First microbiota inoculation experiments indicated that individual community members can have plant growth compromising activities without being apparently pathogenic, and a more diverse root community can alleviate plant growth compromising activities of its individual members. A trait-based characterization of the reference stock bacteria will permit future microbiota manipulation experiments to decipher overall microbiome functioning and elucidate the biological mechanisms and interactions driving the observed effects. The presented reductionist experimental approach offers countless opportunities for future systematic and functional examinations of the plant root microbiome.

  15. In vitro cultured primary roots derived from stem segments of cassava (Manihot esculenta) can behave like storage organs.

    PubMed

    Medina, Ricardo D; Faloci, Mirta M; Gonzalez, Ana M; Mroginski, Luis A

    2007-03-01

    Cassava (Manihot esculenta) has three adventitious root types: primary and secondary fibrous roots, and storage roots. Different adventitious root types can also regenerate from in vitro cultured segments. The aim of this study was to investigate aspects of in vitro production of storage roots. Morphological and anatomical analyses were performed to identify and differentiate each root type. Twenty-nine clones were assayed to determine the effect of genotype on the capacity to form storage roots in vitro. The effects of cytokinins and auxins on the formation of storage roots in vitro were also examined. Primary roots formed in vitro and in vivo had similar tissue kinds; however, storage roots formed in vitro exhibited physiological specialization for storing starch. The only consistent diagnostic feature between secondary fibrous and storage roots was their functional differentiation. Anatomical analysis of the storage roots formed in vitro showed that radial expansion as a consequence of massive proliferation and enlargement of parenchymatous cells occurred in the middle cortex, but not from cambial activity as in roots formed in vivo. Cortical expansion could be related to dilatation growth favoured by hormone treatments. Starch deposition of storage roots formed in vitro was confined to cortical tissue and occurred earlier than in storage roots formed in vivo. Auxin and cytokinin supplementation were absolutely required for in vitro storage root regeneration; these roots were not able to develop secondary growth, but formed a tissue competent for starch storing. MS medium with 5 % sucrose plus 0.54 microM 1-naphthaleneacetic acid and 0.44 microM 6-benzylaminopurine was one of the most effective in stimulating the storage root formation. Genotypes differed significantly in their capacity to produce storage roots in vitro. Storage root formation was considerably affected by the segment's primary position and strongly influenced by hormone treatments. The storage root formation system reported here is a first approach to develop a tuberization model, and additional efforts are required to improve it. Although it was not possible to achieve root secondary growth, after this work it will be feasible to advance in some aspects of in vitro cassava tuberization.

  16. Effects of natural and synthetic auxins on the gravitropic growth habit of roots in two auxin-resistant mutants of Arabidopsis, axr1 and axr4: evidence for defects in the auxin influx mechanism of axr4

    NASA Technical Reports Server (NTRS)

    Yamamoto, M.; Yamamoto, K. T.

    1999-01-01

    The partially agravitropic growth habit of roots of an auxin-resistant mutant of Arabidopsis thaliana, axr4, was restored by the addition of 30-300 nM 1-naphthaleneacetic acid (NAA) to the growth medium. Neither indole 3-acetic acid (IAA) nor 2,4-dichlorophenoxyacetic acid (2,4-D) showed such an effect. Growth of axr4 roots was resistant to IAA and 2,4-D, but not at all to NAA. The differential effects of the three auxins suggest that the defects of axr4 result from a lower auxin influx into its cells. The partially agravitropic growth habit of axr1 roots, which was less severe than that of axr4 roots, was only slightly affected by the three auxins in the growth medium at concentrations up to 300 nM; growth of axr1 roots was resistant to all three of the auxins. These results suggest that the lesion of axrl mutants is different from that of axr4.

  17. Growth rate and mitotic index analysis of Vicia faba L. roots exposed to 60-Hz electric fields.

    PubMed

    Inoue, M; Miller, M W; Cox, C; Carstesen, E L

    1985-01-01

    Growth, mitotic index, and growth rate recovery were determined for Vicia faba L. roots exposed to 60-Hz electric fields of 200, 290, and 360 V/m in an aqueous inorganic nutrient medium (conductivity 0.07-0.09 S/m). Root growth rate decreased in proportion to the increasing strength; the electric field threshold for a growth rate effect was about 230 V/m. The induced transmembrane potential at the threshold exposure was about 4-7 mV. The mitotic index was not affected by an electric field exposure sufficient to reduce root growth rate to about 35% of control. Root growth rate recovery from 31-96% of control occurred in 4 days after cessation of the 360 V/m exposure. The results support the postulate that the site of action of the applied electric fields is the cell membrane.

  18. Effects of co-inoculation with arbuscular mycorrhizal fungi and rhizobia on soybean growth as related to root architecture and availability of N and P.

    PubMed

    Wang, Xiurong; Pan, Qiang; Chen, Fengxian; Yan, Xiaolong; Liao, Hong

    2011-04-01

    Soybean plants can form tripartite symbiotic associations with rhizobia and arbuscular mycorrhizal (AM) fungi, but little is known about effects of co-inoculation with rhizobia and AM fungi on plant growth, or their relationships to root architecture as well as nitrogen (N) and phosphorus (P) availability. In the present study, two soybean genotypes contrasting in root architecture were grown in a field experiment to evaluate relationships among soybean root architecture, AMF colonization, and nodulation under natural conditions. Additionally, a soil pot experiment in greenhouse was conducted to investigate the effects of co-inoculation with rhizobia and AM fungi on soybean growth, and uptake of N and P. Our results indicated that there was a complementary relationship between root architecture and AMF colonization in the field. The deep root soybean genotype had greater AMF colonization at low P, but better nodulation with high P supply than the shallow root genotype. A synergistic relationship dependent on N and P status exists between rhizobia and AM fungi on soybean growth. Co-inoculation with rhizobia and AM fungi significantly increased soybean growth under low P and/or low N conditions as indicated by increased shoot dry weight, along with plant N and P content. There were no significant effects of inoculation under adequate N and P conditions. Furthermore, the effects of co-inoculation were related to root architecture. The deep root genotype, HN112, benefited more from co-inoculation than the shallow root genotype, HN89. Our results elucidate new insights into the relationship between rhizobia, AM fungi, and plant growth under limitation of multiple nutrients, and thereby provides a theoretical basis for application of co-inoculation in field-grown soybean.

  19. Root depth and morphology in response to soil drought: comparing ecological groups along the secondary succession in a tropical dry forest.

    PubMed

    Paz, Horacio; Pineda-García, Fernando; Pinzón-Pérez, Luisa F

    2015-10-01

    Root growth and morphology may play a core role in species-niche partitioning in highly diverse communities, especially along gradients of drought risk, such as that created along the secondary succession of tropical dry forests. We experimentally tested whether root foraging capacity, especially at depth, decreases from early successional species to old-growth forest species. We also tested for a trade-off between two mechanisms for delaying desiccation, the capacity to forage deeper in the soil and the capacity to store water in tissues, and explored whether successional groups separate along such a trade-off. We examined the growth and morphology of roots in response to a controlled-vertical gradient of soil water, among seedlings of 23 woody species dominant along the secondary succession in a tropical dry forest of Mexico. As predicted, successional species developed deeper and longer root systems than old-growth forest species in response to soil drought. In addition, shallow root systems were associated with high plant water storage and high water content per unit of tissue in stems and roots, while deep roots exhibited the opposite traits, suggesting a trade-off between the capacities for vertical foraging and water storage. Our results suggest that an increased capacity of roots to forage deeper for water is a trait that enables successional species to establish under the warm-dry conditions of the secondary succession, while shallow roots, associated with a higher water storage capacity, are restricted to the old-growth forest. Overall, we found evidence that the root depth-water storage trade-off may constrain tree species distribution along secondary succession.

  20. Symbiotic regulation of plant growth, development and reproduction

    Treesearch

    Russell J. Rodriguez; D. Carl Freeman; E. Durant McArthur; Yong Ok Kim; Regina S. Redman

    2009-01-01

    The growth and development of rice (Oryzae sativa) seedlings was shown to be regulated epigenetically by a fungal endophyte. In contrast to un-inoculated (nonsymbiotic) plants, endophyte colonized (symbiotic) plants preferentially allocated resources into root growth until root hairs were well established. During that time symbiotic roots expanded at...

  1. Release of Growth Factors into Root Canal by Irrigations in Regenerative Endodontics.

    PubMed

    Zeng, Qian; Nguyen, Sean; Zhang, Hongming; Chebrolu, Hari Priya; Alzebdeh, Dalia; Badi, Mustafa A; Kim, Jong Ryul; Ling, Junqi; Yang, Maobin

    2016-12-01

    The aim of this study was to investigate the release of growth factors into root canal space after the irrigation procedure of regenerative endodontic procedure. Sixty standardized root segments were prepared from extracted single-root teeth. Nail varnish was applied to all surfaces except the root canal surface. Root segments were irrigated with 1.5% NaOCl + 17% EDTA, 2.5% NaOCl + 17% EDTA, 17% EDTA, or deionized water. The profile of growth factors that were released after irrigation was studied by growth factor array. Enzyme-linked immunosorbent assay was used to validate the release of transforming growth factor (TGF)-β1 and basic fibroblast growth factor (bFGF) at 4 hours, 1 day, and 3 days after irrigation. The final concentrations were calculated on the basis of the root canal volume measured by cone-beam computed tomography. Dental pulp stem cell migration on growth factors released from root segments was measured by using Transwell assay. Total of 11 of 41 growth factors were detected by growth factors array. Enzyme-linked immunosorbent assay showed that TGF-β1 was released in all irrigation groups. Compared with the group with 17% EDTA (6.92 ± 4.49 ng/mL), the groups with 1.5% NaOCl + 17% EDTA and 2.5% NaOCl + 17% EDTA had significantly higher release of TGF-β1 (69.04 ± 30.41 ng/mL and 59.26 ± 3.37 ng/mL, respectively), with a peak release at day 1. The release of bFGF was detected at a low level in all groups (0 ng/mL to 0.43 ± 0.22 ng/mL). Migration assay showed the growth factors released from root segments induced dental pulp stem cell migration. The root segment model in present study simulated clinical scenario and indicated that the current irrigation protocol released a significant amount of TGF-β1 but not bFGF. The growth factors released into root canal space induced dental pulp stem cell migration. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  2. Fine-root growth in a forested bog is seasonally dynamic, but shallowly distributed in nutrient-poor peat

    DOE PAGES

    Iversen, Colleen M.; Childs, Joanne; Norby, Richard J.; ...

    2017-03-30

    Fine roots contribute to ecosystem carbon, water, and nutrient fluxes through resource acquisition, respiration, exudation, and turnover, but are understudied in peatlands. Here, we aimed to determine how the amount and timing of fine-root growth in a forested, ombrotrophic bog varied across gradients of vegetation density, peat microtopography, and changes in environmental conditions across the growing season and throughout the peat profile. We quantified fine-root peak standing crop and growth using non-destructive minirhizotron technology over a two-year period, focusing on the dominant woody species in the bog: Picea mariana, Larix laricina, Rhododendron groenlandicum, and Chamaedaphne calyculata. The fine roots ofmore » trees and shrubs were concentrated in raised hummock microtopography, with more tree roots associated with greater tree densities and a unimodal peak in shrub roots at intermediate tree densities. Fine-root growth tended to be seasonally dynamic, but shallowly distributed, in a thin layer of nutrient-poor, aerobic peat above the growing season water table level. Finally, the dynamics and distribution of fine roots in this forested ombrotrophic bog varied across space and time in response to biological, edaphic, and climatic conditions, and we expect these relationships to be sensitive to projected environmental changes in northern peatlands.« less

  3. SCAR Mediates Light-Induced Root Elongation in Arabidopsis through Photoreceptors and Proteasomes[W][OA

    PubMed Central

    Dyachok, Julia; Zhu, Ling; Liao, Fuqi; He, Ji; Huq, Enamul; Blancaflor, Elison B.

    2011-01-01

    The ARP2/3 complex, a highly conserved nucleator of F-actin, and its activator, the SCAR complex, are essential for growth in plants and animals. In this article, we present a pathway through which roots of Arabidopsis thaliana directly perceive light to promote their elongation. The ARP2/3-SCAR complex and the maintenance of longitudinally aligned F-actin arrays are crucial components of this pathway. The involvement of the ARP2/3-SCAR complex in light-regulated root growth is supported by our finding that mutants of the SCAR complex subunit BRK1/HSPC300, or other individual subunits of the ARP2/3-SCAR complex, showed a dramatic inhibition of root elongation in the light, which mirrored reduced growth of wild-type roots in the dark. SCAR1 degradation in dark-grown wild-type roots by constitutive photomorphogenic 1 (COP1) E3 ligase and 26S proteasome accompanied the loss of longitudinal F-actin and reduced root growth. Light perceived by the root photoreceptors, cryptochrome and phytochrome, suppressed COP1-mediated SCAR1 degradation. Taken together, our data provide a biochemical explanation for light-induced promotion of root elongation by the ARP2/3-SCAR complex. PMID:21972261

  4. Fine-root growth in a forested bog is seasonally dynamic, but shallowly distributed in nutrient-poor peat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iversen, Colleen M.; Childs, Joanne; Norby, Richard J.

    Fine roots contribute to ecosystem carbon, water, and nutrient fluxes through resource acquisition, respiration, exudation, and turnover, but are understudied in peatlands. Here, we aimed to determine how the amount and timing of fine-root growth in a forested, ombrotrophic bog varied across gradients of vegetation density, peat microtopography, and changes in environmental conditions across the growing season and throughout the peat profile. We quantified fine-root peak standing crop and growth using non-destructive minirhizotron technology over a two-year period, focusing on the dominant woody species in the bog: Picea mariana, Larix laricina, Rhododendron groenlandicum, and Chamaedaphne calyculata. The fine roots ofmore » trees and shrubs were concentrated in raised hummock microtopography, with more tree roots associated with greater tree densities and a unimodal peak in shrub roots at intermediate tree densities. Fine-root growth tended to be seasonally dynamic, but shallowly distributed, in a thin layer of nutrient-poor, aerobic peat above the growing season water table level. Finally, the dynamics and distribution of fine roots in this forested ombrotrophic bog varied across space and time in response to biological, edaphic, and climatic conditions, and we expect these relationships to be sensitive to projected environmental changes in northern peatlands.« less

  5. [Allelopathic effects of cultured Cucurbita moschata root exudates].

    PubMed

    Li, Min; Ma, Yongqin; Shui, Junfeng

    2005-04-01

    By using the techniques of tissue culture, bio-assay and laboratory analysis, this paper studied the effects of the allelopathic chemicals from pumpkin (Cucurbita moschata) roots on the seed germination and seedling growth of pumpkin, wheat (Triticum aestivum), and radish (Raphanus sativus). The pumpkin root was cultured on a sterile B5 media, and the concentrations of macro- and microelements, organic supplements and hormones in the media were adjusted by using an orthogonal design. After culturing, the culture media was filtered and used in a bioassay to test the autotoxicity and allelopathic effects. The results showed that the pumpkin had both autotoxic and allelopathic effects, and the media having been used to culture the pumpkin roots contained the chemicals that significantly inhibited the seedling growth of wheat and radish. The allelopathic effect decreased when the culture media was diluted. The production of allelochemicals seemed to be related to the growth rate of the pumpkin roots. When the root growth was rapid, the concentration of allelochemicals was high. The allelopathic effect was stronger on radish than on wheat. The optimum concentrations of macro- and microelements, vitamins and hormones for culturing pumpkin root were determined, and the effect of pumpkin root nutrition on the production of allelochemicals was tested. The results indicated that pumpkin root nutrition had a significant effect on the production of allelochemicals.

  6. Overexpression of OsEXPA8, a Root-Specific Gene, Improves Rice Growth and Root System Architecture by Facilitating Cell Extension

    PubMed Central

    Ma, Nana; Wang, Ying; Qiu, Shichun; Kang, Zhenhui; Che, Shugang; Wang, Guixue; Huang, Junli

    2013-01-01

    Expansins are unique plant cell wall proteins that are involved in cell wall modifications underlying many plant developmental processes. In this work, we investigated the possible biological role of the root-specific α-expansin gene OsEXPA8 in rice growth and development by generating transgenic plants. Overexpression of OsEXPA8 in rice plants yielded pleiotropic phenotypes of improved root system architecture (longer primary roots, more lateral roots and root hairs), increased plant height, enhanced leaf number and enlarged leaf size. Further study indicated that the average cell length in both leaf and root vascular bundles was enhanced, and the cell growth in suspension cultures was increased, which revealed the cellular basis for OsEXPA8-mediated rice plant growth acceleration. Expansins are thought to be a key factor required for cell enlargement and wall loosening. Atomic force microscopy (AFM) technology revealed that average wall stiffness values for 35S::OsEXPA8 transgenic suspension-cultured cells decreased over six-fold compared to wild-type counterparts during different growth phases. Moreover, a prominent change in the wall polymer composition of suspension cells was observed, and Fourier-transform infrared (FTIR) spectra revealed a relative increase in the ratios of the polysaccharide/lignin content in cell wall compositions of OsEXPA8 overexpressors. These results support a role for expansins in cell expansion and plant growth. PMID:24124527

  7. Growth of plant root cultures in liquid- and gas-dispersed reactor environments.

    PubMed

    McKelvey, S A; Gehrig, J A; Hollar, K A; Curtis, W R

    1993-01-01

    The growth of Agrobacterium transformed "hairy root" cultures of Hyoscyamus muticus was examined in various liquid- and gas-dispersed bioreactor configurations. Reactor runs were replicated to provide statistical comparisons of nutrient availability on culture performance. Accumulated tissue mass in submerged air-sparged reactors was 31% of gyratory shake-flask controls. Experiments demonstrate that poor performance of sparged reactors is not due to bubble shear damage, carbon dioxide stripping, settling, or flotation of roots. Impaired oxygen transfer due to channeling and stagnation of the liquid phase are the apparent causes of poor growth. Roots grown on a medium-perfused inclined plane grew at 48% of gyratory controls. This demonstrates the ability of cultures to partially compensate for poor liquid distribution through vascular transport of nutrients. A reactor configuration in which the medium is sprayed over the roots and permitted to drain down through the root tissue was able to provide growth rates which are statistically indistinguishable (95% T-test) from gyratory shake-flask controls. In this type of spray/trickle-bed configuration, it is shown that distribution of the roots becomes a key factor in controlling the rate of growth. Implications of these results regarding design and scale-up of bioreactors to produce fine chemicals from root cultures are discussed.

  8. Effect of microcystins on root growth, oxidative response, and exudation of rice (Oryza sativa).

    PubMed

    Cao, Qing; Rediske, Richard R; Yao, Lei; Xie, Liqiang

    2018-03-01

    A 30 days indoor hydroponic experiment was carried out to evaluate the effect of microcystins (MCs) on rice root morphology and exudation, as well as bioaccumulation of MCs in rice. MCs were bioaccumulated in rice with the greatest concentrations being observed in the leaves (113.68μgg -1 Fresh weight (FW)) when exposed to 500μgL -1 MCs. Root activity at 500μgL -1 decreased 37%, compared to the control. MCs also induced disruption of the antioxidant system and lipid peroxidation in rice roots. Root growth was significantly inhibited by MCs. Root weight, length; surface area and volume were significantly decreased, as well as crown root number and lateral root number. After 30 days exposure to MCs, an increase was found in tartaric acid and malic acid while the other organic acids were not affected. Glycine, tyrosine, and glutamate were the only amino acids stimulated at MCs concentrations of 500μgL -1 . Similarly, dissolved organic carbon (DOC) and carbohydrate at 50 and 500μgL -1 treatments were significantly increased. The increase of DOC and carbohydrate in root exudates was due to rice root membrane permeability changes induced by MCs. Overall, this study indicated that MCs significantly inhibited rice root growth and affected root exudation. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Tracheophytes Contain Conserved Orthologs of a Basic Helix-Loop-Helix Transcription Factor That Modulate ROOT HAIR SPECIFIC Genes[OPEN

    PubMed Central

    Cho, Hyun-Min

    2017-01-01

    ROOT HAIR SPECIFIC (RHS) genes, which contain the root hair-specific cis-element (RHE) in their regulatory regions, function in root hair morphogenesis. Here, we demonstrate that an Arabidopsis thaliana basic helix-loop-helix transcription factor, ROOT HAIR DEFECTVE SIX-LIKE4 (RSL4), directly binds to the RHE in vitro and in vivo, upregulates RHS genes, and stimulates root hair formation in Arabidopsis. Orthologs of RSL4 from a eudicot (poplar [Populus trichocarpa]), a monocot (rice [Oryza sativa]), and a lycophyte (Selaginella moellendorffii) each restored root hair growth in the Arabidopsis rsl4 mutant. In addition, the rice and S. moellendorffii RSL4 orthologs bound to the RHE in in vitro and in vivo assays. The RSL4 orthologous genes contain RHEs in their promoter regions, and RSL4 was able to bind to its own RHEs in vivo and amplify its own expression. This process likely provides a positive feedback loop for sustainable root hair growth. When RSL4 and its orthologs were expressed in cells in non-root-hair positions, they induced ectopic root hair growth, indicating that these genes are sufficient to specify root hair formation. Our results suggest that RSL4 mediates root hair formation by regulating RHS genes and that this mechanism is conserved throughout the tracheophyte (vascular plant) lineage. PMID:28087829

  10. Project Work on Plant Roots.

    ERIC Educational Resources Information Center

    Devonald, V. G.

    1986-01-01

    Methods of investigating plant root growth developed for research purposes can be adopted for student use. Investigations of the effect of water table level and of ethylene concentration are described, and techniques of measuring root growth are explained. (Author/ML)

  11. ABNORMAL INFLORESCENCE MERISTEM1 Functions in Salicylic Acid Biosynthesis to Maintain Proper Reactive Oxygen Species Levels for Root Meristem Activity in Rice.

    PubMed

    Xu, Lei; Zhao, Hongyu; Ruan, Wenyuan; Deng, Minjuan; Wang, Fang; Peng, Jinrong; Luo, Jie; Chen, Zhixiang; Yi, Keke

    2017-03-01

    Root meristem activity determines root growth and root architecture and consequently affects water and nutrient uptake in plants. However, our knowledge about the regulation of root meristem activity in crop plants is very limited. Here, we report the isolation and characterization of a short root mutant in rice ( Oryza sativa ) with reduced root meristem activity. This root growth defect is caused by a mutation in ABNORMAL INFLORESCENCE MERISTEM1 ( AIM1 ), which encodes a 3-hydroxyacyl-CoA dehydrogenase, an enzyme involved in β-oxidation. The reduced root meristem activity of aim1 results from reduced salicylic acid (SA) levels and can be rescued by SA application. Furthermore, reduced SA levels are associated with reduced levels of reactive oxygen species (ROS) in aim1 , likely due to increased expression of redox and ROS-scavenging-related genes, whose increased expression is (at least in part) caused by reduced expression of the SA-inducible transcriptional repressors WRKY62 and WRKY76. Like SA, ROS application substantially increased root length and root meristem activity in aim1 These results suggest that AIM1 is required for root growth in rice due to its critical role in SA biosynthesis: SA maintains root meristem activity through promoting ROS accumulation by inducing the activity of WRKY transcriptional repressors, which repress the expression of redox and ROS-scavenging genes. © 2017 American Society of Plant Biologists. All rights reserved.

  12. Root gravitropism: a complex response to a simple stimulus?

    NASA Technical Reports Server (NTRS)

    Rosen, E.; Chen, R.; Masson, P. H.

    1999-01-01

    Roots avoid depleting their immediate environment of essential nutrients by continuous growth. Root growth is directed by environmental cues, including gravity. Gravity sensing occurs mainly in the columella cells of the root cap. Upon reorientation within the gravity field, the root-cap amyloplasts sediment, generating a physiological signal that promotes the development of a curvature at the root elongation zones. Recent molecular genetic studies in Arabidopsis have allowed the identification of genes that play important roles in root gravitropism. Among them, the ARG1 gene encodes a DnaJ-like protein involved in gravity signal transduction, whereas the AUX1 and AGR1 genes encode proteins involved in polar auxin transport. These studies have important implications for understanding the intra- and inter-cellular signaling processes that underlie root gravitropism.

  13. Individual tree differences confound effects of growth regulators in rooting sugar maple softwood cuttings

    Treesearch

    John R. Donnelly

    1971-01-01

    Softwood stem cuttings from three mature sugar maple trees were treated with several types and concentrations of growth regulators. Lack of statistical significance was due to extreme variability in tree response: low levels of auxin stimulated rooting in two study trees, while auxins inhibited rooting in the other tree. It is postulated that variations in rooting...

  14. The Garlic Allelochemical Diallyl Disulfide Affects Tomato Root Growth by Influencing Cell Division, Phytohormone Balance and Expansin Gene Expression

    PubMed Central

    Cheng, Fang; Cheng, Zhihui; Meng, Huanwen; Tang, Xiangwei

    2016-01-01

    Diallyl disulfide (DADS) is a volatile organosulfur compound derived from garlic (Allium sativum L.), and it is known as an allelochemical responsible for the strong allelopathic potential of garlic. The anticancer properties of DADS have been studied in experimental animals and various types of cancer cells, but to date, little is known about its mode of action as an allelochemical at the cytological level. The current research presents further studies on the effects of DADS on tomato (Solanum lycopersicum L.) seed germination, root growth, mitotic index, and cell size in root meristem, as well as the phytohormone levels and expression profile of auxin biosynthesis genes (FZYs), auxin transport genes (SlPINs), and expansin genes (EXPs) in tomato root. The results showed a biphasic, dose-dependent effect on tomato seed germination and root growth under different DADS concentrations. Lower concentrations (0.01–0.62 mM) of DADS significantly promoted root growth, whereas higher levels (6.20–20.67 mM) showed inhibitory effects. Cytological observations showed that the cell length of root meristem was increased and that the mitotic activity of meristematic cells in seedling root tips was enhanced at lower concentrations of DADS. In contrast, DADS at higher concentrations inhibited root growth by affecting both the length and division activity of meristematic cells. However, the cell width of the root meristem was not affected. Additionally, DADS increased the IAA and ZR contents of seedling roots in a dose-dependent manner. The influence on IAA content may be mediated by the up-regulation of FZYs and PINs. Further investigation into the underlying mechanism revealed that the expression levels of tomato EXPs were significantly affected by DADS. The expression levels of EXPB2 and beta-expansin precursor were increased after 3 d, and those of EXP1, EXPB3 and EXLB1 were increased after 5 d of DADS treatment (0.41 mM). This result suggests that tomato root growth may be regulated by multiple expansin genes at different developmental stages. Therefore, we conclude that the effects of DADS on the root growth of tomato seedlings are likely caused by changes associated with cell division, phytohormones, and the expression levels of expansin genes. PMID:27555862

  15. Regulation of nitrogen uptake and assimilation: Effects of nitrogen source and root-zone and aerial environment on growth and productivity of soybean

    NASA Technical Reports Server (NTRS)

    Raper, C. David, Jr.

    1994-01-01

    The interdependence of root and shoot growth produces a functional equilibrium as described in quantitative terms by numerous authors. It was noted that bean seedlings grown in a constant environment tended to have a constant distribution pattern of dry matter between roots and leaves characteristic of the set of environmental conditions. Disturbing equilibrium resulted in a change in relative growth of roots and leaves until the original ratio was restored. To define a physiological basis for regulation of nitrogen uptake within the balance between root and shoot activities, the authors combined a partioning scheme and a utilization priority assumption in which: (1) all carbon enters the plant through photosynthesis in leaves and all nitrogen enters the plant through active uptake by roots, (2) nitrogen uptake by roots and secretion into the xylem for transport to the shoots are active processes, (3) availability of exogenous nitrogen determines concentration of soluble carbohydrates within the roots, (4) leaves are a source and a sink for carbohydrates, and (5) the requirement for nitrogen by leaf growth is proportionally greater during initiation and early expansion than during later expansion.

  16. Systemic control of cell division and endoreduplication by NAA and BAP by modulating CDKs in root tip cells of Allium cepa.

    PubMed

    Tank, Jigna G; Thaker, Vrinda S

    2014-01-01

    Molecular mechanism regulated by auxin and cytokinin during endoreduplication, cell division, and elongation process is studied by using Allium cepa roots as a model system. The activity of CDK genes modulated by auxin and cytokinin during cell division, elongation, and endoreduplication process is explained in this research work. To study the significance of auxin and cytokinin in the management of cell division and endoreduplication process in plant meristematic cells at molecular level endoreduplication was developed in root tips of Allium cepa by giving colchicine treatment. There were inhibition of vegetative growth, formation of c-tumor at root tip, and development of endoreduplicated cells after colchicine treatment. This c-tumor was further treated with NAA and BAP to reinitiate vegetative growth in roots. BAP gave positive response in reinitiation of vegetative growth of roots from center of c-tumor. However, NAA gave negative response in reinitiation of vegetative growth of roots from c-tumor. Further, CDKs gene expression analysis from normal, endoreduplicated, and phytohormone (NAA or BAP) treated root tip was done and remarkable changes in transcription level of CDK genes in normal, endoreduplicated, and phytohormones treated cells were observed.

  17. Organization of cortical microtubules in graviresponding maize roots

    NASA Technical Reports Server (NTRS)

    Blancaflor, E. B.; Hasenstein, K. H.

    1993-01-01

    Immunofluorescence labeling of cortical microtubules (MTs) was used to investigate the relationship between MT arrangement and changes in growth rate of the upper and lower sides of horizontally placed roots of maize (Zea mays L. cv. Merit). Cap cells and cells of the elongation zone of roots grown vertically in light or darkness showed MT arrangements that were transverse (perpendicular) to the growth direction. Microtubules of cells basal to the elongation zone typically showed oblique orientation. Two hours after horizontal reorientation, cap cells of gravicompetent, light-grown and curving roots contained MTs parallel to the gravity vector. The MT arrangement on the upper side of the elongation zone remained transverse but the MTs of the outer four to five layers of cortical cells along the lower side of the elongation zone showed reorientation parallel to the axis of the root. The MTs of the lower epidermis retained their transverse orientation. Dark-grown roots did not curve and did not show reorientation of MTs in cells of the root cap or elongation zone. The data indicate that MT depolymerization and reorientation is correlated with reduction in growth rate, and that MT reorientation is one of the steps of growth control of graviresponding roots.

  18. Systemic Control of Cell Division and Endoreduplication by NAA and BAP by Modulating CDKs in Root Tip Cells of Allium cepa

    PubMed Central

    Tank, Jigna G.; Thaker, Vrinda S.

    2014-01-01

    Molecular mechanism regulated by auxin and cytokinin during endoreduplication, cell division, and elongation process is studied by using Allium cepa roots as a model system. The activity of CDK genes modulated by auxin and cytokinin during cell division, elongation, and endoreduplication process is explained in this research work. To study the significance of auxin and cytokinin in the management of cell division and endoreduplication process in plant meristematic cells at molecular level endoreduplication was developed in root tips of Allium cepa by giving colchicine treatment. There were inhibition of vegetative growth, formation of c-tumor at root tip, and development of endoreduplicated cells after colchicine treatment. This c-tumor was further treated with NAA and BAP to reinitiate vegetative growth in roots. BAP gave positive response in reinitiation of vegetative growth of roots from center of c-tumor. However, NAA gave negative response in reinitiation of vegetative growth of roots from c-tumor. Further, CDKs gene expression analysis from normal, endoreduplicated, and phytohormone (NAA or BAP) treated root tip was done and remarkable changes in transcription level of CDK genes in normal, endoreduplicated, and phytohormones treated cells were observed. PMID:24955358

  19. Nutrient limitation in three lowland tropical forests in southern China receiving high nitrogen deposition: insights from fine root responses to nutrient additions.

    PubMed

    Zhu, Feifei; Yoh, Muneoki; Gilliam, Frank S; Lu, Xiankai; Mo, Jiangming

    2013-01-01

    Elevated nitrogen (N) deposition to tropical forests may accelerate ecosystem phosphorus (P) limitation. This study examined responses of fine root biomass, nutrient concentrations, and acid phosphatase activity (APA) of bulk soil to five years of N and P additions in one old-growth and two younger lowland tropical forests in southern China. The old-growth forest had higher N capital than the two younger forests from long-term N accumulation. From February 2007 to July 2012, four experimental treatments were established at the following levels: Control, N-addition (150 kg N ha(-1) yr(-1)), P-addition (150 kg P ha(-1) yr(-1)) and N+P-addition (150 kg N ha(-1) yr(-1) plus 150 kg P ha(-1) yr(-1)). We hypothesized that fine root growth in the N-rich old-growth forest would be limited by P availability, and in the two younger forests would primarily respond to N additions due to large plant N demand. Results showed that five years of N addition significantly decreased live fine root biomass only in the old-growth forest (by 31%), but significantly elevated dead fine root biomass in all the three forests (by 64% to 101%), causing decreased live fine root proportion in the old-growth and the pine forests. P addition significantly increased live fine root biomass in all three forests (by 20% to 76%). The combined N and P treatment significantly increased live fine root biomass in the two younger forests but not in the old-growth forest. These results suggest that fine root growth in all three study forests appeared to be P-limited. This was further confirmed by current status of fine root N:P ratios, APA in bulk soil, and their responses to N and P treatments. Moreover, N addition significantly increased APA only in the old-growth forest, consistent with the conclusion that the old-growth forest was more P-limited than the younger forests.

  20. Seasonality and partitioning of root allocation to rhizosphere soils in a midlatitude forest

    DOE PAGES

    Abramoff, Rose Z.; Finzi, Adrien C.

    2016-11-09

    Root growth, respiration, and exudation are important components of biogeochemical cycles, yet data on the timing and partitioning of C to these processes are rare. As a result, it is unclear how the seasonal timing, or phenology, of root C allocation is affected by the phenology of its component processes: growth of root tissue, respiration, mycorrhizal allocation, and exudation of labile C. The objective of this study was to estimate the phenology and partitioning of C belowground across the growing season in a midlatitude forest located in central Massachusetts. Fine and coarse root production, respiration, and exudation were summed tomore » estimate a monthly total belowground C flux (TBCF) in two hardwood stands dominated by Quercus rubra and Fraxinus americana, respectively, and one conifer stand dominated by Tsuga canadensis. We observed significant stand-level differences in belowground C flux and the partitioning of C to root growth, mycorrhizal fungi, exudation, and respiration. The deciduous hardwood stands allocated C belowground earlier in the season compared to the conifer-dominated stand. The deciduous stands also allocated a greater proportion of TBCF to root growth compared to the conifer-dominated hemlock (T. canadensis) stand. Of the three stands, red oak partitioned the greatest proportion of TBCF (~50%) to root growth, and hemlock the least. Low root growth rates in hemlock may be related to the arrival and spread of the invasive pest, hemlock wooly adelgid (Adelges tsugae), during the study period. Ongoing research in the eastern hemlock stand may yet determine how whole tree allocation and partitioning change as a result of this infestation.« less

  1. Seasonality and partitioning of root allocation to rhizosphere soils in a midlatitude forest

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abramoff, Rose Z.; Finzi, Adrien C.

    Root growth, respiration, and exudation are important components of biogeochemical cycles, yet data on the timing and partitioning of C to these processes are rare. As a result, it is unclear how the seasonal timing, or phenology, of root C allocation is affected by the phenology of its component processes: growth of root tissue, respiration, mycorrhizal allocation, and exudation of labile C. The objective of this study was to estimate the phenology and partitioning of C belowground across the growing season in a midlatitude forest located in central Massachusetts. Fine and coarse root production, respiration, and exudation were summed tomore » estimate a monthly total belowground C flux (TBCF) in two hardwood stands dominated by Quercus rubra and Fraxinus americana, respectively, and one conifer stand dominated by Tsuga canadensis. We observed significant stand-level differences in belowground C flux and the partitioning of C to root growth, mycorrhizal fungi, exudation, and respiration. The deciduous hardwood stands allocated C belowground earlier in the season compared to the conifer-dominated stand. The deciduous stands also allocated a greater proportion of TBCF to root growth compared to the conifer-dominated hemlock (T. canadensis) stand. Of the three stands, red oak partitioned the greatest proportion of TBCF (~50%) to root growth, and hemlock the least. Low root growth rates in hemlock may be related to the arrival and spread of the invasive pest, hemlock wooly adelgid (Adelges tsugae), during the study period. Ongoing research in the eastern hemlock stand may yet determine how whole tree allocation and partitioning change as a result of this infestation.« less

  2. Simulating root-induced rhizosphere deformation and its effect on water flow

    NASA Astrophysics Data System (ADS)

    Aravena, J. E.; Ruiz, S.; Mandava, A.; Regentova, E. E.; Ghezzehei, T.; Berli, M.; Tyler, S. W.

    2011-12-01

    Soil structure in the rhizosphere is influenced by root activities, such as mucilage production, microbial activity and root growth. Root growth alters soil structure by moving and deforming soil aggregates, affecting water and nutrient flow from the bulk soil to the root surface. In this study, we utilized synchrotron X-ray micro-tomography (XMT) and finite element analysis to quantify the effect of root-induced compaction on water flow through the rhizosphere to the root surface. In a first step, finite element meshes of structured soil around the root were created by processing rhizosphere XMT images. Then, soil deformation by root expansion was simulated using COMSOL Multiphysics° (Version 4.2) considering the soil an elasto-plastic porous material. Finally, fluid flow simulations were carried out on the deformed mesh to quantify the effect of root-induced compaction on water flow to the root surface. We found a 31% increase in water flow from the bulk soil to the root due to a 56% increase in root diameter. Simulations also show that the increase of root-soil contact area was the dominating factor with respect to the calculated increase in water flow. Increase of inter-aggregate contacts in size and number were observed within a couple of root diameters away from the root surface. But their influence on water flow was, in this case, rather limited compared to the immediate soil-root contact.

  3. Aggressiveness of Fusarium species and impact of root infection on growth and yield of soybeans.

    PubMed

    Arias, María M Díaz; Leandro, Leonor F; Munkvold, Gary P

    2013-08-01

    Fusarium spp. are commonly isolated from soybean roots but the pathogenic activity of most species is poorly documented. Aggressiveness and yield impact of nine species of Fusarium were determined on soybean in greenhouse (50 isolates) and field microplot (19 isolates) experiments. Root rot severity and shoot and root dry weights were compared at growth stages V3 or R1. Root systems were scanned and digital image analysis was conducted; yield was measured in microplots. Disease severity and root morphology impacts varied among and within species. Fusarium graminearum was highly aggressive (root rot severity >90%), followed by F. proliferatum and F. virguliforme. Significant variation in damping-off (20 to 75%) and root rot severity (<20 to >60%) was observed among F. oxysporum isolates. In artificially-infested microplots, root rot severity was low (<25%) and mean yield was not significantly reduced. However, there were significant linear relationships between yield and root symptoms for some isolates. Root morphological characteristics were more consistent indicators of yield loss than root rot severity. This study provides the first characterization of aggressiveness and yield impact of Fusarium root rot species on soybean at different plant stages and introduces root image analysis to assess the impact of root pathogens on soybean.

  4. Growth and development of the root apical meristem.

    PubMed

    Perilli, Serena; Di Mambro, Riccardo; Sabatini, Sabrina

    2012-02-01

    A key question in plant developmental biology is how cell division and cell differentiation are balanced to modulate organ growth and shape organ size. In recent years, several advances have been made in understanding how this balance is achieved during root development. In the Arabidopsis root meristem, stem cells in the apical region of the meristem self-renew and produce daughter cells that differentiate in the distal meristem transition zone. Several factors have been implicated in controlling the different functional zones of the root meristem to modulate root growth; among these, plant hormones have been shown to play a main role. In this review, we summarize recent findings regarding the role of hormone signaling and transcriptional networks in regulating root development. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. YUCCA9-Mediated Auxin Biosynthesis and Polar Auxin Transport Synergistically Regulate Regeneration of Root Systems Following Root Cutting

    PubMed Central

    Xu, Dongyang; Miao, Jiahang; Yumoto, Emi; Yokota, Takao; Asahina, Masashi; Watahiki, Masaaki

    2017-01-01

    Abstract Recovery of the root system following physical damage is an essential issue for plant survival. An injured root system is able to regenerate by increases in lateral root (LR) number and acceleration of root growth. The horticultural technique of root pruning (root cutting) is an application of this response and is a common garden technique for controlling plant growth. Although root pruning is widely used, the molecular mechanisms underlying the subsequent changes in the root system are poorly understood. In this study, root pruning was employed as a model system to study the molecular mechanisms of root system regeneration. Notably, LR defects in wild-type plants treated with inhibitors of polar auxin transport (PAT) or in the auxin signaling mutant auxin/indole-3-acetic acid19/massugu2 were recovered by root pruning. Induction of IAA19 following root pruning indicates an enhancement of auxin signaling by root pruning. Endogenous levels of IAA increased after root pruning, and YUCCA9 was identified as the primary gene responsible. PAT-related genes were induced after root pruning, and the YUCCA inhibitor yucasin suppressed root regeneration in PAT-related mutants. Therefore, we demonstrate the crucial role of YUCCA9, along with other redundant YUCCA family genes, in the enhancement of auxin biosynthesis following root pruning. This further enhances auxin transport and activates downstream auxin signaling genes, and thus increases LR number. PMID:29016906

  6. Changes in fine-root production, phenology and spatial distribution in response to N application in irrigated sweet cherry trees.

    PubMed

    Artacho, Pamela; Bonomelli, Claudia

    2016-05-01

    Factors regulating fine-root growth are poorly understood, particularly in fruit tree species. In this context, the effects of N addition on the temporal and spatial distribution of fine-root growth and on the fine-root turnover were assessed in irrigated sweet cherry trees. The influence of other exogenous and endogenous factors was also examined. The rhizotron technique was used to measure the length-based fine-root growth in trees fertilized at two N rates (0 and 60 kg ha(-1)), and the above-ground growth, leaf net assimilation, and air and soil variables were simultaneously monitored. N fertilization exerted a basal effect throughout the season, changing the magnitude, temporal patterns and spatial distribution of fine-root production and mortality. Specifically, N addition enhanced the total fine-root production by increasing rates and extending the production period. On average, N-fertilized trees had a length-based production that was 110-180% higher than in control trees, depending on growing season. Mortality was proportional to production, but turnover rates were inconsistently affected. Root production and mortality was homogeneously distributed in the soil profile of N-fertilized trees while control trees had 70-80% of the total fine-root production and mortality concentrated below 50 cm depth. Root mortality rates were associated with soil temperature and water content. In contrast, root production rates were primarily under endogenous control, specifically through source-sink relationships, which in turn were affected by N supply through changes in leaf photosynthetic level. Therefore, exogenous and endogenous factors interacted to control the fine-root dynamics of irrigated sweet cherry trees. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Changes in fine-root production, phenology and spatial distribution in response to N application in irrigated sweet cherry trees

    PubMed Central

    Artacho, Pamela; Bonomelli, Claudia

    2016-01-01

    Factors regulating fine-root growth are poorly understood, particularly in fruit tree species. In this context, the effects of N addition on the temporal and spatial distribution of fine-root growth and on the fine-root turnover were assessed in irrigated sweet cherry trees. The influence of other exogenous and endogenous factors was also examined. The rhizotron technique was used to measure the length-based fine-root growth in trees fertilized at two N rates (0 and 60 kg ha−1), and the above-ground growth, leaf net assimilation, and air and soil variables were simultaneously monitored. N fertilization exerted a basal effect throughout the season, changing the magnitude, temporal patterns and spatial distribution of fine-root production and mortality. Specifically, N addition enhanced the total fine-root production by increasing rates and extending the production period. On average, N-fertilized trees had a length-based production that was 110–180% higher than in control trees, depending on growing season. Mortality was proportional to production, but turnover rates were inconsistently affected. Root production and mortality was homogeneously distributed in the soil profile of N-fertilized trees while control trees had 70–80% of the total fine-root production and mortality concentrated below 50 cm depth. Root mortality rates were associated with soil temperature and water content. In contrast, root production rates were primarily under endogenous control, specifically through source–sink relationships, which in turn were affected by N supply through changes in leaf photosynthetic level. Therefore, exogenous and endogenous factors interacted to control the fine-root dynamics of irrigated sweet cherry trees. PMID:26888890

  8. The interaction between glucose and cytokinin signaling in controlling Arabidopsis thaliana seedling root growth and development

    PubMed Central

    Kushwah, Sunita

    2017-01-01

    ABSTRACT Cytokinin (CK) and glucose (GLC) control several common responses in plants. There is an extensive overlap between CK and GLC signal transduction pathways in Arabidopsis. Physiologically, both GLC and CK could regulate root length in light. CK interacts with GLC via HXK1 dependent pathway for root length control. Wild-type (WT) roots cannot elongate in the GLC free medium while CK-receptor mutant ARABIDOPSIS HISTIDINE KINASE4 (ahk4) and type B ARR triple mutant ARABIDOPSIS RESPONSE REGULATOR1, 10,11 (arr1, 10,11) roots could elongate even in the absence of GLC as compared with the WT. The root hair initiation was also found defective in CK signaling mutants ahk4, arr1,10,11 and arr3,4,5,6,8,9 on increasing GLC concentration (up to 3%); and lesser number of root hairs were visible even at 5% GLC as compared with the WT. Out of 941 BAP regulated genes, 103 (11%) genes were involved in root growth and development. Out of these 103 genes, 60 (58%) genes were also regulated by GLC. GLC could regulate 5736 genes, which include 327 (6%) genes involved in root growth and development. Out of these 327 genes, 60 (18%) genes were also regulated by BAP. Both GLC and CK signaling cannot alter root length in light in auxin signaling mutant AUXIN RESPONSE3/INDOLE-3-ACETIC ACID17 (axr3/iaa17) suggesting that they may involve auxin signaling component as a nodal point. Therefore CK- and GLC- signaling are involved in controlling different aspects of root growth and development such as root length, with auxin signaling components working as downstream target. PMID:28467152

  9. The interaction between glucose and cytokinin signaling in controlling Arabidopsis thaliana seedling root growth and development.

