Sample records for root mass fraction

  1. Negligible fractionation of Kr and Xe isotopes by molecular diffusion in water

    NASA Astrophysics Data System (ADS)

    Tyroller, Lina; Brennwald, Matthias S.; Busemann, Henner; Maden, Colin; Baur, Heinrich; Kipfer, Rolf

    2018-06-01

    Molecular diffusion is a key transport process for noble gases in water. Such diffusive transport is often thought to cause a mass-dependent fractionation of noble gas isotopes that is inversely proportional to the square root of the ratio of their atomic mass, referred to as the square root relation. Previous studies, challenged the commonly held assumption that the square root relation adequately describes the behaviour of noble gas isotopes diffusing through water. However, the effect of diffusion on noble gas isotopes has only been determined experimentally for He, Ne and Ar to date, whereas the extent of fractionation of Kr and Xe has not been measured. In the present study the fractionation of Kr and Xe isotopes diffusing through water immobilised by adding agar was quantified through measuring the respective isotope ratio after diffusing through the immobilised water. No fractionation of Kr and Xe isotopes was observed, even using high-precision noble gas analytics. These results complement our current understanding on isotopic fractionation of noble gases diffusing through water. Therefore this complete data set builds a robust basis to describe molecular diffusion of noble gases in water in a physical sound manner which is fundamental to assess the physical aspects of gas dynamics in aquatic systems.

  2. Characterisation of antimicrobial extracts from dandelion root (Taraxacum officinale) using LC-SPE-NMR.

    PubMed

    Kenny, O; Brunton, N P; Walsh, D; Hewage, C M; McLoughlin, P; Smyth, T J

    2015-04-01

    Plant extracts have traditionally been used as sources of natural antimicrobial compounds, although in many cases, the compounds responsible for their antimicrobial efficacy have not been identified. In this study, crude and dialysed extracts from dandelion root (Taraxacum officinale) were evaluated for their antimicrobial properties against Gram positive and Gram negative bacterial strains. The methanol hydrophobic crude extract (DRE3) demonstrated the strongest inhibition of microbial growth against Staphylococcus aureus, methicillin-resistant S. aureus and Bacillus cereus strains. Normal phase (NP) fractionation of DRE3 resulted in two fractions (NPF4 and NPF5) with enhanced antimicrobial activity. Further NP fractionation of NPF4 resulted in two fractions (NPF403 and NPF406) with increased antimicrobial activity. Further isolation and characterisation of compounds in NPF406 using liquid chromatography solid phase extraction nuclear magnetic resonance LC-SPE-NMR resulted in the identification of 9-hydroxyoctadecatrienoic acid and 9-hydroxyoctadecadienoic acid, while the phenolic compounds vanillin, coniferaldehyde and p-methoxyphenylglyoxylic acid were also identified respectively. The molecular mass of these compounds was confirmed by LC mass spectroscopy (MS)/MS. In summary, the antimicrobial efficacy of dandelion root extracts demonstrated in this study support the use of dandelion root as a source of natural antimicrobial compounds. Copyright © 2015 John Wiley & Sons, Ltd.

  3. How does biomass distribution change with size and differ among species? An analysis for 1200 plant species from five continents.

    PubMed

    Poorter, Hendrik; Jagodzinski, Andrzej M; Ruiz-Peinado, Ricardo; Kuyah, Shem; Luo, Yunjian; Oleksyn, Jacek; Usoltsev, Vladimir A; Buckley, Thomas N; Reich, Peter B; Sack, Lawren

    2015-11-01

    We compiled a global database for leaf, stem and root biomass representing c. 11 000 records for c. 1200 herbaceous and woody species grown under either controlled or field conditions. We used this data set to analyse allometric relationships and fractional biomass distribution to leaves, stems and roots. We tested whether allometric scaling exponents are generally constant across plant sizes as predicted by metabolic scaling theory, or whether instead they change dynamically with plant size. We also quantified interspecific variation in biomass distribution among plant families and functional groups. Across all species combined, leaf vs stem and leaf vs root scaling exponents decreased from c. 1.00 for small plants to c. 0.60 for the largest trees considered. Evergreens had substantially higher leaf mass fractions (LMFs) than deciduous species, whereas graminoids maintained higher root mass fractions (RMFs) than eudicotyledonous herbs. These patterns do not support the hypothesis of fixed allometric exponents. Rather, continuous shifts in allometric exponents with plant size during ontogeny and evolution are the norm. Across seed plants, variation in biomass distribution among species is related more to function than phylogeny. We propose that the higher LMF of evergreens at least partly compensates for their relatively low leaf area : leaf mass ratio. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  4. Liquid Chromatography Mass Spectrometry Analysis and Cytotoxicity of Asparagus adscendens Roots against Human Cancer Cell Lines.

    PubMed

    Khan, Kashif Maqbool; Nahar, Lutfun; Mannan, Abdul; Arfan, Muhammad; Khan, Ghazanfar Ali; Al-Groshi, Afaf; Evans, Andrew; Dempster, Nicola M; Ismail, Fyaz M D; Sarker, Satyajit D

    2018-01-01

    Asparagus adscendens Roxb. (Asparagaceae), is native to the Himalayas. This plant has been used in the prevention and effective treatment of various forms of cancers. This paper reports, for the first time, on the cytotoxicity of the methanol (MeOH) extract of the roots of A. adscendens and its solid-phase extraction (SPE) fractions against four human carcinoma cell lines and LC-ESI-QTOF-MS analysis of the SPE fractions. Finely powdered roots of A. adscendens were macerated in methanol and extracted through SPE using gradient solvent system (water: methanol) proceeded for analysis on LC-ESI-QTOF-MS and cytotoxicity against four human carcinoma cell lines: breast (MCF7), liver (HEPG2), lung (A549), and urinary bladder (EJ138), using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide assay. The MeOH extract and four SPE fractions exhibited cytotoxicity against all cell lines with the IC 50 values ranging from 6 to 79 μg/mL. As observed in other Asparagus species, the presence of saponins and sapogenins in the SPE fractions was evident in the liquid chromatography-mass spectrometry data. It is reasonable to assume that the cytotoxicity of the MeOH extract of the roots of A. adscendens and its SPE fractions, at least partly, due to the presence of saponins and their aglycones. This suggests that A. adscendens could be exploited as a potential source of cytotoxic compounds with putative anticancer potential. The MeOH extract and all solid-phase extraction (SPE) fractions exhibited various levels of cytotoxicity against all cell lines with the IC 50 values ranging from 6 to 79 μg/mLThe presence of saponins and sapogenins in the SPE fractions was evident in the Liquid chromatography-mass spectrometry dataDue to the presence of saponins and their aglycones, suggest that A. adscendens could be exploited as a potential source of cytotoxic compounds with putative anticancer potential. Abbreviation used: SPE: Solid-phase extraction, MCF7: Breast cancer cell line, HEPG2: Liver cancer cell line, A549: Lung liver cancer cell line, EJ138: Urinary bladder cancer cell line, MTT: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide, LC-MS: Liquid chromatography-mass spectrometry.

  5. Plastic responses of native plant root systems to the presence of an invasive annual grass.

    PubMed

    Phillips, Allison J; Leger, Elizabeth A

    2015-01-01

    • The ability to respond to environmental change via phenotypic plasticity may be important for plants experiencing disturbances such as climate change and plant invasion. Responding to belowground competition through root plasticity may allow native plants to persist in highly invaded systems such as the cold deserts of the Intermountain West, USA.• We investigated whether Poa secunda, a native bunchgrass, could alter root morphology in response to nutrient availability and the presence of a competitive annual grass. Seeds from 20 families were grown with high and low nutrients and harvested after 50 d, and seeds from 48 families, grown with and without Bromus tectorum, were harvested after ∼2 or 6 mo. We measured total biomass, root mass fraction, specific root length (SRL), root tips, allocation to roots of varying diameter, and plasticity in allocation.• Plants had many parallel responses to low nutrients and competition, including increased root tip production, a trait associated with tolerance to reduced resources, though families differed in almost every trait and correlations among trait changes varied among experiments, indicating flexibility in plant responses. Seedlings actively increased SRL and fine root allocation under competition, while older seedlings also increased coarse root allocation, a trait associated with increased tolerance, and increased root mass fraction.• The high degree of genetic variation for root plasticity within natural populations could aid in the long-term persistence of P. secunda because phenotypic plasticity may allow native species to persist in invaded and fluctuating resource environments. © 2015 Botanical Society of America, Inc.

  6. Stand age and fine root biomass, distribution and morphology in a Norway spruce chronosequence in southeast Norway.

    PubMed

    Børja, Isabella; De Wit, Heleen A; Steffenrem, Arne; Majdi, Hooshang

    2008-05-01

    We assessed the influence of stand age on fine root biomass and morphology of trees and understory vegetation in 10-, 30-, 60- and 120-year-old Norway spruce stands growing in sandy soil in southeast Norway. Fine root (< 1, 1-2 and 2-5 mm in diameter) biomass of trees and understory vegetation (< 2 mm in diameter) was sampled by soil coring to a depth of 60 cm. Fine root morphological characteristics, such as specific root length (SRL), root length density (RLD), root surface area (RSA), root tip number and branching frequency (per unit root length or mass), were determined based on digitized root data. Fine root biomass and morphological characteristics related to biomass (RLD and RSA) followed the same tendency with chronosequence and were significantly higher in the 30-year-old stand and lower in the 10-year-old stand than in the other stands. Among stands, mean fine root (< 2 mm) biomass ranged from 49 to 398 g m(-2), SLR from 13.4 to 19.8 m g(-1), RLD from 980 to 11,650 m m(-3) and RSA from 2.4 to 35.4 m(2) m(-3). Most fine root biomass of trees was concentrated in the upper 20 cm of the mineral soil and in the humus layer (0-5 cm) in all stands. Understory fine roots accounted for 67 and 25% of total fine root biomass in the 10- and 120-year-old stands, respectively. Stand age had no affect on root tip number or branching frequency, but both parameters changed with soil depth, with increasing number of root tips and decreasing branching frequency with increasing soil depth for root fractions < 2 mm in diameter. Specific (mass based) root tip number and branching density were highest for the finest roots (< 1 mm) in the humus layer. Season (spring or fall) had no effect on tree fine root biomass, but there was a small and significant increase in understory fine root biomass in fall relative to spring. All morphological characteristics showed strong seasonal variation, especially the finest root fraction, with consistently and significantly higher values in spring than in fall. We conclude that fine root biomass, especially in the finest fraction (< 1 mm in diameter), is strongly dependent on stand age. Among stands, carbon concentration in fine root biomass was highest in the 30-year-old stand, and appeared to be associated with the high tree and canopy density during the early stage of stand development. Values of RLD and RSA, morphological features indicative of stand nutrient-uptake efficiency, were higher in the 30-year-old stand than in the other stands.

  7. Trickle-bed root culture bioreactor design and scale-up: growth, fluid-dynamics, and oxygen mass transfer.

    PubMed

    Ramakrishnan, Divakar; Curtis, Wayne R

    2004-10-20

    Trickle-bed root culture reactors are shown to achieve tissue concentrations as high as 36 g DW/L (752 g FW/L) at a scale of 14 L. Root growth rate in a 1.6-L reactor configuration with improved operational conditions is shown to be indistinguishable from the laboratory-scale benchmark, the shaker flask (mu=0.33 day(-1)). These results demonstrate that trickle-bed reactor systems can sustain tissue concentrations, growth rates and volumetric biomass productivities substantially higher than other reported bioreactor configurations. Mass transfer and fluid dynamics are characterized in trickle-bed root reactors to identify appropriate operating conditions and scale-up criteria. Root tissue respiration goes through a minimum with increasing liquid flow, which is qualitatively consistent with traditional trickle-bed performance. However, liquid hold-up is much higher than traditional trickle-beds and alternative correlations based on liquid hold-up per unit tissue mass are required to account for large changes in biomass volume fraction. Bioreactor characterization is sufficient to carry out preliminary design calculations that indicate scale-up feasibility to at least 10,000 liters.

  8. Tyrosinase Inhibitory Activities of Carissa opaca Stapf ex Haines Roots Extracts and Their Phytochemical Analysis

    PubMed Central

    Malik, Wajeeha; Ahmed, Dildar; Izhar, Sania

    2017-01-01

    Objective: Carissa opaca is a medicinal plant with rich folkloric applications. The present research was conducted to explore the tyrosinase inhibitory potential of aqueous decoction (AD) and methanolic extract (ME) of roots of C. opaca and its fractions in various solvents and their phytochemical analysis. Materials and Methods: AD of the dried powdered roots of C. opaca was prepared by boiling in water. ME was prepared by cold maceration. Its fractions were obtained in solvents of increasing polarity, i.e., hexane, chloroform, ethyl acetate, n-butanol, and water. The biomass left after extraction with methanol was boiled in water to get its decoction Biomass aqueous decoction (BAD). Tyrosinase inhibitory activities of the samples were studied according to a reported method. Chemical compounds in the samples were identified by gas chromatography-mass spectrometry (GC-MS). Results: The AD, BAD, and ME and its fractions displayed remarkable tyrosinase inhibitory activity. The IC50 of AD was 23.33 μg/mL as compared to 15.80 μg/mL of the standard arbutin and that of BAD was 21.24 μg/mL. The IC50 of ME was 34.76 μg/mL while that of hexane, chloroform, ethyl acetate, n-butanolic, and aqueous fractions was 21.0, 44.73, 43.40, 27.66, and 25.06 μg/mL, respectively. The hexane fraction was thus most potent followed by aqueous fraction. By phytochemical analysis, campesterol, stigmasterol, gamma-sitosterol, alpha-amyrin, 9,19-cyclolanostan-3-ol, 24-methylene-,(3 β)-, lupeol, lup-20(29)-en-3-one, lup-20(29)-en-3-ol, acetate,(3 β)-, 2(1H) naphthalenone, 3,5,6,7,8,8a-hexahydro-4,8a-dimethyl-6-(1-methylethenyl)-, and 2,3,3-trimethyl-2-(3-methylbuta-1,3-dienyl)-6-methylenecyclohexanone were identified in the extracts by GC-MS. Other compounds included fatty acids and their esters. Some of these compounds are being first time reported here from this plant. Conclusions: The roots extracts exhibited considerable tyrosinase inhibitory activities, alluding to a possible application of the plant in cosmetic as whitening agent subject to further pharmacological studies. SUMMARY The present study aimed to explore the tyrosinase inhibitory potential of aqueous decoction and methanolic extract of roots of Carissa opaca and its fractions in various solvents and their phytochemical constituents. GCMS analysis was conducted to identify the phytochemicals. The extracts and fractions of C. opaca roots showed remarkable anti-tyrosinase activities alluding to their possible application to treat disorders related to overproduction of melanin. Abbreviations used: AD: Aqueous decoction; ME: Methanolic extract; BAD: Biomass aqueous decoction; GC-MS: Gas chromatography-mass spectrometry. PMID:29142412

  9. Incorporation of 13C labeled Pinus ponderosa needle and fine root litter into soil organic matter measured by Py-GC/MS-C-IRMS

    NASA Astrophysics Data System (ADS)

    Mambelli, S.; Gleixner, G.; Dawson, T. E.; Bird, J. A.; Torn, M. S.

    2006-12-01

    Developing effective strategies for enhancing C storage in soils requires understanding the influence of plant C quality. In turn, plant C quality impacts the decay continuum between plant residue and humified, stable SOM. This remains one of the least understood aspects of soil biogeochemistry. We investigated the initial phase of incorporation of 13C labeled Pinus ponderosa needle and fine root litter into SOM. The two litter types were placed in separate microcosms in the A horizon in a temperate conifer soil. Curie-point pyrolysis-gas chromatography coupled with on-line mass spectrometry and isotope ratio mass spectrometry (Py-GC/MS-C- IRMS) were used to determine the identity and the 13C enrichment of pyrolysis products (fragments of carbohydrates, lignin, proteins and lipids). We compared the two initial litter types, needles and fine roots, to samples of the bulk soil (A horizon, < 2mm) and soil humin fraction (from chemical solubility) obtained from each microcosm 1.5y after litter addition. Pyrolysis of plant material and SOM produced 56 suitable products for isotopic analysis; of them, 15 occurred in both the litter and bulk soil, 7 in both the litter and the humin fraction and 9 in both bulk soil and the humin fraction. The pyrolysis products found in common in the plant and soil were related either to polysaccharides or were non-specific and could have originated from various precursors. The data suggest that the majority of plant inputs, both from needles or fine roots, were degraded very rapidly. In the humin fraction, the most recalcitrant pool of C in soil, with a measured turnover time of 260y (this soil), only products from the fragmentation of polysaccharides and alkyl-benzene compounds were found. Comparisons of the enrichment normalized by input level suggest little difference between the incorporation of C from needles versus fine roots into SOM. The most enriched fragments in the humin fraction were products from polysaccharides degradation, indicating a very important role of microbial processing in the stabilization of C in SOM.

  10. Maternal obesity, gestational weight gain and childhood cardiac outcomes: role of childhood body mass index.

    PubMed

    Toemen, L; Gishti, O; van Osch-Gevers, L; Steegers, E A P; Helbing, W A; Felix, J F; Reiss, I K M; Duijts, L; Gaillard, R; Jaddoe, V W V

    2016-07-01

    Maternal obesity may affect cardiovascular outcomes in the offspring. We examined the associations of maternal prepregnancy body mass index and gestational weight gain with childhood cardiac outcomes and explored whether these associations were explained by parental characteristics, infant characteristics or childhood body mass index. In a population-based prospective cohort study among 4852 parents and their children, we obtained maternal weight before pregnancy and in early, mid- and late pregnancy. At age 6 years, we measured aortic root diameter (cm) and left ventricular dimensions. We calculated left ventricular mass (g), left ventricular mass index (g m(-2.7)), relative wall thickness ((2 × left ventricular posterior wall thickness)/left ventricular diameter), fractional shorting (%), eccentric left ventricular hypertrophy and concentric remodeling. A one standard deviation score (SDS) higher maternal prepregnancy body mass index was associated with higher left ventricular mass (0.10 SDS (95% confidence interval (CI) 0.08, 0.13)), left ventricular mass index (0.06 SDS (95% CI 0.03, 0.09)) and aortic root diameter (0.09 SDS (95% CI 0.06, 0.12)), but not with relative wall thickness or fractional shortening. A one SDS higher maternal prepregnancy body mass index was associated with an increased risk of eccentric left ventricular hypertrophy (odds ratio 1.21 (95% CI 1.03, 1.41)), but not of concentric remodeling. When analyzing the effects of maternal weight in different periods simultaneously, only maternal prepregnancy weight and early pregnancy weight were associated with left ventricular mass, left ventricular mass index and aortic root diameter (P-values<0.05), independent of weight in other pregnancy periods. All observed associations were independent of parental and infant characteristics, but attenuated to non-significance after adjustment for childhood body mass index. Maternal prepregnancy body mass index and weight gain in early pregnancy are both associated with offspring cardiac structure in childhood, but these associations seem to be fully explained by childhood body mass index.

  11. Diverging effects of isotopic fractionation upon molecular diffusion of noble gases in water: mechanistic insights through ab initio molecular dynamics simulations.

    PubMed

    Pinto de Magalhães, Halua; Brennwald, Matthias S; Kipfer, Rolf

    2017-03-22

    Atmospheric noble gases are routinely used as natural tracers to analyze gas transfer processes in aquatic systems. Their isotopic ratios can be employed to discriminate between different physical transport mechanisms by comparison to the unfractionated atmospheric isotope composition. In many applications of aquatic systems molecular diffusion was thought to cause a mass dependent fractionation of noble gases and their isotopes according to the square root ratio of their masses. However, recent experiments focusing on isotopic fractionation within a single element challenged this broadly accepted assumption. The determined fractionation factors of Ne, Ar, Kr and Xe isotopes revealed that only Ar follows the prediction of the so-called square root relation, whereas within the Ne, Kr and Xe elements no mass-dependence was found. The reason for this unexpected divergence of Ar is not yet understood. The aim of our computational exercise is to establish the molecular-resolved mechanisms behind molecular diffusion of noble gases in water. We make the hypothesis that weak intermolecular interactions are relevant for the dynamical properties of noble gases dissolved in water. Therefore, we used ab initio molecular dynamics to explicitly account for the electronic degrees of freedom. Depending on the size and polarizability of the hydrophobic particles such as noble gases, their motion in dense and polar liquids like water is subject to different diffusive regimes: the inter-cavity hopping mechanism of small particles (He, Ne) breaks down if a critical particle size achieved. For the case of large particles (Kr, Xe), the motion through the water solvent is governed by mass-independent viscous friction leading to hydrodynamical diffusion. Finally, Ar falls in between the two diffusive regimes, where particle dispersion is propagated at the molecular collision time scale of the surrounding water molecules.

  12. Measurements of the tt-bar Cross Section at D0 and Interpretations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lacroix, F.

    2010-02-10

    We present measurements of the tt-bar production cross in pp-bar collisions at a center of mass energy of sq root(s) = 1.96 TeV using dilepton, hadronic tau, lepton+jets and all hadronic events depending on the decay products of the W bosons from the top decays with data collected by the D0 detector We use the ratios of tt-bar cross sections in different final states to set upper limits on the branching fractions B(t->H{sup +}b->taunu b))<15% and B(t->H{sup +}b->cs-bar b))<57% for low charged-Higgs masses. Finally, based on predictions from higher order quantum chromodynamics, we extract a mass for the top quarkmore » from the combined tt-bar cross section.« less

  13. Soil warming and CO2 enrichment induce biomass shifts in alpine tree line vegetation.

    PubMed

    Dawes, Melissa A; Philipson, Christopher D; Fonti, Patrick; Bebi, Peter; Hättenschwiler, Stephan; Hagedorn, Frank; Rixen, Christian

    2015-05-01

    Responses of alpine tree line ecosystems to increasing atmospheric CO2 concentrations and global warming are poorly understood. We used an experiment at the Swiss tree line to investigate changes in vegetation biomass after 9 years of free air CO2 enrichment (+200 ppm; 2001-2009) and 6 years of soil warming (+4 °C; 2007-2012). The study contained two key tree line species, Larix decidua and Pinus uncinata, both approximately 40 years old, growing in heath vegetation dominated by dwarf shrubs. In 2012, we harvested and measured biomass of all trees (including root systems), above-ground understorey vegetation and fine roots. Overall, soil warming had clearer effects on plant biomass than CO2 enrichment, and there were no interactive effects between treatments. Total plant biomass increased in warmed plots containing Pinus but not in those with Larix. This response was driven by changes in tree mass (+50%), which contributed an average of 84% (5.7 kg m(-2) ) of total plant mass. Pinus coarse root mass was especially enhanced by warming (+100%), yielding an increased root mass fraction. Elevated CO2 led to an increased relative growth rate of Larix stem basal area but no change in the final biomass of either tree species. Total understorey above-ground mass was not altered by soil warming or elevated CO2 . However, Vaccinium myrtillus mass increased with both treatments, graminoid mass declined with warming, and forb and nonvascular plant (moss and lichen) mass decreased with both treatments. Fine roots showed a substantial reduction under soil warming (-40% for all roots <2 mm in diameter at 0-20 cm soil depth) but no change with CO2 enrichment. Our findings suggest that enhanced overall productivity and shifts in biomass allocation will occur at the tree line, particularly with global warming. However, individual species and functional groups will respond differently to these environmental changes, with consequences for ecosystem structure and functioning. © 2014 John Wiley & Sons Ltd.

  14. Identification of Active Compounds in the Root of Merung (Coptosapelta tomentosa Valeton K. Heyne)

    NASA Astrophysics Data System (ADS)

    Fitriyana

    2018-04-01

    The roots of Merung (Coptosapelta tomentosa Valeton K. Heyne) are a group of shrubs usually found on the margins of secondary dryland forest. Empirically, local people have been using the roots of Merung for medical treatment. However, some researches show that the plant extract is used as a poisonous material applied on the tip of the arrow (dart). Based on the online literature study, there are less than 5 articles that provide information about the active compound of this root extract. This study aimed to give additional information more deeply about the content of active compound of Merung root extract in three fractions, n-hexane (nonpolar), ethyl acetate (semi polar) and methanol (polar). The extract was then analysed using Gas Chromatography-Mass Spectrometry (GC-MS). GC-MS analysis of root extract in n-hexane showed there were 56 compounds, with the main compound being decanoic acid, methyl ester (peak 5, 10.13%), 11-Octadecenoic acid, methyl ester (peak 15, 10.43%) and 1H-Pyrazole, 3- (4-chlorophenyl) -4, 5-dihydro-1-phenyl (peak 43, 11.25%). Extracts in ethyl acetate fraction obtained 81 compounds. The largest component is Benzoic acid (peak 19, 22.40%), whereas in methanol there are 38 compounds, of which the main component is 2-Furancarboxaldehyde, 5-(hydroxyl methyl) (peak 29, 30.46%).

  15. Seedling growth strategies in Bauhinia species: comparing lianas and trees.

    PubMed

    Cai, Zhi-Quan; Poorter, Lourens; Cao, Kun-Fang; Bongers, Frans

    2007-10-01

    Lianas are expected to differ from trees in their growth strategies. As a result these two groups of woody species will have different spatial distributions: lianas are more common in high light environments. This study determines the differences in growth patterns, biomass allocation and leaf traits in five closely related liana and tree species of the genus Bauhinia. Seedlings of two light-demanding lianas (Bauhinia tenuiflora and B. claviflora), one shade-tolerant liana (B. aurea), and two light-demanding trees (B. purpurea and B. monandra) were grown in a shadehouse at 25% of full sunlight. A range of physiological, morphological and biomass parameters at the leaf and whole plant level were compared among these five species. The two light-demanding liana species had higher relative growth rate (RGR), allocated more biomass to leaf production [higher leaf mass fraction (LMF) and higher leaf area ratio (LAR)] and stem mass fraction (SMF), and less biomass to the roots [root mass fraction (RMF)] than the two tree species. The shade-tolerant liana had the lowest RGR of all five species, and had a higher RMF, lower SMF and similar LMF than the two light-demanding liana species. The two light-demanding lianas had lower photosynthetic rates per unit area (A(area)) and similar photosynthetic rates per unit mass (A(mass)) than the trees. Across species, RGR was positively related to SLA, but not to LAR and A(area). It is concluded that the faster growth of light-demanding lianas compared with light-demanding trees is based on morphological parameters (SLA, LMF and LAR), and cannot be attributed to higher photosynthetic rates at the leaf level. The shade-tolerant liana exhibited a slow-growth strategy, compared with the light-demanding species.

  16. Photosynthesis and carbon allocation are both important predictors of genotype productivity responses to elevated CO2 in Eucalyptus camaldulensis.

    PubMed

    Aspinwall, Michael J; Blackman, Chris J; de Dios, Víctor Resco; Busch, Florian A; Rymer, Paul D; Loik, Michael E; Drake, John E; Pfautsch, Sebastian; Smith, Renee A; Tjoelker, Mark G; Tissue, David T

    2018-05-08

    Intraspecific variation in biomass production responses to elevated atmospheric carbon dioxide (eCO2) could influence tree species' ecological and evolutionary responses to climate change. However, the physiological mechanisms underlying genotypic variation in responsiveness to eCO2 remain poorly understood. In this study, we grew 17 Eucalyptus camaldulensis Dehnh. subsp. camaldulensis genotypes (representing provenances from four different climates) under ambient atmospheric CO2 and eCO2. We tested whether genotype leaf-scale photosynthetic and whole-tree carbon (C) allocation responses to eCO2 were predictive of genotype biomass production responses to eCO2. Averaged across genotypes, growth at eCO2 increased in situ leaf net photosynthesis (Anet) (29%) and leaf starch concentrations (37%). Growth at eCO2 reduced the maximum carboxylation capacity of Rubisco (-4%) and leaf nitrogen per unit area (Narea, -6%), but Narea calculated on a total non-structural carbohydrate-free basis was similar between treatments. Growth at eCO2 also increased biomass production and altered C allocation by reducing leaf area ratio (-11%) and stem mass fraction (SMF, -9%), and increasing leaf mass area (18%) and leaf mass fraction (5%). Overall, we found few significant CO2 × provenance or CO2 × genotype (within provenance) interactions. However, genotypes that showed the largest increases in total dry mass at eCO2 had larger increases in root mass fraction (with larger decreases in SMF) and photosynthetic nitrogen-use efficiency (PNUE) with CO2 enrichment. These results indicate that genetic differences in PNUE and carbon sink utilization (in roots) are both important predictors of tree productivity responsiveness to eCO2.

  17. Characterizing the changes in biopolymer composition in roots of photosynthetically divergent grasses exposed to future climates

    NASA Astrophysics Data System (ADS)

    Suseela, V.; Tharayil, N.; Pendall, E.

    2014-12-01

    A majority of carbon in soil is derived from plant roots, yet roots remain remarkably less explored. Root tissues are abundant in heteropolymers such as suberin, lignin and tannins which are energetically demanding to depolymerize, thus facilitating the accrual of carbon in soil. Most biopolymers are operationally/functionally defined and their function is regulated by the identity of monomers and the linkages connecting these monomers. The structural chemistry of these biopolymers could vary with the environmental conditions experienced during their formative stage thus altering the potential for soil carbon sequestration. We examined the biopolymer composition in the roots of a C3 (Hesperostipa comata) and a C4 (Bouteloua gracilis) grass species exposed to a factorial combination of warming and elevated CO2 at the Prairie Heating and CO2 Enrichment (PHACE) experiment, Wyoming, USA. The grass roots were subjected to a sequential solvent extraction and base hydrolysis to delineate various operational fractions within the polydisperse matrix. The extracted fractions were analyzed using various chromatography mass spectrometry platforms. Warming and elevated CO2 increased the total suberin content and the amount of ω-hydroxy acids in C4 grass species while in C3 species there was a trend of increasing concentration of α,ω-dioic acids in roots exposed to elevated CO2 compared to ambient CO2 treatment. Our results highlight the effect of warming and elevated CO2 on the chemical composition of heteropolymers in roots that may potentially alter root function and rate of decomposition leading to changes in soil carbon in a future warmer world.

  18. Seedling Growth Strategies in Bauhinia Species: Comparing Lianas and Trees

    PubMed Central

    Cai, Zhi-Quan; Poorter, Lourens; Cao, Kun-Fang; Bongers, Frans

    2007-01-01

    Background and Aims Lianas are expected to differ from trees in their growth strategies. As a result these two groups of woody species will have different spatial distributions: lianas are more common in high light environments. This study determines the differences in growth patterns, biomass allocation and leaf traits in five closely related liana and tree species of the genus Bauhinia. Methods Seedlings of two light-demanding lianas (Bauhinia tenuiflora and B. claviflora), one shade-tolerant liana (B. aurea), and two light-demanding trees (B. purpurea and B. monandra) were grown in a shadehouse at 25 % of full sunlight. A range of physiological, morphological and biomass parameters at the leaf and whole plant level were compared among these five species. Key Results The two light-demanding liana species had higher relative growth rate (RGR), allocated more biomass to leaf production [higher leaf mass fraction (LMF) and higher leaf area ratio (LAR)] and stem mass fraction (SMF), and less biomass to the roots [root mass fraction (RMF)] than the two tree species. The shade-tolerant liana had the lowest RGR of all five species, and had a higher RMF, lower SMF and similar LMF than the two light-demanding liana species. The two light-demanding lianas had lower photosynthetic rates per unit area (Aarea) and similar photosynthetic rates per unit mass (Amass) than the trees. Across species, RGR was positively related to SLA, but not to LAR and Aarea. Conclusions It is concluded that the faster growth of light-demanding lianas compared with light-demanding trees is based on morphological parameters (SLA, LMF and LAR), and cannot be attributed to higher photosynthetic rates at the leaf level. The shade-tolerant liana exhibited a slow-growth strategy, compared with the light-demanding species. PMID:17720978

  19. Silicon Promotes Exodermal Casparian Band Formation in Si-Accumulating and Si-Excluding Species by Forming Phenol Complexes

    PubMed Central

    Hinrichs, Martin; Specht, André; Waßmann, Friedrich; Schreiber, Lukas; Schenk, Manfred K.

    2015-01-01

    We studied the effect of Silicon (Si) on Casparian band (CB) development, chemical composition of the exodermal CB and Si deposition across the root in the Si accumulators rice and maize and the Si non-accumulator onion. Plants were cultivated in nutrient solution with and without Si supply. The CB development was determined in stained root cross-sections. The outer part of the roots containing the exodermis was isolated after enzymatic treatment. The exodermal suberin was transesterified with MeOH/BF3 and the chemical composition was measured using gas chromatography-mass spectroscopy (GC-MS) and flame ionization detector (GC-FID). Laser ablation-inductively coupled plasma-mass spectroscopy (LA-ICP-MS) was used to determine the Si deposition across root cross sections. Si promoted CB formation in the roots of Si-accumulator and Si non-accumulator species. The exodermal suberin was decreased in rice and maize due to decreased amounts of aromatic suberin fractions. Si did not affect the concentration of lignin and lignin-like polymers in the outer part of rice, maize and onion roots. The highest Si depositions were found in the tissues containing CB. These data along with literature were used to suggest a mechanism how Si promotes the CB development by forming complexes with phenols. PMID:26383862

  20. Effect of personalized external aortic root support on aortic root motion and distension in Marfan syndrome patients.

    PubMed

    Izgi, Cemil; Nyktari, Evangelia; Alpendurada, Francisco; Bruengger, Annina Studer; Pepper, John; Treasure, Tom; Mohiaddin, Raad

    2015-10-15

    Personalized external aortic root support (PEARS) is a novel surgical approach with the aim of stabilizing the aortic root size and decreasing risk of dissection in Marfan syndrome patients. A bespoke polymer mesh tailored to each patient's individual aorta shape is produced by modeling and then surgically implanted. The aim of this study is to assess the mechanical effects of PEARS on the aortic root systolic downward motion (an important determinant of aortic wall stress), aortic root distension and on the left ventricle (LV). A cohort of 27 Marfan patients had a prophylactic PEARS surgery between 2004 and 2012 with 24 having preoperative and follow-up cardiovascular magnetic resonance imaging studies. Systolic downward aortic root motion, aortic root distension, LV volumes/mass and mitral annular systolic excursion before the operation and in the latest follow-up were measured randomly and blinded. After a median follow-up of 50.5 (IQR 25.5-72) months following implantation of PEARS, systolic downward motion of aortic root was significantly decreased (12.6±3.6mm pre-operation vs 7.9±2.9mm latest follow-up, p<0.00001). There was a tendency for a decrease in systolic aortic root distension but this was not significant (median 4.5% vs 2%, p=0.35). There was no significant change in LV volumes, ejection fraction, mass and mitral annular systolic excursion in follow-up. PEARS surgery decreases systolic downward aortic root motion which is an important determinant of longitudinal aortic wall stress. Aortic wall distension and Windkessel function are not significantly impaired in the follow-up after implantation of the mesh which is also supported by the lack of deterioration of LV volumes or mass. Crown Copyright © 2015. Published by Elsevier Ireland Ltd. All rights reserved.

  1. First observation of B(s)(0) --> D(s)(+/-)K(-/+) and measurement of the ratio of branching fractions B(B(s)(0) --> D(s)(+/-)K(-/+)/B(B(s)(0) --> D(s)(+)pi(-)).

    PubMed

    Aaltonen, T; Adelman, J; Akimoto, T; Albrow, M G; Alvarez González, B; Amerio, S; Amidei, D; Anastassov, A; Annovi, A; Antos, J; Apollinari, G; Apresyan, A; Arisawa, T; Artikov, A; Ashmanskas, W; Attal, A; Aurisano, A; Azfar, F; Azzurri, P; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Bartsch, V; Bauer, G; Beauchemin, P-H; Bedeschi, F; Bednar, P; Beecher, D; Behari, S; Bellettini, G; Bellinger, J; Benjamin, D; Beretvas, A; Beringer, J; Bhatti, A; Binkley, M; Bisello, D; Bizjak, I; Blair, R E; Blocker, C; Blumenfeld, B; Bocci, A; Bodek, A; Boisvert, V; Bolla, G; Bortoletto, D; Boudreau, J; Boveia, A; Brau, B; Bridgeman, A; Brigliadori, L; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Budd, S; Burkett, K; Busetto, G; Bussey, P; Buzatu, A; Byrum, K L; Cabrera, S; Calancha, C; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carlsmith, D; Carosi, R; Carrillo, S; Carron, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavaliere, V; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chang, S H; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, K; Chokheli, D; Chou, J P; Choudalakis, G; Chuang, S H; Chung, K; Chung, W H; Chung, Y S; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Compostella, G; Convery, M E; Conway, J; Copic, K; Cordelli, M; Cortiana, G; Cox, D J; Crescioli, F; Cuenca Almenar, C; Cuevas, J; Culbertson, R; Cully, J C; Dagenhart, D; Datta, M; Davies, T; de Barbaro, P; De Cecco, S; Deisher, A; De Lorenzo, G; Dell'Orso, M; Deluca, C; Demortier, L; Deng, J; Deninno, M; Derwent, P F; di Giovanni, G P; Dionisi, C; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Donati, S; Dong, P; Donini, J; Dorigo, T; Dube, S; Efron, J; Elagin, A; Erbacher, R; Errede, D; Errede, S; Eusebi, R; Fang, H C; Farrington, S; Fedorko, W T; Feild, R G; Feindt, M; Fernandez, J P; Ferrazza, C; Field, R; Flanagan, G; Forrest, R; Franklin, M; Freeman, J C; Furic, I; Gallinaro, M; Galyardt, J; Garberson, F; Garcia, J E; Garfinkel, A F; Genser, K; Gerberich, H; Gerdes, D; Gessler, A; Giagu, S; Giakoumopoulou, V; Giannetti, P; Gibson, K; Gimmell, J L; Ginsburg, C M; Giokaris, N; Giordani, M; Giromini, P; Giunta, M; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gresele, A; Grinstein, S; Grosso-Pilcher, C; Group, R C; Grundler, U; Guimaraes da Costa, J; Gunay-Unalan, Z; Haber, C; Hahn, K; Hahn, S R; Halkiadakis, E; Han, B-Y; Han, J Y; Handler, R; Happacher, F; Hara, K; Hare, D; Hare, M; Harper, S; Harr, R F; Harris, R M; Hartz, M; Hatakeyama, K; Hauser, J; Hays, C; Heck, M; Heijboer, A; Heinemann, B; Heinrich, J; Henderson, C; Herndon, M; Heuser, J; Hewamanage, S; Hidas, D; Hill, C S; Hirschbuehl, D; Hocker, A; Hou, S; Houlden, M; Hsu, S-C; Huffman, B T; Hughes, R E; Husemann, U; Huston, J; Incandela, J; Introzzi, G; Iori, M; Ivanov, A; James, E; Jayatilaka, B; Jeon, E J; Jha, M K; Jindariani, S; Johnson, W; Jones, M; Joo, K K; Jun, S Y; Jung, J E; Junk, T R; Kamon, T; Kar, D; Karchin, P E; Kato, Y; Kephart, R; Keung, J; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kimura, N; Kirsch, L; Klimenko, S; Knuteson, B; Ko, B R; Koay, S A; Kondo, K; Kong, D J; Konigsberg, J; Korytov, A; Kotwal, A V; Kreps, M; Kroll, J; Krop, D; Krumnack, N; Kruse, M; Krutelyov, V; Kubo, T; Kuhr, T; Kulkarni, N P; Kurata, M; Kusakabe, Y; Kwang, S; Laasanen, A T; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; LeCompte, T; Lee, E; Lee, H S; Lee, S W; Leone, S; Lewis, J D; Lin, C S; Linacre, J; Lindgren, M; Lipeles, E; Lister, A; Litvintsev, D O; Liu, C; Liu, T; Lockyer, N S; Loginov, A; Loreti, M; Lovas, L; Lu, R-S; Lucchesi, D; Lueck, J; Luci, C; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; Lytken, E; Mack, P; MacQueen, D; Madrak, R; Maeshima, K; Makhoul, K; Maki, T; Maksimovic, P; Malde, S; Malik, S; Manca, G; Manousakis-Katsikakis, A; Margaroli, F; Marino, C; Marino, C P; Martin, A; Martin, V; Martínez, M; Martínez-Ballarín, R; Maruyama, T; Mastrandrea, P; Masubuchi, T; Mattson, M E; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Mehtala, P; Menzione, A; Merkel, P; Mesropian, C; Miao, T; Miladinovic, N; Miller, R; Mills, C; Milnik, M; Mitra, A; Mitselmakher, G; Miyake, H; Moggi, N; Moon, C S; Moore, R; Morello, M J; Morlok, J; Movilla Fernandez, P; Mülmenstädt, J; Mukherjee, A; Muller, Th; Mumford, R; Murat, P; Mussini, M; Nachtman, J; Nagai, Y; Nagano, A; Naganoma, J; Nakamura, K; Nakano, I; Napier, A; Necula, V; Neu, C; Neubauer, M S; Nielsen, J; Nodulman, L; Norman, M; Norniella, O; Nurse, E; Oakes, L; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Orava, R; Osterberg, K; Pagan Griso, S; Pagliarone, C; Palencia, E; Papadimitriou, V; Papaikonomou, A; Paramonov, A A; Parks, B; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Pianori, E; Pinera, L; Pitts, K; Plager, C; Pondrom, L; Poukhov, O; Pounder, N; Prakoshyn, F; Pronko, A; Proudfoot, J; Ptohos, F; Pueschel, E; Punzi, G; Pursley, J; Rademacker, J; Rahaman, A; Ramakrishnan, V; Ranjan, N; Redondo, I; Reisert, B; Rekovic, V; Renton, P; Rescigno, M; Richter, S; Rimondi, F; Ristori, L; Robson, A; Rodrigo, T; Rodriguez, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rossin, R; Roy, P; Ruiz, A; Russ, J; Rusu, V; Saarikko, H; Safonov, A; Sakumoto, W K; Saltó, O; Santi, L; Sarkar, S; Sartori, L; Sato, K; Savoy-Navarro, A; Scheidle, T; Schlabach, P; Schmidt, A; Schmidt, E E; Schmidt, M A; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scott, A L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Sexton-Kennedy, L; Sfyrla, A; Shalhout, S Z; Shapiro, M D; Shears, T; Shepard, P F; Sherman, D; Shimojima, M; Shiraishi, S; Shochet, M; Shon, Y; Shreyber, I; Sidoti, A; Sinervo, P; Sisakyan, A; Slaughter, A J; Slaunwhite, J; Sliwa, K; Smith, J R; Snider, F D; Snihur, R; Soha, A; Somalwar, S; Sorin, V; Spalding, J; Spreitzer, T; Squillacioti, P; Stanitzki, M; St Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Stuart, D; Suh, J S; Sukhanov, A; Suslov, I; Suzuki, T; Taffard, A; Takashima, R; Takeuchi, Y; Tanaka, R; Tecchio, M; Teng, P K; Terashi, K; Thom, J; Thompson, A S; Thompson, G A; Thomson, E; Tipton, P; Tiwari, V; Tkaczyk, S; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Totaro, P; Tourneur, S; Tu, Y; Turini, N; Ukegawa, F; Vallecorsa, S; van Remortel, N; Varganov, A; Vataga, E; Vázquez, F; Velev, G; Vellidis, C; Veszpremi, V; Vidal, M; Vidal, R; Vila, I; Vilar, R; Vine, T; Vogel, M; Volobouev, I; Volpi, G; Würthwein, F; Wagner, P; Wagner, R G; Wagner, R L; Wagner-Kuhr, J; Wagner, W; Wakisaka, T; Wallny, R; Wang, S M; Warburton, A; Waters, D; Weinberger, M; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Williams, G; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Wright, T; Wu, X; Wynne, S M; Xie, S; Yagil, A; Yamamoto, K; Yamaoka, J; Yang, U K; Yang, Y C; Yao, W M; Yeh, G P; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanello, L; Zanetti, A; Zaw, I; Zhang, X; Zheng, Y; Zucchelli, S

    2009-11-06

    A combined mass and particle identification fit is used to make the first observation of the decay B(s)(0) --> D(s)(+/-)K(-/+) and measure the branching fraction of B(s)(0) --> D(s)(+/-)K(-/+) relative to B(s)(0) --> D(s)(+)pi(-). This analysis uses 1.2 fb(-1) integrated luminosity of pp collisions at square root(s) = 1.96 TeV collected with the CDF II detector at the Fermilab Tevatron collider. We observe a B(s)(0) --> D(s)(+/-)K(-/+) signal with a statistical significance of 8.1 sigma and measure B(B(s)(0) --> D(s)(+/-)K(-/+) /B(B(s)(0) --> D(s)(+)pi(-) 0.097+/-0.018(stat) +/- 0.009(syst).

  2. Antibacterial and antifungal activities of Euroschinus papuanus.

    PubMed

    Khan, M R; Omoloso, A D; Kihara, M

    2004-06-01

    The crude methanolic extracts of the leaves, stem bark, stem heart wood, root bark and root heart wood of Euroschinus papuanus and the fractions obtained on partitioning with petrol, dichloromethane (D), ethyl acetate (E) and butanol (B), exhibited a broad spectrum antibacterial activity. Fractionation drastically enhanced the activity. Excellent activity was demonstrated by the E fractions of stem heart wood, D of root bark, and E of root heart wood. Antifungal activity was exhibited by the B fractions of leaves, stem heartwood and root bark. Copyright 2004 Elsevier B.V.

  3. Isolation of bergenin from the root bark of Securinega virosa and evaluation of its potential sleep promoting effect.

    PubMed

    Magaji, Mohammed Garba; Musa, Aliyu Muhammad; Abdullahi, Musa Ismail; Ya'u, Jamilu; Hussaini, Isa Marte

    2015-01-01

    Securinega virosa Roxb (Ex Willd) Baill (Euphorbaiceae) root bark has been reportedly used in African traditional medicine in the management of mental illnesses. Previously, the sleep-inducing potential of the crude methanol root bark of Securinega virosa extract and its butanol fraction have been reported. The study aimed to isolate and characterize the bioactive constituent that may be responsible for the sleep inducing property of the root of the plant. The phytochemical investigation of the S. virosa root bark was carried out leading to the isolation of a compound from the butanol-soluble fraction of the methanol extract. The structure of the compound was elucidated on the basis of its spectral data, including IR, 1D and 2D NMR, mass spectrometry as well as X-ray diffraction analysis. The compound was investigated for sleep-inducing potential using diazepam-induced sleeping time test and beam walking assay in mice. This is the first report on the isolation of bergenin from the root of the plant. It significantly decreased the mean onset of sleep [F (2, 15) =7.167; p< 0.01] at the dose of 10 mg/kg, without significantly affecting the total sleep duration [F (2, 15) = 0.090, p=0.914]. Conversely, it did not significantly affect the number of foot slips at the doses of 5 and 10 mg/kg tested. Bergenin isolated from the root bark of S. virosa possesses sleep-inducing property and could be partly responsible for the sedative potential of the root of S. virosa.

  4. Characterizing the cytoprotective activity of Sarracenia purpurea L., a medicinal plant that inhibits glucotoxicity in PC12 cells.

    PubMed

    Harris, Cory S; Asim, Muhammad; Saleem, Ammar; Haddad, Pierre S; Arnason, John T; Bennett, Steffany A L

    2012-12-05

    The purple pitcher plant, Sarracenia purpurea L., is a widely distributed species in North America with a history of use as both a marketed pain therapy and a traditional medicine in many aboriginal communities. Among the Cree of Eeyou Istchee in northern Québec, the plant is employed to treat symptoms of diabetes and the leaf extract demonstrates multiple anti-diabetic activities including cytoprotection in an in vitro model of diabetic neuropathy. The current study aimed to further investigate this activity by identifying the plant parts and secondary metabolites that contribute to these cytoprotective effects. Ethanolic extracts of S. purpurea leaves and roots were separately administered to PC12 cells exposed to glucose toxicity with subsequent assessment by two cell viability assays. Assay-guided fractionation of the active extract and fractions was then conducted to identify active principles. Using high pressure liquid chromatography together with mass spectrometry, the presence of identified actives in both leaf and root extracts were determined. The leaf extract, but not that of the root, prevented glucose-mediated cell loss in a concentration-dependent manner. Several fractions elicited protective effects, indicative of multiple active metabolites, and, following subfractionation of the polar fraction, hyperoside (quercetin-3-O-galactoside) and morroniside were isolated as active constituents. Phytochemical analysis confirmed the presence of hyperoside in the leaf but not root extract and, although morroniside was detected in both organs, its concentration was seven times higher in the leaf. Our results not only support further study into the therapeutic potential and safety of S. purpurea as an alternative and complementary treatment for diabetic complications associated with glucose toxicity but also identify active principles that can be used for purposes of standardization and quality control.

  5. Characterizing the cytoprotective activity of Sarracenia purpurea L., a medicinal plant that inhibits glucotoxicity in PC12 cells

    PubMed Central

    2012-01-01

    Background The purple pitcher plant, Sarracenia purpurea L., is a widely distributed species in North America with a history of use as both a marketed pain therapy and a traditional medicine in many aboriginal communities. Among the Cree of Eeyou Istchee in northern Québec, the plant is employed to treat symptoms of diabetes and the leaf extract demonstrates multiple anti-diabetic activities including cytoprotection in an in vitro model of diabetic neuropathy. The current study aimed to further investigate this activity by identifying the plant parts and secondary metabolites that contribute to these cytoprotective effects. Methods Ethanolic extracts of S. purpurea leaves and roots were separately administered to PC12 cells exposed to glucose toxicity with subsequent assessment by two cell viability assays. Assay-guided fractionation of the active extract and fractions was then conducted to identify active principles. Using high pressure liquid chromatography together with mass spectrometry, the presence of identified actives in both leaf and root extracts were determined. Results The leaf extract, but not that of the root, prevented glucose-mediated cell loss in a concentration-dependent manner. Several fractions elicited protective effects, indicative of multiple active metabolites, and, following subfractionation of the polar fraction, hyperoside (quercetin-3-O-galactoside) and morroniside were isolated as active constituents. Phytochemical analysis confirmed the presence of hyperoside in the leaf but not root extract and, although morroniside was detected in both organs, its concentration was seven times higher in the leaf. Conclusion Our results not only support further study into the therapeutic potential and safety of S. purpurea as an alternative and complementary treatment for diabetic complications associated with glucose toxicity but also identify active principles that can be used for purposes of standardization and quality control. PMID:23216659

  6. Application of hydrostatic CCC-TLC-HPLC-ESI-TOF-MS for the bioguided fractionation of anticholinesterase alkaloids from Argemone mexicana L. roots.

    PubMed

    Kukula-Koch, Wirginia; Mroczek, Tomasz

    2015-03-01

    A rapid hydrostatic counter-current chromatography-thin-layer chromatography-electrospray-ionization time-of-flight mass spectrometry (CCC-TLC-ESI-TOF-MS) technique was established for use in seeking potent anti-Alzheimer's drugs among the acethylcholinesterase inhibitors in Argemone mexicana L. underground parts, with no need to isolate components in pure form. The dichloromethane extract from the roots of Mexican prickly poppy that was most rich in secondary metabolites was subjected to hydrostatic-CCC-based fractionation in descending mode, using a biphasic system composed of petroleum ether-ethyl acetate-methanol-water at the ratio of 1.5:3:2.1:2 (v/v). The obtained fractions were analyzed in a TLC-based AChE-inhibition "Fast Blue B" test. All active components in the fractions, including berberine, protopine, chelerithrine, sanguinarine, coptisine, palmatine, magnoflorine, and galanthamine, were identified in a direct TLC-HPLC-ESI-TOF-MS assay with high accuracy. This is the first time galanthamine has been reported in the extract of Mexican prickly poppy and the first time it has been identified in any member of the Papaveraceae family, in the significant quantity of 0.77%.

  7. Cytotoxicity of the Roots of Trillium govanianum Against Breast (MCF7), Liver (HepG2), Lung (A549) and Urinary Bladder (EJ138) Carcinoma Cells.

    PubMed

    Khan, Kashif M; Nahar, Lutfun; Al-Groshi, Afaf; Zavoianu, Alexandra G; Evans, Andrew; Dempster, Nicola M; Wansi, Jean D; Ismail, Fyaz M D; Mannan, Abdul; Sarker, Satyajit D

    2016-10-01

    Trillium govanianum Wall. (Melanthiaceae alt. Trilliaceae), commonly known as 'nag chhatri' or 'teen patra', is a native species of the Himalayas. It is used in various traditional medicines containing both steroids and sex hormones. In folk medicine, the rhizomes of T. govanianum are used to treat boils, dysentery, inflammation, menstrual and sexual disorders, as an antiseptic and in wound healing. With the only exception of the recent report on the isolation of a new steroidal saponin, govanoside A, together with three known steroidal compounds with antifungal property from this plant, there has been no systematic pharmacological and phytochemical work performed on T. govanianum. This paper reports, for the first time, on the cytotoxicity of the methanol extract of the roots of T. govanianum and its solid-phase extraction (SPE) fractions against four human carcinoma cell lines: breast (MCF7), liver (HEPG2), lung (A549) and urinary bladder (EJ138), using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide cytotoxicity assay and liquid chromatography and electrospray ionization quadrupole time-of-flight mass spectrometry analysis of the SPE fractions. The methanol extract and all SPE fractions exhibited considerable levels of cytotoxicity against all cell lines, with the IC 50 values ranging between 5 and 16 µg/mL. Like other Trillium species, presence of saponins and sapogenins in the SPE fractions was evident in the liquid chromatography mass spectrometry data. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  8. The plasma membrane proteome of Medicago truncatula roots as modified by arbuscular mycorrhizal symbiosis.

    PubMed

    Aloui, Achref; Recorbet, Ghislaine; Lemaître-Guillier, Christelle; Mounier, Arnaud; Balliau, Thierry; Zivy, Michel; Wipf, Daniel; Dumas-Gaudot, Eliane

    2018-01-01

    In arbuscular mycorrhizal (AM) roots, the plasma membrane (PM) of the host plant is involved in all developmental stages of the symbiotic interaction, from initial recognition to intracellular accommodation of intra-radical hyphae and arbuscules. Although the role of the PM as the agent for cellular morphogenesis and nutrient exchange is especially accentuated in endosymbiosis, very little is known regarding the PM protein composition of mycorrhizal roots. To obtain a global overview at the proteome level of the host PM proteins as modified by symbiosis, we performed a comparative protein profiling of PM fractions from Medicago truncatula roots either inoculated or not with the AM fungus Rhizophagus irregularis. PM proteins were isolated from root microsomes using an optimized discontinuous sucrose gradient; their subsequent analysis by liquid chromatography followed by mass spectrometry (MS) identified 674 proteins. Cross-species sequence homology searches combined with MS-based quantification clearly confirmed enrichment in PM-associated proteins and depletion of major microsomal contaminants. Changes in protein amounts between the PM proteomes of mycorrhizal and non-mycorrhizal roots were monitored further by spectral counting. This workflow identified a set of 82 mycorrhiza-responsive proteins that provided insights into the plant PM response to mycorrhizal symbiosis. Among them, the association of one third of the mycorrhiza-responsive proteins with detergent-resistant membranes pointed at partitioning to PM microdomains. The PM-associated proteins responsive to mycorrhization also supported host plant control of sugar uptake to limit fungal colonization, and lipid turnover events in the PM fraction of symbiotic roots. Because of the depletion upon symbiosis of proteins mediating the replacement of phospholipids by phosphorus-free lipids in the plasmalemma, we propose a role of phosphate nutrition in the PM composition of mycorrhizal roots.

  9. Adaptation of fine roots to annual fertilization and irrigation in a 13-year-old Pinus pinaster stand.

    PubMed

    Bakker, M R; Jolicoeur, E; Trichet, P; Augusto, L; Plassard, C; Guinberteau, J; Loustau, D

    2009-02-01

    Effects of fertilization and irrigation on fine roots and fungal hyphae were studied in 13-year-old maritime pine (Pinus pinaster Aït. in Soland), 7 years after the initiation of the treatments. The fertilization trials consisted of a phosphorus treatment, a complete fertilizer treatment (N, P, K, Ca and Mg), and an unfertilized treatment (control). Fertilizers were applied annually and were adjusted according to foliar target values. Two irrigation regimes (no irrigation and irrigation of a set amount each day) were applied from May to October. Root samples to depths of 120 cm were collected in summer of 2005, and the biomass of small roots (diameter 2-20 mm) and fine roots (diameter

  10. External apical root resorption diagnosis by using FII human dentine fraction and salivary IGg.

    PubMed

    Da-Costa, Tânia Maris Pedrini Soares; Hidalgo, Mirian Marubayashi; Consolaro, Alberto; Lima, Carlos Eduardo de Oliveira; Tanaka, Evelise Ono; Itano, Eiko Nakagawa

    2018-06-01

    External apical root resorption as a consequence of orthodontic treatment is an inflammatory pathological process that results in permanent loss of tooth structure from the root apex. This study aimed to investigate the diagnostic potential of human dentine fractions and salivary IgG in external apical root resorption. Saliva samples were collected from 10 patients before (T0) and after 3 (T3), 6 (T6) and 12 (T12) months of orthodontic treatment. The total dentinal extract, obtained from human third molars, was fractioned by gel filtration chromatography in three fractions denominated FI, FII and FIII. The root resorption analysis of the upper central incisors was performed by digital image subtraction method. Reactivity of salivary IgG to antigenic fractions of dentine was determined by enzyme-linked immunosorbent assay (Elisa). Regardless of treatment, FI dentin fraction with high MM (<300kDa) was the one that presented highest reactivity with salivary IgG. However, it was found higher salivary IgG reactivity for FII (69 to 45 kilodalton [kDa]) as compared to FIII (<45kDa) at (T6) and (T12), (P<0.05), the same periods in that the root resorptions were detected. Our results suggest that FII human dentine fraction and salivary IgG have potential to be used in diagnosis and monitoring of external apical root resorption. The development of a practical and accessible biochemical test using saliva and FII dentine fraction may help in the prevention of severe root resorption. Copyright © 2018. Published by Elsevier Masson SAS.

  11. Mass flow rate measurements in gas-liquid flows by means of a venturi or orifice plate coupled to a void fraction sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oliveira, Jorge Luiz Goes; Passos, Julio Cesar; Verschaeren, Ruud

    Two-phase flow measurements were carried out using a resistive void fraction meter coupled to a venturi or orifice plate. The measurement system used to estimate the liquid and gas mass flow rates was evaluated using an air-water experimental facility. Experiments included upward vertical and horizontal flow, annular, bubbly, churn and slug patterns, void fraction ranging from 2% to 85%, water flow rate up to 4000 kg/h, air flow rate up to 50 kg/h, and quality up to almost 10%. The fractional root mean square (RMS) deviation of the two-phase mass flow rate in upward vertical flow through a venturi platemore » is 6.8% using the correlation of Chisholm (D. Chisholm, Pressure gradients during the flow of incompressible two-phase mixtures through pipes, venturis and orifice plates, British Chemical Engineering 12 (9) (1967) 454-457). For the orifice plate, the RMS deviation of the vertical flow is 5.5% using the correlation of Zhang et al. (H.J. Zhang, W.T. Yue, Z.Y. Huang, Investigation of oil-air two-phase mass flow rate measurement using venturi and void fraction sensor, Journal of Zhejiang University Science 6A (6) (2005) 601-606). The results show that the flow direction has no significant influence on the meters in relation to the pressure drop in the experimental operation range. Quality and slip ratio analyses were also performed. The results show a mean slip ratio lower than 1.1, when bubbly and slug flow patterns are encountered for mean void fractions lower than 70%. (author)« less

  12. Interpreting spectral unmixing coefficients: From spectral weights to mass fractions

    NASA Astrophysics Data System (ADS)

    Grumpe, Arne; Mengewein, Natascha; Rommel, Daniela; Mall, Urs; Wöhler, Christian

    2018-01-01

    It is well known that many common planetary minerals exhibit prominent absorption features. Consequently, the analysis of spectral reflectance measurements has become a major tool of remote sensing. Quantifying the mineral abundances, however, is not a trivial task. The interaction between the incident light rays and particulate surfaces, e.g., the lunar regolith, leads to a non-linear relationship between the reflectance spectra of the pure minerals, the so-called ;endmembers;, and the surface's reflectance spectrum. It is, however, possible to transform the non-linear reflectance mixture into a linear mixture of single-scattering albedos of the Hapke model. The abundances obtained by inverting the linear single-scattering albedo mixture may be interpreted as volume fractions which are weighted by the endmember's extinction coefficient. Commonly, identical extinction coefficients are assumed throughout all endmembers and the obtained volume fractions are converted to mass fractions using either measured or assumed densities. In theory, the proposed method may cover different grain sizes if each grain size range of a mineral is treated as a distinct endmember. Here, we present a method to transform the mixing coefficients to mass fractions for arbitrary combinations of extinction coefficients and densities. The required parameters are computed from reflectance measurements of well defined endmember mixtures. Consequently, additional measurements, e.g., the endmember density, are no longer required. We evaluate the method based on laboratory measurements and various results presented in the literature, respectively. It is shown that the procedure transforms the mixing coefficients to mass fractions yielding an accuracy comparable to carefully calibrated laboratory measurements without additional knowledge. For our laboratory measurements, the square root of the mean squared error is less than 4.82 wt%. In addition, the method corrects for systematic effects originating from mixtures of endmembers showing a highly varying albedo, e.g., plagioclase and pyroxene.

  13. Modeling electron fractionalization with unconventional Fock spaces.

    PubMed

    Cobanera, Emilio

    2017-08-02

    It is shown that certain fractionally-charged quasiparticles can be modeled on D-dimensional lattices in terms of unconventional yet simple Fock algebras of creation and annihilation operators. These unconventional Fock algebras are derived from the usual fermionic algebra by taking roots (the square root, cubic root, etc) of the usual fermionic creation and annihilation operators. If the fermions carry non-Abelian charges, then this approach fractionalizes the Abelian charges only. In particular, the mth-root of a spinful fermion carries charge e/m and spin 1/2. Just like taking a root of a complex number, taking a root of a fermion yields a mildly non-unique result. As a consequence, there are several possible choices of quantum exchange statistics for fermion-root quasiparticles. These choices are tied to the dimensionality [Formula: see text] of the lattice by basic physical considerations. One particular family of fermion-root quasiparticles is directly connected to the parafermion zero-energy modes expected to emerge in certain mesoscopic devices involving fractional quantum Hall states. Hence, as an application of potential mesoscopic interest, I investigate numerically the hybridization of Majorana and parafermion zero-energy edge modes caused by fractionalizing but charge-conserving tunneling.

  14. Seedling root responses to soil moisture and the identification of a belowground trait spectrum across three growth forms.

    PubMed

    Larson, Julie E; Funk, Jennifer L

    2016-05-01

    Root trait variation and plasticity could be key factors differentiating plant performance under drought. However, water manipulation and root measurements are rarely coupled empirically across growth forms to identify whether belowground strategies are generalizable across species. We measured seedling root traits across three moisture levels in 18 Mediterranean forbs, grasses, and woody species. Drought increased the root mass fraction (RMF) and decreased the relative proportion of thin roots (indicated by increased root diameters and decreased specific root length (SRL)), rates of root elongation and growth, plant nitrogen uptake, and plant growth. Although responses varied across species, plasticity was not associated with growth form. Woody species differed from forbs and grasses in many traits, but herbaceous groups were similar. Across water treatments, trait correlations suggested a single spectrum of belowground trade-offs related to resource acquisition and plant growth. While effects of SRL and RMF on plant growth shifted with drought, root elongation rate consistently represented this spectrum. We demonstrate that general patterns of root morphology and plasticity are identifiable across diverse species. Root trait measurements should enhance our understanding of belowground strategy and performance across growth forms, but it will be critical to incorporate plasticity and additional aspects of root function into these efforts. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  15. Extension of the root-locus method to a certain class of fractional-order systems.

    PubMed

    Merrikh-Bayat, Farshad; Afshar, Mahdi; Karimi-Ghartemani, Masoud

    2009-01-01

    In this paper, the well-known root-locus method is developed for the special subset of linear time-invariant systems commonly known as fractional-order systems. Transfer functions of these systems are rational functions with polynomials of rational powers of the Laplace variable s. Such systems are defined on a Riemann surface because of their multi-valued nature. A set of rules for plotting the root loci on the first Riemann sheet is presented. The important features of the classical root-locus method such as asymptotes, roots condition on the real axis and breakaway points are extended to the fractional case. It is also shown that the proposed method can assess the closed-loop stability of fractional-order systems in the presence of a varying gain in the loop. Moreover, the effect of perturbation on the root loci is discussed. Three illustrative examples are presented to confirm the effectiveness of the proposed algorithm.

  16. Using cell membrane chromatography and HPLC-TOF/MS method for in vivo study of active components from roots of Aconitum carmichaeli

    PubMed Central

    Cao, Yan; Chen, Xiao-Fei; Lü, Di-Ya; Dong, Xin; Zhang, Guo-Qing; Chai, Yi-Feng

    2012-01-01

    An offline two-dimensional system combining a rat cardiac muscle cell membrane chromatography time-of-flight mass spectrometry (CMC-TOF/MS) with a high Performance liquid chromatography time-of-flight mass spectrometry (HPLC-TOF/MS) was established for investigating the parent components and metabolites in rat urine samples after administration of the roots of Aconitum carmichaeli. On the basis ofthe analysis of the first dimension, retention components of the urine sample were collected into 30 fractions (one fraction per minute). Then offline analysis of the second dimension was carried out. 34 compounds including 24 parent alkaloids and 10 potential metabolites were identified from the dosed rat urine, and then binding affinities of different compounds on cell membranes were compared and influences of some functional groups on activity were estimated with the semi-quantification and curve fitting method. As a result, binding affinities decreased along with the process of deacylation, debenzoylation and demethylation, which may be related to the alleviation of toxicity in the procedure of herb processing or metabolism. Moreover, some minor components in rat urine (Songorine, 14-benzoylneoline, Deoxyaconitine, etc.) exerted relatively strong affinity on cell membranes are worth exploring. The results delivered by the System suggest that the CMC can be applied to in vivo study. PMID:29403691

  17. Explicit Formulae for the Continued Fraction Convergents of "Square Root of D"

    ERIC Educational Resources Information Center

    Braza, Peter A.

    2010-01-01

    The formulae for the convergents of continued fractions are always given recursively rather than in explicit form. This article derives explicit formulae for the convergents of the continued fraction expansions for square roots.

  18. Kinetics of Diffusional Droplet Growth in a Liquid/Liquid Two-Phase System

    NASA Technical Reports Server (NTRS)

    Glicksman, M. E.; Fradkov, V. E.

    1996-01-01

    We address the problem of diffusional interactions in a finite sized cluster of spherical particles for volume fractions, V(sub v) in the range 0-0.01. We determined the quasi-static monopole diffusion solution for n particles distributed at random in a continuous matrix. A global mass conservation condition is employed, obviating the need for any external boundary condition. The numerical results provide the instantaneous (snapshot) growth or shrinkage rate of each particle, precluding the need for extensive time-dependent computations. The close connection between these snapshot results and the coarsegrained kinetic constants are discussed. A square-root dependence of the deviations of the rate constants from their zero volume fraction value is found for the higher V(sub v) investigated. This behavior is consistent with predictions from diffusion Debye-Huckel screening theory. By contrast, a cube-root dependence, reported in earlier numerical studies, is found for the lower V(sub v) investigated. The roll-over region of the volume fraction where the two asymptotics merge depends on the number of particles, n, alone. A theoretical estimate for the roll-over point predicts that the corresponding V(sub v) varies as n(sup -2), in good agreement with the numerical results.

  19. Root distribution and potential interactions between allelopathic rice, sprangletop (Leptochloa spp.), and barnyardgrass (Echinochloa crus-galli) based on ¹³C isotope discrimination analysis.

    PubMed

    Gealy, David; Moldenhauer, Karen; Duke, Sara

    2013-02-01

    Weed-suppressive rice cultivars hold promise for improved and more economical weed management in rice. Interactions between roots of rice and weeds are thought to be modulated by the weed-suppressive activity of some rice cultivars, but these phenomena are difficult to measure and not well understood. Thus, above-ground productivity, weed suppression, and root distribution of 11 rice cultivars and two weed species were evaluated in a drill-seeded, flood-irrigated system at Stuttgart, Arkansas, USA in a two-year study. The allelopathic cultivars, PI 312777 and Taichung Native 1 (TN-1), three other weed-suppressive cultivars, three indica-derived breeding selections, and three non-suppressive commercial cultivars were evaluated in field plots infested with barnyardgrass (Echinochloa crus-galli (L.) Beauv.) or bearded sprangletop (sprangletop, Leptochloa fusca (L.) Kunth var. fascicularis (Lam.) N. Snow). The allelopathic cultivars produced more tillers and suppressed both weed species to a greater extent than did the breeding selections or the non-suppressive cultivars. (13)C isotope discrimination analysis of mixed root samples to a depth of 15 cm revealed that the allelopathic cultivars typically produced a greater fraction of their total root mass in the surface 0-5 cm of soil depth compared to the breeding selections or the non-suppressive cultivars, which tended to distribute their roots more evenly throughout the soil profile. These trends in root mass distribution were apparent at both early (pre-flood) and late-season stages in weed-free and weed-infested plots. Cultivar productivity and root distribution generally responded similarly to competition with the two weed species, but barnyardgrass reduced rice yield and root mass more than did sprangletop. These findings demonstrate for the first time that roots of the allelopathic cultivars PI 312777 and TN-1 explore the upper soil profile more thoroughly than do non-suppressive cultivars under weed-infested and weed-free conditions in flood-irrigated U.S. rice production systems. They raise the interesting prospect that root proliferation near the soil surface might enhance the weed-suppressive activity of allelochemical exudates released from roots. Plant architectural design for weed suppressive activity should take these traits into consideration along with other proven agronomic traits such as high tillering and yield.

  20. Antibacterial activity of Artocarpus heterophyllus.

    PubMed

    Khan, M R; Omoloso, A D; Kihara, M

    2003-07-01

    The crude methanolic extracts of the stem and root barks, stem and root heart-wood, leaves, fruits and seeds of Artocarpus heterophyllus and their subsequent partitioning with petrol, dichloromethane, ethyl acetate and butanol gave fractions that exhibited a broad spectrum of antibacterial activity. The butanol fractions of the root bark and fruits were found to be the most active. None of the fractions were active against the fungi tested.

  1. Diffusion in inhomogeneous polymer membranes

    NASA Astrophysics Data System (ADS)

    Kasargod, Sameer S.; Adib, Farhad; Neogi, P.

    1995-10-01

    The dual mode sorption solubility isotherms assume, and in instances Zimm-Lundberg analysis of the solubilities show, that glassy polymers are heterogeneous and that the distribution of the solute in the polymer is also inhomogeneous. Under some conditions, the heterogeneities cannot be represented as holes. A mathematical model describing diffusion in inhomogeneous polymer membranes is presented using Cahn and Hilliard's gradient theory. The fractional mass uptake is found to be proportional to the fourth root of time rather than the square root, predicted by Fickian diffusion. This type of diffusion is classified as pseudo-Fickian. The model is compared with one experimental result available. A negative value of the persistence factor is obtained and the results are interpreted.

  2. Dietary corn fractions reduce atherogenesis in low-density lipoprotein receptor knockout mice.

    PubMed

    Masisi, Kabo; Le, Khuong; Ghazzawi, Nora; Moghadasian, Mohammed H; Beta, Trust

    2017-01-01

    Accumulating evidence has suggested that intake of whole grains is a protective factor against pathogenesis of coronary artery disease. The exact mechanisms, however, are still not clearly understood. In this study, we hypothesized that adequate intake of corn fractions (aleurone, endosperm and germ) can modify lipid profiles in relation to atherosclerotic lesion development in low-density lipoprotein receptor knockout (LDLr-KO) mice. The purpose of the present study was to investigate the potential cardiovascular benefits of corn fractions in LDLr-KO mice through a number of biomarkers including lipid profile, and morphologic and morphometrical analysis of atherosclerotic lesions in aortic root. Four groups of male LDLr-KO mice were fed with the experimental diets supplemented with (3 treated) or without (control) 5% (wt/wt) of each of corn fractions for 10 weeks. All diets were supplemented with 0.06% (wt/wt) cholesterol. Compared with mice in the control group, atherosclerotic lesions in the aortic roots were significantly reduced (P=.003) in the mice that were fed diet supplemented with aleurone and germ fractions. This effect was associated with significant reductions in plasma total (P=.02) and LDL (P=.03) cholesterol levels, and an increase in fecal cholesterol excretion (P=.04). Furthermore, abdominal fat mass was significantly reduced by consumption of aleurone (P=.03). In summary, the consumption of aleurone and germ may help attenuate atherosclerosis by reducing plasma total and LDL cholesterol levels. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Differential Activity of Striga hermonthica Seed Germination Stimulants and Gigaspora rosea Hyphal Branching Factors in Rice and Their Contribution to Underground Communication

    PubMed Central

    Cardoso, Catarina; Charnikhova, Tatsiana; Jamil, Muhammad; Delaux, Pierre-Marc; Verstappen, Francel; Amini, Maryam; Lauressergues, Dominique; Ruyter-Spira, Carolien; Bouwmeester, Harro

    2014-01-01

    Strigolactones (SLs) trigger germination of parasitic plant seeds and hyphal branching of symbiotic arbuscular mycorrhizal (AM) fungi. There is extensive structural variation in SLs and plants usually produce blends of different SLs. The structural variation among natural SLs has been shown to impact their biological activity as hyphal branching and parasitic plant seed germination stimulants. In this study, rice root exudates were fractioned by HPLC. The resulting fractions were analyzed by MRM-LC-MS to investigate the presence of SLs and tested using bioassays to assess their Striga hermonthica seed germination and Gigaspora rosea hyphal branching stimulatory activities. A substantial number of active fractions were revealed often with very different effect on seed germination and hyphal branching. Fractions containing (−)−orobanchol and ent-2'-epi-5-deoxystrigol contributed little to the induction of S. hermonthica seed germination but strongly stimulated AM fungal hyphal branching. Three SLs in one fraction, putative methoxy-5-deoxystrigol isomers, had moderate seed germination and hyphal branching inducing activity. Two fractions contained strong germination stimulants but displayed only modest hyphal branching activity. We provide evidence that these stimulants are likely SLs although no SL-representative masses could be detected using MRM-LC-MS. Our results show that seed germination and hyphal branching are induced to very different extents by the various SLs (or other stimulants) present in rice root exudates. We propose that the development of rice varieties with different SL composition is a promising strategy to reduce parasitic plant infestation while maintaining symbiosis with AM fungi. PMID:25126953

  4. Distinct Litter Stabilization Dynamics Pathways for Decomposition of Pine Needle and Fine Root Within Soil

    NASA Astrophysics Data System (ADS)

    Mambelli, S.; Filley, T. R.; Bird, J.; Dawson, T.; Torn, M. S.

    2008-12-01

    The chemical composition of litter imparts a strong control on the initial rates of microbial decay but it is unclear how plant chemistry influences the ultimate stabilization of soil organic matter (SOM) and the nature of the products stabilized. We determined the concentration and 13C enrichment of lignin phenols and substituted fatty acids (SFA) in SOM fractions from an experiment in which 13C- and 15N-labeled needles or fine roots were added to the mineral soil in a Ponderosa pine (Pinus ponderosa) forest in the Sierra Nevada, CA, USA. 1.5 y after litter addition, we analyzed bulk soil (< 2 mm), free light fraction (LF, mean residence time (MRT) ~5 y) and alkali/acid insoluble humin (MRT ~270 y) fractions. Needles contained nearly 2 and 3x the lignin and SFA content per organic carbon unit as did roots. Lignin and SFA decreased from the free LF to the bulk soil to the humin fraction; and molecular properties were more similar within a SOM fraction regardless of the litter source. However, LF and humin from the root addition contained more lignin than from the needle addition. Based upon the relative movement of litter-derived 13C and 15N into SOM fractions during 1.5 y, it was proposed that the 13C accumulation in the humin fraction for needles was derived from high C/N, needle-derived biopolymer molecular fragments that are surficially associated with particles. In contrast, the root-derived material entering SOM fractions was much lower in C/N and was likely from microbial by-products. Consistent with this hypothesis, both lignin and SFA in the LF and humin fractions amended with enriched needles were highly enriched (+ 30-60 permil) with respect to the SOM fractions from soils amended with roots. These differences were large even considering the lower concentration of SFA and lignin in root material. Although the chemistry and MRT of LF and humin were dramatically different, the extent of 13C-enrichment among lignin and SFA were comparable for the needle experiment while most lignin phenols for the humin from the root addition had greater 13C content than SFA. This indicates that molecular fragments of plant biopolymers can readily associate with both labile and stabilized SOM fractions. At the same time, these results suggest that distinct decomposition and stabilization pathways exist for litters, such as needles vs. roots, of different chemical quality.

  5. GC-MS profile of antimicrobial and antioxidant fractions from Cordia rothii roots.

    PubMed

    Khan, Kehkashan; Firdous, Sadiqa; Ahmad, Aqeel; Fayyaz, Nida; Nadir, Muhammad; Rasheed, Munawwer; Faizi, Shaheen

    2016-11-01

    An ethnobotanical survey of Cordia rothii Roem. & Schult. (Boraginaceae) reveals it as a medicinal plant. Antimicrobial and antioxidant potential evaluation and identification of chemical constituents via GC-MS of C. rothii roots fractions. To the best of our knowledge, this is the first systematic investigation of the roots exploiting GC-MS. Extraction and fractionation of C. rothii roots furnished various fractions using solvents of varying polarity, i.e., n-hexane, chloroform, ethyl acetate, acetone and methanol. In vitro antimicrobial and antioxidant screening was performed using disk diffusion and DPPH methods, respectively. MIC of active fractions was also determined using disk diffusion method. GC-MS was used to identify constituents which may be responsible for these activities. Among various fractions from C. rothii roots, fraction KA-C showed strong antibacterial activity against 17 microorganisms tested, with MIC ranging from 250-31.25 μg/mL. Fractions KA-A, KM and KM-A exhibited significant antioxidant potential with EC 50 46.875 μg/mL, while fractions KEA-PE, KM-PE and KM-M were good with EC 50 93.750 μg/mL. Forty-five phytochemicals were identified in GC-MS studies including eight hydrocarbons, six free fatty acids, 11 fatty acids esters, two phenylpropanoids, four aromatics, four terpenoid quinones/hydroquinones, three triterpenes, four phytosterols, two hexose metabolites and a DNA base. Of these, 32 constituents have been reported for the first time from C. rothii, 24 from genus Cordia and 15 from Boraginaceae. Strong antibacterial and antioxidant potential of C. rothii roots may be due to the contribution of phytoconstituents identified through GC-MS studies.

  6. Chemical composition, antioxidant and antigenotoxic activities of different fractions of Gentiana asclepiadea L. roots extract

    PubMed Central

    Mihailovic, Vladimir; Matic, Sanja; Mišic, Danijela; Solujic, Slavica; Stanic, Snežana; Katanic, Jelena; Mladenovic, Milan; Stankovic, Nevena

    2013-01-01

    The aim of this study was to evaluate the antioxidant and antigenotoxic activities of chloroform, ethyl acetate and n-butanol fractions obtained from Gentiana asclepiadea L. roots methanolic extract. The main secondary metabolites sweroside, swertiamarin and gentiopicrine were quantified in G. asclepiadea root extracts using HPLC-DAD analysis. Amount of total phenols, flavonoids, flavonols and gallotannins was also determined. The antigenotoxic potential of extracts from roots of G. asclepiadea was assessed using the standard in vivo procedure for the detection of sex linked recessive lethal mutations in Drosophila melanogaster males treated with ethyl methanesulfonate (EMS). The results showed that the most abundant secoiridoid in G. asclepiadea roots was gentiopicrine and its content in the n-butanol fraction (442.89 mg/g) was the highest. Among all extracts, ethyl acetate fraction showed the highest antioxidant activity, as well as total phenolics (146.64 GAE/g), flavonoids (44.62 RUE/g), flavonols (22.71 RUE/g) and gallotannins (0.99 mg GAE/g) content. All the fractions showed antioxidant activity using in vitro model systems and the results have been correlated with total phenolics, flavonoids, flavonols and gallotannins content. In addition to antioxidant activity, G. asclepiadea root extract fractions possess an antigenotoxic effect against DNA damage induced by alkylation with EMS. The antioxidant activity exhibited by G. asclepiadea depended on the phenolic compounds content of the tested extracts, while there was no significant difference in the antigenotoxic potential between fractions. PMID:26622219

  7. Seedling growth and biomass allocation in relation to leaf habit and shade tolerance among 10 temperate tree species.

    PubMed

    Modrzyński, Jerzy; Chmura, Daniel J; Tjoelker, Mark G

    2015-08-01

    Initial growth of germinated seeds is an important life history stage, critical for establishment and succession in forests. Important questions remain regarding the differences among species in early growth potential arising from shade tolerance. In addition, the role of leaf habit in shaping relationships underlying shade tolerance-related differences in seedling growth remains unresolved. In this study we examined variation in morphological and physiological traits among seedlings of 10 forest tree species of the European temperate zone varying in shade tolerance and leaf habit (broadleaved winter-deciduous species vs needle-leaved conifers) during a 10-week period. Seeds were germinated and grown in a controlled environment simulating an intermediate forest understory light environment to resolve species differences in initial growth and biomass allocation. In the high-resource experimental conditions during the study, seedlings increased biomass allocation to roots at the cost of leaf biomass independent of shade tolerance and leaf habit. Strong correlations between relative growth rate (RGR), net assimilation rate (NAR), leaf area ratio (LAR), specific leaf area (SLA) and leaf mass fraction (LMF) indicate that physiology and biomass allocation were equally important determinants of RGR as plant structure and leaf morphology among these species. Our findings highlight the importance of seed mass- and seed size-related root morphology (specific root length-SRL) for shade tolerance during early ontogeny. Leaf and plant morphology (SLA, LAR) were more successful in explaining variation among species due to leaf habit than shade tolerance. In both broadleaves and conifers, shade-tolerant species had lower SRL and greater allocation of biomass to stems (stem mass fraction). Light-seeded shade-intolerant species with greater SRL had greater RGR in both leaf habit groups. However, the greatest plant mass was accumulated in the group of heavy-seeded shade-tolerant broadleaves. The results of our study suggest that the combinations of plant attributes enhancing growth under high light vary with shade tolerance, but differ between leaf habit groups. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. Measuring and modelling seasonal patterns of carbohydrate storage and mobilization in the trunks and root crowns of peach trees.

    PubMed

    Da Silva, David; Qin, Liangchun; DeBuse, Carolyn; DeJong, Theodore M

    2014-09-01

    Developing a conceptual and functional framework for simulating annual long-term carbohydrate storage and mobilization in trees has been a weak point for virtually all tree models. This paper provides a novel approach for solving this problem using empirical field data and details of structural components of simulated trees to estimate the total carbohydrate stored over a dormant season and available for mobilization during spring budbreak. The seasonal patterns of mobilization and storage of non-structural carbohydrates in bark and wood of the scion and rootstock crowns of the trunks of peach (Prunus persica) trees were analysed subsequent to treatments designed to maximize differences in source-sink behaviour during the growing season. Mature peach trees received one of three treatments (defruited and no pruning, severe pruning to 1·0 m, and unthinned with no pruning) in late winter, just prior to budbreak. Selected trees of each treatment were harvested at four times (March, June, August and November) and slices of trunk and root crown tissue above and below the graft union were removed for carbohydrate analysis. Inner bark and xylem tissues from the first to fifth rings were separated and analysed for non-structural carbohydrates. Data from these experiments were then used to estimate the amount of non-structural carbohydrates available for mobilization and to parameterize a carbohydrate storage sub-model in the functional-structural L-PEACH model. The mass fraction of carbohydrates in all sample tissues decreased from March to June, but the decrease was greatest in the severely pruned and unthinned treatments. November carbohydrate mass fractions in all tissues recovered to values similar to those in the previous March, except in the older xylem rings of the severely pruned and unthinned treatment. Carbohydrate storage sink capacity in trunks was empirically estimated from the mean maximum measured trunk non-structural carbohydrate mass fractions. The carbohydrate storage source available for mobilization was estimated from these maximum mass fractions and the early summer minimum mass fractions remaining in these tissues in the severe treatments that maximized mobilization of stored carbohydrates. The L-PEACH sink-source carbohydrate distribution framework was then used along with simulated tree structure to successfully simulate annual carbohydrate storage sink and source behaviour over years. The sink-source concept of carbohydrate distribution within a tree was extended to include winter carbohydrate storage and spring mobilization by considering the storage sink and source as a function of the collective capacity of active xylem and phloem tissue of the tree, and its annual behaviour was effectively simulated using the L-PEACH functional-structural plant model.

  9. Measuring and modelling seasonal patterns of carbohydrate storage and mobilization in the trunks and root crowns of peach trees

    PubMed Central

    Da Silva, David; Qin, Liangchun; DeBuse, Carolyn; DeJong, Theodore M.