    PubMed

    Kushwah, Sunita; Laxmi, Ashverya

    2017-05-04

    Cytokinin (CK) and glucose (GLC) control several common responses in plants. There is an extensive overlap between CK and GLC signal transduction pathways in Arabidopsis. Physiologically, both GLC and CK could regulate root length in light. CK interacts with GLC via HXK1 dependent pathway for root length control. Wild-type (WT) roots cannot elongate in the GLC free medium while CK-receptor mutant ARABIDOPSIS HISTIDINE KINASE4 (ahk4) and type B ARR triple mutant ARABIDOPSIS RESPONSE REGULATOR1, 10,11 (arr1, 10,11) roots could elongate even in the absence of GLC as compared with the WT. The root hair initiation was also found defective in CK signaling mutants ahk4, arr1,10,11 and arr3,4,5,6,8,9 on increasing GLC concentration (up to 3%); and lesser number of root hairs were visible even at 5% GLC as compared with the WT. Out of 941 BAP regulated genes, 103 (11%) genes were involved in root growth and development. Out of these 103 genes, 60 (58%) genes were also regulated by GLC. GLC could regulate 5736 genes, which include 327 (6%) genes involved in root growth and development. Out of these 327 genes, 60 (18%) genes were also regulated by BAP. Both GLC and CK signaling cannot alter root length in light in auxin signaling mutant AUXIN RESPONSE3/INDOLE-3-ACETIC ACID17 (axr3/iaa17) suggesting that they may involve auxin signaling component as a nodal point. Therefore CK- and GLC- signaling are involved in controlling different aspects of root growth and development such as root length, with auxin signaling components working as downstream target.

  10. Inhibition of phospholipase C disrupts cytoskeletal organization and gravitropic growth in Arabidopsis roots.

    PubMed

    Andreeva, Zornitza; Barton, Deborah; Armour, William J; Li, Min Y; Liao, Li-Fen; McKellar, Heather L; Pethybridge, Kylie A; Marc, Jan

    2010-10-01

    The phospholipase protein superfamily plays an important role in hormonal signalling and cellular responses to environmental stimuli. There is also growing evidence for interactions between phospholipases and the cytoskeleton. In this report we used a pharmacological approach to investigate whether inhibiting a member of the phospholipase superfamily, phospholipase C (PLC), affects microtubules and actin microfilaments as well as root growth and morphology of Arabidopsis thaliana seedlings. Inhibiting PLC activity using the aminosteroid U73122 significantly inhibited root elongation and disrupted root morphology in a concentration-dependent manner, with the response being saturated at 5 μM, whereas the inactive analogue U73343 was ineffective. The primary root appeared to lose growth directionality accompanied by root waving and formation of curls. Immunolabelling of roots exposed to increasingly higher U73122 concentrations revealed that the normal transverse arrays of cortical microtubules in the elongation zone became progressively more disorganized or depolymerized, with the disorganization appearing within 1 h of incubation. Likewise, actin microfilament arrays also were disrupted. Inhibiting PLC using an alternative inhibitor, neomycin, caused similar disruptions to both cytoskeletal organization and root morphology. In seedlings gravistimulated by rotating the culture plates by 90°, both U73122 and neomycin disrupted the normal gravitropic growth of roots and etiolated hypocotyls. The effects of PLC inhibitors are therefore consistent with the notion that, as with phospholipases A and D, PLC likewise interacts with the cytoskeleton, alters growth morphology, and is involved in gravitropism.

  11. The effect of limited availability of N or water on C allocation to fine roots and annual fine root turnover in Alnus incana and Salix viminalis.

    PubMed

    Rytter, Rose-Marie

    2013-09-01

    The effect of limited nitrogen (N) or water availability on fine root growth and turnover was examined in two deciduous species, Alnus incana L. and Salix viminalis L., grown under three different regimes: (i) supply of N and water in amounts which would not hamper growth, (ii) limited N supply and (iii) limited water supply. Plants were grown outdoors during three seasons in covered and buried lysimeters placed in a stand structure and filled with quartz sand. Computer-controlled irrigation and fertilization were supplied through drip tubes. Production and turnover of fine roots were estimated by combining minirhizotron observations and core sampling, or by sequential core sampling. Annual turnover rates of fine roots <1 mm (5-6 year(-1)) and 1-2 mm (0.9-2.8 year(-1)) were not affected by changes in N or water availability. Fine root production (<1 mm) differed between Alnus and Salix, and between treatments in Salix; i.e., absolute length and biomass production increased in the order: water limited < unlimited < N limited. Few treatment effects were detected for fine roots 1-2 mm. Proportionally more C was allocated to fine roots (≤2 mm) in N or water-limited Salix; 2.7 and 2.3 times the allocation to fine roots in the unlimited regime, respectively. Estimated input to soil organic carbon increased by ca. 20% at N limitation in Salix. However, future studies on fine root decomposition under various environmental conditions are required. Fine root growth responses to N or water limitation were less pronounced in Alnus, thus indicating species differences caused by N-fixing capacity and slower initial growth in Alnus, or higher fine root plasticity in Salix. A similar seasonal growth pattern across species and treatments suggested the influence of outer stimuli, such as temperature and light.

  12. Allometry of root branching and its relationship to root morphological and functional traits in three range grasses.

    PubMed

    Arredondo, J Tulio; Johnson, Douglas A

    2011-11-01

    The study of proportional relationships between size, shape, and function of part of or the whole organism is traditionally known as allometry. Examination of correlative changes in the size of interbranch distances (IBDs) at different root orders may help to identify root branching rules. Root morphological and functional characteristics in three range grasses {bluebunch wheatgrass [Pseudoroegneria spicata (Pursh) Löve], crested wheatgrass [Agropyron desertorum (Fisch. ex Link) Schult.×A. cristatum (L.) Gaert.], and cheatgrass (Bromus tectorum L.)} were examined in response to a soil nutrient gradient. Interbranch distances along the main root axis and the first-order laterals as well as other morphological and allocation root traits were determined. A model of nutrient diffusivity parameterized with root length and root diameter for the three grasses was used to estimate root functional properties (exploitation efficiency and exploitation potential). The results showed a significant negative allometric relationship between the main root axis and first-order lateral IBD (P ≤ 0.05), but only for bluebunch wheatgrass. The main root axis IBD was positively related to the number and length of roots, estimated exploitation efficiency of second-order roots, and specific root length, and was negatively related to estimated exploitation potential of first-order roots. Conversely, crested wheatgrass and cheatgrass, which rely mainly on root proliferation responses, exhibited fewer allometric relationships. Thus, the results suggested that species such as bluebunch wheatgrass, which display slow root growth and architectural root plasticity rather than opportunistic root proliferation and rapid growth, exhibit correlative allometry between the main axis IBD and morphological, allocation, and functional traits of roots.

  13. Interference of allelopathic rice with paddy weeds at the root level.

    PubMed

    Yang, X-F; Kong, C-H

    2017-07-01

    Despite increasing knowledge of the involvement of allelopathy in negative interactions among plants, relatively little is known about its action at the root level. This study aims to enhance understanding of interactions of roots between a crop and associated weeds via allelopathy. Based on a series of experiments with window rhizoboxes and root segregation methods, we examined root placement patterns and root interactions between allelopathic rice and major paddy weeds Cyperus difformis, Echinochloa crus-galli, Eclipta prostrata, Leptochloa chinensis and Oryza sativa (weedy rice). Allelopathic rice inhibited growth of paddy weed roots more than shoots regardless of species. Furthermore, allelopathic rice significantly reduced total root length, total root area, maximum root width and maximum root depth of paddy weeds, while the weeds adjusted horizontal and vertical placement of their roots in response to the presence of allelopathic rice. With the exception of O. sativa (weedy rice), root growth of weeds avoided expanding towards allelopathic rice. Compared with root contact, root segregation significantly increased inhibition of E. crus-galli, E. prostrata and L. chinensis through an increase in rice allelochemicals. In particular, their root exudates induced production of rice allelochemicals. However, similar results were not observed in C. difformis and O. sativa (weedy rice) with either root segregation or root exudate application. The results demonstrate that allelopathic rice interferes with paddy weeds by altering root placement patterns and root interactions. This is the first case of a root behavioural strategy in crop-weed allelopathic interaction. © 2017 German Botanical Society and The Royal Botanical Society of the Netherlands.

  14. Physiological minimum temperatures for root growth in seven common European broad-leaved tree species.

    PubMed

    Schenker, Gabriela; Lenz, Armando; Körner, Christian; Hoch, Günter

    2014-03-01

    Temperature is the most important factor driving the cold edge distribution limit of temperate trees. Here, we identified the minimum temperatures for root growth in seven broad-leaved tree species, compared them with the species' natural elevational limits and identified morphological changes in roots produced near their physiological cold limit. Seedlings were exposed to a vertical soil-temperature gradient from 20 to 2 °C along the rooting zone for 18 weeks. In all species, the bulk of roots was produced at temperatures above 5 °C. However, the absolute minimum temperatures for root growth differed among species between 2.3 and 4.2 °C, with those species that reach their natural distribution limits at higher elevations also tending to have lower thermal limits for root tissue formation. In all investigated species, the roots produced at temperatures close to the thermal limit were pale, thick, unbranched and of reduced mechanical strength. Across species, the specific root length (m g(-1) root) was reduced by, on average, 60% at temperatures below 7 °C. A significant correlation of minimum temperatures for root growth with the natural high elevation limits of the investigated species indicates species-specific thermal requirements for basic physiological processes. Although these limits are not necessarily directly causative for the upper distribution limit of a species, they seem to belong to a syndrome of adaptive processes for life at low temperatures. The anatomical changes at the cold limit likely hint at the mechanisms impeding meristematic activity at low temperatures.

  15. Ethylene Mediates Alkaline-Induced Rice Growth Inhibition by Negatively Regulating Plasma Membrane H+-ATPase Activity in Roots

    PubMed Central

    Chen, Haifei; Zhang, Quan; Cai, Hongmei; Xu, Fangsen

    2017-01-01

    pH is an important factor regulating plant growth. Here, we found that rice was better adapted to low pH than alkaline conditions, as its growth was severely inhibited at high pH, with shorter root length and an extreme biomass reduction. Under alkaline stress, the expression of genes for ethylene biosynthesis enzymes in rice roots was strongly induced by high pH and exogenous ethylene precursor ACC and ethylene overproduction in etol1-1 mutant aggravated the alkaline stress-mediated inhibition of rice growth, especially for the root elongation with decreased cell length in root apical regions. Conversely, the ethylene perception antagonist silver (Ag+) and ein2-1 mutants could partly alleviate the alkaline-induced root elongation inhibition. The H+-ATPase activity was extremely inhibited by alkaline stress and exogenous ACC. However, the H+-ATPase-mediated rhizosphere acidification was enhanced by exogenous Ag+, while H+ efflux on the root surface was extremely inhibited by exogenous ACC, suggesting that ethylene negatively regulated H+-ATPase activity under high-pH stress. Our results demonstrate that H+-ATPase is involved in ethylene-mediated inhibition of rice growth under alkaline stress. PMID:29114258

  16. Loss of Gravitropism in Farnesene-Treated Arabidopsis Is Due to Microtubule Malformations Related to Hormonal and ROS Unbalance

    PubMed Central

    Araniti, Fabrizio; Graña, Elisa; Krasuska, Urszula; Bogatek, Renata; Reigosa, Manuel J.; Abenavoli, Maria Rosa; Sánchez-Moreiras, Adela M.

    2016-01-01

    Mode of action of farnesene, a volatile sesquiterpene commonly found in the essential oils of several plants, was deeply studied on the model species Arabidopsis thaliana. The effects of farnesene on the Arabidopsis root morphology were evaluated by different microscopic techniques. As well, microtubules immunolabeling, phytohormone measurements and ROS staining helped us to elucidate the single or multi-modes of action of this sesquiterpene on plant metabolism. Farnesene-treated roots showed a strong growth inhibition and marked modifications on morphology, important tissue alterations, cellular damages and anisotropic growth. Left-handed growth of farnesene-treated roots, reverted by taxol (a known microtubule stabilizer), was related to microtubule condensation and disorganization. As well, the inhibition of primary root growth, lateral root number, lateral root length, and both root hairs length and density could be explained by the strong increment in ethylene production and auxin content detected in farnesene-treated seedlings. Microtubule alteration and hormonal unbalance appear as important components in the mode of action of farnesene and confirm the strong phytotoxic potential of this sesquiterpene. PMID:27490179

  17. The effect of Piriformospora indica on the root development of maize (Zea mays L.) and remediation of petroleum contaminated soil.

    PubMed

    Zamani, Javad; Hajabbasi, Mohammad Ali; Alaie, Ebrahim; Sepehri, Mozhgan; Leuchtmann, Adrian; Schulin, Rainer

    2016-01-01

    As the depth of soil petroleum contamination can vary substantially under field conditions, a rhizotron experiment was performed to investigate the influence of endophyte, P. indica, on maize growth and degradation of petroleum components in a shallow and a deep-reaching subsurface layer of a soil. For control, a treatment without soil contamination was also included. The degree in contamination and the depth to which it extended had a strong effect on the growth of the plant roots. Contaminated soil layers severely inhibited root growth thus many roots preferred to bypass the shallow contaminated layer and grow in the uncontaminated soil. While the length and branching pattern of these roots were similar to those of uncontaminated treatment. Inoculation of maize with P. indica could improve root distribution and root and shoot growth in all three contamination treatments. This inoculation also enhanced petroleum degradation in soil, especially in the treatment with deep-reaching contamination, consequently the accumulation of petroleum hydrocarbons (PAHs) in the plant tissues were increased.

  18. Loss of Gravitropism in Farnesene-Treated Arabidopsis Is Due to Microtubule Malformations Related to Hormonal and ROS Unbalance.

    PubMed

    Araniti, Fabrizio; Graña, Elisa; Krasuska, Urszula; Bogatek, Renata; Reigosa, Manuel J; Abenavoli, Maria Rosa; Sánchez-Moreiras, Adela M

    2016-01-01

    Mode of action of farnesene, a volatile sesquiterpene commonly found in the essential oils of several plants, was deeply studied on the model species Arabidopsis thaliana. The effects of farnesene on the Arabidopsis root morphology were evaluated by different microscopic techniques. As well, microtubules immunolabeling, phytohormone measurements and ROS staining helped us to elucidate the single or multi-modes of action of this sesquiterpene on plant metabolism. Farnesene-treated roots showed a strong growth inhibition and marked modifications on morphology, important tissue alterations, cellular damages and anisotropic growth. Left-handed growth of farnesene-treated roots, reverted by taxol (a known microtubule stabilizer), was related to microtubule condensation and disorganization. As well, the inhibition of primary root growth, lateral root number, lateral root length, and both root hairs length and density could be explained by the strong increment in ethylene production and auxin content detected in farnesene-treated seedlings. Microtubule alteration and hormonal unbalance appear as important components in the mode of action of farnesene and confirm the strong phytotoxic potential of this sesquiterpene.

  19. Depth and Diameter of the Parent Roots of Aspen Root Suckers

    Treesearch

    Robert E. Farmer

    1962-01-01

    Studies of the Populus tremuloides root system by Day (1944), Sandberg (1951) and Barnes (1959) have all shown lateral roots extending as much as 30 feet from tree base. These roots may branch extensively and sometimes exhibit an "undulating" growth habit. According to the above authors, suckers occur on the segments of these lateral roots...

  20. Aspen Sucker Production and Growth from Outplanted Root Cuttings

    Treesearch

    Donald A. Perala

    1978-01-01

    Aspen suckers from 1-m-long root cuttings survived and grew better than those from 12.5-cm-long cuttings. Sucker survival and growth were also inversely related to parent root diameter. Discusses the practical implications for aspen management.

  1. Fine Root Growth Phenology, Production, and Turnover in a Northern Hardwood Forest Ecosystem

    Treesearch

    Dudley J. Raynal

    1994-01-01

    A large part of the nutrient flux in deciduous forests is through fine root turnover, yet this process is seldom measured. As part of a nutrient cycling study, fine root dynamics were studied for two years at Huntington Forest in the Adirondack Mountain region of New York, USA. Root growth phenology was characterized using field rhizotrons, three methods were used to...

  2. Growth, gas exchange, and root respiration of Quercus rubra seedlings exposed to low root zone temperatures in solution culture

    Treesearch

    Kent G. Apostol; Douglass F. Jacobs; Barrett C. Wilson; K. Francis Salifu; R. Kasten Dumroese

    2007-01-01

    Spring planting is standard operational practice in the Central Hardwood Region, though little is known about potential impacts of low root temperature (RT) common during spring on establishment success of temperate deciduous forest tree species. The effects of low RTon growth, gas exchange, and root respiration following winter dormancy were studied in 1-year-old...

  3. Influence of rhizobacterial volatiles on the root system architecture and the production and allocation of biomass in the model grass Brachypodium distachyon (L.) P. Beauv.

    PubMed

    Delaplace, Pierre; Delory, Benjamin M; Baudson, Caroline; Mendaluk-Saunier de Cazenave, Magdalena; Spaepen, Stijn; Varin, Sébastien; Brostaux, Yves; du Jardin, Patrick

    2015-08-12

    Plant growth-promoting rhizobacteria are increasingly being seen as a way of complementing conventional inputs in agricultural systems. The effects on their host plants are diverse and include volatile-mediated growth enhancement. This study sought to assess the effects of bacterial volatiles on the biomass production and root system architecture of the model grass Brachypodium distachyon (L.) Beauv. An in vitro experiment allowing plant-bacteria interaction throughout the gaseous phase without any physical contact was used to screen 19 bacterial strains for their growth-promotion ability over a 10-day co-cultivation period. Five groups of bacteria were defined and characterised based on their combined influence on biomass production and root system architecture. The observed effects ranged from unchanged to greatly increased biomass production coupled with increased root length and branching. Primary root length was increased only by the volatile compounds emitted by Enterobacter cloacae JM22 and Bacillus pumilus T4. Overall, the most significant results were obtained with Bacillus subtilis GB03, which induced an 81 % increase in total biomass, as well as enhancing total root length, total secondary root length and total adventitious root length by 88.5, 201.5 and 474.5 %, respectively. This study is the first report on bacterial volatile-mediated growth promotion of a grass plant. Contrasting modulations of biomass production coupled with changes in root system architecture were observed. Most of the strains that increased total plant biomass also modulated adventitious root growth. Under our screening conditions, total biomass production was strongly correlated with the length and branching of the root system components, except for primary root length. An analysis of the emission kinetics of the bacterial volatile compounds is being undertaken and should lead to the identification of the compounds responsible for the observed growth-promotion effects. Within the context of the inherent characteristics of our in vitro system, this paper identifies the next critical experimental steps and discusses them from both a fundamental and an applied perspective.

  4. Root-soil air gap and resistance to water flow at the soil-root interface of Robinia pseudoacacia.

    PubMed

    Liu, X P; Zhang, W J; Wang, X Y; Cai, Y J; Chang, J G

    2015-12-01

    During periods of water deficit, growing roots may shrink, retaining only partial contact with the soil. In this study, known mathematical models were used to calculate the root-soil air gap and water flow resistance at the soil-root interface, respectively, of Robinia pseudoacacia L. under different water conditions. Using a digital camera, the root-soil air gap of R. pseudoacacia was investigated in a root growth chamber; this root-soil air gap and the model-inferred water flow resistance at the soil-root interface were compared with predictions based on a separate outdoor experiment. The results indicated progressively greater root shrinkage and loss of root-soil contact with decreasing soil water potential. The average widths of the root-soil air gap for R. pseudoacacia in open fields and in the root growth chamber were 0.24 and 0.39 mm, respectively. The resistance to water flow at the soil-root interface in both environments increased with decreasing soil water potential. Stepwise regression analysis demonstrated that soil water potential and soil temperature were the best predictors of variation in the root-soil air gap. A combination of soil water potential, soil temperature, root-air water potential difference and soil-root water potential difference best predicted the resistance to water flow at the soil-root interface. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Salt stress signals shape the plant root.

    PubMed

    Galvan-Ampudia, Carlos S; Testerink, Christa

    2011-06-01

    Plants use different strategies to deal with high soil salinity. One strategy is activation of pathways that allow the plant to export or compartmentalise salt. Relying on their phenotypic plasticity, plants can also adjust their root system architecture (RSA) and the direction of root growth to avoid locally high salt concentrations. Here, we highlight RSA responses to salt and osmotic stress and the underlying mechanisms. A model is presented that describes how salinity affects auxin distribution in the root. Possible intracellular signalling pathways linking salinity to root development and direction of root growth are discussed. These involve perception of high cytosolic Na+ concentrations in the root, activation of lipid signalling and protein kinase activity and modulation of endocytic pathways. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Growth and graviresponsiveness of primary roots of Zea mays seedlings deficient in abscisic acid and gibberellic acid

    NASA Technical Reports Server (NTRS)

    Moore, R.; Dickey, K.

    1985-01-01

    The objective of this research was to determine if gibberellic acid (GA) and/or abscisic acid (ABA) are necessary for graviresponsiveness by primary roots of Zea mays. To accomplish this objective we measured the growth and graviresponsiveness of primary roots of seedlings in which the synthesis of ABA and GA was inhibited collectively and individually by genetic and chemical means. Roots of seedlings treated with Fluridone (an inhibitor of ABA biosynthesis) and Ancymidol (an inhibitor of GA biosynthesis) were characterized by slower growth rates but not significantly different gravicultures as compared to untreated controls. Gravicurvatures of primary roots of d-5 mutants (having undetectable levels of GA) and vp-9 mutants (having undectable levels of ABA) were not significantly different from those of wild-type seedlings. Roots of seedlings in which the biosynthesis of ABA and GA was collectively inhibited were characterized by gravicurvatures not significantly different for those of controls. These results (1) indicate that drastic reductions in the amount of ABA and GA in Z. mays seedlings do not significantly alter root graviresponsiveness, (2) suggest that neither ABA nor GA is necessary for root gravicurvature, and (3) indicate that root gravicurvature is not necessarily proportional to root elongation.

  7. Effects of phosphorus supply on growth, phosphate concentration and cluster-root formation in three Lupinus species

    PubMed Central

    Abdolzadeh, Ahmad; Wang, Xing; Veneklaas, Erik J.; Lambers, Hans

    2010-01-01

    Background and Aims In some lupin species, phosphate deficiency induces cluster-root formation, which enhances P uptake by increasing root surface area and, more importantly, the release of root exudates which enhances P availability. Methods Three species of Lupinus, L. albus, L. atlanticus and L. micranthus, with inherently different relative growth rates were cultivated under hydroponics in a greenhouse at four phosphate concentrations (1, 10, 50 and 150 µm) to compare the role of internal P in regulating cluster-root formation. Key Results The highest growth rate was observed in L. atlanticus, followed by L. albus and L. micranthus. At 1 µm P, cluster-root formation was markedly induced in all three species. The highest P uptake and accumulation was observed in L. micranthus, followed by L. atlanticus and then L. albus. Inhibition of cluster-root formation was severe at 10 µm P in L. atlanticus, but occurred stepwise with increasing P concentration in the root medium in L. albus. Conclusions In L. atlanticus and L. albus cluster-root formation was suppressed by P treatments above 10 µm, indicating a P-inducible regulating system for cluster-root formation, as expected. By contrast, production of cluster roots in L. micranthus, in spite of a high internal P concentration, indicated a lower sensitivity to P status, which allowed P-toxicity symptoms to develop. PMID:20037142

  8. Contributions of roots and rootstocks to sustainable, intensified crop production.

    PubMed

    Gregory, Peter J; Atkinson, Christopher J; Bengough, A Glyn; Else, Mark A; Fernández-Fernández, Felicidad; Harrison, Richard J; Schmidt, Sonja

    2013-03-01

    Sustainable intensification is seen as the main route for meeting the world's increasing demands for food and fibre. As demands mount for greater efficiency in the use of resources to achieve this goal, so the focus on roots and rootstocks and their role in acquiring water and nutrients, and overcoming pests and pathogens, is increasing. The purpose of this review is to explore some of the ways in which understanding root systems and their interactions with soils could contribute to the development of more sustainable systems of intensive production. Physical interactions with soil particles limit root growth if soils are dense, but root-soil contact is essential for optimal growth and uptake of water and nutrients. X-ray microtomography demonstrated that maize roots elongated more rapidly with increasing root-soil contact, as long as mechanical impedance was not limiting root elongation, while lupin was less sensitive to changes in root-soil contact. In addition to selecting for root architecture and rhizosphere properties, the growth of many plants in cultivated systems is profoundly affected by selection of an appropriate rootstock. Several mechanisms for scion control by rootstocks have been suggested, but the causal signals are still uncertain and may differ between crop species. Linkage map locations for quantitative trait loci for disease resistance and other traits of interest in rootstock breeding are becoming available. Designing root systems and rootstocks for specific environments is becoming a feasible target.

  9. Root Morphology Was Improved in a Late-Stage Vigor Super Rice Cultivar.

    PubMed

    Huang, Min; Chen, Jiana; Cao, Fangbo; Jiang, Ligeng; Zou, Yingbin

    2015-01-01

    This study aimed to test the hypothesis that root morphology might be improved and consequently contributing to superior post-heading shoot growth and grain yield in late-stage vigor super rice. A pot experiment was carried out to compare yield attributes, shoot growth and physiological properties and root morphological traits between a late-stage vigor super rice cultivar (Y-liangyou 087) and an elite rice cultivar (Teyou 838). Grain yield and total shoot biomass were 7-9% higher in Y-liangyou 087 than in Teyou 838. Y-liangyou 087 had 60-64% higher post-heading shoot growth rate and biomass production than Teyou 838. Average relative chlorophyll concentration and net photosynthetic rate in flag leaves were 7-11% higher in Y-liangyou 087 than in Teyou 838 during heading to 25 days after heading. Y-liangyou 087 had 41% higher post-heading shoot N uptake but 17-25% lower root biomass and root-shoot ratio at heading and maturity than Teyou 838. Specific root length and length and surface area of fine roots were higher in Y-liangyou 087 than in Teyou 838 at heading and maturity by more than 15%. These results indicated that root-shoot relationships were well balanced during post-heading phase in the late-stage vigor super rice cultivar Y-liangyou 087 by improving root morphology including avoiding a too great root biomass and developing a large fine root system.

  10. Arabidopsis alcohol dehydrogenase expression in both shoots and roots is conditioned by root growth environment

    NASA Technical Reports Server (NTRS)

    Chung, H. J.; Ferl, R. J.

    1999-01-01

    It is widely accepted that the Arabidopsis Adh (alcohol dehydrogenase) gene is constitutively expressed at low levels in the roots of young plants grown on agar media, and that the expression level is greatly induced by anoxic or hypoxic stresses. We questioned whether the agar medium itself created an anaerobic environment for the roots upon their growing into the gel. beta-Glucuronidase (GUS) expression driven by the Adh promoter was examined by growing transgenic Arabidopsis plants in different growing systems. Whereas roots grown on horizontal-positioned plates showed high Adh/GUS expression levels, roots from vertical-positioned plates had no Adh/GUS expression. Additional results indicate that growth on vertical plates closely mimics the Adh/GUS expression observed for soil-grown seedlings, and that growth on horizontal plates results in induction of high Adh/GUS expression that is consistent with hypoxic or anoxic conditions within the agar of the root zone. Adh/GUS expression in the shoot apex is also highly induced by root penetration of the agar medium. This induction of Adh/GUS in shoot apex and roots is due, at least in part, to mechanisms involving Ca2+ signal transduction.

  11. Mapping the functional roles of cap cells in the response of Arabidopsis primary roots to gravity

    NASA Technical Reports Server (NTRS)

    Blancaflor, E. B.; Fasano, J. M.; Gilroy, S.; Evans, M. L. (Principal Investigator)

    1998-01-01

    The cap is widely accepted to be the site of gravity sensing in roots because removal of the cap abolishes root curvature. Circumstantial evidence favors the columella cells as the gravisensory cells because amyloplasts (and often other cellular components) are polarized with respect to the gravity vector. However, there has been no functional confirmation of their role. To address this problem, we used laser ablation to remove defined cells in the cap of Arabidopsis primary roots and quantified the response of the roots to gravity using three parameters: time course of curvature, presentation time, and deviation from vertical growth. Ablation of the peripheral cap cells and tip cells did not alter root curvature. Ablation of the innermost columella cells caused the strongest inhibitory effect on root curvature without affecting growth rates. Many of these roots deviated significantly from vertical growth and had a presentation time 6-fold longer than the controls. Among the two inner columella stories, the central cells of story 2 contributed the most to root gravitropism. These cells also exhibited the largest amyloplast sedimentation velocities. Therefore, these results are consistent with the starch-statolith sedimentation hypothesis for gravity sensing.

  12. Brassinolide Increases Potato Root Growth In Vitro in a Dose-Dependent Way and Alleviates Salinity Stress

    PubMed Central

    Xia, Shitou; Su, Yi; Wang, Huiqun; Luo, Weigui; Su, Shengying

    2016-01-01

    Brassinosteroids (BRs) are steroidal phytohormones that regulate various physiological processes, such as root development and stress tolerance. In the present study, we showed that brassinolide (BL) affects potato root in vitro growth in a dose-dependent manner. Low BL concentrations (0.1 and 0.01 μg/L) promoted root elongation and lateral root development, whereas high BL concentrations (1–100 μg/L) inhibited root elongation. There was a significant (P < 0.05) positive correlation between root activity and BL concentrations within a range from 0.01 to 100 μg/L, with the peak activity of 8.238 mg TTC·g−1 FW·h−1 at a BL concentration of 100 μg/L. Furthermore, plants treated with 50 μg/L BL showed enhanced salt stress tolerance through in vitro growth. Under this scenario, BL treatment enhanced the proline content and antioxidant enzymes' (superoxide dismutase, peroxidase, and catalase) activity and reduced malondialdehyde content in potato shoots. Application of BL maintain K+ and Na+ homeostasis by improving tissue K+/Na+ ratio. Therefore, we suggested that the effects of BL on root development from stem fragments explants as well as on primary root development are dose-dependent and that BL application alleviates salt stress on potato by improving root activity, root/shoot ratio, and antioxidative capacity in shoots and maintaining K+/Na+ homeostasis in potato shoots and roots. PMID:27803931

  13. Growth and microtubule orientation of Zea mays roots subjected to osmotic stress

    NASA Technical Reports Server (NTRS)

    Blancaflor, E. B.; Hasenstein, K. H.

    1995-01-01

    Previous work has shown that microtubule (MT) reorientation follows the onset of growth inhibition on the lower side of graviresponding roots, indicating that growth reduction can occur independently of MT reorientation. To test this observation further, we examined whether the reduction in growth in response to osmotic stress is correlated with MT reorientation. The distribution and rate of growth in maize roots exposed to 350 mOsm sorbitol and KCl or 5 mM Mes/Tris buffer were measured with a digitizer. After various times roots were processed for indirect immunofluorescence microscopy. Application of sorbitol or KCl had no effect on the organization of MTs in the apical 2 mm of the root but resulted in striking and different effects in the basal region of the root. Sorbitol treatment caused rapid appearance of oval to circular holes in the microtubular array that persisted for at least 9 h. Between 30 min and 4 h of submersion in KCl, MTs in cortical cells 4 mm and farther from the quiescent center began to reorient oblique to the longitudinal axis. After 9 h, the alignment of MTs had shifted to parallel to the root axis but MTs of the epidermal cells remained transverse. In KCl-treated roots MT reorientation appeared to follow a pattern of development similar to that in controls but without elongation. Our data provide additional evidence that MT reorientation is not the cause but a consequence of growth inhibition.

  14. Negative gravitropism in plant roots.

    PubMed

    Ge, Liangfa; Chen, Rujin

    2016-10-17

    Plants are capable of orienting their root growth towards gravity in a process termed gravitropism, which is necessary for roots to grow into soil, for water and nutrient acquisition and to anchor plants. Here we show that root gravitropism depends on the novel protein, NEGATIVE GRAVITROPIC RESPONSE OF ROOTS (NGR). In both Medicago truncatula and Arabidopsis thaliana, loss of NGR reverses the direction of root gravitropism, resulting in roots growing upward.

  15. The Basic Helix-Loop-Helix Transcription Factor MYC2 Directly Represses PLETHORA Expression during Jasmonate-Mediated Modulation of the Root Stem Cell Niche in Arabidopsis[W][OA

    PubMed Central

    Chen, Qian; Sun, Jiaqiang; Zhai, Qingzhe; Zhou, Wenkun; Qi, Linlin; Xu, Li; Wang, Bao; Chen, Rong; Jiang, Hongling; Qi, Jing; Li, Xugang; Palme, Klaus; Li, Chuanyou

    2011-01-01

    The root stem cell niche, which in the Arabidopsis thaliana root meristem is an area of four mitotically inactive quiescent cells (QCs) and the surrounding mitotically active stem cells, is critical for root development and growth. We report here that during jasmonate-induced inhibition of primary root growth, jasmonate reduces root meristem activity and leads to irregular QC division and columella stem cell differentiation. Consistently, jasmonate reduces the expression levels of the AP2-domain transcription factors PLETHORA1 (PLT1) and PLT2, which form a developmentally instructive protein gradient and mediate auxin-induced regulation of stem cell niche maintenance. Not surprisingly, the effects of jasmonate on root stem cell niche maintenance and PLT expression require the functioning of MYC2/JASMONATE INSENSITIVE1, a basic helix-loop-helix transcription factor that involves versatile aspects of jasmonate-regulated gene expression. Gel shift and chromatin immunoprecipitation experiments reveal that MYC2 directly binds the promoters of PLT1 and PLT2 and represses their expression. We propose that MYC2-mediated repression of PLT expression integrates jasmonate action into the auxin pathway in regulating root meristem activity and stem cell niche maintenance. This study illustrates a molecular framework for jasmonate-induced inhibition of root growth through interaction with the growth regulator auxin. PMID:21954460

  16. New insights into root gravitropic signalling

    PubMed Central

    Sato, Ethel Mendocilla; Hijazi, Hussein; Bennett, Malcolm J.; Vissenberg, Kris; Swarup, Ranjan

    2015-01-01

    An important feature of plants is the ability to adapt their growth towards or away from external stimuli such as light, water, temperature, and gravity. These responsive plant growth movements are called tropisms and they contribute to the plant’s survival and reproduction. Roots modulate their growth towards gravity to exploit the soil for water and nutrient uptake, and to provide anchorage. The physiological process of root gravitropism comprises gravity perception, signal transmission, growth response, and the re-establishment of normal growth. Gravity perception is best explained by the starch–statolith hypothesis that states that dense starch-filled amyloplasts or statoliths within columella cells sediment in the direction of gravity, resulting in the generation of a signal that causes asymmetric growth. Though little is known about the gravity receptor(s), the role of auxin linking gravity sensing to the response is well established. Auxin influx and efflux carriers facilitate creation of a differential auxin gradient between the upper and lower side of gravistimulated roots. This asymmetric auxin gradient causes differential growth responses in the graviresponding tissue of the elongation zone, leading to root curvature. Cell biological and mathematical modelling approaches suggest that the root gravitropic response begins within minutes of a gravity stimulus, triggering genomic and non-genomic responses. This review discusses recent advances in our understanding of root gravitropism in Arabidopsis thaliana and identifies current challenges and future perspectives. PMID:25547917

  17. Long-term Root Growth Response to Thinning, Fertilization, and Water Deficit in Plantation Loblolly Pine

    Treesearch

    M.A. Sword-Sayer; Z. Tang

    2004-01-01

    High water deficits limit the new root growth of loblolly pine (Pinus taeda L.), potentially reducing soil resource availability and stand growth. We evaluated new root growth and stand production in response to thinning and fertilization in loblolly pine over a 6-year period that consisted of 3 years of low water deficit followed by 3 years of high...

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lucash, M.S.; Farnsworth, B.; Winner, W.E.

    This study tests the potential for interactions between root-zone temperature and CO{sub 2} for plants which co-occur in a habitat where root-zone temperature fluctuate throughout the day. Controlled environment studies were conducted to expose desert plants to combinations of low or high root zone temperatures and low or high CO{sub 2}. Artemisia tridentata, Sitanion hystrix, and Stipa thurberiana were chosen for study to represent eastern Oregon plants that differ in their life history strategies. Seeds were planted in pots containing native soils and were grown in environmentally controlled growth chambers for three months. Growth treatments were either ambient (380 ppm)more » or high (580 ppm) CO{sub 2} concentration and high (18{degrees}C) or low (13{degrees} C) root-zone temperature. A. tridentata (a perennial shrub) was relatively unresponsive to treatments. Growth of S. hystrix and S. thurberiana (both C{sub 3} grasses) was stimulated by root-zone warming at both ambient and elevated CO{sub 2} levels. CO{sub 2} stimulated growth occurred for both grass species at low root-zone temperatures but only for S. thurberiana at high root-zone temperatures. Biomass increases from elevated CO{sub 2} were enhanced by root-zone warming indicating treatment interactions. Leaf-level photosynthesis measurements were consistent across species, but could not explain growth responses to treatments. These studies indicate that grasses may be more responsive to environmental change than co-occurring shrubs.« less

  19. Root growth regulation and gravitropism in maize roots does not require the epidermis

    NASA Technical Reports Server (NTRS)

    Bjorkman, T.; Cleland, R. E.

    1991-01-01

    We have earlier published observations showing that endogenous alterations in growth rate during gravitropism in maize roots (Zea mays L.) are unaffected by the orientation of cuts which remove epidermal and cortical tissue in the growing zone (Bjorkman and Cleland, 1988, Planta 176, 513-518). We concluded that the epidermis and cortex are not essential for transporting a growth-regulating signal in gravitropism or straight growth, nor for regulating the rate of tissue expansion. This conclusion has been challenged by Yang et al. (1990, Planta 180, 530-536), who contend that a shallow girdle around the entire perimeter of the root blocks gravitropic curvature and that this inhibition is the result of a requirement for epidermal cells to transport the growth-regulating signal. In this paper we demonstrate that the entire epidermis can be removed without blocking gravitropic curvature and show that the position of narrow girdles does not affect the location of curvature. We therefore conclude that the epidermis is not required for transport of a growth-regulating substance from the root cap to the growing zone, nor does it regulate the growth rate of the elongating zone of roots.

  20. In vitro Cultured Primary Roots Derived from Stem Segments of Cassava (Manihot esculenta) Can Behave Like Storage Organs

    PubMed Central

    Medina, Ricardo D.; Faloci, Mirta M.; Gonzalez, Ana M.; Mroginski, Luis A.

    2007-01-01

    Background and Aims Cassava (Manihot esculenta) has three adventitious root types: primary and secondary fibrous roots, and storage roots. Different adventitious root types can also regenerate from in vitro cultured segments. The aim of this study was to investigate aspects of in vitro production of storage roots. Methods Morphological and anatomical analyses were performed to identify and differentiate each root type. Twenty-nine clones were assayed to determine the effect of genotype on the capacity to form storage roots in vitro. The effects of cytokinins and auxins on the formation of storage roots in vitro were also examined. Key Results Primary roots formed in vitro and in vivo had similar tissue kinds; however, storage roots formed in vitro exhibited physiological specialization for storing starch. The only consistent diagnostic feature between secondary fibrous and storage roots was their functional differentiation. Anatomical analysis of the storage roots formed in vitro showed that radial expansion as a consequence of massive proliferation and enlargement of parenchymatous cells occurred in the middle cortex, but not from cambial activity as in roots formed in vivo. Cortical expansion could be related to dilatation growth favoured by hormone treatments. Starch deposition of storage roots formed in vitro was confined to cortical tissue and occurred earlier than in storage roots formed in vivo. Auxin and cytokinin supplementation were absolutely required for in vitro storage root regeneration; these roots were not able to develop secondary growth, but formed a tissue competent for starch storing. MS medium with 5 % sucrose plus 0·54 μm 1-naphthaleneacetic acid and 0·44 μm 6-benzylaminopurine was one of the most effective in stimulating the storage root formation. Genotypes differed significantly in their capacity to produce storage roots in vitro. Storage root formation was considerably affected by the segment's primary position and strongly influenced by hormone treatments. Conclusions The storage root formation system reported here is a first approach to develop a tuberization model, and additional efforts are required to improve it. Although it was not possible to achieve root secondary growth, after this work it will be feasible to advance in some aspects of in vitro cassava tuberization. PMID:17267513

  1. Arabidopsis ROP-interactive CRIB motif-containing protein 1 (RIC1) positively regulates auxin signalling and negatively regulates abscisic acid (ABA) signalling during root development.

    PubMed

    Choi, Yunjung; Lee, Yuree; Kim, Soo Young; Lee, Youngsook; Hwang, Jae-Ung

    2013-05-01

    Auxin and abscisic acid (ABA) modulate numerous aspects of plant development together, mostly in opposite directions, suggesting that extensive crosstalk occurs between the signalling pathways of the two hormones. However, little is known about the nature of this crosstalk. We demonstrate that ROP-interactive CRIB motif-containing protein 1 (RIC1) is involved in the interaction between auxin- and ABA-regulated root growth and lateral root formation. RIC1 expression is highly induced by both hormones, and expressed in the roots of young seedlings. Whereas auxin-responsive gene induction and the effect of auxin on root growth and lateral root formation were suppressed in the ric1 knockout, ABA-responsive gene induction and the effect of ABA on seed germination, root growth and lateral root formation were potentiated. Thus, RIC1 positively regulates auxin responses, but negatively regulates ABA responses. Together, our results suggest that RIC1 is a component of the intricate signalling network that underlies auxin and ABA crosstalk. © 2012 Blackwell Publishing Ltd.

  2. ROOT HAIR DEFECTIVE SIX-LIKE4 (RSL4) promotes root hair elongation by transcriptionally regulating the expression of genes required for cell growth.

    PubMed

    Vijayakumar, Priya; Datta, Sourav; Dolan, Liam

    2016-12-01

    ROOT HAIR DEFECTIVE SIX-LIKE4 (RSL4) is necessary and sufficient for root hair elongation in Arabidopsis thaliana. Root hair length is determined by the duration for which RSL4 protein is present in the developing root hair. The aim of this research was to identify genes regulated by RSL4 that affect root hair growth. To identify genes regulated by RSL4, we identified genes whose expression was elevated by induction of RSL4 activity in the presence of an inhibitor of translation. Thirty-four genes were identified as putative targets of RSL transcriptional regulation, and the results suggest that the activities of SUPPRESSOR OF ACTIN (SAC1), EXOCSYT SUBUNIT 70A1 (EXO70A1), PEROXIDASE7 (PRX7) and CALCIUM-DEPENDENT PROTEIN KINASE11 (CPK11) are required for root hair elongation. These data indicate that RSL4 controls cell growth by controlling the expression of genes encoding proteins involved in cell signalling, cell wall modification and secretion. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  3. [Effects of culture conditions on biomass and active components of adventitious roots culture in Panax ginseng].

    PubMed

    Huang, Tao; Gao, Wenyuan; Wang, Juan; Cao, Yu

    2010-01-01

    To optimize the culture condition of adventitious roots of Panax ginseng. The adventitious roots were obtained through tissue culture by manipulation of inoculum, various sucrose concentrations and salt strength. The contents of ginsenosides Re, Rb1 and Rg1 were determined by HPLC while the contents of polysaccharides were determined by ultraviolet spectrophotometry. The multiplication of adventitious roots reached the peak when the inoculum was 20 g x L(-1). The effects of sucrose concentration and salt strength on adventitious roots were observed. The contents of polysaccharides were higher when the medium contained more sucrose. 40 g x L(-1) sucrose was favorable for roots growth and biosynthesis of Re, while 30 g x L(-1) was favorable for the biosynthesis of Rb1 and Rg1. 3/4MS medium was benefit for the growth of adventitious roots and the biosynthesis of ginsenosides. The contents of polysaccharides were decreased with the increase of salt strength. The results showed that inoculum, various sucrose concentrations and salt strength have significant influences on adventitious roots growth, secondary metabolite and polysaccharide synthesis in P. ginseng.

  4. Nitrate-Regulated Glutaredoxins Control Arabidopsis Primary Root Growth1[OPEN

    PubMed Central

    Walters, Laura A.; Cooper, Andrew M.; Olvera, Jocelyn G.; Rosas, Miguel A.; Rasmusson, Allan G.

    2016-01-01

    Nitrogen is an essential soil nutrient for plants, and lack of nitrogen commonly limits plant growth. Soil nitrogen is typically available to plants in two inorganic forms: nitrate and ammonium. To better understand how nitrate and ammonium differentially affect plant metabolism and development, we performed transcriptional profiling of the shoots of ammonium-supplied and nitrate-supplied Arabidopsis (Arabidopsis thaliana) plants. Seven genes encoding class III glutaredoxins were found to be strongly and specifically induced by nitrate. RNA silencing of four of these glutaredoxin genes (AtGRXS3/4/5/8) resulted in plants with increased primary root length (approximately 25% longer than the wild type) and decreased sensitivity to nitrate-mediated inhibition of primary root growth. Increased primary root growth is also a well-characterized phenotype of many cytokinin-deficient plant lines. We determined that nitrate induction of glutaredoxin gene expression was dependent upon cytokinin signaling and that cytokinins could activate glutaredoxin gene expression independent of plant nitrate status. In addition, crosses between “long-root” cytokinin-deficient plants and “long-root” glutaredoxin-silenced plants generated hybrids that displayed no further increase in primary root length (i.e. epistasis). Collectively, these findings suggest that AtGRXS3/4/5/8 operate downstream of cytokinins in a signal transduction pathway that negatively regulates plant primary root growth in response to nitrate. This pathway could allow Arabidopsis to actively discriminate between different nitrogen sources in the soil, with the preferred nitrogen source, nitrate, acting to suppress primary root growth (vertical dimension) in concert with its well-characterized stimulatory effect on lateral root growth (horizontal dimension). PMID:26662603

  5. Glucose and phytohormone interplay in controlling root directional growth in Arabidopsis.

    PubMed

    Singh, Manjul; Gupta, Aditi; Laxmi, Ashverya

    2014-01-01

    Sensing and responding toward gravity vector is a complicated and multistep process. Gravity is a constant factor feeding plants with reliable information for the spatial orientation of their organs. Auxin, cytokinin, ethylene and BRs have been the most explored hormones in relation to gravitropism. We have previously shown that glucose (Glc) could promote brassinosteroid (BR) signaling thereby inducing changes in root directional growth. Auxin signaling and polar transport components are also involved in Glc induced changes in root directional growth. Here, we provide evidence for involvement of cytokinin and ethylene signaling components in regulation of root directional growth downstream to Glc and BR. Altogether, Glc mediated change in root direction is an adaptive feature which is a result of a collaborative effort integrating phytohormonal signaling cues.

  6. Molecular Physiology of Root System Architecture in Model Grasses

    NASA Astrophysics Data System (ADS)

    Hixson, K.; Ahkami, A. H.; Anderton, C.; Veličković, D.; Myers, G. L.; Chrisler, W.; Lindenmaier, R.; Fang, Y.; Yabusaki, S.; Rosnow, J. J.; Farris, Y.; Khan, N. E.; Bernstein, H. C.; Jansson, C.

    2017-12-01

    Unraveling the molecular and physiological mechanisms involved in responses of Root System Architecture (RSA) to abiotic stresses and shifts in microbiome structure is critical to understand and engineer plant-microbe-soil interactions in the rhizosphere. In this study, accessions of Brachypodium distachyon Bd21 (C3 model grass) and Setaria viridis A10.1 (C4 model grass) were grown in phytotron chambers under current and elevated CO2 levels. Detailed growth stage-based phenotypic analysis revealed different above- and below-ground morphological and physiological responses in C3 and C4 grasses to enhanced CO2 levels. Based on our preliminary results and by screening values of total biomass, water use efficiency, root to shoot ratio, RSA parameters and net assimilation rates, we postulated a three-phase physiological mechanism, i.e. RootPlus, BiomassPlus and YieldPlus phases, for grass growth under elevated CO2 conditions. Moreover, this comprehensive set of morphological and process-based observations are currently in use to develop, test, and calibrate biophysical whole-plant models and in particular to simulate leaf-level photosynthesis at various developmental stages of C3 and C4 using the model BioCro. To further link the observed phenotypic traits at the organismal level to tissue and molecular levels, and to spatially resolve the origin and fate of key metabolites involved in primary carbohydrate metabolism in different root sections, we complement root phenotypic observations with spatial metabolomics data using mass spectrometry imaging (MSI) methods. Focusing on plant-microbe interactions in the rhizosphere, six bacterial strains with plant growth promoting features are currently in use in both gel-based and soil systems to screen root growth and development in Brachypodium. Using confocal microscopy, GFP-tagged bacterial systems are utilized to study the initiation of different root types of RSA, including primary root (PR), coleoptile node axile root (CNR) and leaf node axile root (LNR) during developmental stages of root formation. The root exudates also will be quantified and preliminary data will be used to engineer our microbial consortium to improve plant growth.

  7. Transgenic hairy roots. recent trends and applications.

    PubMed

    Giri, A; Narasu, M L

    2000-03-01

    Agrobacterium rhizogenes causes hairy root disease in plants. The neoplastic roots produced by A. rhizogenes infection is characterized by high growth rate and genetic stability. These genetically transformed root cultures can produce higher levels of secondary metabolites or amounts comparable to that of intact plants. Hairy root cultures offer promise for production of valuable secondary metabolites in many plants. The main constraint for commercial exploitation of hairy root cultures is their scaling up, as there is a need for developing a specially designed bioreactor that permits the growth of interconnected tissues unevenly distributed throughout the vessel. Rheological characteristics of heterogeneous system should also be taken into consideration during mass scale culturing of hairy roots. Development of bioreactor models for hairy root cultures is still a recent phenomenon. It is also necessary to develop computer-aided models for different parameters such as oxygen consumption and excretion of product to the medium. Further, transformed roots are able to regenerate genetically stable plants as transgenics or clones. This property of rapid growth and high plantlet regeneration frequency allows clonal propagation of elite plants. In addition, the altered phenotype of hairy root regenerants (hairy root syndrome) is useful in plant breeding programs with plants of ornamental interest. In vitro transformation and regeneration from hairy roots facilitates application of biotechnology to tree species. The ability to manipulate trees at a cellular and molecular level shows great potential for clonal propagation and genetic improvement. Transgenic root system offers tremendous potential for introducing additional genes along with the Ri T-DNA genes for alteration of metabolic pathways and production of useful metabolites or compounds of interest. This article discusses various applications and perspectives of hairy root cultures and the recent progress achieved with respect to transformation of plants using A. rhizogenes.

  8. An inexpensive rhizotron design for two-dimensional, horizontal root growth measurements

    Treesearch

    Adam H. Wiese; Don E. Riemenschneider; Ronald S., Jr. Zalesny

    2005-01-01

    We designed, constructed, and tested an observational system that supports two-dimensional, horizontal root growth measurements over time without disturbing aboveground plant growth and without the need for destructive sampling of roots. Our rhizotrons allow for (1) studying relatively greater numbers of plants at any given time than is now possible under traditional...

  9. How and where to build a root hair.

    PubMed

    Dolan, L

    2001-12-01

    The root hair of Arabidopsis has become a model system for investigations of the patterning and morphogenesis of cells in plants. A cascade of transcriptional regulators controls the pattern of cellular differentiation. Recently, one of the genes that plays a specific role in cellular differentiation in roots, WEREWOLF, has been shown to be functionally equivalent to GLABRA1, which functions only in the shoot. The cloning of genes defined by mutants with defective root-hair growth has provided insights into the roles of the cell wall, ion transport and the cytoskeleton during hair growth. Genetic analyses continue to identify mutants that will be instructive in furthering our understanding of the growth and development of root-hair cells.

  10. A tillering inhibition gene influences root–shoot carbon partitioning and pattern of water use to improve wheat productivity in rainfed environments

    PubMed Central

    Hendriks, P.W.; Kirkegaard, J.A.; Lilley, J.M.; Gregory, P.J.; Rebetzke, G.J.

    2016-01-01

    Genetic modification of shoot and root morphology has potential to improve water and nutrient uptake of wheat crops in rainfed environments. Near-isogenic lines (NILs) varying for a tillering inhibition (tin) gene and representing multiple genetic backgrounds were phenotyped in contrasting, controlled environments for shoot and root growth. Leaf area, shoot and root biomass were similar until tillering, whereupon reduced tillering in tin-containing NILs produced reductions of up to 60% in total leaf area and biomass, and increases in total root length of up to 120% and root biomass to 145%. Together, the root-to-shoot ratio increased two-fold with the tin gene. The influence of tin on shoot and root growth was greatest in the cv. Banks genetic background, particularly in the biculm-selected NIL, and was typically strongest in cooler environments. A separate de-tillering study confirmed greater root-to-shoot ratios with regular tiller removal in non-tin-containing genotypes. In validating these observations in a rainfed field study, the tin allele had a negligible effect on seedling growth but was associated with significantly (P<0.05) reduced tiller number (–37%), leaf area index (–26%), and spike number (–35%) to reduce plant biomass (–19%) at anthesis. Root biomass, root-to-shoot ratio at early stem elongation, and root depth at maturity were all increased in tin-containing NILs. Soil water use was slowed in tin-containing NILs, resulting in greater water availability, greater stomatal conductance, cooler canopy temperatures, and maintenance of green leaf area during grain-filling. Together these effects contributed to increases in harvest index and grain yield. In both the controlled and field environments, the tin gene was commonly associated with increased root length and biomass, but the significant influence of genetic background and environment suggests careful assessment of tin-containing progeny in selection for genotypic increases in root growth. PMID:26494729

  11. Genetic analysis of the gravitropic set-point angle in lateral roots of Arabidopsis

    NASA Technical Reports Server (NTRS)

    Mullen, J. L.; Hangarter, R. P.; Kiss, J. Z. (Principal Investigator)

    2003-01-01

    Research on gravity responses in plants has mostly focused on primary roots and shoots, which typically orient to a vertical orientation. However, the distribution of lateral organs and their characteristically non-vertical growth orientation are critical for the determination of plant form. For example, in Arabidopsis, when lateral roots emerge from the primary root, they grow at a nearly horizontal orientation. As they elongate, the roots slowly curve until they eventually reach a vertical orientation. The regulation of this lateral root orientation is an important component affecting overall root system architecture. We found that this change in orientation is not simply due to the onset of gravitropic competence, as non-vertical lateral roots are capable of both positive and negative gravitropism. Thus, the horizontal growth of new lateral roots appears to be determined by what is called the gravitropic set-point angle (GSA). This developmental control of the GSA of lateral roots in Arabidopsis provides a useful system for investigating the components involved in regulating gravitropic responses. Using this system, we have identified several Arabidopsis mutants that have altered lateral root orientations but maintain normal primary root orientation. c2003 COSPAR. Published by Elsevier Ltd. All rights reserved.

  12. Determination of zinc oxide nanoparticles toxicity in root growth in wheat (Triticum aestivum L.) seedlings.

    PubMed

    Prakash, Meppaloor G; Chung, Ill Min

    2016-09-01

    The effect of zinc oxide nanoparticles (ZnONPs) was studied in wheat (Triticum aestivum L.) seedlings under in vitro exposure conditions. To avoid precipitation of nanoparticles, the seedlings were grown in half strength semisolid Murashige and Skoog medium containing 0, 50, 100, 200, 400 and 500 mg L(-1) of ZnONPs. Analysis of zinc (Zn) content showed significant increase in roots. In vivo detection using fluorescent probe Zynpyr-1 indicated accumulation of Zn in primary and lateral root tips. All concentrations of ZnONPs significantly reduced root growth. However, significant decrease in shoot growth was observed only after exposure to 400 and 500 mg L(-1) of ZnONPs. The reactive oxygen species and lipid peroxidation levels significantly increased in roots. Significant increase in cell-wall bound peroxidase activity was observed after exposure to 500 mg L(-1) of ZnONPs. Histochemical staining with phloroglucinol-HCl showed lignification of root cells upon exposure to 500 mg L(-1) of ZnONPs. Treatment with propidium iodide indicated loss of cell viability in root tips of wheat seedlings. These results suggest that redox imbalances, lignification and cell death has resulted in reduction of root growth in wheat seedlings exposed to ZnONPs nanoparticles.

  13. Phytochromes play a role in phototropism and gravitropism in Arabidopsis roots

    NASA Astrophysics Data System (ADS)

    Correll, Melanie J.; Coveney, Katrina M.; Raines, Steven V.; Mullen, Jack L.; Hangarter, Roger P.; Kiss, John Z.

    2003-05-01

    Phototropism as well as gravitropism plays a role in the oriented growth of roots in flowering plants. In blue or white light, roots exhibit negative phototropism, but red light induces positive phototropism in Arabidopsis roots. Phytochrome A (phyA) and phyB mediate the positive red-light-based photoresponse in roots since single mutants (and the double phyAB mutant) were severely impaired in this response. In blue-light-based negative phototropism, phyA and phyAB (but not phyB) were inhibited in the response relative to the WT. In root gravitropism, phyB and phyAB (but not phyA) were inhibited in the response compared to the WT. The differences observed in tropistic responses were not due to growth limitations since the growth rates among all the mutants tested were not significantly different from that of the WT. Thus, our study shows that the blue-light and red-light systems interact in roots and that phytochrome plays a key role in plant development by integrating multiple environmental stimuli.

  14. Effect of Environmental Density and Buoyancy on Growth and Gravitropic Response in Maize Roots

    NASA Astrophysics Data System (ADS)

    Robbins, J. L.; Mulkey, T. J.

    2008-06-01

    The mechanism by which plants sense gravity is not fully understood. The hydrostatic model was proposed as an alternative to the statolith model. These experiments are designed to provide further understanding about the underlying mechanism of the gravitropic sensing. Primary roots of maize with a length of about 1 cm were used. The roots were placed in environments of various density and buoyancy using air, water, sucrose, sucrose/polyethylene glycol 4000 (PEG), PEG 8000, and Ficoll PM 400. The rates of growth and gravitropic curvature were monitored using time-lapse video and digital recordings. Comparison of roots in air to roots in oxygenated water indicate that there is no significant difference in growth rates but the higher density of water and the other test solutions significantly slows the gravitropic response. Altering the environmental density and buoyancy of the solution surrounding the root does not appear to alter sedimentation of statoliths within the root tip.

  15. Interaction between hydrotropism and gravitropism in seedling roots

    NASA Astrophysics Data System (ADS)

    Kobayashi, A.; Takahashi, A.; Yamazaki, Y.; Kakimoto, Y.; Higashitani, A.; Fujii, N.; Takahashi, H.

    Roots display positive hydrotropism in response to a moisture gradient, which could play a role in avoiding drought stress. Because roots also respond to other stimuli such as gravity, touch and light and exhibit gravitropism, thigmotropism and phototropism, respectively, their growth orientation is determined by interaction among those tropisms. We have demonstrated the interaction between hydrotropism and gravitropism. For example, 1) agravitropic roots of pea mutant strongly respond to a moisture gradient and show positive hydrotropism by overcoming gravitropism, 2) in wild type pea roots hydrotropism is weak but pronounced when rotated on clinostat, 3) cucumber roots are positively gravitropic on the ground but become hydrotropic in microgravity, and 4) maize roots change their growth direction depending on the intensities of both gravistimulation and hydrostimulation. Here we found that Arabidopsis roots could display strong hydrotropism by overcoming gravitropism. It was discovered that amyloplasts in the columella cells are rapidly degraded upon exposure to a moisture gradient. Thus, degradation of amyloplasts could reduce the responsiveness to gravity, which could pronounce the hydrotropic response. In hydrotropically stimulated roots of pea seedlings, however, we could not observe a rapid degradation of amyloplasts in the columella cells. These results suggest that mechanism underlying the interaction between hydrotropism and gravitropism differs among plant species. To further study the molecular mechanism of hydrotropism and its interaction with gravitropism, we isolated unique mutants of Arabidopsis of which roots showed either ahydrotropism, reduced hydrotropism or negative hydrotropic response and examined their gravitropism, phototropism, waving response, amyloplast degradation and elongation growth. Based on the characterization of hydrotropic mutants, we will attempt to compare the mechanisms of the two tropisms and to clarify their cross talk for controlling the directional growth of seedling roots.

  16. Novel software for analysis of root gravitropism: comparative response patterns of Arabidopsis wild-type and axr1 seedlings

    NASA Technical Reports Server (NTRS)

    Ishikawa, H.; Evans, M. L.

    1997-01-01

    In an earlier study (Evans, Ishikawa & Estelle 1994, Planta 194, 215-222) we used a video digitizer system to compare the kinetics of auxin action on root elongation in wild-type seedlings and seedlings of auxin response mutants of Arabidopsis thaliana (L.) Heynh. We have since modified the system software to allow determination of elongation on opposite sides of vertical or gravistimulated roots and to allow continuous measurement of the angle of orientation of sequential subsections of the root during the response. We used this technology to compare the patterns of differential growth that generate curvature in roots of the Columbia ecotype and in the mutants axr1-3, axr1-12 and axr2, which show reduced gravitropic responsiveness and reduced sensitivity to inhibition by auxin. The pattern of differential growth during gravitropism differed in roots of wild-type and axr1 seedlings. In wild-type roots, initial curvature resulted from differential inhibition of elongation in the distal elongation zone (DEZ). This was followed by an acceleration of elongation along the top side of the DEZ. In roots of axr1-3, curvature resulted from differential stimulation of elongation whereas in roots of axr1-12 the response was variable. Roots of axr2 did not exhibit gravitropic curvature. The observation that the pattern of differential growth causing curvature is dramatically altered by a change in sensitivity to auxin is consistent with the classical Cholodny-Went theory of gravitropism which maintains that differential growth patterns induced by gravistimulation are mediated primarily by gravi-induced shifts in auxin distribution. The new technology introduced with this report allows automated determination of stimulus response patterns in the small but experimentally popular roots of Arabidopsis.

  17. The use of stored carbon reserves in growth of temperate tree roots and leaf buds: Analyses using radiocarbon measurements and modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaudinski, J.B.; Torn, M.S.; Riley, W.J.

    2009-02-01

    Characterizing the use of carbon (C) reserves in trees is important for understanding regional and global C cycles, stress responses, asynchrony between photosynthetic activity and growth demand, and isotopic exchanges in studies of tree physiology and ecosystem C cycling. Using an inadvertent, whole-ecosystem radiocarbon ({sup 14}C) release in a temperate deciduous oak forest and numerical modeling, we estimated that the mean age of stored C used to grow both leaf buds and new roots is 0.7 years and about 55% of new-root growth annually comes from stored C. Therefore, the calculated mean age of C used to grow new-root tissuemore » is {approx}0.4 years. In short, new roots contain a lot of stored C but it is young in age. Additionally, the type of structure used to model stored C input is important. Model structures that did not include storage, or that assumed stored and new C mixed well (within root or shoot tissues) before being used for root growth, did not fit the data nearly as well as when a distinct storage pool was used. Consistent with these whole-ecosystem labeling results, the mean age of C in new-root tissues determined using 'bomb-{sup 14}C' in three additional forest sites in North America and Europe (one deciduous, two coniferous) was less than 1-2 years. The effect of stored reserves on estimated ages of fine roots is unlikely to be large in most natural abundance isotope studies. However, models of root C dynamics should take stored reserves into account, particularly for pulse-labeling studies and fast-cycling roots (<1 years).« less

  18. Genetic and chemical reductions in protein phosphatase activity alter auxin transport, gravity response, and lateral root growth

    NASA Technical Reports Server (NTRS)

    Rashotte, A. M.; DeLong, A.; Muday, G. K.; Brown, C. S. (Principal Investigator)

    2001-01-01

    Auxin transport is required for important growth and developmental processes in plants, including gravity response and lateral root growth. Several lines of evidence suggest that reversible protein phosphorylation regulates auxin transport. Arabidopsis rcn1 mutant seedlings exhibit reduced protein phosphatase 2A activity and defects in differential cell elongation. Here we report that reduced phosphatase activity alters auxin transport and dependent physiological processes in the seedling root. Root basipetal transport was increased in rcn1 or phosphatase inhibitor-treated seedlings but showed normal sensitivity to the auxin transport inhibitor naphthylphthalamic acid (NPA). Phosphatase inhibition reduced root gravity response and delayed the establishment of differential auxin-induced gene expression across a gravity-stimulated root tip. An NPA treatment that reduced basipetal transport in rcn1 and cantharidin-treated wild-type plants also restored a normal gravity response and asymmetric auxin-induced gene expression, indicating that increased basipetal auxin transport impedes gravitropism. Increased auxin transport in rcn1 or phosphatase inhibitor-treated seedlings did not require the AGR1/EIR1/PIN2/WAV6 or AUX1 gene products. In contrast to basipetal transport, root acropetal transport was normal in phosphatase-inhibited seedlings in the absence of NPA, although it showed reduced NPA sensitivity. Lateral root growth also exhibited reduced NPA sensitivity in rcn1 seedlings, consistent with acropetal transport controlling lateral root growth. These results support the role of protein phosphorylation in regulating auxin transport and suggest that the acropetal and basipetal auxin transport streams are differentially regulated.

  19. Protein synthesis in geostimulated root caps

    NASA Technical Reports Server (NTRS)

    Feldman, L. J.

    1982-01-01

    A study is presented of the processes occurring in the root cap of corn which are requisite for the formation of root cap inhibitor and which can be triggered or modulated by both light and gravity. The results of this study indicate the importance of protein synthesis for light-induced gravitropic bending in roots. Root caps in which protein synthesis is prevented are unable to induce downward bending. This suggests that light acts by stimulating proteins which are necessary for the translation of the gravitropic stimulus into a growth response (downward bending). The turnover of protein with time was also examined in order to determine whether light acts by stimulating the synthesis of unique proteins required for downward growth. It is found that auxin in combination with light allows for the translation of the gravitropic stimulus into a growth response at least in part through the modification of protein synthesis. It is concluded that unique proteins are stimulated by light and are involved in promoting the downward growth in roots which are responding to gravity.

  20. Effects of Colonization of the Roots of Domestic Rice (Oryza sativa L. cv. Amaroo) by Burkholderia pseudomallei

    PubMed Central

    Constantinoiu, Constantin; Gardiner, Christopher; Warner, Jeffrey

    2015-01-01

    Burkholderia pseudomallei is a saprophytic bacterium that causes melioidosis and is often isolated from rice fields in Southeast Asia, where the infection incidence is high among rice field workers. The aim of this study was to investigate the relationship between this bacterium and rice through growth experiments where the effect of colonization of domestic rice (Oryza sativa L. cv Amaroo) roots by B. pseudomallei could be observed. When B. pseudomallei was exposed to surface-sterilized seeds, the growth of both the root and the aerosphere was retarded compared to that in controls. The organism was found to localize in the root hairs and endodermis of the plant. A biofilm formed around the root and root structures that were colonized. Growth experiments with a wild rice species (Oryza meridionalis) produced similar retardation of growth, while another domestic cultivar (O. sativa L. cv Koshihikari) did not show retarded growth. Here we report B. pseudomallei infection and inhibition of O. sativa L. cv Amaroo, which might provide insights into plant interactions with this important human pathogen. PMID:25911477

  1. PHABULOSA Controls the Quiescent Center-Independent Root Meristem Activities in Arabidopsis thaliana

    PubMed Central

    Sebastian, Jose; Ryu, Kook Hui; Zhou, Jing; Tarkowská, Danuše; Tarkowski, Petr; Cho, Young-Hee; Yoo, Sang-Dong; Kim, Eun-Sol; Lee, Ji-Young

    2015-01-01

    Plant growth depends on stem cell niches in meristems. In the root apical meristem, the quiescent center (QC) cells form a niche together with the surrounding stem cells. Stem cells produce daughter cells that are displaced into a transit-amplifying (TA) domain of the root meristem. TA cells divide several times to provide cells for growth. SHORTROOT (SHR) and SCARECROW (SCR) are key regulators of the stem cell niche. Cytokinin controls TA cell activities in a dose-dependent manner. Although the regulatory programs in each compartment of the root meristem have been identified, it is still unclear how they coordinate one another. Here, we investigate how PHABULOSA (PHB), under the posttranscriptional control of SHR and SCR, regulates TA cell activities. The root meristem and growth defects in shr or scr mutants were significantly recovered in the shr phb or scr phb double mutant, respectively. This rescue in root growth occurs in the absence of a QC. Conversely, when the modified PHB, which is highly resistant to microRNA, was expressed throughout the stele of the wild-type root meristem, root growth became very similar to that observed in the shr; however, the identity of the QC was unaffected. Interestingly, a moderate increase in PHB resulted in a root meristem phenotype similar to that observed following the application of high levels of cytokinin. Our protoplast assay and transgenic approach using ARR10 suggest that the depletion of TA cells by high PHB in the stele occurs via the repression of B-ARR activities. This regulatory mechanism seems to help to maintain the cytokinin homeostasis in the meristem. Taken together, our study suggests that PHB can dynamically regulate TA cell activities in a QC-independent manner, and that the SHR-PHB pathway enables a robust root growth system by coordinating the stem cell niche and TA domain. PMID:25730098

  2. A gradient of endogenous calcium forms in mucilage of graviresponding roots of Zea mays

    NASA Technical Reports Server (NTRS)

    Moore, R.; Fondren, W. M.

    1988-01-01

    Agar blocks that contacted the upper sides of tips of horizontally-oriented roots of Zea mays contain significantly less calcium (Ca) than blocks that contacted the lower sides of such roots. This gravity-induced gradient of Ca forms prior to the onset of gravicurvature, and does not form across tips of vertically-oriented roots or roots of agravitropic mutants. These results indicate that (1) Ca can be collected from mucilage of graviresponding roots, (2) gravity induces a downward movement of endogenous Ca in mucilage overlying the root tip, (3) this gravity-induced gradient of Ca does not form across tips of agravitropic roots, and (4) formation of a Ca gradient is not a consequence of gravicurvature. These results are consistent with gravity-induced movement of Ca being a trigger for subsequent redistribution of growth effectors (e.g. auxin) that induce differential growth and gravicurvature.

  3. [Induction of hairy roots of Panax ginseng and studies on suitable culture condition of ginseng hairy roots].

    PubMed

    Zhao, Shou-Jing; Li, Chang-Yu; Qian, Yan-Chun; Luo, Xiao-Pei; Zhang, Xin; Wang, Xue-Song; Kang, Bo-Yu

    2004-03-01

    Ginseng is a valuable medicinal plant with ginsenosides as its mian effective components. Because ginseng is a perennial plant and has a very strict demand for soil conditions, the way of cultivating ginseng by cutting woods is still used in China at present and thus forest resources has been extremely destroyed. Increasing attention has been paid to the hairy roots induced by the infection of Agrobacterium rhizogenes in the production of plant secondary metabolic products for the hairy roots are characterized by rapid growth and stable hereditary and biochemical traits. That has opened a new way for the industrial production of ginseosides. However, there is little report for such studies from China. In this paper, hairy roots of ginseng were induced from the root explants of two-year-old ginseng by Agrobacterium rhizogenes A4 with directly inoculating. The transformed hairy roots could grow rapidly on MS medium and 1/2 MS medium without hormones. The cultured clones of the hairy roots were established on a solid 1/2 MS medium. After 4 - 5 subcultures the hairy roots still maintained a vigorous growth. A pair of primers were designed and synthesized according to the analytical results of RiA4TL-DNA sequence by Slightom et al . 0.8kb rolC was obtained by PCR using the genome DNA of hairy root of ginseng. Transformation was confirmed by PCR amplification of rolC genes from the hairy roots of P. ginseng. Growth rate of hairy roots on liquid medium increased by 2 times then that of the solid medium. The growth of the hairy roots can be divided into three stages: high speed in the first two weeks, middle speed in the 3 - 4 weeks and low speed hereafter. Changing the culture solution at 2 weeks regular intervals is conductive to maintaining the rapid growth of the hairy roots. By means of determination for specific growth rate and ginsenosides content, the high-yield hairy root clone R9923 was selected. The content of monomer gisenoside of Rg1, Re, Rf, Rbl, Rc, Rb2 and Rd in hairy root clone R9923 was determined by the HPLC. The total ginsenosides content in the hairy toot clone R9923 came up to 15.2 mg/g. The suitable culture conditions for ginseng hairy roots growing were 1/2 MS liquid medium (30 g/L glucose), in a shaker at 110 r/min, changing the culture solution at 2 weeks and subculture time 4 weeks. In the liquid fermented culture of 2L medium, the yield of the hairy roots could amount to 270.10 g in 4 weeks. The industrial production of ginsenosides has been preliminarily realized. Effect factors on biomass and ginsenosides content such as culture volume, inoculation, in steps cultural technology at the scale-up process of hairy roots culture were also explorated. Our results have laid a foundation for defining optimum culture manner for large-scale cultivation and large-scale production of ginsenosides.

  4. Root Cortical Senescence Improves Growth under Suboptimal Availability of N, P, and K1[OPEN

    PubMed Central

    Schneider, Hannah M.

    2017-01-01

    Root cortical senescence (RCS) in Triticeae reduces nutrient uptake, nutrient content, respiration, and radial hydraulic conductance of root tissue. We used the functional-structural model SimRoot to evaluate the functional implications of RCS in barley (Hordeum vulgare) under suboptimal nitrate, phosphorus, and potassium availability. The utility of RCS was evaluated using sensitivity analyses in contrasting nutrient regimes. At flowering (80 d), RCS increased simulated plant growth by up to 52%, 73%, and 41% in nitrate-, phosphorus-, and potassium-limiting conditions, respectively. Plants with RCS had reduced nutrient requirement of root tissue for optimal plant growth, reduced total cumulative cortical respiration, and increased total carbon reserves. Nutrient reallocation during RCS had a greater effect on simulated plant growth than reduced respiration or nutrient uptake. Under low nutrient availability, RCS had greater benefit in plants with fewer tillers. RCS had greater benefit in phenotypes with fewer lateral roots at low nitrate availability, but the opposite was true in low phosphorus or potassium availability. Additionally, RCS was quantified in field-grown barley in different nitrogen regimes. Field and virtual soil coring simulation results demonstrated that living cortical volume per root length (an indicator of RCS) decreased with depth in younger plants, while roots of older plants had very little living cortical volume per root length. RCS may be an adaptive trait for nutrient acquisition by reallocating nutrients from senescing tissue and secondarily by reducing root respiration. These simulated results suggest that RCS merits investigation as a breeding target for enhanced soil resource acquisition and edaphic stress tolerance. PMID:28667049

  5. Use of Stored Carbon Reserves in Growth of Temperate Tree Roots and Leaf Buds: Analyses Using Radiocarbon Measurements and Modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaudinski, Julia B.; Torn, Margaret S.; Riley, W. J.

    2009-01-01

    Characterizing the use of C reserves in trees is important for understanding stress responses, impacts of asynchrony between photosynthesis and growth demand, and isotopic exchanges in plant dynamic studies. Using an inadvertent, whole ecosystem radiocarbon (14C) exposure in a temperate deciduous oak forest and numerical modeling, we calculated that the mean age of stored C used to grow leaf buds and new fine root tissue is 0.5-1.0 y. The mean age of stored C used to grow new roots was about 0.7 y across a range of realistic values of 14C inputs to the system. The amount of stored Cmore » used on an annual basis to grow fine roots was between 15 and 55% of total root growth, with the range defined by the assumed 14C input profile. We estimate the annually-averaged mean age of C in new root tissues is 1-5 months. Therefore, accounting for storage C use in isotope root models may be unnecessary in all but the fastest cycling root populations (i.e., mean age <1 y). Consistent with the whole ecosystem labeling results, we found, using "bomb-14C," that the mean C age of new root tissues in three additional forest sites (one deciduous, two coniferous) was less than 2 years. We conclude that in many ecosystem types, growth from stored C is insufficient to impact bomb-14C based estimates of long root lifetimes.« less

  6. Seed-vectored endophytic bacteria modulate development of rice seedlings.

    PubMed

    Verma, S K; Kingsley, K; Irizarry, I; Bergen, M; Kharwar, R N; White, J F

    2017-06-01

    The aim of the present study was to evaluate the effects of the removal of indigenous bacteria from rice seeds on seedling growth and development. Here we report the presence of three indigenous endophytic bacteria in rice seeds that play important roles in modulating seedling development (shoot and root lengths, and formation of root hairs and secondary roots) and defence against pathogens. Seed-associated bacteria were removed using surface sterilization with NaOCl (bleach) followed by antibiotic treatment. When bacteria were absent, growth of seedlings in terms of root hair development and overall seedling size was less than that of seedlings that contained bacteria. Reactive oxygen staining of seedlings showed that endophytic bacteria became intracellular in root parenchyma cells and root hairs. Roots containing endophytic bacteria were seen to stain densely for reactive oxygen, while roots free of bacteria stained lightly for reactive oxygen. Bacteria were isolated and identified as Enterobacter asburiae (VWB1), Pantoea dispersa (VWB2) and Pseudomonas putida (VWB3) by 16S rDNA sequencing. Bacteria were found to produce indole acetic acid (auxins), inhibited the pathogen Fusarium oxysporum and solubilized phosphate. Reinoculation of bacteria onto seedlings derived from surface-disinfected rice and Bermuda grass seeds significantly restored seedling growth and development. Rice seeds harbour indigenous bacterial endophytes that greatly influence seedling growth and development, including root and shoot lengths, root hair formation and disease susceptibility of rice seedlings. This study shows that seeds of rice naturally harbour bacterial endophytes that play key roles in modulation of seedling development. © 2017 The Society for Applied Microbiology.

  7. Effects of Meloidogyne incognita on Growth and Storage-Root Formation of Cassava (Manihot esculenta)

    PubMed Central

    Makumbi-Kidza, N. N.; Speijer, P. R.; Sikora, R. A.

    2000-01-01

    Two-node cuttings of cassava cultivar SS4 were inoculated with 1,000 infective juveniles of Meloidogyne incognita at 1, 14, 40, 70, 88, and 127 days after planting (DAP). Plant growth and root damage were assessed at 150 DAP. Meloidogyne incognita significantly reduced the number of storageroots formed in plants inoculated at 14, 40, 70, and 88 DAP and the total weight of storage-roots in plants inoculated at 1, 14, 40, 70, and 88 DAP, compared to uninoculated plants. Individual storage-root weight and plant height were not affected by M. incognita. Storage-root formation in cassava is initiated when plants are 1 to 2 months old. The results of this experiment indicate that, at this time, young cassava plants are most prone to root-knot nematode damage in terms of storage-root formation. The production loss caused by M. incognita to young SS4 plants was due to a reduction of storage-root number rather than a reduction in individual storage-root weight. PMID:19270997

  8. Ammonium affects cell viability to inhibit root growth in Arabidopsis * #

    PubMed Central

    Qin, Cheng; Yi, Ke-ke; Wu, Ping

    2011-01-01

    Ammonium (NH4 +) is an important form of nitrogen nutrient for most plants, yet is also a stressor for many of them. However, the primary events of NH4 + toxicity at the cellular level are still unclear. Here, we showed that NH4 + toxicity can induce the root cell death in a temporal pattern which primarily occurs in the cells of root maturation and elongation zones, and then spreads to the cells in the meristem and root cap. The results from the NH4 +-hypersensitive mutant hsn1 further confirmed our findings. Taken together, NH4 + toxicity inhibits primary root growth by inhibiting cell elongation and division and inducing root cell death. PMID:21634041

  9. Episodic growth and relative shoot:root balance in loblolly pine seedlings

    Treesearch

    A.P. Drew; F. Thomas Ledig

    1980-01-01

    Leaf, root and stem systems of loblolly pine seedlings are characterized by a seasonal periodicity in growth, during which they alternate in spurts of activity. Despite this periodicity, the allometric coefficient describing the ratio of the relative growth rates of leaf to root remains constant for at least the first two years of development. In part, constancy...

  10. DynamicRoots: A Software Platform for the Reconstruction and Analysis of Growing Plant Roots.

    PubMed

    Symonova, Olga; Topp, Christopher N; Edelsbrunner, Herbert

    2015-01-01

    We present a software platform for reconstructing and analyzing the growth of a plant root system from a time-series of 3D voxelized shapes. It aligns the shapes with each other, constructs a geometric graph representation together with the function that records the time of growth, and organizes the branches into a hierarchy that reflects the order of creation. The software includes the automatic computation of structural and dynamic traits for each root in the system enabling the quantification of growth on fine-scale. These are important advances in plant phenotyping with applications to the study of genetic and environmental influences on growth.

  11. Potential of Different Coleus blumei Tissues for Rosmarinic Acid Production

    PubMed Central

    Vuković, Rosemary; Likić, Saša; Jelaska, Sibila

    2015-01-01

    Summary Rosmarinic acid is one of the main active components of Coleus blumei and is known to have numerous health benefits. The pharmacological significance of rosmarinic acid and its production through in vitro culture has been the subject of numerous studies. Here, the ability of different tissues to accumulate rosmarinic acid and sustainability in production over long cultivation have been tested. Calli, tumours, normal roots and hairy roots were established routinely by application of plant growth regulators or by transformation with agrobacteria. The differences among the established tumour lines were highly heterogeneous. Hairy root lines showed the highest mean growth rate and consistency in rosmarinic acid production. Although some tumour lines produced more rosmarinic acid than the hairy root lines, over a long cultivation period their productivity was unstable and decreased. Further, the effects of plant growth regulators on growth and rosmarinic acid accumulation were tested. 2,4-Dichlorophenoxyacetic acid significantly reduced tumour growth and rosmarinic acid production. 1-Naphthaleneacetic acid strongly stimulated hairy root growth whilst abscisic acid strongly enhanced rosmarinic acid production. Hairy roots cultured in an airlift bioreactor exhibited the highest potential for mass production of rosmarinic acid. PMID:27904326

  12. Unique and Conserved Features of the Barley Root Meristem

    PubMed Central

    Kirschner, Gwendolyn K.; Stahl, Yvonne; Von Korff, Maria; Simon, Rüdiger

    2017-01-01

    Plant root growth is enabled by root meristems that harbor the stem cell niches as a source of progenitors for the different root tissues. Understanding the root development of diverse plant species is important to be able to control root growth in order to gain better performances of crop plants. In this study, we analyzed the root meristem of the fourth most abundant crop plant, barley (Hordeum vulgare). Cell division studies revealed that the barley stem cell niche comprises a Quiescent Center (QC) of around 30 cells with low mitotic activity. The surrounding stem cells contribute to root growth through the production of new cells that are displaced from the meristem, elongate and differentiate into specialized root tissues. The distal stem cells produce the root cap and lateral root cap cells, while cells lateral to the QC generate the epidermis, as it is typical for monocots. Endodermis and inner cortex are derived from one common initial lateral to the QC, while the outer cortex cell layers are derived from a distinct stem cell. In rice and Arabidopsis, meristem homeostasis is achieved through feedback signaling from differentiated cells involving peptides of the CLE family. Application of synthetic CLE40 orthologous peptide from barley promotes meristem cell differentiation, similar to rice and Arabidopsis. However, in contrast to Arabidopsis, the columella stem cells do not respond to the CLE40 peptide, indicating that distinct mechanisms control columella cell fate in monocot and dicot plants. PMID:28785269

  13. Root-type-specific plasticity in response to localized high nitrate supply in maize (Zea mays)

    PubMed Central

    Yu, Peng; Hochholdinger, Frank; Li, Chunjian

    2015-01-01

    Background and Aims Shoot-borne roots contribute to most of the nutrient uptake throughout the life cycle of maize (Zea mays). Compared with numerous studies with embryonic roots, detailed information on the phenotypic plasticity of shoot-borne roots in response to a heterogeneous nitrogen supply is scarce. The present study therefore provides a comprehensive profile of fine-scale plastic responses of distinct root types to localized high nitrate supply. Methods Seedlings of the maize inbred line B73 were grown in split-root systems. The anatomy and morphological plasticity of the primary root and the roots initiated from the 2nd, 5th and 7th shoot nodes, and their lateral roots, were studied in response to local high nitrate supply to one side of the root system. Key Results In contrast to the insensitivity of axial roots, local high nitrate supply increased the length of 1st-order lateral roots on the primary root and the three whorls of shoot-borne roots at different growth stages, and increased the density of 1st-order lateral roots on the 7th shoot-borne root after silking. The length and density of 2nd-order lateral roots on the three whorls of shoot-borne roots displayed a more flexible response to local high nitrate than 1st-order lateral roots. Root diameter and number, and total area and diameter of metaxylem vessels increased from the primary root to early and then later developed shoot-borne roots, which showed a positive relationship with shoot growth and N accumulation. Conclusions Maize axial roots and lateral roots responded differently to local high nitrate, and this was related to their function. The extent of morphological plasticity of lateral roots in response to local high nitrate depended on the initiation time of the shoot-borne roots on which the lateral roots developed. Morphological plasticity was higher on 2nd-order than on 1st-order lateral roots. The results suggest that higher order lateral root branching might be a potential target for genetic improvement in future maize breeding. PMID:26346717

  14. Survival and growth of hardwood seedlings following preplanting-root treatments and treeshelters

    Treesearch

    Felix, Jr. Ponder

    1997-01-01

    The study evaluated the influence of root collar diameter, number of large lateral roots, preplanting-root treatments (biostimulant called Roots and a moisture loss retardant called supersorb) and tree shelters on 1-0 black walnut (Juglans nigra L.) and northern red oak (Quercus rubra L.) seedlings. Four years after outplanting,...

  15. A review of tree root conflicts with sidewalks, curbs, and roads

    Treesearch

    T.B. Randrup; E.G. McPherson; L.R. Costello

    2003-01-01

    Literature relevant to tree root and urban infrastructure conflicts is reviewed. Although tree roots can conflict with many infrastructure elements, sidewalk and curb conflicts are the focus of this review. Construction protocols, urban soils, root growth, and causal factors (soil conditions, limited planting space, tree size, variation in root architecture, management...

  16. Response of millet and sorghum to a varying water supply around the primary and nodal roots

    PubMed Central

    Rostamza, M.; Richards, R. A.; Watt, M.

    2013-01-01

    Background and Aims Cereals have two root systems. The primary system originates from the embryo when the seed germinates and can support the plant until it produces grain. The nodal system can emerge from stem nodes throughout the plant's life; its value for yield is unclear and depends on the environment. The aim of this study was to test the role of nodal roots of sorghum and millet in plant growth in response to variation in soil moisture. Sorghum and millet were chosen as both are adapted to dry conditions. Methods Sorghum and millet were grown in a split-pot system that allowed the primary and nodal roots to be watered separately. Key Results When primary and nodal roots were watered (12 % soil water content; SWC), millet nodal roots were seven times longer than those of sorghum and six times longer than millet plants in dry treatments, mainly from an 8-fold increase in branch root length. When soil was allowed to dry in both compartments, millet nodal roots responded and grew 20 % longer branch roots than in the well-watered control. Sorghum nodal roots were unchanged. When only primary roots received water, nodal roots of both species emerged and elongated into extremely dry soil (0·6–1·5 % SWC), possibly with phloem-delivered water from the primary roots in the moist inner pot. Nodal roots were thick, short, branchless and vertical, indicating a tropism that was more pronounced in millet. Total nodal root length increased in both species when the dry soil was covered with plastic, suggesting that stubble retention or leaf mulching could facilitate nodal roots reaching deeper moist layers in dry climates. Greater nodal root length in millet than in sorghum was associated with increased shoot biomass, water uptake and water use efficiency (shoot mass per water). Millet had a more plastic response than sorghum to moisture around the nodal roots due to (1) faster growth and progression through ontogeny for earlier nodal root branch length and (2) partitioning to nodal root length from primary roots, independent of shoot size. Conclusions Nodal and primary roots have distinct responses to soil moisture that depend on species. They can be selected independently in a breeding programme to shape root architecture. A rapid rate of plant development and enhanced responsiveness to local moisture may be traits that favour nodal roots and water use efficiency at no cost to shoot growth. PMID:23749473

  17. Response of millet and sorghum to a varying water supply around the primary and nodal roots.

    PubMed

    Rostamza, M; Richards, R A; Watt, M

    2013-07-01

    Cereals have two root systems. The primary system originates from the embryo when the seed germinates and can support the plant until it produces grain. The nodal system can emerge from stem nodes throughout the plant's life; its value for yield is unclear and depends on the environment. The aim of this study was to test the role of nodal roots of sorghum and millet in plant growth in response to variation in soil moisture. Sorghum and millet were chosen as both are adapted to dry conditions. Sorghum and millet were grown in a split-pot system that allowed the primary and nodal roots to be watered separately. When primary and nodal roots were watered (12 % soil water content; SWC), millet nodal roots were seven times longer than those of sorghum and six times longer than millet plants in dry treatments, mainly from an 8-fold increase in branch root length. When soil was allowed to dry in both compartments, millet nodal roots responded and grew 20 % longer branch roots than in the well-watered control. Sorghum nodal roots were unchanged. When only primary roots received water, nodal roots of both species emerged and elongated into extremely dry soil (0.6-1.5 % SWC), possibly with phloem-delivered water from the primary roots in the moist inner pot. Nodal roots were thick, short, branchless and vertical, indicating a tropism that was more pronounced in millet. Total nodal root length increased in both species when the dry soil was covered with plastic, suggesting that stubble retention or leaf mulching could facilitate nodal roots reaching deeper moist layers in dry climates. Greater nodal root length in millet than in sorghum was associated with increased shoot biomass, water uptake and water use efficiency (shoot mass per water). Millet had a more plastic response than sorghum to moisture around the nodal roots due to (1) faster growth and progression through ontogeny for earlier nodal root branch length and (2) partitioning to nodal root length from primary roots, independent of shoot size. Nodal and primary roots have distinct responses to soil moisture that depend on species. They can be selected independently in a breeding programme to shape root architecture. A rapid rate of plant development and enhanced responsiveness to local moisture may be traits that favour nodal roots and water use efficiency at no cost to shoot growth.