    2014-01-01

    Background and Aims Developing a conceptual and functional framework for simulating annual long-term carbohydrate storage and mobilization in trees has been a weak point for virtually all tree models. This paper provides a novel approach for solving this problem using empirical field data and details of structural components of simulated trees to estimate the total carbohydrate stored over a dormant season and available for mobilization during spring budbreak. Methods The seasonal patterns of mobilization and storage of non-structural carbohydrates in bark and wood of the scion and rootstock crowns of the trunks of peach (Prunus persica) trees were analysed subsequent to treatments designed to maximize differences in source–sink behaviour during the growing season. Mature peach trees received one of three treatments (defruited and no pruning, severe pruning to 1·0 m, and unthinned with no pruning) in late winter, just prior to budbreak. Selected trees of each treatment were harvested at four times (March, June, August and November) and slices of trunk and root crown tissue above and below the graft union were removed for carbohydrate analysis. Inner bark and xylem tissues from the first to fifth rings were separated and analysed for non-structural carbohydrates. Data from these experiments were then used to estimate the amount of non-structural carbohydrates available for mobilization and to parameterize a carbohydrate storage sub-model in the functional–structural L-PEACH model. Key Results The mass fraction of carbohydrates in all sample tissues decreased from March to June, but the decrease was greatest in the severely pruned and unthinned treatments. November carbohydrate mass fractions in all tissues recovered to values similar to those in the previous March, except in the older xylem rings of the severely pruned and unthinned treatment. Carbohydrate storage sink capacity in trunks was empirically estimated from the mean maximum measured trunk non-structural carbohydrate mass fractions. The carbohydrate storage source available for mobilization was estimated from these maximum mass fractions and the early summer minimum mass fractions remaining in these tissues in the severe treatments that maximized mobilization of stored carbohydrates. The L-PEACH sink–source carbohydrate distribution framework was then used along with simulated tree structure to successfully simulate annual carbohydrate storage sink and source behaviour over years. Conclusions The sink–source concept of carbohydrate distribution within a tree was extended to include winter carbohydrate storage and spring mobilization by considering the storage sink and source as a function of the collective capacity of active xylem and phloem tissue of the tree, and its annual behaviour was effectively simulated using the L-PEACH functional–structural plant model. PMID:24674986

  10. Using chloride and chlorine-36 as soil-water tracers to estimate deep percolation at selected locations on the U.S. Department of Energy Hanford site, Washington

    USGS Publications Warehouse

    Prych, Edmund A.

    1995-01-01

    Long-term average deep-percolation rates of water from precipitation on the U.S. Department of Energy Hanford Site in semiarid south-central Washington, as estimated by a chloride mass-balance method, range from 0.008 to 0.30 mm/yr (millimeters per year) at nine locations covered by a variety of fine-grain soils and vegetated with sagebrush and other deep-rooted plants plus sparse shallow-rooted grasses. Deep-percolation rates estimated using a chlorine-36 bomb-pulse method at three of the nine locations range from 2.1 to 3.4 mm/yr. Because the mass-balance method may underestimate percolation rates and the bomb-pulse method probably overestimates percolation rates, estimates by the two methods probably bracket actual rates. These estimates, as well as estimates by previous investigators who used different methods, are a small fraction of mean annual precipitation, which ranges from about 160 to 210 mm/yr at the different test locations. Estimates by the mass-balance method at four locations in an area that is vegetated only with sparse shallow-rooted grasses range from 0.39 to 2.0 mm/yr. Chlorine-36 data at one location in this area were sufficient only to determine that the upper limit of deep percolation is more than 5.1 mm/yr. Although estimates for locations in this area are larger than the estimates for locations with deep-rooted plants, they are at the lower end of the range of estimates for this area made by previous investigators.

  11. Purification and characterization of myrosinase from horseradish (Armoracia rusticana) roots.

    PubMed

    Li, Xian; Kushad, Mosbah M

    2005-06-01

    Myrosinase (beta-thioglucoside glucohydrolase; EC 3.2.3.147) from horseradish (Armoracia rusticana) roots was purified to homogeneity by ammonium sulfate fractionation, Q-sepharose, and concanavalin A sepharose affinity chromatography. The purified protein migrated as a single band with a mass of about 65 kDa on SDS-polyacrylamide gel electrophoresis. Using LC-MS/MS, this band was identified as myrosinase. Western blot analysis, using the anti-myrosinase monoclonal antibody 3D7, showed a single band of about 65 kDa for horseradish crude extract and for the purified myrosinase. The native molecular mass of the purified myrosinase was estimated, using gel filtration, to be about 130 kDa. Based on these data, it appeared that myrosinase from horseradish root consists of two subunits of similar molecular mass of about 65 kDa. The enzyme exhibited high activity at broad pH (pH 5.0-8.0) and temperature (37 and 45 degrees C). The purified enzyme remained stable at 4 degrees C for more than 1 year. Using sinigrin as a substrate, the Km and Vmax values for the purified enzyme were estimated to be 0.128 mM and 0.624 micromol min(-1), respectively. The enzyme was strongly activated by 0.5 mM ascorbic acid and was able to breakdown intact glucosinolates in a crude extract of broccoli.

  12. Effects of boiling and frying on the bioaccessibility of beta-carotene in yellow-fleshed cassava roots (Manihot esculenta Crantz cv. BRS Jari).

    PubMed

    Gomes, Suellen; Torres, Alexandre Guedes; Godoy, Ronoel; Pacheco, Sidney; Carvalho, José; Nutti, Marília

    2013-03-01

    The effects of boiling and frying on the bioaccessibility of all-trans-beta-carotene in biofortified BRS Jari cassava roots have not been investigated, although these are conventional methods of cassava preparation. The aims of the present study were to investigate beta-carotene micellarization efficiency of yellow-fleshed BRS Jari cassava roots after boiling and frying, as an indicator of the bioaccessibility of this carotenoid, and to apply fluorescence microscopy to investigate beta-carotene in the emulsified fraction. Uncooked, boiled, and fried cassava roots were digested in vitro for the evaluation, by reversed-phase high-performance liquid chromatography (HPLC), of the efficiency of micellarization of all-trans-beta-carotene in BRS Jari cassava roots. Fluorescence microscopy of the micellar fraction was used to confirm the presence of beta-carotene in the emulsified fraction and to observe the structure of the microemulsion from the boiled and fried cassava samples. Fried cassava roots showed the highest (p < .05) micellarization efficiency for total carotenoids and all-trans-beta-carotene (14.1 +/- 2.25% and 14.37 +/- 2.44%, respectively), compared with boiled and raw samples. Fluorescence microscopy showed that after in vitro digestion there were no carotenoid crystals in the micellar fraction, but rather that this fraction presented a biphasic system compatible with emulsified carotenoids, which was consistent with the expected high bioavailability of beta-carotene in this fraction. Increased emulsification and bioaccessibility of beta-carotene from fried biofortified BRS Jari cassava roots compensates for chemical losses during preparation, indicating that this preparation is suitable for home use of BRS Jari cassava roots and might represent a relatively good food source of bioavailable provitamin A.

  13. Optimal partitioning theory revisited: nonstructural carbohydrates dominate root mass responses to nitrogen.

    PubMed

    Kobe, Richard K; Iyer, Meera; Walters, Michael B

    2010-01-01

    Under optimal partitioning theory (OPT), plants preferentially allocate biomass to acquire the resource that most limits growth. Within this framework, higher root mass under low nutrients is often assumed to reflect an allocation response to build more absorptive surface. However, higher root mass also could result from increased storage of total nonstructural carbohydrates (TNC) without an increase in non-storage mass or root surface area. To test the relative contributions of TNC and non-storage mass as components of root mass responses to resources, we grew seedlings of seven northern hardwood tree species (black, red, and white oak, sugar and red maple, American beech, and black cherry) in a factorial light x nitrogen (N) greenhouse experiment. Because root mass is a coarse metric of absorptive surface, we also examined treatment effects on fine-root surface area (FRSA). Consistent with OPT, total root mass as a proportion of whole-plant mass generally was greater in low vs. high N. However, changes in root mass were influenced by TNC mass in all seven species and were especially strong in the three oak species. In contrast, non-storage mass contributed to increased total root mass under low N in three of the seven species. Root morphology also responded, with higher fine-root surface area (normalized to root mass) under low vs. high N in four species. Although biomass partitioning responses to resources were consistent with OPT, our results challenge the implicit assumption that increases in root mass under low nutrient levels primarily reflect allocation shifts to build more root surface area. Rather, root responses to low N included increases in: TNC, non-storage mass and fine-root surface area, with increases in TNC being the largest and most consistent of these responses. The greatest TNC accumulation occurred when C was abundant relative to N. Total nonstructural carbohydrates storage could provide seedlings a carbon buffer when respiratory or growth demands are not synchronized with photosynthesis, flexibility in responding to uncertain and fluctuating abiotic and biotic conditions, and increased access to soil resources by providing an energy source for mycorrhizae, decomposers in the rhizosphere, or root uptake of nutrients.

  14. Operationally Defined Apoplastic and Symplastic Aluminum Fractions in Root Tips of Aluminum-Intoxicated Wheat

    PubMed Central

    Tice, Kathy R.; Parker, David R.; DeMason, Darleen A.

    1992-01-01

    Knowledge of the mechanistic basis of differential aluminum (Al) tolerance depends, in part, on an improved ability to quantify Al located in the apoplastic and symplastic compartments of the root apex. Using root tips excised from seedlings of an Al-tolerant wheat cultivar (Triticum aestivum L. cv Yecora Rojo) grown in Al solutions for 2 d, we established an operationally defined apoplastic Al fraction determined with six sequential 30-min washes using 5 mm CaCl2 (pH 4.3). Soluble symplastic Al was eluted by freezing root tips to rupture cell membranes and performing four additional 30-min CaCl2 washes, and a residual fraction was determined via digestion of root tips with HNO3. The three fractions were then determined in Yecora Rojo and a sensitive wheat cultivar (Tyler) grown at 18, 55, or 140 μm total solution Al (AlT). When grown at equal AlT, Tyler contained more Al than Yecora Rojo in all fractions, but both total Al and fractional distribution were similar in the two cultivars grown at AlT levels effecting a 50% reduction in root growth. Residual Al was consistently 50 to 70% of the total, and its location was elucidated by staining root tips with the fluorophore morin and examining them using fluorescence and confocal laser scanning microscopy. Wall-associated Al was only observed in tips prior to any washing, and the residual fraction was manifested as distinct staining of the cytoplasm and nucleus but not of the apoplastic space. Accordingly, the residual fraction was allocated to the symplastic compartment for both cultivars, and recalculated apoplastic Al was consistently approximately 30 to 40% of the total. Distributions of Al in the two cultivars did not support a symplastic detoxification hypothesis, but the role of cytoplasmic exclusion remains unsettled. Images Figure 4 Figure 5 PMID:16652962

  15. Calcium isotope fractionation between aqueous compounds relevant to low-temperature geochemistry, biology and medicine

    NASA Astrophysics Data System (ADS)

    Moynier, Frédéric; Fujii, Toshiyuki

    2017-03-01

    Stable Ca isotopes are fractionated between bones, urine and blood of animals and between soils, roots and leaves of plants by >1000 ppm for the 44Ca/40Ca ratio. These isotopic variations have important implications to understand Ca transport and fluxes in living organisms; however, the mechanisms of isotopic fractionation are unclear. Here we present ab initio calculations for the isotopic fractionation between various aqueous species of Ca and show that this fractionation can be up to 3000 ppm. We show that the Ca isotopic fractionation between soil solutions and plant roots can be explained by the difference of isotopic fractionation between the different first shell hydration degree of Ca2+ and that the isotopic fractionation between roots and leaves is controlled by the precipitation of Ca-oxalates. The isotopic fractionation between blood and urine is due to the complexation of heavy Ca with citrate and oxalates in urine. Calculations are presented for additional Ca species that may be useful to interpret future Ca isotopic measurements.

  16. In-situ atrazine biodegradation dynamics in wheat (Triticum) crops under variable hydrologic regime.

    PubMed

    la Cecilia, Daniele; Maggi, Federico

    2017-08-01

    A comprehensive biodegradation reaction network of atrazine (ATZ) and its 18 byproducts was coupled to the nitrogen cycle and integrated in a computational solver to assess the in-situ biodegradation effectiveness and leaching along a 5m deep soil cultivated with wheat in West Wyalong, New South Wales, Australia. Biodegradation removed 97.7% of 2kg/ha ATZ yearly applications in the root zone, but removal substantially decreased at increasing depths; dechlorination removed 79% of ATZ in aerobic conditions and 18% in anaerobic conditions, whereas deethylation and oxidation removed only 0.11% and 0.15% of ATZ, respectively. The residual Cl mass fraction in ATZ and 4 byproducts was 2.4% of the applied mass. ATZ half-life ranged from 150 to 247days in the soil surface. ATZ reached 5m soil depth within 200years and its concentration increased from 1×10 -6 to 4×10 -6 mg/kg dry-soil over time. The correlation between ATZ specific biomass degradation affinity Φ 0 and half-life t 1/2 , although relatively uncertain for both hydrolyzing and oxidizing bacteria, suggested that microorganisms with high Φ 0 led to low ATZ t 1/2 . Greater ATZ applications were balanced by small nonlinear increments of ATZ biodegraded fraction within the root zone and therefore less ATZ leached into the shallow aquifer. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. In-situ atrazine biodegradation dynamics in wheat (Triticum) crops under variable hydrologic regime

    NASA Astrophysics Data System (ADS)

    la Cecilia, Daniele; Maggi, Federico

    2017-08-01

    A comprehensive biodegradation reaction network of atrazine (ATZ) and its 18 byproducts was coupled to the nitrogen cycle and integrated in a computational solver to assess the in-situ biodegradation effectiveness and leaching along a 5 m deep soil cultivated with wheat in West Wyalong, New South Wales, Australia. Biodegradation removed 97.7% of 2 kg/ha ATZ yearly applications in the root zone, but removal substantially decreased at increasing depths; dechlorination removed 79% of ATZ in aerobic conditions and 18% in anaerobic conditions, whereas deethylation and oxidation removed only 0.11% and 0.15% of ATZ, respectively. The residual Cl mass fraction in ATZ and 4 byproducts was 2.4% of the applied mass. ATZ half-life ranged from 150 to 247 days in the soil surface. ATZ reached 5 m soil depth within 200 years and its concentration increased from 1 ×10-6 to 4 ×10-6 mg/kgdry-soil over time. The correlation between ATZ specific biomass degradation affinity Φ0 and half-life t1/2, although relatively uncertain for both hydrolyzing and oxidizing bacteria, suggested that microorganisms with high Φ0 led to low ATZ t1/2. Greater ATZ applications were balanced by small nonlinear increments of ATZ biodegraded fraction within the root zone and therefore less ATZ leached into the shallow aquifer.

  18. Identification of didecyldimethylammonium salts and salicylic acid as antimicrobial compounds in commercial fermented radish kimchi.

    PubMed

    Li, Jing; Chaytor, Jennifer L; Findlay, Brandon; McMullen, Lynn M; Smith, David C; Vederas, John C

    2015-03-25

    Daikon radish (Raphanus sativus) fermented with lactic acid bacteria, especially Leuconostoc or Lactobacillus spp., can be used to make kimchi, a traditional Korean fermented vegetable. Commercial Leuconostoc/radish root ferment filtrates are claimed to have broad spectrum antimicrobial activity. Leuconostoc kimchii fermentation products are patented as preservatives for cosmetics, and certain strains of this organism are reported to produce antimicrobial peptides (bacteriocins). We examined the antimicrobial agents in commercial Leuconostoc/radish root ferment filtrates. Both activity-guided fractionation with Amberlite XAD-16 and direct extraction with ethyl acetate gave salicylic acid as the primary agent with activity against Gram-negative bacteria. Further analysis of the ethyl acetate extract revealed that a didecyldimethylammonium salt was responsible for the Gram-positive activity. The structures of these compounds were confirmed by a combination of (1)H- and (13)C NMR, high-performance liquid chromatography, high-resolution mass spectrometry, and tandem mass spectrometry analyses. Radiocarbon dating indicates that neither compound is a fermentation product. No antimicrobial peptides were detected.

  19. Hatching of Meloidogyne incognita Eggs in the Neutral Carbohydrate Fraction of Root Exudates of Gnotobiotically Grown Alfalfa

    PubMed Central

    Hamlen, R. A.; Bloom, J. R.; Lukezic, F. L.

    1973-01-01

    Meloidogyne incognita eggs were hatched in soil sterilized by gamma kradiation and wetted with root exudates from alfalfa plants in different stages of development and subjected to various levels of clipping. Carbohydrate components of the exudates were identified by gas chromatography-mass spectrometry. Although significant stimulation of hatch was detected in exudates of seedling and flowering plants, the practical importance of the increase is doubtful as hatch in distilled water was always greater than 50%. Hatch did not differ among exudate samples from clipped plants. Incubation of eggs in soil moistened with 10⁻⁷ to 10⁻³ M solutions of glucose did not result in increased hatching over that in distilled water. PMID:19319320

  20. Biochemical Changes in Terminal Root Galls Caused by an Ectoparasitic Nematode, Longidorus africanus: Amino Acids.

    PubMed

    Epstein, E; Cohn, E

    1971-10-01

    The amino acids of terminal root galls caused by Longidorus africanus on bur marigold (Bidens tripartita L.) and grapevine (Vitis vinifera L.) were studied. The galled roots of bur marigold contained 73% more cell-wall protein and 184% more free amino acids. The main changes among the free amino acids of the galled tissue were a large increase (1900%) in proline and a decrease in aspartic acid (56%) compared with the respective check tissue. Hydroxyproline decreased in the wall protein fraction from 5.6% in the healthy tissue to 3.6% in the infected tissue.Percent of hydroxyproline in total amino acids of the wall protein fraction of grapevine roots decreased from 0.7% in the healthy tissue to 0.3% in the galled tissue, and total proteins of this fraction decreased from 9.5 mg to 4.5 rag, respectively. Total protein in the protoplasmic fraction also decreased from 3.0 mg in healthy to 1.0 mg in infected roots. No change was noticed in total proteins in the free amino acids fraction but free proline decreased 40% in the infected roots.The relationship of these differences to the specific reactions of the hosts to nematode feeding is discussed.

  1. Distribution of polycyclic aromatic hydrocarbons in subcellular root tissues of ryegrass (Lolium multiflorum Lam.)

    PubMed Central

    2010-01-01

    Background Because of the increasing quantity and high toxicity to humans of polycyclic aromatic hydrocarbons (PAHs) in the environment, several bioremediation mechanisms and protocols have been investigated to restore PAH-contaminated sites. The transport of organic contaminants among plant cells via tissues and their partition in roots, stalks, and leaves resulting from transpiration and lipid content have been extensively investigated. However, information about PAH distributions in intracellular tissues is lacking, thus limiting the further development of a mechanism-based phytoremediation strategy to improve treatment efficiency. Results Pyrene exhibited higher uptake and was more recalcitrant to metabolism in ryegrass roots than was phenanthrene. The kinetic processes of uptake from ryegrass culture medium revealed that these two PAHs were first adsorbed onto root cell walls, and they then penetrated cell membranes and were distributed in intracellular organelle fractions. At the beginning of uptake (< 50 h), adsorption to cell walls dominated the subcellular partitioning of the PAHs. After 96 h of uptake, the subcellular partition of PAHs approached a stable state in the plant water system, with the proportion of PAH distributed in subcellular fractions being controlled by the lipid contents of each component. Phenanthrene and pyrene primarily accumulated in plant root cell walls and organelles, with about 45% of PAHs in each of these two fractions, and the remainder was retained in the dissolved fraction of the cells. Because of its higher lipophilicity, pyrene displayed greater accumulation factors in subcellular walls and organelle fractions than did phenanthrene. Conclusions Transpiration and the lipid content of root cell fractions are the main drivers of the subcellular partition of PAHs in roots. Initially, PAHs adsorb to plant cell walls, and they then gradually diffuse into subcellular fractions of tissues. The lipid content of intracellular components determines the accumulation of lipophilic compounds, and the diffusion rate is related to the concentration gradient established between cell walls and cell organelles. Our results offer insights into the transport mechanisms of PAHs in ryegrass roots and their diffusion in root cells. PMID:20860818

  2. Delay-dependent stability and added damping of SDOF real-time dynamic hybrid testing

    NASA Astrophysics Data System (ADS)

    Chi, Fudong; Wang, Jinting; Jin, Feng

    2010-09-01

    It is well-recognized that a transfer system response delay that reduces the test stability inevitably exists in real-time dynamic hybrid testing (RTDHT). This paper focuses on the delay-dependent stability and added damping of SDOF systems in RTDHT. The exponential delay term is transferred into a rational fraction by the Padé approximation, and the delay-dependent stability conditions and instability mechanism of SDOF RTDHT systems are investigated by the root locus technique. First, the stability conditions are discussed separately for the cases of stiffness, mass, and damping experimental substructure. The use of root locus plots shows that the added damping effect and instability mechanism for mass are different from those for stiffness. For the stiffness experimental substructure case, the instability results from the inherent mode because of an obvious negative damping effect of the delay. For the mass case, the delay introduces an equivalent positive damping into the inherent mode, and instability occurs at an added high frequency mode. Then, the compound stability condition is investigated for a general case and the results show that the mass ratio may have both upper and lower limits to remain stable. Finally, a high-emulational virtual shaking table model is built to validate the stability conclusions.

  3. Evaluation of phytochemical content, antimicrobial, cytotoxic and antitumor activities of extract from Rumex hastatus D. Don roots.

    PubMed

    Sahreen, Sumaira; Khan, Muhammad Rashid; Khan, Rahmat Ali; Hadda, Taibi Ben

    2015-07-03

    Being a part of Chinese as well as ayurdic herbal system, roots of Rumex hastatus D. Don (RH) is highly medicinal, used to regulated blood pressure. It is also reported that the plant is diuretic, laxative, tonic, used against microbial skin diseases, bilious complaints and jaundice. The present study is conducted to evaluate phytochemical, antimicrobial, antitumor and cytotoxic activities of extract obtained from R. hastatus roots. RH roots were powdered and extracted with methanol to get crude extract. Crude extract was further fractioned on the basis of increasing polarity, with n-hexane (HRR), chloroform (CRR), ethyl acetate (ERR), n-butanol (BRR) and residual aqueous fraction (ARR). Methanol extract and its derived fractions were subjected to phytochemical screening and assayed for antibacterial activities via agar well diffusion method. Antifungal activities were checked through agar tube dilution method whereas potato disc assay was employed for the determination of antitumor activity. On the other hand cytotoxic activities were conducted using brine shrimps procedures. The results obtained from phytochemical analysis indicate the presence of alkaloids, anthraquinones, flavonoids and saponins in all the fractions. Most of the plant fractions showed substantial antimicrobial activities, which is in accordance with the spacious use of tested plant samples in primary healthcare center. Fractions of R. hastatus roots for cytotoxicity were tested as an effective cytotoxic was found as BRR > MRR > CRR > ARR > ERR > HRR. Ranking order of fractions of R. hastatus roots for effective antitumor screening was found as MRR > BRR > ARR > CRR > ERR > HRR. These results showed that R. hastatus appeared as an important source for the discovery of new antimicrobial drugs and antitumor agents; verify its traditional uses and its exploitation as therapeutic agent.

  4. Evaluation of antioxidant activity and characterization of phenolic constituents of Phyllanthus amarus root.

    PubMed

    Maity, Soumya; Chatterjee, Suchandra; Variyar, Prasad Shekhar; Sharma, Arun; Adhikari, Soumyakanti; Mazumder, Santasree

    2013-04-10

    The antioxidant property of the 70% aqueous ethanol extract of Phyllanthus amarus roots and its ether-soluble, ethyl acetate-soluble, and aqueous fractions were investigated by various in vitro assays. The root extracts showed higher DPPH, hydroxyl, superoxide, and nitric oxide radical scavenging and reducing power activity. Among all the samples, the ethyl acetate-soluble fraction demonstrated highest radical scavenging activity and total phenolics content. Twenty-eight different phenolic compounds were identified by LCMS/MS analysis of the ethyl acetate-soluble fraction. The majority of the compounds were found to exist as their glycosides, and many of these were gallic acid derivatives. Free epicatechin and gallic acid were also identified in the ethyl acetate-soluble fraction. The present investigation suggested that P. amarus root is a potent antioxidant and can be used for the prevention of diseases related to oxidative stress.

  5. Chronic nitrogen deposition influences the chemical dynamics ...

    EPA Pesticide Factsheets

    Atmospheric nitrogen deposition induces a forest carbon sink across broad parts of the Northern Hemisphere; this carbon sink may partly result from slower litter decomposition. Although microbial responses to experimental nitrogen deposition have been well-studied, evidence linking these microbial responses to changes in the degradation of specific compounds in decaying litter is sparse. We used wet chemistry and Fourier transform infrared spectroscopy (FTIR) methodologies to study the effects of chronic simulated nitrogen deposition on leaf litter and fine root chemistry during a three-year decomposition experiment at four northern hardwood forests in the north-central USA. Leaf litter and fine roots were highly different in initial chemistry such as concentrations of acid-insoluble fraction (AIF, or Klason lignin) and condensed tannins (CTs). These initial differences persisted over the course of decomposition. Results from gravimetrically-defined AIF and lignin/carbohydrate reference IR peak ratios both provide evidence that lignin in fine roots was selectively preserved under simulated nitrogen deposition. Lignin/carbohydrate peak ratios were strongly correlated with AIF, suggesting that AIF is a good predictor of lignin. Because AIF is abundant in fine roots, slower AIF degradation was the major driver of the slower fine root decomposition under nitrogen enrichment, explaining 73.9 % of the additional root mass retention. Nitrogen enrichment also slowed the

  6. Suberin-derived aliphatic monomers as biomarkers for SOM affected by root litter contribution

    NASA Astrophysics Data System (ADS)

    Kogel-Knabner, I.; Spielvogel, S.-; Prietzel, J.-

    2012-12-01

    The patchy distribution of trees and ground vegetation may have major impact on SOC variability and stability at the small scale. Knowledge about correlations between the pattern of tree and ground vegetation, SOC stocks in different soil depths and the contribution of root- vs. shoot-derived carbon to different SOC fractions is scarce. We have tested analysis of hydrolysable aliphatic monomers derived from the biopolyesters cutin- and suberin to investigate whether their composition can be traced back after decay and transformation into soil organic matter (SOM) to study SOM source, degradation, and stand history. The main objective of this study was to elucidate the relative abundance of cutin and suberin in different particle size and density fractions of a Norway spruce and a European beech site with increasing distance to stems. Soil samples, root, bark and needle/leave samples were analyzed for their cutin and/or suberin signature. Previous to isolation of bound lipids, sequential solvent extraction was used to remove free lipids and other solvent extractable compounds. Cutin- and suberin-derived monomers were extracted from the samples using base hydrolysis. Before analysis by Gas Chromatography/Mass Spectrometry (GC/MS), extracts were derivatized to convert compounds to trimethylsilyl derivatives. Statistical analysis identified four variables which as combined factors discriminated significantly between cutin and suberin based on their structural units. We found a relative enrichment of cutin and suberin contents in the occluded fraction at both sites that decreased with increasing distance to the trees. We conclude from our results that (i) patchy above- and belowground carbon input caused by heterogeneous distribution of trees and ground vegetation has major impact on SOC variability and stability at the small scale, (ii) tree species is an important factor influencing SOC heterogeneity at the stand scale due to pronounced differences in above- and belowground carbon input among the tree species and that (iii) forest conversion may substantially alter SOC stocks and spatial distribution. Suberin biomarkers can thus be used as indicators for the presence of root influence on SOM composition and for identifying root-affected soil compartments.

  7. Variations in the isotopic composition of stable mercury isotopes in typical mangrove plants of the Jiulong estuary, SE China.

    PubMed

    Sun, Lumin; Lu, Bingyan; Yuan, Dongxing; Hao, Wenbo; Zheng, Ying

    2017-01-01

    Variations in the composition of stable isotopes of mercury contained in tissues (root, stem, leaf, and hypocotyl or flower) of three typical mangrove plants (Kandelia candel, Aegiceras corniculata, and Bruguiera gymnorhiza), collected from the mangrove wetland of Jiulong estuary, SE China, were used to investigate the sources and transformation of mercury in the mangrove plants. Tissue samples from the plants were digested and mercury in the solution was pre-concentrated with purge-trap method and then analyzed by multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS). The results showed that the mass dependent fractionation (MDF) of mercury ranged from -2.67 to -0.87 ‰ for δ 202 Hg while the mass independent fractionation (MIF) of mercury isotopes ranged from -0.16 to 0.09 and -0.19 to 0.05 ‰ for Δ 199 Hg and Δ 201 Hg, respectively, relative to the standard NIST SRM 3133. The ratio of Δ 199 Hg/Δ 201 Hg was 0.991, indicating that the mercury had been photo-reduced before being accumulated in mangrove plants. Analyses of the data from MIF studies revealed that the major portion of the mercury measured in leaves (∼90 %) originated from the atmosphere while the source of over half of the mercury present in roots was the surficial sediment. This study, the first of its kind investigating the variations in isotopic composition of mercury in the tissues of mangrove plants, could be helpful to identify the source of mercury contamination in mangroves and understand the biogeochemical cycle of mercury in the estuarine mangrove wetlands.

  8. Root chemistry and soil fauna, but not soil abiotic conditions explain the effects of plant diversity on root decomposition.

    PubMed

    Chen, Hongmei; Oram, Natalie J; Barry, Kathryn E; Mommer, Liesje; van Ruijven, Jasper; de Kroon, Hans; Ebeling, Anne; Eisenhauer, Nico; Fischer, Christine; Gleixner, Gerd; Gessler, Arthur; González Macé, Odette; Hacker, Nina; Hildebrandt, Anke; Lange, Markus; Scherer-Lorenzen, Michael; Scheu, Stefan; Oelmann, Yvonne; Wagg, Cameron; Wilcke, Wolfgang; Wirth, Christian; Weigelt, Alexandra

    2017-11-01

    Plant diversity influences many ecosystem functions including root decomposition. However, due to the presence of multiple pathways via which plant diversity may affect root decomposition, our mechanistic understanding of their relationships is limited. In a grassland biodiversity experiment, we simultaneously assessed the effects of three pathways-root litter quality, soil biota, and soil abiotic conditions-on the relationships between plant diversity (in terms of species richness and the presence/absence of grasses and legumes) and root decomposition using structural equation modeling. Our final structural equation model explained 70% of the variation in root mass loss. However, different measures of plant diversity included in our model operated via different pathways to alter root mass loss. Plant species richness had a negative effect on root mass loss. This was partially due to increased Oribatida abundance, but was weakened by enhanced root potassium (K) concentration in more diverse mixtures. Equally, grass presence negatively affected root mass loss. This effect of grasses was mostly mediated via increased root lignin concentration and supported via increased Oribatida abundance and decreased root K concentration. In contrast, legume presence showed a net positive effect on root mass loss via decreased root lignin concentration and increased root magnesium concentration, both of which led to enhanced root mass loss. Overall, the different measures of plant diversity had contrasting effects on root decomposition. Furthermore, we found that root chemistry and soil biota but not root morphology or soil abiotic conditions mediated these effects of plant diversity on root decomposition.

  9. Degradation mechanisms of bioresorbable polyesters. Part 2. Effects of initial molecular weight and residual monomer.

    PubMed

    Gleadall, Andrew; Pan, Jingzhe; Kruft, Marc-Anton; Kellomäki, Minna

    2014-05-01

    This paper presents an understanding of how initial molecular weight and initial monomer fraction affect the degradation of bioresorbable polymers in terms of the underlying hydrolysis mechanisms. A mathematical model was used to analyse the effects of initial molecular weight for various hydrolysis mechanisms including noncatalytic random scission, autocatalytic random scission, noncatalytic end scission or autocatalytic end scission. Different behaviours were identified to relate initial molecular weight to the molecular weight half-life and to the time until the onset of mass loss. The behaviours were validated by fitting the model to experimental data for molecular weight reduction and mass loss of samples with different initial molecular weights. Several publications that consider initial molecular weight were reviewed. The effect of residual monomer on degradation was also analysed, and shown to accelerate the reduction of molecular weight and mass loss. An inverse square root law relationship was found between molecular weight half-life and initial monomer fraction for autocatalytic hydrolysis. The relationship was tested by fitting the model to experimental data with various residual monomer contents. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  10. Anti-angiogenic activity of Entada africana root.

    PubMed

    Germanò, Maria Paola; Certo, Giovanna; D'Angelo, Valeria; Sanogo, Rokia; Malafronte, Nicola; De Tommasi, Nunziatina; Rapisarda, Antonio

    2015-01-01

    Entada africana roots are used in African traditional medicine for various diseases including inflammation. This application may be mediated through anti-angiogenic effects. Thus, in this study the anti-angiogenic activity of E. africana root extracts (n-hexane, chloroform, chloroform/methanol and methanol) was preliminarily evaluated by the quantitative determination of endogenous alkaline phosphatase in zebrafish embryos. A bioactivity-guided fractionation of chloroform/methanol extract yielded apigenin and robinetin as the main constituents from the most active fractions. In addition, a marked reduction on capillary formation was evidenced in chick chorioallantoic membrane after treatment with the active fractions or isolated compounds. Results obtained in this study suggest that the anti-angiogenic effects of E. africana root may account for its use in inflammatory diseases and other related pathological conditions.

  11. DEVELOPMENT OF A POPULATION BALANCE MODEL TO SIMULATE FRACTIONATION OF GROUND SWITCHGRASS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Naimi, L.J.; Bi, X.T.; Lau, A.K.

    The population balance model represents a time-dependent formulation of mass conservation for a ground biomass that flows through a set of sieves. The model is suitable for predicting the change in size and distribution of ground biomass while taking into account the flow rate processes of particles through a grinder. This article describes the development and application of this model to a switchgrass grinding operation. The mass conservation formulation of the model contains two parameters: breakage rate and breakage ratio. A laboratory knife mill was modified to act as a batch or flow-through grinder. The ground switchgrass was analyzed overmore » a set of six Tyler sieves with apertures ranging from 5.66 mm (top sieve) to 1 mm (bottom sieve). The breakage rate was estimated from the sieving tests. For estimating the breakage ratio, each of the six fractions was further ground and sieved to 11 fractions on a set of sieves with apertures ranging from 5.66 to 0.25 mm (and pan). These data formed a matrix of values for determining the breakage ratio. Using the two estimated parameters, the transient population balance model was solved numerically. Results indicated that the population balance model generally underpredicted the fractions remaining on sieves with 5.66, 4.00, and 2.83 mm apertures and overpredicted fractions remaining on sieves with 2.00, 1.41, and 1.00 mm apertures. These trends were similar for both the batch and flow-through grinder configurations. The root mean square of residuals (RSE), representing the difference between experimental and simulated mass of fractions, was 0.32 g for batch grinding and 0.1 g for flow-through grinding. The breakage rate exhibited a linear function of the logarithm of particle size, with a regression coefficient of 0.99.« less

  12. Fractionations of rare earth elements in plants and their conceptive model.

    PubMed

    Ding, ShiMing; Liang, Tao; Yan, JunCai; Zhang, ZiLi; Huang, ZeChun; Xie, YaNing

    2007-02-01

    Fractionations of rare earth elements (REEs) and their mechanisms in soybean were studied through application of exogenous mixed REEs under hydroponic conditions. Significant enrichment of middle REEs (MREEs) and heavy REEs (HREEs) was observed in plant roots and leaves respectively, with slight fractionation between light REEs (LREEs) and HREEs in stems. Moreover, the tetrad effect was observed in these organs. Investigations into REE speciation in roots and in the xylem sap using X-ray absorption spectroscopy (XAS) and nanometer-sized TiO2 adsorption techniques, associated with other controlled experiments, demonstrated that REE fractionations should be dominated by fixation mechanism in roots caused by cell wall absorption and phosphate precipitation, and by the combined effects of fixation mechanism and transport mechanism in aboveground parts caused by solution complexation by intrinsic organic ligands. A conceptive model was established for REE fractionations in plants based on the above studies.

  13. Comprehensive assessment of phenolics and antiradical potential of Rumex hastatus D. Don. roots

    PubMed Central

    2014-01-01

    Background Roots of Rumex hastatus (Polygonaceae) are traditionally used for the treatment of various ailments including liver and lung diseases. In this study, various solvent extracts of R. hastatus roots, like methanolic, n-hexane, ethyl acetate, chloroform, butanol and aqueous fractions were assessed through their antioxidant properties in vitro and determination of phenolic contents. Methods Several parameters like DPPH˙, ABTS˙+, ˙OH, H2O2, superoxide free radical scavenging, iron chelating power, reducing power, β-carotene bleaching power, antioxidant capacity and total phenolics and flavonoids were evaluated. High Performance liquid Chromatography (HPLC) was also considered. Results Though all the fractions exhibited dose dependant activity. The samples with the highest activity were the butanol and methanol fractions in all the assays except hydrogen peroxide radical scavenging assay where chloroform fraction showed the highest scavenging aptitude. On the other hand, aquous fraction showed significant beta carotene linoleic acid, while n-hexane and ethyl acetate fractions exhibited a lesser antioxidant activity in all the assays. HPLC revealed the presence of rutin, luteolin-7-glucoside, vitexin and luteolin. Conclusion These results have to some extent substantiated the use of R. hastatus roots against different diseases, as an excellent basis of potential antioxidant due to the presence of sufficient amount of phenolics such as rutin and luteolin. PMID:24507200

  14. Comprehensive assessment of phenolics and antiradical potential of Rumex hastatus D. Don. roots.

    PubMed

    Sahreen, Sumaira; Khan, Muhammad Rashid; Khan, Rahmat Ali

    2014-02-08

    Roots of Rumex hastatus (Polygonaceae) are traditionally used for the treatment of various ailments including liver and lung diseases. In this study, various solvent extracts of R. hastatus roots, like methanolic, n-hexane, ethyl acetate, chloroform, butanol and aqueous fractions were assessed through their antioxidant properties in vitro and determination of phenolic contents. Several parameters like DPPH˙, ABTS˙(+), ˙OH, H2O2, superoxide free radical scavenging, iron chelating power, reducing power, β-carotene bleaching power, antioxidant capacity and total phenolics and flavonoids were evaluated. High Performance liquid Chromatography (HPLC) was also considered. Though all the fractions exhibited dose dependant activity. The samples with the highest activity were the butanol and methanol fractions in all the assays except hydrogen peroxide radical scavenging assay where chloroform fraction showed the highest scavenging aptitude. On the other hand, aquous fraction showed significant beta carotene linoleic acid, while n-hexane and ethyl acetate fractions exhibited a lesser antioxidant activity in all the assays. HPLC revealed the presence of rutin, luteolin-7-glucoside, vitexin and luteolin. These results have to some extent substantiated the use of R. hastatus roots against different diseases, as an excellent basis of potential antioxidant due to the presence of sufficient amount of phenolics such as rutin and luteolin.

  15. Amount of cadmium associated with Cd-binding protein in roots of young plants. [Agrostis gigantea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rauser, W.E.

    1986-04-01

    The partitioning of Cd between roots and shoots was determined for young plants exposed to Cd in nutrient solution. The intentionally high concentration of 3 ..mu..m Cd was used to assess the role of root Cd-binding protein (Cd-BP) in Cd detoxification. The roots of tomatoes exposed to Cd retained 60-84% of the plant Cd from day 2 through day 9 without toxicity symptoms evident. Cd-BP did not contribute to Cd retention over the initial 4 days, only 1-4% of the root Cd was in this protein fraction. Maize roots retained 59-66% of the plant Cd from day 1 through daymore » 7. The Cd-BP fraction bound 8-19% of the root Cd on day 1 and 31-55% by day 7. Cd toxicity symptoms occurred in leaves by 4 days. In the grass Agrostis gigantea the roots retained 73-85% of the seedling Cd after 1 day and for another 6 days. A high proportion of the root Cd(34-68%) was in the Cd-BP fraction after one day and continued to be so to day 7 (46-64%). No Cd toxicity symptoms were evident. Only the specific pattern of rapid, early and sustained production of Cd-BP observed in Agrostis was consistent with the putative detoxification role for Cd-BP.« less

  16. Effects of Inundation, Nutrient Availability and Plant Species Diversity on Fine Root Mass and Morphology Across a Saltmarsh Flooding Gradient

    PubMed Central

    Redelstein, Regine; Dinter, Thomas; Hertel, Dietrich; Leuschner, Christoph

    2018-01-01

    Saltmarsh plants are exposed to multiple stresses including tidal inundation, salinity, wave action and sediment anoxia, which require specific root system adaptations to secure sufficient resource capture and firm anchorage in a temporary toxic environment. It is well known that many saltmarsh species develop large below-ground biomass (roots and rhizomes) but relations between fine roots, in particular, and the abiotic conditions in salt marshes are widely unknown. We studied fine root mass (<2 mm in diameter), fine root depth distribution and fine root morphology in three typical communities (Spartina anglica-dominated pioneer zone, Atriplex portulacoides-dominated lower marsh, Elytrigia atherica-dominated upper marsh) across elevational gradients in two tidal salt marshes of the German North Sea coast [a mostly sandy marsh on a barrier island (Spiekeroog), and a silty-clayey marsh on the mainland coast (Westerhever)]. Fine root mass in the 0–40 cm profile ranged between 750 and 2,500 g m−2 in all plots with maxima at both sites in the lower marsh with intermediate inundation frequency and highest plant species richness indicating an effect of biodiversity on fine root mass. Fine root mass and, even more, total fine root surface area (maximum 340 m2 m−2) were high compared to terrestrial grasslands, and were greater in the nutrient-poorer Spiekeroog marsh. Fine root density showed only a slight or no decrease toward 40 cm depth. We conclude that the standing fine root mass and morphology of these salt marshes is mainly under control of species identity and nutrient availability, but species richness is especially influential. The plants of the pioneer zone and lower marsh possess well adapted fine roots and large standing root masses despite the often water-saturated sediment. PMID:29467778

  17. Uptake of perfluorinated alkyl acids by hydroponically grown lettuce (Lactuca sativa).

    PubMed

    Felizeter, Sebastian; McLachlan, Michael S; de Voogt, Pim

    2012-11-06

    An uptake study was carried out to assess the potential human exposure to perfluorinated alkyl acids (PFAAs) through the ingestion of vegetables. Lettuce (Lactuca sativa) was grown in PFAA-spiked nutrient solutions at four different concentrations, ranging from 10 ng/L to 10 μg/L. Eleven perfluorinated carboxylic acids (PFCAs) and three perfluorinated sulfonic acids (PFSAs) were analyzed by HPLC-MS/MS. At the end of the experiment, the major part of the total mass of each of the PFAAs (except the short-chain, C4-C7, PFCAs) taken up by plants appeared to be retained in the nonedible part, viz. the roots. Root concentration factors (RCF), foliage/root concentration factors (FRCF), and transpiration stream concentration factors (TSCF) were calculated. For the long chained PFAAs, RCF values were highest, whereas FRCF were lowest. This indicates that uptake by roots is likely governed by sorption of PFAAs to lipid-rich root solids. Translocation from roots to shoots is restricted and highly depending on the hydrophobicity of the compounds. Although the TSCF show that longer-chain PFCAs (e.g., perfluorododecanoic acid) get better transferred from the nutrient solution to the foliage than shorter-chain PFCAs (e.g., perfluoroheptanoic acid), the major fraction of longer-chain PFCAs is found in roots due to additional adsorption from the spiked solution. Due to the strong electron-withdrawing effect of the fluorine atoms the role of the negative charge of the dissociated PFAAs is likely insignificant.

  18. Synthesis of small combinatorial libraries of natural products: identification and quantification of new long-chain 3-methyl-2-alkanones from the root essential oil of Inula helenium L. (Asteraceae).

    PubMed

    Radulović, Niko S; Denić, Marija S; Stojanović-Radić, Zorica Z

    2014-01-01

    Recently, a potent anti-staphylococcal activity of Inula helenium L. (Asteraceae) root essential oil was reported. Also, bioassay guided fractionation of the oil pointed to eudesmane sesquiterpene lactones and a series of unidentified constituents as the main carriers of the observed activity. To identify nine new constituents (long-chain 3-methyl-2-alkanones) from a fraction of this root essential oil with a low minimum inhibitory concentration value (0.8 µg/mL) by employing a synthetic methodology that leads to the formation of a small combinatorial library of these compounds. The identity of these constituents was inferred from mass spectral fragmentation patterns and GC retention data. A library of 3-methyl-2-alkanones (C11 -C19 homologous series) was synthesised in three steps starting from methyl acetoacetate and the corresponding alkyl halides. The synthetic library was also screened for in vitro anti-microbial activity. Gas chromatographic analyses of I. helenium essential oil samples with spiked compounds from the synthesised library corroborated the tentative identifications of the long-chain 3-methyl-2-alkanones. The availability of these anti-microbial compounds from this library made it possible to construct GC/FID calibration curves and determine their content in the plant material: 0.08 - 24.2 mg/100 g of dry roots. The small combinatorial library approach enabled the first unequivocal identification of long-chain 3-methyl-2-alkanones as plant secondary metabolites, and, also, allowed determination of not only a single compound and biological properties, but those of a group of structurally related compounds. Copyright © 2013 John Wiley & Sons, Ltd.

  19. Absorption Kinetics and Subcellular Fractionation of Zinc in Winter Wheat in Response to Nitrogen Supply.

    PubMed

    Nie, Zhaojun; Zhao, Peng; Wang, Jia; Li, Jinfeng; Liu, Hongen

    2017-01-01

    Nitrogen (N) is critical for zinc (Zn) absorption into plant roots; this in turn allows for Zn accumulation and biofortification of grain in winter wheat ( Triticum aestivum L.), an important food crop. However, little is known about root morphology and subcellular Zn distribution in response to N treatment at different levels of Zn supply. In this study, two nutrient solution culture experiments were conducted to examine Zn accumulation, Zn absorption kinetics, root morphology, and Zn subcellular distribution in wheat seedlings pre-cultured with different N concentrations. The results showed positive correlations between N and Zn concentrations, and N and Zn accumulation, respectively. The findings suggested that an increase in N supply enhanced root absorption and the root-to-shoot transport of Zn. Nitrogen combined with the high Zn (Zn 10 ) treatment increased the Zn concentration and consequently its accumulation in both shoots and roots. The maximum influx rate ( V max ), root length, surface area, and volume of 14-d-old seedlings, and root growth from 7 to 14 d in the medium N (N 7.5 ) treatment were higher, but the Michaelis constant ( K m ) and minimum equilibrium concentrations ( C min ) in this treatment were lower than those in the low (N 0.05 ) and high (N 15 ) N treatments, when Zn was supplied at a high level (Zn 10 ). Meanwhile, there were no pronounced differences in the above root traits between the N 0.05 Zn 0 and N 7.5 Zn 10 treatments. An increase in N supply decreased Zn in cell walls and cell organelles, while it increased Zn in the root soluble fraction. In leaves, an increase in N supply significantly decreased Zn in cell walls and the soluble fraction, while it increased Zn in cell organelles under Zn deficiency, but increased Zn distribution in the soluble fraction under medium and high Zn treatments. Therefore, a combination of medium N and high Zn treatments enhanced Zn absorption, apparently by enhancing Zn membrane transport and stimulating root development in winter wheat. An increase in N supply was beneficial in terms of achieving a balanced distribution of Zn subcellular fractions, thus enhancing Zn translocation to shoots, while maintaining normal metabolism.

  20. Absorption Kinetics and Subcellular Fractionation of Zinc in Winter Wheat in Response to Nitrogen Supply

    PubMed Central

    Nie, Zhaojun; Zhao, Peng; Wang, Jia; Li, Jinfeng; Liu, Hongen

    2017-01-01

    Nitrogen (N) is critical for zinc (Zn) absorption into plant roots; this in turn allows for Zn accumulation and biofortification of grain in winter wheat (Triticum aestivum L.), an important food crop. However, little is known about root morphology and subcellular Zn distribution in response to N treatment at different levels of Zn supply. In this study, two nutrient solution culture experiments were conducted to examine Zn accumulation, Zn absorption kinetics, root morphology, and Zn subcellular distribution in wheat seedlings pre-cultured with different N concentrations. The results showed positive correlations between N and Zn concentrations, and N and Zn accumulation, respectively. The findings suggested that an increase in N supply enhanced root absorption and the root-to-shoot transport of Zn. Nitrogen combined with the high Zn (Zn10) treatment increased the Zn concentration and consequently its accumulation in both shoots and roots. The maximum influx rate (Vmax), root length, surface area, and volume of 14-d-old seedlings, and root growth from 7 to 14 d in the medium N (N7.5) treatment were higher, but the Michaelis constant (Km) and minimum equilibrium concentrations (Cmin) in this treatment were lower than those in the low (N0.05) and high (N15) N treatments, when Zn was supplied at a high level (Zn10). Meanwhile, there were no pronounced differences in the above root traits between the N0.05Zn0 and N7.5Zn10 treatments. An increase in N supply decreased Zn in cell walls and cell organelles, while it increased Zn in the root soluble fraction. In leaves, an increase in N supply significantly decreased Zn in cell walls and the soluble fraction, while it increased Zn in cell organelles under Zn deficiency, but increased Zn distribution in the soluble fraction under medium and high Zn treatments. Therefore, a combination of medium N and high Zn treatments enhanced Zn absorption, apparently by enhancing Zn membrane transport and stimulating root development in winter wheat. An increase in N supply was beneficial in terms of achieving a balanced distribution of Zn subcellular fractions, thus enhancing Zn translocation to shoots, while maintaining normal metabolism. PMID:28868060

  1. How does litter become soil organic matter? Tracing the fate of needle- and root-derived soil organic matter through 10 years of decomposition

    NASA Astrophysics Data System (ADS)

    Hicks Pries, Caitlin E.; Hatton, Pierre-Joseph; Castanha, Cristina; Bird, Jeffrey A.; Torn, Margaret S.

    2014-05-01

    All soil organic matter (SOM) is derived from plant material. However, little is known about the process by which plant litter becomes SOM (as opposed to the better-studied controls on rates of carbon (C) and nitrogen (N) loss from litter). We investigated the transformations of above- and below-ground plant inputs in soil over ten years, and whether litter type (roots versus needles) affects the form and location of litter-derived C and N in soil after 10 years. We placed 15N and 13C-labeled Pinus ponderosa needle and fine root litter in the Blodgett Experimental Forest in the Sierra Nevada foothills in 2001. A two-way factorial design was used with needle and root litter placed into O and A soil horizons. Litter was inserted into the given horizon within soil mesocosms (10.2 cm diameter x 24 cm long PVC) that had two 5 x 5 cm mesh windows to allow contact with the surrounding soil. After 0.5, 1, 1.5, 4.5, and 10 years, the mesocosms were collected from the field. Isotopes were used to measure the percent recovery of the litter C and N in the bulk soil of the O and A horizons. To investigate mineral associations of the added litter C and N after 10 years, we sequentially fractionated the soils by density. The fractions were a free light fraction (<1.75 g cm-3), a fraction dominated by secondary phyllosilicate minerals (1.75-2.5 g cm-3), a quartz and feldspar-dominated fraction (2.5-2.78 g cm-3), and a fraction dominated by biotite with kaolinite and iron oxide coatings (>2.78 g cm-3). These fractions differ in the type of organic matter they are associated with according to C:N ratios and molecular characterization via FTIR. The biotite fraction had the lowest C:N ratios, indicating it was the most microbially-processed. After 10 years, more root litter C (about 44%) was retained in the soil than needle litter C (about 28%). In line with slower rates of decomposition, root C and N remained in the particulate (>2 mm) fraction and the free light fraction longer than needle C. However, there were similar amounts of root and needle C and N in the mineral-associated pools with 12-17% of the remaining C associated with secondary phyllosilicates and less than 1% associated with biotite. C:N ratios of the litter-derived OM were much lower in the mineral fractions than in the free light fraction. In conclusion, litter type affects how long organic matter is retained in soils by affecting the earlier stages of decomposition when microbes are utilizing substrates that are part of larger OM particles, but litter type does not appear to affect later stages of decomposition, when microbially-processed OM becomes associated with minerals.

  2. Dissolution thermodynamics and solubility of silymarin in PEG 400-water mixtures at different temperatures.

    PubMed

    Shakeel, Faiyaz; Anwer, Md Khalid

    2015-01-01

    An isothermal method was used to measure the solubility of silymarin in binary polyethylene glycol 400 (PEG 400) + water co-solvent mixtures at temperatures T = 298.15-333.15 K and pressure p = 0.1 MPa. Apelblat and Yalkowsky models were used to correlate experimental solubility data. The mole fraction solubility of silymarin was found to increase with increasing the temperature and mass fraction of PEG 400 in co-solvent mixtures. The root mean square deviations were observed in the range of 0.48-5.32% and 1.50-9.65% for the Apelblat equation and Yalkowsky model, respectively. The highest and lowest mole fraction solubility of silymarin was observed in pure PEG 400 (0.243 at 298.15 K) and water (1.46 × 10(-5) at 298.15 K). Finally, thermodynamic parameters were determined by Van't Hoff and Krug analysis, which indicated an endothermic and spontaneous dissolution of silymarin in all co-solvent mixtures.

  3. Long-distance abscisic acid signalling under different vertical soil moisture gradients depends on bulk root water potential and average soil water content in the root zone.

    PubMed

    Puértolas, Jaime; Alcobendas, Rosalía; Alarcón, Juan J; Dodd, Ian C

    2013-08-01

    To determine how root-to-shoot abscisic acid (ABA) signalling is regulated by vertical soil moisture gradients, root ABA concentration ([ABA](root)), the fraction of root water uptake from, and root water potential of different parts of the root zone, along with bulk root water potential, were measured to test various predictive models of root xylem ABA concentration [RX-ABA](sap). Beans (Phaseolus vulgaris L. cv. Nassau) were grown in soil columns and received different irrigation treatments (top and basal watering, and withholding water for varying lengths of time) to induce different vertical soil moisture gradients. Root water uptake was measured at four positions within the column by continuously recording volumetric soil water content (θv). Average θv was inversely related to bulk root water potential (Ψ(root)). In turn, Ψ(root) was correlated with both average [ABA](root) and [RX-ABA](sap). Despite large gradients in θv, [ABA](root) and root water potential was homogenous within the root zone. Consequently, unlike some split-root studies, root water uptake fraction from layers with different soil moisture did not influence xylem sap (ABA). This suggests two different patterns of ABA signalling, depending on how soil moisture heterogeneity is distributed within the root zone, which might have implications for implementing water-saving irrigation techniques. © 2013 John Wiley & Sons Ltd.

  4. Characterization of Cadmium Uptake by Plant Tissue 12

    PubMed Central

    Cutler, Jay M.; Rains, Donald W.

    1974-01-01

    The uptake of cadmium by excised root tissue of barley (Hordeum vulgare L. cv. Arivat) was investigated with respect to kinetics, concentration, and interactions with various cations. The role of metabolism in Cd absorption was examined using a range of temperatures, anaerobic treatments, and chemical inhibitors. The uptake and distribution of Cd in intact barley plants was also determined. A large fraction of the Cd taken up by excised barley roots was apparently the result of exchange adsorption and was displaced by subsequent desorption with unlabeled Cd, Zn, Cu, or Hg. Another fraction of Cd which could not be displaced by desorption in unlabeled Cd was thought to result from strong irreversible binding of Cd, perhaps on sites of the cell wall. The fraction of the Cd taken up beyond that by exchange adsorption by fresh roots was a linear function of temperature, and inhibited by conditions of low oxygen and by the presence of 2,4-dinitrophenol. It was concluded that this fraction of Cd entered excised barley roots by diffusion. Diffusion, when followed by sequestering, probably accounts for the accumulation of Cd observed in intact barley plants. PMID:16658840

  5. Rooting depth and root depth distribution of Trifolium repens × T. uniflorum interspecific hybrids.

    PubMed

    Nichols, S N; Hofmann, R W; Williams, W M; van Koten, C

    2016-05-20

    Traits related to root depth distribution were examined in Trifolium repens × T. uniflorum backcross 1 (BC 1 ) hybrids to determine whether root characteristics of white clover could be improved by interspecific hybridization. Two white clover cultivars, two T. uniflorum accessions and two BC 1 populations were grown in 1 -m deep tubes of sand culture. Maximum rooting depth and root mass distribution were measured at four harvests over time, and root distribution data were fitted with a regression model to provide measures of root system shape. Morphological traits were measured at two depths at harvest 3. Root system shape of the hybrids was more similar to T. uniflorum than to white clover. The hybrids and T. uniflorum had a higher rate of decrease in root mass with depth than white clover, which would result in higher proportions of root mass in the upper profile. Percentage total root mass at 100-200 mm depth was higher for T. uniflorum than white clover, and for Crusader BC 1 than 'Crusader'. Roots of the hybrids and T. uniflorum also penetrated deeper than those of white clover. T. uniflorum had thicker roots at 50-100 mm deep than the other entries, and more of its fine root mass at 400-500 mm. The hybrids and white clover had more of their fine root mass higher in the profile. Consequently, T. uniflorum had a higher root length density at 400-500 mm than most entries, and a smaller decrease in root length density with depth. These results demonstrate that rooting characteristics of white clover can be altered by hybridization with T. uniflorum, potentially improving water and nutrient acquisition and drought resistance. Root traits of T. uniflorum are likely to be adaptations to soil moisture and fertility in its natural environment. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Rooting depth and root depth distribution of Trifolium repens × T. uniflorum interspecific hybrids

    PubMed Central

    Nichols, S. N.; Hofmann, R. W.; Williams, W. M.; van Koten, C.

    2016-01-01

    Background and aims Traits related to root depth distribution were examined in Trifolium repens × T. uniflorum backcross 1 (BC1) hybrids to determine whether root characteristics of white clover could be improved by interspecific hybridization. Methods Two white clover cultivars, two T. uniflorum accessions and two BC1 populations were grown in 1 -m deep tubes of sand culture. Maximum rooting depth and root mass distribution were measured at four harvests over time, and root distribution data were fitted with a regression model to provide measures of root system shape. Morphological traits were measured at two depths at harvest 3. Key Results Root system shape of the hybrids was more similar to T. uniflorum than to white clover. The hybrids and T. uniflorum had a higher rate of decrease in root mass with depth than white clover, which would result in higher proportions of root mass in the upper profile. Percentage total root mass at 100–200 mm depth was higher for T. uniflorum than white clover, and for Crusader BC1 than ‘Crusader’. Roots of the hybrids and T. uniflorum also penetrated deeper than those of white clover. T. uniflorum had thicker roots at 50–100 mm deep than the other entries, and more of its fine root mass at 400–500 mm. The hybrids and white clover had more of their fine root mass higher in the profile. Consequently, T. uniflorum had a higher root length density at 400–500 mm than most entries, and a smaller decrease in root length density with depth. Conclusions These results demonstrate that rooting characteristics of white clover can be altered by hybridization with T. uniflorum, potentially improving water and nutrient acquisition and drought resistance. Root traits of T. uniflorum are likely to be adaptations to soil moisture and fertility in its natural environment. PMID:27208735

  7. Phytochemical analysis, antioxidant activity, fatty acids composition, and functional group analysis of Heliotropium bacciferum.

    PubMed

    Ahmad, Sohail; Ahmad, Shabir; Bibi, Ahtaram; Ishaq, Muhammad Saqib; Afridi, Muhammad Siddique; Kanwal, Farina; Zakir, Muhammad; Fatima, Farid

    2014-01-01

    Heliotropium bacciferum is paramount in medicinal perspective and belongs to Boraginaceae family. The crude and numerous fractions of leaves, stem, and roots of the plant were investigated for phytochemical analysis and DPPH radical scavenging activity. Phytochemical analysis of crude and fractions of the plant revealed the presence of alkaloids, saponins, tannins, steroids, terpenoids, flavonoids, glycosides, and phenols. The antioxidant (free radical scavenging) activity of various extracts of the Heliotropium bacciferum was resolute against 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical with the avail of UV spectrophotometer at 517 nm. The stock solution (1000 mg/mL) and then several dilutions (50, 100, 150, 200, and 250 mg/mL) of the crude and fractions were prepared. Ascorbic acid was used as a standard. The plant leaves (52.59 ± 0.84 to 90.74 ± 1.00), stem (50.19 ± 0.92 to 89.42 ± 1.10), and roots extracts (49.19 ± 0.52 to 90.01 ± 1.02) divulged magnificent antioxidant activities. For the ascertainment of the fatty acid constituents a gas chromatograph hyphenated to mass spectrometer was used. The essential fatty acids for growth maintenance such as linoleic acid (65.70%), eicosadienoic acid (15.12%), oleic acid (8.72%), and palmitic acid (8.14%) were found in high percentage. The infrared spectra of all extracts of the plant were recorded by IR Prestige-21 FTIR model.

  8. Phytochemical Analysis, Antioxidant Activity, Fatty Acids Composition, and Functional Group Analysis of Heliotropium bacciferum

    PubMed Central

    Ahmad, Sohail; Ahmad, Shabir; Bibi, Ahtaram; Ishaq, Muhammad Saqib; Afridi, Muhammad Siddique; Kanwal, Farina; Zakir, Muhammad; Fatima, Farid

    2014-01-01

    Heliotropium bacciferum is paramount in medicinal perspective and belongs to Boraginaceae family. The crude and numerous fractions of leaves, stem, and roots of the plant were investigated for phytochemical analysis and DPPH radical scavenging activity. Phytochemical analysis of crude and fractions of the plant revealed the presence of alkaloids, saponins, tannins, steroids, terpenoids, flavonoids, glycosides, and phenols. The antioxidant (free radical scavenging) activity of various extracts of the Heliotropium bacciferum was resolute against 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical with the avail of UV spectrophotometer at 517 nm. The stock solution (1000 mg/mL) and then several dilutions (50, 100, 150, 200, and 250 mg/mL) of the crude and fractions were prepared. Ascorbic acid was used as a standard. The plant leaves (52.59 ± 0.84 to 90.74 ± 1.00), stem (50.19 ± 0.92 to 89.42 ± 1.10), and roots extracts (49.19 ± 0.52 to 90.01 ± 1.02) divulged magnificent antioxidant activities. For the ascertainment of the fatty acid constituents a gas chromatograph hyphenated to mass spectrometer was used. The essential fatty acids for growth maintenance such as linoleic acid (65.70%), eicosadienoic acid (15.12%), oleic acid (8.72%), and palmitic acid (8.14%) were found in high percentage. The infrared spectra of all extracts of the plant were recorded by IR Prestige-21 FTIR model. PMID:25489605

  9. Structure-Property-Function Relationship in Humic Substances to Explain the Biological Activity in Plants

    PubMed Central

    García, Andrés Calderín; de Souza, Luiz Gilberto Ambrosio; Pereira, Marcos Gervasio; Castro, Rosane Nora; García-Mina, José María; Zonta, Everaldo; Lisboa, Francy Junior Gonçalves; Berbara, Ricardo Luis Louro

    2016-01-01

    Knowledge of the structure-property-function relationship of humic substances (HSs) is key for understanding their role in soil. Despite progress, studies on this topic are still under discussion. We analyzed 37 humic fractions with respect to their isotopic composition, structural characteristics, and properties responsible for stimulating plant root parameters. We showed that regardless of the source of origin of the carbon (C3 or C4), soil-extracted HSs and humic acids (HAs) are structurally similar to each other. The more labile and functionalized HS fraction is responsible for root emission, whereas the more recalcitrant and less functionalized HA fraction is related to root growth. Labile structures promote root stimulation at lower concentrations, while recalcitrant structures require higher concentrations to promote a similar stimulus. These findings show that lability and recalcitrance, which are derived properties of humic fractions, are related to the type and intensity of their bioactivity. In summary, the comparison of humic fractions allowed a better understanding of the relationship between the source of origin of plant carbon and the structure, properties, and type and intensity of the bioactivity of HSs in plants. In this study, scientific concepts are unified and the basis for the agronomic use of HSs is established. PMID:26862010

  10. Increased growth of young citrus trees under reduced radiation load in a semi-arid climate.

    PubMed

    Raveh, E; Cohen, S; Raz, T; Yakir, D; Grava, A; Goldschmidt, E E

    2003-01-01

    This study investigated the effects of radiation heat-load reduction by shading on the growth and development of citrus trees in a warm subtropical region. The experiment was conducted from mid-June until late October when daily maximal air temperature averaged 29.3 degrees C. Two-year-old de-fruited Murcott tangor (Citrus reticulata BlancoxCitrus sinensis (L.) Osb.) trees were grown under 30% or 60% shade tunnels, or 60% flat shade (providing midday shade only), using highly reflective aluminized nets. Non-shaded trees were used as the control. Shading reduced direct more than diffuse radiation. Daily radiation was reduced by 35% for the 30% Tunnel and 60% Flat treatments, and by 55% for the 60% Tunnel. Two days of intensive measurement showed that shading increased average sunlit leaf conductance by 44% and photosynthesis by 29%. Shading did not significantly influence root and stem dry weight growth, but it increased the increment in leaf dry weight during the three month period by an average of 28% relative to the control, while final tree height in the 30% Tunnel treatment exceeded the control by 35%. Shoot to root and shoot mass ratios increased and root mass ratio decreased due to shading because of the increase in leaf dry weight. Shading increased starch concentration in leaves while the shadiest treatment, 60% Tunnel, decreased starch concentration in the roots. Carbon isotope ratio (delta(13)C) of exposed leaves that developed under shading was significantly reduced by 1.9 per thousand in the 60% Tunnel, indicating that shading increased CO(2) concentrations at the chloroplasts (C(c)), as would be expected from increased conductance. Substomatal CO(2) concentrations, C(i), computed from leaf net CO(2) assimilation rate and conductance values, also indicate that shading increases internal CO(2) concentrations. Based on tree dry mass, tree height, and total carbohydrates fractions, the 30% Tunnel and the 60% Flat were the optimal shade treatments.

  11. Cadmium chemical speciation and absorption in plant in a polluted soil

    NASA Astrophysics Data System (ADS)

    Gigliotti, Giovanni; Massaccesi, Luisa

    2013-04-01

    Cadmium is a very toxic heavy metal presents in nature in small amounts, with an average content of 0.2 mg kg-1 in the geosphere. Nonetheless, anthropogenic activities such as industrial processes, large use of phosphate fertilizers and sewage sludge disposals may determine a massive accumulation of Cd in soil. Cd is considered a particularly interesting heavy metal as it can be accumulated by plants to levels that can be toxic to humans and animals, when consumed even in minor amounts. The aim of the present work was to study in a soil polluted with Cd for a long time i) the distribution of Cd in different chemical fractions by means of a sequential extraction procedure; ii) the adsorption of Cd by plants grown in this polluted soil; iii) the change in the distribution of Cd in the soil fractions possibly due to root exudates after plant growing. The chemical fractionation procedure used involved the following forms: a) exchangeable, b) bound to carbonates, c) bound to Fe-Mn oxides and hydroxides, d) bound to organic matter, e) residual part. The following reagents and extraction times were applied: a) 1 M CH3COONa (1:10, w/v; pH 8.2) for 16 h at room temperature; b) 0,1 M CH3COOH for 16 h at room temperature; c) 0,1 M NH2OH•HCl (1:10, w/v; adjusted to pH 2.0 with HNO3) for 16 h at room temperature; d) 30% H2O2 (adjusted to pH 2.0 with HNO3) at 85 °C, followed by extraction with 1 M CH3COONH4 (1:10, w/v; adjusted to pH 2.0 with HNO3) for 16 h at room temperature; e) acid digestion with concentrated HNO3 and 30% H2O2 for residue fraction. Festuca seeds were germinated in the contaminated soil in plastic flats and non-contaminated soil. After two days the seedling were submitted to day/night conditions. The seedlings were collected 6 weeks after seeding and divided in roots and shoots and analysed for Cd concentration. The polluted soil has average Cd content of 200 mg kg-1, instead, the Cd content in the same unpolluted soil was about 0.44 mg kg-1. The speciation results showed that a significant amount of Cd (45%), before plant seeding, was associated with the metal oxide fraction (typically Fe-Mn oxides and hydroxides) followed to Cd bound to soil organic matter (39%), despite the content of organic matter in the soil was very low. Instead the amount of Cd bound to carbonates (13%), exchangeable phase (1%) and residue fraction (2.5%) were negligible. After six weeks of plant seeding the Cd fractionation was slightly different, with a decrease of metal bound to oxide and hydroxide from 45% to 29% and an increase of fraction bound to carbonate from 13% to 19% and exchangeable fraction from 1% to 8%. The roots system of Festuca had colonized all pot and the fractionation of metal was disturbed by plants growth. Roots may induce changes in the biochemical, chemical and physical properties of the rhizosphere increasing potentially toxic elements diffusion through the production of roots exudates. The soil environment immediately adjacent to the root can be strongly influenced by root exudates, so that chemical process of dissolution, chelation and precipitation outside the root also occur. Cd was absorbed by plant root in a great concentration, but not translocation to leafs was noticed.

  12. Do shallow soil, low water availability, or their combination increase the competition between grasses with different root systems in karst soil?

    PubMed

    Zhao, Yajie; Li, Zhou; Zhang, Jing; Song, Haiyan; Liang, Qianhui; Tao, Jianping; Cornelissen, Johannes H C; Liu, Jinchun

    2017-04-01

    Uneven soil depth and low water availability are the key limiting factors to vegetation restoration and reconstruction in limestone soils such as in vulnerable karst regions. Belowground competition will possibly increase under limited soil resources. Here, we investigate whether low resource availability (including shallow soil, low water availability, and shallow soil and low water availability combined) stimulates the competition between grasses with different root systems in karst soil, by assessing their growth response, biomass allocation, and morphological plasticity. In a full three-way factorial blocked design of soil depth by water availability by neighbor identity, we grew Festuca arundinacea (deep-rooted) and Lolium perenne (shallow-rooted) under normal versus shallow soil depth, high versus low water availability, and in monoculture (conspecific neighbor) versus mixture (neighbor of the other species). The key results were as follows: (1) total biomass and aboveground biomass in either of the species decreased with reduction of resources but were not affected by planting patterns (monoculture or mixture) even at low resource levels. (2) For F. arundinacea, root biomass, root mass fraction, total root length, and root volume were higher in mixture than in monoculture at high resource level (consistent with resource use complementarity), but lower in mixture than in monoculture at low resource levels (consistent with interspecific competition). In contrast for L. perenne, either at high or low resource level, these root traits had mostly similar values at both planting patterns. These results suggest that deep-rooted and shallow-rooted plant species can coexist in karst regions under current climatic regimes. Declining resources, due to shallow soil, a decrease in precipitation, or combined shallow soil and karst drought, increased the root competition between plants of deep-rooted and shallow-rooted species. The root systems of deep-rooted plants may be too small to get sufficient water and nutrients from dry, shallow soil, while shallow-rooted plants will maintain a dominant position with their already adaptive strategy in respect of root biomass allocation and root growth.

  13. Aluminum fractions in root tips of slash pine and loblolly pine families differing in Al resistance

    Treesearch

    Jaroslaw Nowak; Alexander L. Friend

    2005-01-01

    Aluminum (Al) distribution among several cellular fractions was investigated in root tips of seedlings of one Al-resistant and one Al-sensitive family of slash pine (Pinus elliottii Engelm.) and loblolly pine (Pinus taeda L.) grown in nutrient solution containing 100 M AlCl3 (pH 4) for 167 h....

  14. Diffusion-weighted imaging and diffusion tensor imaging of asymptomatic lumbar disc herniation.

    PubMed

    Sakai, Toshinori; Miyagi, Ryo; Yamabe, Eiko; Fujinaga, Yasunari; N Bhatia, Nitin; Yoshioka, Hiroshi

    2014-01-01

    Diffusion-weighted imaging (DWI) and diffusion tensor imaging (DTI) were performed on a healthy 31-year-old man with asymptomatic lumbar disc herniation. Although the left S1 nerve root was obviously entrapped by a herniated mass, neither DWI nor DTI showed any significant findings for the nerve root. Decreased apparent diffusion coefficient (ADC) values and increased fractional anisotropy (FA) values were found. These results are contrary to those in previously published studies of symptomatic patients, in which a combination of increased ADC and decreased FA seem to have a relationship with nerve injury and subsequent symptoms, such as leg pain or palsy. Our results seen in an asymptomatic subject suggest that the compressed nerve with no injury, such as edema, demyelination, or persistent axonal injury, may be indicated by a combination of decreased ADC and increased FA. ADC and FA could therefore be potential tools to elucidate the pathomechanism of radiculopathy.

  15. In situ investigation of the mechanisms of the transport to tissues of polycyclic aromatic hydrocarbons adsorbed onto the root surface of Kandelia obovata seedlings.

    PubMed

    Li, Ruilong; Zhu, Yaxian; Zhang, Yong

    2015-06-01

    A novel method for in situ determination of the polycyclic aromatic hydrocarbons (PAHs) adsorbed onto the root surface of Kandelia obovata seedlings was established using laser-induced time-resolved nanosecond fluorescence spectroscopy (LITRF). The linear dynamic ranges for the established method were 1.5-1240ng/spot for phenanthrene, 1.0-1360ng/spot for pyrene and 5.0-1220ng/spot for benzo[a]pyrene. Then, the mechanisms of PAHs transport from the Ko root surface to tissues were investigated. The three-phase model including fast, slow and very slow fractions was superior to the single or dual-phase model to describe the PAHs transport processes. Moreover, the fast fraction of PAHs transport process was mainly due to passive movement, while the slow and very slow fractions were not. Passive movement was the main process of B[a]P adsorbed onto Ko root surface transport to tissues. In addition, the extent of the PAHs transport to Ko root tissues at different salinity were evaluated. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Blackhole formula and example relativity

    NASA Astrophysics Data System (ADS)

    Shin, Philip

    Black hole formula 1) Second dimension (x,y) f(x)=y Energy E=m*c2 2) Third dimension (x,y,z) really x=y=z Black hole formula Root(c2)=c=Root(E/m) As mass go the velocity of light, mass become black hole so there are energy as multiply by mass. Example relativity When E=m*c2 1) Root(c2)=c=Root(E/m) 2) 3*c*Root(c2)=3*c*Root(E/m)=3*c2 From 1) to 2) as an example, As velocity is faster, mass increased. It means when velocity is increased, sec(time) is slower, and m(distance) is increased. The number is good to study physics.

  17. Nitrogen regulation of transpiration controls mass-flow acquisition of nutrients.

    PubMed

    Matimati, Ignatious; Verboom, G Anthony; Cramer, Michael D

    2014-01-01

    Transpiration may enhance mass-flow of nutrients to roots, especially in low-nutrient soils or where the root system is not extensively developed. Previous work suggested that nitrogen (N) may regulate mass-flow of nutrients. Experiments were conducted to determine whether N regulates water fluxes, and whether this regulation has a functional role in controlling the mass-flow of nutrients to roots. Phaseolus vulgaris were grown in troughs designed to create an N availability gradient by restricting roots from intercepting a slow-release N source, which was placed at one of six distances behind a 25 μm mesh from which nutrients could move by diffusion or mass-flow (termed 'mass-flow' treatment). Control plants had the N source supplied directly to their root zone so that N was available through interception, mass-flow, and diffusion (termed 'interception' treatment). 'Mass-flow' plants closest to the N source exhibited 2.9-fold higher transpiration (E), 2.6-fold higher stomatal conductance (gs), 1.2-fold higher intercellular [CO2] (Ci), and 3.4-fold lower water use efficiency than 'interception' plants, despite comparable values of photosynthetic rate (A). E, gs, and Ci first increased and then decreased with increasing distance from the N source to values even lower than those of 'interception' plants. 'Mass-flow' plants accumulated phosphorus and potassium, and had maximum concentrations at 10mm from the N source. Overall, N availability regulated transpiration-driven mass-flow of nutrients from substrate zones that were inaccessible to roots. Thus when water is available, mass-flow may partially substitute for root density in providing access to nutrients without incurring the costs of root extension, although the efficacy of mass-flow also depends on soil nutrient retention and hydraulic properties.

  18. Nitrogen regulation of transpiration controls mass-flow acquisition of nutrients

    PubMed Central

    Matimati, Ignatious

    2014-01-01

    Transpiration may enhance mass-flow of nutrients to roots, especially in low-nutrient soils or where the root system is not extensively developed. Previous work suggested that nitrogen (N) may regulate mass-flow of nutrients. Experiments were conducted to determine whether N regulates water fluxes, and whether this regulation has a functional role in controlling the mass-flow of nutrients to roots. Phaseolus vulgaris were grown in troughs designed to create an N availability gradient by restricting roots from intercepting a slow-release N source, which was placed at one of six distances behind a 25 μm mesh from which nutrients could move by diffusion or mass-flow (termed ‘mass-flow’ treatment). Control plants had the N source supplied directly to their root zone so that N was available through interception, mass-flow, and diffusion (termed ‘interception’ treatment). ‘Mass-flow’ plants closest to the N source exhibited 2.9-fold higher transpiration (E), 2.6-fold higher stomatal conductance (g s), 1.2-fold higher intercellular [CO2] (C i), and 3.4-fold lower water use efficiency than ‘interception’ plants, despite comparable values of photosynthetic rate (A). E, g s, and C i first increased and then decreased with increasing distance from the N source to values even lower than those of ‘interception’ plants. ‘Mass-flow’ plants accumulated phosphorus and potassium, and had maximum concentrations at 10mm from the N source. Overall, N availability regulated transpiration-driven mass-flow of nutrients from substrate zones that were inaccessible to roots. Thus when water is available, mass-flow may partially substitute for root density in providing access to nutrients without incurring the costs of root extension, although the efficacy of mass-flow also depends on soil nutrient retention and hydraulic properties. PMID:24231035

  19. [Effects of ridge-cultivation and plastic film mulching on root distribution and yield of spring maize in hilly area of central Sichuan basin, China.

    PubMed

    Zha, Li; Xie, Meng Lin; Zhu, Min; Dou, Pan; Cheng, Qiu Bo; Wang, Xing Long; Yuan, Ji Chao; Kong, Fan Lei

    2016-03-01

    A field experiment was conducted to study the effects of planting pattern (ridge culture, flatten culture, furrow culture) and film mulching on the distribution of spring maize root system and their influence on the yield of spring maize in the hilly area of central Sichuan basin. The results showed that ridge and film mulching had great influence on root morphology and root distribution of maize. The root length, root surface area and root volume of film mulching was 42.3%, 50.0%, 57.4% higher than those of no film mulching at jointing stage. The film mulching significantly increased the dry mass of root in vertical and horizontal distribution, and increased the root allocation ratio in deeper soil layer (20-40 cm) and the allocation ratio of wide row (0-20 cm) in horizontal direction. The effects of planting pattern on root growth and root distribution differed by film mulching. With film mulching, the ridge culture significantly increased the root dry mass in each soil layer and enlarged the distribution percentage of wide row (20-40 cm) in horizontal direction, as well as the dry mass of root in horizontal distribution and the root allocation ratio of wide row. The root mass under film mulching was in the order of ridge culture>flatten culture>furrow culture. Without film mulching, the furrow culture significantly increased root dry mass of narrow row (0-40 cm), and the root mass under no film mulching was in the order of furrow culture > ridge culture >flatten culture. As for the spike characteristics and maize yield, the filming mulching mea-sures reduced the corn bald length while increased the spike length, grain number, 1000-grain mass and yield. The yield under film mulching was in the order of ridge culture>flatten culture> furrow culture, while it was furrow culture > flatten culture > ridge culture under no film mulching. The reason for yield increase under ridge culture with film mulching was that it increased root weight especially in deep soil, and promoted the root allocation ratio in deeper soil and wide row (20-40 cm) in horizontal direction. The ridge-furrow culture without film mulching was helpful to root growth and increased the maize yield.

  20. Antioxidant and acetylcholinesterase inhibitory activities of ginger root (Zingiber officinale Roscoe) extract.

    PubMed

    Tung, Bui Thanh; Thu, Dang Kim; Thu, Nguyen Thi Kim; Hai, Nguyen Thanh

    2017-05-04

    Background Zingiber officinale Roscoe has been used in traditional medicine for the treatment of neurological disorder. This study aimed to investigate the phenolic contents, antioxidant, acetylcholinesterase enzyme (AChE) inhibitory activities of different fraction of Z. officinale root grown in Vietnam. Methods The roots of Z. officinale are extracted with ethanol 96 % and fractionated with n-hexane, ethyl acetate (EtOAc) and butanol (BuOH) solvents. These fractions evaluated the antioxidant activity by 1,1-Diphenyl -2-picrylhydrazyl (DPPH) assay and AChE inhibitory activity by Ellman's colorimetric method. Results Our data showed that the total phenolic content of EtOAc fraction was highest equivalents to 35.2±1.4 mg quercetin/g of fraction. Our data also demonstrated that EtOAc fraction had the strongest antioxidant activity with IC50 was 8.89±1.37 µg/mL and AChE inhibitory activity with an IC50 value of 22.85±2.37 μg/mL in a dose-dependent manner, followed by BuOH fraction and the n-hexane fraction is the weakest. Detailed kinetic analysis indicated that EtOAc fraction was mixed inhibition type with Ki (representing the affinity of the enzyme and inhibitor) was 30.61±1.43 µg/mL. Conclusions Our results suggest that the EtOAc fraction of Z. officinale may be a promising source of AChE inhibitors for Alzheimer's disease.

  1. Measurement of J/psi production in continuum e(+)e(-) annihilations near square root of s = 10.6 GeV.

    PubMed

    Aubert, B; Boutigny, D; Gaillard, J M; Hicheur, A; Karyotakis, Y; Lees, J P; Robbe, P; Tisserand, V; Palano, A; Chen, G P; Chen, J C; Qi, N D; Rong, G; Wang, P; Zhu, Y S; Eigen, G; Reinertsen, P L; Stugu, B; Abbott, B; Abrams, G S; Borgland, A W; Breon, A B; Brown, D N; Button-Shafer, J; Cahn, R N; Clark, A R; Fan, Q; Gill, M S; Gritsan, A; Groysman, Y; Jacobsen, R G; Kadel, R W; Kadyk, J; Kerth, L T; Kluth, S; Kolomensky, Y G; Kral, J F; LeClerc, C; Levi, M E; Liu, T; Lynch, G; Meyer, A B; Momayezi, M; Oddone, P J; Perazzo, A; Pripstein, M; Roe, N A; Romosan, A; Ronan, M T; Shelkov, V G; Telnov, A V; Wenzel, W A; Bright-Thomas, P G; Harrison, T J; Hawkes, C M; Kirk, A; Knowles, D J; O'Neale, S W; Penny, R C; Watson, A T; Watson, N K; Deppermann, T; Goetzen, K; Koch, H; Krug, J; Kunze, M; Lewandowski, B; Peters, K; Schmuecker, H; Steinke, M; Andress, J C; Barlow, N R; Bhimji, W; Chevalier, N; Clark, P J; Cottingham, W N; De Groot, N; Dyce, N; Foster, B; Mass, A; McFall, J D; Wallom, D; Wilson, F F; Abe, K; Hearty, C; Mattison, T S; McKenna, J A; Thiessen, D; Camanzi, B; Jolly, S; McKemey, A K; Tinslay, J; Blinov, V E; Bukin, A D; Bukin, D A; Buzykaev, A R; Dubrovin, M S; Golubev, V B; Ivanchenko, V N; Korol, A A; Kravchenko, E A; Onuchin, A P; Salnikov, A A; Serednyakov, S I; Skovpen, Y I; Telnov, V I; Yushkov, A N; Best, D; Lankford, A J; Mandelkern, M; McMahon, S; Stoker, D P; Ahsan, A; Arisaka, K; Buchanan, C; Chun, S; Branson, J G; MacFarlane, D B; Prell, S; Rahatlou, S; Raven, G; Sharma, V; Campagnari, C; Dahmes, B; Hart, P A; Kuznetsova, N; Levy, S L; Long, O; Lu, A; Richman, J D; Verkerke, W; Witherell, M; Yellin, S; Beringer, J; Dorfan, D E; Eisner, A M; Frey, A; Grillo, A A; Grothe, M; Heusch, C A; Johnson, R P; Kroeger, W; Lockman, W S; Pulliam, T; Sadrozinski, H; Schalk, T; Schmitz, R E; Schumm, B A; Seiden, A; Turri, M; Walkowiak, W; Williams, D C; Wilson, M G; Chen, E; Dubois-Felsmann, G P; Dvoretskii, A; Hitlin, D G; Metzler, S; Oyang, J; Porter, F C; Ryd, A; Samuel, A; Weaver, M; Yang, S; Zhu, R Y; Devmal, S; Geld, T L; Jayatilleke, S; Mancinelli, G; Meadows, B T; Sokoloff, M D; Bloom, P; Dima, M O; Fahey, S; Ford, W T; Gaede, F; Johnson, D R; Michael, A K; Nauenberg, U; Olivas, A; Park, H; Rankin, P; Roy, J; Sen, S; Smith, J G; van Hoek, W C; Wagner, D L; Blouw, J; Harton, J L; Krishnamurthy, M; Soffer, A; Toki, W H; Wilson, R J; Zhang, J; Brandt, T; Brose, J; Colberg, T; Dahlinger, G; Dickopp, M; Dubitzky, R S; Maly, E; Müller-Pfefferkorn, R; Otto, S; Schubert, K R; Schwierz, R; Spaan, B; Wilden, L; Behr, L; Bernard, D; Bonneaud, G R; Brochard, F; Cohen-Tanugi, J; Ferrag, S; Roussot, E; T'Jampens, S; Thiebaux, C; Vasileiadis, G; Verderi, M; Anjomshoaa, A; Bernet, R; Khan, A; Muheim, F; Playfer, S; Swain, J E; Falbo, M; Borean, C; Bozzi, C; Dittongo, S; Folegani, M; Piemontese, L; Treadwell, E; Anulli, F; Baldini-Ferroli, R; Calcaterra, A; de Sangro, R; Falciai, D; Finocchiaro, G; Patteri, P; Peruzzi, I M; Piccolo, M; Xie, Y; Zallo, A; Bagnasco, S; Buzzo, A; Contri, R; Crosetti, G; Fabbricatore, P; Farinon, S; Lo Vetere, M; Macri, M; Monge, M R; Musenich, R; Pallavicini, M; Parodi, R; Passaggio, S; Pastore, F C; Patrignani, C; Pia, M G; Priano, C; Robutti, E; Santroni, A; Morii, M; Bartoldus, R; Dignan, T; Hamilton, R; Mallik, U; Cochran, J; Crawley, H B; Fischer, P A; Lamsa, J; Meyer, W T; Rosenberg, E I; Benkebil, M; Grosdidier, G; Hast, C; Höcker, A; Lacker, H M; Lepeltier, V; Lutz, A M; Plaszczynski, S; Schune, M H; Trincaz-Duvoid, S; Valassi, A; Wormser, G; Bionta, R M; Brigljević, V; Fackler, O; Fujino, D; Lange, D J; Mugge, M; Shi, X; van Bibber, K; Wenaus, T J; Wright, D M; Wuest, C R; Carroll, M; Fry, J R; Gabathuler, E; Gamet, R; George, M; Kay, M; Payne, D J; Sloane, R J; Touramanis, C; Aspinwall, M L; Bowerman, D A; Dauncey, P D; Egede, U; Eschrich, I; Gunawardane, N J; Martin, R; Nash, J A; Sanders, P; Smith, D; Azzopardi, D E; Back, J J; Dixon, P; Harrison, P F; Potter, R J; Shorthouse, H W; Strother, P; Vidal, P B; Williams, M I; Cowan, G; George, S; Green, M G; Kurup, A; Marker, C E; McGrath, P; McMahon, T R; Ricciardi, S; Salvatore, F; Scott, I; Vaitsas, G; Brown, D; Davis, C L; Allison, J; Barlow, R J; Boyd, J T; Forti, A C; Fullwood, J; Jackson, F; Lafferty, G D; Savvas, N; Simopoulos, E T; Weatherall, J H; Farbin, A; Jawahery, A; Lillard, V; Olsen, J; Roberts, D A; Schieck, J R; Blaylock, G; Dallapiccola, C; Flood, K T; Hertzbach, S S; Kofler, R; Lin, C S; Moore, T B; Staengle, H; Willocq, S; Wittlin, J; Brau, B; Cowan, R; Sciolla, G; Taylor, F; Yamamoto, R K; Britton, D I; Milek, M; Patel, P M; Trischuk, J; Lanni, F; Palombo, F; Bauer, J M; Booke, M; Cremaldi, L; Eschenburg, V; Kroeger, R; Reidy, J; Sanders, D A; Summers, D J; Martin, J P; Nief, J Y; Seitz, R; Taras, P; Zacek, V; Nicholson, H; Sutton, C S; Cartaro, C; Cavallo, N; De Nardo, G; Fabozzi, F; Gatto, C; Lista, L; Paolucci, P; Piccolo, D; Sciacca, C; LoSecco, J M; Alsmiller, J R; Gabriel, T A; Handler, T; Brau, J; Frey, R; Iwasaki, M; Sinev, N B; Strom, D; Colecchia, F; Dal Corso, F; Dorigo, A; Galeazzi, F; Margoni, M; Michelon, G; Morandin, M; Posocco, M; Rotondo, M; Simonetto, F; Stroili, R; Torassa, E; Voci, C; Benayoun, M; Briand, H; Chauveau, J; David, P; de la Vaissière, C; Del Buono, L; Hamon, O; Le Diberder, F; Leruste, P; Lory, J; Roos, L; Stark, J; Versillé, S; Manfredi, P F; Re, V; Speziali, V; Frank, E D; Gladney, L; Guo, Q H; Panetta, J H; Angelini, C; Batignani, G; Bettarini, S; Bondioli, M; Carpinelli, M; Forti, F; Giorgi, M A; Lusiani, A; Martinez-Vidal, F; Morganti, M; Neri, N; Paoloni, E; Rama, M; Rizzo, G; Sandrelli, F; Simi, G; Triggiani, G; Walsh, J; Haire, M; Judd, D; Paick, K; Turnbull, L; Wagoner, D E; Albert, J; Bula, C; Elmer, P; Lu, C; McDonald, K T; Miftakov, V; Schaffner, S F; Smith, A J; Tumanov, A; Varnes, E W; Cavoto, G; del Re, D; Faccini, R; Ferrarotto, F; Ferroni, F; Fratini, K; Lamanna, E; Leonardi, E; Mazzoni, M A; Morganti, S; Piredda, G; Safai Tehrani, F; Serra, M; Voena, C; Christ, S; Waldi, R; Adye, T; Franek, B; Geddes, N I; Gopal, G P; Xella, S M; Aleksan, R; De Domenico, G; Emery, S; Gaidot, A; Ganzhur, S F; Giraud, P F; Hamel de Monchenault, G; Kozanecki, W; Langer, M; London, G W; Mayer, B; Serfass, B; Vasseur, G; Yèche, C; Zito, M; Copty, N; Purohit, M V; Singh, H; Yumiceva, F X; Adam, I; Anthony, P L; Aston, D; Baird, K; Bloom, E; Boyarski, A M; Bulos, F; Calderini, G; Claus, R; Convery, M R; Coupal, D P; Coward, D H; Dorfan, J; Doser, M; Dunwoodie, W; Field, R C; Glanzman, T; Godfrey, G L; Gowdy, S J; Grosso, P; Himel, T; Huffer, M E; Innes, W R; Jessop, C P; Kelsey, M H; Kim, P; Kocian, M L; Langenegger, U; Leith, D W; Luitz, S; Luth, V; Lynch, H L; Manzin, G; Marsiske, H; Menke, S; Messner, R; Moffeit, K C; Mount, R; Muller, D R; O'Grady, C P; Perl, M; Petrak, S; Quinn, H; Ratcliff, B N; Robertson, S H; Rochester, L S; Roodman, A; Schietinger, T; Schindler, R H; Schwiening, J; Serbo, V V; Snyder, A; Soha, A; Spanier, S M; Stahl, A; Stelzer, J; Su, D; Sullivan, M K; Talby, M; Tanaka, H A; Trunov, A; Va'vra, J; Wagner, S R; Weinstein, A J; Wisniewski, W J; Wright, D H; Young, C C; Burchat, P R; Cheng, C H; Kirkby, D; Meyer, T I; Roat, C; Henderson, R; Bugg, W; Cohn, H; Hart, E; Weidemann, A W; Benninger, T; Izen, J M; Kitayama, I; Lou, X C; Turcotte, M; Bianchi, F; Bona, M; Di Girolamo, B; Gamba, D; Smol, A; Zanin, D; Lanceri, L; Pompili, A; Vaugin, G; Panvini, R S; Brown, C M; De Silva, A; Kowalewski, R; Roney, J M; Band, H R; Charles, E; Dasu, S; Di Lodovico, F; Eichenbaum, A M; Hu, H; Johnson, J R; Liu, R; Nielsen, J; Orejudos, W; Pan, Y; Prepost, R; Scott, I J; Sekula, S J; von Wimmersperg-Toeller, J H; Wu, S L; Yu, Z; Zobernig, H; Kordich, T M; Neal, H

    2001-10-15

    The production of J/psi mesons in continuum e(+)e(-) annihilations has been studied with the BABAR detector at energies near the Upsilon(4S) resonance. The mesons are distinguished from J/psi production in B decays through their center-of-mass momentum and energy. We measure the cross section e(+)e(-)-->J/psi X to be 2.52+/-0.21+/-0.21 pb. We set a 90% C.L. upper limit on the branching fraction for direct Upsilon(4S)-->J/psi X decays at 4.7 x 10(-4).

  2. Quality Control and Reproducibility in M-mode, Two-dimensional, and Speckle Tracking Echocardiography Acquisition and Analysis: The CARDIA Study, Year-25 Examination Experience

    PubMed Central

    Armstrong, Anderson C.; Ricketts, Erin P.; Cox, Christopher; Adler, Paul; Arynchyn, Alexander; Liu, Kiang; Stengel, Ellen; RDCS; Sidney, Stephen; Lewis, Cora E.; Schreiner, Pamela J.; Shikany, James M.; Keck, Kimberly; Merlo, Jamie; Gidding, Samuel S.; Lima, João A. C.

    2014-01-01

    Introduction Few large studies describe quality control procedures and reproducibility findings in cardiovascular ultra-sound, particularly in novel techniques such as Speckle Tracking (STE). We evaluate the echocardiography assessment performance in the CARDIA study Y25 examination (2010-2011) and report findings from a quality control and reproducibility program conducted to assess Field Center image acquisition and Reading Center (RC) accuracy. Methods The CARDIA Y25 examination had 3,475 echocardiograms performed in 4 US Field Centers and analyzed in a Reading Center, assessing standard echocardiography (LA dimension, aortic root, LV mass, LV end-diastolic volume [LVEDV], ejection fraction [LVEF]), and STE (2- and 4-chamber longitudinal, circumferential, and radial strains). Reproducibility was assessed using intra-class correlation coefficients (ICC), coefficients of variation (CV), and Bland-Altman plots. Results For standard echocardiography reproducibility, LV mass and LVEDV consistently had CV above 10% and aortic root below 6%. Intra-sonographer aortic root and LV mass had the most robust values of ICC in standard echocardiography. For STE, the number of properly tracking segments was above 80% in short-axis and 4-chamber and 58% in 2-chamber. Longitudinal strain parameters were the most robust and radial strain showed the highest variation. Comparing Field Centers with Echo RC STE readings, mean differences ranged from 0.4% to 4.1% and ICC from 0.37 to 0.66, with robust results for longitudinal strains. Conclusion Echocardiography image acquisition and reading processes in the CARDIA study were highly reproducible, including robust results for STE analysis. Consistent quality control may increase the reliability of echocardiography measurements in large cohort studies. PMID:25382818

  3. Quality Control and Reproducibility in M-Mode, Two-Dimensional, and Speckle Tracking Echocardiography Acquisition and Analysis: The CARDIA Study, Year 25 Examination Experience.

    PubMed

    Armstrong, Anderson C; Ricketts, Erin P; Cox, Christopher; Adler, Paul; Arynchyn, Alexander; Liu, Kiang; Stengel, Ellen; Sidney, Stephen; Lewis, Cora E; Schreiner, Pamela J; Shikany, James M; Keck, Kimberly; Merlo, Jamie; Gidding, Samuel S; Lima, João A C

    2015-08-01

    Few large studies describe quality control procedures and reproducibility findings in cardiovascular ultrasound, particularly in novel techniques such as speckle tracking echocardiography (STE). We evaluate the echocardiography assessment performance in the Coronary Artery Risk Development in Young Adults (CARDIA) study Year 25 (Y25) examination (2010-2011) and report findings from a quality control and reproducibility program conducted to assess Field Center image acquisition and reading center (RC) accuracy. The CARDIA Y25 examination had 3475 echocardiograms performed in 4 US Field Centers and analyzed in a RC, assessing standard echocardiography (LA dimension, aortic root, LV mass, LV end-diastolic volume [LVEDV], ejection fraction [LVEF]), and STE (two- and four-chamber longitudinal, circumferential, and radial strains). Reproducibility was assessed using intraclass correlation coefficients (ICC), coefficients of variation (CV), and Bland-Altman plots. For standard echocardiography reproducibility, LV mass and LVEDV consistently had CV above 10% and aortic root below 6%. Intra-sonographer aortic root and LV mass had the most robust values of ICC in standard echocardiography. For STE, the number of properly tracking segments was above 80% in short-axis and four-chamber and 58% in two-chamber views. Longitudinal strain parameters were the most robust and radial strain showed the highest variation. Comparing Field Centers with echocardiography RC STE readings, mean differences ranged from 0.4% to 4.1% and ICC from 0.37 to 0.66, with robust results for longitudinal strains. Echocardiography image acquisition and reading processes in the CARDIA study were highly reproducible, including robust results for STE analysis. Consistent quality control may increase the reliability of echocardiography measurements in large cohort studies. © 2014, Wiley Periodicals, Inc.

  4. Zinc isotopic fractionation in Phragmites australis in response to toxic levels of zinc

    PubMed Central

    Caldelas, Cristina; Dong, Shuofei; Araus, José Luis; Jakob Weiss, Dominik

    2011-01-01

    Stable isotope signatures of Zn have shown great promise in elucidating changes in uptake and translocation mechanisms of this metal in plants during environmental changes. Here this potential was tested by investigating the effect of high Zn concentrations on the isotopic fractionation patterns of Phragmites australis (Cav.) Trin. ex Steud. Plants were grown for 40 d in a nutritive solution containing 3.2 μM (sufficient) or 2 mM (toxic) Zn. The Zn isotopic composition of roots, rhizomes, shoots, and leaves was analysed. Stems and leaves were sampled at different heights to evaluate the effect of long-distance transport on Zn fractionation. During Zn sufficiency, roots, rhizomes, and shoots were isotopically heavy (δ66ZnJMC Lyon=0.2‰) while the youngest leaves were isotopically light (–0.5‰). During Zn excess, roots were still isotopically heavier (δ66Zn=0.5‰) and the rest of the plant was isotopically light (up to –0.5‰). The enrichment of heavy isotopes at the roots was attributed to Zn uptake mediated by transporter proteins under Zn-sufficient conditions and to chelation and compartmentation in Zn excess. The isotopically lighter Zn in shoots and leaves is consistent with long-distance root to shoot transport. The tolerance response of P. australis increased the range of Zn fractionation within the plant and with respect to the environment. PMID:21193582

  5. The fractional Fourier transform and applications

    NASA Technical Reports Server (NTRS)

    Bailey, David H.; Swarztrauber, Paul N.

    1991-01-01

    This paper describes the 'fractional Fourier transform', which admits computation by an algorithm that has complexity proportional to the fast Fourier transform algorithm. Whereas the discrete Fourier transform (DFT) is based on integral roots of unity e exp -2(pi)i/n, the fractional Fourier transform is based on fractional roots of unity e exp -2(pi)i(alpha), where alpha is arbitrary. The fractional Fourier transform and the corresponding fast algorithm are useful for such applications as computing DFTs of sequences with prime lengths, computing DFTs of sparse sequences, analyzing sequences with noninteger periodicities, performing high-resolution trigonometric interpolation, detecting lines in noisy images, and detecting signals with linearly drifting frequencies. In many cases, the resulting algorithms are faster by arbitrarily large factors than conventional techniques.

  6. Below and above-ground carbon distribution along a rainfall gradient. A case of the Zambezi teak forests, Zambia

    NASA Astrophysics Data System (ADS)

    Ngoma, Justine; Moors, Eddy; Kruijt, Bart; Speer, James H.; Vinya, Royd; Chidumayo, Emmanuel N.; Leemans, Rik

    2018-02-01

    Understanding carbon (C) stocks or biomass in forests is important to examine how forests mitigate climate change. To estimate biomass in stems, branches and roots takes intensive fieldwork to uproot, cut and weigh the mass of each component. Different models or equations are also required. Our research focussed on the dry tropical Zambezi teak forests and we studied their structure at three sites following a rainfall gradient in Zambia. We sampled 3558 trees at 42 plots covering a combined area of 15ha. Using data from destructive tree samples, we developed mixed-species biomass models to estimate above ground biomass for small (<5 cm diameter at breast height (DBH, 1.3 m above-ground)) and large (≥5 cm DBH) trees involving 90 and 104 trees respectively, that belonged to 12 species. A below-ground biomass model was developed from seven trees of three species (16-44 cm DBH) whose complete root systems were excavated. Three stump models were also derived from these uprooted trees. Finally, we determined the C fractions from 194 trees that belonged to 12 species. The analysis revealed that DBH was the only predictor that significantly correlated to both above-ground and below-ground biomass. We found a mean root-to-shoot ratio of 0.38:0.62. The C fraction in leaves ranged from 39% to 42%, while it varied between 41% and 46% in wood. The C fraction was highest at the Kabompo site that received the highest rainfall, and lowest at the intermediate Namwala site. The C stocks varied between 15 and 36 ton C ha-1 and these stocks where highest at the wetter Kabompo site and lowest at the drier Sesheke site. Our results indicate that the projected future rainfall decrease for southern Africa, will likely reduce the C storage potential of the Zambezi teak forests, thereby adversely affecting their mitigating role in climate change.

  7. Root development during soil genesis: effects of root-root interactions, mycorrhizae, and substrate

    NASA Astrophysics Data System (ADS)

    Salinas, A.; Zaharescu, D. G.

    2015-12-01

    A major driver of soil formation is the colonization and transformation of rock by plants and associated microbiota. In turn, substrate chemical composition can also influence the capacity for plant colonization and development. In order to better define these relationships, a mesocosm study was set up to analyze the effect mycorrhizal fungi, plant density and rock have on root development, and to determine the effect of root morphology on weathering and soil formation. We hypothesized that plant-plant and plant-fungi interactions have a stronger influence on root architecture and rock weathering than the substrate composition alone. Buffalo grass (Bouteloua dactyloides) was grown in a controlled environment in columns filled with either granular granite, schist, rhyolite or basalt. Each substrate was given two different treatments, including grass-microbes and grass-microbes-mycorrhizae and incubated for 120, 240, and 480 days. Columns were then extracted and analyzed for root morphology, fine fraction, and pore water major element content. Preliminary results showed that plants produced more biomass in rhyolite, followed by schist, basalt, and granite, indicating that substrate composition is an important driver of root development. In support of our hypothesis, mycorrhizae was a strong driver of root development by stimulating length growth, biomass production, and branching. However, average root length and branching also appeared to decrease in response to high plant density, though this trend was only present among roots with mycorrhizal fungi. Interestingly, fine fraction production was negatively correlated with average root thickness and volume. There is also slight evidence indicating that fine fraction production is more related to substrate composition than root morphology, though this data needs to be further analyzed. Our hope is that the results of this study can one day be applied to agricultural research in order to promote the production of crops on traditionally un-arable land.

  8. Antibacterial and synergistic effects of the n-BuOH fraction of Sophora flavescens root against oral bacteria.

    PubMed

    Lee, Kyung-Yeol; Cha, Su-Mi; Choi, Sung-Mi; Cha, Jeong-Dan

    2017-01-01

    The antibacterial activity of an extract and several fractions of Sophora flavescens (S. flavescens) root alone and in combination with antibiotics against oral bacteria was investigated by checkerboard assay and time-kill assay. The minimum inhibitory concentration/minimum bactericidal concentration (MIC/MBC) values for all examined bacteria were 0.313-2.5/0.625-2.5 μg/mL for the n-BuOH fraction, 0.625-5/1.25-10 μg/mL for the EtOAc fraction, 0.25-8/0.25-16 μg/mL for ampicillin, 0.5-256/1-512 μg/mL for gentamicin, 0.008-32/0.016-64 μg/mL for erythromycin, and 0.25-64/0.5-128 μg/mL for vancomycin. The n-butanol (n-BuOH) and ethyl acetate (EtOAc) fractions exhibited stronger antibacterial activity against oral bacteria than other fractions and extracts. The MICs and MBCs were reduced to between one half and one quarter when the n-BuOH and EtOAc fractions were combined with antibiotics. After 24 h of incubation, combination of 1/2 MIC of the n-BuOH fraction with antibiotics increased the degree of bactericidal activity. The present results suggest that n-BuOH and EtOAc extracts of S. flavescens root might be applicable as new natural antimicrobial agents against oral pathogens.

  9. Identifying Glacial Meltwater in the Amundsen Sea, Antarctica

    NASA Astrophysics Data System (ADS)

    Biddle, L. C.; Heywood, K. J.; Jenkins, A.; Kaiser, J.

    2016-02-01

    Pine Island Glacier, located in the Amundsen Sea, is losing mass rapidly due to relatively warm ocean waters melting its ice shelf from below. The resulting increase in meltwater production may be the root of the freshening in the Ross Sea over the last 30 years. Tracing the meltwater travelling away from the ice sheets is important in order to identify the regions most affected by the increased input of this water type. We use water mass characteristics (temperature, salinity, O2 concentration) derived from 105 CTD casts during the Ocean2ice cruise on RRS James Clark Ross in January-March 2014 to calculate meltwater fractions north of Pine Island Glacier. The data show maximum meltwater fractions at the ice front of up to 2.4 % and a plume of meltwater travelling away from the ice front along the 1027.7 kg m-3 isopycnal. We investigate the reliability of these results and attach uncertainties to the measurements made to ascertain the most reliable method of meltwater calculation in the Amundsen Sea. Processes such as atmospheric interaction and biological activity also affect the calculated apparent meltwater fractions. We analyse their effects on the reliability of the calculated meltwater fractions across the region using a bulk mixed layer model based on the one-dimensional Price-Weller-Pinkel model (Price et al., 1986). The model includes sea ice, dissolved oxygen concentrations and a simple respiration model, forced by NCEP climatology and an initial linear mixing profile between Winter Water (WW) and Circumpolar Deep Water (CDW). The model mimics the seasonal cycle of mixed layer warming and freshening and simulates how increases in sea ice formation and the influx of slightly cooler Lower CDW impact on the apparent meltwater fractions. These processes could result in biased meltwater signatures across the eastern Amundsen Sea.

  10. Identifying glacial meltwater in the Amundsen Sea, Antarctica

    NASA Astrophysics Data System (ADS)

    Biddle, Louise; Heywood, Karen; Jenkins, Adrian; Kaiser, Jan

    2016-04-01

    Pine Island Glacier, located in the Amundsen Sea, is losing mass rapidly due to relatively warm ocean waters melting its ice shelf from below. The resulting increase in meltwater production may be the root of the freshening in the Ross Sea over the last 30 years. Tracing the meltwater travelling away from the ice sheets is important in order to identify the regions most affected by the increased input of this water type. We use water mass characteristics (temperature, salinity, O2 concentration) derived from 105 CTD casts during the Ocean2ice cruise on RRS James Clark Ross in January-March 2014 to calculate meltwater fractions north of Pine Island Glacier. The data show maximum meltwater fractions at the ice front of up to 2.4 % and a plume of meltwater travelling away from the ice front along the 1027.7 kg m-3 isopycnal. We investigate the reliability of these results and attach uncertainties to the measurements made to ascertain the most reliable method of meltwater calculation in the Amundsen Sea. Processes such as atmospheric interaction and biological activity also affect the calculated apparent meltwater fractions. We analyse their effects on the reliability of the calculated meltwater fractions across the region using a bulk mixed layer model based on the one-dimensional Price-Weller-Pinkel model (1986). The model includes sea ice, dissolved oxygen concentrations and a simple respiration model, forced by NCEP climatology and an initial linear mixing profile between Winter Water (WW) and Circumpolar Deep Water (CDW). The model mimics the seasonal cycle of mixed layer warming and freshening and simulates how increases in sea ice formation and the influx of slightly cooler Lower CDW impact on the apparent meltwater fractions. These processes could result in biased meltwater signatures across the eastern Amundsen Sea.

  11. Adaptogenic activity of a novel, withanolide-free aqueous fraction from the roots of Withania somnifera Dun.

    PubMed

    Singh, B; Saxena, A K; Chandan, B K; Gupta, D K; Bhutani, K K; Anand, K K

    2001-06-01

    The practitioners of the traditional Indian system of medicine regard Withania somnifera Dun. as the 'Indian ginseng'. A new withanolide-free aqueous fraction was isolated from the roots of this plant and was evaluated for putative antistress activity against a battery of tests such as hypoxia time, antifatigue effect, swimming performance time, swimming induced gastric ulceration and hypothermia, immobilization induced gastric ulceration, autoanalgesia and biochemical changes in the adrenal glands. This bioactive fraction exhibited significant antistress activity in a dose-related manner in all the parameters studied. The extract of Withania somnifera root (a commercial preparation available locally) was used to compare the results. A preliminary acute toxicity study in mice showed a good margin of safety. Copyright 2001 John Wiley & Sons, Ltd.

  12. Latent nitrate reductase activity is associated with the plasma membrane of corn roots

    NASA Technical Reports Server (NTRS)

    Ward, M. R.; Grimes, H. D.; Huffaker, R. C.

    1989-01-01

    Latent nitrate reductase activity (NRA) was detected in corn (Zea mays L., Golden Jubilee) root microsome fractions. Microsome-associated NRA was stimulated up to 20-fold by Triton X-100 (octylphenoxy polyethoxyethanol) whereas soluble NRA was only increased up to 1.2-fold. Microsome-associated NRA represented up to 19% of the total root NRA. Analysis of microsomal fractions by aqueous two-phase partitioning showed that the membrane-associated NRA was localized in the second upper phase (U2). Analysis with marker enzymes indicated that the U2 fraction was plasma membrane (PM). The PM-associated NRA was not removed by washing vesicles with up to 1.0 M NACl but was solubilized from the PM with 0.05% Triton X-100. In contrast, vanadate-sensitive ATPase activity was not solubilized from the PM by treatment with 0.1% Triton X-100. The results show that a protein capable of reducing nitrate is embedded in the hydrophobic region of the PM of corn roots.

  13. Litter type control on soil C and N stabilization dynamics in a temperate forest.

    PubMed

    Hatton, Pierre-Joseph; Castanha, Cristina; Torn, Margaret S; Bird, Jeffrey A

    2015-03-01

    While plant litters are the main source of soil organic matter (SOM) in forests, the controllers and pathways to stable SOM formation remain unclear. Here, we address how litter type ((13) C/(15) N-labeled needles vs. fine roots) and placement-depth (O vs. A horizon) affect in situ C and N dynamics in a temperate forest soil after 5 years. Litter type rather than placement-depth controlled soil C and N retention after 5 years in situ, with belowground fine root inputs greatly enhancing soil C (x1.4) and N (x1.2) retention compared with aboveground needles. While the proportions of added needle and fine root-derived C and N recovered into stable SOM fractions were similar, they followed different transformation pathways into stable SOM fractions: fine root transfer was slower than for needles, but proportionally more of the remaining needle-derived C and N was transferred into stable SOM fractions. The stoichiometry of litter-derived C vs. N within individual SOM fractions revealed the presence at least two pools of different turnover times (per SOM fraction) and emphasized the role of N-rich compounds for long-term persistence. Finally, a regression approach suggested that models may underestimate soil C retention from litter with fast decomposition rates. © 2014 John Wiley & Sons Ltd.

  14. Cosmic web type dependence of halo clustering

    NASA Astrophysics Data System (ADS)

    Fisher, J. D.; Faltenbacher, A.

    2018-01-01

    We use the Millennium Simulation to show that halo clustering varies significantly with cosmic web type. Haloes are classified as node, filament, sheet and void haloes based on the eigenvalue decomposition of the velocity shear tensor. The velocity field is sampled by the peculiar velocities of a fixed number of neighbouring haloes, and spatial derivatives are computed using a kernel borrowed from smoothed particle hydrodynamics. The classification scheme is used to examine the clustering of haloes as a function of web type for haloes with masses larger than 1011 h- 1 M⊙. We find that node haloes show positive bias, filament haloes show negligible bias and void and sheet haloes are antibiased independent of halo mass. Our findings suggest that the mass dependence of halo clustering is rooted in the composition of web types as a function of halo mass. The substantial fraction of node-type haloes for halo masses ≳ 2 × 1013 h- 1 M⊙ leads to positive bias. Filament-type haloes prevail at intermediate masses, 1012-1013 h- 1 M⊙, resulting in unbiased clustering. The large contribution of sheet-type haloes at low halo masses ≲ 1012 h- 1 M⊙ generates antibiasing.

  15. Correlating Humidity-Dependent Ionically Conductive Surface Area with Transport Phenomena in Proton-Exchange Membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Qinggang; Kusoglu, Ahmet; Lucas, Ivan T.

    2011-08-01

    The objective of this effort was to correlate the local surface ionic conductance of a Nafion? 212 proton-exchange membrane with its bulk and interfacial transport properties as a function of water content. Both macroscopic and microscopic proton conductivities were investigated at different relative humidity levels, using electrochemical impedance spectroscopy and current-sensing atomic force microscopy (CSAFM). We were able to identify small ion-conducting domains that grew with humidity at the surface of the membrane. Numerical analysis of the surface ionic conductance images recorded at various relative humidity levels helped determine the fractional area of ion-conducting active sites. A simple square-root relationshipmore » between the fractional conducting area and observed interfacial mass-transport resistance was established. Furthermore, the relationship between the bulk ionic conductivity and surface ionic conductance pattern of the Nafion? membrane was examined.« less

  16. Effects of cold plasma treatment on alfalfa seed growth under simulated drought stress

    NASA Astrophysics Data System (ADS)

    Jinkui, FENG; Decheng, WANG; Changyong, SHAO; Lili, ZHANG; Xin, TANG

    2018-03-01

    The effect of different cold plasma treatments on the germination and seedling growth of alfalfa (Medicago sativa L.) seeds under simulated drought stress conditions was investigated. Polyethyleneglycol-6000 (PEG 6000)with the mass fraction of 0% (purified water), 5%, 10%, and 15% were applied to simulate the drought environment. The alfalfa seeds were treated with 15 different power levels ranged between 0-280 W for 15 s. The germination potential, germination rate, germination index, seedling root length, seedling height, and vigor index were investigated. Results indicated significant differences between treated with proper power and untreated alfalfa seeds. With the increase of treatment power, these indexes mentioned above almost presented bimodal curves. Under the different mass fractions of PEG 6000, results showed that the lower power led to increased germination, and the seedlings presented good adaptability to different drought conditions. Meanwhile, higher power levels resulted in a decreased germination rate. Seeds treated with 40 W resulted in higher germination potential, germination rate, seedling height, root length, and vigor index. Vigor indexes of the treated seeds under different PEG 6000 stresses increased by 38.68%, 43.91%, 74.34%, and 39.20% respectively compared to CK0-0, CK5-0, CK10-0, and CK15-0 (the control sample under 0%, 5%, 10%, and 15% PEG 6000). Therefore, 40 W was regarded as the best treatment in this research. Although the trend indexes of alfalfa seeds treated with the same power were statistically the same under different PEG 6000 stresses, the cold plasma treatment had a significant effect on the adaptability of alfalfa seeds in different drought environments. Thus, this kind of treatment is worth implementing to promote seed growth under drought situations.

  17. Silicon Isotope Fractionation by Banana Under Continuous Nutrient and Silica Flux

    NASA Astrophysics Data System (ADS)

    Opfergelt, S.; Cardinal, D.; Henriet, C.; Delvaux, B.; André, L.

    2004-12-01

    Silicon is absorbed by plants as aqueous H4SiO4 with other essential nutrients, and precipitates in aerial parts of the plant as phytolith, a biogenic opal. Phytoliths are restored to the soil by decomposition of organic debris from plant material. The role of higher plants in the biogeochemical cycle of silicon is therefore major although it is still poorly studied. Biomineralization processes are known to fractionate the three stable silicon isotopes with a preferential uptake of light isotopes. Therefore, following some preliminary results from Douthitt (1982), and studies presented in recent conferences (Ziegler et al., 2002; Ding et al., 2003), we suspect that phytolith production by plants could also fractionate the silicon isotopes. Inversely, intensity of phytolith-related isotopic fractionations might contribute to a better understanding of the soil-plant silicon cycle. Our study focused on banana, a silicon accumulating plant (>1% Si, dry weight).Musa acuminata cv Grande Naine has been grown in hydroponics under controlled conditions (light, temperature, humidity, nutrients) during six weeks. The nutrient supply was kept constant: three batches of five plants were grown with a continuous nutrient solution flow of 5, 50 and 100 ppm SiO2 respectively. Si isotopic compositions were measured in the source solution, and in silica extracted from the various parts of banana (roots, pseudostems, midribs and petioles, leaves), using a Nu Plasma multicollector mass spectrometer (MC-ICP-MS) operating in dry plasma mode. The results are expressed as δ 29Si relatively to the NBS28 standard, with an average precision of ± 0.03‰ . Silicon contents and morphological studies of phytoliths were also achieved. Banana δ 29Si varied between -0.18 and -0.76‰ with a source solution at -0.02‰ . Values of δ 29Si were less fractionated, relatively to the nutrient solution, in roots, where no phytoliths have been observed until now, than in upper parts of banana where phytoliths were clearly abundant as long chain of typical cone shaped morphotypes truncated saddle-like. The bulk isotopic composition of the leaves in the five plants grown at 100 ppm SiO2 displayed a homogeneous negative signature (-0.44 ± 0.08‰ ) indicating a small inter-specimen variability. The difference between δ 29Si in roots and in upper parts of the plant was much larger with a silica offer of 100 ppm SiO2 (0.58‰ ) than with 50 ppm SiO2 (0.08‰ ). However, silicon isotope fractionation in leaves was not affected by a change in Si supply. Our preliminary results show that biomineralization of silica in bananas fractionates silicon isotopes in a similar extent as marine diatoms.

  18. In Vivo Antimalarial Activity of the Solvent Fractions of Fruit Rind and Root of Carica papaya Linn (Caricaceae) against Plasmodium berghei in Mice

    PubMed Central

    Kebebe, Dereje; Mulisa, Eshetu; Gashe, Fanta

    2017-01-01

    Background Currently, antimalarial drug resistance poses a serious challenge. This stresses the need for newer antimalarial compounds. Carica papaya is used traditionally and showed in vitro antimalarial activity. This study attempted to evaluate in vivo antimalarial activity of C. papaya in mice. Methods In vivo antimalarial activity of solvent fractions of the plant was carried out against early P. berghei infection in mice. Parasitemia, temperature, PCV, and body weight of mice were recorded. Windows SPSS version 16 (one-way ANOVA followed by Tukey's post hoc test) was used for data analysis. Results The pet ether and chloroform fractions of C. papaya fruit rind and root produced a significant (p < 0.001) chemosuppressive effect. A maximum parasite suppression of 61.78% was produced by pet ether fraction of C. papaya fruit rind in the highest dose (400 mg/kg/day). Only 400 mg/kg/day dose of chloroform fraction of C. papaya root exhibited a parasite suppression effect (48.11%). But, methanol fraction of the plant parts produced less chemosuppressive effect. Conclusion Pet ether fraction of C. papaya fruit rind had the highest antimalarial activity and could be a potential source of lead compound. Further study should be done to show the chemical and metabolomic profile of active ingredients. PMID:29391947

  19. In vitro cytotoxicity of nonpolar constituents from different parts of kava plant (Piper methysticum).

    PubMed

    Jhoo, Jin-Woo; Freeman, James P; Heinze, Thomas M; Moody, Joanna D; Schnackenberg, Laura K; Beger, Richard D; Dragull, Klaus; Tang, Chung-Shih; Ang, Catharina Y W

    2006-04-19

    Kava (Piper methysticum), a perennial shrub native to the South Pacific islands, has been used to relieve anxiety. Recently, several cases of severe hepatotoxicity have been reported from the consumption of dietary supplements containing kava. It is unclear whether the kava constituents, kavalactones, are responsible for the associated hepatotoxicity. To investigate the key components responsible for the liver toxicity, bioassay-guided fractionation was carried out in this study. Kava roots, leaves, and stem peelings were extracted with methanol, and the resulting residues were subjected to partition with a different polarity of solvents (hexane, ethyl acetate, n-butanol, and water) for evaluation of their cytotoxicity on HepG2 cells based on the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and lactate dehydrogenase and aspartate aminotransferase enzyme leakage assays. Organic solvent fractions displayed a much stronger cytotoxicity than water fractions for all parts of kava. The hexane fraction of the root exhibited stronger cytotoxic effects than fractions of root extracted with other solvents or extracts from the other parts of kava. Further investigations using bioassay-directed isolation and analysis of the hexane fraction indicated that the compound responsible for the cytotoxicity was flavokavain B. The identity of the compound was confirmed by (1)H and (13) C NMR and MS techniques.

  20. Extraction and Isolation of Antineoplastic Pristimerin from Mortonia greggii (Celastraceae).

    PubMed

    Mejia-Manzano, Luis Alberto; Barba-Dávila, Bertha A; Gutierrez-Uribe, Janet A; Escalante-Vázquez, Edgardo J; Serna-Saldivar, Sergio O

    2015-11-01

    The aim of this research was to identify, extract and isolate pristimerin in leaves, stems and roots of the Mexican plant Mortonia greggii (Celastraceae). The principal objective was to determine the best laboratory experimental conditions for the extraction and isolation of this powerful natural anticancer agent from the root tissue. Six experimental factors in solid-liquid pristimerin extraction were analyzed: solvent systems, number of extractions, ratio of plant weight (g)/solvent volume (mL) used, time of extraction, temperature and agitation. A mathematical model was generated for pristimerin purity and yield. Ethanol, first extraction, 0.5 ratio of plant weight/solvent volume (g/mL), 0.5 h, 200 rpm and 49.7°C were optimal conditions for the extraction of this phytochemical. The degree of purification of pristimerin root extract was studied by size-exclusion chromatography (SEC) using Sephadex LH-20 reaching fractions with purification indexes (PI) greater than 2 and recoveries of 28.3%. When fractions with purification indices higher than 1 and less than 2 were accumulated, the recovery of pristimerin increased by about 73.6%. By combining the optimum extracts and SEC purification protocols, an enriched fraction containing 245.6 mg pristimerin was obtained from 100 g of root bark, representing about 14.4%, w/w, pristimerin from the total solids presented in the fraction.

  1. Antibacterial activities of the methanol extracts, fractions and compounds from Fagara tessmannii.

    PubMed

    Tankeo, Simplice B; Damen, Francois; Awouafack, Maurice D; Mpetga, James; Tane, Pierre; Eloff, Jacobus N; Kuete, Victor

    2015-07-01

    Fagara tessmannii is a shrub of the African rainforests used to treat bacterial infections, cancers, swellings and inflammation. In the present study, the methanol extract from the leaves (FTL), bark (FTB), and roots (FTR) of this plant as well as fractions (FTR1-5) and compounds isolated from FTR namely β-sitosterol-3-O-β-d-glucopyranoside (1), nitidine chloride (2) and buesgenine (3), were tested for their antimicrobial activities against a panel of Gram-negative bacteria including multidrug resistant (MDR) phenotypes. The broth microdilution method was used to determine the minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) of the above samples; Column chromatography was used for the fractionation and purification of the roots extract whilst the chemical structures of compounds were determined using spectroscopic techniques. Results of the MIC determinations indicated that the crude extracts from the roots as well as fraction FTRa4 were active on all the 26 tested bacterial strains. MIC values below 100µg/mL were obtained with roots, leaves and bark extract respectively against 30.8%, 15.4% and 11.5% tested bacteria. The lowest MIC value below of 8µg/mL was obtained with extract from the roots against Escherichia coli MC100 strain. The lowest MIC value of 4µg/mL was also obtained with compound 3 against E. coli AG102 and Klebsiella pneumoniae ATCC11296 CONCLUSIONS: The present study demonstrates that F. tessmannii is a potential source of antimicrobial drugs to fight against MDR bacteria. Benzophenanthrine alkaloids 2 and 3 are the main antibacterial consituents of the roots of the plant. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  2. Inherent and environmental patterns in biomass allocation and allometry among higher plants

    NASA Astrophysics Data System (ADS)

    Poorter, Hendrik

    2017-04-01

    It is well-known that plants may adjust the distribution of biomass over leaves, stems and roots depending on environmental conditions. It is also clear that size is an important factor as well. However, good quantitative insights are lacking. In this talk I analyse biomass allocation patterns to leaves, stems and roots of herbs and woody species. A database was compiled with 11.000 records of leaf, stem and root biomass for 1200 species. First, I'll derive general dose-response curves that describe the relationship between biomass allocation and the 12 most important a-biotic environmental factors and compare them with the changes in leaf, stem and root morphology. Second, I'll focus on allometric relationships between the various organs and test to what extent they comply with models like that for Metabolic Scaling Theory, where the slope of the log-log relationship between leaf and root biomass is expected to have a value of ¾. Third, I analyse how leaf, stem and root mass fractions change as a function of total plant size. This offers a great opportunity to test to what extent there are systematic differences in allocation patterns related to phylogeny (e.g. Gymnosperms vs. Angiosperms, grasses vs. herbaceous dicots) and functional group (e.g. deciduous vs. evergreens). Poorter et al. (2012) Biomass allocation to leaves, stems and roots: meta-analyses of interspecific variation and environmental control. New Phytol. 193: 30-50. Poorter & Sack (2012) Pitfalls and possibilities in the analysis of biomass allocation patterns in plants. Front. Plant Sci. 3: 259. Poorter et al. (2015) How does biomass distribution change with size and differ among species? New Phytol. 208: 736-749

  3. Elucidation of in-vitro anti-inflammatory bioactive compounds isolated from Jatropha curcas L. plant root.

    PubMed

    Othman, Ahmad Razi; Abdullah, Norhani; Ahmad, Syahida; Ismail, Intan Safinar; Zakaria, Mohamad Pauzi

    2015-02-05

    The Jatropha curcas plant or locally known as "Pokok Jarak" has been widely used in traditional medical applications. This plant is used to treat various conditions such as arthritis, gout, jaundice, wound and inflammation. However, the nature of compounds involved has not been well documented. Hence, this study was conducted to investigate the anti-inflammatory activity of different parts of J. curcas plant and to identify the active compounds involved. In this study, methanol (80%) extraction of four different parts (leaves, fruits, stem and root) of J. curcas plant was carried out. Phenolic content of each part was determined by using Folin-Ciocalteau reagent. Gallic acid was used as the phenol standard. Each plant part was screened for anti-inflammatory activity using cultured macrophage RAW 264.7 cells. The active plant part was then partitioned with hexane, chloroform, ethyl acetate and water. Each partition was again screened for anti-inflammatory activity. The active partition was then fractionated using an open column chromatography system. Single spots isolated from column chromatography were assayed for anti-inflammatory and cytotoxicity activities. Spots that showed activity were subjected to gas chromatography mass spectrophotometry (GC-MS) analysis for identification of active metabolites. The hexane partition from root extract showed the highest anti-inflammatory activity. However, it also showed high cytotoxicity towards RAW 264.7 cells at 1 mg/mL. Fractionation process using column chromatography showed five spots. Two spots labeled as H-4 and H-5 possessed anti-inflammatory activity, without cytotoxicity activity. Analysis of both spots by GC-MS showed the presence of hexadecanoic acid methyl ester, octadecanoic acid methyl ester and octadecanoic acid. This finding suggests that hexadecanoic acid methyl ester, octadecanoic acid methyl ester and octadecanoic acid could be responsible for the anti-inflammatory activity of the J. curcas root extract.

  4. Classroom Modified Split-Root Technique and Its Application in a Plant Habitat Selection Experiment at the College Level

    ERIC Educational Resources Information Center

    Elliott, Shannon S.; Winter, Peggy A.

    2011-01-01

    The split-root technique produces a plant with two equal root masses. Traditionally, the two root masses of the single plant are cultivated in adjacent pots with or without roots from competitors for the purpose of elucidating habitat preferences. We have tailored this technology for the classroom, adjusting protocols to match resources and time…

  5. In vitro anthelmintic effects of Spigelia anthelmia protein fractions against Haemonchus contortus.

    PubMed

    Araújo, Sandra Alves; Soares, Alexandra Martins Dos Santos; Silva, Carolina Rocha; Almeida Júnior, Eduardo Bezerra; Rocha, Cláudia Quintino; Ferreira, André Teixeira da Silva; Perales, Jonas; Costa-Júnior, Livio M

    2017-01-01

    Gastrointestinal nematodes are a significant concern for animal health and well-being, and anthelmintic treatment is mainly performed through the use of chemical products. However, bioactive compounds produced by plants have shown promise for development as novel anthelmintics. The aim of this study is to assess the anthelmintic activity of protein fractions from Spigelia anthelmia on the gastrointestinal nematode Haemonchus contortus. Plant parts were separated into leaves, stems and roots, washed with distilled water, freeze-dried and ground into a fine powder. Protein extraction was performed with sodium phosphate buffer (75 mM, pH 7.0). The extract was fractionated using ammonium sulfate (0-90%) and extensively dialyzed. The resulting fractions were named LPF (leaf protein fraction), SPF (stem protein fraction) and RPF (root protein fraction), and the protein contents and activities of the fractions were analyzed. H. contortus egg hatching (EHA), larval exsheathment inhibition (LEIA) and larval migration inhibition (LMIA) assays were performed. Proteomic analysis was conducted, and high-performance liquid chromatography (HPLC) chromatographic profiles of the fractions were established to identify proteins and possible secondary metabolites. S. anthelmia fractions inhibited H. contortus egg hatching, with LPF having the most potent effects (EC50 0.17 mg mL-1). During LEIA, SPF presented greater efficiency than the other fractions (EC50 0.25 mg mL-1). According to LMIA, the fractions from roots, stems and leaves also reduced the number of larvae, with EC50 values of 0.11, 0.14 and 0.21 mg mL-1, respectively. Protein analysis indicated the presence of plant defense proteins in the S. anthelmia fractions, including protease, protease inhibitor, chitinase and others. Conversely, secondary metabolites were absent in the S. anthemia fractions. These results suggest that S. anthelmia proteins are promising for the control of the gastrointestinal nematode H. contortus.

  6. Silicon isotope fractionation in bamboo and its significance to the biogeochemical cycle of silicon

    NASA Astrophysics Data System (ADS)

    Ding, T. P.; Zhou, J. X.; Wan, D. F.; Chen, Z. Y.; Wang, C. Y.; Zhang, F.

    2008-03-01

    A systematic investigation on silica contents and silicon isotope compositions of bamboos was undertaken. Seven bamboo plants and related soils were collected from seven locations in China. The roots, stem, branch and leaves for each plant were sampled and their silica contents and silicon isotope compositions were determined. The silica contents and silicon isotope compositions of bulk and water-soluble fraction of soils were also measured. The silica contents of studied bamboo organs vary from 0.30% to 9.95%. Within bamboo plant the silica contents show an increasing trend from stem, through branch, to leaves. In bamboo roots the silica is exclusively in the endodermis cells, but in stem, branch and leaves, the silica is accumulated mainly in epidermal cells. The silicon isotope compositions of bamboos exhibit significant variation, from -2.3‰ to 1.8‰, and large and systematic silicon isotope fractionation was observed within each bamboo. The δ 30Si values decrease from roots to stem, but then increase from stem, through branch, to leaves. The ranges of δ 30Si values within each bamboo vary from 1.0‰ to 3.3‰. Considering the total range of silicon isotope composition in terrestrial samples is only 7‰, the observed silicon isotope variation in single bamboo is significant and remarkable. This kind of silicon isotope variation might be caused by isotope fractionation in a Rayleigh process when SiO 2 precipitated in stem, branches and leaves gradually from plant fluid. In this process the Si isotope fractionation factor between dissolved Si and precipitated Si in bamboo ( αpre-sol) is estimated to be 0.9981. However, other factors should be considered to explain the decrease of δ 30Si value from roots to stem, including larger ratio of dissolved H 4SiO 4 to precipitated SiO 2 in roots than in stem. There is a positive correlation between the δ 30Si values of water-soluble fractions in soils and those of bulk bamboos, indicating that the dissolved silicon in pore water and phytoliths in soil is the direct sources of silicon taken up by bamboo roots. A biochemical silicon isotope fractionation exists in process of silicon uptake by bamboo roots. Its silicon isotope fractionation factor ( αbam-wa) is estimated to be 0.9988. Considering the distribution patterns of SiO 2 contents and δ 30Si values among different bamboo organs, evapotranspiration may be the driving force for an upward flow of a silicon-bearing fluid and silica precipitation. Passive silicon uptake and transportation may be important for bamboo, although the role of active uptake of silicic acid by roots may not be neglected. The samples with relatively high δ 30Si values all grew in soils showing high content of organic materials. In contrast, the samples with relatively low δ 30Si values all grew in soil showing low content of organic materials. The silicon isotope composition of bamboo may reflect the local soil type and growth conditions. Our study suggests that bamboos may play an important role in global silicon cycle.

  7. Adding Some Perspective to de Moivre's Theorem: Visualising the "n"-th Roots of Unity

    ERIC Educational Resources Information Center

    Bardell, Nicholas S.

    2015-01-01

    Traditionally, "z" is assumed to be a complex number and the roots are usually determined by using de Moivre's theorem adapted for fractional indices. The roots are represented in the Argand plane by points that lie equally pitched around a circle of unit radius. The "n"-th roots of unity always include the real number 1, and…

  8. Local root abscisic acid (ABA) accumulation depends on the spatial distribution of soil moisture in potato: implications for ABA signalling under heterogeneous soil drying

    PubMed Central

    Puértolas, Jaime; Conesa, María R.; Ballester, Carlos; Dodd, Ian C.

    2015-01-01

    Patterns of root abscisic acid (ABA) accumulation ([ABA]root), root water potential (Ψroot), and root water uptake (RWU), and their impact on xylem sap ABA concentration ([X-ABA]) were measured under vertical partial root-zone drying (VPRD, upper compartment dry, lower compartment wet) and horizontal partial root-zone drying (HPRD, two lateral compartments: one dry, the other wet) of potato (Solanum tuberosum L.). When water was withheld from the dry compartment for 0–10 d, RWU and Ψroot were similarly lower in the dry compartment when soil volumetric water content dropped below 0.22cm3 cm–3 for both spatial distributions of soil moisture. However, [ABA]root increased in response to decreasing Ψroot in the dry compartment only for HPRD, resulting in much higher ABA accumulation than in VPRD. The position of the sampled roots (~4cm closer to the surface in the dry compartment of VPRD than in HPRD) might account for this difference, since older (upper) roots may accumulate less ABA in response to decreased Ψroot than younger (deeper) roots. This would explain differences in root ABA accumulation patterns under vertical and horizontal soil moisture gradients reported in the literature. In our experiment, these differences in root ABA accumulation did not influence [X-ABA], since the RWU fraction (and thus ABA export to shoots) from the dry compartment dramatically decreased simultaneously with any increase in [ABA]root. Thus, HPRD might better trigger a long-distance ABA signal than VPRD under conditions allowing simultaneous high [ABA]root and relatively high RWU fraction. PMID:25547916

  9. Local root abscisic acid (ABA) accumulation depends on the spatial distribution of soil moisture in potato: implications for ABA signalling under heterogeneous soil drying.

    PubMed

    Puértolas, Jaime; Conesa, María R; Ballester, Carlos; Dodd, Ian C

    2015-04-01

    Patterns of root abscisic acid (ABA) accumulation ([ABA]root), root water potential (Ψroot), and root water uptake (RWU), and their impact on xylem sap ABA concentration ([X-ABA]) were measured under vertical partial root-zone drying (VPRD, upper compartment dry, lower compartment wet) and horizontal partial root-zone drying (HPRD, two lateral compartments: one dry, the other wet) of potato (Solanum tuberosum L.). When water was withheld from the dry compartment for 0-10 d, RWU and Ψroot were similarly lower in the dry compartment when soil volumetric water content dropped below 0.22cm(3) cm(-3) for both spatial distributions of soil moisture. However, [ABA]root increased in response to decreasing Ψroot in the dry compartment only for HPRD, resulting in much higher ABA accumulation than in VPRD. The position of the sampled roots (~4cm closer to the surface in the dry compartment of VPRD than in HPRD) might account for this difference, since older (upper) roots may accumulate less ABA in response to decreased Ψroot than younger (deeper) roots. This would explain differences in root ABA accumulation patterns under vertical and horizontal soil moisture gradients reported in the literature. In our experiment, these differences in root ABA accumulation did not influence [X-ABA], since the RWU fraction (and thus ABA export to shoots) from the dry compartment dramatically decreased simultaneously with any increase in [ABA]root. Thus, HPRD might better trigger a long-distance ABA signal than VPRD under conditions allowing simultaneous high [ABA]root and relatively high RWU fraction. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  10. Depicting mass flow rate of R134a /LPG refrigerant through straight and helical coiled adiabatic capillary tubes of vapor compression refrigeration system using artificial neural network approach

    NASA Astrophysics Data System (ADS)

    Gill, Jatinder; Singh, Jagdev

    2018-07-01

    In this work, an experimental investigation is carried out with R134a and LPG refrigerant mixture for depicting mass flow rate through straight and helical coil adiabatic capillary tubes in a vapor compression refrigeration system. Various experiments were conducted under steady-state conditions, by changing capillary tube length, inner diameter, coil diameter and degree of subcooling. The results showed that mass flow rate through helical coil capillary tube was found lower than straight capillary tube by about 5-16%. Dimensionless correlation and Artificial Neural Network (ANN) models were developed to predict mass flow rate. It was found that dimensionless correlation and ANN model predictions agreed well with experimental results and brought out an absolute fraction of variance of 0.961 and 0.988, root mean square error of 0.489 and 0.275 and mean absolute percentage error of 4.75% and 2.31% respectively. The results suggested that ANN model shows better statistical prediction than dimensionless correlation model.

  11. Anti-acetylcholinesterase activity and antioxidant properties of extracts and fractions of Carpolobia lutea.

    PubMed

    Nwidu, Lucky Legbosi; Elmorsy, Ekramy; Thornton, Jack; Wijamunige, Buddhika; Wijesekara, Anusha; Tarbox, Rebecca; Warren, Averil; Carter, Wayne Grant

    2017-12-01

    There is an unmet need to discover new treatments for Alzheimer's disease. This study determined the anti-acetylcholinesterase (AChE) activity, DPPH free radical scavenging and antioxidant properties of Carpolobia lutea G. Don (Polygalaceae). The objective of this study is to quantify C. lutea anti-AChE, DPPH free radical scavenging, and antioxidant activities and cell cytotoxicity. Plant stem, leaves and roots were subjected to sequential solvent extractions, and screened for anti-AChE activity across a concentration range of 0.02-200 μg/mL. Plant DPPH radical scavenging activity, reducing power, and total phenolic and flavonoid contents were determined, and cytotoxicity evaluated using human hepatocytes. Carpolobia lutea exhibited concentration-dependent anti-AChE activity. The most potent inhibitory activity for the stem was the crude ethanol extract and hexane stem fraction oil (IC 50  = 140 μg/mL); for the leaves, the chloroform leaf fraction (IC 50  = 60 μg/mL); and for roots, the methanol, ethyl acetate and aqueous root fractions (IC 50  = 0.3-3 μg/mL). Dose-dependent free radical scavenging activity and reducing power were observed with increasing stem, leaf or root concentration. Total phenolic contents were the highest in the stem: ∼632 mg gallic acid equivalents/g for a hexane stem fraction oil. Total flavonoid content was the highest in the leaves: ∼297 mg quercetin equivalents/g for a chloroform leaf fraction. At 1 μg/mL, only the crude ethanol extract oil was significantly cytotoxic to hepatocytes. Carpolobia lutea possesses anti-AChE activity and beneficial antioxidant capacity indicative of its potential development as a treatment of Alzheimer's and other diseases characterized by a cholinergic deficit.

  12. In-situ Phytoremediation of PAH and PCB Contaminated Marine Sediments with Eelgrass (Zostera marina)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huesemann, Michael H.; Hausmann, Tom S.; Fortman, Timothy J.

    In view of the fact that there are presently no cost-effective in-situ treatment technologies for contaminated sediments, a 60 week long phytoremediation feasibility study was conducted in seawater-supplied outdoor ponds to determine whether eelgrass (Zostera marina) is capable of removing polynuclear aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) from submerged marine sediments. It was determined that all PAHs and PCBs, independent of the number of aromatic rings and degree of chlorination, respectively, were removed to a much larger extent in planted sediments compared to unplanted controls. After 60 weeks of treatment, the concentration of total PAHs decreased by 73% inmore » planted sediments but only 25% in unplanted controls. Similarly, total PCBs declined by 60% in the presence of plants while none were removed in the unplanted sediment. Overall, PAH and PCB biodegradation was greatest in the sediment layer that contained most of the eelgrass roots. Abiotic desorption tests conducted at week 32 confirmed that the phytoremediation process was not controlled by mass-transfer or bioavailability limitations since all PAHs and PCBs desorbed rapidly and to a large extent from the sediment. PAHs were detected in both roots and shoots, with root and shoot bioaccumulation factors for total PAHs amounting to approximately 3 and 1, respectively, after 60 weeks of phytoremediation treatment. Similarly, the root bioccumulation factor for total PCBs was around 4, while no PCBs were detected in the eelgrass leaves at the end of the experiment. The total mass fraction of PAHs and PCBs absorbed and translocated by plant biomass during the 60 week period was insignificant, amounting to less than 0.5% of the total mass of PAHs and PCBs which was initially present in the sediment. Finally, the number of total heterotrophic bacteria and hydrocarbon degraders was slightly but not statistically significantly greater in planted sediments than in unplanted controls. After ruling out contaminant loss to the water column or absorption and transformation within plant cells, it is most likely that the presence of eelgrass stimulated the microbial biodegradation of PAHs and PCBs in the rhizosphere by releasing root exudates, plant enzymes, or even oxygen. Additional research is needed to further elucidate these potential phytoremediation mechanisms.« less

  13. Subcellular distribution of uranium in the roots of Spirodela punctata and surface interactions

    NASA Astrophysics Data System (ADS)

    Nie, Xiaoqin; Dong, Faqin; Liu, Ning; Liu, Mingxue; Zhang, Dong; Kang, Wu; Sun, Shiyong; Zhang, Wei; Yang, Jie

    2015-08-01

    The subcellular distribution of uranium in roots of Spirodela punctata (duckweed) and the process of surface interaction were studied upon exposure to U (0, 5-200 mg/L) at pH 5. The concentration of uranium in each subcelluar fraction increased significantly with increasing solution U level, after 200 mg/L uranium solution treatment 120 h, the proportion of uranium concentration approximate as 8:2:1 in the cell wall organelle and cytosol fractions of roots of S. punctata. OM SEM and EDS showed after 5-200 mg/L U treatment 4-24 h, some intracellular fluid released from the root cells, after 100 mg/L U treatment 48 h, the particles including 35% Fe (wt%) and other organic matters such as EPS released from the cells, most of the uranium bound onto the root surface and contacted with phosphorus ligands and formed as nano-scales U-P lamellar crystal, similar crystal has been found in the cell wall and organelle fractions after 50 mg/L U treatment 120 h. FTIR and XPS analyses result indicates the uranium changed the band position and shapes of phosphate group, and the region of characteristic peak belongs to U(VI) and U(IV) were also observed.

  14. Allometric growth and allocation in forests: a perspective from FLUXNET.

    PubMed

    Wolf, Adam; Field, Christopher B; Berry, Joseph A

    2011-07-01

    To develop a scheme for partitioning the products of photosynthesis toward different biomass components in land-surface models, a database on component mass and net primary productivity (NPP), collected from FLUXNET sites, was examined to determine allometric patterns of allocation. We found that NPP per individual of foliage (Gfol), stem and branches (Gstem), coarse roots (Gcroot) and fine roots (Gfroot) in individual trees is largely explained (r2 = 67-91%) by the magnitude of total NPP per individual (G). Gfol scales with G isometrically, meaning it is a fixed fraction of G ( 25%). Root-shoot trade-offs were manifest as a slow decline in Gfroot, as a fraction of G, from 50% to 25% as stands increased in biomass, with Gstem and Gcroot increasing as a consequence. These results indicate that a functional trade-off between aboveground and belowground allocation is essentially captured by variations in G, which itself is largely governed by stand biomass and only secondarily by site-specific resource availability. We argue that forests are characterized by strong competition for light, observed as a race for individual trees to ascend by increasing partitioning toward wood, rather than by growing more leaves, and that this competition stronglyconstrains the allocational plasticity that trees may be capable of. The residual variation in partitioning was not related to climatic or edaphic factors, nor did plots with nutrient or water additions show a pattern of partitioning distinct from that predicted by G alone. These findings leverage short-term process studies of the terrestrial carbon cycle to improve decade-scale predictions of biomass accumulation in forests. An algorithm for calculating partitioning in land-surface models is presented.

  15. Transpiration flow controls Zn transport in Brassica napus and Lolium multiflorum under toxic levels as evidenced from isotopic fractionation

    NASA Astrophysics Data System (ADS)

    Couder, Eléonore; Mattielli, Nadine; Drouet, Thomas; Smolders, Erik; Delvaux, Bruno; Iserentant, Anne; Meeus, Coralie; Maerschalk, Claude; Opfergelt, Sophie; Houben, David

    2015-11-01

    Stable zinc (Zn) isotope fractionation between soil and plant has been used to suggest the mechanisms affecting Zn uptake under toxic conditions. Here, changes in Zn isotope composition in soil, soil solution, root and shoot were studied for ryegrass (Lolium multiflorum L.) and rape (Brassica napus L.) grown on three distinct metal-contaminated soils collected near Zn smelters (total Zn 0.7-7.5%, pH 4.8-7.3). The Zn concentrations in plants reflected a toxic Zn supply. The Zn isotopic fingerprint of total soil Zn varied from -0.05‰ to +0.26 ± 0.02‰ (δ66Zn values relative to the JMC 3-0749L standard) among soils, but the soil solution Zn was depleted in 66Zn, with a constant Zn isotope fractionation of about -0.1‰ δ66Zn unit compared to the bulk soil. Roots were enriched with 66Zn relative to soil solution (δ66Znroot - δ66Znsoil solution = Δ66Znroot-soil solution = +0.05 to +0.2 ‰) and shoots were strongly depleted in 66Zn relative to roots (Δ66Znshoot-root = -0.40 to -0.04 ‰). The overall δ66Zn values in shoots reflected that of the bulk soil, but were lowered by 0.1-0.3 ‰ units as compared to the latter. The isotope fractionation between root and shoot exhibited a markedly strong negative correlation (R2 = 0.83) with transpiration per unit of plant weight. Thus, the enrichment with light Zn isotopes in shoot progressed with increasing water flux per unit plant biomass dry weight, showing a passive mode of Zn transport by transpiration. Besides, the light isotope enrichment in shoots compared to roots was larger for rape than for rye grass, which may be related to the higher Zn retention in rape roots. This in turn may be related to the higher cation exchange capacity of rape roots. Our finding can be of use to trace the biogeochemical cycles of Zn and evidence the tolerance strategies developed by plants in Zn-excess conditions.

  16. The Early Entry of Al into Cells of Intact Soybean Roots (A Comparison of Three Developmental Root Regions Using Secondary Ion Mass Spectrometry Imaging).

    PubMed Central

    Lazof, D. B.; Goldsmith, J. G.; Rufty, T. W.; Linton, R. W.

    1996-01-01

    Al localization was compared in three developmental regions of primary root of an Al-sensitive soybean (Glycine max) genotype using secondary ion mass spectrometry. In cryosections obtained after a 4-h exposure to 38 [mu]M [Al3+], Al had penetrated across the root and into the stele in all three regions. Although the greatest localized Al concentration was consistently at the root periphery, the majority of the Al in each region had accumulated in cortical cells. It was apparent that the secondary ion mass spectrometry 27Al+ mass signal was spread throughout the intracellular area and was not particularly intense in the cell wall. Inclusion of some cell wall in determinations of the Al levels across the root radius necessitated that these serve as minimal estimates for intracellular Al. Total accumulation of intracellular Al for each region was 60, 73, and 210 nmol g-1 fresh weight after 4 h, increasing with root development. Early metabolic responses to external Al, including those that have been reported deep inside the root and in mature regions, might result directly from intracellular Al. These responses might include ion transport events at the endodermis of mature roots or events associated with lateral root emergence, as well as events within the root tip. PMID:12226447

  17. A brief description of the simple biosphere model (SiB)

    NASA Technical Reports Server (NTRS)

    Sellers, P. J.; Mintz, Y.; Sud, Y. C.

    1986-01-01

    A biosphere model for calculating the transfer of energy, mass, and momentum between the atmosphere and the vegetated surface of the Earth was designed for atmospheric general circulation models. An upper vegetation layer represents the perennial canopy of trees or shrubs, a lower layer represents the annual ground cover of grasses and other herbacious species. The local coverage of each vegetation layer may be fractional or complete but as the individual vegetation elements are considered to be evenly spaced, their root systems are assumed to extend uniformly throughout the entire grid-area. The biosphere has seven prognostic physical-state variables: two temperatures (one for the canopy and one for the ground cover and soil surface); two interception water stores (one for the canopy and one for the ground cover); and three soil moisture stores (two of which can be reached by the vegetation root systems and one underlying recharge layer into and out of which moisture is transferred only by hydraulic diffusion).

  18. [Seedling index of Salvia miltiorrhiza and its simulation model].

    PubMed

    Huang, Shu-Hua; Xu, Fu-Li; Wang, Wei-Ling; Du, Jun-Bo; Ru, Mei; Wang, Jing; Cao, Xian-Yan

    2012-10-01

    Through the correlation analysis on the quantitative traits and their ratios of Salvia miltiorrhiza seedlings and seedling quality, a series of representative indices reflecting the seedling quality of the plant species were determined, and the seedling index suitable to the S. miltiorrhiza seedlings was ascertained by correlation degree analysis. Meanwhile, based on the relationships between the seedling index and the air temperature, solar radiation and air humidity, a simulation model for the seedling index of S. miltiorrhiza was established. The experimental data of different test plots and planting dates were used to validate the model. The results showed that the root diameter, stem diameter, crown dry mass, root dry mass, and plant dry mass had significant positive relationships with the other traits, and could be used as the indicators of the seedling's health. The seedling index of S. miltiorrhiza could be calculated by (stem diameter/root diameter + root dry mass/crown dry mass) x plant dry mass. The stem diameter, root dry mass, crown dry mass and plant dry mass had higher correlations with the seedling index, and thus, the seedling index determined by these indicators could better reflect the seedling's quality. The coefficient of determination (R2) between the predicted and measured values based on 1:1 line was 0.95, and the root mean squared error (RMSE) was 0.15, indicating that the model established in this study could precisely reflect the quantitative relationships between the seedling index of S. miltiorrhiza and the environmental factors.

  19. Allelopathic potential of Artemisia arborescens: isolation, identification and quantification of phytotoxic compounds through fractionation-guided bioassays.

    PubMed

    Araniti, Fabrizio; Lupini, Antonio; Sorgonà, Agostino; Conforti, Filomena; Marrelli, Mariangela; Statti, Giancarlo Antonio; Menichini, Francesco; Abenavoli, Maria Rosa

    2013-01-01

    The aerial part of Artemisia arborescens L. (Asteraceae) was extracted with water and methanol, and both extracts were fractionated using n-hexane, chloroform, ethyl acetate and n-butanol. The potential phytotoxicity of both crude extracts and their fractions were assayed in vitro on seed germination and root growth of lettuce (Lactuca sativa L.), a sensitive species largely employed in the allelopathy studies. The inhibitory activities were analysed by dose-response curves and the ED 50 were estimated. Crude extracts strongly inhibited both germination and root growth processes. The fraction-bioassay indicated the following hierarchy of phytotoxicity for both physiological processes: ethyl acetate ≥ n-hexane > chloroform ≥ n-butanol. On the n-hexane fraction, GC-MS analyses were carried out to characterise and quantify some of the potential allelochemicals. Twenty-one compounds were identified and three of them, camphor, trans-caryophyllene and pulegone were quantified.

  20. Experimental identification of mechanisms controlling calcium isotopic fractionations by the vegetation.

    NASA Astrophysics Data System (ADS)

    Cobert, Florian; Schimtt, Anne-Désirée.; Bourgeade, Pascale; Stille, Peter; Chabaux, François; Badot, Pierre-Marie; Jaegler, Thomas

    2010-05-01

    This study aims to better understand the role of vegetation on the Ca cycle at the level of the critical zone of the Earth, in order to specify the mechanisms controlling the Ca absorption by plants at the rock/plant interface. To do this, we performed experiments using hydroponic plant cultures in a way that we could control the co-occuring geochemical and physiological process and determine the impact of the nutritive solution on the Ca cycle within plants. A dicotyledon and calcicole plant with rapid growth, the French bean (Phaseolus vulgaris L.), has been chosen to have access to one complete growth cycle. Several experiments have been conducted with two Ca concentrations, 6 (L) and 60 (H) ppm and two pH values (4 and 6) in the nutritive solution, for which the Ca concentration was maintained constant, so its Ca content is considered as infinite. A second experiment (non infinite L6) allowed Ca depletion in the solution through time; therefore, response effects on the Ca isotopic signatures in the plant organs and in the nutritive solution were observed. We determined Ca concentrations and isotopic ratios in the nutritive solution and in different organs (main roots, secondary roots, old and young stems, old and young leaves and fruits) at two different growth stages (10 days and 6 weeks). Preliminary results show that: (1) the roots (main and secondary) were enriched in the light isotope (40Ca) compared to the nutritive solution, and leaves were enriched in the heavy isotope (44Ca) compared to stems. These results are in accord with previously published field studies (Wigand et al., 2005; Page et al., 2008; Cenki-Tok et al., 2009; Holmden and Bélanger, 2010). Leaves and secondary roots were however enriched in the heavy isotope (44Ca) compared to bean pods, stems and main roots. These results could be related to kinetic fractionation processes occurring either during the Ca root uptake, or during the Ca transport within the plant, or physiological mechanisms occurring first at the level of secondary roots, and second at the level of leaves. (2) No Ca isotope difference was observed neither between old and young organs, (except for H6 leaves), nor between the two growth stages (except for H6 roots). This suggest that the mechanisms controlling isotopic fractionations of Ca within common beans do not vary during growth, and that the nutrients stored in the cotyledons have only a minor effect on the Ca isotope fractionations of plants harvested after 10 days. (3) Strongest Ca isotope fractionations were observed at the nutritive solution/root interface. This implies that the mechanisms of light isotope enrichments in the plant are mainly due to transport processes taking place at this interface. (4) The non infinite L6 nutritive solution became enriched in 44Ca during the experiment compared to the infinite L6 nutritive solution and all the other solutions (L4, H4, and H6). This enrichment can be explained by Rayleigh fractionation or isotopic equilibrium. (5) Bean organs, from L4 and non infinite L6 experiment conditions, were enriched in 44Ca compared to stems and roots cultivated under H4, H6 and infinite L6 conditions. This might be due to the limited Ca in the nutritive solutions that cause smallest Ca isotope fractionations in the bean organs. All these results show that there is no simple correlation between Ca isotopic variations, Ca content and pH of the nutrient solution, and that physiological effects have also to be involved. They confirm the potential of the Ca isotopic system for tracing biological fractionations in natural ecosystems.

  1. ANTI-OXIDATIVE, (α-GLUCOSIDASE AND α-AMYLASE INHIBITORY ACTIVITY OF VITEX DONIANA: POSSIBLE EXPLOITATION IN THE MANAGEMENT OF TYPE 2 DIABETES.

    PubMed

    Ibrahim, Mohammed Auwal; Koorbanally, Neil Anthony; Islam, Shahidul

    2016-09-01

    Vitex doniana is an important African medicinal plant traditionally used for the treatment of many diseases including type 2 diabetes (T2D). In this study, ethyl acetate, ethanol and aqueous extracts of the stem bark, root and leaf of V. doniana were analyzed for in vitro anti-oxidative activity and the results indicated that the ethanolic extract of the leaves had the best anti-oxidative activity. Subsequently, the ethanolic extract of the leaves was partitioned between hexane, dichloromethane, ethyl acetate and water. The aqueous fraction had a significantly ( p < 0.05) higher phenolics content and also showed the best anti-oxidative activity within the fractions. Furthermore, the aqueous fraction demonstrated significantly (p < 0.05) more potent inhibitory activities against α-glucosidase and α-amylase than other fractions. Steady state kinetics analysis revealed that the aqueous fraction inhibited both (α-glucosidase and (α-amylase activities in a non-competitive manner with inhibition binding constant (Ki) values of 5.93 and 167.44 μg/mL, respectively. Analysis of the aqueous fraction by GC-MS showed the presence of resorcinol, 4-hydroxybenzoic acid, 3,4,5-trimethoxyphenol and 2,4'-dihydroxychalcone identified by their mass fragmentation patterns and comparison to standard spectra. The results obtained in this study showed that V doniana leaves have a good in vitro anti-T2D potential possibly elicited through phenolics.

  2. Bud removal affects shoot, root, and callus development of hardwood Populus cuttings

    Treesearch

    A.H. Wiese; J.A. Zalesny; D.M. Donner; Ronald S., Jr. Zalesny

    2006-01-01

    The inadvertent removal and/or damage of buds during processing and planting of hardwood poplar (Populus spp.) cuttings are a concern because of their potential impact on shoot and root development during establishment. The objective of the current study was to test for differences in shoot dry mass, root dry mass, number of roots, length of the...

  3. Discovery and Monitoring of a New Black Hole Candidate XTE J1752-223 with RXTE: RMS Spectrum Evolution, BH Mass and the Source Distance

    NASA Technical Reports Server (NTRS)

    Shaposhinikov, Nikolai; Markwardt, Craig; Swank, Jean; Krimm, Hans

    2010-01-01

    We report on the discovery and monitoring observations of a new galactic black hole candidate XTE J1752-223 by Rossi X-ray Timing Explorer (RXTE). The new source appeared on the X-ray sky on October 21 2009 and was active for almost 8 months. Phenomenologically, the source exhibited the low-hard/highsoft spectral state bi-modality and the variability evolution during the state transition that matches standard behavior expected from a stellar mass black hole binary. We model the energy spectrum throughout the outburst using a generic Comptonization model assuming that part of the input soft radiation in the form of a black body spectrum gets reprocessed in the Comptonizing medium. We follow the evolution of fractional root-mean-square (RMS) variability in the RXTE/PCA energy band with the source spectral state and conclude that broad band variability is strongly correlated with the source hardness (or Comptonized fraction). We follow changes in the energy distribution of rms variability during the low-hard state and the state transition and find further evidence that variable emission is strongly concentrated in the power-law spectral component. We discuss the implication of our results to the Comptonization regimes during different spectral states. Correlations of spectral and variability properties provide measurements of the BH mass and distance to the source. The spectral-timing correlation scaling technique applied to the RXTE observations during the hardto- soft state transition indicates a mass of the BH in XTE J1752-223 between 8 and 11 solar masses and a distance to the source about 3.5 kiloparsec.

  4. The effect of baking and enzymatic treatment on the structural properties of wheat starch.

    PubMed

    Fuentes, Catalina; Zielke, Claudia; Prakash, Manish; Kumar, Puneeth; Peñarrieta, J Mauricio; Eliasson, Ann-Charlotte; Nilsson, Lars

    2016-12-15

    In this study, bread was baked with and without the addition of α-amylase. Starch was extracted from the baked bread and its molecular properties were characterized using (1)H NMR and asymmetric flow field-flow fractionation (AF4) connected to multi-angle light scattering (MALS) and other detectors. The approach allows determination of molar mass, root- mean-square radius and apparent density as well as the average degree of branching of amylopectin. The results show that starch size and structure is affected as a result of the baking process. The effect is larger when α-amylase is added. The changes include both a decrease molar mass and size as well as an increase in apparent density. Moreover, an increase in average degree of branching and the number of reducing ends H-1(β-r) and H-1(α-r) can be observed. Copyright © 2016. Published by Elsevier Ltd.

  5. Potassium, not lepidimoide, is the principal 'allelochemical' of cress-seed exudate that promotes amaranth hypocotyl elongation.

    PubMed

    Fry, Stephen C

    2017-10-17

    Imbibed cress ( Lepidium sativum L.) seeds exude 'allelochemicals' that promote excessive hypocotyl elongation and inhibit root growth in neighbouring competitors, e.g. amaranth ( Amaranthus caudatus L.) seedlings. The major hypocotyl promoter has recently been shown not to be the previously suggested acidic disaccharide, lepidimoic acid (LMA), a fragment of the pectic polysaccharide domain rhamnogalacturonan-I. The nature of the hypocotyl promoter has now been re-assessed. Low-molecular weight cress-seed exudate (LCSE) was fractionated by high-voltage electrophoresis, and components with different charge:mass ratios were tested for effects on dark-grown amaranth seedlings. Further samples of LCSE were size-fractionated by gel permeation chromatography, and active fractions were analysed electrophoretically. The LCSE strongly promoted amaranth hypocotyl elongation. The active principle was hydrophilic and, unlike LMA, stable to hot acid. After electrophoresis at pH 6·5, the only fractions that strongly promoted hypocotyl elongation were those with a very high positive charge:mass ratio, migrating towards the cathode 3-4 times faster than glucosamine. Among numerous naturally occurring cations tested, the only one with such a high mobility was potassium. K + was present in LCSE at approx. 4 m m , and pure KCl (1-10 m m ) strongly promoted amaranth hypocotyl elongation. No other cation tested (including Na + , spermidine and putrescine) had this effect. The peak of bioactivity from a gel permeation chromatography column exactly coincided with the peak of K + . The major 'allelopathic' substance present in cress-seed exudate that stimulates hypocotyl elongation in neighbouring seedlings is the inorganic cation, K + , not the oligosaccharin LMA. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company.

  6. Potassium, not lepidimoide, is the principal ‘allelochemical’ of cress-seed exudate that promotes amaranth hypocotyl elongation

    PubMed Central

    2017-01-01

    Abstract Background and Aims Imbibed cress (Lepidium sativum L.) seeds exude ‘allelochemicals’ that promote excessive hypocotyl elongation and inhibit root growth in neighbouring competitors, e.g. amaranth (Amaranthus caudatus L.) seedlings. The major hypocotyl promoter has recently been shown not to be the previously suggested acidic disaccharide, lepidimoic acid (LMA), a fragment of the pectic polysaccharide domain rhamnogalacturonan-I. The nature of the hypocotyl promoter has now been re-assessed. Methods Low-molecular weight cress-seed exudate (LCSE) was fractionated by high-voltage electrophoresis, and components with different charge:mass ratios were tested for effects on dark-grown amaranth seedlings. Further samples of LCSE were size-fractionated by gel permeation chromatography, and active fractions were analysed electrophoretically. Key Results The LCSE strongly promoted amaranth hypocotyl elongation. The active principle was hydrophilic and, unlike LMA, stable to hot acid. After electrophoresis at pH 6·5, the only fractions that strongly promoted hypocotyl elongation were those with a very high positive charge:mass ratio, migrating towards the cathode 3–4 times faster than glucosamine. Among numerous naturally occurring cations tested, the only one with such a high mobility was potassium. K+ was present in LCSE at approx. 4 mm, and pure KCl (1–10 mm) strongly promoted amaranth hypocotyl elongation. No other cation tested (including Na+, spermidine and putrescine) had this effect. The peak of bioactivity from a gel permeation chromatography column exactly coincided with the peak of K+. Conclusions The major ‘allelopathic’ substance present in cress-seed exudate that stimulates hypocotyl elongation in neighbouring seedlings is the inorganic cation, K+, not the oligosaccharin LMA. PMID:28981578

  7. Phytoavailability and mechanism of bound PAH residues in filed contaminated soils.

    PubMed

    Gao, Yanzheng; Hu, Xiaojie; Zhou, Ziyuan; Zhang, Wei; Wang, Yize; Sun, Bingqing

    2017-03-01

    Understanding the phytoavailability of bound residues of polycyclic aromatic hydrocarbons (PAHs) in soils is essential to assessing their environmental fate and risks. This study investigated the release and plant uptake of bound PAH residues (reference to parent compounds) in field contaminated soils after the removal of extractable PAH fractions. Plant pot experiments were performed in a greenhouse using ryegrass (Lolium multiflorum Lam.) to examine the phytoavailablility of bound PAH residues, and microcosm incubation experiments with and without the addition of artificial root exudates (AREs) or oxalic acid were conducted to examine the effect of root exudates on the release of bound PAH residues. PAH accumulation in the ryegrass after a 50-day growth period indicated that bound PAH residues were significantly phytoavailable. The extractable fractions, including the desorbing and non-desorbing fractions, dominated the total PAH concentrations in vegetated soils after 50 days, indicating the transfer of bound PAH residues to the extractable fractions. This transfer was facilitated by root exudates. The addition of AREs and oxalic acid to test soils enhanced the release of bound PAH residues into their extractable fractions, resulting in enhanced phytoavailability of bound PAH residues in soils. This study provided important information regarding environmental fate and risks of bound PAH residues in soils. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Carbon isotope fractionation in the mangrove Avicennia marina has implications for food web and blue carbon research

    NASA Astrophysics Data System (ADS)

    Kelleway, Jeffrey J.; Mazumder, Debashish; Baldock, Jeffrey A.; Saintilan, Neil

    2018-05-01

    The ratio of stable isotopes of carbon (δ13C) is commonly used to track the flow of energy among individuals and ecosystems, including in mangrove forests. Effective use of this technique requires understanding of the spatial variability in δ13C among primary producer(s) as well as quantification of the isotopic fractionations that occur as C moves within and among ecosystem components. In this experiment, we assessed δ13C variation in the cosmopolitan mangrove Avicennia marina across four sites of varying physico-chemical conditions across two estuaries. We also compared the isotopic values of five distinct tissue types (leaves, woody stems, cable roots, pneumatophores and fine roots) in individual plants. We found a significant site effect (F3, 36 = 15.78; P < 0.001) with mean leaf δ13C values 2.0‰ more depleted at the lowest salinity site compared to the other locations. There was a larger within-plant fractionation effect, however, with leaf samples (mean ± SE = -29.1 ± 0.2) more depleted in 13C than stem samples (-27.1 ± 0.1), while cable root (-25. 8 ± 0.1), pneumatophores (-25.7 ± 0.1) and fine roots (-26.0 ± 0.2) were more enriched in 13C relative to both aboveground tissue types (F4, 36 = 223.45; P < 0.001). The within-plant δ13C fractionation we report for A. marina is greater than that reported in most other ecosystems. This has implications for studies of estuarine carbon cycling. The consistent and large size of the fractionation from leaf to woody stem (∼2.0‰) and mostly consistent fractionation from leaf to root tissues (>3.0‰) means that it may now be possible to partition the individual contributions of various mangrove tissues to estuarine food webs. Similarly, the contributions of mangrove leaves, woody debris and belowground sources to blue carbon stocks might also be quantified. Above all, however, our results emphasize the importance of considering appropriate mangrove tissue types when using δ13C to trace carbon cycling in estuarine systems.

  9. Elevated root retention of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) in coniferous trees.

    PubMed

    Schoenmuth, Bernd; Mueller, Jakob O; Scharnhorst, Tanja; Schenke, Detlef; Büttner, Carmen; Pestemer, Wilfried

    2014-03-01

    For decades, the explosive RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine) has been used for military and industrial applications. Residues of RDX pollute soils in large areas globally and the persistence and high soil mobility of these residues can lead to leaching into groundwater. Dendroremediation, i.e. the long-term use of trees to clean up polluted soils, is gaining acceptance as a green and sustainable strategy. Although the coniferous tree species Norway spruce and Scots pine cover large areas of military land in Central Europe, the potential of any coniferous tree for dendroremediation of RDX is still unknown. In this study, uptake experiments with a (14)C-labelled RDX solution (30 mg L(-1)) revealed that RDX was predominantly retained in the roots of 6-year-old coniferous trees. Only 23 % (pine) to 34 % (spruce) of RDX equivalents (RDXeq) taken up by the roots were translocated to aboveground tree compartments. This finding contrasts with the high aerial accumulation of RDXeq (up to 95 %) in the mass balances of all other plant species. Belowground retention of RDXeq is relatively stable in fine root fractions, since water leaching from tissue homogenates was less than 5 %. However, remobilisation from milled coarse roots and tree stubs reached up to 53 %. Leaching from homogenised aerial tree material was found to reach 64 % for needles, 58 % for stems and twigs and 40 % for spring sprouts. Leaching of RDX by precipitation increases the risk for undesired re-entry into the soil. However, it also opens the opportunity for microbial mineralisation in the litter layer or in the rhizosphere of coniferous forests and offers a chance for repeated uptake of RDX by the tree roots.

  10. Fine-Root Production in an Amazon Rain Forest: Deep Roots are an Important Component of Net Primary Productivity

    NASA Astrophysics Data System (ADS)

    Norby, R.; Cordeiro, A. L.; Oblitas, E.; Valverde-Barrantes, O.; Quesada, C. A.

    2017-12-01

    Fine-root production is a significant component of net primary production (NPP), but it is the most difficult of the major components to measure. Data on fine-root production are especially sparse from tropical forests, and therefore the estimates of tropical forest NPP may not be accurate. Many estimates of fine-root production are based on observations in the top 15 or 30 cm of soil, with the implicit assumption that this approach will capture most of the root distribution. We measured fine-root production in a 30-m tall, old-growth, terra firme rain forest near Manaus, Brazil, which is the site for a free-air CO2 enrichment (FACE) experiment. Ten minirhizotrons were installed at a 45 degree angle to a depth of 1.1 meters; the tubes were installed 2 years before any measurements were made to allow the root systems to recover from disturbance. Images were collected biweekly, and measurements of root length per area of minirhizotron window were scaled up to grams of root per unit land area. Scaling up minirhizotron measurments is problematic, but our estimate of fine-root standing crop in the top 15 cm of soil (281 ± 37 g dry matter m-2) compares well with a direct measurement of fine roots in two nearby 15-cm soil cores (290 ± 37 g m-2). Although the largest fraction of the fine-root standing crop was in the upper soil horizons, 44% of the fine-root mass was deeper than 30 cm, and 17% was deeper than 60 cm. Annual fine-root production was 934 ± 234 g dry matter m-2 (453 ± 113 g C m-2), which was 35% of estimated NPP of the forest stand (1281 g C m-2). A previous estimate of NPP of the forest at this site was smaller (1010 g m-2), but that estimate relied on fine-root production measured elsewhere and only in the top 10 or 30 cm of soil; fine roots accounted for 21% of NPP in that analysis. Extending root observations deeper into the soil will improve estimates of the contribution of fine-root production to NPP, which will in turn improve estimates of ecosystem carbon use efficiency. Improved measurements of roots and their distribution throughout the soil profile will advance our understanding of water and nutrient acquisition by trees and provide important benchmarks for models of biogeochemical cycling in tropical ecosystems and their responses to elevated atmospheric CO2.