  18. Characteristics of a root hair-less line of Arabidopsis thaliana under physiological stresses.

    PubMed

    Tanaka, Natsuki; Kato, Mariko; Tomioka, Rie; Kurata, Rie; Fukao, Yoichiro; Aoyama, Takashi; Maeshima, Masayoshi

    2014-04-01

    The plasma membrane-associated Ca(2+)-binding protein-2 of Arabidopsis thaliana is involved in the growth of root hair tips. Several transgenic lines that overexpress the 23 residue N-terminal domain of this protein under the control of the root hair-specific EXPANSIN A7 promoter lack root hairs completely. The role of root hairs under normal and stress conditions was examined in one of these root hair-less lines (NR23). Compared with the wild type, NR23 showed a 47% reduction in water absorption, decreased drought tolerance, and a lower ability to adapt to heat. Growth of NR23 was suppressed in media deficient in phosphorus, iron, calcium, zinc, copper, or potassium. Also, the content of an individual mineral in NR23 grown in normal medium, or in medium lacking a specific mineral, was relatively low. In wild-type plants, the primary and lateral roots produce numerous root hairs that become elongated under phosphate-deficient conditions; NR23 did not produce root hairs. Although several isoforms of the plasma membrane phosphate transporters including PHT1;1-PHT1;6 were markedly induced after growth in phosphate-deficient medium, the levels induced in NR23 were less than half those observed in the wild type. In phosphate-deficient medium, the amounts of acid phosphatase, malate, and citrate secreted from NR23 roots were 38, 9, and 16% of the levels secreted from wild-type roots. The present results suggest that root hairs play significant roles in the absorption of water and several minerals, secretion of acid phosphatase(s) and organic acids, and in penetration of the primary roots into gels.

  19. Combining Enhanced Root and Shoot Growth Reveals Cross Talk between Pathways That Control Plant Organ Size in Arabidopsis1[C][W][OA

    PubMed Central

    Vercruyssen, Liesbeth; Gonzalez, Nathalie; Werner, Tomáš; Schmülling, Thomas; Inzé, Dirk

    2011-01-01

    Functionally distinct Arabidopsis (Arabidopsis thaliana) genes that positively affect root or shoot growth when ectopically expressed were combined to explore the feasibility of enhanced biomass production. Enhanced root growth resulting from cytokinin deficiency was obtained by overexpressing CYTOKININ OXIDASE/DEHYDROGENASE3 (CKX3) under the control of the root-specific PYK10 promoter. Plants harboring the PYK10-CKX3 construct were crossed with four different transgenic lines showing enhanced leaf growth. For all combinations, the phenotypic traits of the individual lines could be combined, resulting in an overall growth increase. Unexpectedly, three out of four combinations had more than additive effects. Both leaf and root growth were synergistically enhanced in plants ectopically expressing CKX3 and BRASSINOSTEROID INSENSITIVE1, indicating cross talk between cytokinins and brassinosteroids. In agreement, treatment of PYK10-CKX3 plants with brassinolide resulted in a dramatic increase in lateral root growth that could not be observed in wild-type plants. Coexpression of CKX3 and the GROWTH-REGULATING FACTOR5 (GRF5) antagonized the effects of GRF5 overexpression, revealing an interplay between cytokinins and GRF5 during leaf cell proliferation. The combined overexpression of CKX3 and GIBBERELLIN 20-OXIDASE1 led to a synergistic increase in leaf growth, suggesting an antagonistic growth control by cytokinins and gibberellins. Only additive effects on root and shoot growth were visible in plants ectopically expressing both CKX3 and ARABIDOPSIS VACUOLAR PYROPHOSPHATASE1, hinting at an independent action mode. Our results show new interactions and contribute to the molecular and physiological understanding of biomass production at the whole plant level. PMID:21205622

  20. Helical Root Buckling: A Transient Mechanism for Stiff Interface Penetration

    NASA Astrophysics Data System (ADS)

    Silverberg, Jesse; Noar, Roslyn; Packer, Michael; Harrison, Maria; Cohen, Itai; Henley, Chris; Gerbode, Sharon

    2011-03-01

    Tilling in agriculture is commonly used to loosen the topmost layer of soil and promote healthy plant growth. As roots navigate this mechanically heterogeneous environment, they encounter interfaces between the compliant soil and the underlying compacted soil. Inspired by this problem, we used 3D time-lapse imaging of Medicago Truncatula plants to study root growth in two-layered transparent hydrogels. The layers are mechanically distinct; the top layer is more compliant than the bottom. We observe that the roots form a transient helical structure as they attempt to penetrate the bi-layer interface. Interpreting this phenotype as a form of buckling due to root elongation, we measured the helix size as a function of the surrounding gel modulus. Our measurements show that by twisting the root tip during growth, the helical structure recruits the surrounding medium for an enhanced penetration force allowing the plants access to the lower layer of gel.

  1. Root hydrotropism is controlled via a cortex-specific growth mechanism.

    PubMed

    Dietrich, Daniela; Pang, Lei; Kobayashi, Akie; Fozard, John A; Boudolf, Véronique; Bhosale, Rahul; Antoni, Regina; Nguyen, Tuan; Hiratsuka, Sotaro; Fujii, Nobuharu; Miyazawa, Yutaka; Bae, Tae-Woong; Wells, Darren M; Owen, Markus R; Band, Leah R; Dyson, Rosemary J; Jensen, Oliver E; King, John R; Tracy, Saoirse R; Sturrock, Craig J; Mooney, Sacha J; Roberts, Jeremy A; Bhalerao, Rishikesh P; Dinneny, José R; Rodriguez, Pedro L; Nagatani, Akira; Hosokawa, Yoichiroh; Baskin, Tobias I; Pridmore, Tony P; De Veylder, Lieven; Takahashi, Hideyuki; Bennett, Malcolm J

    2017-05-08

    Plants can acclimate by using tropisms to link the direction of growth to environmental conditions. Hydrotropism allows roots to forage for water, a process known to depend on abscisic acid (ABA) but whose molecular and cellular basis remains unclear. Here we show that hydrotropism still occurs in roots after laser ablation removed the meristem and root cap. Additionally, targeted expression studies reveal that hydrotropism depends on the ABA signalling kinase SnRK2.2 and the hydrotropism-specific MIZ1, both acting specifically in elongation zone cortical cells. Conversely, hydrotropism, but not gravitropism, is inhibited by preventing differential cell-length increases in the cortex, but not in other cell types. We conclude that root tropic responses to gravity and water are driven by distinct tissue-based mechanisms. In addition, unlike its role in root gravitropism, the elongation zone performs a dual function during a hydrotropic response, both sensing a water potential gradient and subsequently undergoing differential growth.

  2. Root growth restraint can be an acclimatory response to low pH and is associated with reduced cell mortality: a possible role of class III peroxidases and NADPH oxidases.

    PubMed

    Graças, J P; Ruiz-Romero, R; Figueiredo, L D; Mattiello, L; Peres, L E P; Vitorello, V A

    2016-07-01

    Low pH (<5.0) can significantly decrease root growth but whether this is a direct effect of H(+) or an active plant response is examined here. Tomato (Solanum lycopersicum cv Micro-Tom) roots were exposed directly or gradually to low pH through step-wise changes in pH over periods ranging from 4 to 24 h. Roots exposed gradually to pH 4.5 grew even less than those exposed directly, indicating a plant-coordinated response. Direct exposure to pH 4.0 suppressed root growth and caused high cell mortality, in contrast to roots exposed gradually, in which growth remained inhibited but cell viability was maintained. Total class III peroxidase activity increased significantly in all low pH treatments, but was not correlated with the observed differential responses. Use of the enzyme inhibitors salicylhydroxamic acid (SHAM) or diphenyleneiodonium chloride (DPI) suggest that peroxidase and, to a lesser extent, NADPH oxidase were required to prevent or reduce injury in all low pH treatments. However, a role for other enzymes, such as the alternative oxidase is also possible. The results with SHAM, but not DPI, were confirmed in tobacco BY-2 cells. Our results indicate that root growth inhibition from low pH can be part of an active plant response, and suggest that peroxidases may have a critical early role in reducing loss of cell viability and in the observed root growth constraint. © 2016 German Botanical Society and The Royal Botanical Society of the Netherlands.

  3. Root bacterial endophytes alter plant phenotype, but not physiology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henning, Jeremiah A.; Weston, David J.; Pelletier, Dale A.

    Plant traits, such as root and leaf area, influence how plants interact with their environment and the diverse microbiota living within plants can influence plant morphology and physiology. Here, we explored how three bacterial strains isolated from the Populus root microbiome, influenced plant phenotype. Here, we chose three bacterial strains that differed in predicted metabolic capabilities, plant hormone production and metabolism, and secondary metabolite synthesis. We inoculated each bacterial strain on a single genotype of Populus trichocarpa and measured the response of plant growth related traits (root:shoot, biomass production, root and leaf growth rates) and physiological traits (chlorophyll content, netmore » photosynthesis, net photosynthesis at saturating light–A sat, and saturating CO 2–A max). Overall, we found that bacterial root endophyte infection increased root growth rate up to 184% and leaf growth rate up to 137% relative to non-inoculated control plants, evidence that plants respond to bacteria by modifying morphology. However, endophyte inoculation had no influence on total plant biomass and photosynthetic traits (net photosynthesis, chlorophyll content). In sum, bacterial inoculation did not significantly increase plant carbon fixation and biomass, but their presence altered where and how carbon was being allocated in the plant host.« less

  4. Root bacterial endophytes alter plant phenotype, but not physiology

    DOE PAGES

    Henning, Jeremiah A.; Weston, David J.; Pelletier, Dale A.; ...

    2016-11-01

    Plant traits, such as root and leaf area, influence how plants interact with their environment and the diverse microbiota living within plants can influence plant morphology and physiology. Here, we explored how three bacterial strains isolated from the Populus root microbiome, influenced plant phenotype. Here, we chose three bacterial strains that differed in predicted metabolic capabilities, plant hormone production and metabolism, and secondary metabolite synthesis. We inoculated each bacterial strain on a single genotype of Populus trichocarpa and measured the response of plant growth related traits (root:shoot, biomass production, root and leaf growth rates) and physiological traits (chlorophyll content, netmore » photosynthesis, net photosynthesis at saturating light–A sat, and saturating CO 2–A max). Overall, we found that bacterial root endophyte infection increased root growth rate up to 184% and leaf growth rate up to 137% relative to non-inoculated control plants, evidence that plants respond to bacteria by modifying morphology. However, endophyte inoculation had no influence on total plant biomass and photosynthetic traits (net photosynthesis, chlorophyll content). In sum, bacterial inoculation did not significantly increase plant carbon fixation and biomass, but their presence altered where and how carbon was being allocated in the plant host.« less

  5. Waving and skewing: how gravity and the surface of growth media affect root development in Arabidopsis.

    PubMed

    Oliva, Michele; Dunand, Christophe

    2007-01-01

    Arabidopsis seedlings growing on inclined agar surfaces exhibit characteristic root behaviours called 'waving' and 'skewing': the former consists of a series of undulations, whereas the latter is a deviation from the direction of gravity. Even though the precise basis of these growth patterns is not well understood, both gravity and the contact between the medium and the root are considered to be the major players that result in these processes. The influence of these forces on root surface-dependent behaviours can be verified by growing seedlings at different gel pitches: plants growing on vertical plates present roots with slight waving and skewing when compared with seedlings grown on plates held at minor angles of < 90 degrees . However, other factors are thought to modulate root growth on agar; for instance, it has been demonstrated that the presence and concentration of certain compounds in the medium (such as sucrose) and of drugs able to modify the plant cell cytoskeleton also affect skewing and waving. The recent discovery of an active role of ethylene on surface-dependent root behaviour, and the finding of new mutants showing anomalous growth, pave the way for a more detailed description of these phenomena.

  6. N,N-dimethyl hexadecylamine and related amines regulate root morphogenesis via jasmonic acid signaling in Arabidopsis thaliana.

    PubMed

    Raya-González, Javier; Velázquez-Becerra, Crisanto; Barrera-Ortiz, Salvador; López-Bucio, José; Valencia-Cantero, Eduardo

    2017-05-01

    Plant growth-promoting rhizobacteria are natural inhabitants of roots, colonize diverse monocot and dicot species, and affect several functional traits such as root architecture, adaptation to adverse environments, and protect plants from pathogens. N,N-dimethyl-hexadecylamine (C16-DMA) is a rhizobacterial amino lipid that modulates the postembryonic development of several plants, likely as part of volatile blends. In this work, we evaluated the bioactivity of C16-DMA and other related N,N-dimethyl-amines with varied length and found that inhibition of primary root growth was related to the length of the acyl chain. C16-DMA inhibited primary root growth affecting cell division and elongation, while promoting lateral root formation and root hair growth and density in Arabidopsis thaliana (Arabidopsis) wild-type (WT) seedlings. Interestingly, C16-DMA induced the expression of the jasmonic acid (JA)-responsive gene marker pLOX2:uidA, while JA-related mutants jar1, coi1-1, and myc2 affected on JA biosynthesis and perception, respectively, are compromised in C16-DMA responses. Comparison of auxin-regulated gene expression, root architectural changes in WT, and auxin-related mutants aux1-7, tir1/afb2/afb3, and arf7-1/arf19-1 to C16-DMA shows that the C16-DMA effects occur independently of auxin signaling. Together, these results reveal a novel class of aminolipids modulating root organogenesis via crosstalk with the JA signaling pathway.

  7. ARBUSCULAR MYCORRHIZAL COLONIZATION OF LARREA TRIDENTATA AND AMBROSIA DUMOSA ROOTS VARIES WITH PRECIPITATION AND SEASON IN THE MOJAVE DESERT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    M. E. APPLE; C. I. THEE; V. L. SMITH-LONGOZO

    2004-01-01

    The percentage of fine roots colonized by arbuscular mycorrhizal (AM) fungi varied with season and with species in the co-dominant shrubs Lurreu tridentutu and Ambrosia dumosu at a site adjacent to the Nevada Desert FACE (Free-Air CO{sub 2} Enrichment) Facility (NDFF) in the Mojave Desert. We excavated downward and outward from the shrub bases in both species to collect and examine fine roots (< 1.0 mm diameter) at monthly intervals throughout 2001 and from October 2002 to September 2003. Fungal structures became visible in cleared roots stained with trypan blue. We quantified the percent colonization of roots by AM fungimore » via the line intercept method. In both years and for both species, colonization was highest in fall, relatively low in spring when root growth began, increased in late spring, and decreased during summer drought periods. Increases in colonization during summer and fall reflect corresponding increases in precipitation. Spring mycorrhizal colonization is low despite peaks in soil water availability and precipitation, indicating that precipitation is not the only factor influencing mycorrhizal colonization. Because the spring decrease in mycorrhizal colonization occurs when these shrubs initiate a major flush of fine root growth, other phenological events such as competing demands for carbon by fine root initiation, early season shoot growth, and flowering may reduce carbon availability to the fungus, and hence decrease colonization. Another possibility is that root growth exceeds the rate of mycorrhizal colonization.« less

  8. Interference of allelopathic rice with penoxsulam-resistant barnyardgrass.

    PubMed

    Yang, Xue-Fang; Kong, Chui-Hua; Yang, Xia; Li, Yong-Feng

    2017-11-01

    Despite increasing knowledge of allelopathic rice interference with barnyardgrass, relatively little is known about its action on herbicide-resistant barnyardgrass. The incidence of herbicide-resistant barnyardgrass is escalating in paddy fields. Knowledge of the interference of allelopathic rice with herbicide-resistant barnyardgrass and the potential mechanisms involved is warranted. Penoxsulam-resistant and -susceptible barnyardgrass biotypes were identified and segregated from a putative penoxsulam-resistant population occurring in paddy fields in China. Allelopathic rice inhibited the growth of barnyardgrass roots more than shoots, regardless of biotype. In particular, there was a stronger inhibition for resistant barnyardgrass than for susceptible barnyardgrass. Allelopathic rice significantly reduced total root length, total root area, maximum root amplitude and maximum root depth in barnyardgrass. Furthermore, the rice allelochemicals tricin and momilactone B inhibited the growth of both resistant and susceptible barnyardgrass. Compared with root contact, root segregation significantly increased inhibition of barnyardgrass with an increase in rice allelochemicals. Root exudates from barnyardgrass induced the production of rice allelochemicals, but the effect of susceptible barnyardgrass was much stronger than that of resistant barnyardgrass. Allelopathic rice can interfere with the growth of penoxsulam-resistant barnyardgrass through allelochemical-mediated root interactions. This type of allelopathic interference may provide a non-herbicidal alternative for herbicide-resistant weed management in paddy systems. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  9. Salt Stress Reduces Root Meristem Size by Nitric Oxide-Mediated Modulation of Auxin Accumulation and Signaling in Arabidopsis1[OPEN

    PubMed Central

    Liu, Wen; Li, Rong-Jun; Han, Tong-Tong; Cai, Wei; Fu, Zheng-Wei

    2015-01-01

    The development of the plant root system is highly plastic, which allows the plant to adapt to various environmental stresses. Salt stress inhibits root elongation by reducing the size of the root meristem. However, the mechanism underlying this process remains unclear. In this study, we explored whether and how auxin and nitric oxide (NO) are involved in salt-mediated inhibition of root meristem growth in Arabidopsis (Arabidopsis thaliana) using physiological, pharmacological, and genetic approaches. We found that salt stress significantly reduced root meristem size by down-regulating the expression of PINFORMED (PIN) genes, thereby reducing auxin levels. In addition, salt stress promoted AUXIN RESISTANT3 (AXR3)/INDOLE-3-ACETIC ACID17 (IAA17) stabilization, which repressed auxin signaling during this process. Furthermore, salt stress stimulated NO accumulation, whereas blocking NO production with the inhibitor Nω-nitro-l-arginine-methylester compromised the salt-mediated reduction of root meristem size, PIN down-regulation, and stabilization of AXR3/IAA17, indicating that NO is involved in salt-mediated inhibition of root meristem growth. Taken together, these findings suggest that salt stress inhibits root meristem growth by repressing PIN expression (thereby reducing auxin levels) and stabilizing IAA17 (thereby repressing auxin signaling) via increasing NO levels. PMID:25818700

  10. Nitric oxide mediates alginate oligosaccharides-induced root development in wheat (Triticum aestivum L.).

    PubMed

    Zhang, Yunhong; Liu, Hang; Yin, Heng; Wang, Wenxia; Zhao, Xiaoming; Du, Yuguang

    2013-10-01

    Alginate oligosaccharides (AOS), which are marine oligosaccharides, are involved in regulating plant root growth, but the promotion mechanism for AOS remains unclear. Here, AOS (10-80 mg L(-1)) were found to induce the generation of nitric oxide (NO) in the root system of wheat (Triticum aestivum L.), which promoted the formation and elongation of wheat roots in a dose-dependent manner. NO inhibitors suggested that nitrate reductase (NR), rather than nitric oxide synthase (NOS), was essential for AOS-induced root development. Further studies confirmed that AOS-induced NO generation in wheat roots by up-regulating the gene expression and enzyme activity of NR at the post-transcriptional level. The anatomy and RT-PCR results showed that AOS accelerated the division and growth of stele cells, leading to an increase in the ratio of stele area to root transverse area. This could be inhibited by the NR inhibitor, sodium tungstate, which indicated that NO catalyzed by the NR was involved in AOS regulation of root development. Taken together, in the early stage of AOS-induced root development, NO generation was a novel mechanism by which AOS regulated plant growth. The results also showed that this marine resource could be widely used for crop development. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  11. A new phenotyping pipeline reveals three types of lateral roots and a random branching pattern in two cereals.

    PubMed

    Passot, Sixtine; Moreno-Ortega, Beatriz; Moukouanga, Daniel; Balsera, Crispulo; Guyomarc'h, Soazig; Lucas, Mikael; Lobet, Guillaume; Laplaze, Laurent; Muller, Bertrand; Guédon, Yann

    2018-05-11

    Recent progress in root phenotyping has focused mainly on increasing throughput for genetic studies while identifying root developmental patterns has been comparatively underexplored. We introduce a new phenotyping pipeline for producing high-quality spatio-temporal root system development data and identifying developmental patterns within these data. The SmartRoot image analysis system and temporal and spatial statistical models were applied to two cereals, pearl millet (Pennisetum glaucum) and maize (Zea mays). Semi-Markov switching linear models were used to cluster lateral roots based on their growth rate profiles. These models revealed three types of lateral roots with similar characteristics in both species. The first type corresponds to fast and accelerating roots, the second to rapidly arrested roots, and the third to an intermediate type where roots cease elongation after a few days. These types of lateral roots were retrieved in different proportions in a maize mutant affected in auxin signaling, while the first most vigorous type was absent in maize plants exposed to severe shading. Moreover, the classification of growth rate profiles was mirrored by a ranking of anatomical traits in pearl millet. Potential dependencies in the succession of lateral root types along the primary root were then analyzed using variable-order Markov chains. The lateral root type was not influenced by the shootward neighbor root type or by the distance from this root. This random branching pattern of primary roots was remarkably conserved, despite the high variability of root systems in both species. Our phenotyping pipeline opens the door to exploring the genetic variability of lateral root developmental patterns. {copyright, serif} 2018 American Society of Plant Biologists. All rights reserved.

  12. Volatile Compound-Mediated Interactions between Barley and Pathogenic Fungi in the Soil

    PubMed Central

    Fiers, Marie; Lognay, Georges; Fauconnier, Marie-Laure; Jijakli, M. Haïssam

    2013-01-01

    Plants are able to interact with their environment by emitting volatile organic compounds. We investigated the volatile interactions that take place below ground between barley roots and two pathogenic fungi, Cochliobolus sativus and Fusarium culmorum. The volatile molecules emitted by each fungus, by non-infected barley roots and by barley roots infected with one of the fungi or the two of them were extracted by head-space solid phase micro extraction and analyzed by gas chromatography mass spectrometry. The effect of fungal volatiles on barley growth and the effect of barley root volatiles on fungal growth were assessed by cultivating both organisms in a shared atmosphere without any physical contact. The results show that volatile organic compounds, especially terpenes, are newly emitted during the interaction between fungi and barley roots. The volatile molecules released by non-infected barley roots did not significantly affect fungal growth, whereas the volatile molecules released by pathogenic fungi decreased the length of barley roots by 19 to 21.5% and the surface of aerial parts by 15%. The spectrum of the volatiles released by infected barley roots had no significant effect on F. culmorum growth, but decreased C. sativus growth by 13 to 17%. This paper identifies the volatile organic compounds emitted by two pathogenic fungi and shows that pathogenic fungi can modify volatile emission by infected plants. Our results open promising perspectives concerning the biological control of edaphic diseases. PMID:23818966

  13. Hyperaccumulation of cadmium by hairy roots of Thlaspi caerulescens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nedelkoska, T.V.; Doran, P.M.

    Hairy roots were used to investigate cadmium uptake by Thlaspi caerulescens, a metal hyperaccumulator plant with potential applications in phytoremediation and phytomining. Experiments were carried out in nutrient media under conditions supporting root growth. Accumulation of Cd in short-term (9-h) experiments varied with initial medium pH and increased after treating the roots with H{sup +}-ATPase inhibitor. The highest equilibrium Cd content measured in T. caerulescens roots was 62,800 {micro}g g{sup {minus}1} dry weight, or 6.3% dry weight, at a liquid Cd concentration of 3,710 ppm. Cd levels in live T. caerulescens roots were 1.5- to 1.7-fold those in hairy rootsmore » of nonhyperaccumulator species exposed to the same Cd concentration, but similar to the Cd content of auto-claved T. caerulescens roots. The ability to grow at Cd concentrations of up to 100 ppm clearly distinguished T. caerulescens hairy roots from the nonhyperaccumulators. The specific growth rate of T. caerulescens roots was essentially unaffected by 20 to 50 ppm Cd in the culture medium; in contrast, N. tabacum roots turned dark brown at 20 ppm and growth was negligible. Up to 10,600 {micro}g g{sup {minus}1} dry weight Cd was accumulated by growing T. caerulescens hairy roots. Measurement of Cd levels in while roots and in the cell wall fraction revealed significant differences in the responses of T. caerulescens and N. tabacum roots to 20 ppm Cd. Most metal was transported directly into the symplasm of N. tabacum roots within 3 days of exposure; in contrast, T. caerulescens roots stored virtually all of their Cd in the wall fraction for the first 7 to 10 days. This delay in transmembrane uptake may represent an important defensive strategy against Cd poisoning in T. caerulescens, allowing time for activation of intracellular mechanisms for heavy metal detoxification.« less

  14. Linking carbon supply to root cell-wall chemistry and mechanics at high altitudes in Abies georgei

    PubMed Central

    Genet, Marie; Li, Mingcai; Luo, Tianxiang; Fourcaud, Thierry; Clément-Vidal, Anne; Stokes, Alexia

    2011-01-01

    Background and Aims The mobile carbon supply to different compartments of a tree is affected by climate, but its impact on cell-wall chemistry and mechanics remains unknown. To understand better the variability in root growth and biomechanics in mountain forests subjected to substrate mass movement, we investigated root chemical and mechanical properties of mature Abies georgei var. smithii (Smith fir) growing at different elevations on the Tibet–Qinghai Plateau. Methods Thin and fine roots (0·1–4·0 mm in diameter) were sampled at three different elevations (3480, 3900 and 4330 m, the last corresponding to the treeline). Tensile resistance of roots of different diameter classes was measured along with holocellulose and non-structural carbon (NSC) content. Key Results The mean force necessary to break roots in tension decreased significantly with increasing altitude and was attributed to a decrease in holocellulose content. Holocellulose was significantly lower in roots at the treeline (29·5 ± 1·3 %) compared with those at 3480 m (39·1 ± 1·0 %). Roots also differed significantly in NSC, with 35·6 ± 4·1 mg g−1 dry mass of mean total soluble sugars in roots at 3480 m and 18·8 ± 2·1 mg g−1 dry mass in roots at the treeline. Conclusions Root mechanical resistance, holocellulose and NSC content all decreased with increasing altitude. Holocellulose is made up principally of cellulose, the biosynthesis of which depends largely on NSC supply. Plants synthesize cellulose when conditions are optimal and NSC is not limiting. Thus, cellulose synthesis in the thin and fine roots measured in our study is probably not a priority in mature trees growing at very high altitudes, where climatic factors will be limiting for growth. Root NSC stocks at the treeline may be depleted through over-demand for carbon supply due to increased fine root production or winter root growth. PMID:21186240

  15. From experiments to simulations: tracing Na+ distribution around roots under different transpiration rates and salinity levels

    NASA Astrophysics Data System (ADS)

    Perelman, Adi; Jorda, Helena; Vanderborght, Jan; Pohlmeier, Andreas; Lazarovitch, Naftali

    2017-04-01

    When salinity increases beyond a certain threshold it will result in reduced crop yield at a fixed rate, according to Maas and Hoffman model (1976). Thus, there is a great importance of predicting salinization and its impact on crops. Current models do not consider the impact of environmental conditions on plants salt tolerance, even though these conditions are affecting plant water uptake and therefore salt accumulation around the roots. Different factors, such as transpiration rates, can influence the plant sensitivity to salinity by influencing salt concentrations around the roots. Better parametrization of a model can help improving predicting the real effects of salinity on crop growth and yield. The aim of this research is to study Na+ distribution around roots at different scales using different non-invasive methods, and study how this distribution is being affected by transpiration rate and plant water uptake. Results from tomato plants growing on Rhizoslides (capillary paper growth system), show that Na+ concentration is higher at the root- substrate interface, compared with the bulk. Also, Na+ accumulation around the roots decreased under low transpiration rate, which is supporting our hypothesis. Additionally, Rhizoslides enable to study roots' growth rate and architecture under different salinity levels. Root system architecture was retrieved from photos taken during the experiment and enabled us to incorporate real root systems into a simulation. To observe the correlation of root system architectures and Na+ distribution in three dimensions, we used magnetic resonance imaging (MRI). MRI provides fine resolution of Na+ accumulation around a single root without disturbing the root system. With time, Na+ was accumulating only where roots were found in the soil and later on around specific roots. These data are being used for model calibration, which is expected to predict root water uptake in saline soils for different climatic conditions and different soil water availabilities.

  16. A Soil-Plate Based Pipeline for Assessing Cereal Root Growth in Response to Polyethylene Glycol (PEG)-Induced Water Deficit Stress

    PubMed Central

    Nelson, Sven K.; Oliver, Melvin J.

    2017-01-01

    Drought is a serious problem that causes losses in crop-yield every year, but the mechanisms underlying how roots respond to water deficit are difficult to study under controlled conditions. Methods for assaying root elongation and architecture, especially for seedlings, are commonly achieved on artificial media, such as agar, moistened filter paper, or in hydroponic systems. However, it has been demonstrated that measuring root characteristics under such conditions does not accurately mimic what is observed when plants are grown in soil. Morphological changes in root behavior occur because of differences in solute diffusion, mechanical impedance, exposure to light (in some designs), and gas exchange of roots grown under these conditions. To address such deficiencies, we developed a quantitative method for assaying seedling root lengths and germination in soil using a plate-based approach with wheat as a model crop. We also further developed the method to include defined water deficits stress levels using the osmotic properties of polyethylene glycol (PEG). Seeds were sown into soil-filled vertical plates and grown in the dark. Root length measurements were collected using digital photography through the transparent lid under green lighting to avoid effects of white light exposure on growth. Photographs were analyzed using the cross-platform ImageJ plugin, SmartRoot, which can detect root edges and partially automate root detection for extraction of lengths. This allowed for quick measurements and straightforward and accurate assessments of non-linear roots. Other measurements, such as root width or angle, can also be collected by this method. An R function was developed to collect exported root length data, process and reformat the data, and output plots depicting root/shoot growth dynamics. For water deficit experiments, seedlings were transplanted side-by-side into well-watered plates and plates containing PEG solutions to simulate precise water deficits. PMID:28785272

  17. A Soil-Plate Based Pipeline for Assessing Cereal Root Growth in Response to Polyethylene Glycol (PEG)-Induced Water Deficit Stress.

    PubMed

    Nelson, Sven K; Oliver, Melvin J

    2017-01-01

    Drought is a serious problem that causes losses in crop-yield every year, but the mechanisms underlying how roots respond to water deficit are difficult to study under controlled conditions. Methods for assaying root elongation and architecture, especially for seedlings, are commonly achieved on artificial media, such as agar, moistened filter paper, or in hydroponic systems. However, it has been demonstrated that measuring root characteristics under such conditions does not accurately mimic what is observed when plants are grown in soil. Morphological changes in root behavior occur because of differences in solute diffusion, mechanical impedance, exposure to light (in some designs), and gas exchange of roots grown under these conditions. To address such deficiencies, we developed a quantitative method for assaying seedling root lengths and germination in soil using a plate-based approach with wheat as a model crop. We also further developed the method to include defined water deficits stress levels using the osmotic properties of polyethylene glycol (PEG). Seeds were sown into soil-filled vertical plates and grown in the dark. Root length measurements were collected using digital photography through the transparent lid under green lighting to avoid effects of white light exposure on growth. Photographs were analyzed using the cross-platform ImageJ plugin, SmartRoot, which can detect root edges and partially automate root detection for extraction of lengths. This allowed for quick measurements and straightforward and accurate assessments of non-linear roots. Other measurements, such as root width or angle, can also be collected by this method. An R function was developed to collect exported root length data, process and reformat the data, and output plots depicting root/shoot growth dynamics. For water deficit experiments, seedlings were transplanted side-by-side into well-watered plates and plates containing PEG solutions to simulate precise water deficits.

  18. Evolutionary potential of root chemical defense: genetic correlations with shoot chemistry and plant growth.

    PubMed

    Parker, J D; Salminen, J-P; Agrawal, Anurag A

    2012-08-01

    Root herbivores can affect plant fitness, and roots often contain the same secondary metabolites that act as defenses in shoots, but the ecology and evolution of root chemical defense have been little investigated. Here, we investigated genetic variance, heritability, and correlations among defensive phenolic compounds in shoot vs. root tissues of common evening primrose, Oenothera biennis. Across 20 genotypes, there were roughly similar concentrations of total phenolics in shoots vs. roots, but the allocation of particular phenolics to shoots vs. roots varied along a continuum of genotype growth rate. Slow-growing genotypes allocated 2-fold more of the potential pro-oxidant oenothein B to shoots than roots, whereas fast-growing genotypes had roughly equivalent above and belowground concentrations. Phenolic concentrations in both roots and shoots were strongly heritable, with mostly positive patterns of genetic covariation. Nonetheless, there was genotype-specific variation in the presence/absence of two major ellagitannins (oenothein A and its precursor oenothein B), indicating two different chemotypes based on alterations in this chemical pathway. Overall, the presence of strong genetic variation in root defenses suggests ample scope for the evolution of these compounds as defenses against root herbivores.

  19. Rooting of needle fascicles from western white pine seedlings

    Treesearch

    Ramond J. Hoff; Geral I. McDonald

    1968-01-01

    In one test, 45 out of 318 (14 percent) needle fascicles from 2-year-old seedlings of Pinus monticola Dougl. were rooted. Eight of the needle fascicles produced shoot growth. In another test, 392 out of 742 (53 percent) needle fascicles were rooted, but none of these produced shoot growth.

  20. Phytochrome mediates red-light-based positive phototropism in Arabidopsis roots

    NASA Astrophysics Data System (ADS)

    Correll, M.; Mullen, J.; Hangarter, R.; Kiss, J.

    Plants rely on sophisticated mechanisms to interpret the constant bombardment of incoming signals so they can adjust their growth accordingly. The environmental cues of gravity and light are particularly important for plant growth and development. While gravitropism has been extensively studied in roots, there has been increased emphasis on understanding the cellular and molecular basis of root phototropism. In addition to the blue-light-based negative phototropism, roots also exhibit a recently discovered positive phototropism in response to red light. In this paper, we characterize this red-light-based phototropism in roots of Arabidopsis.

  1. Native root xylem embolism and stomatal closure in stands of Douglas-fir and ponderosa pine: mitigation by hydraulic redistribution.

    PubMed

    Domec, J-C; Warren, J M; Meinzer, F C; Brooks, J R; Coulombe, R

    2004-09-01

    Hydraulic redistribution (HR), the passive movement of water via roots from moist to drier portions of the soil, occurs in many ecosystems, influencing both plant and ecosystem-water use. We examined the effects of HR on root hydraulic functioning during drought in young and old-growth Douglas-fir [ Pseudotsuga menziesii (Mirb.) Franco] and ponderosa pine ( Pinus ponderosa Dougl. Ex Laws) trees growing in four sites. During the 2002 growing season, in situ xylem embolism, water deficit and xylem vulnerability to embolism were measured on medium roots (2-4-mm diameter) collected at 20-30 cm depth. Soil water content and water potentials were monitored concurrently to determine the extent of HR. Additionally, the water potential and stomatal conductance ( g(s)) of upper canopy leaves were measured throughout the growing season. In the site with young Douglas-fir trees, root embolism increased from 20 to 55 percent loss of conductivity (PLC) as the dry season progressed. In young ponderosa pine, root embolism increased from 45 to 75 PLC. In contrast, roots of old-growth Douglas-fir and ponderosa pine trees never experienced more than 30 and 40 PLC, respectively. HR kept soil water potential at 20-30 cm depth above -0.5 MPa in the old-growth Douglas-fir site and -1.8 MPa in the old-growth ponderosa pine site, which significantly reduced loss of shallow root function. In the young ponderosa pine stand, where little HR occurred, the water potential in the upper soil layers fell to about -2.8 MPa, which severely impaired root functioning and limited recovery when the fall rains returned. In both species, daily maximum g(s) decreased linearly with increasing root PLC, suggesting that root xylem embolism acted in concert with stomata to limit water loss, thereby maintaining minimum leaf water potential above critical values. HR appears to be an important mechanism for maintaining shallow root function during drought and preventing total stomatal closure.

  2. Root Damage under Alkaline Stress Is Associated with Reactive Oxygen Species Accumulation in Rice (Oryza sativa L.)

    PubMed Central

    Zhang, Hui; Liu, Xiao-Long; Zhang, Rui-Xue; Yuan, Hai-Yan; Wang, Ming-Ming; Yang, Hao-Yu; Ma, Hong-Yuan; Liu, Duo; Jiang, Chang-Jie; Liang, Zheng-Wei

    2017-01-01

    Alkaline stress (high pH) severely damages root cells, and consequently, inhibits rice (Oryza sativa L.) seedling growth. In this study, we demonstrate the accumulation of reactive oxygen species (ROS) in root cells under alkaline stress. Seedlings of two rice cultivars with different alkaline tolerances, ‘Dongdao-4’ (moderately alkaline-tolerant) and ‘Jiudao-51’ (alkaline-sensitive), were subjected to alkaline stress simulated by 15 mM sodium carbonate (Na2CO3). Alkaline stress greatly reduced seedling survival rate, shoot and root growth, and root vigor. Moreover, severe root cell damage was observed under alkaline stress, as shown by increased membrane injury, malondialdehyde accumulation, and Evan’s Blue staining. The expression of the cell death-related genes OsKOD1, OsHsr203j, OsCP1, and OsNAC4 was consistently upregulated, while that of a cell death-suppressor gene, OsBI1, was downregulated. Analysis of the ROS contents revealed that alkaline stress induced a marked accumulation of superoxide anions (O2•-) and hydrogen peroxide (H2O2) in rice roots. The application of procyanidins (a potent antioxidant) to rice seedlings 24 h prior to alkaline treatment significantly alleviated alkalinity-induced root damage and promoted seedling growth inhibition, which were concomitant with reduced ROS accumulation. These results suggest that root cell damage, and consequently growth inhibition, of rice seedlings under alkaline stress is closely associated with ROS accumulation. The antioxidant activity of superoxide dismutase, catalase, peroxidase, and ascorbate peroxidase increased under alkaline stress in the roots, probably in response to the cellular damage induced by oxidative stress. However, this response mechanism may be overwhelmed by the excess ROS accumulation observed under stress, resulting in oxidative damage to root cells. Our findings provide physiological insights into the molecular mechanisms of alkalinity-induced damage to root cells, and will contribute to the improvement of alkaline stress tolerance in rice plants. PMID:28943882

  3. Root Damage under Alkaline Stress Is Associated with Reactive Oxygen Species Accumulation in Rice (Oryza sativa L.).

    PubMed

    Zhang, Hui; Liu, Xiao-Long; Zhang, Rui-Xue; Yuan, Hai-Yan; Wang, Ming-Ming; Yang, Hao-Yu; Ma, Hong-Yuan; Liu, Duo; Jiang, Chang-Jie; Liang, Zheng-Wei

    2017-01-01

    Alkaline stress (high pH) severely damages root cells, and consequently, inhibits rice ( Oryza sativa L.) seedling growth. In this study, we demonstrate the accumulation of reactive oxygen species (ROS) in root cells under alkaline stress. Seedlings of two rice cultivars with different alkaline tolerances, 'Dongdao-4' (moderately alkaline-tolerant) and 'Jiudao-51' (alkaline-sensitive), were subjected to alkaline stress simulated by 15 mM sodium carbonate (Na 2 CO 3 ). Alkaline stress greatly reduced seedling survival rate, shoot and root growth, and root vigor. Moreover, severe root cell damage was observed under alkaline stress, as shown by increased membrane injury, malondialdehyde accumulation, and Evan's Blue staining. The expression of the cell death-related genes OsKOD1 , OsHsr203j , OsCP1 , and OsNAC4 was consistently upregulated, while that of a cell death-suppressor gene, OsBI1 , was downregulated. Analysis of the ROS contents revealed that alkaline stress induced a marked accumulation of superoxide anions ([Formula: see text]) and hydrogen peroxide (H 2 O 2 ) in rice roots. The application of procyanidins (a potent antioxidant) to rice seedlings 24 h prior to alkaline treatment significantly alleviated alkalinity-induced root damage and promoted seedling growth inhibition, which were concomitant with reduced ROS accumulation. These results suggest that root cell damage, and consequently growth inhibition, of rice seedlings under alkaline stress is closely associated with ROS accumulation. The antioxidant activity of superoxide dismutase, catalase, peroxidase, and ascorbate peroxidase increased under alkaline stress in the roots, probably in response to the cellular damage induced by oxidative stress. However, this response mechanism may be overwhelmed by the excess ROS accumulation observed under stress, resulting in oxidative damage to root cells. Our findings provide physiological insights into the molecular mechanisms of alkalinity-induced damage to root cells, and will contribute to the improvement of alkaline stress tolerance in rice plants.

  4. Plant Growth Research for Food Production: Development and Testing of Expandable Tuber Growth Module

    NASA Technical Reports Server (NTRS)

    Cordova, Brennan A.

    2017-01-01

    Controlled and reliable growth of a variety of vegetable crops is an important capability for manned deep space exploration systems for providing nutritional supplementation and psychological benefits to crew members. Because current systems have been limited to leafy vegetables that require minimal root space, a major goal for these systems is to increase their ability to grow new types of crops, including tuber plants and root vegetables that require a large root space. An expandable root zone module and housing was developed to integrate this capability into the Veggie growth system. The expandable module uses a waterproof, gas-permeable bag with a structure that allows for root space to increase vertically throughout the growth cycle to accommodate for expanding tuber growth, while minimizing the required media mass. Daikon radishes were chosen as an ideal tuber crop for their subterraneous tuber size and rapid growth cycle, and investigations were done to study expanding superabsorbent hydrogels as a potential growth media. These studies showed improved water retention, but restricted oxygen availability to roots with pure gel media. It was determined that these hydrogels could be integrated in lower proportions into standard soil to achieve media expansion and water retention desired. Using the constructed module prototype and ideal gel and soil media mixture, Daikon radishes were grown in the system to test the capability and success of the system through a full growth cycle.

  5. EFFECTS OF OZONE ON ROOT PROCESSES

    EPA Science Inventory

    Ozone alters root growth and root processes by first reducing photosynthesis and altering foliar metabolic pathways. The alteration in foliar metabolism is reflected in lowered carbohydrate levels in the roots. This can reduce key metabolic processes such as mineral uptake and sy...

  6. Influence of Explant Position on Growth of Talinum paniculatum Gaertn. Adventitious Root in Solid Medium and Enhance Production Biomass in Balloon Type Bubble Bioreactor

    NASA Astrophysics Data System (ADS)

    Solim, M. H.; Kristanti, A. N.; Manuhara, Y. S. W.

    2017-03-01

    Talinum paniculatum Gaertn. is one of traditional medicinal plant in Indonesia as an aphrodisiac. This plant has various compounds which is accumulated in roots. In vitro culture of this plant can enhance production of adventitious roots. The aim of this research was to know the influence of explants position on growth of T. paniculatum Gaertn. adventitious root in MS solid medium and enhance the production of biomass in balloon type bubble bioreactor. Explants from leaf were cultured at abaxial and adaxial positions in solid MS medium supplemented with IBA 2 mgL-1. Adventitious roots were cultured in bioreactor with various treatments (without IBA, supplemented with IBA 2 mgL-1 and supplemented with IBA 2 mgL-1 + buffer NaHCO3). Result showed that the main growth of abaxial root was higher than adaxial, however, the total of adaxial root branch was higher than abaxial. The highest biomass production of adventitious root cultured was achieved by MS medium supplemented with IBA 2 mgL-1 + buffer NaHCO3. This treatment has produced fresh biomass two fold of initial inoculum.

  7. Automated Root Tracking with "Root System Analyzer"

    NASA Astrophysics Data System (ADS)

    Schnepf, Andrea; Jin, Meina; Ockert, Charlotte; Bol, Roland; Leitner, Daniel

    2015-04-01

    Crucial factors for plant development are water and nutrient availability in soils. Thus, root architecture is a main aspect of plant productivity and needs to be accurately considered when describing root processes. Images of root architecture contain a huge amount of information, and image analysis helps to recover parameters describing certain root architectural and morphological traits. The majority of imaging systems for root systems are designed for two-dimensional images, such as RootReader2, GiA Roots, SmartRoot, EZ-Rhizo, and Growscreen, but most of them are semi-automated and involve mouse-clicks in each root by the user. "Root System Analyzer" is a new, fully automated approach for recovering root architectural parameters from two-dimensional images of root systems. Individual roots can still be corrected manually in a user interface if required. The algorithm starts with a sequence of segmented two-dimensional images showing the dynamic development of a root system. For each image, morphological operators are used for skeletonization. Based on this, a graph representation of the root system is created. A dynamic root architecture model helps to determine which edges of the graph belong to an individual root. The algorithm elongates each root at the root tip and simulates growth confined within the already existing graph representation. The increment of root elongation is calculated assuming constant growth. For each root, the algorithm finds all possible paths and elongates the root in the direction of the optimal path. In this way, each edge of the graph is assigned to one or more coherent roots. Image sequences of root systems are handled in such a way that the previous image is used as a starting point for the current image. The algorithm is implemented in a set of Matlab m-files. Output of Root System Analyzer is a data structure that includes for each root an identification number, the branching order, the time of emergence, the parent identification number, the distance between branching point to the parent root base, the root length, the root radius and the nodes that belong to each individual root path. This information is relevant for the analysis of dynamic root system development as well as the parameterisation of root architecture models. Here, we show results of Root System Analyzer applied to analyse the root systems of wheat plants grown in rhizotrons. Different treatments with respect to soil moisture and apatite concentrations were used to test the effects of those conditions on root system development. Photographs of the root systems were taken at high spatial and temporal resolution and root systems are automatically tracked.

  8. Influences of canopy photosynthesis and summer rain pulses on root dynamics and soil respiration in a young ponderosa pine forest.

    PubMed

    Misson, Laurent; Gershenson, Alexander; Tang, Jianwu; McKay, Megan; Cheng, Weixin; Goldstein, Allen

    2006-07-01

    Our first objective was to link the seasonality of fine root dynamics with soil respiration in a ponderosa pine (Pinus ponderosa P. & C. Lawson) plantation located in the Sierra Nevada of California. The second objective was to examine how canopy photosynthesis influences fine root initiation, growth and mortality in this ecosystem. We compared CO2 flux measurements with aboveground and belowground root dynamics. Initiation of fine root growth coincided with tree stem thickening and shoot elongation, preceding new needle growth. In the spring, root, shoot and stem growth occurred simultaneously with the increase in canopy photosynthesis. Compared with the other tree components, initial growth rate of fine roots was the highest and their growing period was the shortest. Both above and belowground components completed 90% of their growth by the end of July and the growing season lasted approximately 80 days. The period for optimal growth is short at the study site because of low soil temperatures during winter and low soil water content during summer. High photosynthetic rates were observed following unusual late-summer rains, but tree growth did not resume. The autotrophic contribution to soil respiration was 49% over the whole season, with daily contributions ranging between 18 and 87%. Increases in soil and ecosystem respiration were observed during spring growth; however, the largest variation in soil respiration occurred during summer rain events when no growth was observed. Both the magnitude and persistence of the soil respiration pulses were positively correlated with the amount of rain. These pulses accounted for 16.5% of soil respiration between Days 130 and 329.

  9. Cavity size and copper root pruning affect production and establishment of container-grown longleaf pine seedlings

    Treesearch

    Marry Anne Sword Sayer; James D. Haywood; Shi-Jean Susana Sung

    2009-01-01

    With six container types, we tested the effects of cavity size (i.e., 60, 93, and 170 ml) and copper root pruning on the root system development of longleaf pine (Pinus palustris Mill.) seedlings grown in a greenhouse. We then evaluated root egress during a root growth potential test and assessed seedling morphology and root system development 1 year after planting in...

  10. Shoot- and root-borne cytokinin influences arbuscular mycorrhizal symbiosis.

    PubMed

    Cosme, Marco; Ramireddy, Eswarayya; Franken, Philipp; Schmülling, Thomas; Wurst, Susanne

    2016-10-01

    The arbuscular mycorrhizal (AM) symbiosis is functionally important for the nutrition and growth of most terrestrial plants. Nearly all phytohormones are employed by plants to regulate the symbiosis with AM fungi, but the regulatory role of cytokinin (CK) is not well understood. Here, we used transgenic tobacco (Nicotiana tabacum) with a root-specific or constitutive expression of CK-degrading CKX genes and the corresponding wild-type to investigate whether a lowered content of CK in roots or in both roots and shoots influences the interaction with the AM fungus Rhizophagus irregularis. Our data indicates that shoot CK has a positive impact on AM fungal development in roots and on the root transcript level of an AM-responsive phosphate transporter gene (NtPT4). A reduced CK content in roots caused shoot and root growth depression following AM colonization, while neither the uptake of phosphorus or nitrogen nor the root transcript levels of NtPT4 were significantly affected. This suggests that root CK may restrict the C availability from the roots to the fungus thus averting parasitism by AM fungi. Taken together, our study indicates that shoot- and root-borne CK have distinct roles in AM symbiosis. We propose a model illustrating how plants may employ CK to regulate nutrient exchange with the ubiquitous AM fungi.

  11. Water Deficit Enhances C Export to the Roots in Arabidopsis thaliana Plants with Contribution of Sucrose Transporters in Both Shoot and Roots1[OPEN

    PubMed Central

    Durand, Mickaël; Porcheron, Benoît; Maurousset, Laurence; Lemoine, Rémi; Pourtau, Nathalie

    2016-01-01

    Root high plasticity is an adaptation to its changing environment. Water deficit impairs growth, leading to sugar accumulation in leaves, part of which could be available to roots via sucrose (Suc) phloem transport. Phloem loading is widely described in Arabidopsis (Arabidopsis thaliana), while unloading in roots is less understood. To gain information on leaf-to-root transport, a soil-based culture system was developed to monitor root system architecture in two dimensions. Under water deficit (50% of soil water-holding capacity), total root length was strongly reduced but the depth of root foraging and the shape of the root system were less affected, likely to improve water uptake. 14CO2 pulse-chase experiments confirmed that water deficit enhanced carbon (C) export to the roots, as suggested by the increased root-to-shoot ratio. The transcript levels of AtSWEET11 (for sugar will eventually be exported transporter), AtSWEET12, and AtSUC2 (for Suc carrier) genes, all three involved in Suc phloem loading, were significantly up-regulated in leaves of water deficit plants, in accordance with the increase in C export from the leaves to the roots. Interestingly, the transcript levels of AtSUC2 and AtSWEET11 to AtSWEET15 were also significantly higher in stressed roots, underlying the importance of Suc apoplastic unloading in Arabidopsis roots and a putative role for these Suc transporters in Suc unloading. These data demonstrate that, during water deficit, plants respond to growth limitation by allocating relatively more C to the roots to maintain an efficient root system and that a subset of Suc transporters is potentially involved in the flux of C to and in the roots. PMID:26802041

  12. The Roots of Plantation Cottonwood: Their Characteristics and Properties

    Treesearch

    John K. Francis

    1985-01-01

    The root biomass and its distribution and the growth rate of roots of pulpwood-size cottonwood (Popolus deltoides) in plantations were estimated by excavation and sampling. About 27 percent of the total biomass was in root tissue. Equations for predicting stump-taproot dry weight from d.b.h. and top dry weight were derived. Lateral roots in two...

  13. Overexpression of Arabidopsis Plasmodesmata Germin-Like Proteins Disrupts Root Growth and Development[C][W

    PubMed Central

    Ham, Byung-Kook; Li, Gang; Kang, Byung-Ho; Zeng, Fanchang; Lucas, William J.

    2012-01-01

    In plants, a population of non-cell-autonomous proteins (NCAPs), including numerous transcription factors, move cell to cell through plasmodesmata (PD). In many cases, the intercellular trafficking of these NCAPs is regulated by their interaction with specific PD components. To gain further insight into the functions of this NCAP pathway, coimmunoprecipitation experiments were performed on a tobacco (Nicotiana tabacum) plasmodesmal-enriched cell wall protein preparation using as bait the NCAP, pumpkin (Cucurbita maxima) PHLOEM PROTEIN16 (Cm-PP16). A Cm-PP16 interaction partner, Nt-PLASMODESMAL GERMIN-LIKE PROTEIN1 (Nt-PDGLP1) was identified and shown to be a PD-located component. Arabidopsis thaliana putative orthologs, PDGLP1 and PDGLP2, were identified; expression studies indicated that, postgermination, these proteins were preferentially expressed in the root system. The PDGLP1 signal peptide was shown to function in localization to the PD by a novel mechanism involving the endoplasmic reticulum-Golgi secretory pathway. Overexpression of various tagged versions altered root meristem function, leading to reduced primary root but enhanced lateral root growth. This effect on root growth was corrected with an inability of these chimeric proteins to form stable PD-localized complexes. PDGLP1 and PDGLP2 appear to be involved in regulating primary root growth by controlling phloem-mediated allocation of resources between the primary and lateral root meristems. PMID:22960910

  14. Overexpression of Arabidopsis plasmodesmata germin-like proteins disrupts root growth and development.

    PubMed

    Ham, Byung-Kook; Li, Gang; Kang, Byung-Ho; Zeng, Fanchang; Lucas, William J

    2012-09-01

    In plants, a population of non-cell-autonomous proteins (NCAPs), including numerous transcription factors, move cell to cell through plasmodesmata (PD). In many cases, the intercellular trafficking of these NCAPs is regulated by their interaction with specific PD components. To gain further insight into the functions of this NCAP pathway, coimmunoprecipitation experiments were performed on a tobacco (Nicotiana tabacum) plasmodesmal-enriched cell wall protein preparation using as bait the NCAP, pumpkin (Cucurbita maxima) PHLOEM PROTEIN16 (Cm-PP16). A Cm-PP16 interaction partner, Nt-PLASMODESMAL GERMIN-LIKE PROTEIN1 (Nt-PDGLP1) was identified and shown to be a PD-located component. Arabidopsis thaliana putative orthologs, PDGLP1 and PDGLP2, were identified; expression studies indicated that, postgermination, these proteins were preferentially expressed in the root system. The PDGLP1 signal peptide was shown to function in localization to the PD by a novel mechanism involving the endoplasmic reticulum-Golgi secretory pathway. Overexpression of various tagged versions altered root meristem function, leading to reduced primary root but enhanced lateral root growth. This effect on root growth was corrected with an inability of these chimeric proteins to form stable PD-localized complexes. PDGLP1 and PDGLP2 appear to be involved in regulating primary root growth by controlling phloem-mediated allocation of resources between the primary and lateral root meristems.

  15. Comparison of Rooting Strategies to Explore Rock Fractures for Shallow Soil-Adapted Tree Species with Contrasting Aboveground Growth Rates: A Greenhouse Microcosm Experiment.

    PubMed

    Nie, Yunpeng; Chen, Hongsong; Ding, Yali; Yang, Jing; Wang, Kelin

    2017-01-01

    For tree species adapted to shallow soil environments, rooting strategies that efficiently explore rock fractures are important because soil water depletion occurs frequently. However, two questions: (a) to what extent shallow soil-adapted species rely on exploring rock fractures and (b) what outcomes result from drought stress, have rarely been tested. Therefore, based on the expectation that early development of roots into deep soil layers is at the cost of aboveground growth, seedlings of three tree species ( Cyclobalanopsis glauca, Delavaya toxocarpa , and Acer cinnamomifolium ) with distinct aboveground growth rates were selected from a typical shallow soil region. In a greenhouse experiment that mimics the basic features of shallow soil environments, 1-year-old seedlings were transplanted into simulated microcosms of shallow soil overlaying fractured bedrock. Root biomass allocation and leaf physiological activities, as well as leaf δ 13 C values were investigated and compared for two treatments: regular irrigation and repeated cycles of drought stress. Our results show that the three species differed in their rooting strategies in the context of encountering rock fractures, however, these strategies were not closely related to the aboveground growth rate. For the slowest-growing seedling, C. glauca , percentages of root mass in the fractures, as well as in the soil layer between soil and bedrock increased significantly under both treatments, indicating a specialized rooting strategy that facilitated the exploration of rock fractures. Early investment in deep root growth was likely critical to the establishment of this drought-vulnerable species. For the intermediate-growing, A. cinnamomifolium , percentages of root mass in the bedrock and interface soil layers were relatively low and exhibited no obvious change under either treatment. This limited need to explore rock fractures was compensated by a conservative water use strategy. For the fast-growing, D. toxocarpa , percentages of root mass in the bedrock and interface layers increased simultaneously under drought conditions, but not under irrigated conditions. This drought-induced rooting plasticity was associated with drought avoidance by this species. Although, root development might have been affected by the simulated microcosm, contrasting results among the three species indicated that efficient use of rock fractures is not a necessary or specialized strategy of shallow-soil adapted species. The establishment and persistence of these species relied on the mutual complementation between their species-specific rooting strategies and drought adaptations.

  16. OsSNDP1, a Sec14-nodulin domain-containing protein, plays a critical role in root hair elongation in rice.

    PubMed

    Huang, Jin; Kim, Chul Min; Xuan, Yuan-hu; Park, Soon Ju; Piao, Hai Long; Je, Byoung Il; Liu, Jingmiao; Kim, Tae Ho; Kim, Bo-Kyeong; Han, Chang-Deok

    2013-05-01

    Rice is cultivated in water-logged paddy lands. Thus, rice root hairs on the epidermal layers are exposed to a different redox status of nitrogen species, organic acids, and metal ions than root hairs growing in drained soil. To identify genes that play an important role in root hair growth, a forward genetics approach was used to screen for short-root-hair mutants. A short-root-hair mutant was identified and isolated by using map-based cloning and sequencing. The mutation arose from a single amino acid substitution of OsSNDP1 (Oryza sativa Sec14-nodulin domain protein), which shows high sequence homology with Arabidopsis COW1/AtSFH1 and encodes a phosphatidylinositol transfer protein (PITP). By performing complementation assays with Atsfh1 mutants, we demonstrated that OsSNDP1 is involved in growth of root hairs. Cryo-scanning electron microscopy was utilized to further characterize the effect of the Ossndp1 mutation on root hair morphology. Aberrant morphogenesis was detected in root hair elongation and maturation zones. Many root hairs were branched and showed irregular shapes due to bulged nodes. Many epidermal cells also produced dome-shaped root hairs, which indicated that root hair elongation ceased at an early stage. These studies showed that PITP-mediated phospholipid signaling and metabolism is critical for root hair elongation in rice.

  17. An approach for using general soil physical condition-root growth relationships to predict seedling growth response to site preparation tillage in loblolly pine plantations

    Treesearch

    L.A. Morris; K.H. Ludovici; S.J. Torreano; E.A. Carter; M.C. Lincoln; R.E. Will

    2006-01-01

    Tree seedling root growth rate can be limited by any one of three soil physical factors: mechanical resistance, water potential or soil aeration. All three factors vary with soil water content and, under field conditions, root growth rate will depend on the soil water content as a result of its relationship to each factor. For a specific site, the relationship between...

  18. Plant Growth Research for Food Production: Development and Testing of Expandable Tuber Growth Module

    NASA Technical Reports Server (NTRS)

    Cordova, Brennan A.

    2017-01-01

    Controlled and reliable growth of a variety of vegetable crops is an important capability for manned deep space exploration systems for providing nutritional supplementation and psychological benefits to crew members. Because current systems have been limited to leafy vegetables that require minimal root space, a major goal for these systems is to increase their ability to grow new types of crops, including tuber plants and root vegetables that require a large root space. An expandable root zone module and housing was developed to integrate this capability into the Vegetable Production System (Veggie). The expandable module uses a waterproof, gas-permeable bag with a structure that allows for root space to increase vertically throughout the growth cycle to accommodate for expanding tuber growth, while minimizing the required media mass. Daikon radishes were chosen as an ideal tuber crop for their subterraneous tuber size and rapid growth cycle, and investigations were done to study expanding superabsorbent hydrogels as a potential growth media. These studies showed improved water retention, but restricted oxygen availability to roots with pure gel media. It was determined that these hydrogels could be integrated in lower proportions into standard soil to achieve media expansion and water retention desired. Using the constructed module prototype and ideal gel and soil media mixture, daikon radishes are being grown in the system to test the capability and success of the system through a full growth cycle.

  19. Phytochromes play a role in phototropism and gravitropism in Arabidopsis roots.

    PubMed

    Correll, Melanie J; Coveney, Katrina M; Raines, Steven V; Mullen, Jack L; Hangarter, Roger P; Kiss, John Z

    2003-01-01

    Phototropism as well as gravitropism plays a role in the oriented growth of roots in flowering plants. In blue or white light, roots exhibit negative phototropism, but red light induces positive phototropism in Arabidopsis roots. Phytochrome A (phyA) and phyB mediate the positive red-light-based photoresponse in roots since single mutants (and the double phyAB mutant) were severely impaired in this response. In blue-light-based negative phototropism, phyA and phyAB (but not phyB) were inhibited in the response relative to the WT. In root gravitropism, phyB and phyAB (but not phyA) were inhibited in the response compared to the WT. The differences observed in tropistic responses were not due to growth limitations since the growth rates among all the mutants tested were not significantly different from that of the WT. Thus, our study shows that the blue-light and red-light systems interact in roots and that phytochrome plays a key role in plant development by integrating multiple environmental stimuli. c2003 COSPAR. Published by Elsevier Ltd. All rights reserved.

  20. Establishment of in vitro adventitious root cultures and analysis of andrographolide in Andrographis paniculata.

    PubMed

    Sharma, Shiv Narayan; Jha, Zenu; Sinha, Rakesh Kumar

    2013-08-01

    Andrographolide is the principal bioactive component of the medicinal plant Andrographis paniculata, to which various diverse pharmacological properties are attributed. Traditionally, andrographolide was extracted from the leaves, stems and other parts of the plant. Leaves have the highest andrographolide content (2-3%) in comparison with the other plant parts. Adventitious root culture of leaf explants of A. paniculata was studied using different strength MS medium supplemented by different concentrations of auxins and a combination of NAA + kinetin for growth and andrographolide production. Among the different auxin treatments in adventitious root culture, only NAA was able to induce adventitious roots. Adventitious roots grown in modified strength MS medium showed the highest root growth (26.7 +/- 1.52), as well as the highest amount of andrographolide (133.3 +/- 1.5 mg/g DW) as compared with roots grown in half- and full-strength MS medium. Growth kinetics showed maximum biomass production after five weeks of culture in different strength MS liquid medium. The produced andrographolide content was 3.5 - 5.5 folds higher than that of the natural plant, depending on the medium strength.

  1. Phytochromes play a role in phototropism and gravitropism in Arabidopsis roots

    NASA Technical Reports Server (NTRS)

    Correll, Melanie J.; Coveney, Katrina M.; Raines, Steven V.; Mullen, Jack L.; Hangarter, Roger P.; Kiss, John Z.

    2003-01-01

    Phototropism as well as gravitropism plays a role in the oriented growth of roots in flowering plants. In blue or white light, roots exhibit negative phototropism, but red light induces positive phototropism in Arabidopsis roots. Phytochrome A (phyA) and phyB mediate the positive red-light-based photoresponse in roots since single mutants (and the double phyAB mutant) were severely impaired in this response. In blue-light-based negative phototropism, phyA and phyAB (but not phyB) were inhibited in the response relative to the WT. In root gravitropism, phyB and phyAB (but not phyA) were inhibited in the response compared to the WT. The differences observed in tropistic responses were not due to growth limitations since the growth rates among all the mutants tested were not significantly different from that of the WT. Thus, our study shows that the blue-light and red-light systems interact in roots and that phytochrome plays a key role in plant development by integrating multiple environmental stimuli. c2003 COSPAR. Published by Elsevier Ltd. All rights reserved.

  2. Local and distal effects of arbuscular mycorrhizal colonization on direct pathway Pi uptake and root growth in Medicago truncatula

    PubMed Central

    Watts-Williams, Stephanie J.; Jakobsen, Iver; Cavagnaro, Timothy R.; Grønlund, Mette

    2015-01-01

    Two pathways exist for plant Pi uptake from soil: via root epidermal cells (direct pathway) or via associations with arbuscular mycorrhizal (AM) fungi, and the two pathways interact in a complex manner. This study investigated distal and local effects of AM colonization on direct root Pi uptake and root growth, at different soil P levels. Medicago truncatula was grown at three soil P levels in split-pots with or without AM fungal inoculation and where one root half grew into soil labelled with 33P. Plant genotypes included the A17 wild type and the mtpt4 mutant. The mtpt4 mutant, colonized by AM fungi, but with no functional mycorrhizal pathway for Pi uptake, was included to better understand effects of AM colonization per se. Colonization by AM fungi decreased expression of direct Pi transporter genes locally, but not distally in the wild type. In mtpt4 mutant plants, direct Pi transporter genes and the Pi starvation-induced gene Mt4 were more highly expressed than in wild-type roots. In wild-type plants, less Pi was taken up via the direct pathway by non-colonized roots when the other root half was colonized by AM fungi, compared with non-mycorrhizal plants. Colonization by AM fungi strongly influenced root growth locally and distally, and direct root Pi uptake activity locally, but had only a weak influence on distal direct pathway activity. The responses to AM colonization in the mtpt4 mutant suggested that in the wild type, the increased P concentration of colonized roots was a major factor driving the effects of AM colonization on direct root Pi uptake. PMID:25944927

  3. A molecular framework for the inhibition of Arabidopsis root growth in response to boron toxicity.

    PubMed

    Aquea, Felipe; Federici, Fernan; Moscoso, Cristian; Vega, Andrea; Jullian, Pastor; Haseloff, Jim; Arce-Johnson, Patricio

    2012-04-01

    Boron is an essential micronutrient for plants and is taken up in the form of boric acid (BA). Despite this, a high BA concentration is toxic for the plants, inhibiting root growth and is thus a significant problem in semi-arid areas in the world. In this work, we report the molecular basis for the inhibition of root growth caused by boron. We show that application of BA reduces the size of root meristems, correlating with the inhibition of root growth. The decrease in meristem size is caused by a reduction of cell division. Mitotic cell number significantly decreases and the expression level of key core cell cycle regulators is modulated. The modulation of the cell cycle does not appear to act through cytokinin and auxin signalling. A global expression analysis reveals that boron toxicity induces the expression of genes related with abscisic acid (ABA) signalling, ABA response and cell wall modifications, and represses genes that code for water transporters. These results suggest that boron toxicity produces a reduction of water and BA uptake, triggering a hydric stress response that produces root growth inhibition. © 2011 Blackwell Publishing Ltd.

  4. Metabolite Profiling of Diverse Rice Germplasm and Identification of Conserved Metabolic Markers of Rice Roots in Response to Long-Term Mild Salinity Stress

    PubMed Central

    Nam, Myung Hee; Bang, Eunjung; Kwon, Taek Yun; Kim, Yuran; Kim, Eun Hee; Cho, Kyungwon; Park, Woong June; Kim, Beom-Gi; Yoon, In Sun

    2015-01-01

    The sensitivity of rice to salt stress greatly depends on growth stages, organ types and cultivars. Especially, the roots of young rice seedlings are highly salt-sensitive organs that limit plant growth, even under mild soil salinity conditions. In an attempt to identify metabolic markers of rice roots responding to salt stress, metabolite profiling was performed by 1H-NMR spectroscopy in 38 rice genotypes that varied in biomass accumulation under long-term mild salinity condition. Multivariate statistical analysis showed separation of the control and salt-treated rice roots and rice genotypes with differential growth potential. By quantitative analyses of 1H-NMR data, five conserved salt-responsive metabolic markers of rice roots were identified. Sucrose, allantoin and glutamate accumulated by salt stress, whereas the levels of glutamine and alanine decreased. A positive correlation of metabolite changes with growth potential and salt tolerance of rice genotypes was observed for allantoin and glutamine. Adjustment of nitrogen metabolism in rice roots is likely to be closely related to maintain the growth potential and increase the stress tolerance of rice. PMID:26378525

  5. Root growth studies of willow cuttings using Rhizoboxes

    NASA Astrophysics Data System (ADS)

    Omarova, Dinara; Lammeranner, Walter; Florineth, Florin

    2014-05-01

    Riparian forests (Tugay forests) in Central Asia (Kazakhstan) play a significant in soil protection. However, unadapted forest use leads to damage and loss of these fragile ecosystems. Willows have a crucial function in the ecosystem of these riparian forests. Willows facilitate the colonization with other important tree species and furthermore they protect the soil from wind and water erosion. To propagate willows and to estimate the beneficial effects of these plants it is important to know the root growth development. The research design is planned as model experiment with rhizoboxes. Rhizoboxes are non-invasive investigation methods which offer the possibility to survey the root system growth dynamics in time and space. A total of 33 rhizoboxes in size of 50cm x 75 cm x 5 cm will be constructed. The rhizoboxes will be tilted by 45 degrees using the gravitropism of the roots. The willow cuttings (Salix purpurea) will be planted in three different soil types. Each test series (growth period) will take three months. Investigated parameters will be root architecture, dynamic of root growth and above and below ground biomass allocation. Data will be drawn from photographic surveys which will be performed once a week. The contribution will present the methodology of these rhizobox investigations.

  6. Phytochromes A and B mediate red-light-induced positive phototropism in roots

    NASA Technical Reports Server (NTRS)

    Kiss, John Z.; Mullen, Jack L.; Correll, Melanie J.; Hangarter, Roger P.

    2003-01-01

    The interaction of tropisms is important in determining the final growth form of the plant body. In roots, gravitropism is the predominant tropistic response, but phototropism also plays a role in the oriented growth of roots in flowering plants. In blue or white light, roots exhibit negative phototropism that is mediated by the phototropin family of photoreceptors. In contrast, red light induces a positive phototropism in Arabidopsis roots. Because this red-light-induced response is weak relative to both gravitropism and negative phototropism, we used a novel device to study phototropism without the complications of a counteracting gravitational stimulus. This device is based on a computer-controlled system using real-time image analysis of root growth and a feedback-regulated rotatable stage. Our data show that this system is useful to study root phototropism in response to red light, because in wild-type roots, the maximal curvature detected with this apparatus is 30 degrees to 40 degrees, compared with 5 degrees to 10 degrees without the feedback system. In positive root phototropism, sensing of red light occurs in the root itself and is not dependent on shoot-derived signals resulting from light perception. Phytochrome (Phy)A and phyB were severely impaired in red-light-induced phototropism, whereas the phyD and phyE mutants were normal in this response. Thus, PHYA and PHYB play a key role in mediating red-light-dependent positive phototropism in roots. Although phytochrome has been shown to mediate phototropism in some lower plant groups, this is one of the few reports indicating a phytochrome-dependent phototropism in flowering plants.

  7. Phytochromes A and B mediate red-light-induced positive phototropism in roots.

    PubMed

    Kiss, John Z; Mullen, Jack L; Correll, Melanie J; Hangarter, Roger P

    2003-03-01

    The interaction of tropisms is important in determining the final growth form of the plant body. In roots, gravitropism is the predominant tropistic response, but phototropism also plays a role in the oriented growth of roots in flowering plants. In blue or white light, roots exhibit negative phototropism that is mediated by the phototropin family of photoreceptors. In contrast, red light induces a positive phototropism in Arabidopsis roots. Because this red-light-induced response is weak relative to both gravitropism and negative phototropism, we used a novel device to study phototropism without the complications of a counteracting gravitational stimulus. This device is based on a computer-controlled system using real-time image analysis of root growth and a feedback-regulated rotatable stage. Our data show that this system is useful to study root phototropism in response to red light, because in wild-type roots, the maximal curvature detected with this apparatus is 30 degrees to 40 degrees, compared with 5 degrees to 10 degrees without the feedback system. In positive root phototropism, sensing of red light occurs in the root itself and is not dependent on shoot-derived signals resulting from light perception. Phytochrome (Phy)A and phyB were severely impaired in red-light-induced phototropism, whereas the phyD and phyE mutants were normal in this response. Thus, PHYA and PHYB play a key role in mediating red-light-dependent positive phototropism in roots. Although phytochrome has been shown to mediate phototropism in some lower plant groups, this is one of the few reports indicating a phytochrome-dependent phototropism in flowering plants.

  8. ARABIDOPSIS HOMOLOG of TRITHORAX1 (ATX1) is required for cell production, patterning, and morphogenesis in root development

    PubMed Central

    Napsucialy-Mendivil, Selene; Alvarez-Venegas, Raúl; Shishkova, Svetlana; Dubrovsky, Joseph G.

    2014-01-01

    ARABIDOPSIS HOMOLOG of TRITHORAX1 (ATX1/SDG27), a known regulator of flower development, encodes a H3K4histone methyltransferase that maintains a number of genes in an active state. In this study, the role of ATX1 in root development was evaluated. The loss-of-function mutant atx1-1 was impaired in primary root growth. The data suggest that ATX1 controls root growth by regulating cell cycle duration, cell production, and the transition from cell proliferation in the root apical meristem (RAM) to cell elongation. In atx1-1, the quiescent centre (QC) cells were irregular in shape and more expanded than those of the wild type. This feature, together with the atypical distribution of T-divisions, the presence of oblique divisions, and the abnormal cell patterning in the RAM, suggests a lack of coordination between cell division and cell growth in the mutant. The expression domain of QC-specific markers was expanded both in the primary RAM and in the developing lateral root primordia of atx1-1 plants. These abnormalities were independent of auxin-response gradients. ATX1 was also found to be required for lateral root initiation, morphogenesis, and emergence. The time from lateral root initiation to emergence was significantly extended in the atx1-1 mutant. Overall, these data suggest that ATX1 is involved in the timing of root development, stem cell niche maintenance, and cell patterning during primary and lateral root development. Thus, ATX1 emerges as an important player in root system architecture. PMID:25205583

  9. [Effects of neighbor competition on growth, fine root morphology and distribution of Schima superba and Cunninghamia lanceolata in different nutrient environments].

    PubMed

    Yao, Jia Bao; Chu, Xiu Li; Zhou, Zhi Chun; Tong, Jian She; Wang, Hui; Yu, Jia Zhong

    2017-05-18

    Taking Schima superba and Cunninghamia lanceolata as test materials, a pot experiment was conducted to simulate the heterogeneous and homogeneous forest soil nutrient environments, and design three planting modes including single plant, two-strain pure plant and two-strain mixed ones to reason the promotion in mixed S. superba and C. lanceolata plantation and the competitive advantage of S. superba. Results showed that compared with the homogeneous nutrient environment, both S. superba and C. lanceolata had the higher seedling height and dry matter accumulation, when mixed in the heterogeneous nutrient environment, S. superba displayed the obviously competitive advantage, which related to its root plasticity. The fine root of S. superba mixed in each diameter class showed a lot of hyperplasia, and the root total length, surface area and volume of which were 80%-180% higher than that of C. lanceolata. S. superba took the advantage of the compensatory growth strategy of vertical direction in fine roots, namely, they still multiplied to gain greater competitive advantage in low nutrient patches, besides occupying eutrophic surface. The different soil colonization and niche differentiation in fine root of S. superba and C. lanceolata alleviated the strong competition for nutrients of the roots of the two species, and improved the mixed-plantation production. Pure plantation of S. superba harvested the lower yield, which due to the root self-recognition inhibited the growth of root system. Fine roots staggered and evenly distributed on the space might be a reason for stable structure of pure S. superba plantation. So, it was recommended that block surface layer soil preparation and fertilization are used to improve the soil nutrient distribution, and the mixed plantation is constructed to promote the growth of S. superba and C. lanceolata, at the same time, the stand density is regulated to promote tree growth for the pure artificial S. superba plantation which had already been built.

  10. Better to light a candle than curse the darkness: illuminating spatial localization and temporal dynamics of rapid microbial growth in the rhizosphere

    PubMed Central

    Herron, Patrick M.; Gage, Daniel J.; Arango Pinedo, Catalina; Haider, Zane K.; Cardon, Zoe G.

    2013-01-01

    The rhizosphere is a hotbed of microbial activity in ecosystems, fueled by carbon compounds from plant roots. Basic questions about the location and dynamics of plant-spurred microbial growth in the rhizosphere are difficult to answer with standard, destructive soil assays mixing a multitude of microbe-scale microenvironments in a single, often sieved, sample. Soil microbial biosensors designed with the luxCDABE reporter genes fused to a promoter of interest enable continuous imaging of the microbial perception of (and response to) environmental conditions in soil. We used the common soil bacterium Pseudomonas putida KT2440 as host to plasmid pZKH2 containing a fusion between the strong constitutive promoter nptII and luxCDABE (coding for light-emitting proteins) from Vibrio fischeri. Experiments in liquid media demonstrated that high light production by KT2440/pZKH2 was associated with rapid microbial growth supported by high carbon availability. We applied the biosensors in microcosms filled with non-sterile soil in which corn (Zea mays L.), black poplar (Populus nigra L.), or tomato (Solanum lycopersicum L.) was growing. We detected minimal light production from microbiosensors in the bulk soil, but biosensors reported continuously from around roots for as long as six days. For corn, peaks of luminescence were detected 1–4 and 20–35 mm along the root axis behind growing root tips, with the location of maximum light production moving farther back from the tip as root growth rate increased. For poplar, luminescence around mature roots increased and decreased on a coordinated diel rhythm, but was not bright near root tips. For tomato, luminescence was dynamic, but did not exhibit a diel rhythm, appearing in acropetal waves along roots. KT2440/pZKH2 revealed that root tips are not always the only, or even the dominant, hotspots for rhizosphere microbial growth, and carbon availability is highly variable in space and time around roots. PMID:24032034

  11. Conifer root proliferation after 20 years of soil compaction

    Treesearch

    Matt D. Busse; Gary O. Fiddler; Carol J. Shestak

    2017-01-01

    Soil compaction is known to limit plant growth by reducing soil macroporosity and restricting gas, water, and root movement. Recent evidence from study sites across the United States and Canada, however, suggests that tree growth is not universally affected by soil compaction from forest harvesting practices. Our observational study examined rooting patterns in mixed...

  12. FINE ROOT TURNOVER IN PONDEROSA PINE STANDS OF DIFFERENT AGES: FIRST-YEAR RESULTS

    EPA Science Inventory

    Root minirhizotron tubs were installed in two ponderosa pine (Pinus ponderosa Laws.) Stands of different ages to examine patterns of root growth and death. The old-growth site (OS) consists of a mixture of old (>250 years) and young trees (ca.45 yrs)< and is located near clamp S...

  13. X-Ray Computed Tomography Reveals the Response of Root System Architecture to Soil Texture1[OPEN

    PubMed Central

    Rogers, Eric D.; Monaenkova, Daria; Mijar, Medhavinee; Goldman, Daniel I.

    2016-01-01

    Root system architecture (RSA) impacts plant fitness and crop yield by facilitating efficient nutrient and water uptake from the soil. A better understanding of the effects of soil on RSA could improve crop productivity by matching roots to their soil environment. We used x-ray computed tomography to perform a detailed three-dimensional quantification of changes in rice (Oryza sativa) RSA in response to the physical properties of a granular substrate. We characterized the RSA of eight rice cultivars in five different growth substrates and determined that RSA is the result of interactions between genotype and growth environment. We identified cultivar-specific changes in RSA in response to changing growth substrate texture. The cultivar Azucena exhibited low RSA plasticity in all growth substrates, whereas cultivar Bala root depth was a function of soil hardness. Our imaging techniques provide a framework to study RSA in different growth environments, the results of which can be used to improve root traits with agronomic potential. PMID:27208237

  14. Root ethylene signalling is involved in Miscanthus sinensis growth promotion by the bacterial endophyte Herbaspirillum frisingense GSF30T

    PubMed Central

    Ludewig, Uwe

    2013-01-01

    The bacterial endophyte Herbaspirillum frisingense GSF30T is a colonizer of several grasses grown in temperate climates, including the highly nitrogen-efficient perennial energy grass Miscanthus. Inoculation of Miscanthus sinensis seedlings with H. frisingense promoted root and shoot growth but had only a minor impact on nutrient concentrations. The bacterium affected the root architecture and increased fine-root structures. Although H. frisingense has the genetic requirements to fix nitrogen, only minor changes in nitrogen concentrations were observed. Herbaspirillum agglomerates were identified primarily in the root apoplast but also in the shoots. The short-term (3h) and long-term (3 weeks) transcriptomic responses of the plant to bacterial inoculation revealed that H. frisingense induced rapid changes in plant hormone signalling, most prominent in jasmonate signalling. Ethylene signalling pathways were also affected and persisted after 3 weeks in the root. Growth stimulation of the root by the ethylene precursor 1-aminocyclopropane 1-carboxylic acid was dose dependent and was affected by H. frisingense inoculation. Minor changes in the proteome were identified after 3 weeks. This study suggests that H. frisingense improves plant growth by modulating plant hormone signalling pathways and provides a framework to understand the beneficial effects of diazotrophic plant-growth-promoting bacteria, such as H. frisingense, on the biomass grass Miscanthus. PMID:24043849

  15. Responses of nutrient capture and fine root morphology of subalpine coniferous tree Picea asperata to nutrient heterogeneity and competition

    PubMed Central

    Nan, Hongwei; Liang, Jin; Cheng, Xinying; Zhao, ChunZhang; Yin, HuaJun; Yin, ChunYing; Liu, Qing

    2017-01-01

    Investigating the responses of trees to the heterogeneous distribution of nutrients in soil and simultaneous presence of neighboring roots could strengthen the understanding of an influential mechanism on tree growth and provide a scientific basis for forest management. Here, we conducted two split-pot experiments to investigate the effects of nutrient heterogeneity and intraspecific competition on the fine root morphology and nutrient capture of Picea asperata. The results showed that P. asperata efficiently captured nutrients by increasing the specific root length (SRL) and specific root area (SRA) of first-and second-order roots and decreasing the tissue density of first-order roots to avoid competition for resources and space with neighboring roots. The nutrient heterogeneity and addition of fertilization did not affect the fine root morphology, but enhanced the P and K concentrations in the fine roots in the absence of a competitor. On the interaction between nutrient heterogeneity and competition, competition decreased the SRL and SRA but enhanced the capture of K under heterogeneous soil compared with under homogeneous soil. Additionally, the P concentration, but not the K concentration, was linearly correlated to root morphology in heterogeneous soil, even when competition was present. The results suggested that root morphological features were only stimulated when the soil nutrients were insufficient for plant growth and the nutrients accumulations by root were mainly affected by the soil nutrients more than the root morphology. PMID:29095947

  16. Tolerance to high soil temperature in foxtail millet (Setaria italica L.) is related to shoot and root growth and metabolism.

    PubMed

    Aidoo, Moses Kwame; Bdolach, Eyal; Fait, Aaron; Lazarovitch, Naftali; Rachmilevitch, Shimon

    2016-09-01

    Roots play important roles in regulating whole-plant carbon and water relations in response to extreme soil temperature. Three foxtail millet (Setaria italica L.) lines (448-Ames 21521, 463-P1391643 and 523-P1219619) were subjected to two different soil temperatures (28 and 38 °C). The gas exchange, chlorophyll fluorescence, root morphology and central metabolism of leaves and roots were studied at the grain-filling stage. High soil temperature (38 °C) significantly influenced the shoot transpiration, stomatal conductance, photosynthesis, root growth and metabolism of all lines. The root length and area were significantly reduced in lines 448 and 463 in response to the stress, while only a small non-specific reduction was observed in line 523 in response to the treatment. The shift of root metabolites in response to high soil temperature was also genotype specific. In response to high soil temperature, glutamate, proline and pyroglutamate were reduced in line 448, and alanine, aspartate, glycine, pyroglutamate, serine, threonine and valine were accumulated in line 463. In the roots of line 523, serine, threonine, valine, isomaltose, maltose, raffinose, malate and itaconate were accumulated. Root tolerance to high soil temperature was evident in line 523, in its roots growth potential, lower photosynthesis and stomatal conductance rates, and effective utilization and assimilation of membrane carbon and nitrogen, coupled with the accumulation of protective metabolites. Copyright © 2016. Published by Elsevier Masson SAS.

  17. Water flow and solute transport in the soil-plant-atmosphere continuum: Upscaling from rhizosphere to root zone

    NASA Astrophysics Data System (ADS)

    Lazarovitch, Naftali; Perelman, Adi; Guerra, Helena; Vanderborght, Jan; Pohlmeier, Andreas

    2016-04-01

    Root water and nutrient uptake are among the most important processes considered in numerical models simulating water content and fluxes in the subsurface, as they control plant growth and production as well as water flow and nutrient transport out of the root zone. Root water uptake may lead to salt accumulation at the root-soil interface, resulting in rhizophere salt concentrations much higher than in the bulk soil. This salt accumulation is caused by soluble salt transport towards the roots by mass flow through the soil, followed by preferential adsorption of specific nutrients by active uptake, thereby excluding most other salts at the root-soil interface or in the root apoplast. The salinity buildup can lead to large osmotic pressure gradients across the roots thereby effectively reducing root water uptake. The initial results from rhizoslides (capillary paper growth system) show that sodium concentration is decreasing with distance from the root, compared with the bulk that remained more stable. When transpiration rate was decreased under high salinity levels, sodium concentration was more homogenous compared with low salinity levels. Additionally, sodium and gadolinium distributions were measured nondestructively around tomato roots using magnetic resonance imaging (MRI). This technique could also observe the root structure and water content around single roots. Results from the MRI confirm the solutes concentration pattern around roots and its relation to their initial concentration. We conclude that local water potentials at the soil-root interface differ from bulk potentials. These relative differences increase with decreasing root density, decreasing initial salt concentration and increasing transpiration rate. Furthermore, since climate may significantly influence plant response to salinity a dynamic climate-coupled salinity reduction functions are critical in while using macroscopic numerical models.

  18. Genetic control of root growth: from genes to networks

    PubMed Central

    Slovak, Radka; Ogura, Takehiko; Satbhai, Santosh B.; Ristova, Daniela; Busch, Wolfgang

    2016-01-01

    Background Roots are essential organs for higher plants. They provide the plant with nutrients and water, anchor the plant in the soil, and can serve as energy storage organs. One remarkable feature of roots is that they are able to adjust their growth to changing environments. This adjustment is possible through mechanisms that modulate a diverse set of root traits such as growth rate, diameter, growth direction and lateral root formation. The basis of these traits and their modulation are at the cellular level, where a multitude of genes and gene networks precisely regulate development in time and space and tune it to environmental conditions. Scope This review first describes the root system and then presents fundamental work that has shed light on the basic regulatory principles of root growth and development. It then considers emerging complexities and how they have been addressed using systems-biology approaches, and then describes and argues for a systems-genetics approach. For reasons of simplicity and conciseness, this review is mostly limited to work from the model plant Arabidopsis thaliana, in which much of the research in root growth regulation at the molecular level has been conducted. Conclusions While forward genetic approaches have identified key regulators and genetic pathways, systems-biology approaches have been successful in shedding light on complex biological processes, for instance molecular mechanisms involving the quantitative interaction of several molecular components, or the interaction of large numbers of genes. However, there are significant limitations in many of these methods for capturing dynamic processes, as well as relating these processes to genotypic and phenotypic variation. The emerging field of systems genetics promises to overcome some of these limitations by linking genotypes to complex phenotypic and molecular data using approaches from different fields, such as genetics, genomics, systems biology and phenomics. PMID:26558398

  19. Biological subsoil management: new insights into processes of structure building and implications for crop growth

    NASA Astrophysics Data System (ADS)

    Athmann, Miriam; Kautz, Timo; Köpke, Ulrich

    2017-04-01

    Large sized continuous biopores (diameter > 2 mm) in arable subsoils can contribute to enhance soil aeration, increase water infiltration, reduce water runoff and serve as preferential pathways for root growth. Biopores can be generated by taproots, but these pores probably have limited physical stability unless they are colonized by anecic earthworms and coated with worm cast. Long-term field experiments have shown that populations of anecic earthworms and numbers of biopores are promoted by perennial fodder cropping, no-till cropping and reduced tillage systems, i.e. extended soil rest. Potential effects of biopores on root growth of annual crops include accelerating access to deep soil layers, facilitating exploitation of water while simultaneously allowing nutrient acquisition from the pore wall and the bulk soil. Biopores can be considered as hot spots for nutrient acquisition of crops, especially when the pore wall is enriched in nutrients as a consequence of deposition of decaying plant material and feces of earthworms. However, the extent of such effects largely depends on physical properties of the bulk soil. Preferential root growth through biopores has been observed in many types of subsoil. The role of biopores is expected to be relevant especially when rooting in the bulk soil is impeded by high penetration resistance. Nevertheless, in hard-setting clay soils clumping of roots has been reported, when roots were unable to re-enter the bulk soil from biopores' lumen. Recent field experiments on a deep loamy Haplic Luvisol indicated increased biopore density in the subsoil promoting root growth of winter cereals and winter oilseed rape not necessarily resulting in significant effects on shoot parameters. Nevertheless, in a dry year increased biopore density had beneficial effects on N uptake, root and shoot growth and grain yield of spring crops.