  11. Impact of cadmium stress on two maize hybrids.

    PubMed

    Vatehová, Zuzana; Malovíková, Anna; Kollárová, Karin; Kučerová, Danica; Lišková, Desana

    2016-11-01

    Some physiological parameters and composition of the root cell walls of two maize hybrids (monocots), the sensitive Novania and the tolerant Almansa were studied after treatment with cadmium cations. After 10 days of Cd 2+ treatment (1 × 10 -5  M and 5 × 10 -5  M), plant growth inhibition, in the sensitive hybrid in particular, as well as a certain alteration in root structure and pigment content were observed. The Cd 2+ accumulation was ten times higher in the roots than in the shoots. Chemical analyses and atomic absorption spectroscopy proved that Cd 2+ modified the composition of the root cell walls by a significant increase in the content of alkali-soluble polysaccharide fractions, particularly in the tolerant hybrid. An increase in the content of phenolic compounds, mainly in the tolerant hybrid, and a decrease in protein content were observed in the presence of Cd 2+ in the alkali fractions. The results indicate that the changes in the cell wall polysaccharide fractions and their proportion to lignin and cellulose are obviously involved in the tolerance and/or defence against Cd 2+ of the maize hybrids studied. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  12. Cell wall-bound cationic and anionic class III isoperoxidases of pea root: biochemical characterization and function in root growth.

    PubMed

    Kukavica, Biljana M; Veljovicc-Jovanovicc, Sonja D; Menckhoff, Ljiljana; Lüthje, Sabine

    2012-07-01

    Cell wall isolated from pea roots was used to separate and characterize two fractions possessing class III peroxidase activity: (i) ionically bound proteins and (ii) covalently bound proteins. Modified SDS-PAGE separated peroxidase isoforms by their apparent molecular weights: four bands of 56, 46, 44, and 41kDa were found in the ionically bound fraction (iPOD) and one band (70kDa) was resolved after treatment of the cell wall with cellulase and pectinase (cPOD). Isoelectric focusing (IEF) patterns for iPODs and cPODs were significantly different: five iPODs with highly cationic pI (9.5-9.2) were detected, whereas the nine cPODs were anionic with pI values between pH 3.7 and 5. iPODs and cPODs showed rather specific substrate affinity and different sensitivity to inhibitors, heat, and deglycosylation treatments. Peroxidase and oxidase activities and their IEF patterns for both fractions were determined in different zones along the root and in roots of different ages. New iPODs with pI 9.34 and 9.5 were induced with root growth, while the activity of cPODs was more related to the formation of the cell wall in non-elongating tissue. Treatment with auxin that inhibits root growth led to suppression of iPOD and induction of cPOD. A similar effect was obtained with the widely used elicitor, chitosan, which also induced cPODs with pI 5.3 and 5.7, which may be specifically related to pathogen defence. The differences reported here between biochemical properties of cPOD and iPOD and their differential induction during development and under specific treatments implicate that they are involved in specific and different physiological processes.

  13. Systematic review finds that silver diamine fluoride is effective for both root caries prevention and arrest in older adults.

    PubMed

    McReynolds, David; Duane, Brett

    2018-06-01

    Data sourcesPubMed, Pubmed Clinical Queries, EMBASE, the American Dental Associations Evidence-Based Dentistry Website, Cochrane Library, Web of Science, repository of the Journal of the American Dental Association and Google Scholar.Study selectionFour authors independently assessed the abstracts of studies resulting from the above searches which compared treatment of root caries in an older population with SDF versus other preventive agents or placebos.Data extraction and synthesisTitles and abstracts of all reports identified through the electronic searches were assessed independently by four authors based on agreed upon inclusion and exclusion criteria. Of the selected studies for final inclusion in the systematic review, study quality was assessed using the critical appraisal worksheet for randomised controlled trials from the Oxford Centre for Evidence-Based Medicine (CEBM 2005). Prevented fraction (PF), number needed to treat (NNT) and relative risk (RR) were calculated as outcome measures in each study. In addition, the published evidence on SDF was reviewed in order to formulate clinical recommendations on safety and effectiveness when treating root or coronal caries in an adult population with SDF, as well as treatment of dental hypersensitivity.ResultsThree randomised controlled trials were identified that addressed the effectiveness of SDF on root caries in older adults, but none addressed coronal caries. Root caries prevented fraction and arrest rate for SDF were significantly higher than placebo. The prevented fraction for caries prevention for SDF compared to placebo was 71% in a three-year study and 25% in a two-year study. The prevented fraction for caries arrest for SDF was 725% greater in a 24-month study and 100% greater than placebo in a 30-month study. No severe adverse effects were observed.ConclusionsExisting reports of SDF trials support effectiveness in root caries prevention and arrest, remineralisation of deep occlusal lesions and treatment of hypersensitive dentine.

  14. Micronucleus induction in Vicia faba roots. Part 1. Absence of dose-rate, fractionation, and oxygen effect at low doses of low LET radiations.

    PubMed

    Marshall, I; Bianchi, M

    1983-08-01

    Micronucleus indication in Vicia faba roots has been evaluated after irradiation with 60Co gamma-rays. The dependence of the damage on dose, dose rate, fractionation, and oxygen has been studied. The best fit to the experimental data in the dose region between 7 and 190 cGy is represented, for single-dose exposures, by a linear + quadratic relationship. In the low-dose region, between 7 and 20 cGy, where the linear dose dependence is dominant, no dose-rate, fractionation, or oxygen effect could be observed. These effects were, however, present in the high-dose region, where the quadratic dependence is dominant.

  15. Bioactivity-guided fractionation for the butyrylcholinesterase inhibitory activity of furanocoumarins from Angelica archangelica L. roots and fruits.

    PubMed

    Wszelaki, Natalia; Paradowska, Katarzyna; Jamróz, Marta K; Granica, Sebastian; Kiss, Anna K

    2011-09-14

    Isolation and identification of the inhibitors of butyrylcholinesterase (BChE), obtained from the extracts of roots and fruits of Angelica archangelica L., are reported. Our results confirmed the weak inhibitory effect of Angelica roots on acetylcholinesterase activity. BChE inhibition was much more pronounced at a concentration of 100 μg/mL for hexane extracts and attained a higher rate than 50%. The TLC bioautography guided fractionation and spectroscopic analysis led to the isolation and identification of imperatorin from the fruit's hexane extract and of heraclenol-2'-O-angelate from the root's hexane extract. Both compounds showed significant BChE inhibition activity with IC(50) = 14.4 ± 3.2 μM and IC(50) = 7.5 ± 1.8 μM, respectively. Only C8-substituted and C5-unsubstituted furanocoumarins were active, which could supply information about the initial structures of specific BChE inhibitors.

  16. Isolation and characterization of bioactive polyacetylenes Panax ginseng Meyer roots.

    PubMed

    Yeo, Chia-Rou; Yong, Jin-Jie; Popovich, David G

    2017-05-30

    Panax ginseng has been studied for its chemo-preventive properties and pharmaceutical potential. Polyacetylenic compounds isolated from Panax ginseng root typically comprised of non-polar C 17 compound have been reported to exhibit bioactive properties. The objective of this project is to extract, isolate, and characterize bioactive polyacetylenes from Panax ginseng root using various extraction and separation methods Ginseng was extracted by reflux using methanol, ethanol, hexane, ethyl acetate, methanolic ultrasonication. The extracts were partitioned with hexane to obtain water-soluble portion and hexane-soluble portion. Hexane was subsequently removed under vacuum, and formed a crude polyacetylenes extract (crude PA). Silica gel chromatography and semi-preparative HPLC were utilized to prepare 5 fractions and the polyacetylenes were measure by HPLC and molecular weights confirm my APCI-MS and MNR. The bioactive effect was measured by MTT viability assay using murine 3T3-L1 cells. Extraction with methanol under reflux produced significantly larger amount of polyacetylenes (p<0.05). Liquid-liquid extraction and column chromatography were used to separate polyacetylenic compounds into five different fractions. Major polyacetylenes, panaxynol and panaxydol were found in fraction 1 and 2 respectively. Dose-response relationships were observed in 3T3-L1 cells and LC50 were 13.52±3.05μg/mL (fraction 1), 3.69±1.09μg/mL (fraction 2), 52.88±11.16μg/mL (fraction 3), 85.91±27.37μg/mL (fraction 4) and 135.52±32.91μg/mL (fraction 5). Fraction 2 containing panaxydol was found to have exhibited the greatest anti-proliferative effects on 3T3-L1 preadipocytes. Extraction with methanol under reflux produced significantly more polyacetylenes. Fractions that contain panaxydol was the most cytotoxic. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. High-mass-resolution MALDI mass spectrometry imaging reveals detailed spatial distribution of metabolites and lipids in roots of barley seedlings in response to salinity stress.

    PubMed

    Sarabia, Lenin D; Boughton, Berin A; Rupasinghe, Thusitha; van de Meene, Allison M L; Callahan, Damien L; Hill, Camilla B; Roessner, Ute

    2018-01-01

    Mass spectrometry imaging (MSI) is a technology that enables the visualization of the spatial distribution of hundreds to thousands of metabolites in the same tissue section simultaneously. Roots are below-ground plant organs that anchor plants to the soil, take up water and nutrients, and sense and respond to external stresses. Physiological responses to salinity are multifaceted and have predominantly been studied using whole plant tissues that cannot resolve plant salinity responses spatially. This study aimed to use a comprehensive approach to study the spatial distribution and profiles of metabolites, and to quantify the changes in the elemental content in young developing barley seminal roots before and after salinity stress. Here, we used a combination of liquid chromatography-mass spectrometry (LC-MS), inductively coupled plasma mass spectrometry (ICP-MS), and matrix-assisted laser desorption/ionization (MALDI-MSI) platforms to profile and analyze the spatial distribution of ions, metabolites and lipids across three anatomically different barley root zones before and after a short-term salinity stress (150 mM NaCl). We localized, visualized and discriminated compounds in fine detail along longitudinal root sections and compared ion, metabolite, and lipid composition before and after salt stress. Large changes in the phosphatidylcholine (PC) profiles were observed as a response to salt stress with PC 34:n showing an overall reduction in salt treated roots. ICP-MS analysis quantified changes in the elemental content of roots with increases of Na + and decreases of K + content. Our results established the suitability of combining three mass spectrometry platforms to analyze and map ionic and metabolic responses to salinity stress in plant roots and to elucidate tolerance mechanisms in response to abiotic stress, such as salinity stress.

  18. Essential oils chemical composition, antioxidant activities and total phenols of Astrodaucus persicus.

    PubMed

    Goodarzi, Saeid; Hadjiakhoondi, Abbas; Yassa, Narguess; Khanavi, Mahnaz; Tofighi, Zahra

    2016-02-01

    Astrodaucus persicus, Apiaceae, is used as vegetable or food additive in some parts of Iran. The essential oils of different parts of Astrodaucus persicus from Kordestan province were analyzed for the first time and compared with other regions. In this study, antioxidant activities and total phenols determination of aerial parts essential oils and root fractions of A. persicus were investigated. The essential oils were obtained by hydro-distillation from flowers/fruits, leaves/stems, ripe fruits and roots of plant and analyzed by GC-MS. Crude root extract was fractionated with hexane, chloroform, ethyl acetate and methanol. Antioxidant activities by DPPH and FRAP methods and total phenols by Folin-ciocalteu assay were measured. The abundant compounds of flowers/fruits blue essential oil were α-thujene, β-pinene and α-pinene. The predominant components of blue leaves/stems essential oil were α-thujene, α-pinene and α-fenchene. The major volatiles of ripe fruits blue essential oil were β-pinene, α-thujene and α-pinene. The chief compounds of root yellow essential oil were trans-caryophyllene, bicycogermacrene and germacrene-D. Total root extract and ethyl acetate fraction showed potent antioxidant activities and high amount of total phenols in comparison to other samples. Among volatile oils, the flowers/fruits essential oil showed potent reducing capacity. The major compounds of aerial parts essential oils were hydrocarbon monoterpenes while the chief percentage of roots essential oil constituents were hydrocarbon sesquiterpenes. α-Eudesmol and β-eudesmol were identified as responsible for creation of blue color in aerial parts essential oils. A. persicus was known as a potent antioxidant among Apiaceae.

  19. Comparison of cadmium absorption, translocation, subcellular distribution and chemical forms between two radish cultivars (Raphanus sativus L.).

    PubMed

    Xin, Juan; Zhao, Xiaohu; Tan, Qiling; Sun, Xuecheng; Hu, Chengxiao

    2017-11-01

    Cadmium (Cd) absorption and accumulation vary greatly not only among plant species but also among cultivars within the same species. In order to better understand the mechanisms of Cd absorption, transportation and distribution, we examined the differences of Cd absorption, translocation, subcellular distribution and chemical forms between L19, a Cd-tolerant genotype, and H4, a Cd-sensitive genotype, using kinetic analysis and soil culture experiment. Kinetic assays showed that the different Cd concentrations between the two cultivars might be ascribed to root absorption and translocation from root to shoot. The investigations of subcellular distribution and chemical forms verified that Cd concentrations of all subcellular fractions in H4 were all higher than in L19. Meanwhile, most of the Cd was associated with cell walls in the root of H4, but the Cd in the root of L19 and leaf of the two cultivars was mainly stored in soluble fraction, which could be one possible mechanism of tolerance to Cd toxicity. In addition, Cd fractions extracted by 1M NaCl and 2% HAC were predominant in root and leaf of both cultivars and the concentrations and proportions extracted by water and 80% ethanol in root and 1M NaCl in leaf were all higher in H4 than in L19. These results indicate that the Cd in H4 is more active than L19, which could be responsible for the sensitivity of H4 to Cd damage. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. 40 CFR 63.4530 - What records must I keep?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... formulation data, or test data used to determine the mass fraction of organic HAP and density for each coating, thinner and/or other additive, and cleaning material, and the mass fraction of coating solids for each coating. If you conducted testing to determine mass fraction of organic HAP, density, or mass fraction of...

  1. 40 CFR 63.4310 - What notifications must I submit?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... need to submit copies of any test reports. (i) Mass fraction of organic HAP and mass fraction of solids for one coating or printing formulation including thinning materials, mass fraction of organic HAP for one cleaning material and mass fraction of organic HAP for all of the regulated materials as purchased...

  2. 40 CFR 63.4530 - What records must I keep?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... formulation data, or test data used to determine the mass fraction of organic HAP and density for each coating, thinner and/or other additive, and cleaning material, and the mass fraction of coating solids for each coating. If you conducted testing to determine mass fraction of organic HAP, density, or mass fraction of...

  3. 40 CFR 63.4310 - What notifications must I submit?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... need to submit copies of any test reports. (i) Mass fraction of organic HAP and mass fraction of solids for one coating or printing formulation including thinning materials, mass fraction of organic HAP for one cleaning material and mass fraction of organic HAP for all of the regulated materials as purchased...

  4. 40 CFR 63.4310 - What notifications must I submit?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... need to submit copies of any test reports. (i) Mass fraction of organic HAP and mass fraction of solids for one coating or printing formulation including thinning materials, mass fraction of organic HAP for one cleaning material and mass fraction of organic HAP for all of the regulated materials as purchased...

  5. 40 CFR 63.4530 - What records must I keep?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... formulation data, or test data used to determine the mass fraction of organic HAP and density for each coating, thinner and/or other additive, and cleaning material, and the mass fraction of coating solids for each coating. If you conducted testing to determine mass fraction of organic HAP, density, or mass fraction of...

  6. Central depressant activity of butanol fraction of Securinega virosa root bark in mice.

    PubMed

    Magaji, Mohammed Garba; Yaro, Abdullahi Hamza; Musa, Aliyu Muhammad; Anuka, Joseph Akponso; Abdu-Aguye, Ibrahim; Hussaini, Isa Marte

    2012-05-07

    Securinega virosa is a commonly used medicinal plant in African traditional medicine in the management of epilepsy and mental illness. Previous studies in our laboratory showed that the crude methanol root bark extract of the plant possesses significant behavioral effect in laboratory animals. In an attempt to isolate and characterize the biological principles responsible for the observed activity, this study is aimed at evaluating the central depressant activity of the butanol fraction of the methanol root bark extract of Securinega virosa. The medial lethal dose of the butanol fraction was estimated using the method of Lorke. Preliminary phytochemical screening was conducted on the butanol fraction using standard protocol. The behavioral effect of the butanol fraction (75, 150 and 300mg/kg) was evaluated using diazepam induced sleep test, hole-board test, beam walking assay, staircase test, open field test and elevated plus maze assay, all in mice. The median lethal dose of the butanol fraction was estimated to be 1256.9mg/kg. The preliminary phytochemical screening revealed the presence of tannins, saponins, alkaloids, flavonoids, cardiac glycosides, similar to those found in the crude methanol extract. The butanol fraction significantly (P<0.001) reduced the mean onset of sleep in mice and doubled the mean duration of sleep in mice at the dose of 75mg/kg. The butanol fraction and diazepam (0.5mg/kg) significantly (P<0.01-0.001) reduced the number of head dips in the hole-board test suggesting sedative effect. The sedative effect of the butanol fraction was further corroborated by its significant (P<0.01-0.001) reduction of the number of step climbed and rearing in the staircase test. The butanol fraction did not significantly increase the time taken to complete the task and number of foot slips in the beam walking assay, suggesting that it does not induce significant motor coordination deficit. Diazepam (2mg/kg), the standard agent used significantly (P<0.01) increased the number of foot slips. In the open field test, the butanol fraction significantly reduced the number of square crossed as well as the number of rearing. However, the butanol fraction did not significantly alter the behavior of mice in the elevated plus maze assay, while diazepam (0.5mg/kg) significantly (P<0.05) increased the time spent in the open arm and reduced the number of closed arm entry. The findings of this study suggest that the butanol fraction of Securinega virosa root bark contains some bioactive principles that are sedative in nature. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  7. Transport, ultrastructural localization, and distribution of chemical forms of lead in radish (Raphanus sativus L.).

    PubMed

    Wang, Yan; Shen, Hong; Xu, Liang; Zhu, Xianwen; Li, Chao; Zhang, Wei; Xie, Yang; Gong, Yiqin; Liu, Liwang

    2015-01-01

    Lead (Pb), a ubiquitous but highly toxic heavy metal (HM), is harmful to human health through various pathways including by ingestion of contaminated vegetables. Radish is a worldwide root vegetable crop with significant health and nutritional benefits. However, little is known about Pb translocation and distribution within radish plants after its uptake by the roots. In this study, Pb stress was induced using Pb(NO3)2 in hydroponic culture, aiming to characterize the transport, ultrastructural localization, and distribution of chemical forms of Pb in different tissues of radish. The results showed that the majority of Pb (85.76-98.72%) was retained in underground organs including lateral roots, root heads and taproot skins, while a small proportion of Pb was absorbed by root flesh (0.44-1.56%) or transported to the shoot (1.28-14.24%). A large proportion of Pb (74.11-99.30%) was integrated with undissolved Pb oxalate, protein and pectates forming Pb-phosphate complexes. Moreover, a low-Pb-accumulating line of radish showed a higher proportion of Pb in water-soluble form compared with a high-Pb-accumulating line. Subcellular distribution analysis showed that a large proportion of Pb was bound to cell wall fraction in lateral roots (71.08-80.40%) and taproot skin (46.22-77.94%), while the leaves and roots had 28.36-39.37% and 27.35-46.51% of Pb stored in the soluble fraction, respectively. Furthermore, transmission electron microscopy (TEM) revealed Pb precipitates in intercellular space, cell wall, plasma lemma and vacuoles. Fractionation results also showed the accumulation of Pb on the cell wall, intercellular space and vacuole, and low uptake of undissolved Pb oxalate, protein, pectates and Pb-phosphate complexes, which might be due to low transport efficiency and Pb tolerance of radish. These findings would provide insight into molecular mechanism of Pb uptake and translocation in radish and facilitate development of low-Pb-content cultivars in root vegetable crops.

  8. A sequential extraction and hydrolysis approach to understand the chemical nature of soil water repellency

    NASA Astrophysics Data System (ADS)

    Mao, Jiefei; Dekker, Stefan C.; Nierop, Klaas G. J.

    2014-05-01

    Soil water repellency (SWR) biomarkers (SWR-biomarkers) are defined as hydrophobic organic compounds in soils causing SWR and originating from vegetation or microbes (Doerr et al., 2000). Free lipids and ester-bound biopolymers (cutins and suberins) are usually seen in the aliphatic part of soil organic matter (SOM) (Nierop, 1998). The method of sequential extraction can divide hydrophobic compounds into individual fractions with different characteristics. We aim to find out the SWR-biomarkers in soils within different fractions, investigate the effects of fractions on SWR and link them to their original sources. To extract free and ester-bound lipids from sandy soils, DCM (dichloromethane)/MeOH (methanol) and IPA(isopropanol)/NH3 were used in sequential steps. As a result, three fractions were obtained during these sequential experiments: a DCM/MeOH soluble fraction (D), a DCM-MeOH soluble (AS) fraction of IPA/NH3 extracts and its insoluble (AI) fraction. To date, research was limited to (organic) extractable fractions only. To investigate the DCM-MeOH insoluble part of IPA/NH3 extracts they were depolymerised by trans-methylation using BF3-MeOH. All fractions were analysed by gas chromatography-mass spectrometry. After DCM/MeOH extraction, water repellency of 80% of the soils studied increased while SWR of the other soils remained at the same level. Straight-chain fatty acids, alcohols and alkanes were the main compound groups in the D fractions. The distribution of fatty acids (C20-C32) and alcohols (C20-C32), both of which with an even-over-odd predominance suggest their source were higher plants, and so did the odd-over-even predominated alkanes. After extraction by IPA/NH3 , most soils became non-repellent. Both fatty acids (C16-C32) and alcohols (C16-C30) with an even-over-odd predominance were also found in the AS fractions, whereas no alkanes were detected. There were four main component groups identified in the AI fractions: fatty acids, alcohols, ω-hydroxy fatty acids and α,ω-dicarboxylic acids. Aside from fatty acids and alcohols, the latter two compound groups were considered as the main groups of monomers released from suberins. Therefore, suberin-derived compounds were most abundant in the AI fractions suggesting that plant roots could be the main source of AI fractions. We will present some of the relations between fractions/compounds and SWR to show that this approach may be an effective tool to improve our understanding of SWR mechanisms. We present relations between fractions/compounds from SOM with SWR to determine SWR-biomarkers. By assessing the origin of these biomarkers, we are able to understand how SWR is formed and in which circumstances they are mainly from leaves or roots (i.e. cutin or suberin). References: Doerr, S.H., Shakesby, R.A., Walsh, R.P.D., 2000. Soil water repellency: its causes, characteristics and hydro- geomorphological significance. Earth-Sci. Rev. 51, 33-65. Nierop, K.G.J., 1998. Origin of aliphatic compounds in a forest soil. Organic Geochemistry 29, 1009-1016.

  9. Analysis of hairy root culture of Rauvolfia serpentina using direct analysis in real time mass spectrometric technique.

    PubMed

    Madhusudanan, K P; Banerjee, Suchitra; Khanuja, Suman P S; Chattopadhyay, Sunil K

    2008-06-01

    The applicability of a new mass spectrometric technique, DART (direct analysis in real time) has been studied in the analysis of the hairy root culture of Rauvolfia serpentina. The intact hairy roots were analyzed by holding them in the gap between the DART source and the mass spectrometer for measurements. Two nitrogen-containing compounds, vomilenine and reserpine, were characterized from the analysis of the hairy roots almost instantaneously. The confirmation of the structures of the identified compounds was made through their accurate molecular formula determinations. This is the first report of the application of DART technique for the characterization of compounds that are expressed in the hairy root cultures of Rauvolfia serpentina. Moreover, this also constitutes the first report of expression of reserpine in the hairy root culture of Rauvolfia serpentina. Copyright (c) 2008 John Wiley & Sons, Ltd.

  10. Free radical scavenging, antidiarrheal and anthelmintic activity of Pistia stratiotes L. extracts and its phytochemical analysis.

    PubMed

    Bin Karim, Mohammed Faisal; Imam, Hasan; Sarker, Md Moklesur-Rahman; Uddin, Nizam; Hasan, Nahid; Paul, Nirmala; Haque, Tahmina

    2015-05-01

    In this phyto-pharmacological screening of Pistia stratiotes L leaf and root extracts each separately in two different solvents demonstrated its potential medicinal value. Apparent antioxidant value is demonstrated by DPPH, Nitric oxide scavenging and Ferric ion reducing method. Additionally, total flavonoid and phenolic compounds were measured. The leaf methanolic extract scavenged both nitric oxide (NO) and DPPH radical with a dose dependent manner. But the pet ether fraction of root was found to have highest efficacy in Fe(3±) reducing power assay. Flavonoid was found to contain highest in the pet ether fraction of root (411.35mg/g) in terms of quercetin equivalent, similarly highest amount (34.96mg/g) of total phenolic compounds (assayed as gallic acid equivalents) were found to contain in the same fraction. The methanolic fractions appeared less cytotoxic compared to pet ether extracts. The plant extracts caused a dose dependent decrease in faecal droppings in both castor oil and magnesium sulphate induced diarrhea, where as leaf extracts in each solvent appeared most effective. Also, the plant extracts showed anthelmintic activity in earthworm by inducing paralysis and death in a dose dependent manner. At highest doses (50 mg/ml) all fractions were almost effective as the positive control piperazine citrate (10 mg/ml). Thus, besides this cytotoxic effect it's traditional claim for therapeutic use can never be overlooked.

  11. 40 CFR 63.4310 - What notifications must I submit?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... according to § 63.4321(e)(1) or (2). You do not need to submit copies of any test reports. (i) Mass fraction of organic HAP and mass fraction of solids for one coating or printing formulation including thinning materials, mass fraction of organic HAP for one cleaning material and mass fraction of organic HAP for all...

  12. Prospective ECG-triggered, axial 4-D imaging of the aortic root, valvular, and left ventricular structures: a lower radiation dose option for preprocedural TAVR imaging.

    PubMed

    Bolen, Michael A; Popovic, Zoran B; Dahiya, Arun; Kapadia, Samir R; Tuzcu, E Murat; Flamm, Scott D; Halliburton, Sandra S; Schoenhagen, Paul

    2012-01-01

    Transcatheter valve interventions rely on imaging for patient selection, preprocedural planning, and intraprocedural guidance. We explored the use of prospective electrocardiogram (ECG)-triggered 4-dimensional (4-D) CT imaging in patients evaluated for transcatheter aortic valve replacement (TAVR). A total of 47 consecutive patients underwent 128-slice dual-source CT with wide-window dose-modulated prospective ECG-triggered, axial acquisition of the aortic root, reconstructed during diastolic and systolic cardiac phases. Image quality was evaluated, aortic root and left ventricular (LV) geometry and function were analyzed, and radiation exposure was estimated. Image quality was generally good, with 41 of 47 (87%) patients scored as good or excellent. The mean aortic valve area was 0.93 ± 0.24 cm(2). Mean LV ejection fraction was 56.8% ± 16.4%, and mean LV mass was 130.4 ± 43.8 g. The minor diameter of the annulus was larger in systole (systole, 2.29 ± 0.24 cm; diastole, 2.14 ± 0.25 cm; P = 0.006), but the mean and major diameters did not vary significantly between systole and diastole. The mean estimated effective dose was 5.9 ± 2.4 mSv. Multiphase, prospective ECG-triggered axial image acquisition is a lower dose acquisition technique for 4-D aortic root imaging in patients being considered for TAVR. Copyright © 2012 Society of Cardiovascular Computed Tomography. Published by Elsevier Inc. All rights reserved.

  13. Insecticidal compounds from Rhizophoraceae mangrove plants for the management of dengue vector Aedes aegypti.

    PubMed

    Ali, M Syed; Ravikumar, S; Beula, J Margaret; Anuradha, V; Yogananth, N

    2014-06-01

    Mosquito control is facing a threat due to the emergence of resistance to synthetic insecticides. Insecticides of botanical origin could serve as potential alternatives in future. Larvicidal efficacies of different parts of mangrove plants belonging to Rhizophoraceae family were tested against the late IV instar larvae of dengue vector, Aedes aegypti. Different plant parts (leaf, bark, root, stilt root, hypocotyl and flower) of Rhizophoraceae family mangrove plants (Bruguiera cylindrica, Ceriops decandra, Rhizophora mucronata and R. apiculata) were collected from Karangadu southeast coast of India. The larval mortality was observed after 24 h exposure. Repellency bioassays were carried out in a 10 Χ 10 Χ 3 m room at 27- 35°C and 60- 80% RH. The bark (A3 and E1) and stilt root (A3 and E4) fractions of R. mucronata with different concentrations (0.25, 0.50, 0.75, 1, 2 and 4 mg/cm) were applied on one arm. The stilt root crude extract of R. mucronata showed maximum larvicidal activity (LC50 value 0.0275 ± 0.0066 μg/ml and LC90 = 0.0695 ± 0.156 μg/ml) followed by the bark extract (LC50 value of 0.03 ± 0.0076 μg/ml and LC90 = 0.0915 ± 0.156 μg/ml). Column chromatographic fractions of R. mucronata bark extracts (E1) showed maximum larvicidal activity (LC50 = 0.0496 ± 0.0085 μg/ml and LC90 = 0.1264 ± 0.052 μg/ml) followed by the acetone extract (LC50 = 0.0564 ± 0.0069 μg/ml and LC90 = 0.1187 ± 0.05 μg/ml). Ethanolic fraction (E4) of R. mucronata stilt root extracts showed maximum larvicidal activity (LC50 = 0.0484 ± 0.0078 μg/ml and LC90 = 0.1191 ± 0.025 μg/ml) followed by acetone fraction (A3) (LC50 = 0.0419 ± 0.0059 μg/ml and LC90 = 0.0955 ± 0.069 μg/ml). Repellent activity of R. mucronata stilt root and bark extracts (A3) showed maximum percentage of protection (97.5%) with 9.1 h protection time at 4 mg concentration of the stilt root extract. Moreover, ethanolic fraction of the stilt root (E4) extract showed maximum percentage of protection (100%) with 10 h protection time at 4 mg concentration. GC-MS analysis revealed that R. mucronata possesses variety of biopesticidal compounds. The results as well as the significance of this preliminary investigation highlight the importance of R. mucronata as a novel source for natural insecticidal products.

  14. Viewing forests from below: fine root mass declines relative to leaf area in aging lodgepole pine stands.

    PubMed

    Schoonmaker, A S; Lieffers, V J; Landhäusser, S M

    2016-07-01

    In the continued quest to explain the decline in productivity and vigor with aging forest stands, the most poorly studied area relates to root system change in time. This paper measures the wood production, root and leaf area (and mass) in a chronosequence of fire-origin lodgepole pine (Pinus contorta Loudon) stands consisting of four age classes (12, 21, 53, and ≥100 years), each replicated ~ five times. Wood productivity was greatest in the 53-year-old stands and then declined in the ≥100-year-old stands. Growth efficiency, the quantity of wood produced per unit leaf mass, steadily declined with age. Leaf mass and fine root mass plateaued between the 53- and ≥100-year-old stands, but leaf area index actually increased in the older stands. An increase in the leaf area index:fine root area ratio supports the idea that older stand are potentially limited by soil resources. Other factors contributing to slower growth in older stands might be lower soil temperatures and increased self-shading due to the clumped nature of crowns. Collectively, the proportionally greater reduction in fine roots in older stands might be the variable that predisposes these forests to be at a potentially greater risk of stress-induced mortality.

  15. Effect of acaricidal components isolated from lettuce (Lactuca sativa) on carmine spider mite (Tetranychus cinnabarinus Boisd.).

    PubMed

    Li, M; Zhang, Y; Ding, W; Luo, J; Li, S; Zhang, Q

    2018-06-01

    This study aimed to evaluate the acaricidal activity of lettuce (Lactuca sativa) extracts against carmine spider mites (Tetranychus cinnabarinus Boisd.) and isolate the acaricidal components. Acaricidal activities of lettuce extracts isolated from different parts (the leaf, root and seed) using various solvents (petroleum ether, acetone and methanol) were evaluated with slide-dip bioassay and relatively high median lethal concentration (LC50) values were detected. Acetone extracts of lettuce leaves harvested in July and September were fractionated and isolated with silica gel and thin-layer chromatography. Consequently, acetone extracts of lettuce leaves harvested in July exhibited higher acaricidal activity than those harvested in September, with an LC50 value of 0.268 mg ml-1 at 72 h post-treatment. A total of 27 fractions were obtained from the acetone extract of lettuce leaves harvested in July, and mite mortalities with the 11th and 12th fractions were higher than those with the other 25 fractions (LC50: 0.751 and 1.258 mg ml-1 at 48 h post-treatment, respectively). Subsequently, active acaricidal components of the 11th fraction were identified by infrared, nuclear magnetic resonance and liquid chromatography/mass spectrometry. Five components were isolated from the 11th fraction, with components 11-a and 11-b showing relatively high acaricidal activities (LC50: 0.288 and 0.114 mg ml-1 at 48 h post-treatment, respectively). Component 11-a was identified as β-sitosterol. In conclusion, acetone extracts of lettuce leaves harvested in July might be used as a novel phytogenic acaricide to control mites.

  16. Ecosystem carbon partitioning: aboveground net primary productivity correlates with the root carbon input in different land use types of Southern Alps

    NASA Astrophysics Data System (ADS)

    Rodeghiero, Mirco; Martinez, Cristina; Gianelle, Damiano; Camin, Federica; Zanotelli, Damiano; Magnani, Federico

    2013-04-01

    Terrestrial plant carbon partitioning to above- and below-ground compartments can be better understood by integrating studies on biomass allocation and estimates of root carbon input based on the use of stable isotopes. These experiments are essential to model ecosystem's metabolism and predict the effects of global change on carbon cycling. Using in-growth soil cores in conjunction with the 13C natural abundance method we quantified net plant-derived root carbon input into the soil, which has been pointed out as the main unaccounted NPP (net primary productivity) component. Four land use types located in the Trentino Region (northern Italy) and representing a range of aboveground net primary productivity (ANPP) values (155-868 gC m-2 y-1) were investigated: conifer forest, apple orchard, vineyard and grassland. Cores, filled with soil of a known C4 isotopic signature were inserted at 18 sampling points for each site and left in place for twelve months. After extraction, cores were analysed for %C and d13C, which were used to calculate the proportion of new plant-derived root C input by applying a mass balance equation. The GPP (gross primary productivity) of each ecosystem was determined by the eddy covariance technique whereas ANPP was quantified with a repeated inventory approach. We found a strong and significant relationship (R2 = 0.93; p=0.03) between ANPP and the fraction of GPP transferred to the soil as root C input across the investigated sites. This percentage varied between 10 and 25% of GPP with the grassland having the lowest value and the apple orchard the highest. Mechanistic ecosystem carbon balance models could benefit from this general relationship since ANPP is routinely and easily measured at many sites. This result also suggests that by quantifying site-specific ANPP, root carbon input can be reliably estimated, as opposed to using arbitrary root/shoot ratios which may under- or over-estimate C partitioning.

  17. Body weight management effect of burdock (Arctium lappa L.) root is associated with the activation of AMP-activated protein kinase in human HepG2 cells.

    PubMed

    Kuo, Daih-Huang; Hung, Ming-Chi; Hung, Chao-Ming; Liu, Li-Min; Chen, Fu-An; Shieh, Po-Chuen; Ho, Chi-Tang; Way, Tzong-Der

    2012-10-01

    Burdock (Arcticum lappa L.) root is used in folk medicine and also as a vegetable in Asian countries. In the present study, burdock root treatment significantly reduced body weight in rats. To evaluate the bioactive compounds, we successively extracted the burdock root with ethanol (AL-1), and fractionated it with n-hexane (AL-2), ethyl acetate (AL-3), n-butanol (AL-4), and water (AL-5). Among these fractions, AL-2 contained components with the most effective hypolipidemic potential in human hepatoma HepG2 cells. AL-2 decreased the expression of fatty acid synthase (FASN) and inhibited the activity of acetyl-coenzyme A carboxylase (ACC) by stimulating AMP-activated protein kinase (AMPK) through the LKB1 pathway. Three active compounds were identified from the AL-2, namely α-linolenic acid, methyl α-linolenate, and methyl oleate. These results suggest that burdock root is expected to be useful for body weight management. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. The effect of EDTA on Helianthus annuus uptake, selectivity, and translocation of heavy metals when grown in Ohio, New Mexico and Colombia soils.

    PubMed

    Turgut, Cafer; Pepe, M Katie; Cutright, Teresa J

    2005-02-01

    The use of two EDTA concentrations for enhancing the bioavailability of cadmium, chromium, and nickel in three natural soils (Ohio, New Mexico and Colombia) was investigated. The resulting uptake, translocation and selectivity with Helianthus annuus after mobilization were also examined. In general, plants grown in the sandy-loam Ohio soil had a higher uptake that resulted in a selectivity and total metal content of Cd>Cr>Ni and 0.73 mg and Cr>Cd>Ni and 0.32 mg for 0.1 and 0.3 g kg-1 EDTA, respectively. With the silty-loam New Mexico soil, although the total metal uptake was not statistically different the EDTA level did alter the selectivity; Cd>Cr>Ni (0.1 g kg-1 EDTA) and Cd>Cr>Ni (0.3 g kg-1 EDTA). Conversely, with the Colombian (sandy clay loam) soil increasing the EDTA level resulted in a higher total metal uptake (0.62 mg) than the 0.1 g kg-1 (0.59 mg) treatment. For all three soils, the translocation of Cd was limited. Evaluating the mobile metal fraction with and without EDTA determined that the chelator was capable of overcoming mass transfer limitations associated with the expandable clay fraction in the soils. Root wash results and root biomass concentrations indicated that Cd sorption was occurring. Therefore limited Cd translocation was attributed to insufficient phytochelatin levels.

  19. Longevity of contributions to SOC stocks from roots and aboveground plant litter below a Miscanthus plantation

    NASA Astrophysics Data System (ADS)

    Robertson, Andrew; Smith, Pete; Davies, Christian; Bottoms, Emily; McNamara, Niall

    2013-04-01

    Miscanthus is a lignocellulosic crop that uses the Hatch-Slack (C4) photosynthetic pathway as opposed to most C3 vegetation native to the UK. Miscanthus can be grown for a number of practical end-uses but recently interest has increased in its viability as a bioenergy crop; both providing a renewable source of energy and helping to limit climate change by improving the carbon (C) budgets associated with energy generation. Recent studies have shown that Miscanthus plantations may increase stocks of soil organic carbon (SOC), however the longevity and origin of this 'new' SOC must be assessed. Consequently, we combined an input manipulation experiment with physio-chemical soil fractionation to quantify new SOC and CO2 emissions from Miscanthus roots, decomposing plant litter and soil individually. Further, fractionation of SOC from the top 30 cm gave insight into the longevity of that SOC. In January 2009 twenty-five 2 m2 plots were set up in a three-year old 11 hectare Miscanthus plantation in Lincolnshire, UK; with five replicates of five treatments. These treatments varied plant input to the soil by way of controlled exclusion techniques. Treatments excluded roots only ("No Roots"), surface litter only ("No Litter"), both roots and surface litter ("No Roots or Litter") or had double the litter amount added to the soil surface ("Double Litter"). A fifth treatment was a control with undisturbed roots and an average amount of litter added. Monthly measurements of CO2 emissions were taken at the soil surface from each treatment between March 2009 and March 2013, and soil C from the top 30 cm was monitored in all plots over the same period. Miscanthus-derived SOC was determined using the isotopic discrimination between C4 plant matter and C3 soil, and soil fractionation was then used to establish the longevity of that Miscanthus-derived SOC. Ongoing results for CO2 emissions indicate a strong seasonal variation; litter decomposition forms a large portion of the CO2 emissions in winter and spring whereas root respiration dominates the summer and autumn fluxes. Additionally, the "No Roots or Litter" and "No Litter" treatments have significantly less Miscanthus-derived C and therefore significantly less CO2 emitted from decomposing 'new' C. Results from soil fractionation concur with these findings and also suggest that most Miscanthus-derived SOC has fairly short mean residence times within the soil. We hypothesised that the high C input treatments would stimulate large outputs but also increase soil C stocks. However, whilst CO2 efflux varies significantly between treatments, results from the first two years of the experiment do not suggest that any increase in SOC is significant. Four years of continuous monitoring, chemical and physical soil fractionation and ecosystem C cycle modelling will allow a more comprehensive analysis of the longevity of Miscanthus-derived SOC and estimation of SOC stock change with time and plant inputs.

  20. The root economics spectrum: divergence of absorptive root strategies with root diameter

    NASA Astrophysics Data System (ADS)

    Kong, D.; Wang, J.; Kardol, P.; Wu, H.; Zeng, H.; Deng, X.; Deng, Y.

    2015-08-01

    Plant roots usually vary along a dominant ecological axis, the root economics spectrum (RES), depicting a tradeoff between resource acquisition and conservation. For absorptive roots, which are mainly responsible for resource acquisition, we hypothesized that root strategies as predicted from the RES shift with increasing root diameter. To test this hypothesis, we used seven contrasting plant species for which we separated absorptive roots into two categories: thin roots (< 247 μm diameter) and thick roots. For each category, we analyzed a~range of root traits closely related to resource acquisition and conservation, including root tissue density, carbon (C) and nitrogen (N) fractions as well as root anatomical traits. The results showed that trait relationships for thin absorptive roots followed the expectations from the RES while no clear trait relationships were found in support of the RES for thick absorptive roots. Our results suggest divergence of absorptive root strategies in relation to root diameter, which runs against a single economics spectrum for absorptive roots.

  1. Partial Purification of a Legume Nodulation Factor Present in Coconut Water 1

    PubMed Central

    Schaffer, A. G.; Alexander, M.

    1967-01-01

    The nodulation of adventitious roots growing from segments of bean hypocotyl tissue was used as a bioassay for the material present in coconut water which stimulated nodulation. The active material in coconut water is acidic, but it was not possible to extract it from an acid solution with organic solvents. A purification of approximately 70-fold (on a dry wt basis) was obtained using activated charcoal, but at least 10 different compounds were present in the active fractions. A purified fraction of coconut water, which is stimulatory to the growth of carrot root explants, was active in the nodulation assay at a concentration of 2 μg/ml. This represents a 4000-fold purification of the diffusible fraction of coconut water. The charcoal fractionation procedure can be applied to the active material present in extracts of bean leaves. PMID:16656538

  2. Two new triterpene saponins from the anti-inflammatory saponin fraction of Ilex pubescens root.

    PubMed

    Wang, Jing-Rong; Zhou, Hua; Jiang, Zhi-Hong; Liu, Liang

    2008-07-01

    The saponin fraction from the ethanolic extracts of the root of Ilex pubescens Hook. et Arn. (Ilexaceae) was found to exhibit potent anti-inflammatory effects on carrageenan-induced paw edema in rats. Two novel triterpene saponins, pubescenosides C and D (1 and 2, resp.), together with five known saponins were isolated from this saponin fraction. The structures of 1 and 2 were elucidated as (20beta)-3-O-[beta-D-glucopyranosyl-(1-->2)-beta-D-xylopyranosyl]ursa-12,18-dien-28-oic acid 28-O-beta-D-glucopyranosyl ester, and (20beta)-3-O-[alpha-L-rhamnopyranosyl-(1-->2)-beta-D-glucopyranosyl-(1-->2)-beta-D-xylopyranosyl]ursa- 12,18-dien-28-oic acid 28-O-beta-D-glucopyranosyl ester, respectively, on the basis of chemical and spectroscopic data. Five known saponins isolated from the saponin fraction were identified as ilexsaponin B(1), B(2), B(3), A(1), and chikusetsusaponin IV(a).

  3. Root and stem partitioning of Pinus taeda

    Treesearch

    Timothy J. Albaugh; H. Lee Allen; Lance W. Kress

    2006-01-01

    We measured root and stem mass at three sites (Piedmont (P), Coastal Plain (C), and Sandhills (S)) in the southeastern United States. Stand density, soil texture and drainage, genetic makeup and environmental conditions varied with site while differences in tree size at each site were induced with fertilizer additions. Across sites, root mass was about one half of stem...

  4. 40 CFR 63.3951 - How do I demonstrate initial compliance with the emission limitations?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... reclaimed. (a) Determine the mass fraction of organic HAP for each material. Determine the mass fraction of... coating per liter coating. Wc,i = Mass fraction of organic HAP in coating, i, kg organic HAP per kg coating. For reactive adhesives as defined in § 63.3981, use the mass fraction of organic HAP that is...

  5. 40 CFR 63.4151 - How do I demonstrate initial compliance with the emission limitations?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... option. (a) Determine the mass fraction of organic HAP for each material. Determine the mass fraction of... coating per liter coating. Wc,i = mass fraction of organic HAP in coating, i, kg organic HAP per kg... thinner per liter thinner. Wt,j = mass fraction of organic HAP in thinner, j, kg organic HAP per kg...

  6. 40 CFR 63.3951 - How do I demonstrate initial compliance with the emission limitations?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... reclaimed. (a) Determine the mass fraction of organic HAP for each material. Determine the mass fraction of... coating per liter coating. Wc,i = Mass fraction of organic HAP in coating, i, kg organic HAP per kg coating. For reactive adhesives as defined in § 63.3981, use the mass fraction of organic HAP that is...

  7. 40 CFR 63.3951 - How do I demonstrate initial compliance with the emission limitations?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... reclaimed. (a) Determine the mass fraction of organic HAP for each material. Determine the mass fraction of... coating per liter coating. Wc,i = Mass fraction of organic HAP in coating, i, kg organic HAP per kg coating. For reactive adhesives as defined in § 63.3981, use the mass fraction of organic HAP that is...

  8. 40 CFR 63.4151 - How do I demonstrate initial compliance with the emission limitations?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... option. (a) Determine the mass fraction of organic HAP for each material. Determine the mass fraction of... coating per liter coating. Wc,i = mass fraction of organic HAP in coating, i, kg organic HAP per kg... thinner per liter thinner. Wt,j = mass fraction of organic HAP in thinner, j, kg organic HAP per kg...

  9. Acoustic emission detection for mass fractions of materials based on wavelet packet technology.

    PubMed

    Wang, Xianghong; Xiang, Jianjun; Hu, Hongwei; Xie, Wei; Li, Xiongbing

    2015-07-01

    Materials are often damaged during the process of detecting mass fractions by traditional methods. Acoustic emission (AE) technology combined with wavelet packet analysis is used to evaluate the mass fractions of microcrystalline graphite/polyvinyl alcohol (PVA) composites in this study. Attenuation characteristics of AE signals across the composites with different mass fractions are investigated. The AE signals are decomposed by wavelet packet technology to obtain the relationships between the energy and amplitude attenuation coefficients of feature wavelet packets and mass fractions as well. Furthermore, the relationship is validated by a sample. The larger proportion of microcrystalline graphite will correspond to the higher attenuation of energy and amplitude. The attenuation characteristics of feature wavelet packets with the frequency range from 125 kHz to 171.85 kHz are more suitable for the detection of mass fractions than those of the original AE signals. The error of the mass fraction of microcrystalline graphite calculated by the feature wavelet packet (1.8%) is lower than that of the original signal (3.9%). Therefore, AE detection base on wavelet packet analysis is an ideal NDT method for evaluate mass fractions of composite materials. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Amelioration of oxidative stress in bio-membranes and macromolecules by non-toxic dye from Morinda tinctoria (Roxb.) roots.

    PubMed

    Bhakta, Dipita; Siva, Ramamoorthy

    2012-06-01

    Plant dyes have been in use for coloring and varied purposes since prehistoric times. A red dye found in the roots of plants belonging to genus Morinda is a well recognized coloring ingredient. The dye fraction obtained from the methanolic extract of the roots of Morinda tinctoria was explored for its role in attenuating damages caused by H(2)O(2)-induced oxidative stress. The antioxidant potential of the dye fraction was assessed through DPPH radical scavenging, deoxyribose degradation and inhibition of lipid peroxidation in mice liver. It was subsequently screened for its efficiency in extenuating damage incurred to biomembrane (using erythrocytes and their ghost membranes) and macromolecules (pBR322 DNA, lipids and proteins) from exposure to hydrogen peroxide. In addition, the non-toxic nature of the dye was supported by the histological evaluation conducted on the tissue sections from the major organs of Swiss Albino mice as well as effect on Hep3B cell line (human hepatic carcinoma). The LC-MS confirms the dye fraction to be morindone. Our study strongly suggests that morindone present in the root extracts of M. tinctoria, in addition to being a colorant, definitely holds promise in the pharmaceutical industry. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Hyperaccumulation of cadmium by hairy roots of Thlaspi caerulescens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nedelkoska, T.V.; Doran, P.M.

    Hairy roots were used to investigate cadmium uptake by Thlaspi caerulescens, a metal hyperaccumulator plant with potential applications in phytoremediation and phytomining. Experiments were carried out in nutrient media under conditions supporting root growth. Accumulation of Cd in short-term (9-h) experiments varied with initial medium pH and increased after treating the roots with H{sup +}-ATPase inhibitor. The highest equilibrium Cd content measured in T. caerulescens roots was 62,800 {micro}g g{sup {minus}1} dry weight, or 6.3% dry weight, at a liquid Cd concentration of 3,710 ppm. Cd levels in live T. caerulescens roots were 1.5- to 1.7-fold those in hairy rootsmore » of nonhyperaccumulator species exposed to the same Cd concentration, but similar to the Cd content of auto-claved T. caerulescens roots. The ability to grow at Cd concentrations of up to 100 ppm clearly distinguished T. caerulescens hairy roots from the nonhyperaccumulators. The specific growth rate of T. caerulescens roots was essentially unaffected by 20 to 50 ppm Cd in the culture medium; in contrast, N. tabacum roots turned dark brown at 20 ppm and growth was negligible. Up to 10,600 {micro}g g{sup {minus}1} dry weight Cd was accumulated by growing T. caerulescens hairy roots. Measurement of Cd levels in while roots and in the cell wall fraction revealed significant differences in the responses of T. caerulescens and N. tabacum roots to 20 ppm Cd. Most metal was transported directly into the symplasm of N. tabacum roots within 3 days of exposure; in contrast, T. caerulescens roots stored virtually all of their Cd in the wall fraction for the first 7 to 10 days. This delay in transmembrane uptake may represent an important defensive strategy against Cd poisoning in T. caerulescens, allowing time for activation of intracellular mechanisms for heavy metal detoxification.« less

  12. The α-amylase and α-glucosidase inhibitory activities of the dichloromethane extracts and constituents of Ferulago bracteata roots.

    PubMed

    Karakaya, Songül; Gözcü, Sefa; Güvenalp, Zühal; Özbek, Hilal; Yuca, Hafize; Dursunoğlu, Benan; Kazaz, Cavit; Kılıç, Ceyda Sibel

    2018-12-01

    Ferulago (Apiaceae) species have been used since ancient times for the treatment of intestinal worms, hemorrhoids, and as a tonic, digestive, aphrodisiac, or sedative, as well as in salads or as a spice due to their special odors. This study reports the α-amylase and α-glucosidase inhibitory activities of dichloromethane extract and bioactive compounds isolated from Ferulago bracteata Boiss. & Hausskn. roots. The isolated compounds obtained from dichloromethane extract of Ferulago bracteata roots through bioassay-guided fractionation and isolation process were evaluated for their in vitro α-amylase and α-glucosidase inhibitory activities at 5000-400 µg/mL concentrations. Compound structures were elucidated by detailed analyses (NMR and MS). A new coumarin, peucedanol-2'-benzoate (1), along with nine known ones, osthole (2), imperatorin (3), bergapten (4), prantschimgin (5), grandivitinol (6), suberosin (7), xanthotoxin (8), felamidin (9), umbelliferone (10), and a sterol mixture consisted of stigmasterol (11), β-sitosterol (12) was isolated from the roots of F. bracteata. Felamidin and suberosin showed significant α-glucosidase inhibitory activity (IC 50 0.42 and 0.89 mg/mL, respectively) when compared to the reference standard acarbose (IC 50 4.95 mg/mL). However, none of the tested extracts were found to be active on α-amylase inhibition. The present study demonstrated that among the compounds isolated from CH 2 Cl 2 fraction of F. bracteata roots, coumarins were determined as the main chemical constituents of this fraction. This is the first report on isolation and characterization of the bioactive compounds from root extracts of F. bracteata and on their α-amylase and α-glucosidase inhibitory activities.

  13. Response of soil carbon fractions and dryland maize yield to mulching

    USDA-ARS?s Scientific Manuscript database

    Stimulation of root growth from mulching may enhance soil C fractions under maize (Zea mays L.). We studied the 5-yr straw (SM) and plastic film (PM) mulching effect on soil C fractions and maize yield compared with no mulching (CK) in the Loess Plateau of China. Soil samples collected from 0- to 10...

  14. Antibacterial and antifungal activities of Dracontomelon dao.

    PubMed

    Khan, M R; Omoloso, A D

    2002-07-01

    The crude methanolic extracts of the leaves, stem and root barks of Drancantomelon dao and their subsequent partitioning (petrol, dichloromethane, ethyl acetate, butanol) gave fractions which demonstrated a very good level of broad spectrum antibacterial activity. The dichloromethane and butanol fractions of the leaf were the most active. Only the leaf fractions had antifungal activity, particularly the dichloromethane and butanol.

  15. 40 CFR 98.147 - Records that must be retained.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (metric tons). (3) Data on carbonate-based mineral mass fractions provided by the raw material supplier... of this subpart. (4) Results of all tests used to verify the carbonate-based mineral mass fraction...(s), and any variations of the methods, used in the analyses. (iii) Mass fraction of each sample...

  16. 40 CFR 98.147 - Records that must be retained.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (metric tons). (3) Data on carbonate-based mineral mass fractions provided by the raw material supplier... of this subpart. (4) Results of all tests used to verify the carbonate-based mineral mass fraction...(s), and any variations of the methods, used in the analyses. (iii) Mass fraction of each sample...

  17. 40 CFR 98.147 - Records that must be retained.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (metric tons). (3) Data on carbonate-based mineral mass fractions provided by the raw material supplier... of this subpart. (4) Results of all tests used to verify the carbonate-based mineral mass fraction...(s), and any variations of the methods, used in the analyses. (iii) Mass fraction of each sample...

  18. Bioassay-guided isolation of wound healing active compounds from Echium species growing in Turkey.

    PubMed

    Eruygur, Nuraniye; Yılmaz, Gülderen; Kutsal, Osman; Yücel, Gözde; Üstün, Osman

    2016-06-05

    The roots and root barks of Echium sp. have been used to treat ulcers, burns and wounds in traditional Turkish medicine. On the basis of them traditional use and literature references, four Echium species were selected for evaluation of them wound healing potential. Isolation of active component(s) from the active extracts through the bioassay guided fractionation procedures. In vivo the wound healing activity of the plants was evaluated by linear incision experimental models. The chloroform extract of Echium italicum L. was fractionated by successive chromatographic techniques. Wound healing activity of each fraction was investigated following the bioassay-guided fractionation procedures. Moreover, the tissue samples of isolated compounds were examined histopathologically. The healing potential was comparatively assessed with a reference ointment Madecassol®, which contains 1% extract of Centella asiatica. Significant wound healing activity was observed from the ointment prepared with ethanol extract at 1% concentration. The ethanol root extract treated in groups of animals showed a significant increase (37.38%, 40.97% and 35.29% separately for E. italicum L, Echium vulgare L. and Echium angustifolium Miller) wound tensile strength in the incision wound model. Subfractions showed significant but reduced wound healing activity on in vivo wound models. Shikonin derivatives "Acetylshikonin", "Deoxyshikonin" and "2-methyl-n-butyrylshikonin+Isovalerylshikonin", were isolated and determined as active components of active final subfraction from E. italicum L. roots. The results of histopathological examination supported the outcome of linear incision wound models. The experimental study revealed that Echium species display remarkable wound healing activity. Copyright © 2016. Published by Elsevier Ireland Ltd.

  19. Seedling root targets

    Treesearch

    Diane L. Haase

    2011-01-01

    Roots are critical to seedling performance after outplanting. Although root quality is not as quick and simple to measure as shoot quality, target root characteristics should be included in any seedling quality assessment program. This paper provides a brief review of root characteristics most commonly targeted for operational seedling production. These are: root mass...

  20. Where Is Needle- and Root-Derived Soil Organic Matter After 10 Years of Decomposition in a Temperate Forest?

    NASA Astrophysics Data System (ADS)

    Hicks Pries, C.; Hatton, P.; Castanha, C.; Bird, J. A.; Torn, M. S.

    2013-12-01

    All soil organic matter (SOM) is ultimately derived from plant litter. The fate of plant litter in ecosystems determines soil carbon (C) storage and nutrient availability with far-reaching implications for ecosystems and global change. However, little is known about the process by which litter becomes SOM (as opposed to the well-studied controls on rates of C and nitrogen (N) loss from litter). We are investigating whether litter type affects where in soils litter-derived C and N eventually reside. Specifically, we are investigating whether litter type affects which minerals the C and N are associated with and how much C is in the microbial pool after a decade. We incubated 15N and 13C-labeled Pinus ponderosa needle and fine root litter in the Blodgett Experimental Forest in the Sierra Nevada foothills for 10 years. A two-way factorial design was used with needle and root litter placed into O and A soil horizons. In 2001, litter was inserted into the given horizon within soil mesocosms (10.2 cm diameter x 24 cm long PVC) that had two 5 x 5 cm mesh windows to allow contact with the surrounding soil. After 0.5, 1, 1.5, 4.5, and 10 years, the soil mesocosms were collected from the field. Isotopes were used to measure the percent recovery of the litter C and N in the bulk soil of the O and A horizons. To investigate mineral associations of the added litter C and N after 10 years, we sequentially fractionated the soils by density. The fractions were a free light fraction (<1.75 g cm-3), a fraction dominated by phyllosilicate secondary minerals (1.75-2.5 g cm-3), a quartz and feldspar-dominated fraction (2.5-2.78 g cm-3), and a fraction dominated by biotite with kaolinite and iron oxide coatings (>2.78 g cm-3). To quantify the amount of litter-derived C actively cycling in the microbial pool after 10 years and use of the C by different microbial groups, we measured the 13C in phospholipid fatty acids (PLFAs). After 10 years, more root litter C (about 40%) was retained in the soil than needle litter C (about 25%). Less than 0.15% of the remaining litter C (0.06% of originally applied) was found actively cycling in microbial PLFA's. Needle and root C did not differ in the amount remaining still in the active microbial pool. Preliminary data indicate that unlike after one year, there were no microbial groups with strong preferences for the added root or needle C relative to other microbial groups. The amount of root and needle C and N associated with the different mineral groups will also be presented.

  1. Identification of glabridin as a bioactive compound in licorice (Glycyrrhiza glabra L.) extract that activates human peroxisome proliferator-activated receptor gamma (PPARγ).

    PubMed

    Rebhun, John F; Glynn, Kelly M; Missler, Stephen R

    2015-10-01

    Licorice, the root and stolons of the Glycyrrhiza plant (Fabaceae), has been used for centuries as a food additive (sweetener), in cosmetics, and in traditional medicine. In this research, we provide evidence that licorice extract activates peroxisome proliferator-activated receptor gamma (PPARγ) and, as identified through HPLC fractionation and mass spectroscopy, one of the activating phytochemicals is glabridin. Glabridin was shown to bind to and activate PPARγ. It was also shown to activate PPARγ-regulated gene expression in human hepatoma cells similar to known PPARγ ligands and that the expression was blocked by a PPARγ specific antagonist. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. In vitro antimicrobial and antiprotozoal activities, phytochemical screening and heavy metals toxicity of different parts of Ballota nigra.

    PubMed

    Ullah, Najeeb; Ahmad, Ijaz; Ayaz, Sultan

    2014-01-01

    The study was done to assess the phytochemicals (flavonoids, terpenoids, saponins, tannin, alkaloids, and phenol) in different parts (root, stem, and leaves) of Ballota nigra and correlated it to inhibition of microbes (bacteria and fungi), protozoan (Leishmania), and heavy metals toxicity evaluation. In root and stem flavonoids, terpenes and phenols were present in ethanol, chloroform, and ethyl acetate soluble fraction; these were found to be the most active inhibiting fractions against all the tested strains of bacteria, fungi, and leishmania. While in leaves flavonoids, terpenes, and phenols were present in ethanol, chloroform, and n-butanol fractions which were the most active fractions against both types of microbes and protozoan (leishmania) in in vitro study. Ethanol and chloroform fractions show maximum inhibition against Escherichia coli (17 mm). The phytochemical and biological screenings were correlated with the presence of heavy metals in selected plant Ballota nigra. Cr was found above permissible value (above 1.5 mg/kg) in all parts of the plant. Ni was above WHO limit in B. nigra root and leaves (3.35 ± 1.20 mg/kg and 5.09 ± 0.47 mg/kg, respectively). Fe was above permissible value in all parts of B. nigra (above 20 mg/kg). Cd was above permissible value in all parts of the plant (above 0.3 mg/kg). Pb was above WHO limit (above 2 mg/kg) in all parts of Ballota nigra.

  3. In Vitro Antimicrobial and Antiprotozoal Activities, Phytochemical Screening and Heavy Metals Toxicity of Different Parts of Ballota nigra

    PubMed Central

    Ullah, Najeeb; Ahmad, Ijaz; Ayaz, Sultan

    2014-01-01

    The study was done to assess the phytochemicals (flavonoids, terpenoids, saponins, tannin, alkaloids, and phenol) in different parts (root, stem, and leaves) of Ballota nigra and correlated it to inhibition of microbes (bacteria and fungi), protozoan (Leishmania), and heavy metals toxicity evaluation. In root and stem flavonoids, terpenes and phenols were present in ethanol, chloroform, and ethyl acetate soluble fraction; these were found to be the most active inhibiting fractions against all the tested strains of bacteria, fungi, and leishmania. While in leaves flavonoids, terpenes, and phenols were present in ethanol, chloroform, and n-butanol fractions which were the most active fractions against both types of microbes and protozoan (leishmania) in in vitro study. Ethanol and chloroform fractions show maximum inhibition against Escherichia coli (17 mm). The phytochemical and biological screenings were correlated with the presence of heavy metals in selected plant Ballota nigra. Cr was found above permissible value (above 1.5 mg/kg) in all parts of the plant. Ni was above WHO limit in B. nigra root and leaves (3.35 ± 1.20 mg/kg and 5.09 ± 0.47 mg/kg, respectively). Fe was above permissible value in all parts of B. nigra (above 20 mg/kg). Cd was above permissible value in all parts of the plant (above 0.3 mg/kg). Pb was above WHO limit (above 2 mg/kg) in all parts of Ballota nigra. PMID:25054139

  4. Accumulation and ultrastructural distribution of copper in Elsholtzia splendens *

    PubMed Central

    Peng, Hong-yun; Yang, Xiao-e; Tian, Sheng-ke

    2005-01-01

    Copper accumulation and intracellular distribution in Elsholtzia splendens, a native Chinese Cu-tolerant and accumulating plant species, was investigated by transmission electron microscope (TEM) and gradient centrifugation techniques. Copper concentrations in roots, stems and leaves of E. splendens increased with increasing Cu levels in solution. After exposure to 500 μmol/L Cu for 8 d, about 1000 mg/kg Cu were accumulated in the stem and 250 mg/kg Cu in the leaf of E. splendens. At 50 µmol/L Cu, no significant toxicity was observed in the chloroplast and mitochondrion within its leaf cells, but separation appeared at the cytoplasm and the cell wall within the root cells. At >250 µmol/L Cu, both root and leaf organelles in E. splendens were damaged heavily by excessive Cu in vivo. Copper subcellular localization in the plant leaf after 8 days’ exposure to 500 µmol/L Cu using gradient centrifugation techniques was found to be decreased in the order: chloroplast>cell wall>soluble fraction>other organelles. The plant root cell wall was found to be the site of highest Cu localization. Increase of Cu exposure time from 8 d to 16 d, increased slightly Cu concentration in cell wall fraction in roots and leaves, while that in the chloroplast fraction decreased in leaves of the plants grown in both 0.25 μmol/L and 500 μmol/L Cu. TEM confirmed that much more Cu localized in cell walls of E. splendens roots and leaves, but also more Cu localized in E. splendens’ chloroplast when the plant is exposed to Cu levels>250 μmol/L, as compared to those in the plant grown in 0.25 μmol/L Cu. Copper treatment at levels>250 μmol/L caused pronounced damage in the leaf chloroplast and root organelles. Copper localization in cell walls and chloroplasts could mainly account for the high detoxification of Cu in E. splendens. PMID:15822140

  5. 40 CFR 63.3512 - What records must I keep?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... used to determine the mass fraction of organic HAP and density for each coating and thinner and the volume fraction of coating solids for each coating. If you conducted testing to determine mass fraction...) A record of the mass fraction of organic HAP for each coating and thinner used during each...

  6. 40 CFR 63.3512 - What records must I keep?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... used to determine the mass fraction of organic HAP and density for each coating and thinner and the volume fraction of coating solids for each coating. If you conducted testing to determine mass fraction...) A record of the mass fraction of organic HAP for each coating and thinner used during each...

  7. 40 CFR 63.4130 - What records must I keep?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... to determine the mass fraction of organic HAP and density for each coating, thinner, and cleaning... mass fraction of organic HAP, density, or volume fraction of coating solids, you must keep a copy of... period. (e) A record of the mass fraction of organic HAP for each coating, thinner, and cleaning material...

  8. 40 CFR 63.4130 - What records must I keep?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... to determine the mass fraction of organic HAP and density for each coating, thinner, and cleaning... mass fraction of organic HAP, density, or volume fraction of coating solids, you must keep a copy of... period. (e) A record of the mass fraction of organic HAP for each coating, thinner, and cleaning material...

  9. 40 CFR 63.4730 - What records must I keep?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... to determine the mass fraction of organic HAP and density for each coating, thinner, and cleaning... mass fraction of organic HAP, density, or volume fraction of coating solids, you must keep a copy of..., and cleaning material used during each compliance period. (e) A record of the mass fraction of organic...

  10. 40 CFR 63.3512 - What records must I keep?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... used to determine the mass fraction of organic HAP and density for each coating and thinner and the volume fraction of coating solids for each coating. If you conducted testing to determine mass fraction...) A record of the mass fraction of organic HAP for each coating and thinner used during each...

  11. 40 CFR 63.4730 - What records must I keep?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... used to determine the mass fraction of organic HAP and density for each coating, thinner, and cleaning... mass fraction of organic HAP, density, or volume fraction of coating solids, you must keep a copy of..., and cleaning material used during each compliance period. (e) A record of the mass fraction of organic...

  12. 40 CFR 63.4730 - What records must I keep?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... used to determine the mass fraction of organic HAP and density for each coating, thinner, and cleaning... mass fraction of organic HAP, density, or volume fraction of coating solids, you must keep a copy of..., and cleaning material used during each compliance period. (e) A record of the mass fraction of organic...

  13. 40 CFR 63.4730 - What records must I keep?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... used to determine the mass fraction of organic HAP and density for each coating, thinner, and cleaning... mass fraction of organic HAP, density, or volume fraction of coating solids, you must keep a copy of..., and cleaning material used during each compliance period. (e) A record of the mass fraction of organic...

  14. 40 CFR 63.4130 - What records must I keep?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... to determine the mass fraction of organic HAP and density for each coating, thinner, and cleaning... mass fraction of organic HAP, density, or volume fraction of coating solids, you must keep a copy of... period. (e) A record of the mass fraction of organic HAP for each coating, thinner, and cleaning material...

  15. Drought-induced changes in root biomass largely result from altered root morphological traits: evidence from a synthesis of global field trials.

    PubMed

    Zhou, Guiyao; Zhou, Xuhui; Nie, Yuanyuan; Bai, Shahla Hosseini; Zhou, Lingyan; Shao, Junjiong; Cheng, Weisong; Wang, Jiawei; Hu, Fengqin; Fu, Yuling

    2018-06-07

    Extreme drought is likely to become more frequent and intense as a result of global climate change, which may significantly impact plant root traits and responses (i.e., morphology, production, turnover, and biomass). However, a comprehensive understanding of how drought affects root traits and responses remains elusive. Here, we synthesized data from 128 published studies under field conditions to examine the responses of 17 variables associated with root traits to drought. Our results showed that drought significantly decreased root length and root length density by 38.29% and 11.12%, respectively, but increased root diameter by 3.49%. However, drought significantly increased root: shoot mass ratio and root cortical aerenchyma by 13.54% and 90.7%, respectively. Our results suggest that drought significantly modified root morphological traits and increased root mortality, and the drought-induced decrease in root biomass was less than shoot biomass, causing higher root: shoot mass ratio. The cascading effects of drought on root traits and responses may need to be incorporated into terrestrial biosphere models to improve prediction of the climate-biosphere feedback. This article is protected by copyright. All rights reserved.

  16. Sheared-root inocula of vesicular-arbuscular mycorrhizal fungi.

    PubMed

    Sylvia, D M; Jarstfer, A G

    1992-01-01

    For efficient handling, vesicular-arbuscular mycorrhizal fungi should be processed into small and uniform inocula; however, processing can reduce the inoculum density. In this article we describe the preparation and use of sheared-root inocula of Glomus spp. in which inoculum densities were increased during processing. Our objectives were to determine inoculum viability and density after shearing and to ascertain if the sheared inocula could be pelletized or used with a gel carrier. Root samples were harvested from aeroponic cultures, blotted dry, cut into 1-cm lengths, and sheared in a food processor for up to 80 s. After shearing, the inoculum was washed over sieves, and the propagule density in each fraction was determined. Sheared inocula were also encapsulated in carrageenan or used in a gel carrier. Shearing aeroponically produced root inocula reduced particle size. Propagule density increased with decreasing size fraction down to a size of 63 mum, after which propagule density decreased. The weighted-average propagule density of the inoculum was 135,380 propagules g (dry weight) of sheared root material. Sheared roots were encapsulated successfully in carrageenan, and the gel served as an effective carrier. Aeroponic root inoculum was stored dry at 4 degrees C for 23 months without significant reduction in propagule density; however, this material was not appropriate for shearing. Moist roots, useful for shearing, began to lose propagule density after 1 month of storage. Shearing proved to be an excellent method to prepare viable root inocula of small and uniform size, allowing for more efficient and effective use of limited inoculum supplies.

  17. Viscosity of meson matter

    NASA Astrophysics Data System (ADS)

    Dobado, Antonio; Llanes-Estrada, Felipe J.

    2004-06-01

    We report a calculation of the shear viscosity in a relativistic multicomponent meson gas as a function of temperature and chemical potentials. We approximately solve the Uehling-Uhlenbeck transport equation of kinetic theory, appropriate for a boson gas, with relativistic kinematics. Since at low temperatures the gas can be taken as mostly composed of pions, with a fraction of kaons and etas, we explore the region where binary elastic collisions with at least one pion are the dominant scattering processes. Our input meson scattering phase shifts are fits to the experimental data obtained from chiral perturbation theory and the inverse amplitude method. Our results take the correct nonrelativistic limit (viscosity proportional to the square root of the temperature), show a viscosity of the order of the cube of the pion mass up to temperatures somewhat below that mass, and then a large increase due to kaons and etas. Our approximation may break down at even higher temperatures, where the viscosity follows a temperature power law with an exponent near 3.

  18. 40 CFR 63.3521 - How do I demonstrate initial compliance with the emission limitations?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    .... (a) Determine the mass fraction of organic HAP for each material used. You must determine the mass...). You may use Method 311 for determining the mass fraction of organic HAP. Use the procedures specified... to be 0.5 percent of the material by mass, you do not have to count it. Express the mass fraction of...

  19. 40 CFR 63.3521 - How do I demonstrate initial compliance with the emission limitations?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    .... (a) Determine the mass fraction of organic HAP for each material used. You must determine the mass...). You may use Method 311 for determining the mass fraction of organic HAP. Use the procedures specified... to be 0.5 percent of the material by mass, you do not have to count it. Express the mass fraction of...

  20. 40 CFR 63.3521 - How do I demonstrate initial compliance with the emission limitations?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    .... (a) Determine the mass fraction of organic HAP for each material used. You must determine the mass...). You may use Method 311 for determining the mass fraction of organic HAP. Use the procedures specified... to be 0.5 percent of the material by mass, you do not have to count it. Express the mass fraction of...

  1. Micro-CT and nano-CT analysis of filling quality of three different endodontic sealers.

    PubMed

    Huang, Yan; Celikten, Berkan; de Faria Vasconcelos, Karla; Ferreira Pinheiro Nicolielo, Laura; Lippiatt, Nicholas; Buyuksungur, Arda; Jacobs, Reinhilde; Orhan, Kaan

    2017-12-01

    To investigate voids in different root canal sealers using micro-CT and nano-CT, and to explore the feasibility of using nano-CT for quantitative analysis of sealer filling quality. 30 extracted mandibular central incisors were randomly assigned into three groups according to the applied root canal sealers (Total BC Sealer, Sure Seal Root, AH Plus) by the single cone technique. Subsequently, micro-CT and nano-CT were performed to analyse the incidence rate of voids, void fraction, void volume and their distribution in each sample. Micro-CT evaluation showed no significant difference among sealers for the incidence rate of voids or void fraction in the whole filling materials (p > 0.05), whereas a significant difference was found between AH Plus and the other two sealers using nano-CT (p < 0.05). All three sealers presented less void volume in the apical third; however, higher void volumes were observed in the apical and coronal thirds in AH Plus using micro-CT (p < 0.05), while nano-CT results displayed higher void volume in AH Plus among all the sealers and regions (p < 0.05). Bioactive sealers showed higher root filling rate, lower incidence rate of voids, void fraction and void volume than AH Plus under nano-CT analysis, when round root canals were treated by the single cone technique. The disparate results suggest that the higher resolution of nano-CT have a greater ability of distinguishing internal porosity, and therefore suggesting the potential use of nano-CT in quantitative analysis of filling quality of sealers.

  2. 40 CFR 63.4741 - How do I demonstrate initial compliance with the emission limitations?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... compliant material option. If the mass fraction of organic HAP of a coating equals zero, determined... fraction of organic HAP for each material used. You must determine the mass fraction of organic HAP for...). You may use Method 311 for determining the mass fraction of organic HAP. Use the procedures specified...

  3. 40 CFR 63.3930 - What records must I keep?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... formulation data, or test data used to determine the mass fraction of organic HAP and density for each coating... coating. If you conducted testing to determine mass fraction of organic HAP, density, or volume fraction... rather than a record of the volume used. (e) A record of the mass fraction of organic HAP for each...

  4. 40 CFR 63.4141 - How do I demonstrate initial compliance with the emission limitations?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... the compliant material option. If the mass fraction of organic HAP of a coating equals zero... fraction of organic HAP for each material used. You must determine the mass fraction of organic HAP for...). You may use Method 311 for determining the mass fraction of organic HAP. Use the procedures specified...

  5. 40 CFR 63.4141 - How do I demonstrate initial compliance with the emission limitations?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... the compliant material option. If the mass fraction of organic HAP of a coating equals zero... fraction of organic HAP for each material used. You must determine the mass fraction of organic HAP for...). You may use Method 311 for determining the mass fraction of organic HAP. Use the procedures specified...

  6. 40 CFR 63.4741 - How do I demonstrate initial compliance with the emission limitations?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... compliant material option. If the mass fraction of organic HAP of a coating equals zero, determined... fraction of organic HAP for each material used. You must determine the mass fraction of organic HAP for...). You may use Method 311 for determining the mass fraction of organic HAP. Use the procedures specified...

  7. 40 CFR 98.144 - Monitoring and QA/QC requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... mineral mass fractions at least annually to verify the mass fraction data provided by the supplier of the... determine the annual average mass fraction for the carbonate-based mineral in each carbonate-based raw... calibrated scales or weigh hoppers. Total annual mass charged to glass melting furnaces at the facility shall...

  8. 40 CFR 98.144 - Monitoring and QA/QC requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... mineral mass fractions at least annually to verify the mass fraction data provided by the supplier of the... Spectrometry (incorporated by reference, see § 98.7). (c) You must determine the annual average mass fraction... calibrated scales or weigh hoppers. Total annual mass charged to glass melting furnaces at the facility shall...

  9. Biocompatibility of sweetpotato and peanut in a hydroponic system

    NASA Technical Reports Server (NTRS)

    Mortley, D. G.; Loretan, P. A.; Hill, W. A.; Bonsi, C. K.; Morris, C. E.; Hall, R.; Sullen, D.

    1998-01-01

    'Georgia Red' peanut (Arachis hypogaea L.) and TU-82-155 sweetpotato [Ipomoea batatas (L.) Lam] were grown in monocultured or intercropped recirculating hydroponic systems in a greenhouse using the nutrient film technique (NFT). The objective was to determine whether growth and subsequent yield would be affected by intercropping. Treatments were sweetpotato monoculture (SP), peanut monoculture (PN), and sweetpotato and peanut grown in separate NFT channels but sharing a common nutrient solution (SP-PN). Greenhouse conditions ranged from 24 to 33 degrees C, 60% to 90% relative humidity (RH), and photosynthetic photon flux (PPF) of 200 to 1700 micromoles m-2 s-1. Sweetpotato cuttings (15 cm long) and 14-day-old seedlings of peanuts were planted into growth channels (0.15 x 0.15 x 1.2 m). Plants were spaced 25 cm apart within and 25 cm apart between growing channels. A modified half-Hoagland solution with a 1 N: 2.4 K ratio was used. Solution pH was maintained between 5.5 and 6.0 for treatments involving SP and 6.4 and 6.7 for PN. Electrical conductivity (EC) ranged between 1100 and 1200 microS cm-1. The number of storage roots per sweetpotato plant was similar for both SP and SP-PN. Storage root fresh and dry mass were 29% and 36% greater, respectively, for plants in the SP-PN treatment than for plants in the SP treatment. The percent dry mass of the storage roots, dry mass of fibrous and pencil roots, and the length-to-diameter ratio of storage roots were similar for SP and SP-PN sweetpotato plants. Likewise, foliage fresh and dry mass and harvest index were not significantly influenced by treatment. Total dry mass was 37% greater for PN than for SP-PN peanut plants, and pod dry mass was 82% higher. Mature and total seed dry mass and fibrous root dry mass were significantly greater for PN than for SP-PN plants. Harvest index (HI) was similar for both treatments. Root length tended to be lower for seedlings grown in the nutrient solution from the SP-PN treatment.

  10. LC-MS identification and preparative HPLC isolation of Frankenia pulverulenta phenolics with antioxidant and neuroprotective capacities in PC12 cell line.

    PubMed

    Ben Mansour, Rim; Wided, Megdiche Ksouri; Cluzet, Stéphanie; Krisa, Stéphanie; Richard, Tristan; Ksouri, Riadh

    2017-12-01

    Frankenia pulverulenta L. (Frankeniaceae) is a medicinal species with carminative, analgesic and antiviral properties. However, phytochemical investigations, antioxidant and neuroprotective capacities of this plant remain unclear. This work assesses the phenolic composition of F. pulverulenta shoot and root and evaluates their antioxidant and neuroprotective capacities. Successive fractionation of F. pulverulenta shoot and root using 6 solvents were used. Antioxidant capacity of these fractions was assessed through four in vitro tests (DPPH, ABTS, Fe-chelating activity and ORAC). Phenolic identification, purification as well as neuroprotective activity of ethyl acetate (EtOAc) fraction and purified molecules were assessed. Among the tested fractions, EtOAc shoot and root fractions possessed considerable phenolic contents (383 and 374 mg GAE/g E, respectively) because of their important ORAC (821 and 1054 mg of TE/g E), DPPH (586 and 750 mg of TE/g) and ABTS (1453 and 1319 mg of TE/g) results. Moreover, gallic acid, quercetin, quercetin galloyl glucoside, trigalloyl hexoside, procyanidin dimers and sulfated flavonoids were identified by LC-DAD-ESI-MS for the first time in this species. The relevant cytoprotective capacity (at 300 μg/mL) against β-amyloid peptide induced toxicity in PC12 cells of EtOAc fractions were corroborated with the chemical composition. In addition, purified molecules were tested for their ORAC and neuroprotective activity. Quercetin showed the best ORAC value (33.55 mmol TE/g polyphenols); nevertheless, procyanidin dimer exhibited an exceptionally efficient neuroprotective activity (100% of viability at 50 μg/mL). These findings suggest that this halophyte is a promising source of antioxidant and neuroprotective molecules for pharmaceutical purposes.

  11. Transport, ultrastructural localization, and distribution of chemical forms of lead in radish (Raphanus sativus L.)

    PubMed Central

    Wang, Yan; Shen, Hong; Xu, Liang; Zhu, Xianwen; Li, Chao; Zhang, Wei; Xie, Yang; Gong, Yiqin; Liu, Liwang

    2015-01-01

    Lead (Pb), a ubiquitous but highly toxic heavy metal (HM), is harmful to human health through various pathways including by ingestion of contaminated vegetables. Radish is a worldwide root vegetable crop with significant health and nutritional benefits. However, little is known about Pb translocation and distribution within radish plants after its uptake by the roots. In this study, Pb stress was induced using Pb(NO3)2 in hydroponic culture, aiming to characterize the transport, ultrastructural localization, and distribution of chemical forms of Pb in different tissues of radish. The results showed that the majority of Pb (85.76–98.72%) was retained in underground organs including lateral roots, root heads and taproot skins, while a small proportion of Pb was absorbed by root flesh (0.44–1.56%) or transported to the shoot (1.28–14.24%). A large proportion of Pb (74.11–99.30%) was integrated with undissolved Pb oxalate, protein and pectates forming Pb–phosphate complexes. Moreover, a low-Pb-accumulating line of radish showed a higher proportion of Pb in water-soluble form compared with a high-Pb-accumulating line. Subcellular distribution analysis showed that a large proportion of Pb was bound to cell wall fraction in lateral roots (71.08–80.40%) and taproot skin (46.22–77.94%), while the leaves and roots had 28.36–39.37% and 27.35–46.51% of Pb stored in the soluble fraction, respectively. Furthermore, transmission electron microscopy (TEM) revealed Pb precipitates in intercellular space, cell wall, plasma lemma and vacuoles. Fractionation results also showed the accumulation of Pb on the cell wall, intercellular space and vacuole, and low uptake of undissolved Pb oxalate, protein, pectates and Pb–phosphate complexes, which might be due to low transport efficiency and Pb tolerance of radish. These findings would provide insight into molecular mechanism of Pb uptake and translocation in radish and facilitate development of low-Pb-content cultivars in root vegetable crops. PMID:26005445

  12. Subcellular Compartmentalization and Chemical Forms of Lead Participate in Lead Tolerance of Robinia pseudoacacia L. with Funneliformis mosseae

    PubMed Central

    Huang, Li; Zhang, Haoqiang; Song, Yingying; Yang, Yurong; Chen, Hui; Tang, Ming

    2017-01-01

    The effect of arbuscular mycorrhizal fungus on the subcellular compartmentalization and chemical forms of lead (Pb) in Pb tolerance plants was assessed in a pot experiment in greenhouse conditions. We measured root colonization, plant growth, photosynthesis, subcellular compartmentalization and chemical forms of Pb in black locust (Robinia pseudoacacia L.) seedlings inoculated with Funneliformis mosseae isolate (BGC XJ01A) under a range of Pb treatments (0, 90, 900, and 3000 mg Pb kg-1 soil). The majority of Pb was retained in the roots of R. pseudoacacia under Pb stress, with a significantly higher retention in the inoculated seedlings. F. mosseae inoculation significantly increased the proportion of Pb in the cell wall and soluble fractions and decreased the proportion of Pb in the organelle fraction of roots, stems, and leaves, with the largest proportion of Pb segregated in the cell wall fraction. F. mosseae inoculation increased the proportion of inactive Pb (especially pectate- and protein-integrated Pb and Pb phosphate) and reduced the proportion of water-soluble Pb in the roots, stems, and leaves. The subcellular compartmentalization of Pb in different chemical forms was highly correlated with improved plant biomass, height, and photosynthesis in the inoculated seedlings. This study indicates that F. mosseae could improve Pb tolerance in R. pseudoacacia seedlings growing in Pb polluted soils. PMID:28443111

  13. Viper and cobra venom neutralization by beta-sitosterol and stigmasterol isolated from the root extract of Pluchea indica Less. (Asteraceae).

    PubMed

    Gomes, A; Saha, Archita; Chatterjee, Ipshita; Chakravarty, A K

    2007-09-01

    We reported previously that the methanolic root extract of the Indian medicinal plant Pluchea indica Less. (Asteraceae) could neutralize viper venom-induced action [Alam, M.I., Auddy, B., Gomes, A., 1996. Viper venom neutralization by Indian medicinal plant (Hemidesmus indicus and P. indica) root extracts. Phytother. Res. 10, 58-61]. The present study reports the neutralization of viper and cobra venom by beta-sitosterol and stigmasterol isolated from the root extract of P. indica Less. (Asteraceae). The active fraction (containing the major compound beta-sitosterol and the minor compound stigmasterol) was isolated and purified by silica gel column chromatography and the structure was determined using spectroscopic analysis (EIMS, (1)H NMR, (13)C NMR). Anti-snake venom activity was studied in experimental animals. The active fraction was found to significantly neutralize viper venom-induced lethal, hemorrhagic, defibrinogenation, edema and PLA(2) activity. Cobra venom-induced lethality, cardiotoxicity, neurotoxicity, respiratory changes and PLA(2) activity were also antagonized by the active component. It potentiated commercial snake venom antiserum action against venom-induced lethality in male albino mice. The active fraction could antagonize venom-induced changes in lipid peroxidation and superoxide dismutase activity. This study suggests that beta-sitosterol and stigmasterol may play an important role, along with antiserum, in neutralizing snake venom-induced actions.