  20. Aquaporins and root water uptake

    USDA-ARS?s Scientific Manuscript database

    Water is one of the most critical resources limiting plant growth and crop productivity, and root water uptake is an important aspect of plant physiology governing plant water use and stress tolerance. Pathways of root water uptake are complex and are affected by root structure and physiological res...

  1. [Adaptive adjustment of rhizome and root system on morphology, biomass and nutrient in Phyllostachys rivalis under long-term waterlogged condition].

    PubMed

    Liu, Yu-fang; Chen, Shuang-lin; Li Ying-chun; Guo, Zi-wu; Li, Ying-chun; Yang, Qing-ping

    2015-12-01

    The research was to approach the growth strategy of rhizome and roots based on the morphology, biomass and nutrient in Phyllostachys rivalis under long-term waterlogged conditions, and provided a theoretical basis for its application for vegetation restoration in wetland and water-level fluctuation belts. The morphological characteristics, physiological and biochemical indexes of annual bamboo rhizome and roots were investigated with an experiment using individually potted P. rivalis which was treated by artificial water-logging for 3, 6, and 12 months. Accordingly the morphological characteristics, biomass allocation, nutrient absorption and balance in rhizome and roots of P. rivalis were analyzed. The results showed that there was no obvious impact of long-term water-logging on the length and diameter of rhizomes, diameter of roots in P. rivalis. The morphological characteristics of rhizome had been less affected generally under water-logging for 3 months. And less rhizomes were submerged, while the growth of roots was inhibited to some extent. Furthermore, with waterlogging time extended, submerged roots and rhizomes grew abundantly, and the roots and rhizomes in soil were promoted. Moreover for ratios of rhizome biomass in soil and water, there were no obvious variations, the same for the root biomass in soil to total biomass. The ratio of root biomass in water to total biomass and the ratio of root biomass in water to root biomass in soil both increased significantly. The results indicated that P. rivalis could adapt to waterlogged conditions gradually through growth regulation and reasonable biomass distribution. However, the activity of rhizome roots in soil decreased and the nutrient absorption was inhibited by long-term water-logging, although it had no effect on stoichiometric ratios of root nutrient in soil. The activity of rhizome root in water increased and the stoichiometric ratios adjusted adaptively to waterlogged conditions, the ratio of N/P increased, while N/K and P/K decreased, which implied that roots in water absorbed oxygen and nutrients could help P. rivalis adapt to long-term waterlogged environment effectively.

  2. Nitric oxide enhances development of lateral roots in tomato (Solanum lycopersicum L.) under elevated carbon dioxide.

    PubMed

    Wang, Huan; Xiao, Wendan; Niu, Yaofang; Jin, Chongwei; Chai, Rushan; Tang, Caixian; Zhang, Yongsong

    2013-01-01

    Elevated carbon dioxide (CO₂) has been shown to enhance the growth and development of plants, especially of roots. Amongst them, lateral roots play an important role in nutrient uptake, and thus alleviate the nutrient limitation to plant growth under elevated CO₂. This paper examined the mechanism underlying CO₂ elevation-induced lateral root formation in tomato. The endogenous nitric oxide (NO) in roots was detected by the specific probe 4-amino-5-methylamino-2',7'-difluorofluorescein diacetate (DAF-FM DA). We suggest that CO₂ elevation-induced NO accumulation was important for lateral root formation. Elevated CO₂ significantly increased the activity of nitric oxide synthase in roots, but not nitrate reductase activity. Moreover, the pharmacological evidence showed that nitric oxide synthase rather than nitrate reductase was responsible for CO₂ elevation-induced NO accumulation. Elevated CO₂ enhanced the activity of nitric oxide synthase and promoted production of NO, which was involved in lateral root formation in tomato under elevated CO₂.

  3. Hybrid Artificial Root Foraging Optimizer Based Multilevel Threshold for Image Segmentation

    PubMed Central

    Liu, Yang; Liu, Junfei

    2016-01-01

    This paper proposes a new plant-inspired optimization algorithm for multilevel threshold image segmentation, namely, hybrid artificial root foraging optimizer (HARFO), which essentially mimics the iterative root foraging behaviors. In this algorithm the new growth operators of branching, regrowing, and shrinkage are initially designed to optimize continuous space search by combining root-to-root communication and coevolution mechanism. With the auxin-regulated scheme, various root growth operators are guided systematically. With root-to-root communication, individuals exchange information in different efficient topologies, which essentially improve the exploration ability. With coevolution mechanism, the hierarchical spatial population driven by evolutionary pressure of multiple subpopulations is structured, which ensure that the diversity of root population is well maintained. The comparative results on a suit of benchmarks show the superiority of the proposed algorithm. Finally, the proposed HARFO algorithm is applied to handle the complex image segmentation problem based on multilevel threshold. Computational results of this approach on a set of tested images show the outperformance of the proposed algorithm in terms of optimization accuracy computation efficiency. PMID:27725826

  4. 2,4-diacetylphloroglucinol alters plant root development.

    PubMed

    Brazelton, Jessica N; Pfeufer, Emily E; Sweat, Teresa A; Gardener, Brian B McSpadden; Coenen, Catharina

    2008-10-01

    Pseudomonas fluorescens isolates containing the phlD gene can protect crops from root pathogens, at least in part through production of the antibiotic 2,4-diacetylphloroglucinol (DAPG). However, the action mechanisms of DAPG are not fully understood, and effects of this antibiotic on host root systems have not been characterized in detail. DAPG inhibited primary root growth and stimulated lateral root production in tomato seedlings. Roots of the auxin-resistant diageotropica mutant of tomato demonstrated reduced DAPG sensitivity with regards to inhibition of primary root growth and induction of root branching. Additionally, applications of exogenous DAPG, at concentrations previously found in the rhizosphere of plants inoculated with DAPG-producing pseudomonads, inhibited the activation of an auxin-inducible GH3 promoter::luciferase reporter gene construct in transgenic tobacco hypocotyls. In this model system, supernatants of 17 phlD+ P. fluorescens isolates had inhibitory effects on luciferase activity similar to synthetic DAPG. In addition, a phlD() mutant strain, unable to produce DAPG, demonstrated delayed inhibitory effects compared with the parent wild-type strain. These results indicate that DAPG can alter crop root architecture by interacting with an auxin-dependent signaling pathway.

  5. Hybrid Artificial Root Foraging Optimizer Based Multilevel Threshold for Image Segmentation.

    PubMed

    Liu, Yang; Liu, Junfei; Tian, Liwei; Ma, Lianbo

    2016-01-01

    This paper proposes a new plant-inspired optimization algorithm for multilevel threshold image segmentation, namely, hybrid artificial root foraging optimizer (HARFO), which essentially mimics the iterative root foraging behaviors. In this algorithm the new growth operators of branching, regrowing, and shrinkage are initially designed to optimize continuous space search by combining root-to-root communication and coevolution mechanism. With the auxin-regulated scheme, various root growth operators are guided systematically. With root-to-root communication, individuals exchange information in different efficient topologies, which essentially improve the exploration ability. With coevolution mechanism, the hierarchical spatial population driven by evolutionary pressure of multiple subpopulations is structured, which ensure that the diversity of root population is well maintained. The comparative results on a suit of benchmarks show the superiority of the proposed algorithm. Finally, the proposed HARFO algorithm is applied to handle the complex image segmentation problem based on multilevel threshold. Computational results of this approach on a set of tested images show the outperformance of the proposed algorithm in terms of optimization accuracy computation efficiency.

  6. Cytological and ultrastructural studies on root tissues

    NASA Technical Reports Server (NTRS)

    Slocum, R. D.; Gaynor, J. J.; Galston, A. W.

    1984-01-01

    The anatomy and fine structure of roots from oat and mung bean seedlings, grown under microgravity conditions for 8 days aboard the Space Shuttle, was examined and compared to that of roots from ground control plants grown under similar conditions. Roots from both sets of oat seedlings exhibited characteristic monocotyledonous tissue organization and normal ultrastructural features, except for cortex cell mitochondria, which exhibited a 'swollen' morphology. Various stages of cell division were observed in the meristematic tissues of oat roots. Ground control and flight-grown mung bean roots also showed normal tissue organization, but root cap cells in the flight-grown roots were collapsed and degraded in appearance, especially at the cap periphery. At the ultrastructural level, these cells exhibited a loss of organelle integrity and a highly-condensed cytoplasm. This latter observation perhaps suggests a differing tissue sensitivity for the two species to growth conditions employed in space flight. The basis for abnormal root cap cell development is not understood, but the loss of these putative gravity-sensing cells holds potential significance for long term plant growth orientation during space flight.

  7. The promoting effects of alginate oligosaccharides on root development in Oryza sativa L. mediated by auxin signaling.

    PubMed

    Zhang, Yunhong; Yin, Heng; Zhao, Xiaoming; Wang, Wenxia; Du, Yuguang; He, Ailing; Sun, Kegang

    2014-11-26

    Alginate oligosaccharides (AOS), which are marine oligosaccharides, are involved in regulating plant root growth, but the promotion mechanism for AOS remains unclear. Here, AOS (10-80 mg/L) induced the expression of auxin-related gene (OsYUCCA1, OsYUCCA5, OsIAA11 and OsPIN1) in rice (Oryza sativa L.) tissues to accelerate auxin biosynthesis and transport, and reduced indole-3-acetic acid (IAA) oxidase activity in rice roots. These changes resulted in the increase of 37.8% in IAA concentration in rice roots, thereby inducing the expression of root development-related genes, promoting root growth in a dose-dependent manner, which were inhibited by auxin transport inhibitor 2,3,5-triiodo benzoic acid (TIBA) and calcium-chelating agent ethylene glycol bis (2-aminoethyl) tetraacetic acid (EGTA). AOS also induced calcium signaling generation in rice roots. Those results indicated that auxin mediated AOS regulation of root development, and calcium signaling may act mainly in the upstream of auxin in the regulation of AOS on rice root development. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Effects of Macroposthonia xenoplax on the growth of Concord grape.

    PubMed

    Santo, G S; Bolander, W J

    1977-07-01

    Concord grape (Vitis labrusca) plants were inoculated with Macroposthonia xenoplax at levels of 100, 1,000, and 10,000 nematodes. After 4 months, plants inoculated with 10,000 M. xenoplax were stunted, and root systems were darker and had fewer feeder roots than those in other treatments. The lower nematode inoculation levels suppressed top growth but did not affect root growth. M. xenoplax reproduced well on Concord grapes.

  9. Critical soil bulk density for soybean growth in Oxisols

    NASA Astrophysics Data System (ADS)

    Keisuke Sato, Michel; Veras de Lima, Herdjania; Oliveira, Pedro Daniel de; Rodrigues, Sueli

    2015-10-01

    The aim of this study was to evaluate the critical soil bulk density from the soil penetration resistance measurements for soybean root growth in Brazilian Amazon Oxisols. The experiment was carried out in a greenhouse using disturbed soil samples collected from the northwest of Para characterized by different texture. The treatments consisted of a range of soil bulk densities for each soil textural class. Three pots were used for soybean growth of and two for the soil penetration resistance curve. From the fitted model, the critical soil bulk density was determined considering the penetration resistance values of 2 and 3 MPa. After sixty days, plants were cut and root length, dry mass of root, and dry mass of shoots were determined. At higher bulk densities, the increase in soil water content decreased the penetration resistance, allowing unrestricted growth of soybean roots. Regardless of soil texture, the penetration resistance of 2 and 3 MPa had a slight effect on root growth in soil moisture at field capacity and a reduction of 50% in the soybean root growth was achieved at critical soil bulk density of 1.82, 1.75, 1.51, and 1.45 Mg m-3 for the sandy loam, sandy clay loam, clayey, and very clayey soil.

  10. Root-type-specific plasticity in response to localized high nitrate supply in maize (Zea mays).

    PubMed

    Yu, Peng; Hochholdinger, Frank; Li, Chunjian

    2015-10-01

    Shoot-borne roots contribute to most of the nutrient uptake throughout the life cycle of maize (Zea mays). Compared with numerous studies with embryonic roots, detailed information on the phenotypic plasticity of shoot-borne roots in response to a heterogeneous nitrogen supply is scarce. The present study therefore provides a comprehensive profile of fine-scale plastic responses of distinct root types to localized high nitrate supply. Seedlings of the maize inbred line B73 were grown in split-root systems. The anatomy and morphological plasticity of the primary root and the roots initiated from the 2nd, 5th and 7th shoot nodes, and their lateral roots, were studied in response to local high nitrate supply to one side of the root system. In contrast to the insensitivity of axial roots, local high nitrate supply increased the length of 1st-order lateral roots on the primary root and the three whorls of shoot-borne roots at different growth stages, and increased the density of 1st-order lateral roots on the 7th shoot-borne root after silking. The length and density of 2nd-order lateral roots on the three whorls of shoot-borne roots displayed a more flexible response to local high nitrate than 1st-order lateral roots. Root diameter and number, and total area and diameter of metaxylem vessels increased from the primary root to early and then later developed shoot-borne roots, which showed a positive relationship with shoot growth and N accumulation. Maize axial roots and lateral roots responded differently to local high nitrate, and this was related to their function. The extent of morphological plasticity of lateral roots in response to local high nitrate depended on the initiation time of the shoot-borne roots on which the lateral roots developed. Morphological plasticity was higher on 2nd-order than on 1st-order lateral roots. The results suggest that higher order lateral root branching might be a potential target for genetic improvement in future maize breeding. © The Author 2015. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. A light-sensitive mutation in Arabidopsis LEW3 reveals the important role of N-glycosylation in root growth and development.

    PubMed

    Manzano, Concepción; Pallero-Baena, Mercedes; Silva-Navas, J; Navarro Neila, Sara; Casimiro, Ilda; Casero, Pedro; Garcia-Mina, Jose M; Baigorri, Roberto; Rubio, Lourdes; Fernandez, Jose A; Norris, Matthew; Ding, Yiliang; Moreno-Risueno, Miguel A; Del Pozo, Juan C

    2017-11-02

    Plant roots have the potential capacity to grow almost indefinitely if meristematic and lateral branching is sustained. In a genetic screen we identified an Arabidopsis mutant showing limited root growth (lrg1) due to defects in cell division and elongation in the root meristem. Positional cloning determined that lrg1 affects an alpha-1,2-mannosyltransferase gene, LEW3, involved in protein N-glycosylation. The lrg1 mutation causes a synonymous substitution that alters the correct splicing of the fourth intron in LEW3, causing a mix of wild-type and truncated protein. LRG1 RNA missplicing in roots and short root phenotypes in lrg1 are light-intensity dependent. This mutation disrupts a GC-base pair in a three-base-pair stem with a four-nucleotide loop, which seems to be necessary for correct LEW3 RNA splicing. We found that the lrg1 short root phenotype correlates with high levels of reactive oxygen species and low pH in the apoplast. Proteomic analyses of N-glycosylated proteins identified GLU23/PYK10 and PRX34 as N-glycosylation targets of LRG1 activity. The lrg1 mutation reduces the positive interaction between Arabidopsis and Serendipita indica. A prx34 mutant showed a significant reduction in root growth, which is additive to lrg1. Taken together our work highlights the important role of N-glycosylation in root growth and development. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  12. Air lateral root pruning affects longleaf pine seedling root system morphology

    Treesearch

    Shi-Jean Susana Sung; Dave Haywood

    2016-01-01

    Longleaf pine (Pinus palustris) seedlings were cultured with air lateral root pruning (side-vented containers, VT) or without (solid-walled containers, SW). Seedling root system morphology and growth were assessed before planting and 8 and 14 months after planting. Although VT seedlings had greater root collar diameter than the SW before planting,...

  13. UV-B Induced Generation of Reactive Oxygen Species Promotes Formation of BFA-Induced Compartments in Cells of Arabidopsis Root Apices

    PubMed Central

    Yokawa, Ken; Kagenishi, Tomoko; Baluška, František

    2016-01-01

    UV-B radiation is an important part of the electromagnetic spectrum emitted by the sun. For much of the period of biological evolution organisms have been exposed to UV radiation, and have developed diverse mechanisms to cope with this potential stress factor. Roots are usually shielded from exposure to UV by the surrounding soil, but may nevertheless be exposed to high energy radiation on the soil surface. Due to their high sensitivity to UV-B radiation, plant roots need to respond rapidly in order to minimize exposure on the surface. In addition to root gravitropism, effective light perception by roots has recently been discovered to be essential for triggering negative root phototropism in Arabidopsis. However, it is not fully understood how UV-B affects root growth and phototropism. Here, we report that UV-B induces rapid generation of reactive oxygen species which in turn promotes the formation of BFA-induced compartments in the Arabidopsis root apex. During unilateral UV-B irradiation of roots changes in auxin concentration on the illuminated side have been recorded. In conclusion, UV-B-induced and ROS-mediated stimulation of vesicle recycling promotes root growth and induces negative phototropism. PMID:26793199

  14. Halogenated auxins affect microtubules and root elongation in Lactuca sativa

    NASA Technical Reports Server (NTRS)

    Zhang, N.; Hasenstein, K. H.

    2000-01-01

    We studied the effect of 4,4,4-trifluoro-3-(indole-3-)butyric acid (TFIBA), a recently described root growth stimulator, and 5,6-dichloro-indole-3-acetic acid (DCIAA) on growth and microtubule (MT) organization in roots of Lactuca sativa L. DCIAA and indole-3-butyric acid (IBA) inhibited root elongation and depolymerized MTs in the cortex of the elongation zone, inhibited the elongation of stele cells, and promoted xylem maturation. Both auxins caused the plane of cell division to shift from anticlinal to periclinal. In contrast, TFIBA (100 micromolar) promoted elongation of primary roots by 40% and stimulated the elongation of lateral roots, even in the presence of IBA, the microtubular inhibitors oryzalin and taxol, or the auxin transport inhibitor naphthylphthalamic acid. However, TFIBA inhibited the formation of lateral root primordia. Immunostaining showed that TFIBA stabilized MTs orientation perpendicular to the root axis, doubled the cortical cell length, but delayed xylem maturation. The data indicate that the auxin-induced inhibition of elongation and swelling of roots results from reoriented phragmoplasts, the destabilization of MTs in elongating cells, and promotion of vessel formation. In contrast, TFIBA induced promotion of root elongation by enhancing cell length, prolonging transverse MT orientation, delaying cell and xylem maturation.

  15. Influence of Microgravity Environment on Root Growth, Soluble Sugars, and Starch Concentration of Sweetpotato Stem Cuttings

    PubMed Central

    Mortley, Desmond G.; Bonsi, Conrad K.; Hill, Walter A.; Morris, Carlton E.; Williams, Carol S.; Davis, Ceyla F.; Williams, John W.; Levine, Lanfang H.; Petersen, Barbara V.; Wheeler, Raymond M.

    2009-01-01

    Because sweetpotato [Ipomoea batatas (L.) Lam.] stem cuttings regenerate very easily and quickly, a study of their early growth and development in microgravity could be useful to an understanding of morphological changes that might occur under such conditions for crops that are propagated vegetatively. An experiment was conducted aboard a U.S. Space Shuttle to investigate the impact of microgravity on root growth, distribution of amyloplasts in the root cells, and on the concentration of soluble sugars and starch in the stems of sweetpotatoes. Twelve stem cuttings of ‘Whatley/Loretan’ sweetpotato (5 cm long) with three to four nodes were grown in each of two plant growth units filled with a nutrient agarose medium impregnated with a half-strength Hoagland solution. One plant growth unit was flown on Space Shuttle Colombia for 5 days, whereas the other remained on the ground as a control. The cuttings were received within 2 h postflight and, along with ground controls, processed in ≈45 min. Adventitious roots were counted, measured, and fixed for electron microscopy and stems frozen for starch and sugar assays. Air samples were collected from the headspace of each plant growth unit for postflight determination of carbon dioxide, oxygen, and ethylene levels. All stem cuttings produced adventitious roots and growth was quite vigorous in both ground-based and flight samples and, except for a slight browning of some root tips in the flight samples, all stem cuttings appeared normal. The roots on the flight cuttings tended to grow in random directions. Also, stem cuttings grown in microgravity had more roots and greater total root length than ground-based controls. Amyloplasts in root cap cells of ground-based controls were evenly sedimented toward one end compared with a more random distribution in the flight samples. The concentration of soluble sugars, glucose, fructose, and sucrose and total starch concentration were all substantially greater in the stems of flight samples than those found in the ground-based samples. Carbon dioxide levels were 50% greater and oxygen marginally lower in the flight plants, whereas ethylene levels were similar and averaged less than 10 nL·L −1. Despite the greater accumulation of carbohydrates in the stems, and greater root growth in the flight cuttings, overall results showed minimal differences in cell development between space flight and ground-based tissues. This suggests that the space flight environment did not adversely impact sweetpotato metabolism and that vegetative cuttings should be an acceptable approach for propagating sweetpotato plants for space applications. PMID:20186286

  16. Growth response of Casuarina equisetifolia Forst. rooted stem cuttings to Frankia in nursery and field conditions.

    PubMed

    Karthikeyan, A; Chandrasekaran, K; Geetha, M; Kalaiselvi, R

    2013-11-01

    Casuarina equisetifolia Forst. is a tree crop that provides fuel wood, land reclamation, dune stabilization, and scaffolding for construction, shelter belts, and pulp and paper production. C. equisetifolia fixes atmospheric nitrogen through a symbiotic relationship with Frankia, a soil bacterium of the actinobacteria group. The roots of C. equisetifolia produce root nodules where the bacteria fix atmospheric nitrogen, which is an essential nutrient for all plant metabolic activities. However, rooted stem cuttings of elite clones of C. equisetifolia by vegetative propagation is being planted by the farmers of Pondicherry as costeffective method. As the vegetative propagation method uses inert material (vermiculite) for rooting there is no chance for Frankia association. Therefore after planting of these stocks the farmers are applying 150 kg of di-ammonium phosphate (DAP)/acre/year. To overcome this fertilizer usage, the Frankia-inoculated rooted stem cuttings were propagated under nursery conditions and transplanted in the nutrient-deficient soils of Karaikal, Pondicherry (India), in this study. Under nursery experiments the growth and biomass of C. equisetifolia rooted stem cuttings inoculated with Frankia showed 3 times higher growth and biomass than uninoculated control. These stocks were transplanted and monitored for their growth and survival for 1 year in the nutrient-deficient farm land. The results showed that the rooted stem cuttings of C. equisetifolia significantly improved growth in height (8.8 m), stem girth (9.6 cm) and tissue nitrogen content (3.3 mg g-1) than uninoculated controls. The soil nutrient status was also improved due to inoculation of Frankia.

  17. Root exudate of Solanum tuberosum is enriched in galactose-containing molecules and impacts the growth of Pectobacterium atrosepticum

    PubMed Central

    Koroney, Abdoul Salam; Plasson, Carole; Pawlak, Barbara; Sidikou, Ramatou; Driouich, Azeddine; Menu-Bouaouiche, Laurence; Vicré-Gibouin, Maïté

    2016-01-01

    Background and aims Potato (Solanum tuberosum) is an important food crop and is grown worldwide. It is, however, significantly sensitive to a number of soil-borne pathogens that affect roots and tubers, causing considerable economic losses. So far, most research on potato has been dedicated to tubers and hence little attention has been paid to root structure and function. Methods In the present study we characterized root border cells using histochemical staining, immunofluorescence labelling of cell wall polysaccharides epitopes and observation using laser confocal microscopy. The monosaccharide composition of the secreted exudates was determined by gas chromatography of trimethylsilyl methylglycoside derivatives. The effects of root exudates and secreted arabinogalactan proteins on bacterial growth were investigated using in vitro bioassays. Key Results Root exudate from S. tuberosum was highly enriched in galactose-containing molecules including arabinogalactan proteins as major components. Treatment of the root with an elicitor derived from Pectobacterium atrosepticum, a soil-borne pathogen of potato, altered the composition of the exudates and arabinogalactan proteins. We found that the growth of the bacterium in vitro was differentially affected by exudates from elicited and non-elicited roots (i.e. inhibition versus stimulation). Conclusions Taken together, these findings indicate that galactose-containing polymers of potato root exudates play a central role in root–microbe interactions. PMID:27390353

  18. Dissecting the effects of nitrate, sucrose and osmotic potential on Arabidopsis root and shoot system growth in laboratory assays

    PubMed Central

    Roycewicz, Peter; Malamy, Jocelyn E.

    2012-01-01

    Studying the specific effects of water and nutrients on plant development is difficult because changes in a single component can often trigger multiple response pathways. Such confounding issues are prevalent in commonly used laboratory assays. For example, increasing the nitrate concentration in growth media alters both nitrate availability and osmotic potential. In addition, it was recently shown that a change in the osmotic potential of media alters the plant's ability to take up other nutrients such as sucrose. It can also be difficult to identify the initial target tissue of a particular environmental cue because there are correlated changes in development of many organs. These growth changes may be coordinately regulated, or changes in development of one organ may trigger changes in development of another organ as a secondary effect. All these complexities make analyses of plant responses to environmental factors difficult to interpret. Here, we review the literature on the effects of nitrate, sucrose and water availability on root system growth and discuss the mechanisms underlying these effects. We then present experiments that examine the impact of nitrate, sucrose and water on root and shoot system growth in culture using an approach that holds all variables constant except the one under analysis. We found that while all three factors also alter root system size, changes in sucrose and osmotic potential also altered shoot system size. In contrast, we found that, when osmotic effects are controlled, nitrate specifically inhibits root system growth while having no effect on shoot system growth. This effectively decreases the root : shoot ratio. Alterations in root : shoot ratio have been widely observed in response to nitrogen starvation, where root growth is selectively increased, but the present results suggest that alterations in this ratio can be triggered across a wide spectrum of nitrate concentrations. PMID:22527391

  19. Maximizing root/rhizosphere efficiency to improve crop productivity and nutrient use efficiency in intensive agriculture of China.

    PubMed

    Shen, Jianbo; Li, Chunjian; Mi, Guohua; Li, Long; Yuan, Lixing; Jiang, Rongfeng; Zhang, Fusuo

    2013-03-01

    Root and rhizosphere research has been conducted for many decades, but the underlying strategy of root/rhizosphere processes and management in intensive cropping systems remain largely to be determined. Improved grain production to meet the food demand of an increasing population has been highly dependent on chemical fertilizer input based on the traditionally assumed notion of 'high input, high output', which results in overuse of fertilizers but ignores the biological potential of roots or rhizosphere for efficient mobilization and acquisition of soil nutrients. Root exploration in soil nutrient resources and root-induced rhizosphere processes plays an important role in controlling nutrient transformation, efficient nutrient acquisition and use, and thus crop productivity. The efficiency of root/rhizosphere in terms of improved nutrient mobilization, acquisition, and use can be fully exploited by: (1) manipulating root growth (i.e. root development and size, root system architecture, and distribution); (2) regulating rhizosphere processes (i.e. rhizosphere acidification, organic anion and acid phosphatase exudation, localized application of nutrients, rhizosphere interactions, and use of efficient crop genotypes); and (3) optimizing root zone management to synchronize root growth and soil nutrient supply with demand of nutrients in cropping systems. Experiments have shown that root/rhizosphere management is an effective approach to increase both nutrient use efficiency and crop productivity for sustainable crop production. The objectives of this paper are to summarize the principles of root/rhizosphere management and provide an overview of some successful case studies on how to exploit the biological potential of root system and rhizosphere processes to improve crop productivity and nutrient use efficiency.

  20. Comparative response of six grapevine rootstocks to inoculation with arbuscular mycorrhizal fungi based on root traits

    NASA Astrophysics Data System (ADS)

    Pogiatzis, Antreas; Bowen, Pat; Hart, Miranda; Holland, Taylor; Klironomos, John

    2017-04-01

    Arbuscular mycorrhizal (AM) symbiosis has been proven to be essential in grapevines, sustaining plant growth especially under abiotic and biotic stressors. The mycorrhizal growth response of young grapevines varies among rootstock cultivars and the underlying mechanisms involved in this variation are unknown. We predicted that this variation in mycorrhizal response may be explained by differences in root traits among rootstocks. We analyzed the entire root system of six greenhouse-grown rootstocks (Salt Creek, 3309 Couderc, Riparia Gloire, 101-14 Millardet et de Grasset, Swarzmann, Teleki 5C), with and without AM fungal inoculation (Rhizophagus irregularis) and characterized their morphological and architectural responses. Twenty weeks after the inoculation, aboveground growth was enhanced by AM colonization. The rootstock varieties were distinctly different in their response to AM fungi, with Salt Creek receiving the highest growth benefit, while Schwarzmann and 5C Teleki receiving the lowest. Plant responsiveness to AM fungi was negatively correlated with branching intensity (fine roots per root length). Furthermore, there was evidence that mycorrhizas can influence the expression of root traits, inducing a higher branching intensity and a lower root to shoot ratio. The results of this study will help to elucidate how interactions between grapevine rootstocks and AM fungi may benefit the establishment of new vineyards.

  1. Root microbiota shift in rice correlates with resident time in the field and developmental stage.

    PubMed

    Zhang, Jingying; Zhang, Na; Liu, Yong-Xin; Zhang, Xiaoning; Hu, Bin; Qin, Yuan; Xu, Haoran; Wang, Hui; Guo, Xiaoxuan; Qian, Jingmei; Wang, Wei; Zhang, Pengfan; Jin, Tao; Chu, Chengcai; Bai, Yang

    2018-06-01

    Land plants in natural soil form intimate relationships with the diverse root bacterial microbiota. A growing body of evidence shows that these microbes are important for plant growth and health. Root microbiota composition has been widely studied in several model plants and crops; however, little is known about how root microbiota vary throughout the plant's life cycle under field conditions. We performed longitudinal dense sampling in field trials to track the time-series shift of the root microbiota from two representative rice cultivars in two separate locations in China. We found that the rice root microbiota varied dramatically during the vegetative stages and stabilized from the beginning of the reproductive stage, after which the root microbiota underwent relatively minor changes until rice ripening. Notably, both rice genotype and geographical location influenced the patterns of root microbiota shift that occurred during plant growth. The relative abundance of Deltaproteobacteria in roots significantly increased overtime throughout the entire life cycle of rice, while that of Betaproteobacteria, Firmicutes, and Gammaproteobacteria decreased. By a machine learning approach, we identified biomarker taxa and established a model to correlate root microbiota with rice resident time in the field (e.g., Nitrospira accumulated from 5 weeks/tillering in field-grown rice). Our work provides insights into the process of rice root microbiota establishment.

  2. Modelling the root system architecture of Poaceae. Can we simulate integrated traits from morphological parameters of growth and branching?

    PubMed

    Pagès, Loïc; Picon-Cochard, Catherine

    2014-10-01

    Our objective was to calibrate a model of the root system architecture on several Poaceae species and to assess its value to simulate several 'integrated' traits measured at the root system level: specific root length (SRL), maximum root depth and root mass. We used the model ArchiSimple, made up of sub-models that represent and combine the basic developmental processes, and an experiment on 13 perennial grassland Poaceae species grown in 1.5-m-deep containers and sampled at two different dates after planting (80 and 120 d). Model parameters were estimated almost independently using small samples of the root systems taken at both dates. The relationships obtained for calibration validated the sub-models, and showed species effects on the parameter values. The simulations of integrated traits were relatively correct for SRL and were good for root depth and root mass at the two dates. We obtained some systematic discrepancies that were related to the slight decline of root growth in the last period of the experiment. Because the model allowed correct predictions on a large set of Poaceae species without global fitting, we consider that it is a suitable tool for linking root traits at different organisation levels. © 2014 INRA. New Phytologist © 2014 New Phytologist Trust.

  3. Arabidopsis Root-Type Ferredoxin:NADP(H) Oxidoreductase 2 is Involved in Detoxification of Nitrite in Roots.

    PubMed

    Hachiya, Takushi; Ueda, Nanae; Kitagawa, Munenori; Hanke, Guy; Suzuki, Akira; Hase, Toshiharu; Sakakibara, Hitoshi

    2016-11-01

    Ferredoxin:NADP(H) oxidoreductase (FNR) plays a key role in redox metabolism in plastids. Whereas leaf FNR (LFNR) is required for photosynthesis, root FNR (RFNR) is believed to provide electrons to ferredoxin (Fd)-dependent enzymes, including nitrite reductase (NiR) and Fd-glutamine-oxoglutarate aminotransferase (Fd-GOGAT) in non-photosynthetic conditions. In some herbal species, however, most nitrate reductase activity is located in photosynthetic organs, and ammonium in roots is assimilated mainly by Fd-independent NADH-GOGAT. Therefore, RFNR might have a limited impact on N assimilation in roots grown with nitrate or ammonium nitrogen sources. AtRFNR genes are rapidly induced by application of toxic nitrite. Thus, we tested the hypothesis that RFNR could contribute to nitrite reduction in roots by comparing Arabidopsis thaliana seedlings of the wild type with loss-of-function mutants of RFNR2 When these seedlings were grown under nitrate, nitrite or ammonium, only nitrite nutrition caused impaired growth and nitrite accumulation in roots of rfnr2 Supplementation of nitrite with nitrate or ammonium as N sources did not restore the root growth in rfnr2 Also, a scavenger for nitric oxide (NO) could not effectively rescue the growth impairment. Thus, nitrite toxicity, rather than N depletion or nitrite-dependent NO production, probably causes the rfnr2 root growth defect. Our results strongly suggest that RFNR2 has a major role in reduction of toxic nitrite in roots. A specific set of genes related to nitrite reduction and the supply of reducing power responded to nitrite concomitantly, suggesting that the products of these genes act co-operatively with RFNR2 to reduce nitrite in roots. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  4. Root hair-specific disruption of cellulose and xyloglucan in AtCSLD3 mutants, and factors affecting the post-rupture resumption of mutant root hair growth.

    PubMed

    Galway, Moira E; Eng, Ryan C; Schiefelbein, John W; Wasteneys, Geoffrey O

    2011-05-01

    The glycosyl transferase encoded by the cellulose synthase-like gene CSLD3/KJK/RHD7 (At3g03050) is required for cell wall integrity during root hair formation in Arabidopsis thaliana but it remains unclear whether it contributes to the synthesis of cellulose or hemicellulose. We identified two new alleles, root hair-defective (rhd) 7-1 and rhd7-4, which affect the C-terminal end of the encoded protein. Like root hairs in the previously characterized kjk-2 putative null mutant, rhd7-1 and rhd7-4 hairs rupture before tip growth but, depending on the growth medium and temperature, hairs are able to survive rupture and initiate tip growth, indicating that these alleles retain some function. At 21°C, the rhd7 tip-growing root hairs continued to rupture but at 5ºC, rupture was inhibited, resulting in long, wild type-like root hairs. At both temperatures, the expression of another root hair-specific CSLD gene, CSLD2, was increased in the rhd7-4 mutant but reduced in the kjk-2 mutant, suggesting that CSLD2 expression is CSLD3-dependent, and that CSLD2 could partially compensate for CSLD3 defects to prevent rupture at 5°C. Using a fluorescent brightener (FB 28) to detect cell wall (1 → 4)-β-glucans (primarily cellulose) and CCRC-M1 antibody to detect fucosylated xyloglucans revealed a patchy distribution of both in the mutant root hair cell walls. Cell wall thickness varied, and immunogold electron microscopy indicated that xyloglucan distribution was altered throughout the root hair cell walls. These cell wall defects indicate that CSLD3 is required for the normal organization of both cellulose and xyloglucan in root hair cell walls.

  5. Spatial Regulation of Root Growth: Placing the Plant TOR Pathway in a Developmental Perspective

    PubMed Central

    Barrada, Adam; Montané, Marie-Hélène; Robaglia, Christophe; Menand, Benoît

    2015-01-01

    Plant cells contain specialized structures, such as a cell wall and a large vacuole, which play a major role in cell growth. Roots follow an organized pattern of development, making them the organs of choice for studying the spatio-temporal regulation of cell proliferation and growth in plants. During root growth, cells originate from the initials surrounding the quiescent center, proliferate in the division zone of the meristem, and then increase in length in the elongation zone, reaching their final size and differentiation stage in the mature zone. Phytohormones, especially auxins and cytokinins, control the dynamic balance between cell division and differentiation and therefore organ size. Plant growth is also regulated by metabolites and nutrients, such as the sugars produced by photosynthesis or nitrate assimilated from the soil. Recent literature has shown that the conserved eukaryotic TOR (target of rapamycin) kinase pathway plays an important role in orchestrating plant growth. We will summarize how the regulation of cell proliferation and cell expansion by phytohormones are at the heart of root growth and then discuss recent data indicating that the TOR pathway integrates hormonal and nutritive signals to orchestrate root growth. PMID:26295391

  6. Genome-Wide Small RNA Analysis of Soybean Reveals Auxin-Responsive microRNAs that are Differentially Expressed in Response to Salt Stress in Root Apex

    PubMed Central

    Sun, Zhengxi; Wang, Youning; Mou, Fupeng; Tian, Yinping; Chen, Liang; Zhang, Senlei; Jiang, Qiong; Li, Xia

    2016-01-01

    Root growth and the architecture of the root system in Arabidopsis are largely determined by root meristematic activity. Legume roots show strong developmental plasticity in response to both abiotic and biotic stimuli, including symbiotic rhizobia. However, a global analysis of gene regulation in the root meristem of soybean plants is lacking. In this study, we performed a global analysis of the small RNA transcriptome of root tips from soybean seedlings grown under normal and salt stress conditions. In total, 71 miRNA candidates, including known and novel variants of 59 miRNA families, were identified. We found 66 salt-responsive miRNAs in the soybean root meristem; among them, 22 are novel miRNAs. Interestingly, we found auxin-responsive cis-elements in the promoters of many salt-responsive miRNAs, implying that these miRNAs may be regulated by auxin and auxin signaling plays a key role in regulating the plasticity of the miRNAome and root development in soybean. A functional analysis of miR399, a salt-responsive miRNA in the root meristem, indicates the crucial role of this miRNA in modulating soybean root developmental plasticity. Our data provide novel insight into the miRNAome-mediated regulatory mechanism in soybean root growth under salt stress. PMID:26834773

  7. [Difference of anti-fracture mechanical characteristics between lateral-root branches and adjacent upper straight roots of four plant species in vigorous growth period].

    PubMed

    Liu, Peng-fei; Liu, Jing; Zhu, Hong-hui; Zhang, Xin; Zhang, Ge; Li, You-fang; Su, Yu; Wang, Chen-jia

    2016-01-01

    Taking four plant species, Caragana korshinskii, Salix psammophila, Hippophae rhamnides and Artemisia sphaerocephala, which were 3-4 years old and in vigorous growth period, as test materials, the anti-fracture forces of lateral-root branches and adjacent upper straight roots were measured with the self-made fixture and the instrument of TY 8000. The lateral-root branches were vital and the diameters were 1-4 mm. The results showed that the anti-fracture force and anti-fracture strength of lateral-root branches were lesser than those of the adjacent upper straight roots even though the average diameter of lateral-root branches was greater. The ratios of anti-fracture strength of lateral-root branches to the adjacent upper straight roots were 71.5% for C. korshinskii, 62.9% for S. psammophila, 45.4% for H. rhamnides and 35.4% for A. sphaerocephala. For the four plants, the anti-fracture force positively correlated with the diameter in a power function, while the anti-fracture strength negatively correlated with diameter in a power function. The anti-fracture strengths of lateral-root branches and adjacent upper straight roots for the four species followed the sequence of C. korshinskii (33.66 and 47.06 MPa) > S. psammophila (17.31 and 27.54 MPa) > H. rhamnides (3.97 and 8.75 MPa) > A. sphaerphala (2.18 and 6.15 MPa).

  8. Auxin, ethylene and the regulation of root growth under mechanical impedance

    NASA Astrophysics Data System (ADS)

    Sharma, Rameshwar; Santisree, Parankusam; Nongmaithem, Sapana; Sreelakshmi, Yellamaraju

    2012-07-01

    Among the multitude functions performed by plant roots, little information is available about the mechanisms that allow roots to overcome the soil resistance, in order to grow in the soil to obtain water and nutrient. Tomato (Solanum lycopersicum) seedlings grown on horizontally placed agar plates showed a progressive decline in the root length with the increasing impedance of agar media. The incubation with 1-methylcyclopropane (1-MCP), an inhibitor of ethylene perception, led to aerial growth of roots. In contrast, in absence of 1-MCP control roots grew horizontally anchored to the agar surface. Though 1-MCP-treated and control seedlings showed differential ability to penetrate in the agar, the inhibition of root elongation was nearly similar for both treatments. While increased mechanical impedance also progressively impaired hypocotyl elongation in 1-MCP treated seedlings, it did not affect the hypocotyl length of control seedlings. The decline in root elongation was also associated with increased expression of DR5::GUS activity in the root tip signifying accumulation of auxin at the root tip. The increased expression of DR5::GUS activity in the root tip was also observed in 1-MCP treated seedlings, indicating independence of this response from ethylene signaling. Our results indicate operation of a sensing mechanism in root that likely operates independently of ethylene but involves auxin to determine the degree of impedance of the substratum.

  9. Root distributions of Eurotia lanata in association with two species of agropyron on disturbed soils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bonham, C.D.; Mack, S.E.

    1990-12-01

    Root distributions of Eurotia lanata in association with Agropyron inerme and A. smithii on soils that were mechanically disturbed were studied. Root diagrams and measurements were made for plants in competitive pairs from soils representing two depths of soil disturbance (30 cm and 1 m) and control areas. Soil disturbance was observed to reduce significantly depth of root penetration and root concentration of E. lanata. Root depth, maximum lateral spread of roots, and zone of root concentration of E. lanata plants were greatest in pure stand pairs. Eurotia lanata associated with A. inerme had the smallest root concentration. The areamore » occupied by E. lanata roots was 59% greater in pure stands than when found adjacent to A. inerme. Agropyron inerme apparently used more available soil water in the top 20 cm of soil than did the shrub and resulted in reduced root growth for E. lanata. On the other hand, the asexual reproductive strategy of A. smithii, where roots and rhizomes were distributed both vertically and laterally, enables the grass species to minimize detrimental effects of its association with E. lanata. The results have important implications for selection of species combinations to reseed disturbed soils in semiarid or arid environments. In particular, attention should be given to use of species that have differing specializations as indicated by their growth and morphology.« less

  10. Enhanced lignin monomer production caused by cinnamic Acid and its hydroxylated derivatives inhibits soybean root growth.

    PubMed

    Lima, Rogério Barbosa; Salvador, Victor Hugo; dos Santos, Wanderley Dantas; Bubna, Gisele Adriana; Finger-Teixeira, Aline; Soares, Anderson Ricardo; Marchiosi, Rogério; Ferrarese, Maria de Lourdes Lucio; Ferrarese-Filho, Osvaldo

    2013-01-01

    Cinnamic acid and its hydroxylated derivatives (p-coumaric, caffeic, ferulic and sinapic acids) are known allelochemicals that affect the seed germination and root growth of many plant species. Recent studies have indicated that the reduction of root growth by these allelochemicals is associated with premature cell wall lignification. We hypothesized that an influx of these compounds into the phenylpropanoid pathway increases the lignin monomer content and reduces the root growth. To confirm this hypothesis, we evaluated the effects of cinnamic, p-coumaric, caffeic, ferulic and sinapic acids on soybean root growth, lignin and the composition of p-hydroxyphenyl (H), guaiacyl (G) and syringyl (S) monomers. To this end, three-day-old seedlings were cultivated in nutrient solution with or without allelochemical (or selective enzymatic inhibitors of the phenylpropanoid pathway) in a growth chamber for 24 h. In general, the results showed that 1) cinnamic, p-coumaric, caffeic and ferulic acids reduced root growth and increased lignin content; 2) cinnamic and p-coumaric acids increased p-hydroxyphenyl (H) monomer content, whereas p-coumaric, caffeic and ferulic acids increased guaiacyl (G) content, and sinapic acid increased sinapyl (S) content; 3) when applied in conjunction with piperonylic acid (PIP, an inhibitor of the cinnamate 4-hydroxylase, C4H), cinnamic acid reduced H, G and S contents; and 4) when applied in conjunction with 3,4-(methylenedioxy)cinnamic acid (MDCA, an inhibitor of the 4-coumarate:CoA ligase, 4CL), p-coumaric acid reduced H, G and S contents, whereas caffeic, ferulic and sinapic acids reduced G and S contents. These results confirm our hypothesis that exogenously applied allelochemicals are channeled into the phenylpropanoid pathway causing excessive production of lignin and its main monomers. By consequence, an enhanced stiffening of the cell wall restricts soybean root growth.

  11. Nitrate uptake and utilization is modulated by exogenous gamma-aminobutyric acid in Arabidopsis thaliana seedlings.

    PubMed

    Barbosa, Jose M; Singh, Narendra K; Cherry, Joe H; Locy, Robert D

    2010-06-01

    Exogenously applied GABA modulates root growth by inhibition of root elongation when seedlings were grown in vitro on full-strength Murashige and Skoog (MS) salts, but root elongation was stimulated when seedlings were grown on 1/8 strength MS salts. When the concentration of single ions in MS salts was individually varied, the control of growth between inhibition and stimulation was found to be related to the level of nitrate (NO(3)(-)) in the growth medium. At NO(3)(-) concentrations below 40 mM (full-strength MS salts level), root growth was stimulated by the addition of GABA to the growth medium; whereas at concentrations above 40 mM NO(3)(-), the addition of GABA to the growth medium inhibited root elongation. GABA promoted NO(3)(-) uptake at low NO(3)(-), while GABA inhibited NO(3)(-) uptake at high NO(3)(-). Activities of several enzymes involved in nitrogen and carbon metabolism including nitrate reductase (NR), glutamine synthetase (GS), glutamate synthase (NADH-GOGAT), NADP-dependent isocitrate dehydrogenase (NADP-ICDH), and phosphoenol pyruvate carboxylase (PEPCase) were regulated by GABA in the growth medium. Supplementing 1/8 strength MS medium with 50 mM GABA enhanced the activities of all of the above enzymes except ICDH activities in root tissues. However, at full-strength MS, GABA showed no inhibitory effect on the activities of these enzymes, except on GS in both root and shoot tissues, and PEPCase activity in shoot tissues. Exogenous GABA increased the amount of NR protein rather than its activation status in the tissues. This study shows that GABA affects the growth of Arabidopsis, possibly by acting as a signaling molecule, modulating the activity of enzymes involved in primary nitrogen metabolism and nitrate uptake.

  12. Root growth and development in response to CO2 enrichment

    NASA Technical Reports Server (NTRS)

    Day, Frank P., Jr.

    1994-01-01

    A non-destructive technique (minirhizotron observation tubes) was used to assess the effects of CO2 enrichment on root growth and development in experimental plots in a scrub oak-palmetto community at the Kennedy Space Center. Potential effects of CO2 enrichment on plants have a global significance in light of concerns over increasing CO2 concentrations in the Earth's atmosphere. The study at Kennedy Space Center focused on aboveground physiological responses (photosynthetic efficiency and water use efficiency), effects on process rates (litter decomposition and nutrient turnover), and belowground responses of the plants. Belowground dynamics are an exceptionally important component of total plant response but are frequently ignored due to methodological difficulties. Most methods used to examine root growth and development are destructive and, therefore, severely compromise results. Minirhizotrons allow nondestructive observation and quantification of the same soil volume and roots through time. Root length density and root phenology were evaluated for CO2 effects with this nondestructive technique.

  13. Quantification of root gravitropic response using a constant stimulus feedback system.

    PubMed

    Wolverton, Chris

    2015-01-01

    Numerous software packages now exist for quantifying root growth responses, most of which analyze a time resolved sequence of images ex post facto. However, few allow for the real-time analysis of growth responses. The system in routine use in our lab allows for real-time growth analysis and couples this to positional feedback to control the stimulus experienced by the responding root. This combination allows us to overcome one of the confounding variables in studies of root gravity response. Seedlings are grown on standard petri plates attached to a vertical rotating stage and imaged using infrared illumination. The angle of a particular region of the root is determined by image analysis, compared to the prescribed angle, and any corrections in positioning are made by controlling a stepper motor. The system allows for the long-term stimulation of a root at a constant angle and yields insights into the gravity perception and transduction machinery not possible with other approaches.

  14. A role for CSLD3 during cell-wall synthesis in apical plasma membranes of tip-growing root-hair cells.

    PubMed

    Park, Sungjin; Szumlanski, Amy L; Gu, Fangwei; Guo, Feng; Nielsen, Erik

    2011-07-17

    In plants, cell shape is defined by the cell wall, and changes in cell shape and size are dictated by modification of existing cell walls and deposition of newly synthesized cell-wall material. In root hairs, expansion occurs by a process called tip growth, which is shared by root hairs, pollen tubes and fungal hyphae. We show that cellulose-like polysaccharides are present in root-hair tips, and de novo synthesis of these polysaccharides is required for tip growth. We also find that eYFP-CSLD3 proteins, but not CESA cellulose synthases, localize to a polarized plasma-membrane domain in root hairs. Using biochemical methods and genetic complementation of a csld3 mutant with a chimaeric CSLD3 protein containing a CESA6 catalytic domain, we provide evidence that CSLD3 represents a distinct (1→4)-β-glucan synthase activity in apical plasma membranes during tip growth in root-hair cells.

  15. Recovering the dynamics of root growth and development using novel image acquisition and analysis methods

    PubMed Central

    Wells, Darren M.; French, Andrew P.; Naeem, Asad; Ishaq, Omer; Traini, Richard; Hijazi, Hussein; Bennett, Malcolm J.; Pridmore, Tony P.

    2012-01-01

    Roots are highly responsive to environmental signals encountered in the rhizosphere, such as nutrients, mechanical resistance and gravity. As a result, root growth and development is very plastic. If this complex and vital process is to be understood, methods and tools are required to capture the dynamics of root responses. Tools are needed which are high-throughput, supporting large-scale experimental work, and provide accurate, high-resolution, quantitative data. We describe and demonstrate the efficacy of the high-throughput and high-resolution root imaging systems recently developed within the Centre for Plant Integrative Biology (CPIB). This toolset includes (i) robotic imaging hardware to generate time-lapse datasets from standard cameras under infrared illumination and (ii) automated image analysis methods and software to extract quantitative information about root growth and development both from these images and via high-resolution light microscopy. These methods are demonstrated using data gathered during an experimental study of the gravitropic response of Arabidopsis thaliana. PMID:22527394

  16. Recovering the dynamics of root growth and development using novel image acquisition and analysis methods.

    PubMed

    Wells, Darren M; French, Andrew P; Naeem, Asad; Ishaq, Omer; Traini, Richard; Hijazi, Hussein I; Hijazi, Hussein; Bennett, Malcolm J; Pridmore, Tony P

    2012-06-05

    Roots are highly responsive to environmental signals encountered in the rhizosphere, such as nutrients, mechanical resistance and gravity. As a result, root growth and development is very plastic. If this complex and vital process is to be understood, methods and tools are required to capture the dynamics of root responses. Tools are needed which are high-throughput, supporting large-scale experimental work, and provide accurate, high-resolution, quantitative data. We describe and demonstrate the efficacy of the high-throughput and high-resolution root imaging systems recently developed within the Centre for Plant Integrative Biology (CPIB). This toolset includes (i) robotic imaging hardware to generate time-lapse datasets from standard cameras under infrared illumination and (ii) automated image analysis methods and software to extract quantitative information about root growth and development both from these images and via high-resolution light microscopy. These methods are demonstrated using data gathered during an experimental study of the gravitropic response of Arabidopsis thaliana.

  17. Cluster-root formation and carboxylate release in three Lupinus species as dependent on phosphorus supply, internal phosphorus concentration and relative growth rate

    PubMed Central

    Wang, Xing; Pearse, Stuart J.; Lambers, Hans

    2013-01-01

    Background and Aims Some Lupinus species produce cluster roots in response to low plant phosphorus (P) status. The cause of variation in cluster-root formation among cluster-root-forming Lupinus species is unknown. The aim of this study was to investigate if cluster-root formation is, in part, dependent on different relative growth rates (RGRs) among Lupinus species when they show similar shoot P status. Methods Three cluster-root-forming Lupinus species, L. albus, L. pilosus and L. atlanticus, were grown in washed river sand at 0, 7·5, 15 or 40 mg P kg−1 dry sand. Plants were harvested at 34, 42 or 62 d after sowing, and fresh and dry weight of leaves, stems, cluster roots and non-cluster roots of different ages were measured. The percentage of cluster roots, tissue P concentrations, root exudates and plant RGR were determined. Key Results Phosphorus treatments had major effects on cluster-root allocation, with a significant but incomplete suppression in L. albus and L. pilosus when P supply exceeded 15 mg P kg−1 sand. Complete suppression was found in L. atlanticus at the highest P supply; this species never invested more than 20 % of its root weight in cluster roots. For L. pilosus and L. atlanticus, cluster-root formation was decreased at high internal P concentration, irrespective of RGR. For L. albus, there was a trend in the same direction, but this was not significant. Conclusions Cluster-root formation in all three Lupinus species was suppressed at high leaf P concentration, irrespective of RGR. Variation in cluster-root formation among the three species cannot be explained by species-specific variation in RGR or leaf P concentration. PMID:24061491

  18. Cluster-root formation and carboxylate release in three Lupinus species as dependent on phosphorus supply, internal phosphorus concentration and relative growth rate.

    PubMed

    Wang, Xing; Pearse, Stuart J; Lambers, Hans

    2013-11-01

    Some Lupinus species produce cluster roots in response to low plant phosphorus (P) status. The cause of variation in cluster-root formation among cluster-root-forming Lupinus species is unknown. The aim of this study was to investigate if cluster-root formation is, in part, dependent on different relative growth rates (RGRs) among Lupinus species when they show similar shoot P status. Three cluster-root-forming Lupinus species, L. albus, L. pilosus and L. atlanticus, were grown in washed river sand at 0, 7·5, 15 or 40 mg P kg(-1) dry sand. Plants were harvested at 34, 42 or 62 d after sowing, and fresh and dry weight of leaves, stems, cluster roots and non-cluster roots of different ages were measured. The percentage of cluster roots, tissue P concentrations, root exudates and plant RGR were determined. Phosphorus treatments had major effects on cluster-root allocation, with a significant but incomplete suppression in L. albus and L. pilosus when P supply exceeded 15 mg P kg(-1) sand. Complete suppression was found in L. atlanticus at the highest P supply; this species never invested more than 20 % of its root weight in cluster roots. For L. pilosus and L. atlanticus, cluster-root formation was decreased at high internal P concentration, irrespective of RGR. For L. albus, there was a trend in the same direction, but this was not significant. Cluster-root formation in all three Lupinus species was suppressed at high leaf P concentration, irrespective of RGR. Variation in cluster-root formation among the three species cannot be explained by species-specific variation in RGR or leaf P concentration.

  19. An Auxin Transport Independent Pathway Is Involved in Phosphate Stress-Induced Root Architectural Alterations in Arabidopsis. Identification of BIG as a Mediator of Auxin in Pericycle Cell Activation1

    PubMed Central

    López-Bucio, José; Hernández-Abreu, Esmeralda; Sánchez-Calderón, Lenin; Pérez-Torres, Anahí; Rampey, Rebekah A.; Bartel, Bonnie; Herrera-Estrella, Luis

    2005-01-01

    Arabidopsis (Arabidopsis thaliana) plants display a number of root developmental responses to low phosphate availability, including primary root growth inhibition, greater formation of lateral roots, and increased root hair elongation. To gain insight into the regulatory mechanisms by which phosphorus (P) availability alters postembryonic root development, we performed a mutant screen to identify genetic determinants involved in the response to P deprivation. Three low phosphate-resistant root lines (lpr1-1 to lpr1-3) were isolated because of their reduced lateral root formation in low P conditions. Genetic and molecular analyses revealed that all lpr1 mutants were allelic to BIG, which is required for normal auxin transport in Arabidopsis. Detailed characterization of lateral root primordia (LRP) development in wild-type and lpr1 mutants revealed that BIG is required for pericycle cell activation to form LRP in both high (1 mm) and low (1 μm) P conditions, but not for the low P-induced alterations in primary root growth, lateral root emergence, and root hair elongation. Exogenously supplied auxin restored normal lateral root formation in lpr1 mutants in the two P treatments. Treatment of wild-type Arabidopsis seedlings with brefeldin A, a fungal metabolite that blocks auxin transport, phenocopies the root developmental alterations observed in lpr1 mutants in both high and low P conditions, suggesting that BIG participates in vesicular targeting of auxin transporters. Taken together, our results show that auxin transport and BIG function have fundamental roles in pericycle cell activation to form LRP and promote root hair elongation. The mechanism that activates root system architectural alterations in response to P deprivation, however, seems to be independent of auxin transport and BIG. PMID:15681664

  20. A novel tracking tool for the analysis of plant-root tip movements.

    PubMed

    Russino, A; Ascrizzi, A; Popova, L; Tonazzini, A; Mancuso, S; Mazzolai, B

    2013-06-01

    The growth process of roots consists of many activities, such as exploring the soil volume, mining minerals, avoiding obstacles and taking up water to fulfil the plant's primary functions, that are performed differently, depending on environmental conditions. Root movements are strictly related to a root decision strategy, which helps plants to survive under stressful conditions by optimizing energy consumption. In this work, we present a novel image-analysis tool to study the kinematics of the root tip (apex), named analyser for root tip tracks (ARTT). The software implementation combines a segmentation algorithm with additional software imaging filters in order to realize a 2D tip detection. The resulting paths, or tracks, arise from the sampled tip positions through the acquired images during the growth. ARTT allows work with no markers and deals autonomously with new emerging root tips, as well as handling a massive number of data relying on minimum user interaction. Consequently, ARTT can be used for a wide range of applications and for the study of kinematics in different plant species. In particular, the study of the root growth and behaviour could lead to the definition of novel principles for the penetration and/or control paradigms for soil exploration and monitoring tasks. The software capabilities were demonstrated by experimental trials performed with Zea mays and Oryza sativa.

  1. Measuring the response of conifer seedlings to soil compaction stress

    Treesearch

    Howard G. Halverson; Robert P. Zisa

    1982-01-01

    A test of seedling growth response to several levels of soil compaction showed that root penetration depth was best correlated with soil compaction. Shoot biomass, root biomass, root elongation, and seedling height were not well correlated with compaction. The results reveal that most measurements of growth do not give a good indication of seedling response to stresses...

  2. Fine root dynamics across a chronosequence of upland temperate deciduous forests

    Treesearch

    Travis W. Idol; Phillip E. Pope; Felix Jr. Ponder

    2000-01-01

    Following a major disturbance event in forests that removes most of the standing vegetation, patterns of fine root growth, mortality, and decomposition may be altered from the pre-disturbance conditions. The objective of this study was to describe the changes in the seasonal and spatial dynamics of fine root growth, mortality, and decomposition that occur following...

  3. Seasonal Fine-Root Carbohydrate and Growth Relations of Plantation Loblolly Pine After Thinning and Fertilization

    Treesearch

    Eric A. Kuehler; Mary Anne Sword; C. Dan Andries

    1999-01-01

    In 1989, two levels each of stand density and fertilization were established in an 8-year-old loblolly pine (Pinus taeda L.) plantation. In March 1995, treatments were reapplied, and root elongation and carbohydrate concentrations were monitored for 2 years. Our objective was to evaluate relationships between seasonal root growth and carbohydrate...

  4. Effect of Sugar Maple Root Exudate on Seedlings of Northern Conifer Species

    Treesearch

    Carl H. Tubbs

    1976-01-01

    It has been shows that a root exudate of sugar maple reduces the growth of yellow birch. A laboratory test indicated that the growth of northern conifers is also reduced in sugar maple root exudate. Allelopathy may play an important role in survival of species on sites where sugar maple is abundant.

  5. Fine-root growth in a forested bog is seasonally dynamic, but shallowly distributed in nutrient-poor peat

    Treesearch

    Colleen M. Iversen; Joanne Childs; Richard J. Norby; Todd A. Ontl; Randall K. Kolka; Deanne J. Brice; Karis J. McFarlane; Paul J. Hanson

    2017-01-01

    Background and aims. Fine roots contribute to ecosystem carbon, water, and nutrient fluxes through resource acquisition, respiration, exudation, and turnover, but are understudied in peatlands. We aimed to determine how the amount and timing of fine-root growth in a forested, ombrotrophic bog varied across gradients of vegetation density, peat...

  6. Endogenous rhythmic growth in oak trees is regulated by internal clocks rather than resource availability

    PubMed Central

    Herrmann, S.; Recht, S.; Boenn, M.; Feldhahn, L.; Angay, O.; Fleischmann, F.; Tarkka, M T.; Grams, T.E.E.; Buscot, F.

    2015-01-01

    Common oak trees display endogenous rhythmic growth with alternating shoot and root flushes. To explore the mechanisms involved, microcuttings of the Quercus robur L. clone DF159 were used for 13C/15N labelling in combination with RNA sequencing (RNASeq) transcript profiling of shoots and roots. The effect of plant internal resource availability on the rhythmic growth of the cuttings was tested through inoculation with the ectomycorrhizal fungus Piloderma croceum. Shoot and root flushes were related to parallel shifts in above- and below-ground C and, to a lesser extent, N allocation. Increased plant internal resource availability by P. croceum inoculation with enhanced plant growth affected neither the rhythmic growth nor the associated resource allocation patterns. Two shifts in transcript abundance were identified during root and shoot growth cessation, and most concerned genes were down-regulated. Inoculation with P. croceum suppressed these transcript shifts in roots, but not in shoots. To identify core processes governing the rhythmic growth, functions [Gene Ontology (GO) terms] of the genes differentially expressed during the growth cessation in both leaves and roots of non-inoculated plants and leaves of P. croceum-inoculated plants were examined. Besides genes related to resource acquisition and cell development, which might reflect rather than trigger rhythmic growth, genes involved in signalling and/or regulated by the circadian clock were identified. The results indicate that rhythmic growth involves dramatic oscillations in plant metabolism and gene regulation between below- and above-ground parts. Ectomycorrhizal symbiosis may play a previously unsuspected role in smoothing these oscillations without modifying the rhythmic growth pattern. PMID:26320242

  7. Root evolution at the base of the lycophyte clade: insights from an Early Devonian lycophyte

    PubMed Central

    Matsunaga, Kelly K. S.; Tomescu, Alexandru M. F.

    2016-01-01

    Background and Aims The evolution of complex rooting systems during the Devonian had significant impacts on global terrestrial ecosystems and the evolution of plant body plans. However, detailed understanding of the pathways of root evolution and the architecture of early rooting systems is currently lacking. We describe the architecture and resolve the structural homology of the rooting system of an Early Devonian basal lycophyte. Insights gained from these fossils are used to address lycophyte root evolution and homology. Methods Plant fossils are preserved as carbonaceous compressions at Cottonwood Canyon (Wyoming), in the Lochkovian–Pragian (∼411 Ma; Early Devonian) Beartooth Butte Formation. We analysed 177 rock specimens and documented morphology, cuticular anatomy and structural relationships, as well as stratigraphic position and taphonomic conditions. Key Results The rooting system of the Cottonwood Canyon lycophyte is composed of modified stems that bear fine, dichotomously branching lateral roots. These modified stems, referred to as root-bearing axes, are produced at branching points of the above-ground shoot system. Root-bearing axes preserved in growth position exhibit evidence of positive gravitropism, whereas the lateral roots extend horizontally. Consistent recurrence of these features in successive populations of the plant preserved in situ demonstrates that they represent constitutive structural traits and not opportunistic responses of a flexible developmental programme. Conclusions This is the oldest direct evidence for a rooting system preserved in growth position. These rooting systems, which can be traced to a parent plant, include some of the earliest roots known to date and demonstrate that substantial plant–substrate interactions were under way by Early Devonian time. The morphological relationships between stems, root-bearing axes and roots corroborate evidence that positive gravitropism and root identity were evolutionarily uncoupled in lycophytes, and challenge the hypothesis that roots evolved from branches of the above-ground axial system, suggesting instead that lycophyte roots arose as a novel organ. PMID:26921730

  8. Root hair development in grasses and cereals (Poaceae).

    PubMed

    Dolan, Liam

    2017-08-01

    Root hairs are tubular, cellular outgrowths of epidermal cells that extend from the root surface into the soil. Root hairs tether root systems to their growth substrate, take up inorganic nutrients and water, and interact with the soil microflora. At maturity, the root epidermis comprises two cell types; cells with root hairs and hairless epidermal cells. These two cell types alternate with each other along longitudinal files in grasses and cereals (Poaceae). While the mechanism by which this alternating pattern develops is unknown, the later stages of root hair differentiation are controlled by a conserved mechanism that promotes root hair development among angiosperms. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  9. Azadirachtin powder for control of root-knot nematodes in tomato

    USDA-ARS?s Scientific Manuscript database

    USDA ARS Daniel K. Inouye U.S. Pacific Basin Agricultural Research Center, 64 Nowelo St., Hilo, HI 96720. Root-knot nematodes cause root galling and yield reductions in many vegetable crops, including tomato. Three organic treatments to improve root growth and reduce nematode infestation were eval...

  10. Aspen Root Sucker Formation and Apical Dominance

    Treesearch

    Robert E. Farmer

    1962-01-01

    Root suckering is the primary mode of regeneration in the aspens, Populus tremuloides Michx. and P. grandidentata Michx. When stems of these species are cut, numerous suckers originating in the root pericycle are formed on their extensive lateral root systems. During their first season of growth, suckers ordinarily reach a height...

  11. From Experiments to Simulations: Downscaling Measurements of Na+ Distribution at the Root-Soil Interface

    NASA Astrophysics Data System (ADS)

    Perelman, A.; Guerra, H. J.; Pohlmeier, A. J.; Vanderborght, J.; Lazarovitch, N.

    2017-12-01

    When salinity increases beyond a certain threshold, crop yield will decrease at a fixed rate, according to the Maas and Hoffman model (1976). Thus, it is highly important to predict salinization and its impact on crops. Current models do not consider the impact of the transpiration rate on plant salt tolerance, although it affects plant water uptake and thus salt accumulation around the roots, consequently influencing the plant's sensitivity to salinity. Better model parametrization can improve the prediction of real salinity effects on crop growth and yield. The aim of this research is to study Na+ distribution around roots at different scales using different non-invasive methods, and to examine how this distribution is affected by the transpiration rate and plant water uptake. Results from tomato plants that were grown on rhizoslides (a capillary paper growth system) showed that the Na+ concentration was higher at the root-substrate interface than in the bulk. Also, Na+ accumulation around the roots decreased under a low transpiration rate, supporting our hypothesis. The rhizoslides enabled the root growth rate and architecture to be studied under different salinity levels. The root system architecture was retrieved from photos taken during the experiment, enabling us to incorporate real root systems into a simulation. Magnetic resonance imaging (MRI) was used to observe correlations between root system architectures and Na+ distribution. The MRI provided fine resolution of the Na+ accumulation around a single root without disturbing the root system. With time, Na+ accumulated only where roots were found in the soil and later around specific roots. Rhizoslides allow the root systems of larger plants to be investigated, but this method is limited by the medium (paper) and the dimension (2D). The MRI can create a 3D image of Na+ accumulation in soil on a microscopic scale. These data are being used for model calibration, which is expected to enable the prediction of root water uptake in saline soils for different climatic conditions and different soil water availabilities.

  12. Phytochromes A and B Mediate Red-Light-Induced Positive Phototropism in Roots1

    PubMed Central

    Kiss, John Z.; Mullen, Jack L.; Correll, Melanie J.; Hangarter, Roger P.

    2003-01-01

    The interaction of tropisms is important in determining the final growth form of the plant body. In roots, gravitropism is the predominant tropistic response, but phototropism also plays a role in the oriented growth of roots in flowering plants. In blue or white light, roots exhibit negative phototropism that is mediated by the phototropin family of photoreceptors. In contrast, red light induces a positive phototropism in Arabidopsis roots. Because this red-light-induced response is weak relative to both gravitropism and negative phototropism, we used a novel device to study phototropism without the complications of a counteracting gravitational stimulus. This device is based on a computer-controlled system using real-time image analysis of root growth and a feedback-regulated rotatable stage. Our data show that this system is useful to study root phototropism in response to red light, because in wild-type roots, the maximal curvature detected with this apparatus is 30° to 40°, compared with 5° to 10° without the feedback system. In positive root phototropism, sensing of red light occurs in the root itself and is not dependent on shoot-derived signals resulting from light perception. Phytochrome (Phy)A and phyB were severely impaired in red-light-induced phototropism, whereas the phyD and phyE mutants were normal in this response. Thus, PHYA and PHYB play a key role in mediating red-light-dependent positive phototropism in roots. Although phytochrome has been shown to mediate phototropism in some lower plant groups, this is one of the few reports indicating a phytochrome-dependent phototropism in flowering plants. PMID:12644690

  13. A novel Brassica-rhizotron system to unravel the dynamic changes in root system architecture of oilseed rape under phosphorus deficiency.

    PubMed

    Yuan, Pan; Ding, Guang-Da; Cai, Hong-Mei; Jin, Ke-Mo; Broadley, Martin Roger; Xu, Fang-Sen; Shi, Lei

    2016-08-01

    An important adaptation of plants to phosphorus (P) deficiency is to alter root system architecture (RSA) to increase P acquisition from the soil, but soil-based observations of RSA are technically challenging, especially in mature plants. The aim of this study was to investigate the root development and RSA of oilseed rape (Brassica napus L.) under low and high soil P conditions during an entire growth cycle. A new large Brassica-rhizotron system (approx. 118-litre volume) was developed to study the RSA dynamics of B. napus 'Zhongshuang11' in soils, using top-soils supplemented with low P (LP) or high P (HP) for a full plant growth period. Total root length (TRL), root tip number (RTN), root length density (RLD), biomass and seed yield traits were measured. TRL and RTN increased more rapidly in HP than LP plants from seedling to flowering stages. Both traits declined from flowering to silique stages, and then increased slightly in HP plants; in contrast, root senescence was observed in LP plants. RSA parameters measured from the polycarbonate plates were empirically consistent with analyses of excavated roots. Seed yield and shoot dry weights were closely associated positively with root dry weights, TRL, RLD and RTN at both HP and LP. The Brassica-rhizotron system is an effective method for soil-based root phenotyping across an entire growth cycle. Given that root senescence is likely to occur earlier under low P conditions, crop P deficiency is likely to affect late water and nitrogen uptake, which is critical for efficient resource use and optimal crop yields. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Regenerative Endodontic Treatment of an Immature Necrotic Molar with Arrested Root Development by Using Recombinant Human Platelet-derived Growth Factor: A Case Report.

    PubMed

    Zhujiang, Annie; Kim, Sahng G

    2016-01-01

    Regenerative endodontic treatment has provided a treatment option that aims to allow root maturation. The present report describes the regenerative endodontic treatment of a necrotic, immature molar by using recombinant human platelet-derived growth factor (rhPDGF-BB) and shows the continued root maturation in the tooth with arrested root development. A regenerative endodontic procedure that used a growth factor was performed for a necrotic molar with arrested root formation in a 20-year-old patient. Thorough disinfection by using mechanical instrumentation and copious irrigation of antimicrobial agents as well as intracanal medication with calcium hydroxide was performed throughout the first 2 appointments. At the third appointment, the root canals were irrigated with an antimicrobial solution and 17% EDTA, and bleeding was evoked by passing sterile paper points beyond the apex in each canal. Small pieces of a collagen membrane saturated with rhPDGF-BB solution from GEM 21S were packed into each canal. Mineral trioxide aggregate was placed, and Cavit and composite resin were used to restore the tooth. Complete root maturation and resolution of a periapical radiolucency were observed at the 15-month follow-up. The present report presents a regenerative endodontic procedure that uses rhPDGF-BB for a necrotic molar with arrested root development. The finding of continued root development in the present case suggests that regenerative endodontic treatment may be able to resume the root maturation process in teeth with arrested root formation. Further clinical studies are required to investigate the efficacy of rhPDGF-BB in regenerative endodontic treatment. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  15. Impact of axial root growth angles on nitrogen acquisition in maize depends on environmental conditions.

    PubMed

    Dathe, A; Postma, J A; Postma-Blaauw, M B; Lynch, J P

    2016-09-01

    Crops with reduced requirement for nitrogen (N) fertilizer would have substantial benefits in developed nations, while improving food security in developing nations. This study employs the functional structural plant model SimRoot to test the hypothesis that variation in the growth angles of axial roots of maize (Zea mays L.) is an important determinant of N capture. Six phenotypes contrasting in axial root growth angles were modelled for 42 d at seven soil nitrate levels from 10 to 250 kg ha(-1) in a sand and a silt loam, and five precipitation regimes ranging from 0·5× to 1·5× of an ambient rainfall pattern. Model results were compared with soil N measurements of field sites with silt loam and loamy sand textures. For optimal nitrate uptake, root foraging must coincide with nitrate availability in the soil profile, which depends on soil type and precipitation regime. The benefit of specific root architectures for efficient N uptake increases with decreasing soil N content, while the effect of soil type increases with increasing soil N level. Extreme root architectures are beneficial under extreme environmental conditions. Extremely shallow root systems perform well under reduced precipitation, but perform poorly with ambient and greater precipitation. Dimorphic phenotypes with normal or shallow seminal and very steep nodal roots performed well in all scenarios, and consistently outperformed the steep phenotypes. Nitrate uptake increased under reduced leaching conditions in the silt loam and with low precipitation. Results support the hypothesis that root growth angles are primary determinants of N acquisition in maize. With decreasing soil N status, optimal angles resulted in 15-50 % greater N acquisition over 42 d. Optimal root phenotypes for N capture varied with soil and precipitation regimes, suggesting that genetic selection for root phenotypes could be tailored to specific environments. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. [Effects of different application rates of water-retaining agent on root physiological characteristics of winter wheat at its different growth stages].

    PubMed

    Yang, Yong-Hui; Wu, Ji-Cheng; Wu, Pu-Te; Huang, Zhan-Bin; Zhao, Xi-Ning; Guan, Xiu-Juan; He, Fang

    2011-01-01

    A field experiment was conducted at the Yuzhou Experimental Base of Henan Province to study the effects of different application rates (0, 30, 60, and 90 kg x hm(-2)) of water-retaining agent (WRA) on the root physiological characteristics, biomass, and grain yield of two winter wheat cultivars Zhengmai-9694 and Aikang-58, aimed to probe into the action mechanisms of WRA on the root system of winter wheat at its different growth stages. The application of WRA decreased the root membrane permeability and soluble sugar content, and increased the root vigor. After the application of WRA, the Zhengmai-9694 at its different growth stages had a greater decrement of root membrane permeability, compared with Aikang-58. In all treatments except 90 kg x hm(-2) of WRA, the root vigor of Aikang-58 was obviously higher than that of Zhengmai-9694. At booting and grain-filling stages, the root soluble sugar content of Zhengmai-9694 decreased much more than that of Aikang-58. In the whole growth period of the two cultivars, their root membrane permeability and soluble sugar content were the lowest in treatment 60 kg x hm(-2) of WRA, and no significant differences were observed between treatments 60 and 90 kg x hm(-2) of WRA. The root vigor of Zhengmai-9694 increased remarkably with the increasing rate of WRA application, while that of Aikang-58 was the highest in treatment 60 kg x hm(-2) of WRA. The application of WRA also increased root biomass, and at jointing and booting stages, the root biomass of Aikang-58 was much higher than that of Zhengmai-9694. However, at grain-filling stage, the biomass of Aikang-58 in treatments 60 and 90 kg x hm(-2) of WRA was lower than that of Zhengmai-9694. Treatment 60 kg x hm(-2) of WRA had the highest grain yield of the two cultivars. It was concluded that WRA had more significant effects on Zhengmai-9694 than on Aikang-58, and applying 60 kg x hm(-2) of WRA could obtain the best effect.

  17. Applicability of optical scanner method for fine root dynamics

    NASA Astrophysics Data System (ADS)

    Kume, Tomonori; Ohashi, Mizue; Makita, Naoki; Khoon Kho, Lip; Katayama, Ayumi; Matsumoto, Kazuho; Ikeno, Hidetoshi

    2016-04-01

    Fine root dynamics is one of the important components in forest carbon cycling, as ~60 % of tree photosynthetic production can be allocated to root growth and metabolic activities. Various techniques have been developed for monitoring fine root biomass, production, mortality in order to understand carbon pools and fluxes resulting from fine roots dynamics. The minirhizotron method is now a widely used technique, in which a transparent tube is inserted into the soil and researchers count an increase and decrease of roots along the tube using images taken by a minirhizotron camera or minirhizotron video camera inside the tube. This method allows us to observe root behavior directly without destruction, but has several weaknesses; e.g., the difficulty of scaling up the results to stand level because of the small observation windows. Also, most of the image analysis are performed manually, which may yield insufficient quantitative and objective data. Recently, scanner method has been proposed, which can produce much bigger-size images (A4-size) with lower cost than those of the minirhizotron methods. However, laborious and time-consuming image analysis still limits the applicability of this method. In this study, therefore, we aimed to develop a new protocol for scanner image analysis to extract root behavior in soil. We evaluated applicability of this method in two ways; 1) the impact of different observers including root-study professionals, semi- and non-professionals on the detected results of root dynamics such as abundance, growth, and decomposition, and 2) the impact of window size on the results using a random sampling basis exercise. We applied our new protocol to analyze temporal changes of root behavior from sequential scanner images derived from a Bornean tropical forests. The results detected by the six observers showed considerable concordance in temporal changes in the abundance and the growth of fine roots but less in the decomposition. We also examined potential errors due to window size in the temporal changes in abundance and growth using the detected results, suggesting high applicability of the scanner methods with wide observation windows.

  18. Water Deficit and Abscisic Acid Cause Differential Inhibition of Shoot versus Root Growth in Soybean Seedlings : Analysis of Growth, Sugar Accumulation, and Gene Expression.

    PubMed

    Creelman, R A; Mason, H S; Bensen, R J; Boyer, J S; Mullet, J E

    1990-01-01

    Roots often continue to elongate while shoot growth is inhibited in plants subjected to low-water potentials. The cause of this differential response to water deficit was investigated. We examined hypocotyl and root growth, polysome status and mRNA populations, and abscisic acid (ABA) content in etiolated soybean (Glycine max [L.] Merr. cv Williams) seedlings whose growth was inhibited by transfer to low-water potential vermiculite or exogenous ABA. Both treatments affected growth and dry weight in a similar fashion. Maximum inhibition of hypocotyl growth occurred when internal ABA levels (modulated by ABA application) reached the endogenous level found in the elongating zone of seedlings grown in water-deficient vermiculite. Conversely, root growth was affected to only a slight extent in low-water potential seedlings and by most ABA treatments (in some, growth was promoted). In every seedling section examined, transfer of seedlings into low-water potential vermiculite caused ABA levels to increase approximately 5- to 10-fold over that found in well-watered seedlings. Changes in soluble sugar content, polysome status, and polysome mRNA translation products seen in low-water potential seedlings did not occur with ABA treatments sufficient to cause significant inhibition of hypocotyl elongation. These data suggest that both variation in endogenous ABA levels, and differing sensitivity to ABA in hypocotyls and roots can modulate root/shoot growth ratios. However, exogenous ABA did not induce changes in sugar accumulation, polysome status, and mRNA populations seen after transfer into low-water potential vermiculite.

  19. Plant Growth Environments with Programmable Relative Humidity and Homogeneous Nutrient Availability

    PubMed Central

    Lind, Kara R.; Lee, Nigel; Sizmur, Tom; Siemianowski, Oskar; Van Bruggen, Shawn; Ganapathysubramaniam, Baskar

    2016-01-01

    We describe the design, characterization, and use of “programmable”, sterile growth environments for individual (or small sets of) plants. The specific relative humidities and nutrient availability experienced by the plant is established (RH between 15% and 95%; nutrient concentration as desired) during the setup of the growth environment, which takes about 5 minutes and <1$ in disposable cost. These systems maintain these environmental parameters constant for at least 14 days with minimal intervention (one minute every two days). The design is composed entirely of off-the-shelf components (e.g., LEGO® bricks) and is characterized by (i) a separation of root and shoot environment (which is physiologically relevant and facilitates imposing specific conditions on the root system, e.g., darkness), (ii) the development of the root system on a flat surface, where the root enjoys constant contact with nutrient solution and air, (iii) a compatibility with root phenotyping. We demonstrate phenotyping by characterizing root systems of Brassica rapa plants growing in different relative humidities (55%, 75%, and 95%). While most phenotypes were found to be sensitive to these environmental changes, a phenotype tightly associated with root system topology–the size distribution of the areas encircled by roots–appeared to be remarkably and counterintuitively insensitive to humidity changes. These setups combine many of the advantages of hydroponics conditions (e.g., root phenotyping, complete control over nutrient composition, scalability) and soil conditions (e.g., aeration of roots, shading of roots), while being comparable in cost and setup time to Magenta® boxes. PMID:27304431

  20. Combined effects of lanthanum(III) and elevated ultraviolet-B radiation on root growth and ion absorption in soybean seedlings.

    PubMed

    Huang, Guang Rong; Wang, Li Hong; Zhou, Qing

    2014-03-01

    Rare earth element accumulation in the soil and elevated ultraviolet (UV)-B radiation (280-315 nm) are important environmental issues worldwide. To date, there have been no reports concerning the combined effects of lanthanum (La)(III) and elevated UV-B radiation on plant roots in regions where the two issues occur simultaneously. Here, the combined effects of La(III) and elevated UV-B radiation on the growth, biomass, ion absorption, activities, and membrane permeability of roots in soybean (Glycine max L.) seedlings were investigated. A 0.08 mmol L(-1) La(III) treatment improved the root growth and biomass of soybean seedlings, while ion absorption, activities, and membrane permeability were obviously unchanged; a combined treatment with 0.08 mmol L(-1) La(III) and elevated UV-B radiation (2.63/6.17 kJ m(-2) day(-1)) exerted deleterious effects on the investigated indices. The deleterious effects were aggravated in the other combined treatments and were stronger than those of treatments with La(III) or elevated UV-B radiation alone. The combined treatment with 0.24/1.20 mmol L(-1) La(III) and elevated UV-B radiation exerted synergistically deleterious effects on the growth, biomass, ion absorption, activities, and membrane permeability of roots in soybean seedlings. In addition, the deleterious effects of the combined treatment on the root growth were due to the inhibition of ion absorption induced by the changes in the root activity and membrane permeability.

  1. Legacy effects of land-use modulate tree growth responses to climate extremes.

    PubMed

    Mausolf, Katharina; Härdtle, Werner; Jansen, Kirstin; Delory, Benjamin M; Hertel, Dietrich; Leuschner, Christoph; Temperton, Vicky M; von Oheimb, Goddert; Fichtner, Andreas

    2018-05-10

    Climate change can impact forest ecosystem processes via individual tree and community responses. While the importance of land-use legacies in modulating these processes have been increasingly recognised, evidence of former land-use mediated climate-growth relationships remain rare. We analysed how differences in former land-use (i.e. forest continuity) affect the growth response of European beech to climate extremes. Here, using dendrochronological and fine root data, we show that ancient forests (forests with a long forest continuity) and recent forests (forests afforested on former farmland) clearly differ with regard to climate-growth relationships. We found that sensitivity to climatic extremes was lower for trees growing in ancient forests, as reflected by significantly lower growth reductions during adverse climatic conditions. Fine root morphology also differed significantly between the former land-use types: on average, trees with high specific root length (SRL) and specific root area (SRA) and low root tissue density (RTD) were associated with recent forests, whereas the opposite traits were characteristic of ancient forests. Moreover, we found that trees of ancient forests hold a larger fine root system than trees of recent forests. Our results demonstrate that land-use legacy-mediated modifications in the size and morphology of the fine root system act as a mechanism in regulating drought resistance of beech, emphasising the need to consider the 'ecological memory' of forests when assessing or predicting the sensitivity of forest ecosystems to global environmental change.

  2. Plant growth-promoting rhizobacteria and root system functioning

    PubMed Central

    Vacheron, Jordan; Desbrosses, Guilhem; Bouffaud, Marie-Lara; Touraine, Bruno; Moënne-Loccoz, Yvan; Muller, Daniel; Legendre, Laurent; Wisniewski-Dyé, Florence; Prigent-Combaret, Claire

    2013-01-01

    The rhizosphere supports the development and activity of a huge and diversified microbial community, including microorganisms capable to promote plant growth. Among the latter, plant growth-promoting rhizobacteria (PGPR) colonize roots of monocots and dicots, and enhance plant growth by direct and indirect mechanisms. Modification of root system architecture by PGPR implicates the production of phytohormones and other signals that lead, mostly, to enhanced lateral root branching and development of root hairs. PGPR also modify root functioning, improve plant nutrition and influence the physiology of the whole plant. Recent results provided first clues as to how PGPR signals could trigger these plant responses. Whether local and/or systemic, the plant molecular pathways involved remain often unknown. From an ecological point of view, it emerged that PGPR form coherent functional groups, whose rhizosphere ecology is influenced by a myriad of abiotic and biotic factors in natural and agricultural soils, and these factors can in turn modulate PGPR effects on roots. In this paper, we address novel knowledge and gaps on PGPR modes of action and signals, and highlight recent progress on the links between plant morphological and physiological effects induced by PGPR. We also show the importance of taking into account the size, diversity, and gene expression patterns of PGPR assemblages in the rhizosphere to better understand their impact on plant growth and functioning. Integrating mechanistic and ecological knowledge on PGPR populations in soil will be a prerequisite to develop novel management strategies for sustainable agriculture. PMID:24062756

  3. Effects of mechanostimulation on gravitropism and signal persistence in flax roots.

    PubMed

    John, Susan P; Hasenstein, Karl H

    2011-09-01

    Gravitropism describes curvature of plants in response to gravity or differential acceleration and clinorotation is commonly used to compensate unilateral effect of gravity. We report on experiments that examine the persistence of the gravity signal and separate mechanostimulation from gravistimulation. Flax roots were reoriented (placed horizontally for 5, 10 or 15 min) and clinorotated at a rate of 0.5 to 5 rpm either vertically (parallel to the gravity vector and root axis) or horizontally (perpendicular to the gravity vector and parallel to the root axis). Image sequences showed that horizontal clinorotation did not affect root growth rate (0.81 ± 0.03 mm h-1) but vertical clinorotation reduced root growth by about 7%. The angular velocity (speed of clinorotation) did not affect growth for either direction. However, maximal curvature for vertical clinorotation decreased with increasing rate of rotation and produced straight roots at 5 rpm. In contrast, horizontal clinorotation increased curvature with increasing angular velocity. The point of maximal curvature was used to determine the longevity (memory) of the gravity signal, which lasted about 120 min. The data indicate that mechanostimulation modifies the magnitude of the graviresponse but does not affect memory persistence.

  4. Complex physiological and molecular processes underlying root gravitropism

    NASA Technical Reports Server (NTRS)

    Chen, Rujin; Guan, Changhui; Boonsirichai, Kanokporn; Masson, Patrick H.

    2002-01-01

    Gravitropism allows plant organs to guide their growth in relation to the gravity vector. For most roots, this response to gravity allows downward growth into soil where water and nutrients are available for plant growth and development. The primary site for gravity sensing in roots includes the root cap and appears to involve the sedimentation of amyloplasts within the columella cells. This process triggers a signal transduction pathway that promotes both an acidification of the wall around the columella cells, an alkalinization of the columella cytoplasm, and the development of a lateral polarity across the root cap that allows for the establishment of a lateral auxin gradient. This gradient is then transmitted to the elongation zones where it triggers a differential cellular elongation on opposite flanks of the central elongation zone, responsible for part of the gravitropic curvature. Recent findings also suggest the involvement of a secondary site/mechanism of gravity sensing for gravitropism in roots, and the possibility that the early phases of graviresponse, which involve differential elongation on opposite flanks of the distal elongation zone, might be independent of this auxin gradient. This review discusses our current understanding of the molecular and physiological mechanisms underlying these various phases of the gravitropic response in roots.

  5. The Regulation of Growth in the Distal Elongation Zone of Maize Roots

    NASA Technical Reports Server (NTRS)

    Evans, Michael L.

    1998-01-01

    The major goals of the proposed research were 1. To develop specialized software for automated whole surface root expansion analysis and to develop technology for controlled placement of surface electrodes for analysis of relationships between root growth and root pH and electrophysiological properties. 2. To measure surface pH patterns and determine the possible role of proton flux in gravitropic sensing or response, and 3. To determine the role of auxin transport in establishment of patterns of proton flux and electrical gradients during the gravitropic response of roots with special emphasis on the role of the distal elongation zone in the early phases of the gravitropic response.

  6. There's a World Going on Underground: Imaging Technologies to Understand Root Growth Dynamics and Rhizosphere Interactions

    NASA Astrophysics Data System (ADS)

    Topp, C. N.

    2016-12-01

    Our ability to harness the power of plant genomics for basic and applied science depends on how well and how fast we can quantify the phenotypic ramifications of genetic variation. Plants can be considered from many vantage points: at scales from cells to organs, over the course of development or evolution, and from biophysical, physiological, and ecological perspectives. In all of these ways, our understanding of plant form and function is greatly limited by our ability to study subterranean structures and processes. The limitations to accessing this knowledge are well known - soil is opaque, roots are morphologically complex, and root growth can be heavily influenced by a myriad of environmental factors. Nonetheless, recent technological innovations in imaging science have generated a renewed focus on roots and thus new opportunities to understand the plant as a whole. The Topp Lab is interested in crop root system growth dynamics and function in response to environmental stresses such as drought, rhizosphere interactions, and as a consequence of artificial selection for agronomically important traits such as nitrogen uptake and high plant density. Studying roots requires the development of imaging technologies, computational infrastructure, and statistical methods that can capture and analyze morphologically complex networks over time and at high-throughput. The lab uses several imaging tools (optical, X-ray CT, PET, etc.) along with quantitative genetics and molecular biology to understand the dynamics of root growth and physiology. We aim to understand the relationships among root traits that can be effectively measured both in controlled laboratory environments and in the field, and to identify genes and gene networks that control root, and ultimately whole plant architectural features useful for crop improvement.