  14. Changes in subcellular distribution and antioxidant compounds involved in Pb accumulation and detoxification in Neyraudia reynaudiana.

    PubMed

    Zhou, Chuifan; Huang, Meiying; Li, Ying; Luo, Jiewen; Cai, Li Ping

    2016-11-01

    The effects of increasing concentrations of lead (Pb) on Pb accumulation, subcellular distribution, ultrastructure, photosynthetic characteristics, antioxidative enzyme activity, malondialdehyde content, and phytochelatin contents were investigated in Neyraudia reynaudiana seedlings after a 21-day exposure. A Pb analysis at the subcellular level showed that the majority of Pb in the roots was associated with the cell wall fraction, followed by the soluble fraction. In contrast, the majority of the Pb in the leaves was located in the soluble fraction based on transmission electron microscopy and energy dispersive X-ray analyses. Furthermore, high Pb concentrations adversely affected N. reynaudiana cellular structure. The changes in enzyme activity suggested that the antioxidant system plays an important role in eliminating or alleviating Pb toxicity, both in the roots and leaves of N. reynaudiana. Additionally, the phytochelatin contents in the roots and leaves differed significantly between Pb-spiked treatments and control plants. Our results provide strong evidence that cell walls restrict Pb uptake into the protoplasm and establish an important protective barrier. Subsequent vacuolar compartmentalization in leaves could isolate Pb from other substances in the cell and minimize Pb toxicity in other organelles over time. These results also demonstrated that the levels of antioxidant enzymes and phytochelatin in leaves and roots are correlated with Pb toxicity. These detoxification mechanisms promote Pb tolerance in N. reynaudiana.

  15. Dispersion of kaolinite by dissolved organic matter from Douglas-fir roots

    Treesearch

    Philip B. Durgin; Jesse G. Chaney

    1984-01-01

    The organic constituents of water extracts from Douglas-fir (Pseudotsuga menziesii [Mirb.] Franco var. menziesii) roots that cause kaolinite dispersion were investigated. The dissolved organic matter was fractionated according to molecular size and chemical characteristics into acids, neutrals, and bases of the hydrophilic and hydrophobic groups.

  16. Catharanthus alkaloids XXXII: isolation of alkaloids from Catharanthus trichophyllus roots and structure elucidation of cathaphylline.

    PubMed

    Cordell, G A; Farnsworth, N R

    1976-03-01

    Further examination of the cytotoxic alkaloid fractions of Catharanthus trichophyllus roots afforded nine alkaloids. Two of these alkaloids, lochnericine and horhammericine, are responsible for part of the cytotoxic activity. The structure elucidation of cathaphylline, a new beta-anilino acrylate derivative, is described.

  17. Formation of double front detonations of a condensed-phase explosive with powdered aluminium

    NASA Astrophysics Data System (ADS)

    Kim, Wuhyun; Gwak, Min-cheol; Yoh, Jack J.

    2018-03-01

    The performance characteristics of aluminised high explosive are considered by varying the aluminium (Al) mass fraction in a hybrid non-ideal detonation model. Since the time scales of the characteristic induction and combustion of high explosives and Al particles differ, the process of energy release behind the leading detonation wave front occurs over an extended period of time. Two cardinal observations are reported: a decrease in detonation velocity with an increase in Al mass fraction and a double front detonation (DFD) feature when anaerobic Al reaction occurs behind the front. In order to simulate the performance characteristics due to the varying Al mass fraction, the tetrahexamine tetranitramine (HMX) is considered as a base high explosive when formulating the multiphase conservation laws of mass, momentum, and energy exchanges between particles and HMX product gases. While experimental studies have been reported on the effect of Al mass fraction on both gas-phase and solid-phase detonations, the numerical investigations have been limited to only gas-phase detonation for the varying Al particles in the mixture. In the current study, a two-phase model is utilised for understanding the volumetric effects of Al mass fraction in condensed phase detonations. A series of unconfined and confined rate sticks are considered for characterising the performance of aluminised HMX with a maximum Al mass fraction of 50%. The simulated results are compared with the experimental data for 5-25% mass fractions, and the higher mass fraction behaviours are consistent with the experimental observations.

  18. Isolation and structural elucidation of cytotoxic compounds from the root bark of Diospyros quercina (Baill.) endemic to Madagascar

    PubMed Central

    Ruphin, Fatiany Pierre; Baholy, Robijaona; Emmanuel, Randrianarivo; Amelie, Raharisololalao; Martin, Marie-Therese; Koto–te-Nyiwa, Ngbolua

    2014-01-01

    Objective To isolate and characterize the cytotoxic compounds from Diospyros quercina (Baill.) G.E. Schatz & Lowry (Ebenaceae). Methods An ethno-botanical survey was conducted in the south of Madagascar from July to August 2010. Bio-guided fractionation assay was carried out on the root bark of Diospyros quercina, using cytotoxicity bioassay on murine P388 leukemia cell lines as model. The structures of the cytotoxic compounds were elucidated by 1D and 2D NMR spectroscopy and mass spectrometry. Results Biological experiments resulted in the isolation of three bioactive pure compounds (named TR-21, TR-22, and TR-23) which exhibited very good in vitro cytotoxic activities with the IC50 values of (0.017 5±0.0060) µg/mL, (0.089±0.005) µg/mL and (1.027±0.070) µg/mL respectively. Thus, they support the claims of traditional healers and suggest the possible correlation between the chemical composition of this plant and its wide use in Malagasy folk medicine to treat cancer. Conclusions The ability of isolated compounds in this study to inhibit cell growth may represent a rational explanation for the use of Diospyros quercina root bark in treating cancer by Malagasy traditional healers. Further studies are, therefore, necessary to evaluate the in vivo anti-neoplastic activity of these cytotoxic compounds as effective anticancer drugs. PMID:25182433

  19. Decomposition and nutrient release from fresh and dried pine roots under two fertilizer regimes

    Treesearch

    Kim H. Ludovici; Lance W. Kress

    2006-01-01

    Root decomposition and nutrient release are typically estimated from dried root tissues; however, it is unlikely that roots dehydrate prior to decomposing. Soil fertility and root diameter may also affect the rate of decomposition. This study monitored mass loss and nutrient concentrations of dried and fresh roots of two size classes (

  20. Experimental evaluation of several key factors affecting root biomass estimation by 1500 MHz ground penetrating radar

    Treesearch

    John Bain; Frank Day; John Butnor

    2017-01-01

    Accurate quantification of coarse roots without disturbance represents a gap in our understanding of belowground ecology. Ground penetrating radar (GPR) has shown significant promise for coarse root detection and measurement, however root orientation relative to scanning transect direction, the difficulty identifying dead root mass, and the effects of root shadowing...

  1. [Allelopathy of garlic root exudates on different receiver vegetables].

    PubMed

    Zhou, Yan-li; Cheng, Zhi-hui; Meng, Huan-wen

    2007-01-01

    By the method of tissue culture under sterilized condition, this paper studied the allelopathy of garlic root exudates on lettuce, hot pepper, radish, cucumber, Chinese cabbage, and tomato. The results showed that garlic root exudates had no evident effects on the germination rate, germination index, shoot height, and protective enzyme system of test crops, but significantly increased the root length, aboveground fresh mass, and root fresh mass of lettuce, with the RIs being +0.163, +0.106, +0.318, respectively. The exudates also increased the root length of Chinese cabbage, with a RI of +0.120. For other test crops, no significant difference was observed between the treatments and the control. Garlic root exudates significantly increased the chlorophyll content and root activity of the receiver vegetables. The strongest promotion effects were found on chlorophyll content in radish, with RI being +0.282, and on root activity of cucumber, with RI being +0.184. The exudates promoted the nutrient absorption of all the receiver vegetables.

  2. Diversity of the Lyman continuum escape fractions of high-z galaxies and its origins

    NASA Astrophysics Data System (ADS)

    Sumida, Takumi; Kashino, Daichi; Hasegawa, Kenji

    2018-04-01

    The Lyman continuum (LyC) escape fraction is a key quantity to determine the contribution of galaxies to cosmic reionization. It has been known that the escape fractions estimated by observations and numerical simulations show a large diversity. However, the origins of the diversity are still uncertain. In this work, to understand what quantities of galaxies are responsible for controlling the escape fraction, we numerically evaluate the escape fraction by performing ray-tracing calculation with simplified disc galaxy models. With a smooth disc model, we explore the dependence of the escape fraction on the disposition of ionizing sources and find that the escape fraction varies up to ˜3 orders of magnitude. It is also found that the halo mass dependence of disc scale height determines whether the escape fraction increases or decreases with halo mass. With a clumpy disc model, it turns out that the escape fraction increases as the clump mass fraction increases because the density in the inter-clump region decreases. In addition, we find that clumpiness regulates the escape fraction via two ways when the total clump mass dominates the total gas mass; the escape fraction is controlled by the covering factor of clumps if the clumps are dense sufficient to block LyC photons, otherwise the clumpiness works to reduce the escape fraction by increasing the total number of recombination events in a galaxy.

  3. Development and evaluation of methods for starch dissolution using asymmetrical flow field-flow fractionation. Part II: Dissolution of amylose.

    PubMed

    Perez-Rea, Daysi; Bergenståhl, Björn; Nilsson, Lars

    2016-02-01

    In this paper, we investigate whether dissolution in water under autoclaving conditions (140 °C, 20 min) or in dimethyl sulfoxide, DMSO (100 °C, 1 h), is preferable for characterization of amylose. Two types of amylose, potato and maize, were dissolved either in water using an autoclave or in DMSO. On the aqueous solutions obtained, the extent of molecular dissolution of the sample (referred to as the dissolution yield) was determined by enzymatic analysis as well as the molecular properties, such as molar mass and root-mean-square radius, obtained with asymmetrical flow field-flow fractionation coupled to multi-angle light scattering and differential refractive index detection (AF4-MALS-dRI). The results showed that both dissolution methods are efficient at dissolving amylose. However, AF4-MALS-dRI analysis revealed substantial differences. Amylose aqueous solutions obtained by dissolution in DMSO were relatively stable over time, but the dissolution method in autoclave caused some degradation of the molecules, and their solutions display a high tendency to retrograde.

  4. 40 CFR 63.4321 - How do I demonstrate initial compliance with the emission limitations?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... dyeing or finishing material with a mass fraction of organic HAP that exceeds the applicable emission... fraction of organic HAP for each material. You must determine the mass fraction of organic HAP for each... (appendix A to 40 CFR part 63). You may use Method 311 for determining the mass fraction of organic HAP. Use...

  5. 40 CFR 63.3531 - How do I demonstrate initial compliance with the emission limitations?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... fraction of organic HAP for each material. Determine the mass fraction of organic HAP for each coating and... coating. Wc,i = Mass fraction of organic HAP in coating, i, kg organic HAP per kg coating. m = Number of...,j = Density of thinner, j, kg per liter. Wt,j = Mass fraction of organic HAP in thinner, j, kg...

  6. 40 CFR 63.4321 - How do I demonstrate initial compliance with the emission limitations?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... dyeing or finishing material with a mass fraction of organic HAP that exceeds the applicable emission... fraction of organic HAP for each material. You must determine the mass fraction of organic HAP for each... (appendix A to 40 CFR part 63). You may use Method 311 for determining the mass fraction of organic HAP. Use...

  7. 40 CFR 63.3531 - How do I demonstrate initial compliance with the emission limitations?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... fraction of organic HAP for each material. Determine the mass fraction of organic HAP for each coating and... coating. Wc,i = Mass fraction of organic HAP in coating, i, kg organic HAP per kg coating. m = Number of...,j = Density of thinner, j, kg per liter. Wt,j = Mass fraction of organic HAP in thinner, j, kg...

  8. 40 CFR 63.3531 - How do I demonstrate initial compliance with the emission limitations?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... fraction of organic HAP for each material. Determine the mass fraction of organic HAP for each coating and... coating. Wc,i = Mass fraction of organic HAP in coating, i, kg organic HAP per kg coating. m = Number of...,j = Density of thinner, j, kg per liter. Wt,j = Mass fraction of organic HAP in thinner, j, kg...

  9. Aerosol Light Absorption and Scattering Assessments and the Impact of City Size on Air Pollution

    NASA Astrophysics Data System (ADS)

    Paredes-Miranda, Guadalupe

    The general problem of urban pollution and its relation to the city population is examined in this dissertation. A simple model suggests that pollutant concentrations should scale approximately with the square root of city population. This model and its experimental evaluation presented here serve as important guidelines for urban planning and attainment of air quality standards including the limits that air pollution places on city population. The model was evaluated using measurements of air pollution. Optical properties of aerosol pollutants such as light absorption and scattering plus chemical species mass concentrations were measured with a photoacoustic spectrometer, a reciprocal nephelometer, and an aerosol mass spectrometer in Mexico City in the context of the multinational project "Megacity Initiative: Local And Global Research Observations (MILAGRO)" in March 2006. Aerosol light absorption and scattering measurements were also obtained for Reno and Las Vegas, NV USA in December 2008-March 2009 and January-February 2003, respectively. In all three cities, the morning scattering peak occurs a few hours later than the absorption peak due to the formation of secondary photochemically produced aerosols. In particular, for Mexico City we determined the fraction of photochemically generated secondary aerosols to be about 75% of total aerosol mass concentration at its peak near midday. The simple 2-d box model suggests that commonly emitted primary air pollutant (e.g., black carbon) mass concentrations scale approximately as the square root of the urban population. This argument extends to the absorption coefficient, as it is approximately proportional to the black carbon mass concentration. Since urban secondary pollutants form through photochemical reactions involving primary precursors, in linear approximation their mass concentration also should scale with the square root of population. Therefore, the scattering coefficient, a proxy for particulate matter mass concentration, is also expected to scale the same way. Experimental data for five cities: Mexico City, Mexico; Las Vegas and Reno, NV, USA; Beijing, China; and Delhi, India (the data for the last two cities were obtained from the literature); are in reasonable accord with the model. The scaling relation provided by the model may be considered a useful metric depending on the assumption that specific city conditions (such as latitude, altitude, local meteorological conditions, degree of industrialization, population density, number of cars per capita, city shape, etc.) vary randomly, independent of city size. While more detailed studies (including data from more cities) are needed, we believe that this relatively weak dependence of the pollution concentration on the city population might help to explain why the worsening of urban air quality does not directly lead to a decrease in the rate of growth in city population.

  10. Use of Rhizosphere Metabolomics to Investigate Exudation of Phenolics by Arabidopsis Roots

    NASA Astrophysics Data System (ADS)

    Lee, Yong Jian; Rai, Amit; Reuben, Sheela; Nesati, Victor; Almeida, Reinaldo; Swarup, Sanjay

    2013-04-01

    The rhizosphere is a specialised micro-niche for bacteria that have an active exchange of signals and nutrients with the host plant. Nearly 20% of photosynthates are released as root exudates, which consist of primary metabolites and products of secondary metabolism which are largely phenolic in nature. Previously, using rhizosphere metabolomics, we showed that nearly 50% of organic carbon in the exudates is in the form of phenolic compounds, of which the largest fraction is from the phenylpropanoid synthesis pathway. Using Arabidopsis as a model, we have demonstrated that a biased rhizosphere can be created using plants with varying levels of phenylpropanoids due to mutations in the biosynthetic or regulatory genes. These phenylpropanoids levels are reflected in the exudates, and exudates from lines with regulatory gene mutations, tt8 and ttg, have higher levels of phenylpropanoids, whereas biosynthetic mutant line, tt4, has very low and undetectable levels of phenylpropanoids. The biased rhizosphere of tt8 and ttg lines provides a nutritional advantage to rhizobacteria that can utilize these phenylpropanoids such as quercetin. With such a strategy to increase the competitiveness of plant growth-promoting rhizobacteria (PGPR) such as Pseudomonas putida, this system can be applied to improve plant performance. In order to better understand the metabolic basis of the nutritional advantage behind the competitiveness of the favoured P. putida, we elucidated its quercetin utilization pathway. We have recently cloned the gene for quercetin oxidoreductase (QuoA) and expressed it in transgenic Arabidopsis lines to alter the plant phenylpropanoid metabolism, using a gain of function approach. Since phenylpropanoid biosynthesis in plants involve formation of quercetin from naringenin, we envisaged that QuoA expression in plants will provide us with a genetic tool to "reverse" this biosynthetic step. This perturbation led to a decrease in flavonoids and an increase in lignin and anthocyanin metabolites. We describe here the metabolites present in the root exudates using high resolution accurate mass (HRAM) metabolomics approach. Using this approach, biased rhizosphere for another class of PGPR strains can now be created. In this case, lignin- and anthocyanin- utilizing strains will be selectively preferred. We have set up a platform to perform metabolomics of exudates at the root surface. This has allowed us to use the liquid extraction surface analysis (LESA) system using a Thermo Velos Pro Orbitrap-MS to identify differences in exudate profiles along the root system of Arabidopsis. This platform enables direct sampling and measurement from plant roots grown aeroponically. As the metabolites are extracted from root surface and directly injected into the mass spectrometer, there is minimal loss of sample in this process. This method will now allow us to further dissect rhizosphere properties from places such as young root apex, as well as from the more mature base of roots. Taken together, these resources of altered rhizosphere, nutrient utilization pathways in microbes and surface analysis technology will help in extending our understanding of the processes in the plant rhizosphere.

  11. Growth rates of rhizosphere microorganisms depend on competitive abilities of plants for nitrogen

    NASA Astrophysics Data System (ADS)

    Blagodatskaya, Evgenia; Littschwager, Johanna; Lauerer, Marianna; Kuzyakov, Yakov

    2010-05-01

    Rhizosphere - one of the most important ‘hot spots' in soil - is characterized not only by accelerated turnover of microbial biomass and nutrients but also by strong intra- and inter-specific competition. Intra-specific competition occurs between individual plants of the same species, while inter-specific competition can occur both at population level (plant species-specific, microbial species-specific interactions) and at community level (plant - microbial interactions). Such plant - microbial interactions are mainly governed by competition for available N sources, since N is one of the main growth limiting nutrients in natural ecosystems. Functional structure and activity of microbial community in rhizosphere is not uniform and is dependent on quantity and quality of root exudates which are plant specific. It is still unclear how microbial growth and turnover in the rhizosphere are dependent on the features and competitive abilities of plants for N. Depending on C and N availability, acceleration and even retardation of microbial activity and carbon mineralization can be expected in the rhizosphere of plants with high competitive abilities for N. We hypothesized slower microbial growth rates in the rhizosphere of plants with smaller roots, as they usually produce less exudates compared to plants with small shoot-to-root ratio. As the first hypothesis is based solely on C availability, we also expected the greater effect of N availability on microbial growth in rhizosphere of plants with smaller root mass. These hypothesis were tested for two plant species of strawberry: Fragaria vesca L. (native species), and Duchesnea indica (Andrews) Focke (an invasive plant in central Europe) growing in intraspecific and interspecific competition. Microbial biomass and the kinetic parameters of microbial growth in the rhizosphere were estimated by dynamics of CO2 emission from the soil amended with glucose and nutrients. Specific growth rate (µ) of soil microorganisms was estimated by fitting the parameters of the equation: CO2(t) = A + B × exp(µ×t), to the measured CO2 production rate (CO2(t)) after glucose addition, where A is the initial respiration rate uncoupled from ATP production, B the initial rate of the growing fraction of total respiration coupled with ATP generation and cell growth, and t time. Our study revealed the linkage between growth strategies of rhizosphere microorganisms and different adaptation strategies of F. vesca and D. indica to N limitation. Plant - strong competitor for N (D. indica) did not change root mass under N limitation causing the deficit of N in the rhizosphere and altering the structure of rhizosphere microbial community. Benefiting of slow growing microorganisms with K-strategy under N limiting conditions was indicated by strong decrease in specific microbial growth rates in the rhizosphere of D. indica. Root mass of the plant with weak competitive abilities for N (F. vesca) increased under lack of N to compensate the lack of nutrients. The increase in root mass and possible increase in amount of root exudates coincided with no structural changes in microbial community in rhizosphere of F. vesca. By intraspecific competition at low N level a 2.4-fold slower microbial specific growth rates were observed under D. indica (0.09 h-1) characterized by smaller root biomass and lower N content in roots compared with F. vesca. The generation time of actively growing microbial biomass was for the 6 hours longer in rhizosphere of D. indica than under F. vesca (10.7 to 4.6 h, respectively). Thus, under N limitation the strong competition for N between plant and microorganisms decreased microbial growth rates and carbon turnover in rhizosphere. By interspecific competition of both plants at low N level, microbial growth rates were similar to those for D. indica indicating that plant with stronger competitive abilities for N controls microbial community in the rhizosphere. At high N availability the root biomass did not differ significantly between both plants. This resulted in similar microbial growth rates for intra- and interspecific plant competition. Since high N level smoothed the differences between plant species in root and microbial biomass as well as in microbial growth rates, we conclude that competitive abilities of plant species were responsible for microbial growth in rhizosphere only under N imitation. As it is common that fine root proliferation and root exudation decrease at high N level, N addition smoothed the differences in microbial growth independently on plant competitive abilities.

  12. In vivo microcomputed tomography evaluation of rat alveolar bone and root resorption during orthodontic tooth movement.

    PubMed

    Ru, Nan; Liu, Sean Shih-Yao; Zhuang, Li; Li, Song; Bai, Yuxing

    2013-05-01

    To observe the real-time microarchitecture changes of the alveolar bone and root resorption during orthodontic treatment. A 10 g force was delivered to move the maxillary left first molars mesially in twenty 10-week-old rats for 14 days. The first molar and adjacent alveolar bone were scanned using in vivo microcomputed tomography at the following time points: days 0, 3, 7, and 14. Microarchitecture parameters, including bone volume fraction, structure model index, trabecular thickness, trabecular number, and trabecular separation of alveolar bone, were measured on the compression and tension side. The total root volume was measured, and the resorption crater volume at each time point was calculated. Univariate repeated measures analysis of variance with Bonferroni corrections were performed to compare the differences in each parameter between time points with significance level at P < .05. From day 3 to day 7, bone volume fraction, structure model index, trabecular thickness, and trabecular separation decreased significantly on the compression side, but the same parameters increased significantly on the tension side from day 7 to day 14. Root resorption volume of the mesial root increased significantly on day 7 of orthodontic loading. Real-time root and bone resorption during orthodontic movement can be observed in 3 dimensions using in vivo micro-CT. Alveolar bone resorption and root resorption were observed mostly in the apical third on day 7 on the compression side; bone formation was observed on day 14 on the tension side during orthodontic tooth movement.

  13. Mass Spectrometry Based Profiling and Imaging of Various Ginsenosides from Panax ginseng Roots at Different Ages

    PubMed Central

    Lee, Jae Won; Ji, Seung-Heon; Lee, Young-Seob; Choi, Doo Jin; Choi, Bo-Ram; Kim, Geum-Soog; Baek, Nam-In; Lee, Dae Young

    2017-01-01

    (1) Background: Panax ginseng root is one of the most important herbal products, and the profiling of ginsenosides is critical for the quality control of ginseng roots at different ages in the herbal markets. Furthermore, interest in assessing the contents as well as the localization of biological compounds has been growing. The objective of this study is to carry out the mass spectrometry (MS)-based profiling and imaging of ginsenosides to assess ginseng roots at different ages; (2) Methods: Optimal ultra performance liquid chromatography coupled to quadrupole time of flight/MS (UPLC-QTOF/MS) was used to profile various ginsenosides from P. ginseng roots. Matrix-assisted laser desorption ionization (MALDI)-time of flight (TOF)/MS-based imaging was also optimized to visualize ginsenosides in ginseng roots; (3) Results: UPLC-QTOF/MS was used to profile 30 ginsenosides with high mass accuracy, with an in-house library constructed for the fast and exact identification of ginsenosides. Using this method, the levels of 14 ginsenosides were assessed in P. ginseng roots cultivated for 4, 5, and 6 years. The optimal MALDI-imaging MS (IMS) was also applied to visualize the 14 ginsenosides in ginseng roots. As a result, the MSI cross sections showed the localization of 4 ginsenoside ions ([M + K]+) in P. ginseng roots at different ages; (4) Conclusions: The contents and localization of various ginsenosides differ depending on the cultivation years of P. ginseng roots. Furthermore, this study demonstrated the utility of MS-based profiling and imaging of ginsenosides for the quality control of ginseng roots. PMID:28538661

  14. Mass Spectrometry Based Profiling and Imaging of Various Ginsenosides from Panax ginseng Roots at Different Ages.

    PubMed

    Lee, Jae Won; Ji, Seung-Heon; Lee, Young-Seob; Choi, Doo Jin; Choi, Bo-Ram; Kim, Geum-Soog; Baek, Nam-In; Lee, Dae Young

    2017-05-24

    (1) Background: Panax ginseng root is one of the most important herbal products, and the profiling of ginsenosides is critical for the quality control of ginseng roots at different ages in the herbal markets. Furthermore, interest in assessing the contents as well as the localization of biological compounds has been growing. The objective of this study is to carry out the mass spectrometry (MS)-based profiling and imaging of ginsenosides to assess ginseng roots at different ages; (2) Methods: Optimal ultra performance liquid chromatography coupled to quadrupole time of flight/MS (UPLC-QTOF/MS) was used to profile various ginsenosides from P. ginseng roots. Matrix-assisted laser desorption ionization (MALDI)-time of flight (TOF)/MS-based imaging was also optimized to visualize ginsenosides in ginseng roots; (3) Results: UPLC-QTOF/MS was used to profile 30 ginsenosides with high mass accuracy, with an in-house library constructed for the fast and exact identification of ginsenosides. Using this method, the levels of 14 ginsenosides were assessed in P. ginseng roots cultivated for 4, 5, and 6 years. The optimal MALDI-imaging MS (IMS) was also applied to visualize the 14 ginsenosides in ginseng roots. As a result, the MSI cross sections showed the localization of 4 ginsenoside ions ([M + K]⁺) in P. ginseng roots at different ages; (4) Conclusions: The contents and localization of various ginsenosides differ depending on the cultivation years of P. ginseng roots. Furthermore, this study demonstrated the utility of MS-based profiling and imaging of ginsenosides for the quality control of ginseng roots.

  15. Labile rhizosphere soil solution fraction for prediction of bioavailability of heavy metals and rare earth elements to plants.

    PubMed

    Shan, Xiao-Quan; Wang, Zhongwen; Wang, Weisheng; Zhang, Shuzhen; Wen, Bei

    2003-02-01

    A labile rhizosphere soil solution fraction has been recommended to predict the bioavailability of heavy metals and rare earth elements to plants. This method used moist rhizosphere soil in combination with a mixture of 0.01 mol L(-1) of low-molecular-weight organic acids (LMWOAs) as extractant. The extracted soil solutions were fractionated into two colloidal fractions of <0.45 microm (F(3)) and <0.2 microm (F(2)), and one truly dissolved fraction including free metal ions and inorganic and organic complexes (fractionr(0.2 microm, LMWOAs) approximately r(0.45 microm, LMWOAs). In the case of rare earth elements the good correlation was obtained for both the wheat roots and shoots. Generally, the correlation coefficients obtained by LMWAOs were better than that obtained by the first step of BCR method. Therefore, LMWAOs and F(lrss) were strongly recommended to predict the bioavailability of metals in soil pools to plants.

  16. Imaging tree roots with borehole radar

    Treesearch

    John R. Butnor; Kurt H. Johnsen; Per Wikstrom; Tomas Lundmark; Sune Linder

    2006-01-01

    Ground-penetrating radar has been used to de-tect and map tree roots using surface-based antennas in reflection mode. On amenable soils these methods can accurately detect lateral tree roots. In some tree species (e.g. Pinus taeda, Pinus palustris), vertically orientated tap roots directly beneath the tree, comprise most of the root mass. It is...

  17. THE DEPENDENCE OF PRESTELLAR CORE MASS DISTRIBUTIONS ON THE STRUCTURE OF THE PARENTAL CLOUD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parravano, Antonio; Sanchez, Nestor; Alfaro, Emilio J.

    2012-08-01

    The mass distribution of prestellar cores is obtained for clouds with arbitrary internal mass distributions using a selection criterion based on the thermal and turbulent Jeans mass and applied hierarchically from small to large scales. We have checked this methodology by comparing our results for a log-normal density probability distribution function with the theoretical core mass function (CMF) derived by Hennebelle and Chabrier, namely a power law at large scales and a log-normal cutoff at low scales, but our method can be applied to any mass distributions representing a star-forming cloud. This methodology enables us to connect the parental cloudmore » structure with the mass distribution of the cores and their spatial distribution, providing an efficient tool for investigating the physical properties of the molecular clouds that give rise to the prestellar core distributions observed. Simulated fractional Brownian motion (fBm) clouds with the Hurst exponent close to the value H = 1/3 give the best agreement with the theoretical CMF derived by Hennebelle and Chabrier and Chabrier's system initial mass function. Likewise, the spatial distribution of the cores derived from our methodology shows a surface density of companions compatible with those observed in Trapezium and Ophiucus star-forming regions. This method also allows us to analyze the properties of the mass distribution of cores for different realizations. We found that the variations in the number of cores formed in different realizations of fBm clouds (with the same Hurst exponent) are much larger than the expected root N statistical fluctuations, increasing with H.« less

  18. The Dependence of Prestellar Core Mass Distributions on the Structure of the Parental Cloud

    NASA Astrophysics Data System (ADS)

    Parravano, Antonio; Sánchez, Néstor; Alfaro, Emilio J.

    2012-08-01

    The mass distribution of prestellar cores is obtained for clouds with arbitrary internal mass distributions using a selection criterion based on the thermal and turbulent Jeans mass and applied hierarchically from small to large scales. We have checked this methodology by comparing our results for a log-normal density probability distribution function with the theoretical core mass function (CMF) derived by Hennebelle & Chabrier, namely a power law at large scales and a log-normal cutoff at low scales, but our method can be applied to any mass distributions representing a star-forming cloud. This methodology enables us to connect the parental cloud structure with the mass distribution of the cores and their spatial distribution, providing an efficient tool for investigating the physical properties of the molecular clouds that give rise to the prestellar core distributions observed. Simulated fractional Brownian motion (fBm) clouds with the Hurst exponent close to the value H = 1/3 give the best agreement with the theoretical CMF derived by Hennebelle & Chabrier and Chabrier's system initial mass function. Likewise, the spatial distribution of the cores derived from our methodology shows a surface density of companions compatible with those observed in Trapezium and Ophiucus star-forming regions. This method also allows us to analyze the properties of the mass distribution of cores for different realizations. We found that the variations in the number of cores formed in different realizations of fBm clouds (with the same Hurst exponent) are much larger than the expected root {\\cal N} statistical fluctuations, increasing with H.

  19. Changes in plastid proteome and structure in arbuscular mycorrhizal roots display a nutrient starvation signature.

    PubMed

    Daher, Zeina; Recorbet, Ghislaine; Solymosi, Katalin; Wienkoop, Stefanie; Mounier, Arnaud; Morandi, Dominique; Lherminier, Jeannine; Wipf, Daniel; Dumas-Gaudot, Eliane; Schoefs, Benoît

    2017-01-01

    During arbuscular mycorrhizal symbiosis, arbuscule-containing root cortex cells display a proliferation of plastids, a feature usually ascribed to an increased plant anabolism despite the lack of studies focusing on purified root plastids. In this study, we investigated mycorrhiza-induced changes in plastidic pathways by performing a label-free comparative subcellular quantitative proteomic analysis targeted on plastid-enriched fractions isolated from Medicago truncatula roots, coupled to a cytological analysis of plastid structure. We identified 490 root plastid protein candidates, among which 79 changed in abundance upon mycorrhization, as inferred from spectral counting. According to cross-species sequence homology searches, the mycorrhiza-responsive proteome was enriched in proteins experimentally localized in thylakoids, whereas it was depleted of proteins ascribed predominantly to amyloplasts. Consistently, the analysis of plastid morphology using transmission electron microscopy indicated that starch depletion associated with the proliferation of membrane-free and tubular membrane-containing plastids was a feature specific to arbusculated cells. The loss of enzymes involved in carbon/nitrogen assimilation and provision of reducing power, coupled to macromolecule degradation events in the plastid-enriched fraction of mycorrhizal roots that paralleled lack of starch accumulation in arbusculated cells, lead us to propose that arbuscule functioning elicits a nutrient starvation and an oxidative stress signature that may prime arbuscule breakdown. © 2016 Scandinavian Plant Physiology Society.

  20. 8,12;8,20-diepoxy-8,14-secopregnane glycosides from roots of Asclepias tuberosa and their effect on proliferation of human skin fibroblasts.

    PubMed

    Warashina, Tsutomu; Umehara, Kaoru; Miyase, Toshio; Noro, Tadataka

    2011-10-01

    A pregnane glycoside fraction from the roots of Asclepias tuberosa L. caused normal human skin fibroblasts to proliferate. This fraction contained 21 pregnane glycosides whose structures were established using NMR spectroscopic analysis and chemical evidence. The aglycones of most of these compounds were identified as 8,12;8,20-diepoxy-8,14-secopregnanes, such as tuberogenin or 5,6-didehydrotuberogenin, the same aglycones as constituents of the aerial parts of this plant. Some of these compounds also caused proliferation of skin fibroblasts. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Linking carbon supply to root cell-wall chemistry and mechanics at high altitudes in Abies georgei

    PubMed Central

    Genet, Marie; Li, Mingcai; Luo, Tianxiang; Fourcaud, Thierry; Clément-Vidal, Anne; Stokes, Alexia

    2011-01-01

    Background and Aims The mobile carbon supply to different compartments of a tree is affected by climate, but its impact on cell-wall chemistry and mechanics remains unknown. To understand better the variability in root growth and biomechanics in mountain forests subjected to substrate mass movement, we investigated root chemical and mechanical properties of mature Abies georgei var. smithii (Smith fir) growing at different elevations on the Tibet–Qinghai Plateau. Methods Thin and fine roots (0·1–4·0 mm in diameter) were sampled at three different elevations (3480, 3900 and 4330 m, the last corresponding to the treeline). Tensile resistance of roots of different diameter classes was measured along with holocellulose and non-structural carbon (NSC) content. Key Results The mean force necessary to break roots in tension decreased significantly with increasing altitude and was attributed to a decrease in holocellulose content. Holocellulose was significantly lower in roots at the treeline (29·5 ± 1·3 %) compared with those at 3480 m (39·1 ± 1·0 %). Roots also differed significantly in NSC, with 35·6 ± 4·1 mg g−1 dry mass of mean total soluble sugars in roots at 3480 m and 18·8 ± 2·1 mg g−1 dry mass in roots at the treeline. Conclusions Root mechanical resistance, holocellulose and NSC content all decreased with increasing altitude. Holocellulose is made up principally of cellulose, the biosynthesis of which depends largely on NSC supply. Plants synthesize cellulose when conditions are optimal and NSC is not limiting. Thus, cellulose synthesis in the thin and fine roots measured in our study is probably not a priority in mature trees growing at very high altitudes, where climatic factors will be limiting for growth. Root NSC stocks at the treeline may be depleted through over-demand for carbon supply due to increased fine root production or winter root growth. PMID:21186240

  2. Elucidating rhizosphere processes by mass spectrometry - A review.

    PubMed

    Rugova, Ariana; Puschenreiter, Markus; Koellensperger, Gunda; Hann, Stephan

    2017-03-01

    The presented review discusses state-of-the-art mass spectrometric methods, which have been developed and applied for investigation of chemical processes in the soil-root interface, the so-called rhizosphere. Rhizosphere soil's physical and chemical characteristics are to a great extent influenced by a complex mixture of compounds released from plant roots, i.e. root exudates, which have a high impact on nutrient and trace element dynamics in the soil-root interface as well as on microbial activities or soil physico-chemical characteristics. Chemical characterization as well as accurate quantification of the compounds present in the rhizosphere is a major prerequisite for a better understanding of rhizosphere processes and requires the development and application of advanced sampling procedures in combination with highly selective and sensitive analytical techniques. During the last years, targeted and non-targeted mass spectrometry-based methods have emerged and their combination with specific separation methods for various elements and compounds of a wide polarity range have been successfully applied in several studies. With this review we critically discuss the work that has been conducted within the last decade in the context of rhizosphere research and elemental or molecular mass spectrometry emphasizing different separation techniques as GC, LC and CE. Moreover, selected applications such as metal detoxification or nutrient acquisition will be discussed regarding the mass spectrometric techniques applied in studies of root exudates in plant-bacteria interactions. Additionally, a more recent isotope probing technique as novel mass spectrometry based application is highlighted. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Selection of microsites by grizzly bears to excavate biscuitroots (Lomatium cous)

    USGS Publications Warehouse

    Mattson, D.J.

    1997-01-01

    Roots of the biscuitroot (Lomatium cous) are a common food of grizzly bears (Ursus arctos horribilis) in drier parts of their southern range. I used random sampling and locations of radiomarked bears in the Yellowstone ecosystem to investigate the importance of mass and starch content of roots, digability of the site, and density of plants relative to selection of sites by grizzly bears to dig biscuitroots. Where biscuitroots were present, most differences between dug and undug sites were related to digability of the site and mass and starch content of roots. Grizzly bears more often dug in sites where average milligrams of starch per kilogram of pull per root (a??energy gain) was high. Density of biscuitroots was not related to selection of sites by grizzly bears. Mass of biscuitroot stems also provided relatively little information about mass of roots. Distribution of biscuitroots was associated with increased cover of rocks and exposure to wind, and with decreased slopes and cover of forbs. Digs by grizzly bears were associated with the presence of biscuitroots, proximity to edge of forest, and increased cover of rocks. Results were consistent with previously observed tendencies of grizzly bears to concentrate their feeding within 50-100 m of cover.

  4. Influences of calcium availability and tree species on Ca isotope fractionation in soil and vegetation

    USGS Publications Warehouse

    Page, B.D.; Bullen, T.D.; Mitchell, M.J.

    2008-01-01

    The calcium (Ca) isotope system is potentially of great use for understanding biogeochemical processes at multiple scales in forest ecosystems, yet remains largely unexplored for this purpose. In order to further our understanding of Ca behavior in forests, we examined two nearly adjacent hardwood-dominated catchments with differing soil Ca concentrations, developed from crystalline bedrock, to determine the variability of 44Ca/ 40Ca ratios (expressed as ??44Ca) within soil and vegetation pools. For both sugar maple and American beech, the Ca isotope compositions of the measured roots and calculated bulk trees were considerably lighter than those of soil pools at these sites, suggesting that the trees were able to preferentially take up light Ca at the root-soil interface. The Ca isotope compositions of three of four root samples were among the lightest values yet reported for terrestrial materials (??44Ca ???-3.95???). Our results further indicate that Ca isotopes were fractionated along the transpiration streams of both tree species with roots having the least ??44Ca values and leaf litter the greatest. An approximately 2??? difference in ??44Ca values between roots and leaf litter of both tree species suggests a persistent fractionation mechanism along the transpiration stream, likely related to Ca binding in wood tissue coupled with internal ion exchange. Finally, our data indicate that differing tree species demand for Ca and soil Ca concentrations together may influence Ca isotope distribution within the trees. Inter-catchment differences in Ca isotope distributions in soils and trees were minor, indicating that the results of our study may have broad transferability to studies of forest ecosystems in catchments developed on crystalline substrates elsewhere. ?? 2008 Springer Science+Business Media B.V.

  5. [Effects of water storage in deeper soil layers on the root growth, root distribution and economic yield of cotton in arid area with drip irrigation under mulch].

    PubMed

    Luo, Hong-Hai; Zhang, Hong-Zhi; Zhang, Ya-Li; Zhang, Wang-Feng

    2012-02-01

    Taking cotton cultivar Xinluzao 13 as test material, a soil column culture expenment was conducted to study the effects of water storage in deeper (> 60 cm) soil layer on the root growth and its relations with the aboveground growth of the cultivar in arid area with drip irrigation under mulch. Two levels of water storage in 60-120 cm soil layer were installed, i. e., well-watered and no watering, and for each, the moisture content in 0-40 cm soil layer during growth period was controlled at two levels, i.e., 70% and 55% of field capacity. It was observed that the total root mass density of the cultivar and its root length density and root activity in 40-120 cm soil layer had significant positive correlations with the aboveground dry mass. When the moisture content in 0-40 cm soil layer during growth season was controlled at 70% of field capacity, the total root mass density under well-watered and no watering had less difference, but the root length density and root activity in 40-120 cm soil layer under well-watered condition increased, which enhanced the water consumption in deeper soil layer, increased the aboveground dry mass, and finally, led to an increased economic yield and higher water use efficiency. When the moisture content in 0-40 cm soil layer during growth season was controlled at 55% of field capacity and the deeper soil layer was well-watered, the root/shoot ratio and root length density in 40-120 cm soil layer and the root activity in 80-120 cm soil layer were higher, the water consumption in deeper soil layer increased, but it was still failed to adequately compensate for the negative effects of water deficit during growth season on the impaired growth of roots and aboveground parts, leading to a significant decrease in the economic yield, as compared with that at 70% of field capacity. Overall, sufficient water storage in deeper soil layer and a sustained soil moisture level of 65% -75% of field capacity during growth period could promote the downward growth of cotton roots, which was essential for achieving water-saving and high-yielding cultivation of cotton with drip irrigation under mulch.

  6. Characterization of adsorption sites on aggregate soil samples using synchrotron X-ray computerized microtomography.

    PubMed

    Altman, Susan J; Rivers, Mark L; Reno, Marissa D; Cygan, Randall T; McLain, Angela A

    2005-04-15

    Synchrotron-source X-ray computerized microtomography (CMT) was used to evaluate the adsorptive properties of aggregate soil samples. A linear relationship between measured mean mass attenuation coefficient (sigma) and mass fraction iron was generated by imaging mineral standards with known iron contents. On the basis of reported stoichiometries of the clay minerals and identifications of iron oxyhydroxides (1), we calculated the mass fraction iron and iron oxyhydroxide in the intergranular material. The mass fractions of iron were estimated to range from 0.17 to 0.22 for measurements made at 18 keV and from 0.18 to 0.21 for measurements made at 26 keV. One aggregate sample also contained regions within the intergranular material with mass fraction iron ranging from 0.29 to 0.31 and from 0.33 to 0.36 for the 18 and 26 keV measurements, respectively. The mass fraction iron oxyhydroxide ranged from 0.18 to 0.35 for the low-iron intergranular material and from 0.40 to 0.59 for the high-iron intergranular material. Using absorption edge difference imaging with CMT, we visualized cesium on the intergranular material, presumably because of adsorption and possible exchange reactions. By characterizing the mass fraction iron, the mass fraction iron oxyhydroxide, and the adsorptive capacity of these soil mineral aggregates, we provide information useful for conceptualization, development, and parametrization of transport models.

  7. 40 CFR 63.4312 - What records must I keep?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... manufacturer's formulation data or test data used to determine the mass fraction of organic HAP for coating, printing, slashing, dyeing, finishing, thinning, and cleaning materials; and the mass fraction of solids for coating and printing materials. If you conducted testing to determine mass fraction of organic HAP...

  8. 40 CFR 63.4130 - What records must I keep?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... fraction of coating solids for each coating. If you conducted testing to determine mass fraction of organic... of the mass fraction of organic HAP for each coating, thinner, and cleaning material used during each... suppliers or manufacturers such as manufacturer's formulation data or test data used to determine the mass...

  9. 40 CFR 63.4930 - What records must I keep?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... fraction of coating solids for each coating. If you conducted testing to determine mass fraction of organic... mass fraction of organic HAP for each coating, thinner, and cleaning material used during each... such as manufacturer's formulation data for the materials used, or test data used to determine the mass...

  10. 40 CFR 63.4930 - What records must I keep?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... fraction of coating solids for each coating. If you conducted testing to determine mass fraction of organic... mass fraction of organic HAP for each coating, thinner, and cleaning material used during each... such as manufacturer's formulation data for the materials used, or test data used to determine the mass...

  11. 40 CFR 63.4312 - What records must I keep?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... manufacturer's formulation data or test data used to determine the mass fraction of organic HAP for coating, printing, slashing, dyeing, finishing, thinning, and cleaning materials; and the mass fraction of solids for coating and printing materials. If you conducted testing to determine mass fraction of organic HAP...

  12. 40 CFR 63.4930 - What records must I keep?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... fraction of coating solids for each coating. If you conducted testing to determine mass fraction of organic... mass fraction of organic HAP for each coating, thinner, and cleaning material used during each... such as manufacturer's formulation data for the materials used, or test data used to determine the mass...

  13. 40 CFR 63.4930 - What records must I keep?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... fraction of coating solids for each coating. If you conducted testing to determine mass fraction of organic... mass fraction of organic HAP for each coating, thinner, and cleaning material used during each... such as manufacturer's formulation data for the materials used, or test data used to determine the mass...

  14. Galaxy and Mass Assembly (GAMA): the red fraction and radial distribution of satellite galaxies

    NASA Astrophysics Data System (ADS)

    Prescott, Matthew; Baldry, I. K.; James, P. A.; Bamford, S. P.; Bland-Hawthorn, J.; Brough, S.; Brown, M. J. I.; Cameron, E.; Conselice, C. J.; Croom, S. M.; Driver, S. P.; Frenk, C. S.; Gunawardhana, M.; Hill, D. T.; Hopkins, A. M.; Jones, D. H.; Kelvin, L. S.; Kuijken, K.; Liske, J.; Loveday, J.; Nichol, R. C.; Norberg, P.; Parkinson, H. R.; Peacock, J. A.; Phillipps, S.; Pimbblet, K. A.; Popescu, C. C.; Robotham, A. S. G.; Sharp, R. G.; Sutherland, W. J.; Taylor, E. N.; Tuffs, R. J.; van Kampen, E.; Wijesinghe, D.

    2011-10-01

    We investigate the properties of satellite galaxies that surround isolated hosts within the redshift range 0.01 < z < 0.15, using data taken as part of the Galaxy And Mass Assembly survey. Making use of isolation and satellite criteria that take into account stellar mass estimates, we find 3514 isolated galaxies of which 1426 host a total of 2998 satellites. Separating the red and blue populations of satellites and hosts, using colour-mass diagrams, we investigate the radial distribution of satellite galaxies and determine how the red fraction of satellites varies as a function of satellite mass, host mass and the projected distance from their host. Comparing the red fraction of satellites to a control sample of small neighbours at greater projected radii, we show that the increase in red fraction is primarily a function of host mass. The satellite red fraction is about 0.2 higher than the control sample for hosts with ?, while the red fractions show no difference for hosts with ?. For the satellites of more massive hosts, the red fraction also increases as a function of decreasing projected distance. Our results suggest that the likely main mechanism for the quenching of star formation in satellites hosted by isolated galaxies is strangulation.

  15. Effects of tungsten on uptake, transport and subcellular distribution of molybdenum in oilseed rape at two different molybdenum levels.

    PubMed

    Qin, Shiyu; Sun, Xuecheng; Hu, Chengxiao; Tan, Qiling; Zhao, Xiaohu; Xu, Shoujun

    2017-03-01

    Due to the similarities of molybdenum (Mo) with tungsten (W) in the physical structure and chemical properties, studies involving the two elements have mainly examined their competitive relationships. The objectives of this study were to assess the effects of equimolar W on Mo accumulation, transport and subcellular distribution in oilseed rape at two Mo levels with four treatments: Mo 1 (1μmol/L Mo, Low Mo), Mo 1 +W 1 (1μmol/L Mo+1μmol/LW, Low Mo with Low W), Mo 200 (200μmol/L Mo, High Mo) and Mo 200 +W 200 (200μmol/L Mo+200μmol/L Mo, High Mo with high W). The fresh weight and root growth were inhibited by equimolar W at both low and high Mo levels. The Mo concentration and accumulation in root was increased by equimolar W at the low Mo level, but that in the root and shoot was decreased at the high Mo level. Additionally, equimolar W increased the Mo concentrations of xylem and phloem sap at low Mo level, but decreased that of xylem and increased that of phloem sap at the high Mo level. Furthermore, equimolar W decreased the expression of BnMOT1 in roots and leaves at the low Mo level, and only decreased its expression in leaves at the high Mo level. The expression of BnMOT2 was also decreased in root for equimolar W compared with the low Mo level, but increased compared with high Mo level. Moreover, equimolar W increased the proportion of Mo in cell wall fraction in root and that of soluble fraction in leaves when compared with the low Mo level. The results suggest that cell wall and soluble fractions might be responsible for the adaptation of oilseed rape to W stress. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  16. Physiological and growth responses of Centaurea maculosa (Asteraceae) to root herbivory under varying levels of interspecific plant competition and soil nitrogen availability.

    PubMed

    Steinger, Thomas; Müller-Schärer, Heinz

    1992-08-01

    Centaurea maculosa seedlings were grown in pots to study the effects of root herbivory by Agapeta zoegana L. (Lep.: Cochylidae) and Cyphocleonus achates Fahr. (Col.: Curculionidae), grass competition and nitrogen shortage (each present or absent), using a full factorial design. The aims of the study were to analyse the impact of root herbivory on plant growth, resource allocation and physiological processes, and to test if these plant responses to herbivory were influenced by plant competition and nitrogen availability. The two root herbivores differed markedly in their impact on plant growth. While feeding by the moth A. zoegana in the root cortex had no effect on shoot and root mass, feeding by the weevil C. achates in the central vascular tissue greatly reduced shoot mass, but not root mass, leading to a reduced shoot/root ratio. The absence of significant effects of the two herbivores on root biomass, despite considerable consumption, indicates that compensatory root growth occurred. Competition with grass affected plant growth more than herbivory and nutrient status, resulting in reduced shoot and root growth, and number of leaves. Nitrogen shortage did not affect plant growth directly but greatly influenced the compensatory capacity of Centaurea maculosa to root herbivory. Under high nitrogen conditions, shoot biomass of plants infested by the weevil was reduced by 30% compared with uninfested plants. However, under poor nitrogen conditions a 63% reduction was observed compared with corresponding controls. Root herbivory was the most important stress factor affecting plant physiology. Besides a relative increase in biomass allocation to the roots, infested plants also showed a significant increase in nitrogen concentration in the roots and a concomitant reduction in leaf nitrogen concentration, reflecting a redirection of the nitrogen to the stronger sink. The level of fructans was greatly reduced in the roots after herbivore feeding. This is thought to be a consequence of their mobilisation to support compensatory root growth. A preliminary model linking the effects of these root herbivores to the physiological processes of C. maculosa is presented.

  17. Machine vision system for measuring conifer seedling morphology

    NASA Astrophysics Data System (ADS)

    Rigney, Michael P.; Kranzler, Glenn A.

    1995-01-01

    A PC-based machine vision system providing rapid measurement of bare-root tree seedling morphological features has been designed. The system uses backlighting and a 2048-pixel line- scan camera to acquire images with transverse resolutions as high as 0.05 mm for precise measurement of stem diameter. Individual seedlings are manually loaded on a conveyor belt and inspected by the vision system in less than 0.25 seconds. Designed for quality control and morphological data acquisition by nursery personnel, the system provides a user-friendly, menu-driven graphical interface. The system automatically locates the seedling root collar and measures stem diameter, shoot height, sturdiness ratio, root mass length, projected shoot and root area, shoot-root area ratio, and percent fine roots. Sample statistics are computed for each measured feature. Measurements for each seedling may be stored for later analysis. Feature measurements may be compared with multi-class quality criteria to determine sample quality or to perform multi-class sorting. Statistical summary and classification reports may be printed to facilitate the communication of quality concerns with grading personnel. Tests were conducted at a commercial forest nursery to evaluate measurement precision. Four quality control personnel measured root collar diameter, stem height, and root mass length on each of 200 conifer seedlings. The same seedlings were inspected four times by the machine vision system. Machine stem diameter measurement precision was four times greater than that of manual measurements. Machine and manual measurements had comparable precision for shoot height and root mass length.

  18. Does the increased air humidity affect soil respiration and carbon stocks?

    NASA Astrophysics Data System (ADS)

    Kukumägi, Mai; Celi, Luisella; Said-Pullicino, Daniel; Kupper, Priit; Sõber, Jaak; Lõhmus, Krista; Kutti, Sander; Ostonen, Ivika

    2013-04-01

    Climate manipulation experiments at ecosystem-scale enable us to simulate, investigate and predict changes in carbon balance of forest ecosystems. Considering the predicted increase in air humidity and precipitation for northern latitudes, this work aimed at investigating the effect of increased air humidity on soil respiration, distribution of soil organic matter (SOM) among pools having different turnover times, and microbial, fine root and rhizome biomass. The study was carried out in silver birch (Betula pendula Roth.) and hybrid aspen (Populus tremula L. × P. tremuloides Michx.) stands in a Free Air Humidity Manipulation (FAHM) experimental facility containing three humidified (H; on average 7% above current ambient levels since 2008) and three control (C) plots. Soil respiration rates were measured monthly during the growing season using a closed dynamic chamber method. Density fractionation was adopted to separate SOM into two light fractions (free and aggregate-occluded particulate organic matter, fPOM and oPOM respectively), and one heavy fraction (mineral-associated organic matter, MOM). The fine root and rhizome biomass and microbial data are presented for silver birch stands only. In 2011, after 4 growing seasons of humidity manipulation soil organic carbon contents were significantly higher in C plots than H plot (13.5 and 12.5 g C kg-1, respectively), while soil respiration tended to be higher in the latter. Microbial biomass and basal respiration were 13 and 14% higher in H plots than in the C plots, respectively. Twice more fine roots of trees were estimated in H plots, while the total fine root and rhizome biomass (tree + understory) was similar in C and H plots. Fine root turnover was higher for both silver birch and understory roots in H plots. Labile SOM light fractions (fPOM and oPOM) were significantly smaller in H plots with respect to C plots (silver birch and hybrid aspen stands together), whereas no differences were observed in the contents of the more stable MOM. These results strongly suggest that, apart from the predicted increase in temperature and atmospheric carbon and nitrogen concentrations, an increase in free air humidity as a result of climate change may significantly influence the complex belowground carbon cycling by affecting biomass production, soil respiration and organic matter turnover.

  19. Natural history and outcome of aortic stenosis diagnosed prenatally.

    PubMed Central

    Simpson, J. M.; Sharland, G. K.

    1997-01-01

    OBJECTIVE: To document the growth of the left heart structures and outcome of fetuses with aortic stenosis. DESIGN: Retrospective echocardiographic and clinical study. SETTING: Tertiary centre for fetal cardiology. PATIENTS: 27 consecutive fetuses with aortic stenosis. MAIN OUTCOME MEASURES: Survival of affected fetuses. Measurement of left ventricular end diastolic volume (LVEDV), aortic root diameter, and ejection fraction. RESULTS: Before 25 weeks' gestation, the LVEDV was normal or increased in all cases. In six of eight fetuses studied sequentially, the LVEDV fell across normal centiles. Initial ejection fraction was reduced in 23 fetuses (88%). Before 28 weeks' gestation, the aortic root was normal in all but one case, but after 29 weeks, 11 of 13 fetuses had values below the 50th centile. In two fetuses prenatal aortic valvoplasty was attempted, 10 babies had postnatal interventions, and there were six survivors. Biventricular repair was attempted in eight cases, of whom five survived. A first stage Norwood operation was performed in three babies, of whom one survived. The four fetuses with the highest aortic root z scores had successful biventricular repair. The two fetuses with initially normal ejection fractions survived. Successful biventricular repair was achieved even where the LVEDV was below the 5th centile. CONCLUSIONS: In aortic stenosis diagnosed prenatally, failure of growth of the left ventricle and aortic root often occurs. The outcome of affected fetuses is better than previously reported. Prenatal echocardiography may assist selection of suitable candidates for biventricular versus Norwood repair. Images PMID:9093035

  20. Investigation of the Biogenic Origin of Cave Pool Precipitates in the Guadalupe Mountains, NM Using Extracted Phospholipids and Other Biomarkers

    NASA Astrophysics Data System (ADS)

    Kooser, A. S.; Crossey, L.; Northup, D.; Spilde, M.; Melim, L.

    2008-12-01

    Biomarker analysis is an important tool for understanding biogenic carbonates. Past and present bacterial communities utilize chemical species present in the cave environments for metabolic processes and may directly or indirectly contribute to carbonate production. Paleo-communities of bacteria are preserved in speleothems (cave formations) called pool fingers. These speleothems range from 1-4 cm in diameter, 5- 50cm in length and contain alternating layers of micritic calcite and dog tooth spar. The outer portion of the finger can have a moonmilk coating. Pool fingers contain fossilized microbes that can be seen using scanning electron microscopy on etch samples. The lithified communities also leave behind fingerprints in the form of biomarkers. The biomarkers are extracted from pool fingers using a series of solvent washes; the products of each wash are analyzed using gas chromatography followed by gas chromatography/mass spectroscopy. Six samples including pool spar (abiotic speleothem) were examined using this technique. The moonmilk portion of the large pool finger from Cottonwood Cave contained several short-chained fatty acids (C16-C22), which are of microbial origin. In the polar fraction unknown hopanes were detected. The presence of a hopanes with short-chained fatty acids confirms the presence of bacterial biomarkers in the moonmilk portion of the pool finger. The pool spar sample (assumed to be abiotic) produced a different mass spectral pattern for the acid fraction and polar fraction. The acid fraction contains short-chain fatty acids (C16-22), but there are no hopanes present in the other fractions. The polar fraction for the polar spar is dominated by plant biomarkers producing the 'rainbow' spectra of C22 and higher chains. The pool finger, which is thought to be partially biogenic, contains both fossilized bacteria and bacteria biomarkers while the pool spar contains general biomarkers and plant biomarkers. The plant biomarkers found in the pool spar may have originated in the roots of the desert plants over the cave system. The presence of microbial biomarkers in the micritic layer of the pool finger and their absence in the pool spar provide support for the biogenicity of the micritic layers of cave pool fingers.

  1. A bioactivity guided study on the antibacterial activity of Hertia cheirifolia L. extracts.

    PubMed

    Majouli, Kaouther; Hamdi, Assia; Msaada, Kamel; Kenani, Abderraouf

    2017-05-01

    This study was carried out with the objective to investigate the antibacterial activity of Hertia cheirifolia L. extracts against Gram-positive and Gram-negative strains including Staphylococcus aureus (ATCC 6538), Bacillus subtilis (ATCC 6633), Bacillus licheniformis, Esherichia coli (ATCC 8739), Pseudomonas aeruginosa (ATCC 9027), Salmonella enterica (CIP 8039) and Salmonella typhimirium. The results of this antibacterial screening showed that the ethyl acetate (EtOAc) extracts had the best activity against the tested microorganisms. A bioassay-oriented fractionation approach for the more active extract (roots ethyl acetate extract) led to the obtaining five sub-fractions. Furthermore, these sub-fractions were also tested for antimicrobial activity and the best results were obtained for the roots EtOAc sub-fraction (C) with MICs values between 0.039 and 0.156 mg/mL. Reversed-phase high performance liquid chromatography (RP-HPLC) analysis indicated that the major phenolic components of active (EtOAc) extracts and sub-fraction (C) are fisetin hydrate (82.06%), trans cinnamic acid (63.66%), gallic acid (38.97%) and myricetin (20.92%). These results may help to improve these natural antibacterial substances that could serve as selective agents for bacterial diseases. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Extracts and Fractions from Edible Roots of Sechium edule (Jacq.) Sw. with Antihypertensive Activity

    PubMed Central

    Lombardo-Earl, Galia; Roman-Ramos, Rubén; Zamilpa, Alejandro; Herrera-Ruiz, Maribel; Rosas-Salgado, Gabriela; Tortoriello, Jaime; Jiménez-Ferrer, Enrique

    2014-01-01

    Sechium edule is traditionally used in Mexico as a therapeutic resource against renal diseases and to control high blood pressure. The purpose of this work is to evaluate the antihypertensive effect of the hydroalcoholic extract obtained from the roots of this plant, including its fractions and subfractions, on different hypertension models induced with angiotensin II (AG II). The hydroalcoholic extract was tested on an in vitro study of isolated aorta rings denuded of endothelial cells, using AG II as the agonist; this assay proved the vasorelaxant effect of this extract. Vagotomized rats were administered different doses of AG II as well as the Hydroalcoholic extract, which reduced blood pressure in 30 mmHg approximately; subsequently this extract was separated into two fractions (acetone and methanol) which were evaluated in the acute hypertension mouse model induced with AG II, where the acetone fraction was identified as the most effective one and was subsequently subfractioned using an open chromatographic column packed with silica gel. The subfractions were also evaluated in the acute hypertension model. Finally, the extract, fraction, and active subfraction were analyzed by MS-PDA-HPLC, identifying cinnamic derivative compounds like cinnamic acid methyl ester. PMID:24812568

  3. Inhibition of nitrate transport by anti-nitrate reductase IgG fragments and the identification of plasma membrane associated nitrate reductase in roots of barley seedlings

    NASA Technical Reports Server (NTRS)

    Ward, M. R.; Tischner, R.; Huffaker, R. C.

    1988-01-01

    Membrane associated nitrate reductase (NR) was detected in plasma membrane (PM) fractions isolated by aqueous two-phase partitioning from barley (Hordeum vulgare L. var CM 72) roots. The PM associated NR was not removed by washing vesicles with 500 millimolar NaCl and 1 millimolar EDTA and represented up to 4% of the total root NR activity. PM associated NR was stimulated up to 20-fold by Triton X-100 whereas soluble NR was only increased 1.7-fold. The latency was a function of the solubilization of NR from the membrane. NR, solubilized from the PM fraction by Triton X-100 was inactivated by antiserum to Chlorella sorokiniana NR. Anti-NR immunoglobulin G fragments purified from the anti-NR serum inhibited NO3- uptake by more than 90% but had no effect on NO2- uptake. The inhibitory effect was only partially reversible; uptake recovered to 50% of the control after thorough rinsing of roots. Preimmune serum immunoglobulin G fragments inhibited NO3- uptake 36% but the effect was completely reversible by rinsing. Intact NR antiserum had no effect on NO3- uptake. The results present the possibility that NO3- uptake and NO3- reduction in the PM of barley roots may be related.

  4. The Sunyaev-Zel'dovich Effect in Abell 370

    NASA Technical Reports Server (NTRS)

    Grego, Laura; Carlstrom, John E.; Joy, Marshall K.; Reese, Erik D.; Holder, Gilbert P.; Patel, Sandeep; Holzapfel, William L.; Cooray, Asantha K.

    1999-01-01

    We present interferometric measurements of the Sunyaev-Zel'dovich (SZ) effect towards the galaxy cluster Abell 370. These measurements, which directly probe the pressure of the cluster's gas, show the gas is strongly aspherical, on agreement with the morphology revealed by x-ray and gravitational lensing observations. We calculate the cluster's gas mass fraction by comparing the gas mass derived from the SZ measurements to the lensing-derived gravitational mass near the critical lensing radius. We also calculate the gas mass fraction from the SZ data by deriving the total mass under the assumption that the gas is in hydrostatic equilibrium (HSE). We test the assumptions in the HSE method by comparing the total cluster mass implied by the two methods. The Hubble constant derived for this cluster, when the known systematic uncertainties are included, has a very wide range of values and therefore does not provide additional constraints on the validity of the assumptions. We examine carefully the possible systematic errors in the gas fraction measurement. The gas fraction is a lower limit to the cluster's baryon fraction and so we compare the gas mass fraction, calibrated by numerical simulations to approximately the virial radius, to measurements of the global mass fraction of baryonic matter, OMEGA(sub B)/OMEGA(sub matter). Our lower limit to the cluster baryon fraction is f(sub B) = (0.043 +/- 0.014)/h (sub 100). From this, we derive an upper limit to the universal matter density, OMEGA(sub matter) <= 0.72/h(sub 100), and a likely value of OMEGA(sub matter) <= (0.44(sup 0.15, sub -0.12)/h(sub 100).

  5. Phytochemical investigations and antioxidant potential of roots of Leea macrophylla (Roxb.).

    PubMed

    Mahmud, Zobaer Al; Bachar, Sitesh C; Hasan, Choudhury Mahmood; Emran, Talha Bin; Qais, Nazmul; Uddin, Mir Muhammad Nasir

    2017-07-06

    Oleanolic acid (NZ-15), 7 α, 28-olean diol (NZ-38) and Stigmasterol (NZ-14) were isolated from the ethanolic extracts of the roots of Leea macrophylla (Family: Leeaceae) by using chromatographic analysis. This is the first report of isolation of these compounds from this plant. Their structures were constructed by spectroscopic analysis and by comparing the data with the published one. Subsequently the ethanolic extract was fractionated with two organic solvents and all the fractions were studied to evaluate their in vitro antioxidant property. The ethanolic extract was fractionated with two organic solvents and all the fractions were studied to evaluate their in vitro antioxidant property by DPPH free radical scavenging assay, superoxide anion radical scavenging assay, nitric oxide radical scavenging assay, and reducing power assay. In the DPPH free radical scavenging assay and superoxide radical scavenging assay, the ethyl acetate soluble fraction of ethanolic extract revealed the highest free radical scavenging activity with IC 50 value of 2.65 and 155.62 μg/ml, respectively as compared to standard ascorbic acid (IC 50 value of 5.8 and 99.66 μg/ml). Ethyl acetate fraction also possessed highest reducing power activity with an EC50 value of 15.27 μg/ml compared to ascorbic acid (EC 50 0.91 μg/ml). On the other hand, the carbon tetrachloride fraction exhibited most significant NO scavenging activity with IC 50 value of 277.8 μg/ml that was even higher than that of standard ascorbic acid (IC 50 value 356.04 μg/ml). In addition, the total phenolic contents of these extract and fractions were evaluated using Folin-Ciocalteu reagent and varied from 7.93 to 50.21 mg/g dry weight expressed as gallic acid equivalents (GAE). This study showed that different extracts of roots of L. macrophylla possess potential DPPH, superoxide, and NO free radical scavenging activities. The antioxidant activities of the plant extracts might be due to the presence of oleanolic acid, oleanolic acid derivative 7 α, 28-olean diol and stigmasterol.

  6. Root (Botany)

    Treesearch

    Robert R. Ziemer

    1981-01-01

    Plant roots can contribute significantly to the stability of steep slopes. They can anchor through the soil mass into fractures in bedrock, can cross zones of weakness to more stable soil, and can provide interlocking long fibrous binders within a weak soil mass. In deep soil, anchoring to bedrock becomes negligible, and lateral reinforcement predominates

  7. Changes in SOC stocks and fractions after natural afforestation of alpine grasslands

    NASA Astrophysics Data System (ADS)

    Guidi, Claudia; Rodeghiero, Mirco; Vesterdal, Lars; Gianelle, Damiano

    2013-04-01

    Land use changes are considered one of the major driving forces of global carbon fluxes and can induce significant alterations of soil organic carbon stocks. In the European Alps, the dominant form of land use change is represented by the abandonment of marginal mountain grasslands and their invasion by tree species, i.e. a transition from grassland to forest. While an increase in live and dead aboveground biomass is commonly reported, the impact on soil organic carbon (SOC) is still unclear. The main objective of the current study was to quantify the effect of abandonment and forest regrowth of mountain grassland on SOC, considering both SOC stocks and its physically separated fractions. The study area is located in a pre-alpine area of the Trentino region (Italy), with an elevation of about 1150 m. We compared four land uses representing a transition from grassland to forest: I) managed grassland; II) grassland abandoned 10 years ago; III) natural afforested grassland abandoned after 1973; IV) reference forest, already present in 1861. The afforested area and the reference forest are both dominated by Norway spruce (Picea abies) and beech (Fagus sylvatica). For each land use intensity three sampling areas were selected. In each area we collected eight soil cores to a depth of 30 cm, dividing the soil core in 4 depth increments. To assess changes in SOC stocks, we measured bulk density, stoniness, root biomass and organic carbon content. Mineral SOC stocks were calculated using both an equivalent depth and an equivalent mass approach. Changes in SOC fractions were assessed using aggregate size fractionation (Cambardella and Elliott, 1993) and size-density fractionation procedures. Preliminary results show higher soil C concentrations in forest sites compared to grassland. This can be attributed to higher C inputs and lower mineralization rates due to a higher degree of soil aggregation and protection of soil organic matter, but also to the higher stoniness registered in forest sites which can lead to a concentration of C inputs in a smaller volume of soil. If C stocks are computed using an equivalent soil depth approach, mineral SOC stocks are lower in forest land uses compared to grassland while no significant difference emerges if an equivalent soil mass approach is used. The aggregate size fractionation highlighted an increase in C stored in large macroaggregates following afforestation and a decrease in silt and clay size fraction (<53 μm). The strongest change shown through the size-density fractionation procedure is a three-fold increase in C stored in free organic matter (POM) from grassland to forest. Intriguingly, we found a decreasing trend in the microaggregate (53-250 μm) fraction as well as for the mineral-associated heavy fraction following afforestation, suggesting a decrease in the more stable SOC fraction, while the labile fractions increased.

  8. The Influence of Oscillatory Fractions on Mass Transfer of Non-Newtonian Fluid in Wavy-Walled Tubes for Pulsatile Flow

    NASA Astrophysics Data System (ADS)

    Zhu, Donghui; Bian, Yongning

    2018-03-01

    The shape of pipeline structure, fluid medium and flow state have important influence on the heat transfer and mass effect of fluid. In this paper, we investigated the mass transfer behavior of Non-Newtonian fluid CMC solution with 700ppm concentration in five different-sized axisymmetric wave-walled tubes for pulsatile flow. It is revealed that the effect of mass transfer is enhanced with the increase of oscillatory fractions P based on the PIV measurements. Besides, mass transfer rate was measured by the electrochemical method in the larger oscillatory points rate range. It is observed that mass transfer rate increases with the increase in P and reached the maximum mass transfer rate at the most optimal oscillatory fractions P opt. After reaching the optimal oscillatory fractions P opt, the mass transfer rate decreases with increasing P.

  9. [Decomposition and nutrient release of root with different diameters of three subalpine dominant trees in western area of Sichuan Province, China].

    PubMed

    Tang, Shi-shan; Yang, Wan-qin; Wang, Hai-peng; Xiong, Li; Nie, Fu-yu; Xu, Shen-feng

    2015-10-01

    In this study, a buried bag experiment was used to investigate mass loss and C, N and P release patterns of fine (≤2 mm), medium (2-5 mm) and coarse (≥ 5 mm) roots of 3 subalpine dominant trees, i. e., Betula albosinensis, Abies faxoniana and Picea asperata in the growing and non-growing seasons. In general, the remaining mass of B. albosinensis was lower than that of A. faxoniana and P. asperata. In addition, root remaining mass increased with the increase of root diameter for the same species. The mass losing rate in the non-growing season was 52.1%-64.4% of a year. The C release of B. albosinensis was the highest, but that of A. faxoniana was the lowest. Also, C release decreased with the increase of root diameter. N of A. faxoniana and P. asperata were enriched in the non-growing season but released in the growing season. However, the opposite pattern was found for B. albosinensis. During the non-growing season, the amount of N enrichment increased with the increase of root diameter. The P release of 3 species was characterized as the enrichment-release pattern. P enrichment of A. faxoniana was significantly greater than that of P. asperata and B. albosinensis. Nevertheless, no significant difference was observed between diameter sizes. In conclusion, diameter size had significant effect on root decomposition in the subalpine forests of western Sichuan, and the diameter effect was dependent on tree species and season.

  10. Identification and effect of two flavonoids from root bark of Morus alba against Ichthyophthirius multifiliis in grass carp

    USDA-ARS?s Scientific Manuscript database

    Morus alba is an important plant for sericulture and has a high medicinal value. In this study, two flavonoids (kuwanons G and O) with antiparasitic activity were isolated from the root bark of M. alba by bioassay-guided fractionation. The chemical structures were determined by pectroscopic analys...

  11. Sorocenols G and H, Anti-MRSA Oxygen Heterocyclic Diels-Alder-type Adducts from Sorocea muriculata Roots

    USDA-ARS?s Scientific Manuscript database

    Bioassay-guided fractionation of a root extract of Sorocea muriculata led to the isolation and identification of two new oxygen heterocyclic Diels-Alder-type adducts, sorocenols G (1) and H (2), along with lupeol-3-(3'R-hydroxytetradecanoate) and oxyresveratrol. The structures of 1 and 2 were eluci...

  12. Aortic elasticity and left ventricular function after arterial switch operation: MR imaging--initial experience.

    PubMed

    Grotenhuis, Heynric B; Ottenkamp, Jaap; Fontein, Duveken; Vliegen, Hubert W; Westenberg, Jos J M; Kroft, Lucia J M; de Roos, Albert

    2008-12-01

    To prospectively assess aortic dimensions, aortic elasticity, aortic valve competence, and left ventricular (LV) systolic function in patients after the arterial switch operation (ASO) by using magnetic resonance (MR) imaging. Informed consent was obtained from all participants for this local ethics committee-approved study. Fifteen patients (11 male patients, four female patients; mean age, 16 years +/- 4 [standard deviation]; imaging performed 16.1 years after surgery +/- 3.7) and 15 age- and sex-matched control subjects (11 male subjects, four female subjects; mean age, 16 years +/- 4) were evaluated. Velocity-encoded MR imaging was used to assess aortic pulse wave velocity (PWV), and a balanced turbo-field-echo sequence was used to assess aortic root distensibility. Standard velocity-encoded and multisection-multiphase imaging sequences were used to assess aortic valve function, systolic LV function, and LV mass. The two-tailed Mann-Whitney U test and Spearman rank correlation coefficient were used for statistical analysis. Patients treated with the ASO showed aortic root dilatation at three predefined levels (mean difference, 5.7-9.4 mm; P < or = .007) and reduced aortic elasticity (PWV of aortic arch, 5.1 m/sec +/- 1.2 vs 3.9 m/sec +/- 0.7, P = .004; aortic root distensibility, [2.2 x 10(-3)] x mm Hg(-1) +/- 1.8 vs [4.9 x 10(-3)] x mm Hg(-1) +/- 2.9, P < .01) compared with control subjects. Minor degrees of aortic regurgitation (AR) were present (AR fraction, 5% +/- 3 in patients vs 1% +/- 1 in control subjects; P < .001). Patients had impaired systolic LV function (LV ejection fraction [LVEF], 51% +/- 6 vs 58% +/- 5 in control subjects; P = .003), in addition to enlarged LV dimensions (end-diastolic volume [EDV], 112 mL/m(2) +/- 13 vs 95 mL/m(2) +/- 16, P = .007; end-systolic volume [ESV], 54 mL/m(2) +/- 11 vs 39 mL/m(2) +/- 7, P < .001). Degree of AR predicted decreased LVEF (r = 0.41, P = .026) and was correlated with increased LV dimensions (LV EDV: r = 0.48, P = .008; LV ESV: r = 0.67, P < .001). Aortic root dilatation and reduced elasticity of the proximal aorta are frequently observed in patients who have undergone the ASO, in addition to minor degrees of AR, reduced LV systolic function, and increased LV dimensions. RSNA, 2008

  13. Iron isotope fingerprints of redox and biogeochemical cycling in the soil-water-rice plant system of a paddy field.

    PubMed

    Garnier, J; Garnier, J-M; Vieira, C L; Akerman, A; Chmeleff, J; Ruiz, R I; Poitrasson, F

    2017-01-01

    The iron isotope composition was used to investigate dissimilatory iron reduction (DIR) processes in an iron-rich waterlogged paddy soil, the iron uptake strategies of plants and its translocation in the different parts of the rice plant along its growth. Fe concentration and isotope composition (δ 56 Fe) in irrigation water, precipitates from irrigation water, soil, pore water solution at different depths under the surface water, iron plaque on rice roots, rice roots, stems, leaves and grains were measured. Over the 8.5-10cm of the vertical profiles investigated, the iron pore water concentration (0.01 to 24.3mg·l -1 ) and δ 56 Fe (-0.80 to -3.40‰) varied over a large range. The significant linear co-variation between Ln[Fe] and δ 56 Fe suggests an apparent Rayleigh-type behavior of the DIR processes. An average net fractionation factor between the pore water and the soil substrate of Δ 56 Fe≈-1.15‰ was obtained, taking the average of all the δ 56 Fe values weighted by the amount of Fe for each sample. These results provide a robust field study confirmation of the conceptual model of Crosby et al. (2005, 2007) for interpreting the iron isotope fractionation observed during DIR, established from a series of laboratories experiments. In addition, the strong enrichment of heavy Fe isotope measured in the root relative to the soil solution suggest that the iron uptake by roots is more likely supplied by iron from plaque and not from the plant-available iron in the pore water. Opposite to what was previously observed for plants following strategy II for iron uptake from soils, an iron isotope fractionation factor of -0.9‰ was found from the roots to the rice grains, pointing to isotope fractionation during rice plant growth. All these features highlight the insights iron isotope composition provides into the biogeochemical Fe cycling in the soil-water-rice plant systems studied in nature. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Hepatoprotective activity of Trichilia roka on carbon tetrachloride-induced liver damage in rats.

    PubMed

    Germanò, M P; D'Angelo, V; Sanogo, R; Morabito, A; Pergolizzi, S; De Pasquale, R

    2001-11-01

    Trichilia roka Chiov. (Meliaceae) is a tree widely distributed in tropical Africa. It has been used in Mali folk medicine for the treatment of various illnesses. A decoction of the roots is taken as a remedy for colds and pneumonia, and it is used as a diuretic and in hepatic disorders. We have evaluated the hepatoprotective effects of a decoction of Trichilia roka root on CCl4-induced acute liver damage in rats. Treatment with the decoction showed a significant protective action made evident by its effect on the levels of glutamate oxalacetate transaminase and glutamate pyruvate transaminase in the serum, on the protein content and lipid peroxidation levels in the liver homogenate. Histopathological changes produced by CCl4, such as necrosis, fatty change, ballooning degeneration and inflammatory infiltration of lymphocytes around the central veins, were clearly recovered by the treatment with Trichilia root decoction. On fractionating this extract into diethyl ether-soluble and water-soluble fractions, the activity was retained in the diethyl ether-soluble fraction. Moreover, the administration of decoction prevented a preferential deposition of collagen around the sinusoidal cell layer, which is responsible for the perisinusoidal fibrosis in the early stage of CCl4 damage. This study showed that treatment with Trichilia roka extracts or silymarin (as reference) appeared to enhance the recovery from CCl4-induced hepatotoxicity. The hepatoprotective properties of Trichilia roka may be correlated to polyphenol content of the decoction and its diethyl ether-soluble fraction.

  15. Phototropism of Arabidopsis thaliana in microgravity and fractional gravity on the International Space Station.

    PubMed

    Kiss, John Z; Millar, Katherine D L; Edelmann, Richard E

    2012-08-01

    While there is a great deal of knowledge regarding plant growth and development in microgravity aboard orbiting spacecraft, there is little information available about these parameters in reduced or fractional gravity conditions (less than the nominal 1g on Earth). Thus, in these experiments using the European Modular Cultivation System on the International Space Station, we studied the interaction between phototropism and gravitropism in the WT and mutants of phytochrome A and B of Arabidopis thaliana. Fractional gravity and the 1 g control were provided by centrifuges in the spaceflight hardware, and unidirectional red and blue illumination followed a white light growth period in the time line of the space experiments. The existence of red-light-based positive phototropism in hypocotyls of seedlings that is mediated by phytochrome was confirmed in these microgravity experiments. Fractional gravity studies showed an attenuation of red-light-based phototropism in both roots and hypocotyls of seedlings occurring due to gravitational accelerations ranging from 0.l to 0.3 g. In contrast, blue-light negative phototropism in roots, which was enhanced in microgravity compared with the 1g control, showed a significant attenuation at 0.3 g. In addition, our studies suggest that the well-known red-light enhancement of blue-light-induced phototropism in hypocotyls is likely due to an indirect effect by the attenuation of gravitropism. However, red-light enhancement of root blue-light-based phototropism may occur via a more direct effect on the phototropism system itself, most likely through the phytochrome photoreceptors. To our knowledge, these experiments represent the first to examine the behavior of flowering plants in fractional or reduced gravity conditions.

  16. Search for gluinos and scalar quarks in pp collisions at square root[s] = 1.8 TeV using the missing energy plus multijets signature.

    PubMed

    Affolder, T; Akimoto, H; Akopian, A; Albrow, M G; Amaral, P; Amidei, D; Anikeev, K; Antos, J; Apollinari, G; Arisawa, T; Artikov, A; Asakawa, T; Ashmanskas, W; Azfar, F; Azzi-Bacchetta, P; Bacchetta, N; Bachacou, H; Bailey, S; de Barbaro, P; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Baroiant, S; Barone, M; Bauer, G; Bedeschi, F; Belforte, S; Bell, W H; Bellettini, G; Bellinger, J; Benjamin, D; Bensinger, J; Beretvas, A; Berge, J P; Berryhill, J; Bhatti, A; Binkley, M; Bisello, D; Bishai, M; Blair, R E; Blocker, C; Bloom, K; Blumenfeld, B; Blusk, S R; Bocci, A; Bodek, A; Bokhari, W; Bolla, G; Bonushkin, Y; Bortoletto, D; Boudreau, J; Brandl, A; van den Brink, S; Bromberg, C; Brozovic, M; Brubaker, E; Bruner, N; Buckley-Geer, E; Budagov, J; Budd, H S; Burkett, K; Busetto, G; Byon-Wagner, A; Byrum, K L; Cabrera, S; Calafiura, P; Campbell, M; Carithers, W; Carlson, J; Carlsmith, D; Caskey, W; Castro, A; Cauz, D; Cerri, A; Chan, A W; Chang, P S; Chang, P T; Chapman, J; Chen, C; Chen, Y C; Cheng, M-T; Chertok, M; Chiarelli, G; Chirikov-Zorin, I; Chlachidze, G; Chlebana, F; Christofek, L; Chu, M L; Chung, Y S; Ciobanu, C I; Clark, A G; Connolly, A; Conway, J; Cordelli, M; Cranshaw, J; Cropp, R; Culbertson, R; Dagenhart, D; D'Auria, S; DeJongh, F; Dell'Agnello, S; Dell'Orso, M; Demortier, L; Deninno, M; Derwent, P F; Devlin, T; Dittmann, J R; Dominguez, A; Donati, S; Done, J; D'Onofrio, M; Dorigo, T; Eddy, N; Einsweiler, K; Elias, J E; Engels, E; Erbacher, R; Errede, D; Errede, S; Fan, Q; Feild, R G; Fernandez, J P; Ferretti, C; Field, R D; Fiori, I; Flaugher, B; Foster, G W; Franklin, M; Freeman, J; Friedman, J; Frisch, H J; Fukui, Y; Furic, I; Galeotti, S; Gallas, A; Gallinaro, M; Gao, T; Garcia-Sciveres, M; Garfinkel, A F; Gatti, P; Gay, C; Gerdes, D W; Giannetti, P; Giromini, P; Glagolev, V; Glenzinski, D; Gold, M; Goldstein, J; Gorelov, I; Goshaw, A T; Gotra, Y; Goulianos, K; Green, C; Grim, G; Gris, P; Groer, L; Grosso-Pilcher, C; Guenther, M; Guillian, G; Guimaraes da Costa, J; Haas, R M; Haber, C; Hahn, S R; Hall, C; Handa, T; Handler, R; Hao, W; Happacher, F; Hara, K; Hardman, A D; Harris, R M; Hartmann, F; Hatakeyama, K; Hauser, J; Heinrich, J; Heiss, A; Herndon, M; Hill, C; Hoffman, K D; Holck, C; Hollebeek, R; Holloway, L; Hughes, R; Huston, J; Huth, J; Ikeda, H; Incandela, J; Introzzi, G; Iwai, J; Iwata, Y; James, E; Jones, M; Joshi, U; Kambara, H; Kamon, T; Kaneko, T; Karr, K; Kasha, H; Kato, Y; Keaffaber, T A; Kelley, K; Kelly, M; Kennedy, R D; Kephart, R; Khazins, D; Kikuchi, T; Kilminster, B; Kim, B J; Kim, D H; Kim, H S; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kirby, M; Kirk, M; Kirsch, L; Klimenko, S; Koehn, P; Kondo, K; Konigsberg, J; Korn, A; Korytov, A; Kovacs, E; Kroll, J; Kruse, M; Kuhlmann, S E; Kurino, K; Kuwabara, T; Laasanen, A T; Lai, N; Lami, S; Lammel, S; Lancaster, J; Lancaster, M; Lander, R; Lath, A; Latino, G; LeCompte, T; Lee, A M; Lee, K; Leone, S; Lewis, J D; Lindgren, M; Liss, T M; Liu, J B; Liu, Y C; Litvintsev, D O; Lobban, O; Lockyer, N; Loken, J; Loreti, M; Lucchesi, D; Lukens, P; Lusin, S; Lyons, L; Lys, J; Madrak, R; Maeshima, K; Maksimovic, P; Malferrari, L; Mangano, M; Mariotti, M; Martignon, G; Martin, A; Matthews, J A J; Mayer, J; Mazzanti, P; McFarland, K S; McIntyre, P; McKigney, E; Menguzzato, M; Menzione, A; Mesropian, C; Meyer, A; Miao, T; Miller, R; Miller, J S; Minato, H; Miscetti, S; Mishina, M; Mitselmakher, G; Moggi, N; Moore, E; Moore, R; Morita, Y; Moulik, T; Mulhearn, M; Mukherjee, A; Muller, T; Munar, A; Murat, P; Murgia, S; Nachtman, J; Nagaslaev, V; Nahn, S; Nakada, H; Nakano, I; Nelson, C; Nelson, T; Neu, C; Neuberger, D; Newman-Holmes, C; Ngan, C-Y P; Niu, H; Nodulman, L; Nomerotski, A; Oh, S H; Oh, Y D; Ohmoto, T; Ohsugi, T; Oishi, R; Okusawa, T; Olsen, J; Orejudos, W; Pagliarone, C; Palmonari, F; Paoletti, R; Papadimitriou, V; Partos, D; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Pescara, L; Phillips, T J; Piacentino, G; Pitts, K T; Pompos, A; Pondrom, L; Pope, G; Popovic, M; Prokoshin, F; Proudfoot, J; Ptohos, F; Pukhov, O; Punzi, G; Rakitine, A; Ratnikov, F; Reher, D; Reichold, A; Ribon, A; Riegler, W; Rimondi, F; Ristori, L; Riveline, M; Robertson, W J; Robinson, A; Rodrigo, T; Rolli, S; Rosenson, L; Roser, R; Rossin, R; Roy, A; Ruiz, A; Safonov, A; St Denis, R; Sakumoto, W K; Saltzberg, D; Sanchez, C; Sansoni, A; Santi, L; Sato, H; Savard, P; Schlabach, P; Schmidt, E E; Schmidt, M P; Schmitt, M; Scodellaro, L; Scott, A; Scribano, A; Segler, S; Seidel, S; Seiya, Y; Semenov, A; Semeria, F; Shah, T; Shapiro, M D; Shepard, P F; Shibayama, T; Shimojima, M; Shochet, M; Sidoti, A; Siegrist, J; Sill, A; Sinervo, P; Singh, P; Slaughter, A J; Sliwa, K; Smith, C; Snider, F D; Solodsky, A; Spalding, J; Speer, T; Sphicas, P; Spinella, F; Spiropulu, M; Spiegel, L; Steele, J; Stefanini, A; Strologas, J; Strumia, F; Stuart, D; Sumorok, K; Suzuki, T; Takano, T; Takashima, R; Takikawa, K; Tamburello, P; Tanaka, M; Tannenbaum, B; Tecchio, M; Tesarek, R; Teng, P K; Terashi, K; Tether, S; Thompson, A S; Thurman-Keup, R; Tipton, P; Tkaczyk, S; Toback, D; Tollefson, K; Tollestrup, A; Tonelli, D; Toyoda, H; Trischuk, W; de Troconiz, J F; Tseng, J; Turini, N; Ukegawa, F; Vaiciulis, T; Valls, J; Vejcik, S; Velev, G; Veramendi, G; Vidal, R; Vila, I; Vilar, R; Volobouev, I; von der Mey, M; Vucinic, D; Wagner, R G; Wagner, R L; Wallace, N B; Wan, Z; Wang, C; Wang, M J; Ward, B; Waschke, S; Watanabe, T; Waters, D; Watts, T; Webb, R; Wenzel, H; Wester, W C; Wicklund, A B; Wicklund, E; Wilkes, T; Williams, H H; Wilson, P; Winer, B L; Winn, D; Wolbers, S; Wolinski, D; Wolinski, J; Wolinski, S; Worm, S; Wu, X; Wyss, J; Yao, W; Yagil, A; Yeh, G P; Yoh, J; Yosef, C; Yoshida, T; Yu, I; Yu, S; Yu, Z; Zanetti, A; Zetti, F; Zucchelli, S

    2002-01-28

    We have performed a search for gluinos (g) and scalar quarks (q) in a data sample of 84 pb(-1) of pp collisions at square root[s] = 1.8 TeV, recorded by the Collider Detector at Fermilab. We investigate the final state of large missing transverse energy and three or more jets, a characteristic signature in R-parity-conserving supersymmetric models. The analysis has been performed "blind," in that the inspection of the signal region is made only after the predictions from standard model backgrounds have been calculated. Comparing the data with predictions of constrained supersymmetric models, we exclude gluino masses below 195 GeV/c2 (95% C.L.), independent of the squark mass. For the case m(q) approximately m(g), gluino masses below 300 GeV/c2 are excluded.