  7. Plant Phenotypic and Transcriptional Changes Induced by Volatiles from the Fungal Root Pathogen Rhizoctonia solani

    PubMed Central

    Cordovez, Viviane; Mommer, Liesje; Moisan, Kay; Lucas-Barbosa, Dani; Pierik, Ronald; Mumm, Roland; Carrion, Victor J.; Raaijmakers, Jos M.

    2017-01-01

    Beneficial soil microorganisms can affect plant growth and resistance by the production of volatile organic compounds (VOCs). Yet, little is known on how VOCs from soil-borne plant pathogens affect plant growth and resistance. Here we show that VOCs released from mycelium and sclerotia of the fungal root pathogen Rhizoctonia solani enhance growth and accelerate development of Arabidopsis thaliana. Seedlings briefly exposed to the fungal VOCs showed similar phenotypes, suggesting that enhanced biomass and accelerated development are primed already at early developmental stages. Fungal VOCs did not affect plant resistance to infection by the VOC-producing pathogen itself but reduced aboveground resistance to the herbivore Mamestra brassicae. Transcriptomics of A. thaliana revealed that genes involved in auxin signaling were up-regulated, whereas ethylene and jasmonic acid signaling pathways were down-regulated by fungal VOCs. Mutants disrupted in these pathways showed similar VOC-mediated growth responses as the wild-type A. thaliana, suggesting that other yet unknown pathways play a more prominent role. We postulate that R. solani uses VOCs to predispose plants for infection from a distance by altering root architecture and enhancing root biomass. Alternatively, plants may use enhanced root growth upon fungal VOC perception to sacrifice part of the root biomass and accelerate development and reproduction to survive infection. PMID:28785271

  8. Comparison of Rooting Strategies to Explore Rock Fractures for Shallow Soil-Adapted Tree Species with Contrasting Aboveground Growth Rates: A Greenhouse Microcosm Experiment

    PubMed Central

    Nie, Yunpeng; Chen, Hongsong; Ding, Yali; Yang, Jing; Wang, Kelin

    2017-01-01

    For tree species adapted to shallow soil environments, rooting strategies that efficiently explore rock fractures are important because soil water depletion occurs frequently. However, two questions: (a) to what extent shallow soil-adapted species rely on exploring rock fractures and (b) what outcomes result from drought stress, have rarely been tested. Therefore, based on the expectation that early development of roots into deep soil layers is at the cost of aboveground growth, seedlings of three tree species (Cyclobalanopsis glauca, Delavaya toxocarpa, and Acer cinnamomifolium) with distinct aboveground growth rates were selected from a typical shallow soil region. In a greenhouse experiment that mimics the basic features of shallow soil environments, 1-year-old seedlings were transplanted into simulated microcosms of shallow soil overlaying fractured bedrock. Root biomass allocation and leaf physiological activities, as well as leaf δ13C values were investigated and compared for two treatments: regular irrigation and repeated cycles of drought stress. Our results show that the three species differed in their rooting strategies in the context of encountering rock fractures, however, these strategies were not closely related to the aboveground growth rate. For the slowest-growing seedling, C. glauca, percentages of root mass in the fractures, as well as in the soil layer between soil and bedrock increased significantly under both treatments, indicating a specialized rooting strategy that facilitated the exploration of rock fractures. Early investment in deep root growth was likely critical to the establishment of this drought-vulnerable species. For the intermediate-growing, A. cinnamomifolium, percentages of root mass in the bedrock and interface soil layers were relatively low and exhibited no obvious change under either treatment. This limited need to explore rock fractures was compensated by a conservative water use strategy. For the fast-growing, D. toxocarpa, percentages of root mass in the bedrock and interface layers increased simultaneously under drought conditions, but not under irrigated conditions. This drought-induced rooting plasticity was associated with drought avoidance by this species. Although, root development might have been affected by the simulated microcosm, contrasting results among the three species indicated that efficient use of rock fractures is not a necessary or specialized strategy of shallow-soil adapted species. The establishment and persistence of these species relied on the mutual complementation between their species-specific rooting strategies and drought adaptations. PMID:29018464

  9. Inducing gravitropic curvature of primary roots of Zea mays cv Ageotropic

    NASA Technical Reports Server (NTRS)

    Moore, R.; Evans, M. L.; Fondren, W. M.

    1990-01-01

    Primary roots of the mutant 'Ageotropic' cultivar of Zea mays are nonresponsive to gravity. Their root caps secrete little or no mucilage and touch the root only at the extreme apex. A gap separates the cap and root at the periphery of the cap. Applying mucilage from normal roots or substances with a consistency similar to that of mucilage to tips of mutant roots causes these roots to become strongly graviresponsive. Gravicurvature stops when these substances are removed. Caps of some mutants secrete small amounts of mucilage and are graviresponsive. These results indicate that (a) the lack of graviresponsiveness in the mutant results from disrupting the transport pathway between the cap and root, (b) movement of the growth-modifying signal from the cap to the root occurs via an apoplastic pathway, and (c) mucilage is necessary for normal communication between the root cap and root in Zea mays cv Ageotropic.

  10. Multifarious plant growth promotion by an entomopathogenic fungus Lecanicillium psalliotae.

    PubMed

    Senthil Kumar, C M; Jacob, T K; Devasahayam, S; Thomas, Stephy; Geethu, C

    2018-03-01

    An entomopathogenic fungus, Lecanicillium psalliotae strain IISR-EPF-02 previously found infectious to cardamom thrips, Sciothrips cardamomi promoted plant growth in cardamom, Elettaria cardamomum. The isolate exhibited direct plant growth promoting traits by production of indole-3-acetic acid and ammonia and by solubilizing inorganic phosphate and zinc. It also showed indirect plant growth promoting traits by producing siderophores and cell wall-degrading enzymes like, α-amylases, cellulases and proteases. In pot culture experiments, application of the fungus at the root zone of cardamom seedlings significantly increased shoot and root length, shoot and root biomass, number of secondary roots and leaves and leaf chlorophyll content compared to untreated plants. This is the first report on the plant growth promoting traits of this fungus. The entomopathogenic and multifarious growth promoting traits of L. psalliotae strain IISR-EPF-02 suggest that it has great potential for exploitation in sustainable agriculture. Copyright © 2017 Elsevier GmbH. All rights reserved.

  11. Soil type affects Pinus ponderosa var. scopulorum (Pinaceae) seedling growth in simulated drought experiments.

    PubMed

    Lindsey, Alexander J; Kilgore, Jason S

    2013-08-01

    Effects of drought stress and media type interactions on growth of Pinus ponderosa var. scopulorum germinants were investigated. • Soil properties and growth responses under drought were compared across four growth media types: two native soils (dolomitic limestone and granite), a soil-less industry standard conifer medium, and a custom-mixed conifer medium. After 35 d of growth, the seedlings under drought stress (reduced watering) produced less shoot and root biomass than watered control seedlings. Organic media led to decreased root biomass, but increased root length and shoot biomass relative to the mineral soils. • Media type affected root-to-shoot biomass partitioning of P. ponderosa var. scopulorum, which may influence net photosynthetic rates, growth, and long-term seedling survival. Further work should examine how specific soil properties like bulk density and organic matter influence biomass allocation in greenhouse studies.

  12. Soil type affects Pinus ponderosa var. scopulorum (Pinaceae) seedling growth in simulated drought experiments1

    PubMed Central

    Lindsey, Alexander J.; Kilgore, Jason S.

    2013-01-01

    • Premise of the study: Effects of drought stress and media type interactions on growth of Pinus ponderosa var. scopulorum germinants were investigated. • Methods and Results: Soil properties and growth responses under drought were compared across four growth media types: two native soils (dolomitic limestone and granite), a soil-less industry standard conifer medium, and a custom-mixed conifer medium. After 35 d of growth, the seedlings under drought stress (reduced watering) produced less shoot and root biomass than watered control seedlings. Organic media led to decreased root biomass, but increased root length and shoot biomass relative to the mineral soils. • Conclusions: Media type affected root-to-shoot biomass partitioning of P. ponderosa var. scopulorum, which may influence net photosynthetic rates, growth, and long-term seedling survival. Further work should examine how specific soil properties like bulk density and organic matter influence biomass allocation in greenhouse studies. PMID:25202578

  13. Natural Variation in Small Molecule–Induced TIR-NB-LRR Signaling Induces Root Growth Arrest via EDS1- and PAD4-Complexed R Protein VICTR in Arabidopsis[C][W

    PubMed Central

    Kim, Tae-Houn; Kunz, Hans-Henning; Bhattacharjee, Saikat; Hauser, Felix; Park, Jiyoung; Engineer, Cawas; Liu, Amy; Ha, Tracy; Parker, Jane E.; Gassmann, Walter; Schroeder, Julian I.

    2012-01-01

    In a chemical genetics screen we identified the small-molecule [5-(3,4-dichlorophenyl)furan-2-yl]-piperidine-1-ylmethanethione (DFPM) that triggers rapid inhibition of early abscisic acid signal transduction via PHYTOALEXIN DEFICIENT4 (PAD4)- and ENHANCED DISEASE SUSCEPTIBILITY1 (EDS1)-dependent immune signaling mechanisms. However, mechanisms upstream of EDS1 and PAD4 in DFPM-mediated signaling remain unknown. Here, we report that DFPM generates an Arabidopsis thaliana accession-specific root growth arrest in Columbia-0 (Col-0) plants. The genetic locus responsible for this natural variant, VICTR (VARIATION IN COMPOUND TRIGGERED ROOT growth response), encodes a TIR-NB-LRR (for Toll-Interleukin1 Receptor–nucleotide binding–Leucine-rich repeat) protein. Analyses of T-DNA insertion victr alleles showed that VICTR is necessary for DFPM-induced root growth arrest and inhibition of abscisic acid–induced stomatal closing. Transgenic expression of the Col-0 VICTR allele in DFPM-insensitive Arabidopsis accessions recapitulated the DFPM-induced root growth arrest. EDS1 and PAD4, both central regulators of basal resistance and effector-triggered immunity, as well as HSP90 chaperones and their cochaperones RAR1 and SGT1B, are required for the DFPM-induced root growth arrest. Salicylic acid and jasmonic acid signaling pathway components are dispensable. We further demonstrate that VICTR associates with EDS1 and PAD4 in a nuclear protein complex. These findings show a previously unexplored association between a TIR-NB-LRR protein and PAD4 and identify functions of plant immune signaling components in the regulation of root meristematic zone-targeted growth arrest. PMID:23275581

  14. Sennosides A and B production by hairy roots of Senna alata (L.) Roxb.

    PubMed

    Putalun, Waraporn; Pimmeuangkao, Suwat; De-Eknamkul, Wanchai; Tanaka, Hiroyuki; Shoyama, Yukihiro

    2006-01-01

    Hairy roots of Senna alata transformed with Agrobacterium rhizogenes, strain ATCC 15834 were induced and grown in half-strength Murashige and Skoog (MS) medium. Effects of sucrose contents and hormones on the growth and sennosides A, B production were investigated. Hairy roots cultured on hormone-free half-strength MS medium containing 5% sucrose under dark condition mostly stimulated the growth of hairy roots and increased the content of sennosides A and B yielding (169 +/- 4) and (34 +/- 3) microg g(-1) dry wt, respectively.

  15. Bacillus pumilus ES4: candidate plant growth-promoting bacterium to enhance establishment of plants in mine tailings

    PubMed Central

    de-Bashan, Luz E.; Hernandez, Juan-Pablo; Bashan, Yoav; Maier, Raina

    2014-01-01

    Three plant growth-promoting bacteria (PGPB; Bacillus pumilus ES4, B. pumilus RIZO1, and Azospirillum brasilense Cd) were tested for their ability to enhance plant growth and development of the native Sonoran Desert shrub quailbush (Atriplex lentiformis) and for their effect on the native bacterial community in moderately acidic, high-metal content (AHMT) and in neutral, low metal content natural tailings (NLMT) in controlled greenhouse experiments. Inoculation of quailbush with all three PGPB significantly enhanced plant growth parameters, such as germination, root length, dry weight of shoots and roots, and root/shoot ratio in both types of tailings. The effect of inoculation on the indigenous bacterial community by the most successful PGPB Bacillus pumilus ES4 was evaluated by denaturating gradient gel electrophoresis (PCR-DGGE) fingerprinting and root colonization was followed by specific fluorescent in situ hybridization (FISH). Inoculation with this strain significantly changed the bacterial community over a period of 60 days. FISH analysis showed that the preferred site of colonization was the root tips and root elongation area. This study shows that inoculation of native perennial plants with PGPB can be used for developing technologies for phytostabilizing mine tailings. PMID:25009362

  16. Root gravitropism is regulated by a transient lateral auxin gradient controlled by a tipping-point mechanism

    PubMed Central

    Band, Leah R.; Wells, Darren M.; Larrieu, Antoine; Sun, Jianyong; Middleton, Alistair M.; French, Andrew P.; Brunoud, Géraldine; Sato, Ethel Mendocilla; Wilson, Michael H.; Péret, Benjamin; Oliva, Marina; Swarup, Ranjan; Sairanen, Ilkka; Parry, Geraint; Ljung, Karin; Beeckman, Tom; Garibaldi, Jonathan M.; Estelle, Mark; Owen, Markus R.; Vissenberg, Kris; Hodgman, T. Charlie; Pridmore, Tony P.; King, John R.; Vernoux, Teva; Bennett, Malcolm J.

    2012-01-01

    Gravity profoundly influences plant growth and development. Plants respond to changes in orientation by using gravitropic responses to modify their growth. Cholodny and Went hypothesized over 80 years ago that plants bend in response to a gravity stimulus by generating a lateral gradient of a growth regulator at an organ's apex, later found to be auxin. Auxin regulates root growth by targeting Aux/IAA repressor proteins for degradation. We used an Aux/IAA-based reporter, domain II (DII)-VENUS, in conjunction with a mathematical model to quantify auxin redistribution following a gravity stimulus. Our multidisciplinary approach revealed that auxin is rapidly redistributed to the lower side of the root within minutes of a 90° gravity stimulus. Unexpectedly, auxin asymmetry was rapidly lost as bending root tips reached an angle of 40° to the horizontal. We hypothesize roots use a “tipping point” mechanism that operates to reverse the asymmetric auxin flow at the midpoint of root bending. These mechanistic insights illustrate the scientific value of developing quantitative reporters such as DII-VENUS in conjunction with parameterized mathematical models to provide high-resolution kinetics of hormone redistribution. PMID:22393022

  17. GraPhoBox: Gravitropism and phototropism in Arabidopsis thaliana

    NASA Astrophysics Data System (ADS)

    Buizer, K.

    2007-09-01

    The morphology of plants is directed by the directional growth of roots and shoots. Gravity and light direction are the two major environmental stimuli important for directional growth. The 'GraPhoBox' experiment, flown on the Dutch DELTA mission to the ISS in April 2004, tries to elucidate the different effects of gravitropism and phototropism on plants, and their combined effects on plant morphology. Wild-type Arabidopsis thaliana (L.), phototropic-deficient mutants phot1 and gravitropic-deficient mutant pgm1 seeds were germinated in microgravity and in Earth gravity, in low light conditions and darkness. The angle of directional growth of roots and shoots was then assessed. Light is -even in the absense of gravity- the most important environmental cue for directional growth of shoots, while for roots gravity is by far the most important cue, and light is only a very minor factor due to their poor phototropic capacity. Compared to roots, shoots are deviated more than roots in microgravity and therefore less gravity-dependent. All results together suggests that environmental cues are differently percepted by roots and shoots which also adapt differently. Furthermore, environmental cues are probably transferred little or not to the opposite side of the plant.

  18. Root gravitropism is regulated by a transient lateral auxin gradient controlled by a tipping-point mechanism.

    PubMed

    Band, Leah R; Wells, Darren M; Larrieu, Antoine; Sun, Jianyong; Middleton, Alistair M; French, Andrew P; Brunoud, Géraldine; Sato, Ethel Mendocilla; Wilson, Michael H; Péret, Benjamin; Oliva, Marina; Swarup, Ranjan; Sairanen, Ilkka; Parry, Geraint; Ljung, Karin; Beeckman, Tom; Garibaldi, Jonathan M; Estelle, Mark; Owen, Markus R; Vissenberg, Kris; Hodgman, T Charlie; Pridmore, Tony P; King, John R; Vernoux, Teva; Bennett, Malcolm J

    2012-03-20

    Gravity profoundly influences plant growth and development. Plants respond to changes in orientation by using gravitropic responses to modify their growth. Cholodny and Went hypothesized over 80 years ago that plants bend in response to a gravity stimulus by generating a lateral gradient of a growth regulator at an organ's apex, later found to be auxin. Auxin regulates root growth by targeting Aux/IAA repressor proteins for degradation. We used an Aux/IAA-based reporter, domain II (DII)-VENUS, in conjunction with a mathematical model to quantify auxin redistribution following a gravity stimulus. Our multidisciplinary approach revealed that auxin is rapidly redistributed to the lower side of the root within minutes of a 90° gravity stimulus. Unexpectedly, auxin asymmetry was rapidly lost as bending root tips reached an angle of 40° to the horizontal. We hypothesize roots use a "tipping point" mechanism that operates to reverse the asymmetric auxin flow at the midpoint of root bending. These mechanistic insights illustrate the scientific value of developing quantitative reporters such as DII-VENUS in conjunction with parameterized mathematical models to provide high-resolution kinetics of hormone redistribution.

  19. Assessment of allelopathic properties of Aloe ferox Mill. on turnip, beetroot and carrot.

    PubMed

    Arowosegbe, Sunday; Afolayan, Anthony J

    2012-01-01

    Turnip (Brassica rapa var. rapa L.), beetroot (Beta vulgaris L.) and carrot (Daucus carota L.) are common vegetables in South Africa. The allelopathic potential of aqueous leaf and root extracts of Aloe ferox Mill.- a highly valued medicinal plant- was evaluated against seed germination and seedling growth of the three vegetables in Petri dish experiments. The extracts were tested at concentrations of 2, 4, 6, 8, and 10 mg/mL. Leaf extract concentrations above 4 mg/mL inhibited the germination of all the crops, while the root extract had no significant effect on germination irrespective of concentration. Interestingly, the lowest concentration of leaf extract stimulated root length elongation of beetroot by 31.71%. Other concentrations significantly inhibited both root and shoot growth of the vegetable crops except the turnip shoot. The most sensitive crop was carrot, with percentage inhibition ranging from 29.15 to 100% for root and shoot lengths. Lower percentage inhibition was observed for the root extract than the leaf extract against shoot growth of beetroot and carrot. The results from this study suggested the presence of allelochemicals mostly in the leaves of A. ferox that could inhibit the growth of the turnip, beetroot and carrot.

  20. Rice Genotype Differences in Tolerance of Zinc-Deficient Soils: Evidence for the Importance of Root-Induced Changes in the Rhizosphere

    PubMed Central

    Mori, Asako; Kirk, Guy J. D.; Lee, Jae-Sung; Morete, Mark J.; Nanda, Amrit K.; Johnson-Beebout, Sarah E.; Wissuwa, Matthias

    2016-01-01

    Zinc (Zn) deficiency is a major constraint to rice production and Zn is also often deficient in humans with rice-based diets. Efforts to breed more Zn-efficient rice are constrained by poor understanding of the mechanisms of tolerance to deficiency. Here we assess the contributions of root growth and root Zn uptake efficiency, and we seek to explain the results in terms of specific mechanisms. We made a field experiment in a highly Zn-deficient rice soil in the Philippines with deficiency-tolerant and -sensitive genotypes, and measured growth, Zn uptake and root development. We also measured the effect of planting density. Tolerant genotypes produced more crown roots per plant and had greater uptake rates per unit root surface area; the latter was at least as important as root number to overall tolerance. Tolerant and sensitive genotypes took up more Zn per plant at greater planting densities. The greater uptake per unit root surface area, and the planting density effect can only be explained by root-induced changes in the rhizosphere, either solubilizing Zn, or neutralizing a toxin that impedes Zn uptake (possibly HCO3− or Fe2+), or both. Traits for these and crown root number are potential breeding targets. PMID:26793198

  1. Rice Genotype Differences in Tolerance of Zinc-Deficient Soils: Evidence for the Importance of Root-Induced Changes in the Rhizosphere.

    PubMed

    Mori, Asako; Kirk, Guy J D; Lee, Jae-Sung; Morete, Mark J; Nanda, Amrit K; Johnson-Beebout, Sarah E; Wissuwa, Matthias

    2015-01-01

    Zinc (Zn) deficiency is a major constraint to rice production and Zn is also often deficient in humans with rice-based diets. Efforts to breed more Zn-efficient rice are constrained by poor understanding of the mechanisms of tolerance to deficiency. Here we assess the contributions of root growth and root Zn uptake efficiency, and we seek to explain the results in terms of specific mechanisms. We made a field experiment in a highly Zn-deficient rice soil in the Philippines with deficiency-tolerant and -sensitive genotypes, and measured growth, Zn uptake and root development. We also measured the effect of planting density. Tolerant genotypes produced more crown roots per plant and had greater uptake rates per unit root surface area; the latter was at least as important as root number to overall tolerance. Tolerant and sensitive genotypes took up more Zn per plant at greater planting densities. The greater uptake per unit root surface area, and the planting density effect can only be explained by root-induced changes in the rhizosphere, either solubilizing Zn, or neutralizing a toxin that impedes Zn uptake (possibly [Formula: see text] or Fe(2+)), or both. Traits for these and crown root number are potential breeding targets.

  2. Challenges and opportunities for quantifying roots and rhizosphere interactions through imaging and image analysis.

    PubMed

    Downie, H F; Adu, M O; Schmidt, S; Otten, W; Dupuy, L X; White, P J; Valentine, T A

    2015-07-01

    The morphology of roots and root systems influences the efficiency by which plants acquire nutrients and water, anchor themselves and provide stability to the surrounding soil. Plant genotype and the biotic and abiotic environment significantly influence root morphology, growth and ultimately crop yield. The challenge for researchers interested in phenotyping root systems is, therefore, not just to measure roots and link their phenotype to the plant genotype, but also to understand how the growth of roots is influenced by their environment. This review discusses progress in quantifying root system parameters (e.g. in terms of size, shape and dynamics) using imaging and image analysis technologies and also discusses their potential for providing a better understanding of root:soil interactions. Significant progress has been made in image acquisition techniques, however trade-offs exist between sample throughput, sample size, image resolution and information gained. All of these factors impact on downstream image analysis processes. While there have been significant advances in computation power, limitations still exist in statistical processes involved in image analysis. Utilizing and combining different imaging systems, integrating measurements and image analysis where possible, and amalgamating data will allow researchers to gain a better understanding of root:soil interactions. © 2014 John Wiley & Sons Ltd.

  3. Changes in root cap pH are required for the gravity response of the Arabidopsis root

    NASA Technical Reports Server (NTRS)

    Fasano, J. M.; Swanson, S. J.; Blancaflor, E. B.; Dowd, P. E.; Kao, T. H.; Gilroy, S.

    2001-01-01

    Although the columella cells of the root cap have been identified as the site of gravity perception, the cellular events that mediate gravity signaling remain poorly understood. To determine if cytoplasmic and/or wall pH mediates the initial stages of root gravitropism, we combined a novel cell wall pH sensor (a cellulose binding domain peptide-Oregon green conjugate) and a cytoplasmic pH sensor (plants expressing pH-sensitive green fluorescent protein) to monitor pH dynamics throughout the graviresponding Arabidopsis root. The root cap apoplast acidified from pH 5.5 to 4.5 within 2 min of gravistimulation. Concomitantly, cytoplasmic pH increased in columella cells from 7.2 to 7.6 but was unchanged elsewhere in the root. These changes in cap pH preceded detectable tropic growth or growth-related pH changes in the elongation zone cell wall by 10 min. Altering the gravity-related columella cytoplasmic pH shift with caged protons delayed the gravitropic response. Together, these results suggest that alterations in root cap pH likely are involved in the initial events that mediate root gravity perception or signal transduction.

  4. Auxin effects on Pb phytoextraction from polluted soils by Tegetes minuta L. and Bidens pilosa L.: Extractive power of their root exudates.

    PubMed

    Salazar, María Julieta; Rodriguez, Judith Hebelen; Cid, Carolina Vergara; Pignata, María Luisa

    2016-07-05

    The principal impediment for Pb uptake by plants is the Casparian strip in roots. It prevents metals reaching the xylem, thereby hampering translocation to the aerial organs. In the root apices, young root cells have thin cell walls and the Casparian strip is not completely developed, which could facilitate Pb uptake by roots at these vulnerable points. However, as the phytotoxic effects of Pb reduce root growth and enhance suberization, entry of Pb into the plant is avoided. We propose that the application of root growth promotors could be an important complement in the phytoextraction of Pb from polluted soils, due to their effects on produced biomass, Pb toxicity, and root exudate production. A greenhouse experiment was carried on to evaluate the auxin application effect on the Pb uptake of Bidens pilosa and Tagetes minuta. These species were sensitive to auxins, but the phytotoxic effect of Pb was not reversed by this treatment. Root exudates capable of extracting Pb were produced only when the species were grown in highly polluted soils, indicating a behavioral response to Pb exposure which is desirable for phytoremediation. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Correlations between polyamine ratios and growth patterns in seedling roots

    NASA Technical Reports Server (NTRS)

    Shen, H. J.; Galston, A. W.

    1985-01-01

    The levels of putrescine, cadaverine, spermidine and spermine were determined in seedling roots of pea, tomato, millet and corn, as well as in corn coleoptiles and pea internodes. In all roots, putrescine content increased as elongation progressed, and the putrescine/spermine ratio closely paralleled the sigmoid growth curve up until the time of lateral root initiation. Spermidine and spermine were most abundant near the apices and declined progressively with increasing age of the cells. In the zone of differentiation of root hairs in pea roots, putrescine rose progressively with increasing age, while cadaverine declined. In both pea internodes and corn coleoptiles, the putrescine/spermidine ratio rises with increasing age and elongation. Thus, a block in the conversion of the diamine putrescine to the triamine spermidine may be an important step in the change from cell division to cell elongation.

  6. Phosphorus deficiency affects the allocation of below-ground resources to combined cluster roots and nodules in Lupinus albus.

    PubMed

    Thuynsma, Rochelle; Valentine, Alex; Kleinert, Aleysia

    2014-02-15

    Lupins can rely on both cluster roots and nodules for P acquisition and biological nitrogen fixation (BNF), respectively. The resource allocation (C, N and P) between cluster roots and nodules has been largely understudied during P-deficient conditions. The aim of this investigation was therefore to determine the changes in resource allocation between these organs during fluctuations in P supply. Lupinus albus was cultivated in sand culture for 3 weeks, with either sufficient (2 mM high) or limiting (0.1 mM low) P supply. Although variation on P supply had no effect on the total biomass, there were significant differences in specialised below-ground organ allocation to cluster roots and nodule formation. Cluster root formation and the associated C-costs increased during low P supply, but at sufficient P-supply the construction and growth respiration costs of cluster roots declined along with their growth. In contrast to the cluster root decline at high P supply, there was an increase in nodule growth allocation and corresponding C-costs. However, this was not associated with an increase in BNF. Since cluster roots were able to increase P acquisition under low P conditions, this below-ground investment may also have benefited the P nutrition of nodules. These findings provide evidence that when lupins acquire N via BNF in their nodules, there may be a trade-off in resource allocation between cluster roots and nodules. Copyright © 2013 Elsevier GmbH. All rights reserved.

  7. Root cementum may modulate gene expression during periodontal regeneration: a preliminary study in humans.

    PubMed

    Gonçalves, Patricia F; Lima, Liana L; Sallum, Enilson A; Casati, Márcio Z; Nociti, Francisco H

    2008-02-01

    Previous data demonstrated that root cementum may affect periodontal regeneration. As such, this study aimed to explore further possible mechanisms involved in this process by investigating in humans whether root cementum modulates gene expression in the regenerating tissue formed under membrane-protected intrabony defects. Thirty subjects with deep intrabony defects (> or =5 mm; 2- or 3-wall) were selected and assigned to the control or test group. The control group received scaling and root planing with the removal of granulation tissue and root cementum; the test group underwent removal of granulation tissue and soft microbial deposits by cleaning the root surface with a microbrush and saline solution, aiming at cementum preservation. Guided tissue regeneration (GTR) was applied to both groups. Twenty-one days later, the newly formed tissue under the membrane was assessed for the expression of the following genes: alkaline phosphatase (ALP), osteopontin (OPN), osteocalcin (OCN), platelet-derived growth factor-alpha (PDGFA), bone sialoprotein (BSP), and basic fibroblast growth factor (bFGF). Data analysis demonstrated that mRNA levels for PDGFA, BSP, and bFGF were higher in the sites where root cementum was kept in place compared to the sites where root cementum was removed completely as part of the periodontal therapy (P <0.05); in contrast, OCN levels were lower (P <0.05). No difference for ALP or OPN was observed between the control and test groups (P >0.05). Root cementum may modulate the expression of growth and mineral-associated factors during periodontal regeneration.

  8. Simultaneous effects of leaf irradiance and soil moisture on growth and root system architecture of novel wheat genotypes: implications for phenotyping

    PubMed Central

    Nagel, Kerstin A.; Bonnett, David; Furbank, Robert; Walter, Achim; Schurr, Ulrich; Watt, Michelle

    2015-01-01

    Plants in the field are exposed to varying light and moisture. Agronomic improvement requires knowledge of whole-plant phenotypes expressed in response to simultaneous variation in these essential resources. Most phenotypes, however, have been described from experiments where resources are varied singularly. To test the importance of varying shoot and root resources for phenotyping studies, sister pre-breeding lines of wheat were phenotyped in response to independent or simultaneous exposure to two light levels and soil moisture profiles. The distribution and architecture of the root systems depended strongly on the moisture of the deeper soil layer. For one genotype, roots, specifically lateral roots, were stimulated to grow into moist soil when the upper zone was well-watered and were inhibited by drier deep zones. In contrast, the other genotype showed much less plasticity and responsiveness to upper moist soil, but maintained deeper penetration of roots into the dry layer. The sum of shoot and root responses was greater when treated simultaneously to low light and low soil water, compared to each treatment alone, suggesting the value of whole plant phenotyping in response to multiple conditions for agronomic improvement. The results suggest that canopy management for increased irradiation of leaves would encourage root growth into deeper drier soil, and that genetic variation within closely related breeding lines may exist to favour surface root growth in response to irrigation or in-season rainfall. PMID:26089535

  9. Ecologically Different Fungi Affect Arabidopsis Development: Contribution of Soluble and Volatile Compounds

    PubMed Central

    Casarrubia, Salvatore; Sapienza, Sara; Fritz, Héma; Daghino, Stefania; Rosenkranz, Maaria; Schnitzler, Jörg-Peter; Martin, Francis; Perotto, Silvia

    2016-01-01

    Plant growth and development can be influenced by mutualistic and non-mutualistic microorganisms. We investigated the ability of the ericoid endomycorrhizal fungus Oidiodendron maius to influence growth and development of the non-host plant Arabidopsis thaliana. Different experimental setups (non-compartmented and compartmented co-culture plates) were used to investigate the influence of both soluble and volatile fungal molecules on the plant phenotype. O. maius promoted growth of A. thaliana in all experimental setups. In addition, a peculiar clumped root phenotype, characterized by shortening of the primary root and by an increase of lateral root length and number, was observed in A. thaliana only in the non-compartmented plates, suggesting that soluble diffusible molecules are responsible for this root morphology. Fungal auxin does not seem to be involved in plant growth promotion and in the clumped root phenotype because co-cultivation with O. maius did not change auxin accumulation in plant tissues, as assessed in plants carrying the DR5::GUS reporter construct. In addition, no correlation between the amount of fungal auxin produced and the plant root phenotype was observed in an O. maius mutant unable to induce the clumped root phenotype in A. thaliana. Addition of active charcoal, a VOC absorbant, in the compartmented plates did not modify plant growth promotion, suggesting that VOCs are not involved in this phenomenon. The low VOCs emission measured for O. maius further corroborated this hypothesis. By contrast, the addition of CO2 traps in the compartmented plates drastically reduced plant growth, suggesting involvement of fungal CO2 in plant growth promotion. Other mycorrhizal fungi, as well as a saprotrophic and a pathogenic fungus, were also tested with the same experimental setups. In the non-compartmented plates, most fungi promoted A. thaliana growth and some could induce the clumped root phenotype. In the compartmented plate experiments, a general induction of plant growth was observed for most other fungi, especially those producing higher biomass, further strengthening the role of a nonspecific mechanism, such as CO2 emission. PMID:27973595

  10. Plasticity in nodal root elongation through the hardpan triggered by rewatering during soil moisture fluctuation stress in rice.

    PubMed

    Suralta, Roel Rodriguez; Niones, Jonathan Manito; Kano-Nakata, Mana; Thi Tran, Thiem; Mitsuya, Shiro; Yamauchi, Akira

    2018-03-12

    Rainfed lowland (RFL) rice fields have hardpans and experience soil moisture fluctuations (SMF) stress, which influence root system development. Here, we clarify the expression and timing of the plasticity in nodal root elongation through the hardpan under SMF and its contribution to shoot growth using a shallow-rooting IR64 and its deep-rooting introgression line, YTH304. Under SMF, soil moisture content had negative relationship with soil penetration resistance, regardless of hardpan bulk densities. YTH304 had greater root system below the hardpan than IR64 in hardpan with 1.50 but not in 1.70 g cm -3 bulk density (BD). YTH304 had greater plasticity in nodal root elongation through the hardpan than IR64 under SMF, which was clearly expressed during rewatering. YTH304 also had greater soil water uptake below the hardpan during drought and greater shoot growth than IR64. The results imply that deep root system development during SMF was due to the plasticity in nodal root elongation through the hardpan expressed during rewatering rather than during drought periods. This is against the long standing belief that active root elongation through the hardpan happens during drought. This also implies a need to revisit current root screening methods to identify rice lines with good hardpan penetration ability.

  11. A survey of root pressure in 53 Asian species of bamboo

    Treesearch

    Fusheng Wang; Xinli Tian; Yulong Ding; Xianchong Wan; M. T. Tyree

    2011-01-01

    Introduction. Root pressure is a potentially important mechanism for dissolving embolisms in previously cavitated vessels, but the occurrence of root pressure is not a universal property in plants. Material and methods. We suggest that root pressure might be more common in monocots than dicots because in dicots, cambial growth...

  12. Shoot position affects root initiation and growth of dormant unrooted cuttings of Populus

    Treesearch

    R.S., Jr. Zalesny; R.B. Hall; E.O. Bauer; D.E. Riemenschneider

    2003-01-01

    Rooting of dormant unrooted cuttings is crucial to the commercial deployment of intensively cultured poplar (Populus spp.) plantations because it is the first biological prerequisite to stand establishment. Rooting can be genetically controlled and subject to selection. Thus, our objective was to test for differences in rooting ability among cuttings...

  13. Two distinct regions of response drive differential growth in Vigna root electrotropism

    NASA Technical Reports Server (NTRS)

    Wolverton, C.; Mullen, J. L.; Ishikawa, H.; Evans, M. L.

    2000-01-01

    Although exogenous electric fields have been reported to influence the orientation of plant root growth, reports of the ultimate direction of differential growth have been contradictory. Using a high-resolution image analysis approach, the kinetics of electrotropic curvature in Vigna mungo L. roots were investigated. It was found that curvature occurred in the same root toward both the anode and cathode. However, these two responses occurred in two different regions of the root, the central elongation zone (CEZ) and distal elongation zone (DEZ), respectively. These oppositely directed responses could be reproduced individually by a localized electric field application to the region of response. This indicates that both are true responses to the electric field, rather than one being a secondary response to an induced gravitropic stimulation. The individual responses differed in the type of differential growth giving rise to curvature. In the CEZ, curvature was driven by inhibition of elongation, whereas curvature in the DEZ was primarily due to stimulation of elongation. This stimulation of elongation is consistent with the growth response of the DEZ to other environmental stimuli.

  14. X-Ray Computed Tomography Reveals the Response of Root System Architecture to Soil Texture.

    PubMed

    Rogers, Eric D; Monaenkova, Daria; Mijar, Medhavinee; Nori, Apoorva; Goldman, Daniel I; Benfey, Philip N

    2016-07-01

    Root system architecture (RSA) impacts plant fitness and crop yield by facilitating efficient nutrient and water uptake from the soil. A better understanding of the effects of soil on RSA could improve crop productivity by matching roots to their soil environment. We used x-ray computed tomography to perform a detailed three-dimensional quantification of changes in rice (Oryza sativa) RSA in response to the physical properties of a granular substrate. We characterized the RSA of eight rice cultivars in five different growth substrates and determined that RSA is the result of interactions between genotype and growth environment. We identified cultivar-specific changes in RSA in response to changing growth substrate texture. The cultivar Azucena exhibited low RSA plasticity in all growth substrates, whereas cultivar Bala root depth was a function of soil hardness. Our imaging techniques provide a framework to study RSA in different growth environments, the results of which can be used to improve root traits with agronomic potential. © 2016 American Society of Plant Biologists. All Rights Reserved.

  15. Spatial separation of light perception and growth response in maize root phototropism.

    PubMed

    Mullen, J L; Wolverton, C; Ishikawa, H; Hangarter, R P; Evans, M L

    2002-09-01

    Although the effects of gravity on root growth are well known and interactions between light and gravity have been reported, details of root phototropic responses are less documented. We used high-resolution image analysis to study phototropism in primary roots of Zea mays L. Similar to the location of perception in gravitropism, the perception of light was localized in the root cap. Phototropic curvature away from the light, on the other hand, developed in the central elongation zone, more basal than the site of initiation of gravitropic curvature. The phototropic curvature saturated at approximately 10 micromoles m-2 s-1 blue light with a peak curvature of 29 +/- 4 degrees, in part due to induction of positive gravitropism following displacement of the root tip from vertical during negative phototropism. However, at higher fluence rates, development of phototropic curvature is arrested even if gravitropism is avoided by maintaining the root cap vertically using a rotating feedback system. Thus continuous illumination can cause adaptation in the signalling pathway of the phototropic response in roots.

  16. Flavonoids modify root growth and modulate expression of SHORT-ROOT and HD-ZIP III.

    PubMed

    Franco, Danilo Miralha; Silva, Eder Marques; Saldanha, Luiz Leonardo; Adachi, Sérgio Akira; Schley, Thayssa Rabelo; Rodrigues, Tatiane Maria; Dokkedal, Anne Ligia; Nogueira, Fabio Tebaldi Silveira; Rolim de Almeida, Luiz Fernando

    2015-09-01

    Flavonoids are a class of distinct compounds produced by plant secondary metabolism that inhibit or promote plant development and have a relationship with auxin transport. We showed that, in terms of root development, Copaifera langsdorffii leaf extracts has an inhibitory effect on most flavonoid components compared with the application of exogenous flavonoids (glycosides and aglycones). These compounds alter the pattern of expression of the SHORT-ROOT and HD-ZIP III transcription factor gene family and cause morpho-physiological alterations in sorghum roots. In addition, to examine the flavonoid auxin interaction in stress, we correlated the responses with the effects of exogenous application of auxin and an auxin transport inhibitor. The results show that exogenous flavonoids inhibit primary root growth and increase the development of lateral roots. Exogenous flavonoids also change the pattern of expression of specific genes associated with root tissue differentiation. These findings indicate that flavonoid glycosides can influence the polar transport of auxin, leading to stress responses that depend on auxin. Copyright © 2015 Elsevier GmbH. All rights reserved.

  17. Growth and root development of four mangrove seedlings under varying salinity

    NASA Astrophysics Data System (ADS)

    Basyuni, M.; Keliat, D. A.; Lubis, M. U.; Manalu, N. B.; Syuhada, A.; Wati, R.; Yunasfi

    2018-03-01

    This present study describes four mangrove seedlings namely Bruguiera cylindrica, B. sexangula, Ceriops tagal, and Rhizophora apiculata in response to salinity with particular emphasis to root development. The seedlings of four mangroves were grown for 5 months in 0%, 0.5%, 1.5%, 2.0% and 3.0% salt concentration. Salinity significantly decreased the growth (diameter and plant height) of all mangrove seedlings. Root developments were observed from the tap and lateral root. The number, length and diameter of both roots-typed of B. cylindrica, B. sexangula and C. tagal seedlings significantly decreased with increasing salt concentration with optimum development at 0.5% salinity. By contrast, the number, length, and diameter of tap root of R. apiculata seedlings were significantly enhanced by salt with maximal stimulation at 0.5%, and this increase was attenuated by increasing salinity. On the other hand, lateral root development of R. apiculata significantly thrived up to 1.5% salinity then decreasing with the increasing salinity. The different response of root development suggested valuable information for mangrove rehabilitation in North Sumatra and their adaption to withstand salt stress.

  18. Spatial separation of light perception and growth response in maize root phototropism

    NASA Technical Reports Server (NTRS)

    Mullen, J. L.; Wolverton, C.; Ishikawa, H.; Hangarter, R. P.; Evans, M. L.

    2002-01-01

    Although the effects of gravity on root growth are well known and interactions between light and gravity have been reported, details of root phototropic responses are less documented. We used high-resolution image analysis to study phototropism in primary roots of Zea mays L. Similar to the location of perception in gravitropism, the perception of light was localized in the root cap. Phototropic curvature away from the light, on the other hand, developed in the central elongation zone, more basal than the site of initiation of gravitropic curvature. The phototropic curvature saturated at approximately 10 micromoles m-2 s-1 blue light with a peak curvature of 29 +/- 4 degrees, in part due to induction of positive gravitropism following displacement of the root tip from vertical during negative phototropism. However, at higher fluence rates, development of phototropic curvature is arrested even if gravitropism is avoided by maintaining the root cap vertically using a rotating feedback system. Thus continuous illumination can cause adaptation in the signalling pathway of the phototropic response in roots.

  19. Water Deficit and Abscisic Acid Cause Differential Inhibition of Shoot versus Root Growth in Soybean Seedlings 1

    PubMed Central

    Creelman, Robert A.; Mason, Hugh S.; Bensen, Robert J.; Boyer, John S.; Mullet, John E.

    1990-01-01

    Roots often continue to elongate while shoot growth is inhibited in plants subjected to low-water potentials. The cause of this differential response to water deficit was investigated. We examined hypocotyl and root growth, polysome status and mRNA populations, and abscisic acid (ABA) content in etiolated soybean (Glycine max [L.] Merr. cv Williams) seedlings whose growth was inhibited by transfer to low-water potential vermiculite or exogenous ABA. Both treatments affected growth and dry weight in a similar fashion. Maximum inhibition of hypocotyl growth occurred when internal ABA levels (modulated by ABA application) reached the endogenous level found in the elongating zone of seedlings grown in water-deficient vermiculite. Conversely, root growth was affected to only a slight extent in low-water potential seedlings and by most ABA treatments (in some, growth was promoted). In every seedling section examined, transfer of seedlings into low-water potential vermiculite caused ABA levels to increase approximately 5- to 10-fold over that found in well-watered seedlings. Changes in soluble sugar content, polysome status, and polysome mRNA translation products seen in low-water potential seedlings did not occur with ABA treatments sufficient to cause significant inhibition of hypocotyl elongation. These data suggest that both variation in endogenous ABA levels, and differing sensitivity to ABA in hypocotyls and roots can modulate root/shoot growth ratios. However, exogenous ABA did not induce changes in sugar accumulation, polysome status, and mRNA populations seen after transfer into low-water potential vermiculite. Images Figure 6 Figure 7 PMID:16667248

  20. Disentangling who is who during rhizosphere acidification in root interactions: combining fluorescence with optode techniques

    PubMed Central

    Faget, Marc; Blossfeld, Stephan; von Gillhaussen, Philipp; Schurr, Ulrich; Temperton, Vicky M.

    2013-01-01

    Plant–soil interactions can strongly influence root growth in plants. There is now increasing evidence that root–root interactions can also influence root growth, affecting architecture and root traits such as lateral root formation. Both when species grow alone or in interaction with others, root systems are in turn affected by as well as affect rhizosphere pH. Changes in soil pH have knock-on effects on nutrient availability. A limitation until recently has been the inability to assign species identity to different roots in soil. Combining the planar optode technique with fluorescent plants enables us to distinguish between plant species grown in natural soil and in parallel study pH dynamics in a non-invasive way at the same region of interest (ROI). We measured pH in the rhizosphere of maize and bean in rhizotrons in a climate chamber, with ROIs on roots in proximity to the roots of the other species as well as not-close to the other species. We found clear dynamic changes of pH over time and differences between the two species in rhizosphere acidification. Interestingly, when roots of the two species were interacting, the degree of acidification or alkalization compared to bulk soil was less strong then when roots were not growing in the vicinity of the other species. This cutting-edge approach can help provide a better understanding of plant–plant and plant–soil interactions. PMID:24137168

Top