  17. Pythagorean Approximations and Continued Fractions

    ERIC Educational Resources Information Center

    Peralta, Javier

    2008-01-01

    In this article, we will show that the Pythagorean approximations of [the square root of] 2 coincide with those achieved in the 16th century by means of continued fractions. Assuming this fact and the known relation that connects the Fibonacci sequence with the golden section, we shall establish a procedure to obtain sequences of rational numbers…

  18. The Content of Dietary Fibre and Polyphenols in Morphological Parts of Buckwheat (Fagopyrum tataricum).

    PubMed

    Dziedzic, Krzysztof; Górecka, Danuta; Szwengiel, Artur; Sulewska, Hanna; Kreft, Ivan; Gujska, Elżbieta; Walkowiak, Jarosław

    2018-03-01

    In this report, we presented the profile of polyphenolic substances in flowers, leaves, stalk and roots of Fagopyrum tataricum estimated by using RP-UHPLC-ESI-MS equipment (reversed-phase ultra-high-performance liquid chromatography electrospray ionisation mass spectrometry). The neutral detergent fibre, acid detergent fibre, acid detergent lignin, cellulose and hemicellulose were also determined. Flowers, leaves, stalk and roots showed varying levels of dietary fibre and polyphenols. The highest content of neutral and acid detergent fibre were found in the roots (63.92 and 45.45% d.m., respectively) while the most rich in phenolic compounds were flowers (4.8 mg/1 g d.m.). Root and stalk contained the highest level of cellulose, 38.70 and 25.57% d.m., respectively. Among the investigated polyphenolic substances such as: 2,6-dihydroxybenzoic acid, 3,4-dihydroxybenzoic acid, 3,5-dihydroxybenzoic acid, 4-hydrobenzoic acid, caffeic acid, catechin, chlorogenic acid, fagopyrin, ferulic acid, myricetin, gallic acid, isovanilic acid, isovitexin, kaempferol, luteolin, p-coumaric acid, procyanidin B2, quercetin, quercetin 3-D galactoside, rutin, syringic acid and vitexin, we observed that the contents of rutin and chlorogenic acid were the highest. We found some correlation between dietary fibre fractions and individual phenolic substances. The levels of acid detergent fibre (ADF), cellulose and hemicellulose were negatively correlated with isovitexin, kaempferol, vitexin, fagopyrin, caffeic acid and procyanidin B2 content. In this investigation, two solvents (water and methanol) were estimated regarding their extraction efficiency of phenolic compounds. Taking these results into consideration, we recommend using methanol as the extractor to isolate chlorogenic acid, fagopyrin, kaempferol, procyanidin B2, quercetin, quercetin 3-D-galactoside, rutin, vitexin, and water for other investigated polyphenolic substances obtained from Fagopyrum tataricum.

  19. Melt pond fraction and spectral sea ice albedo retrieval from MERIS data - Part 1: Validation against in situ, aerial, and ship cruise data

    NASA Astrophysics Data System (ADS)

    Istomina, L.; Heygster, G.; Huntemann, M.; Schwarz, P.; Birnbaum, G.; Scharien, R.; Polashenski, C.; Perovich, D.; Zege, E.; Malinka, A.; Prikhach, A.; Katsev, I.

    2015-08-01

    The presence of melt ponds on the Arctic sea ice strongly affects the energy balance of the Arctic Ocean in summer. It affects albedo as well as transmittance through the sea ice, which has consequences for the heat balance and mass balance of sea ice. An algorithm to retrieve melt pond fraction and sea ice albedo from Medium Resolution Imaging Spectrometer (MERIS) data is validated against aerial, shipborne and in situ campaign data. The results show the best correlation for landfast and multiyear ice of high ice concentrations. For broadband albedo, R2 is equal to 0.85, with the RMS (root mean square) being equal to 0.068; for the melt pond fraction, R2 is equal to 0.36, with the RMS being equal to 0.065. The correlation for lower ice concentrations, subpixel ice floes, blue ice and wet ice is lower due to ice drift and challenging for the retrieval surface conditions. Combining all aerial observations gives a mean albedo RMS of 0.089 and a mean melt pond fraction RMS of 0.22. The in situ melt pond fraction correlation is R2 = 0.52 with an RMS = 0.14. Ship cruise data might be affected by documentation of varying accuracy within the Antarctic Sea Ice Processes and Climate (ASPeCt) protocol, which may contribute to the discrepancy between the satellite value and the observed value: mean R2 = 0.044, mean RMS = 0.16. An additional dynamic spatial cloud filter for MERIS over snow and ice has been developed to assist with the validation on swath data.

  20. Chemical characterization and prebiotic activity of fructo-oligosaccharides from Stevia rebaudiana (Bertoni) roots and in vitro adventitious root cultures.

    PubMed

    Sanches Lopes, Sheila Mara; Francisco, Mariane Grigio; Higashi, Bruna; de Almeida, Rafaela Takako Ribeiro; Krausová, Gabriela; Pilau, Eduardo Jorge; Gonçalves, José Eduardo; Gonçalves, Regina Aparecida Correia; Oliveira, Arildo José Braz de

    2016-11-05

    Stevia rebaudiana (Bertoni) is widely studied because of its foliar steviol glycosides. Fructan-type polysaccharides were recently isolated from its roots. Fructans are reserve carbohydrates that have important positive health effects and technological applications in the food industry. The objective of the present study was to isolate and characterize fructo-oligosaccharides (FOSs) from S. rebaudiana roots and in vitro adventitious root cultures and evaluate the potential prebiotic effect of these molecules. The in vitro adventitious root cultures were obtained using a roller bottle system. Chemical analyses (gas chromatography-mass spectrometry, (1)H nuclear magnetic resonance, and off-line electrospray ionization-mass spectrometry) revealed similar chemical properties of FOSs that were obtained from the different sources. The potential prebiotic effects of FOSs that were isolated from S. rebaudiana roots enhanced the growth of both bifidobacteria and lactobacilli, with strains specificity in their fermentation ability. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. 40 CFR 63.4751 - How do I demonstrate initial compliance with the emission limitations?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... rate without add-on controls option. (a) Determine the mass fraction of organic HAP for each material. Determine the mass fraction of organic HAP for each coating, thinner, and cleaning material used during each... of coating, i, grams coating per liter coating. Wc,i = Mass fraction of organic HAP in coating, i...

  2. 40 CFR 63.4941 - How do I demonstrate initial compliance with the emission limitations?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... material option. (a) Determine the mass fraction of organic HAP for each material used. You must determine the mass fraction of organic HAP for each coating, thinner, and cleaning material used during the... 311 (appendix A to 40 CFR part 63). You may use Method 311 for determining the mass fraction of...

  3. 40 CFR 63.4941 - How do I demonstrate initial compliance with the emission limitations?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... material option. (a) Determine the mass fraction of organic HAP for each material used. You must determine the mass fraction of organic HAP for each coating, thinner, and cleaning material used during the... 311 (appendix A to 40 CFR part 63). You may use Method 311 for determining the mass fraction of...

  4. 40 CFR 63.5335 - How do I determine the actual HAP loss?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... to the leather; (iii) Mass fraction of HAP in each applied finish; (iv) Date of the recorded entry... recorded finish usage by the corresponding mass fraction of HAP in the finish. The result is the HAP loss... the pounds of each recorded finish usage by the corresponding mass fraction of HAP in the finish. The...

  5. 40 CFR 63.5758 - How do I determine the organic HAP content of materials?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Method 311 for determining the mass fraction of organic HAP. Use the procedures specified in paragraphs... in the organic HAP total. Express the mass fraction of each organic HAP you measure as a value...). You may use Method 24 to determine the mass fraction of non-aqueous volatile matter of aluminum...

  6. 40 CFR 63.4751 - How do I demonstrate initial compliance with the emission limitations?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... rate without add-on controls option. (a) Determine the mass fraction of organic HAP for each material. Determine the mass fraction of organic HAP for each coating, thinner, and cleaning material used during each... of coating, i, grams coating per liter coating. Wc,i = Mass fraction of organic HAP in coating, i...

  7. 40 CFR 63.4941 - How do I demonstrate initial compliance with the emission limitations?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... material option. (a) Determine the mass fraction of organic HAP for each material used. You must determine the mass fraction of organic HAP for each coating, thinner, and cleaning material used during the... 311 (appendix A to 40 CFR part 63). You may use Method 311 for determining the mass fraction of...

  8. Substrate biochemistry control on the pathways for the formation of soil organic matter

    NASA Astrophysics Data System (ADS)

    Almeida, L. F.; Hurtarte, L. C.; Souza, I. F.; Barros, E. M.; Vergutz, L.; Silva, I. R.

    2017-12-01

    Linking plant litter biochemistry, its decomposition and soil organic matter (SOM) formation is not straightforward. To address this issue, we evaluated the decomposition of four biochemical fractions operationally defined as i) hot-water extractable (HWE), ii) total solvent (acetone) extractable (TSE), iii) acid-base (HNO3-KOH) unhydrolyzable cellulosic fraction (CF), and iv) acid(H2SO4) unhydrolyzable (AUR) and the transfer of C from these fractions to SOM. Each biochemical fraction was Soxhlet-extracted from isotopically labeled (13C) leaves, twigs, bark and roots of eucalypt plants (120 days old). The molecular composition of each fraction was inferred from thermochemolysis with tertamethylammonium (TMAH), followed by gas chromatography coupled o mass spectrometry (GC-MS). For the incubation, we collected soil samples from the topsoil (0-20 cm) of a sandy-clay loam, kaolinitic Typic Hapludox (Haplic Ferralsol). Four plant organs and four biochemical fractions were arranged into a (4 4) + 1 factorial scheme, including one control treatment (soil only). The samples were incubated at 80% of their water-holding capacity and kept under controlled temperature (25 ºC). The decomposition of the biochemical fractions was monitored by determining the CO2 concentration into the headspace of the vials. Finished the incubation, soil samples were submitted to density followed by particle-size fractionation. HWE and CF was decomposed at faster rates than TSE and AUR throughout the incubation. The soil fraction <53 µm retained a significantly higher proportion of the initial input of HWE (32%) and AUR (31%) than TSE (19%) or CF (15%). Light fraction organic matter (LFOM) with density <1.8 g cm-3, retained a significant proportion of AUR (37%) and TSE (32%) while CF was mostly lost as CO2 (79%). Selective preservation of organic materials (e.g., long-chain lipids) within AUR and TSE fractions appears to be a significant pathway for SOM formation. A microbial-driven pathway cannot be ruled out for any biochemical fraction, but seems more relevant for HWE and CF. In short-term, substrate biochemistry exerts a strong influence on the conversion of eucalypt litter fractions into either CO2 or SOM. Such results warrant the relevance of field-based study to link plant litter biochemistry and SOM formation in long-term.

  9. Identification and Quantitation of Various Inositols and O-methylinositols Present in Plant Roots Using Gas Chromatograpghy/Mass Spectrometry

    USDA-ARS?s Scientific Manuscript database

    Many inositols and O-methylinositols serve important roles in medicine and plant biology. A simple method was developed for the identification of these compounds in plant roots by extracting with 80% ethanol, derivatizing with trimethylsilyl imidazole, and analyzing by gas chromatography/mass spect...

  10. Modelling the root system architecture of Poaceae. Can we simulate integrated traits from morphological parameters of growth and branching?

    PubMed

    Pagès, Loïc; Picon-Cochard, Catherine

    2014-10-01

    Our objective was to calibrate a model of the root system architecture on several Poaceae species and to assess its value to simulate several 'integrated' traits measured at the root system level: specific root length (SRL), maximum root depth and root mass. We used the model ArchiSimple, made up of sub-models that represent and combine the basic developmental processes, and an experiment on 13 perennial grassland Poaceae species grown in 1.5-m-deep containers and sampled at two different dates after planting (80 and 120 d). Model parameters were estimated almost independently using small samples of the root systems taken at both dates. The relationships obtained for calibration validated the sub-models, and showed species effects on the parameter values. The simulations of integrated traits were relatively correct for SRL and were good for root depth and root mass at the two dates. We obtained some systematic discrepancies that were related to the slight decline of root growth in the last period of the experiment. Because the model allowed correct predictions on a large set of Poaceae species without global fitting, we consider that it is a suitable tool for linking root traits at different organisation levels. © 2014 INRA. New Phytologist © 2014 New Phytologist Trust.

  11. 40 CFR 63.4730 - What records must I keep?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... to determine the mass fraction of organic HAP and density for each coating, thinner, and cleaning material and the volume fraction of coating solids for each coating. If you conducted testing to determine mass fraction of organic HAP, density, or volume fraction of coating solids, you must keep a copy of...

  12. Fine root mercury heterogeneity: metabolism of lower-order roots as an effective route for mercury removal.

    PubMed

    Wang, Jun-Jian; Guo, Ying-Ying; Guo, Da-Li; Yin, Sen-Lu; Kong, De-Liang; Liu, Yang-Sheng; Zeng, Hui

    2012-01-17

    Fine roots are critical components for plant mercury (Hg) uptake and removal, but the patterns of Hg distribution and turnover within the heterogeneous fine root components and their potential limiting factors are poorly understood. Based on root branching structure, we studied the total Hg (THg) and its cellular partitioning in fine roots in 6 Chinese subtropical trees species and the impacts of root morphological and stoichiometric traits on Hg partitioning. The THg concentration generally decreased with increasing root order, and was higher in cortex than in stele. This concentration significantly correlated with root length, diameter, specific root length, specific root area, and nitrogen concentration, whereas its cytosolic fraction (accounting for <10% of THg) correlated with root carbon and sulfur concentrations. The estimated Hg return flux from dead fine roots outweighed that from leaf litter, and ephemeral first-order roots that constituted 7.2-22.3% of total fine root biomass may have contributed most to this flux (39-71%, depending on tree species and environmental substrate). Our results highlight the high capacity of Hg stabilization and Hg return by lower-order roots and demonstrate that turnover of lower-order roots may be an effective strategy of detoxification in perennial tree species.

  13. Changes in δ(13)C of dark respired CO2 and organic matter of different organs during early ontogeny in peanut plants.

    PubMed

    Ghashghaie, Jaleh; Badeck, Franz W; Girardin, Cyril; Sketriené, Diana; Lamothe-Sibold, Marlène; Werner, Roland A

    2015-01-01

    Carbon isotope composition in respired CO2 and organic matter of individual organs were measured on peanut seedlings during early ontogeny in order to compare fractionation during heterotrophic growth and transition to autotrophy in a species with lipid seed reserves with earlier results obtained on beans. Despite a high lipid content in peanut seeds (48%) compared with bean seeds (1.5%), the isotope composition of leaf- and root-respired CO2 as well as its changes during ontogeny were similar to already published data on bean seedlings: leaf-respired CO2 became (13)C-enriched reaching -21.5‰, while root-respired CO2 became (13)C-depleted reaching around -31‰ at the four-leaf stage. The opposite respiratory fractionation in leaves vs. roots already reported for C3 herbs was thus confirmed for peanuts. However, contrarily to beans, the peanut cotyledon-respired CO2 was markedly (13)C-enriched, and its (13)C-depletion was noted from the two-leaf stage onwards only. Carbohydrate amounts being very low in peanut seeds, this cannot be attributed solely to their use as respiratory substrate. The potential role of isotope fractionation during glyoxylate cycle and/or gluconeogenesis on the (13)C-enriched cotyledon-respired CO2 is discussed.

  14. The inhibiting effects of components of stinging nettle roots on experimentally induced prostatic hyperplasia in mice.

    PubMed

    Lichius, J J; Renneberg, H; Blaschek, W; Aumüller, G; Muth, C

    1999-10-01

    Direct implanting of fetal urogenital sinus (UGS) tissue into the ventral prostate gland of adult mice led to a 4-fold weight increase of the manipulated prostatic lobe. The induced growth could be reduced by the polysaccharide fraction (POLY-M) of the 20% methanolic extract of stinging nettle roots by 33.8%.

  15. Microbial decomposition of dead grassland roots and its influence on the carbon cycle under changing precipitation patterns

    NASA Astrophysics Data System (ADS)

    Becerra, C.; Schimel, J.

    2013-12-01

    Soil is the largest reservoir of organic carbon in terrestrial ecosystems and as such, represents a potential sink for carbon dioxide.The decomposition products of dead roots buried in the soil is a contributor to soil organic carbon. However, changing precipitation patterns may affect its fate by influencing the microbial community responsible for decomposing dead roots. To assess the impact of changing precipitation patterns, we constructed microcosms with grassland soil collected from the UCSB Sedgwick Reserve, an active and long-term research site, and dead roots from greenhouse-grown grass, Bromus diandrus. Microcosms were wetted continuously, every seven days, or every twenty days. Sets of microcosms were periodically deconstructed to assess the soil versus the roots-associated microbial community and its function. Differences in respiration rates of microcosms continuously wetted or wetted every 7 days versus microcosms wetted every 20 days existed for the first 70 days. After which, no differences in respiration rates were seen with microcosms containing roots and the no roots control. Relatedly, after a 70% roots mass loss by day 50, there was no difference in the respiration rate of microcosms containing roots and the no roots control. More than half of the roots mass loss had occurred by 30 days. By the end of the incubation period, the roots mass loss in continuously wet and 7-day wetted microcosms were over 80% compared to 67% for the microcosms wetted every 20 days. Microbial biomass in the soil were constant over time and showed no difference in treatment except with the no roots control during the first half of the incubation period. Hydrolytic enzyme activities (β-1,4-glucosidase; α-1,4-glucosidase; β-1,4-xylosidase; β-1,4-cellobiosidase) on the roots versus the soil attached to the roots were over an order greater and decreased faster with the exception of N-acetyl-glucosaminidase and acid phosphatase. Oxidative enzyme activities (phenol oxidase and peroxidase) on the roots versus the soil were also an order of magnitude greater, however the activities were constant over time regardless of the treatment, whereas the activities in the soil increased then decreased after 50 days. Our results suggest that the frequency of precipitation affects early root decomposition and long-term soil carbon storage of dead roots relatively unaffected by changing precipitation patterns.

  16. 40 CFR 63.3151 - How do I demonstrate initial compliance with the emission limitations?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... paragraph (d) of this section. (a) Determine the mass fraction of organic HAP for each material used. You must determine the mass fraction of organic HAP for each material used during the compliance period by... 40 CFR part 63). You may use Method 311 for determining the mass fraction of organic HAP. Use the...

  17. 40 CFR 63.5335 - How do I determine the actual HAP loss?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... and the mass fraction of HAP in each solvent/finish. (1) Measure Finish as Applied. Use a finish... and the mass fraction of HAP in each applied finish. Figure 1 of this subpart shows an example log for... each finish applied to the leather; (iii) Mass fraction of HAP in each applied finish; (iv) Date of the...

  18. 40 CFR 63.5758 - How do I determine the organic HAP content of materials?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... part 63). You may use Method 311 for determining the mass fraction of organic HAP. Use the procedures... include it in the organic HAP total. Express the mass fraction of each organic HAP you measure as a value...). You may use Method 24 to determine the mass fraction of non-aqueous volatile matter of aluminum...

  19. 40 CFR 63.5335 - How do I determine the actual HAP loss?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... and the mass fraction of HAP in each solvent/finish. (1) Measure Finish as Applied. Use a finish... and the mass fraction of HAP in each applied finish. Figure 1 of this subpart shows an example log for... each finish applied to the leather; (iii) Mass fraction of HAP in each applied finish; (iv) Date of the...

  20. 40 CFR 63.5758 - How do I determine the organic HAP content of materials?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... part 63). You may use Method 311 for determining the mass fraction of organic HAP. Use the procedures... include it in the organic HAP total. Express the mass fraction of each organic HAP you measure as a value...). You may use Method 24 to determine the mass fraction of non-aqueous volatile matter of aluminum...

  1. 40 CFR 63.5758 - How do I determine the organic HAP content of materials?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... part 63). You may use Method 311 for determining the mass fraction of organic HAP. Use the procedures... include it in the organic HAP total. Express the mass fraction of each organic HAP you measure as a value...). You may use Method 24 to determine the mass fraction of non-aqueous volatile matter of aluminum...

  2. 40 CFR 63.5335 - How do I determine the actual HAP loss?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... and the mass fraction of HAP in each solvent/finish. (1) Measure Finish as Applied. Use a finish... and the mass fraction of HAP in each applied finish. Figure 1 of this subpart shows an example log for... each finish applied to the leather; (iii) Mass fraction of HAP in each applied finish; (iv) Date of the...

  3. 40 CFR 63.3531 - How do I demonstrate initial compliance with the emission limitations?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... be performed with either metric or English units. (a) Determine the mass fraction of organic HAP for each material. Determine the mass fraction of organic HAP for each coating and thinner used during each... thinner, j, kg per liter. Wt,j = Mass fraction of organic HAP in thinner, j, kg organic HAP per kg thinner...

  4. Interacting Microbe and Litter Quality Controls on Litter Decomposition: A Modeling Analysis

    PubMed Central

    Moorhead, Daryl; Lashermes, Gwenaëlle; Recous, Sylvie; Bertrand, Isabelle

    2014-01-01

    The decomposition of plant litter in soil is a dynamic process during which substrate chemistry and microbial controls interact. We more clearly quantify these controls with a revised version of the Guild-based Decomposition Model (GDM) in which we used a reverse Michaelis-Menten approach to simulate short-term (112 days) decomposition of roots from four genotypes of Zea mays that differed primarily in lignin chemistry. A co-metabolic relationship between the degradation of lignin and holocellulose (cellulose+hemicellulose) fractions of litter showed that the reduction in decay rate with increasing lignin concentration (LCI) was related to the level of arabinan substitutions in arabinoxylan chains (i.e., arabinan to xylan or A∶X ratio) and the extent to which hemicellulose chains are cross-linked with lignin in plant cell walls. This pattern was consistent between genotypes and during progressive decomposition within each genotype. Moreover, decay rates were controlled by these cross-linkages from the start of decomposition. We also discovered it necessary to divide the Van Soest soluble (labile) fraction of litter C into two pools: one that rapidly decomposed and a second that was more persistent. Simulated microbial production was consistent with recent studies suggesting that more rapidly decomposing materials can generate greater amounts of potentially recalcitrant microbial products despite the rapid loss of litter mass. Sensitivity analyses failed to identify any model parameter that consistently explained a large proportion of model variation, suggesting that feedback controls between litter quality and microbial activity in the reverse Michaelis-Menten approach resulted in stable model behavior. Model extrapolations to an independent set of data, derived from the decomposition of 12 different genotypes of maize roots, averaged within <3% of observed respiration rates and total CO2 efflux over 112 days. PMID:25264895

  5. Antimicrobial activity of Carpolobia lutea extracts and fractions.

    PubMed

    Nwidu, Lucky L; Nwafor, Paul A; Vilegas, Wagner

    2012-01-01

    Carpolobia lutea (G. Don) (Polygalaceae) is a tropical medicinal plant putative in traditional medicines against gonorrhea, gingivitis, infertility, antiulcer and malaria. The present study evaluated the antimicrobial, antifungal and antihelicobacter effects of extracts C. lutea leaf, stem and root. The extracts were examined using the disc-diffusion and Microplates of 96 wells containing Muller-Hinton methods against some bacterial strains: Eschericia coli (ATCC 25922), E. coli (ATCC10418), Pseudomonas aeruginosa (ATCC 27853), Staphylococcus aureus (ATCC 25923), Staphyllococus aureus (ATCC 6571), Enterococcus faecalis (ATCC 29212) and Bacillus subtilis (NCTC 8853) and four clinical isolates: one fungi (Candida albican) and three bacteria (Salmonella, Sheigella and staphylococcus aureus). The Gram-positive bacteria: Staphylococcus aureus (ATCC 25923), Enterococcus faecalis (ATCC 29212), Bacillus subtilis (ATCC 19659) and the Gram-negative bacteria: Escherichia coli (ATCC 25922), Pseudomonas aeruginosa (ATCC 27853), Cândida albicans (ATCC 18804) and Helicobacter pylori (ATCC 43504). Some of these extracts were found to be active against some tested strains but activity against H. pylori was >1000mg/ml and good fungistatic activity against C. albican. The MIC against C. albican is in the order n-HF > CHF > ETF= EAF.The order of potency of fraction was the ethanol root > n-HF leaf > ethanol fraction stem > chloroform fraction leaf = ethyl acetate fraction leaf. Polyphenols were demonstrated in ethanol fraction, ethyl acetate fraction, crude ethyl acetate extract and ethanol extract, respectively. These polyphenols isolated may partly explain and support the use of C. lutea for the treatment of infectious diseases in traditional Ibibio medicine of Nigeria.

  6. Characterizing root system characteristics with Electrical resistivity Tomography: a virtual rhizotron simulation

    NASA Astrophysics Data System (ADS)

    Rao, Sathyanarayan; Ehosioke, Solomon; Lesparre, Nolwenn; Nguyen, Frédéric; Javaux, Mathieu

    2017-04-01

    Electrical Resistivity Tomography (ERT) is more and more used for monitoring soil water content in a cropped soil. Yet, the impact of roots on the signal is often neglected and a topic of controversy. In several studies related to soil-root system, it has been showed that the measured root mass density statistically correlates with the electrical conductivity (EC) data obtained from ERT. In addition, some studies suggest that some roots are more electrically conductive than soil for most water content. Thus, higher EC of roots suggest that it might have a measurable impact on ERT signals. In this work, virtual rhizotrons are simulated using the software package called R-SWMS that solves water and solute transport in plant root-soil system, including root growth. The distribution of water content obtained from R-SWMS simulation is converted into EC data using pedo-physical models. The electrical properties of roots and rhizosphere are explicitly included in the EC data to form a conductivity map (CM) with a very detailed spatial resolution. Forward ERT simulations is then carried out for CM generated for various root architectures and soil conditions to study the impact of roots on ERT forward (current and voltage patterns) and inverse solutions. It is demonstrated that under typical injection schemes with lateral electrodes, root system is hardly measurable. However, it is showed that adding electrodes and constraints on the ERT inversion based on root architecture help quantifying root system mass and extent.

  7. Effects of Increased Summer Precipitation and Nitrogen Addition on Root Decomposition in a Temperate Desert

    PubMed Central

    Zhao, Hongmei; Huang, Gang; Li, Yan; Ma, Jian; Sheng, Jiandong; Jia, Hongtao; Li, Congjuan

    2015-01-01

    Background Climate change scenarios that include precipitation shifts and nitrogen (N) deposition are impacting carbon (C) budgets in arid ecosystems. Roots constitute an important part of the C cycle, but it is still unclear which factors control root mass loss and nutrient release in arid lands. Methodology/Principal Findings Litterbags were used to investigate the decomposition rate and nutrient dynamics in root litter with water and N-addition treatments in the Gurbantunggut Desert in China. Water and N addition had no significant effect on root mass loss and the N and phosphorus content of litter residue. The loss of root litter and nutrient releases were strongly controlled by the initial lignin content and the lignin:N ratio, as evidenced by the negative correlations between decomposition rate and litter lignin content and the lignin:N ratio. Fine roots of Seriphidium santolinum (with higher initial lignin content) had a slower decomposition rate in comparison to coarse roots. Conclusion/Significance Results from this study indicate that small and temporary changes in rainfall and N deposition do not affect root decomposition patterns in the Gurbantunggut Desert. Root decomposition rates were significantly different between species, and also between fine and coarse roots, and were determined by carbon components, especially lignin content, suggesting that root litter quality may be the primary driver of belowground carbon turnover. PMID:26544050

  8. Changes in Metabolically Active Bacterial Community during Rumen Development, and Their Alteration by Rhubarb Root Powder Revealed by 16S rRNA Amplicon Sequencing.

    PubMed

    Wang, Zuo; Elekwachi, Chijioke; Jiao, Jinzhen; Wang, Min; Tang, Shaoxun; Zhou, Chuanshe; Tan, Zhiliang; Forster, Robert J

    2017-01-01

    The objective of this present study was to explore the initial establishment of metabolically active bacteria and subsequent evolution in four fractions: rumen solid-phase (RS), liquid-phase (RL), protozoa-associated (RP), and epithelium-associated (RE) through early weaning and supplementing rhubarb root powder in 7 different age groups (1, 10, 20, 38, 41, 50, and 60 d) during rumen development. Results of the 16S rRNA sequencing based on RNA isolated from the four fractions revealed that the potentially active bacterial microbiota in four fractions were dominated by the phyla Proteobacteria, Firmicutes , and Bacteroidetes regardless of different ages. An age-dependent increment of Chao 1 richness was observed in the fractions of RL and RE. The principal coordinate analysis (PCoA) indicated that samples in four fractions all clustered based on different age groups, and the structure of the bacterial community in RE was distinct from those in other three fractions. The abundances of Proteobacteria decreased significantly ( P < 0.05) with age, while increases in the abundances of Firmicutes and Bacteroidetes were noted. At the genus level, the abundance of the predominant genus Mannheimia in the Proteobacteria phylum decreased significantly ( P < 0.05) after 1 d, while the genera Quinella, Prevotella, Fretibacterium, Ruminococcus, Lachnospiraceae NK3A20 group , and Atopobium underwent different manners of increases and dominated the bacterial microbiota across four fractions. Variations of the distributions of some specific bacterial genera across fractions were observed, and supplementation of rhubarb affected the relative abundance of various genera of bacteria.

  9. Changes in Metabolically Active Bacterial Community during Rumen Development, and Their Alteration by Rhubarb Root Powder Revealed by 16S rRNA Amplicon Sequencing

    PubMed Central

    Wang, Zuo; Elekwachi, Chijioke; Jiao, Jinzhen; Wang, Min; Tang, Shaoxun; Zhou, Chuanshe; Tan, Zhiliang; Forster, Robert J.

    2017-01-01

    The objective of this present study was to explore the initial establishment of metabolically active bacteria and subsequent evolution in four fractions: rumen solid-phase (RS), liquid-phase (RL), protozoa-associated (RP), and epithelium-associated (RE) through early weaning and supplementing rhubarb root powder in 7 different age groups (1, 10, 20, 38, 41, 50, and 60 d) during rumen development. Results of the 16S rRNA sequencing based on RNA isolated from the four fractions revealed that the potentially active bacterial microbiota in four fractions were dominated by the phyla Proteobacteria, Firmicutes, and Bacteroidetes regardless of different ages. An age-dependent increment of Chao 1 richness was observed in the fractions of RL and RE. The principal coordinate analysis (PCoA) indicated that samples in four fractions all clustered based on different age groups, and the structure of the bacterial community in RE was distinct from those in other three fractions. The abundances of Proteobacteria decreased significantly (P < 0.05) with age, while increases in the abundances of Firmicutes and Bacteroidetes were noted. At the genus level, the abundance of the predominant genus Mannheimia in the Proteobacteria phylum decreased significantly (P < 0.05) after 1 d, while the genera Quinella, Prevotella, Fretibacterium, Ruminococcus, Lachnospiraceae NK3A20 group, and Atopobium underwent different manners of increases and dominated the bacterial microbiota across four fractions. Variations of the distributions of some specific bacterial genera across fractions were observed, and supplementation of rhubarb affected the relative abundance of various genera of bacteria. PMID:28223972

  10. Ultrasound-Assisted Extraction, Antioxidant and Anticancer Activities of the Polysaccharides from Rhynchosia minima Root.

    PubMed

    Jia, Xuejing; Zhang, Chao; Hu, Jie; He, Muxue; Bao, Jiaolin; Wang, Kai; Li, Peng; Chen, Meiwan; Wan, Jianbo; Su, Huanxing; Zhang, Qingwen; He, Chengwei

    2015-11-23

    Box-Behnken design (BBD), one of the most common response surface methodology (RSM) methods, was used to optimize the experimental conditions for ultrasound-assisted extraction of polysaccharides from Rhynchosia minima root (PRM). The antioxidant abilities and anticancer activity of purified polysaccharide fractions were also measured. The results showed that optimal extraction parameters were as follows: ultrasound exposure time, 21 min; ratio of water to material, 46 mL/g; ultrasound extraction temperature, 63 °C. Under these conditions, the maximum yield of PRM was 16.95%±0.07%. Furthermore, the main monosaccharides of purified fractions were Ara and Gal. PRM3 and PRM5 exhibited remarkable DPPH radical scavenging activities and reducing power in vitro. PRM3 showed strong inhibitory activities on the growth of MCF-7 cells in vitro. The above results indicate that polysaccharides from R. minima root have the potential to be developed as natural antioxidants and anticancer ingredients for the food and pharmaceutical industries.

  11. Contenido de nutrientes en las raices finas y el mantillo de rodales de Eucalyptus grandis de diferente edad en la Mesopotomia Argentina [Fine roots and litter nutrient content of Eucalyptus grandis stands presenting different ages in Mesopotomia Argentina

    Treesearch

    C. Perez; J. Frangi; J.F. Goya; A. Luy; M. Arturi; NO-VALUE

    2013-01-01

    Entre Ríos province is an important center of Eucalyptus spp. plantations in Argentina. It was hypothesized that fine root biomass and litter mass increased with age increasing in plantations. Five, seven and seventeen year old stands of Eucalyptus grandis were sampled. All of them were first rotation stands. We estimated the mass of litter and fine roots (

  12. Biosynthesis of fluorescent CdS nanocrystals with semiconductor properties: Comparison of microbial and plant production systems.

    PubMed

    Al-Shalabi, Zahwa; Doran, Pauline M

    2016-04-10

    This study investigated fission yeast (Schizosaccharomyces pombe) and hairy roots of tomato (Solanum lycopersicum) as in vitro production vehicles for biological synthesis of CdS quantum dots. Cd added during the mid-growth phase of the cultures was detoxified within the biomass into inorganic sulphide-containing complexes with the quantum confinement properties of semiconductor nanocrystals. Significant differences were found between the two host systems in terms of nanoparticle production kinetics, yield and quality. The much slower growth rate of hairy roots compared with yeast is a disadvantage for commercial scaled-up production. Nanoparticle extraction from the biomass was less effective for the roots: 19% of the Cd present in the hairy roots was recovered after extraction compared with 34% for the yeast. The overall yield of CdS quantum dots was also lower for the roots: relative to the amount of Cd taken up into the biomass, 8.5% was recovered in yeast gel filtration fractions exhibiting quantum dot properties whereas the result for hairy roots was only 0.99%. Yeast-produced CdS crystallites were somewhat smaller with diameters of approximately 2-6 nm compared with those of 4-10nm obtained from the roots. The average ratio of inorganic sulphide to Cd for the purified and size-fractionated particles was 0.44 for the yeast and 1.6 for the hairy roots. Despite the limitations associated with hairy roots in terms of culture kinetics and product yield, this system produced CdS nanoparticles with enhanced photostability and 3.7-13-fold higher fluorescence quantum efficiency compared with those generated by yeast. This work demonstrates that the choice of cellular host can have a significant effect on nanoparticle functional properties as well as on the bioprocessing aspects of biological quantum dot synthesis. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Intensive field phenotyping of maize (Zea mays L.) root crowns identifies phenes and phene integration associated with plant growth and nitrogen acquisition

    PubMed Central

    York, Larry M.; Lynch, Jonathan P.

    2015-01-01

    Root architecture is an important regulator of nitrogen (N) acquisition. Existing methods to phenotype the root architecture of cereal crops are generally limited to seedlings or to the outer roots of mature root crowns. The functional integration of root phenes is poorly understood. In this study, intensive phenotyping of mature root crowns of maize was conducted to discover phenes and phene modules related to N acquisition. Twelve maize genotypes were grown under replete and deficient N regimes in the field in South Africa and eight in the USA. An image was captured for every whorl of nodal roots in each crown. Custom software was used to measure root phenes including nodal occupancy, angle, diameter, distance to branching, lateral branching, and lateral length. Variation existed for all root phenes within maize root crowns. Size-related phenes such as diameter and number were substantially influenced by nodal position, while angle, lateral density, and distance to branching were not. Greater distance to branching, the length from the shoot to the emergence of laterals, is proposed to be a novel phene state that minimizes placing roots in already explored soil. Root phenes from both older and younger whorls of nodal roots contributed to variation in shoot mass and N uptake. The additive integration of root phenes accounted for 70% of the variation observed in shoot mass in low N soil. These results demonstrate the utility of intensive phenotyping of mature root systems, as well as the importance of phene integration in soil resource acquisition. PMID:26041317

  14. Stable Ca Isotopes in Tamarix aphylla Tree Rings, Death Valley, California

    NASA Astrophysics Data System (ADS)

    Yang, W.; Depaolo, D. J.; Ingram, B. L.; Owens, T. L.

    2008-12-01

    As a dune stabilizer and windbreak, Tamarix aphylla is an exotic perennial and evergreen tree in Death Valley. Its tap roots can reach down to 30 m depth and sub-superficial side roots may reach 50 m horizontally. The species can store large amounts of water in its roots and undergoes high evapotranspiration. Since Tamarix aphylla is a perennial tree growing in desert environments and its roots reach deep to the water table, it could be a proxy for desert ecological and hydrologic systems through time. We measured Ca isotopes in the soluble fraction of 8 tree ring samples from a 50-year-old specimen growing on an alluvial fan in Death Valley near Furnace Creek. Previous studies (Yang et al, GCA 60, 1996) indicate that this tree's rings contain high sulfur concentrations (4-6% expressed as sulfate) with chemical composition of CaSO4 (0.15-0.62 H2O). The δ34S values of soluble sulfate increase from +13.5 to +18 permil VCDT from the core to the bark, which are interpreted as reflecting deeper sulfate sources as the tree grew. The δ13C variations of the tree-ring cellulose (-27.6 to -24.0 permil VPDB) reflect changes in the local precipitation and show that Tamarix aphylla undergoes C3 photosynthesis. The δ44Ca for the soluble sulfate Ca through the tree-ring section, which covers a time period from 1945 to 1993, have an average value -2.52 permil (-3.4 permil relative to seawater). Only small variations are observed, from -2.69 to -2.28; the highest value (for 1990) occurs near the end of an extended drought. These are the first measurements of tree rings, but the low δ44Ca values are consistent with previous measurements of beech roots and stems from a temperate forest (Page et al., Biogeochem. 88, 2008). In our case, the tree has only one Ca source, which is expected to be isotopically uniform and similar to both local rainfall and limestones (δ44Ca ~ -0.6 permil), and with the minimal vegetation and extensive deep root system it is unlikely that there is a significant depletion of soil Ca due to plant uptake. Thus the Ca isotopic fractionation between trunk and source (ΔCa = -2 permil) is clearly defined by the data. By analogy to the results of Page et al., the Ca fractionation between root and source may be larger (ΔCa ~ -3 permil). This biological Ca isotope fractionation is no doubt due to transport processes during root uptake of Ca, but the magnitude is significantly larger than that observed for inorganic processes such as mineral precipitation or aqueous diffusion. The slight increase in δ44Ca in drought conditions suggests that when the tree is stressed there may be less Ca isotope fractionation, either because the Ca is held more tightly in small pores in the soil, or because the available Ca pool shrinks such that the soil Ca starts to shift to more positive δ44Ca values due to depletion of light Ca by the plant. The slowly accumulating database on Ca isotopes in plants continues to suggest that systematic Ca isotope studies may be fruitful for understanding cation transport in plants, and soil ecological conditions in general.

  15. Gravitational wave asteroseismology with protoneutron stars

    NASA Astrophysics Data System (ADS)

    Sotani, Hajime; Takiwaki, Tomoya

    2016-08-01

    We examine the time evolution of the frequencies of the gravitational wave after the bounce within the framework of relativistic linear perturbation theory using the results of one-dimensional numerical simulations of core-collapse supernovae. Protoneutron star models are constructed in such a way that the mass and the radius of the protoneutron star become equivalent to the results obtained from the numerical simulations. Then we find that the frequencies of gravitational waves radiating from protoneutron stars strongly depend on the mass and the radius of protoneutron stars, but almost independently of the profiles of the electron fraction and the entropy per baryon inside the star. Additionally, we find that the frequencies of gravitational waves can be characterized by the square root of the average density of the protoneutron star irrespective of the progenitor models, which are completely different from the empirical formula for cold neutron stars. The dependence of the spectra on the mass and the radius is different from that of the g -mode: the oscillations around the surface of protoneutron stars due to the convection and the standing accretion-shock instability. Careful observation of these modes of gravitational waves can determine the evolution of the mass and the radius of protoneutron stars after core bounce. Furthermore, the expected frequencies of gravitational waves are around a few hundred hertz in the early stages after bounce, which must be a good candidate for the ground-based gravitational wave detectors.

  16. Computing the Partial Fraction Decomposition of Rational Functions with Irreducible Quadratic Factors in the Denominators

    ERIC Educational Resources Information Center

    Man, Yiu-Kwong

    2012-01-01

    In this note, a new method for computing the partial fraction decomposition of rational functions with irreducible quadratic factors in the denominators is presented. This method involves polynomial divisions and substitutions only, without having to solve for the complex roots of the irreducible quadratic polynomial or to solve a system of linear…

  17. Field performance of Nuttall Oak on former agricultural fields: Initial effects of nursery source and competition control

    Treesearch

    Emile S. Gardiner; K. Francis Salifu; Douglass F. Jacobs; George Hernandez; Ronald P. Overton

    2007-01-01

    Nuttall oak (Quercus nuttallii Palm.) seedlings raised at state nurseries in Mississippi, Louisiana, and Arkansas were morphologically different in height, root collar diameter, fresh mass, number of first-order lateral roots, root volume, and height-to-root collar diameter ratio. When outplanted on afforestation sites in the Lower Mississippi...

  18. Field performance of Nuttall oak on former agricultural fields: Initial effects of nursery source and competition control

    Treesearch

    Emile S. Gardiner; K. Francis Salifu; Douglass F. Jacobs; George Hernandez; Ronald P. Overton

    2007-01-01

    Nuttall oak (Quercus nuttallii Palm.) seedlings raised at state nurseries in Mississippi, Louisiana, and Arkansas were morphologically different in height, root collar diameter, fresh mass, number of first-order lateral roots, root volume, and height-to-root collar diameter ratio. When outplanted on afforestation sites in the Lower Mississippi...

  19. The role of vegetation in the stability of forested slopes

    Treesearch

    Robert R. Ziemer

    1981-01-01

    Summary - Vegetation helps stabilize forested slopes by providing root strength and by modifying the saturated soil water regime. Plant roots can anchor through the soil mass into fractures in bedrock, can cross zones of weakness to more stable soil, and can provide interlocking long fibrous binders within a weak soil mass. In Mediterranean-type climates, having warm...

  20. Surface-based GPR underestimates below-stump root biomass

    Treesearch

    John R. Butnor; Lisa J. Samuelson; Thomas A. Stokes; Kurt H. Johnsen; Peter H. Anderson; Carlos A. Gonzalez-Benecke

    2016-01-01

    Aims While lateral root mass is readily detectable with ground penetrating radar (GPR), the roots beneath a tree (below-stump) and overlapping lateral roots near large trees are problematic for surface-based antennas operated in reflection mode. We sought to determine if tree size (DBH) effects GPR root detection proximal to longleaf pine (Pinus palustris Mill) and if...

  1. [Effects of precipitation and interspecific competition on Quercus mongolica and pinus koraiensis seedlings growth].

    PubMed

    Wu, Jing-Lian; Wang, Miao; Lin, Fei; Hao, Zhan-Qing; Ji, Lan-Zhu; Liu, Ya-Qin

    2009-02-01

    Aiming at the variation of precipitation pattern caused by global warming, a field simulation experiment was conducted to study the effects of 30% increase (+W) and decrease (-W) of precipitation on the morphology, growth, and biomass partitioning of mono- and mixed cultured seedlings of Quercus mongolica and Pinus koraiensis, the two dominant tree species in temperate broad-leaved Korean pine mixed forest in Changbai Mountains. Comparing with monoculture, mixed culture increased the canopy width and main root length of Q. mongolica seedlings, but decreased the basal diameter, plant height, leaf number, and dry masses of root, stem, leaf and whole plant of P. koraiensis seedlings significantly. Treatment (-W) increased the stem/mass ratio while decreased the main root length of Q. mongolica seedlings, and decreased the main root length, leaf number, dry masses of leaf and whole plant, and leaf/mass ratio, while increased the stem/mass ratio of P. koraiensis seedlings significantly, compared with treatment CK. Treatment (+W) had no significant effect on these indices of the two species. At early growth stage, interspecific competition and precipitation pattern had significant effects on the morphology and growth of the seedlings, and the responses were much stronger for P. koraiensis than for Q. mongolica.

  2. Tissue fractions of cadmium in two hyperaccumulating Jerusalem artichoke genotypes.

    PubMed

    Long, Xiaohua; Ni, Ni; Liu, Zhaopu; Rengel, Zed; Jiang, Xin; Shao, Hongbo

    2014-01-01

    In order to investigate the mechanisms in two Jerusalem artichoke (Helianthus tuberosus L.) genotypes that hyperaccumulate Cd, a sand-culture experiment was carried out to characterize fractionation of Cd in tissue of Cd-hyperaccumulating genotypes NY2 and NY5. The sequential extractants were: 80% v/v ethanol (FE), deionized water (FW), 1 M NaCl (FNaCl), 2% v/v acetic acid (FAcet), and 0.6 M HCl (FHCl). After 20 days of treatments, NY5 had greater plant biomass and greater Cd accumulation in tissues than NY2. In both genotypes the FNaCl fraction was the highest in roots and stems, whereas the FAcet and FHCl fractions were the highest in leaves. With an increase in Cd concentration in the culture solution, the content of every Cd fraction also increased. The FW and FNaCl ratios in roots were lower in NY5 than in NY2, while the amount of other Cd forms was higher. It implied that, in high accumulator, namely, NY5, the complex of insoluble phosphate tends to be shaped more easily which was much better for Cd accumulation. Besides, translocation from plasma to vacuole after combination with protein may be one of the main mechanisms in Cd-accumulator Jerusalem artichoke genotypes.

  3. Tissue Fractions of Cadmium in Two Hyperaccumulating Jerusalem Artichoke Genotypes

    PubMed Central

    Long, Xiaohua; Ni, Ni; Liu, Zhaopu; Rengel, Zed; Jiang, Xin; Shao, Hongbo

    2014-01-01

    In order to investigate the mechanisms in two Jerusalem artichoke (Helianthus tuberosus L.) genotypes that hyperaccumulate Cd, a sand-culture experiment was carried out to characterize fractionation of Cd in tissue of Cd-hyperaccumulating genotypes NY2 and NY5. The sequential extractants were: 80% v/v ethanol (FE), deionized water (FW), 1 M NaCl (FNaCl), 2% v/v acetic acid (FAcet), and 0.6 M HCl (FHCl). After 20 days of treatments, NY5 had greater plant biomass and greater Cd accumulation in tissues than NY2. In both genotypes the FNaCl fraction was the highest in roots and stems, whereas the FAcet and FHCl fractions were the highest in leaves. With an increase in Cd concentration in the culture solution, the content of every Cd fraction also increased. The FW and FNaCl ratios in roots were lower in NY5 than in NY2, while the amount of other Cd forms was higher. It implied that, in high accumulator, namely, NY5, the complex of insoluble phosphate tends to be shaped more easily which was much better for Cd accumulation. Besides, translocation from plasma to vacuole after combination with protein may be one of the main mechanisms in Cd-accumulator Jerusalem artichoke genotypes. PMID:24883399

  4. 40 CFR 63.8055 - How do I comply with a weight percent HAP limit in coating products?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (appendix A to 40 CFR part 60). You may use Method 24 to determine the mass fraction of volatile matter and use that value as a substitute for the mass fraction of HAP. (3) You may use an alternative test method for determining mass fraction of HAP if you obtain prior approval by the Administrator. You must...

  5. 40 CFR 63.8055 - How do I comply with a weight percent HAP limit in coating products?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (appendix A to 40 CFR part 60). You may use Method 24 to determine the mass fraction of volatile matter and use that value as a substitute for the mass fraction of HAP. (3) You may use an alternative test method for determining mass fraction of HAP if you obtain prior approval by the Administrator. You must...

  6. 40 CFR 63.8055 - How do I comply with a weight percent HAP limit in coating products?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (appendix A to 40 CFR part 60). You may use Method 24 to determine the mass fraction of volatile matter and use that value as a substitute for the mass fraction of HAP. (3) You may use an alternative test method for determining mass fraction of HAP if you obtain prior approval by the Administrator. You must...

  7. 40 CFR 63.8055 - How do I comply with a weight percent HAP limit in coating products?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (appendix A to 40 CFR part 60). You may use Method 24 to determine the mass fraction of volatile matter and use that value as a substitute for the mass fraction of HAP. (3) You may use an alternative test method for determining mass fraction of HAP if you obtain prior approval by the Administrator. You must...

  8. A DIRECT MEASUREMENT OF THE BARYONIC MASS FUNCTION OF GALAXIES AND IMPLICATIONS FOR THE GALACTIC BARYON FRACTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Papastergis, Emmanouil; Huang, Shan; Giovanelli, Riccardo

    We use both an H I-selected and an optically selected galaxy sample to directly measure the abundance of galaxies as a function of their 'baryonic' mass (stars + atomic gas). Stellar masses are calculated based on optical data from the Sloan Digital Sky Survey and atomic gas masses are calculated using atomic hydrogen (H I) emission line data from the Arecibo Legacy Fast ALFA survey. By using the technique of abundance matching, we combine the measured baryonic function of galaxies with the dark matter halo mass function in a {Lambda}CDM universe, in order to determine the galactic baryon fraction asmore » a function of host halo mass. We find that the baryon fraction of low-mass halos is much smaller than the cosmic value, even when atomic gas is taken into account. We find that the galactic baryon deficit increases monotonically with decreasing halo mass, in contrast with previous studies which suggested an approximately constant baryon fraction at the low-mass end. We argue that the observed baryon fractions of low-mass halos cannot be explained by reionization heating alone, and that additional feedback mechanisms (e.g., supernova blowout) must be invoked. However, the outflow rates needed to reproduce our result are not easily accommodated in the standard picture of galaxy formation in a {Lambda}CDM universe.« less

  9. Structural mass irregularities and fiber volume influence on morphology and mechanical properties of unsaturated polyester resin in matrix composites

    PubMed Central

    Ahmed, Khalil; Nasir, Muhammad; Fatima, Nasreen; Khan, Khalid M.; Zahra, Durey N.

    2014-01-01

    This paper presents the comparative results of a current study on unsaturated polyester resin (UPR) matrix composites processed by filament winding method, with cotton spun yarn of different mass irregularities and two different volume fractions. Physical and mechanical properties were measured, namely ultimate stress, stiffness, elongation%. The mechanical properties of the composites increased significantly with the increase in the fiber volume fraction in agreement with the Counto model. Mass irregularities in the yarn structure were quantitatively measured and visualized by scanning electron microscopy (SEM). Mass irregularities cause marked decrease in relative strength about 25% and 33% which increases with fiber volume fraction. Ultimate stress and stiffness increases with fiber volume fraction and is always higher for yarn with less mass irregularities. PMID:26644920

  10. Challenges to estimating whole forest root biomass with ground penetrating radar

    NASA Astrophysics Data System (ADS)

    Butnor, J. R.

    2016-12-01

    Over the past two decades, substantial technical advances have been made in detecting tree roots with ground penetrating radar (GPR). Under favorable soil dielectric conditions, root location, depth, diameter and mass estimates are possible in the field. With careful notation of survey lines, three dimensional reconstructions of root architecture may also be achieved. The technique has been very useful for quantifying lateral root biomass in silvicultural studies, but is not yet a standalone technique for estimating root biomass in forests. The purpose of this presentation is to highlight the limitations of GPR in the field to stimulate discussion on how to overcome these challenges. Under field conditions, surface-based antennas with frequencies of 400 to 1500 MHz cannot detect fine roots (<2 mm diameter), vertical taproots, below-stump mass, decayed roots or separate roots by species. Higher frequency antennas designed for concrete inspection are available, but penetration through forest soils would be marginal. Over half of the root mass in many Pinus species is in the taproot which is undetectable in part or whole by GPR. This presents challenges to stand-level quantification as whole classes of biomass and structures are not reliably detected. Lack of automation of data processing and interpretation steps currently makes data analysis arduous and in some cases subject to interpretation by an expert user. Forests have a high degree of heterogeneity in surface conditions (e.g., holes, soil moisture, stems, woody and herbaceous plants) that may prevent antennas from coupling with the surface to propagate EM waves and receive reflections. What is the potential for open source data analysis programs to be developed and shared? How will new digital, multi-frequency antennas improve resolution? Can air launched antennas be developed that have both the depth penetration and resolution to detect roots? Are purpose-designed bore hole antenna needed for imaging taproots?

  11. The low-molecular-weight fraction of exopolysaccharide II from Sinorhizobium meliloti is a crucial determinant of biofilm formation.

    PubMed

    Rinaudi, Luciana V; González, Juan E

    2009-12-01

    Sinorhizobium meliloti is a soil bacterium that elicits the formation of root organs called nodules on its host plant, Medicago sativa. Inside these structures, the bacteria are able to convert atmospheric nitrogen into ammonia, which is then used by the plant as a nitrogen source. The synthesis by S. meliloti of at least one exopolysaccharide, succinoglycan or EPS II, is essential for a successful symbiosis. While exopolysaccharide-deficient mutants induce the formation of nodules, they fail to invade them, and as a result, no nitrogen fixation occurs. Interestingly, the low-molecular-weight fractions of these exopolysaccharides are the symbiotically active forms, and it has been suggested that they act as signals to the host plant to initiate infection thread formation. In this work, we explored the role of these rhizobial exopolysaccharides in biofilm formation and their importance in the symbiotic relationship with the host. We showed that the ExpR/Sin quorum-sensing system controls biofilm formation in S. meliloti through the production of EPS II, which provides the matrix for the development of structured and highly organized biofilms. Moreover, the presence of the low-molecular-weight fraction of EPS II is vital for biofilm formation, both in vitro and in vivo. This is the first report where the symbiotically active fraction of EPS II is shown to be a critical factor for biofilm formation and root colonization. Thus, the ability of S. meliloti to properly attach to root surfaces and form biofilms conferred by the synthesis of exopolysaccharides may embody the main function of these symbiotically essential molecules.

  12. Interaction between U and Th on their uptake, distribution, and toxicity in V S. alfredii based on the phytoremediation of U and Th.

    PubMed

    Huang, Zhenling; Tang, Siqun; Zhang, Lu; Ma, Lijian; Ding, Songdong; Du, Liang; Zhang, Dong; Jin, Yongdong; Wang, Ruibing; Huang, Chao; Xia, Chuanqin

    2017-01-01

    Variant Sedum alfredii Hance (V S. alfredii) could simultaneously take up U and Th from water with the highest concentrations recorded as 1.84 × 10 4 and 6.72 × 10 3  mg/kg in the roots, respectively. Th stimulated U uptake by V S. alfredii roots at Th 10 (10 μM of Th), however, the opposite was observed at Th 100 (100 μM of Th). A similar result was found in the effect of U on the uptake of Th by V S. alfredii. Subcellular fractionation studies of V S. alfredii indicated that U and Th were mainly stored in cell wall fraction, and much less was found in organelle and soluble fractions. Chemical form examination results showed that water-soluble U and Th were the predominant chemical forms in this plant. Addition of the other radionuclide in aqueous solutions altered the concentration and percentage of U or Th in cell wall fraction and in water-soluble form, resulting in the change of the uptake capacity of U or Th by V S. alfredii roots. Comparing with single U or Th treatment, the plant cells revealed more swollen chloroplasts and enhanced thickening in cell walls under the U 100  + Th 100 treatment, as observed by TEM. Those results collectively displayed that V S. alfredii may be utilized as a potential plant to simultaneously remove U and Th from aqueous solutions (rhizofiltration).

  13. Isotope mass fractionation during evaporation of Mg2SiO4

    NASA Technical Reports Server (NTRS)

    Davis, Andrew M.; Clayton, Robert N.; Mayeda, Toshiko K.; Hashimoto, Akihiko

    1990-01-01

    Synthetic forsterite (Mg2SiO4) was partially evaporated in vacuum for various durations and at different temperatures. The residual charges obtained when molten Mg2SiO4 was evaporated to 12 percent of its initial mass were enriched in heavy isotopes by about 20, 30, and 15 per mil/amu for O, Mg, and Si, respectively, whereas solid forsterite evaporated to a similar residual mass fraction showed negligible fractionations. These results imply that calcium and aluminum-rich refractory inclusions in carbonaceous chondrites must have been at least partially molten in the primordial solar nebula if the observed large mass fractionation effects were caused by evaporation processes in the nebula.

  14. A two-phase model for aluminized explosives on the ballistic and brisance performance

    NASA Astrophysics Data System (ADS)

    Kim, Wuhyun; Gwak, Min-cheol; Lee, Young-hun; Yoh, Jack J.

    2018-02-01

    The performance of aluminized high explosives is considered by varying the aluminum (Al) mass fraction in a heterogeneous mixture model. Since the time scales of the characteristic induction and combustion of high explosives and Al particles differ, the process of energy release behind the leading detonation wave front occurs over an extended period of time. For simulating the performance of aluminized explosives with varying Al mass fraction, HMX (1,3,5,7-tetrahexmine-1,3,5,7-tetrazocane) is considered as a base explosive when formulating the multiphase conservation laws of mass, momentum, and energy exchanges between the HMX product gases and Al particles. In the current study, a two-phase model is utilized in order to determine the effects of the Al mass fraction in a condensed phase explosive. First, two types of confined rate stick tests are considered to investigate the detonation velocity and the acceleration ability, which refers to the radial expansion velocity of the confinement shell. The simulation results of the confined rate stick test are compared with the experimental data for the Al mass fraction range of 0%-25%, and the optimal Al mass fraction is provided, which is consistent with the experimental observations. Additionally, a series of plate dent test simulations are conducted, the results of which show the same tendency as those of the experimental tests with varying Al mass fractions.

  15. Athletic Cardiac Remodeling in US Professional Basketball Players.

    PubMed

    Engel, David J; Schwartz, Allan; Homma, Shunichi

    2016-04-01

    The incidence of sudden cardiac death is higher in US basketball players compared with other athlete groups. However, the recognition of the risk for sudden cardiac death among basketball players is challenging because little is known regarding athletic cardiac remodeling in these athletes or athletes of similarly increased size. To perform a comprehensive cardiac structural analysis of National Basketball Association (NBA) professional athletes. Echocardiographic observational study of NBA players on the active rosters for the 2013-2014 and 2014-2015 seasons was performed from December 16, 2013, to December 12, 2014. The policy of the NBA mandates annual preseason stress echocardiograms for each player. The NBA has sanctioned Columbia University Medical Center to conduct annual health and safety reviews of these echocardiograms. Data were analyzed from January to May 2015. Cardiac variables assessed included left ventricular (LV) size, mass, wall thickness, and hypertrophy patterns and function; left atrial volume; and aortic root diameter. All dimensions were biometrically scaled. Of the 526 athletes included in the study, 406 (77.2%) were African American and 107 (20.3%) were white, with a mean (SD) age of 25.7 (4.3) years. Mean (SD) athlete height was 200.2 (8.8) cm; mean body surface area, 2.38 (0.19) m2. Left ventricular size and mass in NBA athletes were proportional to body size, extending to the uppermost biometrics of the cohort. Left ventricular hypertrophy was present in 144 athletes (27.4%). African American athletes had increased LV wall thickness (unadjusted mean, 11.2 mm; 95% CI, 11.1-11.3 mm) and LV mass (unadjusted mean, 106.3 g/m2; 95% CI, 104.6-108.0 g/m2) compared with LV wall thickness (unadjusted mean, 10.5 mm; 95% CI, 10.3-10.7 mm; P < .001) and LV mass (unadjusted mean, 102.2 g/m2; 95% CI, 99.0-105.4 g/m2; P = .029) in white athletes. The maximal aortic root diameter in the cohort was 42 mm. Aortic root diameters reached a plateau at the uppermost biometric variables. Five athletes (1.0%) had an LV ejection fraction of less than 50%, and all ventricles augmented normally with exercise. This study provides normative cardiac data for a group of athletes with greater anthropometry than any previously studied athlete group and for a group known to have elevated rates of sudden cardiac death. These data can be incorporated into clinical assessments for the primary prevention of cardiac emergencies in basketball players and the athletic community at large.

  16. Evolution of the fraction of clumpy galaxies at 0.2 < z < 1.0 in the cosmos field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murata, K. L.; Kajisawa, M.; Taniguchi, Y.

    2014-05-01

    Using the Hubble Space Telescope/Advanced Camera for Surveys data in the COSMOS field, we systematically searched clumpy galaxies at 0.2 < z < 1.0 and investigated the fraction of clumpy galaxies and its evolution as a function of stellar mass, star formation rate (SFR), and specific SFR (SSFR). The fraction of clumpy galaxies in star-forming galaxies with M {sub star} > 10{sup 9.5} M {sub ☉} decreases with time from ∼0.35 at 0.8 < z < 1.0 to ∼0.05 at 0.2 < z < 0.4, irrespective of the stellar mass, although the fraction tends to be slightly lower for massivemore » galaxies with M {sub star} > 10{sup 10.5} M {sub ☉} at each redshift. On the other hand, the fraction of clumpy galaxies increases with increasing both SFR and SSFR in all the redshift ranges we investigated. In particular, we found that the SSFR dependences of the fractions are similar among galaxies with different stellar masses, and the fraction at a given SSFR does not depend on the stellar mass in each redshift bin. The evolution of the fraction of clumpy galaxies from z ∼ 0.9 to z ∼ 0.3 seems to be explained by such SSFR dependence of the fraction and the evolution of SSFRs of star-forming galaxies. The fraction at a given SSFR also appears to decrease with time, but this can be due to the effect of the morphological k correction. We suggest that these results are understood by the gravitational fragmentation model for the formation of giant clumps in disk galaxies, where the gas mass fraction is a crucial parameter.« less

  17. Root biomass along subtropical to alpine gradients: global implication from Tibetan transect studies

    Treesearch

    Tianxiang Luo; Sandra Brown; Yude Pan; Peili Shi; Hua Ouyang; Zhenliang Yu; Huazhong Zhu

    2005-01-01

    Much uncertainty in estimating root biomass density (RBD, root mass per unit area) of all roots regionally exists because of methodological difficulties and little knowledge about the effects of biotic and abiotic factors on the magnitude and distribution pattern of RBD. In this study, we collected field data of RBD from 22 sites along the Tibetan Alpine Vegetation...

  18. Semi-Preparative Separation of 10 Caffeoylquinic Acid Derivatives Using High Speed Counter-Current Chromatogaphy Combined with Semi-Preparative HPLC from the Roots of Burdock (Arctium lappa L.).

    PubMed

    Zheng, Zhenjia; Wang, Xiao; Liu, Pengli; Li, Meng; Dong, Hongjing; Qiao, Xuguang

    2018-02-15

    Burdock roots are healthy dietary supplements and a kind of famous traditional Chinese medicine, which contains large amounts of caffeoylquinic acid derivatives. However, little research has been reported on the preparative separation of these compounds from burdock roots. In the present study, a combinative method of HSCCC and semi-preparative HPLC was developed for the semi-preparative separation of caffeoylquinic acid derivatives from the burdock roots. The ethyl acetate extract of burdock roots was first fractionated by MCI macroporous resin chromatography and give three fractions (Fr. 1-3) from the elution of 40% methanol. Then, these three fractions (120 mg) were separately subjected to HSCCC for purification with the solvent system composed of petroleum ether-ethyl acetate-methanol-water at different volume ratios, and the mixtures were further purified by semi-preparative HPLC. As a result, a total of eight known caffeoylquinic acid derivatives including 3- O -caffeoylquinic acid (32.7 mg, 95.7%), 1,5- O - dicaffeoylquinic acid (4.3 mg, 97.2%), 3- O -caffeoylquinic acid methyl ester (12.1 mg, 93.2%), 1,3- O -dicaffeoylquinic acid (42.9 mg, 91.1%), 1,5- O -dicaffeoyl-3- O -(4-maloyl)-quinic acid (4.3 mg, 84.5%), 4,5- O -dicaffeoylquinic acid (5.3 mg, 95.5%), 1,5- O -dicaffeoyl-3- O -succinylquinic acid (8.7 mg, 93.4%), and 1,5- O -dicaffeoyl-4- O -succinylquinic acid (1.7 mg, 91.8%), and two new compounds were obtained. The new compounds were 1,4- O -dicaffeoyl-3-succinyl methyl ester quinic acid (14.6 mg, 96.1%) and 1,5- O -dicaffeoyl-3- O -succinyl methyl ester quinic acid (3.1 mg, 92.6%), respectively. The research indicated that the combination of HSCCC and semi-preparative HPLC is a highly efficient approach for preparative separation of the instability and bioactive caffeoylquinic acid derivatives from natural products.

  19. Temperature drives global patterns in forest biomass distribution in leaves, stems, and roots.

    PubMed

    Reich, Peter B; Luo, Yunjian; Bradford, John B; Poorter, Hendrik; Perry, Charles H; Oleksyn, Jacek

    2014-09-23

    Whether the fraction of total forest biomass distributed in roots, stems, or leaves varies systematically across geographic gradients remains unknown despite its importance for understanding forest ecology and modeling global carbon cycles. It has been hypothesized that plants should maintain proportionally more biomass in the organ that acquires the most limiting resource. Accordingly, we hypothesize greater biomass distribution in roots and less in stems and foliage in increasingly arid climates and in colder environments at high latitudes. Such a strategy would increase uptake of soil water in dry conditions and of soil nutrients in cold soils, where they are at low supply and are less mobile. We use a large global biomass dataset (>6,200 forests from 61 countries, across a 40 °C gradient in mean annual temperature) to address these questions. Climate metrics involving temperature were better predictors of biomass partitioning than those involving moisture availability, because, surprisingly, fractional distribution of biomass to roots or foliage was unrelated to aridity. In contrast, in increasingly cold climates, the proportion of total forest biomass in roots was greater and in foliage was smaller for both angiosperm and gymnosperm forests. These findings support hypotheses about adaptive strategies of forest trees to temperature and provide biogeographically explicit relationships to improve ecosystem and earth system models. They also will allow, for the first time to our knowledge, representations of root carbon pools that consider biogeographic differences, which are useful for quantifying whole-ecosystem carbon stocks and cycles and for assessing the impact of climate change on forest carbon dynamics.

  20. Temperature drives global patterns in forest biomass distribution in leaves, stems, and roots

    PubMed Central

    Reich, Peter B.; Luo, Yunjian; Bradford, John B.; Poorter, Hendrik; Perry, Charles H.; Oleksyn, Jacek

    2014-01-01

    Whether the fraction of total forest biomass distributed in roots, stems, or leaves varies systematically across geographic gradients remains unknown despite its importance for understanding forest ecology and modeling global carbon cycles. It has been hypothesized that plants should maintain proportionally more biomass in the organ that acquires the most limiting resource. Accordingly, we hypothesize greater biomass distribution in roots and less in stems and foliage in increasingly arid climates and in colder environments at high latitudes. Such a strategy would increase uptake of soil water in dry conditions and of soil nutrients in cold soils, where they are at low supply and are less mobile. We use a large global biomass dataset (>6,200 forests from 61 countries, across a 40 °C gradient in mean annual temperature) to address these questions. Climate metrics involving temperature were better predictors of biomass partitioning than those involving moisture availability, because, surprisingly, fractional distribution of biomass to roots or foliage was unrelated to aridity. In contrast, in increasingly cold climates, the proportion of total forest biomass in roots was greater and in foliage was smaller for both angiosperm and gymnosperm forests. These findings support hypotheses about adaptive strategies of forest trees to temperature and provide biogeographically explicit relationships to improve ecosystem and earth system models. They also will allow, for the first time to our knowledge, representations of root carbon pools that consider biogeographic differences, which are useful for quantifying whole-ecosystem carbon stocks and cycles and for assessing the impact of climate change on forest carbon dynamics. PMID:25225412

  1. Temperature drives global patterns in forest biomass distribution in leaves, stems, and roots

    USGS Publications Warehouse

    Reich, Peter B.; Lou, Yunjian; Bradford, John B.; Poorter, Hendrik; Perry, Charles H.; Oleksyn, Jacek

    2014-01-01

    Whether the fraction of total forest biomass distributed in roots, stems, or leaves varies systematically across geographic gradients remains unknown despite its importance for understanding forest ecology and modeling global carbon cycles. It has been hypothesized that plants should maintain proportionally more biomass in the organ that acquires the most limiting resource. Accordingly, we hypothesize greater biomass distribution in roots and less in stems and foliage in increasingly arid climates and in colder environments at high latitudes. Such a strategy would increase uptake of soil water in dry conditions and of soil nutrients in cold soils, where they are at low supply and are less mobile. We use a large global biomass dataset (>6,200 forests from 61 countries, across a 40 °C gradient in mean annual temperature) to address these questions. Climate metrics involving temperature were better predictors of biomass partitioning than those involving moisture availability, because, surprisingly, fractional distribution of biomass to roots or foliage was unrelated to aridity. In contrast, in increasingly cold climates, the proportion of total forest biomass in roots was greater and in foliage was smaller for both angiosperm and gymnosperm forests. These findings support hypotheses about adaptive strategies of forest trees to temperature and provide biogeographically explicit relationships to improve ecosystem and earth system models. They also will allow, for the first time to our knowledge, representations of root carbon pools that consider biogeographic differences, which are useful for quantifying whole-ecosystem carbon stocks and cycles and for assessing the impact of climate change on forest carbon dynamics.

  2. Mass, energy and material balances of SRF production process. Part 2: SRF produced from construction and demolition waste.

    PubMed

    Nasrullah, Muhammad; Vainikka, Pasi; Hannula, Janne; Hurme, Markku; Kärki, Janne

    2014-11-01

    In this work, the fraction of construction and demolition waste (C&D waste) complicated and economically not feasible to sort out for recycling purposes is used to produce solid recovered fuel (SRF) through mechanical treatment (MT). The paper presents the mass, energy and material balances of this SRF production process. All the process streams (input and output) produced in MT waste sorting plant to produce SRF from C&D waste are sampled and treated according to CEN standard methods for SRF. Proximate and ultimate analysis of these streams is performed and their composition is determined. Based on this analysis and composition of process streams their mass, energy and material balances are established for SRF production process. By mass balance means the overall mass flow of input waste material stream in the various output streams and material balances mean the mass flow of components of input waste material stream (such as paper and cardboard, wood, plastic (soft), plastic (hard), textile and rubber) in the various output streams of SRF production process. The results from mass balance of SRF production process showed that of the total input C&D waste material to MT waste sorting plant, 44% was recovered in the form of SRF, 5% as ferrous metal, 1% as non-ferrous metal, and 28% was sorted out as fine fraction, 18% as reject material and 4% as heavy fraction. The energy balance of this SRF production process showed that of the total input energy content of C&D waste material to MT waste sorting plant, 74% was recovered in the form of SRF, 16% belonged to the reject material and rest 10% belonged to the streams of fine fraction and heavy fraction. From the material balances of this process, mass fractions of plastic (soft), paper and cardboard, wood and plastic (hard) recovered in the SRF stream were 84%, 82%, 72% and 68% respectively of their input masses to MT plant. A high mass fraction of plastic (PVC) and rubber material was found in the reject material stream. Streams of heavy fraction and fine fraction mainly contained non-combustible material (such as stone/rock, sand particles and gypsum material). Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Linking SOM Content, Chemistry, and Decomposition: Complex Responses to Input Manipulation and Long-term Incubation

    NASA Astrophysics Data System (ADS)

    Bridgham, S. D.; Reynolds, L. L.; Tfaily, M.; Roscioli, K.; Lajtha, K.; Bowden, R.; Johnson, B. R.

    2014-12-01

    The mechanisms of soil organic matter (SOM) protection and their relationship with carbon inputs and decomposition are poorly understood. We used Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) and Fourier transform infrared spectroscopy (FTIR) to characterize SOM in soils exposed to litter-input exclusion or addition for 20 years, and subsequently incubated for more than a year. Our aim was to describe shifts in SOM content and chemical composition due to the input manipulation and degree of decomposition, particularly in the light (i.e., free particulate, younger) versus the heavy (mineral-adsorbed, older) fractions of SOM, and to link these shifts to carbon mineralization rates. The soils were collected from a deciduous hardwood forest in Meadville, PA, one of the Detritus and Input Removal Treatment (DIRT) sites. They were subjected to either litter and root exclusion (NI), double litter (DL), or ambient inputs (CO) for 20 years and subsequently incubated at 35oC for 525 days. Soils from the beginning and end of the incubation were divided into light and heavy fractions using 1.8 g cm-3 sodium polytungstate. Bulk CO soils and heavy fractions of NI, DL, and CO soil were analyzed with FTICR-MS, while light and heavy fractions were analyzed with FTIR. Twenty years of input exclusion decreased the mineralization rate, the total carbon respired, and total carbon content, though litter addition had no significant effect (NI < CO = DL). The FTICR-MS and FTIR data reveal substantial differences in SOM chemistry among DIRT treatments, fractions, and before and after incubation. CO contained several classes of compounds, including alcohols and phenols, not detected in either DL or NI soils, and all samples showed an enrichment in aromatics between the light and heavy fractions. The heavy fraction DL soils were proportionally enriched in lipids compared to NI and CO soils, and these lipids were preferentially mineralized during incubation. Heavy fraction CO and NI soils were similar initially, though CO soil lost primarily lipids, while NI soil lost unsaturated hydrocarbons and proteins. These results indicate the complex interrelationships between litter inputs and soil carbon content, chemistry, and SOM decomposition.

  4. Root foraging increases performance of the clonal plant Potentilla reptans in heterogeneous nutrient environments.

    PubMed

    Wang, Zhengwen; van Kleunen, Mark; During, Heinjo J; Werger, Marinus J A

    2013-01-01

    Plastic root-foraging responses have been widely recognized as an important strategy for plants to explore heterogeneously distributed resources. However, the benefits and costs of root foraging have received little attention. In a greenhouse experiment, we grew pairs of connected ramets of 22 genotypes of the stoloniferous plant Potentilla reptans in paired pots, between which the contrast in nutrient availability was set as null, medium and high, but with the total nutrient amount kept the same. We calculated root-foraging intensity of each individual ramet pair as the difference in root mass between paired ramets divided by the total root mass. For each genotype, we then calculated root-foraging ability as the slope of the regression of root-foraging intensity against patch contrast. For all genotypes, root-foraging intensity increased with patch contrast and the total biomass and number of offspring ramets were lowest at high patch contrast. Among genotypes, root-foraging intensity was positively related to production of offspring ramets and biomass in the high patch-contrast treatment, which indicates an evolutionary benefit of root foraging in heterogeneous environments. However, we found no significant evidence that the ability of plastic foraging imposes costs under homogeneous conditions (i.e. when foraging is not needed). Our results show that plants of P. reptans adjust their root-foraging intensity according to patch contrast. Moreover, the results show that the root foraging has an evolutionary advantage in heterogeneous environments, while costs of having the ability of plastic root foraging were absent or very small.

  5. Fractional Klein-Gordon equation composed of Jumarie fractional derivative and its interpretation by a smoothness parameter

    NASA Astrophysics Data System (ADS)

    Ghosh, Uttam; Banerjee, Joydip; Sarkar, Susmita; Das, Shantanu

    2018-06-01

    Klein-Gordon equation is one of the basic steps towards relativistic quantum mechanics. In this paper, we have formulated fractional Klein-Gordon equation via Jumarie fractional derivative and found two types of solutions. Zero-mass solution satisfies photon criteria and non-zero mass satisfies general theory of relativity. Further, we have developed rest mass condition which leads us to the concept of hidden wave. Classical Klein-Gordon equation fails to explain a chargeless system as well as a single-particle system. Using the fractional Klein-Gordon equation, we can overcome the problem. The fractional Klein-Gordon equation also leads to the smoothness parameter which is the measurement of the bumpiness of space. Here, by using this smoothness parameter, we have defined and interpreted the various cases.

  6. Sweetpotato vine management for confined food production in a space life-support system

    NASA Astrophysics Data System (ADS)

    Massa, Gioia D.; Mitchell, Cary A.

    2012-01-01

    Sweetpotato (Ipomea batatas L.) 'Whatley-Loretan' was developed for space life support by researchers at Tuskegee University for its highly productive, nutritious storage roots. This promising candidate space life-support crop has a sprawling habit and aggressive growth rate in favorable environments that demands substantial growing area. Shoot pruning is not a viable option for vine control because removal of the main shoot apex drastically inhibits storage-root initiation and development, and chemical growth retardants typically are not cleared for use with food crops. As part of a large effort by the NASA Specialized Center of Research and Training in Advanced Life Support to reduce equivalent system mass (ESM) for food production in space, the dilemma of vine management for sweetpotato was addressed in effort to conserve growth area without compromising root yield. Root yields from unbranched vines trained spirally around wire frames configured either in the shapes of cones or cylinders were similar to those from vines trained horizontally along the bench, but occupying only a small fraction of the bench area. This finding indicates that sweetpotato is highly adaptable to a variety of vine-training architectures. Planting a second plant in the growth container and training the two vines in opposite directions around frames enhanced root yield and number, but had little effect on average length of each vine or bench area occupied. Once again, root yields were similar for both configurations of wire support frames. The 3-4-month crop-production cycles for sweetpotato in the greenhouse spanned all seasons of multiple years during the course of the study, and although electric lighting was used for photoperiod control and to supplement photosynthetic light during low-light seasons, there still were differences in total light available across seasons. Light variations and other environmental differences among experiments in the greenhouse had more effects on vine length than on root yield. Average vine length correlated positively with total hours of daylight received across seasons, and responses for one plant per container were higher above a threshold duration of solar exposure, suggesting that the vines of two plants per container compete for available light. In addition to the adaptability of sweetpotato to various vine-training architectures and across seasons in terms of maintaining root productivity, the open, interior volumes of the support frames tested in this study will provide future opportunity to enhance sweetpotato root yield in space by adding novel interior lighting, such as from intracanopy arrays of light-emitting diodes. This work was sponsored by NASA grant NAG 5 1286.

  7. Intensive field phenotyping of maize (Zea mays L.) root crowns identifies phenes and phene integration associated with plant growth and nitrogen acquisition.

    PubMed

    York, Larry M; Lynch, Jonathan P

    2015-09-01

    Root architecture is an important regulator of nitrogen (N) acquisition. Existing methods to phenotype the root architecture of cereal crops are generally limited to seedlings or to the outer roots of mature root crowns. The functional integration of root phenes is poorly understood. In this study, intensive phenotyping of mature root crowns of maize was conducted to discover phenes and phene modules related to N acquisition. Twelve maize genotypes were grown under replete and deficient N regimes in the field in South Africa and eight in the USA. An image was captured for every whorl of nodal roots in each crown. Custom software was used to measure root phenes including nodal occupancy, angle, diameter, distance to branching, lateral branching, and lateral length. Variation existed for all root phenes within maize root crowns. Size-related phenes such as diameter and number were substantially influenced by nodal position, while angle, lateral density, and distance to branching were not. Greater distance to branching, the length from the shoot to the emergence of laterals, is proposed to be a novel phene state that minimizes placing roots in already explored soil. Root phenes from both older and younger whorls of nodal roots contributed to variation in shoot mass and N uptake. The additive integration of root phenes accounted for 70% of the variation observed in shoot mass in low N soil. These results demonstrate the utility of intensive phenotyping of mature root systems, as well as the importance of phene integration in soil resource acquisition. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  8. Antimicrobial activity of the essential oil obtained from roots and chemical composition of the volatile constituents from the roots, stems, and leaves of Ballota nigra from Serbia.

    PubMed

    Vukovic, Nenad; Sukdolak, Slobodan; Solujic, Slavica; Niciforovic, Neda

    2009-04-01

    The chemical composition of essential oils obtained from the roots, stems, and leaves of Ballota nigra, growing in Serbia, was investigated by gas chromatography/mass spectrometry analyses. Kovats indices, mass spectra, and standard compounds were used to identify a total of 115 individual compounds. The plant produces two types of essential oils. Oils derived from stems and leaves were sesquiterpene rich (78.17% and 88.40%, respectively), containing principally beta-caryophyllene, germacrene D, and alpha-humulene, present in appreciable amounts. In contrast, oil derived from the root was dominated by p-vinylguiacol (9.24%), borneol (7.51%), myrtenol (7.13%), trans-pinocarveol (5.22%), pinocarvone (4.37%), 2-methyl-3-phenylpropanal (4.32%), and p-cymen-8-ol (4.30%). Essential oil obtained from the roots was evaluated for the antimicrobial activity against seven bacterial species and one fungi.

  9. Controlled environment crop production - Hydroponic vs. lunar regolith

    NASA Technical Reports Server (NTRS)

    Bugbee, Bruce G.; Salisbury, Frank B.

    1989-01-01

    The potential of controlled environment crop production in a lunar colony is discussed. Findings on the effects of optimal root-zone and aerial environments derived as part of the NASA CELSS project at Utah State are presented. The concept of growing wheat in optimal environment is discussed. It is suggested that genetic engineering might produce the ideal wheat cultivar for CELSS (about 100 mm in height with fewer leaves). The Utah State University hydroponic system is outlined and diagrams of the system and plant container construction are provided. Ratio of plant mass to solution mass, minimum root-zone volume, maintenance, and pH control are discussed. A comparison of liquid hydrophonic systems and lunar regoliths as substrates for plant growth is provided. The physiological processes that are affected by the root-zone environment are discussed including carbon partitioning, nutrient availability, nutrient absorption zones, root-zone oxygen, plant water potential, root-produced hormones, and rhizosphere pH control.

  10. Identifying the Active Microbiome Associated with Roots and Rhizosphere Soil of Oilseed Rape

    PubMed Central

    Mahmood, Shahid; Ekblad, Alf; Alström, Sadhna; Högberg, Nils; Finlay, Roger

    2017-01-01

    ABSTRACT RNA stable isotope probing and high-throughput sequencing were used to characterize the active microbiomes of bacteria and fungi colonizing the roots and rhizosphere soil of oilseed rape to identify taxa assimilating plant-derived carbon following 13CO2 labeling. Root- and rhizosphere soil-associated communities of both bacteria and fungi differed from each other, and there were highly significant differences between their DNA- and RNA-based community profiles. Verrucomicrobia, Proteobacteria, Planctomycetes, Acidobacteria, Gemmatimonadetes, Actinobacteria, and Chloroflexi were the most active bacterial phyla in the rhizosphere soil. Bacteroidetes were more active in roots. The most abundant bacterial genera were well represented in both the 13C- and 12C-RNA fractions, while the fungal taxa were more differentiated. Streptomyces, Rhizobium, and Flavobacterium were dominant in roots, whereas Rhodoplanes and Sphingomonas (Kaistobacter) were dominant in rhizosphere soil. “Candidatus Nitrososphaera” was enriched in 13C in rhizosphere soil. Olpidium and Dendryphion were abundant in the 12C-RNA fraction of roots; Clonostachys was abundant in both roots and rhizosphere soil and heavily 13C enriched. Cryptococcus was dominant in rhizosphere soil and less abundant, but was 13C enriched in roots. The patterns of colonization and C acquisition revealed in this study assist in identifying microbial taxa that may be superior competitors for plant-derived carbon in the rhizosphere of Brassica napus. IMPORTANCE This microbiome study characterizes the active bacteria and fungi colonizing the roots and rhizosphere soil of Brassica napus using high-throughput sequencing and RNA-stable isotope probing. It identifies taxa assimilating plant-derived carbon following 13CO2 labeling and compares these with other less active groups not incorporating a plant assimilate. Brassica napus is an economically and globally important oilseed crop, cultivated for edible oil, biofuel production, and phytoextraction of heavy metals; however, it is susceptible to several diseases. The identification of the fungal and bacterial species successfully competing for plant-derived carbon, enabling them to colonize the roots and rhizosphere soil of this plant, should enable the identification of microorganisms that can be evaluated in more detailed functional studies and ultimately be used to improve plant health and productivity in sustainable agriculture. PMID:28887416

  11. Identifying the Active Microbiome Associated with Roots and Rhizosphere Soil of Oilseed Rape.

    PubMed

    Gkarmiri, Konstantia; Mahmood, Shahid; Ekblad, Alf; Alström, Sadhna; Högberg, Nils; Finlay, Roger

    2017-11-15

    RNA stable isotope probing and high-throughput sequencing were used to characterize the active microbiomes of bacteria and fungi colonizing the roots and rhizosphere soil of oilseed rape to identify taxa assimilating plant-derived carbon following 13 CO 2 labeling. Root- and rhizosphere soil-associated communities of both bacteria and fungi differed from each other, and there were highly significant differences between their DNA- and RNA-based community profiles. Verrucomicrobia , Proteobacteria , Planctomycetes , Acidobacteria , Gemmatimonadetes , Actinobacteria , and Chloroflexi were the most active bacterial phyla in the rhizosphere soil. Bacteroidetes were more active in roots. The most abundant bacterial genera were well represented in both the 13 C- and 12 C-RNA fractions, while the fungal taxa were more differentiated. Streptomyces , Rhizobium , and Flavobacterium were dominant in roots, whereas Rhodoplanes and Sphingomonas ( Kaistobacter ) were dominant in rhizosphere soil. " Candidatus Nitrososphaera" was enriched in 13 C in rhizosphere soil. Olpidium and Dendryphion were abundant in the 12 C-RNA fraction of roots; Clonostachys was abundant in both roots and rhizosphere soil and heavily 13 C enriched. Cryptococcus was dominant in rhizosphere soil and less abundant, but was 13 C enriched in roots. The patterns of colonization and C acquisition revealed in this study assist in identifying microbial taxa that may be superior competitors for plant-derived carbon in the rhizosphere of Brassica napus IMPORTANCE This microbiome study characterizes the active bacteria and fungi colonizing the roots and rhizosphere soil of Brassica napus using high-throughput sequencing and RNA-stable isotope probing. It identifies taxa assimilating plant-derived carbon following 13 CO 2 labeling and compares these with other less active groups not incorporating a plant assimilate. Brassica napus is an economically and globally important oilseed crop, cultivated for edible oil, biofuel production, and phytoextraction of heavy metals; however, it is susceptible to several diseases. The identification of the fungal and bacterial species successfully competing for plant-derived carbon, enabling them to colonize the roots and rhizosphere soil of this plant, should enable the identification of microorganisms that can be evaluated in more detailed functional studies and ultimately be used to improve plant health and productivity in sustainable agriculture. Copyright © 2017 American Society for Microbiology.

  12. Nuclear volume effects in equilibrium stable isotope fractionations of mercury, thallium and lead

    PubMed Central

    Yang, Sha; Liu, Yun

    2015-01-01

    The nuclear volume effects (NVEs) of Hg, Tl and Pb isotope systems are investigated with careful evaluation on quantum relativistic effects via the Dirac’s formalism of full-electron wave function. Equilibrium 202Hg/198Hg, 205Tl/203Tl, 207Pb/206Pb and 208Pb/206Pb isotope fractionations are found can be up to 3.61‰, 2.54‰, 1.48‰ and 3.72‰ at room temperature, respectively, larger than fractionations predicted by classical mass-dependent isotope fractionations theory. Moreover, the NVE can cause mass-independent fractionations (MIF) for odd-mass isotopes and even-mass isotopes. The plot of vs. for Hg-bearing species falls into a straight line with the slope of 1.66, which is close to previous experimental results. For the first time, Pb4+-bearing species are found can enrich heavier Pb isotopes than Pb2+-bearing species to a surprising extent, e.g., the enrichment can be up to 4.34‰ in terms of 208Pb/206Pb at room temperature, due to their NVEs are in opposite directions. In contrast, fractionations among Pb2+-bearing species are trivial. Therefore, the large Pb fractionation changes provide a potential new tracer for redox conditions in young and closed geologic systems. The magnitudes of NVE-driven even-mass MIFs of Pb isotopes (i.e., ) and odd-mass MIFs (i.e., ) are almost the same but with opposite signs. PMID:26224248

  13. StimuFrac Compressibility as a Function of CO2 Molar Fraction

    DOE Data Explorer

    Carlos A. Fernandez

    2016-04-29

    Compressibility values were obtained in a range of pressures at 250degC by employing a fixed volume view cell completely filled with PAA aqueous solution and injecting CO2 at constant flow rate (0.3mL/min). Pressure increase as a function of supercritical CO2 (scCO2) mass fraction in the mixture was monitored. The plot shows the apparent compressibility of Stimufrac as a function of scCO2 mass fraction obtained in a pressure range between 2100-7000 psi at 250degC. At small mass fractions of scCO2 the compressibility increases probably due to the dissolution/reaction of CO2 in aqueous PAA and reaches a maximum at mCO2/mH2O = 0.06. Then, compressibility decreases showing a linear relationship with scCO2 mass fraction due to the continuous increase in density of the binary fluid associated to the pressure increase.

  14. The dense gas mass fraction of molecular clouds in the Milky Way

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Battisti, Andrew J.; Heyer, Mark H., E-mail: abattist@astro.umass.edu, E-mail: heyer@astro.umass.edu

    2014-01-10

    The mass fraction of dense gas within giant molecular clouds (GMCs) of the Milky Way is investigated using {sup 13}CO data from the Five College Radio Astronomy Observatory Galactic Plane Surveys and the Bolocam Galactic Plane Survey (BGPS) of 1.1 mm dust continuum emission. A sample of 860 compact dust sources are selected from the BGPS catalog and kinematically linked to 344 clouds of extended (>3') {sup 13}CO J = 1-0 emission. Gas masses are tabulated for the full dust source and subregions within the dust sources with mass surface densities greater than 200 M {sub ☉} pc{sup –2}, whichmore » are assumed to be regions of enhanced volume density. Masses of the parent GMCs are calculated assuming optically thin {sup 13}CO J = 1-0 emission and local thermodynamic equilibrium conditions. The mean fractional mass of dust sources to host GMC mass is 0.11{sub −0.06}{sup +0.12}. The high column density subregions comprise 0.07{sub −0.05}{sup +0.13} of the mass of the cloud. Owing to our assumptions, these values are upper limits to the true mass fractions. The fractional mass of dense gas is independent of GMC mass and gas surface density. The low dense gas mass fraction suggests that the formation of dense structures within GMCs is the primary bottleneck for star formation. The distribution of velocity differences between the dense gas and the low density material along the line of sight is also examined. We find a strong, centrally peaked distribution centered on zero velocity displacement. This distribution of velocity differences is modeled with radially converging flows toward the dense gas position that are randomly oriented with respect to the observed line of sight. These models constrain the infall velocities to be 2-4 km s{sup –1} for various flow configurations.« less

  15. Sources of phosphorus in stormwater and street dirt from two urban residential basins in Madison, Wisconsin, 1994-95

    USGS Publications Warehouse

    Waschbusch, Robert J.; Selbig, W.R.; Bannerman, Roger T.

    1999-01-01

    Street-dirt samples were collected using industrial vacuum equipment. Leaves in these samples were separated out and the remaining sediment was sieved into >250 mm, 250-63 mm, 63-25 mm, <25 mm size fractions and were analyzed for total phosphorus. Approximately 75 percent of the sediment mass resides in the >250 mm size fractions. Less than 5 percent of the mass can be found in the particle sizes less than 63 mm. The >250 mm size fraction also contributed nearly 50 percent of the total-phosphorus mass and the leaf fraction contributed an additional 30 percent. In each particle size, approximately 25 percent of the total-phosphorus mass is derived from leaves or other vegetation.

  16. Medium-term outcome of Toronto aortic valve replacement: single center experience.

    PubMed

    Li, Wei; Price, Susanna; O'Sullivan, Christine A; Kumar, Pankaj; Jin, Xu Y; Henein, Michael Y; Pepper, John R

    2008-09-26

    Long-term competence of any aortic prosthesis is critical to its clinical durability. Bioprosthetic valves, and in particular the stentless type have been proposed to offer superior haemodynamic profiles with consequent potential for superior left-ventricular mass regression. These benefits however are balanced by the potential longevity of the implanted valve. The aims of this study were to assess medium-term Toronto aortic valve function and its effect on left-ventricular function. Between 1992 and 1996 86 patients underwent Toronto aortic valve replacement for aortic valve disease and were followed up annually. Prospectively collected data was analyzed for all patients where detailed echocardiographic follow-up was available. Echocardiographic studies were analyzed at 2+/-0.6 and 6+/-1.4 years after valve replacement. Data collected included left-ventricular systolic and diastolic dimensions, fractional shortening and left-ventricular mass. In addition, data on aortic valve and root morphology, peak aortic velocities, time velocity integral, stroke volume and the mechanism of valve failure where relevant, were also collected. Complete echocardiographic data were available for eighty-four patients, age 69+/-9 years, 62 male. Additional coronary artery bypass grafting was performed in 38% of patients. Twelve (14%) valves had failed during follow-up, 7 (8%) requiring re-operation. Valve failure was associated with morphologically bicuspid native aortic valve (9/12), and progressive dilatation of the aortic sinuses, sino-tubular junction and ascending aorta (11/12). Left-ventricular mass index remained high (184+/-75 g/m(2)) and did not continue to regress between early and medium-term follow-up (175.8+/-77 g/m(2)). Although more than 90% of implanted Toronto aortic valves remained haemodynamically stable with low gradient at medium-term follow-up, young age and larger aortic dimensions in patients with valve failure suggest better outcome if used in the elderly with normal aortic root geometry.

  17. Changes in very fine root respiration and morphology with time since last fire in a boreal forest

    NASA Astrophysics Data System (ADS)

    Makita, Naoki; Pumpanen, Jukka; Köster, Kajar; Berninger, Frank

    2016-04-01

    We examined the physiological and morphological responses of individual fine root segments in boreal forests stands with different age since the last fire to determine changes in specific fine root respiration and morphological traits during forest succession. We investigated the respiration of fine roots divided into three diameter classes (<0.5, 0.5-1.0, and 1.0-2.0 mm) in a Finnish boreal Pinus sylvestris L. in forest stands with 5, 45, 63, and 155 years since the last fire. Specific respiration rates of <0.5 mm roots in 155-year-old stands were 74%, 38%, and 31% higher than in 5-, 45-, and 63-year-old stands, respectively. However, the respiration rates of thicker diameter roots did not significantly change among stands with respect to time after fire. Similarly, fire disturbance had a strong impact on morphological traits of <0.5 mm roots, but not on thicker roots. Root respiration rates correlated positively with specific root length (length per unit mass) and negatively with root tissue density (mass per unit volume) in all stand ages. The linear regression lines fitted to the relationships between root respiration and specific root length or root tissue density showed significantly higher intercepts in 63- and 155-year-old than in 5-year-old stands. Significant shifts in the intercept of the common slope of respiration vs. morphology indicate the different magnitude of the changes in physiological performance among the fire age class. Despite a specific small geographic area, we suggest that the recovery of boreal forests following wildfire induces a strategy that favors carbon investment in nutrient and water exploitation efficiency with consequences for higher respiration, length, and lower tissue density of very fine roots.

  18. Transcript and proteomic analysis of developing white lupin (Lupinus albus L.) roots

    PubMed Central

    Tian, Li; Peel, Gregory J; Lei, Zhentian; Aziz, Naveed; Dai, Xinbin; He, Ji; Watson, Bonnie; Zhao, Patrick X; Sumner, Lloyd W; Dixon, Richard A

    2009-01-01

    Background White lupin (Lupinus albus L.) roots efficiently take up and accumulate (heavy) metals, adapt to phosphate deficiency by forming cluster roots, and secrete antimicrobial prenylated isoflavones during development. Genomic and proteomic approaches were applied to identify candidate genes and proteins involved in antimicrobial defense and (heavy) metal uptake and translocation. Results A cDNA library was constructed from roots of white lupin seedlings. Eight thousand clones were randomly sequenced and assembled into 2,455 unigenes, which were annotated based on homologous matches in the NCBInr protein database. A reference map of developing white lupin root proteins was established through 2-D gel electrophoresis and peptide mass fingerprinting. High quality peptide mass spectra were obtained for 170 proteins. Microsomal membrane proteins were separated by 1-D gel electrophoresis and identified by LC-MS/MS. A total of 74 proteins were putatively identified by the peptide mass fingerprinting and the LC-MS/MS methods. Genomic and proteomic analyses identified candidate genes and proteins encoding metal binding and/or transport proteins, transcription factors, ABC transporters and phenylpropanoid biosynthetic enzymes. Conclusion The combined EST and protein datasets will facilitate the understanding of white lupin's response to biotic and abiotic stresses and its utility for phytoremediation. The root ESTs provided 82 perfect simple sequence repeat (SSR) markers with potential utility in breeding white lupin for enhanced agronomic traits. PMID:19123941

  19. Influence of root exudates on attachment of Pasteuria penetrans to Meloidogyne arenaria

    USDA-ARS?s Scientific Manuscript database

    We hypothesized that root exudates would influence the spore attachment of Pasteuria penetrans to root-knot nematodes (Meloidogyne arenaria). An experiment was carried out using a factorial arrangement of two single spore (SS) lines cultured from P. penetrans and three single egg mass(SEM)lines cult...

  20. BIOLOGICAL AND PHYTOCHEMICAL INVESTIGATIONS OF EXTRACTS FROM PTEROCARPUS ERINACEUS POIR (FABACEAE) ROOT BARKS

    PubMed Central

    Noufou, Ouédraogo; Anne-Emmanuelle, Hay; Claude W, Ouédraogo Jean; Richard, Sawadogo W; André, Tibiri; Marius, Lompo; Jean-baptiste, Nikiema; Jean, Koudou; Marie-Genevieve, Dijoux-Franca; Pierre, Guissou Innocent

    2017-01-01

    Background: Pterocarpus erinaceus Poir. belonging to Fabacae familly is used as medicinal plant in Burkina Faso’s folk medicine. Roots of P. erinaceus are used to treat ulcer, stomach ache and inflammatory diseases. The objective of the present study was to carry out phytochemical composition of methanol (MeOH) and dichloromethane (DCM) extracts from Pterocarpus erinaceus roots, to isolate pure compounds, and to evaluate their pharmacological activities. Methods: Chromatographic fractionation led to the isolation of active components of the extracts. The structures were established by NMR analysis and comparison with data from literature. The anti-inflammatory activity was evaluated using croton oil-induced edema of mice ear as well as the effect of extracts against lipoxygenase and lipid peroxidation was evaluated. 2,2-diphenyl-1-picrylhydrazyl (DPPH) and Cupric-reducing antioxidant capacity (CUPRAC) methods were used to evaluate the antioxidant activity of the extracts. Results: Friedelin (1), 3a-hydroxyfriedelan-2-one (2), a-sophoradiol (3) and stigmasterol (4) were isolated from DCM extract and maltol-6-O-apiofuranoside-glucopyranoside (5) isolated from MeOH. DCM extract and friedelin, 3a-hydroxyfriedelan-2-one, a-sophoradiol showed a significant anti-inflammatory effect against ear edema. Friedelin (1), α-sophoradiol (3) and maltol-6-O-apiofuranoside-glucopyranoside (5) exhibited lipoxygenase inhibition. MeOH extract (100 μg/mL) inhibited lipoxygenase and lipid peroxidation activities at 45.1 ± 3% and 30.7 ± 0.5% respectively. MeOH extract, ethyl acetate fraction and butanol fraction exhibited antioxidant property with both two methods used. Conclusion: The results suggested that the extracts and compounds from roots of Pterocarpus erinaceus possessed local anti-inflammatory effect, antioxidant properties and inhibitor effect against lipoxygenase and lipid peroxidation activities. PMID:28480397

  1. 40 CFR 63.3930 - What records must I keep?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... manufacturer's formulation data, or test data used to determine the mass fraction of organic HAP and density for each coating, thinner and/or other additive, and cleaning material, and the volume fraction of coating solids for each coating. If you conducted testing to determine mass fraction of organic HAP...

  2. 40 CFR 63.3930 - What records must I keep?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... manufacturer's formulation data, or test data used to determine the mass fraction of organic HAP and density for each coating, thinner and/or other additive, and cleaning material, and the volume fraction of coating solids for each coating. If you conducted testing to determine mass fraction of organic HAP...

  3. 40 CFR 63.3930 - What records must I keep?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... manufacturer's formulation data, or test data used to determine the mass fraction of organic HAP and density for each coating, thinner and/or other additive, and cleaning material, and the volume fraction of coating solids for each coating. If you conducted testing to determine mass fraction of organic HAP...

  4. Effect of Genetic Database Comprehensiveness on Fractional Proteomics of Escherichia coli O157:H7

    DTIC Science & Technology

    2014-01-01

    proteins would be observed in the extracellular fraction. 15. SUBJECT TERMS Escherichia coli O157:H7 Liquid chromatography Mass spectrometry...Preparation ...............1 2.2 Liquid Chromatography /Mass Spectrometry Sample Preparation ....................2 2.3 Liquid Chromatography /Mass... Chromatography /Mass Spectrometry Sample Preparation. Samples were prepared for liquid chromatography tandem mass spectrometry (LC-MS/MS) in a similar

  5. Influence of elevated carbon dioxide and temperature on belowground carbon allocation and enzyme activities in tropical flooded soil planted with rice.

    PubMed

    Bhattacharyya, P; Roy, K S; Neogi, S; Manna, M C; Adhya, T K; Rao, K S; Nayak, A K

    2013-10-01

    Changes in the soil labile carbon fractions and soil biochemical properties to elevated carbon dioxide (CO2) and temperature reflect the changes in the functional capacity of soil ecosystems. The belowground root system and root-derived carbon products are the key factors for the rhizospheric carbon dynamics under elevated CO2 condition. However, the relationship between interactive effects of elevated CO2 and temperature on belowground soil carbon accrual is not very clear. To address this issue, a field experiment was laid out to study the changes of carbon allocation in tropical rice soil (Aeric Endoaquept) under elevated CO2 and elevated CO2 + elevated temperature conditions in open top chambers (OTCs). There were significant increase of root biomass by 39 and 44 % under elevated CO2 and elevated CO2 + temperature compared to ambient condition, respectively. A significant increase (55 %) of total organic carbon in the root exudates under elevated CO2 + temperature was noticed. Carbon dioxide enrichment associated with elevated temperature significantly increased soil labile carbon, microbial biomass carbon, and activities of carbon-transforming enzyme like β-glucosidase. Highly significant correlations were noticed among the different soil enzymes and soil labile carbon fractions.

  6. Effect of odanacatib on root resorption and alveolar bone metabolism during orthodontic tooth movement.

    PubMed

    Wei, X X; Chu, J P; Zou, Y Z; Ru, N; Cui, S X; Bai, Y X

    2015-12-22

    The aim of this study was to investigate the effect of local administration of odanacatib (ODN) on orthodontic root resorption and the status of alveolar bone metabolism in rat molars. All specimens were scanned using microcomputed tomography and then the raw images were reconstructed. The total volume of the root resorption craters of the 60 g-NS (normal saline) group was higher than in the 60 g-ODN group and the control group. In the 60 g-NS group, the bone volume fraction values of alveolar bone were significantly decreased compared with the other 2 groups. There were no significant differences in the bone volume fraction values of the tibiae among the 3 groups. The results of tartrate-resistant acid phosphatase-positive (TRAP+) numbers showed that there was no difference between the 60 g-NS group and the 60 g-ODN group. The expression of cathepsin K was decreased significantly in the 60 g-ODN group. These results indicate that ODN reduces orthodontics-induced external root resorption and increases alveolar bone metabolism. This may be because ODN inhibits the activity of odontoclasts, but maintains the quantity of odontoclasts and enhances bone formation. ODN promotes local alveolar bone metabolism, but does not affect systemic bone metabolism.

  7. STELLAR, GAS, AND DARK MATTER CONTENT OF BARRED GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cervantes Sodi, Bernardo, E-mail: b.cervantes@crya.unam.mx

    We select a sample of galaxies from the Sloan Digital Sky Survey Data Release 7 (SDSS-DR7) where galaxies are classified, through visual inspection, as hosting strong bars, weak bars, or as unbarred galaxies, and make use of H i mass and kinematic information from the Arecibo Legacy Fast ALFA survey catalog, to study the stellar, atomic gas, and dark matter content of barred disk galaxies. We find, in agreement with previous studies, that the bar fraction increases with increasing stellar mass. A similar trend is found with total baryonic mass, although the dependence is not as strong as with stellarmore » mass, due to the contribution of gas. The bar fraction shows a decrease with increasing gas mass fraction. This anticorrelation between the likelihood of a galaxy hosting a bar with the gas richness of the galaxy results from the inhibiting effect the gas has in the formation of bars. We also find that for massive galaxies with stellar masses larger than 10{sup 10} M {sub ⊙}, at fixed stellar mass, the bar fraction decreases with increasing global halo mass (i.e., halo mass measured up to a radius of the order of the H i disk extent).« less

  8. The Incomplete Conditional Stellar Mass Function: Unveiling the Stellar Mass Functions of Galaxies at 0.1 < Z < 0.8 from BOSS Observations

    NASA Astrophysics Data System (ADS)

    Guo, Hong; Yang, Xiaohu; Lu, Yi

    2018-05-01

    We propose a novel method to constrain the missing fraction of galaxies using galaxy clustering measurements in the galaxy conditional stellar mass function (CSMF) framework, which is applicable to surveys that suffer significantly from sample selection effects. The clustering measurements, which are not sensitive to the random sampling (missing fraction) of galaxies, are widely used to constrain the stellar–halo mass relation (SHMR). By incorporating a missing fraction (incompleteness) component into the CSMF model (ICSMF), we use the incomplete stellar mass function and galaxy clustering to simultaneously constrain the missing fractions and the SHMRs. Tests based on mock galaxy catalogs with a few typical missing fraction models show that this method can accurately recover the missing fraction and the galaxy SHMR, hence providing us with reliable measurements of the galaxy stellar mass functions. We then apply it to the Baryon Oscillation Spectroscopic Survey (BOSS) over the redshift range of 0.1 < z < 0.8 for galaxies of M * > 1011 M ⊙. We find that the sample completeness for BOSS is over 80% at z < 0.6 but decreases at higher redshifts to about 30%. After taking these completeness factors into account, we provide accurate measurements of the stellar mass functions for galaxies with {10}11 {M}ȯ < {M}* < {10}12 {M}ȯ , as well as the SHMRs, over the redshift range 0.1 < z < 0.8 in this largest galaxy redshift survey.

  9. A Robust Two-Dimensional Separation for Top-Down Tandem Mass Spectrometry of the Low-Mass Proteome

    PubMed Central

    Lee, Ji Eun; Kellie, John F.; Tran, John C.; Tipton, Jeremiah D.; Catherman, Adam D.; Thomas, Haylee M.; Ahlf, Dorothy R.; Durbin, Kenneth R.; Vellaichamy, Adaikkalam; Ntai, Ioanna; Marshall, Alan G.; Kelleher, Neil L.

    2010-01-01

    For fractionation of intact proteins by molecular weight (MW), a sharply improved two-dimensional (2D) separation is presented to drive reproducible and robust fractionation before top-down mass spectrometry of complex mixtures. The “GELFrEE” (i.e., gel-eluted liquid fraction entrapment electrophoresis) approach is implemented by use of Tris-glycine and Tris-tricine gel systems applied to human cytosolic and nuclear extracts from HeLa S3 cells, to achieve a MW-based fractionation of proteins from 5 to >100 kDa in 1 h. For top-down tandem mass spectroscopy (MS/MS) of the low-mass proteome (5–25 kDa), between 5 and 8 gel-elution (GE) fractions are sampled by nanocapillary-LC-MS/MS with 12 or 14.5 tesla Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometers. Single injections give about 40 detectable proteins, about half of which yield automated ProSight identifications. Reproducibility metrics of the system are presented, along with comparative analysis of protein targets in mitotic versus asynchronous cells. We forward this basic 2D approach to facilitate wider implementation of top-down mass spectrometry and a variety of other protein separation and/or characterization approaches. PMID:19747844

  10. Roots Revealed - Neutron imaging insight of spatial distribution, morphology, growth and function

    NASA Astrophysics Data System (ADS)

    Warren, J.; Bilheux, H.; Kang, M.; Voisin, S.; Cheng, C.; Horita, J.; Perfect, E.

    2013-05-01

    Root production, distribution and turnover are not easily measured, yet their dynamics are an essential part of understanding and modeling ecosystem response to changing environmental conditions. Root age, order, morphology and mycorrhizal associations all regulate root uptake of water and nutrients, which along with along with root distribution determines plant response to, and impact on its local environment. Our objectives were to demonstrate the ability to non-invasively monitor fine root distribution, root growth and root functionality in Zea mays L. (maize) and Panicum virgatum L. (switchgrass) seedlings using neutron imaging. Plants were propagated in aluminum chambers containing sand then placed into a high flux cold neutron beam line. Dynamics of root distribution and growth were assessed by collecting consecutive CCD radiographs through time. Root functionality was assessed by tracking individual root uptake of water (H2O) or deuterium oxide (D2O) through time. Since neutrons strongly scatter H atoms, but not D atoms, biological materials such as plants are prime candidates for neutron imaging. 2D and 3D neutron radiography readily illuminated root structure, root growth, and relative plant and soil water content. Fungal hyphae associated with the roots were also visible and appeared as dark masses since their diameter was likely several orders of magnitude less than ~100 μm resolution of the detector. The 2D pulse-chase irrigation experiments with H2O and D2O successfully allowed observation of uptake and mass flow of water within the root system. Water flux within individual roots responded differentially to foliar illumination based on internal water potential gradients, illustrating the ability to track root functionality based on root size, order and distribution within the soil. (L) neutron image of switchgrass growing in sandy soil with 100 μm diameter roots (R) 3D reconstruction of maize seedling following neutron tomography

  11. Effect of topical alendronate on root resorption of dried replanted dog teeth.

    PubMed

    Levin, L; Bryson, E C; Caplan, D; Trope, M

    2001-06-01

    Alendronate (ALN) is a third generation bisphosphonate with demonstrated osteoclast inhibitory activity that may slow down the resorptive process after severe traumatic injuries. Eighty-two premolar roots of five mongrel dogs were endodontically treated and restored, extracted and treated as follows: 70 roots were bench dried for either 40 or 60 min. Thirty-eight of these roots were then soaked for 5 min in a 1 mM solution of ALN in Hanks' Balanced Salt Solution (HBSS) and replanted. Thirty-two roots were soaked for 5 min in HBSS and replanted. In the remaining 12 roots which were not exposed to the bench drying procedure, a 0.5 mM deep lingual mid-root cemental defect was made. Six of these roots were soaked in a 1 mM solution of ALN in HBSS for 5 min and replanted. The other six roots were soaked for 5 min in HBSS and replanted. Historical negative and positive controls were used from similarly treated teeth in our previous studies. After 4 months the dogs were killed and the roots prepared for histological evaluation. Five-microm-thick cross-sections of the root and surrounding tissue taken every 70 microm were evaluated for healing according to the criteria of Andreasen. In the 12 roots with cemental defects, healing with cementum of the damaged root surface was evaluated. In addition, residual root mass was also measured to determine the extent of root structure loss for each soaking method. Cemental healing took place in all 12 artificially damaged roots, indicating that these soaking media did not inhibit cementogenesis. The alendronate-soaked roots had statistically significantly more healing than the roots soaked in HBSS without alendronate. This improvement in healing was seen in all dogs except one and in all teeth except the first premolar. Soaking in alendronate also resulted in significantly less loss in root mass due to resorption compared to those teeth soaked in HBSS without alendronate.

  12. Exploring the cosmic evolution of habitability with galaxy merger trees

    NASA Astrophysics Data System (ADS)

    Stanway, E. R.; Hoskin, M. J.; Lane, M. A.; Brown, G. C.; Childs, H. J. T.; Greis, S. M. L.; Levan, A. J.

    2018-04-01

    We combine inferred galaxy properties from a semi-analytic galaxy evolution model incorporating dark matter halo merger trees with new estimates of supernova and gamma-ray burst rates as a function of metallicity from stellar population synthesis models incorporating binary interactions. We use these to explore the stellar-mass fraction of galaxies irradiated by energetic astrophysical transients and its evolution over cosmic time, and thus the fraction which is potentially habitable by life like our own. We find that 18 per cent of the stellar mass in the Universe is likely to have been irradiated within the last 260 Myr, with GRBs dominating that fraction. We do not see a strong dependence of irradiated stellar-mass fraction on stellar mass or richness of the galaxy environment. We consider a representative merger tree as a Local Group analogue, and find that there are galaxies at all masses which have retained a high habitable fraction (>40 per cent) over the last 6 Gyr, but also that there are galaxies at all masses where the merger history and associated star formation have rendered galaxies effectively uninhabitable. This illustrates the need to consider detailed merger trees when evaluating the cosmic evolution of habitability.

  13. 40 CFR 63.3544 - How do I determine the emission capture system efficiency?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... mass fraction of TVH liquid input from each coating and thinner used in the coating operation during... materials used in the coating operation during the capture efficiency test run, kg. TVHi = Mass fraction of... protocol compares the mass of liquid TVH in materials used in the coating operation to the mass of TVH...

  14. 40 CFR 63.3544 - How do I determine the emission capture system efficiency?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... mass fraction of TVH liquid input from each coating and thinner used in the coating operation during... materials used in the coating operation during the capture efficiency test run, kg. TVHi = Mass fraction of... protocol compares the mass of liquid TVH in materials used in the coating operation to the mass of TVH...

  15. 40 CFR 63.3544 - How do I determine the emission capture system efficiency?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... mass fraction of TVH liquid input from each coating and thinner used in the coating operation during... materials used in the coating operation during the capture efficiency test run, kg. TVHi = Mass fraction of... protocol compares the mass of liquid TVH in materials used in the coating operation to the mass of TVH...

  16. Key comparison study on peptide purity—synthetic human C-peptide

    NASA Astrophysics Data System (ADS)

    Josephs, R. D.; Li, M.; Song, D.; Westwood, S.; Stoppacher, N.; Daireaux, A.; Choteau, T.; Wielgosz, R.; Xiao, P.; Liu, Y.; Gao, X.; Zhang, C.; Zhang, T.; Mi, W.; Quan, C.; Huang, T.; Li, H.; Flatschart, R.; Borges Oliveira, R.; Melanson, J. E.; Ohlendorf, R.; Henrion, A.; Kinumi, T.; Wong, L.; Liu, Q.; Oztug Senal, M.; Vatansever, B.; Ün, I.; Gören, A. C.; Akgöz, M.; Quaglia, M.; Warren, J.

    2017-01-01

    Under the auspices of the Protein Analysis Working Group (PAWG) of the Comité Consultatif pour la Quantité de Matière (CCQM) a key comparison, CCQM-K115, was coordinated by the Bureau International des Poids et Mesures (BIPM) and the Chinese National Institute of Metrology (NIM). Eight Metrology Institutes or Designated Institutes and the BIPM participated. Participants were required to assign the mass fraction of human C-peptide (hCP) present as the main component in the comparison sample for CCQM-K115. The comparison samples were prepared from synthetic human hCP purchased from a commercial supplier and used as provided without further treatment or purification. hCP was selected to be representative of the performance of a laboratory's measurement capability for the purity assignment of short (up to 5 kDa), non-cross-linked synthetic peptides/proteins. It was anticipated to provide an analytical measurement challenge representative for the value-assignment of compounds of broadly similar structural characteristics. The majority of participants used a peptide impurity corrected amino acid analysis (PICAA) approach as the amount of material that has been provided to each participant (25 mg) is insufficient to perform a full mass balance based characterization of the material by a participating laboratory. The coordinators, both the BIPM and the NIM, were the laboratories to use the mass balance approach as they had more material available. It was decided to propose KCRVs for both the hCP mass fraction and the mass fraction of the peptide related impurities as indispensable contributor regardless of the use of PICAA, mass balance or any other approach to determine the hCP purity. This allowed participants to demonstrate the efficacy of their implementation of the approaches used to determine the hCP mass fraction. In particular it allows participants to demonstrate the efficacy of their implementation of peptide related impurity identification and quantification. More detailed studies on the identification/quantification of peptide related impurities and the hydrolysis efficiency revealed that the integrity of the impurity profile of the related peptide impurities obtained by the participant is crucial for the impact on accuracy of the hCP mass fraction assignment. The assessment of the mass fraction of peptide impurities is based on the assumption that only the most exhaustive and elaborate set of results is taken for the calculation of the KCRVPepImp. The KCRVPepImp for the peptide related impurity mass fractions of the material was 83.3 mg/g with a combined standard uncertainty of 1.5 mg/g. Inspection of the degree of equivalence plots for the mass fraction of peptide impurities and additional information obtained from the peptide related impurity profile indicates that in many cases only a very small number of impurities have been identified and quantified resulting in an underestimation of the peptide related impurity mass fractions. The approach to obtain a KCRVhCP for the mass fraction of hCP is based on a mass balance calculation that takes into account the most exhaustive and elaborate set of results for the peptide related impurities KCRVPepImp, the TFA mass fraction value, water and other minor counter ions obtained by the coordinating laboratories. Differences in the quality of the results obtained for both peptides related impurity mass fractions and hCP mass fractions are better weighted and reflected in smaller uncertainties. The KCRVhCP for CCQM-K115 is 801.8 mg/g with a corresponding combined standard uncertainty of 3.1 mg/g. In general, mass balance approaches show smaller uncertainties than PICAA approaches and the majority of results obtained by the PICAA approach are in agreement because of larger corresponding uncertainties. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCQM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  17. Immunological Evidence for the Existence of a Carrier Protein for Sucrose Transport in Tonoplast Vesicles from Red Beet (Beta vulgaris L.) Root Storage Tissue.

    PubMed Central

    Getz, H. P.; Grosclaude, J.; Kurkdjian, A.; Lelievre, F.; Maretzki, A.; Guern, J.

    1993-01-01

    Monoclonal antibodies were raised in mice against a highly purified tonoplast fraction from isolated red beet (Beta vulgaris L. ssp. conditiva) root vacuoles. Positive hybridoma clones and sub-clones were identified by prescreening using an enzyme-linked immunosorbent assay (ELISA) and by postscreening using a functional assay. This functional assay consisted of testing the impact of hybridoma supernatants and antibody-containing ascites fluids on basal and ATP-stimulated sugar uptake in vacuoles, isolated from protoplasts, as well as in tonoplast vesicles, prepared from tissue homogenates of red beet roots. Antibodies from four clones were particularly positive in ELISAs and they inhibited sucrose uptake significantly. These antibodies were specific inhibitors of sucrose transport, but they exhibited relatively low membrane and species specificity since uptake into red beet root protoplasts and sugarcane tonoplast vesicles was inhibited as well. Fast protein liquid chromatography assisted size exclusion chromatography on Superose 6 columns yielded two major peaks in the 55 to 65-kD regions and in the 110- to 130-kD regions of solubilized proteins from red beet root tonoplasts, which reacted positively in immunoglobulin-M(IgM)-specific ELISAs with anti-sugarcane tonoplast monoclonal IgM antibodies. Only reconstituted proteoliposomes containing polypeptides from the 55- to 65-kD band took up [14C]-sucrose with linear rates for 2 min, suggesting that this fraction contains the tonoplast sucrose carrier. PMID:12231863

  18. A comprehensive review on the stinging nettle effect and efficacy profiles. Part II: urticae radix.

    PubMed

    Chrubasik, Julia E; Roufogalis, Basil D; Wagner, Hildebert; Chrubasik, Sigrun

    2007-08-01

    Nettle root is recommended for complaints associated with benign prostatic hyperplasia (BPH). We therefore conducted a comprehensive review of the literature to summarise the pharmacological and clinical effects of this plant material. Only a few components of the active principle have been identified and the mechanism of action is still unclear. It seems likely that sex hormone binding globulin (SHBG), aromatase, epidermal growth factor and prostate steroid membrane receptors are involved in the anti-prostatic effect, but less likely that 5alpha-reductase or androgen receptors are involved. Extract and a polysaccharide fraction were shown to exert anti-inflammatory activity. A proprietary methanolic nettle root extract and particular fractions inhibited cell proliferation. Isolated lectins (UDA) were shown to be promising immunomodulatory agents, having also anti-viral and fungistatic effects. However, despite these in vitro studies it is unclear whether the in-vitro or animal data are a surrogate for clinical effects. The clinical evidence of effectiveness for nettle root in the treatment of BPH is based on many open studies. A small number of randomised controlled studies indicate that a proprietary methanolic extract is effective in improving BPH complaints. However, the significance and magnitude of the effect remains to be established in further confirmatory studies before nettle root treatment may be accepted in the guidelines for BPH treatment. The risk for adverse events during nettle root treatment is very low, as is its toxicity. Pre-clinical safety data remain to be completed.

  19. On the deuterium abundance and the importance of stellar mass loss in the interstellar and intergalactic medium

    NASA Astrophysics Data System (ADS)

    van de Voort, Freeke; Quataert, Eliot; Faucher-Giguère, Claude-André; Kereš, Dušan; Hopkins, Philip F.; Chan, T. K.; Feldmann, Robert; Hafen, Zachary

    2018-06-01

    We quantify the gas-phase abundance of deuterium and fractional contribution of stellar mass loss to the gas in cosmological zoom-in simulations from the Feedback In Realistic Environments project. At low metallicity, our simulations confirm that the deuterium abundance is very close to the primordial value. The chemical evolution of the deuterium abundance that we derive here agrees quantitatively with analytical chemical evolution models. We furthermore find that the relation between the deuterium and oxygen abundance exhibits very little scatter. We compare our simulations to existing high-redshift observations in order to determine a primordial deuterium fraction of (2.549 ± 0.033) × 10-5 and stress that future observations at higher metallicity can also be used to constrain this value. At fixed metallicity, the deuterium fraction decreases slightly with decreasing redshift, due to the increased importance of mass-loss from intermediate-mass stars. We find that the evolution of the average deuterium fraction in a galaxy correlates with its star formation history. Our simulations are consistent with observations of the Milky Way's interstellar medium (ISM): the deuterium fraction at the solar circle is 85-92 per cent of the primordial deuterium fraction. We use our simulations to make predictions for future observations. In particular, the deuterium abundance is lower at smaller galactocentric radii and in higher mass galaxies, showing that stellar mass loss is more important for fuelling star formation in these regimes (and can even dominate). Gas accreting on to galaxies has a deuterium fraction above that of the galaxies' ISM, but below the primordial fraction, because it is a mix of gas accreting from the intergalactic medium and gas previously ejected or stripped from galaxies.

  20. Characterization of polymeric substance classes in cereal-based beverages using asymmetrical flow field-flow fractionation with a multi-detection system.

    PubMed

    Krebs, Georg; Becker, Thomas; Gastl, Martina

    2017-09-01

    Cereal-based beverages contain a complex mixture of various polymeric macromolecules including polysaccharides, peptides, and polyphenols. The molar mass of polymers and their degradation products affect different technological and especially sensory parameters of beverages. Asymmetrical flow field-flow fractionation (AF4) coupled with multi-angle light scattering (MALS) and refractive index detection (dRI) or UV detection (UV) is a technique for structure and molar mass distribution analysis of macromolecules commonly used for pure compound solutions. The objective of this study was to develop a systematic approach for identifying the polymer classes in an AF4//MALS/dRI/UV fractogram of the complex matrix in beer, a yeast-fermented cereal-based beverage. Assignment of fractogram fractions to polymer substance classes was achieved by targeted precipitations, enzymatic hydrolysis, and alignments with purified polymer standards. Corresponding effects on dRI and UV signals were evaluated according to the detector's sensitivities. Using these techniques, the AF4 fractogram of beer was classified into different fractions: (1) the low molar mass fraction was assigned to proteinaceous molecules with different degrees of glycosylation, (2) the middle molar mass fraction was attributed to protein-polyphenol complexes with a coelution of non-starch polysaccharides, and (3) the high molar mass fraction was identified as a mixture of the cell wall polysaccharides (i.e., β-glucan and arabinoxylan) with a low content of polysaccharide-protein association. In addition, dextrins derived from incomplete starch hydrolysis were identified in all fractions and over the complete molar mass range. The ability to assess the components of an AF4 fractogram is beneficial for the targeted design and evaluation of polymers in fermented cereal-based beverages and for controlling and monitoring quality parameters.

  1. Is white clover able to switch to atmospheric sulphur sources when sulphate availability decreases?

    PubMed

    Varin, Sébastien; Lemauviel-Lavenant, Servane; Cliquet, Jean-Bernard

    2013-05-01

    Sulphur (S) is one of the very few nutrients that plants can absorb either through roots as sulphate or via leaves in a gas form such as SO2 or H2S. This study was realized in a non-S-enriched atmosphere and its purpose was to test whether clover plants can increase their ability to use atmospheric S when sulphate availability decreases. A novel methodology measuring the dilution of (34)S provided from a nutrient solution by atmospheric (32)S was developed to measure S acquisition by Trifolium repens L. Clones of white clover were grown for 140 d in a hydroponic system with three levels of sulphate concentrations. S concentration in plants decreased with S deficiency and plant age. In the experimental conditions used here, S derived from atmospheric deposition (Sdad) constituted from 36% to 100% of the total S. The allocation of S coming from atmospheric and pedospheric sources depends on organs and compounds. Nodules appeared as major sinks for sulphate. A greater proportion of atmospheric S was observed in buffer-soluble proteins than in the insoluble S fraction. Decreasing the S concentration in the nutrient solution resulted in an increase in the Sdad:leaf area ratio and in an increase in the leaf:stolon and root:shoot mass ratios, suggesting that a plasticity in the partitioning of resources to organs may allow a higher gain of S by both roots and leaves. This study shows that clover can increase its ability to use atmospheric S even at low concentration when pedospheric S availability decreases.

  2. Analysis of the essential oil of Illicium henryi Diels root bark and its insecticidal activity against Liposcelis bostrychophila Badonnel.

    PubMed

    Liu, Xin Chao; Liu, Zhi Long

    2015-04-01

    Water-distilled essential oil from Illicium henryi (Illiciaceae) root bark was analyzed by gas chromatography-mass spectrometry. Thirty-four compounds, accounting for 97.86% of the total oil, were identified. The main components of the essential oil of I. henryi root bark were safrole (46.12%), myristicin (20.39%), and 1,8-cineole (6.17%), followed by α-cadinol (3.784%) and linalool (3.22%). The essential oil had higher levels of phenylpropanoids (66.89%) than of monoterpenoids (14.83%) and sesquiternoids (16.14%). Three constituents were isolated from the oil based on bioactivity fractionation. The essential oil possessed fumigant toxicity against booklice (Liposcelis bostrychophila), with a 50% lethal concentration (LC50) of 380.39 μg/liter of air, while the two isolated constituents myristicin and safrole had LC50s of 121.95 and 322.54 μg/liter, respectively. Another constituent, 1,8-cineole, showed weaker toxicity, with an LC50 of 1,120.43 μg/liter. The essential oil also exhibited contact toxicity against L. bostrychophila, with an LC50 of 96.83 μg/cm(2). Myristicin (LC50, 18.74 μg/cm(2)) and safrole (LC50, 69.28 μg/cm(2)) exhibited stronger acute toxicity than 1,8-cineole (LC50, 1,049.41 μg/cm(2)) against the booklice. The results indicated that the essential oil and its constituent compounds have potential for development into natural insecticides for control of psocids in stored grains.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adkins, Jaron; Jastrow, Julie D.; Morris, Geoffrey P.

    Switchgrass (Panicum virgatum L), a cellulosic biofuel feedstock, may promote soil C 21 accumulation compared to annual cropping systems by increasing the amount and retention of 22 root-derived soil C inputs. The aim of this study was to assess how different switchgrass 23 cultivars impact soil C inputs and retention, whether these impacts vary with depth, and whether 24 specific root length (SRL) explains these impacts. We collected soil to a depth of 30 cm from six 25 switchgrass cultivars with root systems ranging from high to low SRL. The cultivars (C4 species) 26 were grown for 27 months onmore » soils previously dominated by C3 plants, allowing us to use the 27 natural difference in 13C isotopic signatures between C3 soils and C4 plants to quantify 28 switchgrass-derived C accumulation. The soil was fractionated into coarse particulate organic 29 matter (CPOM), fine particulate organic matter (FPOM), silt, and clay-sized fractions. We 30 measured total C and plant-derived C in all soil fractions across all depths. The study led to two main results: (1) bulk soil C concentrations beneath switchgrass cultivars varied by 40% in the 0-32 10 cm soil depth and by 70% in the 10-20 cm soil depth, and cultivars with high bulk soil C 33 concentrations tended to have relatively high C concentrations in the mineral soil fractions and 34 relatively low C concentrations in the POM fractions; (2) there were significant differences in 35 switchgrass-derived soil C between cultivars at the 0-10 cm depth, where soil C inputs ranged 36 from 1.2 to 3.2 mg C g-1 dry soil. There was also evidence of a positive correlation between SRL 37 and switchgrass-derived C inputs when one outlier data point was removed. These results 38 indicate that switchgrass cultivars differentially impact mechanisms contributing to soil C accumulation.« less

  4. Defensive strategies in Geranium sylvaticum, Part 2: Roles of water-soluble tannins, flavonoids and phenolic acids against natural enemies.

    PubMed

    Tuominen, Anu

    2013-11-01

    Geranium sylvaticum is a common herbaceous plant in Fennoscandia, which has a unique phenolic composition. Ellagitannins, proanthocyanidins, galloylglucoses, gallotannins, galloyl quinic acids and flavonoids possess variable distribution in its different organs. These phenolic compounds are thought to have an important role in plant-herbivore interactions. The aim of this study was to quantify these different water-soluble phenolic compounds and measure the biological activity of the eight organs of G. sylvaticum. Compounds were characterized and quantified using HPLC-DAD/MS, in addition, total proanthocyanidins were determined by BuOH-HCl assay and total phenolics by the Folin-Ciocalteau method. Two in vitro biological activity measurements were used: the prooxidant activity was measured by the browning assay and antioxidant activity by the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay. Organ extracts were fractionated using column chromatography on Sephadex LH-20 and the activities of fractions was similarly measured to evaluate which polyphenol groups contributed the most to the biological activity of each organ. The data on the activity of fractions were examined by multivariate data analysis. The water-soluble extracts of leaves and pistils, which contained over 30% of the dry weight as ellagitannins, showed the highest pro-oxidant activity among the organ extracts. Fraction analysis revealed that flavonoids and galloyl quinic acids also exhibited high pro-oxidant activity. In contrast, the most antioxidant active organ extracts were those of the main roots and hairy roots that contained high amounts of proanthocyanidins in addition to ellagitannins. Analysis of the fractions showed that especially ellagitannins and galloyl quinic acids have high antioxidant activity. We conclude that G. sylvaticum allocates a significant amount of tannins in those plant parts that are important to the fitness of the plant and susceptible to natural enemies, i.e. pistil and leaf tannins protect against insect herbivores and root tannins against soil pathogens. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Structural composition of organic matter in particle-size fractions of soils along a climo-biosequence in the main range of Peninsular Malaysia

    NASA Astrophysics Data System (ADS)

    Jafarzadeh-Haghighi, Amir Hossein; Shamshuddin, Jusop; Hamdan, Jol; Zainuddin, Norhazlin

    2016-09-01

    Information on structural composition of organic matter (OM) in particle-size fractions of soils along a climo-biosequence is sparse. The objective of this study was to examine structural composition and morphological characteristics of OM in particle-size fractions of soils along a climo-biosequence in order to better understand the factors and processes affecting structural composition of soil organic matter. To explore changes in structural composition of OM in soils with different pedogenesis, the A-horizon was considered for further analyses including particle-size fractionation, solid-state 13C nuclear magnetic resonance (NMR) spectroscopy and scanning electron microscopy (SEM). Due to the increase in the thickness of organic layer with increasing elevation, the A-horizon was situated at greater depth in soils of higher elevation. The relationship between relative abundances of carbon (C) structures and particle-size fractions was examined using principal component analysis (PCA). It was found that alkyl C (20.1-73.4%) and O-alkyl C (16.8-67.7%) dominated particle-size fractions. The proportion of alkyl C increased with increasing elevation, while O-alkyl C showed an opposite trend. Results of PCA confirmed this finding and showed the relative enrichment of alkyl C in soils of higher elevation. Increase in the proportion of alkyl C in 250-2000 μm fraction is linked to selective preservation of aliphatic compounds derived from root litter. SEM results showed an increase in root contribution to the 250-2000 μm fraction with increasing elevation. For the <53 μm fraction, pedogenic process of podzolization is responsible for the relative enrichment of alkyl C. This study demonstrates that changes in structural composition of OM in particle-size fractions of soils along the studied climo-biosequence are attributed to site-specific differences in pedogenesis as a function of climate and vegetation.

  6. Cholinesterase inhibitors from the roots of Harpagophytum procumbens.

    PubMed

    Bae, Yoon Ho; Cuong, To Dao; Hung, Tran Manh; Kim, Jeong Ah; Woo, Mi Hee; Byeon, Jeong Su; Choi, Jae Sue; Min, Byung Sun

    2014-01-01

    Inhibition of cholinesterase has been proposed to be a therapeutic target for the treatment of Alzheimer's diseases. In our preliminary screening study on the acetylcholinesterase (AChE) inhibitory activity, an ethyl acetate soluble fraction of the roots of Harpagophytum procumbens (Pedaliaceae) was found to inhibit AChE activity at the concentration of 100 μg/mL. Ten compounds (1-10) were isolated from the active fraction and evaluated for their inhibitory effect on AChE and butyrylcholinesterase (BChE). Among the isolates, verbascosides (5, 6, and 8) containing a caffeoyl and a 3,4-dihydroxyphenethyl groups in their structures, showed effective AChE inhibitory activity and also possessed BChE inhibitory activity. The findings suggest that verbascoside derivatives may be partially related to the anti-Alzheimer effect of this medicinal plant.

  7. Isoflavanones from the allelopathic aqueous root exudate of Desmodium uncinatum.

    PubMed

    Tsanuo, Muniru K; Hassanali, Ahmed; Hooper, Antony M; Khan, Zeyaur; Kaberia, Festus; Pickett, John A; Wadhams, Lester J

    2003-09-01

    Three isoflavanones, 5,7,2',4'-tetrahydroxy-6-(3-methylbut-2-enyl)isoflavanone (1), 4",5"-dihydro-5,2',4'-trihydroxy-5"-isopropenylfurano-(2",3";7,6)-isoflavanone (2) and 4",5"-dihydro-2'-methoxy-5,4'-dihydroxy-5"-isopropenylfurano-(2",3";7,6)-isoflavanone (3) and a previously known isoflavone 5,7,4'-trihydroxyisoflavone [genistein (4)] were isolated and characterised spectroscopically from the root exudate of the legume Desmodium uncinatum (Jacq.) DC. We propose the names uncinanone A, B, and C for compounds 1, 2 and 3, respectively. Isolated fractions containing uncinanone B (2) induced germination of seeds from the parasitic weed Striga hermonthica (Del.) Benth. and fractions containing uncinanone C (3) moderately inhibited radical growth, the first example of a newly identified potential allelopathic mechanism to prevent S. hermonthica parasitism.

  8. Effects-Directed Analysis of Dissolved Organic Compounds in Oil Sands Process-Affected Water.

    PubMed

    Morandi, Garrett D; Wiseman, Steve B; Pereira, Alberto; Mankidy, Rishikesh; Gault, Ian G M; Martin, Jonathan W; Giesy, John P

    2015-10-20

    Acute toxicity of oil sands process-affected water (OSPW) is caused by its complex mixture of bitumen-derived organics, but the specific chemical classes that are most toxic have not been demonstrated. Here, effects-directed analysis was used to determine the most acutely toxic chemical classes in OSPW collected from the world's first oil sands end-pit lake. Three sequential rounds of fractionation, chemical analysis (ultrahigh resolution mass spectrometry), and acute toxicity testing (96 h fathead minnow embryo lethality and 15 min Microtox bioassay) were conducted. Following primary fractionation, toxicity was primarily attributable to the neutral extractable fraction (F1-NE), containing 27% of original organics mass. In secondary fractionation, F1-NE was subfractionated by alkaline water washing, and toxicity was primarily isolated to the ionizable fraction (F2-NE2), containing 18.5% of the original organic mass. In the final round, chromatographic subfractionation of F2-NE2 resulted in two toxic fractions, with the most potent (F3-NE2a, 11% of original organic mass) containing predominantly naphthenic acids (O2(-)). The less-toxic fraction (F3-NE2b, 8% of original organic mass) contained predominantly nonacid species (O(+), O2(+), SO(+), NO(+)). Evidence supports naphthenic acids as among the most acutely toxic chemical classes in OSPW, but nonacidic species also contribute to acute toxicity of OSPW.

  9. Chemometric Profile of Root Extracts of Rhodiola imbricata Edgew. with Hyphenated Gas Chromatography Mass Spectrometric Technique

    PubMed Central

    Tayade, Amol B.; Dhar, Priyanka; Kumar, Jatinder; Sharma, Manu; Chauhan, Rajinder S.; Chaurasia, Om P.; Srivastava, Ravi B.

    2013-01-01

    Rhodiola imbricata Edgew. (Rose root or Arctic root or Golden root or Shrolo), belonging to the family Crassulaceae, is an important food crop and medicinal plant in the Indian trans-Himalayan cold desert. Chemometric profile of the n-hexane, chloroform, dichloroethane, ethyl acetate, methanol, and 60% ethanol root extracts of R. imbricata were performed by hyphenated gas chromatography mass spectrometry (GC/MS) technique. GC/MS analysis was carried out using Thermo Finnigan PolarisQ Ion Trap GC/MS MS system comprising of an AS2000 liquid autosampler. Interpretation on mass spectrum of GC/MS was done using the NIST/EPA/NIH Mass Spectral Database, with NIST MS search program v.2.0g. Chemometric profile of root extracts revealed the presence of 63 phyto-chemotypes, among them, 1-pentacosanol; stigmast-5-en-3-ol, (3β,24S); 1-teracosanol; 1-henteracontanol; 17-pentatriacontene; 13-tetradecen-1-ol acetate; methyl tri-butyl ammonium chloride; bis(2-ethylhexyl) phthalate; 7,8-dimethylbenzocyclooctene; ethyl linoleate; 3-methoxy-5-methylphenol; hexadecanoic acid; camphor; 1,3-dimethoxybenzene; thujone; 1,3-benzenediol, 5-pentadecyl; benzenemethanol, 3-hydroxy, 5-methoxy; cholest-4-ene-3,6-dione; dodecanoic acid, 3-hydroxy; octadecane, 1-chloro; ethanone, 1-(4-hydroxyphenyl); α-tocopherol; ascaridole; campesterol; 1-dotriacontane; heptadecane, 9-hexyl were found to be present in major amount. Eventually, in the present study we have found phytosterols, terpenoids, fatty acids, fatty acid esters, alkyl halides, phenols, alcohols, ethers, alkanes, and alkenes as the major group of phyto-chemotypes in the different root extracts of R. imbricata. All these compounds identified by GC/MS analysis were further investigated for their biological activities and it was found that they possess a diverse range of positive pharmacological actions. In future, isolation of individual phyto-chemotypes and subjecting them to biological activity will definitely prove fruitful results in designing a novel drug. PMID:23326358

  10. High-Spatial and High-Mass Resolution Imaging of Surface Metabolites of Arabidopsis thaliana by Laser Desorption-Ionization Mass Spectrometry Using Colloidal Silver

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jun, Ji Hyun; Song, Zhihong; Liu, Zhenjiu

    High-spatial resolution and high-mass resolution techniques are developed and adopted for the mass spectrometric imaging of epicuticular lipids on the surface of Arabidopsis thaliana. Single cell level spatial resolution of {approx}12 {micro}m was achieved by reducing the laser beam size by using an optical fiber with 25 {micro}m core diameter in a vacuum matrix-assisted laser desorption ionization-linear ion trap (vMALDI-LTQ) mass spectrometer and improved matrix application using an oscillating capillary nebulizer. Fine chemical images of a whole flower were visualized in this high spatial resolution showing substructure of an anther and single pollen grains at the stigma and anthers. Themore » LTQ-Orbitrap with a MALDI ion source was adopted to achieve MS imaging in high mass resolution. Specifically, isobaric silver ion adducts of C29 alkane (m/z 515.3741) and C28 aldehyde (m/z 515.3377), indistinguishable in low-resolution LTQ, can now be clearly distinguished and their chemical images could be separately constructed. In the application to roots, the high spatial resolution allowed molecular MS imaging of secondary roots and the high mass resolution allowed direct identification of lipid metabolites on root surfaces.« less

  11. Metabolic profiling and systematic identification of flavonoids and isoflavonoids in roots and cell suspension cultures of Medicago truncatula using HPLC-UV-ESI-MS and GC-MS.

    PubMed

    Farag, Mohamed A; Huhman, David V; Lei, Zhentian; Sumner, Lloyd W

    2007-02-01

    An integrated approach utilizing HPLC-UV-ESI-MS and GC-MS was used for the large-scale and systematic identification of polyphenols in Medicago truncatula root and cell culture. Under optimized conditions, we were able to simultaneously quantify and identify 35 polyphenols including 26 isoflavones, 3 flavones, 2 flavanones, 2 aurones and a chalcone. All identifications were based upon UV spectra, mass spectral characteristics of protonated molecules, tandem mass spectral data, mass measurements obtained using a quadrupole time-of-flight mass spectrometer (QtofMS), and confirmed through the co-characterization of authentic compounds. In specific instances where the stereochemistry of sugar conjugates was uncertain, subsequent enzymatic hydrolysis of the conjugate followed by GC-MS was used to assign the sugar stereochemical configuration. Comparative metabolic profiling of Medicago truncatula root and cell cultures was then performed and revealed significant differences in the isoflavonoid composition of these two tissues.

  12. Partitioning of current photosynthate to different chemical fractions in leaves, stems, and roots of northern red oak seedlings during episodic growth

    Treesearch

    Richard E. Dickson; Patricia T. Tomlinson; J. G. Isebrands

    2000-01-01

    The episodic or flushing growth habit of northern red oak (Quercus rubra L.,) has a significant influence on carbon fixation, carbon transport from source leaves, and carbon allocation within the plant; however, the impact of episodic growth on carbon parciprioning among chemical fractions is unknown. Median-flush leaves of the first and second flush...

  13. The hexane fraction of Ardisia crispa Thunb. A. DC. roots inhibits inflammation-induced angiogenesis

    PubMed Central

    2013-01-01

    Background Ardisia crispa (Myrsinaceae) is used in traditional Malay medicine to treat various ailments associated with inflammation, including rheumatism. The plant’s hexane fraction was previously shown to inhibit several diseases associated with inflammation. As there is a strong correlation between inflammation and angiogenesis, we conducted the present study to investigate the anti-angiogenic effects of the plant’s roots in animal models of inflammation-induced angiogenesis. Methods We first performed phytochemical screening and high-performance liquid chromatography (HPLC) fingerprinting of the hexane fraction of Ardisia crispa roots ethanolic extract (ACRH) and its quinone-rich fraction (QRF). The anti-inflammatory properties of ACRH and QRF were tested using the Miles vascular permeability assay and the murine air pouch granuloma model following oral administration at various doses. Results Preliminary phytochemical screening of ACRH revealed the presence of flavonoids, triterpenes, and tannins. The QRF was separated from ACRH (38.38% w/w) by column chromatography, and was isolated to yield a benzoquinonoid compound. The ACRH and QRF were quantified by HPLC. The LD50 value of ACRH was 617.02 mg/kg. In the Miles vascular permeability assay, the lowest dose of ACRH (10 mg/kg) and all doses of QRF significantly reduced vascular endothelial growth factor (VEGF)-induced hyperpermeability, when compared with the vehicle control. In the murine air pouch granuloma model, ACRH and QRF both displayed significant and dose-dependent anti-inflammatory effects, without granuloma weight. ACRH and QRF significantly reduced the vascular index, but not granuloma tissue weight. Conclusions In conclusion, both ACRH and QRF showed potential anti-inflammatory properties in a model of inflammation-induced angiogenesis model, demonstrating their potential anti-angiogenic properties. PMID:23298265

  14. Which fraction of soil organic matter is more vulnerable to rhizosphere priming effect?

    NASA Astrophysics Data System (ADS)

    Zhu, B.; Cheng, W.

    2016-12-01

    Rhizosphere priming effect (RPE) is defined as the stimulation or suppression of soil organic matter (SOM) decomposition by living roots. It remains unclear which fraction of SOM is more vulnerable to rhizosphere priming. We conducted two experiments in continuous 13CO2 labeling growth chamber to compare the intensity of RPE for the active (or labile) vs. slow (or recalcitrant) SOM. A sandy loam (Alfisol) was incubated at 20oC and 80% water holding capacity for different periods, which created a gradient in the relative proportion of active vs. slow SOM in the remaining soils. We then grew sunflower (Helianthus annuus) and soybean (Glycine max) in these remaining soils for 50 days under the same environmental conditions to compare the RPE of these two plant species on the decomposition of soils that varied in the lability of SOM. In both experiments, as the incubation proceeded from 1 to 8 to 14 months (in experiment 1) and the soil changed from freshly-sampled soil to two-year-incubated soil (in experiment 2), the intensity of RPE increased significantly even after accounting for the changes in root biomass or root-derived CO2. This result suggests that the slow (or recalcitrant) fraction of SOM is likely more vulnerable to rhizosphere priming compared to the active (or labile) fraction of SOM. Although the underlying mechanisms of this finding await further investigation, our study clearly shows that the main component of SOM (slow or recalcitrant SOM, decadal turnover) is vulnerable to rhizosphere priming. Therefore, the RPE has the potential to substantially regulate both short-term and long-term soil carbon dynamics.

  15. Immunoaffinity Knockout of Saponin Glycosides from Asparagus racemosus to Assess Anti-lipid Peroxidation.

    PubMed

    Onlom, Churanya; Phrompittayarat, Watoo; Putalun, Waraporn; Waranuch, Neti; Ingkaninan, Kornkanok

    2017-07-01

    Asparagus racemosus Willd (Asparagaceae family), known as Shatavari, is important in Ayurveda and traditional Thai medicines. The saponin glycosides, shatavarin I and IV are major constituents in its roots and may be responsible for their actions including protection against lipid peroxidation and carcinogenesis. To develop an immunoaffinity column for isolating compounds with structures related to shatavarin IV from crude extracts of A. racemosus root. The monoclonal antibody recognising shatavarin IV (mAbShavIV) was coupled to an Affi-Gel Hz gel to isolate compounds with structures related to shatavarin IV from the other components of crude extracts of A. racemosus root. The saponin glycosides in each fraction were analysed by mAbShavIV ELISA and LC-MS/MS. The pooled wash-through fractions contained 3% of loaded mAbShavIV reactive saponin glycosides, while eluted fractions released ~ 90% of shatavarin saponin glycosides in a single step. Using thiobarbiturate (TBARs) to measure lipid-peroxidation, the extract, and the pooled wash-through fractions showed moderate protection against Cu + -induced oxidation of human low density lipoprotein (LDL) (IC 50 11.3 ± 1.4 and 12.6 ± 0.9 μg/mL, respectively). In contrast, the saponin glycosides eluted from the mAbShavIV-column had weaker protectant (IC 50 29.7 ± 1.8 μg/mL) suggesting that A. racemosus shatavarins do not inhibit carcinogenesis through preventing lipid peroxidation. The strategy described here demonstrates its utility for isolating a group of related compounds from the rest of the extract with selectivity and recovery rate. Pharmacological efficacy and synergistic effects of the components obtained can be further investigated. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  16. Influence of Nano-Hydroxyapatite on the Metal Bioavailability, Plant Metal Accumulation and Root Exudates of Ryegrass for Phytoremediation in Lead-Polluted Soil

    PubMed Central

    Ding, Ling; Li, Jianbing; Liu, Wei; Zuo, Qingqing; Liang, Shu-xuan

    2017-01-01

    Lead is recognized as one of the most widespread toxic metal contaminants and pervasive environmental health concerns in the environment. In this paper, the effects of nano-hydroxyapatite (NHAP) on remediation in artificially Pb-contaminated soils and ryegrass were studied in a pot experiment. The addition of NHAP decreased the water- and acid-soluble, exchangeable, and reducible fractions of Pb, extracted using the Community Bureau of Reference (BCR) method, whilst greatly increasing the residual fraction of Pb. Oxidizable Pb was increased slightly. No significant increase in soil pH was caused by the application of NHAP. Compared to conditions without NHAP, the addition of NHAP decreased the Pb content in ryegrass shoots and roots by 13.19–20.3% and 2.86–21.1%, respectively. Therefore, the application of NHAP reduced the mobility and bioavailability of Pb in the soil. In addition, the application of NHAP improved the fresh weight of shoots and roots, and promoted the growth of ryegrass. NHAP played a positive role in stimulating ryegrass to secrete tartaric acid. PMID:28509844

  17. 40 CFR 63.4291 - What are my options for meeting the emission limits?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... option. (b) Slashing. You must use the compliant material option to demonstrate that the mass fraction of... dyeing/finishing affected source. (1) Compliant material option. Demonstrate that the mass fraction of... paragraphs (4)(i) through (iv) of this paragraph. (i) The fraction of organic HAP applied in your dyeing...

  18. 40 CFR 63.4291 - What are my options for meeting the emission limits?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... option. (b) Slashing. You must use the compliant material option to demonstrate that the mass fraction of... dyeing/finishing affected source. (1) Compliant material option. Demonstrate that the mass fraction of... paragraphs (4)(i) through (iv) of this paragraph. (i) The fraction of organic HAP applied in your dyeing...

  19. 40 CFR 63.4291 - What are my options for meeting the emission limits?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... option. (b) Slashing. You must use the compliant material option to demonstrate that the mass fraction of... dyeing/finishing affected source. (1) Compliant material option. Demonstrate that the mass fraction of... paragraphs (4)(i) through (iv) of this paragraph. (i) The fraction of organic HAP applied in your dyeing...

  20. 40 CFR 63.4291 - What are my options for meeting the emission limits?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... option. (b) Slashing. You must use the compliant material option to demonstrate that the mass fraction of... dyeing/finishing affected source. (1) Compliant material option. Demonstrate that the mass fraction of... paragraphs (4)(i) through (iv) of this paragraph. (i) The fraction of organic HAP applied in your dyeing...

  1. First observation of a mass independent isotopic fractionation in a condensation reaction

    NASA Technical Reports Server (NTRS)

    Thiemens, M. H.; Nelson, R.; Dong, Q. W.; Nuth, Joseph A., III

    1994-01-01

    Thiemens and Heidenreich (1983) first demonstrated that a chemically produced mass independent isotopic fractionation process could produce an isotopic composition which is identical to that observed in Allende inclusions. This raised the possibility that the meteoritic components could be produced by chemical, rather than nuclear processes. In order to develop a mechanistic model of the early solar system, it is important that relevant reactions be studied, particularly, those which may occur in the earliest condensation reactions. The isotopic results for isotopic fractionations associated with condensation processes are reported. A large mass independent isotopic fractionation is observed in one of the experiments.

  2. Pathogenicity of Leptographium Species Associated with Loblolly Pine Decline

    Treesearch

    L. G. Eckhardt; J. P. Jones; Kier D. Klepzig

    2004-01-01

    Freshly lifted seedlings and 21-year-old trees of loblolly pine were wound-inoculated with Leptographium species recovered from the soil and/or roots of trees with loblolly decline symptoms in central Alabama. Seedlings inoculated with L. procerum in the greenhouse produced significantly fewer root initials and a smaller root mass than control...

  3. Oxygenated fraction and mass of organic aerosol from direct emission and atmospheric processing measured on the R/V Ronald Brown during TEXAQS/GoMACCS 2006

    NASA Astrophysics Data System (ADS)

    Russell, L. M.; Takahama, S.; Liu, S.; Hawkins, L. N.; Covert, D. S.; Quinn, P. K.; Bates, T. S.

    2009-04-01

    Submicron particles collected on Teflon filters aboard the R/V Ronald Brown during the Texas Air Quality Study and Gulf of Mexico Atmospheric Composition and Climate Study (TexAQS/GoMACCS) 2006 in and around the port of Houston, Texas, were measured by Fourier transform infrared (FTIR) and X-ray fluorescence for organic functional groups and elemental composition. Organic mass (OM) concentrations (1-25 μg m-3) for ambient particle samples measured by FTIR showed good agreement with measurements made with an aerosol mass spectrometer. The fractions of organic mass identified as alkane and carboxylic acid groups were 47% and 32%, respectively. Three different types of air masses were identified on the basis of the air mass origin and the radon concentration, with significantly higher carboxylic acid group mass fractions in air masses from the north (35%) than the south (29%) or Gulf of Mexico (26%). Positive matrix factorization analysis attributed carboxylic acid fractions of 30-35% to factors with mild or strong correlations (r > 0.5) to elemental signatures of oil combustion and 9-24% to wood smoke, indicating that part of the carboxylic acid fraction of OM was formed by the same sources that controlled the metal emissions, namely the oil and wood combustion activities. The implication is that a substantial part of the measured carboxylic acid contribution was formed independently of traditionally "secondary" processes, which would be affected by atmospheric (both photochemical and meteorological) conditions and other emission sources. The carboxylic acid group fractions in the Gulf of Mexico and south air masses (GAM and SAM, respectively) were largely oil combustion emissions from ships as well as background marine sources, with only limited recent land influences (based on radon concentrations). Alcohol groups accounted for 14% of OM (mostly associated with oil combustion emissions and background sources), and amine groups accounted for 4% of OM in all air masses. Organosulfate groups were found in GAM and SAM, accounting for 1% and 3% of OM, respectively. Two thirds of the OM and oxygen-to-carbon (O/C) measured could be attributed to oil and wood combustion sources on the basis of mild or strong correlations to coemitted, nonvolatile trace metals, with the remaining one third being associated with atmospherically processed organic aerosol. The cloud condensation nuclei (CCN) fraction (normalized by total condensation nuclei) had weak correlations to the alcohol and amine group fractions and mild correlation with O/C, also varying inversely with alkane group fraction. The chemical components that influenced f(RH) were sulfate, organic, and nitrate fraction, but this contrast is consistent with the size-distribution dependence of CCN counters and nephelometers.

  4. 40 CFR 63.4165 - How do I determine the emission capture system efficiency?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... of appendix M to 40 CFR part 51 to determine the mass fraction of TVH liquid input from each coating... materials used in the coating operation during the capture efficiency test run, kg. TVHi = mass fraction of... compares the mass of liquid TVH in materials used in the coating operation, to the mass of TVH emissions...

  5. 40 CFR 63.4165 - How do I determine the emission capture system efficiency?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... of appendix M to 40 CFR part 51 to determine the mass fraction of TVH liquid input from each coating... materials used in the coating operation during the capture efficiency test run, kg. TVHi = mass fraction of... compares the mass of liquid TVH in materials used in the coating operation, to the mass of TVH emissions...

  6. A novel blue-light phototropic response is revealed in roots of Arabidopsis thaliana in microgravity.

    PubMed

    Vandenbrink, Joshua P; Herranz, Raul; Medina, F Javier; Edelmann, Richard E; Kiss, John Z

    2016-12-01

    Blue-light positive phototropism in roots is masked by gravity and revealed in conditions of microgravity. In addition, the magnitude of red-light positive phototropic curvature is correlated to the magnitude of gravity. Due to their sessile nature, plants utilize environmental cues to grow and respond to their surroundings. Two of these cues, light and gravity, play a substantial role in plant orientation and directed growth movements (tropisms). However, very little is currently known about the interaction between light- (phototropic) and gravity (gravitropic)-mediated growth responses. Utilizing the European Modular Cultivation System on board the International Space Station, we investigated the interaction between phototropic and gravitropic responses in three Arabidopsis thaliana genotypes, Landsberg wild type, as well as mutants of phytochrome A and phytochrome B. Onboard centrifuges were used to create a fractional gravity gradient ranging from reduced gravity up to 1g. A novel positive blue-light phototropic response of roots was observed during conditions of microgravity, and this response was attenuated at 0.1g. In addition, a red-light pretreatment of plants enhanced the magnitude of positive phototropic curvature of roots in response to blue illumination. In addition, a positive phototropic response of roots was observed when exposed to red light, and a decrease in response was gradual and correlated with the increase in gravity. The positive red-light phototropic curvature of hypocotyls when exposed to red light was also confirmed. Both red-light and blue-light phototropic responses were also shown to be affected by directional light intensity. To our knowledge, this is the first characterization of a positive blue-light phototropic response in Arabidopsis roots, as well as the first description of the relationship between these phototropic responses in fractional or reduced gravities.

  7. Suberin-Associated Fatty Alcohols in Arabidopsis: Distributions in Roots and Contributions to Seed Coat Barrier Properties1[W

    PubMed Central

    Vishwanath, Sollapura J.; Kosma, Dylan K.; Pulsifer, Ian P.; Scandola, Sabine; Pascal, Stéphanie; Joubès, Jérôme; Dittrich-Domergue, Franziska; Lessire, René; Rowland, Owen; Domergue, Frédéric

    2013-01-01

    Suberin is found in a variety of tissues, such as root endoderms and periderms, storage tuber periderms, tree cork layer, and seed coats. It acts as a hydrophobic barrier to control the movement of water, gases, and solutes as well as an antimicrobial barrier. Suberin consists of polymerized phenolics, glycerol, and a variety of fatty acid derivatives, including primary fatty alcohols. We have conducted an in-depth analysis of the distribution of the C18:0 to C22:0 fatty alcohols in Arabidopsis (Arabidopsis thaliana) roots and found that only 20% are part of the root suberin polymer, together representing about 5% of its aliphatic monomer composition, while the remaining 80% are found in the nonpolymeric (soluble) fraction. Down-regulation of Arabidopsis FATTY ACYL REDUCTASE1 (FAR1), FAR4, and FAR5, which collectively produce the fatty alcohols found in suberin, reduced their levels by 70% to 80% in (1) the polymeric and nonpolymeric fractions from roots of tissue culture-grown plants, (2) the suberin-associated root waxes from 7-week-old soil-grown plants, and (3) the seed coat suberin polymer. By contrast, the other main monomers of suberin were not altered, indicating that reduced levels of fatty alcohols did not influence the suberin polymerization process. Nevertheless, the 75% reduction in total fatty alcohol and diol loads in the seed coat resulted in increased permeability to tetrazolium salts and a higher sensitivity to abscisic acid. These results suggest that fatty alcohols and diols play an important role in determining the functional properties of the seed coat suberin barrier. PMID:24019425

  8. A novel blue-light phototropic response is revealed in roots of Arabidopsis thaliana in microgravity

    PubMed Central

    Vandenbrink, Joshua P.; Herranz, Raul; Medina, F. Javier; Edelmann, Richard E.

    2017-01-01

    Main conclusion Blue-light positive phototropism in roots is masked by gravity and revealed in conditions of microgravity. In addition, the magnitude of red-light positive phototropic curvature is correlated to the magnitude of gravity. Due to their sessile nature, plants utilize environmental cues to grow and respond to their surroundings. Two of these cues, light and gravity, play a substantial role in plant orientation and directed growth movements (tropisms). However, very little is currently known about the interaction between light- (phototropic) and gravity (gravitropic)-mediated growth responses. Utilizing the European Modular Cultivation System on board the International Space Station, we investigated the interaction between phototropic and gravitropic responses in three Arabidopsis thaliana genotypes, Landsberg wild type, as well as mutants of phytochrome A and phytochrome B. Onboard centrifuges were used to create a fractional gravity gradient ranging from reduced gravity up to 1g. A novel positive blue-light phototropic response of roots was observed during conditions of microgravity, and this response was attenuated at 0.1g. In addition, a red-light pretreatment of plants enhanced the magnitude of positive phototropic curvature of roots in response to blue illumination. In addition, a positive phototropic response of roots was observed when exposed to red light, and a decrease in response was gradual and correlated with the increase in gravity. The positive red-light phototropic curvature of hypocotyls when exposed to red light was also confirmed. Both red-light and blue-light phototropic responses were also shown to be affected by directional light intensity. To our knowledge, this is the first characterization of a positive blue-light phototropic response in Arabidopsis roots, as well as the first description of the relationship between these phototropic responses in fractional or reduced gravities. PMID:27507239

  9. Use of CT imaging to examine the coarse roots, rhizomes, and peat associated with creek bank Spartina alterniflora in fertilized and control creeks in Plum Island (MA)

    EPA Science Inventory

    We used computer-aided tomography (CT) to quantify the wet mass, abundance, and diameter of coarse roots and rhizomes as well as the wet mass and particle density of marsh peat in 7-year fertilized and control creeks in Plum Island (MA). In shallow soils (0 – 10 cm) and at dep...

  10. Adaptation to high CO2 concentration in an optimal environment: radiation capture, canopy quantum yield and carbon use efficiency

    NASA Technical Reports Server (NTRS)

    Monje, O.; Bugbee, B.

    1998-01-01

    The effect of elevated [CO2] on wheat (Triticum aestivum L. Veery 10) productivity was examined by analysing radiation capture, canopy quantum yield, canopy carbon use efficiency, harvest index and daily C gain. Canopies were grown at either 330 or 1200 micromoles mol-1 [CO2] in controlled environments, where root and shoot C fluxes were monitored continuously from emergence to harvest. A rapidly circulating hydroponic solution supplied nutrients, water and root zone oxygen. At harvest, dry mass predicted from gas exchange data was 102.8 +/- 4.7% of the observed dry mass in six trials. Neither radiation capture efficiency nor carbon use efficiency were affected by elevated [CO2], but yield increased by 13% due to a sustained increase in canopy quantum yield. CO2 enrichment increased root mass, tiller number and seed mass. Harvest index and chlorophyll concentration were unchanged, but CO2 enrichment increased average life cycle net photosynthesis (13%, P < 0.05) and root respiration (24%, P < 0.05). These data indicate that plant communities adapt to CO2 enrichment through changes in C allocation. Elevated [CO2] increases sink strength in optimal environments, resulting in sustained increases in photosynthetic capacity, canopy quantum yield and daily C gain throughout the life cycle.

  11. Physiological differences between root suckers and saplings enlarge the regeneration niche in Eucryphia cordifolia Cav.

    PubMed

    Escandón, Antonio B; Rojas, Roke; Morales, Loreto V; Corcuera, Luis J; Coopman, Rafael E; Paula, Susana

    2018-01-01

    Many clonal plants produce vegetative recruits that remain connected to the parent plant. Such connections permit resource sharing among ramets, explaining the high survival rates of vegetative recruits during establishment under suboptimal conditions for sexual regeneration. We propose that differences in the regeneration niches of sexual and vegetative recruits reflect different physiological adjustments caused by parental supply of resources to the ramets. We conducted ecophysiological measurements in saplings and root suckers of Eucryphia cordifolia Cav., a tree species of the temperate rainforest of southern South America. We compared the following traits of saplings and suckers: gas exchange at the leaf level, crown architecture, daily crown carbon balance, biomass allocation to above-ground tissues (leaf-to-stem mass ratio, leaf mass area and leaf area ratio), xylem anatomy traits (lumen vessel fraction, vessel density and size) and stem ring width. We also correlated the growth rates of saplings and suckers with relevant environmental data (light and climate). Saplings showed morphological, architectural and physiological traits that enhance daily crown carbon balance and increase water-use efficiency, in order to supply their growth demands while minimizing water loss per unit of carbon gained. The radial growth of saplings diminished under dry conditions, which suggests a strong stomatal sensitivity to water availability. Suckers have low stomatal conductance, likely because the carbon supplied by the parent plant diminishes the necessity of high rates of photosynthesis. The low responsiveness of sucker growth to temporal changes in water availability also supports the existence of parental supply. The physiological differences between sexual and vegetative recruits satisfactorily explain the ecological niche of E. cordifolia, with saplings restricted to more closed and humid sites. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Citramalic acid and salicylic acid in sugar beet root exudates solubilize soil phosphorus

    PubMed Central

    2011-01-01

    Background In soils with a low phosphorus (P) supply, sugar beet is known to intake more P than other species such as maize, wheat, or groundnut. We hypothesized that organic compounds exuded by sugar beet roots solubilize soil P and that this exudation is stimulated by P starvation. Results Root exudates were collected from plants grown in hydroponics under low- and high-P availability. Exudate components were separated by HPLC, ionized by electrospray, and detected by mass spectrometry in the range of mass-to-charge ratio (m/z) from 100 to 1000. Eight mass spectrometric signals were enhanced at least 5-fold by low P availability at all harvest times. Among these signals, negative ions with an m/z of 137 and 147 were shown to originate from salicylic acid and citramalic acid. The ability of both compounds to mobilize soil P was demonstrated by incubation of pure substances with Oxisol soil fertilized with calcium phosphate. Conclusions Root exudates of sugar beet contain salicylic acid and citramalic acid, the latter of which has rarely been detected in plants so far. Both metabolites solubilize soil P and their exudation by roots is stimulated by P deficiency. These results provide the first assignment of a biological function to citramalic acid of plant origin. PMID:21871058

  13. Morphological plasticity of ectomycorrhizal short roots in Betula sp and Picea abies forests across climate and forest succession gradients: its role in changing environments

    PubMed Central

    Ostonen, Ivika; Rosenvald, Katrin; Helmisaari, Heljä-Sisko; Godbold, Douglas; Parts, Kaarin; Uri, Veiko; Lõhmus, Krista

    2013-01-01

    Morphological plasticity of ectomycorrhizal (EcM) short roots (known also as first and second order roots with primary development) allows trees to adjust their water and nutrient uptake to local environmental conditions. The morphological traits (MTs) of short-living EcM roots, such as specific root length (SRL) and area, root tip frequency per mass unit (RTF), root tissue density, as well as mean diameter, length, and mass of the root tips, are good indicators of acclimation. We investigated the role of EcM root morphological plasticity across the climate gradient (48–68°N) in Norway spruce (Picea abies (L.) Karst) and (53–66°N) birch (Betula pendula Roth., B. pubescens Ehrh.) forests, as well as in primary and secondary successional birch forests assuming higher plasticity of a respective root trait to reflect higher relevance of that characteristic in acclimation process. We hypothesized that although the morphological plasticity of EcM roots is subject to the abiotic and biotic environmental conditions in the changing climate; the tools to achieve the appropriate morphological acclimation are tree species-specific. Long-term (1994–2010) measurements of EcM roots morphology strongly imply that tree species have different acclimation-indicative root traits in response to changing environments. Birch EcM roots acclimated along latitude by changing mostly SRL [plasticity index (PI) = 0.60], while spruce EcM roots became adjusted by modifying RTF (PI = 0.68). Silver birch as a pioneer species must have a broader tolerance to environmental conditions across various environments; however, the mean PI of all MTs did not differ between early-successional birch and late-successional spruce. The differences between species in SRL, and RTF, diameter, and length decreased southward, toward temperate forests with more favorable growth conditions. EcM root traits reflected root-rhizosphere succession across forest succession stages. PMID:24032035

  14. Morphological plasticity of ectomycorrhizal short roots in Betula sp and Picea abies forests across climate and forest succession gradients: its role in changing environments.

    PubMed

    Ostonen, Ivika; Rosenvald, Katrin; Helmisaari, Heljä-Sisko; Godbold, Douglas; Parts, Kaarin; Uri, Veiko; Lõhmus, Krista

    2013-01-01

    Morphological plasticity of ectomycorrhizal (EcM) short roots (known also as first and second order roots with primary development) allows trees to adjust their water and nutrient uptake to local environmental conditions. The morphological traits (MTs) of short-living EcM roots, such as specific root length (SRL) and area, root tip frequency per mass unit (RTF), root tissue density, as well as mean diameter, length, and mass of the root tips, are good indicators of acclimation. We investigated the role of EcM root morphological plasticity across the climate gradient (48-68°N) in Norway spruce (Picea abies (L.) Karst) and (53-66°N) birch (Betula pendula Roth., B. pubescens Ehrh.) forests, as well as in primary and secondary successional birch forests assuming higher plasticity of a respective root trait to reflect higher relevance of that characteristic in acclimation process. We hypothesized that although the morphological plasticity of EcM roots is subject to the abiotic and biotic environmental conditions in the changing climate; the tools to achieve the appropriate morphological acclimation are tree species-specific. Long-term (1994-2010) measurements of EcM roots morphology strongly imply that tree species have different acclimation-indicative root traits in response to changing environments. Birch EcM roots acclimated along latitude by changing mostly SRL [plasticity index (PI) = 0.60], while spruce EcM roots became adjusted by modifying RTF (PI = 0.68). Silver birch as a pioneer species must have a broader tolerance to environmental conditions across various environments; however, the mean PI of all MTs did not differ between early-successional birch and late-successional spruce. The differences between species in SRL, and RTF, diameter, and length decreased southward, toward temperate forests with more favorable growth conditions. EcM root traits reflected root-rhizosphere succession across forest succession stages.

  15. Control of Initialized Fractional-Order Systems. Revised

    NASA Technical Reports Server (NTRS)

    Hartley, Tom T.; Lorenzo, Carl F.

    2002-01-01

    Due to the importance of historical effects in fractional-order systems, this paper presents a general fractional-order control theory that includes the time-varying initialization response. Previous studies have not properly accounted for these historical effects. The initialization response, along with the forced response, for fractional-order systems is determined. Stability properties of fractional-order systems are presented in the complex w-plane, which is a transformation of the s-plane. Time responses are discussed with respect to pole positions in the complex w-plane and frequency response behavior is included. A fractional-order vector space representation, which is a generalization of the state space concept, is presented including the initialization response. Control methods for vector representations of initialized fractional-order systems are shown. Nyquist, root-locus, and other input-output control methods are adapted to the control of fractional-order systems. Finally, the fractional-order differintegral is generalized to continuous order-distributions that have the possibility of including a continuum of fractional orders in a system element.

  16. Control of Initialized Fractional-Order Systems

    NASA Technical Reports Server (NTRS)

    Hartly, Tom T.; Lorenzo, Carl F.

    2002-01-01

    Due to the importance of historical effects in fractional-order systems, this paper presents a general fractional-order control theory that includes the time-varying initialization response. Previous studies have not properly accounted for these historical effects. The initialization response, along with the forced response, for fractional-order systems is determined. Stability properties of fractional-order systems are presented in the complex Airplane, which is a transformation of the s-plane. Time responses are discussed with respect to pole positions in the complex Airplane and frequency response behavior is included. A fractional-order vector space representation, which is a generalization of the state space concept, is presented including the initialization response. Control methods for vector representations of initialized fractional-order systems are shown. Nyquist, root-locus, and other input-output control methods are adapted to the control of fractional-order systems. Finally, the fractional-order differintegral is generalized to continuous order-distributions that have the possibility of including a continuum of fractional orders in a system element.

  17. 40 CFR 98.156 - Data reporting requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... destruction device. (c) Each HFC-23 destruction facility shall report the concentration (mass fraction) of HFC... fed into the destruction device in kg/hr. (2) Concentration (mass fraction) of HFC-23 at the outlet of... facility shall report the following information at the facility level: (1) Annual mass of HCFC-22 produced...

  18. 40 CFR 98.156 - Data reporting requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... destruction device. (c) Each HFC-23 destruction facility shall report the concentration (mass fraction) of HFC... fed into the destruction device in kg/hr. (2) Concentration (mass fraction) of HFC-23 at the outlet of... facility shall report the following information at the facility level: (1) Annual mass of HCFC-22 produced...

  19. 40 CFR 63.3512 - What records must I keep?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... for each coating. If you conducted testing to determine mass fraction of organic HAP, density, or... and thinner used during each compliance period. (e) A record of the mass fraction of organic HAP for... suppliers or manufacturers, such as manufacturer's formulation data, or test data used to determine the mass...

  20. 40 CFR 98.156 - Data reporting requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... destruction device. (c) Each HFC-23 destruction facility shall report the concentration (mass fraction) of HFC... fed into the destruction device in kg/hr. (2) Concentration (mass fraction) of HFC-23 at the outlet of... facility shall report the following information at the facility level: (1) Annual mass of HCFC-22 produced...

  1. 40 CFR 98.144 - Monitoring and QA/QC requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... calibrated scales or weigh hoppers. Total annual mass charged to glass melting furnaces at the facility shall... mineral mass fractions at least annually to verify the mass fraction data provided by the supplier of the... (Reapproved 2006) Standard Test Method for Major and Minor Elements in Combustion Residues from Coal...

  2. Comparison of Rooting Strategies to Explore Rock Fractures for Shallow Soil-Adapted Tree Species with Contrasting Aboveground Growth Rates: A Greenhouse Microcosm Experiment.

    PubMed

    Nie, Yunpeng; Chen, Hongsong; Ding, Yali; Yang, Jing; Wang, Kelin

    2017-01-01

    For tree species adapted to shallow soil environments, rooting strategies that efficiently explore rock fractures are important because soil water depletion occurs frequently. However, two questions: (a) to what extent shallow soil-adapted species rely on exploring rock fractures and (b) what outcomes result from drought stress, have rarely been tested. Therefore, based on the expectation that early development of roots into deep soil layers is at the cost of aboveground growth, seedlings of three tree species ( Cyclobalanopsis glauca, Delavaya toxocarpa , and Acer cinnamomifolium ) with distinct aboveground growth rates were selected from a typical shallow soil region. In a greenhouse experiment that mimics the basic features of shallow soil environments, 1-year-old seedlings were transplanted into simulated microcosms of shallow soil overlaying fractured bedrock. Root biomass allocation and leaf physiological activities, as well as leaf δ 13 C values were investigated and compared for two treatments: regular irrigation and repeated cycles of drought stress. Our results show that the three species differed in their rooting strategies in the context of encountering rock fractures, however, these strategies were not closely related to the aboveground growth rate. For the slowest-growing seedling, C. glauca , percentages of root mass in the fractures, as well as in the soil layer between soil and bedrock increased significantly under both treatments, indicating a specialized rooting strategy that facilitated the exploration of rock fractures. Early investment in deep root growth was likely critical to the establishment of this drought-vulnerable species. For the intermediate-growing, A. cinnamomifolium , percentages of root mass in the bedrock and interface soil layers were relatively low and exhibited no obvious change under either treatment. This limited need to explore rock fractures was compensated by a conservative water use strategy. For the fast-growing, D. toxocarpa , percentages of root mass in the bedrock and interface layers increased simultaneously under drought conditions, but not under irrigated conditions. This drought-induced rooting plasticity was associated with drought avoidance by this species. Although, root development might have been affected by the simulated microcosm, contrasting results among the three species indicated that efficient use of rock fractures is not a necessary or specialized strategy of shallow-soil adapted species. The establishment and persistence of these species relied on the mutual complementation between their species-specific rooting strategies and drought adaptations.

  3. Diffusion tensor imaging with quantitative evaluation and fiber tractography of lumbar nerve roots in sciatica.

    PubMed

    Shi, Yin; Zong, Min; Xu, Xiaoquan; Zou, Yuefen; Feng, Yang; Liu, Wei; Wang, Chuanbing; Wang, Dehang

    2015-04-01

    To quantitatively evaluate nerve roots by measuring fractional anisotropy (FA) values in healthy volunteers and sciatica patients, visualize nerve roots by tractography, and compare the diagnostic efficacy between conventional magnetic resonance imaging (MRI) and DTI. Seventy-five sciatica patients and thirty-six healthy volunteers underwent MR imaging using DTI. FA values for L5-S1 lumbar nerve roots were calculated at three levels from DTI images. Tractography was performed on L3-S1 nerve roots. ROC analysis was performed for FA values. The lumbar nerve roots were visualized and FA values were calculated in all subjects. FA values decreased in compressed nerve roots and declined from proximal to distal along the compressed nerve tracts. Mean FA values were more sensitive and specific than MR imaging for differentiating compressed nerve roots, especially in the far lateral zone at distal nerves. DTI can quantitatively evaluate compressed nerve roots, and DTT enables visualization of abnormal nerve tracts, providing vivid anatomic information and localization of probable nerve compression. DTI has great potential utility for evaluating lumbar nerve compression in sciatica. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  4. The unseen iceberg: Plant roots in arctic tundra

    USGS Publications Warehouse

    Iverson, Colleen M.; Sloan, Victoria L.; Sullivan, Patrick F.; Euskirchen, E.S.; McGuire, A. David; Norby, Richard J.; Walker, Anthony P.; Warren, Jeffrey M.; Wullschleger, Stan D.

    2015-01-01

    Plant roots play a critical role in ecosystem function in arctic tundra, but root dynamics in these ecosystems are poorly understood. To address this knowledge gap, we synthesized available literature on tundra roots, including their distribution, dynamics and contribution to ecosystem carbon and nutrient fluxes, and highlighted key aspects of their representation in terrestrial biosphere models. Across all tundra ecosystems, belowground plant biomass exceeded aboveground biomass, with the exception of polar desert tundra. Roots were shallowly distributed in the thin layer of soil that thaws annually, and were often found in surface organic soil horizons. Root traits – including distribution, chemistry, anatomy and resource partitioning – play an important role in controlling plant species competition, and therefore ecosystem carbon and nutrient fluxes, under changing climatic conditions, but have only been quantified for a small fraction of tundra plants. Further, the annual production and mortality of fine roots are key components of ecosystem processes in tundra, but extant data are sparse. Tundra root traits and dynamics should be the focus of future research efforts. Better representation of the dynamics and characteristics of tundra roots will improve the utility of models for the evaluation of the responses of tundra ecosystems to changing environmental conditions.

  5. Modeling UV Radiation Feedback from Massive Stars. II. Dispersal of Star-forming Giant Molecular Clouds by Photoionization and Radiation Pressure

    NASA Astrophysics Data System (ADS)

    Kim, Jeong-Gyu; Kim, Woong-Tae; Ostriker, Eve C.

    2018-05-01

    UV radiation feedback from young massive stars plays a key role in the evolution of giant molecular clouds (GMCs) by photoevaporating and ejecting the surrounding gas. We conduct a suite of radiation hydrodynamic simulations of star cluster formation in marginally bound, turbulent GMCs, focusing on the effects of photoionization and radiation pressure on regulating the net star formation efficiency (SFE) and cloud lifetime. We find that the net SFE depends primarily on the initial gas surface density, Σ0, such that the SFE increases from 4% to 51% as Σ0 increases from 13 to 1300 {M}ȯ {pc}}-2. Cloud destruction occurs within 2–10 Myr after the onset of radiation feedback, or within 0.6–4.1 freefall times (increasing with Σ0). Photoevaporation dominates the mass loss in massive, low surface density clouds, but because most photons are absorbed in an ionization-bounded Strömgren volume, the photoevaporated gas fraction is proportional to the square root of the SFE. The measured momentum injection due to thermal and radiation pressure forces is proportional to {{{Σ }}}0-0.74, and the ejection of neutrals substantially contributes to the disruption of low mass and/or high surface density clouds. We present semi-analytic models for cloud dispersal mediated by photoevaporation and by dynamical mass ejection, and show that the predicted net SFE and mass loss efficiencies are consistent with the results of our numerical simulations.

  6. DARK MATTER MASS FRACTION IN LENS GALAXIES: NEW ESTIMATES FROM MICROLENSING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiménez-Vicente, J.; Mediavilla, E.; Kochanek, C. S.

    2015-02-01

    We present a joint estimate of the stellar/dark matter mass fraction in lens galaxies and the average size of the accretion disk of lensed quasars based on microlensing measurements of 27 quasar image pairs seen through 19 lens galaxies. The Bayesian estimate for the fraction of the surface mass density in the form of stars is α = 0.21 ± 0.14 near the Einstein radius of the lenses (∼1-2 effective radii). The estimate for the average accretion disk size is R{sub 1/2}=7.9{sub −2.6}{sup +3.8}√(M/0.3 M{sub ⊙}) light days. The fraction of mass in stars at these radii is significantly largermore » than previous estimates from microlensing studies assuming quasars were point-like. The corresponding local dark matter fraction of 79% is in good agreement with other estimates based on strong lensing or kinematics. The size of the accretion disk inferred in the present study is slightly larger than previous estimates.« less

  7. Pilot study on peptide purity—synthetic human C-peptide

    NASA Astrophysics Data System (ADS)

    Josephs, R. D.; Li, M.; Song, D.; Daireaux, A.; Choteau, T.; Stoppacher, N.; Westwood, S.; Wielgosz, R.; Xiao, P.; Liu, Y.; Gao, X.; Zhang, C.; Zhang, T.; Mi, W.; Quan, C.; Huang, T.; Li, H.; Melanson, J. E.; Ün, I.; Gören, A. C.; Quaglia, M.; Warren, J.

    2017-01-01

    Under the auspices of the Protein Analysis Working Group (PAWG) of the Comité Consultatif pour la Quantité de Matière (CCQM) a pilot study, CCQM-P55.2, was coordinated by the Bureau International des Poids et Mesures (BIPM) and the Chinese National Institute of Metrology (NIM). Four Metrology Institutes or Designated Institutes and the BIPM participated. Participants were required to assign the mass fraction of human C-peptide (hCP) present as the main component in the comparison sample for CCQM-P55.2. The comparison samples were prepared from synthetic human hCP purchased from a commercial supplier and used as provided without further treatment or purification. hCP was selected to be representative of the performance of a laboratory's measurement capability for the purity assignment of short (up to 5 kDa), non-cross-linked synthetic peptides/proteins. It was anticipated to provide an analytical measurement challenge representative for the value-assignment of compounds of broadly similar structural characteristics. The majority of participants used a quantitative nuclear magnetic resonance spectroscopy (qNMR) corrected for peptide impurities. Other participants provided results obtained by peptide impurity corrected amino acid analysis (PICAA) or elemental analysis (PICCHN). It was decided to assign reference values based on the KCRVs of CCQM-K115 for both the hCP mass fraction and the mass fraction of the peptide related impurities as indispensable contributor regardless of the use of PICAA, mass balance or any other approach to determine the hCP purity. This allowed participants to demonstrate the efficacy of their implementation of the approaches used to determine the hCP mass fraction. In particular it allows participants to demonstrate the efficacy of their implementation of peptide related impurity identification and quantification. The assessment of the mass fraction of peptide impurities is based on the assumption that only the most exhaustive and elaborate set of results is taken for the calculation of the reference value. The reference value for the peptide related impurity mass fractions of the material was 83.3 mg/g with a combined standard uncertainty of 1.5 mg/g. Inspection of the degree of equivalence plots for the mass fraction of peptide impurities and additional information obtained from the peptide related impurity profile indicates that in many cases only a very small number of impurities have been identified and quantified resulting in an underestimation of the peptide related impurity mass fractions. The reference value for the mass fraction of hCP for CCQM-KP55.2 is 801.8 mg/g with a corresponding combined standard uncertainty of 3.1 mg/g. Inspection of the degree of equivalence plots for CCQM-P55.2 for the mass fraction of hCP shows that three results agree with the reference value. Main text To reach the main text of this paper, click on Final Report. The final report has been peer-reviewed and approved for publication by the CCQM.

  8. Counts of galaxy clusters as cosmological probes: the impact of baryonic physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balaguera-Antolínez, Andrés; Porciani, Cristiano, E-mail: abalan@astro.uni-bonn.de, E-mail: porciani@astro.uni-bonn.de

    2013-04-01

    The halo mass function from N-body simulations of collisionless matter is generally used to retrieve cosmological parameters from observed counts of galaxy clusters. This neglects the observational fact that the baryonic mass fraction in clusters is a random variable that, on average, increases with the total mass (within an overdensity of 500). Considering a mock catalog that includes tens of thousands of galaxy clusters, as expected from the forthcoming generation of surveys, we show that the effect of a varying baryonic mass fraction will be observable with high statistical significance. The net effect is a change in the overall normalizationmore » of the cluster mass function and a milder modification of its shape. Our results indicate the necessity of taking into account baryonic corrections to the mass function if one wants to obtain unbiased estimates of the cosmological parameters from data of this quality. We introduce the formalism necessary to accomplish this goal. Our discussion is based on the conditional probability of finding a given value of the baryonic mass fraction for clusters of fixed total mass. Finally, we show that combining information from the cluster counts with measurements of the baryonic mass fraction in a small subsample of clusters (including only a few tens of objects) will nearly optimally constrain the cosmological parameters.« less

  9. Entomopathogenic Nematodes and Bacteria Applications for Control of the Pecan Root-Knot Nematode, Meloidogyne partityla, in the Greenhouse

    PubMed Central

    Shapiro-Ilan, David I.; Nyczepir, Andrew P.; Lewis, Edwin E.

    2006-01-01

    Meloidogyne partityla is a parasite of pecan and walnut. Our objective was to determine interactions between the entomopathogenic nematode-bacterium complex and M. partityla. Specifically, we investigated suppressive effects of Steinernema feltiae (strain SN) and S. riobrave (strain 7–12) applied as infective juveniles and in infected host insects, as well as application of S. feltiae's bacterial symbiont Xenorhabdus bovienii on M. partityla. In two separate greenhouse trials, the treatments were applied to pecan seedlings that were simultaneously infested with M. partityla eggs; controls received only water and M. partityla eggs. Additionally, all treatment applications were re-applied (without M. partityla eggs) two months later. Four months after initial treatment, plants were assessed for number of galls per root system, number of egg masses per root system, number of eggs per root system, number of eggs per egg mass, number of eggs per gram dry root weight, dry shoot weight, and final population density of M. partityla second-stage juveniles (J2). In the first trial, the number of egg masses per plant was lower in the S. riobrave-infected host treatment than in the control (by approximately 18%). In the second trial, dry root weight was higher in the S. feltiae-infected host treatment than in the control (approximately 80% increase). No other treatment effects were detected. The marginal and inconsistent effects observed in our experiments indicate that the treatments we applied are not sufficient for controlling M. partityla. PMID:19259462

  10. Evolution of the degree of substructures in simulated galaxy clusters

    NASA Astrophysics Data System (ADS)

    De Boni, Cristiano; Böhringer, Hans; Chon, Gayoung; Dolag, Klaus

    2018-05-01

    We study the evolution of substructure in the mass distribution with mass, redshift and radius in a sample of simulated galaxy clusters. The sample, containing 1226 objects, spans the mass range M200 = 1014 - 1.74 × 1015 M⊙ h-1 in six redshift bins from z = 0 to z = 1.179. We consider three different diagnostics: 1) subhalos identified with SUBFIND; 2) overdense regions localized by dividing the cluster into octants; 3) offset between the potential minimum and the center of mass. The octant analysis is a new method that we introduce in this work. We find that none of the diagnostics indicate a correlation between the mass of the cluster and the fraction of substructures. On the other hand, all the diagnostics suggest an evolution of substructures with redshift. For SUBFIND halos, the mass fraction is constant with redshift at Rvir, but shows a mild evolution at R200 and R500. Also, the fraction of clusters with at least a subhalo more massive than one thirtieth of the total mass is less than 20%. Our new method based on the octants returns a mass fraction in substructures which has a strong evolution with redshift at all radii. The offsets also evolve strongly with redshift. We also find a strong correlation for individual clusters between the offset and the fraction of substructures identified with the octant analysis. Our work puts strong constraints on the amount of substructures we expect to find in galaxy clusters and on their evolution with redshift.

  11. Pectate hydrolases of parsley (Petroselinum crispum) roots.

    PubMed

    Flodrová, Dana; Dzúrovä, Mária; Lisková, Desana; Mohand, Fairouz Ait; Mislovicová, Danica; Malovícová, Anna; Voburka, Zdenek; Omelková, Jirina; Stratilová, Eva

    2007-01-01

    The presence of various enzyme forms with terminal action pattern on pectate was evaluated in a protein mixture obtained from parsley roots. Enzymes found in the soluble fraction of roots (juice) were purified to homogeneity according to SDS-PAGE, partially separated by preparative isoelectric focusing and characterized. Three forms with pH optima 3.6, 4.2 and 4.6 clearly preferred substrates with a lower degree of polymerization (oligogalacturonates) while the form with pH optimum 5.2 was a typical exopolygalacturonase [EC 3. 2.1.67] with relatively fast cleavage of polymeric substrate. The forms with pH optima 3.6, 4.2 and 5.2 were released from the pulp, too. The form from the pulp with pH optimum 4.6 preferred higher oligogalacturonates and was not described in plants previously. The production of individual forms in roots was compared with that produced by root cells cultivated on solid medium and in liquid one.

  12. 40 CFR 63.3965 - How do I determine the emission capture system efficiency?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    .... (2) Use Method 204A or 204F of appendix M to 40 CFR part 51 to determine the mass fraction of TVH.... TVHi = Mass fraction of TVH in coating, thinner and/or other additive, or cleaning material, i, that is... compares the mass of liquid TVH in materials used in the coating operation to the mass of TVH emissions not...

  13. Observing the Roots of Coronal Heating - in the Chromosphere

    NASA Astrophysics Data System (ADS)

    McIntosh, S. W.; de Pontieu, B.; Hansteen, V. H.; Schrjver, K.

    2009-12-01

    I will discuss recent results using Hinode/SOT-EIS-XRT, SOHO/SUMER, CRISP (at the Swedish Solar Telescope) and TRACE that provide a direct connection between coronal dynamics and those of the lower atmosphere. We use chromospheric measurements (H-alpha and Ca II 8542 spectral imaging, and Ca II H images), as well as UV spectra (EIS and SUMER), and EUV/X-ray images (XRT and TRACE) to show that faint, high-speed upflows at velocities of 50-100 km/s across a wide range of temperatures from chromospheric (10,000 K), through lower and upper transition region (0.1 to 0.7 MK) and coronal temperatures (2 MK) are associated with significant mass-loading of the corona with hot plasma. Our observations are incompatible with current models in which coronal heating occurs as a result of nanoflares at coronal heights. Instead we suggest that a significant fraction of heating of plasma to coronal temperatures may occur at chromospheric heights in association with jets driven from below (the recently discovered type II spicules). Illustrating the mass and energy transport between the chromosphere, transition region and corona, as deduced from Hinode observations. Convective flows and oscillations in the convection zone and photosphere of the Sun buffet the magnetic field of the Sun. This leads to at least two different kinds of jets in the chromosphere: Type I, and II spicules. Type II spicules drive matter upward violently and likely form when magnetic field reconnects because of stresses introduced by convective flows. A significant fraction of the plasma in type II spicules is heated to coronal temperatures (>1MK), providing the corona with hot plasma. The correlation between the chromospheric and coronal parts of the spicules depends greatly on the viewing angle between the line-of-sight and the direction of the upward flows. Order of magnitude estimates indicate that the mass supplied by type II spicules plays a significant role in supplying the corona with hot plasma.

  14. Mass fractionation processes of transition metal isotopes

    NASA Astrophysics Data System (ADS)

    Zhu, X. K.; Guo, Y.; Williams, R. J. P.; O'Nions, R. K.; Matthews, A.; Belshaw, N. S.; Canters, G. W.; de Waal, E. C.; Weser, U.; Burgess, B. K.; Salvato, B.

    2002-06-01

    Recent advances in mass spectrometry make it possible to utilise isotope variations of transition metals to address some important issues in solar system and biological sciences. Realisation of the potential offered by these new isotope systems however requires an adequate understanding of the factors controlling their isotope fractionation. Here we show the results of a broadly based study on copper and iron isotope fractionation during various inorganic and biological processes. These results demonstrate that: (1) naturally occurring inorganic processes can fractionate Fe isotope to a detectable level even at temperature ˜1000°C, which challenges the previous view that Fe isotope variations in natural system are unique biosignatures; (2) multiple-step equilibrium processes at low temperatures may cause large mass fractionation of transition metal isotopes even when the fractionation per single step is small; (3) oxidation-reduction is an importation controlling factor of isotope fractionation of transition metal elements with multiple valences, which opens a wide range of applications of these new isotope systems, ranging from metal-silicate fractionation in the solar system to uptake pathways of these elements in biological systems; (4) organisms incorporate lighter isotopes of transition metals preferentially, and transition metal isotope fractionation occurs stepwise along their pathways within biological systems during their uptake.

  15. 4-hydroxyphenylacetic acid derivatives of inositol from dandelion (Taraxacum officinale) root characterised using LC-SPE-NMR and LC-MS techniques.

    PubMed

    Kenny, O; Smyth, T J; Hewage, C M; Brunton, N P; McLoughlin, P

    2014-02-01

    The combination of hyphenated techniques, LC-SPE-NMR and LC-MS, to isolate and identify minor isomeric compounds from an ethyl acetate fraction of Taraxacum officinale root was employed in this study. Two distinct fractions of 4-hydroxyphenylacetic acid derivatives of inositol were isolated and characterised by spectroscopic methods. The (1)H NMR spectra and MS data revealed two groups of compounds, one of which were derivatives of the di-4-hydroxyphenylacetic acid derivative of the inositol compound tetrahydroxy-5-[2-(4-hydroxyphenyl)acetyl] oxycyclohexyl-2-(4-hydroxyphenyl) acetate, while the other group consisted of similar tri-substituted inositol derivatives. For both fractions the derivatives of inositols vary in the number of 4-hydroxyphenylacetic acid groups present and their position and geometry on the inositol ring. In total, three di-substituted and three tri-substituted 4-hydroxyphenylacetic acid inositol derivates were identified for the first time along with a further two previously reported di-substituted inositol derivatives. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. The accumulation and subcellular distribution of arsenic and antimony in four fern plants.

    PubMed

    Feng, R; Wang, X; Wei, C; Tu, S

    2015-01-01

    In the present study, Pteris cretica 'Albo-Lineata' (PC), Pteris fauriei (PF), Humata tyermanii Moore (HT), and Pteris ensiformis Burm (PE), were selected to explore additional plant materials for the phytoremediation of As and Sb co-contamination. To some extent, the addition of As and Sb enhanced the growth of HT, PE, and PF. Conversely, the addition of As and Sb negatively affected the growth of PC and was accompanied with the accumulation of high levels of As and Sb in the roots. The highest concentration of Sb was recorded as 6405 mg kg(-1) in the roots of PC, and that for As was 337 mg kg(-1) in the rhizome of PF. To some degree, As and Sb stimulated the uptake of each other in these ferns. Arsenic was mainly stored in the cytoplasmic supernatant (CS) fraction, followed by the cell wall (CW) fraction. In contrast, Sb was mainly found in the CW fraction and, to a lesser extent, in the CS fraction, suggesting that the cell wall and cytosol play different roles in As and Sb accumulation by fern plants. This study demonstrated that these fern plants show a good application potential in the phytoremediation of As and Sb co-contaminated environments.

  17. The formation of 3 alpha- and 3 beta-acetoxytropanes by Datura stramonium transformed root cultures involves two acetyl-CoA-dependent acyltransferases.

    PubMed

    Robins, R J; Bachmann, P; Robinson, T; Rhodes, M J; Yamada, Y

    1991-11-04

    Tropine (tropan-3 alpha-ol) is an intermediate in the formation of hyoscyamine. An acyltransferase activity that can acetylate tropine using acetylcoenzyme A as cosubstrate has been found in transformed root cultures of Datura stramonium. A further acyltransferase activity that acetylates pseudotropine (tropan-3 beta-ol) with acetyl-coenzyme A is also present. These two activities can be partially resolved by anion-exchange chromatography, some fractions containing only the pseudotropine-utilizing activity. The basic properties of these two enzymes are reported and their roles in forming the observed alkaloid spectrum of D. stramonium roots discussed.

  18. Isolation and partial purification of cadmium-binding protein from roots of the grass Agrostis gigantea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rauser, W.E.

    1984-04-01

    A cadmium-binding protein was isolated from roots of the grass Agrostis gigantea Roth. Heat-stable proteins were chromatographed on the anion exchanger QAE-Sephadex A-25. The major cadmium fraction was purified further by gel filtration of Sephadex G-75 in 1 molar KCI buffer. The resulting protein preparation was light brown, had an apparent molecular weight of 3700, contained 29% cysteine and close to 4 gram atoms cadmium/mole. The cadmium:cysteine ratio was l:2.7. Spectroscopic measurments indicated cadmium-thiolate coordination. The roots produced the metallothionein-like protein when they were exposed to cadmium for 7 days.

  19. Differential Responses of Soybean and Sorghum Growth, Nitrogen Uptake, and Microbial Metabolism in the Rhizosphere to Cattle Manure Application: A Rhizobox Study.

    PubMed

    Chu, Qingnan; Sha, Zhimin; Nakamura, Takuji; Oka, Norikuni; Osaki, Mitsuru; Watanabe, Toshihiro

    2016-11-02

    In this study, we determined the capacity of soybean (Glycine max L. Merr. cv. Hoyoharuka) and sorghum (Sorghum bicolor L. Moench. cv. Hybrid Sorgo) to utilize different forms of nitrogen (N) in a rhizobox system. Seedlings were grown for 35 days without N or with 130 mg N kg -1 soil as ammonium sulfate or farmyard cattle manure. The soil fractions at different distances from the root were sliced millimeter by millimeter in the rhizobox system. We assessed the distribution of different forms of N and microbial metabolism in different soil fractions in the rhizosphere. There are no treatment-dependent changes in biomass production in the roots and shoots of soybeans, however, the ammonium and manure treatment yielded 1.30 and 1.40 times higher shoot biomass of sorghum than the control. Moreover, the depletion of inorganic N and total amino acids (TAA) in the rhizosphere was largely undetectable at various distances from the soybean roots regardless of the treatments employed. The addition of ammonium sulfate resulted in a decrease in the nitrate concentration gradient as the distance decreased from the sorghum roots. The addition of manure to the soil increased the N content in the sorghum shoots, 1.57 times higher than the control; this increase was negatively correlated with the concentrations of TAA in the soil of the root compartment. In addition, the application of manure simultaneously induced TAA depletion (i.e., the TAA concentration in root compartment was 1.48 times higher than that in bulk soil) and greater microbial activity and diversity in the sorghum rhizosphere, where higher microbial consumption of asparagine, glutamic acid, and phenylalanine were also observed near the roots. Our results are first to present the evidence that sorghum may possess a high capacity for taking up amino acids as a consequence of organic matter application, and microbial metabolism.

  20. Long-term effects of elevated atmospheric CO{sub 2} on below-ground biomass and transformations to soil organic matter in grassland.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jastrow, J.D.; Miller, R.M.; Owensby, C.E.

    2000-01-01

    We determined the effects of elevated [CO{sub 2}] on the quantity and quality of below-ground biomass and several soil organic matter pools at the conclusion of an eight-year CO{sub 2} enrichment experiment on native tallgrass prairie. Plots in open-top chambers were exposed continuously to ambient and twice-ambient [CO{sub 2}] from early April through late October of each year. Soil was sampled to a depth of 30 cm beneath and next to the crowns of C4 grasses in these plots and in unchambered plots. Elevated [CO{sub 2}] increased the standing crops of rhizomes (87%), coarse roots (46%), and fibrous roots (40%)more » but had no effect on root litter (mostly fine root fragments and sloughed cortex material >500 {mu}m). Soil C and N stocks also increased under elevated [CO{sub 2}], with accumulations in the silt/clay fraction over twice that of particulate organic matter (POM; >53 {mu}m). The mostly root-like, light POM (density {<=}1.8 Mg m{sup -3}) appeared to turn over more rapidly, while the more amorphous and rendered heavy POM (density >1.8 Mg m{sup -3}) accumulated under elevated [CO{sub 2}]. Overall, rhizome and root C:N ratios were not greatly affected by CO{sub 2} enrichment. However, elevated [CO{sub 2}] increased the C:N ratios of root litter and POM in the surface 5 cm and induced a small but significant increase in the C:N ratio of the silt/clay fraction to a depth of 15 cm. Our data suggest that 8 years of CO{sub 2} enrichment may have affected elements of the N cycle (including mineralization, immobilization, and asymbiotic fixation) but that any changes in N dynamics were insufficient to prevent significant plant growth responses.« less

  1. Analysis of radiological parameters associated with decreased fractional anisotropy values on diffusion tensor imaging in patients with lumbar spinal stenosis.

    PubMed

    Wang, Xiandi; Wang, Hongli; Sun, Chi; Zhou, Shuyi; Meng, Tao; Lv, Feizhou; Ma, Xiaosheng; Xia, Xinlei; Jiang, Jianyuan

    2018-04-26

    Previous studies have indicated that decreased fractional anisotropy (FA) values on diffusion tensor imaging (DTI) are well correlated with the symptoms of nerve root compression. The aim of our study is to determine primary radiological parameters associated with decreased FA values in patients with lumbar spinal stenosis involving single L5 nerve root. Patients confirmed with single L5 nerve root compression by transforaminal nerve root blocks were included in this study. FA values of L5 nerve roots on both symptomatic and asymptomatic side were obtained. Conventional radiological parameters, such as disc height, degenerative scoliosis, dural sac cross-sectional area (DSCSA), foraminal height (FH), hypertrophic facet joint degeneration (HFJD), sagittal rotation (SR), sedimentation sign, sagittal translation and traction spur were measured. Correlation and regression analyses were performed between the radiological parameters and FA values of the symptomatic L5 nerve roots. A predictive regression equation was established. Twenty-one patients were included in this study. FA values were significantly lower at the symptomatic side comparing to the asymptomatic side (0.263 ± 0.069 vs. 0.334 ± 0.080, P = 0.038). DSCSA, FH, HFJD, and SR were significantly correlated with the decreased FA values, with r = 0.518, 0.443, 0.472 and - 0.910, respectively (P < 0.05). DSCSA and SR were found to be the primary radiological parameters related to the decreased FA values, and the regression equation is FA = - 0.012 × SR + 0.002 × DSCSA. DSCSA and SR were primary contributors to decreased FA values in LSS patients involving single L5 nerve root, indicating that central canal decompression and segmental stability should be the first considerations in preoperative planning of these patients. These slides can be retrieved under Electronic Supplementary Material.

  2. Nutrient Foraging Traits in 10 Co-occurring Plant Species of Contrasting Life Forms

    Treesearch

    Juliet C. Einsmann; Robert H. Jones; Mou Pu; Robert J. Mitchell

    1999-01-01

    1 Responses to spatial heterogeneity of soil nutrients were tested in 10 plant species that differ in life form and successional status, but which co-occur in the South Carolina coastal plain. The morphological responses of the root system were tested by assessing scale (represented by root mass and root length densities), precision (preferential...

  3. Comparing Planting Tools for Container Longleaf Pine

    Treesearch

    Daniel J. Leduc; James D. Haywood; Shi-Jean Susana Sung

    2011-01-01

    We examined if compressing the soil to make a planting hole with a custom-built, solid round dibble versus coring the soil with a commercially available tube dibble influenced container-grown longleaf pine seedling development differently. Seven teen months after planting, the planting tool did not significantly affect root collar diameter, shoot or root mass, root-to-...

  4. The Pan-STARRS1 medium-deep survey: The role of galaxy group environment in the star formation rate versus stellar mass relation and quiescent fraction out to z ∼ 0.8

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Lihwai; Chen, Chin-Wei; Coupon, Jean

    2014-02-10

    Using a large optically selected sample of field and group galaxies drawn from the Pan-STARRS1 Medium-Deep Survey (PS1/MDS), we present a detailed analysis of the specific star formation rate (SSFR)—stellar mass (M {sub *}) relation, as well as the quiescent fraction versus M {sub *} relation in different environments. While both the SSFR and the quiescent fraction depend strongly on stellar mass, the environment also plays an important role. Using this large galaxy sample, we confirm that the fraction of quiescent galaxies is strongly dependent on environment at a fixed stellar mass, but that the amplitude and the slope ofmore » the star-forming sequence is similar between the field and groups: in other words, the SSFR-density relation at a fixed stellar mass is primarily driven by the change in the star-forming and quiescent fractions between different environments rather than a global suppression in the star formation rate for the star-forming population. However, when we restrict our sample to the cluster-scale environments (M > 10{sup 14} M {sub ☉}), we find a global reduction in the SSFR of the star-forming sequence of 17% at 4σ confidence as opposed to its field counterpart. After removing the stellar mass dependence of the quiescent fraction seen in field galaxies, the excess in the quiescent fraction due to the environment quenching in groups and clusters is found to increase with stellar mass, although deeper and larger data from the full PS1/MDS will be required to draw firm conclusions. We argue that these results are in favor of galaxy mergers to be the primary environment quenching mechanism operating in galaxy groups whereas strangulation is able to reproduce the observed trend in the environment quenching efficiency and stellar mass relation seen in clusters. Our results also suggest that the relative importance between mass quenching and environment quenching depends on stellar mass—the mass quenching plays a dominant role in producing quiescent galaxies for more massive galaxies, while less massive galaxies are quenched mostly through the environmental effect, with the transition mass around 1-2 × 10{sup 10} M {sub ☉} in the group/cluster environment.« less

  5. 40 CFR 63.4510 - What notifications must I submit?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... not need to submit copies of any test reports. (i) Mass fraction of organic HAP for one coating, for one thinner and/or other additive, and for one cleaning material. (ii) Mass fraction of coating solids... required. (iv) The amount of waste materials and the mass of organic HAP contained in the waste materials...

  6. 40 CFR 63.824 - Standards: Publication rotogravure printing.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ....000 For the purposes of this calculation, the mass fraction of organic HAP present in the recovered volatile matter is assumed to be equal to the mass fraction of organic HAP present in the volatile matter... section: (i) Perform a liquid-liquid material balance for each month as follows: (A) Measure the mass of...

  7. 40 CFR 63.4510 - What notifications must I submit?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... not need to submit copies of any test reports. (i) Mass fraction of organic HAP for one coating, for one thinner and/or other additive, and for one cleaning material. (ii) Mass fraction of coating solids... required. (iv) The amount of waste materials and the mass of organic HAP contained in the waste materials...

  8. 40 CFR 63.4361 - How do I determine the emission capture system efficiency?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... determine the mass fraction of TVH liquid input from each regulated material used in the web coating.../printing or dyeing/finishing operation during the capture efficiency test run, kg. TVHi = Mass fraction of... enclosure or building enclosure. The liquid-to-uncaptured-gas protocol compares the mass of liquid TVH in...

  9. 40 CFR 98.156 - Data reporting requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... destruction device. (c) Each HFC-23 destruction facility shall report the concentration (mass fraction) of HFC...) Concentration (mass fraction) of HFC-23 at the outlet of the destruction device. (3) Flow rate at the outlet of... facility shall report the following information at the facility level: (1) Annual mass of HCFC-22 produced...

  10. 40 CFR 63.824 - Standards: Publication rotogravure printing.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ....000 For the purposes of this calculation, the mass fraction of organic HAP present in the recovered volatile matter is assumed to be equal to the mass fraction of organic HAP present in the volatile matter... section: (i) Perform a liquid-liquid material balance for each month as follows: (A) Measure the mass of...

  11. 40 CFR 63.4510 - What notifications must I submit?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... not need to submit copies of any test reports. (i) Mass fraction of organic HAP for one coating, for one thinner and/or other additive, and for one cleaning material. (ii) Mass fraction of coating solids... required. (iv) The amount of waste materials and the mass of organic HAP contained in the waste materials...

  12. 40 CFR 63.4510 - What notifications must I submit?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... not need to submit copies of any test reports. (i) Mass fraction of organic HAP for one coating, for one thinner and/or other additive, and for one cleaning material. (ii) Mass fraction of coating solids... required. (iv) The amount of waste materials and the mass of organic HAP contained in the waste materials...

  13. Inappropriate left ventricular mass and poor outcomes in patients with angina pectoris and normal ejection fraction.

    PubMed

    Huang, Bao-Tao; Peng, Yong; Liu, Wei; Zhang, Chen; Huang, Fang-Yang; Wang, Peng-Ju; Zuo, Zhi-Liang; Liao, Yan-Biao; Chai, Hua; Li, Qiao; Zhao, Zhen-Gang; Luo, Xiao-Lin; Ren, Xin; Huang, Kai-Sen; Meng, Qing-Tao; Chen, Chi; Huang, De-Jia; Chen, Mao

    2015-03-01

    Although inappropriate left ventricular mass has been associated with clustered cardiac geometric and functional abnormalities, its predictive value in patients with coronary artery disease is still unknown. This study examined the association of inappropriate left ventricular mass with clinical outcomes in patients with angina pectoris and normal ejection fraction. Consecutive patients diagnosed with angina pectoris whose ejection fraction was normal were recruited from 2008 to 2012. Inappropriate left ventricular mass was determined when the ratio of actual left ventricular mass to the predicted one exceeded 150%. The primary endpoint was a composite of all-cause death, nonfatal myocardial infarction, and nonfatal stroke. Clinical outcomes between the inappropriate and appropriate left ventricular mass group were compared before and after propensity matching. Of the total of 1515 participants, 18.3% had inappropriate left ventricular mass. Patients with inappropriate left ventricular mass had a higher composite event rate compared with those with appropriate left ventricular mass (11.2 vs. 6.6%, P=0.010). Multivariate Cox regression analyses showed that inappropriate left ventricular mass was an independent risk factor for adverse events (adjusted hazard ratio, 1.59; 95% confidence interval, 1.03-2.45; P=0.035). The worse outcome in patients with inappropriate left ventricular mass was further validated in a propensity matching cohort and patients with the traditional definition of left ventricular hypertrophy. Inappropriate left ventricular mass was associated with an increased risk of adverse events in patients with angina pectoris and normal ejection fraction.

  14. Source and Biological Response of Biochar Organic Compounds Released into Water; Relationships with Bio-Oil Composition and Carbonization Degree.

    PubMed

    Ghidotti, Michele; Fabbri, Daniele; Mašek, Ondřej; Mackay, Colin Logan; Montalti, Marco; Hornung, Andreas

    2017-06-06

    Water-soluble organic compounds (WSOCs) were extracted from corn stalk biochar produced at increasing pyrolysis temperatures (350-650 °C) and from the corresponding vapors, collected as bio-oil. WSOCs were characterized by gas chromatography (semivolatile fraction), negative electron spray ionization high resolution mass spectrometry (hydrophilic fraction) and fluorescence spectroscopy. The pattern of semivolatile WSOCs in bio-oil was dominated by aromatic products from lignocellulose, while in biochar was featured by saturated carboxylic acids from hemi/cellulose and lipids with concentrations decreasing with decreasing H/C ratios. Hydrophilic species in poorly carbonized biochar resembled those in bio-oil, but the increasing charring intensity caused a marked reduction in the molecular complexity and degree of aromaticity. Differences in the fluorescence spectra were attributed to the predominance of fulvic acid-like structures in biochar and lignin-like moieties in bio-oil. The divergence between pyrolysis vapors and biochar in the distribution of WSOCs with increasing carbonization was explained by the hydrophobic carbonaceous matrix acting like a filter favoring the release into water of carboxylic and fulvic acid-like components. The formation of these structures was confirmed in biochar produced by pilot plant pyrolysis units. Biochar affected differently shoot and root length of cress seedlings in germination tests highlighting its complex role on plant growth.

  15. Phytotoxic substances in runoff from forested catchment areas

    NASA Astrophysics Data System (ADS)

    Grimvall, Anders; Bengtsson, Maj-Britt; Borén, Hans; Wahlström, Dan

    Runoff from different catchment areas in southern Sweden was tested in a root bioassay based on solution cultures of cucumber seedlings. Water samples from agricultural catchment areas produced no signs at all or only weak signs of inhibited root growth, whereas several water samples from catchment areas dominated by mires or coniferous forests produced visible root injuries. The most severe root injuries (very short roots, discolouration, swelling of root tips and lack of root hairs) were caused by samples from a catchment area without local emissions and dominated by old stands of spruce. Fractionation by ultrafiltration showed that the phytotoxic effect of these samples could be attributed to organic matter with a nominal molecular-weight exceeding 1000 or to substances associated with organic macromolecules. Experiments aimed at concentrating phytotoxic compounds from surface water indicated that the observed growth inhibition was caused by strongly hydrophilic substances. Previous reports on phytotoxic, organic substances of natural origin have emphasized interaction between plants growing close together. The presence of phytotoxic substances in runoff indicates that there is also a large-scale dispersion of such compounds.

  16. Monoterpene derivatives with anti-allergic activity from red peony root, the root of Paeonia lactiflora.

    PubMed

    Shi, Yan-Hong; Zhu, Shu; Ge, Yue-Wei; He, Yu-Min; Kazuma, Kohei; Wang, Zhengtao; Yoshimatsu, Kayo; Komatsu, Katsuko

    2016-01-01

    The methanolic extract and its subfractions from red peony root, the dried roots of Paeonia lactiflora Pallas showed potent antiallergic effects, as inhibition of immunoglobulin E (IgE)-mediated degranulation in rat basophil leukemia (RBL)-2H3 cells. Bioassay-guided fractionation led to the isolation of 16 monoterpene derivatives, including 3 new compounds, paeoniflorol (1), 4'-hydroxypaeoniflorigenone (2) and 4-epi-albiflorin (3), together with 13 known ones (4-16). The chemical structures of the new compounds were elucidated on the basis of spectroscopic and chemical evidences. Among the isolated monoterpene derivatives, nine compounds showed potent anti-allergic effects and compound 1 was the most effective. A primary structure-activity relationship of monoterpene derivatives was discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Three whole-wood isotopic reference materials, USGS54, USGS55, and USGS56, for δ2H, δ13C, δ15N, and δ18O measurements

    USGS Publications Warehouse

    Qi, Haiping; Coplen, Tyler B.; Jordan, James A.

    2016-01-01

    Comparative measurements of stable hydrogen and oxygen isotopes in wood are hampered by the lack of proper reference materials (RMs). The U.S. Geological Survey (USGS) has prepared three powdered, whole-wood RMs, USGS54 (Pinus contorta, Canadian lodgepole pine), USGS55 (Cordia cf. dodecandra, Mexican ziricote), and USGS56 (Berchemia cf. zeyheri, South African red ivorywood). The stable isotopes of hydrogen, oxygen, carbon, and nitrogen in these RMs span ranges as δ2HVSMOW from –150.4 to –28.2 mUr or ‰, as δ18OVSMOW from + 17.79 to + 27.23 mUr, as δ13CVPDB from –27.13 to –24.34 mUr, and as δ15N AIR-N2 from –2.42 to + 1.8 mUr. These RMs will enable users to normalize measurements of wood samples to isotope–delta scales, and they are intended primarily for the normalization of δ2H and δ18O measurements of unknown wood samples. However, they also are suitable for normalization of stable isotope measurements of carbon and nitrogen in wood samples. In addition, these RMs are suitable for inter-laboratory calibration for the dual-water suilibration procedure for the measurements of δ2HVSMOW values of non-exchangeable hydrogen. The isotopic compositions with 1-σ uncertainties, mass fractions of each element, and fractions of exchangeable hydrogen of these materials are:USGS54 (Pinus contorta, Canadian Lodgepole pine)δ2HVSMOW = –150.4 ± 1.1 mUr (n = 29), hydrogen mass fraction = 6.00 ± 0.04 % (n = 10)Fraction of exchangeable hydrogen = 5.4 ± 0.6 % (n = 29)δ18OVSMOW = + 17.79 ± 0.15 mUr (n = 18), oxygen mass fraction = 40.4 ± 0.2 % (n = 6)δ13CVPDB = –24.43 ± 0.02 mUr (n = 18), carbon mass fraction = 48.3 ± 0.4 % (n = 12)δ15NAIR-N2 = –2.42 ± 0.32 mUr (n = 17), nitrogen mass fraction = 0.05 % (n = 4)USGS55 (Cordia cf. dodecandra, Mexican ziricote)δ2HVSMOW = –28.2 ± 1.7 mUr (n = 30), hydrogen mass fraction = 5.65 ± 0.06 % (n = 10)Fraction of exchangeable hydrogen = 4.1 ± 0.5 % (n = 30)δ18OVSMOW = + 19.12 ± 0.07 mUr (n = 18), oxygen mass fraction = 35.3 ± 0.2 % (n = 6)δ13CVPDB = –27.13 ± 0.02 mUr (n = 18), carbon mass fraction = 53.3 ± 0.6 % (n = 12)δ15NAIR-N2 = –0.3 ± 0.4 mUr (n = 16), nitrogen mass fraction = 0.25 % (n = 4)USGS56 (Berchemia cf. zeyheri, South African red ivorywood)δ2HVSMOW = –44.0 ± 1.8 mUr (n = 30), hydrogen mass fraction = 5.65 ± 0.05 % (n = 10)Fraction of exchangeable hydrogen = 6.6 ± 0.3 % (n = 30)δ18OVSMOW = + 27.23 ± 0.03 mUr (n = 12), oxygen mass fraction = 41.1 ± 0.2 % (n = 6)δ13CVPDB = –24.34 ± 0.01 mUr (n = 12), carbon mass fraction = 47.3 ± 0.2 % (n = 12)δ15NAIR-N2 = + 1.8 ± 0.4 mUr (n = 15), nitrogen mass fraction = 0.27 % (n = 4)

  18. Isotopic fractionation studies of uranium and plutonium using porous ion emitters as thermal ionization mass spectrometry sources

    DOE PAGES

    Baruzzini, Matthew L.; Hall, Howard L.; Spencer, Khalil J.; ...

    2018-04-22

    Investigations of the isotope fractionation behaviors of plutonium and uranium reference standards were conducted employing platinum and rhenium (Pt/Re) porous ion emitter (PIE) sources, a relatively new thermal ionization mass spectrometry (TIMS) ion source strategy. The suitability of commonly employed, empirically developed mass bias correction laws (i.e., the Linear, Power, and Russell's laws) for correcting such isotope ratio data was also determined. Corrected plutonium isotope ratio data, regardless of mass bias correction strategy, were statistically identical to that of the certificate, however, the process of isotope fractionation behavior of plutonium using the adopted experimental conditions was determined to be bestmore » described by the Power law. Finally, the fractionation behavior of uranium, using the analytical conditions described herein, is also most suitably modeled using the Power law, though Russell's and the Linear law for mass bias correction rendered results that were identical, within uncertainty, to the certificate value.« less

  19. Isotopic fractionation studies of uranium and plutonium using porous ion emitters as thermal ionization mass spectrometry sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baruzzini, Matthew L.; Hall, Howard L.; Spencer, Khalil J.

    Investigations of the isotope fractionation behaviors of plutonium and uranium reference standards were conducted employing platinum and rhenium (Pt/Re) porous ion emitter (PIE) sources, a relatively new thermal ionization mass spectrometry (TIMS) ion source strategy. The suitability of commonly employed, empirically developed mass bias correction laws (i.e., the Linear, Power, and Russell's laws) for correcting such isotope ratio data was also determined. Corrected plutonium isotope ratio data, regardless of mass bias correction strategy, were statistically identical to that of the certificate, however, the process of isotope fractionation behavior of plutonium using the adopted experimental conditions was determined to be bestmore » described by the Power law. Finally, the fractionation behavior of uranium, using the analytical conditions described herein, is also most suitably modeled using the Power law, though Russell's and the Linear law for mass bias correction rendered results that were identical, within uncertainty, to the certificate value.« less

  20. Enforcing realizability in explicit multi-component species transport

    PubMed Central

    McDermott, Randall J.; Floyd, Jason E.

    2015-01-01

    We propose a strategy to guarantee realizability of species mass fractions in explicit time integration of the partial differential equations governing fire dynamics, which is a multi-component transport problem (realizability requires all mass fractions are greater than or equal to zero and that the sum equals unity). For a mixture of n species, the conventional strategy is to solve for n − 1 species mass fractions and to obtain the nth (or “background”) species mass fraction from one minus the sum of the others. The numerical difficulties inherent in the background species approach are discussed and the potential for realizability violations is illustrated. The new strategy solves all n species transport equations and obtains density from the sum of the species mass densities. To guarantee realizability the species mass densities must remain positive (semidefinite). A scalar boundedness correction is proposed that is based on a minimal diffusion operator. The overall scheme is implemented in a publicly available large-eddy simulation code called the Fire Dynamics Simulator. A set of test cases is presented to verify that the new strategy enforces realizability, does not generate spurious mass, and maintains second-order accuracy for transport. PMID:26692634

  1. Responses of Tylenchulus semipenetrans to Citrus Fruit Removal: Implications for Carbohydrate Competition

    PubMed Central

    Duncan, Larry W.; Eissenstat, David M.

    1993-01-01

    Sixteen mature Valencia orange trees on rough lemon rootstock were selected on the basis of approximately equal, naturally occurring populations of Tylenchulus semipenetrans in soil. In March, fruit 1 cm in diameter or less were removed from eight of the trees, which were kept free of fruit for 15 months. In July, 4 months after fruit removal, fibrous root (<2 mm d) mass density of defruited trees was 51% greater and insoluble starch in fibrous roots was 24% less than on control trees with fruit. Female T. semipenetrans per gram of root were 64% more numerous on roots of control trees than on defruited trees at this time. Numbers of female nematodes per tree and of juveniles and males in soil did not differ between treatments 4 months after fruit removal. Root mass density remained higher on defruited than control trees for the remaining 13 months that the trees were studied, while nematode density in soil beneath defruited trees rapidly increased to levels proportionate to the additional root mass density. Nine months after fruit removal (December), starch concentration was 84% higher in roots of defruited trees compared to controls and remained 28% higher than in controls 15 months (May) following fruit removal. Between months 9 and 15 following fruit removal, nematode density in soil beneath defruited trees increased at a rate five times that of nematode density beneath control trees. In May, female fecundity (eggs/female) on defruited trees was 41% greater than on control trees. The data were consistent with the hypothesis that carbohydrate competition between developing citrus fruit and T. semipenetrans influences seasonal fluctuations in nematode population densities. PMID:19279735

  2. Simultaneous Qualitative and Quantitative Analyses of Triterpenoids in Ilex pubescens by Ultra-High-Performance Liquid Chromatography Coupled with Quadrupole Time-of-Flight Mass Spectrometry.

    PubMed

    Cao, Di; Wang, Qing; Jin, Jing; Qiu, Maosong; Zhou, Lian; Zhou, Xinghong; Li, Hui; Zhao, Zhongxiang

    2018-03-01

    Ilex pubescens Hook et Arn mainly contains triterpenoids that possess antithrombotic, anti-inflammatory and analgesic effects. Quantitative and qualitative analyses of the triterpenoids in I. pubescens can be useful for determining the authenticity and quality of raw materials and guiding its clinical preparation. To establish a method for rapid and comprehensive analysis of triterpenoids in I. pubescens using ultra-high-performance liquid chromatography coupled to electrospray ionisation and quadrupole time-of-flight-mass spectrometry (UPLC-ESI-QTOF-MS), which will also be applied to evaluate the contents of nine triterpenoids among root, root heartwood and root bark of I. pubescens to judge the value of the root bark to avoid wastage. UPLC-ESI-QTOF-MS data from the extracts of I. pubescens in negative mode were analysed using Peakview and Masterview software that provided molecular weight, mass errors, isotope pattern fit and MS/MS fragments for the identification of triterpenoids. The quantification of nine investigated compounds of I. pubescens was accomplished using MultiQuant software. A total of 33 triterpenoids, five phenolic acids, two lignans and a flavonol were characterised in only 14 min. The total content of the nine compounds in the root bark was generally slightly higher than that of the root and root heartwood, which has not been reported before. The developed UPLC-ESI-QTOF-MS method was proven to be rapid and comprehensive for simultaneous qualitative and quantitative analyses of the characteristic triterpenoids in I. pubescens. The results may provide a basis for holistic quality control and metabolic studies of I. pubescens, as well as serve as a reference for the analysis of other Ilex plants. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  3. Fine root respiration in the mangrove Rhizophora mangle over variation in forest stature and nutrient availability.

    PubMed

    Lovelock, Catherine E; Ruess, Roger W; Feller, Ilka C

    2006-12-01

    Root respiration uses a significant proportion of photosynthetically fixed carbon (C) and is a globally important source of C liberated from soils. Mangroves, which are an important and productive forest resource in many tropical and subtropical countries, sustain a high ratio of root to shoot biomass which may indicate that root respiration is a particularly important component in mangrove forest carbon budgets. Mangroves are often exposed to nutrient pollution from coastal waters. Here we assessed the magnitude of fine root respiration in mangrove forests in Belize and investigated how root respiration is influenced by nutrient additions. Respiration rates of excised fine roots of the mangrove, Rhizophora mangle L., were low (4.01 +/- 0.16 nmol CO(2) g(-1) s(-1)) compared to those measured in temperate tree species at similar temperatures. In an experiment where trees where fertilized with nitrogen (N) or phosphorus (P) in low productivity dwarf forests (1-2 m height) and more productive, taller (4- 7 m height) seaward fringing forests, respiration of fine roots did not vary consistently with fertilization treatments or with forest stature. Fine roots of taller fringe trees had higher concentrations of both N and P compared to dwarf trees. Fertilization with P enhanced fine root P concentrations in both dwarf and fringe trees, but reduced root N concentrations compared to controls. Fertilization with N had no effect on root N or P concentrations. Unlike photosynthetic C gain and growth, which is strongly limited by P availability in dwarf forests at this site, fine root respiration (expressed on a mass basis) was variable, but showed no significant enhancements with nutrient additions. Variation in fine root production and standing biomass are, therefore, likely to be more important factors determining C efflux from mangrove sediments than variations in fine root respiration per unit mass.

  4. Pollution of HCHs, DDTs and PCBs in tidal flat of Hangzhou Bay 2009-2013

    NASA Astrophysics Data System (ADS)

    Zhao, Peng; Gong, Wenjie; Mao, Guohua; Li, Jige; Xu, Fenfen; Shi, Jiawei

    2016-05-01

    The concentration and distribution of three persistent organic pollutants (hexachlorocyclohexanes (HCHs), dichlorodiphenyltrichloroethanes (DDTs) and polychlorinated biphenyls (PCBs)) was assessed in tidal flat sediments collected from the south bank of Hangzhou Bay, China from 2009 to 2013. Gas chromatography coupled to triple quadrupole mass spectrometry (GC-MS/MS) was used for analysis, based on United States Environmental Protection Agency methods EPA8080A, EPA8081B, and EPA3550B. The results showed that the levels of HCHs, DDTs and PCBs decreased in the order of DDTs < HCHs < PCBs, and their mass fractions ranged from 0.29-32.91, 0.09-13.19 and 0.16-4.10 μg/kg (dry mass), respectively. The levels of HCHs, DDTs and PCBs decreased slowly from 2009 to 2013, with considerably greater concentrations in winter than in spring and summer. In this study area, the concentrations of DDTs and HCHs decreased gradually towards the mouth of Hangzhou Bay, while the concentrations of PCBs were related to changes in the local economy. In addition, the sources of HCHs and DDTs were identified as atmospheric precipitation and historical residues. Finally, we predicted that PCBs pollution primarily originated from Aroclor 1254(Lot A4), which might root in the illegal demolition and stacking of abandoned paint, transformer or electronic equipment in the south bank of Hangzhou Bay.

  5. The potential for phytoremediation of iron cyanide complex by willows.

    PubMed

    Yu, Xiao-Zhang; Zhou, Pu-Hua; Yang, Yong-Miao

    2006-07-01

    Hybrid willows (Salix matsudana Koidz x Salix alba L.), weeping willows (Salix babylonica L.) and hankow willows (Salix matsudana Koidz) were exposed to potassium ferrocyanide to determine the potential of these plants to extract, transport and metabolize this iron cyanide complex. Young rooted cuttings were grown in hydroponic solution at 24.0 +/- 0.5 degrees C for 144 h. Ferrocyanide in solution, air, and aerial tissues of plants was analyzed spectrophotometrically. Uptake of ferrocyanide from the aqueous solution by plants was evident for all treatments and varied with plant species, ranging from 8.64 to 15.67% of initial mass. The uptake processes observed from hydroponic solution showed exponential disappearance kinetics. Very little amounts of the applied ferrocyanide were detected in all parts of plant materials, confirming passage of ferrocyanide through the plants. No ferrocyanide in air was found due to plant transpiration. Mass balance analysis showed that a large fraction of the reduction of initial mass in hydroponic solution was metabolized during transport within the plant materials. The difference in the metabolic rate of ferrocyanide between the three plant species was comparably small, indicating transport of ferrocyanide from hydroponic solution to plant materials and further transport within plant materials was a limiting step for assimilating this iron cyanide complex. In conclusion, phytoremediation of ferrocyanide by the plants tested in this study has potential field application.

  6. Microfluidic droplet-based liquid-liquid extraction.

    PubMed

    Mary, Pascaline; Studer, Vincent; Tabeling, Patrick

    2008-04-15

    We study microfluidic systems in which mass exchanges take place between moving water droplets, formed on-chip, and an external phase (octanol). Here, no chemical reaction takes place, and the mass exchanges are driven by a contrast in chemical potential between the dispersed and continuous phases. We analyze the case where the microfluidic droplets, occupying the entire width of the channel, extract a solute-fluorescein-from the external phase (extraction) and the opposite case, where droplets reject a solute-rhodamine-into the external phase (purification). Four flow configurations are investigated, based on straight or zigzag microchannels. Additionally to the experimental work, we performed two-dimensional numerical simulations. In the experiments, we analyze the influence of different parameters on the process (channel dimensions, fluid viscosities, flow rates, drop size, droplet spacing, ...). Several regimes are singled out. In agreement with the mass transfer theory of Young et al. (Young, W.; Pumir, A.; Pomeau, Y. Phys. Fluids A 1989, 1, 462), we find that, after a short transient, the amount of matter transferred across the droplet interface grows as the square root of time and the time it takes for the transfer process to be completed decreases as Pe-2/3, where Pe is the Peclet number based on droplet velocity and radius. The numerical simulation is found in excellent consistency with the experiment. In practice, the transfer time ranges between a fraction and a few seconds, which is much faster than conventional systems.

  7. Hepatoprotective and inhibiting HBV effects of polysaccharides from roots of Sophora flavescens.

    PubMed

    Yang, Hua; Zhou, Zhenhua; He, Lifang; Ma, Hao; Qu, Wensheng; Yin, Jiye; Jia, Mengfan; Zhao, Xiunan; Shan, Junjie; Gao, Yueqiu

    2018-03-01

    Roots of Sophora flavescens is an important herbal medicine for treatment of HBV and hepatic carcinoma in China. Alkaloids in the root were well known for exhibiting good hepato-protective and anti-HBV effects. However, polysaccharides as main components in the root remained unknown. In the studies, we investigated the chemical features and hepatoprotective effects of Sophora flavescens polysaccharides (SFP-100 and its active fractions) with ConA-induced hepatitis mice, human liver LO2 cells and HepG2.2.15 cells. The results showed that SFP-100 was composed of arabinose, glucose, galactose and galacturonic acid, SFP-100-A mainly contained glucose. SFP-100-B and SFP-100-C were acidic polysaccharides. SFP-100 significantly decreased hepatocytes apoptosis, inhibited the infiltration of neutrophils and macrophages into liver, and improved the production of IFN-γ and IL-6 of splenocytes in ConA-induced hepatitis mice. SFP-100 and its two sugar fractions increased LO2 cell proliferation and reduced cell apoptosis induced by ConA. SFP-100, SFP-100-A and SFP-100-C remarkedly inhibited the secretion of HBsAg and HBeAg by HepG2.2.15 cells.These results suggested Sophora flavescens polysaccharides exerts significant hepatoprotective and anti-HBV roles, and further is used for treatment of immune-mediated liver disease in the future. Copyright © 2017. Published by Elsevier B.V.

  8. Soil tension mediates isotope fractionation during soil water evaporation

    NASA Astrophysics Data System (ADS)

    Gaj, Marcel; McDonnell, Jeffrey

    2017-04-01

    Isotope tracing of the water cycle is increasing in its use and usefulness. Many new studies are extracting soil waters and relating these to streamflow, groundwater recharge and plant transpiration. Nevertheless, unlike isotope fractionation factors from open water bodies, soil water fractionation factors are poorly understood and until now, only empirically derived. In contrast to open water evaporation where temperature, humidity and vapor pressure gradient define fractionation (as codified in the well-known Craig and Gordon model), soil water evaporation includes additionally, fractionation by matrix effects. There is yet no physical explanation of kinetic and equilibrium fraction from soil water within the soil profile. Here we present a simple laboratory experiment with four admixtures of soil grain size (from sand to silt to clay). Oven-dried samples were spiked with water of known isotopic composition at different soil water contents. Soils were then stored in sealed bags and the headspace filled with dry air and allowed to equilibrate for 24hours. Isotopic analysis of the headspace vapor was done with a Los Gatos Inc. water vapor isotope analyzer. Soil water potential of subsamples were measured with a water potential meter. We show for the first time that soil tension controls isotope fractionation in the resident soil water. Below a Pf 3.5 the δ-values of 18O and 2H of the headspace vapor is more positive and increases with increasing soil water potential. Surprisingly, we find that the relationship between soil tension and equilibrium fractionation is independent of soil type. However, δ-values of each soil type plot along a distinct evaporation line. These results indicate that equilibrium fractionation is affected by soil tension in addition to temperature. Therefore, at high soil water tension (under dry conditions) equilibrium fractionation is not consistent with current empirical formulations that ignore these effects. These findings may have implications for plant water uptake studies since plant root water uptake imparts tension to extract water from the soil matrix. Since this is the same physical force as soil water potential, root water uptake at high soil water potential might cause fractionation of soil water. Our work is ongoing to examine these knock-on effects.

  9. Methanogenic Pathway and Fraction of CH4 Oxidized in Paddy Fields: Seasonal Variation and Effect of Water Management in Winter Fallow Season

    PubMed Central

    Zhang, Guangbin; Liu, Gang; Zhang, Yi; Ma, Jing; Xu, Hua; Yagi, Kazuyuki

    2013-01-01

    A 2-year field and incubation experiment was conducted to investigate δ13C during the processes of CH4 emission from the fields subjected to two water managements (flooding and drainage) in the winter fallow season, and further to estimate relative contribution of acetate to total methanogenesis (Fac) and fraction of CH4 oxidized (Fox) based on the isotopic data. Compared with flooding, drainage generally caused CH4, either anaerobically or aerobically produced, depleted in 13C. There was no obvious difference between the two in transport fractionation factor (εtransport) and δ13C-value of emitted CH4. CH4 emission was negatively related to its δ13C-value in seasonal variation (P<0.01). Acetate-dependent methanogenesis in soil was dominant (60–70%) in the late season, while drainage decreased Fac-value by 5–10%. On roots however, CH4 was mostly produced through H2/CO2 reduction (60–100%) over the season. CH4 oxidation mainly occurred in the first half of the season and roughly 10–90% of the CH4 was oxidized in the rhizosphere. Drainage increased Fox-value by 5–15%, which is possibly attributed to a significant decrease in production while no simultaneous decrease in oxidation. Around 30–70% of the CH4 was oxidized at the soil-water interface when CH4 in pore water was released into floodwater, although the amount of CH4 oxidized therein might be negligible relative to that in the rhizosphere. CH4 oxidation was also more important in the first half of the season in lab conditions and about 5–50% of the CH4 was oxidized in soil while almost 100% on roots. Drainage decreased Fox-value on roots by 15% as their CH4 oxidation potential was highly reduced. The findings suggest that water management in the winter fallow season substantially affects Fac in the soil and Fox in the rhizosphere and roots rather than Fac on roots and Fox at the soil-water interface. PMID:24069259

  10. Anti-plasmodial activity of Norcaesalpin D and extracts of four medicinal plants used traditionally for treatment of malaria.

    PubMed

    Nondo, Ramadhani Selemani Omari; Moshi, Mainen Julius; Erasto, Paul; Masimba, Pax Jessey; Machumi, Francis; Kidukuli, Abdul Waziri; Heydenreich, Matthias; Zofou, Denis

    2017-03-24

    Malaria is an old life-threatening parasitic disease that is still affecting many people, mainly children living in sub-Saharan Africa. Availability of effective antimalarial drugs played a significant role in the treatment and control of malaria. However, recent information on the emergence of P. falciparum parasites resistant to one of the artemisinin-based combination therapies suggests the need for discovery of new drug molecules. Therefore, this study aimed to evaluate the antiplasmodial activity of extracts, fractions and isolated compound from medicinal plants traditionally used in the treatment of malaria in Tanzania. Dry powdered plant materials were extracted by cold macerations using different solvents. Norcaesalpin D was isolated by column chromatography from dichloromethane root extract of Caesalpinia bonducella and its structure was assigned based on the spectral data. Crude extracts, fractions and isolated compound were evaluated for antiplasmodial activity against chloroquine-sensitive P. falciparum (3D7), chloroquine-resistant P. falciparum (Dd2, K1) and artemisinin-resistant P. falciparum (IPC 5202 Battambang, IPC 4912 Mondolkiri) strains using the parasite lactate dehydrogenase assay. The results indicated that extracts of Erythrina schliebenii, Holarrhena pubescens, Dissotis melleri and C. bonducella exhibited antiplasmodial activity against Dd2 parasites. Ethanolic root extract of E. schliebenii had an IC 50 of 1.87 μg/mL while methanolic and ethanolic root extracts of H. pubescens exhibited an IC 50  = 2.05 μg/mL and IC 50  = 2.43 μg/mL, respectively. Fractions from H. pubescens and C. bonducella roots were found to be highly active against K1, Dd2 and artemisinin-resistant parasites. Norcaesalpin D from C. bonducella root extract was active with IC 50 of 0.98, 1.85 and 2.13 μg/mL against 3D7, Dd2 and IPC 4912-Mondolkiri parasites, respectively. Antiplasmodial activity of norcaesalpin D and extracts of E. schliebenii, H. pubescens, D. melleri and C. bonducella reported in this study requires further attention for the discovery of antimalarial lead compounds for future drug development.

  11. Grassland Degradation Alters Soil Carbon Turnover through Depth

    NASA Astrophysics Data System (ADS)

    Creamer, C.; Prober, S. M.; Chappell, A.; Farrell, M.; Baldock, J.

    2015-12-01

    Ecosystem degradation is widespread and changes in aboveground plant communities alter belowground soil processes. In Australia, grassy eucalyptus woodlands dominated by kangaroo grasses (Themeda trianda) were widely cleared during European settlement for agriculture, with only fragments remaining of this now threatened ecosystem. As remnant grassland fragments are used for livestock grazing, Themeda transitions through states of degradation, starting with red grasses (Bothriochloa spp) and then proceeding to less productive, increasingly degraded states dominated by either annual exotic weeds or native wallaby grasses (Rytidosperma spp) and spear grasses (Austrastipa spp). The aim of our experiment was to determine how soil organic matter dynamics (including erosion, root biomass, C storage and turnover) have been altered by the transition from deeply-rooted Themeda grass systems to more shallowly-rooted annual exotic weeds and wallaby/spear grass states. We sampled soils in five depth-based increments (0-5, 5-15, 15-30, 30-60, 60-100 cm) across this ecosystem transition at five sites across New South Wales, Australia. Caseium-137 analysis indicated erosion rates were similar among all ecosystems and were consistent with levels for grasslands in the region. Compared to the remnant Themeda grass systems, the degraded states had lower root biomass, lower carbon stocks and C:N ratios in the coarse fraction (> 50 μm), lower fungal : bacterial ratios, higher available phosphate, higher alkyl : O-alkyl C ratios, and faster mineralization of synthetic root-exudate carbon. All these metrics indicate the surprising finding of more microbially processed OM and faster turnover of newly added C in the degraded sites. Compared to one another, the two degraded sites differed in both C and N turnover, with the exotic weeds having higher dissolved organic N, inorganic N, and coarse fraction N, higher fine fraction C stocks, and greater microbial biomass. These differences likely arise from the greater aboveground productivity of exotic weeds relative to the wallaby and spear grasses. Although microbial C turnover through depth is altered with grassland degradation in both states, the trajectory of the soil organic matter dynamics with degradation is also impacted by plant community dynamics.

  12. STELLAR AND TOTAL BARYON MASS FRACTIONS IN GROUPS AND CLUSTERS SINCE REDSHIFT 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giodini, S.; Pierini, D.; Finoguenov, A.

    2009-09-20

    We investigate if the discrepancy between estimates of the total baryon mass fraction obtained from observations of the cosmic microwave background (CMB) and of galaxy groups/clusters persists when a large sample of groups is considered. To this purpose, 91 candidate X-ray groups/poor clusters at redshift 0.1 <= z <= 1 are selected from the COSMOS 2 deg{sup 2} survey, based only on their X-ray luminosity and extent. This sample is complemented by 27 nearby clusters with a robust, analogous determination of the total and stellar mass inside R {sub 500}. The total sample of 118 groups and clusters with zmore » <= 1 spans a range in M {sub 500} of {approx}10{sup 13}-10{sup 15} M {sub sun}. We find that the stellar mass fraction associated with galaxies at R {sub 500} decreases with increasing total mass as M {sup -0.37+}-{sup 0.04} {sub 500}, independent of redshift. Estimating the total gas mass fraction from a recently derived, high-quality scaling relation, the total baryon mass fraction (f {sup stars+gas} {sub 500} = f {sup stars} {sub 500} + f {sup gas} {sub 500}) is found to increase by {approx}25%, when M{sub 500} increases from (M) = 5 x 10{sup 13} M{sub sun} to (M) = 7 x 10{sup 14} M{sub sun}. After consideration of a plausible contribution due to intracluster light (11%-22% of the total stellar mass) and gas depletion through the hierarchical assembly process (10% of the gas mass), the estimated values of the total baryon mass fraction are still lower than the latest CMB measure of the same quantity (WMAP5), at a significance level of 3.3sigma for groups of (M) = 5 x 10{sup 13} M{sub sun}. The discrepancy decreases toward higher total masses, such that it is 1sigma at (M) = 7 x 10{sup 14} M{sub sun}. We discuss this result in terms of nongravitational processes such as feedback and filamentary heating.« less

  13. Piriformospora indica Stimulates Root Metabolism of Arabidopsis thaliana.

    PubMed

    Strehmel, Nadine; Mönchgesang, Susann; Herklotz, Siska; Krüger, Sylvia; Ziegler, Jörg; Scheel, Dierk

    2016-07-08

    Piriformospora indica is a root-colonizing fungus, which interacts with a variety of plants including Arabidopsis thaliana. This interaction has been considered as mutualistic leading to growth promotion of the host. So far, only indolic glucosinolates and phytohormones have been identified as key players. In a comprehensive non-targeted metabolite profiling study, we analyzed Arabidopsis thaliana's roots, root exudates, and leaves of inoculated and non-inoculated plants by ultra performance liquid chromatography/electrospray ionization quadrupole-time-of-flight mass spectrometry (UPLC/(ESI)-QTOFMS) and gas chromatography/electron ionization quadrupole mass spectrometry (GC/EI-QMS), and identified further biomarkers. Among them, the concentration of nucleosides, dipeptides, oligolignols, and glucosinolate degradation products was affected in the exudates. In the root profiles, nearly all metabolite levels increased upon co-cultivation, like carbohydrates, organic acids, amino acids, glucosinolates, oligolignols, and flavonoids. In the leaf profiles, we detected by far less significant changes. We only observed an increased concentration of organic acids, carbohydrates, ascorbate, glucosinolates and hydroxycinnamic acids, and a decreased concentration of nitrogen-rich amino acids in inoculated plants. These findings contribute to the understanding of symbiotic interactions between plant roots and fungi of the order of Sebacinales and are a valid source for follow-up mechanistic studies, because these symbioses are particular and clearly different from interactions of roots with mycorrhizal fungi or dark septate endophytes.

  14. Scarce metals in conventional passenger vehicles and end-of-life vehicle shredder output.

    PubMed

    Widmer, Rolf; Du, Xiaoyue; Haag, Olaf; Restrepo, Eliette; Wäger, Patrick A

    2015-04-07

    Concurrent with the demand for cleaner, lighter, and more efficient vehicles, many scarce metals (SMs) are used in passenger vehicles because of their unique physical and chemical properties. To explore the recycling potential of these metals, it is important to understand their distribution in the vehicles as well as their fate at the vehicles' end-of-life. However, this information remains very scattered and sparse. In this paper, we present a study investigating the distribution of 31 SMs in selected electrical and electronic (EE) components of conventional passenger vehicles and in the end-of-life vehicle shredder fractions from a shredder plant in Switzerland. The results of the chemical analyses show that the mass fractions of Co, Sn, Sr, Ta, Y, and Zr were dominant with >20,000 g/t in the selected EE components and Ag, Ga, Mo, Sb, Sn, Sr, and Zr with >50 g/t in the analyzed shredder fractions. The largest masses of 17 SMs were found in the shredder light fraction, which is incinerated in municipal waste treatment plants mainly in Switzerland; thus, these SMs are currently not recovered. The SM mass fractions in both the EE components and the shredder fractions were projected to their total masses in 100 hypothetical midrange passenger vehicles. The resulting mass balance showed a mismatch of >50% for 23 metals, which indicates other important SM sources such as alloys.

  15. Potential for post-closure radionuclide redistribution due to biotic intrusion: aboveground biomass, litter production rates, and the distribution of root mass with depth at material disposal area G, Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    French, Sean B; Christensen, Candace; Jennings, Terry L

    2008-01-01

    Low-level radioactive waste (LLW) generated at the Los Alamos National Laboratories (LANL) is disposed of at LANL's Technical Area (T A) 54, Material Disposal Area (MDA) G. The ability of MDA G to safely contain radioactive waste during current and post-closure operations is evaluated as part of the facility's ongoing performance assessment (PA) and composite analysis (CA). Due to the potential for uptake and incorporation of radio nuclides into aboveground plant material, the PA and CA project that plant roots penetrating into buried waste may lead to releases of radionuclides into the accessible environment. The potential amount ofcontamination deposited onmore » the ground surface due to plant intrusion into buried waste is a function of the quantity of litter generated by plants, as well as radionuclide concentrations within the litter. Radionuclide concentrations in plant litter is dependent on the distribution of root mass with depth and the efficiency with which radionuclides are extracted from contaminated soils by the plant's roots. In order to reduce uncertainties associated with the PA and CA for MDA G, surveys are being conducted to assess aboveground biomass, plant litter production rates, and root mass with depth for the four prominent vegetation types (grasses, forbs, shrubs and trees). The collection of aboveground biomass for grasses and forbs began in 2007. Additional sampling was conducted in October 2008 to measure root mass with depth and to collect additional aboveground biomass data for the types of grasses, forbs, shrubs, and trees that may become established at MDA G after the facility undergoes final closure, Biomass data will be used to estimate the future potential mass of contaminated plant litter fall, which could act as a latent conduit for radionuclide transport from the closed disposal area. Data collected are expected to reduce uncertainties associated with the PA and CA for MDA G and ultimately aid in the assessment and subsequent prevention of radionuclide transport within the environment from the closed disposal area and potential exposure to site workers and the public.« less

  16. Changes in lumbosacral spinal nerve roots on diffusion tensor imaging in spinal stenosis.

    PubMed

    Hou, Zhong-Jun; Huang, Yong; Fan, Zi-Wen; Li, Xin-Chun; Cao, Bing-Yi

    2015-11-01

    Lumbosacral degenerative disc disease is a common cause of lower back and leg pain. Conventional T1-weighted imaging (T1WI) and T2-weighted imaging (T2WI) scans are commonly used to image spinal cord degeneration. However, these modalities are unable to image the entire lumbosacral spinal nerve roots. Thus, in the present study, we assessed the potential of diffusion tensor imaging (DTI) for quantitative assessment of compressed lumbosacral spinal nerve roots. Subjects were 20 young healthy volunteers and 31 patients with lumbosacral stenosis. T2WI showed that the residual dural sac area was less than two-thirds that of the corresponding normal area in patients from L3 to S1 stenosis. On T1WI and T2WI, 74 lumbosacral spinal nerve roots from 31 patients showed compression changes. DTI showed thinning and distortion in 36 lumbosacral spinal nerve roots (49%) and abruption in 17 lumbosacral spinal nerve roots (23%). Moreover, fractional anisotropy values were reduced in the lumbosacral spinal nerve roots of patients with lumbosacral stenosis. These findings suggest that DTI can objectively and quantitatively evaluate the severity of lumbosacral spinal nerve root compression.

  17. Viscosity, density, and thermal conductivity of aluminum oxide and zinc oxide nanolubricants

    PubMed Central

    Kedzierski, M.A.; Brignoli, R.; Quine, K.T.; Brown, J.S.

    2017-01-01

    This paper presents liquid kinematic viscosity, density, and thermal conductivity measurements of eleven different synthetic polyolester-based nanoparticle nanolubricants (dispersions) at atmospheric pressure over the temperature range 288 K to 318 K. Aluminum oxide (Al2O3) and zinc oxide (ZnO) nanoparticles with nominal diameters of 127 nm and 135 nm, respectively, were investigated. A good dispersion of the spherical and non-spherical nanoparticles in the lubricant was maintained with a surfactant. Viscosity, density, and thermal conductivity measurements were made for the neat lubricant along with eleven nanolubricants with differing nanoparticle and surfactant mass fractions. Existing models were used to predict kinematic viscosity (±20%), thermal conductivity (±1%), and specific volume (±6%) of the nanolubricant as a function of temperature, nanoparticle mass fraction, surfactant mass fraction, and nanoparticle diameter. The liquid viscosity, density and thermal conductivity were shown to increase with respect to increasing nanoparticle mass fraction. PMID:28736463

  18. Trace element measurement for assessment of dog food safety.

    PubMed

    De Nadai Fernandes, Elisabete A; Elias, Camila; Bacchi, Márcio Arruda; Bode, Peter

    2018-01-01

    The quality of dog diets depends on adequate ingredients capable of providing optimal nutrition and free of contaminants, for promoting long-term health. Trace elements in 95 samples of dry food for dog puppies (n = 32) and adults (n = 63) of various brands were measured using instrumental neutron activation analysis (INAA). The mass fractions of most elements were within the permissible limits for dogs. Aluminum, antimony, and uranium presented fairly high levels in some samples, which may imply health risks. Aluminum mass fractions ranged from <21 to 11,900 mg/kg, in same brand, super-premium dog food. Antimony mass fractions ranged up to 5.14 mg/kg, with the highest values measured in six samples of dog food from the same producer. The mass fractions of uranium was found up to 4 mg/kg in commercial brands from five different producers.

  19. Slow decomposition of lower order roots: a key mechanism of root carbon and nutrient retention in the soil.

    PubMed

    Fan, Pingping; Guo, Dali

    2010-06-01

    Among tree fine roots, the distal small-diameter lateral branches comprising first- and second-order roots lack secondary (wood) development. Therefore, these roots are expected to decompose more rapidly than higher order woody roots. But this prediction has not been tested and may not be correct. Current evidence suggests that lower order roots may decompose more slowly than higher order roots in tree species associated with ectomycorrhizal (EM) fungi because they are preferentially colonized by fungi and encased by a fungal sheath rich in chitin (a recalcitrant compound). In trees associated with arbuscular mycorrhizal (AM) fungi, lower order roots do not form fungal sheaths, but they may have poorer C quality, e.g. lower concentrations of soluble carbohydrates and higher concentrations of acid-insolubles than higher order roots, thus may decompose more slowly. In addition, litter with high concentrations of acid insolubles decomposes more slowly under higher N concentrations (such as lower order roots). Therefore, we propose that in both AM and EM trees, lower order roots decompose more slowly than higher order roots due to the combination of poor C quality and high N concentrations. To test this hypothesis, we examined decomposition of the first six root orders in Fraxinus mandshurica (an AM species) and Larix gmelinii (an EM species) using litterbag method in northeastern China. We found that lower order roots of both species decomposed more slowly than higher order roots, and this pattern appears to be associated mainly with initial C quality and N concentrations. Because these lower order roots have short life spans and thus dominate root mortality, their slow decomposition implies that a substantial fraction of the stable soil organic matter pool is derived from these lower order roots, at least in the two species we studied.

  20. 40 CFR 63.4964 - How do I determine the emission capture system efficiency?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... to 40 CFR part 51 to determine the mass fraction, kg TVH per kg material, of TVH liquid input from... the coating operation during the capture efficiency test run, lb. TVHi = Mass fraction of TVH in... temporary total enclosure or building enclosure. The liquid-to-uncaptured-gas protocol compares the mass of...

Top